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Manipulating digital optical material representations is still a difficult problem because arbitrary manipulations
lead almost certainly to an unrealistic impression of the material. In this paper we present an approach to material
editing based on a digital model of the V1-area of the visual cortex. The V1-model is used to define the appear-
ance space as the space of weighted sums of the cortical-model filter responses. We will show that it is possible
to transform several optical material manipulation schemes into our editing scheme. As those optical material ma-
nipulation schemes may also be physical phenomena, we may introduce a new material edit. Our argumentation
will be supported by comparing editing-examples.
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1 INTRODUCTION
Editing digital representations of the measured
reflectance-properties of material surfaces is an in-
tensely studied but still difficult problem. Renderings
of 3D-scenes, which give the impression as if they
were real are of high significance e.g. in advertisement,
film-productions and historical reconstruction projects.
Most approaches target at manipulating the underlying
physics whereas we present material editing as a
matter of influencing the visual perception. Namely
we will transfer several approaches to material editing
into a computational model of the simple cells of the
primary visual cortex (V1). Using models of the
visual cortex has a long tradition in computer vision
for pattern recognition tasks and for the description of
perceptual image-metrics but it is not yet an integral
component of computer graphics. We will introduce
the term appearance space which has mostly been
used implicitly [15, 24]. We argue, that the set of all
possibly occurring neuronal states in the visual cortex
may be seen as this appearance space. So given a
computational cortex transform model, we may define
a computational appearance space as part of it. Seeing
computer graphics from the perspective of human
physiology is fruitful: Bayer filter in digital image
sensors follow the cone distribution in the retina, retinal
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displays mimic the cone-density and photo-sensors
filter and cumulate the incoming energy comparable
to photo receptor cells. Our approach is a kind of
frequency editing. Frequency editing is a very old
technique. Blurring e.g. has already been used hundred
years ago in silent film. But it has mostly not been
seen as an operation in the visual cortex but merely as
a given visual effect.

Our point is that optical operations in the physical world
are mapped to operations in the appearance space. Re-
cent perceptual studies [11] suggest, that some of those
cortical operations are linear. We will show that those
operations may be applied by scaling of cortical filter
responses. In other words we simulate a physiologi-
cal linearisation of a physical phenomenon. This is in
accordance with results from behavioral and brain sci-
ence, due to which appearances may be seen as repre-
sentation of optical phenomena, relevant for the human
evolutionary adjustment to our environment [43]. Fol-
lowing this idea, we may state that our visual system is
the simplest known representation of optics which still
allows all possible perceptual manipulations.

After outlining the relevant related literature we will in-
troduce our model of the V1-cortex. In the third section
we will give a formal overview, the fourth section will
be dedicated to the description and parametrization of
the Gabor-base functions underlying our V1-model. In
the fifth section we describe how to transfer optical ma-
terial manipulation schemes into our model.

The presented results (section 6) will support the con-
clusion that perceptually motivated frequency manipu-
lations may be seen as promising approach to the gen-
eration of new virtual materials (section 7).



Figure 1: Rendering of an edited wool-BTF. The left part of the image shows the result of a combination of the
edge aware operator and the thickening operator (sections 6.2 and 6.3), the right image shows the result of the
corresponding band-pass filter, according to [29] and in the middle, we show the original material.

We contribute to the field of material editing by pre-
senting a system to transfer image manipulations into a
model of the visual cortex which in many cases brings
better results than the original editing scheme and we
will provide a novel realistic material manipulation,
namely frequency based moving of a light source.

2 RELATED WORK
Because of its outstanding role in visualisation, in
advertisement and in filmmaking, editing of realistic
material-surfaces is a vivid field of research. In the
first paragraph we will portray the development in
the field of digital cortex-modelling. The second
paragraph will be dedicated to literature on comparable
image processing schemes. The related work for the
manipulation operators will be presented in section 5.

Our understanding of the structure and the modes of
action of the animals visual cortex goes back to the
work of Hubel and Wiesel during the late 50. and 60.
of the last century [16–18]. Twenty years later Daug-
man fitted Gaussian and Gabor-filters to the cortical re-
sponses measured by Hubel and Wiesel [4, 5]. It is no-
ticeable that neural networks develop Gabor-filter like
structures by their own, when trained with random in-
put [41]. Olshausen and Field found that optimizing
a vector base for sparse linear coding of images leads
to a set of Gabor-like base vectors which is in spatial
frequency and orientation coverage comparable to the
filtering system in the visual cortex [33, 34]. A pub-
lication which concentrates on mathematical aspects
of the Gabor-filter-systems compatible with the neu-
ral responses of the V1-cortex is the work of Lee [23].
Lee gives explicit parameters for his filter systems and
calculates the tightness of the Gabor-frames. A good
overview over publications on cortical parameter mea-
surements may be derived from [26, Table 1]. Recently
Huth et al. published a python-toolbox for simulations
of early vision [19].

The presented approach stands in the tradition of the
pyramid-based texture analysis and synthesis published

by Heeger and Bergen in 1995 [15]. Heeger and Bergen
use steerable pyramids to model the behaviour of the
visual cortex. Gutman and Hyvärinen derive a prob-
abilistic model of image statistics by modelling two
cortical layers of simple and complex cells [13]. This
publication may also be consulted for further refer-
ences to Bayesian perception. In her dissertation Diana
Turcsány [45] uses a convolutional neural network to
model the deeper levels of the visual cortex for image
editing.

3 OVERVIEW AND DEFINITIONS
The insight that light is not coloured but that the en-
ergy in a light beam provokes a sensation of colour
goes back to Newton [32]. Heeger and Bergen used the
word appearance to bridge the gap between the sen-
sation of a texture and the physical phenomena on the
surface of the texture [15]. We can locate the term ap-
pearance between the sole occurrence of physical phe-
nomena and the set of sensations by identifying the
appearance space with the set of all neural response-
states in the visual cortex. In the ventral stream of the
human visual system, the primary visual cortex follows
after the lateral geniculate nucleus (LGN). As recep-
tive fields have directly been measured while exposing
the macaque retina to visual stimuli, the influence of the
LGN is an implicit part of the model but does not have
to be modelled explicitly.
As frame for our (computational) appearance space we
will use a cortex transform model [46] which we will
derive from empirical data (section 4).
Our formal scaffold consists of a model of the space of
retinal responses, a model of the neural responses of
simple cells in V1, a model of the visual stream from
the retina to the neural response and an interpretation
model for the retinal responses.
The space of retinal responses describes the entrance
of pictorial data into the visual system. We will use
RGB-images with an edge-length of 256 pixels. Decor-
relating the color space as in [15, Sec. 3.5], lead to
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Figure 2: Visual path of a material patch, seen un-
der different optical conditions. The physical phe-
nomenon induces a mapping in the space of cortical
responses. Brain drawing taken from http://universe-
review.ca/I10-85-opticpath.jpg.

strong artefacts. Confining the manipulations to the
value-channel of the HSV-color-space brought good re-
sults. So we define I := [0,1]256×256 as retina model.
The images, we use for testing, correspond to real-
world patches with an edge length of approximately 5
cm. If a patch of this size has a distance of 57 cm from
the observer, its retinal image approximately covers the
fovea.

Our model of the visual stream is limited to the
early ventral stream up to V1. While there have been
suggested different filters for modelling V1-receptive
fields [25], we use Gabor-filters [4], (see section 4). Our
whole V1-model consists of a filter bank of 517 filters
({Γψ}ψ∈Ψ, see section 4.2.1).

The space of neural responses will be modelled
as a stack of matrices G := R256×256×517. We do not
limit the amplitude of neural responses. It is not self-
telling, that the spatial dimension of the neural re-
sponses (256× 256) equals the dimension of I (see
paragraph 4.2.2) but it enables a direct comparison be-
tween the input and the result of the V1-transform.

The interpretation space is a set of mappings G :
G→ I with G := ∑ψ aψ{Γψ ?T }.
Now we define the appearance space A as the image
of the interpretation space. This leads to the following
diagram, modelling the relations, depicted in figure 2:

T∈I {Γψ ?T }∈G GIT∈A

P(T )∈I {Γψ ?P(T )}∈G GIP(T )∈A

{Γψ}

P

GI

GP EP

{Γψ} GI

(1)
The filter bank {Γψ} maps the texture T to the neural
response space G. By the definition of G and A, we
may identify I and A. Neural responses are recombined
to a texture TX := GXT in the appearance space. A

physical phenomenon P induces a mapping from the
appearance space EP : A→ A to itself (compare with
figure 2). If we identify GX and GX◦{Γψ}, the operator
GP may be constructed as linear approximation of EP.

GP ≈ EP (2)

Note that GI ≈ I is an approximation of the identity on
A. GP is the operator, we want to learn. For a full
clarification of the symbols, see the following section.

4 THE COMPUTATIONAL MODEL OF
THE EARLY VISION

In this section we will introduce the V1-model. The
concept that the neural response of a simple cell in V1
cortex is linear in the intensity of the incoming optical
stimulus is essential not only for the model of the visual
pathway [1,4] but also for all measuring methods of the
receptive fields like subspace reverse correlation [39].
The function describing the weighted contribution from
each position of the receptive field to the response of
this cell is called weighting function and may be mod-
elled by a linear filter [46].

4.1 An empirically based model of the vi-
sual cortex

There exist many publications on the frequency distri-
bution in Macaque V1-area [9, 42]. We used empirical
data, measured and fitted by De Valois et al. [6]. We
use two dimensional Gabor-base functions for spatial
frequency filtering [4]. It is convenient, to introduce
the Gabor-filtering system by starting with a transfor-
mation of the euclidean plane:

RΘ ◦Tp(x,y) =
(

cosΘ sinΘ

−sinΘ cosΘ

)(
x− px

y− py

)
(3)

With the point p :=
(

px
py

)
and the rotation angle Θ. The

Gabor base function is the product of a wave-function,
called carrier (cos), and an Gaussian envelope (exp):

aγω,σξ ,ση ,φ (ξ ,η)= ae−(ξ/
√

2σξ )
2−(η/

√
2ση )

2
cos(ωξ +φ)

(4)

Here we use ξ and η for the position to emphasize that
it refers to the local coordinate system. The preim-
age of the directional standard deviation of the Gaus-
sian envelope forms an ellipse. The semi-minor axis,
here the ξ -axis, of this ellipse is according to [23] and
[20, Fig. 8A] parallel to the wave-vector of the carrier.
We confine to a real plane-wave (see 4.2.1). So, with
ψ := {ω,σξ ,ση ,φ ,Θ}, we may define:

aΓψ,p := aγω,σξ ,ση ,φ ◦RΘ ◦Tp(x,y) (5)



4.2 Parameters
To compose the Gabor filter bank, we have to specify
the parameters. We distinguish between the parameters,
which we set up according to given publications in the
field of neuro-science (the parameter set ψ , paragraph
4.2.1), the position of the filter center p (paragraph
4.2.2) and the amplitude a (paragraph 4.2.3), which we
will use for the definition of the editing operator G.

4.2.1 The parameter-set ψ

The parameter-set ψ contains all parameters which
have to be distributed according to measurements in
the macaques or in the cats striate cortex.

The spatial frequency ω

In the visual cortex, frequency sensitivity occurs not in
exact but in rough steps of 0.3 to 0.5 octaves. As we
drew the spatial frequency according to [6, Fig. 6.], we
were limited to the bin width in this figure, which is 0.5
octaves.

Differences between human and macaque visual sys-
tem The monkey visual system as model for the hu-
man visual system has been validated under several
different aspects [37]. While the human visual sys-
tem is from an anatomical and physiological perspec-
tive extremely similar to the macaque visual system, it
has a slightly higher retinal magnification factor (about
0.291/0.223), which hints to a higher angular resolu-
tion [28]. Therefore we add another frequency bin at
20.8c/° and so we have to extrapolate to a plausible
histogram of the human frequency distribution.

The distribution given by de Valois In [6, Fig. 6.] De
Valois et al. describe their measurements of the spatial
frequency distribution of the receptive fields of simple
cells in macaques primary visual cortex. They distin-
guish between the cells with receptive fields in the fovea
and in the parafovea region of the retina. We assume
that our texture covers a visual angle of 5°. As we can-
not expect observers to concentrate on a texture with-
out any eye-movement, we merged the distributions for
the fovea and the parafovea by normalized summation.
The blue (including green-blue) bars in Figure 3 belong
to the merged histogram from [6]. To extend this his-
togram to the slightly bigger frequency range of the hu-
man vision, we fitted a gaussian by an iterative Least
Mean Square algorithm, moved the mean of the gaus-
sian to the logarithmic middle of the new frequency dis-
tribution range and stretched the standard deviation pro-
portional to the ratio of logarithmic ranges.

The following table shows the number of filters we have
in every frequency bin. The absolute number of 517 fil-
ters has been chosen in order to have a good fitting to

Spatial frequency distribution of simple cells in primary visual cortex: histogram and gauss-fit
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Figure 3: The blue part of the bars shows the histogram
given in [6]. The green part describes the extrapolation
results and has been added to account for the slightly
wider frequency range of human vision [28].

the histogram and still stay comparable with the recon-
struction scheme for tight frames (section 6.1).

c/° 0.4 0.5 0.7 1.0 1.4 2.0 2.8
# filters 3 8 20 39 64 84 92

c/° 4.0 5.6 8.0 11.2 16.0 20.8
# filters 82 61 37 18 7 2

The standard deviation in direction of the wave-
vector σξ

σξ and ω are connected via the bandwidth. As Gaus-
sian kernels have infinite support, the bandwidth is de-
fined as half amplitude bandwidth. Bandwidths have
been drawn on base of [6, Fig. 7]. In this diagram,
De Valois et al. visualized the bandwidth with standard
deviation as a function of the spatial frequency. As spa-
tial frequencies were known, bandwidth-samples could
be drawn under the assumption of normal-distribution
within the same frequency range. Given the bandwidth
B and the spatial frequency ω , we may calculate:

σξ =

√
2ln2

(
(2B +1)/(2B−1)

)
ω

(6)

The standard deviation orthogonal to the wave-
vector ση

According to [38, FIG. 4.], there is a relation between
ωσξ and ωση . This relation may be interpreted as
functional graph with a small deviation. To make use
of this relation, we fitted a cubic spline to the data and
used this spline as function graph.

The Phase angle φ

To draw the phase parameter φ , we used the histograms
given in [38, FIG. 7A/B].



The orientation Θ

By definition of ξ = (x− px)cosΘ+(y− py)sinΘ, Θ

is the angle between the ξ and the x-axis. We drew
the orientation equally distributed from {i π

8 }i∈{1,...,16}.
Where possible, directions have been drawn in orthog-
onal pairs.

All random experiments have been done in several
passes and brought comparable results. The set of
all parameter-sets ψ in the Gabor-filter bank, will be
denoted by Ψ.

4.2.2 The position p

Every neural measurement provides us just one sample
of the domain of neural responses. Be Γ the Gabor fil-
ter, best fitting the receptive field of a given neuron with
filter center p: now the neural response is modelled as
a〈Γp,T 〉.

〈〉 is the standard inner product in the image do-
main. Γ has to be appropriately sized and evaluated
on the spatial grid of the image and T has to be
zero-padded, where necessary. The filter-centers are
often chosen to be elements of the spatial image grid
(p ∈ {1, . . . ,256}2) [5], sometimes with the constant
stride (h := pzi+1 − pzi ) between consecutive grid
points increasing with an increasing wavelength and/or
starting with a stride smaller than one (e.g. [23]). In
order to make use of the convolution theorem and to
avoid a resampling step we will assume the parameter
set ψ to be constant over the whole grid and set the
stride h = 1 to one and keep the image-grid. Never-
theless we have to emphasize that our approach might
distract the statistics: as the statistics of DeValois et
al. [6] are based on the measurements of individual
cells, a higher spatial resolution goes to the cost of
the angular resolution and the variety of the phase
values. Particularly in the case of low frequencies, the
spatial domain is probably oversampled. The results
of the undulation experiment 6.3.2 might indicate this
problem (see figure 11).

To locate the neural response, we multiply it by the
canonical base matrix ep ∈ R256×256 at position p and
sum those matrices up ∑p〈Γp,T 〉ep. As we confined to
real-valued Gabor-base functions (equation 4), mean-
ing Γ∗ = Γ, we may write that summation-formula as
cross-correlation ?:

a∑
p
〈Γp,T 〉ep = aΓ?T (7)

Where we appoint the amplitude a to be fixed for a
changing position p.

4.2.3 The amplitude a
We use the amplitude to combine filter responses to op-
erators. Be E : A→A an operator, than we want to find
aE

ψ to approximate E (see section 5.1):

E≈ ∑
ψ∈Ψ

aE
ψ Γψ? (8)

This mapping operates via cross-correlation, it may be
visualized by applying it to the discrete dirac δ ∈ A.

5 TRANSFERRING EDITS TO THE
MODEL OF THE VISUAL CORTEX

Now, that we have introduced our model of the visual
cortex, we want to introduce the operators. First we will
discuss the editing scheme itself and how to transform
into it. Than we will present the editing paradigms to
transfer.

5.1 Learning an operator
To transfer a given edit, we take a collection of test-
textures Ti∈{1,...,m} and solve

aE
i = minargc∈Rn ||ETi− ∑

ψ∈Ψ

cψ Γψ ?Ti||2 (9)

for each texture Ti. We could define aE :=
minargc∈Rn ∑i ||ETi − ∑ψ cψ Γψ ? T ||2 but this
definition lead to undesired activities in higher
frequency-bands. Instead, we apply a singular value
decomposition to A := aiψ :

A = UΣV′ (10)

and use the base vector aE = (aE
ψ)ψ∈Ψ = (Vψ1)ψ∈Ψ. So

we may declare our new editing operator

GE := ∑
ψ∈Ψ

aE
ψ Γψ? (11)

5.2 The operators
We will explore four different operators: the identity,
linear edge enhancement, bandpass filters and spotlight
moving.

5.2.1 The identity
The first operator maps the image to itself. This is
a reconstruction. There is no canonical reconstruc-
tion scheme for Gabor-Wavelets as they are overcom-
plete. There has been many efforts to produce models
of the visual cortex which had good mathematical prop-
erties [23, 40]. Lee introduces a reconstruction scheme
which relies on the tightness of the frame [7,23]. There
are many approaches, to adjust the filter responses of a
Gabor-filter bank to a partition of unity in the frequency
domain [46].
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Figure 4: Under the frequency distribution, we show the
range of the edits of the editing scheme.

5.2.2 Edge aware imaging
Edge aware imaging has been subject of intensive study
during the last years. Bilateral filters [36,44] are among
the most popular tools for edge-aware image process-
ing. One recent approach gives a linear approximation
of a bilateral filter [30]. He et al. suggest to improve
the edge-preservation property of filters by the use of a
guidance map [14]. Paris et al. use Laplacian Pyramids
for strengthening or weakening edges in images: they
argue, that edges are a jump in not only one level in the
laplacian pyramid but merely in all levels [35]. Laparra
et al. use those insides to build a system for perceptu-
ally optimized image rendering [22]. Fattal [8] detects
edges by the use of second generation wavelets. Us-
ing Gabor-filters for edge detection has a long tradition,
e.g. [27].

5.2.3 Bandpass filtering
Affordance is a concept from psychology, intro-
duced by Gibson [10], and describes the possibilities
of actions which may be done on a given object.
By user studies, Giesel and Zaidi found a relation
between certain affordances or material properties
and spatial frequency bands in material-images [11]:

0.57-2.29 c/° Inflated and deflated
2.29-4.28 c/° Deep and flat
6.57-15.14 c/° Soft and rough
15.14-19.42 c/° Sparkling and dull

The connection between affordance and spatial-
frequencies gives rise to a semantically founded editing
scheme by simply enhancing or weakening particular
frequency bands [12, 29]. Because the underlying
physical effects are too complicated, those effects may
not be seen as the result of inverse optics [12] and are
therefore examples for complex physical operations
with a linear representation in the visual cortex. It
is striking, that those manipulations cover nearly the
whole frequency range of the visual cortex (figure 4).

5.2.4 Moving spotlight
Given a directionally illuminated texture patch. We will
show, that it is possible in our model to learn and repro-
duce small movements of the light source.

6 RESULTS
In this section we want to show and discuss some re-
sults. The presented results have been calculated on

(a) 500 · |L−EI(L)| (b) log(EI(δ )+2−32)

Figure 5: 500 times amplified reconstruction error of
Lena image. Boundary cut off in a distance of 10 pixel.
(a). To get a better impression of the delta-spike, we
added 2−32 and applied the binary logarithm (b).

colour or reflectance maps. The colour maps had a dy-
namic of 48 dB and the reflectance maps had a dynamic
of 96 dB. All operations on the HDR-images had been
performed in log-space. As training samples, we used
textures from the USC-SIPI Image Database from the
University of Southern California and the describable
texture dataset [2].

6.1 Identity
Figure 5b visualizes the learned identity operator. The
difference between the reconstructed and the original
image is with bare eyes intractable. The maximum
pixel intensity difference between the Lena image (L)
and the reconstruction of it was maxi j |Li j−GI(L)i j|=
6.9 ·10−3 which corresponds to 2 steps in an 8 bit grey-
scale image. While such a small deviation will not
stand-out when affecting the intensity channel, sensible
people might perceive colour aberrations if the operator
was applied channel-wise to an RGB-image.

As it is not possible, to reconstruct an Gabor-filtered
image perfectly, we will compare against the approxi-
mative reconstruction scheme, presented by Lee [23]:
a frame {Γβ} (for a definition and constraints on the
parameter set β , see [7, 23]) is tight when the follow-
ing equation holds for a given constant c and a small
positive number ε:

∀T : c||T ||2 ≤∑
β

|〈Γβ ,T 〉| ≤ (c+ ε)||T ||2 (12)

Lee investigated for which parameter sets β this frame
becomes a tight frame (ε ↘ 0). Note that Lee uses
complex-valued Gabor-base functions, which does not
make sense in our setting as we do not apply filters to
filtered values and have therefore no complex multipli-
cations. In his definition of the Gabor-base functions,
the amplitude a is part of the definition of Γ and the
position p is an element of the parameter set β and he
uses a pyramid sampling scheme. For a tight frame the
following reconstruction formula may be applied:

T ≈ 2
2c+ ε

∑
β

〈T ,Γβ 〉Γβ (13)



To compare against [23], we sample over 16 directions
θ , made three steps per octave and set the stride h to
0.5. This yields a value for ε of approximately 0.0001,
the number of base-vectors was 864.

Figure 6 visualizes that even with this very tight frame
the quality of this reconstruction scheme is not high
enough to allow for applications in computer graphics.

Figure 6: The upper right of the image shows the Lena
image reconstructed by the formula 13. The wavelet
family forms a frame with δ = 0.0001. The lower left
shows our reconstruction.

6.2 Edge aware imaging
For this edit, we learned randomly linear edge aware
filtering kernels: we used Gabor and Sobel-filters
((1,2,1)′ ⊗ (1,0,−1), we will write: SX,SY). Note
that the parameters of the filter kernels and the intensity
of the filters had been drawn randomly and so they were
in general not in the set ΓΨ. Intensities were always
enhanced. We used 1000 editing samples of varying
photos for learning. The resulting filter (figure 8) may
be seen as the average of all projected filter-kernels. It
is a good approximation of the sign-inverted discrete
Laplace operator with weights on the diagonals. In
comparison with other state of the art edge aware
imaging operators (figure 7), it is noteworthy, that the
learned operator enhances very fine structure and the
material still looks realistic. A physical effect, bound
to this appearance, is a higher fibrousness.

6.3 Affordance editing
In this section we will compare our results against
pure frequency band scaling. While there is evidence,
that the frequency-bands are subject to a recognition
step [12] and consecutively to a scaling step in the vi-
sual cortex, according to the original perceptional stud-
ies, an edge length of a material patch should cover a
viewing angle of 3.5◦, this corresponds to an observer-
distance of approximately 82 cm. We will confine to the
roughen and the undulation operation. The thicken and
the glitter-operator will be compared on bidirectional
texture functions (section 6.5).

(a) EAW (b) LP

(c) GSX,SY,Γ (Our) (d) Original

Figure 7: In the top row you can see as comparison the
results of two non-linear edge filters: the edge avoiding
wavelets of Fattal et al. (7a, [8]) with an exponent of
1.15 (slightly enhancing fine details, see publication)
and the local Laplacian filters of Paris et al. (7b, [35])
with σpubl = 0.2 and αpubl = 0.2. The bottom row shows
the result of our algorithm (7c) and the original material
(7d).

(a) Mesh

0,009 0,033 -0,017 0,040 -0,001

0,054 -0,103 -0,436 -0,123 0,067

0,012 -0,551 3,155 -0,568 0,038

0,072 -0,120 -0,462 -0,090 0,049

0,000 0,053 0,008 0,012 0,023

(b) Values

Figure 8: The learned filter.

The comparison edit

The influence of the absolute value for the strength of
the edit is not directly comparable. The learned edits
were mostly weaker than the originals. To compensate
for that, we made a relaxation step based on the HDR
VDP 2.2-metric as published by Mantiuk et al. in 2015
[31], by scaling the edit with a positive number s with

s := argminr>0 |d(T ,ET )V DP−d(T ,rGET )V DP|
(14)

to minimize the visual difference between E and GE.
Of course rGE := r(GE−GI)+GI

6.3.1 Roughening
Roughening seems to work comparably good in the
Fourier-domain (operator F) and in the Cortex-filter-



(a) G6 (our) (b) F6

Figure 9: Comparison of the roughening filter. The orig-
inal material in the top right corner.

(a) G (our) (b) F

Figure 10: Inflating a material. The original material in
the top right corner.

(a) G (our) (b) F

Figure 11: Inflating a material. The original material in
the top right corner.

bank. For stronger edits (images 9a and 9b) our op-
erator shows less artefacts.

6.3.2 Inflation
For relatively small structures, the undulation-operation
works slightly better in the cortical filter bank (image
10a) than in the fourier domain (image 10b, operator F).
For bigger structures, the manipulation in the cortical
filter bank is not capable of reproducing the results of
the bandpass filtering in the Fourier-domain (figure 11).

6.4 Spotlight moving
To make the moving spotlight experiment, we used the
BTF-measurements of the UBO14-database of the uni-
versity of Bonn [47]. For learning, we used the leather

15° 

-15° 

-15° 
15° 

0° 

Figure 12: In the middle of the bottom row, you can
see the original material test-patch. To compare against
the real physical operation, we show in the top row a
photography of the same patch, illuminated under an
azimuthal angle of −15° (left) and illuminated under
an azimuthal angle of 15° (right). We compare those
results against the application of the spotlight moving-
operator (bottom row, left (−15° ) and right (15° )).
Here we show only the value channel of the material
patch.

materials with the numbers 1-3 and 5-12. The testing
results will be presented on the leather4 material. The
camera position had been in the zenith above the ma-
terial. Material-patches which were illuminated from
a polar angle of approximately 30° against the zenith
and from an azimuthal angle of 0° were considered
as unedited material samples. We interpreted mate-
rial patches, taken under the same conditions but illu-
minated from an azimuthal angle of 15° or −15° re-
spectively as the edited versions of the original material
patch and used those patches for learning the motion of
the spotlight. The results are presented in figure 12 and
in a short movie in the additional material.

We can see that small moves of a spotlight can be rep-
resented and learned in the cortical domain.

6.5 Editing of high-dimensional material
representations

Image based modelling of spatially varying and mea-
sured material reflectance properties has been intro-
duced by Dana et al. [3] in form of bidirectional texture
functions (BTFs). An approach to editing BTFs is, to
deal with BTFs as with textures. In 2007, Kautz et al.
showed, that applying operators from picture editing to
the spatial or to the angular domain of a BTF may bring
reasonable results [21] and introduced several different
operators to BTF-editing. Our BTF editing approach
is comparable to the frequency band scaling, published
by Mylo et al. [29]. A detailed description of editing
compressed BTF-data may be found there. In figure
1 we compare against the thicken and the glittering-
operator from the band scaling approach ( [29], see sec-



tion 5.2.3). Here the results of our V1-editing approach
are clearly superior.

Energy preservation and other expressions of physical
phenomena are lost after the editing step. Instead of
using the suggested thicken or the undulation-operator,
one may estimate the surface structure and operate on
the new geometry. For higher frequencies, the inverse
optics are highly complicated.

6.6 Time requirement
Experiments have been done on an i7-4770 CPU @
3.4 GHz with 8 GB RAM. Learning took between 51′′

(spotlight moving, 6.4) and 90′ (edge aware imaging,
6.2). The editing step took about 0.4′ for a texture and
40′ for a BTF.

7 CONCLUSION
In this work we have presented different linear editing
operations based on a model of the V1-region of the vi-
sual cortex. We could show, that it is possible to recon-
struct material patches in an appropriate quality by sim-
ple summation of the filter responses of the suggested
Gabor-filter bank (section 6.1). We learned band-pass
filtering which shows in many cases less artefacts when
the corresponding band-pass filter in the fourier domain
(section 6.3). This effect might be due to the immanent
pre-filtering but we have to pronounce that prefiltering
the bandpass in the fourier-domain is difficult because
it varies between destroying the effect and producing
strong sidelobes. Applying those learned operators to a
BTF brought notably better results than the correspond-
ing band-pass filters (section 6.5). Above that, we could
also learn a physical effect (section 6.4).

An important subset of the appearance space is the
set of all realistic appearances, meaning appearances
which are inter-subjectively considered as pictorial rep-
resentations of a real environment like e.g. photos. We
have shown, that starting with a valid element of the
space of realistic appearances, the presented operators
define an affine linear subspace with limited diameter.
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