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Abstract
This paper proposes a novel framework to produce 3D, high-precision models of humans from multi-view capture.
This method’s inputs are a visual hull and several sets of multi-baseline views. For each such view set, a surface
is reconstructed with a multi-baseline stereovision method, then used to carve the visual hull. Carved visual hulls
from different view sets are then fused pairwise to deliver the intended 3D model. The contributions of this paper
are threefold: (i) the addition of visual hull guidance to a multi-baseline stereovision method, (ii) a carving solution
to a visual hull from an interpolated and smooth stereovision surface, and (iii) a fusion solution to merge differently
carved volumes differing in several areas. The paper shows that the proposed approach helps recovering a high
quality carved volume, a 3D representation of the human to be modelled, that is precise even for small details and
in concave areas subjected to occlusion.
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1 INTRODUCTION

This paper presents a solution to 3D reconstruction with
constraints set by the broadcast industry with econom-
ically sustainable 3D post-production capabilities [1].
It aims at providing a new "virtual cloning" system of
actors based on multi-video capture, natively delivering
full 4D textured models of actors’ performance.

Modelling of 3D objects from multiple views remains
a major research problem in computer vision. Several
techniques such as multi-stereovision, shape-from-
silhouette, shape-from-shading, and structured-light
3D scanner have been proposed for 3D reconstruction.
They are usually classified as active or passive recon-
struction. Active reconstruction requires controlled
illumination such as a laser or a structured light, which
enable high precision 3D modelling. Whereas passive
reconstruction relies only on the information contained
in captured images, is less restrictive on the movement
of the actors, and offers the possibility of capturing
actual textures. In our case, passive reconstruction
is preferable as live shooting of actual performances
makes controlled illumination not desirable for our 4D
textured model reconstruction.
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In this paper, we propose a new passive multiview
approach which aims at reaching the visual quality
and the precision of active approaches. Our method
merges results from shape-from-silhouette and multiple
multi-baseline stereovision reconstructions. Multiview
or multiocular stereovision methods such as [2, 3] con-
veniently reconstruct surface details and concave re-
gions. However, they fail for textureless surfaces or re-
petitive textures because their core computational pro-
cess relies on image texture. Shape-from-silhouette
methods such as [4, 5] are very useful for real time ap-
plications in multi-camera environments [6] and handle
conveniently textureless and specular surfaces. How-
ever, their reconstruction quality is somehow limited
as the produced visual hull (VH) cannot recover con-
cave regions laying inside every silhouette beam. Thus,
multi-stereovision and shape-from-silhouette are com-
plementary to each other and numerous hybrid methods
have already been published (see section 2).

This paper is organised as follows. Relevant previ-
ous work related to silhouette-based and stereovision
reconstruction is described in section 2. Our solution
builds upon a multi-baseline stereovision framework
overviewed in section 3.1. The acquisition system and
geometry are presented in section 3.2. The main con-
tributions are developed in the following sections. Sec-
tion 3.3 describes an adapted version of a multi-baseline
stereovision framework [7] to encompass VH guidance
in order to enhance its performances. Section 3.4 ex-
poses the VH carving process, from the necessary in-
terpolation and smoothing of raw multi-baseline results
with integer disparities to the VH carving from a float-



ing point disparity map. Section 3.5 explains our pro-
cess for merging the carved volumes obtained from all
multiscopic units into a 3D omnidirectional model of
the actor. Finally, experimental results and conclusions
are discussed in sections 4 and 5.

2 RELATED WORK
3D reconstruction methods combining shape-from-
silhouette with stereo can be sorted into three groups.

(i) Stereovision methods guided by visual hull Seitz
and Kutulakos [8, 9] propose to build a VH and carve
it according to the photo consistency of each voxel on
its external surface. After a VH process, surface voxels
are iteratively eliminated if they project for each view
on pixels of different color. It has the benefits to model
occlusions and to achieve real time reconstruction. Un-
fortunately, the regular space discretizing scheme leads
to sampling, aliasing artifacts and partial voxel occlu-
sions. Matsuda et al. [10] propose direct carving to
avoid local optima. They classify the points extracted
from stereovision as either credible and not credible.
The VH is then carved by the credible point cloud that
verifies properties. For instance, credible point normals
should not significantly differ from the VH normal of
the nearest point on VH surface. However, this condi-
tion is not reliable for objects with steep concavities. Li
et al. [11] propose to use polyhedral VH to improve
a stereovision-based 3D reconstruction by quality, de-
leting outliers. However, this method does not handle
known stereovision difficulties: textureless or specular
surfaces and repetitive textures.

(ii) Energy function guided, model deforming us-
ing information provided by shape-from-silhouette
and stereovision This class is concerned by deforma-
tion methods (e.g. snake) exploiting concurrently the
information derived from silhouette-based reconstruc-
tion and stereovision [12]. Hilton et al. [13] optimize
the deformation of a generic mesh model of a human
shape to minimize an energy function encompassing
the constraints of the VH and stereovision. The main
drawback of it lies in its chosen model shape and topo-
logy dependent reconstruction. It does not consider ac-
tual performance specificities such as posture (self con-
tacts), garment (loose clothes) or physical interactions
with objects or other actors. Such restrictions in shape
and topology assumptions are not desirable for our pro-
ject.

(iii) Collaborative methods applying simultaneously
criteria borrowed from VH and stereovision tech-
niques Song et al. [14] adjust a point cloud extracted
from stereovision using VH information. Their method
groups the VH voxels into three classes: (1) voxels con-
taining stereovision point(s), (2) voxels intersecting a
segment between such a point and the optical centre
of the stereovision reference image, (3) all remaining

Figure 1: Proposed 3D reconstruction pipeline. Red blocks
refer to specific contributions of the paper

voxels, which are assumed to represent low texture or
occluded areas. A point cloud is built from first and
third voxel groups and only voxels which occlude ste-
reovision points in the reference image (group 2) are
carved out. The methods in [15] and [16] are relying
on Kinect sensor which has a practical limiting range
of (1.2 to 3.5 m) distance.

3 PROPOSED FRAMEWORK
The proposed framework is summarized in figure 1 and
borrows ideas from classes (i) to (iii). After its compu-
tation, the VH guides each multi-stereovision process
per multiscopic unit. Then VH carving from stereovi-
sion is performed for each multiscopic unit similarly to
class (i) but relies on a more global stereovision res-
ult close to the class (iii) concept. Finally, multiple
(one per multiscopic unit) VH/multi-stereovision res-
ults are merged into a single global 3D model. Bey-
ond its cross classification, our framework is innovative
among each class. For each multiscopic unit a global
scene-based multi-baseline stereovision process is run
in disparity space which totally avoids partial occlu-
sions and yields a robust stereovision result replacing
more local and noisy photo-consistency usually used in
class (i) carving. The proposed VH guidance class (i) is
dedicated to our multi-baseline stereovision framework
[7] which it enhances in terms of domain size, outliers
avoidance, and, more innovatively, robustness in multi-
stereovision similarity. The class "VH carving from ste-
reovision" (iii) relies on voxel classification for voxels
occluding the stereovision solution (group 2 in [14]).
This classification is usually based on rays from the
surface to the reference image. Replacing this image-
based classification by a volumetric one in disparity
space brings more precision and robustness to our solu-
tion. Furthermore, the multiple carved VH are merged
at final stage. A smart handling reconstruction of incon-
sistencies from separate multiscopic units, conveniently
corrects some residual stereovision mismatches.

3.1 Underlying multi-stereovision frame-
work

3.1.1 Overview
This paper builds upon the VH guided multi-baseline
stereovision process of Ismael et al. [7] for multi-



baseline stereo-vision, illustrated in figure 1. It re-
lies on the assumption that the n views provided are
synchronized images respecting the simplified multi-
epipolar geometry (parallel optical axes and converging
lines of sight, see [7]). The views are numbered 0 to
n− 1 from left to right facing the scene. The main
features are twofold. Firstly, the solution is searched
upon its natural domain in the disparity space (DS) in-
troduced by [17], an efficient scene sampling scheme
available thanks to simplified epipolar multiscopic geo-
metry (see figure 2 that will be detailed next section).
Secondly, this solution is formulated as a materiality
map defined on this domain, expressing for each sample
point its likelihood (in range [0,1]) of lying on a vis-
ible object surface as a perceived (indirect) light emit-
ter. In the following, we reformulate specific parts of
this method [7] important to understand the remaining
of the present paper.

3.1.2 Scene space sampling scheme

Contrarily to numerous image-based approaches, this
framework is deliberately scene-based as it works
wholly and directly in a discrete 3D space laid in
front of a multiscopic unit. This workbench space
expresses directly the solution domain (see figure 2)
on which several relevant properties are mapped. It is
defined as a set of 3D points called target points and
defined as the intersections of pixel rays from views of
adjacent cameras of the multiscopic unit in a simplified
geometry configuration.

Such points are aligned on constant depth planes as il-
lustrated in figure 2 where f is the common virtual focal
length of the cameras (the actual focal length divided by
the horizontal pitch) and b their interocular distance. In
any such plane, every point projects on any successive
views on pixels of a same horizontal shift. This com-
mon column index shift of the projections is called dis-
parity δ and is specific to the plane. A disparity δ is
an integer value, defined as the common difference of
column indices of the projections and is related to the
depth z of the plane by δ = f ·b/z. In figure 2, see the
point circled in red whose pixels in images 2 and 3 are
distant of b−δ .

Any 3D target point may thus be defined by the inter-
section of a plane πδ with a constant disparity δ with
the ray which goes through its pixel projection pi of
any image i. Hence, each target point T may be in-
dexed by a DS index t= (pt ,δ )t . p= (u,v)t is the index
of the pixel on which T projects in a chosen reference
view of index i0 (we usually choose i0 = 0). Accord-
ing to simplified geometry, a target point indexed by
t = (u,v,δ ) projects into any image i of the multiscopic
set on pi ∈ Z2 identified by equation 1:

pi ≡ (ui,vi)
t = p+(i0− i)δ .u = (u+(i0− i)δ ,v)t (1)

Figure 2: Disparity space: an efficient discrete reconstruction
space. For clarity, only 1 over k pixels, associated rays, and
constant depth planes are actually drawn.

3.1.3 Main framework concepts

Visibility: visibility reasoning evaluates for each tar-
get point with the function proposed by [2] and used
in [18, 19]. This function is defined in the framework
as the product of non-materiality of potentially occlud-
ing samples (see [7] for more details about the visibil-
ity function formula). DS ensures that each 3D sample
point (target point) precisely lies on a genuine pixel ray
in each image of the multiscopic unit for which it is in-
side the frustum. It thus intrinsically describes semi-
occlusions (pi in image i domain) and totally avoids
complex treatment of partial inter-sample occlusions.

Similarity and confidence: the materiality and
visibilities of target points are compared to input
views, according to pre-computed similarity scores of
neighbourhoods of their projections in some couples
of views. This rather classical similarity computation
includes (i) confidence computation typically based on
variances of the neighbourhoods and (ii) a normalizing
step of similarities along pixel rays which yields final
similarity scores in range [0,1].

Optimization and binarization: the materiality map is
shaped by an optimization process, minimizing a ded-
icated energy penalizing deviation from intended map
properties (such as completeness, smoothness, thin-
ness) and inconsistencies between materialities, visib-
ilities, and similarities (see [7] for more details). A
binarization process delivers the final result, a binary
materiality map. It is standing as a volumetric direct
model of the intended solution, whereas image-based
methods usually deliver disparity/depth maps that have
to be processed to yield the reconstructed scene.

3.2 Shooting system and geometry
3.2.1 Studio layout and processing

Our method relies on a studio [1] composed of many
synchronised and time stamped cameras with a green
background (see figure 3), scattered around the ob-
served scene in order to build the VH. Several groups
laid as multiscopic units dedicated to multi-baseline ste-
reovision. These units are composed of four aligned
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Figure 3: Dedicated multiview studio

and evenly distributed cameras. We choose a group
of four which seems, according to experience, a good
compromise between robustness, relying on views’ re-
dundancy, and computational efficiency (see [20]). The
camera set is calibrated [21] in geometry and colori-
metry in a pre-shooting step. For each time stamp,
every image is matted thanks to pre-computed Chro-
makey and resulting silhouettes are used to compute
the VH. For each multiscopic unit, captured images are
then rectified to match simplified epipolar geometry.
3.2.2 VH-DS geometrical mapping
Hybridizing VH and multi-baseline stereovision im-
plies mapping results of both methods in a same co-
ordinate frame. Natively, VH is expressed in a regu-
lar grid in the scene frame, whereas multi-stereovision
results are given in local disparity spaces, irregular in
actual 3D space because their samples are not evenly
spaced on fan-spread pixel rays (see figure 2).
This section presents, for any multiscopic unit, the
mathematical relationship between voxel grid index g=
(w,h,d)t in VH, coordinates r = (x,y,z)t in the frame
of the rectified reference camera i0, and coordinates
t = (u,v,δ )t in DS.
This involves using (i) the VH grid parameters (scene
frame reference and cell size sw× sh× sd) chosen at
VH extraction step, (ii) calibration results for rectified
cameras of the chosen multiscopic unit, and (iii) con-
version of local depth z from reference camera i0 to dis-
parity δ . More precisely, we use the matrix G (men-
tioned previously in equation 2) positioning the VH
grid in scene space, and the extrinsic E and intrinsic
I matrices of the rectified reference camera i0. Those
matrices and their usage are exposed in equations 2, 3
and 4, where RΩ and OΩ are respectively orientation
(rotation) matrices and origin points of frames Ω ex-
pressed in scene frame, and Diag(a,b,c) is the diagonal
matrix with a,b,c values:

G =

(
Rg Og

1

)
×
(

Diag(sw,sh,sd)
1

)
(2)

E =

(
Ri0 Oi0

1

)
I =

 αu s 0
αv 0

1 0

 (3)

u
v
1

∼ I×
(

r
1

) (
r
1

)
∼ E−1×G×

(
g
1

)
(4)

The DS index t is thus obtained from equations 3 and
4 by adding a convenient row in I (in red) which adds
δ , defined in section 3.1.2, to its usual (u,v,1)t output.
This yields the intended equations and matrices DSfV
and VfDS, transforming respectively coordinates from
VH to DS (equation 5) and backwards (equation 6):

(
t
1

)
∼


αu s

αv
f ·b

1

×E−1×G

︸ ︷︷ ︸
DSfV

×
(

g
1

)
(5)

(
g
1

)
∼ VfDS×

(
t
1

)
with VfDS≡ DSfV−1 (6)

3.3 Stereovision guidance by VH
This section exposes how VH guidance is added and en-
hances performances of the multi-baseline stereovision
framework [7] presented in section 3.1.

3.3.1 Core principle

In the classical VH guidance, the reconstruction solu-
tion is necessarily included in the visual hull. Indeed,
any point projected outside of at least one silhouette is
labelled out. It requires mapping VH and target point
spaces to bounded discrete 3D grid (cf. eq. 5 and 6,
which give real coordinates). Thus, evaluating a map M
defined in one space for a sample of the other space is
achieved via trilinear interpolation. As shown in equa-
tions 7 and 8, the interpolation is noted with angular
bracketing 〈 〉 and the mapping by round bracketing( ),
whereas direct map sample evaluation uses usual square
bracketing [ ]:

M(t) = M
〈
U (VfDS× (tt ,1)t))

〉
with U ((vt ,a)t) = v/a (7)

M(g) = M
〈
U (DSfV× (gt ,1)t))

〉
(8)

3.3.2 Bounding DS domain

The multi-baseline stereovision framework [7] works
on a 3D grid laid on disparity space DS and indexed
by t = (u,v,δ )t . As such, this grid has to be bounded
as close as possible to useful areas where the solution is
expected to stand. Without any such prior information,
which is usual in purely multi-stereovision, some lat-
eral limits are easily set in u and v according to image
frustums. The disparity range is usually asked for as an
input parameter delivering the missing DS boundaries.
VH, defined in a bounded 3D grid, may be seen as a su-
perset of the actual solution. Thus, the solution is in a
finite and closed area of scene space generally close to
the actual solution, yielding opportunities to automate
and optimize the delimitation of the DS.

Projecting in DS the eight corners gi of the VH grid and
keeping minimal and maximal DS coordinates gives
a first axis-aligned bounding box (usually abbreviated



AABB) in DS in which the solution is necessarily in-
cluded. This AABB is identified by its min and max
indices tm, tM in DS as follows:

tm = f loor(mini=0,...,7 ti)
tM = ceil(maxi=0,...,7 ti)

}
with ti = U

(
DSfV×

(
gi
1

))
(9)

With no user input, this step automatizes the DS bound-
ing. It may even optimize in lateral dimensions as the
VH bounding box may appear thinner than the available
views. This first AABB is further optimized according
to VH information. A sweeping process is run on each
of its six faces, moving them inwards as long as they
contain only target points whose interpolation in VH
are considered out. This supposes (i) that the VH is
defined on the grid as a numerical map VH with values
monotonically (let us suppose increasingly) associated
to in,sur f ,out semantics and (ii) that some interpola-
tion threshold outt is set. A target point indexed by t is
thus considered out of VH according to its interpolation
in VH:

Out(t) = VH(t)≥ outt (10)

This double process reduces the DS domain on which
the different maps are laid (allocated) which thus op-
timizes computational efficiency.

3.3.3 Target point filtering according to VH

Despite its computational interest, the previously de-
scribed VH guidance for DS bounding eliminates only
some of the potential outliers outside the final AABB.
Much more outliers are to be avoided if we remember
that solution samples have to lie inside VH.

A simple preprocessing step labels every target point
in the optimized AABB as undoubtedly outside or pos-
sibly inside the solution according to its VH interpol-
ation Out(t) (equation 10). Target points labelled as
outside are not given similarity scores, nor considered
for matching in the multi-baseline stereovision process.
They are only used as conclusively non material points
for visibility reasoning purposes. This target point la-
belling enhances computational efficiency. It also re-
stricts the solution domain and avoids the evaluation of
some more potential outliers which directly impact the
reconstruction quality as illustrated in figure 5.

3.3.4 Enhancing similarity quality

Similarity scores are computed between similar rectan-
gular neighbourhoods in couples of views. It relies on
the assumption that neighbouring pixels usually have
equal disparities, and thus, that the solution is locally at
constant disparity. Adaptive windowing helps to modu-
late this assumption according to some heuristics which
may be evaluated from known data (usually pixel val-
ues) statistically expressing the assumption quality for
each neighbour. We use symmetrical bilateral filtering

encompassing a neighbour weight factor computed ac-
cording to the colorimetric similarity to the reference
pixel. For each neighbour, this weight factor is the max-
imum of a computation on both views. As classically
stated, this enhances similarity quality.
Furthermore, the similarity computation for a target
point is also enhanced by a target point labelling: as this
computation implies a local constant disparity assump-
tion, it is reasonable to exclude target points, neighbour-
ing in the constant disparity plane, labelled outside the
VH. Such neighbouring samples are filtered out of the
adaptive window before similarity computation. This
ensures that target points known as irrelevant do not
hinder the similarity scores computation. Those sim-
ilarity scores are thus more relevant, enhancing the re-
construction quality and robustness.

3.4 Carving VH from stereovision
Our visual hull voxels are labelled as in, out and sur f .
However, multi-baseline stereovision yields a surface
composed of the 3D points valued 1 in the binary ma-
teriality map. Each such point also bears a final con-
fidence score related to its confidence scores associated
to its similarities and possibly, its comparison to other
target points on its pixel rays. Therefore, merging both
models results in the intersection between the VH and
the complement of the space between the multiscopic
unit and the reconstructed surface. This corresponds to
the subtraction or carving from VH of the multiscopic
unit to surface space.

3.4.1 Stereovision surface coding
Precisely defining the space "between" the reconstruc-
ted surface and the multiscopic unit is not straightfor-
ward. It is a continuous space containing and interpol-
ating, for every view of the unit, every part of a ray go-
ing from the optical centre to any solution point which
is not occluded in this view. Most of those rays are re-
dundant across the different views. We chose, for the
sake of simplicity, to replace all these view dependent
segments by others, far less numerous and redundant,
attached to the same solution points but coming from
a single centre located at the middle of the multiscopic
unit. A drawback of this simplification may lie in a loss
of solution points which could become occluded in this
virtual central view. However, as a solution point has
to be seen in at least a couple of successive views, this
loss does not occur when n < 5 because the occluding
rays of a solution point are limited to 0 to n−2 extreme
views. As such the central ray cannot be flanked by two
actually occluding rays (n = 4) or be itself occluding
the solution point (n = 3). This remark enforces our
choice to compromise using n = 4.
Our surface representation is built according to a central
disparity space, abbreviated as CDS, indexed in refer-
ence of the (virtual) central view. This central view is



less biased in actual 3D space than any other and, thus,
interpolation in CDS will be more relevant. Accord-
ing to the multiscopic geometry (see 3.1.1), it corres-
ponds to a camera indexed ic ≡ (n− 1)/2. Hence, a
target point of index (u,v,δ ) in DS would project in
the central view at (uic ,vic) = (u + (i0 − ic)δ ,v) (see
equation 1). In order to keep integer indices for n
even, we multiply the horizontal coordinate in CDS by
γ = 2−n mod 2. This leads to new matrices managing
transformation between coordinates t = (u,v,δ )t in DS
and c = (c,v,δ )t in CDS and between VH and CDS:

(
c
1

)
=


γ γ(i0− ic)

1
1

1


︸ ︷︷ ︸

CfR

×
(

t
1

)
(11)

(
c
1

)
∼ CfR×DSfV︸ ︷︷ ︸

CDSfV

×
(

g
1

) (
g
1

)
∼ CDSfV−1︸ ︷︷ ︸

VfCDS

×
(

c
1

)
(12)

In this central space, we decide to represent the solu-
tion surface as a disparity map DM tagged by a confid-
ence map CM. This is achieved by assigning for each
solution point in DS, from far to near, at its CDS pixel
coordinates (c,v), its disparity δ to DM (initialized to
−∞) and its associated final confidence score to CM.
When n is even, in order to fill gaps induced by the hori-
zontal stretching in CDS, if two successive target points
on a row of CS are both solutions, their middle point is
also assigned their common disparity in DM and mean
confidence in CM. No other gap may occur because
the solution in CS is computed in a way to ensure that
its intersection with any (u,δ ) plane is a continuous se-
quence of adjacent target points which are of same or
adjacent disparities.

3.4.2 Carving VH from disparity map
The algorithm to carve the VH according to the stereo-
vision surface coded by DM and CM is described in 1.
It aims at filling a carved volume defined as a map CV
laid over the VH grid and valued in,sur f0..sur fq,out.
The different sur fi values refer to increasing quantified
confidence levels for surface voxels. The lowest con-
fidence level sur f0 is reserved for sur f voxels of VH
that are either occluded or out of frustum for the cur-
rent solution. Other levels are associated with voxels
identified as sur f in the stereovision solution: the ef-
fective level i is quantified according to the interpolated
CM value of the voxel. A key feature of this step for
the latter fusion process is to yield a coherent topology
to the carved volumes: in and out sets are considered in
a 6-connected space while sur f{0...q} is considered in a
27-connected space. With such topological evaluation,
no direct 6-connection should occur between in and out
voxels.

In order to handle the grid sampling while respond-
ing to the previous intended topological property, point

1 c≡ (c,v,δ ) N4 = {(−1,0),(1,0),(0,−1),(0,1)}
2 foreach g in VH domain do
3 if VH[g] is in or sur f then
4 c = U (CDSfV× (gt ,1)t)
5 if (c,v) in DM domain then
6 δs= DM〈(c,v)t〉 gs = U (VfCDS× (c,v,δs,1)t)
7 if (‖gs−g‖

∞
)≤ 1 then

CV[g] = sur fQuant(CM〈(c,v)t 〉)
8 else if δ s < δ then CV[g] = out
9 else

if VH[g] is in then CV[g] = in
10 else CV[g]=sur f0
11 foreach n ∈ [0,4[ do
12 lg =

‖U (VfDS× (ct +(N4[n],0,0))t)−g‖
∞

13 nc = (c,v)t +N4[n]/lg
14 if nc in DM domain and

(δn = DM〈nc〉)< δ then
15 cn f = (CM〈(c,v)t〉(δ −δn)+

CM〈nc〉(δs−δ )) / (δs−δn)
16 CV[g] = sur fQuant(cn f )

end
end

17 else if VH[g] is in then CV[g] = in
18 else CV[g]=sur f0

19 else CV[g] = out
end

Algorithm 1: Carving VH by central disparity map

comparison in CDS is related to actual axis-aligned
distance ‖ ‖

∞
in VH. Hence, the interpolated solution

point cs = (c,v,δs)
t is projected back in VH to measure

its distance to thinitial voxel ‖g−VfCDS× cs‖∞
, with

g = (w,h,d)t . When this distance is less than 1 (line 7),
g is labelled sur f in the carved volume with a confid-
ence level quantified from CM < (c,v)t >. If the voxel
g is in front the surface (δ > δs), it is labelled out in CV.
Otherwise, the voxel is a priori labelled in but could be
labelled sur fi if it lies close enough of a steep slope of
the surface. To check this possibility, we evaluate (line
11) if any of its 4 neighbours in CDS of same disparity
δ , at unitary distance in VH, are to be considered out
(with interpolated disparity lower than δ ). This evalu-
ation consists in measuring the distance lg in VH of the
initial voxel to a neighbour n0 at a unitary distance in
CDS and interpolating disparity δn in DM at a neigh-
bour nc in same direction but distance lg−1. If δn < δ

this neighbour is considered out and the initial voxel is
re-labelled sur fi where the confidence level i is quanti-
fied from the linear interpolation at δ of CM〈nc〉 at δn
and CM〈(c,v)t〉 at δs.

3.4.3 Improving surface smoothness
The result of multi-stereovision method leads to discon-
tinuous surface divided into frontal planar patches with
constant and integer disparity, one for each multiscopic
unit (see figure 6). Removing this effect is required for
the visual quality of the result (see figure 6) and for a
more accurate management of reconstruction inconsist-
encies between different multiscopic units. To deal with



Figure 4: Disparity interpolation: relation between dispar-
ity map DM (coloured points) and interpolated disparity map
DMr illustrated in CDS by the interpolation function (black
double lined curve)

this problem coming from the integer disparities quan-
tification, we propose to represent the solution surface
previously saved in DM by a floating point derivative
version DMr. The map DMr is computed to ensure
continuous transitions between adjacent horizontal seg-
ments of constant disparities with a disparity gap of 1.
Computing DMr consists in looping over rows of DM.

Every row v of DM is thus scanned from one end to the
other to identify disparity steps between adjacent pixels
of finite disparity. When the disparity step is of mag-
nitude (−1,+1), a contact point (black point in figure
4) is placed in CDS in the middle of the two pixels with
the mean of their disparity values as illustrated in figure
4, and serves as end point of both segments. Otherwise,
one end point is placed for each adjacent segment in
the middle of the two pixels at the segment disparity.
When one of the pixels is of infinite disparity as well
as for first and last pixels, a single end point is gen-
erated on the relevant pixel at its finite disparity. This
process yields two end points per segment expressed in
CDS (c0,v,δ0) and (c1,v,δ1). When a right end point
(c1,v,δ1) is generated, the corresponding segment of
initial constant disparity δ is filled in DMr by a dedic-
ated interpolation scheme between the end points.

DMr[(c,v)t ] = δ +(1− t)(2t−1)(δ −δ0)

+ t·(2t−1)(δ1−δ )
, t =

c− c0

c1− c0
(13)

The interpolation function in equation 13 ensures that
both end points are respected (see figure 4 where the
black double lined curve expresses the interpolation
function producing the interpolated disparities in DMr).
When δ0 and δ1 are both under or above δ , or if one
equals δ , this interpolation is parabolic. When one is
above and the other under, they are equal and the inter-
polation is linear.

3.4.4 Smoothing using bilateral filter
The result of the disparity interpolation described in
the section 3.4.3 is a floating point disparity map more

continuous or smooth on each row but still present-
ing vertically numerous depth steps. A bilateral fil-
ter is applied on the disparity map DMr to compute a
smoothed disparity map DMs as described in equation
14 and demonstrated in figure 6. The centred operating
window is chosen rectangular as regulating transitions
between segments implies a rather low width 2ww+ 1
but reducing vertical depth steps involves a much taller
height 2wh+1.

DMs[q] = ∑n∈W DMr[p+n] W (p,n)
∑n∈W W (p,n)

(14)

with n = (dc,dv)t , W = [−ww,ww]× [−wh,wh] and

W (p,n) = Gσc(dc) Gσv(dv) wd(DMr[p+n]−DMr[p])

Gσ (t) = γσ · exp(−t2/(2σ
2)) γσ = (σ

√
2π)−1

wd a function decreasing from 1, for example

wd(∆δ ) = σ
2
δ
/(σ2

δ
+∆δ

2)

3.5 Omnidirectional 3d modelling
3.5.1 Merging difficulty
The final step of the 3D reconstruction consists in mer-
ging carved VH volumes CVm from multi-baseline ste-
reovision results for all multiscopic units m in order to
obtain a single 3D model representing the 3D pose of
the reconstructed actor.

Figure 6 illustrates that the result of each multiscopic
unit provides information only on visible surfaces fa-
cing the unit while other surface areas are left to VH
result. Multiple carved VH from different multiscopic
units spread around the scene thus yield stereovision
details for almost every surface area of the model.

However, parts of the model surface are to be seen
and reconstructed by multiple multiscopic units and
those independent reconstructions are usually incon-
sistent one to another. Therefore, in such common
areas, we have to decide which reconstruction is loc-
ally kept in the final solution. This decision is based
on the confidence attribute of surface voxels: as stated
in section 3.4.2, surface voxels in CVm bear different
labels sur fi indicating their quantified confidence level
according to the stereovision process.

3.5.2 Merging process
The overall principle of this final step is to initialize the
final merged volume FV to one of the carved VH (FV=
CVm0 ) and then iteratively merge each other carved VH
CVm into FV according to surface confidence decisions
in differently labelled areas. As VH is known to be
a superset of the solution, the process only evaluates
voxels labelled in or sur f in VH. It thus loops over
every voxel g, treating each one for which VH[g] is not
out according to its labels FV[g] and CVm[g]:
• both out: voxel g is kept out in FV
• both in: voxel g is kept in in FV



• sur fi and sur f j: voxel g is kept sur f with the highest
confidence level FV[g] = sur fmax(i, j)
• all other cases: voxel g bears inconsistent labels, the

global loop is suspended while an inconsistency res-
olution process is run from g.

To decide which solution is to be kept in the last case,
we propose a global evaluation of the 6-connected area
implied in the detected inconsistency rather than a per
voxel decision. Thus, when a voxel g is detected as
inconsistent in the global loop, a two-pass process starts
in order to make a decision.

The first pass aims at making the right decision. It goes
from g through its inconsistent 6-connected area in or-
der to compute the per-confidence level histograms of
the encountered surfaces of both volumes. These con-
fidence histograms for the two surfaces help making the
decision on which volume FV or CVm will transfer its
labels to the final solution in this 6-connected area. We
propose to choose the volume with the highest mean
confidence level, but other competing scores could eas-
ily be proposed and tested from confidence histograms.

When the decision is made, a second pass is run. The
same walk-through in the area is performed in order
to resolve the inconsistency by copying labels of the
chosen volume into the other. One could have thought
that when the chosen volume is FV nothing needs be
done, but the first pass and the decision making would
then be repeated for every voxel of the area which is
far from efficient. Therefore, during this second pass,
when a voxel labelled sur fi and sur f j is encountered, its
best confidence level (max(i, j) is kept in both volumes.

This process clearly relies on a consistent topology in
both volumes. This point is ensured by the VH carving
step described in section 3.4.2. This topological con-
sistency further permits to keep our 6-connected area
walk-through topologically consistent: it starts from
an inside position (in or sur fi) in one of the volumes
Vi and an outside position (out or sur fi) in the other
volume Vo. This per-volume topological position has
to be ensured over the whole traversed area. No shift
from in label to out label should occur in each volume
across a 6-connection. Thus, ensuring topological con-
sistency consists in avoiding 6-connections transgress-
ing initial inside/outside position in any volume. This
could occur in Vi for voxels on the surface connected to
out voxels as in Vo for voxels on the surface connected
to in voxels.

3.5.3 Refinements

A rough application of the process described in section
3.5.2 is not satisfactory because the walk-through areas
sometimes appear as several,rather broad and distant,
blobs of non surface voxels connected by thin lines or
surfaces. The decision is made once for the whole area,

(a) (b)
Figure 5: Resulted point cloud of a real actor "Jacques". (a)
point cloud obtained with integer disparity values without VH
guidance and zoom in its yellow area. (b) point cloud ob-
tained with integer disparity values with VH guided stereovi-
sion and zoom in its green area.

while it should be differentiated for each blob and con-
nection line or surface. This yields inconvenient de-
cisions which need to be corrected. In order to do so, we
apply several times the merging process of section 3.5.2
(three times in the present implementation) with less
and less restrictive conditions on inconsistent voxels:

1. Considered voxels have to be labelled in/out or
out/in. Furthermore a sufficient part of their 6-
neighbours has to be labelled in the same way (at
least 40% in our implementation). This step treats
broad in/out blobs.

2. Considered voxels are the remaining in/out or
out/in ones. This step treats rather thin areas.

3. Considered voxels are any other inconsistent ones.
This steps finalizes the resolution and treats very
thin areas with no (in,out) or (out, in) voxel.

Results from this refinement are illustrated in figure 7.

4 RESULTS AND DISCUSSION
To evaluate our framework described in figure 1, we
used the studio layout scheme presented in section 3.2.1
both for real and virtual shooting and applied our frame-
work to the views they produced. These experimental
conditions apply to each result discussed in this section.

Figure 5 illustrates that the VH guided stereovision
method described in section 3.3 improves the materi-
ality map derived from a previous multi-baseline ste-
reovision method [7] by ridding it of outliers outside
the visual hull. Moreover, in non specular textured or
concave areas, the materiality map solution proves to be
more accurate than the visual hull as illustrated in first
rows of figure 6 which clearly show that concavities,
such as eye cavities, are carved out by our stereovision
method both for virtual and actual shootings.

Figure 6 shows the results of the carving process de-
scribed in section 3.4 on two view sets: the first one,
of a virtual actor "Simon", shot under ideal calibra-
tion conditions by computer graphics software and the
second one, of a real actor "Philippe", captured in the
RECOVER 3D dedicated studio. Comparing the carved
volume to the point cloud on each row of these figures,
qualitatively validates our carving method. The evol-
utions obtained on both figures from each row to the



next, demonstrate the relevance of the disparity inter-
polation and smoothing steps.

The fusion of every multiscopic unit outcomes (see sec-
tion 3.5) provides robust reconstruction, especially in
the areas where two or more multiscopic units compete.
Figure 7 demonstrates this with results obtained from a
virtual and a real data set. One should notice the results’
quality despite the low number of implied multiscopic
units: three for the actual shooting and four for the vir-
tual one.

To compare our results to state of the art, we apply our
data (masks, RGB images, and camera parameters) to
the PMVS method proposed by Yasu Furukawa 1. We
also apply chosen steps to all the results derived from
multiscopic units in order to get one robust object mod-
elling using CGAL library 2. It includes the follow-
ing steps: outlier removal, simplification to reduce the
number of input points, smoothing to reduce noise in
the input data, normal estimation and orientation, and
Poisson surface reconstruction method.

We compare the results on the virtual data set "Simons".
The first column of figure 8 shows the reconstructed
visual hulls. The reconstruction using CGAL lacks
overall precision, especially in the ear areas. The re-
construction using PMVS shows better results near the
ear areas, but strong surface deformations, specifically
at the salient parts. Our reconstruction is visually bet-
ter, with smoother surface reconstruction, and specific-
ally good results in difficult, concave regions such as
the ears.

5 CONCLUSION
This paper describes a new way of combining visual
hull and multi-baseline stereovision in a fully automatic
process. In section 3.3, we explained how to exploit
information from the VH to guide the materiality map
process in order to increase its reconstruction accuracy
and robustness.It was demonstrated that the material-
ity map framework can integrate the VH guidance in a
powerful way thanks to its scene-based structure.

Our contributions are a new algorithm for VH carving
from stereovision surface coded as central disparity
map, and a novel framework to merge multiple carved
VH obtained from different multiscopic units. This pro-
cess yields a topologically consistent volume, crucial
for many applications. We demonstrated on experi-
mental examples the algorithm results, the relevance of
our disparity interpolation and smoothing methods, and
the efficiency of the proposed inconsistency handling
on both virtual and actual shootings.

Altogether, these contributions yield a qualitative and
robust omnidirectional 3D reconstruction tool. The

1 http://www.di.ens.fr/pmvs/
2 https://www.cgal.org/

proposed solution proves the advantages of using both
multiscopic and monoscopic cameras in a studio sys-
tem as well as combining multi-baseline stereovision
with visual hull approaches.
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