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ABSTRACT
An occlusion-aware framework is proposed to robustly estimate the disparities of light field images. It is mainly
realized by leveraging multiple edge cues to occlusion detection and then integrate it with local costs into an
energy function. To check the performance, the quantitative and/or qualitative evaluations are performed on both
synthetic and natural light field datasets. It demonstrates that the proposed framework is robust to the density and
disparity range of the light field, advancing the state-of-the-art light field disparity estimation frameworks on aspect
of accuracies.

Keywords
Light Field, Disparity/Depth Estimation, Occlusion Detection, Global Optimization.

1 INTRODUCTION
Contrary to a traditional 2D image, the light field
records not only the radiance but also the direction
of a light ray. This richer information of the light
field motivates a large range of computer vision and
graphics applications, including disparity/depth estima-
tion [Wanner and Goldluecke, 2012, Kim et al., 2013,
Chen et al., 2014, Jeon et al., 2015, Wang et al., 2015,
Zhang et al., 2016, Zhu et al., 2017], digital re-
focusing [Ng et al., 2005] and super-resolution
[Wanner and Goldluecke, 2014], etc. In this work, our
focus is put on disparity/depth estimation, which is
employed as a module of view synthesis for virtual
reality (VR) [Huang et al., 2017, MPEG-I, 2017].
Disparity estimation, is a long-term challenging
issue in computer vision, which finds correspon-
dences from stereo image pairs. The well-generated
disparity maps from this task could bring bene-
fits to various applications, such as view synthesis
[Stankiewicz et al., 2013], superpixel segmenta-
tion [Stutz et al., 2018], semantic segmentation
[Zhang et al., 2010], etc. A common solution for
disparity estimation is to employ two views, namely
stereo matching [Scharstein and Szeliski, 2002]. Since
more viewpoints are available in the light field (Fig. 2),
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(a) Central view (b) Ground truth(c) Disparity map

(d) Central view (e) Depth map(f) Synthesized map
Figure 1: Disparity/Depth estimation results on light
field images. The top shows the proposed disparity map
of the central view in a dense light field; The bottom
shows the proposed depth map of the central view and
its corresponding synthesized/virtual map in a sparse
and large disparity range of the light field, in which the
synthesized map is obtained by view synthesis using
two neighboring views and their depth maps.

more accurate disparity estimations are possible than
in stereo matching.
Nowadays, the state-of-art light field disparity estima-
tion references achieve a significantly high accuracy
when the disparity range between sub-aperture images
is narrow and the light field is densely sampled.
However, we observe that the accuracy still remains an
issue when the disparity range between sub-aperture
images is larger and the light field is sparser. Moreover,
this is non-trivial in virtual view rendering of MPEG-I
activities [MPEG-I, 2017] in which a sparser and larger
disparity range of the light field is being used.
To cope with this issue, a scalable framework for light
field disparity estimation is proposed in the paper.
More specifically, the kernel density estimation and



Figure 2: Light field images, also called sub-aperture
images, are captured from an equally spaced 2D camera
array.

size-adaptive window filter are introduced to locally
estimate disparities in which an adaptive size is consid-
ered not to be sensitive to the disparity range (Sec 3.2).
Since there are more ambiguities at occlusion areas, an
occlusion handling method, i.e., occlusion detection
and score-volume recomputation, are proposed (Sec
3.3), followed by using an occlusion-aware optimiza-
tion to improve disparity continuity and enforce global
consistency (Sec 3.4). The experimental results show
that the proposed framework produces a high accuracy
of disparity/depth maps in multiple densities and
disparity ranges of light fields, see Fig. 1.
The contributions of our work are summarized below:
1. The proposed framework significantly advances
state-of-the-art reference work on both synthetic and
natural light field datasets in disparity/depth accuracy.
2. The accuracy of disparity maps from the proposed
method is more robust to the density and disparity
range of the light field, achieving at least 14.9%,
19.6%, 29.3% Root Mean Square Error (RMSE) gains
on average in 9x9, 5x5 and 3x3 synthetic light fields
respectively when compared to the state-of-art works.
3. An occlusion handling technique using multiple
edge cues is put forward, which always benefits
disparity estimations at occlusion regions.

2 RELATED WORK
Since the light field has the redundant information,
some works formulate the problem of disparity esti-
mation as the slope calculation of the Epipolar Plane
Image (EPI) without explicit occlusion detection.
[Wanner and Goldluecke, 2012] introduce a structure
tensor technique to light field disparity estimation,
and use it to compute the slope of EPI, followed
by the integration into a variational-based energy
function. However, its accuracy is confined to a narrow
disparity range. [Kim et al., 2013] put forward another
EPI-based framework using a fine-to-coarse strategy.
Since it relies on a pixel to match the corresponding
EPI-pixel, it seems robust at occlusion regions but
the light field has to be guaranteed densely sampled.
[Zhang et al., 2016] propose a spinning parallelogram

operator onto both horizontal and vertical EPI-lines,
preserving sharp disparity edges. [Jeon et al., 2015]
present a disparity estimation framework in sub-pixel
accuracy. However, both methods are subject to
insufficient disparity quality at textureless regions,
though they are not much influenced by the density and
disparity range of light field.
Some other works turn to the Surface Camera (SCam)-
based strategy to perform disparity estimation with
explicit occlusion detection. In fact, the occlu-
sion is a tough issue in matching correspondences.
Multi-view stereo matching makes an early effort to
this occlusion issue. [Kolmogorov and Zabih, 2002]
describe a graph cut framework in which the vis-
ibility term is formulated into an energy function.
[Wei and Quan, 2005] propose an asymmetric model
to overcome occlusions in an efficient way. However,
the heavy occlusion still remains an issue, even with a
large number of views. To handle (heavy) occlusions,
some recent light field-based methods are proposed
[Chen et al., 2014, Wang et al., 2015, Zhu et al., 2017].
[Chen et al., 2014] introduce a bilateral consistency
metric to predict the occlusion at SCam reliably.
[Wang et al., 2015] describe an angular patch occlusion
model, i.e., a single-occluder model, in which edge
detection is required to obtain the occlusion boundary.
When a multiple-occluder appears, it cannot work
well because the single-occluder assumption does not
hold. To overcome this drawback, [Zhu et al., 2017]
describe a multiple-occluder modeling and then adopt
an un-occluded view selection and re-selection scheme.
Since its accuracy relies on the occlusion boundary,
a disparity edge map is combined with an edge map
to improve occlusion boundary detections. However,
these works are somewhat restricted to dense light
fields.
In contrast, the proposed framework, which is modeled
by filter-based kernel density estimations with a sep-
arate occlusion-aware optimization technique, is not
limited to the dense or narrow disparity range of the
light field. The experimental results demonstrate that
our method achieves a significantly high accuracy in
multiple densities and disparity ranges of light fields,
advancing the state-of-the-art performance.

3 APPROACH
Fig. 3 shows an overview of our approach. Taking a
central view of light fields (Sec 3.1) for instance, the
local disparity map (LDM) is initially produced from
a winner-take-all strategy onto score-volume compu-
tations (Sec 3.2). Then a disparity edge map (DEM),
canny edge map (CEM), superpixel edge map (SEM),
occluded pixels map (OPM) are put into the occlusion
handling site to extract an occlusion boundary map
(OBM) and tweak the score of occluded pixels (Sec
3.3). With the aid of these occlusion detection results,



Figure 3: The proposed framework.

the final disparity map (FDM) is better generated under
optimizations when compared with the LDM (Sec 3.4).

3.1 Light Fields
The light field, in the paper, is represented by two-
plane parametrization (2PP) in which a camera plane
is parametrized by the coordinate system (s, t) and the
image plane (u,v). Then it could be simply seen as a
collection of a plane of views with radiance values r in
the RGB color space, described as r = L(s, t,u,v), in
which (s, t) represents a camera coordinate and (u,v)
indicates a coordinate of a pixel on the image plane.
The light field view, which is being estimated, is de-
noted by Rs∗,t∗ . Then, according to this view, a radiance
set Rs,t,u,v(d) is easily built by assigning a hypothetical
disparity d to light rays or pixels, as given in Eq. 1:

Rs,t,u,v(d) = {L(s, t,u+d ∗ (s∗− s),v+d ∗ (t∗− t))

|s = 1,2, ...,M; t = 1,2, ...,N}
(1)

where (M, N) denotes the angular resolution of the light
field. The subscript (u,v) that corresponds to the pixel
or light ray in a view is replaced with p in the following
texts for simplicity.

3.2 Score-Volume Computation
Our score-volume computation is composed of two
steps: 1) initially computing the score volume, 2)
filtering the score volume. The (filtered) score vol-
ume indicates a 3D array (u,v,d) that stores the
scores/probabilities of candidate disparities d for a
pixel p in a light field view.
A kernel density function is employed to the initial
score volume calculations, which is formulated as
follows:

Sp(d) =
1
|Ω| ∑

s,t∈Ω

Kh (Rs∗,t∗,p−Rs,t,p(d)) (2)

where Sp(d) is the score of the pixel p of the being es-
timated view Rs∗,t∗ at the candidate disparity d where

the maximum value corresponds to the true disparity in
volume, and Ω represents a number of valid views for
score computations. Kh(·) corresponds to the Epanech-
nikov kernel that is given in Eq. 3 and h is its bandwidth
parameter (= 0.02), which controls the accuracy of the
density estimation. Actually, a higher value of h in-
creases the accuracy and robustness to noise. However,
it will lose fine details.

Kh(x) =
{

1−
∥∥ x

h

∥∥2 ∥∥ x
h

∥∥≤ 1
0 otherwise

(3)

Rather than the increase of h, a window-based filter,
i.e., an edge-aware preserving filter [He et al., 2010], is
introduced to filter out some noises, which is computed
as follows:

S̃p(d) = ∑
q

WpqSq(d) (4)

where S̃p(d) is the filtered score of Sp(d) and Sq(d) is
the score of the neighboring pixel q in a window. Since
the filtering adopts an integral image based technique,
it has a low complexity burden O(N). The weight of this
filter is computed as below,

Wpq =
1

|ω|2 ∑
k:(p,q)∈ωk

{
1+

(Ip−µk)(Iq−µk)

σk
2 + ε

}
(5)

where Wp,q gives a higher weight to the pixel on the
same side of the edge and a lower weight to the pixel on
opposite sides of the edge in a window ωk centered at
the pixel k. The side length of this window ωk is adap-
tive to the spatial resolution (w,h) of the light field, i.e.,
max(

⌊
max(w,h)2/(256∗min(w,h))

⌋
,3). I is a guided

image, namely the light field view Rs∗,t∗ that is being
estimated; µk and σk are the mean and variance of the
window ωk in I respectively; ε is set to 0.01; |ω| is the
number of the pixels in ωk. The more effectiveness of
this technique than the only increase of the h is shown
in Fig. 4, clearly reducing the speckle noise.

3.3 Occlusion Handling
Assuming that the scene in light fields is lambertian, the
scene point that is seen from different viewpoints shares



RMSE 0.4183 RMSE 0.2891 RMSE 0.1139
Figure 4: Compared with the increase of h, the edge-
preserving filter demonstrates its higher ability (a lower
RMSE) to remove the noises without losing fine details.

the same color, exhibiting the photo-consistency. How-
ever, this is not true for the point that is occluded. Some
pixels from such a point in the score-volume computa-
tion step might be correctly estimated due to the edge-
aware score volume computation. Nevertheless, the
disparities of pixels at heavy occlusion regions still re-
main difficult to be well-estimated due to ambiguities.
As a result, a pixel with a wrong disparity may be as-
signed a highest score. To address this issue, the oc-
cluded pixel detection (OPD), occlusion boundary de-
tection (OBD) and score-volume recomputation (SVR)
are proposed.

3.3.1 Occluded Pixel Detection
Some pixels disappear in parts of the views due to oc-
clusions, breaking off the photo-consistency. Assuming
that the scene is lambertian, a simple thresholding tech-
nique could be applied to detect these occluded pixels
and obtain the occluded pixel map OPM, as given be-
low,

Cp(d) =
1
|Ω|∑

Ω

(1− exp(−|Rs∗,t∗,p−Rs,t,p(d)|)) (6)

where Cp(d) indicates the occlusion confidence of the
pixel p of the view Rs∗,t∗ at the estimated disparity d.
If the confidence of a pixel is larger than a specified
threshold τ (= 0.05), it is masked as an occluded pixel
(OP = 1); otherwise it is unoccluded (OP = 0).

3.3.2 Occlusion Boundary Detection
Occlusion boundary detection is a significant step
for the occlusion handling as its accuracy makes
differences for the following disparity re-estimation
and occlusion-aware optimization. To guarantee its
precision, multiple edge cues are proposed to precisely
detect occlusion boundaries.

Firstly, a fact to be known is that there always ex-
ist edges between an occluder and an occluded region,
which is ascribed to lighting changes in-between. Thus
the following lemma is given.
Lemma I. An occlusion boundary set OBs is a proper
subset of an edge set EGs.

The edge set is approximately constructed in our work
for efficiency, i.e., a union of edge points and edge lines,

EGs ' EGpoint ∪EGregion (7)

where EGpoint denotes the edge points that are acquired
by an edge detector, and EGregion indicates the edges
from a region/superpixel detector [Stutz et al., 2018].
Note that the region size is set to a smaller value so as
to be not much larger than the objects in the scene. Ad-
ditionally, a small region used in a superpixel detector
could boost the edge accuracy.

The occlusion boundaries that belong to the occlusion
boundary set OBs are taken from the approximated
edge set. Firstly, for the view Rs∗,t∗ , a disparity edge
map DEM is computed from a relatively reliable
local disparity map LDM using a canny edge detector
[Canny, 1986], and an edge map EM is intersected by
the canny edge map CEM and the superpixel edge map
SEM. Then we calculate an intersection of DEM and
EM to get an initial occlusion boundary map OBMi.
Furthermore, the disparity variance in a 10x10 window
and the difference operator are computed as masks to
update the difference between OBMi and themselves in
order to remove edge point outliers,

EMu = Mdisp ∗ (EM−OBMi)

DEMu = M∇ ∗ (DEM−OBMi)
(8)

where Mdisp and M∇ denote the disparity mask and the
difference mask respectively. If the pixel has a dispar-
ity variance beyond a threshold ϕ that is adaptive to the
disparity range, Mdisp is assigned 1, otherwise 0. Sim-
ilarly, if the pixel has a difference beyond a specified
threshold ∇(= 0.05), M∇ is assigned as 1, otherwise 0.
Finally, a union of multiple maps are used to produce
the occlusion boundary map OBM = OBMi∪DEMu∪
EMu with a high precision.

3.3.3 Score-Volume Recomputation
The score volume recomputation consists of two steps:
1) computing the disparity bound, 2) score-volume
computation, targeting the improvement of the oc-
cluded pixel disparity estimation.
Disparity Bound The new upper bound ub and the
lower bound lb in disparity are determined by the
disparities of pixels in their neighborhood beforehand.
The upper and lower bound are assigned to the max-
imum and minimum disparity of neighboring pixels
respectively.
Score-Volume Computation The procedure in the
previous score-volume computation is reused here,
but there exist two differences. The first difference
is that a disparity bound, i.e, a half-closed interval
[lb,ub), is utilized for computing the occluded pixel
score OccSp(d) for the pixel p of the view Rs∗,t∗ at a
candidate disparity d. The second difference is that the
visible views Ωvis for photo-consistency are selected.
More specifically, the relative location of the occluded
pixel to the occlusion boundary from OBM (with rare
negative occlusion boundaries) is used to simply select



w/o occ with occ Ground truth
Figure 5: Comparisons between without (w/o) and with
occlusion detection results (occ) in the energy function.
It demonstrates that the proposed occlusion-aware en-
ergy function contributes to a higher accuracy (a lower
RMSE 0.099) without over-smoothing the sharp edges.

the visible views.
At the end of the occlusion handling flow, the occlusion
boundary map with a high accuracy can be extracted
and the score of the occluded pixel will be improved,
which are beneficial to the following optimization step.

3.4 Optimization
Our disparity estimation is optimized by minimizing a
Markov Random Field-based energy function, as given
in Eq. 9.

E = λ ∗∑
p

Edata(p,d(p))+ ∑
q∈Np

Esmooth(p,q,d(p))

(9)

where Np is a 4-neighborhood of the pixel p of the view
Rs∗,t∗ , q represents one of the neighboring pixels and
d(p) denotes a disparity that is mapping to an integer.
Herein λ (= 10) is introduced to balance the ratio of the
data term and the smoothness term.
The data term in the energy function is built by weight-
ing the score S̃ and the occlusion score OccS,

Edata(p,d(p)) = κ−α ∗ S̃p(d)− (1−α)∗OccSp(d)
(10)

where Edata measures the photo-consistency for the
pixel p, α is a weighting coefficient (= 0.6) and κ is
a large constant (= 10).
The smoothness term is computed by a weighted neigh-
boring function,

Esmooth(p,q,d(p)) = wp,q ∗min(|d(p)−d(q)|,Γ)
(11)

wp,q = exp(−
||Rs∗,t∗,p−Rs∗,t∗,q||2

ψ2 −
|OBp−OBq|

φ 2

−
|OPp−OPq|

φ 2 )

(12)

where Γ represents a truncated threshold that is set to
10; ψ and φ is set to 1/9 and 1 respectively; OB is
an occlusion boundary mask from the occlusion bound-
ary map OBM and OP is an occluded pixel mask from

the occluded pixel map OPM that are enforced as con-
straints. If an occlusion boundary exists in-between
two pixels or one of two neighbouring pixels is an oc-
cluded pixel, the strength of smoothness will be re-
duced. Besides, the color in the view Rs∗,t∗ , is encoded
as a constraint in which two pixels with different col-
ors will decrease smoothness. To solve the proposed
occlusion-aware energy function, the graph cut algo-
rithm [Kolmogorov and Zabih, 2002] is used. As a con-
sequence, the proposed occlusion metrics in the energy
function especially help a lot to avoid over-smoothing,
hence preserving sharp edges, see Fig. 5.

4 EXPERIMENTAL RESULTS
We present the results of the proposed approach
that are evaluated on light field datasets, which are
composed of synthetic datasets and natural datasets.
In order to validate the accuracy and scalability, the
experimental results are compared with several state-
of-the-art references, PSD [Jeon et al., 2015], OADE
[Wang et al., 2015], SPO [Zhang et al., 2016], and
an Enhanced Depth Estimation Reference Software
eDERS [Senoh et al., 2018]. Note that the results
from the state-of-the-art references are generated
by utilizing their public code under default settings,
except for the number of labels and the disparity range.
For validations onto both datasets, two metrics are
adopted: a direct metric RMSE for synthetic datasets
with available ground truth, and an indirect metric
for natural datasets without ground truth (i.e, view
synthesis quality using the estimated depth maps).

4.1 Synthetic Dataset
A popular synthetic dataset HCI [Wanner et al., 2013]
with ground truth is used for qualitative and quantitative
comparisons. Note that the number of labels and the
disparity range used into the state-of-the-art works are
set to the same values with the proposed method for the
sake of better comparisons. The HCI dataset includes
9x9 densely-sampled light field views with a low reso-
lution and has quite a low disparity range, i.e., less than
8 pixels. To well estimate the disparities, 101 disparity
labels (a label is less than 8/100 pixel) are employed in
all four approaches. Table 1 illustrates that we achieve
the highest accuracy of disparity maps on this dataset
when compared with PSD, SPO and OADE. Herein,
the RMSE for the central view of light fields is calcu-
lated as done in [Chen et al., 2014, Wang et al., 2015,
Zhu et al., 2017] thanks to the given ground truth. Fig.
6 shows our visual comparisons against the ground truth
and the three references. From this comparison, we
clearly observe that our framework produces the closest
disparity maps to the ground truth with good disparity
discontinuity preservations.



Dataset Buddha Buddha2 Horses Medieval MonasRoom Papillon StillLife Average
PSD 0.109 0.071 0.151 0.125 0.084 0.248 0.294 0.154

OADE 0.098 0.109 0.146 0.115 0.088 0.108 0.199 0.123
SPO 0.076 0.101 0.113 0.094 0.075 0.081 0.119 0.094

Proposed 0.057 0.071 0.072 0.099 0.072 0.088 0.103 0.080
Table 1: The Root Mean Squared Error (RMSE), the lowest value in bold black means the highest accuracy.

(a) Central View (b) Ground truth (c) PSD (d) OADE (e) SPO (f) Proposed

Figure 6: Disparity estimation results on the HCI dataset. From the top to the bottom, it corresponds to the scene
’Buddha’, ’MonasRoom’, ’Papillon’, ’StillLife’ respectively. Our disparity maps seem less noisy than SPO and
less over-smoothed than PSD and OADE at occlusion boundary regions, see close-ups of ’StillLife’, ’Buddha’,
etc.

4.2 Density and Disparity Range
When the light field is sparsely-sampled with a large
disparity range, it might pose a challenge for the state-
of-the-art methods. Hence, we explore the performance
of the proposed method on such light fields, which are
obtained by skipping a multiple of 2 views from the 9x9
views in both angular directions (i.e., the 5x5 and 3x3
light fields in the paper). Similar to Sec 4.1, the RMSE
is calculated for the 5x5 and 3x3 light fields. The
computed RMSE is firstly made comparisons with that
in Sec 4.1. We can see from Fig. 7 (a) that the errors
seem almost unchanged except in the scene ’Horses’.
Furthermore, we compare the proposed results with the
state-of-the-art references, which is shown in Fig. 7 (b)
and (c). It demonstrates that the proposed method, in

contrast, mostly achieves the lowest errors and exhibits
the robustness to the density and disparity range of the
light field. Our method, meanwhile, get at least 14.9%,
19.6%, 29.3% RMSE gains on average in the 9x9, 5x5
and 3x3 light fields respectively. Fig. 8, Fig. 9 and
Fig. 10 illustrate the visual comparision results on the
’Medieval’, ’Papillon’ and ’StillLife’ scene respec-
tively. We observe that the quality of the disparity map
from OADE [Wang et al., 2015] degrades gradually
with a smaller number of light field views, whereas the
PSD [Jeon et al., 2015] and SPO [Zhang et al., 2016]
decrease a bit but more than that of the proposed
method. Moreover, the proposed method does not
behave more smoothed as PSD [Jeon et al., 2015] or
more noised as SPO [Zhang et al., 2016]. Therefore



(a) Proposed (b) 5x5 (c) 3x3

Figure 7: The RMSE of the proposed framework in the 9x9, 5x5 and 3x3 light fields is shown in (a). (b) and (c)
show the RMSE comparisons between the proposed and the state-of-the-art references in the 5x5 and 3x3 light
fields respectively. The lowest value means the highest accuracy.

5x5

(a) Central view and Ground truth

3x3

(b) PSD (c) OADE (d) SPO (e) Proposed

Figure 8: Disparity estimation results on ’Medieval’. Our disparity map is robust around the edges of the wall
and/or the box.

5x5

(a) Central view and Ground truth

3x3

(b) PSD (c) OADE (d) SPO (e) Proposed

Figure 9: Disparity estimation results on ’Papillon’. Our disparity map is achieved with a preciser disparity
discontinuity and without noise, see the edges of the leaves.

our method is scalable to the density and disparity
range of the light field.

4.3 Occlusion Boundary
Since the accurate occlusion detections were integrated
into our global optimization, the occlusion boundary
map OBM extracted from the final disparity map FDM

has a significantly high precision. Table 2 gives our
performance against the-state-of-the-art methods on the
HCI dataset (9x9 light fields) using the common metric
Precison-Recall [Sundberg et al., 2011]. An edge de-
tector is used for extracting the proposed and the ground
truth occlusion boundary. From the quantitative value,
we learn that the precisest occlusion boundaries on av-



5x5

(a) Central view and Ground truth

3x3

(b) PSD (c) OADE (d) SPO (e) Proposed

Figure 10: Disparity estimation results on ’StillLife’. Our disparity map is robust around the surface of the ball.

Dataset Buddha Buddha2 Horses Medieval MonasRoom Papillon StillLife Average
OADE 0.6632 0.7515 0.7617 0.6043 0.7469 0.7965 0.6181 0.7086
PSD 0.5536 0.7355 0.7354 0.5719 0.6831 0.6089 0.5145 0.6290
SPO 0.6927 0.8330 0.7642 0.6894 0.7449 0.8352 0.7115 0.7530

Proposed 0.7719 0.8480 0.8409 0.6240 0.7786 0.7818 0.6950 0.7629
Table 2: The Precision-measure of occlusion boundaries, the highest value means the highest accuracy.

Figure 11: The precisions of the proposed occlusion
boundary results onto the 9x9, 5x5 and 3x3 light fields
respectively.

erage are obtained by the proposed work. In addition,
the precison values for 5x5 and 3x3 views are also cal-
culated. Note that the 5x5 and 3x3 light fields are also
obtained by skipping a multiply of 2 views in both an-
gular directions, similar to Sec 4.2. In Fig. 11, when the
number of light field views is reduced, the precision of
the occlusion boundary decreases by a very small value,
illustrating that the proposed method is also scalable to
occlusions in multiple densities and disparity ranges of
light fields.

4.4 Natural dataset
In addition to synthetic datasets, the challenging nat-
ural datasets ULB Unicorn [Bonatto et al., 2017] and
Technicolor Painter [Sabater et al., 2017], which have
a larger baseline (35 and 70 mm resp.) for objects at
a distance of 0.5 to 4m and a fewer number of views
(5x5 and 4x4 views resp.), are evaluated. Moreover, in
these datasets, there exists a larger disparity range, i.e.,
[16-76] and [30, 90] in pixels respectively. Since these

two datasets lack ground truth disparities, the view syn-
thesis results generated from view synthesis reference
software [Stankiewicz et al., 2013] are used for evalu-
ations, apart from visual comparisons on depth maps
that are simply converted from disparity maps. For the
view synthesis, two depth maps from two views are re-
quired. As the OADE, PSD and SPO are used to pre-
dict the disparities for the central view of light fields,
we compare our technique with another state-of-the-art
technique eDERS [Senoh et al., 2018] (using the same
number of disparity labels 241). The experimental re-
sults show that the better synthesized/virtual maps are
produced from our technique, especially at occlusion
regions. Fig. 12 shows that the synthesized map using
the proposed depth maps looks much cleaner, see the
close-ups in (e) and (f). In Fig. 13, (b) and (c) clearly
show that our method correctly estimates the wooden
stand and the chair disparities whereas this fails in eD-
ERS. Furthermore, the synthesized map gets more ben-
efits from the proposed depth maps than from the eD-
ERS depth maps, see the close-ups in (e) and (f).

5 CONCLUSIONS
An occlusion-aware framework via multiple edge cues
and score updates is proposed for disparity estimation
in light fields. Through a variety of evaluations, the pro-
posed method achieves a higher accuracy of disparity
estimation on both synthetic and natural datasets when
compared with the state-of-the-art approaches. More-
over, the fidelity of the disparity map is still kept even
in a sparse light field with a large disparity range.



(a) Left and right views (b) eDERS depth maps (c) Proposed depth maps

(d) Reference/Central view (e) eDERS synthesized map (f) Proposed synthesized map

Figure 12: Depth map and view synthesis result comparisons on the ULB Unicorn dataset. From the top to bottom
in (a-c), they correspond to the left and right camera view respectively.

(a) Left and right views (b) eDERS depth maps (c) Proposed depth maps

(d) Reference/Central view (e) eDERS synthesized map (f) Proposed synthesized map

Figure 13: Depth map and view synthesis result comparisons on the Technicolor Painter dataset. From the top to
bottom in (a-c), they correspond to the left and right camera view respectively.
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