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ABSTRACT 
Each crystal nanostructure consists of a set of minimal building blocks (unit cells) which parameters 

comprehensively describe the location of atoms or atom groups in a crystal. However, structure recognition is 

greatly complicated by the ambiguity of unit cell choice. To solve the problem, we propose a new approach to 

structural identification of crystal lattices based on fuzzy neural networks. The paper deals with two types of fuzzy 

neural networks: the Takagi-Sugeno-Kang model and Mamdani-Zadeh model (a modification of the Wang-Mendel 

fuzzy neural network). Moreover, a three-stage neural network learning process is presented: in the first two stages 

crystal lattices are grouped in non-overlapping classes, and lattices belonging to overlapping classes are recognized 

at the third stage. The proposed approach to structural identification of crystal lattices has shown promising results 

in delimiting adjacent lattice types. The structure identification failure rates decreased to 10 % on average. 

Keywords 
crystal lattice, fuzzy neural networks, crystal structure identification, lattice system, unit cell, Takagi-Sugeno-Kang 

neural network, Wang-Mendel neural network. 

1. INTRODUCTION 
Being the fundamental concept of crystallography and 

having Angstrom-order sizes, Bravais lattices are 

building blocks for all crystals. Every crystal is 

constructed of these lattices in various modifications. 

At the same time, different crystals can have the same 

lattices. There is a total of 14 such lattices. Depending 

on special symmetry, all crystals are distributed 

among seven lattice systems: triclinic, monoclinic, 

tetragonal, orthorhombic, trigonal, hexagonal, and 

cubic systems [Til01a]. Figure 1 presents the general 

arrangements of Bravais lattices (smallest structural 

blocks) for each lattice system. 

The type of a lattice system is determined by six 

parameters of a Bravais lattice: the lengths of the three 

edges and three angles between them [Kup01a]. 

The task of recognizing nano-scale images, which are 

projections of crystal lattices, can be reduced to the 

structure identification problem. However, the major 

difficulty is the ambiguity in choosing a two-

dimensional basic cell for a particular projection 

(Fig. 2) [Ham01a]. 

Since the classes of Bravais lattices are overlapping, 

our idea is to use fuzzy neural networks. This kind of 

networks combines learning and generalization 

abilities of neural nets, fuzzy logic operations (which 

allow us to determine the degree of class inclusion of 

an object as a real number from 0 to 1), and possibility 

to classify fuzzy rule-oriented bases. A class with the 

highest degree of class inclusion is the result of 

structure identification. 
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Figure 1. The unit cells of seven lattice systems. 

 

 

Figure 2. Ambiguity of unit cell choice  

for a two-dimensional basic cell. 

The determination of classification parameters from 

experimental results and expert evaluation of the 

parameters are the most popular classification 

methods using fuzzy neural nets. Particularly, the 

author of paper [Vin01a] modifies Takagi-Sugeno-

Kang (TSK) neural network by introducing the 

recurrent TSK net. The trick allows the automatic 

generation of fuzzy rules, but increases the 

computational complexity of the learning algorithm. 

Paper [Kip01a] proposes a fuzzy TSK neural network 

for tackling the classification problem. The net uses 

the expert evaluation method to choose the most 

informative classification features and form fuzzy 

inference rules. In paper [Kat01a] similar approaches 

are used for learning the author’s modification of the 

Wang-Mendel network. The drawback of the method 

is the use of subjective estimations of fairly large 

number of experts and necessity to evaluate their 

consistency. 

Conventional fuzzy rule-based neural net models and 

modified TSK and Wang-Mendel networks use the 

algebraic product or minimum-form logical product as 

a fuzzy Boolean conjunction. Respectively, these 

models use algebraic sum or maximum-form Boolean 

sum as a fuzzy Boolean disjunction [Kat01a, Oso01a, 

Rut01a, Vin01a]. At the same time research [Nov01a] 

allows a conclusion about the effective use of fuzzy 

logical operations used in algebras of Goedel, Goguen 

and Lukasiewicz. Paper [Sol01a] offers and 

investigates modifications of Wang-Mendel networks 

that allows us to operate fuzzy logical operations 

defined in these algebras. 

The paper is aimed at solving the crucial problem of 

ambiguity of unit cell choice that greatly decrease the 

quality of crystal structure recognition. We propose a 

new approach to structural identification of crystal 

lattices based on fuzzy neural network. In particular, 

the fuzzy TSK neural network model and Wang-

Mendel network modification (Mamdani-Zadeh 

networks using operations of Goedel algebra) have 

been investigated using a sample of 7000 parameter 

sets of Bravais lattices belonging to 7 lattice system 

classes. 

This paper is organized in the following way. At first, 

existing parametric identification approaches are 

described. Afterwards, we will explain the proposed 

fuzzy network models and learning technique. The last 

two sections are devoted to the identification method 

comparisons, error analysis and conclusions. 

2. PARAMETRIC IDENTIFICATION 

APPROACHES 
One of possible approaches to the determination of 

crystal lattice type is offered in [Kup01a] where 



previously estimated lattice parameters are compared 

with predefined reference lattice parameters. The 

lattice is considered to belong to a particular type if its 

parameters have the closest match with the parameters 

of the reference lattice of this type. 

Among basic lattice structure identification methods 

based on parameter estimation are:  

- the comparator of the National Institute of 

Standards and Technology [Kes01a],  

- packing efficiency-based identification (Fig. 3) 

[Smi01a], 

- isosurface-based identification (Fig. 4) [Pat01a]. 

 

Figure 3. Close packing of spheres. 

 

 

Figure 4. Types of isosurfaces constructed  

for a cubic lattice 

However, these approaches have some drawbacks that 

restrict their use: the tricky process of crystal 

preparation (the need for accurate polishing and 

mounting), low efficiency of comparison of similar 

lattices, high sensitivity to minor distortions of lattice 

node coordinates. 

To overcome these drawbacks, we proposed a new 

algorithm for crystal lattice parametric identification 

based on the gradient steepest descent method 

[Shi01a]. In the algorithms, the result vectors of the 

lattice identification method based on estimation of 

Bravais unit cell parameters was used as the initial 

approximation. The main idea was to increase 

identification accuracy by the successive refinement 

of initial estimations (Fig. 5). 

 

Figure 5. Refinement of translation vectors. 

The proposed algorithm showed surprisingly high 

accuracy of parametric identification at the expense of 

high computational complexity. Nevertheless, the 

algorithm did not solve the problem of ambiguity of 

unit cell choice. In this paper, we offer a radically new 

approach based on fuzzy neural networks to solve the 

main problem of crystal lattice structural 

identification. 

3. FUZZY NETWORKS MODELS 
Figure 6 shows an example of fuzzy TSK multiple-

output neural network. 

 

Figure 6. The structure of fuzzy TSK neural 

network with two inputs, three inference rules 

and two outputs. 

Generalized Gauss function 

   2

1
.

1

j
A j b

j j

j

x
x c






 

   
 

 (1) 

is used as a fuzzification function for each variable jx

. 

The fuzzy conjunction in the form of algebraic product 
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is used to aggregate the condition of the i-th rule. 

Given M inference rules, the aggregation of the 

network output is done by Equation 3, which can be 

represented as 
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   is the aggregation of 

implication. Weights iw  in this expression are 

interpreted as components 
   i

A x  defined by 

Equation 2. 

The first layer of the network is responsible for 

fuzzification of each variable  1,2,...,jx j N  

defining the coefficient of belonging 
   i

A jx  for 

each i-th inference rule according to the fuzzification 

function used. This is a parametric layer whose 

parameters 
      , ,
i i i

j j jc b  are subject to adaptation in 

learning. 

The second layer makes aggregation of particular 

variables jx  defining the resulting coefficient of 

belonging 
   i

i Aw x  in accordance with 

Equation 2. The third layer is the TSK function 

generator that calculates   0

1

N

i i ij j

j

y x p p x


  . In 

addition, this layer computes the products of signals 

 iy x  and weights iw  found in the previous layer. 

This is a parametric layer with adaptable linear 

weights ijp  ( 1,2,..., ; 1,2,..., )i M j N  . 

The forth layer has two neuron-adders, one of which 

calculates the weighed sum of signals  iy x , and the 

other sums up the weights 
1

M

i

i

w


 . 

The fifth layer consists of several output neurons. This 

is a normalizing layer where the weights are 

normalized according to Equation 3. Output signals 

 sy x  are defined as 

     1

2

s
s s

s

f
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An instance of the structure of Mamdani-Zadeh 

network, which is a modification of popular Wang-

Mendel network, is shown in Figure 7. 

This is a four-layer structure where the first layer is 

similar to that of the TSK network. The second layer 

performs pairwise aggregation of particular variables 

jx  defining the resulting coefficient of belonging 

   i

i Aw x  for vector x  in accordance with 

Equation 5 – the fuzzy conjunction as minimum. This 

is not a parametric layer. 

   ( ) ( )min , ( )i k

i A k A kw x x   (5) 

The third layer is responsible for fuzzy implication in 

accordance with Equation 6 in which variables iv  

stand for conclusion of inference rules formed in the 

process of learning. This is a parametric layer. 
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Figure 7. The structure of fuzzy Mamdani-Zadeh 

inference neural network with two inputs, four 

inference rules and two outputs. 

The forth layer consists of some output neurons which 

realize the fuzzy disjunction operation as 

maximum (7) where variables iz  and kz  are the 

results of implication the i-th and k-th rules of 

inference. 

4. THE LEARNING TECHNIQUE 
The data of generated unit cells of 7 different types 

were used for learning the neural networks. The data 

were generated under the following conditions: 

1. The number of lattices per each lattice system is 

1000. 

2. The minimum admissible difference between 

“unequal” cell edges is 0.050 angst. 

3. The minimum admissible difference between 

“unequal” cell angles is 0.02 rad. 

4. The maximum admissible difference between the 

reference and estimated values of cell edges is 

0.010 angst. 

5. The maximum admissible difference between the 

reference and estimated values of cell angles is 

0.010 rad. 

 

 



The parameters of unit cell generation are: 

1. The minimum edge lengths are 1.000 angst, 

1.000 angst, 1.000 angst. 

2. The maximum edge lengths are 5.000 angst, 

5.000 angst, 5.000 angst. 

3. The minimum angle values 0.175 rad, 0.175 rad, 

0.175 rad. 

4. The maximum angle values 1.571 rad, 1.571 rad, 

1.571 rad. 

The size of lattice in each direction was taken equal to 

three nodes. The G6-space notation [And01a] was 

used to bring the parameters of unit cells to a common 

value range.  

The preliminary examination of original data allowed 

us to divide 7 lattice types in 4 groups according to the 

quantity and ordinal numbers of non-zero columns in 

data files. The grouping of crystal lattices is given in 

Table 1. 

After that the TSK and Mamdani-Zadeh neural nets 

were subjected to learning and tested in three stages: 

1. Pair training and testing of neural nets for 

recognition of 2 lattice types; 

2. Training and testing of neural nets for recognition 

of all 7 lattice types; 

3. Training and testing of neural nets for recognition 

of lattice types in subgroups 1 and 4. 

 

Lattice System Type 
2

1l  
2

2l  
2

3l  2 3 12 cosl l   1 3 22 cosl l   1 2 32 cosl l   Subgroup No. 

Triclinic (aP) x x x x x x 1 

Trigonal (hR) x x x x x x 1 

Hexagonal (hP) x x x x 0 0 2 

Monoclinic (mP) x x x 0 0 x 3 

Orthorhombic (oP) x x x 0 0 0 4 

Tetragonal (tP) x x x 0 0 0 4 

Cubic (cP) x x x 0 0 0 4 

Table 1. Grouping of lattice system types 

 

5. DETERMINING THE CRYSTAL 

LATTICE TYPE 
The relative error of structure identification in all 

experiments was calculated as a percentage of 

identification failures over the whole test lattice 

collection. At the first stage 6-dimensional vectors 

comprising of learning data of two types were fed to 

the TSK and Mamdani-Zadeh neural nets. The output 

layer held two neurons according to the number of 

classes being recognized. The results are similar for 

both network models (see Table 2). 

It is worth noticing that the neural nets could not 

discriminate triclinic lattices (in fact, arbitrary lattices) 

from trigonal lattices (three equal edges and three 

equal angles). The reason is that the placing of these 

two lattice types in a single subgroup is not entirely 

correct: triclinic lattices are described by six 

independent parameters (six non-zero columns), and 

trigonal lattices by two independent parameters (also 

six non-zero columns). So, we put these two lattice 

types in one subgroup “formally” rather than 

“physically”. 

At the second stage of the investigation, the data 

collection presenting all the seven lattice types was 

used to train the both neural nets. Six-dimensional 

vectors made up of this data were fed to the TSK and 

Mamdani-Zadeh neural nets. According to the number 

of classes to be recognized, the output layer had seven 

neurons. The experimental results show that the both 

network models recognize hexagonal- and 

monoclinic-type lattices (subgroups 2 and 3) without 

failure. It is because the learning data for these lattice 

types has different combinations of zero and non-zero 

columns than that for other lattice types. In other 

words, the neural nets recognize the lattices of 

hexagonal and monoclinic type as non-overlapping 

classes. 

 

 hR hP mP oP tP cP 

aP 10 0 0 0 1 1 

hR  0 0 0 0 2 

hP   15 15 43 12 

mP    42 16 10 

oP     16 8 

tP      12 

Table 2. Relative errors of crystal lattice structure 

identification in pair learning of the TSK network 

using a 7000-lattice sample. 



Additionally, the third stage of experiments was 

carried out to recognize lattice types belonging to 

subgroups 1 and 4. The TSK and Mamdani-Zadeh 

neural nets with 6 inputs and 2 outputs were used to 

deal with lattices of subgroup 1. The same nets with 3 

inputs corresponding to non-zero columns of initial 

data and 3 outputs were engaged to process 

subgroup 4. The identification failure rate of the TSK 

neural net was 10% for subgroup 1, and 25% for 

subgroup 4. With the Mamdani-Zadeh neural net this 

rate was 4% for lattices from subgroup 1 and 12% for 

subgroup 4. 

Let us compare the values of the relative errors with 

the results presented in [Kir01a, Kup01a] where the 

recognition of lattice types was done with the aid of 

parametric identification methods. By way of example 

let us look at the best result of structure identification 

obtained in comparative estimation of Bravais cell 

parameters and Wigner-Seitz cell volumes [Kup01a] 

(see Table 3). 

 

 hR hP mP oP tP cP 

aP 0 0 1 0 0 0 

hR  0 0 2 3 26 

hP   7 0 0 0 

mP    22 10 0 

oP     34 15 

tP      26 

Table 3. Relative errors of crystal lattice structure 

identification using parametric identification 

methods. 

The comparison shows that the use of neural nets 

makes it possible to significantly decrease the 

structure identification failure rates for the following 

lattice types: 

- trigonal and cubic types from 26 to 2%; 

- orthorhombic and tetragonal types from 34 to 16%; 

- tetragonal and cubic types from 26% to 12%; 

- orthorhombic and cubic types from 15 to 8%. 

On the other hand, when discriminating monoclinic 

and hexagonal lattices from lattices of subgroups 3 

and 4, the neural nets give much worse results than 

parametric identification methods. Particularly, in 

separation of hexagonal lattices from tetragonal ones 

the relative error has grown from 0 to 43%. 

As for subgroup 4, here the low results are due to the 

geometric overlapping of classes. A set of cubic-type 

lattices (red diagonal in Figure 8) lie in the same line 

in the three-dimensional space. This line is in the plane 

containing tetragonal-type elements (the dark-grey 

layer in Figure 8). The plane lies in turn inside the 

parallelogram formed by orthorhombic-type elements 

(the light-grey cube in Figure 8). 

 

Figure 8. The class overlapping of lattice types of 

subgroup 4. 

6. CONCLUSION 
We have offered a three-stage learning technique for 

neural networks. Crystal lattices are divided into non-

overlapping classes in the first two stages. Crystal 

lattices belonging to overlapping classes are 

recognized at the last stage. 

As compared with parametric identification methods, 

the use of neural nets makes it possible to decrease the 

3D structure identification failure rate for four couples 

of lattice systems considerably (as much as 2 to 13 

times). 

The research results allow us to draw a conclusion that 

fuzzy neural networks are an efficient tool in 

recognition of crystal lattice types using Bravais cells 

parameters. 
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