
A Dynamic Non-Manifold Mesh Data Structure to Represent
Biological Materials

Endre Somogyi
Dept. of Intelligent Systems Engineering, Indiana University Bloomington, IN 47405

{somogyie} @ indiana.edu

ABSTRACT
Computational models of biological materials enable researchers to gain insight and make testable predictions
of quantitative dynamic responses to stimuli. These models are particularly challenging to develop because bi-
ological materials are (1) highly heterogeneous containing both biological cells and complex substances such as
extra-cellular medium, (2) undergo structural rearrangement (3) couple biological cells with their environment via
chemical and mechanical processes. Existing numerical approaches excel at either describing biological cells or
solids and fluids, but have difficulty integrating them into a single simulation approach. We present a novel dy-
namic non-manifold mesh data structure that naturally represents biological materials with coupled chemical and
mechanical processes and structural rearrangement in a unified way.

Keywords
Physically Based Modeling, Biological Simulation, Dynamic Meshing, Finite Element Simulation.

1 INTRODUCTION
Researchers increasingly build computational models
of biological materials to gain insight and make testable
predictions about responses to stimuli. Mechanistic
models of biological tissues are particularly challeng-
ing to develop because biological materials are highly
heterogeneous across a broad range of scales. Biolog-
ical cells exist in a dynamic, spatial fluid environment
and create and respond to a range of physical and chem-
ical stimuli with complex behaviors, including move-
ment, changes in morphology and mechanics, prolif-
eration, death, differentiation and modification of the
local environment. Biological materials combine ac-
tive agents such as biological cells with highly hetero-
geneous visco-elastic substances such as extra-cellular
medium (ECM), fluids and solids. We use the term
physical agent to refer to parcels of biological mate-
rial. Physical agents may be active or passive, may or
may not have sub-structures, and may or may not have
natural boundaries.

As a key enabling component of a tool for modeling bi-
ological materials, we have generalized existing man-
ifold mesh data structures into a novel dynamic non-
manifold mesh data structure that can consistently rep-
resent smooth deformations and dynamic topological

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

rearrangement. This mesh forms the basis of our Me-
chanica [13] environment for simulation of cells and
tissues. Our mesh represents physical agents as poly-
topes in contact through shared surfaces, where both
sides of the surface maintain their own identity. We per-
form smooth mesh deformations via the explicit finite
element method; we use three mesh update operations,
radial edge split, radial edge collapse, and vertex split
to perform discrete topological changes.

Biological material models are diverse, so tools to build
these models must be extremely flexible and able to eas-
ily accommodate new constructs. Computational bio-
material model development tools thus need to be able
to conveniently represent the interactions and dynamics
of a wide range of different agents with varied material
properties. Most numerical methods naturally repre-
sent only a limited and fixed subset of agent behaviors.
In engineered applications designed for modularity and
testability, this specialization does not usually pose a
problem. For example, simulations of mechanical parts
such as an aircraft wing, usually need to account pri-
marily for mechanical and thermal properties; tradi-
tional finite-element simulators suffice for such sim-
ulations. Even complex engineered systems, such as
combustion dynamics tend to involve a limited num-
ber of pre-specified physical processes such as reaction-
advection-diffusion, for which finite-volume simulation
is appropriate. Biological materials often lack strict
modularity, and tend to be highly interdependent with
large numbers of coupled chemical and mechanical pro-
cesses. Fig.1, illustrates cell and tissue rearrangement
and dynamics that occur during body elongation (epi-
boly) in early embryonic development. Epiboly’s com-

plex dynamics requires coordinated material transfer
and rearrangement, formation and loss of intercompo-
nent boundaries and intra- and extra-cellular regulation
of coupled chemical and mechanical processes.

While building computational models of the complex
behaviors and interactions found in nature will in-
evitably be cognitively challenging, the lack of tools
that describe naturally the mechanics of materials
composed of continually rearranging agents creates
an additional and unnecessary computational burden
on model developers. Many computational-mechanics

(a): 0.75 hours (b): 1 hours (c): 1.2 hours
Figure 1: Cell rearrangement and identity change
in embryonic development. Time series of images
(0.8 mm×0.8 mm) of epiboly in a developing zebrafish
embryo. During epiboly, ectodermal cells proliferate
and flow from the dorsal to the ventral side of the em-
bryo, as cell layers fold inwards and the yolk is incor-
porated into the embryo. Epiboly illustrate the complex
interplay between biochemistry and mechanics during
embryogenesis and the changes in agent number, shape,
properties and relative positions which a tissue model-
ing platform must describe (from [4]).

simulation methodologies require the creation of
meshes to approximate the shape and structure of
physical agents. A manifold mesh is locally smooth
and flat (homeomorphic to a disc), so a tessellated
manifold surface mesh contains only edges of degree
two; that is, exactly two faces share each edge. A
non-manifold mesh is not restricted to locally-smooth
surfaces, so a tessellated non-manifold surface can
contains edges of degree one, two, three, or higher.

Existing dynamic manifold mesh data structures [10]
often suffice to represent single cells in isolation, as
long as their movement dynamics are not too com-
plex. However biological tissues consist of large num-
bers of cells in contact, and these contacts continually
form and disappear as cells rearrange, change shapes
and adjacency, divide, merge and disappear. In mes-
enchyme (three dimensional connective tissue), both the
topology and shape of cell-cell contacts can be com-
plex. In epithelia (sheet-like tissues), cells contact each
other via numerous locally flat surfaces, whose inter-
sections often define geometric edges and vertices. In
both cases, manifold mesh data structures are a poor
match to the underlying physical reality.

When a biological cell contacts its neighboring cells
and its environment Fig.1, its volume and surface

both maintain their identities. With few exceptions, a
membrane (and possible additional cell wall structures)
separate cells from other cells and the surrounding
environment. This membrane is thin relative to the
size of the enclosed cell cytoplasm, with a typical
size ratio of ∼ 2,000 : 1. In many cases, when we
are modeling cell and tissue-scale phenomena, we can
approximate the membrane as a quasi-two-dimensional
manifold surface embedded in three-dimensional
space. The properties of living materials depend on
the interplay of quasi-one-dimensional fibers (e.g., in
the extracellular matrix and intracellular cytoskeleton),
quasi-two-dimensional sheets and membranes and
fully three-dimensional structures (e.g., biological
cells, organelles, micelles or fluid droplets). Treating
one- two- and three- dimensional agents consistently in
the same mathematical and computational framework
is challenging and defines the aspect ratio problem.
This paper will focus on how our data structure rep-
resents the interaction of three-dimensional volumes
with quasi-two-dimensional surfaces. We will discuss
the use of the data structure to represent fibers in a
subsequent paper.

In Fig.2, we categorize key identity changes that occur
when physical agents consisting of a three-dimensional
volume with a two-dimensional surface change adja-
cency. When two such initially separate agents con-
tact each other, either: (1) the agents behave like water
droplets: the contact surface between the agents dis-
appears, while single volume and surface replace the
original agents’ volumes and remaining surfaces, (2)
the agents behave like soap bubbles: the contact sur-
face between the agents persists and the agents’ vol-
umes maintain their identity, but a single surface re-
places the original agents’ surfaces, or (3) the agents be-
have like biological cells: the contact surface between
the agents persists and both agents maintain their vol-
umes and surfaces. Traditional data structures usually
naturally support only one of these adjacency-change
processes (either 1) or 3)) and require awkward manipu-
lations to implement the others. A single agent can also
split partially or completely through the inverse of any
of these processes. Our data structure enables us to ef-
ficiently represent all three types of adjacency-change.

2 RELATED WORK
Many numerical approaches address some of the com-
putational challenges of representing biological materi-
als, however no single existing approach can represent
the variety of these materials in a self-consistent way.

The Finite Element Method (FEM) [14] is convenient
for modeling solids under small deformations. The
FEM discretizes materials into “elements” represent-
ing finite regions of space. An FEM solver generates

(1) (2) (3)

Figure 2: Topological and identity changes on adja-
cency change. When two physical agents come into
contact: (1) They may merge both volumes and surfaces
and lose their respective identities, like water droplets.
(2) They may merge surfaces but maintain independent
volumes, like soap bubbles. (3) They may maintain in-
dependent volumes and surfaces, like biological cells.

a set of nodes connecting adjacent elements, and a set
of algebraic equations that define the time evolution of
the nodal positions, velocities and properties at each
node. Standard FEM discretizations can describe com-
plex geometries and constitutive relations. However,
most FEM methods can only naturally describe ma-
terials with a fixed dimensionality (one-, two or three
dimensions). E.g., to describe a composite agent with
membrane and volume, standard FEM would represent
the membrane using a very large number of small tetra-
hedra, which is computationally costly. Most FEM
packages do not naturally handle large-scale material
rearrangement or changing neighbor relationships.

The Finite Volume Method (FVM) [5] partitions space
into a set of finite, connected volumes, and integrates
governing equations for fluxes between volumes to cal-
culate time evolution. FVM can represent fluid trans-
port and reactions in complex geometries. However,
most FVM approaches cannot naturally describe dy-
namic geometries or changing neighbor relationships.

Agent-based simulations of biological tissues typically
employ lattice-, particle-, vertex-, or more recently
FEM-based approaches to represent cells. Some of
these approaches explicitly represent cell membranes,
but many use implicit representations. Here we use
the term implicit to mean data that is derived from
explicit quantities. Because these are derived values,
they do not have state variables, hence they can not
define their own time evolution. Implicit surfaces have
difficulty representing important biological processes
such as surface chemistry, advection-transport, surface
and edge contraction and adhesion, local signaling, etc.
Explicit representation do not ipso facto mean that that
they support these biological processes, but rather that
they can support them.

Lattice based approaches have explicit volumes and can
represent both implicit and explicit surfaces, but edges
and vertices are implicit. The Cellular Potts Model
(CPM) usually defines an implicit representation of

membranes, edges and vertices between voxels of dif-
ferent cells. Volume advection can be challenging in
CPM as well.

Particle based approaches include center models [5]
and sub-cellular element models [11]. Center models
treat cells as single point particles that interact via non-
bonded forces, and define the boundary of a cell im-
plicitly. Subcellular element models represent cells as
collections of point particles and permit both explicit
and implicit surface representations.

Vertex models [6] represent biological cells as con-
nected, relatively simple (∼ 6− 15) faceted convex
polyhedra, with implicit surfaces, but explicit vertices
and volumes. Modern FEM approaches [1] have ex-
plicit vertices, edges and surfaces, with volumes ex-
plicit or implicit depending on the representation. With
few exceptions [9], most vertex or FEM type biologi-
cal cell simulations are hard-coded to solve specific bi-
ological problems and are not available as simulation
environments.

Surface Evolver [3] is a program which determines the
minimal energy configurations of surfaces such as soap
films. Surface Evolver represents surfaces using a dy-
namic non-manifold mesh. However it can only imple-
ment case (2) in Fig. 2 and cannot handle explicit mem-
branes in contact. It also does not support descriptions
of the complex biochemistry of biological cells.

While existing dynamic manifold mesh data struc-
tures [10] can conveniently represent individual
physical agents and sets of agents with a limited
number of contacts, they typically do not directly
support the variety of identity changes which occur
when agents change adjacency. Most do not explicitly
track cell neighbor relationships and contact areas,
but calculate them as needed, which can be slow. We
previously developed a numerical simulation engine
using the deformable manifold mesh from the Bullet
Physics library. We found that this data structure was
able to calculate deformations for at most 20 cells in
contact, before performance dropped to unacceptable
levels. Benchmarking showed that because all cells are
in physical contact with each other, collision detection
was computationally expensive. Furthermore, deter-
mining cell neighbor relationships and contact areas
between cells (which Bullet Physics required us to at
each time step) was computationally costly. Compute
time using our non-manifold boundary representation
mesh scales linearly with the number of vertices plus
the number of triangles; essentially, performance is
proportional to the total surface area rather than the
total volume.

3 APPROACH
To represent and simulate physical agents, we must
consider two related questions: (1) How do we rep-

resent the structure of these agents when the physical
properties of the agent’s constitutive elements may all
differ? and (2) How do we represent dynamics of these
physical agents including deformation and structural re-
arrangement.

3.1 Physical Structure
Traditional numerical approaches do not adequately ad-
dress agents with changing adjacency. Tissues contain
many cells (composite agents) which frequently change
their adjacency, so we need to efficiently represent: (1)
multiple agents in contact, (2) individual cell surface
chemical process occurring on each cell’s surface, and
(3) chemical processes occurring between neighboring
cells. Physical agents (fluid droplets, soap bubbles,
biological cells and tissues) can have a well-defined
boundary that has intrinsic material and chemical prop-
erties distinct from the agents they envelop. We rep-
resent biological materials with an explicit boundary,
dynamic non-manifold mesh data structure, inspired by
Hun and Lee’s partial entity [8] and Weiler’s radial edge
[16] structures. This mesh data structure enables us
to faithfully represent changing neighbor relationships
and chemical and mechanical processes in a unified
way.

Consider two biological cells are in contact as
in Fig.2.3. When we take a section of this contacting
region, we can make the abstraction that there are
basically three kinds of physical materials here: (1)
the membrane that belongs to the first cell, (2) the
interstitial material between the cells, and (3) the
membrane of the second cell. Each of these regions is
thin relative to the size of the cells, but still has finite
thickness. We represent this stack of physical materials
with the Triangle data structure. The triangle itself is a
composite type that can be thought of as a “sandwich”
formed from a left Partial Triangle, the triangle itself,
and a right partial triangle. The triangle represents
a complete section of this contact region, where the
partial triangles represent one side of a boundary, i.e.
the biological cell’s membrane.

Our mesh data structure consists of four key data types:
vertices, partial triangles, triangles and cells. Vertices
represent a position in space, maintain a list of incident
triangles and cells, and they presently do not store any
other state variables. We measure mass at each vertex
as the barycentric area (1/3 the area) weighted sum of
each incident triangle and partial triangle’s mass.

The partial triangle Fig.3 represents one side of a phys-
ical boundary, i.e., a biological cell membrane. Each
partial triangle belongs to the boundary of a specific
cell, and the cell’s boundary is defined as a set of con-
nected partial triangles that form a closed manifold sur-
face. Each partial triangle has pointers to its base tri-
angle, the cell that it belongs to, its opposing partial

triangle, and to its three neighboring partial triangles
that are also part of the same cell’s boundary. A par-
tial triangle has an explicit mass, and can contain other
state variables such as chemical amounts. The trian-
gle data structure represents a section of shared bound-
ary between physical objects, and is itself a composite
structure of two partial triangles. Each triangle contains
pointers to three vertices. Like the partial triangle, the
triangle has an explicit mass, and can contain a vector
of attached chemical amounts. We call the edge where
two or more triangles intersect a radial edge.

A cell represents a closed physical region of space de-
marcated by an explicit boundary composed of partial
triangles. A cell type can represent a physical agent,
such as fluid droplets, fluid volumes, soap bubbles, or
biological cells. A cell contains pointers to the partial
triangles that comprise the cell’s boundary. Presently,
we approximate physical agents as homogeneous de-
formable solids, but we plan to add more complex inter-
nal structures in future versions. The cell has an explicit
mass and can contain a vector of chemical amounts.
Two cells in contact form a manifold surface, three or
more cells can intersect at a radial edge as in Fig.3.b
forming a non-manifold intersection between three or
more surfaces. The partial triangles in a non-manifold
intersection are adjacent on only one side of the trian-
gles incident to the radial edge.

(a) (b)

Figure 3: The partial triangle data structure enables us
to represent both (a) manifold and (b) non-manifold
meshes. (a) shows a manifold surface between a yellow
and a red cell, (b) shows a non-manifold edge between
a red, green and yellow cells.

3.2 Dynamics
The physical agents that we represent are not static
– both their positions and their states evolve in time.
They move around and past each other, and regu-
larly come into and out of contact with each other
(i.e., change neighbor relationships). We represent
cell motion, membrane deformation, and chemical
processes such as cell-signaling, membrane transport
as continuous, ordinary differential equation defined
processes. We implement large-scale structural rear-
rangement and topological change, such as large shape
changes and cell attachment/detachment as discrete
rule-based events. Vertices move according to the laws
of classical mechanics, and we calculate their time

evolution using the Propagator data type. Chemical
reaction-transport processes are well-studied, and we
re-use our existing solver [12] to implement them.
The Rules Engine performs large scale rearrangement
and topological transformations with rule triggered
mesh reconnect operations. Mesh reconnect operations
alter the underlying mesh, they define how elements
split and merge - that is, they define local topological
rearrangement. Mesh operations can create and delete
mesh objects (triangles, and ultimately cells) and alter
their neighbor pointers and vertex positions. Exactly
when to apply a mesh update operation is highly
material and simulation specific. Users need the ability
to define custom triggering rules for mesh updates in
order to model a range of different physical materials.
Thus, we have developed a general rule-based mesh
update system that separates the mesh update operation
from the triggering rule, and enables the user to readily
add new mesh update operations and to write custom,
material-specific trigger rules.

The Propagator calculates the continuous-time evolu-
tion of the material vertices, as well as the fluid materi-
als and state variables located on the triangle, partial tri-
angle and cell elements. In other words, the propagator
calculates the subsequent simulation state based on the
current state. The propagator queries the model for the
net force on each vertex and the rate of change of each
fluid or other state variables associated with the cells
and surfaces. The propagator presently uses a Runge-
Kutta integrator, however we plan on adding more so-
phisticated integrators in future versions.

In order to enforce constraints, the propagator imple-
ments a Position Based Dynamics (PBD) constraint
solver [2]. The PBD solver enforce constraints by ad-
justing the positions of the mesh vertices. The solver
applies a correction displacement to the vertex posi-
tions. The basic idea of the PBD constraint solver is
to first project all of the mesh vertices forward in un-
constrained motion, according to the net force acting
on each vertex. The unconstrained motion most likely
violates some constraints. Each constraint object con-
tains two functions: a) a constraint function of the cur-
rent model state that yields a scalar constraint value,
and b) a function that calculates the rate of change of
the constraint function relative to the mesh vertices, i.e.
the Jacobian of the constraint function. The constraint
is satisfied when the constraint function evaluates to
zero. The propagator sequentially adjusts the vertex
positions in a Gauss-Siedel fashion, according the con-
straint Jacobian until the constraint function reaches a
tolerance. We have found that volume constraints are
satisfied with only 2-3 iterations.

The Rules Engine is responsible for discontinuous time
state changes in the mesh and other state variables. The
rules engine maintains a list of rules that associate a

trigger condition and energy function with a discrete
mesh update operation. The Rules Engine monitors
the mesh for positional and topological changes and
looks for mesh configuration patterns that match a trig-
ger condition. When a configuration matches a trigger,
the rules engine applies the corresponding mesh opera-
tion to the mesh, thus modifying the mesh. We present
three mesh update operations: radial edge split, radial
edge collapse, and vertex split. Each mesh update rule
also defines an energy function. We associate an en-
ergy with each mesh topological configuration, analo-
gous to the way a potential energy is associated with
different configurations in physics. For example, users
may wish to define a rule that penalizes excessively
long edges, where the energy function could be pro-
portional to the square of the edge length, say kx2, and
then associate the edge split operation with this energy
function. Here, the rules engine might find an edge, and
perform a trial edge split. The initial energy of this edge
would be kx2, and the energy of the split edge would
be 2∗ k(x/2)2 = (1/2)kx2, thus the change in energy is
−k/2x2. The rules engine determines that this is an en-
ergetically favorable operation and applies it. The rules
engine stores all triggered rules in a priority queue, or-
dered energy value, such that the most energetically fa-
vorable rules are evaluated first. This approach is simi-
lar to [6], where they perform triangle to edge and edge
to triangle operations, and store all pending operations
in a priority queue ordered on edge length. Because the
rules engine successively applies rules sorted by energy
level, each time a rule is evaluated, the rules engine
looks at which mesh objects were altered by the rule
and removes any pending operation that also depends
on these objects. If that pending operation is still valid,
it will be triggered and queued in the next time step.
These rules enable us to to represent objects separat-
ing and rearranging, and we intend to add more rules as
needed.

3.2.1 Radial Edge Split

The triangles in an evolving mesh can become too large
to adequately represent an object’s surface which can
result in increased numerical error. In order to accu-
rately sample and represent spatially variant physical
quantities, we must refine large triangles. Triangle re-
finement replaces a single large triangle with two or
more smaller triangles. Numerous approaches subdi-
vide a single triangle into three triangles, but the more
common approach is split a single triangle into two tri-
angles. In a manifold mesh, when a single triangle is
split in two, the neighboring triangle incident to the split
edge must also be split, hence the name, “edge split”.
The radial edge split operation is a generalization of
the commonly used manifold edge split, with the man-
ifold edge split being a special case of the radial edge
split. The radial edge split creates a new vertex at the

midpoint of edge, and identifies all incident triangles
around this edge, and splits each one of them into two
triangles. The new radial triangles share the space as
the original triangles did. Because the radial edge split
does not move any existing vertices and only inserts a
new vertex, the operation does not need to check for
any topological or geometric violations - the radial edge
split operation is always topologically valid. As such, it
is one of the simplest mesh operation to implement.

For each triangle in a radial edge, the radial edge split
operation identifies the outer-most vertex, and creates
two new triangles and removes the original triangle.
Each of the two new triangles share an edge formed by
the new center vertex and the outer vertex. Radial edge
split then reconnects these new triangle neighbor point-
ers to the triangles adjacent to the removed triangles.

3.2.2 Radial Edge Collapse

As a simulation evolves in time, a triangles can become
excessively small. This over-refinement leads to wasted
compute resources and performance degradation. The
radial edge collapse operation removes small triangles
and re-connects these triangles’ neighbors. The radial
edge collapse is a generalization of the conventional
manifold edge collapse operation as studied by [15, 7],
where the manifold edge collapse is a special case of
the radial edge collapse. In a manifold edge collapse,
an edge can be incident to exactly two triangles. A ra-
dial edge however can have any number of triangles ar-
ranged radially around an edge as in Fig.3. The idea
however is the same: we want to remove the edge and
re-connect all of the neighboring triangles. A variety
of different trigger conditions may be appropriate for
initiating a radial edge collapse. Say one would like
to coarsen a mesh in areas of low curvature, or, say
one wants to remove all triangles below a certain edge
length threshold, as is the case in [6]

A radial edge collapse traverses every triangle in a ra-
dial edge and collapses the triangle along the edge side,
and re-connects the neighboring triangles on the col-
lapsed triangle’s two remaining edges. The edge col-
lapse removes a region of mesh which consists of the
edge itself and its two incident triangles and enlarges
the neighboring triangles to fill the void. The edge col-
lapse operation reduces the dimensionality of a mesh.
As such, it is only applicable under specific conditions.
For an edge collapse (or any other operation) to be
valid, it must not invert any triangles, i.e., it must not
change any triangle’s normal by more than 90 degrees.
Vieira et al. [15] identified that a manifold edge collapse
is valid if it does not violate the link condition. The link
condition sates that an edge e = {u,v} can be collapsed
if and only if link(u)∩ link(v) = link(e). In a triangular
mesh, the star of a vertex v is the set of triangles and
edges that are incident to v. The link of a vertex is the

frontier of the star. The frontier of the star is the set of
vertices that are incident to every edge and triangle in
the star, not including v. The links of the edge and each
vertex for non-manifold meshes are slightly more com-
plex to calculate than the manifold case. We first build
the edge link by iterating over every triangle in the ra-
dial edge and inserting the outer vertices into the edge
link set. Because we only need to test that the intersec-
tion of the u and v link sets are equal to the edge link
set, we do not need to build the entire link set for each
vertex. Rather, we only need to build the link(u) set out
of the vertices adjacent to u, that are not in the link(e)
set. If we find a vertex adjacent to the other edge vertex
v that is not in link(e) and not in the link(u), the radial
edge violates the link condition.

In a radial edge collapse, the link condition alone does
not guarantee that a vertex move will not invert a tri-
angle. We must also explicitly test triangle incident to
each of the radial edge endpoints. We test each of these
triangles by test-moving the edge endpoint vertex into
a trial position and testing for a change in the triangle
normal direction. Presently, we also test to ensure that
a radial edge collapse will not collapse a tetrahedron
down to a triangle. We check this by looking at the par-
tial triangles on each face of a radial edge triangle. If
that partial triangle’s two outer neighbors are adjacent
to each other, then this partial triangle and its two neigh-
bors define three faces of a tetrahedron, with an open
base. The collapse of this triangle will result its two
neighboring triangles collapsing down to each other -
that is, collapsing a tetrahedron to a triangle.

Figure 4: The radial edge collapse operation collapses
a set of radial triangles (green) down to a single vertex,
pulls in the remaining triangles (pink) to fill the newly
created hole, and connects each remaining triangle to
maintain mesh connectivity.

3.2.3 Vertex Split

The cell valence count of a vertex is the number of cells
that share that vertex. The previously described radial
edge collapse removes a vertex from a mesh and at-
taches all of this vertex’s cells to another vertex, thus
potentially increasing the cell valence count of the re-
maining vertex. Many mesh generation packages, tend
to produce meshes that are predominantly pentahedron

and hexahedron, thus contain a large number of ver-
tices with eight cell valences. Eight-valence vertices are
unusual in nature, and high or unbalanced vertex cell
valences also tend increase computational cost and nu-
merical error. The vertex split operation here is a non-
manifold generalization of Hoppe’s [7] manifold vertex
split. The vertex split operation here splits a single ver-
tex into two vertices and detaches a cell from a vertex
in order to reduce vertex cell valence count. We can
see in in Fig. 5 an example of a vertex with a high cell
valence count, (five in this case), and relaxed configu-
ration after five vertex splits. The vertex split operation
enables cells to reconnect to each other. In a manifold
mesh, a vertex split is the exact inverse of the edge col-
lapse operation. In our non-manifold mesh, the vertex
split operation shares a similar relationship with the ra-
dial edge collapse, though they are not exact inverses of
each other.

A

B
C

DE

u
A

B
C

DE

u
v

A

B
C

DE

u
v

A

B
C

DE

u
v

1 2 3 4

Figure 5: A sequence of vertex split operations in 2D.
The central vertex initially has a cell valence count of
5, and the C cell (in red) is selected for ejection. The
vertex split locates the shared face between C and its
neighboring cells, creates new vertex towards the cen-
ter of C, pulls the neighboring face of C to this new ver-
tex, and creates a set of triangles to fill this void. The
original vertex now has a cell valence count of 4. The
vertex split then selects the A cell for ejection, creates
a new vertex, moves the shared face, and fills the void
again. The final images show the mesh after two subse-
quent vertex split operations. Note, the vertex split is a
localized operation, the frontier elements of these cells
are not modified.

A vertex split begins with a candidate vertex u and
identifies a target cell C to disconnect and pull away
from u. Vertex split will then split u into two ver-
tices, u and v, where v is attached to the target cell,
C, which is then no longer incident to u. As C is dis-
connected from u, u’s cell valence count is reduced
by one. The cell valence count of v is then the num-
ber of cells that that are both incident to the original
vertex u, and adjacent to C, i.e. valence_count(v) =
|incident_cells(u)∩ad jacent_cells(C)|+ 1. Thus, in
order to reduce net valence counts, it is important for
vertex split to choose C such that valence_count(v) <
valence_count(u). Otherwise, vertex split will indeed
reduce the valence count of u, but it will also create an-
other vertex v that has the same valence count that u
originally had.

The most challenging task of the vertex split operation
is filling the hole created by splitting and moving the
vertex. This task is illustrated in Fig. 6. The vertex
move creates a void between the cell being moved (C)
and the set of cells adjacent to C, and incident to the
original vertex u. In order to fill this void, the vertex
split iterates around the triangle fan centered at v, com-
posed of triangles that face C. Every triangle in this fan,
by definition has exactly one face in the C cell surface.
Consider a sequential pair of triangles in this fan. The
non-C facing partial triangles either belong to a same
cell, or they point to different cells. If both partial tri-
angles point to the same cell on both sides, then there
is nothing to do, these triangles simply shift slightly, as
their center vertex gets attached to a new vertex v. If,
however, there is a cell change, (i.e., the first triangle’s
non-C facing partial triangle points to a different cell
than the second triangle’s non-C facing partial triangle)
then the vertex split inserts a new triangle at this edge.
We say that triangle t1 is incident to cells A and C, and
triangle t2 is incident to cells B and C. Vertex split then
creates a new triangle, tn with vertices v, u, and v f , the
vertex on the frontier of the fan that is incident to both
t1 and t2. The tn triangle faces cell A on one side, and
cell B on the other. The vertex split will continue it-
erating around this fan until it encounters the starting
triangle. Vertex split here creates a set of new triangles,
one for each pair of triangles that have a cell change.
All of these new triangles share the new {u,v} edge,
and when vertex split completes creating these new tri-
angles, it then connects their partial triangles together
appropriately. We can see that vertex split is essentially
the inverse of the radial edge collapse, in that a radial
edge collapse removes a set of triangles around a radial
edge, and vertex split creates a set of triangles around a
radial edge.

A

B B B

CCC

A A

(1) (2) (3)

t1
t1t1

t2 t2 t2

tnvf vf vf

vvu

u u

Figure 6: Three stages in a vertex split operation. This
operation first identifies a target cell, C in yellow, and
pulls this cell away, then splits the vertex u into u and
v, and finally fills in the resulting holes with new trian-
gles. Cell C is adjacent to cells A and B. Vertex split
ensures that the partial triangles on the new triangles
are connected to the correct cell boundaries.

3.3 Implementation Details
Biological cells and membranes participate in chemi-
cal processes that can often occur at significantly faster
timescales than the motion of the objects themselves. In

biological material simulations, the most computation-
ally expensive task is evaluating these continuous time
chemical reactions local to cells, surface elements and
the extracellular milieu, as well as the chemical fluxes
between neighboring spatial objects. The topological
rearrangement operations previously discussed perform
a significant number of mesh traversals when evaluating
mesh operation rule triggers, and when performing the
mesh update operations themselves. In order to max-
imize the performance of the chemical process solver
and mesh traversals, we choose to explicitly store all
neighbor relationships in the mesh at the expense of in-
creased memory usage and software complexity.

We provide two basic mesh traversal operations: ra-
dial edge and triangle fan traversals. A radial edge
is an edge connecting two or more incident triangles.
To enumerate these incident triangles, the radial edge
traversal (1) starts with a partial triangle and a pair of
vertices that define an edge, (2) finds the next partial
triangle that is both a neighbor of the current partial tri-
angle, and incident to the edge, (3) identifies the op-
posite partial triangle (4) continues the iteration until it
come across the starting partial triangle. A triangle fan
is the set of triangles that are incident to both the same
vertex and the same cell. (i.e., a triangle fan is a set of
triangles, all of which face the boundary of a cell and
surround a specified vertex.) The triangle fan traversal
(1) starts with a triangle, vertex and cell, (2) follows
the partial triangle neighbor pointers until the original
triangle is encountered again.

4 RESULTS
We have created a set of simple models that demon-
strate the mesh reconnect rules. These models read an
initial configuration from a gmesh file. These models
all implement a surface tension term (a force that acts
in a direction tangent to the surface), and a volume con-
straint (acts perpendicular to the surface).

We use Zheng’s method [17] to calculate the surface
tension force. This method calculates the surface ten-
sion contribution of a triangle’s three barycentric re-
gions to each corresponding vertex. Each barycentric
region pulls its’ incident vertex in towards the triangle’s
barycenter. The magnitude of each Voronoi region’s
surface tension is proportional to the 1/2 the length of
opposite edge. For details, see page 39 in [17].

We define the volume constraint on a per cell basis as
the difference between a target volume and the present
volume, C(X) = λ (vt − v), where vt is the target vol-
ume, v is the current volume, and λ represents the stiff-
ness of the constraint. Cells with a lower λ are “softer”,
as the constraint solver adjusts the cell positions more
rapidly in cells with a larger λ . We approximate the
volume constraint Jacobian, as in [2] as area weighted
surface normal to each vertex. We use the barycentric

area of each triangle to estimate the surface area of each
vertex, and we compute the total volume of each cell
using the divergence theorem.

To illustrate the effect of the edge collapse and vertex
split operations, we performed an experiment with four
cells and applied a harmonic bond force to the center of
mass of two cells in order to bring the cells in contact
depicted in Fig. 7. The initial condition contained the
two red cells topologically connected with each other -
they share triangles, and the two blue cells are discon-
nected.

We then apply a harmonic force to the center of mass
of each blue cell which caused the blue cells to come
closer, and start to push the red cells apart. We can see
the edge length shrinking between the blue cells. When
the edge length drops below a threshold, the radial edge
collapse rule culls these short edges. This operation
however increases the cell valence count on the central
vertexes to four. The increased valence count causes
the rules engine to invoke the vertex split operation. We
specified a rule that causes the cell with the highest cur-
vature to be ejected from the vertex. The vertex split
operation splits these vertices and creates the new trian-
gles in yellow. We can then see that as these two blue
cells continue moving towards each other, these cen-
tral edges continue to fall below the threshold, and con-
tinue to be culled, thus invoking further vertex splits.
In the last frame, we can see that all of the shared con-
tacts between the red cells has been eliminated. At this
point, we remove the force between the two blue cells,
and allow system to equilibrate. We can see that in the
final frame, the material is topologically very distinct
from the initial configuration. In the final frame, the
blue cells are not connected and the red cells are dis-
joint. The mesh operations provide one possible way
to maintain a memory on materials, as these are atomic
operations that alter the mesh structure and topology.

To illustrate the effects of differential surface tension
and demonstrate the mesh update operations when cells
separate, we created a model that mimics a simple bi-
ological model of cellular mitosis. Here, we represent
a biological cell that is about to undergo mitosis as a
pair of Mechanica cells in contact, separated by a mem-
brane. We first create two cubic cells in contact and
set the surface tension of the membrane that separates
these two cells to zero and set the surface-tension of
the membrane not in contact to a positive value and
allow the simulation to relax. As expected, the two
cells in contact in a relaxed configuration form a nearly
perfect sphere as in Fig. 8. Because the shared mem-
brane is initially not under tension, it does not exert any
force on the outside membranes. Once the system is
relaxed (no net motion), we increase the surface ten-
sion on the shared membrane to a positive value. We
can see that this shared membrane begins to pull in-

Figure 7: A series of frames from a simulation that
starts with an initial configuration with the two red cells
connected. We then apply a force between the two blue
cells, which causes the blue cells to come towards each
other and push the red cells out of the way. We can see
the surface shrinking between the blue cells, as these
edges shrink. The rules engine invokes the edge col-
lapse operation to cull the short edges, which results in
a number of vertices with a large cell valence count.
The rules engine then invokes the vertex split operation
to peel the red cells away. We then remove the harmonic
bond between the blue cells, the system then relaxes on
its own. The yellow regions indicate triangles that were
generated by vertex split operations.

wards on the outer membrane, and the two Mechan-
ica cells in contact begin to take the classic shape of
a biological cell undergoing mitosis. We then increase
the shared membrane surface tension to a value larger
than the outer membrane surface tension. At this point,
the shared membrane will continue pulling the outer
membranes inwards, and shared contact area between
the cells shrinks. As this shared area shrinks, the edge
length of triangles within this shared area drop below
the edge length cutoff, and the rules engine applies the
radial edge collapse rule to cull these offending trian-
gles. The shared surface area continues to shrink and
pull inwards on the outer membranes until the shared
area eventually disappears. The shared area disappears
when the rules engine culls the last remaining triangle
in that area. At this point, the two cells are no longer
in contact, and their respective surface areas relax to
approximate a sphere.

5 CONCLUSIONS
Researchers who simulate biological systems must take
into account both mechanical and chemical processes.
They must also represent objects that continually move
and change neighbor relationships. Most existing nu-
merical simulation approaches such as the finite ele-
ment or the finite volume methods excel at represent-
ing certain aspects of physical objects. Finite element
is ideal for simulating mechanical properties of mate-
rials with limited structural rearrangement. Finite vol-
ume methods excel at simulating complex fluids in rel-
atively stationary geometries. Few, if any simulation

Figure 8: A simple cellular mitosis model. Two cells
are initially in contact with a shared membrane, and
each cell’s individual membrane has a surface tension
of σ , and the the shared membrane’s net surface ten-
sion is zero. As the shared membrane is completely
relaxed, the two cells in contact form a sphere. We then
increase the surface tension of the membrane to a pos-
itive value which causes the membrane to shrink. As
the membrane shrinks, the mesh update operations au-
tomatically cull the triangles with short edges and split
large triangles. The mesh update operations enable the
shared membrane to shrink and eventually disappear, at
which point the cells separate.

platforms that can do both at once using the same simu-
lation approach. The novel mesh data structure we have
developed meets this challenge and enables us to repre-
sent a wide range of physical and biological materials
in a unified way. As an example of the applicability
of our platform, consider again the epiboly process de-
picted in Fig. 1. This biological process is challeng-
ing to represent using current simulation approaches
because it involves a variety of different chemical and
mechanical processes. Presently, researchers must re-
sort to integrating a range of different numerical sim-
ulation methodologies and programs. Using our new
numerical simulation engine, the representation of the
epiboly process is much simpler, is done entirely self
consistently, and requires no integration with external
solvers. We are presently developing a cell-division
mesh update operation that will split a single cell into
two cells. When this new operation is ready, we will
be able to directly represent this key biological process.
Take, for example, Fig. 1. This image depicts a clus-
ter of biological cells on top of a yolk sack. The cells
start out as a blob on top of the yolk sack. This blob
then gradually spreads out across the yolk, ultimately
enveloping most of the yolk. We could represent each
embryo cell as specific Mechanica cell type and rep-
resent the yolk as another cell type. We know that
there are a number of chemical reaction processes that
occur inside each embryonic cell. We presently sup-
port implementing chemical reaction networks inside
our cell types. We also know that these embryo cells
communicate with one another via intricate signaling
pathways, and we implement these as chemical fluxes
between cells. We also know that the embryo cells are
initially blob-like, and later move to envelop the yolk.
We can represent this transition with a surface tension

like force between the cells and the yolk. Initially we
could have a high surface tension between the embryo
cells and yolk, and lower surface tension between em-
bryo cells of the same type. Later, possibly based on
some chemical state variable in each embryo cell, we
could have the embryo-yolk surface tension reduce, and
the embryo-embryo surface tension increase. Here, we
would expect the embryo cells to then decrease their
affinity towards each other, and their affinity towards
the yolk to increase and spread out over the yolk. The
embryo development process exemplifies how biologi-
cal processes couple chemical and mechanical interac-
tions - a feature that the novel numerical simulation en-
gine we have developed uniquely captures, enabling re-
searchers to model these kinds of processes. The mesh
data structure presented here lays the groundwork for
this numerical simulation engine.
Our simulation code is currently under active devel-
opment, all source code and binaries will be made
freely available on the Mechanica website, (http://
www.mechanica.org) under a open source (GPL)
license.

6 ACKNOWLEDGMENTS
We acknowledge generous financial support the Na-
tional Institutes of Health, National Institute of Gen-
eral Medical Sciences, grant R01 GM122424, and Na-
tional Science Foundation grant 1720625. We thank Dr.
David Umulis, Dr. Marie Gingras, Dr. Amit Hagar and
Dr. James P. Sluka for their discussion and insights.

7 REFERENCES
[1] S. Alt, P. Ganguly, and G. Salbreux. Vertex mod-

els: from cell mechanics to tissue morphogenesis.
Philosophical Transactions of the Royal Soci-
ety B: Biological Sciences, 372(1720):20150520,
May 2017.

[2] J. Bender, M. Müller, M. A. Otaduy, M. Teschner,
and M. Macklin. A Survey on Position-Based
Simulation Methods in Computer Graphics. In
Computer Graphics Forum, pages 228–251, Sept.
2014.

[3] K. A. Brakke. The surface evolver. Experimental
Mathematics, 1(2):141–165, 1992.

[4] T. Braunbeck and E. Lammer. Fish Embryo Tox-
icity Assays. Technical report, German Federal
Environment Agency, 2006.

[5] A. Ghaffarizadeh, R. Heiland, S. H. Friedman,
S. M. Mumenthaler, and P. Macklin. Physicell:
An open source physics-based cell simulator for
3-d multicellular systems. PLoS computational
biology, 14(2):e1005991, 2018.

[6] H. Honda, M. Tanemura, and T. Nagai. A three-
dimensional vertex dynamics cell model of space-
filling polyhedra simulating cell behavior in a

cell aggregate. Journal of Theoretical Biology,
226(4):439–453, 2004.

[7] H. Hoppe. Progressive meshes. ACM, New York,
New York, USA, Aug. 1996.

[8] S. H. Lee and K. Lee. Partial Entity Structure:
A Compact Boundary Representation for Non-
Manifold Geometric Modeling. Journal of Com-
puting and Information Science in Engineering,
1(4):356–365, 2001.

[9] R. Merks, M. Guravage, and D. Inzé. VirtualLeaf:
an open-source framework for cell-based model-
ing of plant tissue growth and development. Plant
physiology, 155:656–666, 2011.

[10] T. Odaker, D. Kranzlmueller, and J. Volkert.
View-dependent simplification using parallel half
edge collapses. In Proceedings of the WSCG,
pages 63–72, 2015.

[11] S. A. Sandersius, C. J. Weijer, and T. J. Newman.
Emergent cell and tissue dynamics from subcel-
lular modeling of active biomechanical processes.
Physical biology, 8(4):045007, July 2011.

[12] E. T. Somogyi, J.-M. Bouteiller, J. A. Glazier,
M. König, J. K. Medley, M. H. Swat, and H. M.
Sauro. libRoadRunner: a high performance
SBML simulation and analysis library. Bioin-
formatics, 31(20):3315–3321, June 2015.

[13] E. T. Somogyi and J. A. Glazier. A modeling
and simulation language for biological cells with
coupled mechanical and chemical processes. In
Symposium on Theory of Modeling Simulation,
Virginia Beach, Apr. 2017. Society for Computer
Simulation International.

[14] M. Verschoor and A. C. Jalba. Elastically De-
formable Models based on the Finite Element
Method Accelerated on Graphics Hardware using
CUDA. Journal of WSCG, 2012.

[15] A. W. Vieira, L. Velho, H. Lopes, G. Tavares,
and T. Lewiner. Fast Stellar Mesh Simplification.
SIBGRAPI, pages 27–34, 2003.

[16] K. Weiler. The radial edge structure: a topolog-
ical representation for non-manifold geometric
boundary modeling . Geometric modeling for
CAD . . . , 1988.

[17] W. Zheng, B. Zhu, B. Kim, and R. Fedkiw. A new
incompressibility discretization for a hybrid parti-
cle MAC grid representation with surface tension.
Journal of Computational Physics, 280:96–142,
Jan. 2015.

