
Visually Realistic Graphical Simulation of Underwater Cable

Ori Ganoni
Department of Computer

Science
University of Canterbury

Christchurch, New
Zealand
at time t

ori.ganoni@pg.canterbury.ac.nz

Ramakrishnan
Mukundan

Department of Computer
Science

University of Canterbury
Christchurch, New

Zealand
mukundan@canterbury.ac.nz

Richard Green
Department of Computer

Science
University of Canterbury

Christchurch, New
Zealand

richard.green@canterbury.ac.nz

ABSTRACT
This paper presents different modeling considerations
that are important in simulating visually realistic be-
havior of underwater cables attached to remotely op-
erated vehicles. The proposed methodology has been
tested on highly complex models of aquatic environ-
ments created using Unreal Engine 4. Current meth-
ods and implementations of cable simulations that are
widely used in computer graphics are generally suited
only to light density mediums such as air. In this paper,
we present modifications to the above model required
for simulating neutrally buoyant cables in underwater
environments. The simulation results presented in this
paper successfully demonstrate different behavioral as-
pects of flexible variable length underwater cables and
their variations with respect to modeling parameters us-
ing our proposed method.

Keywords
Robot simulation, ROV, Underwater simulation, Cable
simulation, Unreal Engine 4.

1 INTRODUCTION
Cables are used widely in underwater environments for
power supply and communication to remote locations
and to support various types of underwater structures.
High tension cables are generally used to tow fishing
equipment and research probes whereas low tension ca-
bles and ropes are used in underwater tethered systems
like Remotely Operated Vehicles (ROVs) (Figure 1).
The drag introduced by the water medium and the buoy-
ancy forces make the underwater cables behave differ-
ently to less dense mediums like air or vacuum. For

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Visual simulation of Underwater tethered
ROV

most ROV cables (and also in our simulation), gravi-
tational effects can be ignored since as a design goal,
underwater ROV systems use neutrally buoyant cables.
Simulating the behaviour of the cable attached to an
ROV can be helpful in several situations such as (i) de-
veloping control algorithms for avoiding cable tangling,
(ii) handling vision issues when the cable is in front of
the ROV’s camera, (iii) estimating the configuration of
the cable in different conditions and manoeuvres, and
(iv) simulating complex manoeuvres for missions in-
volving multiple cables and ROVs.

The behavior of a rope under external forces is gener-
ally modelled as a multi-rigid-body dynamic system (or
chain system), by representing the rope as long chain
of segments. In order to simulate a large number of
segments in real-time, we need a fast and memory ef-
ficient method which need not necessarily be physi-
cally accurate. At the same time, the motion should
look physically realistic, and controlled by a number of
parameters which defines the cable behaviour. In ad-
dition, some of the unique characteristics of the water
domain need to be parameterized and added to the sim-
ulation model. Simulation of dynamic systems in com-
puter graphics mainly use force-based methods, where
linear and rotational accelerations are computed from
forces and torques. A time integration method is then
used to update the velocities and positions of the object.

In contrast, geometry-based methods work directly on
vertex positions, modifying them using iterative update
equations. The main advantage of a position-based ap-
proach is its controllability. In force-based systems,
overshooting problems associated with explicit integra-
tion schemes can be avoided. In addition, collision con-
straints can be handled easily and penetrations can be
resolved completely by moving points to valid loca-
tions [1]. The position based simulations which were
originally developed for the simulation of solids were
also extended to the area of fluid dynamics [2] where
it is not reasonable to simulate the interacting forces
between the particles in real-time. In contrast to force
based simulation, position based models can scale up
and can be used today to simulate large multi-body sys-
tems like fabric or fur in real-time. While force based
systems tend to be physically accurate under certain as-
sumptions, position based systems aim to be visually
realistic. For example, a set of simulation parameters
may not correspond to real physical values, but may
generate realistic object behavior as the output. The
stiffness parameter implemented in the Unreal Engine
which we will later discuss is an example of a parame-
ter which influences the dynamic behaviour of the posi-
tion based cable model but has no meaningful physical
value (like mass or length).

Our proposed simulation method in terms of number
of particles lies between the forced based system and
the position based system. In simulating a long cable
with a large number of segments, we aim for realtime
performance by applying constraints and also use posi-
tion based models. In our underwater rope implemen-
tation, we take the existing Verlet integration suggested
by Jackobson [3] and modify it to simulate a realistic
underwater cable.

1.1 Our Contribution
The existing rope simulation in Unreal Engine performs
in a convincing way only in a light density environment
like air but looked quite non-realistic in the aquatic
medium. This motivated us to return to the original as-
sumptions of the simulated implementation and mod-
ify it in order to create visually convincing underwater
rope/cable simulation. In our work, we added exten-
sive damping and random displacements to the particles
and experimentally analysed and verified the resulting
behaviour. Specifically, we were interested in the be-
haviour of variable length long cables attached to a
robot at one end and to a spool in the other end as can be
seen in video [4]. That kind of cables have some unique
physical characteristics that could not be addressed by
the current features in existing simulation frameworks.
We demonstrated the behaviour of the rope as part of a
larger underwater ROV simulation using Unreal Engine
4.

This paper is organized as follows: Section 2 describes
the related work done on underwater cable simulation
in the mechanical engineering domain and the position
based simulation work done on cables in the computer
graphics domain. Section 3 describes in detail the the-
ory of position based methods with focus on cable sim-
ulation in addition to our proposed model. Section 4
describes the software we used and developed for the
purpose of this work. Section 5 analyzes the results
of the cable simulation. Section 6 concludes the paper
with a summary of the important concepts and results
presented and also outlines future work.

2 RELATED WORK
Most of the underwater cable modelling was done in
the mechanical engineering domain using force based
methods. Cable and chain models in general are simu-
lated using a segment based model [5]. Buckham [6]
used force based methods to simulate a cable model
for use in low-tension dynamics simulation. He pre-
sented a computationally efficient and novel third-order
finite element technique that provides a representation
of both the bending and torsional effects and accelerates
the convergence of the model at relatively large element
sizes. In his paper, he managed to reduce the number of
state variables defining the cubic elements of the more
conventional finite element approaches . Other water
cable related work reported in literature involved towed
cable systems. High tension systems like towed system
are quite common and a lot of work has been done on
that topic. Wang investigated in his paper the parame-
ters influencing the manoeuvre of towed cable system
dynamics [7]. Lambert created a model for the dynam-
ics and control of towed underwater vehicle systems
[8]. Gonzalez created a simulation of cable pay-out and
reel-in with towed fishing gears [9]. Ablow simulated
the behaviour of a long cable pulled in a circular pattern
[10]. Some work has been done to model the bending
and the stiffness of underwater cable systems [11] [12].
Most of the simulation in the mechanical domain were
designed to meet specific purpose or requirement and to
serve as a guide for cable system design. For the vari-
able length case, Prabhakar [13] developed a dynamic
simulation of variable length tether in a tethered under-
water vehicle system.
Position based methods are used widely in the computer
graphics domain. Jackobson [3] described in detail the
position based model for cable simulation. His work
was the basis for the current implementation in today’s
game engines [14]. Our work is based on the survey pa-
per by Bender [1] on different position based methods
currently used in computer graphics.

3 ALGORITHM OVERVIEW
The Unreal game engine uses the Verlet integration
method for rigid multibody simulation presented by

Varlet [15]. The heart of the existing rope simulation is
a particle system. each particle has two main variables:
Its position x and its velocity v. The new position xt+∆t

and velocity vt+∆t are computed by applying the rules:

xt+∆t = xt + vt∆t (1)

vt+∆t = vt +at∆t (2)

where ∆t is the time step and at is the acceleration.
For obtaining a velocity-less representation of the above
scheme, instead of storing each particle’s position and
velocity, we store its current position x and its previ-
ous position xt−∆t . Keeping the time step ∆t fixed, the
update rule (or integration step) is then:

xt+∆t = 2xt − xt−∆t +at∆
2
t (3)

xt−∆t = xt (4)

xt = xt+∆t (5)

Jackobson [3] suggested in his paper that by changing
the update rule to xt+∆t = 1.99xt − 0.99xt−∆t + a∆2

t , a
small amount of drag can also be introduced to the sys-
tem. This is a useful equation that can be further mod-
ified to add large drag or damping to a system in an
aquatic environment. In our implementation, we added
small random displacements for creating micro current
effects suitable for ocean-like environment. Those mi-
cro currents prevent the rope from looking frozen in
space where there are no other forces presented to the
simulation. This is usually the case in long low tension
cable characterized by tethered systems. Our proposed
final model can be summarized by the following equa-
tions:

xt+∆t = xt +(xt − xt−∆t)Dr +a∆
2
t + r (6)

xt−∆t = xt (7)

xt = xt+∆t (8)

where Dr is the drag coefficient with maximal value of
1 (no drag). It is set to 0.9 to introduce a large amount
of drag typical of aquatic systems and is multiplied by
the velocity term (xt − xt−∆t) When the time step ∆t is
set equal to 1 for simulation purposes. r is the added
random displacements to simulate random forces gen-
erated by underwater micro-currents. r was uniformly
distributed and limits were chosen to be small enough
so the random behaviour will only cause long-term ef-
fect on the cable.

The next step of the rope simulation is to apply the dis-
tance constraint. This means that the distance between
adjacent particles should be kept constant. This pro-
cess is done iteratively by pushing the particles directly
away from each other or by pulling them closer to main-
tain the required distance. The following pseudo-code
(Figure 2) describes this process:

SolveDistanceConstraint(PosA,PosB,
TargetDistance):

Delta = PosB-PosA
ErrorFactor=(|Delta| - TargetDistance)/

|Delta|
PosA += ErrorFactor/2 * Delta
PosB -= ErrorFactor/2 * Delta

SolveConstraints():
for iter=0 to SolverIterations
for ParticleIndex=0 to NumOfParticles-1
SolveDistanceConstraint(
Particles[i],Particle[i+1],TargetDistance

)
for ParticleIndex=0 to NumOfParticles-2
SolveDistanceConstraint(
Particles[i],Particle[i+2],2*

TargetDistance)

Figure 2: Distance constraint algorithm

This pseudo-code above shows how distant constraints
are implemented in Unreal Engine 4. We can see
that the "SolveConstraints" function has one outer loop
which is responsible to perform iterations to enforce the
constraint. More solver iterations will give more stiff-
ness to the cable. In Figure 4, the length of the rope
is changed when introducing a force at one of its ends
and changes in the overall length is dependent on the
number of constraints and iterations applied to the rope
particles. The second inner loop reduces the flexibility
of the rope by enforcing constraints between particles
that are separated by one other particle. That specific
constraint limits the ability of the rope to bend. Figure
3 shows the difference between the two constraints. The
bending constraints were useful in smoothening out the
effects of random displacements added to the underwa-
ter simulation. Finally, our final solution was imple-
mented as a new underwater rope plugin.

A

B

C

D

E

F

g

2L

L

Figure 3: Length constraints and bending constraints.
We can see at this diagram an example to the constraints
apply on the cable segments. For example between ad-
jacent points like E and F we require L distance which
will create resistance to stretch and between points with
one vertex between them like A and C we require 2L
distance which will cause resistance to stretching with
additional resistance to bending.

The rest of the changes to the rope characteristics were
made by parameter changes to the model. Cable length

was chosen to be 10 meters and the number of segments
was chosen to be 100. This was done in order to cre-
ate a large amount of short segments, required for visu-
ally realistic underwater simulation. With such models,
any disturbance at one end of the cable will propagate
slowly and will be damped by the surrounding water
body.

Figure 4: This figure shows the variation of the total
cable length in meters with respect to the frame number.
We can see that when using 10 solver iterations between
frames to enforce the distance constraint of each cable
segment the cable maintains its overall length more and
represents a less stretchable cable.

The SolverIterations parameter (as can be seen in the
pseudo code) should be chosen carefully. There is a
trade-off between the stiffness or the ability to stretch
and the damping mechanism introduced earlier. Since
the damping is done in the Verlet stage, the constraint
mechanism can still freely move all the rope particles,
and due to that trade-off we limited the number of it-
erations. An improvement can be made to add some
damping effect also in the constraint stage. That will
allow more control on the cable length.

Setting the gravity to be zero was done to simulate the
effect of neutral buoyancy. Usually, tethered systems
are designed to meet the goal of neutral buoyancy to
eliminate pulling forces from the cable in the case of
non-neutral buoyancy. Additionally, the negative buoy-
ancy of a tethered system can cause the cable to be tan-
gled with objects on the surface of the seafloor.

Drag coefficient was chosen to be 0.9 and this value is
much lower than the maximal value 1. This was done
to introduce intense damping and to reduce the propa-
gation along the cable. The random displacements co-
efficient was chosen empirically to be 0.1 and can be
adjusted to different sea conditions. All the parameters
of the simulation included the added parameters (the
damping and the random displacements) can be con-
trolled by the outside environment (like the game en-
gine editor) and can be adapted to different types of ca-
bles with different characteristics.

Figure 5: A small underwater OpenROV robot con-
nected through a thin cable for video and control trans-
missions [16].

In our tethered ROV simulation, we have also made
additional assumptions that there are no forces or rel-
atively small forces introduced by the rope which effect
the ROV position. In some cases, it makes sense for ex-
ample if the mass of the ROV is relatively much higher
then the mass of the rope. For example the OpenROV
5 [16] robot uses a very thin cable which handles only
communication (not power) and in this case, we can as-
sume that unless the cable is fully extended the relative
force applied by the cable is relatively small. In prac-
tice, This means that the rope is not limiting the ROV
movement.

3.1 Variable Length Cables
Underwater simulation of ROVs will also require mod-
elling of cables connected to a spool that are released or
retracted according to a naive logic that whenever there
is a tension in the cable the cable is released. In the fol-
lowing, we outline a method to extend our model to a
generate a variable length cable.

A flag is associated with each vertex of the cable model,
and it represents whether the vertex is free to move
according to the Verlet integration and the constraint
mechanisms. By default, both ends of a cable will be
flagged as non-free and the rest are free, since the ca-
ble is attached to both ends. In the case of a spooled
cable, all the particles of the rope that are currently not
released are flagged as non-free particles.

Since our model is position based, whenever the first
segment from the spool side is stretched enough, typi-
cally by 10 percent of the total length, we will release
a particle/vertex. After that, the Verlet integration and
the constraint mechanism will move into action and will
adjust the particles accordingly. In video [4] we can see
that when the robot is moved the cable is pulled as nec-
essary to maintain low tension.

We have made further modifications in the model, par-
ticularly in the areas closer to end points. Random
forces were not be applied on the first free segment, to

avoid the spontaneous release of the cable due to ran-
dom change of the length of the first free segment.

The spooled cable extension is done with the intention
to lay a simulated foundation for the development and
testing of managed tethered system. The simulation can
report in real-time the current length of the cable and
the estimated tension of the cable at each point along
the cable. Specifically, in the beginning and the end of
the cable wherein a real system we can place tension
sensors as an input to the controller of the tethered sys-
tem. The tension can be measured as a function of the
distance between every two particles.

4 METHODS AND TOOLS

Figure 6: Unreal Engine 4 editor environment.

Figure 7: Experimental verification of motion of an ex-
tensible cable. We colored the cable in a checkers like
pattern to enable the extension of the cable to be ob-
servable.

The main aim of this work has been to generate a con-
vincing and realistic behaviour of an underwater teth-
ered robot using the simulation framework provided by
the Unreal Engine 4 (Figure 6). A live video demo can
be seen in videos [17] [4] and in Figure 7. The ex-
periments were done in the editor environment (not as
a packed game). The robot seen in those figures was
moved manually while the cable was attached to both

A

B

C D E F G H

S

Figure 8: A 2D model of a flexible cable where one of
the end points A is moved with a constant velocity v
towards a target S

ends. The new plugin is maintained and can be down-
loaded from here [18].

In addition, to have finer control over the simulation,
an additional 2D simulation was created to demonstrate
the proposed method. We used the Jupyter [19] python
notebook environment to generate the output seen in
figures 9 and 11. The 2D simulation is maintained un-
der the following link [20]. Figure 8 illustrates the cable
configuration used in the 2D simulation.

5 EXPERIMENTAL RESULTS

We created a simple 2D computer simulation to simu-
late the effects of moving one edge of the cable while
the other end is pinned (Figure 7). Figure 9 shows
the behaviour of the rope with and without damping
with respect to time. The wave motion continues to
propagate through the rope when there is no damping
whereas with damping the wave energy slowly decays
and random forces are becoming more dominant. In
Figure 10 we can see our desired effect when using co-
efficient 0.9. The movement of the cable at one end
does not affect the other end, so long as there is no ten-
sion in the cable segments.

Figure 11 shows the the random forces effect. In this
experiment we look at the cable configuration in the 2D
space after the system is stabilized (t >> 0) with and
without random forces. We can see that the random
forces create a kind of memory loss effect of the shape
of the cable. This effect is important when there are
no other significant forces (or they are close to zero) in
the system. When we don’t add the random force, the
cable tends to stand still in contrast to what would be
expected in a dynamic aquatic environment.

Figure 9: The damping effect. This figure shows the
cable in different times. In t=0 we start to move the
edge of the cable in the direction up and right along the
"xy" plane. The first figure shows the results without
damping and the second shows the behaviour of that
cable with damping coefficient of 0.98. We can clearly
see that the damping is absorbing the wave energy as
we would expect in aquatic systems.

Figure 10: Damping with 0.9 coefficient. Tunning the
coefficient to 0.9 causes the desired effect for underwa-
ter simulation in the case of a low tension cable in an
underwater environment. Disturbance on one side re-
mains local.

6 CONCLUSIONS AND FURTHER RE-
SEARCH

In terms of performance, the modifications to the cur-
rent model didn’t require more computational effort. In
fact, if we assume neutral buoyancy of the cable we can
remove the gravitational forces from the simulation to
reduce computational time. This can be useful in cases
where a large number of cable/rope like object are sim-
ulated. Generally speaking, we can say that a cable is
a linear 3d object curve which can be efficiently com-
puted by modern CPUs.

Using the position based approach allowed us to eas-
ily modify the current model by adding drag and ran-
dom displacements and in the future to apply other con-
straints for inter-rope tangling and ROV interactions.
Further research will also deal with the forces applied
to and by the cable to the objects that it is connected
to. This can be done by measuring the length of the
segments as described in section 3.1. Currently, we as-
sume that there are no forces and torques applied by
the rope which effect the ROV movement, and so we
can improve future simulation by adding those forces
to the simulation. Additionally, we added simple ran-

Figure 11: Introducing random forces to the system.
Both images show the cable state after the system is
stabilized (t»0). The first and the second images show
the cable state with and without random forces respec-
tively. We can see the "Memory Loss" that we would
expect to see in a marine-like environment with under-
water currents.

dom displacements with even normal distribution for
all the segments. In real environments that is usually
not the case and the currents are influencing the cable
differently for each segment. Underwater currents are
more similar to air turbulence and do not contain high
frequency changes.

In our research, we found this simulation to be partic-
ularly useful in cases were the robots sees its own ca-
ble as presented in Figure 12. This fact may disrupt
computer vision algorithms - especially those based
on tracking using landmark features from the images
and assume that these landmarks are not moving in the
scene. With this new type of simulation, that kind of
behaviour can be simulated in a manner close to real
cable behaviour. New computer vision algorithms can
be developed to mitigate that behaviour and new con-
trol algorithms can be developed to manage the cable
configuration.

Figure 12: An underwater robot’s camera view of its
own tether cable

In this paper, we demonstrated a visually convincing
underwater cable simulation. The current state of the art
model implemented in the latest version of the Unreal
Engine 4 was thoroughly investigated and the needed
modifications to the model for underwater simulation
were described in detail. We presented a novel ap-
proach to the underwater simulation and the unique
characteristics of such a medium. We showed results
in a 2d computer simulation for finer analysis of the
simulation results. The simulation is robust and con-
trolled by a large number of parameters as previously
described. Finally, the modified model was imple-
mented in Unreal engine 4 as a new underwater cable
component available for download with provided de-
mos demonstrating the new cable behaviour [18].

7 REFERENCES
[1] J. Bender, M. Müller, M. A. Otaduy, M. Teschner,

and M. Macklin, “A survey on position-based
simulation methods in computer graphics,” in
Computer graphics forum, vol. 33, no. 6. Wiley
Online Library, 2014, pp. 228–251.

[2] M. Macklin and M. Müller, “Position based flu-
ids,” ACM Transactions on Graphics (TOG),
vol. 32, no. 4, p. 104, 2013.

[3] T. Jakobsen, “Advanced character physics,” in
Game Developers Conference, vol. 3, 2001.

[4] Underwater cable reel simulation video. https:
//youtu.be/DO-x2RaZHso.

[5] R. Marshall, R. Jensen, and G. Wood, “A general
newtonian simulation of an n-segment open chain
model,” Journal of Biomechanics, vol. 18, no. 5,
pp. 359–367, 1985.

[6] B. Buckham, F. R. Driscoll, and M. Nahon, “De-
velopment of a finite element cable model for use
in low-tension dynamics simulation,” Journal of

Applied Mechanics, vol. 71, no. 4, pp. 476–485,
2004.

[7] Z. Wang and G. Sun, “Parameters influence on
maneuvered towed cable system dynamics,” Ap-
plied Ocean Research, vol. 49, pp. 27–41, 2015.

[8] C. Lambert, M. Nahon, B. Buckham, and M. Seto,
“Dynamics and control of towed underwater vehi-
cle system, part ii: model validation and turn ma-
neuver optimization,” Ocean engineering, vol. 30,
no. 4, pp. 471–485, 2003.

[9] F. González, A. de la Prada, A. Luaces, and
M. González, “Real-time simulation of cable pay-
out and reel-in with towed fishing gears,” Ocean
Engineering, vol. 131, pp. 295–307, 2017.

[10] C. Ablow and S. Schechter, “Numerical simula-
tion of undersea cable dynamics,” Ocean engi-
neering, vol. 10, no. 6, pp. 443–457, 1983.

[11] J. Burgess et al., “Bending stiffness in a simula-
tion of undersea cable deployment,” International
Journal of Offshore and Polar Engineering, vol. 3,
no. 03, 1993.

[12] J. Gobat and M. Grosenbaugh, “Time-domain
numerical simulation of ocean cable structures,”
Ocean Engineering, vol. 33, no. 10, pp. 1373–
1400, 2006.

[13] S. Prabhakar and B. Buckham, “Dynamics mod-
eling and control of a variable length remotely
operated vehicle tether,” in OCEANS, 2005. Pro-
ceedings of MTS/IEEE. IEEE, 2005, pp. 1255–
1262.

[14] Cable component in unreal engine 4. https:
//docs.unrealengine.com/latest/INT/Engine/
Components/Rendering/CableComponent/.

[15] L. Verlet, “Computer" experiments" on classical
fluids. i. thermodynamical properties of lennard-
jones molecules,” Physical review, vol. 159, no. 1,
p. 98, 1967.

[16] Openrov. https://www.openrov.com/.
[17] Cable simulation video. https://youtu.be/

_QoMUSlQCsg.
[18] Cable sim project. https://github.com/

UnderwaterROV/UWCableComponent.
[19] Jupyter. http://jupyter.org/.
[20] Cable sim notebook. https://github.com/

UnderwaterROV/underwaterrov/blob/master/
notebooks/rope.ipynb.

