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ABSTRACT
Deep neural networks, such as Faster R-CNN, have been widely used in object detection. However, deep neural
networks usually require a large-scale dataset to achieve desirable performance. For the specific application, UAV
detection, training data is extremely limited in practice. Since annotating plenty of UAV images manually can be
very resource intensive and time consuming, instead, we use PBRT to render a large number of photorealistic UAV
images of high variation within a reasonable time. Using PBRT ensures the realism of rendered images, which
means they are indistinguishable from real photographs to some extent. Trained with our rendered images, the
Faster R-CNN has an AP of 80.69% on manually annotated UAV images test set, much higher than the one only
trained with COCO 2014 dataset and PASCAL VOC 2012 dataset (43.36%). Moreover, our rendered image dataset
contains not only bounding boxes of all UAVs, but also locations of some important parts of UAVs and locations
of all pixels covered by UAVs, which can be used for more complicated application, such as mask detection or
keypoint detection.
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1 INTRODUCTION
As the rapid development of the powerful technologies
of UAVs, more and more individuals can use UAVs to
do creative works. Nevertheless, UAVs must be regu-
lated in public area or no-fly zone, otherwise UAVs can
become potential threats to public security and privacy.

A crucial step in the regulation of UAVs is detecting
UAVs in videos rapidly. UAV detection means finding
the location of each UAV for every frame of a video.
More specifically, it draws a smallest rectangle that can
cover all the pixels of a target UAV. Object detection
in computer vision provides lots of methods to address
this problem. With the development of deep learning in
recent years, deeper and more complex convolutional
neural networks (CNN) [1-5] have been designed to de-
tect objects in videos efficiently, and have reached state-
of-the-art performance.

However, training these CNNs requires a huge amount
of data. Fortunately, several large-scale datasets are
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Figure 1: System overview. In contrast to previous
methods, we use PBRT with environment maps as light
source to render more photorealistic UAV images in a
reasonable time.

publicly available on the Internet, such as PASCAL
VOC dataset [6] and COCO dataset [7], whose images
are collected from the Internet and annotated through
crowdsourcing. In addition, COCO dataset [7] includes
not only objects’ categories and positions, but also each
individual’s mask.

Although these datasets contain a number of airplane
(or aeroplane) images, more annotated UAV images
are needed to promote the accuracy of UAV detection.
Undoubtedly, annotating lots of UAV images through
crowdsourcing is time consuming. In this manuscript,
we propose to use Physically Based Rendering Toolkit



Figure 2: Some of our rendered images for training Faster R-CNN.

(PBRT) [8] (a slightly modified version) in computer
graphics to render photorealistic images, and in
the meantime, to calculate corresponding accurate
bounding boxes. Figure 1 shows the overall process.
By choosing different (1) positions and orientations
of UAVs, (2) 3D models of UAVs, (3) appearance
materials of UAVs, (4) camera intrinsics and extrinsics,
(5) environment maps and (6) postprocessing methods
of the rendered images, a large variety of images can
be rendered. The greatest advantage of acquiring
UAV images by rendering is that not only accurate
bounding boxes of UAVs can be easily obtained, but
also the positions of any parts of UAVs (e.g. lifting
rotor), even all the pixels occupied by the UAVs, can be
recorded. Actually, supervised learning assumes that
training data and testing data should be independent
and identically distributed, which means the rendered
images for training must be photorealistic and diverse.
This is the reason that we use PBRT to render UAV
images. Figure 2 shows some of the rendered images,
which are real enough and various.

Faster R-CNN trained with PASCAL VOC 2012
dataset mixed with our rendered images has an AP
of 80.69% on manually annotated UAV images test
set, while Faster R-CNN purely trained with PASCAL
VOC 2012 dataset, which contains hundreds of airplane
images, has an AP of 43.36% on the same test set.
This sufficiently validate our rendered UAV images
and our work lays a foundation for using images
rendered by PBRT to train Faster R-CNN. Obviously,
these rendered images can also be used in broader
applications, for example, instance segmentation (mask
R-CNN [9]) and keypoint detection.

2 RELATED WORK
Object detection. In this manuscript, we pay more at-
tention to validating our rendered training data and talk
about its possible usages in more complicated appli-
cations. Therefore, we directly use a newly released
framework Detectron [10], which trained and tested a
lot of state-of-the-art object detection models for our
reference, to build our UAV detection system without
modification.

From Fast R-CNN [1] to Faster R-CNN [2], from
YOLOv1 [3] to YOLOv2 [4], more and more effective
methods have been emerging constantly to make object
detection faster and more accurate. Deeper and deeper
CNNs need more training data to avoid overfitting. So,
next we introduce some previous methods about how
to use rendered images to provide extensive training
data.

Using synthetically generated images. Large-scale
data is of significant importance for training deep neu-
ral networks. A variety of datasets with different char-
acteristics have promoted many fields in computer vi-
sion. For example, ImageNet dataset [11] is necessary
for the breakthroughs in both object classification and
detection; COCO dataset [7] plays an important role in
scene understanding.

As for synthetically generated images, Dosovitskiy et
al. [12] created a simple synthetic 2D dataset of fly-
ing chairs for training their network which was proved
to be sufficient to predict accurate optical flow in gen-
eral videos. Inspired by this, Mayer et al. [13] used a
customed version of the open source 3D creation suite
Blender to render three dataset for training and eval-
uating scene flow methods. Su et al. [14] proposed



Figure 3: Some environment maps used in rendering.

a synthesis pipeline that generated millions of images
with accurate viewpoint labels for viewpoint estima-
tion. But rather than pursuing realistic effect, they put
more effort to generate images of high diversity. There-
fore they used alpha-composition to blend a rendered
3D model as foreground and a scene image as back-
ground. In contrast to them, we used environment maps
as light sources to make rendered images more realis-
tic. Peng et al. [15] also used synthetic images to train
deep object detectors. They explored the complex in-
variance encoded in the features learned by CNN. One
of their major conclusions was, when learning a detec-
tion model for a new category with no or limited labeled
real data available, it was advantageous to simulate tex-
ture, color and pose in the synthetic data. Using PBRT,
we can take all these factors into account easily. Aker
et al. [16] simply combined background-subtracted real
images to create an extensive artificial UAV dataset for
training a UAV detection network. This method is only
suitable for small UAVs because it does not take light-
ing condition into account. Cutting a medium or large
UAV into another image makes the UAV look abrupt.
Moreover, they need to segment some UAVs from back-
ground. In contrast to this method, we use PBRT [8] to
render photorealistic UAV images, which can not only
use detailed 3D models and modify their appearance
materials, but also set the position of the UAV relative
to the camera arbitrarily. PBRT [8] is a modern pho-
torealistic rendering system that can even render vivid
natural scenes, although it may take a considerably long
time. In next section we introduce how to use PBRT
with environment maps and measured materials to ren-
der real enough UAV images within a reasonable time.

3 REALISTIC IMAGE SYNTHESIS
Modeling all the objects, including UAVs, trees,
houses, roads and so on, to form a natural scene will
take PBRT or other renderers an unbearably long
time to render an image. Previous methods simply
combined real background images with rendered 3D
models, which lost realism to some extent. Here we
propose to use environment maps, which are images
of the distant environment surrounding the rendered
object. As light sources in the scene, environment maps

Figure 4: The precision-recall curves.

Figure 5: Left pair: using red-specular-plastic. Right
pair: using aluminium. For each pair, the left image
is rendered with default method and the right image is
rendered with fitted NPF model and using its fitted D
factor for importance sampling. Pay more attention to
the white noise on the UAVs

provide illuminations shining on the UAV from all 360◦

angles. Usually, an environment map is synthesized
by photos of a same scene taken under several specific
angles. They can also be rendered by PBRT through
careful design. All the 90 environment maps used to
render our training set are downloaded from HDRI
Haven1. Besides in Figure 1, more environment maps
are shown in Figure 3.

Detailed UAV 3D models are another key part in ren-
dering photorealistic images. In this manuscript we to-
tally only use five detailed UAV models, two of which
are shown in the top left corner of Figure 1. Peng et
al. [15] showed a significant boost from adding more
shape variation to the training data for Fast R-CNN.
Therefore, it is convinced that using more 3D models
to render more UAV images for training can further
improve the performance of UAV detection. Unfortu-
nately, there is still a lack of freely available and de-
tailed UAV 3D models.

In addition, in order to increase the diversities of the
training set, the MERL database [17], which includes
100 different accurately measured materials, are used
in rendering. However, directly using these measured
data with default importance sampling method of PBRT
requires a large number of samples per pixel for render-
ing, which takes PBRT a relatively long time to ren-
der an image. Therefore, a BRDF model named non-
parametric factor microfacet model (a modified ver-
sion), which was first designed by Bagher et al. [18]
and was much more accurate than other microfacet

1 https://hdrihaven.com/



Faster R-CNN AP
Pretrained with COCO 2014 dataset 43.03%

Finetuned with only PASCAL VOC 2012 dataset 43.36%
Finetuned with only our rendered training set (without occluded images) 56.28%

Finetuned with PASCAL VOC 2012 dataset and our rendered training set (without occluded images) 79.51%
Finetuned with PASCAL VOC 2012 dataset and our rendered training set (with occluded images) 80.69%

Table 1: Testing results.

Figure 6: Some of our test images. UAVs in these images can not be detected by the network only trained with
COCO dataset and PASCAL VOC dataset but can be detected by the network trained with them mixed with our
rendered images.

Figure 7: Some of our test images. UAVs in these images can not be detected by both the networks trained and not
trained with our rendered images. It is worth noting that not all large, small, occluded or blended UAVs can not be
detected.

models for fitting, is used to fit these measured data
and the corresponding fitted D factors are used for im-
portance sampling. This method dramatically reduces
the needed number of samples per pixel for render-
ing. In other words, within the same time, this method
can render a higher quality image. For example, Fig-
ure 5 shows two pairs of UAV images rendered with
measured data, red-specular-plastic and aluminium re-
spectively. For each pair of images, the left one is ren-
dered with default importance sampling method while
the right one is rendered with aforementioned method.
All the images are rendered with 64 samples per pixel.
Obviously, for each pair, the right image has a higher
quality, especially the aluminium pair (pay more atten-
tion to the white noise on the UAVs).

Moreover, the positions and orientations of camera and
UAV model can also be used to increase the diversities
of the training set. Rotating around the UAV, the camera
takes several photos for every 60◦. The UAV also rolls

[−45◦,45◦], for which the interval is set to 15◦. The
distance between the UAV and the camera is set to 4m,
8m or 12m. The field of view of the camera is about
30◦. This parameter setting is not immutable.

Motion blur is not present in UAV videos except for
the rotor wings. But those static UAVs should also
be detected. Therefore, both static UAVs and lifting
UAVs are rendered. We use Blender to split the UAV
model into several parts and set rotation speed of its
rotor wings to be 50 revolutions per second in PBRT
scene files. The shutter speed is about 0.005 second.

Totally, we rendered 60480 UAVs images for training.
It took Intel i7-4710MQ approximately 3 seconds to
render an image and record its corresponding bound-
ing box. Consequently, it took about two day to render
the whole training set. Compared with annotating man-
ually, this time is negligible. The quality and efficiency



of rendering can be further improved by using the Op-
tiX API with the AI-accelerated denoiser [19].

4 FASTER R-CNN TRAINING AND
TESTING RESULT

We use Detectron [10] provided by Facebook AI Re-
search to finetune Faster R-CNN with our rendered
training set. Detectron model zoo provides some mod-
els pretrained with COCO dataset, which can be used
to initialize our network. Finally ResNet-101 model
is selected as the backbone model, which has closer
performance to ResNeXt-101-32x8d model but much
less inference time [10]. Initialized by this pretrained
model, we first trained Faster R-CNN with PASCAL
VOC 2012 dataset. Then PASCAL VOC 2012 dataset
is mixed with our rendered dataset to train another
Faster R-CNN. The net gain from our rendered dataset
is checked by comparing the performance of these two
trained network.

We do not split the rendered images to evaluate the
trained detection networks. Instead, many key frames
cut from 10 real UAV introduction videos that are
downloaded from Internet are annotated manually
by us to form a test set (about 994 images including
UAVs). Some of these test images are shown in Figure
6 and Figure 7. This test set is used to evaluate the
trained detection network. All the testing results are
shown in Table 1 and their corresponding precision-
recall curves are shown in Figure 4. Actually, COCO
2014 dataset and PASCAL VOC 2012 dataset do not
have any UAV images, although they have plenty
of airplane (or aeroplane) images. However, Faster
R-CNNs trained with them still have an AP of 43% on
our test set. As shown in Figure 4, they have relatively
low recall. That is, they can detect UAVs in some
simple scenes but do not work for relatively complex
scenes. In addition, Table 1 also shows that, finetuned
with PASCAL VOC 2012 dataset, the performance of
Faster R-CNN is neither increased nor decrease.

Before our rendered images are mixed into PASCAL
VOC 2012 dataset, they are divided into two sets, first
of which contains 38880 images that only have one
UAV. The second set contains 21600 images that have
two UAVs and most of them are occluded by each other.
Some of these rendered images are shown in Figure 2.
It is noted that Faster R-CNN trained with PASCAL
VOC 2012 dataset mixed with the first set has an AP of
79.51% (Table 1), which is much higher than that only
trained with PASCAL VOC 2012 dataset (43.36%).
However, Faster R-CNN trained with PASCAL VOC
2012 dataset mixed with both two sets has an AP of
80.69%, which only slightly larger than 79.51%. It
seems that UAVs occluded with each other in the sec-
ond set do not provide more information. But in fact,

Figure 8: The UAV is occluded in both images but the
right one can be detected.

there are only a few test images containing UAV oc-
cluded by people or plants (see Figure 7). In addition,
Faster R-CNN purely trained with the first set has an AP
of 56.28%. To some extend, the diversities of our ren-
dered images are limited by the number of UAV models
and environment maps used in rendering. Using more
models, environment maps or even camera settings will
definitely further promote the performance of Faster R-
CNN.

Figure 6 shows some images from the test set, for which
the network trained with our rendered images can detect
the UAVs inside them but the other one not trained with
our rendered images cannot. The threshold is set to 0.7.
These images span from small UAVs to large UAVs.
One of the UAV is even partly occluded. Therefore, the
qualitative and quantitative results show that our ren-
dered trained images make the trained Faster R-CNN
more general.

There are still some images of complex scenes that the
networks neither trained nor not trained with our ren-
dered images can detect UAVs inside them. Some of
these images are shown in Figure 7. It is worth noting
that not all too large, too small, occluded or blended
UAVs can not be detected. As shown in Figure 8, the
UAV is occluded in both images but the UAV in the
right image can be detected.

These undetected images also guide the direction for us.
Firstly, we need to prepare more training images which
include big and detailed UAVs, or small and blur UAVs.
Next, we needed to add special lighting conditions in
some images. Additionally, images of UAVs occluded
by persons or plants are not easy to render but images of
UAVs occluded by cars, boats or houses are relatively
easy. Last but not least, as indicated by Su et al. [14],
using more 3D models will also help resist overfitting
of the R-CNN.

5 FUTURE WORK
Besides aforementioned work, we also try to use our
rendered images to train mask-RCNN and do key point
detection.

Moreover, it is completely possible to render videos of
flying UAVs. But if the UAVs need to interact with
other objects, the scene files will be more complex and
the rendering time will be longer. But with carefully
designed scene files and accelerated by the OptiX API



[20], some relatively simple natural scenes are possible
to be rendered in a reasonable time.

6 CONCLUSION
We present a synthetic UAV dataset with sufficient re-
alism, variation and size. It is rendered by PBRT with
measured reflection materials and environment maps
that reduce the rendering time but still promise the real-
ism. By comparing the AP of Faster R-CNN detection
networks trained with and without our rendered images,
we conclude that, UAV images rendered by the method
mentioned above do promote the performance of the
UAV detection network.
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