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ABSTRACT
Bidirectional Texture Functions (BTFs) are view- and illumination-dependent textures used in rendering for ac-
curate simulation of the complex reflectance behavior of fabrics. One major issue in BTF rendering is the large
number and size of images which requires lots of storage. "Visually lossless" compression offers the potential to
use higher compression levels without noticeable artifacts, but requires a rate-control strategy that adapts to image
content and loss visibility.
In this contribution, we investigate the applicability of objective image quality metrics to predict levels of percep-
tion degradation for compressed BTF textures. We apply traditional error-sensitivity and structural similarity based
approaches to predict levels of perceptibility for compressed BTF textures to achieve visually lossless compres-
sion. To confirm the validity of the present study, the results of an experimental study on how decreasing the BTF
texture resolution influences the perceived quality of the rendered images with the results of the applied image
quality metrics are compared.
In order to compare two representatives from each group were selected. The Visible Differences Predictor (VDP)
and Visual Discrimination Model (VDM) are typical examples of an image quality metric based on error sensi-
tivity, whereas the Structural SIMilarity index (SSIM) and Complex Wavelet Domain Structural Similarity Index
(CWSSIM) are specific examples of a structural similarity quality measure.
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1 INTRODUCTION
To have a photo realistic display of fabrics, a real illu-
mination and view dependent surface texture represen-
tation, called the Bidirectional Texture Function (BTF),
was introduced in [1].

SBTF =
∫

p∈P
(θi,φi,xp,yp,θo,φo) δ p, (1)

BTF is a six-dimensional function representing the ap-
pearance of a material sample surface for variable illu-
mination (θi,φi) and view (θo,φo) directions, where θ

and φ are elevation and azimuthal angles, respectively,
and (x,y) is the planar position over a material surface.
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The three-dimensional textured models rendered
through BTF rendering method are subject to various
types of distortion during acquisition, synthesis, com-
pression and processing. An appropriate image quality
assessment scheme is a useful tool for evaluating image
processing algorithms, specially algorithms designed to
leave the image visually unchanged (e.g. compression
algorithms) [2].

While the quality assessing task is simple for human ob-
servers, it actually involves very complex psychophys-
ical mechanisms. Due to the high complexity of the
human visual system (HVS), understanding it with cur-
rent psychophysical knowledge is nearly impossible.

Currently, the only reliable way is to compare the over-
all visual similarity of two textures by independent ob-
servers in a psychophysical experiment [3–6]. How-
ever, this method is expensive, and it is usually too slow
to be useful in real-world applications. As an alterna-
tive solution, BTF data modeling quality can be verified
using objective image quality metrics (IQMs).



This paper makes an attempt to validate these models
with regard to predicting the visible quality differences
in images rendered by compressed and non compressed
BTFs.

For comparison of the traditional error-sensitivity and
structural similarity based approaches, two represen-
tatives from each group were selected: The Visible
Differences Predictor (VDP; [7]), Visual Discrimina-
tion Model (VDM; [8]), the Structural SIMilarity index
(SSIM; [9]) and Complex Wavelet Domain Structural
Similarity Index (CWSSIM; [10]).

The metrics were implemented and the results obtained
from the predictions of the models were compared with
each other and with the outcomes of a subjective quality
measure experiment, which involved quality compari-
son tasks with pairs of textured objects of varying BTF
quality levels [11].

In the next section, we will introduce the fundamentals
of objective image quality assessment and review rele-
vant full-reference objective quality metrics. Next some
instances of the predictions of the models are presented
and their performance is characterized accordingly. Af-
ter discussion on the models, the detection results of
metrics are compared with each other and with the out-
comes of the user study, which is then followed by a
conclusion and an outlook.

2 OBJECTIVE IMAGE QUALITY
METRICS

The goal of Objective Quality Metrics is to design
mathematical models that are able to predict the qual-
ity of an image accurately and automatically. An ideal
method should be able to mimic the quality predictions
of an average human observer.

Pixel-Based Metrics such as Root Mean Square (RMS)
error or Peak Signal to Noise Ratios (PSNR) fail to as-
sess the perceived degree of realism since they neglect
important properties of the human visual system and
�poorly predict the differences between the images.

The philosophy used in constructing an objective image
quality metrics is one of the major criterion employed
for their classification. While traditional perceptual ap-
proaches to image quality assessment (bottom-up) are
directly connected with the characteristics of HVS and
try to simulate all the relevant components and psy-
chophysical features as basic building blocks, and then
combine them together, the ultimate goal of the struc-
tural similarity based approaches (top-down) is to make
hypotheses about the overall functionality of the entire
HVS and treat it as a black box, where only its input-
output relationship is of concern. This section gives a
overview of the general philosophy of both metrics and
introduces the most popular and widely used metrics in
each category.

2.1 Error Sensitivity Based Image Qual-
ity Measurement

A great variety of objective image quality assessment
methods follow an error sensitivity based paradigm that
attempts to analyze and quantify the error signal in a
way simulating the characteristics of human visual error
perception. In this part we will outline the perceptually
driven image quality metrics that are used in this study
that we will describe in the following, namely, VDP and
VDM.

2.1.1 Visible Differences Predictor
The Visible Differences Predictor (VDP; [7]) is one of
the well-known image distortion metrics, which con-
sists of three main components: calibration of the input
images, a HVS model and a method for displaying the
visible differences.

The algorithm receives a pair of images (original and
compressed images), and parameters for viewing condi-
tions as input. After the calibration of the input images,
in the next stage the HVS is modeled i.e. the lower-
order processing of the visual system, such as the op-
tics, retina, lateral geniculate nucleus, and striate cor-
tex. The HVS model uses processes to limit the visual
sensitivity.

Firstly, the original pixel intensities are compressed by
the amplitude non-linearity based on the local lumi-
nance adaptation. Afterwards, the contrast sensitivity
function (CSF) is processed to model the variations as
a function of spatial frequency and so as to take into ac-
count the global state of luminance adaptation, orienta-
tion, image size and eccentricity from the fovea region.
The sensitivity S as a function of ρ radial spatial fre-
quency in c/deg is modeled by the following equation
( [7]):

S(ρ,θ , l, i2,d,e) = (2)

P ·min[S1(
ρ

ra · re · rθ

, l, i2),S1(ρ, l, i2)],

where θ is the orientation in degrees, l is the light adap-
tation level in cm/m2, i2 is the image size in visual de-
grees, d is lens accommodation due to distance in me-
ter, and e is eccentricity in degrees. The parameters ra,
re and rθ model the changes in resolution due to the ac-
commodation level, eccentricity and orientation and P
is the absolute peak sensitivity of the CSF.

The resulting images are decomposed into the spa-
tial frequency and orientation channels using the cor-
tex transform introduced by [12]. Cortex transform is
a multi-resolution pyramid that simulates the spatial-
frequency and orientation tuning of simple cells in the
primary visual cortex. For every channel and every
pixel, the global contrast and elevation of the detec-
tion threshold based on masking is calculated. This



detecting threshold is then used to normalize the con-
trast differences between target and mask images. The
normalized differences are input into the psychometric
function which estimates the probability of detection of
differences for a given channel. This estimated prob-
ability value is summed across all channels for every
pixel, and visualization of visible differences between
the target and mask images is performed.

While this metric is designed for low dynamic range
(LDR) images, [13] proposed an high dynamic range
(HDR) extension of VDP, that can handle the full lu-
minance range visible to the human eye. The modi-
fications improve the prediction of perceivable differ-
ences in the full visible range of luminance and under
the adaptation conditions corresponding to real scene
observation.

2.1.2 Visual Discrimination Model

Another frequently used image discrimination measur-
ing method is the Sarnoff Visual Discrimination Model
(VDM; [8]). The Visual Discrimination Model acts in
the spatial domain by firstly using an approximation of
the point spread function of eye’s optics, according to
which the input data are convoluted. Next, the signals
are re-sampled to be able to reproduce the sampling of
photo-receptor in the retina. To break down the images
into seven different resolutions, VDM uses a Laplacian
pyramid [14]. At this stage each resolution must be one-
half of the immediate higher image. Band-limited con-
trast computations are then performed.

In the next step, the selectivity of orientations in four
different orientations is applied. To do this through
steerable filters of Freeman and Adelson [15], a group
of orientation filters were implemented. CSF was
modelled through normalization of the output of every
frequency-selective channel by the base-sensitivity
for that channel. To implement masking, a nonlinear
sigmoid is used. This is performed after convolving
the errors at each level with disk-shaped kernels.
Eventually, JND (Just Noticeable Differences) map or
a distance measure is calculated as the Lp-norm of the
responses of the masks. In the visual field of an ob-
server, the eccentricity of images is an important factor.
VDM is one of the few models that appropriately takes
this into account. For color video, VDM was modified
to the Sarnoff JND metric [8],

J =
1

ln2

∫ 0

Vmax

√
M(V )

Mt(V )

dV
V

, (3)

where Vmax is the maximum spatial frequency dis-
played, M(V ) is the modulation transfer function of
display and Mt(V ) is the threshold modulation transfer
function of the human visual system.

2.2 Structural Distortion Based Image
Quality Measurement

The fundamental principle of the structural approach
is that the human visual system is highly adapted to
extract structural information (the structure of objects)
from the visual scene, and therefore a measurement
of structural similarity (or distortion) should provide a
good approximation of perceptual image quality.

In this section, we will mainly focus on two very re-
cent and exceptionally successful general-purpose im-
age quality assessment approaches, the Spatial Domain
Structural Similarity Index (SSIM; [9]) approach and
the Complex Wavelet Domain Structural Similarity In-
dex (CWSSIM; [10]) approach. These approaches are
based on high-level top-down hypotheses regarding the
overall functionality of HVS (see [16]).

2.2.1 Spatial Domain Structural Similarity Index

Under the assumption that human visual perception
is not built for detecting absolute, exact intensities,
instead it is adapted to help us navigate the three-
dimensional space we live in and, consequently, is
highly adapted for extracting structural information
from a scene, [9] introduced the Structural SIMilarity
Index (SSIM).

In particular the SSIM index is a framework for qual-
ity assessment based on the degradation of structural
information and is mostly sensitive to distortions that
break down natural spatial correlation of an image such
as blur, blocking, ringing, and noise.

The SSIM separates the task of measurement into three
functions: Luminance l(x,y), contrast c(x,y), and struc-
ture s(x,y). Given two images (or image patches) of x
and y for comparison, the three similarity functions are
then combined to yield the general form of the SSIM
index structural similarity:

SSIM(x,y) = l(x.y)α · c(x.y)β · s(x.y)γ , (4)

where α ,β ,γ are positive constants used to weight each
comparison function.

SSIM is a window-based algorithm that uses a square
window, moving pixel-by-pixel over the image to mea-
sure loss of correlation, luminance distortion and con-
trast distortion locally [9]. To evaluate the overall image
quality, a mean SSIM (MSSIM) index is calculated as
follows:

MSSIM(X ,Y ) =
1
M

M

∑
i=1

SSIM(xi,yi), (5)

where M is the number of samples in the quality map,
xi and yi are the image contents at the i-th local window,
and X, Y are the input images.



The structural similarity metric yields a result in a range
of 0.0 to 1.0, where zero corresponds to a loss of all
structural similarities and one corresponds to being an
exact copy of the original image. Images with lighting-
related distortions alone yield a high SSIM value while
other distortions result in low similarities, correspond-
ing well with the intuitive perception of quality.

2.2.2 Complex Wavelet Domain SSIM

A major drawback of the spatial domain SSIM algo-
rithm is that it is highly sensitive to translation, scal-
ing and rotation of images while perceptual metrics can
successfully account for contrast and luminance mask-
ing, they are quite sensitive to spatial shifts, intensity
shifts, contrast changes, and scale changes.

[10] suggested to implement a structural similarity
metric in the complex wavelet domain and make it
insensitive to these "non-structured" image distortions
that are typically caused by the movement of image ac-
quisition devices, rather than the changes in the struc-
ture of objects in the visual scene [10]. In addition, if an
application requires an image quality metric that is un-
responsive to spatial translation, this extension of SSIM
can be adopted.

Given complex wavelet coefficients cx and cy that corre-
spond to compared image patches x and y, the complex
wavelet structural similarity (CWSSIM) is yielded by:

CWSSIM(cx,cy) =
2 | ∑N

i=1 cx,i,c∗y,i |+K

∑
N
i=1 | cx,i |2 + | cy,i |2 +K

, (6)

where c∗ denotes the complex conjugate of c and K is a
small positive constant.

The proposed algorithm shows some interesting con-
nections with several computational models that have
been successfully used to account for a variety of bi-
ological vision behaviors such as those pointed out by
[17–19]. However, the algorithm does not provide any
information on correspondences between the pixels of
the two compared images and the method works only
when the level of translation, scaling, and rotation is
small (compared to the wavelet filter size).

3 EXPERIMENT
The goal of the experiment is to investigate the valida-
tion of error sensitivity and structural distortion based
image quality metrics to predict the visible differences
between compressed and non compressed texture reso-
lutions. To achieve this, we analyze and compare the
results of these models against each other and with the
outcomes of the user study such as, performance of sub-
jects (i.e., the subjects’ ability to judge image quality
differences) and the gaze data (locations and frequen-
cies of fixations).

In the experimental study three datasets have been
used. The first one was corduroy, available in the
BTF database of the University Bonn1, which we will
refer to as Cord-256, whereby its texture pictures are
256x256 pixels. We generated two additional datasets
by downscaling the Cord-256 set through bilinear
interpolation to respective resolutions of 128x128
pixels (Cord-128) and 64x64 pixels (Cord-64). For
each of the three texture data sets, a three dimensional
textured model of a sofa was rendered through the
standard BTF rendering method at a screen resolution
of 1920x1080 pixels.

The sofa model was oriented for presentation to the
viewer so as to present textured parts across a large
range of picture depth. We chose a sofa to have an
object with a structured surface and composition (e.g.,
individual buttons, cushions, etc.). This is important
in order to ensure that a large set of fitting BTF pic-
tures will be selected as basis for the object’s texture,
with widely varying illumination and viewing angles
(see Figure 1).

Pairs of images were displayed on a full screen in na-
tive resolution mode. Each pair consist of a sequentially
presented rendering with the use of two of the three tex-
ture resolutions (256x265, 128x128 and 64x64). After
the presentation of each pair, subjects were asked to
make a decision about the comparative image quality
within the pair: was the first or second image of bet-
ter visual quality? Or were the two images of the same
visual quality? A SMI RED250 remote eye tracking
system was used in binocularmode with 250 Hz fixa-
tion detection, in order to record subjects’ fixation be-
havior. A total number of 20 subjects, 12 males and 8
females, participated in the experiment, and they were
not informed about the purpose of the experiment prior
to conducting it.

The same sofa object model in the experimental study
stimuli as well as one additional spherical object, which
contains various angles and depth combinations, were
utilized for making performance and detection results
comparable with the outcomes of the experimental
study. For the texture, two cases were considered in-
cluding the Cord already known from the experimental
study and Pulli, which is also available in the BTF
database of the University Bonn.

Both objects are rendered in three levels of resolutions
namely: 256x256, 128x128 and 64x64 pixels, which
are referred to as Cord-256 / Pulli-256, Cord-128 /
Pulli-128 and Cord-64 / Pulli-64, respectively.

The images were presented on a 24-inch monitor with
a resolution of 1920x1080 pixels at a distance of 70
cm from the viewer. The screen measured 22.35x15.80

1 http://btf.cs.uni-bonn.de/.



VDP VDM SSIM CWSSIM
Fixation location Fixation location Fixation location Fixation location

Cord-256 _ Cord- 64 -0.808 -0.1772 -0.498 -0.643
Cord-128 _ Cord- 64 -0.753 -0.1728 -0.320 -0.582
Cord-256 _ Cord-128 -0.015 -0.473 -0.155 -0.0617

Table 1: Correlations between IQMs results >75% of fixation location independently of presentation order. (p >
0.0001)

VDP-Depth VDM-Depth SSIM-Depth CWSSIM-Depth Fixation-Depth
of the pixel of the pixel of the pixel of the pixel of the pixel

Cord-256 _ Cord- 64 -0,1636 -0,6961 -0,0173 -0,2872 -0.2705
Cord-128 _ Cord- 64 -0,1124 -0,6929 -0,0092 -0,4498 -0.2305
Cord-256 _ Cord-128 -0,0061 -0,6413 -0,0055 -0,5105 -0.2405

Table 2: Correlations between IQMs results, number of fixation and depth of the pixel independently of presenta-
tion order. (p > 0.0001)

#equal #correct V DM SSIM CWSSIM
Cord-256 _ Cord- 64 49 382 0.93624 0.963 0.822
Cord-128 _ Cord- 64 44 383 0.89378 0.971 0.838
Cord-256 _ Cord-128 423 63 0.39004 0.994 0.949

Table 3: Frequencies of correct answers, incorrect equal-quality answers (accumulated over all 20 subjects; sum
of answers per pair: 480); and dprime value from VDM, SSIM and CWSSIM

inches and subtended approximately 33 degrees of vi-
sual angle. Due to the texture pattern, the minimal tex-
ture detail (i.e., for the parts of the sofa at the great-
est depth in the image) had a cycle of 4 pixels, which
means a subtended angle for a viewer of about 6 cycles
per minute of a degree of arc. We employed the same
condition for all the metrics.

3.1 Detection Results and Performances
In this section both, the output detection images of
the image quality metrics, and the outcome of the user
study are compared. The implemented metrics received
pairs of images as input. The output detection images
of the metrics were then compared and discussed.

For all the models, the following approach was em-
ployed [20]: the numerical value of the difference be-
tween images is the percentage of pixels for which the
probability of difference detection is greater than 0.75.
It is assumed, that the difference can be perceived for
a given pixel when the probability value is greater than
0.75 (75%), which is the standard threshold value for
discrimination tasks, [21]. This output value therefore
ranges between 0 and 100 , where 0 means the best re-
sult (no pixel with probability of difference detection
greater than 0.75), while 100 means that all the pixel
differences are above the difference detection threshold
(the worst result).

However, since we also need a single overall quality
measure, we use a mean index in the case of SSIM
and CWSSIM models and JND for VDM. The index
values fall within a range of 0 to 1, where 1 in JND

value of VDM means the worst quality, and 0 denotes
an indistinguishable difference between the input im-
ages, which is in case of SSIM and CWSSIM mean in-
dex conversely.

Figures [1,2–4] present the output images of the met-
rics. To have a better comparison between metrics the
results of two famous pixel-based metrics, the MSE and
PSNR, for each image pair are also presented.

Next gaze fixation distributions of subjects across the
sofa images were analyzed in order to assess whether
differences exist for different image pair comparisons.
Fixation counts for cells in an overlaid 16x16 grid are
shown in Figure 1 (upper part) for three conditions.

Correlations between VDP/ VDM results (above 75%)
and respective fixation location patterns can be ob-
served in Table 1. We observed strong correlations be-
tween locations of predicted visually perceivable differ-
ences by VDP and observed fixation patterns only for
Cord-256 and Cord-64 as well as Cord-128 and Cord-
64, while significant, albeit a very poor correlation ex-
ists for VDM and fixation patterns for all image pairs.
The results show a poor correlation for SSIM and CWS-
SIM.

In the next step, the responses of objective quality met-
rics to pixel depth for each image pair and the percent-
age of fixation in each depth were controlled.

Table 2 illustrates the correlation between IQMs re-
sponses and the depth of pixels as well as the corre-
lation between fixation position and the depth of these
pixels. The results show a poor correlation between



Figure 1: The output images of four IQMs by sofa with different ’Cord’ texture resolution pairs. The color-
scales on the right side indicate probability values of metrics in each pixel. The last row presents Just Noticeable
Difference (JND) values of VDM, SSIM and CWSSIM. Additionally the MSE and PSNR, for each image pairs
are also presented.

VDP, VDM and fixation and a significant correlation
between SSIM, CWSSIM and pixel depth.
As shown by Figures 7, all curves react similarly to
depth from quality perspective, but VDM is less sen-
sitive than other metrics.
The first two columns of Table 3 illustrate the number
of correct and equal answers yielded for each of image
pairs, and the remaining columns present the result of
VDM, SSIM and CWSSIM. The results show a signif-
icant correlation between subjects’ ability to perceive
differences between images and IQMs predictions.
In order to control the correlation between the saliency
map (SM), Regions of Interest (ROI) and the responses

of IQMs, we followed [22] and computed a ROI map
from the subjects’ fixations.

The ROI map is a probability distribution of the gaze di-
rection, therefore its integral is normalized to 1. Figure
5 (left-down) shows the ROI map obtained from indi-
vidual fixations.

To define the saliency map the algorithm proposed by
[23] was employed, with a new definition of the visual
features (intensity, colour and orientation), which is the
most popular in computer science, and has led to more
convincing oculometric validations (see Figure 5 (right-
up)). The Saliency Toolbox for Matlab, which is avail-
able online, was utilized in the present study [24].



Figure 2: The output images of four IQMs by sofa with
different ’Pulli’ texture resolution.

Total execution time (s)
Sofa Sphere

VDP 7.256 4.654
VDM 0.340 0.152
SSIM 0.282 0.134
CWSSIM 0.929 0.432

Table 4: Total execution time in second. All the metrics
run on the same machine.

Compared to the saliency maps shown in Figure 5, the
ROI map is smoother. The saliency map and ROI are
significantly correlated when r = 0.560 and p < 0.001.

Table 5 illustrates the correlation between IQM re-
sponses and ROI as well as the correlation between
IQM responses and saliency map. As observed, the
value between each IQM for ROI and saliency map
is highly correlated when r = 0.893 and p < 0.001.
The correlation coefficients between the adopted exper-
imental subjective data set (ROI) and IQM responses
exhibit that all models, except for VDM model, exhibit
a good level of consistency with the subjective data.

The computation time is also another significant factor
for selecting the image quality assessment. The com-
putational complexity is measured in terms of time re-
quired by each of the metrics to assess the quality of a
pair of images. In this step, each metric was computed
for all pairs of images and then the average time was

Figure 3: The output images of four IQMs by sphere
with different ’Cord’ texture resolution.

determined. The metrics were run on a computer with
a 3.20 GHz Intel Xeon Six-Core processor.

In order to allow for a fair comparison, the publicly
available Matlab implementation of each metric was
used. The average performance of all the methods is
provided in Table 4. SSIM, CWSSIM and VDM have
a complexity of O(N). This is due to the fact that these
metrics work in the spatial domain avoiding the expen-
sive FFT and FFT−1 transformations. This transfor-
mation can take up to 40% of the total execution time
in VDP, and thus increase the complexity of this model
to O(NlogN) with an upper bound of O(N2) (see [25]).

To control the reaction of the metrics to different geo-
metrical distortions the object in the scene (sofa) was
shifted without any other quality distortions and then
used as a distorted image. Additionally we applied the
metrics to blurred, salt & pepper and Gaussian noise
contaminated images. Figure 6 illustrates the output de-
tection images of the metrics.

4 DISCUSSION
The differences between the metrics are caused by plac-
ing pressure on different aspects of human visual per-
ception. Nevertheless the results show that all metrics
can be an appropriate replacement for subjective quality
measurement matrices.

The vision models have different ways to visualize the
detected probability. While VDP uses a psychometric



VDP VDM SSIM CWSSIM
ROI SM ROI SM ROI SM ROI SM

Cord-256 _ Cord- 64 0.71 0.79 0.21 0.19 0.75 0.61 0.72 0.84
Cord-128 _ Cord- 64 0.63 0.57 0.23 0.20 0.73 0.58 0.83 0.85
Cord-256 _ Cord- 128 0.013 0.011 0.19 0.21 0.15 0.12 0.35 0.47

Table 5: Correlation between objective image quality metrics; VDP, VDM, SSIM and CWSSIM with ROI and
saliency map (p > 0.0001).

Figure 4: The output images of four IQMs by sphere
with different ’Pulli’ texture resolution.

function, which describes the relationship between the
threshold contrasts and detection probabilities, to con-
vert the normalized threshold contrasts into detection
probabilities, all other models make direct use of JND
map and neglect the psychometric function.

An advantage of the output map is that the nature of the
difference can be observed and this observation can be
used for further rendering optimizations.

The results show a significant correlation between sub-
jects’ ability to perceive existing differences between
the images and predictions of VDM/CWSSIM mod-
els. Based on this investigation, it seems that VDM and
CWSSIM can well predict the differences between two
images.

The responses of objective quality metrics to pixel
depth for each image pair shows that all react similarly
to depth but VDM is less sensitive than other metrics.
Due to the textured pattern, the texture details for the
parts of the sofa from the depth of 0.3 to 0.8 have

Figure 5: Depth map (left-up) ROI map (left-down),
saliency map (right-up) and fixation map (right-down)

a 4 to 5 cycles per degree. HVS is most sensitive
to intermediate ranges of spatial frequencies (around
4-6 cycles/degree), and is less sensitive to spatial
frequencies both lower and higher than this. This
explains why the metrics and the number of fixations
have a higher rank in these depths.

The results of this experimental study showed that two
groups of image comparisons exist. The first group con-
sists of comparisons between Cord-256 and Cord-128.
For this group, subjects are largely unable to perceive
existing differences between the images. All models
predict few visually perceivable differences for image
pairs in this group.

The second group consists of comparisons between
Cord-256 and Cord-64 as well as between Cord-128
and Cord-64. For this group, subjects are largely able
to see the differences between the pairs. The models
predict a larger number of differences which are also
detectable with a higher probability.

Where strong correlations were observed between lo-
cations of predicted visually perceivable differences by
VDP/CWSSIM and observed fixation patterns, a signif-
icant correlation was also observed between subjects’
ability to perceive existing differences (the number of
correct answers) and the results of VDM and CWSSIM
tests (JND).

As observed, all models, expect VDM, are able to
detect regions of interest in images. This feature is
promising for future research on ROI issues. The com-
putation of VDM, SSIM and CWSSIM does not require



time consuming Fourier transformations (as VDP does)
and they are certainly faster than that of VDP model.

Second, it was observed that all metrics are highly sen-
sitive to small translations, scaling and rotations, which
lead to high predicted perceptability values in metrics,
even though no quality differences are available in com-
pared images. In the frequency domain, small trans-
lations, rotations and scalings lead to consistent phase
changes. Due to the fact that VDP works in frequency
domains, it reacts with greater sensitivity to geometri-
cal distortions than other metrics. According to [16],
this problem can be overcome by analyzing images in
complex wavelet domains through Structural Similarity
based metrics, but the results were not promising in the
case of the presented study.

Another common problem shared by the models is the
disregard for color perception by HVS as well as incor-
poration of just the contrast sensitivity and luminance
adaptation. A promising direction in the future would
be an analysis of full-colored images.

Additionally, there is a lack of no-reference perceptual
picture quality metrics, since both of the metrics are
relative (full-reference). It is supposed that more work
could be done in the field of no-reference image quality
assessment.

Figure 6: Objective quality metrics responses to shifted,
salt & pepper and Gaussian noise contaminated and
blurred images.

5 CONCLUSION
In the contribution, we investigated the suitability and
integrity of certain image quality metrics, the traditional
error-sensitivity and structural based to predict levels of
perceptibility for compressed BTF textures. To confirm
the validity of obtained results, they were compared
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Figure 7: The percentage of fixation in each depth and
the responses of VDP and VDM to the pixel depth be-
tween Cord-256 _ Cord- 64 (top), Cord-128 _ Cord- 64
(middle) and Cord-256 _ Cord-128 (bottom).

with those obtained by an experimental study. In our
validation experiment, it was observed that VDM and
CWSSIM can in general better predict the differences
between two images. On the other hand, VDP is bet-
ter able to detect the location of visible differences in
images.

Structural based IQMs are able to successfully predict
image quality in close agreement with traditional error-
sensitivity based IQMs.

The computation time is also another significant fac-
tor in image quality assessment, specially so when real-
time image resolution changes need to be introduced as
per the assessed quality of the rendered scene. In this
scenario, all models, except VDP, prove to be proper
options. This is because VDM, SSIM and CWSSIM
operate in the spatial domain and unlike VDP, do not
use the Fourier transform. However, in situations where
one needs to improve the image quality of only parts of
an object, only VDP can provide enough information
on those areas requiring a higher resolution.

As observed, all models, expect VDM, are able to
detect regions of interest in images. This feature is
promising for future research on ROI issues.
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