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ABSTRACT
Digital images and image streams represent two major categories of media captured, delivered, and shared on the
Web. Techniques for their analysis, classification, and processing are fundamental building blocks in today’s digital
media applications ranging from mobile image transformation apps to professional digital production suites. To
efficiently process such digital media (1) independent of hardware requirements, (2) at different data complexity
scales, while (3) yielding high-quality results, poses several challenges for software frameworks and hardware
systems, in particular for mobile devices. With respect to these aspects, using service-based architectures is a
common approach to strive for. However, unlike geodata, there is currently no standard approach for service
definition, implementation, and orchestration in the domain of digital images and videos. This paper presents an
approach for service-based image-processing and provisioning of processing techniques by the example of image-
abstraction techniques. The generality and feasibility of the proposed system is demonstrated by different client
applications that have been implemented for the Android operating system, for Google’s G-Suite Software-as-a-
Service infrastructure, as well as for desktop systems. The performance of the system is discussed at the example
of complex, resource-intensive image-abstraction techniques, such as watercolor rendering.
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1 INTRODUCTION
For many years, digital images have been usually cap-
tured by means of mobile devices, such as smartphones
and digital cameras, and have been widely distributed
by a number of different media channels. Especially
on the Web, with the emergence of social media and
image platforms (e.g., Instagram), the amount of dig-
ital images increases dramatically. In these contexts,
techniques for image analysis, classification, and pro-
cessing are required, e.g., to optimize image search en-
gines, to develop image transformation software for the
application of image-abstraction techniques [12], and to
produce artistic effects, such as style transfers [18].

With respect to image transformations on mobile de-
vices, two technical alternatives are predominant: on-
device and off-device processing. On-device process-
ing utilizes the device hardware (e.g., CPU and GPU)
to transform images and, thus, does not depend on a re-
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mote processing server [2], resulting in three significant
benefits: (1) processing is usually faster, since there
is no round-trip-time to a server (performance), (2) if
images contain personal information, they are not in-
tended for sharing via the network (privacy), and (3) al-
though network communication has become prevalent,
it is not guaranteed to establish network connections,
which especially applies to mobile devices using mo-
bile networks (reliability).
However, on-device image-processing has also a num-
ber of limitations. The design, implementation, testing,
deployment, and maintenance of hardware-accelerated
software for on-device processing is a cost-intensive
process in terms of development-time and resources
due to the high diversity of devices. A multitude
of platforms (e.g., iOS, Android, Windows, macOS,
Linux) with different graphics Application Program-
ming Interfaces (APIs) (e.g., OpenGL, OpenCL,
Direct3D, CUDA) in different versions has to be
supported.
In particular, performing image-processing tasks on
mobile devices have the following implications: on the
mobile Android market a huge device heterogeneity is
ubiquitous, often implying different capabilities and
hardware specifications. Technical evaluations of an
on-device image-processing approach on Android de-
vices revealed huge performance differences between
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Figure 1: Application of an image-abstraction technique (oil paint) to the same image on different platforms:
Web-based Google Office Suite (A), mobile Android app (B), and desktop client (C).

devices with similar hardware specifications [2]. Also,
mobile devices are limited with respect to memory
available, computational power, and battery life, which
is a crucial limitation, since image-processing is usu-
ally an intense resource consuming process. Further,
software developer have to take various inputs via
device sensors as well as device orientation and display
resolutions into account. Moreover, small displays
often lead to screen real estate problems. Furthermore,
Digital Rights Management (DRM) for on-device so-
lutions cannot be guaranteed, since processing relevant
data (e.g., textures, shaders) is accessible via API-call
interceptions and, thus, the control and protection of
intellectual property gets lost.

Service-based Image-Processing.
With respect to the on-device image-processing chal-
lenges stated above, an off-device service-based image-
processing approach offers a practical alternative. For
this purpose a Service-Oriented Architecture (SOA)
and its predominant design patterns is used [3]. It fa-
cilitates development of reusable components for pro-
cessing images without the downsides of dealing with
a wide range of devices. This allows a simple integra-
tion of those components into existing services. Thus,
various heterogeneous clients can be attached to pro-
vide hardware independent cross-platform solutions via
a common Representational State Transfer (REST) in-
terface [6]. For example, Figure 1 shows the application
of a complex oilpaint effect [19], a typical resource-
intensive artistic stylization technique, on different plat-
forms, such as web-based Google Office Suite add-
ons, mobile Android apps, and desktop applications
that interact with the proposed service-based image-
processing server.

The approach of service-based processing offloads
computation-intensive image-processing tasks (e.g.,
processing of stylization effects that rely on multi-stage
processes) to a server infrastructure, equipped with
more resources in terms of memory, computation
power, and energy supply. Thus, this approach dra-
matically reduces energy consumption especially for

mobile devices. Further, an important requirement for
future image transformation processes is the capability
to deal with continuously increasing spatial and
temporal resolution of visual media (>20 megapixel at
120 frames-per-second) and to guarantee high quality
output images. A service-based approach tackles the
complexity of scalable and high-resolution image
space. The applicability of the service-based approach
and its performance highly relies on the bandwidth of
the used network for data transmission. However, due
to constantly evolving network infrastructure in terms
of increasing bandwidth, it is an acceptable constraint.

Contributions. To summarize, this paper makes the
following contributions:

1. It presents a concept for service-based off-device
image-processing, following the orchestration pat-
tern for service composition. Exemplarily, the cre-
ation of a high-level service based on atomic low-
level services is shown as an example.

2. A platform-independent representation of image-
processing effects is formulated for highly cus-
tomizable configuration of the image-processing.
Furthermore, a approach for storing and provision-
ing of these effect representations is presented.

3. It demonstrates the approach using different appli-
cation examples, such as image manipulation on
Android and desktop systems, and the integration
into the Google Office Suite for various image-
abstraction techniques (e.g., oilpaint, watercolor).

The remainder of this paper is structured as follows.
Section 2 reviews related work on service-based ap-
proaches to image-processing and applications. Sec-
tion 3 presents our concept for service-based provision-
ing of image-abstraction techniques and explains im-
plementation details. Section 4 shows common appli-
cation examples and Section 5 discusses our approach
and states potential future research. Finally, Section 6
concludes this paper.



2 RELATED WORK
This section covers related work in the field of
service-based image-processing and approaches for
image-abstraction techniques.

Service-based Image-Processing. Several software
architectural patterns are feasible for implementing
service-based image-processing. One prominent style
of building a web-based processing system for any
data is the service-oriented architecture [22]. This
approach allows server developers to set up a multitude
of processing endpoints, each providing a specific
functionality and covering a different use case. These
endpoints appear as a single entity to the client, i.e.
the implementation stays hidden for the requesting
clients, but can be realised through an arbitrary number
of self-contained services. This work follows the
service-oriented architecture as described in Section 3.

Since web services are usually designed to maximize
their reusability, their functionality should be simple
and atomic. Therefore, the composition of services
is critical for fulfilling more complex use cases [14].
The two most promiment patterns for realising this
composition are choreography and orchestration. The
choreography pattern describes decentralized collabo-
ration directly between modules without a central com-
ponent. The orchestration pattern describes collabora-
tion through a central module, which triggers the dif-
ferent web services and passes the intermediate results
between them. In this work, the orchestration pattern is
implemented as described in Section 3.

In the field of image analysis, Wursch et al. [26] de-
veloped a web-based tool that enables users to perform
different image analysis methods, such as text line ex-
traction, binarization, and layout analysis. The tool is
realised through a set of REST web services. Applica-
tion examples in that work include multiple web-based
applications for different use cases.

The viability of implementing image-processing web
services using REST has been demonstrated by Win-
kler et al. [24], including the ease of combination of
endpoints. Another example for service-based image-
processing is Leadtools (https://www.leadtools.com),
which provides a fixed set of around 200 image-
processing functions with a fixed configuration set via
a web API. In this work, however, a similar approach
using REST is chosen, although with a different focus
in terms of granularity of services. While Winkler
and Leadtools focus on fixed endpoints for a selected
number of image-processing effects, this work aims for
a general-purpose image-processing system based on
an platform-indepedent effect format (Subsection 3.1).

In the field of geodata, the Open Geospatial Consor-
tium (OGC) set standards for a complete server-client
ecosystem. As part of this specification, different web

services for geodata are introduced [15]. Each web ser-
vice is defined through specific input and output data
and the ability to self-describe its functionality. In con-
trast, in the domain of general image-processing there
is no such standardization yet. However, it is possi-
ble to transfer concepts from the OGC standard, such
as unified data models. These data models are realised
through a platform-independent effect format. In the
future, it is possible to transfer even more concepts set
by the OGC to the general image-processing domain,
such as the standardized self-description of services.
Image-Abstraction Techniques. In this work, we
focus on edge-aware and content-preserving image-
processing as a fundamental tool in computational
photography and non-photorealistic rendering for
abstraction and artistic stylization. Typical approaches
that operate in the spatial domain for abstraction use a
kind of anisotropic diffusion [17, 23] and are designed
for parallel execution, such as approximated by the
bilateral filter [21] and guided filter [9]. A plentitude
of stylization techniques exist using these filters as
building blocks to simulate traditional painting media
and effects [13], such as cartoon [25] and oil paint [20].
However, these may become computationally expen-
sive when applied in an iterative multi-stage process.
This particularly applies to techniques using global
optimizations to separate detail from base information,
e.g., based on weighted least squares [4] or locally
weighted histograms [11], and recent techniques that
separate style from content using neural networks [7].
Because of their global optimization scheme, they
are typically not suited for real-time application, in
particular not on mobile devices. To this end, we
implemented a variety of these techniques using the
proposed image-processing service including styl-
ization, HDR tone mapping and compression, JPEG
artifact removal and colorization, to demonstrate its
versatile application.

3 SERVICE-BASED PROCESSING
Figure 2 shows a conceptual overview of the compo-
nents of the image-processing system. It basically com-
prises the following components, which are described
in the remainder of this section in greater detail:
Effect Service: This service component is responsi-
ble for storing all resources required by the image-
processing service. It delivers platform-independent
representations of image-processing effects based on
an Extensible Markup Language (XML) format bun-
dled with Graphics Processing Unit (GPU) shader pro-
grams and textures for dedicated target platforms, i.e.,
GPU hardware and API. This service can be utilized for
different use cases in addition to the one described in
this work, e.g., delivering platform-independent image-
processing effects directly to user clients for on-device
rendering [2].
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Figure 2: Components of the proposed service-based image-processing system. A diverse range of clients can
request the image-processing functionality via the interface of the orchestration service, which coordinates services
for effect provisioning (effect service), image-abstraction and stylization (image-processing service), and storing
the respective data, e.g., images, (resource management service).

Image-Processing Service: This service performs the
actual processing of images with respect to image anal-
ysis, abstraction, and stylization. It receives an input
image, an effect reference, and a processing configura-
tion (e.g., output file format, output quality etc.) and
delivers a processing result, which, for example, can be
a stylized image or an analysis result (e.g., dominant
color, histogram).
Resource Management Service: The resource man-
agement service is responsible for storing and provi-
sion of data, such as images and its metadata. Along
with the provision of resources this service also pro-
vides low-level image manipulation functionality, such
as cropping, resizing, and rotating.
Orchestration Service: A service-based system con-
sisting of various service components has to tackle the
crucial challenge of service composition. The com-
position of services aims at creating a composite ser-
vice that combines various atomic functional building
blocks provided by the available services in order to
satisfy a higher level use case. The composition is man-
aged by the orchestration service. Further, the orches-
tration service provides the public service endpoints
that can be accessed by the clients.

3.1 Effect Representation and Service
The effect service is responsible for delivering
platform-independent descriptions of image-processing
effects to requesting clients, such as the image-
processing service. The delivered image-processing
effects are composed of multiple assets, which depend
on each other. Each asset is described in an asset for-
mat. This asset format and the dependency structure is
based on the work of Duerschmid et al. [2]. Examples
for assets are implementation-specific files such as
shaders and textures. The effect service is realised
through a Node.js JavaScript application, which pro-
vides the web service interface, in conjunction with

PostgreSQL, which is used for storing asset meta data
and asset files.
Assets are sets of files that, once composed, define
a platform-independent, executable description of
an image-processing effect. Assets are designed to
strictly separate between platform-independent parts
and platform-dependent parts. The composition of
assets is realised through inter-asset dependencies.
Once an image-processing operation is requested, the
effect service resolves the dependencies and bundles all
assets together, resulting in an executable asset bundle.
This minimizes the required client effort to download a
given image-processing effect.

3.2 Image-Processing Service
The image-processing service is responsible for execut-
ing image-processing effects. The service implemen-
tation uses a cross-platform C++ image and video pro-
cessing framework designed for desktop and server sys-
tems. To enable efficient processing, graphic acceler-
ation supporting multiple modern graphic APIs (e.g.,
OpenGL, Vulkan) is used. Per request, the image-
processing service takes the reference to an image as
input and can be configured with respect to the follow-
ing configurations:

Effect File: Reference to the parameters of the desired
effect. The effect’s XML file is parsed and a pro-
cessing pipeline is instantiated based on the respec-
tive effect configuration.

Preset Identifier: The effect can be configured using
so-called presets. Setting a preset identifier applies a
predefined parameter configuration that is basically
a list of parameter name and value tuples.

Output File Format: To reduce streaming bandwidth
and the size of transmitted data, the image-
processing service can generate output images in



compressed, lossy formats (e.g., JPEG) and lossless
formats (e.g., PNG). The compression setting can
be configured by the client according to the specific
use case.

Output File Quality: The quality parameter config-
ures the JPEG quality and the PNG compression
rate, respectively. The quality factor of the output
image must be in the range 0 to 100. As for
PNG export, specify 0 to obtain small compressed
files and 100 for large uncompressed files. The
format and the respective quality configurations
results from a trade-off between output quality and
transmission time. Those are crucial adjustments
to achieve a responsive user interaction within the
client application.

Return Type: The return type determines, if an image
token or the processed image is returned by the ser-
vice. Choosing an image token reduces bandwidth
while applying multiple effects and/or different ef-
fect presets, since the image is kept on the server
and does not need to be transmitted for every single
request.

3.3 Resource Management Service
Two types of resources are associated with the re-
source management service: image and image-related
resources. Supported image file formats are the
ubiquitous MIME types JPEG and PNG. The support
for further file formats can be easily integrated. Every
image resource can be identified using a Universal
Resource Identifier (URI). The image information
includes both technical properties about the image
(e.g., image resolution) and low-level analysis results
such as pixel edge-count, dominant colors, or a color
histogram. In addition to the management of resources
and their metadata, the resource management service
provides low-level image manipulation functionality
(e.g., rotating, cropping, resizing), which can be used
by image-viewer clients that require zoom, pan, or
rotate functionality.

3.4 Orchestration Service
The orchestration service follows the facade design
pattern—in the context of service-based architectures
also denoted as API gateway—and provides the public
service-endpoints that handles requests sent by the
clients. Requests that require atomic functionality,
which is provided by a single service, are dispatched
to the respective service (e.g., provision of an image,
update of an effect). More complex requests (e.g.,
processing of an image with a specific effect) that
depend on several services to fulfill a high-level use
cases are managed by the orchestration service. The
orchestration service calls and coordinates required

services, manages the execution flow, and assembles
information required for the response. A workflow
example for processing an image that uses the orches-
tration of the three main services, is outlined in the
following:

1. Fetch image from resource management service.

2. Fetch the requested effect from the effect service.

3. Request the processing of the fetched image with the
requested effect at the image-processing service.

4. Gather and deliver relevant status/error information
and the processing results.

Further, the orchestration service delivers its
capabilities using the OpenAPI specification
(https://www.openapis.org/). Thus, the service
endpoints are both human and machine readable and
can be comprehended without reading source code or
documentations.
In technical terms, communication between the ser-
vices is based on RESTful HTTP [5] – which is one
of the established standards, along with SOAP [8] and
message oriented middleware [1] – for service-based
architectures [16]. REST facilitates the communica-
tion within heterogeneous environments comprising
services running on different machines or in different
execution environments. The REST services accept
HTTP requests to a URI with a specific HTTP method
(PUT, GET, POST, DELETE). The URI for requesting
the orchestration service complies the following
template:
https://<IP>/<resource>/<id>/<action>

Here, the parameter <IP> refers to the location of the
server, <resource> indicates the type of the resource
(e.g., image), <id> specifies the identifier of the re-
source, and <action> declares the type of process-
ing, (e.g., transform, analysis, or info). Additionally,
HTTP methods are used to map CRUD (create, read,
update, delete) operations to HTTP requests. Hence,
a resource can be created or updated (POST), fetched
(GET), and deleted (DELETE). To get or delete a re-
source, the action path parameter can be omitted. A
request to retrieve the image information of a specific
image with the identifier 12345 is the following GET
request:
https://<IP>/image/12345/info

4 APPLICATION EXAMPLES
This section demonstrates the applicability of the pre-
sented concept to various application domains, such
as (web-based) add-ons for office products (Subsec-
tion 4.1), image manipulation on mobile devices (Sub-
section 4.2), and desktop systems (Subsection 4.3).



Figure 3: The common workflow of all clients commu-
nicating with the web services. From top to bottom:
Initially, all effects are retrieved and displayed to the
user. The user then has the option to try out different
effect and preset combinations until he is satisfied.

4.1 Google Office Suite Integration
Google offers various web apps as part of its office
suite (G-Suite): Sheets, Docs and Slides. Each of
these Google Apps offers add-on integration through
the Google Apps Script platform. As a demonstration
for the integration of service-based image-abstraction
techniques, add-ons for Google Sheets, Docs and Slides
that utilize the presented image-processing web service
of this work were developed (Figure 4).

The workflow of the add-on, which is common for all
application examples of this chapter, is shown in Fig-
ure 3. First, the client requests a list of all currently

Figure 4: Example of the integration of service-based
image-abstraction techniques into Google Slides via an
Add-on using server-sided Google Script.

available effects from the effect service. These are dis-
played to the user in a list. Once the user selects an
effect, the currently selected image is cropped and pro-
cessed multiple times to generate previews for the dif-
ferent effect presets. These dynamic previews are dis-
played below the effect list, enabling users to get a first
impression of the visual impact of the effects and its re-
spective presets. Subsequent to selecting one of the pre-
views, a full-resolution image is processed on the server
and displayed to the user. This full-resolution image
can then be inserted into the Google Slides, Docs, or
Sheets document.
The add-ons are implemented using Google Script, a
server-side scripting interface based on JavaScript, and
templated HTML5 user interfaces. Figure 5 shows an
overview of the basic add-on architecture and integra-
tion. Since every Google App has a different API for
retrieving images from the document, each add-on re-
quires to be adapted for the specific app. The core of
all add-ons, the web-service connection library, encap-
sulates common functions required for calling the web
services. Using this design, rapid development of add-
ons for new and existing Google Apps is easily possi-
ble.
However, the add-on environment of Google Apps
Script poses two limitations. First, the daily quota
for regular users of HTTP requests is limited to 100
megabytes. A naive implementation that directly
uploads and downloads processed images can reach
this quota quickly. To counter-balance this, the add-on
is designed to send links instead and exploit HTML
image-embeddings whenever possible to circumvent
the quota. A second limitation currently concerns the
runtime performance of inserting new images into a
document. In a Google Slides presentation example,
inserting a 1.6 megapixel image takes 3.5 seconds.
In contrast, uploading, processing and downloading
the image takes only approx. 0.8 seconds in the
same environment. Therefore, to achieve sufficient
performance, the add-on is implemented to minimize
these calls to Google APIs.

4.2 Android Image Manipulation App
Figure 6 shows screenshots from an Android mobile
app that enables the application of various image-
processing techniques to input images. This client
offers similar features as ProsumerFX [2] but without
on-device processing.
The workflow in this app is similar to the presented
Google Office Suite add-on. At first, the client fetches
a list of available image-processing techniques from
the web services. Next, these effects are filtered and
grouped based on delivered effect metadata, such as ef-
fect complexity and category. Once the user decides for
an effect, dynamic previews for each predefined param-
eter configuration (preset) via thumbnail processing are
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Figure 5: Architecture of the Google Office Suite add-
ons. For every Google App, an arbitrary number of
add-ons with a different set of available effects can be
deployed. All add-ons use the web service connection
library, which provides convenient access to the web
services.

generated. This allows users to get a first impression
of the visual impact of each preset and helps them in
their decision making. When the user selects a preset,
a high-quality version of the processed image will be
generated on the server and then displayed in the client.
The app also allows the combination of multiple effects,
sequentially applying them to the image. The user can
reorder these effects, taking control over the orchestra-
tion of the web services.

There are multiple advantages of the app in contrast
to on-device processing. First, the processing is in-
dependent of the device graphics hardware since it is
performed on a server machine. This allows weaker
devices to apply complex image-processing effects to
high-resolution images. Furthermore, the battery con-
sumption is significantly lower than a comparable on-
device rendering solution. The app can also be utilized
in a business context as a white-label solution for dif-

A B C

Figure 6: Workflow of the Android image manipulation
app. After selecting an image (A) the user can choose
an effect and one of the predefined parameter configu-
rations (B) and apply them to the input image (C).

ferent companies, i.e., multiple customized versions of
the app with a specific brand, logo, and identity can be
created and sold to companies.

4.3 Desktop Client
The desktop client is realised through a C++ frame-
work, using the Qt application framework that commu-
nicates with the orchestration service to utilize the func-
tionality of the server component and to fulfill high-
level use cases. The presented approach is tested us-
ing a Command-Line Interface (CLI) and a Graphical
User-Interface (GUI) application.

CLI Application. The CLI application is used as a
rapid application development framework for the anal-
ysis and processing of images and image collections.
Further, it provides statistics and reports of effects and
additional metadata. The CLI can be easily utilized by
developers or desktop applications to implement more
complex functionality based on the provided effects.
For instance, it can be used as a convenient tool to test
effects and retrieve an overview of the effect status (e.g.,
average runtime, load, and bandwidth tests as well as
errors). Further, it supports both basic low-level func-
tionality (e.g., listing available effects and filter them)
and more advanced features (e.g., batch processing im-
ages that reside in specific folders or whose filenames
comply to a specified regular expression).

GUI Application. The GUI application demon-
strates the applicability of a simple cross-platform
image-processing app that applies selected effects
with specified presets subsequently to an image. The
application is implemented with the Qt GUI module
that facilitates the development and deployment of
cross-platform software for various desktop sys-
tems (Figure 1-C). Because of the minimalistic user
interface, the application is well-suited for casual
non-professional users, who want to import, process,
and export a single image.

5 RESULTS AND DISCUSSION
This section discusses the results obtained by our ap-
plication examples with respect to its runtime perfor-
mance, current limitations of the presented approach,
and future research questions to address.

5.1 Performance Observations
In general, two major factors affect the runtime perfor-
mance of service-based architectures: data transmission
and data processing. The transmission time of input and
output images over a network highly depends on the
image data size and the available network bandwidth.
Timings of data transmission are not examined in this
paper. The image-processing service output configu-
rations via the format and quality parameters account
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Figure 7: Performance of the image-processing service
applying the watercolor effect on images with different
resolutions (0.01 to 145 megapixels).

that. For example, within the Google Office Suite add-
on, a low-quality image with high compression can be
chosen for preview images. The machine hosting a sin-
gle instance of the processing service has the following
specification: CPU: Intel(R) Xeon(R) CPU E5-2637 v4
@ 3.50GHz; GPU: NVIDIA(R) Quadro M6000 24GB;
RAM: 64.00 GB; Hard drive: 4 × SanDisk X400 2.5
512 GB in RAID 0; OS: Ubuntu 16.04.3 LTS 64-bit.

The performance measurements of the image-
processing service (Figure 7) allow the following
observations: (1) the runtime depends linearly on the
resolution of the input image while for common reso-
lutions the processing achieves acceptable performance
(200-500ms), (2) high-resolution image data up to
16.384× 16.384 pixels can be processed, but requires
approx. 15 GB RAM; an amount that can hardly
be managed during on-device processing on mobile
devices, and (3) the prototypical implementation of the
image-processing service is hardly real-time capable
for common HD resolutions and, thus, is not suited for
video-stream processing yet.

Table 1 shows the runtime performance of the image-
processing service for different effects with respect to
the major processing stages:

Effect Loading: Load the effect, which includes pars-
ing of the XML representation and instantiation of
the effect pipeline with the associated GPU objects.

Image Decoding: Load the image, allocate texture
memory and data transfer for the image.

Image Processing: Execute the effect pipeline. The
result will be stored in the pipeline output texture.

Image Encoding: Export the image to a specified for-
mat (e.g., JPEG and PNG) with a specified compres-
sion strategy and write it back to disk.

Table 1: Runtime performance of image-processing
stages using effects of different complexity. The input
is a 2 megapixel JPEG image.

Effect Load Effect Decoding Processing Encoding Total

Blur 111ms 169ms 20ms 17ms 317ms
Emboss 157ms 174ms 24ms 25ms 380ms
LUT 196ms 164ms 25ms 23ms 408ms
Oilpaint 242ms 170ms 47ms 25ms 484ms
Watercolor 523ms 163ms 67ms 30ms 783ms

On complex effects (e.g., oilpaint, watercolor) load-
ing of effects and processing requires more time than
on simple effects (e.g., emboss and blur filter). Com-
pared to the on-device equivalent the effect loading
stage, which takes 1-3 seconds on device, is signifi-
cantly faster [2]. However, input and output operations
(effect fetching, decoding, encoding) poses the bottle-
neck of the processing component. Caching mecha-
nisms for the effect fetching stage can result in a con-
siderable speedup, while on high-resolution images the
decoding and encoding stages become the major time
consuming parts.

5.2 Limitations
The prototypical implementation of the presented ap-
proach exhibit some limitations. Since the reusability
of web services is maximised, each single service often
only provides simple and atomic functionality. There-
fore, to enable more complex use cases, the composi-
tion of services is a critical question to address. Pre-
vious research has shown that composition can be per-
formed automatically, once the web service ecosystem
and the desired use cases are strictly formalized [10].
In this work, the composition of services was imple-
mented using a meta service, i.e., the orchestration ser-
vice described in Subsection 3.4, and client-side, i.e.,
the thumbnail generation shown in Subsection 4.1 and
the effect composition described in Subsection 4.2. As
described in the according sections, these approaches
come with their own limitations respectively.

Furthermore, the current prototypical implementation
assumes a monolithic image-processing service. With
the assumption of this service only being handled by
one physical machine, this could turn out to be a lim-
iting factor for the scalability of the complete system.
A load-balancing system in addition to multiple server-
instances would be a potential improvement to over-
come this limitation. In addition thereto, each server-
instance is still limited with respect to processing ca-
pabilities such as maximum texture sizes, number of
shader cores, or memory bandwidth.

5.3 Future Research Directions
On the basis of the presented results, various future
research directions are possible. Extending the web



service processing approach with capabilities for video
processing is planned for future work. Here, a possible
implementation for efficient real-time video process-
ing could involve using live streaming protocols, e.g.,
Real-time Streaming Protocol (RTSP), and exploiting
compression methods. Another aspect to improve the
performance of the presented system is scalability. In
addition to introducing load balancing in front of the
image-processing server(s), the image-processor can be
extended to support tiled rendering. This would al-
low the system to process even higher resolutions than
16.384×16.384 pixels, which might facilitate more ap-
plication fields for this work, such as the geodata do-
main.

Furthermore, support of an extended effect parame-
terization beyond choosing presets might be desirable
to some users or application integrations. Allowing
fine-grained control over every effect parameter in-
creases the creative freedom but might make it harder
for users to achieve desirable results. Featuring a
service-oriented architecture, the parameters could be
exposed via self-description of services. Furthermore,
allowing users to share their own parameterizations
as new effects on a platform as demonstrated in [2] is
imaginable.

6 CONCLUSIONS
This paper presents a novel concept for service-based
processing and provisioning of image-processing tech-
niques with respect to extensibility and applicability
of image effects to further domains and current soft-
ware and hardware systems. The approach is based on
the design of atomic services that are orchestrated to
higher level services to fulfil sophisticated use cases,
such as applying configurable image-abstraction effects
to images. Since the image-processing is performed
on the server, clients are not responsible for resource-
intensive processing tasks and the image-processing
can be implemented and optimized only once for a
known GPU environment. The presented approach
enables cross-platform interoperability with a diverse
range of heterogeneous clients. The applicability of
the approach is demonstrated to various application do-
mains, such as mobile and desktop applications. The
image-abstraction effects are described via a platform-
independent representation that enables a highly cus-
tomizable configuration. These effects and their depen-
dent assets are stored on the server, which provides a
high degree of protection for sensitive data (e.g., intel-
lectual property). As part of the technical evaluation
performance measurements showed the general appli-
cability of the approach, i.e., image-processing can be
performed in a reasonable amount of time. Also, the
processing and output of high quality images with res-
olutions up to 145 megapixels have been shown.
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