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ABSTRACT
We propose a technique to reconstruct a general 3D object using surface reflectance information from multiple
viewpoints. Our core optimization framework uses multi-view normal integration, which can recovers water-tight
surface of the object iteratively in a coarse to fine manner. The integration requires normal vector field from
multiple viewpoints, which we can derive from surface reflectance. We then handle the topological changes if
self-intersection occurs from the optimization. We also employ the idea of multi-resolution and weighted data
heuristic which helps dealing with noisy data and improves both accuracy and optimization time. Our experiment
shows that the framework is able to robustly recover 3D surface well with both synthetic and real data.

Keywords
3D Reconstruction, Multi-view normal integration, Multi-view vision, Triangle mesh-based surface

1 INTRODUCTION

3D reconstruction has been widely focused in the field
of computer graphics and visions with various appli-
cations in today’s life, such as medical, engineering,
advertisement, and entertainment. This influences re-
searchers to develop new techniques to solve this prob-
lem more efficiently and with higher accuracy. Exist-
ing state-of-the-art algorithms can reconstruct 3D ob-
jects with great accuracy, however they typically cannot
handle surface that consist if both highly diffuse and
highly specular parts. We leverage recent acquisition
techniques that can accurately capture surface normal
vector and specular reflection vector [17], and focus
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our 3D reconstruction algorithm base on normal inte-
gration.

There has been a considerable amount of researches
that studied the multi-view normal integration prob-
lem [5, 15, 18]. Chang et al. [5] is the first to proposed
the energy functional for multi-view normal integration
that is derived from the classical single view shape-
from-shading problem [13] and variational framework
has been used in most researches to solve this error
functional. Techniques above used implicit functions
to represent the surface which gives an advantage on
topology adaptation while performing mesh deforma-
tion. However, accurately representing a 3D object
using implicit functions typically require large mem-
ory consumption and computation time, as it requires
three-dimensional voxels to represent all the surface.
[19] proposed an optimization framework which used
triangular-mesh to represent the surface. However, they
convert their mesh to an implicit surface in order to han-
dle topological changes. This causes the edge length of
the mesh to be up to the size of voxels in which fine
details can be lost from converting to implicit surface.



Our technique aims to use multi-view normal integra-
tion to reconstruct an arbitrary 3D object using normal
and reflectance map from multiple viewpoints. We im-
plemented multi-resolution optimization scheme in our
framework which helps the overall optimization con-
verges faster. We applied gradient descent to the er-
ror functional and perform all operations directly on the
3D triangle-based mesh. This enables us to control the
resolution of the mesh during optimization. However,
using this explicit surface representation has its draw-
backs. Topology cannot be trivially change and self-
intersection may occurs during optimization. We em-
ploy the method from [20] to remove self-intersection
and handle topological change.

The rest of this paper is organized as follows: we review
the related works on Section 2. We define our problem
in Section 3. We then explain our proposed method in
Section 4, and Section 5 to 6 will be our results and
conclusion respectively.

Our main contributions are

• Mesh base optimization scheme that can handle
topological change and self-intersection without
conversion to implicit representation.

• Multi-resolution optimization.

• Optimization schedule that interleaves matching
cost optimization with normal integration.

• Target normal calculation that takes visibility and
multi-view information into account and can handle
missing data.

2 RELATED WORK
3D reconstruction has gain a lot of attention in com-
puter graphics and computer visions fields. In this
section, we will focus on reviewing 3D reconstruction
techniques that takes photometric and normal informa-
tion as their inputs from multiple viewpoints. We refer
the reading to an excellent survey for other 3D recon-
struction method by Herbort and Wöhler [12].

Early methods for recovering surface information is
shape-from-shading [3, 11, 13, 22]. These conventional
methods were designed for reconstructing 2.5D sur-
face from a single view information of texture-less ob-
ject with known light position. Chang et al. [5] intro-
duced a new technique that can reconstructs 3D surface
using normal vector information from multiple view-
points. They proposed their energy functional based
on the single-view variational framework for shape-
from-shading problem [13]. Geometric PDE is then de-
rived to minimize their proposed functional and level-
set method is used as their optimization framework. Re-
cently, Weinmann et al. [18] employed a similar con-
cept of multi-view normal integration in order to recon-

struct the surface of high specular object. They calcu-
lated the volumetric normal field from projected illu-
mination patterns and then applied global optimization
with octree-based min-cut framework. The benefit of
using an implicit surface (i.e. level-set, voxels, and oc-
tree) as their surface representation is that it automati-
cally handles the topological changes while deforming
the surface to the optimal target solution. However, it
suffers from a large amount of memory consumption
with more detailed mesh and can suffers from slow con-
vergence rate.

A number of previous works uses other surface repre-
sentation. Esteban et al. [10] refined a visual hull by
finding photometric normal consistencies and then de-
formed their mesh on vertex space. However, problem
like self-intersection was not taken into account in their
paper. Similarly, Yoshiyasu and Yamazaki [19] used a
hybrid framework between intrinsic and extrinsic sur-
face representation by optimizing their energy terms on
triangular mesh and convert the mesh into an implicit
surface to handles self-intersections. Though, the de-
tail of target mesh can be washed out when converting
to implicit surface. Furthermore, Tunwattanapong et
al. [17] presented a technique for recovering the geom-
etry of 3D objects by projecting spherical harmonics
basis on the object to acquire its reflectance informa-
tion and then used message passing algorithm on vertex
space to minimize their energy functional.

Our proposed method performs optimization directly
on triangle mesh similar to [10, 19]. Our energy func-
tional is related to [5], but adding more terms in visibil-
ity function to handle inter-reflections and noisy infor-
mation better. We then minimize our energy functional
using gradient descent scheme applying the method
from Delaunoy et al. [9] which presented a framework
to optimize a triangular mesh with gradient descent
scheme. We handle the topological changes by em-
ploying similar algorithm from [20, 21]. Their algo-
rithm could fix a mesh with self-intersection without
losing details on the other part of the mesh. In addition
to surface normal, we used reflectance information as
our inputs. This allows our framework to work when
the surface is not texture-less Lambertian. Our works
compatible with other research in which they measured
specularity [17, 18].

3 PROBLEM STATEMENT
The goal of our framework is to recover a full water-
tight triangular 3D mesh with reflectance information
from multiple viewpoints with known intrinsic and ex-
trinsic camera parameters. Our mesh consists of n ver-
tices and m triangles which we denotes our vertices as a
matrix V = [v1 · · ·vn]

T where vi ∈ R3, i ∈ [1,n] denotes
a point in 3D space, and triangle F = [f1 · · · fm] where
f j, j ∈ [1,m] is a set consists of three adjacent vertices.



Each vertex vi has an outward normal N(pi), similarly,
each triangle also has its outward normal NF(f j). Our
framework also requires a set of l calibrated cameras
C = {c1, · · · ,cl} located around the target object. Each
camera ck where k ∈ [1 · · · l] has its own intrinsic and
extrinsic parameters which can be described as matri-
ces Kk and [Rk|tk] respectively, where tk is a translation
vector in R3 for camera ck and the projection from any
point v∈R3 to image domain of camera ck can be writ-
ten as ṽk = Kk[Rk|tk]v ,ṽk ∈ R2. For the simplicity, we
will also define this projection function to be ṽk = πk(v)
and a lookup function νk,X(ṽk) which will return infor-
mation of image X at pixel ṽk.

We need some information to describe how incident
light reflected the object surface which in this case, we
use diffuse and specular property of the surface as it is
well known and widely used in many research. These
information describe how the light reflect from the ob-
ject surface to the camera lens which we can then use
them to optimize the target surface. Our cameras will
capture (or synthetically generate) these reflection in-
formation separately in each viewpoint. Our research
will use four type of reflection data which are, dif-
fuse intensity, diffuse reflection, specular intensity, and
specular reflection. These information can then be de-
rived to surface normal and use them in the optimization
process which we will elaborate them on Section 4.1.

4 PROPOSED METHOD
In this section, we explain the core algorithm in order to
recover water-tight 3D mesh with reflectance informa-
tion. We perform optimization directly on triangle mesh
as in [5]. Therefore, we require an initial surface ap-
proximation which can be acquired from various proce-
dures. In our work, we use shape-from-silhouette [14]
to compute a visual hull and use them as an initial sur-
face. We assumed that such information is also given as
a part of the input data.

We optimize the energy functional in coarse-to-fine
manner by implementing multi-resolution optimiza-
tion. We schedule more optimization iterations at
coarse resolution and gradually decrease the optimiza-
tion iterations in finer resolution iteration. This helps
the overall framework to converge faster.

After we have a visual hull, we then minimize the cost
functional based on geometric and photometric normal.
The concept is to deform the mesh to match the target
geometric normal with observed photometric normal.

The input from cameras typically have some noises. We
add target normal blending term in order to filter out
unwanted noise and make the reconstruction more ro-
bust and visually appealing.

We minimized our energy functional using a gradient
descent scheme on vertex domain (Section 4.1). This is

similar to surface evolution on implicit surface frame-
work, instead we evolve our triangular mesh towards
the gradient direction directly. This may leads to un-
wanted self-intersection artifacts. We perform an adap-
tive remeshing algorithm [20, 21] on self-intersected
surface. Our overall procedures is shown in Algorithm
1.

Algorithm 1 Reconstruction Pipeline

1: (V,F)← Shape-from-silhouette . Initial shape
2: for each resolution iteration do
3: if mesh is coarse then
4: (V,F)←matchingcost-optimization(V,F)
5: for each optimization iteration do
6: Find target normal of each V and F
7: Calculate ∇E of each V and F
8: repeat
9: α ← argminα E(deform(V,F,∇E,α))
10: (V,F)← deform(V,F,∇E,α)
11: (V,F)← fix-self-intersections(V,F)
12: until E(V,F) is converges
13: (V,F)← resample(V,F)
14: return (V,F)

4.1 Multi-view Reflectance Integration
As in prior research about multi-view normal integra-
tion [5, 15, 18], we employ an error functional mini-
mization framework based on the conventional shape-
from-shading approach [13]. We minimize the cost
functional with variational methods by minimizing the
disparity of geometric and observed normal fields on
the surface domain. In the other words, we evolve the
surface so that its geometric normal field matched the
observed normal field. However, a normal vector at a
point on the given surface can be ambiguous with noisy
data which should be taken into account.

We adjusted the multi-view normal field integration
functional proposed by Chang et al. [5] which required
an initial approximation of surface to integrate with.
In this research, we acquired an initial shape approx-
imation using shape-from-silhouette [14] as it is good
enough for our algorithm.

From a given initial approximation surface, we refine
them by displacing every vertices such that its geo-
metric normal field of both from vertices and triangles
matches the observed one. Thus, we define our cost
functional of a given vertices V and triangles F as fol-
lows:

E(V,F) = ∑
v∈V

ω(v)[1− (Nt(v) ·Ng(v))]

+ ∑
f∈F

ω
F(f)[1− (NF

t (f) ·NF
g(f))] (1)



where, Nt(v) and NF
t (f) are observed target normal at

vertex v and triangle f respectively, Ng(v) and NF
g(f) are

geometric normal at vertex v and triangle f, ω(v) and
ωF(f) are a weighting function of vertex v and triangle
f, based on the surface area.

Our reflectance information can be derived to normal
vector so that it is consistent with our proposed cost
functional. For diffuse component, we can derive them
with the following equation:

Ñk,diff(p) = Normalize
(
αrνk,diff(p̃k)−p

)
(2)

where νk,diff(p̃k) is a lookup function for diffuse reflec-
tion of kth camera at pixel p̃k, Ñk,diff(p) is calculated
diffuse normal at point p from camera k, αr is a radius
constant of a projection sphere where the incident light
reflected to, and for specular component:

Ñk,spec(p)=Normalize
(

αrνk,spec(p̃k)−p
|αrνk,spec(p̃k)−p|

+p− C̄k

)
(3)

Similarly, where νk,spec(p̃k) is a lookup function for
specular reflection, Ñk,spec(p) is calculated specular
normal ,and C̄k is position vector of the kth camera.

4.2 Target Normal Calculation
According to (1), there are both Nt(v) and NF

t (f) terms
which we need to obtain by observing normal vectors
from the photometric information provided. At a ver-
tex v, we calculate the normal vectors from diffuse and
specular component separately and blend them with
weighting constants as follows:

Nt(v) = Normalize(wdiffNt,diff(v)+wspecNt,spec(v))
(4)

where wdiff and wspec are the weight for diffuse and
specular component which can be calculated as follows:

wdiff = ∑
k∈C

αθ ,k(v)ψk(v)νk,diffalbedo(ṽk) (5)

wspec = ∑
k∈C

αθ ,k(v)ψk(v)νk,specconf(ṽk) (6)

αθ ,k(v) = max(0,(−l̂k ·Ng(v))) (7)

where l̂k denotes a camera direction vector, Ng(v) is ge-
ometric normal at vertex v, ψk(v) is visibility function
which will determine if camera ck is visible for vertex
v. νk,specconf(ṽk) is a look up function for diffuse albedo
at point v, and νk,specconf(ṽk) is specular reflection con-
fidence which depends on the acquisition technique.

For each component, we project this point to a set of
visible cameras Cseen and look up for reflectance infor-
mation. We then use weighted average function based

on camera angle towards the surface to calculate for the
target normal as follows:

Nt,diff(v) = ∑
k∈C

αθ ,k(v)ψk(v)Ñk,diff(v) (8)

Nt,spec(v) = ∑
k∈C

αθ ,k(v)ψk(v)Ñk,spec(v) (9)

Similarly, for the triangle case, we used its centroid as
a point of projection and then obtain target normal for
the triangle.
The visibility terms ψk(v) can be easily calculated us-
ing ray tracing algorithm like in previous research [5,
9, 15]. However, determining whether the surface in
consideration is visible by just ray-tracing might not be
enough as there could be some outliers (noise and inter-
reflections) which can leads to inaccurate target normal.
Therefore, we need to filter such outliers out first by re-
stricting more conditions to visibility terms as follows:

ψk(v) = κm(v)κp(v)κcg(v)κct(v)κtg(v) (10)

κm(v) =

{
1, if v is visible at camera k

0, otherwise
(11a)

κp(v) =


1, is not self-intersected

along the reflection vector
0, otherwise

(11b)

κcg(v) =

{
1, −(l̂i ·Ng(v))> 0
0, otherwise

(11c)

κct(v) =

{
1, −(l̂i ·νk,spec(ṽk))> 0.5
0, otherwise

(11d)

κtg(v) =

{
1, Ñk,spec(v) ·Ng(v)> 0
0, otherwise

(11e)

Like in [5, 9, 15], the first term (11a) can be determine
by tracing a ray from camera to vertex, if it is not oc-
cluded by any surface then this counts as visible. Al-
though from our observation, there are several sources
that lead to incorrect target normal acquisition, such as
inter-reflections. (11b) checks whether the gathered in-
formation is bad from inter-reflection by tracing a ray
from position v along the reflection vector respected
to each viewpoint. If the ray hit the mesh itself, we
will discard the information and treated this pixel as in-
valid. The term (11c) checks boundary cases when the
ray-tracer hits back-face surface. This can be occurred
when tracing to a point located near the silhouette or
thin surfaces. For specular component, (11d) filters out
the reflection vectors that have wide angle respected
to its camera direction vector as the surface that face
off the camera are likely to be noisy. Lastly, the term
(11e) filters out the bad photometric reflection which
face backward respected to the mesh geometry. This
mostly occur in the area with inter-reflection.



4.3 Gradient Descent Optimization
Scheme

With observed target normal being calculated on ev-
ery vertices in V and triangles in F, we then mini-
mize our energy functional in (1) with gradient descent
framework. Similar to [9], but with our proposed en-
ergy functional. Basically, we will deform our mesh by
translating each vertex vi along the calculated deforma-
tion direction vector di which can be written as:

v′i = vi + tdi (12)

where v′i denotes a deformed vertex vi with scalar
weight t for direction di. This deformation vector
can be computed by finding the gradient of energy
functional in (1) and energy decreases when the surface
is deformed in the opposite gradient direction. Thus,
the deformation equation of the whole mesh can be
written as:

V′ = V−β∇E(V,F) (13)

v

d
→

Figure 1: Vertex deformation of point v toward the di-
rection vector d which can be calculated by finding gra-
dient of vertex v

Finding the gradient for each vertex vi is not trivial,
since our energy functional (1) is based on normal
terms. Besides, we need to calculate the gradient re-
spect to its position:

∇E(V,F) =
[

δE
δx

(V,F),
δE
δy

(V,F),
δE
δ z

(V,F)
]

(14)

Our normal can be derived from its adjacent vertices
using the following equations:

t1 =
k−1

∑
i=0

cos
(

2πi
k

)
Adj(v, i) (15a)

t2 =
k−1

∑
i=0

sin
(

2πi
k

)
Adj(v, i) (15b)

where v has k adjacent vertices, t1 and t2 are tangent
vectors, and Adj(v, i) returns the position of ith adjacent
vertex of v. The cross product t1× t2 is then calculated
for vertex normal. (For more in details please refer to

[16]) With this we can solve for an analytic gradient of
the energy with a symbolic differentiation package such
as sympy [1].

We then perform line search algorithm to find the value
β in (13) which will minimize our energy toward the
current surface. Then from (13), we have:

argmin
β

E(V−β∇E(V,F),F) = 0 (16)

4.4 Target Normal Blending
Some part of the surface may not be captured with high
quality information (e.g. highly concave surface) or that
part of the surface is totally occluded. This could be
problematic as observed target normal vector Nt(v) or
NF

t (f) could be an undefined vector which caused by
our visibility terms in (10) of every camera returns zero.
This may leads to an undefined behavior for our opti-
mization process. Therefore, our framework will need
to handle this case, so that at least the surface without
information can still be reconstructed with visually ap-
pealing output. We define a confidence function λ (v)
for our observed target normal or can be also called nor-
mal blending weight. This confidence value decreases
as the calculated target normal become unreliable. We
then use the confidence term to blend the calculated tar-
get normal with smoothed geometric normal using the
following equation:

Nblend
t (v) = λ (v)Nt(v)+(1−λ (v))N̄g(v) (17)

where, N̄g(v) is normal vector of smoothed geometric
surface at point v. Our normal blending weight is varied
to the number of visible viewpoints and variance of
photometric curvature of visible viewpoints:

λ (p) = λH(p)λC(p) (18a)

λH = exp
(

min
(

0,−σH
2

))
(18b)

λC = exp
(

min
(

0, |Cseen|−
⌈
(1− cosθ)

2

⌉
|C|
))
(18c)

where λH is photometric curvature variance term which
can be calculated by looking up all normal components
from visible cameras and compute its variance. That is,
if the photometric normals are consistent, the calculated
target normal is more likely to be reliable. Where, λH
captures the photometric curvature variance. The term
λC represents the vertex visibility. If the calculated tar-
get normal are computed from more viewpoints, the tar-
get normal is acceptable. We assumed that camera set
C are uniformly located along the sphere that covers
the scanning object. Then, at a particular vertex v on



Figure 2: Input reflectance information of speccat and hammerman. From left to right, diffuse albedo, diffuse
reflection, specular albedo, specular reflection, and mask information for our optimization framework.

0 0.5 1 1.5 2 0

100

0.5

1

Figure 3: Blending weight function of our camera con-
figuration, varied to σH and |Cseen| with 31 total cam-
eras and θ = 45◦

Figure 4: Cameras within an infinite radius spherical
sector (hi-lighted in blue) will be marked as visible.

a surface, v will have a set of visible cameras Cseen.
The term (1− cosθ)/2 is derived from the ratio be-
tween surface of spherical sector to the whole sphere,
where at a particular point v should be at least visible
to the camera that is located on the part of spherical cap
which in this research we set the θ value to be 45 de-
gree. However, this equation is only based on our cam-
era configuration. It could be adjusted to be suitable for
other configuration as well.

4.5 Matching Cost Optimization
Normal integration has its limitation about ambiguity
as stated in [2], which can result in an incorrect answer
even the energy functional is converged. Especially in
the concave area where the observed target normal can
be inaccurate due to projection error. We can solve such
problem by using similar idea to stereo reconstruction.

We solved this problem in a similar manner to the nor-
mal integration by defining the normal correspondence
energy function based on mesh vertices and move them
to the optimal solution. Given, a vertex v ∈ R3 and
camera set C. We assumed that, if the vertex v is at the
correct position, then its projected normal from each
camera should be correspond to every other cameras.
In order to find such correspondence, we defined our
matching cost function to be a variance of observed
normal of visible viewpoints where the number of vis-
ible viewpoint is more than 3. Otherwise we will force
the matching cost to be +∞

We sampled points along the vertex normal both out-
ward and inward, then calculate the matching cost at
each sampling. After that, from all computed matching
cost samples, we fit a quadratic equation for the dis-
placement from the sample with minimum cost and its
adjacent samples. We then compute the location of the
tip of the parabola. Finally, based on the matching cost
of the optimal point, we translate the vertex along its
normal with the displacement calculated earlier.

4.6 Remeshing
The drawback of using explicit surface representation
like triangular mesh is that it could not automatically
deal with topology changes unlike implicit surface rep-
resentation. It is likely that self-intersection will oc-
curred in our mesh due to our mesh evolution in Section
4.3.



Figure 5: Synthetic data of bunny, dragon, and dis-
colobus. From left to right, ground truth mesh, diffuse
reflection, and specular reflection. We omitted diffuse
and specular albedo since we set all the value into one.

The author in [20, 21] proposed a framework to effi-
ciently solve topological changes on triangular mesh
called Transformesh. The algorithm solves topology
changes by using an intuitive geometrically driven so-
lution which we found it suitable for our framework.
We perform Transformesh algorithm after the whole
mesh deformation process is completed in every itera-
tion. Other self-intersection algorithm such as [4, 6, 7]
can also be used in this step.

Then, after every resolution iteration, we resample our
mesh to be finer with edge splitting operation and re-
move short edge with edge collapsing operation. We
then use the mesh in the next optimization iteration.

5 RESULTS
In this section, we will discuss and evaluate the result of
our reconstruction pipeline with both real and synthetic
data. All procedures are executed with Intel i7-5820K
3.30GHz, with 64GB of RAM.

5.1 Real data
We performed the reconstruction on two real data (As
shown in Fig.2). There are 31 viewpoints uniformly lo-
cated on faces of truncated icosahedral (except one on
the bottom-most) with 30 centimeters in radius which
we can set our parameter αr in (2) and (3) to be 30.
All input images are captured in 4896 by 3684 pix-
els and camera matrices are already calibrated. Visual
hull is then extracted for initial mesh with 1 millime-
ter in voxel edge length. We optimized more iterations
in coarser resolution mesh as the coarse details will
converged before refining the mesh in the finer itera-
tion so that the optimization converges faster in overall.

We scheduled 10 iterations or the coarse resolutions,
then decreasing the number of optimization iterations
in finer resolution iteration.

Figure 6: Reconstructed 3D models of speccat and
hammerman. The real objects are shown on the left and
rendered reconstructed outputs are shown on the middle
and right.

Figure 6 shows the results of reconstructed mesh of
speccat and hammerman. Our framework success-
fully recovered both data. The output of speccat has
reasonable geometric features and being able to render
an appealing result.

Figure 7: Additive white gaussian noise is added to
bunny data with coefficient 0.1, 0.2, and 0.3

5.2 Synthetic data
We simulate the configurations from real data recon-
struction from the last section, so that it is not biased
or favoring to our framework. We used three ground
truth meshes (As shown in Figure 5) and projecting re-
flectance information needed with similar camera cal-
ibration to the prior section. We replaced every pixels
to be one for diffuse and specular intensity since there
were no such information to project and this would
not violate our framework. In addition, additive white
gaussian noise is added to the generated images with
coefficient AWGN coeff value set to 0.1, 0.2, and 0.3
(As shown in Fig. 7) and compared the result to evalu-
ate the robustness of our framework.

We measure the error of our output with Hausdorff dis-
tance [8] as shown in Table 1. Note that our framework
can reasonably recovered the shape even with noisy
data. Only the concave area seems to far off the ground
truth due to the matching cost optimization could not
perfectly find the correct optimal point with noisy data.
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Figure 8: The Hausdorff distance of the outputs toward its ground truth.

Table 1: Hausdorff distance of outputs toward ground
truths

Model AWGN coeff meandH (mm) RMS

Bunny

0 0.06026 0.07269
0.1 0.06405 0.07791
0.2 0.16838 0.27443
0.3 0.23536 0.47291

Dragon

0 0.12251 0.27265
0.1 0.15447 0.33639
0.2 0.24416 0.46701
0.3 0.30370 0.55531

Disco-
lobus

0 0.21390 0.30124
0.1 0.22146 0.30930
0.2 0.36786 0.55528
0.3 0.44007 0.71934

6 CONCLUSION
We have presented a novel multi-view normal integra-
tion framework using reflectance information. With our
mesh-based optimization, we are able to reconstruct
fine details without sacrificing unnecessary memory
consumption unlike implicit surface framework. Al-
though it can presents self-intersection, we exploit such
problem by using Transformesh [20] which fix topol-
ogy changes completely in triangular mesh domain. We
also deal with those surface which only a few or none
of the camera can be seen with target normal blending
which will smooth out the surface without photometric
information.

Our framework also has some limitations toward the
area with high details and thin surface. This is due to

the inability to observe high frequency target normals
on the coarse iterations which result it smoothed out
surface like in hammerman (Fig.6). This could be re-
solved with adaptive mesh w.r.t. photometric curvature
and is an interesting area of future work. While our
method can handle topological change during optimiza-
tion, if the initial mesh is of different genus from the
real mesh, our algorithm may not be able to change the
genus. Hence, using a good initial mesh with matching
genus may be needed. Creating a better initial mesh is
hence another interesting area of future work.
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