
Procedural Fracture of Shell Objects

Jakub Domaradzki
Institute of Computer Science

Warsaw University of Technology
ul. Nowowiejska 15/19
00-665 Warsaw, Poland

J.Domaradzki@stud.elka.pw.edu.pl

Tomasz Martyn
Institute of Computer Science

Warsaw University of Technology
ul. Nowowiejska 15/19
00-665 Warsaw, Poland

martyn@ii.pw.edu.pl

ABSTRACT
We propose a novel algorithm to fracture brittle objects that are characterized by an empty interior and thick surface
(which we denote as shell objects), such as: vases, pots, pitchers, antique ceramic, etc. Our method augments the
previous ones based on fracture patterns and utilizes sparse voxel octrees (SVOs) as a highly efficient and detailed
object representation. In our method, the fracture pattern relies on Voronoi diagrams and is calculated on-the-fly.
The outcomes of applying the fracture pattern differ from the ones obtained with the previous methods in that
it solves the problem of planar faces of the newly generated pieces of geometry, allowing them to have concave
shapes. Without any precomputation, we are able to achieve various and interesting fractures that are unique to
each destructed object. Finally, our approach is intuitive, adaptable and fast, which makes it a good candidate for
applications in computer game industry.

Keywords
sparse voxel octree, Voronoi decomposition, pattern fracturing, procedural surface generation

1 INTRODUCTION
Nowadays various effects of object fracturing are
widely present in computer games. Wandering through
the game worlds we can usually interact with lots of
environment items and in order to increase the realism
of "being-in-the-world", we are more often allowed to
destruct them. Nevertheless, the players’ requirements
and expectations pertaining the nowadays gameplays
in general and in particular freedom in the player’s
interactions with the virtual world are continuously
rising. Needless to say that the objects populating the
game level are usually required not only to possess a
capability of being fractured, splintered, crushed, or
destroyed in some other way, but also the process of
breaking them into pieces should be unique for each
instance of a destructible geometrical asset and for the
same instance—with every restart of the game.

Therefore the approaches based on a predefined de-
struction of geometrical assets and successfully utilized
in games of the previous generations are now slowly
being replaced with more and more sophisticated tech-
niques, in which some of the calculations are performed

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

on-the-fly during the gameplay itself. Due to the con-
stant increase of computer power, especially graphics
cards, we are now very often able to perform all calcula-
tions underlying the object destruction in real-time. On
the other hand, the amount of details of the geometry
that constitutes the scenes in modern games is also still
increased, which makes the task of performing such a
unique destruction of objects directly during gameplay
even more challenging.

Thanks to the development of new voxel-based tech-
niques in a few recent years, it is now possible to uti-
lize voxels as a representation of solid objects in real-
time systems. Memory usage, one of the main prob-
lems associated with voxels, has been drastically re-
duced mainly due to taking advantage of the sparse
voxel octree structure (SVO) [Cra11]. This way a gen-
uine, highly detailed geometry with many levels of de-
tail can be easily accessed.

In this paper, we show how to enrich with details and
make unique the process of destruction when applied to
shell objects, which are featured by an empty interior
and a thick surface like vases, pots, pitchers, antique
ceramic, etc. Our approach augments the previous ones
based on fracture patterns and benefits from the SVO
representation. The outcomes of our method stand out
from those obtained with the related solutions in that
the pieces the destroyed object is falling apart to can
be concave in shape and, moreover, the geometry of the
pieces’ surface is not limited to planar facets. And what
is most important, all that we achieve in time sufficient
for computer game applications.



2 RELATED WORK
There is a wide selection of literature on fracturing
brittle objects. Over the years, many methods have
been developed. The early works in the animation of
fracture used connected point-masses and the fractur-
ing process was performed by the removal of some of
the links. This method was introduced by Terzopou-
los et al. [TF88] and Norton et al.[NTB*91], who pi-
oneered this area of study in computer graphics. Af-
terwards, the approach was improved by O’Brien and
Hodgins, who followed them and focused on simulating
brittle [OH99] and ductile fracturing [OBH02]. They
used a fully dynamic finite element method (FEM), in
order to compute the internal stress in the object be-
ing destructed. However, this approach requires very
small time steps and costly cutting mesh operations
[WRK*10]. To avoid this issues, the fracture simula-
tion tends to be formulated as a quasi-static stress anal-
ysis [GMD13][ZBG15].

On the other hand, the real-time systems, especially
computer games, utilize a more practical approach
which is based on a predefined partition of the de-
structible object into pieces, which replace the original
object while it is destroyed. While this method is fast
and gives the designer a full control over the shape and
location of fractures, its results are often a far cry from
realism. In order to improve the visual quality of this
approach and, at the same time, to stay within the limits
imposed by real-time applications, the geometry-based
methods were introduced [SSF09][BCC*11][MCK13].
Although the methods also utilize a predefined fracture
pattern, the pattern is separated from the actual ge-
ometry and is applied, oriented and scaled on demand
at the impact location. That way the observer gets
the impression that the fracturing is unique for each
destruction. The common technique to generate the
fracture patterns consists in constructing a 3D space
decomposition based on the Voronoi diagram or by
means of a simulation [IO09]. The further development
in this direction resulted in generating the fracture
pattern on-the-fly while a destructive impulse occurs
[SO14][DM16].

Although the current pattern-based approaches usually
produce good results, there is still room for improve-
ment. From our standpoint, there are two essential
problems, which we regard as challenges and would
like to address, namely: the non-planar surfaces of the
fractured pieces and their concave shape. One should
note that both problems have already been referenced in
[SO14], however, the solution presented there requires
a pre-computation step and the calculations are per-
formed on a rather fine tetrahedral mesh. The method
we present in this paper follows Domaradzki’s work et
al. [DM16] and takes a different approach to tackle
the mentioned issues. Looking for a predecessor of the

general conception our method is founded on, one can
point out a paper by Chen [CYFW14], in which visual
details were added to coarse simulation results in a post-
process step.

What is more, we strongly believe that the solution to
the addressed problems can be found, quite naturally,
in the voxel-based representation. Currently, the popu-
lar data structure for voxels to represent boundaries of
solid objects is the sparse voxel octree (SVO) [Cra11]).
Thanks to the computational power offered by today’s
GPUs, along with new GPU-specialized programming
techniques newly developed algorithms designed for
sparse voxel octrees are ready for real-time applica-
tions.

Although the SVO representation is not yet well es-
tablished in the commercial real-time graphics soft-
ware, such as professional game engine being still dom-
inated by triangle meshes, it has already proven its use-
fulness in a number of fields. To begin with, Cyril
Crassin was able to visualize global illumination in
real time using voxel cone tracing [CNS*11]. Fol-
lowing this work, Laine developed an efficient SVO
ray-tracing algorithm [LK10], proving that way that
ray-casting the SVO can be done faster than when
using triangle meshes. Furthermore, the search for
even more compact scene representations led to the
development of sparse voxel directed acyclic graphs
(SVDAG [KSA13]), which have been then improved
to Symmetry-Aware SVDAGs [VMG16], that reduce
memory footprint even further. There are also other
ways to represent the SVO-based geometry effectively,
to mention only a method of unlimited object instancing
presented by Jabłoński et al. [JM17], that can be com-
bined with a continuous and symmetrical LOD transi-
tion [JM16].

Apart from visualization itself, there has also been a
development in other graphics areas including object
animation [Bau11], deformation [Wil13], and fractur-
ing in real-time [DM16]. Last, but not least, octrees
can be built very fast using some recent techniques
presented in [ZGHG11][GPM11][Kar12] and even
by means of the out-of-core approaches described
in [BLD14][PK15], which utilize only a fraction of
memory required to store a model.

3 SVO FRACTURING
In this section, we outline our algorithm for fracturing
SVO objects. We especially target shell objects that are
empty inside and are formed by thick surfaces, such as
vases, pitchers, pots, antique ceramics, etc. Our goal is
to cut them into pieces with a slightly and locally dis-
turbed fracture pattern that is calculated on-the-fly. The
algorithm consists of two separate parts that combined
together produce a final result. The first part, we call
Basic Fracture Algorithm (or BFA—Sec. 4), is based



Figure 1: A voxel-pattern intersection test with three
Voronoi seeds.

on the previous work of Domaradzki et al. [DM16]. Its
underlying idea is to divide the SVO object into con-
vex pieces by means of a fracture pattern consisting of
planar faces, which determine the slicing areas used to
partition the object. The outcome is then processed in
the second part, we call Enhanced Fracture Algorithm
(or EFA—Sec. 5), in which the cuts are additionally
deformed by means of a local procedural surface cre-
ation. As a consequence, we enhance the previous Do-
maradzki’s algorithm in that the final cuts are less regu-
lar and more intricate geometrically and, thus, they ren-
der a more natural fracture.

4 BASIC FRACTURE ALGORITHM

The goal of BFA is to determine the subsets of SVO
voxels that represent the surfaces of the particular
fractured pieces at the accuracy of the SVO highest
level. To this end, the SVO is traversed from the root
to the leaves, and at each SVO level, the intersections
of voxels with the pattern faces are tested. Next, if a
face-voxel intersection is detected, the voxel is either
expanded to its eight children or, in the case the voxel
belongs to the object’s interior (i.e. it is not an element
of the surface), the children are dynamically created.
The resulting subsets are composed of the voxels
intersected by the fracture pattern faces at the highest
SVO level and, of course, the original leaf voxels of
the SVO object surface. A voxel is assigned to a given
subset on the basis of the closest Voronoi seed to the
voxel’s location (Sec. 4.1). Then, for each subset, we
build a SVO founded on the subset’s voxels treated as
the SVO leaves. A more detailed description of the
algorithm can be found in [DM16].

4.1 Fracture Pattern
The fracture pattern used in this algorithm is repre-
sented by a finite set of 3D points, which represent the
seeds of a Voronoi diagram. In order to achieve a more
realistic fracture, we want it to concentrate around the
impact location. This can be obtained by aligning the
center of an existing fracture pattern with the impact
location as presented in [SSF09] and [MCK13]. How-
ever, following work in [DM16], we also create the
fracture pattern on-the-fly. In this goal, we generate the
Voronoi seeds at random on a set of spheres of growing
radii, which are centered at the point of impact. Having
this set of seeds it is not required to determine the faces
of the Voronoi diagram for the voxel-pattern intersec-
tion test, which can be performed directly based on the
set as follows:

Let S = {1, . . . ,n} be the set of the indices of the
Voronoi seeds {si}i∈S. Define a function γ : R3 → 2S

such that

γ(x) = {k ∈ S : ‖sk− x‖= min
i∈S
‖si− x‖}. (1)

Given a point x ∈ R3, the function γ returns the set of
the indices of the Voronoi cells that include x. (Note
that the resulting set is not a singleton, if x is located on
a face, an edge, or a vertex of the Voronoi diagram).

The voxel-pattern intersection test can be done by
means of the following function:

f(V ) =
⋃
v∈V

γ(v). (2)

which, given a voxel specified by the set V = {vi}i=1,...,8
of its vertices, maps the voxel into the set of the indices
of the Voronoi cells the vertices are situated in.

It is easy to see that the voxel is intersected by a face
of the fracture pattern if and only if the set of indices
given by f(V ) is not a singleton (fig. 1).

5 ENHANCED FRACTURE ALGO-
RITHM

In the second step, we improve the result obtained by
BFA to give the fracture a more realistic appearance. In
this purpose, we must face the two main deficiencies of
the previous algorithm: the lack of concave fractured
pieces and their totally planar surfaces.

5.1 Distance Metric Approach
To begin with, there is a solution that might be used to
produce outcomes satisfying our needs. However, it is
expensive in memory and computation. The approach
is based on influencing the distance metric that is used
in the calculations in the voxel-pattern intersection test
(sec. 4.1). The distance metric can be altered in two
ways.



Figure 2: An example of a crack surface represented by
a set of triangles, created within a voxel on the SVO
transition level.

First, one can deform the fracture pattern as in [M05].
Following that, we would have to use a 3D noise texture
and sample it along the ray from a voxel corner to a
Voronoi seed, accumulating the result and treat it as a
distance. Such an approach would take a lot of memory
to store the texture and load operations to sample it with
the 3D interpolation to receive a smooth outcome.

Another method, presented in [SO14], first applies a
deformation to the object and then the fracturing pro-
cess operates on the deformed object. Finally, the re-
verse deformation is applied to the result, producing
deformed pieces of fractured geometry. Although this
method is faster than the previous one, it encounters dif-
ficulties with the hierarchical representation of the de-
structed object. What is more, it would have to be per-
formed on-the-fly, as building the new deformed SVO
object comes with the loss of information (as presented
in [Wil13]).

5.2 Procedural Crack Surface Creation
Taking into consideration challenges presented in the
previous section, we propose another solution. Follow-
ing BFA (sec. 4), we traverse the SVO from the root
to the leaves. On each SVO level we get a set of vox-
els containing the information whether a voxel is inter-
sected by a face of the fracture pattern and, if so, which
Voronoi seed is the nearest to the voxel’s vertices. As a
result, if we stop BFA on any intermediate SVO level,
then the outcome can be viewed as a partition of the
SVO object with an approximation of the Voronoi dia-
gram. Depending on the level we stop, the size of vox-
els differs and so the volumes of the pieces the voxels
make up. The volumes may be treated as subspaces,
within which crack surfaces can be procedurally gener-
ated. The crack surfaces will be used in the final step
of the algorithm to enrich the original planar and con-
vex fracture geometry provided by BFA. The SVO level

at which we stop the algorithm and construct the crack
surfaces we call the transition level.

There are two main problems that we need to address.
First, how to generate the geometry of these crack sur-
faces with the voxels delivered by BFA. Secondly, we
aim at a GPU-based parallel implementation that con-
structs the crack surfaces concurrently in the voxels.
Therefore the algorithm is to operate locally within a
voxel, and this implies the problem of connectivity of
the surfaces between neighboring voxels.

We tackle the second problem by founding the crack
surface construction on an information shared by ver-
tices of neighboring voxels. As the aftermath of BFA,
each vertex possesses the information about its nearest
Voronoi seed, which we now additionally enrich with
a procedurally generated value, for example, obtained
from a 3D noise function.

The surface we want to create should separate the
voxel’s vertices that have assigned different Voronoi
seeds and thereby belong to different fracture pieces
of the objects. To this end, for each voxel’s edge
that connects vertices having different Voronoi seeds,
the edge separation point is created. The position
of this point is determined by adding to one of the
edge’s endpoints an offset computed with the following
equation:

eon = f (a,b)∗ vs, (3)

where: eon is the edge offset on n ∈ {X ,Y,Z} axis;
a,b ∈ [0,1]—values assigned to the voxel’s vertices; f
is a user function returning a value in range (0, 1) based
on the values a and b; and vs is the size of the voxel
edge. The user function can be implemented, for exam-
ple, as a balance point based on the given weights or a
deviation from the intersection point with the Voronoi
pattern steered by the given weights.

Subsequently, for each voxel’s face, the face separation
point is calculated as the average of the edge separation
points belonging to this face, and then the point is dis-
placed by a slight offset within the face’s area. Next, the
voxel separation point is determined from face separa-
tion points in an analogous way. Finally, for each tuple
of three points: edge separation point, face separation
point and voxel separation point a triangle is created.

The set of the triangles forms a portion of the crack
surface that will then be approximated by descendant
voxels of the processed transition voxel (fig. 2).

The presented construction of continuous crack sur-
faces within voxels is only exemplary and one can de-
velop different methods for this purpose. For example,
one can base the construction of the surface on mathe-
matical functions.



(a) (b) (c) (d)
Figure 3: (a) A result of BFA on the SVO highest level. (b) A result of BFA on the SVO transition level. (c) A new
crack surface constructed by EFA relative to the BFA result. (d) The final voxelized crack obtained with EFA.

5.3 SVO Traversal
Putting all together, we can describe the overall method
for fracturing a SVO object as follows:

We begin with BFA, which traverses the SVO tree from
the root to the leaves: voxels on each SVO level are
being tested for intersections with faces of the fracture
pattern (sec. 4), and the ones that pass the test, are ex-
panded to their children (which are generated on-the-fly
in the case of the intersected voxels located inside of the
object). This way we proceed over a chosen number of
the SVO levels to the desired transition level. At this
level, we assign the nearest Voronoi seeds to the vox-
els’ vertices, and EFA begins.

From now on, the final surface of fractured pieces is
being created using the crack surfaces. We generate the
crack surfaces within the voxels at the transition level
in the way described in the section 5.2. Then, for every
voxel that gave birth to a crack surface, each child of
the voxel is tested against an intersection with the sur-
face by means of the method described in [AA05]. That
way we proceed to the SVO leaves, where each voxel
is assigned to an appropriate group of voxels which de-
fines a fractured piece, using the same rules as in BFA
(fig. 3). The final voxels properties comes from a vol-
umetric texture for color and normal vector taken from
the triangles the voxel intersects.

In order to fully define a fractured piece, apart from the
voxels intersected by the crack surfaces, we also need
to identify the appropriate voxels that come from the
original surface of the destructed object. In order to
assign these voxels to the proper Voronoi seed (and thus
the group specifying a fractured piece), while executing
EFA we utilize the following test:

While checking a voxel for intersections with the trian-
gles of a crack surface, we also check on which side of
each triangle the voxel is located and accumulate this
information. By the construction of the crack surface
(Sec. 5.2), each triangle has a vertex located on an edge
of a transition level voxel, such that the edge ends with
the voxel’s vertices assigned to two different Voronoi
seeds. On that basis, we assign the appropriate Voronoi
seed to each side of the triangle. Using this informa-

Figure 4: The assignment test for a voxel (marked with
white) that doesn’t intersect a crack surface.

tion, we can assign a surface voxel (not intersected by
a crack surface) to the appropriate Voronoi seed on the
basis of the voxel’s location relative to the sides of the
relevant crack surface’s triangles—we choose the seed
that dominates in the sides of the triangles, as shown in
fig. 4.

The method presented above features a lossless fractur-
ing process. It means that the surfaces of cracks match
perfectly each other. In the real world, however, there
are also materials bearing different properties, which
result in less stable cracks. During fracturing process,
apart from a separation of an object into a number of
pieces, a part of the object’s volume is converted into
separate tiny dust particles of an individual size much
smaller than the volume of the SVO leaf voxel. The
formation of these dust particles during fracturing pro-
cess results in irregular empty volumes between crack
surfaces (fig. 5). We can easily incorporate this effect
into our method by changing the crack surface creation
algorithm presented in Sec. 5.2 to a more suitable one.
For this purpose, we utilize the surface creation tech-
nique used in the Marching Cubes algorithm [LC87].
Specifically, using the information of the assignment
of the transition voxels’ vertices to Voronoi seeds, we
match the voxel to one of the cube configurations used



Figure 5: An empty volume between cracks’ surfaces.

in the Marching Cubes algorithm. Moreover, we need
to split the edge separation points and shift them in or-
der to separate new surfaces.

6 RESULTS
In this section, we discuss the performance and quality
of the presented solution. All depicted timings were ob-
tained on Intel Core i7 960 CPU with Nvidia GeForce
GTX Titan Black GPU. All algorithms were imple-
mented using CUDA framework to fully exploit the par-
allelism delivered by GPU.

The presented results show that our new fracturing tech-
nique greatly improves on the visual quality of frac-
tured objects relative to the relevant methods that uti-
lize fracture patterns. A direct comparison with work in
[DM16] is shown in fig. 6. One can notice that thanks
to the distortions in the planar fracture pattern faces, the
result looks more natural. What is more, the outcomes
of our technique are always unique as they are created
on-the-fly while a destruction occurs.

Furthermore, our method gives the user a simple way to
influence the fracturing process outcome by controlling
the level at which the transition between BFA and EFA
takes place. Studying the pictures in fig. 7 reveals the
relationship between this parameter value and the final
result. The closer the transition level to the root, the
more the basic fracture pattern (build from the Voronoi
seeds) is distorted. The change in the transition level,
when regarded from the point of view of the procedural
creation of crack surfaces, also has an influence on the
smoothness of the cracks.

We also presented a way to incorporate in the fracturing
process a decline in the original object’s volume within
the area of cracks—fig. 9 exemplifies the feature. The
variety of the cracks’ possible shapes and widths we
can obtain with our method greatly enhances the visual

quality of results and allows one to produce countless of
unique outcomes. In addition, the cracks are not only
more detailed but also more noticeable.
We also succeeded in the integration of the results of
our fracturing method with a physics simulation tech-
nique presented in the paper [DM16]. The performance
of the approach presented there depends strongly on the
volume of the objects subjected to simulation. Even
though the fractured pieces generated with our method
are usually relatively thin, the results of the physics sim-
ulation are acceptable (fig. 8).
Last but not least, the time performance of our method,
as measured per voxel, is slower than in the one featur-
ing the method in [DM16]. First, it is mainly due to that
our technique produces more voxels in the final out-
come and, secondly, the test for voxel intersection with
a procedurally generated crack surface is more compu-
tationally demanding. It should be also noted that the
performance of all the algorithms used in the fracturing
process (fracture boundary set extraction, islands detec-
tion, internal nodes detection, etc.—details in [DM16]))
depends directly on the total number of voxels, which
also influence the timing of the whole process. How-
ever, in our tests, fracturing the SVOs with the number
of levels up to 9 (included), resulted in the timings not
exceeding 50 ms.

7 CONCLUSION AND FUTURE
WORK

We have presented a novel method for fracturing shell
objects represented with sparse voxel octrees. Our
method allows for creating detailed surfaces of frac-
tured pieces. To this end, it applies a fracture pattern
to the object at the impact location and cuts the object
with the pattern into pieces, and then enhances this par-
tial result by creating the final surfaces of the pieces
procedurally. As a consequence, new detailed pieces
of geometry are created and represented as individual
SVOs, which can then be subjected to a rigid body sim-
ulation using the approach presented in [DM16].
Although in this paper, we target only the objects
that are empty inside but possesses thick surfaces, we
strongly believe that our method could also be applied
to objects with noticeable inner volumes. In that case,
it would require either the change of the method used
to procedurally create new surfaces or the application
of more suitable weights for the current method for
voxels’ vertices on the transition level, so that the
method would be aware of the voxels’ boundaries in
a local neighborhood. It is due to the fact that the
current method generates cracks without any global
structure, which is desirable for objects’ surfaces but
not necessarily for objects’ interior.
Finally, the presented fracturing method operates on
voxels, however, with some changes, it could also be



(a) (b)

(c) (d)
Figure 6: A comparison of results obtained by our fracturing technique (fig. b and d) and the method presented in
[DM16] (fig. a and c).

Figure 7: Different transition levels (from the left accordingly: 4, 6, 8) and the same fracture pattern.

Figure 8: Fracturing and physics simulation of a vase.



Figure 9: Cracks with irregular space between them.

adapted for objects represented with meshes. For this
purpose, the first part of the algorithm could be per-
formed on a tetrahedral mesh and within its cells, new
surfaces would be created and cut against the destructed
object.

8 REFERENCES
[AA05] Akenine-Möller, T., Aila, T.: Conservative

and tiled rasterization using a modified triangle
set-up. In Journal of Graphics Tools 10 (2005), 3,
pp. 1-8.

[Bau11] Bautembach D.: Animated sparse voxel oc-
trees. Bachelor’s Thesis (feb 2011).

[BCC*11] Baker M., Carlson M., Coumans E.,
Criswell B., Harada T., Knight P., Zafar N. B.:
Destruction and dynamic artist tools for film
and game production. In ACM SIGGRAPH 2011
course notes (2011).

[BLD14] Baert J., Lagae A., Dutra’ P.: Out-of-core
construction of sparse voxel octrees. Computer
Graphics Forum 33, 6 (2014), pp. 220-227.

[CNS*11] Crassin C., Neyret F., Sainz M., Green S.,
Eeisemann E.: Interactive indirect illumination
using voxel cone tracing. Computer Graphics Fo-
rum (Proceedings of Pacific Graphics 2011) 30, 7
(sep 2011).

[Cra11] Crassin C.:. PhD thesis, Grenoble University,
2011.

[CYFW14] Chen Z., Yao M., Feng R., Wang H.:
Physics-inspired adaptive fracture refinement.
ACM Trans. Graph. 33, 4 (July 2014), 113:1-
113:7.

[DM16] Domaradzki J., Martyn T.: Fracturing Sparse-
Voxel-Octree objects using dynamical Voronoi
patterns. In Computer Graphics, Visualization
and Computer Vision WSCG 2016. Full Papers

Proceedings, Computer Science Research Notes,
vol. 2601, 2016, pp. 37-46.

[FBAF08] Faure F., Barbier S., Allard J., Falipou F.:
Image-based Collision Detection and Response
between Arbitrary Volume Objects. In Eurograph-
ics/SIGGRAPH Symposium on Computer Ani-
mation (2008).

[GPM11] Garanzha K., Pantaleoni J., Mcallister D.:
Simpler and faster HLBVH with work queues.
In Proceedings of the ACM SIGGRAPH Sympo-
sium on High Performance Graphics, HPG ’11,
ACM, pp. 59-64.

[GMD13] Glondu, L., Marchal, M., Dumont, G.: Re-
altime simulation of brittle fracture using modal
analysis. IEEE TVCG 19, 2013, pp. 201-209.

[IO09] Iben H. N.,O’Brien J. F.: Generating surface
crack patterns. Graph. Models 71, 6 (Nov. 2009),
198-208.

[JM16] Jabłoński S., Martyn T.: Real-Time Rendering
of Continuous Levels of Detail for Sparse Voxel
Octrees. In Computer Graphics, Visualization and
Computer Vision WSCG 2016. Short Papers Pro-
ceedings, Computer Science Research Notes, vol.
2602, 2016, pp. 79-88.

[JM17] Jabłoński S., Martyn T.: Unlimited Object
Instancing in real-time. In Computer Graphics,
Visualization and Computer Vision WSCG 2017.
Short Papers Proceedings, Computer Science Re-
search Notes, vol. 2702, 2017.

[KSA13] Kämpe, V., Sintorn, E., Assarsson, U.: High
resolution sparse voxel DAGs. In ACM Trans.
Graph. 32, 4, 2013, pp. 101:1-101:13.

[Kar12] Karras T.: Maximizing parallelism in the con-
struction of BVHs, Octrees, and k-d Trees. In
High Performance Graphics (2012), Eurographics
Association, pp. 33-37.

[LC87] Lorensen W., Cline H.: Marching Cubes: A
high resolution 3D surface construction algo-
rithm. In Proceedings of the 14th annual confer-
ence on Computer graphics and interactive tech-
niques (1987), vol. 21, pp. 163-169.

[LK10] Laine S., Karras T.: Efficient sparse voxel
octrees. In Proceedings of the 2010 ACM SIG-
GRAPH Symposium on Interactive 3D Graphics
and Games, I3D ’10, ACM, pp. 55-63.

[M05] Mould, D.: Image-guided fracture. In Pro-
ceedings of Graphics Interface 2005. Cana-
dian Human-Computer Communications Society,
2005. p. 219-226.

[MCK13] Müller M., Chentanez N., Kim T.-Y.: Real
time dynamic fracture with volumetric approxi-
mate convex decompositions. ACM Trans. Graph.
32, 4 (July 2013), 115:1-115:10.



[NTB*91] Norton A., Turk G., Bacon B., Gerth J.,
Sweeney P.: Animation of fracture by physical
modeling. The Visual Computer 7, 4 (1991), 210-
219.

[OBH02] O’Brien J. F., Bargteil A. W., Hodgins J.
K.: Graphical modeling and animation of ductile
fracture. In Proceedings of the 29th Annual Con-
ference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’02, ACM, pp. 291-294.

[OH99] O’Brien J. F., Hodgins J. K.: Graphical mod-
eling and animation of brittle fracture. In Proceed-
ings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH
’99, pp. 137-146.

[PK15] Pätzold M., Kolb A.: Grid-free Out-of-core
Voxelization to Sparse Voxel Octrees on GPU.
Proceedings of the 7th Conference on High-
Performance Graphics, HPG ’15, ACM, pp. 95-
103.

[SO14] Schvartzman S. C., Otaduy M. A.: Fracture
Animation Based on High-dimensional Voronoi
Diagrams. Proceedings of the 18th Meeting of the
ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, I3D ’14, ACM, pp. 15-22.

[SSF09] Su J., Schroeder C., Fedkiw R.: Energy sta-
bility and fracture for frame rate rigid body sim-
ulations. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer
Animation (2009), SCA ’09, ACM, pp. 155-164.

[TF88] Terzopoulos D., Fleischer K.: Modeling in-
elastic deformation: Viscolelasticity, plasticity,
fracture. SIGGRAPH Comput. Graph. 22, 4 (June
1988), pp. 269-278.

[VMG16] Vllanueva, A. J.; Marton, F.; Gobbetti,
E.: SSVDAGs: Symmetry-aware sparse voxel
DAGs. In Proceedings of the 20th ACM SIG-
GRAPH Symposium on Interactive 3D Graphics
and Games. ACM, 2016. pp. 7-14.

[Wil13] Willcocks C. G.: Sparse volumetric deforma-
tion. PhD Thesis (apr 2013).

[WRK*10] Wicke M., Ritchie D., Klingner B. M.,
Burke S., Shewchuk J. R., O’Brien J. F.: Dynamic
local remeshing for elastoplastic simulation. ACM
Transactions on Graphics 29, 4 (July 2010), 49:1-
11. Proceedings of ACM SIGGRAPH 2010, Los
Angles, CA.

[ZBG15] Zhu Y., Bridson R., Greif C.: Simulating
rigid body fracture with surface meshes. ACM
Transactions on Graphics (2015).

[ZGHG11] Zhou K., Gong M., Huang X., Guo B.:
Data-parallel octrees for surface reconstruction.
IEEE TRANSACTIONS ON VISUALIZATION
AND COMPUTER GRAPHICS (2011).


