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ABSTRACT
We introduce, by this work, a fast method to estimate probability density functions in the semi-bounded case. This
new technique is a simplified version of the kernel-diffeomorphism estimator which requires complexity in the
calculations. It is based on a logarithmic transformation of the data which will be estimated by the conventional
kernel estimator. Thus, the algorithm complexity is reduced from O(N2) to O(N).
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1 INTRODUCTION
The estimation of probability density functions (pdf)
is often required to study the complex technological
systems and scientific phenomena. The various ex-
amples of statistics correspond to distributions with
bounded or semi-bounded supports. To estimate the
pdf, there are two classes of methods: parametric or
non-parametric. In most situations, probability densi-
ties are unknown, such operation can be done by the
non-parametric methods which are more precise. The
histogram method [Silverman86], the orthogonal func-
tions [Hall82] and the kernel method [Fukunaga13] are
among the most frequently used non-parametric proce-
dures. The histogram method has the disadvantage of
discontinuity. Although the method of orthogonal func-
tions is suitable for any type of support, however it pro-
duces the Gibbs effect.

In our research, we have opted for the non-parametric
kernel method. In order to ensure a good quality of
estimation, it is important to maximize the value of
the smoothing parameter by minimizing the mean in-
tegrated squared error. The optimization of the band-
width is performed by the diffeomorphism Plug-in al-
gorithm. A direct resolution of the equation for cal-
culating the optimal value of the smoothing parameter
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seems very difficult [Saoudi09]. The Plug-in method
suggested in [Saoudi09] presents the iterative resolu-
tion of its equation. Moreover, a fast variant of this
algorithm was developed in [Saoudi09].

In the case of densities with bounded or semi-bounded
support, the conventional kernel method is no longer
adequate and may present convergence problems at
the edges: the Gibbs phenomenon. Several authors
have attempted to solve this problem and have pre-
sented some methods for estimating distributions with
bounded or semi-bounded supports. Among them,
we can cite the orthogonal functions [Hall82] and the
kernel-diffeomorphism estimator [Saoudi09]. This last
method, which is derived from the conventional kernel
estimator, is based on a suitable variable change by a
C1-diffeomorphism. Inspired by the kernel method, it
is important to maximize the value of the smoothing
parameter in order to ensure good quality of the esti-
mate. The optimization of the bandwidth is performed
by the diffeomorphism Plug-in algorithm, which is
a generalization of the conventional Plug-in algo-
rithm [Jain00]. However, its implementation presents
additional difficulties compared to the classical version.

In order to surpass the complexity reasons of imple-
mentation, we introduce in this work a new variant
of the diffeomorphism Plug-in algorithm in the semi-
bounded case. This version is based on the logarithmic
variable change. The divergence to zero problem of the
logarithmic function is solved by the addition of a small
strictly positive rate.

The rest of this paper is organized as follows. We start
by recalling the kernel method for density estimation in
section 2 . The third section presents the contribution of



the current research which constitutes the fast version
of the kernel-diffeomorphism Plug-in algorithm in the
semi-bounded case. And in section 4, we have opted for
a comparative study between our new variant, the dif-
feomorphism and the conventional Plug-in algorithms
in the semi-bounded case.

2 THE KERNEL ESTIMATE METHOD
The non-parametric Kernel Density Estimator
(KDE) has been introduced by Rosenblatt in 1956
[Rosenblatt56] and developed by Parzen in 1962
[Parzen62]. In the case of data with bounded or
semi-bounded support , a recent method based on a
C1-diffeomorphism variable change has been devel-
oped by Saoudi and al. in [Saoudi94, Saoudi97] and
called the Kernel-Diffeomorphism density Estimate
(KDE). Similarly to the kernel method, the bandwidth
optimization is necessary. The Plug-in adapted to this
kernel variant is called the Kernel-Diffeomorphism
Plug-in (KDP) algorithm.

2.0.1 Kernel-Diffeomorphism Estimator
In this paper, we deal with the semi-bounded densities
case. Therefore, a more accurate estimate will be ob-
tained using the KDE which reduces significantly the
Gibbs effect [Saoudi94, Saoudi97]. This estimator is a
generalization of the KDE. It is suitable for the func-
tions defined on the interval [a,b]. The density function
is expressed by:

f̂N(x) =
|Φ′(x)|
NhN

N

∑
i=1

K(
Φ(x)−Φ(Xi)

hN
) (1)

where Φ is a C1-diffeomorphism which has the infin-
ity for limit as x approaches a or b. The problematic
of optimizing the smoothing parameter can be resolved
by using the same methods as those used for conven-
tional kernel analysis. However, as shown in [?], an
asymptotic study of the KDE, allows better approach
to optimal smoothing parameter in the Mean Integrated
Squared Error (MISE) sense. Then, its expression be-
comes the following:

h∗N = [MΦ(K)]1/5[JΦ( f )]−1/5N−1/5 (2)

where MΦ(K) = M(K)
∫

R |Φ′(x)| f (x)dx and

JΦ( f ) =
∫

R
F2(x)
[Φ′(x)]8 dx

F(x) =[f(x)[3Φ′′(x)2−Φ′(x)Φ′′′(x)]]−3 f ′(x)Φ′(x)Φ′′(x)
+ f ′′(x)[Φ′(x)]2

(3)

2.0.2 Kernel-diffeomorphism Plug-in algorithm
The implementation of this extended version presents
further difficulties compared to the classical Plug-in al-
gorithm. Indeed, for the conventional Plug-in, M(K) is
a constant which can be determined analytically or nu-
merically. As for the KDE adapted plug-in algorithm,
M(K) depends on unknown pdf. Similarly, J( f ) de-
pends not only on f ′′, but also on f and f ′. There-
fore, the complexity of the KDP is increasing. We de-
scribe below the kernel-diffeomorphism Plug-in algo-
rithm and its computing complexity:

Step 1: Initialize arbitrary Mφ (K). In practice M0
φ
(K)

can be equal to M(K).

Step 2: Fix arbitrary J0
φ
( f ), then deduce the first value

of the optimal bandwidth; h0
N . Estimate f (0).

Step 3: Approximate the different quantities: M(k)
φ

(K),

f (k)
′

and f (k)
′′
for each iteration k.

Step 4: Estimate Jφ ( f (k)). The value of h(k)N is so de-
ducted from the kth iteration.

Step 5: Approximate f (k). Stop the algorithm when
the difference between h(k)N and h(k−1)

N is relatively
low (below 1%).

Let N be the sample size and p the resolution defined as
the point number for which f is estimated. The number
of elementary operations is of the order of N2 p which
involves a polynomial complexity of O(N2). Whereas,
the conventional Plug-in complexity is linear in the or-
der of O(N).

3 CONTRIBUTION
For simplicity implementation, fast computation and
convergence reasons, we introduce, in this section, the
Fast Semi-bounded Kernel-Diffeomorphism Estimator
(FSKDE). The optimization of the smoothing param-
eter is performed by the proposed Fast Semi-bounded
Kernel-Diffeomorphism Plug-in algorithm (FSKDP).
The FSKDP provides a significant improvement in the
estimation of the semi-bounded densities. The idea
consists on using the logarithmic change of the data
qualified by their semi-infinity support: Γ = Log(ζ ).
Thus, the conventional Plug-in algorithm can now be
applied to the transformed data.

3.1 The fast semi-bounded kernel-
diffeomorphism estimator

Let’s consider independent and identically distributed
random variables: ζ : Ω→ R. Let fζ be their prob-
ability density function with semi-bounded support:
support( fζ ) ⊂ R. We recall that the probability den-
sities with semi-bounded support present estimation



difficulties due mainly to the Gibbs effect. In order
to bypass this divergence limitation at the edge of
the semi-bounded interval, we consider a logarithmic
variable change for the data: Γ = Log(ζ ). The data
is then transformed into the following new random
variable: Γ : Ω → R. In this case, the distribution
function of Γ can be expressed as follows:

Fτ(Γ) = P[Γ < τ] = P[Log(ζ )< τ] (4)

Fτ(Γ) = P[ζ < exp(Γ)] = Fζ (exp(Γ)) (5)

The probability density function of Γ can be written as
follows:

fΓ(τ) =
dFτ(Γ)

dτ
= fζ (exp(Γ))exp(Γ) (6)

We try to estimate fξ as a function of fΓ. After the
change of variable t = exp(Γ), we find fζ :

fζ (t) =
fΓ(Log(t))

t
(7)

3.2 Convergence problem
The FSKDE presents a specific problem for zero.
Indeed, the logarithmic function is defined only on
]0,+∞[. It is therefore imperative to submit the data
onto a translation before carrying out the logarith-
mic transformation. This problem is illustrated in
figure 1(a). Figure 1(a) represents the density of the
exponential distribution f (x) = exp(x),

The estimation of the exponential density by the
FSKDE illustrates the problem described above.
Moreover, figure 1(a) shows the divergence at 0 of the
estimated exponential distribution.

The idea consists in adding a small positive coefficient
ε and thus using the logarithmic variable Log(x+ ε).
We notice the resolution of the problem of divergence
in 0 as shown in figure 1(b).

3.3 The fast semi-bounded kernel-
diffeomorphism Plug-in algorithm

For simplicity implementation, fast computing and con-
vergence reasons, we have introduced a new version
of the kernel-diffeomorphism Plug-in algorithm in the
case of semi-bounded support. The FSKDP provides a
significant improvement in the estimation of the semi-
bounded densities. The idea consists on using the loga-
rithm change of the error rates values qualified by their
semi-infinity support: Γ = Log(ζ + ε). Thus, the con-
ventional Plug-in algorithm can now be applied to the
transformed data. In order to specify a new classifica-
tion quality measure, we perform a sequence of three
steps:

• Step 1: calculate the kernel estimator of the changed
variables in the logarithm space: Γ = Log(ζ + ε)

• Step 2: iterate the conventional Plug-in algorithm
for the transformed data.

• Step 3: return to the original space and compute the
density kernel estimator:
f̂ζ (t) =

f̂Γ(Log(t))
t

The fast diffeomorphism Plug-in algorithm has the
same complexity as the conventional one. Thus, the
complexity of the FSKDP is linear in the order of
O(N).

4 PERFORMANCE STUDY OF THE
FAST SEMI-BOUNDED KERNEL-
DIFFEOMORPHISM ESTIMATOR

In this part, a comparative study between the KDE
and the FSDKE performance is presented in the semi-
bounded case. Three semi-bounded distributions are
simulated:

• an exponential law of mean 1,

• a first mixture of two laws:

– a uniform law U(0,1) with a proportion p1 = 0.6.
– a Gaussian law N(0.8,0.2) with a ratio p2 = 0.4.

• and a second mixture of three laws:

– a uniform distribution of parameters U(0,1,5)
with a proportion p1 = 0.4.

– a Gaussian law N(1.3,0.3) with a ratio p2 = 0.3.
– a Gaussian law N(2.5,0.4) with a proportion

p3 = 0.3.

Figure 2 below illustrates the theoretical and estimated
distributions of the three simulated laws already cited.
The estimation is performed using the conventional ker-
nel method. We notice that the estimate overflows from
its natural support; the Gibbs phenomenon.
Figure 3 presents the estimation of these probability
densities by the KDE. We note that the problem of the
Gibbs effect is solved using this method.
Figure 4 presents the estimation of these probability
densities by the FSKDP.
The divergence problem in 0 of the FSKDP based on
the change of logarithmic variable Log(x) is clearly ob-
served in the first illustration (a) of figure 1. However,
we can notice the resolution of this problem by using
the logarithmic variable Log(x+ε). Indeed, the estima-
tion of the probability densities by the FSKDP is almost
perfect. These observations are confirmed by the values
of the MISE given in the following table. Moreover, the
FSKDP has a speed of calculation (having the low exe-
cution times) and a better accuracy of estimation (with
minimal MISE) with respect to the KDP.



5 CONCLUSIONS
To conclude, we have suggested a fast method to esti-
mate probability density functions in the semi-bounded
case; the fast semi-bounded kernel-diffeomorphism es-
timator. This new technique is based on the fast semi-
bounded kernel-diffeomorphism Plug-in with a com-
plexity reduced to O(N).

In our future works, we intend to study the case of
bounded support distributions. We will also test the new
estimators performance in real data.
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Figure 1: Estimation of the three distributions by the conventional kernel method: (a) the exponential distribution
exp(x), (b) the first mixture and (c) the second mixture.

Method MISEx10−5 Execution time
KDP 0.1909 0.1248
FSKDP 0.1415 0.0624

Table 1: MISE and execution time of the conventional (KDP) and fast (FSKDP) kernel methods for the estimation
of the exponential distribution exp(x).

Method MISEx10−5 Execution time
KDP 3.7218 1.0608
FSKDP 2.6252 0.7332

Table 2: MISE and execution time of the conventional (KDP) and fast (FSKDP) kernel methods for the estimation
of the first mixture of the uniform law U(0,1) and the Gaussian law N(0.8,0.2).

Method MISEx10−5 Execution time
KDP 0.4739 1.0764
FSKDP 0.4027 0.7800

Table 3: MISE and execution time of the conventional (KDP) and fast (FSKDP) kernel methods for the estimation
of the second mixture of the uniform law U(0,1,5) and two Gaussian laws N(1,3,0,3) and N(2,5,0,4).



Figure 2: Estimation of the three distributions by the KDP: (a) the exponential distribution exp(x), (b) the first
mixture and (c) the second mixture.

Figure 3: Estimation of the three distributions by the FSKDP: (a) the exponential distribution exp(x), (b) the first
mixture and (c) the second mixture.


