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ABSTRACT

Low latency detection of human-machine interactions is an important problem. This work proposes faster
detection of gestures using a combination of temporal features learnt on block time input and those learnt by
contextual information. The results are reported on a standard in-car hand gesture classification challenge dataset.
The recurrent neural networks which learn sequential contexts are combined with 3D convolutional neural
networks (C3D). We have demonstrated that a design similar to various multi-column networks, which have been
successful for image classification and understanding can also improve classification performance on varying
length time series. Therefore, a combination of C3D and Long-Short-Term Memory (LSTM) is utilized for
classification of hand gestures. On the task of early hand gesture classification, the proposed model outperforms
the the C3D model which reports best results on full gestures. It is second best and only slightly less accurate than

the best performing method, on the full gesture length.
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1 INTRODUCTION

One of the principles for the interaction system is the
need for a short time delay between the start of the
interaction and response from the machine [RSP11].
A low latency system is easier to use and is often
essential. Gesture recognition systems inside cars use
sensors that require low power expenditure. These
cameras introduce an integration time versus frame-
rate trade-off [GYBO4]. This reduces the available
frame rate, thus a solution where robust predictions
are made on short length gesture videos is important
in such situations. Therefore, not only classification of
complete fast gestures, but also classification of slow
but incomplete gestures is of interest. In this work we
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solve the problem of robust and fast classification of
(incomplete) hand gestures.

Several methods for vision based HGR have been
employed. Hand crafted features [TTGS16] containing
temporal and spatial information have been regularly
used. Hidden Markov Models (HMM) [CFHO3]
and Support Vector Machines (SVM) [LGSO08] have
been used for classification of spatio-temporal fea-
tures. Other solutions use an articulated model of the
hand and its deformation for gesture classification
[KKKA13]. It was empirically demonstrated by
[AAGES10] that among machine learning methods,
neural network models, like multi-layer-perceptrons
(MLP), are conducive to early predictions in time
series data. The Recurrent Neural Networks (RNNs)
were used for gesture classification by [YH15]. The
work [OBT14] and [WKSLI13] reported results on
the challenging VIVA dataset, the performance of
these methods was overtaken by neural network based
methods proposed in [MGKK15].

It has been demonstrated that multi-modal approaches
[OBT14, WKSL13] which employ trajectory shapes,
boundaries and motion structures combination in
a bag of features approach work better than single
information approach.  The positive influence of
mutually independent information contributing to
learning have been demonstrated in such works.
This approach has also shown to have worked with
neural networks. A C3D network [MGKP15] was



trained with data from multiple vision sensors and
radar for better hand gesture predictions. The neural
network solutions that use Multi-information methods
use parallel neural networks, these networks have
performed better than single column networks and
have been used in various image classification tasks
[CMS12]. The performance of activity recognition
[DAHG"15] and hand gesture recognition have
shown to improve by using a combination of parallel
networks that accepts distinct data [MGKK15, CLS15].

1.1 Contributions and structure of the pa-
per

It is of interest to investigate if the combination of fea-
tures learnt from the same dataset but using distinct
learning policies, thus resulting in dissimilar patterns,
can contribute towards improving the learning perfor-
mance. This investigation is inspired from the improve-
ment in performance of multi-modal network when data
with separate properties is used at the various input
layers. To improve classification over time by using
dis-similar concepts, we create multi-column networks
with columns constituted from different temporal lay-
ers. A typical model that we propose has a parallel
columns with one or more volumetric convolution layer
and one column with recurrent layers.

We introduce a hand gesture recognition system that
uses a combination of C3D and LSTM for identifying
gestures at different delays from the start of gestures.
This work combines the ideas of [MGKK15] with those
of [DAHG'15].

Results on the VIVA challenge dataset [viv], which is a
hand gesture classification dataset recorded on varying
lighting conditions inside a car, are demonstrated. On
a half length, incomplete gesture sequences, our pro-
posed network outperforms the two column C3D model
by a large margin of approximately 10%. Improvement
in performance is noticed and reported on short incom-
plete sequences of gestures. The combination model
performs better on half and quarter length incomplete
gesture sequence.

In this paper we propose a new neural network configu-
rations that improves the classification performance for
short sequence gestures. To the best of our knowledge,
this is the first effort to utilize the combination of the
two temporal neural networks to make early classifica-
tion of a time series signal. Gesture sequences with full
length (32 frames), half length (16 frames) and quarter
length (8 frames) from the beginning of the gestures are
trained and tested for these architectures. The contribu-
tions can be summarized as:

e Introducing a method for improving the accuracy of
early response in a gesture recognition system.

3D Convolution Layer ~ Convolutional Layer

Fully Connected 3D Pooling
LSTM Layer Pooling Layer
Activation Layer Softmax Probability

Figure 1: Labels for layer images used in this work

e Introducing a combination of block and context clas-
sification in time series by combining LSTM and
C3D.

e An extensive analysis of various temporal neural
network models for low latency classification of
hand gestures.

In the Section 2 the dataset for the gesture experi-
ments is explained, the sampling strategy and the pre-
processing required to complete all the comparisons are
described. The section Section 2.1 shows the train-
ing parameters and scheme used for various neural net-
works trained during the experiments. The Section 3
presents the C3D neural network that we later compare
our proposed combination with. A benchmark is set in
this section and test are also conducted with a multicol-
umn LSTM network. In the Section 4 we first train and
validate the LSTM and C3D network and then propose
a combination for better performance. These experi-
ments are compared and the better performance of the
combination network is demonstrated in the Section 6.
The Section 7 presents an experiment on smaller mod-
els. Finally, in the Section 7.1, the possible extensions
of this work and limitations are mentioned.
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Figure 2: Representative Hand Gesture Dataset

2 DATA, SAMPLING AND TRAINING

The VIVA challenge dataset was used for these ex-
periments. The gestures are defined by moving hands
and changing or constant hand shapes. The VIVA
challenge dataset has video sequences of fifteen hand
gestures performed by eight subjects under varying
lighting conditions inside a car. The dataset includes
eight hundred and eighty-five intensity and depth video
sequences [viv]. The dataset was recorded with the
Microsoft Kinect device of resolution of 115 x 250
pixels and provides RGBD images.

The gesture length for each sequence in the gesture
dataset is inconsistent. To create an equal length ges-
ture, the normalization of the dataset sequence length
is required. To compare with [MGKK15] the gestures
were re-sampled to normal-length of thirty-two frames.
If the length of a gesture sequence is less than the
sequence it is reshaped into a normal-length sequence
by up-sampling through repetition of frames. For
sequences longer than the normal-length the gesture
sequences were sub-sampled by dropping frames.

The normalized-length gesture sequences contain depth
and intensity values. Intensity gradient values were
calculated. The gradient and the depth values were
normalized over the dataset and a two channel input
from the gradient and normalized depth was created
for each frame. The labels corresponding to the gesture
type mark each frame. The gestures sub-sampling
was done such that the the frame sequences with most
variation in hand shape and motion were dropped
with smaller probabilities. This is done by sampling
based on magnitude of per pixel change over time
within a gesture. The dense optical flow between two
frames separated by time 67 = 2 was calculated and
the absolute change per pixel over the entire gesture
was used for sampling distribution. This strategy
allows improving the probability of conserving the fast
changing frames during sub-sampling and increasing
such frames when up-sampling the sequence.

Three classes which have ’Swiping’ hand which
changes direction in later parts of the gesture, and the
class *Tap three times’ which is confused with the class
"Tap once’ in early detection, were removed to analyze
the performance. This was done because the these
gestures are characteristically misidentified in short
lengths. Effectively, the experiments were conducted
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Figure 3: Single column, two input channel C3D.

on fifteen hand gesture classes.

2.0.1 Short length sequences

We focus on the improvement in latency performance
for the time series so performance of classification on
shorter gesture sequences was tested. To this effect,
the dataset with incomplete gesture length was created.
Half length and quarter length incomplete gestures
were created by only using the the first sixteen and
eight frames from the start of the hand motion. To
assure that some hand motion indeed exists, the first
two frames of the gesture sequence were always
removed.

2.1 Neural Network training

All neural networks used for the experiments were
trained on the negative log likelihood cost function and
each uses a soft-max projection on the output layer.
The networks with single column were trained for
three hundred epochs and 2-column network trained
simultaneously were trained for five hundred epochs.
The number of epochs are chosen according to the
convergence performance C3D network on the sixteen
frame networks. A Negative log likelihood cost func-
tion was used for calculation of loss on each training.
In case of the single phase network the training was
completed in three hundred epochs. Owing to their
larger size the 2-column networks are trained for five
hundred epochs. One epoch is defined as the number of
batches required for iteration over the full training set.

3 THE MULTI-COLUMN MODELS

3.1 The components of the Multi-column

networks

The C3D layer uses volumetric convolutions. A
C3D network learns 3D-filters, the two dimensions
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Figure 4: Single column, two input channel LSTM.

of these filters are along the dimension of the frame
image and the third dimension is along time axis of
the video. Accordingly, the input to the volumetric
convolution layer is a block of video frames. As the
convoluted blocks are propagated forward through
the max-pooling layers the learnt filters reside on
higher scales space. Effectively, the minimum time
frame of learning in C3D is thus the time length of the
spatio-temporal filter on the layers closest to the input.
The LSTM on the other hand accepts sequential input.
The LSTM learns to use forget gates and identifies the
length of the learnt structure in the training phase.

3.1.1 C3D Network

The 2-column network of [MGKKI15] uses two net-
works with high and low resolution input. These net-
works provide two sets of predictions, which are mul-
tiplied, normalized and used for a combined predic-
tion. The C3D network used in this work is shown
in Figure 3. The C3D consists of four volumetric-
convolution layers, each of these layers have associated
volumetric pooling layers. The tanh layers are used as
the activation functions after the volumetric convolu-
tion. The fourth volumetric convolution feeds into fully
connected layers which feed the outputs to the softmax
layer. The softmax layer provides a probability vector
as the output. The C3D provides one output for the en-
tire block of the K stitched inputs, the output prediction
in case is the index with highest probability.

For designing a network that learns to classify a gesture
of length K, the input to the C3D is a K x 2 x 57 x 125.
The experiments were conducted such that each frame
of the input block belonged to the same gesture type.
An output probability vector of fifteen gestures is pro-
duced at the output of the C3D.

3.1.2 The LSTM Network

The LSTM network in the second column of the
network has two convolutional layers followed with
the usual pooling and ReLu layers. An LSTM layer
and a fully connected layer follows the convolutional
layers, see Figure 4. The same K x 2 x 57 x 125 input
for the C3D is feed into the LSTM. The output layer
is a soft-max projection. Each frame of the gesture
sequence is marked by a label such that the LSTM
produces a probability output at every frame of the
gesture. The LSTM predictions is made by cumulative

Figure 5: 2-column C3D joined at input and output.
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Figure 6: 2-column LSTM joined at input and output.

probability addition over the gesture sequence. The
index with highest probability sum at the end of the
sequence is identified as the gesture.

3.2 Experiments with Neural Network
combinations

We now train , 2-column neural networks, One col-
umn of the both the C3D and LSTM networks are as
described earlier in . In both cases an average pool-
ing layer is used at the input of the second column, the
remaining architecture of the second column remains
similar to their corresponding first column. This is done
to provide varying scales as input to the first convolu-
tional layers of the two columns of each network. The
first volumetric pooling layer in the C3D network scales
only in the spatial dimensions and does not change the
size of input on the time dimension.

The neural networks are trained with data from four-
teen recordings from seven persons and tested on two
sets of recording from the eighth person. The final
accuracy results are averaged over eight experiments
where all the test persons are used once. All networks
are trained for full sequence(thirty-two frames) and
half and quarter sequences(sixteen and eight frames)

3.2.1 2-Column Neural Networks

We performed end-to-end training with 2-column neu-
ral networks based on the components described in the
Section 3.1. First, the 2-column C3D was compared
against a similar size LSTM network. Thus, the net-
works trained for these experiments were,

e A 2-column neural network with 3D convolutional
layers joined at head with a fully-connected layer,
see Figure 5,
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Figure 7: The accuracies of 32 Frame C3D(Red) and
LSTM(Blue).

Figure 8: The accuracies of 16 frame sequence on
C3D(Red) and LSTM(Blue).

e A 2-column neural network with convolutional lay-
ers followed by LSTM layer and joined at head with
a fully-connected layer, Figure 6.

These networks were trained and tested for full se-
quence gestures of length (K = 32) and half and quarter
length gestures of frame length (K = 16, 8).

Time Gesture Accu
Layer Frames | (%)
P 734
Conv ¢ 623
LSTM — 373
32 77.4
@D 5 557
8 31.6

Table 1: Classification Accuracy with the 2-column
LSTM and C3D.

The recorded percentage test accuracies for the two
networks for the various frame lengths are reported
in the Table 1. The convolutional network with the
LSTM layer performed worse than the network with
volumetric convolutional layers on the full sequence
gestures, though the LSTM network performed better

than the C3D network for shorter sequences. The
results from these experiments are listed in Table 1.
The class-wise classification performance of these
networks on the full sequence and half length gestures
is shown in the Figure 7 and Figure 8, respectively.

4 TESTING SINGLE COLUMNS

The results from the last section motivated training only
the single column C3D networks and LSTM networks
to identify if the behavior of volumetric convolutions
and LSTM layers remain consistent. These networks
were trained with the same set of inputs and labels and
the initialization procedures, cost function remained the
same as earlier. Apart from the two networks, another
network with classical recurrent layer is also tested.
The model architectures are exactly like the larger col-
umn of the neural network models described in Sec-
tion 3.1. The three neural networks trained were,

e A neural network architecture from the large column
of the convolutional LSTM used in 2-column exper-
iments,

e A similar C3D network taken from the 2-column
network gesture classification network,

e A neural network architecture from the large column
of the convolutional LSTM used in 2-column exper-
iments with LSTM layer replaced by a recurrent net-
work.

The results of Table 2 demonstrate that the performance
of classical recurrent neural network for the classifica-
tion was poorer compared with the performance of the
neural network architectures that use the LSTM layers
or the volumetric convolutional layers. This is expected
because an RNN network is not capable of learning
long contexts.

Looking at the classification performance of Table 2,
it is also apparent that the performance of the C3D re-
duced considerably when an early detection of gesture
was made using a C3D network. The performance also
deteriorated for networks with convolutional layers and
an LSTM layer. An important observation is the consid-
erably smoother decay of performance in the network
with LSTM layer as compared to the C3D network. The
performances of the LSTM and C3D networks on var-
ious datasets is consistent with the observations from
the 2-column networks tested earlier. The C3D net-
work performed better on the full length sequence but
its performance worsens more rapidly than the LSTM
network when tested on incomplete gesture sequences.
Thus, both single column and the two column networks
results show that the C3D performs better on full se-
quence gestures and the LSTM network performs better
on the shorter sequences.



. Gesture Accurac

Time Layer length %) y
Convolutional & | 32 35.6
Recurrent 16 18.3
Convolutional & | 32 64.6
LSTM 16 51.3
Volumetric conv 32 73.6
(C3D) 16 47.6

Table 2: Accuracy with single phase models
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Figure 9: The proposed combination of network : Part 1
is the C3D branch; Part 2 is the LSTM branch; Part 3 is
the MLP which combines output from the two temporal
neural networks.

]

S LSTM AND C3D COMBINATION

The observations that C3D consistently perform better
on long sequence gestures, while the LSTM network
always works better than C3D on shorter sequences
encourages the experiments with combinations of the
C3D with LSTM. The trained single phase LSTM and
C3D networks were used. The output probabilities of
these trained networks were combined with a separately
trained MLP. The MLP learns to combine the output
of the probability predictions made by the two separate
networks.

The cumulative sum of the LSTM was normalized and
a larger thirty dimensional vector was created by merg-
ing this resulting vector with the C3D output. The MLP
is trained with an input of a thirty vector input; the out-
put is the probability vector. The entire system is shown
in Figure 9.

5.1 Training the MLP

The fifteen dimensional probability vector from the
C3D and LSTM are combined together to form a thirty
vector input to the MLP. The MLP has a hidden layer
with sixty four nodes and an output layer of fifteen
which is mapped to the softmax values. The labels of
the C3D are used to train the MLP. The MLP combines
the classification probability from the two networks and
uses a learning rate of 0.01, is trained for two hundred
epochs.

= Max 32
Comb

Figure 10: Class-wise average performance of 32 frame
hand gestures on the Combination Network (Gold)
Compared against the Best of C3D and LSTM Network

(Green).
3 A Q N 3 \Z Q N D 2 >
@ M & & oc'v <8
<

N &
@ 2 ) N NS
N & & & © € © © &
& & & F F o o (& <&

® Max 16
Comb

&

2 >
& &°

%,
2o

o

2,

Figure 11: Class-wise average performance of 16 frame
hand gestures on the Combination Network(Gold)
Compared against the Best of C3D and LSTM Net-
work(Green).

6 PERFORMANCE COMPARISON

To validate the proposed combination network, various
training and test iterations were made. The networks
were trained with reducing latency time. The MLP was
trained separately for full length gesture of thirty-two
frames, half length sequence of sixteen and for quarter
length of eight frame latency. These results were
compared with the best results received from either
LSTM or C3D 2-column networks. The class-wise
accuracies for the trained MLP network are reported
in the Figure 10 and Figure 11. The accuracies are
plotted for the thirty-two and sixteen frame gestures
respectively. The comparisons show that the perfor-
mance of the combination network is better than either
of the two networks in most classes in the incomplete
gesture identification problem. It was observed that the
combination network had better accuracy than the best
of LSTM and C3D in seven of the fifteen classes when
the experiments were conducted on the full length
gestures. On the other hand, when the experiments
were conducted on the half gesture length starting from



Gesture | Combination NN | LSTM | C3D
length Accuracy(%) (%) (%)

32 75.6 73.4 77.4
16 65.7 62.3 55.7
8 39 37.3 31.6

Table 3: Classification with the combination of C3D
and LSTM compared with LSTM and C3D; the accu-
racy of best network is bold.

the beginning the performance of the combination
network was better than the best of the two networks
on twelve of the fifteen classes.

The average accuracies achieved in the the experiments
conducted on the full, half and quarter gesture lengths
are reported in the Table 3. These values are compared
against the performances of the 2-column LSTM and
C3D tested in the Section 3.

The results of this combinatorial networks tabulated

in Table 3 demonstrate that the network performs
slightly worse than the two column C3D network
in case of long gestures. However, the combination
network outperformed the two-column LSTM based
gesture classifier in every scenario. When classification
accuracies were evaluated at shorter latency period
it was observed that the combinational network per-
formed better than the 2-column C3D network. For
a half length gesture sequence the accuracy of the
combinatorial network was 10% higher than the C3D
network (reported in Table 3), it was also marginally
better than the LSTM network by 3%.
The combination of the block learning property of the
C3D with the contextual learning of the LSTM network
may explain the improved performance of the network
on shorter incomplete sequences. The accuracy results
for the experiments conducted on the one-fourth length
sequences demonstrated similar results. The results
of the quarter gesture dataset also demonstrated the
difficulty of early identification of the gestures. It is
clear that the accuracy rates falls dramatically as the
sequence length is reduced.

7 DISCUSSION AND CONCLUSION

When the models are tested in the forward phase on
a CPU the proposed network with sequential input to
the MLP does not return a real time performance. A
smaller model means less computation cost in a system
embedded in the automobile. More importantly, we
wished to understand the generalization behavior on
reducing the size of a 2-column neural network for
gesture recognition. So, apart from the large combina-
tional model, we trained a smaller model on the same
dataset. It included two volumetric convolution layers
and two linear layers apart from the output log softmax

layer in one branch, and one volumetric-convolutional
layer, and a fully connected layer in the other branch.
It was identified that choice of the initial learning
parameters for a smaller network is crucial. The
performance of such a network was generally worse.
We tested this network for 32 frame and 16 frame
gesture classification problem. It was recognized that
that a combinational network with smaller contributing
networks performs considerably worse than the larger
network.

Gesture

length Accuracy(%)
32 53
16 42

Table 4: Classification with the combination of smaller
C3D and LSTM Networks.

7.1 Conclusion

This work showed a possible method for improving fast
identification of hand-gestures. It proposed a possible
combination of the C3D and an LSTM network.
We show an improvement in the early classification
performance. The proposed combinational network
performs better as compared to existing state-of-art
C3D neural networks by over 10% when applied for
early identification of hand gesture sequences. It is
shown that the C3D network performs better than
LSTM on fixed length full gesture sequence, but LSTM
performs better than the C3D network on incomplete
sequences.

We demonstrated that a combination of such sequential
learning and time filtering networks can improve the
classification performance on shorter sequences.

The model for the combination of C3D and LSTM
can be extended further and the proposed example
should encourage further investigations. This work
uses discontinuous windows while training and testing
the model. This choice is constraint to a fixed input
size. It is possible to use a sliding window approach for
sampling while training and testing. Such an approach
would allow working with gestures of variable sizes.
A system of this nature should have the capacity to
handle unsegmented gestures.
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