
3D Object Classification and Parameter Estimation
based on Parametric Procedural Models

Roman Getto Kenten Fina Lennart Jarms
Technische Universität Darmstadt

Fraunhoferstr. 5 64283 Darmstadt, Germany
{firstname.lastname}@gris.tu-darmstadt.de

Arjan Kuijper Dieter W. Fellner
Technische Universität Darmstadt & Fraunhofer IGD

Fraunhoferstr. 5, 64283 Darmstadt, Germany
arjan.kuijper@mavc.tu-darmstadt.de
dieter.fellner@gris.tu-darmstadt.de

ABSTRACT
Classifying and gathering additional information about an unknown 3D objects is dependent on having a large
amount of learning data. We propose to use procedural models as data foundation for this task. In our method we
(semi-)automatically define parameters for a procedural model constructed with a modeling tool. Then we use the
procedural models to classify an object and also automatically estimate the best parameters. We use a standard
convolutional neural network and three different object similarity measures to estimate the best parameters at each
degree of detail. We evaluate all steps of our approach using several procedural models and show that we can
achieve high classification accuracy and meaningful parameters for unknown objects.

Keywords
Procedural model, parametric model, parameterization, 3D object classification, deep learning.

1 INTRODUCTION
The most widely accepted approach for 3D Object
Classification is the database-approach. A class is
learned by having all types of example objects within
a database. However, this approach is not applicable
to all domains. A large database with all examples for
the desired classes is not always available. In research
environment there are several big databases that
provide enough data to learn different classes and then
evaluate the performance of a classification algorithm.
In real applications we have actual classes of objects
in mind which do not fit to the classes offered in the
test databases. The amount of 3D data is often not
available and the cost and time effort to produce such a
database is tremendous. For 2D (image) classifications
the data-approach is more affordable since images are
available for literally everything. Many approaches
tried to make 3D data more available and delivered
environments to easily create new 3D objects, even
for non-expert users. However, in direct comparison
to image data, 3D data is still near non-existent.
When insufficient data is available, one approach is
to represent a class directly by a procedural model.
The procedural model is a more abstract description

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

of an object by representing the object implicitly by a
parameterizable object construction algorithm. There-
fore, the procedural model corresponds to a blueprint
of an object class. Creating a single procedural model
includes some effort but can then be used as a complete
data foundation for a desired class. In many cases
it is more affordable to create a blueprint instead of
gathering a vast amount of example objects.

Our contribution is a complete processing pipeline to
achieve classification and parameter estimation using
procedural models as basis. Also, the pipeline con-
tains three separate contributions: The algorithm to
(semi-)automatically generate parameters for a proce-
dural model, a scheme to use procedural models for
deep learning, and the parameter estimation technique
using three different similarity measures.

In the following Section we review related work. Sec-
tion 3 presents our methodology including the procedu-
ral model definition, the classification with deep learn-
ing, and the parameter estimation. In Section 4 we eval-
uate and discuss each step of the pipeline individually.
Finally, we conclude and outline future work.

2 RELATED WORK
Procedural models are often referred to as grammars
[Tal11] or L-systems [Št’10]. In general a 3D procedu-
ral model is a description of building scheme for a class
of 3D objects, which allows to easily generate many dif-
ferent variations. Therefore, procedural models excel in
content generation. Instead of an implicit grammar rep-
resentation, a procedural model can also be represented
by a concatenation of parameterized procedures. The

Step 1: Procedural Model Creation

Class: glass_with_stem

Parameters: (1.012, 1.1,

0.99, 0.5, 1.604, 0.5)

Generated

Object

Step 3: Parameter Estimation

Step 2: Classification

Modeling

Procedural Model

Parameterization of

the Procedural Model

Convolutional Neural

Network (CNN)

Unknown

3D Object

3 Layered Hill

Climbing Optimization

Training Data

Procedural Model

Figure 1: The full pipeline of our system: procedural models are created to represents blueprints of an objects
class. These are used to classify and estimate the parameters of an unknown database object.

sequence describes the building process and the param-
eterization allows the variation of the building process.

Bokeloh et al. [Bok12] propose a procedural modeling
algorithm which works on regular structured polygon
meshes. A procedural model is automatically gener-
ated, so that parameters change the shape of the object
while preserving the regular patterns optimally. This
approach shows that procedural models are generally
very powerful in terms of flexibility. Still, this approach
is only suited for cases with regular structured objects.

Other approaches tackle the problem of variation gener-
ation by recombining several objects. Jain et al. [Jai12]
create variations by part-based recombinations. Yumer
et al. [Yum15] define variations with terms like ’luxuri-
ous’ ’sporty’ or ’expensive’. Wang et al. [Wan11] use a
symmetry hierarchy to vary objects. Other approaches
use box templates [Ave14] to represent a blueprint of
a class. Generally, all these approaches are limited to
the already available 3D objects. In terms of flexibility
procedural models are vastly superior.

In a previous work [Get17] we proposed a definition of
procedural models as a concatenation of procedures by
using modeling operations. We use this framework for
our work to define our initial procedural models.

Ullrich et al. [Ull11] presented a work with a con-
cept similar to ours. They define a 3D object proce-
durally and compare the procedural model to a query
object to estimate the parameters. However, in their ap-
proach, the procedural model is designed and param-
eterized manually and the similarity is only based on
a surface difference measure. Our approach includes
semi-automatization of the creation of the procedural
model, deep learning of the class and a more reliable
layered parameter estimation.

To measure the difference between two 3D Objects
many so-called descriptors have been proposed. These
are focused on different aspects, using histograms
[Osa02], topology graphs [Mar07] or image properties
of rendered images [Vra05]. For our initial parameter
estimation we use the panorama descriptor [Pap10]

which is considered to be one of the best geometrical
descriptors [Li15] .

For the 3D object classification the descriptors have
also been used to directly learn single classes of 3D
objects [Wes08, Wan15]. However, deep learning
mostly outclassed previous approaches. Maturana et al.
[Mat15] and Wu et al. [Wu15] proposed convolutional
neural network (CNN) approaches directly learning
on voxel representations. Su et al. [Su15] developed
a multi-view CNN learning on rendered 2D Images of
3D objects. With this approach they achieve higher
accuracy than any comparable approach. The authors
reason that currently the relative efficiency using 2D
data is higher than using 3D representations. For this
reason we also use a CNN approach learning on 2D
rendered images.

3 METHODOLOGY
We propose a system based on procedural models. We
train a Convolution Neural Network (CNN) with the
procedural model and propose a technique to estimate
the values of all parameters of the procedural model.
We present the concept of our pipeline in Figure 1.

The procedural model itself consists of a concatenation
of parameterized procedures. In contrast to an explicit
surface representation like a polygon mesh, the proce-
dural model is an implicit object representation. The
procedures describe a construction algorithm. When
the procedures are executed subsequently an instance of
the procedural model is generated. The instance of the
procedural model is a 3D polygon mesh itself. When
the parameters of the procedures are changed, the re-
sulting mesh changes. Therefore, the procedural model
offers the possibility to generate infinite variations by
varying the parameters.

For the initial creation of a procedural model we use the
tool and the algorithm of Getto et al. [Get17]. The con-
cept of the tool is that a procedural model is automati-
cally generated during the modeling of a single object.
The modeling operations are transformed to procedures

of the procedural model obeying several rules, e.g. the
rule of locality, so that parameter changes only have
local effects. The boundary representation is a sparse
control mesh of a subdivision surface. The edges can be
marked as smooth or sharp. It offers basic operations,
allowing to insert, remove, drag and connect vertices,
edges and faces. Additional a path of face extrusions
can be performed by sketching a line from a face.

3.1 Semi-Automatic Parameter Insertion
While the procedural model is modeled manually,
we propose a semi-automatic parameter insertion
technique to enhance the process of creating the fully
parameterized procedural model. Our goal is to com-
pute several possible variations and show them to the
user, so that the user can decide which variations make
sense. Therefore, the user can define all parameters
with a few clicks. As the user cannot inspect every
possible parameter, we order the possible variations by
’importance’ and furthermore automatically group re-
lated parameters together. Table 1 shows the complete
overview of the relevant operations. Operations only
including ids (e.g. connect faces) are not relevant for
the parameterization.

Procedure Parameters: An extrusion and a drag is
described with cylindrical coordinates ρ,φ and z. A
rotation-extrude is defined by the width w and length l.
The insert vertex operation defines the the position of
the new vertex on an edge as barycentric coordinate λ1
(λ2 = 1−λ1). A scale has a relative size σ and a rotate
has a rotation angle α .

Automatic Variations: For all these operations, we
define parameter variations to evaluate the importance.
These are shown in Table 1. The automatic variations
mostly include doubling, halving or inverting the pa-
rameters as suitable.
Importance Evaluation Measures: To measure the
importance of an operation we follow a simple rule:
The bigger a change the higher the importance. We gen-
erate a single mesh for every variation and compare the
varied mesh to the original mesh taking into account 5
measures. The overview Table 1 shows the composition
of the evaluation measure for each parameter variation.
For all measures the base mesh is normalized, so that
the centroid is at the origin and the mesh is within a ra-
dius of 1. The volume is computed with the method of
Zhang et al. [Zha01]. The surface area is the sum of all
polygon areas. The bounding sphere has its center at the
origin and its radius is the distance to the furthest vertex
of the mesh. The coordinate plane projection difference
is computed by projecting the surface of the mesh on to
the three coordinate plane. We conduct this projection
by creating an image of 64x64 pixels for each plane. A
pixel is set to true if any part of the object is projected
onto this pixel. The average distance is the average Eu-
clidean distance of a vertex of the original mesh and the
respective vertex of the varied mesh. The final value of

the difference of the two meshes is calculated by the
following equations:

δp =
p(v)− p(b)

p(b)
(1)

δpro jection =
∑

m
i=0 xor(vpixel_i−bpixel_i)

m
(2)

δvertexdistance =
∑

n
i=0 |vvertex_i−bvertex_i|

n
(3)

v = variation mesh,b = base mesh,
p ∈ {volume,sur f ace,BSvolume},

m = number o f pixels in pro jection planes,
n = number o f vertices in the mesh

Parameter Grouping: Groups of parameters are new
parameters themselves. When the group parameter is
changed all underlying operations are changed respec-
tively. Groups of parameters are formed by finding re-
lated operations with related parameters. This is gener-
ally the case if two operations are similar. Operations
are similar if their values are similar. Therefore, we
first define the similarity of two values x and y and two
angles α and β :

similarity(x,y) = 1− |x− y|
max(1, |x|, |y|)

(4)

similarity(α,β) = 1− |α−β |
c

c ∈ {45,90} (5)

For the similarity of angles we need to cover addi-
tional special cases since two angles of related opera-
tions should be considered similar if the one angle is
the mirrored version of the other. The angles are de-
fined in a local plane in u-v-space. We consider 4 dif-
ferent angles: the original, mirrored on the u-axis, mir-
rored on the v-axis and mirrored on both. Furthermore,
we check 4 additional angles: the original angle rotated
by 90 degrees and all 3 mirrored version of this angle.
For this 4 angles the criteria for the similarity are more
tight: we half the range of similarity, which is achieved
by exchanging the 90 by a 45 within the equation.

To calculate the similarity of two operations we multi-
ply all similarities of their parameters. Finally, we set
a threshold for the similarity of each operation as some
operations are much more likely to have a higher simi-
larity (e.g. insert vertex) than others.

After finding all similar operations we need to further
process them to identify actual groups. We can deduct
the relation of operations by their relative position in
the sequence of operations. We identified that related
instructions are either present in the pattern AA or with
the pattern ABAB. This means they are not only similar
but also subsequent, as in pattern AA. Or a combination
of operations AB is subsequent, forming the pattern
ABAB. Finally, we build groups of similar operations
which are present in one of these two patterns within
the sequence of operations of the procedural model.

User based parameter choice: A parameter is consid-
ered to be important if the importance value is bigger or

Operation Procedure

Parameters

Automatic

Variation

Importance

Evaluation Measure

New Inserted

Parameter

Initial Range

of

Similarity

Threshold

Drag 0.85

Rotate 0.7

Importance of > 1 = important

range checking (throw away if not finished generating)

related instructions put in groups

Insert Vertex

0.3

0.45

0.95

0.9

Extrude

(Sketching)

Rotation-

Extrude

(Sketching)

Scale

(𝜌, 𝜙, 𝑧)

(𝑤, 𝑙)

𝜆1
𝜆2 = 1 − 𝜆1

(𝜎)

(𝜌, 𝜙, 𝑧)

(𝛼)

(2𝜌 , 𝜙, 2𝑧)

(𝑤, 2𝑙)

𝑖𝑓 𝜆1 ≥ 0.5 ∶ 0.5 + 0.5𝜆1

𝑖𝑓 𝜎 > 1 ∶ (2𝜎)

(2𝜌, 𝜙, 2𝑧)

(−𝛼)

𝜌, 𝜙 + 180(0.5 − 1), 𝑧

𝑖𝑓 𝜌 > 0.15𝑧 𝑎𝑛𝑑 𝜙 ∈ [90,270) :

𝑖𝑓 𝜌 > 0.15𝑧 𝑎𝑛𝑑 𝜙 ∈ [270,90) :

𝜌, 𝜙 + 180(1.5 − 1), 𝑧

(0.5𝑤, 𝑙)

𝑖𝑓 𝜎 < 1 ∶ (0.5𝜎)

𝑖𝑓 𝜆1 < 0.5 ∶ 0.5𝜆1

0.75𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 + 0.1𝛿𝑣𝑒𝑟𝑡𝑒𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

0.15𝛿𝑣𝑜𝑙𝑢𝑚𝑒 + 0.3𝛿𝑠𝑢𝑟𝑓𝑎𝑐𝑒
+0.1𝛿𝐵𝑆𝑣𝑜𝑙𝑢𝑚𝑒 + 0.2𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
0.7𝛿𝑣𝑜𝑙𝑢𝑚𝑒 + 0.15𝛿𝑠𝑢𝑟𝑓𝑎𝑐𝑒
+0.05𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
0.1𝛿𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 0.3𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
+0.15𝛿𝑣𝑒𝑟𝑡𝑒𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

0.5𝛿𝑣𝑜𝑙𝑢𝑚𝑒 + 0.25𝛿𝑠𝑢𝑟𝑓𝑎𝑐𝑒
+0.1𝛿𝐵𝑆𝑣𝑜𝑙𝑢𝑚𝑒 + 0.15𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
0.7𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 + 0.1𝛿𝑣𝑒𝑟𝑡𝑒𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝜌 = radial distance, 𝜙 = angular coordinate, 𝑧 = height , 𝑤 = width, 𝑙 = length, 𝜆 = baryzentric coordinate, 𝜎 = relative scale, 𝛼 = rotation angle
𝛿𝑣𝑜𝑙𝑢𝑚𝑒 = volume difference, 𝛿𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = surface area difference, 𝛿𝐵𝑆𝑣𝑜𝑙𝑢𝑚𝑒 = bounding sphere volume difference,

𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = coordinate plane projection difference, 𝛿𝑣𝑒𝑟𝑡𝑒𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = average vertex distance difference

0.1𝛿𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 0.5𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
+0.15𝛿𝑣𝑒𝑟𝑡𝑒𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

0.1𝛿𝑣𝑜𝑙𝑢𝑚𝑒 + 0.25𝛿𝑠𝑢𝑟𝑓𝑎𝑐𝑒
+0.1𝛿𝐵𝑆𝑣𝑜𝑙𝑢𝑚𝑒 + 0.2𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

[−8,8]

[0.125,8]
𝑥 𝑥

(𝑥𝜌 , 𝜙, 𝑥𝑧)

𝜌, 𝜙 + 180(𝑥 − 1), 𝑧

(𝑤, 𝑥𝑙)

(𝑥𝑤, 𝑙)

0.5 + 𝑥𝜆1
𝑥𝜆1
(𝑥𝜌, 𝜙, 𝑥𝑧)

(𝑥𝜎)

(𝑥𝛼)

[0,2.0]

[0.125,8]

[−2,1]

[1,1.9]

[0.1,1.0]

[−3,3]

[0.125,5]

Table 1: Overview of all relevant operations used to automatically parameterize the procedural model.

equal than 1. Additionally, we include the user in this
step and offer a simple interface to inspect all parame-
ters and choose all important parameters. This interface
is shown in Figure 2. The parameters are ordered by
their importance. The user can check or uncheck any
individual parameter or parameter group. He can create
new groups and rename parameters.

Figure 2: The user interface of the parameter insertion.

Range Estimation: For the random generation of vari-
ations we need to additionally define a valid range for
the parameter x. The overview Table 1 shows the initial
range estimations for every parameter type. For each
parameter we generate a mesh with the maximal and
minimal value for the specific parameter and measure
the difference to the base mesh using the panorama dis-
tance [Pap10]. If the panorama distance is bigger than a
threshold C · t the range is diminished and reevaluated.
t is obtained by measuring the panorama distance to all
generated variations of all inserted parameters.

T hreshold =C · t (6)

C = constant multiplier(de f ault C = 1)
t =max∈ {panorama distance to all generated meshes}

3.2 Classification with Deep Learning
We propose to use the very deep Convolutional Neu-
ral Network (CNN) Inception [Sze15] to directly learn

the 3D object with rendered images of the object. The
last fully connected layer of the inception network can
be retrained with a relative small amount of 3D data.
Also the retraining is tremendously faster than train-
ing a network from scratch. We retrain the last fully
connected layer with a randomized set of images of
rendered views of the 3D object. Also, we addition-
ally generate random variations of the 3D object within
these images.
Each procedural model represents an object class. For
each class we generate 1000 variations (3D mesh). We
vary each parameter of the procedural model randomly
within the parameter range. For each of the 1000 vari-
ations we generate 10 images. In sum, we use 10 000
images per class to train the network.

Figure 3: Examples of generated learning images

Image Generation: We use rendered images of the
generated 3D objects with random perspectives. Like
[Su15] we noticed that different illumination setups did
not make significant differences in the results. In Fig-
ure 3 we show example images of our setup. Before
generating the images the 3D object is first normalized.
The center of mass of the mesh is translated to the ori-
gin. The object is scaled, so that all coordinate values
are within -1 and 1. We include a random rotation and
scaling of the object for each image. The scaling is lim-
ited to the range [0.8,2].
Object Classification: With the retrained network we
can classify images. The output of the network for a
single image is a class probability for each trained class.
To classify a new 3D object we generate 10 images and
average the classification values for each class. The 3D
object is then put in the class with the highest value.

3.3 Parameter Estimation
The procedural model has several parameters to gen-
erate variations. We estimate those parameters for a
new 3D object having the same class as the procedu-
ral model. The parameters can either be labeled by the
user, e.g. ’wing length’, or the influence of the param-
eters can be shown visually to the user by generating
exemplary objects for different values. In both cases
estimating the parameters for an unknown object gives
valuable information to the user.

The parameter estimation is based on geometrical sim-
ilarities of the unknown 3D object and the objects gen-
erated by the procedural model. It is important to note
that the procedural models cannot reproduce any ob-
ject perfectly in full detail. We use 3 different measures
with different degrees of detail. The panorama distance
[Pap10], the surface distance and a z-buffer distance.

Layer 1:
Panorama Distance

Layer 2:
Surface Distance

Layer 3:
Z-Buffer Distance

Final Result Comparison

Initial Normalization

Parameter Initialization Hill Climbing Optimization

Object Alignment Hill Climbing Optimization

Hill Climbing Optimization Hill Climbing Optimization

Figure 4: The parameter estimation consists of 3 layers
using 3 different levels of distance measures. The final
result is the best result of 4 different optimizations.

Our algorithm includes 3 layers for these 3 measures.
We show an overview of the parameter estimation in
Figure 4. We use all measures subsequently in a hill
climbing optimization to refine the estimated optimal
parameters step by step. Additionally we set thresh-
olds for the measures, so that the result of the preced-
ing layer is taken if the object cannot be represented
precisely on a layer. As a result we do not only es-
timate the best parameters but actually are able to tell
how well the parameters of the procedural model can
represent the unknown 3D object.

Panorama Distance: The panorama distance is defined
by the panorama descriptor [Pap10], which is a hybrid
descriptor based on geometrical features and image fea-
tures of panoramic views of the object.

Surface Distance: The surface distance, also known as
point-to-surface-distance is based on the distance be-
tween the actual surface polygons of both meshes. To
compute the surface distance between an instance of the
procedural model and the unknown object we generate
a set of points for both meshes. For the unknown object
we use the Poisson disk sampling [Cor12] with 2000
points. For the mesh generated by the procedural model
we take all vertices of the mesh after 2 iterations of the

subdivision. For each set of points the surface distance
of a single point is the distance to the nearest point of
the other set. We average this distance over all points.

Z-Buffer Distance: We compare the z (depth) infor-
mation of both objects pixel wise. For this distance
we generate a total of 14 views with 256x256 pixels.
We use an orthogonal projection with [−2,2] for all
boundary planes. The 14 views are the 6 views directly
from the positive and negative coordinate axes and the 8
views from the corners of a cube around the origin. We
Present the distance calculation in Algorithm 1. Note
that we penalize an undersizing of the generated ob-
ject more than an oversizing. This reinforces the initial
growing into all regions.

Algorithm 1 Z-Buffer Distance
1: procedure (Original Ob j. O,Generated Ob j. G)
2: Generate 14 views VO f or O and VG f or G
3: Distance d← 0
4: for all Views vO ∈VO do
5: for all Pixels pO ∈ vO do
6: if pO = background∧

pG! = background then
7: d = d +1
8: else if pO! = background∧

pG = background then
9: d = d +2
10: else if pO! = background∧

pG! = background then
11: d = d + |z(pO)− z(pG)|
12: end if
13: end for
14: end for
15: d is the f inal distance
16: end procedure

Initial normalization: At the start we bring both ob-
jects into a shared coordinate system. The average po-
sition of the vertices of the mesh (center of mass) is
translated to the origin. The object is scaled, so that all
coordinate values are within -1 and 1.

Hill climbing algorithm: Each layer includes a hill
climbing search with one of the distance measures. We
show the hill climbing search for a distance measure D
in Algorithm 2. All parameters are optimized with di-
minishing step sizes. Note that to measure the distance
with D and parameters P we generate a new object us-
ing the procedural model with the parameters P.

For the surface distance (layer 2) and the z-buffer dis-
tance (layer 3) an additional intermediate step has to
be inserted: When parameters of the procedural model
change and the object shape changes, the position of
the object is shifted respectively. Therefore after each
change of a parameter value the objects have to be re-
aligned before the distance measure is computed. Just

Algorithm 2 Hill Climbing Optimization
1: procedure (Distance Measure D,Parameters P)
2: Distance d← D(P)
3: do
4: Step size s← 1.0
5: do
6: for all p ∈ P do
7: for all ⊕ ∈ {+,−} do
8: pnew = p⊕ s
9: clamp pnew to [min,max] o f p
10: Distance dnew← D(pnew)
11: if dnew < d then
12: d = dnew
13: p = pnew
14: end if
15: end for
16: end for
17: while no parameter has been changed
18: s = next s ∈ {1.0,0.5,0.25,0.1,0.01,0.0}
19: while s! = 0.0
20: end procedure

like the parameter adjustment, we perform a greedy
search for the best translation, rotation and scaling. The
step size is fixed for this realignment: 0.01 for the trans-
lation and scaling, and 0.01 ·180◦ for the rotation. The
scaling is limited to a minimum of 0.5 and a maximum
of 1.5 of the original scale.

Layer 1 - panorama distance: Before the first layer
the initial normalization (scaling and translation) is per-
formed. In the first layer the parameter initialization
and hill climbing optimization with the panorama dis-
tance is performed (See Figure 4). The initialization of
the parameters of the procedural model is of major im-
portance since the following greedy hill climbing algo-
rithms can get stuck in a local extremum. The panorama
distance generally measures the distance between two
3D objects and is optimally suited to fulfill this task.
We generate a total of 10 000 objects from the proce-
dural model with random parameterization, covering a
large range of possible initialization values. We com-
pute the panorama distance of each generated object to
the unknown object. The parameters of the generated
object with the smallest panorama distance are taken
as our starting point. Then we perform a hill climbing
optimization of all parameters using the panorama dis-
tance.

Layer 2 - surface distance: In the second layer the
object alignment and hill climbing optimization with
the surface distance is performed (See Figure 4). For
the surface distance measure and the following z-buffer
distance measure we need to optimize the alignment of
both objects. We optimize the translation, rotation and
scaling in a greedy search like introduced in the hill

climbing description. However, this greedy search only
remedies small misalignments. Since the initial orien-
tation can be majorly flawed we additional consider 24
possible coordinate system rotations. The 24 rotations
include all main rotation possibilities: the x-axis can be
rotated to match one of the 6 possible positive or neg-
ative coordinate system axis and can be rotated around
itself by 0,90,180 or 270 degrees. Giving a total of
6 · 4 = 24 possibilities. For each of the 24 possibilities
we perform the alignment optimization and evaluate the
case with surface distance. The case with the lowest
surface distance is taken as the initial alignment. Fi-
nally, we perform the hill climbing optimization of all
parameters using the surface distance.

Layer 3 - z-buffer distance: In the final layer two hill
climbing optimizations with the z-buffer distance are
performed (See Figure 4). In the first case we use the
output of layer 2 as input and in the second case we
use the output of layer 1 (after the alignment in layer 2)
as input. Hence, we compute optimal parameters for 2
different starting point. Then we compare the z-buffer
distance of the two final optimization results and take
the better solution as final result.

At the end of our parameter estimation we decide which
layer result is the most adequate representation. The
procedural model might not be able to represent ev-
ery object to a pixel wise degree, hence we set thresh-
olds for the final results to decide to which extent the
procedural model represents the unknown object. We
analyzed several objects, results and distance measures
values and identified shared thresholds for the distance
measures. A z-buffer distance of lower than 0.7 and a
surface distance of lower than 0.04 represents an ad-
equate match. The final parameters correspond to the
result of layer 3 if the z-buffer distance is below 0.7.
Else it corresponds to the result of layer 2 if the surface
distance is below 0.04. If both are not the case than the
result of layer 1 gives the final parameters.

4 EVALUATION AND DISCUSSION
In this section we evaluate our approach, including
our 3 steps: the parameter insertion, classification with
deep learning and the parameter estimation. For each
step we separately show results and discuss the results.

4.1 Parameter Insertion
To evaluate the correctness of the proposed semi-
automatic parameter insertion technique we evaluate
the importance evaluation measure and the parameter
grouping. We created several example models (See
Figure 5) with the modeling tool and manually anno-
tated important parameters and appropriately grouped
related parameters. Then we retrieved the proposed
important parameters and groups automatically de-
tected by the default threshold of 1. We present our

Figure 5: Models of the parameter insertion evaluation.
Importance Grouping

CP FP FN CN Accuracy CG FG MG Accuracy
Airplane 9 1 1 11 90.91% 7 0 3 70.00%

Ship 7 3 0 8 83.33% 3 1 0 66.67%
Stool 6 3 0 12 85.71% 8 1 0 87.50%

Animal 11 12 1 18 69.05% 7 0 0 100.00%
Spaceship 6 1 0 6 92.31% 3 0 0 100.00%

Tower 11 4 1 7 78.26% 4 0 1 80.00%
Humanoid 10 8 1 12 70.97% 9 0 1 90.00%

Chair 6 6 0 8 70.00% 7 1 0 85.71%
Average 9.42 5.43 0.57 11.71 80.07% 6.00 0.38 0.63 84.98%

CP = Correct Positive CG = Correct Group
FP = False Positive, FN = False Negative FG = False Group

CN = Correct Negative MG = Missed Group

Table 2: The accuracy of the importance evaluation
measure and the accuracy of the parameter grouping

results in Table 2. The most relevant parameters are
automatically categorized as important in 80% of
the cases. 84% percent of the groups are correctly
identified by the algorithm.

Discussion: Table 2 shows that false negatives are sel-
dom. Our algorithm rather finds too many important pa-
rameters, so that false positives occur. In several cases
parameters are found to be important even though the
change of the parameter does not lead to a semantically
consistent outcome. For this reason, we include a user
phase where the user can refine parameters. Therefore,
the user is able to correct semantic inconsistencies.

The parameter grouping also has erroneous cases. The
majority of the missing groups and false groups are
caused by the insert vertex operation. The insert ver-
tex only includes a single parameter and the values are
mostly within [0.25,0.75]. Even though we have set a
tight threshold with 0.95 for this operation, the similar-
ity computation is less reliable for this operation. We
highlight the insert vertex groups for the user, so that
he can decide in these cases.

4.2 Classification with Deep Learning
To evaluate our classification approach with deep learn-
ing on rendered images, we constructed 10 procedural
models. Figure 6 shows the models. The 10 procedu-
ral models represent 10 different classes. To evaluate
our approach we use the NIST database [Fan08] and
the Princeton shape benchmark (PSB) [Shi04] together.
Table 3 shows the number of objects of each class in
the databases and also show properties of the procedu-
ral models.

We took the preset classes within the given databases
(since the NIST database only has single a class with
spiders and insects our spider class includes both). We
trained our network with a total of 100 000 images (10

Figure 6: All models that were used to evaluate the clas-
sification and parameter estimation step.

Database Procedural Model
NIST PSB Total po to-ops par-ops par

fish 18 17 35 1348 150 68 13
glass_with_stem 18 9 27 332 44 11 6

helicopter 18 35 53 1560 294 184 12
gun 36 39 75 888 161 54 15
table 36 63 99 614 87 51 6
spider 18 16 34 2976 197 137 9
sword 18 31 49 568 64 30 7

office_chair 18 15 33 1724 193 86 8
bird 18 21 39 2040 241 134 13

bicycle 18 7 25 4966 510 189 10
others 504 1562 2066

total within classes 216 253 469
total 720 1815 2535

po = number of polygons
to-ops = total number of operations

par-ops = parameterizable operations
par = number of parameters

Table 3: The number of objects for each class in the
PSB and the NIST database, and the properties of the
used procedural models

classes,1000 variations with 10 images). The retraining
took about 10 hours on a casual PC. We used our al-
gorithm for 2 different scenarios: the classification of
database objects and a 3D object retrieval scenario.

Classification: We classified every object of the
databases that belong into one of the 10 learned classes
and measured the overall classification accuracy.
Figure 7 (right) shows the accuracy for all 10 classes
resulting in the average accuracy of 86.14% (404 of
469 objects are classified correctly).

3D object retrieval: The output of a 3D object retrieval
query is a list of retrieved objects, ordered from the
most similar to the least similar. We directly use the
class probabilities given by the neural network to sort
the list of retrieved objects. A class label is the query
itself and the first object of the retrieval list is the 3D
object with the highest class probability for this class.
Here we include all 2535 objects of all databases.

Figure 7 shows the precision recall curve for the 3D ob-
ject retrieval. We compare this result with the panorama
distance by using the default instance of the procedural
model as query for the database. The panorama dis-
tance from this object to all objects in the database is
calculated and the retrieval list is sorted respectively.
We also show the result of our approach without vari-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

Recall

Panorama

CNN Retrain Without Variation

CNN Retrain

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

CNN Retrain CNN Retrain Without Variation

Total:
73.75 %
86.14 %

Figure 7: The 3D object retrieval precision-recall curve
and the classification accuracy.

ations: we generate all images without changing any
parameters and retrain the network with these images.

Discussion: The classification and the 3D object re-
trieval illustrate several properties of the approach. An
important insight is that including variations into the
learning process leads to improvements. This is not as
trivial as it might seem at first glance. We tested several
other possibilities of image generation, including ran-
dom translations and higher variations of scaling and
found out that it is easier for the neural network to learn
the class when the images are more consistent. At the
same time a good amount of variability is needed in
the images to prevent overfitting and promote general-
izability. However, our results clearly show that object
variations enhance the results in all cases.

The average classification accuracy is 86%. This is
comparable to state-of-the-art approaches like [Su15]
achieving 83-90% accuracy on the classification task.
Only the office chair and bird class achieved a lower
accuracy. The database objects are not sufficiently sim-
ilar to the initial procedural model. In Figure 8 we show
falsely classified objects. The parameters did not com-
pensate very exceptional variations of the objects.

In the precision-recall curve (Figure 7) our approach
also outperforms the panorama distance, even though
the panorama distance is among the best geometrical
distance measures. In sum, our deep learning retraining

 Figure 8: Images of falsely classified objects.

approach with rendered images of variations is fast and
works with less data than a full network learning and
still generates comparable results.

4.3 Parameter Estimation
For the final step we took all correctly classified exam-
ples of our 10 classes and estimated the parameters of
the procedural model for every unknown database ob-
ject. In total 66.09% of the final parameter estimations
origin from layer 3. 10.15% from layer 2 and 23.76%
from layer 1. Figure 9 shows the distribution of the sur-
face distance and z-buffer distance for the 4 different
results in the 3 layers. Figure 10 presents several exem-
plary parameter estimations for all classes.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 101 202 303 404
Objects

Surface Distance

Pan SD SD+Z Z

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 101 202 303 404
Objects

Z-Buffer Distance

Pan SD SD+Z Z

Figure 9: The distribution of the surface distance and
the z-buffer distance for all objects for the 4 different
results from the 3 layers.

Discussion: In Figure 9 we can detect a general advan-
tage of the layered optimization system. In the plots
we present the two different results from layer 3 sep-
arately: using the surface distance with z-Buffer dis-
tance(SD+Z) and only the z-buffer distance(Z). Here,
we can see that the distribution of the z-buffer distance
in the final layer is better on average when the output of
the 2nd layer is taken as input (SD+Z). The hill climb-
ing algorithm naturally profits from a good initializa-
tion. We can see that not only the initial setup improves
the results, but also the intermediate optimization of
layer 2 improves the results of the final layer 3.

 sword

 fish

 glass_with_stem

 helicopter

 gun

 table

 spider

 office_chair

bird

 bicycle

Layer 3 Layer 2 Layer 1

 sword

 fish

 glass_with_stem

 helicopter

 gun

 table

 spider

 office_chair

bird

 bicycle

Layer 3 Layer 2 Layer 1

Figure 10: Exemplary results for all classes. The col-
ored borders show from which layer the result origins.

Figure 11: Ten different glasses of the database sorted
by the ratio of stem length to the bowl length.

The examples presented in Figure 10 show that the
parameter estimations lead to generated objects with
similar overall appearance compared to the unknown
database objects. Most objects could be estimated on
layer 3 (z-buffer). However, the bicycle, spider and
helicopter class did not have enough flexibility to rep-
resent most of the objects on layer 3. Especially the
rotors of the helicopter, the legs of the spiders and the
thin spokes and connection bars of the bicycle could not
be matched pixel-wise. The user can improve the esti-
mations for the classes by adding additional parameters
to increase the flexibility. Nonetheless, our system is
able to provide meaningful results from layer 2 (surface
distance) and layer 1 (panorama distance) for the cases
where the procedural model is not suitable enough for
the objects.

Figure 11 presents an object characteristic derived by
the parameters. Here we order the objects by the ratio
of the stem length to the bowl length. Important to note
in this context is that ratios and differences between pa-
rameters are more meaningful than the comparison of
values of a single parameter. This is the case because
the database objects have to be normalized and the in-
stances of the procedural models have to be scaled and
aligned accordingly. Therefore, the actual values itself
are less comparable when the coordinate systems of dif-

ferent objects do not match. In the use case of having
scanned objects as input, no normalization is needed
since the values are related to real millimeter values. In
this case the actual values of single parameters are also
completely comparable.
Figure 12 shows two types of errors that we found in
the results. The bird is mostly symmetrical, so that the
instance of the procedural model happens to be mis-
aligned. The head and the tail are facing in the wrong
direction. These cases happened at some symmetrical
objects of the bird, fish and gun class. In the future we
will have to integrate an additional symmetry detection
to handle these cases explicitly.
The second error type is represented by the glasses with
stem in Figure 12. The database object does not have a
real stem. The bowl is directly connected to the base.
The procedural model does not include the case of a
stem having 0 length. Even though this result comes
from layer 3, the final parameters are distorted by the
falsely estimated stem length.

Figure 12: The bird is falsely aligned. The glass has an
estimation of the stem length even though the glass of
the database has no stem.

5 CONCLUSION & FUTURE WORK
We proposed a new approach including a system to
model and parameterize complete procedural models,
train a convolutional neural network solely with the
procedural models and finally classify an unknown ob-
ject from a database and additionally estimate all pa-
rameters of the procedural model for the unknown ob-
ject. Hence, our system does not only classify unknown
objects but also retrieve additional information.
The proposed system has a very high potential when
suitable procedural models can be created. Therefore,
the currently biggest drawback is the need to model the
initial model with the modeling tool. We will further
investigate the possibilities of automatizing this step.
Creating a method that can automatically construct a
procedural model from a single object in mesh repre-
sentation would highly enhance the ease and usability
of our system.
Our learning method shows a clear enhancement of the
results by using the variations of the objects. A further
investigation of the exact mechanisms leading to this ef-
fect should be performed. This would enable advanced
possibilities of enforcing this mechanisms.
The accuracy of the final parameter estimation step is
directly dependent on the provided procedural models.
Therefore, the final estimation will improve by further
enhancing the creation of the procedural model itself.

6 REFERENCES

[Ave14] Averkiou M., Kim V. G., Zheng Y., Mitra
N. J. Shapesynth: Parameterizing model collec-
tions for coupled shape exploration and synthesis.
In Computer Graphics Forum, vol. 33, Wiley On-
line Library, pp. 125–134, 2014.

[Bok12] Bokeloh M., Wand M., Seidel H.-P., Koltun
V. An algebraic model for parameterized shape
editing. ACM Transactions on Graphics 31, No.
4, pp. 1–10, 2012.

[Cor12] Corsini M., Cignoni P., Scopigno R. Efficient
and flexible sampling with blue noise properties
of triangular meshes. IEEE Transactions on Vi-
sualization and Computer Graphics 18, No. 6,
pp. 914–924, 2012.

[Fan08] Fang R., Godil A., Li X., Wagan A. A new
shape benchmark for 3d object retrieval. Advances
in Visual Computing, pp. 381–392, 2008.

[Get17] Getto R., Merz J., Kuijper A., Fellner D. W.
3d meta model generation with application in 3d
object retrieval. In Proceedings of the Computer
Graphics International Conference, ACM, p. 6,
2017.

[Jai12] Jain A., Thormählen T., Ritschel T., Seidel
H.-P. Exploring Shape Variations by 3d-Model
Decomposition and Part-based Recombination. In
Computer Graphics Forum, vol. 31, Wiley Online
Library, pp. 631–640, 2012.

[Li15] Li B., Lu Y., Li C., Godil A., Schreck T., Aono
M., Burtscher M., Chen Q., Chowdhury N. K.,
Fang B., et al. A comparison of 3d shape retrieval
methods based on a large-scale benchmark sup-
porting multimodal queries. Computer Vision and
Image Understanding 131, pp. 1–27, 2015.

[Mar07] Marini S., Spagnuolo M., Falcidieno B.
Structural shape prototypes for the automatic clas-
sification of 3d objects. IEEE Computer Graphics
and Applications, No. 4, pp. 28–37, 2007.

[Mat15] Maturana D., Scherer S. Voxnet: A 3d con-
volutional neural network for real-time object
recognition. In Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference
on, IEEE, pp. 922–928, 2015.

[Osa02] Osada R., Funkhouser T., Chazelle B., Dobkin
D. Shape distributions. ACM Transactions on
Graphics (TOG) 21, No. 4, pp. 807–832, 2002.

[Pap10] Papadakis P., Pratikakis I., Theoharis T.,
Perantonis S. Panorama: A 3d shape descrip-
tor based on panoramic views for unsupervised 3d
object retrieval. International Journal of Computer
Vision 89, No. 2, pp. 177–192, 2010.

[Shi04] Shilane P., Min P., Kazhdan M., Funkhouser
T. The princeton shape benchmark. In Shape

modeling applications, 2004. Proceedings, IEEE,
pp. 167–178, 2004.

[Št’10] Št’ava O., Beneš B., Měch R., Aliaga D. G.,
Krištof P. Inverse procedural modeling by au-
tomatic generation of l-systems. In Computer
Graphics Forum, vol. 29, Wiley Online Library,
pp. 665–674, 2010.

[Su15] Su H., Maji S., Kalogerakis E., Learned-Miller
E. Multi-view convolutional neural networks
for 3d shape recognition. In Proceedings of the
IEEE international conference on computer vi-
sion, pp. 945–953, 2015.

[Sze15] Szegedy C., Liu W., Jia Y., Sermanet P., Reed
S., Anguelov D., Erhan D., Vanhoucke V., Rabi-
novich A. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1–9, 2015.

[Tal11] Talton J. O., Lou Y., Lesser S., Duke J., Měch
R., Koltun V. Metropolis procedural modeling.
ACM Transactions on Graphics (TOG) 30, No. 2,
p. 11, 2011.

[Ull11] Ullrich, Torsten, Fellner, Dieter W. Genera-
tive Object Definition and Semantic Recognition.
2011.

[Vra05] Vranic D. V. Desire: a composite 3d-shape
descriptor. In Multimedia and Expo, 2005. ICME
2005. IEEE International Conference on, IEEE,
pp. 4–pp, 2005.

[Wan11] Wang Y., Xu K., Li J., Zhang H., Shamir A.,
Liu L., Cheng Z., Xiong Y. Symmetry Hierarchy
of Man-Made Objects. In Computer graphics fo-
rum, vol. 30, Wiley Online Library, pp. 287–296,
2011.

[Wan15] Wang Y., Liu Z., Pang F., Li H. Boosting
3d model retrieval with class vocabularies and
distance vector revision. In TENCON 2015-2015
IEEE Region 10 Conference, IEEE, pp. 1–5, 2015.

[Wes08] Wessel R., Baranowski R., Klein R. Learn-
ing distinctive local object characteristics for 3d
shape retrieval. In VMV, pp. 169–178, 2008.

[Wu15] Wu Z., Song S., Khosla A., Yu F., Zhang L.,
Tang X., Xiao J. 3d shapenets: A deep representa-
tion for volumetric shapes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1912–1920, 2015.

[Yum15] Yumer M. E., Chaudhuri S., Hodgins J. K.,
Kara L. B. Semantic shape editing using deforma-
tion handles. ACM Transactions on Graphics 34,
No. 4, pp. 86:1–86:12, 2015.

[Zha01] Zhang C., Chen T. Efficient feature extraction
for 2d/3d objects in mesh representation. In Image
Processing, 2001. Proceedings. 2001 International
Conference on, vol. 3, IEEE, pp. 935–938, 2001.

