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ABSTRACT 
The segmentation of moving objects in video can be formulated as a background subtraction problem – the 

detection of change in each image frame. The background scene is learned and modeled. A pixelwise process is 

employed to determine whether the current pixel is similar or not to the background model. The detection of change 

in video is challenging due to the non-stationary background such as illumination change, background motions, 

etc. We propose new features for background modeling. Perception-based local ternary patterns are generated from 

the same color channels as well as from different color channels. Features computed from the local patterns are 

stored in the background model as samples. If the current pixel is classified as background, the background model 

is updated. Finally, we propose a probabilistic refinement to improve each change region by taking into account 

the spatially consistency of image features. We compare our method with various background subtraction 

algorithms on some video datasets. Our method can achieve 13% better performance than other methods. 

Keywords 
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1. INTRODUCTION 
Moving objects such as humans or vehicles, are often 

the focus of image sequence analysis. The 

segmentation of moving objects can be formulated as 

change detection. One common approach is to 

perform background subtraction. In that sense, the 

background scene is modeled. Change region is 

detected when it is found to be different from the 

background model. Sobral and Vacavant [Sob14a] 

presented a review and evaluation of 29 background 

subtraction methods. Background subtraction 

techniques can be categorized based on the features 

being used to model the background scene. 

Statistical – Stauffer and Grimson [Sta00a] proposed 

modeling of background colors using mixture of 

Gaussian distributions (MoG). In contrast with a fixed 

number of Gaussians in the original MoG model, 

Zivkovic [Ziv04a] proposed an algorithm for selecting 

the number of Gaussian distributions using the 

Dirichlet prior. Bouwmans [Bou11a] presented a 

survey on statistical background modeling. 

Bag of visual words – Intensities or colors are 

sampled over a short image sequence. Elgammal et al. 

[Elg02a] proposed an algorithm for estimating the pdf 

directly from previous pixels using kernel estimator. 

Kim et al. [Kim05a] proposed to represent the 

background by codebooks which contain quantized 

background colors. Barnich and Van Droogenbroeck 

[Bar09a] proposed a sample-based background 

subtraction algorithm called ViBe. Background model 

is initialized by randomly sampling of pixels on the 

first image frame. Hofmann et al. [Hof12a] proposed 

a similar non-parametric sample-based background 

subtraction method with 9 tunable parameters. 

Pattern – Recent research showed that modeling 

background by local patterns can achieve higher 

accuracy. Heikkilä and Pietikäinen [Hei06a] proposed 

to model the background of a pixel by local binary 

pattern (LBP) histograms estimated around that pixel. 

Liao et al. [Lia10a] proposed the scale invariant local 

ternary pattern (SILTP) which can tackle illumination 

variations. St-Charles et al. [Stc15a] proposed a 

pixelwise background modeling method using local 

binary similarity pattern (LBSP) estimated in the 

spatio-temporal domain. Ma and Sang [Ma12a] 

proposed the multi-channel SILTP (MC-SILTP), 

which is an improvement of SILTP, with pattern 

computed from RGB color channels. In [Cha16a], we 

proposed to model the background by perception-

based local binary pattern. 
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2. SAME-CHANNEL AND CROSS-

CHANNEL LOCAL TERNARY 

PATTERNS 
We propose novel perception-based local ternary 

patterns which can be used effectively to characterize 

various dynamic circumstances in the scene. At each 

image pixel, patterns can be generated from the same 

color channels and different color channels. Figure 1 

shows a block of 3 x 3 pixels. Each pixel of the block, 

n1 to n8, (except the center pixel) is compared with 

the confidence interval (CI) of the center pixel b. CI(b) 

is defined by (CIl, CIu) where CIl and CIu are the lower 

bound and upper bound of CI respectively. The pattern 

value p is set according to the following equation 
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The confidence interval CI(b) can be defined as (b – 

d1, b + d2). According to Weber’s law [Gon10a], d1 

and d2 depend on the perceptual characteristics of b. 

That is, they should be small for darker color and large 

for brighter color. Haque and Murshed [Haq13a] 

derived the linear relationship d1 = d2 = c * b, where c 

is a constant. We adopt the human visual perception 

characteristics in transforming pixel colors into local 

ternary pattern. CI(b) is defined as (b – c1b, b + c2b). 

Using peak signal-to-noise ratio (PSNR) measure, b 

and b – c1b are just perceptually different from each 

other if 
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where Imax is the maximum intensity and Tp is the 

perceptual threshold. Similarly, b and b + c2b are just 

perceptually different from each other if 
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To determine c1 and c2, the equations are simplified. 
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Assume Tp is 0.5 dB, c1 = 0.0559 and c2 = 0.0593. 

If the center pixel b and neighbors n1 to n8 are from the 

same color channel, the Same-Channel Pattern (SCP) 

is generated as follows: 

 

𝑆𝐶𝑃𝑘 = {𝑝𝑘
𝑐}, 𝑐 = {𝑅, 𝐺, 𝐵}, 1 ≤ 𝑘 ≤ 8 (6) 

 

where  𝑝𝑘
𝑐  is the binary pattern value for color channel 

c at position k, and  is the concatenation of the 

corresponding binary pattern values for all color 

channels. We choose the RGB color model instead of 

other color model such as YIQ because that avoids 

more computation in transforming the pixel values. If 

the center pixel b and neighbors n1 to n8 are from 

different color channels, the Cross-Channel Pattern 

(CCP) is generated as follows: 

 

𝐶𝐶𝑃𝑘 = {𝑝𝑘
𝑐𝑏:𝑐𝑛},  

𝑐𝑏: 𝑐𝑛 = {𝑅: 𝐵, 𝐺: 𝑅, 𝐵: 𝐺}, 1 ≤ 𝑘 ≤ 8 (7) 

 

where 𝑝𝑘
𝑐𝑏:𝑐𝑛 is the binary pattern value at position k 

estimated with center pixel b from color channel cb 

and neighbor nk from color channel cn, and  is the 

concatenation of the corresponding cross-channel 

binary pattern values. One advantages of our local 

ternary patterns is that they are estimated from all 

color channels which can provide a more informative 

characterization of local image texture. Also, in flat 

image regions, the features derived from gray values 

or the same color channel may not be distinctive. This 

limitation can be alleviated with the use of CCP. 

3. BACKGROUND MODELING AND 

CHANGE DETECTION 
A number of image frames in each video are allocated 

for background model initialization. With this short 

image sequence, the local patterns are transformed 

into concise representation and stored as background 

samples. Also, the original color values are saved as 

photometric features in the background model. 

First, SCP and CCP are combined into a 12-bit string: 

 

𝐶𝑃𝑘 = 𝑆𝐶𝑃𝑘𝐶𝐶𝑃𝑘 , 1 ≤ 𝑘 ≤ 8  (8) 
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Figure 1. A block of pixels with center pixel b 

and neighbors n1 to n8 is transformed into 

ternary pattern. 
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For convenient of storage, CPk is transformed into a 

single value: 

 

𝐹𝑘 = ∑ 𝐶𝑃𝑘(𝑝) ∙ 2𝑝12
𝑝=1 , 1 ≤ 𝑘 ≤ 8  (9) 

 

where 𝐶𝑃𝑘(𝑝) is bit p of 𝐶𝑃𝑘. Therefore, at each image 

pixel location, the local ternary patterns are 

transformed into an 8-dimensional feature vector {Fk} 

and saved in the background model as one sample. 

Change regions are detected by comparing each pixel 

of the image frame with the background model. It is a 

background/foreground segregation process. If 

features of the pixel match with the background 

model, it is a background pixel. Otherwise, it is a 

foreground (change) pixel. We adopted the sample-

based approach. At each pixel of the current image 

frame, SCP and CCP are computed using the method 

as described in section 2. If the local ternary patterns 

and photometric features match with one sample of the 

background model, the current pixel is classified as 

background pixel. The similarity between patterns of 

the current pixel and the background model can be 

computed by measuring the Hamming distance 

between two bit strings 

 

𝑑𝑝 = ∑ |𝐶𝑃𝑘
𝑖𝐶𝑃𝑘

𝐵|8
𝑘=1   (10) 

 

where 𝐶𝑃𝑘
𝑖  is 𝐶𝑃𝑘 of the current pixel, 𝐶𝑃𝑘

𝐵 is 𝐶𝑃𝑘 of a 

background sample,  is the XOR operator, || is the 

cardinality. The two sets of local ternary patterns are 

considered as similar if dp < p. 

The similarity between the current pixel color and the 

color of the background sample is computed by 

 

𝑠𝑐 =
𝐶𝑖∙𝐶𝐵

‖𝐶𝑖‖
2

∙‖𝐶𝐵‖
2

  (11) 

 

where Ci is color the current pixel, CB is color of a 

background sample, ||||2 denotes the Euclidean length 

of a vector. The two colors are considered as similar if 

sc > c. 

The background model is updated alongside with the 

change detection. If the current pixel is classified as 

background, the features of the matched background 

sample will be replaced by the features of the current 

pixel. 

4. FOREGROUND REFINEMENT 
The background/foreground segregation result may 

contain false positive and false negative errors. For 

instance, isolated scene pixels may have features 

deviate from the background model due to 

illumination change or background motion. As they 

are not connected to form a region, they can be 

discarded without affecting the detection of real 

moving objects. Therefore, foreground regions less 

than 15 pixels are eliminated. The remaining 

foreground regions may have holes. The silhouette of 

the change region may be distorted. These false 

negative errors are usually caused by the similarity of 

the image features in the change region to the 

background model. We analyze the spatially 

consistency of image features and refine the change 

region probabilistically. Let x be a foreground (FG) 

pixel. Its neighboring background (BG) pixels y are 

defined by 

 

y | dist(x, y) < D, x = FG, y = BG  (12) 

 

where dist() is the city-block distance and D is fixed 

as 1. y are changed to FG when they have image 

features more similar to neighboring FG pixels than 

neighboring BG pixels. To analyze the local ternary 

pattern feature 

 

yi = FG   if 𝑙𝑜𝑔
𝑃(𝑦𝑖=𝐹𝐺)

𝑃(𝑦𝑖=𝐵𝐺)
> 𝑇𝑓1  (13) 

 

𝑃(𝑦𝑖 = 𝐹𝐺) = 𝑒𝑥 𝑝(− ∑ |𝑑𝑝

𝑦𝑗
−𝑗

𝑑𝑝
𝑦𝑖|) , 𝑑𝑖𝑠𝑡(𝑦𝑖 , 𝑦𝑗) < 𝐷, 𝑦𝑗 = 𝐹𝐺  (14) 

 

𝑃(𝑦𝑖 = 𝐵𝐺) = 𝑒𝑥 𝑝(− ∑ |𝜇(𝑑𝑝

𝑦𝑗
) −𝑗

𝑑𝑝
𝑦𝑖|) , 𝑑𝑖𝑠𝑡(𝑦𝑖 , 𝑦𝑗) < 𝐷, 𝑦𝑗 = 𝐹𝐺  (15) 

 

where µ() is the mean of the local ternary pattern 

features in the background model. To analyze the 

photometric feature 

 

yi = FG   if 𝑙𝑜𝑔
𝑃(𝑦𝑖=𝐵𝐺)

𝑃(𝑦𝑖=𝐹𝐺)
> 𝑇𝑓2  (16) 

 

𝑃(𝑦𝑖 = 𝐹𝐺) = 𝑒𝑥 𝑝(− ∑ |𝑠𝑐

𝑦𝑗
−𝑗

𝑠𝑐
𝑦𝑖|) , 𝑑𝑖𝑠𝑡(𝑦𝑖 , 𝑦𝑗) < 𝐷, 𝑦𝑗 = 𝐹𝐺  (17) 

 

𝑃(𝑦𝑖 = 𝐵𝐺) = 𝑒𝑥 𝑝(− ∑ |𝜇(𝑠𝑐

𝑦𝑗
) −𝑗

𝑠𝑐
𝑦𝑖|) , 𝑑𝑖𝑠𝑡(𝑦𝑖 , 𝑦𝑗) < 𝐷, 𝑦𝑗 = 𝐹𝐺  (18) 

 

where µ() is the mean of the photometric features in 

the background model. A false negative pixel will be 



corrected when both Equations (13) and (16) are 

satisfied. 

5. RESULTS AND DISCUSSION 
We evaluated the performance quantitatively in terms 

of F-Measure (F1). We compared our method with 

other background subtraction algorithms on two 

publicly available datasets. We selected sample-based 

method ViBe [Bar09a], pattern-based methods SILTP 

[Lia10a] and MC-SILTP [Ma12a] for comparison. 

Based on sample consensus, ViBe can achieve very 

good results with very few tunable parameters. ViBe 

uses RGB color model and a fixed spherical distance 

of 30 in matching new pixel with background samples. 

It keeps 20 background samples and the new pixel is 

identified as background with 2 matches. SILTP 

employs scale invariant local patterns. MC-SILTP is 

one latest pattern-based method and can perform 

better than SILTP. We implemented SILTP with the 

same set of parameters as reported in [Lia10a]. The 

only parameter value which was not mentioned is the 

number of training frames. Through experimentation, 

we find that the number of training frames is best fixed 

as 150. Similarly, we implemented MC-SILTP with 

the same setting as reported in [Ma12a]. As for our 

method, the first 50 image frames of the video are used 

for background model initialization. Other parameters 

are: p = 16, c = 0.9, Tf1= 2.0, Tf2= 0.1. 

The Wallflower dataset [Toy99a] contains 6 videos. 

Each video comes with 1 manually labeled ground 

truth. The image frame size is 160 x 120 pixels. The 

dataset contains videos exhibiting gradual 

illumination change (TimeOfDay), sudden 

illumination change (LightSwitch), similar 

background and object color (Camouflage), moving 

background elements (Waving Trees), etc. Table 1 

shows the F1 results of our method, ViBe, SILTP and 

MC-SILTP. The best result in a given row is 

highlighted. No method can achieve the highest F1 on 

all videos. Our method can achieve highest F1 on 5 

videos. Overall, texture-based methods perform better 

than ViBe. Our method achieves the highest average 

F1 which is 13% higher than the second best method 

MC-SILTP. Also, our method can achieve 

consistently high F1 as indicated by the lowest 

variance. 

Figure 2 shows the visual results. In “Bootstrap”, 

humans already exist in the initialization image 

sequence. ViBe produces more false negative errors. 

Our method and SILTP relatively have lesser false 

negative errors. Our method also has lesser false 

positive errors than MC-SILTP. In “Camouflage”, the 

difficulty is that the monitor and the clothing have 

similar color. Therefore, ViBe, SILTP and MC-SILTP 

produce many false negative errors. With probabilistic 

refinement, our method can drastically reduce false 

negative error. In “ForegroundAperture”, the human 

remains stationary and stooped over the desk for some 

time. Features of the human are included in the 

background model. When the human rises, all 

methods produce false negative errors. In 

“LightSwitch”, ViBe cannot adapt to the sudden 

change of light. Other methods can quickly respond. 

In “TimeOfDay”, the room is very dark at the 

beginning. The light is turned on gradually and a 

human enters the room. SILTP and MC-SILTP cannot 

adapt to the change and result in large amount of false 

positive errors. ViBe performs better but the detected 

human is small. Benefit by the local ternary pattern 

features, our method can detect a larger human. In 

“WavingTrees”, ViBe and SILTP produce many false 

positive errors in the trees behind the human. MC-

SILTP still produce moderate amount of false positive 

error. Our method is quite effective in identifying the 

waving trees as background. In summary, our method 

can achieve a consistent and accurate performance 

under various kinds of complication in the background 

scene. 

 

Sequence Our  

method 

ViBe SILTP MC-SILTP 

Bootstrap 0.846 0.478 0.766 0.740 

Camouflage 0.966 0.931 0.927 0.896 

ForegroundAperture 0.768 0.644 0.849 0.665 

LightSwitch 0.759 0.159 0.730 0.745 

TimeOfDay 0.678 0.394 0.175 0.181 

WavingTrees 0.965 0.933 0.712 0.946 

Average 0.830 0.590 0.693 0.695 

Variance 0.014 0.095 0.071 0.075 

Table 1. F1 results on the Wallflower dataset 

 

The Star dataset [Li04a] contains more challenging 

videos. Each video comes with 20 manually labeled 

frames as ground truths. The videos have different 

image frame size, from 160 x 120 pixels to 320 x 256 

pixels. We selected ViBe [Bar09a], MC-SILTP 

[Ma12a], statistical method MoG [Sta00a], and 

pixelwise LBP (LBP-P) [Hei06a] for comparison. 

Table 2 shows the F1 results. The numeric results of 

MoG and LBP-P are from [Lia10a]. Our method can 

achieve highest F1 on 6 videos and second best on 2 

videos. Overall, our method achieves the highest 

average F1 than all comparing methods which is 5% 

higher than the second best method LBP-P. Also, our 

method has the lowest variance. 

Figure 3 shows the visual results of our method, ViBe 

and MC-SILTP. Some videos contain busy human 

flows (AirportHall, Bootstrap, Escalator, 

ShoppingMall). “Curtain” has a slowly moving 

curtain in the background. “Fountain” and 



“WaterSurface” contain moving water. In “Lobby”, 

the light is dimmed and turned on later. “Trees” has 

waving trees and banner in the background. In 

“AirportHall”, all methods produce false negative 

errors. ViBe and MC-SILTP have more false positive 

errors than our method. In “Bootstrap” and “Curtain”, 

ViBe produces more false negative errors while MC-

SILTP produces more false positive errors. Our 

method can detect a fairly good shape of the humans. 

“Escalator” is a difficult video. All methods many 

false positive and negative errors. In “Fountain”, ViBe 

cannot detect the humans completely. MC-SILTP 

produces many false positive errors. Our method can 

effectively model the fountain as background and 

detect the humans. In “ShoppingMall”, the main 

difficulty is the shadow. That causes more false 

positive errors in ViBe. Pattern-based methods can 

tackle shadow much better as can be seen in the shape 

of the humans detected by our method. In “Lobby”, 

ViBe and MC-SILTP cannot adapt to the dimming of 

light and produce many false positive errors. Our local 

ternary pattern features have no problem in 

characterizing the illumination change. ViBe and MC-

SILTP produce large amount of false positive errors in 

“Trees”. ViBe also cannot detect the bus completely. 

Our method can effectively treats the waving trees as 

background and window of the bus as change region. 

In “WaterSurface”, ViBe fails to detect the legs. 

Pattern-based method can model the water surface. 

However, due to similarity between clothing and 

water, they produce many false negative errors (holes) 

within the change region. 

 

Sequence Our  

method 

ViBe MC- 

SILTP 

MoG LBP-P 

AirportHall 0.653 0.496 0.659 0.579 0.503 

Bootstrap 0.725 0.514 0.649 0.541 0.520 

Curtain 0.794 0.775 0.707 0.505 0.714 

Escalator 0.566 0.445 0.439 0.366 0.539 

Fountain 0.801 0.425 0.504 0.779 0.753 

ShoppingMall 0.648 0.522 0.513 0.670 0.629 

Lobby 0.708 0.029 0.690 0.684 0.523 

Trees 0.611 0.345 0.222 0.554 0.606 

WaterSurface 0.612 0.801 0.570 0.635 0.822 

Average 0.680 

 

0.483 0.550 0.590 0.623 

Variance 0.007 0.052 0.024 0.014 0.013 

Table 2. F1 results on the Star dataset 

 

6. CONCLUSION 
We propose a method for change detection in video. 

The background model is represented by samples of 

local ternary pattern and photometric features. We 

propose new local ternary patterns which are 

generated from the same color channels as well as 

from different color channels. The local ternary 

patterns make full use of all color channels. The 

features derived from the patterns are more 

informative and distinctive than other pattern-based 

methods that use gray values or the same color 

channel. In the change detection process, a current 

pixel is classified as background only when both 

pattern and photometric features match with one 

background sample. Otherwise, that pixel is classified 

as foreground (change region). Features of 

background pixel will be used to update the 

background model. Finally, we propose a probabilistic 

refinement to improve each change region by taking 

into account the spatially consistency of image 

features. We compare our method with various 

background modeling algorithms on two video 

datasets. Our method can achieve better and more 

consistent performance than all other methods. 
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Figure 2. Background subtraction results on the Wallflower dataset (6 image 

sequences) – original image frames (first column), results obtained by ViBe (second 

column), results obtained by SILTP (third column), results obtained by MC-SILTP 

(fourth column), results obtained by our method (fifth column), ground truths (last 

column). 
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  Figure 3. Background subtraction results on the Star dataset (9 image sequences) – 

original image frames (first column), results obtained by ViBe (second column), 

results obtained by MC-SILTP (third column), results obtained by our method 

(fourth column), ground truths (last column). 
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Figure 3. continue. 

 

 


