
Generation of Implicit Flow Representations for Interactive
Visual Exploration of Flow Fields

Molchanov Vladimir
The University of Münster

Schlossplatz 2
48149 Münster, Germany

molchano@uni-muenster.de

Lars Linsen
The University of Münster

Schlossplatz 2
48149 Münster, Germany
linsen@uni-muenster.de

ABSTRACT
A stream function is an implicit flow representation in form of a function, whose values are constant along stream-

lines of the underlying velocity field. To generate a stream function, a common approach is to use a streamline

tracking technique after assigning scalar function values on the inflow/outflow domain boundary (pre-processing

step). However, non-trivial flows generally have streamlines that do not start or end at the domain boundary. We

propose an automatic approach that defines a stream function along such streamlines. To do so, we construct

optimal termination surfaces inside the domain and assign scalar values to all streamlines crossing these surfaces.

Furthermore, we propose a proper functional to characterize the quality of the approximated stream function. Using

a variational approach, we derive a partial differential equation for the minimization of the derived functional. This

minimization procedure is an effective tool to improve the stream function. It can also be used to significantly im-

prove the pre-computation times by creating a high-quality high-resolution stream function from a low-resolution

estimate. Once the implicit flow representation is established and improved, we can efficiently extract flow geome-

try such as stream ribbons, stream tubes, stream surfaces, etc. by applying fast marching algorithms. Tracking time

recorded during the pre-processing step can be coupled with the stream function or used directly to extract time

surfaces. Thus, the entire flow field can be explored interactively. There is no need for time-consuming particle

tracking and mesh refinement during the visual exploration process.

Keywords
Flow visualization, streamlines and -surfaces, implicit representation, stream function.

1 INTRODUCTION
Modern flow visualization systems are required to han-

dle large volumetric datasets of high complexity, to ex-

tract and transform requested information fast and ac-

curately, and to meet users’ intuition and expectation

when rendering. The enormous demand on such sys-

tems caused an intensive research on this topic over the

last decades. As a result there have appeared various vi-

sualization algorithms combining ideas from numerical

methods, fluid dynamics, geometry, and other fields.

Most of the existing approaches can be classified into

four large groups: direct, geometric, texture-based,

and feature-based methods [LHD+03]. All these

approaches have their own application areas and

differ in efficiency, generality, and expressiveness.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

Direct methods are intuitive but only allow for local

comprehension of the flow and are of limited use when

considering volume data. Texture-based techniques

produce dense flow representations by applying filters

to three-dimensional textures. Occlusion becomes

an issue. Scalar characteristics are in the focus of

feature-based methods, which often require more

experience from the user. Geometric approaches are

considered to be quite intuitive and expressive.

Our paper is devoted to three-dimensional geometric

flow visualization using an implicit flow representation.

The core of most geometric approaches is an integration

of the flow field, which can be extremely time consum-

ing when postulating high accuracy. To allow for an

interactive visualization that involves many geometric

objects, the integration needs to be executed in a pre-

processing phase. Our algorithm takes advantage of

an implicit representation of flow, thus, effectively con-

verting the problem to a scalar field visualization task.

Given the implicit flow representation in the form of a

collection of stream functions, an extraction and ren-

dering of geometric stream elements is performed effi-

ciently using the available pre-integrated information.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

20 ISBN 978-80-86943-40-4
https://doi.org/10.24132/CSRN.2018.2801.3

Implicit flow representation is a collection of stream

functions together with advection times and lengths

recorded for each node. A (generalized) stream

function is a non-trivial function, whose values are

constant along streamlines of the underlying velocity

field. To generate a stream function for a given velocity

field, a common approach is to use a streamline

tracking technique after assigning scalar function

values (parametrization) on the inflow/outflow domain

boundary, see Section 3. However, non-trivial flows

generally have streamlines that do not start or end at the

domain boundary. We propose an automatic approach

that defines a stream function along such streamlines.

To do so, we construct optimal termination surfaces

inside the domain and assign scalar values to all

streamlines crossing these surfaces, see Section 4. We

also support the interactive modification of position

and parametrization of the termination surfaces by

the user based on the information obtained by the

automatic procedure. After having computed one

or several distinct stream functions for gridded data,

marching algorithms can be applied to the grid to

visualize implicit stream elements, such as streamlines,

stream tubes, stream ribbons, stream surfaces, etc, see

Section 6. Moreover, tracking time can be recorded

during the pre-processing step, which allows for the

extraction of time surfaces or for enhancing other

stream elements with time information.

Another aspect of our work is concerned with the qual-

ity of the stream functions. To our knowledge, there

exists no tool to measure and improve the quality of

the pre-integrated data. Our efforts were concentrated

on developing such an approach that improves a stream

function with respect to the underlying velocity field.

Using a variational approach, we derive a partial differ-

ential equation to optimize the derived quality measure,

see Section 5. The procedure can be useful in many

regards, including the following:

• Improvement: A stream function constructed by

tracking of samples may contain noise, exhibit sam-

pling artifacts, or have high local errors due to a

non-uniform behavior of the velocity field. Our

minimization procedure improves the quality of the

stream function and can eliminate these artifacts.

• Refinement: Computing a stream function over a

large domain can be rather expensive when tracking

all nodes. Using our approach, we can downsam-

ple the data, compute a coarse approximation of the

stream function, use interpolation for upsampling to

the original resolution, and correct the interpolated

stream function values via the proposed minimiza-

tion procedure.

The main contributions of the paper can be summarized

as follows: (1) Automatic generation of implicit flow

representation for the entire flow domain; (2) Termina-

tion surfaces to generate a parametrization for stream-

lines not crossing the domain’s boundary; (3) Proper

functional to control the stream function quality; (4)

Variationally derived procedure for stream functions

improvement; (5) Effective algorithms for extraction of

various stream elements with the possibility to repre-

sent advection-time information in form of color (trans-

parency) encoding or extraction of time surfaces.

2 RELATED WORK
Nontrivial real-world and modeled flows have

variations in velocity and curl magnitude, an inho-

mogeneous distribution of helicity and divergence,

and a non-degenerated determinant of the gradient

tensor. All these scalar fields associated with a flow are

features that play an important role in flow analysis.

An approach to highlight regions of a non-uniform

flow behavior is to use a multi-dimensional transfer

functions [PBL+04, PBL+05], or glyphs [GRT17].

Flow direction – one of the simplest flow character-

istics – is hardly described by a scalar quantity. To

depict this information the Line Integral Convolution

method was proposed by Cabral and Leedom [CL93].

The idea is to blur textures along a given vector field

over the domain producing intuitive patterns, especially

in two spatial dimensions. In the case of a volumet-

ric flow, the method can be combined with other ap-

proaches. For instance, Schafhitzel et al. [STWE07]

computed and rendered stream surfaces and path sur-

faces of a three-dimensional flow with a texture-based

surface flow structure.

Rendering of flow-related geometrical objects is an ex-

tremely helpful visualization method. Colored points,

curves, and surfaces may be used to define the topo-

logical skeleton of a vector field, i.e., critical points,

periodic orbits, separatrices, etc. Existing approaches

focus on topological segmentation of two-dimensional

[SHJK00] and three-dimensional steady vector fields

[MBS+04], an analysis of time-dependent vector field

topology [SRP09], and extraction of two-dimensional

separatrices of three-dimensional saddles and saddle

type periodic orbits [PS09].

The basic underlying principle of topology-based

and geometric methods is the tracking of imaginary

particles introduced into the flow. The idea was

adopted from real-world experiments on injection of an

extraneous, clearly visible fluid material into a stream.

Propagation of the material displays the stream- or

pathline structure of the flow. A proper optical model

for smoke advection in an unsteady flow was pro-

posed [vFWTS08]. Li et al. [LTH08] developed a dye

propagation scheme overcoming non-physical artifacts

of integration. Cuntz et al. [CKSW08] advected a dye

in an unsteady three-dimensional flow using a hybrid

particle-mesh formalization. A dye released into the

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

21 ISBN 978-80-86943-40-4

flow at fixed positions at different times results in

streak lines [WT10].

An integration along particle paths is commonly done

by a fourth-order Runge-Kutta method [PYH+06]. The

paths describe streamlines or pathlines and can be ex-

tended to stream ribbons or stream tubes [RLN+17].

An improvement of stream ribbon triangulation in di-

vergent or shearing flows was studied in the seminal

paper by Hultquist [Hul92].

The construction of a flow topology skeleton is mainly

done without any user interaction. Although it also re-

quires significant computational efforts, extraction of

stream surfaces and lines is more user-oriented, since

the seeding points can be defined arbitrarily. Typi-

cally, the number of simultaneously extracted stream

elements needs to be limited to allow interactive frame

rates. One step towards an interactive visualization

application that allows the simultaneous extraction of

many stream elements can be taken by moving all time-

consuming integration to a pre-processing phase and

encoding the flow implicitly in a scalar stream function.

An implicit surface representation is the key

idea of a wide class of level-set methods, e.g.,

[CKSW08, WJE00, WJE01]. Early attempts in implicit

representations of stream surfaces go back to van Wijk

[vW93]. All grid nodes were tracked in the direction

opposite to the flow until they reach the domain bound-

ary. The velocity field was evaluated via a trilinear

interpolation from the grid. Values of a smooth scalar

function defined at the boundary are then assigned to

the nodes based on the assumption that they remain

constant along each streamline. Alternatively, a con-

vection equation is solved on a regular grid. Isosurfaces

of the resulting gridded volumetric function are then

proven to be stream surfaces of the underlying flow.

Xue et al. [XZC04] adapted the approach by van Wijk

to render implicit volumes. Instead of assigning scalar

values on the inflow region, the user is asked to paint a

two-dimensional texture on the boundary (termination

surface). Properly constructed boolean fields which

remain unchanged along streamlines allow for effective

flow topology exploration as shown in [SS07]. In this

paper, we present an approach that computes stream

functions fully automatically. Moreover, we define a

quality measure and present an approach for improving

stream functions.

A streamline can be found as an intersection of two

stream surfaces called dual. A cell-wise trilinear ap-

proximation of dual stream functions (f and g) was

used by Kenwright et al. to render streamlines [KM92].

A concept of an f g-diagram was then generalized to an

irregular tetrahedral mesh [KM96].

3 STREAM FUNCTIONS
A stream function ψ(x) of a two-dimensional poten-

tial flow w(x) = (w1(x), w2(x)), x = (x1,x2), is known

to satisfy the Poisson equation �ψ(x) =
∂w2(x)

∂x1
−

∂w1(x)
∂x2

, where � = ∂
∂x1

+ ∂
∂x2

stands for the Laplace

operator. The right-hand side of the equation has the

meaning of vorticity with a negative sign. The stream

function ψ(x) remains constant along streamlines and

the magnitude of its gradient is proportional to the flux.

This property holds exceptionally for potential flow,

i.e., for velocity field w(x) with ∇×w(x) = 0. How-

ever, a generalized notion of a stream function is still

applicable for non-potential flows in spatial dimensions

higher than two.

A (nontrivial) scalar function f (x) is said to be a (gener-
alized) stream function of a given vector field u(x) (in-
terpreted as velocity), if ∇ f (x)⊥ u(x) everywhere in a

domain D ∈ R
d , d ≥ 2. It implies that f (x) is constant

along any streamline of the flow u(x), i.e., an implicit

relation f (x) = fiso with some constant fiso defines a

streamline or a stream surface for d = 2 or d = 3, cor-

respondingly.

We assume that the underlying vector field is suffi-

ciently smooth, i.e., its components have continuous

first derivatives. Since the stream function definition

above is invariant under arbitrary scaling of the velocity

u(x), it is convenient to normalize the flow introducing

a new field v(x) = u(x)/‖u(x)‖. The boundary ∂D of

the flow domain D can be split into two parts, the inflow
boundary region ∂Din and the outflow boundary region
∂Dout, i.e., ∂D = ∂Din

⋃
∂Dout. By definition, y∈ ∂Din

iff y ∈ ∂D and v(y) ·n(y) ≤ 0, where n is a normal to

the boundary ∂D pointing outwards and "·" denotes the
inner product of vectors in Rd .

There exist two main approaches to construct a stream

function f (x). A first approach solves the partial differ-

ential transport equation with boundary condition

∂ f (x, t)
∂ t

+u ·∇ f (x, t)= 0; f (y, t)= f0(y), y∈ ∂Din,

to track boundary values throughout the domain

along streamlines. Alternatively, all grid nodes gi
can be tracked backwards in the flow (so called,

anti-particles). Here, the ordinary differential equation

dgi(t)
dt

=−u, gi(0) = gi, (1)

is to be solved until each tracked particle reaches ∂Din

at some time ti. After that, the inflow boundary region

is parametrized, i.e., some scalar values are prescribed

to all inflow boundary points. Then, all grid nodes gi
are assigned with the same scalar values as their foot-

prints gi(ti). The established volumetric scalar field is

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

22 ISBN 978-80-86943-40-4

Figure 1: Classification of streamlines with respect to

their start and end points lying on the boundary (B) or in

the interior (I) of the domain. Case V describes closed

streamlines around vortex. By proper splitting (dashed

lines), II and V regions can be reduced to two subre-

gions of BB, BI, or IB.

the stream function f (x). The collection of the gridded

values ti determines another scalar field t(x) called the

advection-time function. In both approaches t stands for
an artificial time.

Usually, both the coordinates of the footprints gi(ti) and
the advection times ti are recorded after the backwards

tracking step. The user chooses a proper parametriza-

tion of ∂Din and specifies an iso-value fiso to extract

the implicit stream surface f (x) = fiso. The advec-

tion times ti can be used either to extract time surfaces

t(x) = tiso or to color extracted stream surfaces.

A dual technique is to track particles forward in the flow

until they reach ∂Dout and to record their tracking time.

Since we use both of the methods simultaneously in our

approach, we denote by tin and tout the advection times

by inverse and original flow, respectively.

In most cases, finding a parametrization that results in

a globally smooth stream function is not easy for two

reasons: First, the domain D is usually chosen to be

a rectangular box, which, obviously, has a non-smooth

boundary. Second, many flows have streamlines, which

do not start on the boundary. We reproduce the flow

diagrams from [vW93] in Figure 1. Based on whether

a streamline starts/ends on the boundary (B) or in the

interior (I), or it forms a loop around a vortex (V), one

can classify them in five types: BB, BI, IB, II, and V.

The methods described above require that all stream-

lines of the flow u(x) start and/or end at the domain

boundary ∂D. However, the presence of sources, sinks,

or vortices may lead to stream curves belonging to the

domain interior (cases II and V) which remain non-

parametrized. These cases can be solved by a proper

splitting of domain D into subdomains, see Figure 1,

and/or by surrounding singularities with termination
surfaces.

4 TERMINATION SURFACES
Parametrization of streamlines of type II and V was

stated as an open problem by van Wijk [vW93].

Splitting of the flow domain as in Figure 1 (lower

row) becomes impractical for three-dimensional fields,

since critical points (sinks, sources, vortex cores) can

build complicated geometry, e.g. vortex filaments. To

handle the II-case with isolated sinks/sources, Xue et

al. [XZC04] constructed termination surfaces surround-

ing the critical points. The streamlines approaching one

of these points intersect the corresponding termination

surface and pick up a value from its parametrization.

However, Xue et al. did not present a methodology on

how the radius of the spherical surface should be cho-

sen and left the placement of termination surfaces to the

user. Moreover, the streamline density on small spheres

is extremely high, which makes the parametrization

process unstable with respect to unavoidable tracking

errors. Our approach automatically creates termination

surfaces inside II or V regions optimally placed with

respect to the locations of critical points, which is

based on pre-processed information.

In the pre-processing step, we track each grid node for-

ward and backward in the flow to define its type: The

type of a node is the type of the streamline the node

belongs to. For the nodes of types BB, BI, and IB

we record the footprint point(s) and the two advection

times. For the nodes of type II we record the grid vox-

els being visited, the tracking times tin and tout and the

advection lengths lin and lout. For the nodes of type V
we just record the voxels being visited. As such, we

classify all grid nodes. Setting value 1 to all nodes of

one class and value 0 to nodes of the other classes, we

can extract separating surfaces as isosurfaces with re-

spect to the isovalue 0.5. These are stream surfaces that

provide important information about the flow structure.

However, their quality is low, since they are extracted

from a boolean field.

Flow regions that have been categorized as being con-

nected to the domain boundary (types BB, BI, and IB)

are then parametrized according to scalar field(s) that

are assigned to the domain boundary ∂D. The next

step is to create a smooth scalar field for regions of type

II and V by constructing proper termination surface(s).

For that purpose we first look for a seeding voxel S (dis-

cussed below). Let c be the center of S and m= v(c) the
velocity at c. Starting from the seeding voxel, we grow

the termination surface by marking neighboring voxels

if they (a) have a non-empty intersection with the plane

β : x ·m = c ·m, (b) have unparametrized streamlines

crossing them, and (c) their velocity v has the same ori-

entation as the velocity at c, i.e., v ·m > 0. The pro-

cedure results in that part of plane β that is connected

with voxel S and has unparametrized streamlines cross-

ing it. Let {k, l} be an orthonormal basis in plane β .

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

23 ISBN 978-80-86943-40-4

Figure 2: Automatic parametrization of V- and II-

regions (left and right column, correspondingly). Upper

row: Stream surfaces that separate the V- and II-region

from the surrounding regions. Lower row: Termination

surfaces provide scalar values for streamlines intersect-

ing them, which allows for the extraction of stream ele-

ments.

A streamline crossing the termination surface at point

g gets assigned a scalar according to f1 = (g− c) ·k or

f2 = (g− c) · l. Both scalars are needed for extracting

stream tubes and ribbons as discussed below.

For the selection of seeding voxel S, our aims are (1) to

provide scalar values for a maximal number of stream-

lines at once, and (2) possibly avoid an overly dense lo-

cal concentration of streamlines on the surface. In other

words, we want to parametrize the largest part of the

domain and make our parametrization less sensitive to

computational errors. Several approaches to choose the

seeding voxel were tested in our experiments. We came

to the conclusion that for II-region with single source

and sink the seeding voxel S should lie half way be-

tween the sink and the source on the shortest connect-

ing streamline. Thus, S should contain the grid node

with minimal total tracking length (lin+ lout) and mini-

mal tracking length difference |lin− lout|. In a V-region,
on the other hand, tracking time for the streamlines has

no meaning , since the streamlines are closed. Thus,

the choice of S is arbitrary. Generally, one can find the

largest termination surface with the maximal number of

streamline crossing it by a brute force algorithm testing

all possible seed points. Results are shown in Figure 2.

For each streamline we record a label of the termina-

tion surface from which it received the scalar values.

If not all streamlines were parametrized, we iteratively

build further termination surfaces until all streamlines

are parametrized.

5 STREAM FUNCTION CONTROL
AND IMPROVEMENT

Streamline tracking introduces numerical errors due to

imprecise velocity interpolation and integration. The

longer a streamline, the larger the error. To our knowl-

edge, there exists no effective procedure to improve

a constructed stream function f (x) other than to re-

construct it again using a smaller integration step size,

which is an extremely time-consuming process. Our

goal is to develop a method to control and improve the

quality of a stream function.

5.1 Functional for measuring stream
function quality

We start with a construction of a functional measuring

the quality of a stream function f (x) with respect to

the underlying normalized vector field v(x). The funda-
mental characteristic of a stream function is that its iso-

lines (surfaces) are tangent to the flow direction. There-

fore, we define

E1(f) =
1

2

∫

D′

∣∣∣∣ ∇ f (x)
‖∇ f (x)‖ ·v(x)

∣∣∣∣
2

dx. (2)

Here and in the following D′ denotes a subregion in

D covered by streamlines of the same type. Stream-

lines within D′ either have a common termination sur-

face or start or end at the boundary ∂D′. Obviously,

the functional takes values from interval [0, 1] and van-
ishes for a perfect stream function. Our goal is to obtain

a method, which allows us to minimize E1 for a given

approximation of f (x).

5.2 Minimization algorithm
A standard technique to minimize a functional of the

form E(φ) =
∫

L(x,φ ,∇φ)dx is to construct its Euler-

Lagrange equation

∂L
∂φ
−divx

[
∂L

∂∇φ

]
= 0. (3)

Equation (3) expresses the necessary condition for a

stationary point φ0 of the functional and can be derived

by usual differentiation of E(φ) = E(φ0+ εψ) with re-
spect to ε .

To simplify the resulting equation, we omit the nor-

malization of the gradient field in Equation (2). Our

tests show that this modification reduces the computa-

tional costs and still serves the goal of minimization of

E1(f). The simplified functional depends only on the

gradient of the function f (x), thus the associated Euler-
Lagrange equation reduces to the form

−divx [v(x)(∇ f (x) ·v(x))] = 0. (4)

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

24 ISBN 978-80-86943-40-4

We introduce an artificial time τ and set the partial tem-

poral derivative of f (x,τ) to the left-hand side of Equa-
tion (4) taken with a negative sign. The resulting evolu-

tional equation

∂ f (x,τ)
∂τ

= divx [v(x)(∇ f (x,τ) ·v(x))] , (5)

f (x,0) = f0(x), (6)

describes a transformation of an initial approximated

stream function f0(x) towards a local minimum of func-

tional E1. The algorithm is similar to the steepest de-

scent method for root search, where the divergence term

stands for the opposite gradient direction. The govern-

ing equation has the form of diffusion in the direction

of v(x) with the diffusion rate ∇ f (x,τ) · v(x). Clearly,
the diffusion rate vanishes for the perfect stream func-

tion. Thus, the perfect stream function is a stationary

point of the evolution process.

We discretize Equation (5) in space and time to derive

a numerical scheme. In our tests we use central differ-

encing for spatial and forward differencing for tempo-

ral discretization resulting in an explicit scheme with

second-order accuracy in space. The discretized partial

differential equation has the form

f n+1
i, j,k − f n

i, j,k

δτ
= divi, j,k

[
vn

i, j,k

(
∇i, j,k f n ·vn

i, j,k

)]
, (7)

where gradient ∇i, j,k and divergence operator divi, j,k
are discretized using central differences, δτ is the time

step, the upper indices denote the time, and the lower

indices indicate the position in space.

Equation (5) is a parabolic partial differential equation.

Thus, both initial and boundary conditions are required

for the well-posedness of the problem. The initial con-

dition is given by Equation (6). Imposing a proper

boundary condition is not a trivial task, since numeri-

cal instabilities can develop close to the boundary ∂D′
of the considered region.

The simplest and the safest approach is to fix the val-

ues of the stream function at ∂D′ for all τ by imposing

the Dirichlet boundary condition: f (y,τ) = f0(y) for

all y ∈ ∂D′ and all τ ≥ 0. The numerical scheme be-

comes simple and the functional decreases over the first

iterations. Moreover, the initial parametrization of the

boundary is not affected.

5.3 Application
The minimization procedure described above can be ap-

plied to an already generated stream function to make

its level sets be better aligned to the given vector field.

Since the governing Equation (5) models a diffusion

process, the procedure also has a smoothing effect. Van

Wijk [vW93] applied an isotropic smoothing filter to

the generated stream function to enhance its rendering

quality at the cost of losing detailed information. In the

proposed method, the smoothing is performed in accor-

dance with the underlying flow field decreasing the er-

ror defined in Equation (2).

Another main application of the minimization algo-

rithm can be the reduction of computation time in the

pre-processing stage. Accurate advection of all grid

nodes can take hours for large data sets. Even if the pre-

processing has to be performed only once, the compu-

tational efforts are an issue. We propose to construct a

rough approximation to the stream function which sub-

sequently can be improved by applying our minimiza-

tion procedure. The steps of the algorithm are the fol-

lowing:

1 We perform an advection of three subsets of nodes:

(a) the boundary nodes gi ∈ ∂D′, (b) nodes having
vorticity or absolute divergence values larger than

specified thresholds, and (c) an evenly distributed

sparse subset of nodes in D′.
2 The advected nodes are parametrized according to

their footprints at the boundary.

3 The scalar field sampled at the parametrized nodes

is interpolated linearly to the nodes which were not

tracked producing a rough approximation to a glob-

ally defined stream function.

4 The approximate stream function is improved ac-

cording to Equation (7). The values at the advected

nodes (from Step 1) remain unchanged during this

optimization.

5 The minimization process is stopped as soon as the

error (2) reaches its minimum.

The vorticity used in Step 1 are given by norm of

∇×v(x,y,z) =
(

∂vy

∂ z
− ∂vz

∂y
,

∂vx

∂ z
− ∂vz

∂x
,

∂vy

∂x
− ∂vx

∂y

)
,

where derivatives are computed by central differencing.

High vorticity values indicate that locally the stream

function is highly curved. In the neighborhood of large

absolute values of divergence, the norm of the gradient

of the stream function can grow quickly. To avoid

possible instabilities when evolving f (x) according to

Equation (7), we explicitly advect and parametrize grid

nodes in regions of high vorticity and high absolute

divergence values. Analogously, we can parametrize

the streamlines crossing a termination surface.

6 EXTRACTION OF STREAM ELE-
MENTS

Stream elements are the instruments of geometric flow

visualization methods. The most commonly used el-

ements are stream surfaces, streamlines, stream tubes,

and stream ribbons. Different stream elements serve

for an adequate exploration of different flow character-

istics and structures. Since the flow through any stream

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

25 ISBN 978-80-86943-40-4

surface vanishes, i.e., v ·m = 0 with surface normal m,

these surfaces can be widely used to identify and sepa-

rate different regions of flow. However, displaying sev-

eral stream surfaces usually leads to occlusion. One

can easily show a direction and magnitude of the local

flow using colored stream elements. Stream tubes and

ribbons are the proper tools to reflect divergence and

torsion of the field, correspondingly. Combination of

these basic elements can be applied to provide a ver-

satile picture of the flow. Given the derived implicit

flow representation, stream elements can be directly ex-

tracted from these scalar fields.

All points satisfying the relation f (x) = fiso for arbi-

trary fiso ∈ R define a stream surface of the flow v(x).
We use standard marching technique to derive a trian-

gulated representation of stream surfaces.

It is well-known that an intersection line of two non-

parallel stream surfaces is a streamline [KM92]. Dif-

ferent parametrizations of the boundary (or termination

surface) lead to different stream functions for the same

flow. Given two stream functions f1(x) and f2(x) with
the property ∇ f1 ·∇ f2 	= 0 in D, a set of streamlines can

be obtained by intersection of isosurfaces f1(x) = c1
and f2(x) = c2 for various constants c1 and c2. There-
fore, each streamline is uniquely defined by two stream

coordinates c = (c1, c2). However, an explicit integra-

tion of a single streamline is much easier. This obser-

vation changes as soon as one is interested in extracting

certain sets of streamlines.

Usually, a stream tube is generated as a collection of

streamlines with seeding points lying on an ellipse. An

alternative construction of a stream tube can be ob-

tained by generating a proper stream function. Let

f1(x) and f2(x) be two stream functions. It is easy to

show that any smooth function h(f1(x), f2(x)) is also a

stream function: ∇h(x) ·v(x) = 0 [vW93]. Let us as-

sume that isosurfaces f1(x) = c1 and f2(x) = c2 are or-
thogonal in a neighborhood of the termination surface:

∇ f1(x) ·∇ f2(x) = 0. Then, the stream surface h(x) = 1

for the function

h(x) =
(f1(x)− c1)2

a2
+

(f2(x)− c2)2

b2

is the desired stream tube with radii a and b.

Similar to the stream tube construction, there are also

two methods for extracting stream ribbons. One can

seed a set of streamlines along a line segment of in-

terest or one can extract a part of the stream surface

f1(x) = fiso satisfying the condition a≤ f2(x)≤ b. In
the latter case, we construct the stream surface with re-

spect to the field f1(x) by means of a marching algo-

rithm. For each triangle from the derived surface repre-

sentation we compute values of f2(x) on its vertices. If

all three values are in the range [a, b], the triangle will
be accepted; if none of the values belong to the interval,

Figure 3: Extraction of stream ribbon f1(x) = fiso,
a≤ f2(x)≤ b. A marching algorithm produces a tri-

angulation of the stream surface f (x) = fiso. These

triangles are then rejected, accepted, or accepted with

modification based on the values of function f2 at their
vertices. If a triangle intersects the ribbon boundary, it

is trimmed producing up to 3 new triangles.

we reject the triangle; if some of the values are in the

range, the triangle is trimmed producing up to 3 new

triangles. All possible trimming scenarios are shown in

Figure 3.

The advection-time field t(x) is also available after the

pre-processing step. Its isosurfaces — time surfaces

— can be extracted in the same manner as stream sur-

faces. The advection time information can be encoded

on the surface of stream element using color or trans-

parency. Besides that, stream functions and advection-

time field can be combined to extract flow volumes. A

flow volume is a part of flow domain bounded by sur-

face S(f1(x), f2(x), t(x)) = 1. In practice, we use flow

tube and flow cube given by expressions

Stube =max

{
(f1(x)− c1)2

a2
+

(f2(x)− c2)2

b2
,
|t(x)− t0|

rt

}

Scube =max

{ | f1(x)− c1|
r1

,
| f2(x)− c2|

r2
,
|t(x)− t0|

rt

}
.

Flow volumes have a meaningful interpretation for

steady flows: They define the fluid portion that crosses

the boundary at the specified location during the

given time interval. For example, the fluid inside flow

tube Stube will flow through the elliptical part of the

boundary withing time from t0− rt to t0+ rt , i.e., it will

traverse the tube from one end to the other.

7 NUMERICAL EXPERIMENTS
All numerical tests presented in this and the following

section were performed on a PC with an Intel Xeon

3.20GHz processor. For surface extraction, a marching

cubes algorithmwas used. Extraction of any stream ele-

ment for any examples presented here took only a frac-

tion of a second. Thus, the user experiences a highly

interactive system for extracting stream elements. In all

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

26 ISBN 978-80-86943-40-4

Figure 4: Extraction of flow volumes. Left: Type V

region. Restricting a stream tube (purple) to a finite

time-advection interval results in a flow volume (gold).

To obtain an information about velocity magnitude, the

sinus of the advection time is mapped to transparency of

a stream surface (green). Right: Type II region. Three

flow volumes together with their footprints (red) on the

termination surface are shown.

our tests, we used trilinear interpolation of the velocity

field and a fourth-order Runge-Kutta method for inte-

gration.

First, we looked into simple synthetic data sets. The

first example is that of flow around a vertex line, which

we sampled at 1003 regularly distributed grid nodes.

The flow is divided in two subdomains of type BB and

V. To parametrize the latter, we construct a termination

surface as shown in Figure 2 (left). Several extracted

stream elements are shown in Figure 5 (left). Informa-

tion about velocity magnitude can be obtained by an-

alyzing the shape of flow volumes or by rendering of

advection-time values on stream elements. In Figure 4

(left) transparency of the lower stream surface shows

the sine of the advection time. Curved patterns show

that the magnitude of velocity increases superlinearly

with the distance to the vortex line. The same conclu-

sion can be drawn when looking to the shape of the flow

tube shown in gold.

A second example is that of flow from a single source to

a simple sink. This flow field includes a subdomain of

type II. It is parametrized as shown in Figure 2 (right).

Extracted stream elements are shown in Figure 5 (cen-

ter). Three flow volumes and their footprints on the ter-

mination surface are shown in Figure 4 (right).

Next, we demonstrate the speed-up of the pre-

processing step when applying the minimization

procedure presented in Section 5. The tornado

dataset [CM93] was sampled on a uniform grid of

resolution 503 and 1283. After computing vorticity

at all nodes, we set its threshold to 0.15. Then, we

track those grid nodes, which belong to the domain

boundary, have vorticity values larger than the thresh-

old, or have an even grid index. The tracked nodes get

scalar values equal to the z-coordinate of their footprint

at the boundary. The resulting sparse scalar field is

linearly interpolated to the rest of the nodes. Finally,

we perform several iterations to minimize the stream

function error.

The time spent at each step of the algorithm for both

datasets is summarized in Table 1. When compared to

tracking all nodes, we observe that our algorithm re-

quires only 22% and 16% of the tracking time for the

data sets with 503 and 1283 nodes, correspondingly.

The evolution of the average error during the minimiza-

tion step is presented in Figure 7. Only few iterations

with the artificial time step δτ = 2.0 were enough to

reduce the error to values that are even below the error

one obtains when tracking all nodes. A result for ex-

tracted stream elements from this data set can be seen

in Figure 5 (right). Areas of high vorticity are shown in

Figure 6(left), while Figure 6(right) shows the error on

a stream surface.

Figure 5: Flow representation of several data sets: flow

around a vortex line (left), flow between a sink and a

source (center), and tornado data set (right). A set of

streamlines together with various stream elements are

shown for each data set. The geometric features are

extracted interactively from an implicit flow represen-

tation.

0 2.0 ·10−3
Figure 6: Left: Streamlines computed for tornado

dataset. Red are the grid nodes which have vorticity

values larger than threshold. A stream surface close

to these nodes has high curvature that makes the error

minimization procedure unstable in this region. Right:

Error visualization on a stream surface. The error in-

creases when the surface approaches the tornado cen-

ter (red-yellow-white spots) and vanishes at larger dis-

tances (black-blue spots). Areas with negligible error

remain gold.

Finally, we construct an implicit representation for a

simulation of the flow of five jets (dataset courtesy of

Kwan-Liu Ma, University of California, Davis). Fig-

ure 8 shows a set of streamlines, a constructed termina-

tion surface and some extracted stream elements.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

27 ISBN 978-80-86943-40-4

503 nodes 1283 nodes

tracking time 177.53 s 4631 s

interpolation time 0.15 s 2.07 s
error minimization time 9.19 s 114.62 s
number of iterations 70 50

total time 186.87 s 4797.69 s

final error 6.278 ·10−4 3.343 ·10−4
time (tracking all nodes) 861 s 30625 s

error (tracking all nodes) 7.475 ·10−4 6.456 ·10−4

Table 1: Time consumption for different stages of our

algorithm in Section 5 for the construction of an im-

plicit flow representation when applied to the tornado

dataset sampled at 503 and 1283 nodes. The results

show significant reduction of time when compared to

the approach of tracking all nodes. Moreover, although

we are tracking significantly less nodes, the average er-

ror decreases with our approach.

0 20 40 60 i

1

2

10�3

0 15 30 45 i

0.5

1.

1.5
10�3

Figure 7: Evolution of average error during the min-

imization procedure applied to the interpolated data

(solid lines). Dashed lines show the error values after

tracking all grid nodes. Tornado dataset with 503 nodes

(left) and 1283 nodes (right) was tested.

Figure 8: Five jets dataset. Streamlines and a termi-

nation surface are shown in the upper row. Extracted

stream surface in combination with two stream ribbons

is shown in the lower row.

8 CONCLUSION
We presented a method for automatic generation of im-

plicit representation for volumetric flow. The method

is based on the classification of streamlines in five

types: BB, BI, IB, II, and V depending on whether

they start/end on the boundary or in the domain inte-

ria, or form a closed trajectory. For the first three cases

known techniques as in [vW93, XZC04] are applica-

ble. We focused our efforts on effectively defining a

stream function for regions of type II and V. To han-

dle those, a termination surface is created starting with

a proper seeding voxel. Two strategies for choosing

seeding voxels are proposed: Maximization of num-

ber of unparametrized streamlines passing through the

voxel (suitable for type V), and comparing advection-

time values recorded in the pre-processing step (suit-

able for type II). Thus, some open problems concerning

the construction of a stream function in the entire flow

region have been solved. We have avoided any artificial

splitting of the domain. Instead, the established subre-

gions reflect the flow topology; they are separated from

each other by special stream surfaces. We have also

avoided termination surfaces isolating critical points,

since it could lead to inaccurate parametrization due to

the high density of the streamlines on such surfaces.

We also proposed a tool for improving of stream func-

tions. It is based on variational minimization of a func-

tional describing the function quality with respect to the

underlying vector field. The governing diffusion equa-

tion is derived.

Various geometrical stream elements (e.g., stream sur-

faces) can be extracted and displayed interactively. In

particular, we proposed novel algorithms for the extrac-

tion of stream tubes and ribbons. We also combined

the stream function visualization with a visualization of

the advection-time field. Both tracking the nodes in the

pre-processing step and extraction of stream elements

in run time allow for an efficient parallel computing.

Acknowledgments This work was supported in part by
DFG grants LI 1530/6-2 and MO 3050/2-1.

9 REFERENCES
[CKSW08] Nicolas Cuntz, Andreas Kolb, Robert Str-

zodka, and Daniel Weiskopf. Particle level set ad-

vection for the interactive visualization of unsteady

3D flow. Computer Graphics Forum, 27(3):719–

726, May 2008.

[CL93] Brian Cabral and Leith Casey Leedom.

Imaging vector fields using line integral convolu-

tion. In SIGGRAPH ’93: Proceedings of the 20th
annual conference on Computer graphics and inter-
active techniques, pages 263–270, New York, NY,

USA, 1993. ACM.

[CM93] Roger Crawfis and Nelson Max. Texture

splats for 3D vector and scalar field visualization.

In Proceedings Visualization ’93, pages 261–266,
Los Alamitos, Oct 1993. IEEE Computer Society.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

28 ISBN 978-80-86943-40-4

[GRT17] T. Gerrits, C. Rössl, and H. Theisel.

Glyphs for space-time jacobians of time-dependent

vector fields. Journal of WSCG, 25(1):31–38, 2017.

[Hul92] J. P. M. Hultquist. Constructing stream

surfaces in steady 3d vector fields. In VIS ’92: Pro-
ceedings of the 3rd conference on Visualization ’92,
pages 171–178, Los Alamitos, CA, USA, 1992.

IEEE Computer Society.

[KM92] David N. Kenwright and Gordon D.

Mallinson. A 3-D streamline tracking algorithm

using dual stream functions. In VIS ’92: Proceed-
ings of the 3rd conference on Visualization ’92,
pages 62–68, Los Alamitos, CA, USA, 1992. IEEE

Computer Society.

[KM96] David Knight and Gordon Mallinson. Vi-

sualizing unstructured flow data using dual stream

functions. IEEE Transactions on Visualization and
Computer Graphics, 2(4):355–363, 1996.

[LHD+03] Robert S. Laramee, Helwig Hauser, Hel-

mut Doleisch, Benjamin Vrolijk, Frits H. Post, and

Daniel Weiskopf. The state of the art in flow vi-

sualization: Dense and texture-based techniques.

Computer Graphics Forum, 23(2):203–221, 2003.

[LTH08] Guo-Shi Li, Xavier Tricoche, and

Charles D. Hansen. Physically-based dye advec-

tion for flow visualization. Comput. Graph. Forum,

27(3):727–734, 2008.

[MBS+04] Karim Mahrous, Janine Bennett, Gerik

Scheuermann, Bernd Hamann, and Kenneth I. Joy.

Topological segmentation in three-dimensional vec-

tor fields. IEEE Transactions on Visualization and
Computer Graphics, 10:198–205, 2004.

[PBL+04] Sung W. Park, Brian Budge, Lars Lin-

sen, Bernd Hamann, and Kenneth I. Joy. Multi-

dimensional transfer functions for interactive 3d

flow visualization. In PG ’04: Proceedings of
the Computer Graphics and Applications, 12th Pa-
cific Conference, pages 177–185, Washington, DC,

USA, 2004. IEEE Computer Society.

[PBL+05] Sung W. Park, Brian Budge, Lars Linsen,

Bernd Hamann, and Kenneth I. Joy. Dense geomet-

ric flow visualization. In EUROGRAPHICS - IEEE
VGTC Symposium on Visualization, pages 21–28,
2005.

[PS09] Ronald Peikert and Filip Sadlo. Topologi-

cally Relevant Stream Surfaces for Flow Visualiza-

tion. In H. Hauser, editor, Proc. Spring Conference
on Computer Graphics, pages 43–50, April 2009.

[PYH+06] Sung W. Park, Hongfeng Yu, Ingrid Hotz,

Oliver Kreylos, Lars Linsen, and Bernd Hamann.

Structure-accentuating dense flow visualization. In

Beatriz Sousa Santos, Thomas Ertl, and Kenneth I.

Joy, editors, EuroVis06: Joint Eurographics - IEEE
VGTC Symposium on Visualization, Lisbon, Portu-

gal, 8-10 May 2006, pages 163–170. Eurographics
Association, 2006.

[RLN+17] Dylan Rees, Robert S. Laramee, Duong

Nguyen, Lei Zhang, Guoning Chen, Harry Yeh, and

Eugene Zhang. A Stream Ribbon Seeding Strategy.

In EuroVis 2017 - Short Papers. The Eurographics
Association, 2017.

[SHJK00] Gerik Scheuermann, Bernd Hamann, Ken-

neth I. Joy, and Wolfgang Kollmann. Visualizing

local vector field topology. SPIE Journal of Elec-
tronic Imaging, 9:367, 2000.

[SRP09] Filip Sadlo, Alessandro Rigazzi, and

Ronald Peikert. Time-Dependent Visualization of

Lagrangian Coherent Structures by Grid Advection.

In Proceedings of TopoInVis 2009. Springer, 2009.
[SS07] Tobias Salzbrunn and Gerik Scheuermann.

Streamline predicates as flow topology generaliza-

tion. In Helwig Hauser, Hans Hagen, and Holger

Theisel, editors, Topology-Based Methods in Visu-
alization (Mathematics and Visualization), pages
65–78. Springer, July 2007.

[STWE07] Tobias Schafhitzel, Eduardo Tejada,

Daniel Weiskopf, and Thomas Ertl. Point-based

stream surfaces and path surfaces. In Graphics In-
terface, pages 289–296, 2007.

[vFWTS08] Wolfram von Funck, Tino Weinkauf, Hol-

ger Theisel, and Hans-Peter Seidel. Smoke surfaces:

An interactive flow visualization technique inspired

by real-world flow experiments. IEEE Transactions
on Visualization and Computer Graphics (Proc.
IEEE Visualization), 14(6):1396–1403, Nov 2008.

[vW93] Jarke J. vanWijk. Implicit stream surfaces.

In VIS ’93: Proceedings of the 4th conference on
Visualization ’93, pages 245–252, Washington, DC,

USA, 1993. IEEE Computer Society.

[WJE00] Rüdiger Westermann, Christopher John-

son, and Thomas Ertl. A level-set method for flow

visualization. In VIS ’00: Proceedings of the con-
ference on Visualization ’00, pages 147–154, Los
Alamitos, CA, USA, 2000. IEEE Computer Society.

[WJE01] Rüdiger Westermann, Christopher John-

son, and Thomas Ertl. Topology-preserving

smoothing of vector fields. IEEE Transactions on
Visualization and Computer Graphics, 7(3):222–
229, 2001.

[WT10] Tino Weinkauf and Holger Theisel. Streak

lines as tangent curves of a derived vector field.

IEEE Transactions on Visualization and Computer
Graphics, 16:1225–1234, 2010.

[XZC04] Daqing Xue, Caixia Zhang, and Roger

Crawfis. Rendering implicit flow volumes. In VIS
’04: Proceedings of the conference on Visualization
’04, pages 99–106, Washington, DC, USA, 2004.

IEEE Computer Society.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

29 ISBN 978-80-86943-40-4

