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ABSTRACT 
Magnetic resonance images (MRI) in various modalities contain valuable information usable in medical 

diagnosis. Accurate delimitation of the brain tumor and its internal tissue structures is very important for the 

evaluation of disease progression, for studying the effects of a chosen treatment strategy and for surgical 

planning as well. At the same time early detection of brain tumors and the determination of their nature have 

long been desirable in preventive medicine. The goal of this study is to develop an intelligent software tool for 

quick detection and accurate segmentation of brain tumors from MR images.  

In this paper we describe the developed two-staged image segmentation framework. The first stage is a voxel-

wise classifier based on random forest (RF) algorithm. The second acquires the accurate boundaries by evolving 

active contours based on the level set method (LSM). The intelligent combination of two powerful segmentation 

algorithms ensures performances that cannot be achieved by either of these methods alone. 

In our work we used the MRI database created for the BraTS ’14-‘16 challenges, considered a gold standard in 

brain tumor segmentation. The segmentation results are compared with the winning state of the art methods 

presented at the Brain Tumor Segmentation Grand Challenge and Workshop (BratsTS).  
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1. INTRODUCTION 
Early detection of diseases is of the utmost 

importance to maintaining or somehow regaining 

one’s health, and thus it contributes to improving 

quality of life. The combination of various image 

processing techniques creates an efficient diagnostic 

tool. One part of the imaging techniques is built 

around automatic image segmentation, which is 

much faster than time-consuming analysis by experts.  

Cerebral metastases usually become symptomatic in 

the form of headaches, focal neurological deficits or 

seizures, but they may also be found coincidentally in 

cancer staging scans. In any case, the earlier the 

tumor is detected, the better the chances of survival. 

In addition to sensitive automatic detection, precise 

segmentation of tumors is also required for efficient 

treatment and intervention planning. In particular, 

brain tumor segmentation consists of separating the 

different tumor tissues from normal brain tissue. 

Accurate and reproducible segmentation and 

characterization of abnormalities can be considered 

indispensable in medical diagnosis. 

The subsequent sections of the paper are organized as 

follows: in section 2 the milestone approaches of the 

literature are summarized. In section 3 the first major 

stage of the proposed system, the random forest (RF), 

is described, followed by the mathematical details of 

the second stage, the level set method (LSM), in 

section 4. Finally, the results of our experiment 

(section 5) are presented with an emphasis on the 

improvement brought by the LSM. The performances 

obtained are compared to other systems and 

conclusions are drawn. 

2. RELATED WORK 
At present, there are many state-of-the-art brain 

tumor segmentation methods that have been 

developed. These have been implemented and 

published mainly for the Brain Tumor Image 

Segmentation Benchmark, organized yearly since 

2012 [1]. There are two main categories: generative 

and discriminative models. Generative methods 

attempt to determine the probability distribution 
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function between the input and the target outputs. 

They rely on the Bayes theorem and are based on 

prior knowledge using appearance or anatomic 

properties. All these methods assume standardized 

data acquisition, registration and alignment in order 

to be converted into a generally usable probabilistic 

model [1]. On the other hand, discriminative models 

are capable of learning the classification function 

directly from a manually labeled training dataset. The 

main drawback is the requirement for a substantial 

amount of data in order to create sufficiently general 

and high-performing classifiers via supervised 

learning. 

Today’s leading architectures in the field of medical 

image processing and brain tumor segmentation are 

based on two major methods: the random forest 

decision tree ensemble [3] and deep learning via 

convolutional neural networks (CNN) [4].  

Zikic et al. [5] combine a discriminative model using 

40 decision trees in the classification ensemble with 

2000 context-aware attributes, combining all of these 

with a generative model using tissue-specific 

probabilities for each patient.  

Ellwaa et al. [6] create a random decision tree with 

an iterative approach using heuristics to gradually 

add the data from new patients to the training dataset.  

Maier et al. [7] use the random forest classifier for 

the prediction of ischemic stroke lesion outcome. 

They include texture as anatomical features in the 

200-tree ensemble. 

Another radically different classification and 

segmentation approach is based on a state-of-the-art 

method called Deep Learning. 

Chang proposed in [4] a very fast but highly accurate 

CNN architecture with few parameters. In this 

classification, the deepest convolutional output layers 

are combined with hyperlocal features from the input 

image.  

Soltaninejad et al. [8] join the two methods. They 

utilized the VGG16 [9] fully convolutional neural net 

to obtain a feature map that is combined with a 

Gabor filter bank. All of these feature maps are fed to 

a random forest classifier. 

The Level Set Method (LSM) proposed by Chan-

Vese [10] is used to determine the active contour 

between two surfaces by minimizing the sum of 

intensity variance of the defined inner and outer 

regions. It is used for medical image segmentation 

only in combination with other segmentation 

methods [11, 12]. 

3. RANDOM FOREST 
The random forest (RF) is an ensemble of decision 

trees suitable for the task of classification. It is one of 

the few methods applicable for a very large dataset, 

for example 3D medical images. Beside 

classification, it can also be used for feature selection 

because it estimates variable importance during the 

steps of the algorithm. The multitude of randomly 

generated decision trees representing the forest has 

very good generalization properties owing to the 

randomization process used in the construction of 

each tree. Each of the trees represents a unique weak 

classifier. The ensemble joins several such trees, 

thereby obtaining a strong classifier. The underlying 

database is randomly sampled with replacement and, 

for each tree, a different bootstrap set and out-of-bag 

(OOB) set is obtained. The bootstrap set is used in 

the creation of the tree. The OOB set (disjunctive to 

the bootstrap set) is used for evaluation purposes, for 

the computation of the generalized error of the 

ensemble. Not only are the data instances used 

randomized in each tree, but the splitting criterion of 

a tree-node is also based on randomness. Out of a 

large number (M) of variables (features) only a given 

number (mtires<<M) are selected randomly for 

splitting. The optimum of the splitting criterion is 

computed only for these selected variables, based on 

the maximization of information gain. The OOB 

error is computed for each tree on the OOB set, using 

the tree structure obtained. The average OOB error of 

the ensemble is the unbiased estimator of the 

generalized error of the model (GE). [13]  

The minimization of the generalized error involves 

the optimization of the RF parameters. The 

parameters which have to be tuned in order to obtain 

a well-working classifier are the number of trees in 

the ensemble (Ktrees), the number of nodes in each 

tree (Tnodes) and the number of variables used as a 

splitting criterion in the nodes, called number of tries 

(mtries).The number of trees (Ktrees) influence the 

generalization error of the ensemble. If it is 

sufficiently large, the overfit of classification can be 

avoided, but the generalization error grows and the 

computation time increases. The number of nodes 

(Tnodes) is usually not limited in many of the other 

attempts in the literature. We have discovered that 

limitation is very important in order to avoid 

extremely deep trees. The third parameter is the 

number of variables (mtries) randomly selected in each 

node. This value restricts the variables evaluated for 

finding the optimal split. 

In our segmentation approach we make use of both 

the classification capacity of the RF ensemble and its 

variable importance measures applied in feature 

selection. The first step of creating the model is to fix 

a large number of low-level features (first order 

operators [mean, standard deviation, min, max, 

median, gradient]; higher order operators [difference 

of Gaussian, Laplacian, entropy, curvatures, kurtosis, 

skewness]; texture features [Gabor wavelets]; spatial 

context features [symmetry, projections, 



neighborhoods]), out of which the random forest is 

able to choose the most important ones. Only after 

this step does the training of the RF classifier 

described above follow, using the important features 

only. In statistical pattern recognition, the more 

adequate features are selected, the better the final 

decision will be. The RF approach offers an 

opportune method for the selection of relevant 

variables. In the case of RF, there are two 

possibilities to evaluate variable importance: Gini 

importance and permuted importance [13]. The 

variable importance depends on the RF ensemble 

obtained. Because the ensemble is based on 

randomness, the effective values of the importance 

are different for each new RF, but the order of 

important variables is, on average, similar. In our 

previous article we proposed a feature selection 

approach using the variable importance given by RF. 

Due to this algorithm, we managed to considerably 

reduce the number of initial variables (V) to a much 

smaller amount (Vimp<V), which are considered 

important with regard to brain tumor segmentation. 

The algorithm proposed consists of the following 

steps: 

1. Create an RF ensemble for variable importance 

evaluation; 

2. Considering the order of importance, eliminate 

the least important p% of variables. 

3. If variables are sufficiently reduced, continue 

with step 4, otherwise repeat from step 1. 

4. Create the RF classifier considering the remaining 

variables. 

5. Evaluate the classification performances 

obtained. 

6. Accept or reconsider the number of iterations 

(steps 1-3) based on the classification accuracy. 

In our experiments we considered different values of 

p% and a different number of iterations. At first, we 

were able to reduce a large number of unimportant 

variables, but in the last stages, only a few. This 

depends on the classification performances of the RF 

ensemble obtained. 

 

4. LEVEL SET METHOD 
The accurate segmentation of MR images is a 

difficult task due to unclear or blurred dividing 

surfaces between tissues. The level set method is 

used with predilection because it performs better than 

other segmentation algorithms such as the gradient, 

threshold or clustering methods. The performances 

are explained by the fact that in the level set method, 

the global proprieties of image intensities matter 

more than local ones. The variant of the level set 

method try to find an active contour which 

delimitates the image regions and evolves in time 

during the segmentation process. For this task we 

adopted the Chan-Vese algorithm [10], which tries to 

find the active contour by energy minimization. 

Namely, the sum of the intensity variance of 

segmented regions is minimized. Thus, the best 

location of the contour is in the force equilibrium 

state in the force field of the image. Furthermore, the 

implicit formulation of the active contour provides 

certain remarkable features, such as topological 

flexibility, good numerical stability and 

straightforward extension of the 2D formulation to 

the n-dimension. 

The segmentation task can be enunciated by finding a 

curve (C) that separates the image (Ω) into disjointed 

regions (Ω1, Ω2 ,…, Ωn). Mathematically, this can be 

formulated to find the curve (C) which minimizes the 

Mumford-Shah functional: 
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where c1 and c2 are the average intensity levels inside 

and outside of the contour, L(C) is the length of 

curve, A(in(C)) the area inside the curve, u0(x, y) 

image intensities and the μ, ν, λ1, λ2, parameters 

should be determined for each segmentation type.  

In the level set formulation, instead of searching for 

the solution in terms of C, we are looking for a 

surface ( , )x y  with the following properties: 
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where ( , )x y  is the signed distance function from 

C, 0 on curve C, negative outside   and positive 

inside  . The distance function ( , )x y  evolves in 

time in such way that the curve C is the zero-level set 

of ( , , )x y t  
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where δ is the Dirac function and H is the Heaviside 

function determining the inside (outside) of curve C. 

The first term is the length of the curve, the second is 

the area inside the curve, the third and fourth terms 

are energy terms inside and respectively outside the 

curve. Using the level set formulation, the image 

segmentation becomes an energy minimization 

problem, which leads to the solution with the 

corresponding Euler-Lagrange equation: 
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By using the Gateaux derivate of the energy function 

∂F/∂Φ we obtain the corresponding Euler-Lagrange 

equation: 
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where ( )   is the curvature of  , u0(x, y) image 

intensities and the μ, ν, λ1, λ2, parameters should be 

determined for each segmentation type.. This partial 

derivate equation (PDE) can be easily solved with the 

standard gradient descent using variational methods. 

In this framework, the c1 and c2 are constant in the 

inside and outside region, respectively, and can be 

determined by 
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The c1 and c2 are the mean values of intensities in the 

segmented regions, inside and outside the curve C, 

respectively. It is desirable for these regions to be as 

homogeneous as possible. Taking this into account, 

we have to compute the level set function not on the 

whole image domain, but only in a narrow band near 

the different tumor tissue contours. This way, we 

managed to exploit the advantage of precise 

delimitation and at the same time reduce computation 

time. 

5. RESULTS AND EXPERIMENTS 
The primary task of segmentation is the delimitation 

of the tumor tissue from healthy brain tissue. At the 

same time, we also propose to determine the tumor 

structure by considering only four specific tissue 

types: the edema as well as three tumor substructures, 

which are the non-enhancing (solid) core, the 

enhancing tumor core and the necrotic (or fluid-

filled) core [1]. These structures offer much more 

visual information for radiologists than a biological 

interpretation. 

Our experimental setup utilizes the image database 

created for purposes of evaluating the approaches 

implemented participating in the BraTS Challenges 

(‘12-‘17) [2]. This database has become a gold 

standard in brain tumor segmentation during the last 

six years. The images were acquired in highly 

reputable clinic centers with different 1.5T or 3T 

MRI equipment, but strictly based on a standardized 

acquisition protocol. Experts in the field manually 

annotated the images using a segmentation protocol 

described in [14]. The manual annotation and 

segmentation of MR images is very time-consuming 

and requires fastidious and careful work even from 

an experimented specialist. 

Each image set in the database consists of five types 

of registered images: T1, T1c (with the contrast 

material Gadolinium), T2, FLAIR and the expert-

annotated image. Furthermore, the annotation 

contains four tumor classes: edema, enhanced tumor, 

non-enhanced tumor and necrotic core. The SICAS 

medical image repository [2] offers more than a 

hundred test image sets for evaluation, giving 

numerical performance results without showing the 

annotated image. In this online evaluation system 

there are only three classes which are taken into 

account and considered representative in clinical 

practice: Whole Tumor - WT (including all four 

tumor tissues), Tumor Core - TC (including all tumor 

structures except for edema) and Active Tumor - AT 

(only the enhancing core). The novelty of this article 

is the extension of our previous framework with a 

new stage in order to increase segmentation 

performances. 

Figure 1. Block diagram of the proposed system 



The first stage of the framework proposed is a voxel-

wise segmentation based on the random forest (RF) 

algorithm and is described in detail in our previous 

work [15]. The first stage corresponds to the blocks 

(1)-(6) in Figure 1.  

The delimitation surface between tissues 

approximates the gold standard only roughly, and the 

internal tumor structure detected differs slightly from 

the annotation. In order to improve the segmentation 

results obtained after the random forest approach, our 

idea is to refine the contour of tumor tissues by 

applying the level set method. This method has two 

major drawbacks: it requires adequate initialization 

and is only capable of delimit nearly homogenous 

regions. The first drawback is overcome by 

considering the initial curve provided by the previous 

segmentation stage obtained from the RF approach. 

Secondly, we propose to determine the internal 

structure of the tumor in multiple steps starting from 

the inside towards the outside of the tumor. This 

layered detection of the different tumor tissues 

corresponds to the expect annotation protocol 

described in [14].  

The primary assumptions of accurate medical image 

processing are the images without artifacts or noise. 

In addition, well-defined and repeatable 

correspondence between tissues and pixel intensities 

is also expected. In order to fulfill the desired criteria 

we applied three important correction procedures, in 

the following order: bias-field correction, noise 

filtering and intensity standardization in 

preprocessing. 

For voxel-wise segmentation we transformed the 

image database previously described into a numeric 

database where each instance corresponds to a voxel, 

and the attributes are the values of several local 

image features. The problem is to determine the most 

significant features for the segmentation task 

proposed. In this field there is no recipe; every author 

defines the feature set based on their own experience 

or intuition. We defined 240 low-level image features 

in each image modality (T1, T1C, T2, Flair) and 

obtained a 960-feature set (V=4×240) that 

characterizes a voxel and its surroundings. However, 

a single 3D image from the database used contains 

about 1.5 million pixels; in our setup, the training 

database contains 50 brain images occupying about 

500 GB of memory. Such a large database is 

practically unmanageable, and therefore we need to 

reduce it. 

There are two ways of reducing this size: reducing 

the number of instances and/or the number of 

features. The number of instances can be reduced by 

random subsampling of the database. The number of 

instances belonging to the healthy brain tissue-class 

is ten times larger than the instances belonging to the 

tumor-class, and thus a sampling of 10:1 does not 

cause loss of information.  

After this sampling of instances the database still 

remains large, and therefore it is necessary to reduce 

the number of features as well. Using the algorithm 

we proposed for variable importance evaluation, we 

managed to select the 120 most important features 

(Vimp) to be applied in this segmentation process. We 

showed that the OOB error obtained by the classifier 

build on this reduced feature set remains almost the 

same with the reduced set. The algorithm proposed in 

[15] uses the random forest variable importance 

evaluation and is able to run on the very large 

database.  

The parameter optimization of the random forest and 

the methods applied for building a well-performing 

classifier for MR brain tumor segmentation is 

explained in our article [16]. Our optimized classifier 

is composed of Ktrees = 100 trees, each having a size 

of Tnodes= 2048 nodes. The splitting criterion is 

evaluated with mtries = 9 randomly chosen features 

out of the whole M=120 features/voxel. The 

classification results obtained on the BraTS 2016 test 

set are given in (Table 1, column 3).  

The results obtained are comparable with the latest 

reported results (Table 1, columns 1-2), described 

in  [1].  

 
BraTS 

2012 [1] 

BraTS 

2013 [1] 

Our RF 

classif. 

Our 

2staged 

classif. 

WT 
0.63-

0.78 

0.71-

0.87 
0.75-0.86 0.80-0.91 

TC 
0.24-

0.37 

0.66-

0.78 
0.72-0.82 0.75-0.85 

AT - - 0.78-0.84 0.82-0.88 

Table 1. Segmentation results 

 

The results are shown (in Figure 2 and 3) for a 

randomly chosen 40 images from the test set having a 

mean of 0.793 Dice score on the whole tumor (WT) 

and 0.78 for the active tumor (AT) with a higher 

standard deviation (Figure 7 first and third boxes) . 

Figure 2. Dice coefficients of WT with RF 

 



 

The results are also depicted graphically on a brain 

slice of two different images from the test set, 

(Figure 4). The green are the contour of the given 

annotation, the red are the RF segmentation results, 

the blue are the LSM segmentation results and the 

white are the ROI for LSM. We can see from these 

images that the delimitation surfaces between tissues 

are not sufficiently accurate and represent 

segmentation errors. It is obvious that a well-chosen 

local segmentation method should improve the 

results on the delimitation contours. Our idea was to 

exploit the advantages of the level set method in 

delimitating the borderlines of two regions belonging 

to two different tissues more precisely. In practice, 

this method may be predominantly used in the case 

of image zones with two tissues (Ω1, Ω2) and an 

initial approximate delimitation surface (representing 

a contour in plane - C) which must be used to 

initialize the regions in the level set method. The 

specification of such regions can be done by using a 

mask. The level set is applied only in the image 

domain (Ω) delimited by the given mask. 

The segmentation protocol [14] states that “various 

tissue elements (edema, non-enhancing, enhancing, 

necrosis) usually follow an outside – inside 

sequence” and for one tumor-tissue “it is enough to 

always delineate what is outside”. This structure is 

depicted in Figure 2 - a,b containing the expert 

annotation (black line) in T1c and T2 modalities. 

Thus, as a second stage of segmentation, after the RF 

segmentation, we propose to apply the level set 

method according to these steps: 

1. The edema region looks like a homogenous and 

hyperintense signal in Flair images and/or low signal 

in T1c (Figure 4a). To improve the delimitation 

surface of the edema from healthy tissue, we applied 

the level set in a ROI (region of interest) of the Flair 

images. This ROI is obtained by enlarging the edema 

region determined in RF stage by two morphological 

transformations. First we created conexzone of size 3 

pixels and a ball type dilatation with radius of also 3 

pixels. In this way we obtained a surface Ω0 that 

includes all tumor structures in 99%.  The Ω0 is the 

ROI (block 7, Figure 1) where we search for the 

delimitation surface between the brain tissue and 

edema. The LSM segmentation we applied in this 

ROI (block 8 Figure 1) on Flair images in order to 

delimitate the whole tumor (WT) from the healthy 

tissues, being surface Ω1 (Figure 4a). 

2. We consider only the enhanced tumor, delimitated 

in the RF. Inside this ROI (block 13 Figure 1, Ω= 

Ω3Ω4) there are only two tissues: the enhanced 

tumor (Ω3), which is a brightly colored tissue in the 

T1c modality and the necrotic core (Ω4) which is 

dark. The level set method is able to precisely 

delimitate the necrotic core (Ω4), in T1c modality 

(Figure 4d). 

3. The surface of the whole tumor Ω1 obtained in the 

step 1, (Ω1=Ω2Ω3Ω4) encapsulates all four 

tissues: edema with contour Ω1 , non-enhanced tumor 

(contour Ω2), enhanced tumor (contour Ω3) and 

necrotic core (contour Ω4). The previously segmented 

necrotic core (Ω4) has already been segmented (step 

2) and can be eliminated from ROI. Therefore, we 

apply the level set only in the remaining ROI (block 

11 Figure 1, Ω =Ω2Ω3) in order to find the 

delimitation surface of the enhanced tumor (Ω3), 

which is brighter than the edema and non-enhanced 

in the T1c modality, (Figure 4b). The LSM stage 

delimitates the enhanced tumor surface Ω3 more 

accurately then the RF stage (block 12 Figure 1). 

4. With the surface obtained from the RF 

segmentation stage, the whole tumor 

(Ω=Ω1Ω2Ω3Ω4) encapsulates four tissues: 

edema (Ω1), non-enhanced tumor (Ω2), enhanced 

tumor (Ω3) and necrotic core (Ω4). The previously 

segmented zones (Ω3Ω4, steps 2-3) are excluded 

from the ROI. . So the considered ROI (block 9,10 

Figure 1) contains only two tissues edema (Ω1) and 

non-enhanced tumor (Ω2). In the domain Ω=Ω1Ω2 

we apply the LSM in order to find the delimitation 

surface of the non-enhanced tumor (Ω2) which is 

slightly brighter than the edema in the T1c modality. 

The elimination of the enhanced tumor (Ω3) before 

the LSM segmentation of this step ensures a more 

precise segmentation of the non-enhanced tumor (Ω2) 

contour (Figure 4c)..  

Applying the procedure described above, we were be 

able to improve our segmentation performance by 3-

7%, compared to the first stage (Table 1 columns 3-

4). The other benefit of the two-stage segmentation is 

the more correct delimitation of necrotic zones, to 

which the RF voxel-wise segmentation only offered a 

weak solution. Improvement brought by the second 

stage was measured also in terms of Dice coefficients 

(Table 1-column 4). Figures 5 and 6 show the 

numerical results referring to the same test set and 

measuring the Dice scores on WT and AT tumor 

types.   

Figure 3. Dice coefficients of AT with RF 

 



 

 

  

Figure 4a. Whole tumor (WT)  

 

Figure 5. Dice coefficients of WT RF+LSM 

 

Figure 6. Dice coefficients of AT RF+LSM 

 

 

Figure 4. Visualized segmentation results on a brain slice 

 

Green contour: ground truth, red RF segmentation, white ROI for LSM, blue LSM improvement 

    Flair            T1  T1c      T2       LSM 

Figure 4b. Enhanced tumor (AT)  

 

Figure 4c. Tumor core (TC) 

 

Figure 4d. Necrotic core (NC) 

 



 

The increased values are a mean of 0.854 for WT and 

a 0.806 for AT. These results are depicted in the 

boxplot also (2 and 4 boxes), to point out the 

standard deviation and the 1
st
  and 3

rd
 order quantiles 

(Figure 7.) 

6. CONCLUSION 
The novelty of this paper is the development of MR 

brain tumor segmentation framework obtained in two 

stages the random forest classifier linked with a well-

defined sequentially applied contour refinement by 

the level set algorithm.  

Firstly, the wise selection of features used and an 

adequate tuning of the random forest create a well-

performing classifier for brain tumor segmentation. 

Secondly, the coarse segmentation obtained by the 

RF approach is merged with the level set with the 

aim of initializing its contours. Thus, we manage to 

further improve the precision of delimitation surfaces 

between neighboring tissues. Another important 

benefit of the proposed approach is the better 

determination of the tumor tissue structure, especially 

that of the necrotic core inside the enhanced tumor. 

For the future, we propose to implement a vector-

wise LSM considering all modalities simultaneously 

applied in 3D MRI, instead of the current contour 

search run consecutively in 2D slices. Finally, it 

should be emphasized that accurate tissue delineation 

is difficult even for the well-trained eye of experts, 

and there are significant differences between experts’ 

opinions. Although automatic segmentation is not 

always tantamount to perfection, it is much faster and 

reproducible, providing a useful tool in computer-

aided medical diagnosis assistance. 
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