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ABSTRACT
Multiple-image super-resolution (MISR) attempts to recover a high-resolution (HR) image from a set of low-

resolution (LR) images. In this paper, we present a mobile MISR tailored to work for a wide range of mobile

devices. Our technique aims to address misalignment issues from a previous work and further enhance the quality

of HR images produced. The proposed architecture is used to implement a prototype application that is freely

available at Google Play Store, titled Eagle-Eye HD Camera. The system is divided into the following modules:

Input Module, Edge Detection Module, Image Selection Module, Image Alignment Module, Alignment Selection

Module and Image Fusion Module.

We assessed the quality of HR images produced by our mobile MISR, through an online survey, as well as compare

it with other related SR works. Performance time was also measured. A total of 114 respondents have participated

in the survey, where majority of respondents preferred our approach. Our approach is observed to be compara-

ble with other SR works in terms of visual quality and performance time, and guaranteed to work in a mobile

environment.
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1 INTRODUCTION

Multiple-image super-resolution (MISR) attempts to

recover a high-resolution (HR) image from a set of

low-resolution (LR) images. Figure 1 shows HR im-

ages produced by our proposed mobile multiple-image

super-resolution (MMISR) system for mobile devices.

To the best of the authors’ knowledge, there are limited

studies and implementations of super-resolution on

mobile devices, presumably because of its high time

and space complexity. However, mobile devices are

already capable of implementing a mobile MISR

system, provided that the system makes efficient use of

its hardware resources. Mobile device manufacturers
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such as ASUS1, Vivo2, and OPPO3 include a camera

feature that mimics an MISR technique to capture HR

images. Similar MMISR studies were observed from

[Chu13], [ZC14], [ZWZ13], and [DS15].

Images obtained from mobile devices may be modeled

as having undergone a series of noise, downsampling

and motion blur, which is similar to the image degra-

dation model proposed in [MPSC09]. The goal of any

MMISR system is to reverse these degradation effects.

An MISR technique can be divided into the following

steps [NM14]: denoising, deblurring or image selec-

tion, alignment, upsampling and image fusion. In our

implementation, the steps are performed in a sequential

manner and memory is being managed by our matrix

pool discussed in Section 4.1. The contributions of this

study can be summarized below:

1 How to Shoot Super Resolution on ZenFone 4: https://
youtu.be/o3DFhZxzwtk

2 Vivo V7. 64MP Ultra HD Photos: https://www.vivo.
com/product/en/product/v7

3 OPPO Pure Image, Ultra HD: https://www.oppo.com/
en/technology/pure-image
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Figure 1: Sample HR images produced by the SR system with noticeable improvement. A: Bicubic interpolation.

B: Proposed SR method.

1. We implemented and published a free prototype ap-

plication, titled Eagle-Eye HD Camera4.

2. We presented a revised architecture for performing

MMISR, that aims to address misalignment issues

from the work of [DGI17].

3. We compared the quality of resulting HR images

with the Bicubic baseline, and other related SR

works. We also conducted an online survey to

assess our HR images, where 114 respondents have

participated. The survey shows promising results to

further improve our work.

4. We developed a method for objectively assessing the

quality of aligned images. The MMISR prototype

performs alignment selection based on this assess-

ment method.

Our paper is organized as follows: We review recent

work in SR for mobile devices in Section 2. Specif-

ically, we discuss limitations of [DGI17] and how we

address these in Section 3. Lastly, we discuss our re-

sults in Section 5 and conclusions in Section 6.

2 RELATED WORK
Image super-resolution is still needed despite the ad-

vances in hardware such as the introduction of high-

definition (HD) displays. Some high-end mobile de-

vices introduced as of 2018 have a resolution of 1440

× 2560 known as quad-HD displays and camera reso-

lution size may go as large as 40MP [YSL+16]5. How-

ever, development of MMISR seems to be limited due

to its computational cost. Mobile devices are typically

equipped with burst mode capture which can be utilized

to perform MISR, provided that the images captured

4 Eagle-Eye HD Camera: https://play.google.
com/store/apps/details?id=neildg.com.
eagleeyesr

5 Huawei P20 Pro: https://consumer.huawei.com/
en/phones/p20-pro

have substantially different pixel values. This is proven

in the work of [DGI17], that there are substantial differ-

ences from images captured using the burst mode of the

camera [DGI17]. [Chu13] proved that multiple images

captured from mobile devices result in small motions

due to high frame rates, where an affine flow model is

suitable for aligning the images. A joint image align-

ment and deblurring approach was also proposed by

[ZC14].

The MMISR system developed by [DGI17] mostly

works when the user captures images steadily, or the

subject have adequate lighting. Limitations and issues

were observed, which are summarized below:

1. Limitation L1: Images become misaligned when-

ever images are captured with shaky hands. While

the system has some tolerance for aligning images

with slight angular changes, it can only work ideally

when images are captured steadily. This scenario

may not be practical for most end-users. An affine

and perspective transformation estimation was used

to align the images which proves to be an insuffi-

cient approach as discussed in Section 2.1.

2. Limitation L2: Inadequate lighting and changes in

exposure values also affects the alignment.

3. Limitation L3: Using a mean fusion approach may

smoothen the pixel values. While mean fusion can

be effective for removing noise, it also causes some

high-frequency details to be lost. The problem is

that the system does not employ any regularization-

based methods as observed from related approaches

[MPSC09, NMG01, LHG+10, PC12, YZS12].

2.1 Misalignment Issues
The MMISR system of [DGI17] implements Affine

Transformation Estimation (ATE) [Ho15] and Perspec-

tive Transform Estimation (PTE) [Ho15] sequentially.

However, their technique can produce misaligned im-

ages and causes unwanted artifacts to appear in the
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HR image. Figure 2 exhibits blurring and distortion

of texts due to incorrect transform estimation. Figure

3 shows a low-light image example taken with vary-

ing exposure values (-3, 0, +3 respectively). In this

example, a warping distortion occurred due to lack of

image detail or varying exposure value. There is not

enough reliable keypoints available for correctly esti-

mating the perspective transformation. Figure 4 intro-

duces a ghosting effect. ATE and PTE is performed

globally on the whole image. Hence, it cannot han-

dle localized transformation on image regions (Image

B and C).

Figure 2: Misalignment example due to incorrect trans-

form estimation. A: one of the LR image sequences. B:

zoomed region on one of the images. C: zoomed region

on an image with misalignment.

Figure 3: Low-light images with varying exposure val-

ues (EV) are prone to misalignments. A: Low-light LR

images with -3, 0, +3 EV. B: zoomed region on one of

the images. C: zoomed region on an image with warp-

ing distortion.

Figure 4: Misalignment example on a scenery image.

A: one of the LR image sequences. B: zoomed region

on one of the images. C: zoomed region on an image

with ghosting effect.

2.2 Loss of Detail after Mean Fusion
As mentioned in L3, it is observed from the method

of [DGI17] that the nature of the mean fusion process

smoothens out some of the high-frequency details of the

images as illustrated in Figure 5.

Figure 5: A: cubic interpolation. B: SR method by

[DGI17]. C: ground-truth. Loss of detail is exhibited

in result of B after performing mean fusion.

3 ADDRESSING THE LIMITATIONS
This section discusses our proposed approaches that

aim to address L1, L2 and L3. Our proposed MMISR

system selects well-aligned images from the outputs

of two alignment algorithms, PTE and MTB (Median

Threshold Bitmap alignment [War03]). The choice of

these alignment techniques are influenced by the fol-

lowing factors:

1. PTE can easily be performed on a mobile device be-

cause of its low computational cost and fast process-

ing time (see performance time discussion). Images

captured from mobile devices typically have a res-

olution of 8MP or more, and these techniques can

handle images with large resolution.

2. MTB is observably the fastest and most reliable

technique for aligning images captured on a mobile

device [War03].

To verify the quality of image alignment algorithms,

an experiment was performed that compared ATE,

PTE and MTB through a fitness score. It is observed

that misaligned images introduce additional edges

when merged with the reference image as shown in

Figure 6. With this observation, and because there are

no standard mesures for assessing how an image is

well-aligned, we propose a technique that measures the

density of edges through Sobel derivatives [Sob68].

Correctly aligned images should not introduce addi-

tional edges from the reference image. To detect this

observation, the following steps are performed:

1. Let L0 be the first reference LR image, {A1...AN}

are aligned image sets produced by image alignment

technique A.

2. Count the non-zero elements of the edge image for

L0 to produce an integer measure, e0.
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Figure 6: Misaligned images introduce additional

edges. A: reference image edge. B: misaligned image

merged with the reference image.

3. For a∈ {A1...AN}, add a with L0 to produce the edge

image, as seen in Image B in Figure 6. Let this be

{Ā1...ĀN}

4. Count the non-zero elements of the edge images for

{Ā1...ĀN}. Let this be {ē1...ēN}.

5. Compute for the integer measures, {εi...εN} by sim-

ply subtracting ēi to e0, where i is 1...N. Label this

as SobelMeasure.

{εi...εN} refers to the corresponding SobelMeasure val-

ues of aligned image set, {A1...AN}. A low value in-

dicates that minimal edges were introduced when at-

tempting to combine the aligned images to the reference

image.

Using the proposed technique, 33 image sets where

gathered and aligned, where each image set consists of

10 images captured using burst mode. The resulting

average SobelMeasure of aligned image sets are visu-

alized in Figure 7. Out of 33 image sets tested, PTE

works best on 28 image sets, ATE works best for 3

image sets, and MTB alignment works best for 2 im-

age sets. PTE is the ideal image alignment technique

for images taken from mobile devices. However, MTB

sometimes aligns an image sequence better than PTE.

This is where we propose an alignment selection tech-

nique. We select an aligned image by selecting the

lesser difference in SobelMeasure. Suppose P is the

aligned image using PTE, and M is the aligned image

using MTB, for some {L0...LN} image sequence. If

SobelMeasure of P ≤ M, then P will be selected as the

aligned image for that image sequence. Otherwise, M
will be selected. This is demonstrated in Figure 8 where

artifacts are severely reduced in the final image.

For addressing L3, an L1-norm minimization ap-

proach proposed by [FREM04] may be applied or

other regularization-based approaches in recent works

[LHG+10, PC12, YZS12]. However, such a technique

may result in a huge computational time for a mobile

device due to its iterative nature. Based from this

assumption, we simply applied a sharpening operation,

unsharp masking, to individual LR images which

proves to be effective in preserving edges while also

removing noise as observed in Figure 9. Edges as

Figure 7: SobelMeasure values from 33 image sets vi-

sualized as a line chart. A lower value indicates that the

image sequences are more well-aligned to its reference

image. PTE has the lowest average SobelMeasure of

818,056.

Figure 8: A: alignment using Perspective Transform

Estimation. B: Best Alignment Technique. Aligning

images with varying exposure values is a clear limita-

tion of the MMISR system. This results in severe warp-

ing distortion only if (A) was applied. Misalignment

and warping distortion is reduced if (B) was applied.

well as noise gets amplified but performing a mean

fusion to combine all unsharp masked LR images will

create an image where edges are preserved while also

minimizing noise.

4 OUR PROPOSED ARCHITECTURE
Our system architecture borrows from the architecture

presented in [DGI17], but modified that image align-

ment technique to address L1 and L2 and applied un-

sharp masking to LR images to mitigate L3. The sys-

tem architecture is shown in Figure 10.

The system accepts a set of LR images wherein the first

LR image serves as the reference LR image. In the

Edge Detection and Image Selection Module, the LR

images undergo the same feature-selection scheme pro-

posed in [DGI17]. The Image Selection Module pro-

duces a filtered set of LR images, {L0...LN} where an

Unsharp Masking operator is applied to the images, to
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Figure 9: Unsharp masking illustration. A: LR image.

B: LR image with unsharp masking applied. C: Re-

sulting image after performing mean fusion. Observe

that noise and other artifacts seen in B was suppressed,

while having the edges preserved in C.

address L3. Unlike [DGI17], non-local means denois-

ing [BCM11] can be applied optionally, to conserve

computation time. L0 is upsampled using bicubic in-

terpolation, which becomes the initial HR image Ĥ.

The subset {L1...LN} undergoes PTE [Ho15], and MTB

alignment [War03]. This produces warped images,

{P1...PN} for the PTE-aligned images and {M1...MN}

for MTB-aligned images.

The image sets {P1...PN} and {M1...MN} enter the

Image Alignment Module where an image that in-

troduces the least error in alignment will be chosen,

which addresses L1 and L2. The selected aligned

image, {Wk}N
k=1, can either be {Pk}N

k=1 or {Mk}N
k=1

respectively.

The images {W1...WN} are upsampled using bicubic in-

terpolation to produce {Ĥ1...ĤN} as initial images to be

mapped to the HR grid, by mean fusion. This produces

the final HR image, H.

4.1 Matrix Pooling for Optimization
We discuss matrix pooling as an optimization technique

that made our MMISR implementation possible. In our

implementation, we prioritized memory management

over computational time to minimize the chances of out

of memory errors.

Matrix pooling is heavily inspired from the object pool

software design pattern, but applied to matrices. N ma-

trices of size H ×W are pre-allocated at startup. Each

module may request for M matrices where M ≤ N for

processing. After a task has been performed, M matri-

ces are released back to the pool of N matrices. Should

M > N, then this returns a failure. Otherwise, the tasks

in the system modules perform as is. Because of matrix

pooling, memory can easily be managed and results in

faster computational time, as the matrices are only in-

stantiated during the start of an SR task, and destroyed

when the SR task is completed.

5 RESULTS AND DISCUSSION
5.1 Assessment of HR Images
A preliminary survey was conducted to assess the qual-

ity of images. 114 respondents have participated. These

images do not have any ground-truths as they were cap-

tured in a real-world scenario. The respondents where

tasked to evaluate zoomed images. The survey is struc-

tured as follows: a total of 42 randomly selected image

sets with HR images were requested to be evaluated by

the respondents. There are 3 choices to choose from,

Method A: a bicubic interpolated image, Method B:
an HR image produced by the previous SR method

[DGI17], and Method C: our proposed SR method. In

the survey, an image thumbnail is provided followed by

the 3 HR images zoomed in on a certain region, as illus-

trated in Figure 11. The image choices were random-

ized per question so that respondents will not discover

any patterns in the choices.

The respondents choose one of the 3 image choices pro-

vided, followed by a confidence level rating from 1 to

5. This indicates the confidence and certainty of their

chosen preferred image. A rating of 5 means that the re-

spondent is very sure of his/her image choice. A rating

of 1 means that the respondent had difficulties choosing

his/her preferred image or their decision is split among

the other image choices.

5.2 Preliminary Survey Results
The survey results are summarized in Table 1. The

"Number of Majority Votes" column tallies the num-

ber of test images where a given technique is selected

by majority. The "Average Confidence Level 5" column

indicates the average percentage of Level 5 ratings for

a given technique.

It is shown in Table 1 that Method C was selected as

majority for 26 test images with Average Confidence

Level 5 of 41.95%. It is followed by the Method A were

it was selected as majority for 14 test images with Av-

erage Confidence Level 5 of 39.16%. Method B were

only selected for 2 test images and Average Confidence

Level 5 of 37.30%

Based from the results, it can be justified that Method

C were preferred by respondents over Method A and B.

Whenever the produced HR images from Method C are

not preferable to respondents, the HR images produced

by Method A were selected.

Figure 13 shows the best quality HR images preferred

by respondents (refer to Figure 12 for the thumbnails).
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Figure 10: System architecture of our MMISR system.

Figure 11: A snippet of the online survey. Image

thumbnail is presented first followed by three image

choices.

Table 1: Summary of survey results

Technique Number of
Majority
Votes

Average
Confidence
Level 5

Method A 14 out of 42 39.16%

Method B 2 out of 42 37.30%

Method C 26 out of 42 41.95%

Image 1 received the highest number of votes (95.60%)

for Method C, with a Level 5 Confidence of 69.30%.

Image 5 has 90.40% of votes and also has the highest

Level 5 Confidence Level Percentage, which is 72.80%.

It can be observed from the best cases that users prefer

clear texts and sharp details. Method C produced the

clearest and most visible text than the other techniques

in these image sets. Additional results are shown in

Figure 18 and 19.

5.3 Performance Time
Processing time and space consumption were measured

using a test device with 2.0 Ghz Octa-core processor,

4GB RAM, and 16MP rear camera. A total of 20 im-

age sets were used and the processing time was aver-

aged. The LR images have a size of 2992 × 5280 res-

olution, which is the default resolution size of the cam-

era. The MMISR system produces 50MP HR images

of 5980 × 10560. Figure 14 and 15 shows the average

performance time and standard deviation respectively.

The Image Alignment, Alignment Selection and Im-

age Fusion module takes up at least 60 seconds to pro-

cess. With this observation, the processing time of Im-

age Alignment and Alignment Selection modules can

be further reduced by having only 1 robust alignment

technique implemented similar to how [ZC14] handled

image alignment. Denoising has the highest standard

deviation because the quantity of images selected by the

Image Selection Module, varies across test sets. Each

additional image also results in a huge increase in de-

noising time, which is why it was made an optional fea-

ture and only ideal for low-light images.

5.4 Comparison with Related SR Work
We compared our results to related SR works by us-

ing ten frames from the video provided in [FREM04].

The frames have a resolution of 49 × 57. In Figure

16, we compared our approach to the following: Bicu-

bic baseline, [FREM04] because we want to compare

its L1 minimization approach with our simpler unsharp

masking technique to address the "smoothening" effect

of mean fusion, and [ZC14] because of its promising

approach of joint alignment and deblurring. Using a

scaling factor of 2, our MMISR method outperforms the

Bicubic method and the method of [FREM04]. In terms

of image quality and sharpness, the method of [ZC14]

outperforms our MMISR. In terms of speed, MMISR
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Figure 12: Thumbnails of the best quality HR images (Top 1 - 5), preferred by respondents.

Figure 13: Best HR images preferred by respondents with the corresponding percentage of votes. 114 respondents

have participated in the survey. Images 1 - 5 received above 89% of votes in Method C (our method), which

effectively surpasses the bicubic performance (Method A) and the SR method of [DGI17]. It can be observed from

the best cases that users prefer clear texts and sharp details.

is considerably faster than the method of [ZC14]. The

performance time of the method of [ZC14] is 155.63
seconds compared to MMISR which is less than 1
second. The deblurring and denoising stage in the

approach of [ZC14] were the most time-consuming.

While the technique of [ZC14] is robust and can handle

extremely blurred and noisy images, MMISR is consid-

erably faster and more appropriate for mobile devices.

We also compared our results to the work of [KJ14], be-

cause they perform a specialized approach in image up-

sampling through self-learning. Additionally, we com-

pared our results to the work of [KJ13] and [SLJT08].

The test images in the work of [KJ14] were re-captured

from a computer screen, using a mobile device with

a 16MP camera. This was performed so that the mo-

bile camera settings such as ISO, exposure and shutter

speed, affect the quality of the HR images and provide a

fair analysis against the mentioned SR techniques. Fig-

ure 17 shows the results. Our proposed technique, pro-

duces comparable results as that of related single-image

SR works. It can be observed that our technique pro-

duces clearer edges among other SR methods.

6 CONCLUSION AND FUTURE
WORK

This research presents an improved framework for im-

plementing a mobile multiple-image super-resolution

system (MMISR) for mobile devices, by addressing

the limitations observed in the implementation of

[DGI17]. The system architecture is divided into the

following modules: Input Module, Edge Detection

Module, Image Selection Module, Image Alignment

Module, Alignment Selection Module and Image

Fusion Module.

Our results, based from the survey and analysis of

the performance time, show a promising direction in

MMISR research. Immediate steps needed to further

improve and validate our system is to compare it with

other state-of-the-art approaches, and apply some of the

techniques seen in single-image SR works [TDSVG15,
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Figure 14: Average performance time of system mod-

ules in seconds. Denoising is an optional feature in the

actual application due to its very long processing time.

Performing image alignment, and image fusion are the

heaviest in terms of processing time.

Figure 15: Standard deviation of system modules in

seconds. Denoising has the highest standard deviation

because the quantity of images selected by the Image

Selection Module, varies across test sets.

DLHT16, TAe17]. We also plan to implement special-

ized approaches in image upsampling [RU90, NTP17].

Based from the preliminary survey conducted, results

show that respondents prefer our approach. However,

a more thorough analysis on the preferences of users

must be performed [YMY14]. Using an Unsharp Mask-

ing operator to solve L3 may introduce artificial arti-

facts in the images. Thus, it is recommendable that a

specialized sharpening operation is performed such that

it preserves the natural contours and composition of the

images, which is an interesting approach in this paper

[RIM17].

Figure 16: Comparison with related SR work. A: Bicu-

bic image. B: Method of [FREM04]. C: Method of

[ZC14]. D: Our method. While Method C contains

more high-frequency details than Method D, Method D

is considerably faster than Method C, but also has more

detail than Method A and B.
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