
ISSN 2464–4617 (print) ISSN 2464–4625 (CD-ROM)

C
o

m
p

u
te

r
 S

c
ie

n
c
e
 R

e
s
e
a
r
c
h

 N
o

te
s

CSRN 2801

(Eds.)

 Vaclav Skala

University of West Bohemia, Czech Republic

26. International Conference in Central Europe on

Computer Graphics, Visualization and Computer Vision
WSCG 2018

Plzen, Czech Republic
May 28 – June 1, 2018

Proceedings

WSCG 2018

Full Papers Proceedings

ISSN 2464–4617 (print) ISSN 2464–4625 (CD-ROM)

ISSN 2464–4617 (print) ISSN 2464–4625 (CD-ROM)

C
o

m
p

u
te

r
 S

c
ie

n
c
e
 R

e
s
e
a
r
c
h

 N
o

te
s

CSRN 2801

(Eds.)

 Vaclav Skala

University of West Bohemia, Czech Republic

26. International Conference in Central Europe on

Computer Graphics, Visualization and Computer Vision
WSCG 2018

Plzen, Czech Republic
May 28 – June 1, 2018

Proceedings

WSCG 2018

Full Papers Proceedings

Vaclav Skala - UNION Agency

ISSN 2464–4617 (print) ISSN 2464–4625 (CD-ROM)

This work is copyrighted; however all the material can be freely used for educational and

research purposes if publication properly cited. The publisher, the authors and the editors

believe that the content is correct and accurate at the publication date. The editor, the authors

and the editors cannot take any responsibility for errors and mistakes that may have been

taken.

Computer Science Research Notes
CSRN 2801

Editor-in-Chief: Vaclav Skala

 c/o University of West Bohemia

Univerzitni 8

 CZ 306 14 Plzen

 Czech Republic

 skala@kiv.zcu.cz http://www.VaclavSkala.eu

Managing Editor: Vaclav Skala

Publisher & Author Service Department & Distribution:

 Vaclav Skala - UNION Agency

 Na Mazinach 9

 CZ 322 00 Plzen

 Czech Republic

 Reg.No. (ICO) 416 82 459

Published in cooperation with the University of West Bohemia

Univerzitní 8, 306 14 Pilsen, Czech Republic

ISSN 2464-4617 (Print) ISSN 2464-4625 (CD/DVD)

ISBN 978-80-86943-40-4 (CD/-ROM)

WSCG 2018

International Program Committee

Benes,B. (United States)

Benger,W. (United States)

Bouatouch,K. (France)

Bourke,P. (Australia)

Daniel,M. (France)

de Geus,K. (Brazil)

Dingliana,J. (Ireland)

Durikovic,R. (Slovakia)

Feito,F. (Spain)

Feng,J. (China)

Ferguson,S. (United Kingdom)

Galo,M. (Brazil)

Garcia Hernandez,R. (Germany)

Gavrilova,M. (Canada)

Giannini,F. (Italy)

Gudukbay,U. (Turkey)

Juan,M. (Spain)

Klosowski,J. (United States)

Lobachev,O. (Germany)

Molla,R. (Spain)

Montrucchio,B. (Italy)

Muller,H. (Germany)

Patow,G. (Spain)

Pedrini,H. (Brazil)

Renaud,C. (France)

Richardson,J. (United States)

Rojas-Sola,J. (Spain)

Sanna,A. (Italy)

Santos,L. (Portugal)

Segura,R. (Spain)

Skala,V. (Czech Republic)

Sousa,A. (Portugal)

Szecsi,L. (Hungary)

Teschner,M. (Germany)

Thalmann,D. (Switzerland)

Trapp,M. (Germany)

Wuensche,B. (New Zealand)

Wuethrich,C. (Germany)

Xu,K. (China)

Yin,Y. (United States)

WSCG 2018

Board of Reviewers

Aburumman,N. (France)

Assarsson,U. (Sweden)

Ayala,D. (Spain)

Azari,B. (Germany)

Benes,B. (United States)

Benger,W. (United States)

Bouatouch,K. (France)

Bourke,P. (Australia)

Carmo,M. (Portugal)

Carvalho,M. (Brazil)

Daniel,M. (France)

de Geus,K. (Brazil)

De Martino,J. (Brazil)

de Souza Paiva,J. (Brazil)

Dingliana,J. (Ireland)

Durikovic,R. (Slovakia)

Feito,F. (Spain)

Feng,J. (China)

Ferguson,S. (United Kingdom)

Galo,M. (Brazil)

Galo,M. (Brazil)

Garcia Hernandez,R. (Germany)

Garcia-Alonso,A. (Spain)

Gavrilova,M. (Canada)

Gdawiec,K. (Poland)

Giannini,F. (Italy)

Goncalves,A. (Portugal)

Gudukbay,U. (Turkey)

Hernandez,B. (United States)

Horain,P. (France)

Charalambous,P. (Cyprus)

Juan,M. (Spain)

Kanai,T. (Japan)

Klosowski,J. (United States)

Kurt,M. (Turkey)

Lee,J. (United States)

Lisowska,A. (Poland)

Lobachev,O. (Germany)

Luo,S. (Ireland)

Marques,R. (Spain)

MASTMEYER,A. (Germany)

Metodiev,N. (United States)

Molla,R. (Spain)

Montrucchio,B. (Italy)

Muller,H. (Germany)

Oliveira,J. (Portugal)

Oyarzun Laura,C. (Germany)

Papaioannou,G. (Greece)

Patow,G. (Spain)

Pedrini,H. (Brazil)

Peytavie,A. (France)

Puig,A. (Spain)

Ramires Fernandes,A. (Portugal)

Renaud,c. (France)

Ribeiro,R. (Portugal)

Richardson,J. (United States)

Rodrigues,J. (Portugal)

Rojas-Sola,J. (Spain)

Sanna,A. (Italy)

Santos,L. (Portugal)

Segura,R. (Spain)

Skala,V. (Czech Republic)

Sousa,A. (Portugal)

Subsol,G. (France)

Szecsi,L. (Hungary)

Tavares,J. (Portugal)

Teschner,M. (Germany)

Thalmann,D. (Switzerland)

Todt,E. (Brazil)

Tokuta,A. (United States)

Trapp,M. (Germany)

Vanderhaeghe,D. (France)

Vidal,V. (France)

Vierjahn,T. (Germany)

Wuensche,B. (New Zealand)

Wuethrich,C. (Germany)

Xu,K. (China)

Yin,Y. (United States)

Yoshizawa,S. (Japan)

Zwettler,G. (Austria)

WSCG 2018

Full Papers Proceedings

CSRN 2801

Contents

Keynote - Abstract

Faramarz Samavati: From Geometric Modeling to Digital Earth
 University of Calgary, Canada

Domaradzki,J., Martyn,T.: Procedural Fracture of Shell Objects

1

Getto,R., Fina,K., Jarms,L., Kuijper,A., Fellner,D.: 3D Object Classification and
Parameter Estimation based on Parametric Procedural Models

10

Molchanov,V., Linsen,L.: Generation of Implicit Flow Representations for
Interactive Visual Exploration of Flow Fields

20

Chakib,R., Merillou,N., Vincent,P.-J., Merillou,S.: Calibrating Low-cost
Structured-light 3D Sensors

30

Azari,B., Bertel,S., Wüthrich,C.A.: Assessing Objective Image Quality Metrics
for Bidirectional Texture Functions

39

Morlet,L., Neveu,M., Lanquentin,S., Gentil,Ch.: Barycentric Combinations
Based Subdivision Shaders

49

Vlasanek,P.: Fuzzy image inpainting aimed to medical images

59

Tripathi,G., Etemad,K., Samavati,F.: Single image summary of time-varying
Earth-features

68

Krämer,M.S., Kuhnert,L.,Kuhnert,K.-D.: Realtime Visual Off-Road Path
Detection

78

Papachristou,A., Zioulis,N., Zarpalas,D., Daras,P.: Markerless Structure-based
Multi-sensor Calibration for Free Viewpoint Video Capture

88

From Geometric Modeling to

Digital Earth

Faramarz Samavati

http://pages.cpsc.ucalgary.ca/~samavati/
Computer Science Dept.

University of Calgary
Canada

Abstract

The Earth is immense, and abundant with interesting information. Recent
advancements in geospatial sensors have resulted in the development of

technologies capable of collecting large and dynamic geospatial data. As a
result, we are experiencing an explosion in the volume and variability of

geospatial data, and yet many remain unaware of or unable to access this
wealth of data to make informed decisions regarding our planet. One viable

solution to this challenge is to use a digital model of the Earth (a Digital Earth)
as a place holder for integrating all sorts of geospatial datasets. The Digital

Earth is a vision for Earth-based applications in which geospatial data may be
assigned and retrieved using the 3D Earth as a reference model, rather than

a 2D map. In this talk, an overview is provided of research projects and recent
achievements from my group, related to Digital Earth. In these projects, we

explore problems of creating and managing grid systems, large geospatial
data processing and streaming, as well as creative visualization and

interaction in Digital Earth.

Short Bio
Faramarz F. Samavati is a Professor of Computer Science at the University of

Calgary. He is currently one of the Associate Heads (Graduate Director) of the
Department of Computer Science. Faramarz’s research interests include

Computer Graphics, Visualization, 3D Imaging and Geometric Modeling. Dr.
Samavati has published more than hundred and twenty peer reviewed papers,

one book, and two patents. In the past seven years, he has received seven
best paper awards, Digital Alberta Award, Great Supervisor Award, and

University of Calgary Peak Award, which honors his contribution to the
development of new technologies and innovations. Faramarz was one of the

ASTech 2017 Nominees & Finalists for the award on Outstanding Leadership
in Alberta Technology.

http://pages.cpsc.ucalgary.ca/~samavati/

Procedural Fracture of Shell Objects

Jakub Domaradzki
Institute of Computer Science

Warsaw University of Technology
ul. Nowowiejska 15/19
00-665 Warsaw, Poland

J.Domaradzki@stud.elka.pw.edu.pl

Tomasz Martyn
Institute of Computer Science

Warsaw University of Technology
ul. Nowowiejska 15/19
00-665 Warsaw, Poland

martyn@ii.pw.edu.pl

ABSTRACT
We propose a novel algorithm to fracture brittle objects that are characterized by an empty interior and thick surface
(which we denote as shell objects), such as: vases, pots, pitchers, antique ceramic, etc. Our method augments the
previous ones based on fracture patterns and utilizes sparse voxel octrees (SVOs) as a highly efficient and detailed
object representation. In our method, the fracture pattern relies on Voronoi diagrams and is calculated on-the-fly.
The outcomes of applying the fracture pattern differ from the ones obtained with the previous methods in that
it solves the problem of planar faces of the newly generated pieces of geometry, allowing them to have concave
shapes. Without any precomputation, we are able to achieve various and interesting fractures that are unique to
each destructed object. Finally, our approach is intuitive, adaptable and fast, which makes it a good candidate for
applications in computer game industry.

Keywords
sparse voxel octree, Voronoi decomposition, pattern fracturing, procedural surface generation

1 INTRODUCTION
Nowadays various effects of object fracturing are
widely present in computer games. Wandering through
the game worlds we can usually interact with lots of
environment items and in order to increase the realism
of "being-in-the-world", we are more often allowed to
destruct them. Nevertheless, the players’ requirements
and expectations pertaining the nowadays gameplays
in general and in particular freedom in the player’s
interactions with the virtual world are continuously
rising. Needless to say that the objects populating the
game level are usually required not only to possess a
capability of being fractured, splintered, crushed, or
destroyed in some other way, but also the process of
breaking them into pieces should be unique for each
instance of a destructible geometrical asset and for the
same instance—with every restart of the game.

Therefore the approaches based on a predefined de-
struction of geometrical assets and successfully utilized
in games of the previous generations are now slowly
being replaced with more and more sophisticated tech-
niques, in which some of the calculations are performed

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

on-the-fly during the gameplay itself. Due to the con-
stant increase of computer power, especially graphics
cards, we are now very often able to perform all calcula-
tions underlying the object destruction in real-time. On
the other hand, the amount of details of the geometry
that constitutes the scenes in modern games is also still
increased, which makes the task of performing such a
unique destruction of objects directly during gameplay
even more challenging.

Thanks to the development of new voxel-based tech-
niques in a few recent years, it is now possible to uti-
lize voxels as a representation of solid objects in real-
time systems. Memory usage, one of the main prob-
lems associated with voxels, has been drastically re-
duced mainly due to taking advantage of the sparse
voxel octree structure (SVO) [Cra11]. This way a gen-
uine, highly detailed geometry with many levels of de-
tail can be easily accessed.

In this paper, we show how to enrich with details and
make unique the process of destruction when applied to
shell objects, which are featured by an empty interior
and a thick surface like vases, pots, pitchers, antique
ceramic, etc. Our approach augments the previous ones
based on fracture patterns and benefits from the SVO
representation. The outcomes of our method stand out
from those obtained with the related solutions in that
the pieces the destroyed object is falling apart to can
be concave in shape and, moreover, the geometry of the
pieces’ surface is not limited to planar facets. And what
is most important, all that we achieve in time sufficient
for computer game applications.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

1 ISBN 978-80-86943-40-4
https://doi.org/10.24132/CSRN.2018.2801.1

2 RELATED WORK
There is a wide selection of literature on fracturing
brittle objects. Over the years, many methods have
been developed. The early works in the animation of
fracture used connected point-masses and the fractur-
ing process was performed by the removal of some of
the links. This method was introduced by Terzopou-
los et al. [TF88] and Norton et al.[NTB*91], who pi-
oneered this area of study in computer graphics. Af-
terwards, the approach was improved by O’Brien and
Hodgins, who followed them and focused on simulating
brittle [OH99] and ductile fracturing [OBH02]. They
used a fully dynamic finite element method (FEM), in
order to compute the internal stress in the object be-
ing destructed. However, this approach requires very
small time steps and costly cutting mesh operations
[WRK*10]. To avoid this issues, the fracture simula-
tion tends to be formulated as a quasi-static stress anal-
ysis [GMD13][ZBG15].

On the other hand, the real-time systems, especially
computer games, utilize a more practical approach
which is based on a predefined partition of the de-
structible object into pieces, which replace the original
object while it is destroyed. While this method is fast
and gives the designer a full control over the shape and
location of fractures, its results are often a far cry from
realism. In order to improve the visual quality of this
approach and, at the same time, to stay within the limits
imposed by real-time applications, the geometry-based
methods were introduced [SSF09][BCC*11][MCK13].
Although the methods also utilize a predefined fracture
pattern, the pattern is separated from the actual ge-
ometry and is applied, oriented and scaled on demand
at the impact location. That way the observer gets
the impression that the fracturing is unique for each
destruction. The common technique to generate the
fracture patterns consists in constructing a 3D space
decomposition based on the Voronoi diagram or by
means of a simulation [IO09]. The further development
in this direction resulted in generating the fracture
pattern on-the-fly while a destructive impulse occurs
[SO14][DM16].

Although the current pattern-based approaches usually
produce good results, there is still room for improve-
ment. From our standpoint, there are two essential
problems, which we regard as challenges and would
like to address, namely: the non-planar surfaces of the
fractured pieces and their concave shape. One should
note that both problems have already been referenced in
[SO14], however, the solution presented there requires
a pre-computation step and the calculations are per-
formed on a rather fine tetrahedral mesh. The method
we present in this paper follows Domaradzki’s work et
al. [DM16] and takes a different approach to tackle
the mentioned issues. Looking for a predecessor of the

general conception our method is founded on, one can
point out a paper by Chen [CYFW14], in which visual
details were added to coarse simulation results in a post-
process step.

What is more, we strongly believe that the solution to
the addressed problems can be found, quite naturally,
in the voxel-based representation. Currently, the popu-
lar data structure for voxels to represent boundaries of
solid objects is the sparse voxel octree (SVO) [Cra11]).
Thanks to the computational power offered by today’s
GPUs, along with new GPU-specialized programming
techniques newly developed algorithms designed for
sparse voxel octrees are ready for real-time applica-
tions.

Although the SVO representation is not yet well es-
tablished in the commercial real-time graphics soft-
ware, such as professional game engine being still dom-
inated by triangle meshes, it has already proven its use-
fulness in a number of fields. To begin with, Cyril
Crassin was able to visualize global illumination in
real time using voxel cone tracing [CNS*11]. Fol-
lowing this work, Laine developed an efficient SVO
ray-tracing algorithm [LK10], proving that way that
ray-casting the SVO can be done faster than when
using triangle meshes. Furthermore, the search for
even more compact scene representations led to the
development of sparse voxel directed acyclic graphs
(SVDAG [KSA13]), which have been then improved
to Symmetry-Aware SVDAGs [VMG16], that reduce
memory footprint even further. There are also other
ways to represent the SVO-based geometry effectively,
to mention only a method of unlimited object instancing
presented by Jabłoński et al. [JM17], that can be com-
bined with a continuous and symmetrical LOD transi-
tion [JM16].

Apart from visualization itself, there has also been a
development in other graphics areas including object
animation [Bau11], deformation [Wil13], and fractur-
ing in real-time [DM16]. Last, but not least, octrees
can be built very fast using some recent techniques
presented in [ZGHG11][GPM11][Kar12] and even
by means of the out-of-core approaches described
in [BLD14][PK15], which utilize only a fraction of
memory required to store a model.

3 SVO FRACTURING
In this section, we outline our algorithm for fracturing
SVO objects. We especially target shell objects that are
empty inside and are formed by thick surfaces, such as
vases, pitchers, pots, antique ceramics, etc. Our goal is
to cut them into pieces with a slightly and locally dis-
turbed fracture pattern that is calculated on-the-fly. The
algorithm consists of two separate parts that combined
together produce a final result. The first part, we call
Basic Fracture Algorithm (or BFA—Sec. 4), is based

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

2 ISBN 978-80-86943-40-4

Figure 1: A voxel-pattern intersection test with three
Voronoi seeds.

on the previous work of Domaradzki et al. [DM16]. Its
underlying idea is to divide the SVO object into con-
vex pieces by means of a fracture pattern consisting of
planar faces, which determine the slicing areas used to
partition the object. The outcome is then processed in
the second part, we call Enhanced Fracture Algorithm
(or EFA—Sec. 5), in which the cuts are additionally
deformed by means of a local procedural surface cre-
ation. As a consequence, we enhance the previous Do-
maradzki’s algorithm in that the final cuts are less regu-
lar and more intricate geometrically and, thus, they ren-
der a more natural fracture.

4 BASIC FRACTURE ALGORITHM

The goal of BFA is to determine the subsets of SVO
voxels that represent the surfaces of the particular
fractured pieces at the accuracy of the SVO highest
level. To this end, the SVO is traversed from the root
to the leaves, and at each SVO level, the intersections
of voxels with the pattern faces are tested. Next, if a
face-voxel intersection is detected, the voxel is either
expanded to its eight children or, in the case the voxel
belongs to the object’s interior (i.e. it is not an element
of the surface), the children are dynamically created.
The resulting subsets are composed of the voxels
intersected by the fracture pattern faces at the highest
SVO level and, of course, the original leaf voxels of
the SVO object surface. A voxel is assigned to a given
subset on the basis of the closest Voronoi seed to the
voxel’s location (Sec. 4.1). Then, for each subset, we
build a SVO founded on the subset’s voxels treated as
the SVO leaves. A more detailed description of the
algorithm can be found in [DM16].

4.1 Fracture Pattern
The fracture pattern used in this algorithm is repre-
sented by a finite set of 3D points, which represent the
seeds of a Voronoi diagram. In order to achieve a more
realistic fracture, we want it to concentrate around the
impact location. This can be obtained by aligning the
center of an existing fracture pattern with the impact
location as presented in [SSF09] and [MCK13]. How-
ever, following work in [DM16], we also create the
fracture pattern on-the-fly. In this goal, we generate the
Voronoi seeds at random on a set of spheres of growing
radii, which are centered at the point of impact. Having
this set of seeds it is not required to determine the faces
of the Voronoi diagram for the voxel-pattern intersec-
tion test, which can be performed directly based on the
set as follows:

Let S = {1, . . . ,n} be the set of the indices of the
Voronoi seeds {si}i∈S. Define a function γ : R3 → 2S

such that

γ(x) = {k ∈ S : ‖sk− x‖= min
i∈S
‖si− x‖}. (1)

Given a point x ∈ R3, the function γ returns the set of
the indices of the Voronoi cells that include x. (Note
that the resulting set is not a singleton, if x is located on
a face, an edge, or a vertex of the Voronoi diagram).

The voxel-pattern intersection test can be done by
means of the following function:

f(V) =
⋃
v∈V

γ(v). (2)

which, given a voxel specified by the set V = {vi}i=1,...,8
of its vertices, maps the voxel into the set of the indices
of the Voronoi cells the vertices are situated in.

It is easy to see that the voxel is intersected by a face
of the fracture pattern if and only if the set of indices
given by f(V) is not a singleton (fig. 1).

5 ENHANCED FRACTURE ALGO-
RITHM

In the second step, we improve the result obtained by
BFA to give the fracture a more realistic appearance. In
this purpose, we must face the two main deficiencies of
the previous algorithm: the lack of concave fractured
pieces and their totally planar surfaces.

5.1 Distance Metric Approach
To begin with, there is a solution that might be used to
produce outcomes satisfying our needs. However, it is
expensive in memory and computation. The approach
is based on influencing the distance metric that is used
in the calculations in the voxel-pattern intersection test
(sec. 4.1). The distance metric can be altered in two
ways.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

3 ISBN 978-80-86943-40-4

Figure 2: An example of a crack surface represented by
a set of triangles, created within a voxel on the SVO
transition level.

First, one can deform the fracture pattern as in [M05].
Following that, we would have to use a 3D noise texture
and sample it along the ray from a voxel corner to a
Voronoi seed, accumulating the result and treat it as a
distance. Such an approach would take a lot of memory
to store the texture and load operations to sample it with
the 3D interpolation to receive a smooth outcome.

Another method, presented in [SO14], first applies a
deformation to the object and then the fracturing pro-
cess operates on the deformed object. Finally, the re-
verse deformation is applied to the result, producing
deformed pieces of fractured geometry. Although this
method is faster than the previous one, it encounters dif-
ficulties with the hierarchical representation of the de-
structed object. What is more, it would have to be per-
formed on-the-fly, as building the new deformed SVO
object comes with the loss of information (as presented
in [Wil13]).

5.2 Procedural Crack Surface Creation
Taking into consideration challenges presented in the
previous section, we propose another solution. Follow-
ing BFA (sec. 4), we traverse the SVO from the root
to the leaves. On each SVO level we get a set of vox-
els containing the information whether a voxel is inter-
sected by a face of the fracture pattern and, if so, which
Voronoi seed is the nearest to the voxel’s vertices. As a
result, if we stop BFA on any intermediate SVO level,
then the outcome can be viewed as a partition of the
SVO object with an approximation of the Voronoi dia-
gram. Depending on the level we stop, the size of vox-
els differs and so the volumes of the pieces the voxels
make up. The volumes may be treated as subspaces,
within which crack surfaces can be procedurally gener-
ated. The crack surfaces will be used in the final step
of the algorithm to enrich the original planar and con-
vex fracture geometry provided by BFA. The SVO level

at which we stop the algorithm and construct the crack
surfaces we call the transition level.

There are two main problems that we need to address.
First, how to generate the geometry of these crack sur-
faces with the voxels delivered by BFA. Secondly, we
aim at a GPU-based parallel implementation that con-
structs the crack surfaces concurrently in the voxels.
Therefore the algorithm is to operate locally within a
voxel, and this implies the problem of connectivity of
the surfaces between neighboring voxels.

We tackle the second problem by founding the crack
surface construction on an information shared by ver-
tices of neighboring voxels. As the aftermath of BFA,
each vertex possesses the information about its nearest
Voronoi seed, which we now additionally enrich with
a procedurally generated value, for example, obtained
from a 3D noise function.

The surface we want to create should separate the
voxel’s vertices that have assigned different Voronoi
seeds and thereby belong to different fracture pieces
of the objects. To this end, for each voxel’s edge
that connects vertices having different Voronoi seeds,
the edge separation point is created. The position
of this point is determined by adding to one of the
edge’s endpoints an offset computed with the following
equation:

eon = f (a,b)∗ vs, (3)

where: eon is the edge offset on n ∈ {X ,Y,Z} axis;
a,b ∈ [0,1]—values assigned to the voxel’s vertices; f
is a user function returning a value in range (0, 1) based
on the values a and b; and vs is the size of the voxel
edge. The user function can be implemented, for exam-
ple, as a balance point based on the given weights or a
deviation from the intersection point with the Voronoi
pattern steered by the given weights.

Subsequently, for each voxel’s face, the face separation
point is calculated as the average of the edge separation
points belonging to this face, and then the point is dis-
placed by a slight offset within the face’s area. Next, the
voxel separation point is determined from face separa-
tion points in an analogous way. Finally, for each tuple
of three points: edge separation point, face separation
point and voxel separation point a triangle is created.

The set of the triangles forms a portion of the crack
surface that will then be approximated by descendant
voxels of the processed transition voxel (fig. 2).

The presented construction of continuous crack sur-
faces within voxels is only exemplary and one can de-
velop different methods for this purpose. For example,
one can base the construction of the surface on mathe-
matical functions.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

4 ISBN 978-80-86943-40-4

(a) (b) (c) (d)
Figure 3: (a) A result of BFA on the SVO highest level. (b) A result of BFA on the SVO transition level. (c) A new
crack surface constructed by EFA relative to the BFA result. (d) The final voxelized crack obtained with EFA.

5.3 SVO Traversal
Putting all together, we can describe the overall method
for fracturing a SVO object as follows:

We begin with BFA, which traverses the SVO tree from
the root to the leaves: voxels on each SVO level are
being tested for intersections with faces of the fracture
pattern (sec. 4), and the ones that pass the test, are ex-
panded to their children (which are generated on-the-fly
in the case of the intersected voxels located inside of the
object). This way we proceed over a chosen number of
the SVO levels to the desired transition level. At this
level, we assign the nearest Voronoi seeds to the vox-
els’ vertices, and EFA begins.

From now on, the final surface of fractured pieces is
being created using the crack surfaces. We generate the
crack surfaces within the voxels at the transition level
in the way described in the section 5.2. Then, for every
voxel that gave birth to a crack surface, each child of
the voxel is tested against an intersection with the sur-
face by means of the method described in [AA05]. That
way we proceed to the SVO leaves, where each voxel
is assigned to an appropriate group of voxels which de-
fines a fractured piece, using the same rules as in BFA
(fig. 3). The final voxels properties comes from a vol-
umetric texture for color and normal vector taken from
the triangles the voxel intersects.

In order to fully define a fractured piece, apart from the
voxels intersected by the crack surfaces, we also need
to identify the appropriate voxels that come from the
original surface of the destructed object. In order to
assign these voxels to the proper Voronoi seed (and thus
the group specifying a fractured piece), while executing
EFA we utilize the following test:

While checking a voxel for intersections with the trian-
gles of a crack surface, we also check on which side of
each triangle the voxel is located and accumulate this
information. By the construction of the crack surface
(Sec. 5.2), each triangle has a vertex located on an edge
of a transition level voxel, such that the edge ends with
the voxel’s vertices assigned to two different Voronoi
seeds. On that basis, we assign the appropriate Voronoi
seed to each side of the triangle. Using this informa-

Figure 4: The assignment test for a voxel (marked with
white) that doesn’t intersect a crack surface.

tion, we can assign a surface voxel (not intersected by
a crack surface) to the appropriate Voronoi seed on the
basis of the voxel’s location relative to the sides of the
relevant crack surface’s triangles—we choose the seed
that dominates in the sides of the triangles, as shown in
fig. 4.

The method presented above features a lossless fractur-
ing process. It means that the surfaces of cracks match
perfectly each other. In the real world, however, there
are also materials bearing different properties, which
result in less stable cracks. During fracturing process,
apart from a separation of an object into a number of
pieces, a part of the object’s volume is converted into
separate tiny dust particles of an individual size much
smaller than the volume of the SVO leaf voxel. The
formation of these dust particles during fracturing pro-
cess results in irregular empty volumes between crack
surfaces (fig. 5). We can easily incorporate this effect
into our method by changing the crack surface creation
algorithm presented in Sec. 5.2 to a more suitable one.
For this purpose, we utilize the surface creation tech-
nique used in the Marching Cubes algorithm [LC87].
Specifically, using the information of the assignment
of the transition voxels’ vertices to Voronoi seeds, we
match the voxel to one of the cube configurations used

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

5 ISBN 978-80-86943-40-4

Figure 5: An empty volume between cracks’ surfaces.

in the Marching Cubes algorithm. Moreover, we need
to split the edge separation points and shift them in or-
der to separate new surfaces.

6 RESULTS
In this section, we discuss the performance and quality
of the presented solution. All depicted timings were ob-
tained on Intel Core i7 960 CPU with Nvidia GeForce
GTX Titan Black GPU. All algorithms were imple-
mented using CUDA framework to fully exploit the par-
allelism delivered by GPU.

The presented results show that our new fracturing tech-
nique greatly improves on the visual quality of frac-
tured objects relative to the relevant methods that uti-
lize fracture patterns. A direct comparison with work in
[DM16] is shown in fig. 6. One can notice that thanks
to the distortions in the planar fracture pattern faces, the
result looks more natural. What is more, the outcomes
of our technique are always unique as they are created
on-the-fly while a destruction occurs.

Furthermore, our method gives the user a simple way to
influence the fracturing process outcome by controlling
the level at which the transition between BFA and EFA
takes place. Studying the pictures in fig. 7 reveals the
relationship between this parameter value and the final
result. The closer the transition level to the root, the
more the basic fracture pattern (build from the Voronoi
seeds) is distorted. The change in the transition level,
when regarded from the point of view of the procedural
creation of crack surfaces, also has an influence on the
smoothness of the cracks.

We also presented a way to incorporate in the fracturing
process a decline in the original object’s volume within
the area of cracks—fig. 9 exemplifies the feature. The
variety of the cracks’ possible shapes and widths we
can obtain with our method greatly enhances the visual

quality of results and allows one to produce countless of
unique outcomes. In addition, the cracks are not only
more detailed but also more noticeable.
We also succeeded in the integration of the results of
our fracturing method with a physics simulation tech-
nique presented in the paper [DM16]. The performance
of the approach presented there depends strongly on the
volume of the objects subjected to simulation. Even
though the fractured pieces generated with our method
are usually relatively thin, the results of the physics sim-
ulation are acceptable (fig. 8).
Last but not least, the time performance of our method,
as measured per voxel, is slower than in the one featur-
ing the method in [DM16]. First, it is mainly due to that
our technique produces more voxels in the final out-
come and, secondly, the test for voxel intersection with
a procedurally generated crack surface is more compu-
tationally demanding. It should be also noted that the
performance of all the algorithms used in the fracturing
process (fracture boundary set extraction, islands detec-
tion, internal nodes detection, etc.—details in [DM16]))
depends directly on the total number of voxels, which
also influence the timing of the whole process. How-
ever, in our tests, fracturing the SVOs with the number
of levels up to 9 (included), resulted in the timings not
exceeding 50 ms.

7 CONCLUSION AND FUTURE
WORK

We have presented a novel method for fracturing shell
objects represented with sparse voxel octrees. Our
method allows for creating detailed surfaces of frac-
tured pieces. To this end, it applies a fracture pattern
to the object at the impact location and cuts the object
with the pattern into pieces, and then enhances this par-
tial result by creating the final surfaces of the pieces
procedurally. As a consequence, new detailed pieces
of geometry are created and represented as individual
SVOs, which can then be subjected to a rigid body sim-
ulation using the approach presented in [DM16].
Although in this paper, we target only the objects
that are empty inside but possesses thick surfaces, we
strongly believe that our method could also be applied
to objects with noticeable inner volumes. In that case,
it would require either the change of the method used
to procedurally create new surfaces or the application
of more suitable weights for the current method for
voxels’ vertices on the transition level, so that the
method would be aware of the voxels’ boundaries in
a local neighborhood. It is due to the fact that the
current method generates cracks without any global
structure, which is desirable for objects’ surfaces but
not necessarily for objects’ interior.
Finally, the presented fracturing method operates on
voxels, however, with some changes, it could also be

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

6 ISBN 978-80-86943-40-4

(a) (b)

(c) (d)
Figure 6: A comparison of results obtained by our fracturing technique (fig. b and d) and the method presented in
[DM16] (fig. a and c).

Figure 7: Different transition levels (from the left accordingly: 4, 6, 8) and the same fracture pattern.

Figure 8: Fracturing and physics simulation of a vase.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

7 ISBN 978-80-86943-40-4

Figure 9: Cracks with irregular space between them.

adapted for objects represented with meshes. For this
purpose, the first part of the algorithm could be per-
formed on a tetrahedral mesh and within its cells, new
surfaces would be created and cut against the destructed
object.

8 REFERENCES
[AA05] Akenine-Möller, T., Aila, T.: Conservative

and tiled rasterization using a modified triangle
set-up. In Journal of Graphics Tools 10 (2005), 3,
pp. 1-8.

[Bau11] Bautembach D.: Animated sparse voxel oc-
trees. Bachelor’s Thesis (feb 2011).

[BCC*11] Baker M., Carlson M., Coumans E.,
Criswell B., Harada T., Knight P., Zafar N. B.:
Destruction and dynamic artist tools for film
and game production. In ACM SIGGRAPH 2011
course notes (2011).

[BLD14] Baert J., Lagae A., Dutra’ P.: Out-of-core
construction of sparse voxel octrees. Computer
Graphics Forum 33, 6 (2014), pp. 220-227.

[CNS*11] Crassin C., Neyret F., Sainz M., Green S.,
Eeisemann E.: Interactive indirect illumination
using voxel cone tracing. Computer Graphics Fo-
rum (Proceedings of Pacific Graphics 2011) 30, 7
(sep 2011).

[Cra11] Crassin C.:. PhD thesis, Grenoble University,
2011.

[CYFW14] Chen Z., Yao M., Feng R., Wang H.:
Physics-inspired adaptive fracture refinement.
ACM Trans. Graph. 33, 4 (July 2014), 113:1-
113:7.

[DM16] Domaradzki J., Martyn T.: Fracturing Sparse-
Voxel-Octree objects using dynamical Voronoi
patterns. In Computer Graphics, Visualization
and Computer Vision WSCG 2016. Full Papers

Proceedings, Computer Science Research Notes,
vol. 2601, 2016, pp. 37-46.

[FBAF08] Faure F., Barbier S., Allard J., Falipou F.:
Image-based Collision Detection and Response
between Arbitrary Volume Objects. In Eurograph-
ics/SIGGRAPH Symposium on Computer Ani-
mation (2008).

[GPM11] Garanzha K., Pantaleoni J., Mcallister D.:
Simpler and faster HLBVH with work queues.
In Proceedings of the ACM SIGGRAPH Sympo-
sium on High Performance Graphics, HPG ’11,
ACM, pp. 59-64.

[GMD13] Glondu, L., Marchal, M., Dumont, G.: Re-
altime simulation of brittle fracture using modal
analysis. IEEE TVCG 19, 2013, pp. 201-209.

[IO09] Iben H. N.,O’Brien J. F.: Generating surface
crack patterns. Graph. Models 71, 6 (Nov. 2009),
198-208.

[JM16] Jabłoński S., Martyn T.: Real-Time Rendering
of Continuous Levels of Detail for Sparse Voxel
Octrees. In Computer Graphics, Visualization and
Computer Vision WSCG 2016. Short Papers Pro-
ceedings, Computer Science Research Notes, vol.
2602, 2016, pp. 79-88.

[JM17] Jabłoński S., Martyn T.: Unlimited Object
Instancing in real-time. In Computer Graphics,
Visualization and Computer Vision WSCG 2017.
Short Papers Proceedings, Computer Science Re-
search Notes, vol. 2702, 2017.

[KSA13] Kämpe, V., Sintorn, E., Assarsson, U.: High
resolution sparse voxel DAGs. In ACM Trans.
Graph. 32, 4, 2013, pp. 101:1-101:13.

[Kar12] Karras T.: Maximizing parallelism in the con-
struction of BVHs, Octrees, and k-d Trees. In
High Performance Graphics (2012), Eurographics
Association, pp. 33-37.

[LC87] Lorensen W., Cline H.: Marching Cubes: A
high resolution 3D surface construction algo-
rithm. In Proceedings of the 14th annual confer-
ence on Computer graphics and interactive tech-
niques (1987), vol. 21, pp. 163-169.

[LK10] Laine S., Karras T.: Efficient sparse voxel
octrees. In Proceedings of the 2010 ACM SIG-
GRAPH Symposium on Interactive 3D Graphics
and Games, I3D ’10, ACM, pp. 55-63.

[M05] Mould, D.: Image-guided fracture. In Pro-
ceedings of Graphics Interface 2005. Cana-
dian Human-Computer Communications Society,
2005. p. 219-226.

[MCK13] Müller M., Chentanez N., Kim T.-Y.: Real
time dynamic fracture with volumetric approxi-
mate convex decompositions. ACM Trans. Graph.
32, 4 (July 2013), 115:1-115:10.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

8 ISBN 978-80-86943-40-4

[NTB*91] Norton A., Turk G., Bacon B., Gerth J.,
Sweeney P.: Animation of fracture by physical
modeling. The Visual Computer 7, 4 (1991), 210-
219.

[OBH02] O’Brien J. F., Bargteil A. W., Hodgins J.
K.: Graphical modeling and animation of ductile
fracture. In Proceedings of the 29th Annual Con-
ference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’02, ACM, pp. 291-294.

[OH99] O’Brien J. F., Hodgins J. K.: Graphical mod-
eling and animation of brittle fracture. In Proceed-
ings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH
’99, pp. 137-146.

[PK15] Pätzold M., Kolb A.: Grid-free Out-of-core
Voxelization to Sparse Voxel Octrees on GPU.
Proceedings of the 7th Conference on High-
Performance Graphics, HPG ’15, ACM, pp. 95-
103.

[SO14] Schvartzman S. C., Otaduy M. A.: Fracture
Animation Based on High-dimensional Voronoi
Diagrams. Proceedings of the 18th Meeting of the
ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, I3D ’14, ACM, pp. 15-22.

[SSF09] Su J., Schroeder C., Fedkiw R.: Energy sta-
bility and fracture for frame rate rigid body sim-
ulations. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer
Animation (2009), SCA ’09, ACM, pp. 155-164.

[TF88] Terzopoulos D., Fleischer K.: Modeling in-
elastic deformation: Viscolelasticity, plasticity,
fracture. SIGGRAPH Comput. Graph. 22, 4 (June
1988), pp. 269-278.

[VMG16] Vllanueva, A. J.; Marton, F.; Gobbetti,
E.: SSVDAGs: Symmetry-aware sparse voxel
DAGs. In Proceedings of the 20th ACM SIG-
GRAPH Symposium on Interactive 3D Graphics
and Games. ACM, 2016. pp. 7-14.

[Wil13] Willcocks C. G.: Sparse volumetric deforma-
tion. PhD Thesis (apr 2013).

[WRK*10] Wicke M., Ritchie D., Klingner B. M.,
Burke S., Shewchuk J. R., O’Brien J. F.: Dynamic
local remeshing for elastoplastic simulation. ACM
Transactions on Graphics 29, 4 (July 2010), 49:1-
11. Proceedings of ACM SIGGRAPH 2010, Los
Angles, CA.

[ZBG15] Zhu Y., Bridson R., Greif C.: Simulating
rigid body fracture with surface meshes. ACM
Transactions on Graphics (2015).

[ZGHG11] Zhou K., Gong M., Huang X., Guo B.:
Data-parallel octrees for surface reconstruction.
IEEE TRANSACTIONS ON VISUALIZATION
AND COMPUTER GRAPHICS (2011).

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

9 ISBN 978-80-86943-40-4

3D Object Classification and Parameter Estimation
based on Parametric Procedural Models

Roman Getto Kenten Fina Lennart Jarms
Technische Universität Darmstadt

Fraunhoferstr. 5 64283 Darmstadt, Germany
{firstname.lastname}@gris.tu-darmstadt.de

Arjan Kuijper Dieter W. Fellner
Technische Universität Darmstadt & Fraunhofer IGD

Fraunhoferstr. 5, 64283 Darmstadt, Germany
arjan.kuijper@mavc.tu-darmstadt.de
dieter.fellner@gris.tu-darmstadt.de

ABSTRACT
Classifying and gathering additional information about an unknown 3D objects is dependent on having a large
amount of learning data. We propose to use procedural models as data foundation for this task. In our method we
(semi-)automatically define parameters for a procedural model constructed with a modeling tool. Then we use the
procedural models to classify an object and also automatically estimate the best parameters. We use a standard
convolutional neural network and three different object similarity measures to estimate the best parameters at each
degree of detail. We evaluate all steps of our approach using several procedural models and show that we can
achieve high classification accuracy and meaningful parameters for unknown objects.

Keywords
Procedural model, parametric model, parameterization, 3D object classification, deep learning.

1 INTRODUCTION
The most widely accepted approach for 3D Object
Classification is the database-approach. A class is
learned by having all types of example objects within
a database. However, this approach is not applicable
to all domains. A large database with all examples for
the desired classes is not always available. In research
environment there are several big databases that
provide enough data to learn different classes and then
evaluate the performance of a classification algorithm.
In real applications we have actual classes of objects
in mind which do not fit to the classes offered in the
test databases. The amount of 3D data is often not
available and the cost and time effort to produce such a
database is tremendous. For 2D (image) classifications
the data-approach is more affordable since images are
available for literally everything. Many approaches
tried to make 3D data more available and delivered
environments to easily create new 3D objects, even
for non-expert users. However, in direct comparison
to image data, 3D data is still near non-existent.
When insufficient data is available, one approach is
to represent a class directly by a procedural model.
The procedural model is a more abstract description

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

of an object by representing the object implicitly by a
parameterizable object construction algorithm. There-
fore, the procedural model corresponds to a blueprint
of an object class. Creating a single procedural model
includes some effort but can then be used as a complete
data foundation for a desired class. In many cases
it is more affordable to create a blueprint instead of
gathering a vast amount of example objects.

Our contribution is a complete processing pipeline to
achieve classification and parameter estimation using
procedural models as basis. Also, the pipeline con-
tains three separate contributions: The algorithm to
(semi-)automatically generate parameters for a proce-
dural model, a scheme to use procedural models for
deep learning, and the parameter estimation technique
using three different similarity measures.

In the following Section we review related work. Sec-
tion 3 presents our methodology including the procedu-
ral model definition, the classification with deep learn-
ing, and the parameter estimation. In Section 4 we eval-
uate and discuss each step of the pipeline individually.
Finally, we conclude and outline future work.

2 RELATED WORK
Procedural models are often referred to as grammars
[Tal11] or L-systems [Št’10]. In general a 3D procedu-
ral model is a description of building scheme for a class
of 3D objects, which allows to easily generate many dif-
ferent variations. Therefore, procedural models excel in
content generation. Instead of an implicit grammar rep-
resentation, a procedural model can also be represented
by a concatenation of parameterized procedures. The

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

10 ISBN 978-80-86943-40-4
https://doi.org/10.24132/CSRN.2018.2801.2

Step 1: Procedural Model Creation

Class: glass_with_stem

Parameters: (1.012, 1.1,

0.99, 0.5, 1.604, 0.5)

Generated

Object

Step 3: Parameter Estimation

Step 2: Classification

Modeling

Procedural Model

Parameterization of

the Procedural Model

Convolutional Neural

Network (CNN)

Unknown

3D Object

3 Layered Hill

Climbing Optimization

Training Data

Procedural Model

Figure 1: The full pipeline of our system: procedural models are created to represents blueprints of an objects
class. These are used to classify and estimate the parameters of an unknown database object.

sequence describes the building process and the param-
eterization allows the variation of the building process.

Bokeloh et al. [Bok12] propose a procedural modeling
algorithm which works on regular structured polygon
meshes. A procedural model is automatically gener-
ated, so that parameters change the shape of the object
while preserving the regular patterns optimally. This
approach shows that procedural models are generally
very powerful in terms of flexibility. Still, this approach
is only suited for cases with regular structured objects.

Other approaches tackle the problem of variation gener-
ation by recombining several objects. Jain et al. [Jai12]
create variations by part-based recombinations. Yumer
et al. [Yum15] define variations with terms like ’luxuri-
ous’ ’sporty’ or ’expensive’. Wang et al. [Wan11] use a
symmetry hierarchy to vary objects. Other approaches
use box templates [Ave14] to represent a blueprint of
a class. Generally, all these approaches are limited to
the already available 3D objects. In terms of flexibility
procedural models are vastly superior.

In a previous work [Get17] we proposed a definition of
procedural models as a concatenation of procedures by
using modeling operations. We use this framework for
our work to define our initial procedural models.

Ullrich et al. [Ull11] presented a work with a con-
cept similar to ours. They define a 3D object proce-
durally and compare the procedural model to a query
object to estimate the parameters. However, in their ap-
proach, the procedural model is designed and param-
eterized manually and the similarity is only based on
a surface difference measure. Our approach includes
semi-automatization of the creation of the procedural
model, deep learning of the class and a more reliable
layered parameter estimation.

To measure the difference between two 3D Objects
many so-called descriptors have been proposed. These
are focused on different aspects, using histograms
[Osa02], topology graphs [Mar07] or image properties
of rendered images [Vra05]. For our initial parameter
estimation we use the panorama descriptor [Pap10]

which is considered to be one of the best geometrical
descriptors [Li15] .

For the 3D object classification the descriptors have
also been used to directly learn single classes of 3D
objects [Wes08, Wan15]. However, deep learning
mostly outclassed previous approaches. Maturana et al.
[Mat15] and Wu et al. [Wu15] proposed convolutional
neural network (CNN) approaches directly learning
on voxel representations. Su et al. [Su15] developed
a multi-view CNN learning on rendered 2D Images of
3D objects. With this approach they achieve higher
accuracy than any comparable approach. The authors
reason that currently the relative efficiency using 2D
data is higher than using 3D representations. For this
reason we also use a CNN approach learning on 2D
rendered images.

3 METHODOLOGY
We propose a system based on procedural models. We
train a Convolution Neural Network (CNN) with the
procedural model and propose a technique to estimate
the values of all parameters of the procedural model.
We present the concept of our pipeline in Figure 1.

The procedural model itself consists of a concatenation
of parameterized procedures. In contrast to an explicit
surface representation like a polygon mesh, the proce-
dural model is an implicit object representation. The
procedures describe a construction algorithm. When
the procedures are executed subsequently an instance of
the procedural model is generated. The instance of the
procedural model is a 3D polygon mesh itself. When
the parameters of the procedures are changed, the re-
sulting mesh changes. Therefore, the procedural model
offers the possibility to generate infinite variations by
varying the parameters.

For the initial creation of a procedural model we use the
tool and the algorithm of Getto et al. [Get17]. The con-
cept of the tool is that a procedural model is automati-
cally generated during the modeling of a single object.
The modeling operations are transformed to procedures

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

11 ISBN 978-80-86943-40-4

of the procedural model obeying several rules, e.g. the
rule of locality, so that parameter changes only have
local effects. The boundary representation is a sparse
control mesh of a subdivision surface. The edges can be
marked as smooth or sharp. It offers basic operations,
allowing to insert, remove, drag and connect vertices,
edges and faces. Additional a path of face extrusions
can be performed by sketching a line from a face.

3.1 Semi-Automatic Parameter Insertion
While the procedural model is modeled manually,
we propose a semi-automatic parameter insertion
technique to enhance the process of creating the fully
parameterized procedural model. Our goal is to com-
pute several possible variations and show them to the
user, so that the user can decide which variations make
sense. Therefore, the user can define all parameters
with a few clicks. As the user cannot inspect every
possible parameter, we order the possible variations by
’importance’ and furthermore automatically group re-
lated parameters together. Table 1 shows the complete
overview of the relevant operations. Operations only
including ids (e.g. connect faces) are not relevant for
the parameterization.

Procedure Parameters: An extrusion and a drag is
described with cylindrical coordinates ρ,φ and z. A
rotation-extrude is defined by the width w and length l.
The insert vertex operation defines the the position of
the new vertex on an edge as barycentric coordinate λ1
(λ2 = 1−λ1). A scale has a relative size σ and a rotate
has a rotation angle α .

Automatic Variations: For all these operations, we
define parameter variations to evaluate the importance.
These are shown in Table 1. The automatic variations
mostly include doubling, halving or inverting the pa-
rameters as suitable.
Importance Evaluation Measures: To measure the
importance of an operation we follow a simple rule:
The bigger a change the higher the importance. We gen-
erate a single mesh for every variation and compare the
varied mesh to the original mesh taking into account 5
measures. The overview Table 1 shows the composition
of the evaluation measure for each parameter variation.
For all measures the base mesh is normalized, so that
the centroid is at the origin and the mesh is within a ra-
dius of 1. The volume is computed with the method of
Zhang et al. [Zha01]. The surface area is the sum of all
polygon areas. The bounding sphere has its center at the
origin and its radius is the distance to the furthest vertex
of the mesh. The coordinate plane projection difference
is computed by projecting the surface of the mesh on to
the three coordinate plane. We conduct this projection
by creating an image of 64x64 pixels for each plane. A
pixel is set to true if any part of the object is projected
onto this pixel. The average distance is the average Eu-
clidean distance of a vertex of the original mesh and the
respective vertex of the varied mesh. The final value of

the difference of the two meshes is calculated by the
following equations:

δp =
p(v)− p(b)

p(b)
(1)

δpro jection =
∑

m
i=0 xor(vpixel_i−bpixel_i)

m
(2)

δvertexdistance =
∑

n
i=0 |vvertex_i−bvertex_i|

n
(3)

v = variation mesh,b = base mesh,
p ∈ {volume,sur f ace,BSvolume},

m = number o f pixels in pro jection planes,
n = number o f vertices in the mesh

Parameter Grouping: Groups of parameters are new
parameters themselves. When the group parameter is
changed all underlying operations are changed respec-
tively. Groups of parameters are formed by finding re-
lated operations with related parameters. This is gener-
ally the case if two operations are similar. Operations
are similar if their values are similar. Therefore, we
first define the similarity of two values x and y and two
angles α and β :

similarity(x,y) = 1− |x− y|
max(1, |x|, |y|)

(4)

similarity(α,β) = 1− |α−β |
c

c ∈ {45,90} (5)

For the similarity of angles we need to cover addi-
tional special cases since two angles of related opera-
tions should be considered similar if the one angle is
the mirrored version of the other. The angles are de-
fined in a local plane in u-v-space. We consider 4 dif-
ferent angles: the original, mirrored on the u-axis, mir-
rored on the v-axis and mirrored on both. Furthermore,
we check 4 additional angles: the original angle rotated
by 90 degrees and all 3 mirrored version of this angle.
For this 4 angles the criteria for the similarity are more
tight: we half the range of similarity, which is achieved
by exchanging the 90 by a 45 within the equation.

To calculate the similarity of two operations we multi-
ply all similarities of their parameters. Finally, we set
a threshold for the similarity of each operation as some
operations are much more likely to have a higher simi-
larity (e.g. insert vertex) than others.

After finding all similar operations we need to further
process them to identify actual groups. We can deduct
the relation of operations by their relative position in
the sequence of operations. We identified that related
instructions are either present in the pattern AA or with
the pattern ABAB. This means they are not only similar
but also subsequent, as in pattern AA. Or a combination
of operations AB is subsequent, forming the pattern
ABAB. Finally, we build groups of similar operations
which are present in one of these two patterns within
the sequence of operations of the procedural model.

User based parameter choice: A parameter is consid-
ered to be important if the importance value is bigger or

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

12 ISBN 978-80-86943-40-4

Operation Procedure

Parameters

Automatic

Variation

Importance

Evaluation Measure

New Inserted

Parameter

Initial Range

of

Similarity

Threshold

Drag 0.85

Rotate 0.7

Importance of > 1 = important

range checking (throw away if not finished generating)

related instructions put in groups

Insert Vertex

0.3

0.45

0.95

0.9

Extrude

(Sketching)

Rotation-

Extrude

(Sketching)

Scale

(𝜌, 𝜙, 𝑧)

(𝑤, 𝑙)

𝜆1
𝜆2 = 1 − 𝜆1

(𝜎)

(𝜌, 𝜙, 𝑧)

(𝛼)

(2𝜌 , 𝜙, 2𝑧)

(𝑤, 2𝑙)

𝑖𝑓 𝜆1 ≥ 0.5 ∶ 0.5 + 0.5𝜆1

𝑖𝑓 𝜎 > 1 ∶ (2𝜎)

(2𝜌, 𝜙, 2𝑧)

(−𝛼)

𝜌, 𝜙 + 180(0.5 − 1), 𝑧

𝑖𝑓 𝜌 > 0.15𝑧 𝑎𝑛𝑑 𝜙 ∈ [90,270) :

𝑖𝑓 𝜌 > 0.15𝑧 𝑎𝑛𝑑 𝜙 ∈ [270,90) :

𝜌, 𝜙 + 180(1.5 − 1), 𝑧

(0.5𝑤, 𝑙)

𝑖𝑓 𝜎 < 1 ∶ (0.5𝜎)

𝑖𝑓 𝜆1 < 0.5 ∶ 0.5𝜆1

0.75𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 + 0.1𝛿𝑣𝑒𝑟𝑡𝑒𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

0.15𝛿𝑣𝑜𝑙𝑢𝑚𝑒 + 0.3𝛿𝑠𝑢𝑟𝑓𝑎𝑐𝑒
+0.1𝛿𝐵𝑆𝑣𝑜𝑙𝑢𝑚𝑒 + 0.2𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
0.7𝛿𝑣𝑜𝑙𝑢𝑚𝑒 + 0.15𝛿𝑠𝑢𝑟𝑓𝑎𝑐𝑒
+0.05𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
0.1𝛿𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 0.3𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
+0.15𝛿𝑣𝑒𝑟𝑡𝑒𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

0.5𝛿𝑣𝑜𝑙𝑢𝑚𝑒 + 0.25𝛿𝑠𝑢𝑟𝑓𝑎𝑐𝑒
+0.1𝛿𝐵𝑆𝑣𝑜𝑙𝑢𝑚𝑒 + 0.15𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
0.7𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 + 0.1𝛿𝑣𝑒𝑟𝑡𝑒𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝜌 = radial distance, 𝜙 = angular coordinate, 𝑧 = height , 𝑤 = width, 𝑙 = length, 𝜆 = baryzentric coordinate, 𝜎 = relative scale, 𝛼 = rotation angle
𝛿𝑣𝑜𝑙𝑢𝑚𝑒 = volume difference, 𝛿𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = surface area difference, 𝛿𝐵𝑆𝑣𝑜𝑙𝑢𝑚𝑒 = bounding sphere volume difference,

𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = coordinate plane projection difference, 𝛿𝑣𝑒𝑟𝑡𝑒𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = average vertex distance difference

0.1𝛿𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 0.5𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
+0.15𝛿𝑣𝑒𝑟𝑡𝑒𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

0.1𝛿𝑣𝑜𝑙𝑢𝑚𝑒 + 0.25𝛿𝑠𝑢𝑟𝑓𝑎𝑐𝑒
+0.1𝛿𝐵𝑆𝑣𝑜𝑙𝑢𝑚𝑒 + 0.2𝛿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

[−8,8]

[0.125,8]
𝑥 𝑥

(𝑥𝜌 , 𝜙, 𝑥𝑧)

𝜌, 𝜙 + 180(𝑥 − 1), 𝑧

(𝑤, 𝑥𝑙)

(𝑥𝑤, 𝑙)

0.5 + 𝑥𝜆1
𝑥𝜆1
(𝑥𝜌, 𝜙, 𝑥𝑧)

(𝑥𝜎)

(𝑥𝛼)

[0,2.0]

[0.125,8]

[−2,1]

[1,1.9]

[0.1,1.0]

[−3,3]

[0.125,5]

Table 1: Overview of all relevant operations used to automatically parameterize the procedural model.

equal than 1. Additionally, we include the user in this
step and offer a simple interface to inspect all parame-
ters and choose all important parameters. This interface
is shown in Figure 2. The parameters are ordered by
their importance. The user can check or uncheck any
individual parameter or parameter group. He can create
new groups and rename parameters.

Figure 2: The user interface of the parameter insertion.

Range Estimation: For the random generation of vari-
ations we need to additionally define a valid range for
the parameter x. The overview Table 1 shows the initial
range estimations for every parameter type. For each
parameter we generate a mesh with the maximal and
minimal value for the specific parameter and measure
the difference to the base mesh using the panorama dis-
tance [Pap10]. If the panorama distance is bigger than a
threshold C · t the range is diminished and reevaluated.
t is obtained by measuring the panorama distance to all
generated variations of all inserted parameters.

T hreshold =C · t (6)

C = constant multiplier(de f ault C = 1)
t =max∈ {panorama distance to all generated meshes}

3.2 Classification with Deep Learning
We propose to use the very deep Convolutional Neu-
ral Network (CNN) Inception [Sze15] to directly learn

the 3D object with rendered images of the object. The
last fully connected layer of the inception network can
be retrained with a relative small amount of 3D data.
Also the retraining is tremendously faster than train-
ing a network from scratch. We retrain the last fully
connected layer with a randomized set of images of
rendered views of the 3D object. Also, we addition-
ally generate random variations of the 3D object within
these images.
Each procedural model represents an object class. For
each class we generate 1000 variations (3D mesh). We
vary each parameter of the procedural model randomly
within the parameter range. For each of the 1000 vari-
ations we generate 10 images. In sum, we use 10 000
images per class to train the network.

Figure 3: Examples of generated learning images

Image Generation: We use rendered images of the
generated 3D objects with random perspectives. Like
[Su15] we noticed that different illumination setups did
not make significant differences in the results. In Fig-
ure 3 we show example images of our setup. Before
generating the images the 3D object is first normalized.
The center of mass of the mesh is translated to the ori-
gin. The object is scaled, so that all coordinate values
are within -1 and 1. We include a random rotation and
scaling of the object for each image. The scaling is lim-
ited to the range [0.8,2].
Object Classification: With the retrained network we
can classify images. The output of the network for a
single image is a class probability for each trained class.
To classify a new 3D object we generate 10 images and
average the classification values for each class. The 3D
object is then put in the class with the highest value.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

13 ISBN 978-80-86943-40-4

3.3 Parameter Estimation
The procedural model has several parameters to gen-
erate variations. We estimate those parameters for a
new 3D object having the same class as the procedu-
ral model. The parameters can either be labeled by the
user, e.g. ’wing length’, or the influence of the param-
eters can be shown visually to the user by generating
exemplary objects for different values. In both cases
estimating the parameters for an unknown object gives
valuable information to the user.

The parameter estimation is based on geometrical sim-
ilarities of the unknown 3D object and the objects gen-
erated by the procedural model. It is important to note
that the procedural models cannot reproduce any ob-
ject perfectly in full detail. We use 3 different measures
with different degrees of detail. The panorama distance
[Pap10], the surface distance and a z-buffer distance.

Layer 1:
Panorama Distance

Layer 2:
Surface Distance

Layer 3:
Z-Buffer Distance

Final Result Comparison

Initial Normalization

Parameter Initialization Hill Climbing Optimization

Object Alignment Hill Climbing Optimization

Hill Climbing Optimization Hill Climbing Optimization

Figure 4: The parameter estimation consists of 3 layers
using 3 different levels of distance measures. The final
result is the best result of 4 different optimizations.

Our algorithm includes 3 layers for these 3 measures.
We show an overview of the parameter estimation in
Figure 4. We use all measures subsequently in a hill
climbing optimization to refine the estimated optimal
parameters step by step. Additionally we set thresh-
olds for the measures, so that the result of the preced-
ing layer is taken if the object cannot be represented
precisely on a layer. As a result we do not only es-
timate the best parameters but actually are able to tell
how well the parameters of the procedural model can
represent the unknown 3D object.

Panorama Distance: The panorama distance is defined
by the panorama descriptor [Pap10], which is a hybrid
descriptor based on geometrical features and image fea-
tures of panoramic views of the object.

Surface Distance: The surface distance, also known as
point-to-surface-distance is based on the distance be-
tween the actual surface polygons of both meshes. To
compute the surface distance between an instance of the
procedural model and the unknown object we generate
a set of points for both meshes. For the unknown object
we use the Poisson disk sampling [Cor12] with 2000
points. For the mesh generated by the procedural model
we take all vertices of the mesh after 2 iterations of the

subdivision. For each set of points the surface distance
of a single point is the distance to the nearest point of
the other set. We average this distance over all points.

Z-Buffer Distance: We compare the z (depth) infor-
mation of both objects pixel wise. For this distance
we generate a total of 14 views with 256x256 pixels.
We use an orthogonal projection with [−2,2] for all
boundary planes. The 14 views are the 6 views directly
from the positive and negative coordinate axes and the 8
views from the corners of a cube around the origin. We
Present the distance calculation in Algorithm 1. Note
that we penalize an undersizing of the generated ob-
ject more than an oversizing. This reinforces the initial
growing into all regions.

Algorithm 1 Z-Buffer Distance
1: procedure (Original Ob j. O,Generated Ob j. G)
2: Generate 14 views VO f or O and VG f or G
3: Distance d← 0
4: for all Views vO ∈VO do
5: for all Pixels pO ∈ vO do
6: if pO = background∧

pG! = background then
7: d = d +1
8: else if pO! = background∧

pG = background then
9: d = d +2
10: else if pO! = background∧

pG! = background then
11: d = d + |z(pO)− z(pG)|
12: end if
13: end for
14: end for
15: d is the f inal distance
16: end procedure

Initial normalization: At the start we bring both ob-
jects into a shared coordinate system. The average po-
sition of the vertices of the mesh (center of mass) is
translated to the origin. The object is scaled, so that all
coordinate values are within -1 and 1.

Hill climbing algorithm: Each layer includes a hill
climbing search with one of the distance measures. We
show the hill climbing search for a distance measure D
in Algorithm 2. All parameters are optimized with di-
minishing step sizes. Note that to measure the distance
with D and parameters P we generate a new object us-
ing the procedural model with the parameters P.

For the surface distance (layer 2) and the z-buffer dis-
tance (layer 3) an additional intermediate step has to
be inserted: When parameters of the procedural model
change and the object shape changes, the position of
the object is shifted respectively. Therefore after each
change of a parameter value the objects have to be re-
aligned before the distance measure is computed. Just

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

14 ISBN 978-80-86943-40-4

Algorithm 2 Hill Climbing Optimization
1: procedure (Distance Measure D,Parameters P)
2: Distance d← D(P)
3: do
4: Step size s← 1.0
5: do
6: for all p ∈ P do
7: for all ⊕ ∈ {+,−} do
8: pnew = p⊕ s
9: clamp pnew to [min,max] o f p
10: Distance dnew← D(pnew)
11: if dnew < d then
12: d = dnew
13: p = pnew
14: end if
15: end for
16: end for
17: while no parameter has been changed
18: s = next s ∈ {1.0,0.5,0.25,0.1,0.01,0.0}
19: while s! = 0.0
20: end procedure

like the parameter adjustment, we perform a greedy
search for the best translation, rotation and scaling. The
step size is fixed for this realignment: 0.01 for the trans-
lation and scaling, and 0.01 ·180◦ for the rotation. The
scaling is limited to a minimum of 0.5 and a maximum
of 1.5 of the original scale.

Layer 1 - panorama distance: Before the first layer
the initial normalization (scaling and translation) is per-
formed. In the first layer the parameter initialization
and hill climbing optimization with the panorama dis-
tance is performed (See Figure 4). The initialization of
the parameters of the procedural model is of major im-
portance since the following greedy hill climbing algo-
rithms can get stuck in a local extremum. The panorama
distance generally measures the distance between two
3D objects and is optimally suited to fulfill this task.
We generate a total of 10 000 objects from the proce-
dural model with random parameterization, covering a
large range of possible initialization values. We com-
pute the panorama distance of each generated object to
the unknown object. The parameters of the generated
object with the smallest panorama distance are taken
as our starting point. Then we perform a hill climbing
optimization of all parameters using the panorama dis-
tance.

Layer 2 - surface distance: In the second layer the
object alignment and hill climbing optimization with
the surface distance is performed (See Figure 4). For
the surface distance measure and the following z-buffer
distance measure we need to optimize the alignment of
both objects. We optimize the translation, rotation and
scaling in a greedy search like introduced in the hill

climbing description. However, this greedy search only
remedies small misalignments. Since the initial orien-
tation can be majorly flawed we additional consider 24
possible coordinate system rotations. The 24 rotations
include all main rotation possibilities: the x-axis can be
rotated to match one of the 6 possible positive or neg-
ative coordinate system axis and can be rotated around
itself by 0,90,180 or 270 degrees. Giving a total of
6 · 4 = 24 possibilities. For each of the 24 possibilities
we perform the alignment optimization and evaluate the
case with surface distance. The case with the lowest
surface distance is taken as the initial alignment. Fi-
nally, we perform the hill climbing optimization of all
parameters using the surface distance.

Layer 3 - z-buffer distance: In the final layer two hill
climbing optimizations with the z-buffer distance are
performed (See Figure 4). In the first case we use the
output of layer 2 as input and in the second case we
use the output of layer 1 (after the alignment in layer 2)
as input. Hence, we compute optimal parameters for 2
different starting point. Then we compare the z-buffer
distance of the two final optimization results and take
the better solution as final result.

At the end of our parameter estimation we decide which
layer result is the most adequate representation. The
procedural model might not be able to represent ev-
ery object to a pixel wise degree, hence we set thresh-
olds for the final results to decide to which extent the
procedural model represents the unknown object. We
analyzed several objects, results and distance measures
values and identified shared thresholds for the distance
measures. A z-buffer distance of lower than 0.7 and a
surface distance of lower than 0.04 represents an ad-
equate match. The final parameters correspond to the
result of layer 3 if the z-buffer distance is below 0.7.
Else it corresponds to the result of layer 2 if the surface
distance is below 0.04. If both are not the case than the
result of layer 1 gives the final parameters.

4 EVALUATION AND DISCUSSION
In this section we evaluate our approach, including
our 3 steps: the parameter insertion, classification with
deep learning and the parameter estimation. For each
step we separately show results and discuss the results.

4.1 Parameter Insertion
To evaluate the correctness of the proposed semi-
automatic parameter insertion technique we evaluate
the importance evaluation measure and the parameter
grouping. We created several example models (See
Figure 5) with the modeling tool and manually anno-
tated important parameters and appropriately grouped
related parameters. Then we retrieved the proposed
important parameters and groups automatically de-
tected by the default threshold of 1. We present our

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

15 ISBN 978-80-86943-40-4

Figure 5: Models of the parameter insertion evaluation.
Importance Grouping

CP FP FN CN Accuracy CG FG MG Accuracy
Airplane 9 1 1 11 90.91% 7 0 3 70.00%

Ship 7 3 0 8 83.33% 3 1 0 66.67%
Stool 6 3 0 12 85.71% 8 1 0 87.50%

Animal 11 12 1 18 69.05% 7 0 0 100.00%
Spaceship 6 1 0 6 92.31% 3 0 0 100.00%

Tower 11 4 1 7 78.26% 4 0 1 80.00%
Humanoid 10 8 1 12 70.97% 9 0 1 90.00%

Chair 6 6 0 8 70.00% 7 1 0 85.71%
Average 9.42 5.43 0.57 11.71 80.07% 6.00 0.38 0.63 84.98%

CP = Correct Positive CG = Correct Group
FP = False Positive, FN = False Negative FG = False Group

CN = Correct Negative MG = Missed Group

Table 2: The accuracy of the importance evaluation
measure and the accuracy of the parameter grouping

results in Table 2. The most relevant parameters are
automatically categorized as important in 80% of
the cases. 84% percent of the groups are correctly
identified by the algorithm.

Discussion: Table 2 shows that false negatives are sel-
dom. Our algorithm rather finds too many important pa-
rameters, so that false positives occur. In several cases
parameters are found to be important even though the
change of the parameter does not lead to a semantically
consistent outcome. For this reason, we include a user
phase where the user can refine parameters. Therefore,
the user is able to correct semantic inconsistencies.

The parameter grouping also has erroneous cases. The
majority of the missing groups and false groups are
caused by the insert vertex operation. The insert ver-
tex only includes a single parameter and the values are
mostly within [0.25,0.75]. Even though we have set a
tight threshold with 0.95 for this operation, the similar-
ity computation is less reliable for this operation. We
highlight the insert vertex groups for the user, so that
he can decide in these cases.

4.2 Classification with Deep Learning
To evaluate our classification approach with deep learn-
ing on rendered images, we constructed 10 procedural
models. Figure 6 shows the models. The 10 procedu-
ral models represent 10 different classes. To evaluate
our approach we use the NIST database [Fan08] and
the Princeton shape benchmark (PSB) [Shi04] together.
Table 3 shows the number of objects of each class in
the databases and also show properties of the procedu-
ral models.

We took the preset classes within the given databases
(since the NIST database only has single a class with
spiders and insects our spider class includes both). We
trained our network with a total of 100 000 images (10

Figure 6: All models that were used to evaluate the clas-
sification and parameter estimation step.

Database Procedural Model
NIST PSB Total po to-ops par-ops par

fish 18 17 35 1348 150 68 13
glass_with_stem 18 9 27 332 44 11 6

helicopter 18 35 53 1560 294 184 12
gun 36 39 75 888 161 54 15
table 36 63 99 614 87 51 6
spider 18 16 34 2976 197 137 9
sword 18 31 49 568 64 30 7

office_chair 18 15 33 1724 193 86 8
bird 18 21 39 2040 241 134 13

bicycle 18 7 25 4966 510 189 10
others 504 1562 2066

total within classes 216 253 469
total 720 1815 2535

po = number of polygons
to-ops = total number of operations

par-ops = parameterizable operations
par = number of parameters

Table 3: The number of objects for each class in the
PSB and the NIST database, and the properties of the
used procedural models

classes,1000 variations with 10 images). The retraining
took about 10 hours on a casual PC. We used our al-
gorithm for 2 different scenarios: the classification of
database objects and a 3D object retrieval scenario.

Classification: We classified every object of the
databases that belong into one of the 10 learned classes
and measured the overall classification accuracy.
Figure 7 (right) shows the accuracy for all 10 classes
resulting in the average accuracy of 86.14% (404 of
469 objects are classified correctly).

3D object retrieval: The output of a 3D object retrieval
query is a list of retrieved objects, ordered from the
most similar to the least similar. We directly use the
class probabilities given by the neural network to sort
the list of retrieved objects. A class label is the query
itself and the first object of the retrieval list is the 3D
object with the highest class probability for this class.
Here we include all 2535 objects of all databases.

Figure 7 shows the precision recall curve for the 3D ob-
ject retrieval. We compare this result with the panorama
distance by using the default instance of the procedural
model as query for the database. The panorama dis-
tance from this object to all objects in the database is
calculated and the retrieval list is sorted respectively.
We also show the result of our approach without vari-

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

16 ISBN 978-80-86943-40-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

Recall

Panorama

CNN Retrain Without Variation

CNN Retrain

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

CNN Retrain CNN Retrain Without Variation

Total:
73.75 %
86.14 %

Figure 7: The 3D object retrieval precision-recall curve
and the classification accuracy.

ations: we generate all images without changing any
parameters and retrain the network with these images.

Discussion: The classification and the 3D object re-
trieval illustrate several properties of the approach. An
important insight is that including variations into the
learning process leads to improvements. This is not as
trivial as it might seem at first glance. We tested several
other possibilities of image generation, including ran-
dom translations and higher variations of scaling and
found out that it is easier for the neural network to learn
the class when the images are more consistent. At the
same time a good amount of variability is needed in
the images to prevent overfitting and promote general-
izability. However, our results clearly show that object
variations enhance the results in all cases.

The average classification accuracy is 86%. This is
comparable to state-of-the-art approaches like [Su15]
achieving 83-90% accuracy on the classification task.
Only the office chair and bird class achieved a lower
accuracy. The database objects are not sufficiently sim-
ilar to the initial procedural model. In Figure 8 we show
falsely classified objects. The parameters did not com-
pensate very exceptional variations of the objects.

In the precision-recall curve (Figure 7) our approach
also outperforms the panorama distance, even though
the panorama distance is among the best geometrical
distance measures. In sum, our deep learning retraining

 Figure 8: Images of falsely classified objects.

approach with rendered images of variations is fast and
works with less data than a full network learning and
still generates comparable results.

4.3 Parameter Estimation
For the final step we took all correctly classified exam-
ples of our 10 classes and estimated the parameters of
the procedural model for every unknown database ob-
ject. In total 66.09% of the final parameter estimations
origin from layer 3. 10.15% from layer 2 and 23.76%
from layer 1. Figure 9 shows the distribution of the sur-
face distance and z-buffer distance for the 4 different
results in the 3 layers. Figure 10 presents several exem-
plary parameter estimations for all classes.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 101 202 303 404
Objects

Surface Distance

Pan SD SD+Z Z

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 101 202 303 404
Objects

Z-Buffer Distance

Pan SD SD+Z Z

Figure 9: The distribution of the surface distance and
the z-buffer distance for all objects for the 4 different
results from the 3 layers.

Discussion: In Figure 9 we can detect a general advan-
tage of the layered optimization system. In the plots
we present the two different results from layer 3 sep-
arately: using the surface distance with z-Buffer dis-
tance(SD+Z) and only the z-buffer distance(Z). Here,
we can see that the distribution of the z-buffer distance
in the final layer is better on average when the output of
the 2nd layer is taken as input (SD+Z). The hill climb-
ing algorithm naturally profits from a good initializa-
tion. We can see that not only the initial setup improves
the results, but also the intermediate optimization of
layer 2 improves the results of the final layer 3.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

17 ISBN 978-80-86943-40-4

 sword

 fish

 glass_with_stem

 helicopter

 gun

 table

 spider

 office_chair

bird

 bicycle

Layer 3 Layer 2 Layer 1

 sword

 fish

 glass_with_stem

 helicopter

 gun

 table

 spider

 office_chair

bird

 bicycle

Layer 3 Layer 2 Layer 1

Figure 10: Exemplary results for all classes. The col-
ored borders show from which layer the result origins.

Figure 11: Ten different glasses of the database sorted
by the ratio of stem length to the bowl length.

The examples presented in Figure 10 show that the
parameter estimations lead to generated objects with
similar overall appearance compared to the unknown
database objects. Most objects could be estimated on
layer 3 (z-buffer). However, the bicycle, spider and
helicopter class did not have enough flexibility to rep-
resent most of the objects on layer 3. Especially the
rotors of the helicopter, the legs of the spiders and the
thin spokes and connection bars of the bicycle could not
be matched pixel-wise. The user can improve the esti-
mations for the classes by adding additional parameters
to increase the flexibility. Nonetheless, our system is
able to provide meaningful results from layer 2 (surface
distance) and layer 1 (panorama distance) for the cases
where the procedural model is not suitable enough for
the objects.

Figure 11 presents an object characteristic derived by
the parameters. Here we order the objects by the ratio
of the stem length to the bowl length. Important to note
in this context is that ratios and differences between pa-
rameters are more meaningful than the comparison of
values of a single parameter. This is the case because
the database objects have to be normalized and the in-
stances of the procedural models have to be scaled and
aligned accordingly. Therefore, the actual values itself
are less comparable when the coordinate systems of dif-

ferent objects do not match. In the use case of having
scanned objects as input, no normalization is needed
since the values are related to real millimeter values. In
this case the actual values of single parameters are also
completely comparable.
Figure 12 shows two types of errors that we found in
the results. The bird is mostly symmetrical, so that the
instance of the procedural model happens to be mis-
aligned. The head and the tail are facing in the wrong
direction. These cases happened at some symmetrical
objects of the bird, fish and gun class. In the future we
will have to integrate an additional symmetry detection
to handle these cases explicitly.
The second error type is represented by the glasses with
stem in Figure 12. The database object does not have a
real stem. The bowl is directly connected to the base.
The procedural model does not include the case of a
stem having 0 length. Even though this result comes
from layer 3, the final parameters are distorted by the
falsely estimated stem length.

Figure 12: The bird is falsely aligned. The glass has an
estimation of the stem length even though the glass of
the database has no stem.

5 CONCLUSION & FUTURE WORK
We proposed a new approach including a system to
model and parameterize complete procedural models,
train a convolutional neural network solely with the
procedural models and finally classify an unknown ob-
ject from a database and additionally estimate all pa-
rameters of the procedural model for the unknown ob-
ject. Hence, our system does not only classify unknown
objects but also retrieve additional information.
The proposed system has a very high potential when
suitable procedural models can be created. Therefore,
the currently biggest drawback is the need to model the
initial model with the modeling tool. We will further
investigate the possibilities of automatizing this step.
Creating a method that can automatically construct a
procedural model from a single object in mesh repre-
sentation would highly enhance the ease and usability
of our system.
Our learning method shows a clear enhancement of the
results by using the variations of the objects. A further
investigation of the exact mechanisms leading to this ef-
fect should be performed. This would enable advanced
possibilities of enforcing this mechanisms.
The accuracy of the final parameter estimation step is
directly dependent on the provided procedural models.
Therefore, the final estimation will improve by further
enhancing the creation of the procedural model itself.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

18 ISBN 978-80-86943-40-4

6 REFERENCES

[Ave14] Averkiou M., Kim V. G., Zheng Y., Mitra
N. J. Shapesynth: Parameterizing model collec-
tions for coupled shape exploration and synthesis.
In Computer Graphics Forum, vol. 33, Wiley On-
line Library, pp. 125–134, 2014.

[Bok12] Bokeloh M., Wand M., Seidel H.-P., Koltun
V. An algebraic model for parameterized shape
editing. ACM Transactions on Graphics 31, No.
4, pp. 1–10, 2012.

[Cor12] Corsini M., Cignoni P., Scopigno R. Efficient
and flexible sampling with blue noise properties
of triangular meshes. IEEE Transactions on Vi-
sualization and Computer Graphics 18, No. 6,
pp. 914–924, 2012.

[Fan08] Fang R., Godil A., Li X., Wagan A. A new
shape benchmark for 3d object retrieval. Advances
in Visual Computing, pp. 381–392, 2008.

[Get17] Getto R., Merz J., Kuijper A., Fellner D. W.
3d meta model generation with application in 3d
object retrieval. In Proceedings of the Computer
Graphics International Conference, ACM, p. 6,
2017.

[Jai12] Jain A., Thormählen T., Ritschel T., Seidel
H.-P. Exploring Shape Variations by 3d-Model
Decomposition and Part-based Recombination. In
Computer Graphics Forum, vol. 31, Wiley Online
Library, pp. 631–640, 2012.

[Li15] Li B., Lu Y., Li C., Godil A., Schreck T., Aono
M., Burtscher M., Chen Q., Chowdhury N. K.,
Fang B., et al. A comparison of 3d shape retrieval
methods based on a large-scale benchmark sup-
porting multimodal queries. Computer Vision and
Image Understanding 131, pp. 1–27, 2015.

[Mar07] Marini S., Spagnuolo M., Falcidieno B.
Structural shape prototypes for the automatic clas-
sification of 3d objects. IEEE Computer Graphics
and Applications, No. 4, pp. 28–37, 2007.

[Mat15] Maturana D., Scherer S. Voxnet: A 3d con-
volutional neural network for real-time object
recognition. In Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference
on, IEEE, pp. 922–928, 2015.

[Osa02] Osada R., Funkhouser T., Chazelle B., Dobkin
D. Shape distributions. ACM Transactions on
Graphics (TOG) 21, No. 4, pp. 807–832, 2002.

[Pap10] Papadakis P., Pratikakis I., Theoharis T.,
Perantonis S. Panorama: A 3d shape descrip-
tor based on panoramic views for unsupervised 3d
object retrieval. International Journal of Computer
Vision 89, No. 2, pp. 177–192, 2010.

[Shi04] Shilane P., Min P., Kazhdan M., Funkhouser
T. The princeton shape benchmark. In Shape

modeling applications, 2004. Proceedings, IEEE,
pp. 167–178, 2004.

[Št’10] Št’ava O., Beneš B., Měch R., Aliaga D. G.,
Krištof P. Inverse procedural modeling by au-
tomatic generation of l-systems. In Computer
Graphics Forum, vol. 29, Wiley Online Library,
pp. 665–674, 2010.

[Su15] Su H., Maji S., Kalogerakis E., Learned-Miller
E. Multi-view convolutional neural networks
for 3d shape recognition. In Proceedings of the
IEEE international conference on computer vi-
sion, pp. 945–953, 2015.

[Sze15] Szegedy C., Liu W., Jia Y., Sermanet P., Reed
S., Anguelov D., Erhan D., Vanhoucke V., Rabi-
novich A. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1–9, 2015.

[Tal11] Talton J. O., Lou Y., Lesser S., Duke J., Měch
R., Koltun V. Metropolis procedural modeling.
ACM Transactions on Graphics (TOG) 30, No. 2,
p. 11, 2011.

[Ull11] Ullrich, Torsten, Fellner, Dieter W. Genera-
tive Object Definition and Semantic Recognition.
2011.

[Vra05] Vranic D. V. Desire: a composite 3d-shape
descriptor. In Multimedia and Expo, 2005. ICME
2005. IEEE International Conference on, IEEE,
pp. 4–pp, 2005.

[Wan11] Wang Y., Xu K., Li J., Zhang H., Shamir A.,
Liu L., Cheng Z., Xiong Y. Symmetry Hierarchy
of Man-Made Objects. In Computer graphics fo-
rum, vol. 30, Wiley Online Library, pp. 287–296,
2011.

[Wan15] Wang Y., Liu Z., Pang F., Li H. Boosting
3d model retrieval with class vocabularies and
distance vector revision. In TENCON 2015-2015
IEEE Region 10 Conference, IEEE, pp. 1–5, 2015.

[Wes08] Wessel R., Baranowski R., Klein R. Learn-
ing distinctive local object characteristics for 3d
shape retrieval. In VMV, pp. 169–178, 2008.

[Wu15] Wu Z., Song S., Khosla A., Yu F., Zhang L.,
Tang X., Xiao J. 3d shapenets: A deep representa-
tion for volumetric shapes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1912–1920, 2015.

[Yum15] Yumer M. E., Chaudhuri S., Hodgins J. K.,
Kara L. B. Semantic shape editing using deforma-
tion handles. ACM Transactions on Graphics 34,
No. 4, pp. 86:1–86:12, 2015.

[Zha01] Zhang C., Chen T. Efficient feature extraction
for 2d/3d objects in mesh representation. In Image
Processing, 2001. Proceedings. 2001 International
Conference on, vol. 3, IEEE, pp. 935–938, 2001.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

19 ISBN 978-80-86943-40-4

Generation of Implicit Flow Representations for Interactive
Visual Exploration of Flow Fields

Molchanov Vladimir
The University of Münster

Schlossplatz 2
48149 Münster, Germany

molchano@uni-muenster.de

Lars Linsen
The University of Münster

Schlossplatz 2
48149 Münster, Germany
linsen@uni-muenster.de

ABSTRACT
A stream function is an implicit flow representation in form of a function, whose values are constant along stream-
lines of the underlying velocity field. To generate a stream function, a common approach is to use a streamline
tracking technique after assigning scalar function values on the inflow/outflow domain boundary (pre-processing
step). However, non-trivial flows generally have streamlines that do not start or end at the domain boundary. We
propose an automatic approach that defines a stream function along such streamlines. To do so, we construct
optimal termination surfaces inside the domain and assign scalar values to all streamlines crossing these surfaces.
Furthermore, we propose a proper functional to characterize the quality of the approximated stream function. Using
a variational approach, we derive a partial differential equation for the minimization of the derived functional. This
minimization procedure is an effective tool to improve the stream function. It can also be used to significantly im-
prove the pre-computation times by creating a high-quality high-resolution stream function from a low-resolution
estimate. Once the implicit flow representation is established and improved, we can efficiently extract flow geome-
try such as stream ribbons, stream tubes, stream surfaces, etc. by applying fast marching algorithms. Tracking time
recorded during the pre-processing step can be coupled with the stream function or used directly to extract time
surfaces. Thus, the entire flow field can be explored interactively. There is no need for time-consuming particle
tracking and mesh refinement during the visual exploration process.

Keywords
Flow visualization, streamlines and -surfaces, implicit representation, stream function.

1 INTRODUCTION
Modern flow visualization systems are required to han-
dle large volumetric datasets of high complexity, to ex-
tract and transform requested information fast and ac-
curately, and to meet users’ intuition and expectation
when rendering. The enormous demand on such sys-
tems caused an intensive research on this topic over the
last decades. As a result there have appeared various vi-
sualization algorithms combining ideas from numerical
methods, fluid dynamics, geometry, and other fields.

Most of the existing approaches can be classified into
four large groups: direct, geometric, texture-based,
and feature-based methods [LHD+03]. All these
approaches have their own application areas and
differ in efficiency, generality, and expressiveness.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Direct methods are intuitive but only allow for local
comprehension of the flow and are of limited use when
considering volume data. Texture-based techniques
produce dense flow representations by applying filters
to three-dimensional textures. Occlusion becomes
an issue. Scalar characteristics are in the focus of
feature-based methods, which often require more
experience from the user. Geometric approaches are
considered to be quite intuitive and expressive.

Our paper is devoted to three-dimensional geometric
flow visualization using an implicit flow representation.
The core of most geometric approaches is an integration
of the flow field, which can be extremely time consum-
ing when postulating high accuracy. To allow for an
interactive visualization that involves many geometric
objects, the integration needs to be executed in a pre-
processing phase. Our algorithm takes advantage of
an implicit representation of flow, thus, effectively con-
verting the problem to a scalar field visualization task.
Given the implicit flow representation in the form of a
collection of stream functions, an extraction and ren-
dering of geometric stream elements is performed effi-
ciently using the available pre-integrated information.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

20 ISBN 978-80-86943-40-4
https://doi.org/10.24132/CSRN.2018.2801.3

Implicit flow representation is a collection of stream
functions together with advection times and lengths
recorded for each node. A (generalized) stream
function is a non-trivial function, whose values are
constant along streamlines of the underlying velocity
field. To generate a stream function for a given velocity
field, a common approach is to use a streamline
tracking technique after assigning scalar function
values (parametrization) on the inflow/outflow domain
boundary, see Section 3. However, non-trivial flows
generally have streamlines that do not start or end at the
domain boundary. We propose an automatic approach
that defines a stream function along such streamlines.
To do so, we construct optimal termination surfaces
inside the domain and assign scalar values to all
streamlines crossing these surfaces, see Section 4. We
also support the interactive modification of position
and parametrization of the termination surfaces by
the user based on the information obtained by the
automatic procedure. After having computed one
or several distinct stream functions for gridded data,
marching algorithms can be applied to the grid to
visualize implicit stream elements, such as streamlines,
stream tubes, stream ribbons, stream surfaces, etc, see
Section 6. Moreover, tracking time can be recorded
during the pre-processing step, which allows for the
extraction of time surfaces or for enhancing other
stream elements with time information.
Another aspect of our work is concerned with the qual-
ity of the stream functions. To our knowledge, there
exists no tool to measure and improve the quality of
the pre-integrated data. Our efforts were concentrated
on developing such an approach that improves a stream
function with respect to the underlying velocity field.
Using a variational approach, we derive a partial differ-
ential equation to optimize the derived quality measure,
see Section 5. The procedure can be useful in many
regards, including the following:

• Improvement: A stream function constructed by
tracking of samples may contain noise, exhibit sam-
pling artifacts, or have high local errors due to a
non-uniform behavior of the velocity field. Our
minimization procedure improves the quality of the
stream function and can eliminate these artifacts.

• Refinement: Computing a stream function over a
large domain can be rather expensive when tracking
all nodes. Using our approach, we can downsam-
ple the data, compute a coarse approximation of the
stream function, use interpolation for upsampling to
the original resolution, and correct the interpolated
stream function values via the proposed minimiza-
tion procedure.

The main contributions of the paper can be summarized
as follows: (1) Automatic generation of implicit flow
representation for the entire flow domain; (2) Termina-

tion surfaces to generate a parametrization for stream-
lines not crossing the domain’s boundary; (3) Proper
functional to control the stream function quality; (4)
Variationally derived procedure for stream functions
improvement; (5) Effective algorithms for extraction of
various stream elements with the possibility to repre-
sent advection-time information in form of color (trans-
parency) encoding or extraction of time surfaces.

2 RELATED WORK
Nontrivial real-world and modeled flows have
variations in velocity and curl magnitude, an inho-
mogeneous distribution of helicity and divergence,
and a non-degenerated determinant of the gradient
tensor. All these scalar fields associated with a flow are
features that play an important role in flow analysis.
An approach to highlight regions of a non-uniform
flow behavior is to use a multi-dimensional transfer
functions [PBL+04, PBL+05], or glyphs [GRT17].

Flow direction – one of the simplest flow character-
istics – is hardly described by a scalar quantity. To
depict this information the Line Integral Convolution
method was proposed by Cabral and Leedom [CL93].
The idea is to blur textures along a given vector field
over the domain producing intuitive patterns, especially
in two spatial dimensions. In the case of a volumet-
ric flow, the method can be combined with other ap-
proaches. For instance, Schafhitzel et al. [STWE07]
computed and rendered stream surfaces and path sur-
faces of a three-dimensional flow with a texture-based
surface flow structure.

Rendering of flow-related geometrical objects is an ex-
tremely helpful visualization method. Colored points,
curves, and surfaces may be used to define the topo-
logical skeleton of a vector field, i.e., critical points,
periodic orbits, separatrices, etc. Existing approaches
focus on topological segmentation of two-dimensional
[SHJK00] and three-dimensional steady vector fields
[MBS+04], an analysis of time-dependent vector field
topology [SRP09], and extraction of two-dimensional
separatrices of three-dimensional saddles and saddle
type periodic orbits [PS09].

The basic underlying principle of topology-based
and geometric methods is the tracking of imaginary
particles introduced into the flow. The idea was
adopted from real-world experiments on injection of an
extraneous, clearly visible fluid material into a stream.
Propagation of the material displays the stream- or
pathline structure of the flow. A proper optical model
for smoke advection in an unsteady flow was pro-
posed [vFWTS08]. Li et al. [LTH08] developed a dye
propagation scheme overcoming non-physical artifacts
of integration. Cuntz et al. [CKSW08] advected a dye
in an unsteady three-dimensional flow using a hybrid
particle-mesh formalization. A dye released into the

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

21 ISBN 978-80-86943-40-4

flow at fixed positions at different times results in
streak lines [WT10].

An integration along particle paths is commonly done
by a fourth-order Runge-Kutta method [PYH+06]. The
paths describe streamlines or pathlines and can be ex-
tended to stream ribbons or stream tubes [RLN+17].
An improvement of stream ribbon triangulation in di-
vergent or shearing flows was studied in the seminal
paper by Hultquist [Hul92].

The construction of a flow topology skeleton is mainly
done without any user interaction. Although it also re-
quires significant computational efforts, extraction of
stream surfaces and lines is more user-oriented, since
the seeding points can be defined arbitrarily. Typi-
cally, the number of simultaneously extracted stream
elements needs to be limited to allow interactive frame
rates. One step towards an interactive visualization
application that allows the simultaneous extraction of
many stream elements can be taken by moving all time-
consuming integration to a pre-processing phase and
encoding the flow implicitly in a scalar stream function.

An implicit surface representation is the key
idea of a wide class of level-set methods, e.g.,
[CKSW08, WJE00, WJE01]. Early attempts in implicit
representations of stream surfaces go back to van Wijk
[vW93]. All grid nodes were tracked in the direction
opposite to the flow until they reach the domain bound-
ary. The velocity field was evaluated via a trilinear
interpolation from the grid. Values of a smooth scalar
function defined at the boundary are then assigned to
the nodes based on the assumption that they remain
constant along each streamline. Alternatively, a con-
vection equation is solved on a regular grid. Isosurfaces
of the resulting gridded volumetric function are then
proven to be stream surfaces of the underlying flow.
Xue et al. [XZC04] adapted the approach by van Wijk
to render implicit volumes. Instead of assigning scalar
values on the inflow region, the user is asked to paint a
two-dimensional texture on the boundary (termination
surface). Properly constructed boolean fields which
remain unchanged along streamlines allow for effective
flow topology exploration as shown in [SS07]. In this
paper, we present an approach that computes stream
functions fully automatically. Moreover, we define a
quality measure and present an approach for improving
stream functions.

A streamline can be found as an intersection of two
stream surfaces called dual. A cell-wise trilinear ap-
proximation of dual stream functions (f and g) was
used by Kenwright et al. to render streamlines [KM92].
A concept of an f g-diagram was then generalized to an
irregular tetrahedral mesh [KM96].

3 STREAM FUNCTIONS
A stream function ψ(x) of a two-dimensional poten-
tial flow w(x) = (w1(x), w2(x)), x = (x1,x2), is known

to satisfy the Poisson equation 4ψ(x) =
∂w2(x)

∂x1
−

∂w1(x)
∂x2

, where 4 = ∂

∂x1
+ ∂

∂x2
stands for the Laplace

operator. The right-hand side of the equation has the
meaning of vorticity with a negative sign. The stream
function ψ(x) remains constant along streamlines and
the magnitude of its gradient is proportional to the flux.
This property holds exceptionally for potential flow,
i.e., for velocity field w(x) with ∇×w(x) = 0. How-
ever, a generalized notion of a stream function is still
applicable for non-potential flows in spatial dimensions
higher than two.

A (nontrivial) scalar function f (x) is said to be a (gener-
alized) stream function of a given vector field u(x) (in-
terpreted as velocity), if ∇ f (x)⊥ u(x) everywhere in a
domain D ∈ Rd , d ≥ 2. It implies that f (x) is constant
along any streamline of the flow u(x), i.e., an implicit
relation f (x) = fiso with some constant fiso defines a
streamline or a stream surface for d = 2 or d = 3, cor-
respondingly.

We assume that the underlying vector field is suffi-
ciently smooth, i.e., its components have continuous
first derivatives. Since the stream function definition
above is invariant under arbitrary scaling of the velocity
u(x), it is convenient to normalize the flow introducing
a new field v(x) = u(x)/‖u(x)‖. The boundary ∂D of
the flow domain D can be split into two parts, the inflow
boundary region ∂Din and the outflow boundary region
∂Dout, i.e., ∂D = ∂Din

⋃
∂Dout. By definition, y∈ ∂Din

iff y ∈ ∂D and v(y) ·n(y) ≤ 0, where n is a normal to
the boundary ∂D pointing outwards and "·" denotes the
inner product of vectors in Rd .

There exist two main approaches to construct a stream
function f (x). A first approach solves the partial differ-
ential transport equation with boundary condition

∂ f (x, t)
∂ t

+u ·∇ f (x, t)= 0; f (y, t)= f0(y), y∈ ∂Din,

to track boundary values throughout the domain
along streamlines. Alternatively, all grid nodes gi
can be tracked backwards in the flow (so called,
anti-particles). Here, the ordinary differential equation

dgi(t)
dt

=−u, gi(0) = gi, (1)

is to be solved until each tracked particle reaches ∂Din
at some time ti. After that, the inflow boundary region
is parametrized, i.e., some scalar values are prescribed
to all inflow boundary points. Then, all grid nodes gi
are assigned with the same scalar values as their foot-
prints gi(ti). The established volumetric scalar field is

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

22 ISBN 978-80-86943-40-4

Figure 1: Classification of streamlines with respect to
their start and end points lying on the boundary (B) or in
the interior (I) of the domain. Case V describes closed
streamlines around vortex. By proper splitting (dashed
lines), II and V regions can be reduced to two subre-
gions of BB, BI, or IB.

the stream function f (x). The collection of the gridded
values ti determines another scalar field t(x) called the
advection-time function. In both approaches t stands for
an artificial time.

Usually, both the coordinates of the footprints gi(ti) and
the advection times ti are recorded after the backwards
tracking step. The user chooses a proper parametriza-
tion of ∂Din and specifies an iso-value fiso to extract
the implicit stream surface f (x) = fiso. The advec-
tion times ti can be used either to extract time surfaces
t(x) = tiso or to color extracted stream surfaces.

A dual technique is to track particles forward in the flow
until they reach ∂Dout and to record their tracking time.
Since we use both of the methods simultaneously in our
approach, we denote by tin and tout the advection times
by inverse and original flow, respectively.

In most cases, finding a parametrization that results in
a globally smooth stream function is not easy for two
reasons: First, the domain D is usually chosen to be
a rectangular box, which, obviously, has a non-smooth
boundary. Second, many flows have streamlines, which
do not start on the boundary. We reproduce the flow
diagrams from [vW93] in Figure 1. Based on whether
a streamline starts/ends on the boundary (B) or in the
interior (I), or it forms a loop around a vortex (V), one
can classify them in five types: BB, BI, IB, II, and V.

The methods described above require that all stream-
lines of the flow u(x) start and/or end at the domain
boundary ∂D. However, the presence of sources, sinks,
or vortices may lead to stream curves belonging to the
domain interior (cases II and V) which remain non-
parametrized. These cases can be solved by a proper
splitting of domain D into subdomains, see Figure 1,
and/or by surrounding singularities with termination
surfaces.

4 TERMINATION SURFACES
Parametrization of streamlines of type II and V was
stated as an open problem by van Wijk [vW93].
Splitting of the flow domain as in Figure 1 (lower
row) becomes impractical for three-dimensional fields,
since critical points (sinks, sources, vortex cores) can
build complicated geometry, e.g. vortex filaments. To
handle the II-case with isolated sinks/sources, Xue et
al. [XZC04] constructed termination surfaces surround-
ing the critical points. The streamlines approaching one
of these points intersect the corresponding termination
surface and pick up a value from its parametrization.
However, Xue et al. did not present a methodology on
how the radius of the spherical surface should be cho-
sen and left the placement of termination surfaces to the
user. Moreover, the streamline density on small spheres
is extremely high, which makes the parametrization
process unstable with respect to unavoidable tracking
errors. Our approach automatically creates termination
surfaces inside II or V regions optimally placed with
respect to the locations of critical points, which is
based on pre-processed information.

In the pre-processing step, we track each grid node for-
ward and backward in the flow to define its type: The
type of a node is the type of the streamline the node
belongs to. For the nodes of types BB, BI, and IB
we record the footprint point(s) and the two advection
times. For the nodes of type II we record the grid vox-
els being visited, the tracking times tin and tout and the
advection lengths lin and lout. For the nodes of type V
we just record the voxels being visited. As such, we
classify all grid nodes. Setting value 1 to all nodes of
one class and value 0 to nodes of the other classes, we
can extract separating surfaces as isosurfaces with re-
spect to the isovalue 0.5. These are stream surfaces that
provide important information about the flow structure.
However, their quality is low, since they are extracted
from a boolean field.

Flow regions that have been categorized as being con-
nected to the domain boundary (types BB, BI, and IB)
are then parametrized according to scalar field(s) that
are assigned to the domain boundary ∂D. The next
step is to create a smooth scalar field for regions of type
II and V by constructing proper termination surface(s).
For that purpose we first look for a seeding voxel S (dis-
cussed below). Let c be the center of S and m= v(c) the
velocity at c. Starting from the seeding voxel, we grow
the termination surface by marking neighboring voxels
if they (a) have a non-empty intersection with the plane
β : x ·m = c ·m, (b) have unparametrized streamlines
crossing them, and (c) their velocity v has the same ori-
entation as the velocity at c, i.e., v ·m > 0. The pro-
cedure results in that part of plane β that is connected
with voxel S and has unparametrized streamlines cross-
ing it. Let {k, l} be an orthonormal basis in plane β .

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

23 ISBN 978-80-86943-40-4

Figure 2: Automatic parametrization of V- and II-
regions (left and right column, correspondingly). Upper
row: Stream surfaces that separate the V- and II-region
from the surrounding regions. Lower row: Termination
surfaces provide scalar values for streamlines intersect-
ing them, which allows for the extraction of stream ele-
ments.

A streamline crossing the termination surface at point
g gets assigned a scalar according to f1 = (g− c) ·k or
f2 = (g− c) · l. Both scalars are needed for extracting
stream tubes and ribbons as discussed below.

For the selection of seeding voxel S, our aims are (1) to
provide scalar values for a maximal number of stream-
lines at once, and (2) possibly avoid an overly dense lo-
cal concentration of streamlines on the surface. In other
words, we want to parametrize the largest part of the
domain and make our parametrization less sensitive to
computational errors. Several approaches to choose the
seeding voxel were tested in our experiments. We came
to the conclusion that for II-region with single source
and sink the seeding voxel S should lie half way be-
tween the sink and the source on the shortest connect-
ing streamline. Thus, S should contain the grid node
with minimal total tracking length (lin + lout) and mini-
mal tracking length difference |lin− lout|. In a V-region,
on the other hand, tracking time for the streamlines has
no meaning , since the streamlines are closed. Thus,
the choice of S is arbitrary. Generally, one can find the
largest termination surface with the maximal number of
streamline crossing it by a brute force algorithm testing
all possible seed points. Results are shown in Figure 2.

For each streamline we record a label of the termina-
tion surface from which it received the scalar values.
If not all streamlines were parametrized, we iteratively
build further termination surfaces until all streamlines
are parametrized.

5 STREAM FUNCTION CONTROL
AND IMPROVEMENT

Streamline tracking introduces numerical errors due to
imprecise velocity interpolation and integration. The
longer a streamline, the larger the error. To our knowl-
edge, there exists no effective procedure to improve
a constructed stream function f (x) other than to re-
construct it again using a smaller integration step size,
which is an extremely time-consuming process. Our
goal is to develop a method to control and improve the
quality of a stream function.

5.1 Functional for measuring stream
function quality

We start with a construction of a functional measuring
the quality of a stream function f (x) with respect to
the underlying normalized vector field v(x). The funda-
mental characteristic of a stream function is that its iso-
lines (surfaces) are tangent to the flow direction. There-
fore, we define

E1(f) =
1
2

∫
D′

∣∣∣∣ ∇ f (x)
‖∇ f (x)‖

·v(x)
∣∣∣∣2 dx. (2)

Here and in the following D′ denotes a subregion in
D covered by streamlines of the same type. Stream-
lines within D′ either have a common termination sur-
face or start or end at the boundary ∂D′. Obviously,
the functional takes values from interval [0, 1] and van-
ishes for a perfect stream function. Our goal is to obtain
a method, which allows us to minimize E1 for a given
approximation of f (x).

5.2 Minimization algorithm
A standard technique to minimize a functional of the
form E(φ) =

∫
L(x,φ ,∇φ)dx is to construct its Euler-

Lagrange equation

∂L
∂φ
−divx

[
∂L

∂∇φ

]
= 0. (3)

Equation (3) expresses the necessary condition for a
stationary point φ0 of the functional and can be derived
by usual differentiation of E(φ) = E(φ0 + εψ) with re-
spect to ε .

To simplify the resulting equation, we omit the nor-
malization of the gradient field in Equation (2). Our
tests show that this modification reduces the computa-
tional costs and still serves the goal of minimization of
E1(f). The simplified functional depends only on the
gradient of the function f (x), thus the associated Euler-
Lagrange equation reduces to the form

−divx [v(x)(∇ f (x) ·v(x))] = 0. (4)

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

24 ISBN 978-80-86943-40-4

We introduce an artificial time τ and set the partial tem-
poral derivative of f (x,τ) to the left-hand side of Equa-
tion (4) taken with a negative sign. The resulting evolu-
tional equation

∂ f (x,τ)
∂τ

= divx [v(x)(∇ f (x,τ) ·v(x))] , (5)

f (x,0) = f0(x), (6)

describes a transformation of an initial approximated
stream function f0(x) towards a local minimum of func-
tional E1. The algorithm is similar to the steepest de-
scent method for root search, where the divergence term
stands for the opposite gradient direction. The govern-
ing equation has the form of diffusion in the direction
of v(x) with the diffusion rate ∇ f (x,τ) · v(x). Clearly,
the diffusion rate vanishes for the perfect stream func-
tion. Thus, the perfect stream function is a stationary
point of the evolution process.

We discretize Equation (5) in space and time to derive
a numerical scheme. In our tests we use central differ-
encing for spatial and forward differencing for tempo-
ral discretization resulting in an explicit scheme with
second-order accuracy in space. The discretized partial
differential equation has the form

f n+1
i, j,k − f n

i, j,k

δτ
= divi, j,k

[
vn

i, j,k

(
∇i, j,k f n ·vn

i, j,k

)]
, (7)

where gradient ∇i, j,k and divergence operator divi, j,k
are discretized using central differences, δτ is the time
step, the upper indices denote the time, and the lower
indices indicate the position in space.

Equation (5) is a parabolic partial differential equation.
Thus, both initial and boundary conditions are required
for the well-posedness of the problem. The initial con-
dition is given by Equation (6). Imposing a proper
boundary condition is not a trivial task, since numeri-
cal instabilities can develop close to the boundary ∂D′

of the considered region.

The simplest and the safest approach is to fix the val-
ues of the stream function at ∂D′ for all τ by imposing
the Dirichlet boundary condition: f (y,τ) = f0(y) for
all y ∈ ∂D′ and all τ ≥ 0. The numerical scheme be-
comes simple and the functional decreases over the first
iterations. Moreover, the initial parametrization of the
boundary is not affected.

5.3 Application
The minimization procedure described above can be ap-
plied to an already generated stream function to make
its level sets be better aligned to the given vector field.
Since the governing Equation (5) models a diffusion
process, the procedure also has a smoothing effect. Van
Wijk [vW93] applied an isotropic smoothing filter to
the generated stream function to enhance its rendering

quality at the cost of losing detailed information. In the
proposed method, the smoothing is performed in accor-
dance with the underlying flow field decreasing the er-
ror defined in Equation (2).

Another main application of the minimization algo-
rithm can be the reduction of computation time in the
pre-processing stage. Accurate advection of all grid
nodes can take hours for large data sets. Even if the pre-
processing has to be performed only once, the compu-
tational efforts are an issue. We propose to construct a
rough approximation to the stream function which sub-
sequently can be improved by applying our minimiza-
tion procedure. The steps of the algorithm are the fol-
lowing:

1 We perform an advection of three subsets of nodes:
(a) the boundary nodes gi ∈ ∂D′, (b) nodes having
vorticity or absolute divergence values larger than
specified thresholds, and (c) an evenly distributed
sparse subset of nodes in D′.

2 The advected nodes are parametrized according to
their footprints at the boundary.

3 The scalar field sampled at the parametrized nodes
is interpolated linearly to the nodes which were not
tracked producing a rough approximation to a glob-
ally defined stream function.

4 The approximate stream function is improved ac-
cording to Equation (7). The values at the advected
nodes (from Step 1) remain unchanged during this
optimization.

5 The minimization process is stopped as soon as the
error (2) reaches its minimum.

The vorticity used in Step 1 are given by norm of

∇×v(x,y,z) =
(

∂vy

∂ z
− ∂vz

∂y
,

∂vx

∂ z
− ∂vz

∂x
,

∂vy

∂x
− ∂vx

∂y

)
,

where derivatives are computed by central differencing.
High vorticity values indicate that locally the stream
function is highly curved. In the neighborhood of large
absolute values of divergence, the norm of the gradient
of the stream function can grow quickly. To avoid
possible instabilities when evolving f (x) according to
Equation (7), we explicitly advect and parametrize grid
nodes in regions of high vorticity and high absolute
divergence values. Analogously, we can parametrize
the streamlines crossing a termination surface.

6 EXTRACTION OF STREAM ELE-
MENTS

Stream elements are the instruments of geometric flow
visualization methods. The most commonly used el-
ements are stream surfaces, streamlines, stream tubes,
and stream ribbons. Different stream elements serve
for an adequate exploration of different flow character-
istics and structures. Since the flow through any stream

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

25 ISBN 978-80-86943-40-4

surface vanishes, i.e., v ·m = 0 with surface normal m,
these surfaces can be widely used to identify and sepa-
rate different regions of flow. However, displaying sev-
eral stream surfaces usually leads to occlusion. One
can easily show a direction and magnitude of the local
flow using colored stream elements. Stream tubes and
ribbons are the proper tools to reflect divergence and
torsion of the field, correspondingly. Combination of
these basic elements can be applied to provide a ver-
satile picture of the flow. Given the derived implicit
flow representation, stream elements can be directly ex-
tracted from these scalar fields.

All points satisfying the relation f (x) = fiso for arbi-
trary fiso ∈ R define a stream surface of the flow v(x).
We use standard marching technique to derive a trian-
gulated representation of stream surfaces.

It is well-known that an intersection line of two non-
parallel stream surfaces is a streamline [KM92]. Dif-
ferent parametrizations of the boundary (or termination
surface) lead to different stream functions for the same
flow. Given two stream functions f1(x) and f2(x) with
the property ∇ f1 ·∇ f2 6= 0 in D, a set of streamlines can
be obtained by intersection of isosurfaces f1(x) = c1
and f2(x) = c2 for various constants c1 and c2. There-
fore, each streamline is uniquely defined by two stream
coordinates c = (c1, c2). However, an explicit integra-
tion of a single streamline is much easier. This obser-
vation changes as soon as one is interested in extracting
certain sets of streamlines.

Usually, a stream tube is generated as a collection of
streamlines with seeding points lying on an ellipse. An
alternative construction of a stream tube can be ob-
tained by generating a proper stream function. Let
f1(x) and f2(x) be two stream functions. It is easy to
show that any smooth function h(f1(x), f2(x)) is also a
stream function: ∇h(x) ·v(x) = 0 [vW93]. Let us as-
sume that isosurfaces f1(x) = c1 and f2(x) = c2 are or-
thogonal in a neighborhood of the termination surface:
∇ f1(x) ·∇ f2(x) = 0. Then, the stream surface h(x) = 1
for the function

h(x) =
(f1(x)− c1)

2

a2 +
(f2(x)− c2)

2

b2

is the desired stream tube with radii a and b.

Similar to the stream tube construction, there are also
two methods for extracting stream ribbons. One can
seed a set of streamlines along a line segment of in-
terest or one can extract a part of the stream surface
f1(x) = fiso satisfying the condition a≤ f2(x)≤ b. In
the latter case, we construct the stream surface with re-
spect to the field f1(x) by means of a marching algo-
rithm. For each triangle from the derived surface repre-
sentation we compute values of f2(x) on its vertices. If
all three values are in the range [a, b], the triangle will
be accepted; if none of the values belong to the interval,

Figure 3: Extraction of stream ribbon f1(x) = fiso,
a≤ f2(x)≤ b. A marching algorithm produces a tri-
angulation of the stream surface f (x) = fiso. These
triangles are then rejected, accepted, or accepted with
modification based on the values of function f2 at their
vertices. If a triangle intersects the ribbon boundary, it
is trimmed producing up to 3 new triangles.

we reject the triangle; if some of the values are in the
range, the triangle is trimmed producing up to 3 new
triangles. All possible trimming scenarios are shown in
Figure 3.

The advection-time field t(x) is also available after the
pre-processing step. Its isosurfaces — time surfaces
— can be extracted in the same manner as stream sur-
faces. The advection time information can be encoded
on the surface of stream element using color or trans-
parency. Besides that, stream functions and advection-
time field can be combined to extract flow volumes. A
flow volume is a part of flow domain bounded by sur-
face S(f1(x), f2(x), t(x)) = 1. In practice, we use flow
tube and flow cube given by expressions

Stube =max
{
(f1(x)− c1)

2

a2 +
(f2(x)− c2)

2

b2 ,
|t(x)− t0|

rt

}
Scube =max

{
| f1(x)− c1|

r1
,
| f2(x)− c2|

r2
,
|t(x)− t0|

rt

}
.

Flow volumes have a meaningful interpretation for
steady flows: They define the fluid portion that crosses
the boundary at the specified location during the
given time interval. For example, the fluid inside flow
tube Stube will flow through the elliptical part of the
boundary withing time from t0− rt to t0 + rt , i.e., it will
traverse the tube from one end to the other.

7 NUMERICAL EXPERIMENTS
All numerical tests presented in this and the following
section were performed on a PC with an Intel Xeon
3.20GHz processor. For surface extraction, a marching
cubes algorithm was used. Extraction of any stream ele-
ment for any examples presented here took only a frac-
tion of a second. Thus, the user experiences a highly
interactive system for extracting stream elements. In all

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

26 ISBN 978-80-86943-40-4

Figure 4: Extraction of flow volumes. Left: Type V
region. Restricting a stream tube (purple) to a finite
time-advection interval results in a flow volume (gold).
To obtain an information about velocity magnitude, the
sinus of the advection time is mapped to transparency of
a stream surface (green). Right: Type II region. Three
flow volumes together with their footprints (red) on the
termination surface are shown.

our tests, we used trilinear interpolation of the velocity
field and a fourth-order Runge-Kutta method for inte-
gration.

First, we looked into simple synthetic data sets. The
first example is that of flow around a vertex line, which
we sampled at 1003 regularly distributed grid nodes.
The flow is divided in two subdomains of type BB and
V. To parametrize the latter, we construct a termination
surface as shown in Figure 2 (left). Several extracted
stream elements are shown in Figure 5 (left). Informa-
tion about velocity magnitude can be obtained by an-
alyzing the shape of flow volumes or by rendering of
advection-time values on stream elements. In Figure 4
(left) transparency of the lower stream surface shows
the sine of the advection time. Curved patterns show
that the magnitude of velocity increases superlinearly
with the distance to the vortex line. The same conclu-
sion can be drawn when looking to the shape of the flow
tube shown in gold.

A second example is that of flow from a single source to
a simple sink. This flow field includes a subdomain of
type II. It is parametrized as shown in Figure 2 (right).
Extracted stream elements are shown in Figure 5 (cen-
ter). Three flow volumes and their footprints on the ter-
mination surface are shown in Figure 4 (right).

Next, we demonstrate the speed-up of the pre-
processing step when applying the minimization
procedure presented in Section 5. The tornado
dataset [CM93] was sampled on a uniform grid of
resolution 503 and 1283. After computing vorticity
at all nodes, we set its threshold to 0.15. Then, we
track those grid nodes, which belong to the domain
boundary, have vorticity values larger than the thresh-
old, or have an even grid index. The tracked nodes get
scalar values equal to the z-coordinate of their footprint
at the boundary. The resulting sparse scalar field is
linearly interpolated to the rest of the nodes. Finally,

we perform several iterations to minimize the stream
function error.

The time spent at each step of the algorithm for both
datasets is summarized in Table 1. When compared to
tracking all nodes, we observe that our algorithm re-
quires only 22% and 16% of the tracking time for the
data sets with 503 and 1283 nodes, correspondingly.
The evolution of the average error during the minimiza-
tion step is presented in Figure 7. Only few iterations
with the artificial time step δτ = 2.0 were enough to
reduce the error to values that are even below the error
one obtains when tracking all nodes. A result for ex-
tracted stream elements from this data set can be seen
in Figure 5 (right). Areas of high vorticity are shown in
Figure 6(left), while Figure 6(right) shows the error on
a stream surface.

Figure 5: Flow representation of several data sets: flow
around a vortex line (left), flow between a sink and a
source (center), and tornado data set (right). A set of
streamlines together with various stream elements are
shown for each data set. The geometric features are
extracted interactively from an implicit flow represen-
tation.

0 2.0 ·10−3

Figure 6: Left: Streamlines computed for tornado
dataset. Red are the grid nodes which have vorticity
values larger than threshold. A stream surface close
to these nodes has high curvature that makes the error
minimization procedure unstable in this region. Right:
Error visualization on a stream surface. The error in-
creases when the surface approaches the tornado cen-
ter (red-yellow-white spots) and vanishes at larger dis-
tances (black-blue spots). Areas with negligible error
remain gold.

Finally, we construct an implicit representation for a
simulation of the flow of five jets (dataset courtesy of
Kwan-Liu Ma, University of California, Davis). Fig-
ure 8 shows a set of streamlines, a constructed termina-
tion surface and some extracted stream elements.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

27 ISBN 978-80-86943-40-4

503 nodes 1283 nodes
tracking time 177.53 s 4631 s

interpolation time 0.15 s 2.07 s
error minimization time 9.19 s 114.62 s

number of iterations 70 50
total time 186.87 s 4797.69 s
final error 6.278 ·10−4 3.343 ·10−4

time (tracking all nodes) 861 s 30625 s
error (tracking all nodes) 7.475 ·10−4 6.456 ·10−4

Table 1: Time consumption for different stages of our
algorithm in Section 5 for the construction of an im-
plicit flow representation when applied to the tornado
dataset sampled at 503 and 1283 nodes. The results
show significant reduction of time when compared to
the approach of tracking all nodes. Moreover, although
we are tracking significantly less nodes, the average er-
ror decreases with our approach.

0 20 40 60
i

1

2

10-3

0 15 30 45
i

0.5

1.

1.5
10-3

Figure 7: Evolution of average error during the min-
imization procedure applied to the interpolated data
(solid lines). Dashed lines show the error values after
tracking all grid nodes. Tornado dataset with 503 nodes
(left) and 1283 nodes (right) was tested.

Figure 8: Five jets dataset. Streamlines and a termi-
nation surface are shown in the upper row. Extracted
stream surface in combination with two stream ribbons
is shown in the lower row.

8 CONCLUSION
We presented a method for automatic generation of im-
plicit representation for volumetric flow. The method

is based on the classification of streamlines in five
types: BB, BI, IB, II, and V depending on whether
they start/end on the boundary or in the domain inte-
ria, or form a closed trajectory. For the first three cases
known techniques as in [vW93, XZC04] are applica-
ble. We focused our efforts on effectively defining a
stream function for regions of type II and V. To han-
dle those, a termination surface is created starting with
a proper seeding voxel. Two strategies for choosing
seeding voxels are proposed: Maximization of num-
ber of unparametrized streamlines passing through the
voxel (suitable for type V), and comparing advection-
time values recorded in the pre-processing step (suit-
able for type II). Thus, some open problems concerning
the construction of a stream function in the entire flow
region have been solved. We have avoided any artificial
splitting of the domain. Instead, the established subre-
gions reflect the flow topology; they are separated from
each other by special stream surfaces. We have also
avoided termination surfaces isolating critical points,
since it could lead to inaccurate parametrization due to
the high density of the streamlines on such surfaces.

We also proposed a tool for improving of stream func-
tions. It is based on variational minimization of a func-
tional describing the function quality with respect to the
underlying vector field. The governing diffusion equa-
tion is derived.

Various geometrical stream elements (e.g., stream sur-
faces) can be extracted and displayed interactively. In
particular, we proposed novel algorithms for the extrac-
tion of stream tubes and ribbons. We also combined
the stream function visualization with a visualization of
the advection-time field. Both tracking the nodes in the
pre-processing step and extraction of stream elements
in run time allow for an efficient parallel computing.

Acknowledgments This work was supported in part by
DFG grants LI 1530/6-2 and MO 3050/2-1.

9 REFERENCES
[CKSW08] Nicolas Cuntz, Andreas Kolb, Robert Str-

zodka, and Daniel Weiskopf. Particle level set ad-
vection for the interactive visualization of unsteady
3D flow. Computer Graphics Forum, 27(3):719–
726, May 2008.

[CL93] Brian Cabral and Leith Casey Leedom.
Imaging vector fields using line integral convolu-
tion. In SIGGRAPH ’93: Proceedings of the 20th
annual conference on Computer graphics and inter-
active techniques, pages 263–270, New York, NY,
USA, 1993. ACM.

[CM93] Roger Crawfis and Nelson Max. Texture
splats for 3D vector and scalar field visualization.
In Proceedings Visualization ’93, pages 261–266,
Los Alamitos, Oct 1993. IEEE Computer Society.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

28 ISBN 978-80-86943-40-4

[GRT17] T. Gerrits, C. Rössl, and H. Theisel.
Glyphs for space-time jacobians of time-dependent
vector fields. Journal of WSCG, 25(1):31–38, 2017.

[Hul92] J. P. M. Hultquist. Constructing stream
surfaces in steady 3d vector fields. In VIS ’92: Pro-
ceedings of the 3rd conference on Visualization ’92,
pages 171–178, Los Alamitos, CA, USA, 1992.
IEEE Computer Society.

[KM92] David N. Kenwright and Gordon D.
Mallinson. A 3-D streamline tracking algorithm
using dual stream functions. In VIS ’92: Proceed-
ings of the 3rd conference on Visualization ’92,
pages 62–68, Los Alamitos, CA, USA, 1992. IEEE
Computer Society.

[KM96] David Knight and Gordon Mallinson. Vi-
sualizing unstructured flow data using dual stream
functions. IEEE Transactions on Visualization and
Computer Graphics, 2(4):355–363, 1996.

[LHD+03] Robert S. Laramee, Helwig Hauser, Hel-
mut Doleisch, Benjamin Vrolijk, Frits H. Post, and
Daniel Weiskopf. The state of the art in flow vi-
sualization: Dense and texture-based techniques.
Computer Graphics Forum, 23(2):203–221, 2003.

[LTH08] Guo-Shi Li, Xavier Tricoche, and
Charles D. Hansen. Physically-based dye advec-
tion for flow visualization. Comput. Graph. Forum,
27(3):727–734, 2008.

[MBS+04] Karim Mahrous, Janine Bennett, Gerik
Scheuermann, Bernd Hamann, and Kenneth I. Joy.
Topological segmentation in three-dimensional vec-
tor fields. IEEE Transactions on Visualization and
Computer Graphics, 10:198–205, 2004.

[PBL+04] Sung W. Park, Brian Budge, Lars Lin-
sen, Bernd Hamann, and Kenneth I. Joy. Multi-
dimensional transfer functions for interactive 3d
flow visualization. In PG ’04: Proceedings of
the Computer Graphics and Applications, 12th Pa-
cific Conference, pages 177–185, Washington, DC,
USA, 2004. IEEE Computer Society.

[PBL+05] Sung W. Park, Brian Budge, Lars Linsen,
Bernd Hamann, and Kenneth I. Joy. Dense geomet-
ric flow visualization. In EUROGRAPHICS - IEEE
VGTC Symposium on Visualization, pages 21–28,
2005.

[PS09] Ronald Peikert and Filip Sadlo. Topologi-
cally Relevant Stream Surfaces for Flow Visualiza-
tion. In H. Hauser, editor, Proc. Spring Conference
on Computer Graphics, pages 43–50, April 2009.

[PYH+06] Sung W. Park, Hongfeng Yu, Ingrid Hotz,
Oliver Kreylos, Lars Linsen, and Bernd Hamann.
Structure-accentuating dense flow visualization. In
Beatriz Sousa Santos, Thomas Ertl, and Kenneth I.
Joy, editors, EuroVis06: Joint Eurographics - IEEE
VGTC Symposium on Visualization, Lisbon, Portu-

gal, 8-10 May 2006, pages 163–170. Eurographics
Association, 2006.

[RLN+17] Dylan Rees, Robert S. Laramee, Duong
Nguyen, Lei Zhang, Guoning Chen, Harry Yeh, and
Eugene Zhang. A Stream Ribbon Seeding Strategy.
In EuroVis 2017 - Short Papers. The Eurographics
Association, 2017.

[SHJK00] Gerik Scheuermann, Bernd Hamann, Ken-
neth I. Joy, and Wolfgang Kollmann. Visualizing
local vector field topology. SPIE Journal of Elec-
tronic Imaging, 9:367, 2000.

[SRP09] Filip Sadlo, Alessandro Rigazzi, and
Ronald Peikert. Time-Dependent Visualization of
Lagrangian Coherent Structures by Grid Advection.
In Proceedings of TopoInVis 2009. Springer, 2009.

[SS07] Tobias Salzbrunn and Gerik Scheuermann.
Streamline predicates as flow topology generaliza-
tion. In Helwig Hauser, Hans Hagen, and Holger
Theisel, editors, Topology-Based Methods in Visu-
alization (Mathematics and Visualization), pages
65–78. Springer, July 2007.

[STWE07] Tobias Schafhitzel, Eduardo Tejada,
Daniel Weiskopf, and Thomas Ertl. Point-based
stream surfaces and path surfaces. In Graphics In-
terface, pages 289–296, 2007.

[vFWTS08] Wolfram von Funck, Tino Weinkauf, Hol-
ger Theisel, and Hans-Peter Seidel. Smoke surfaces:
An interactive flow visualization technique inspired
by real-world flow experiments. IEEE Transactions
on Visualization and Computer Graphics (Proc.
IEEE Visualization), 14(6):1396–1403, Nov 2008.

[vW93] Jarke J. van Wijk. Implicit stream surfaces.
In VIS ’93: Proceedings of the 4th conference on
Visualization ’93, pages 245–252, Washington, DC,
USA, 1993. IEEE Computer Society.

[WJE00] Rüdiger Westermann, Christopher John-
son, and Thomas Ertl. A level-set method for flow
visualization. In VIS ’00: Proceedings of the con-
ference on Visualization ’00, pages 147–154, Los
Alamitos, CA, USA, 2000. IEEE Computer Society.

[WJE01] Rüdiger Westermann, Christopher John-
son, and Thomas Ertl. Topology-preserving
smoothing of vector fields. IEEE Transactions on
Visualization and Computer Graphics, 7(3):222–
229, 2001.

[WT10] Tino Weinkauf and Holger Theisel. Streak
lines as tangent curves of a derived vector field.
IEEE Transactions on Visualization and Computer
Graphics, 16:1225–1234, 2010.

[XZC04] Daqing Xue, Caixia Zhang, and Roger
Crawfis. Rendering implicit flow volumes. In VIS
’04: Proceedings of the conference on Visualization
’04, pages 99–106, Washington, DC, USA, 2004.
IEEE Computer Society.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

29 ISBN 978-80-86943-40-4

Calibrating Low-cost Structured-light 3D Sensors

R. Chakib

Université de Limoges
XLIM / ASALI

123 Av. Albert Thomas
87000 Limoges, France

CORUO

reda.chakib@etu.unilim.fr

 N. Mérillou

Université de Limoges
XLIM / ASALI

123 Av. Albert Thomas
87000 Limoges, France
nicolas.merillou@unilim.fr

 P.-J. Vincent

CORUO
46 Av. des Bénédictins
87000 Limoges, France

pierre-jean.vincent@coruo.com

 S. Mérillou

Université de Limoges
XLIM / ASALI

123 Av. Albert Thomas
87000 Limoges, France
stephane.merillou@unilim.fr

ABSTRACT

Consumer-grade RGB-D cameras are widely accessible, but they suffer from a lack of accuracy when compared

to professional-grade 3D scanning solutions. In this paper, we propose a new method for calibrating an Intel

RealSense SR300 camera, adaptable to other structured light sensors. The method uses classical checkerboard

calibration and a coordinate-measuring machine (CMM) based setup with a calibrating plane. It delivers better

results than the manufacturers settings.

Keywords

Camera calibration, RGB-D camera, coordinate-measuring machine, pinhole model, intrinsic calibration.

1 INTRODUCTION

Despite being widely accessible and user-friendly, low-

cost structured light cameras suffer from a major

problem related to their accuracy. The manufacturers

generally use proprietary calibration methods with their

devices, which leads to semi-closed technologies.

Therefore, experienced end-users cannot benefit from

the full potential of their sensors. A proper calibration

may lead to a better precision when compared with the

factory default settings.

The introduction of the Microsoft Kinect was the

beginning of the era of consumer grade RGB-D

cameras. Then the Intel RealSense sensors line

introduced efficient, compact and easily embeddable

devices. We chose to work with the Intel RealSense

SR300, which covers short-range areas. This camera

contains a color sensor, an IR sensor and an IR

projector for depth measurement. The onboard imaging

chip processes the depth computation [Int16].

In use, the RealSense SR300 presents some

inaccuracies, for example when capturing a flat wall,

the point cloud is warped at the corners, see Fig. 1. The

IR sensor also suffers from distortion at the edges of the

IR frames as shown in Fig. 2.

Figure 1. Point cloud of a flat surface

captured using the SR300 with default settings.

This paper describes a new calibration method for the

Intel RealSense SR300 with a twofold achievement:

• Improving the accuracy over the

manufacturer’s calibration;

• Providing a general-purpose calibration

method that can be applied to similar devices;

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

30 ISBN 978-80-86943-40-4
https://doi.org/10.24132/CSRN.2018.2801.4

Figure 2. Distortion in the SR300 IR. The

panel with the pattern is rectangular.

Our algorithm consists in two main steps:

• A classic checkerboard calibration or 2D

calibration to correct the camera rays (IR

camera).

• A depth correction performed using a

Coordinate-Measuring Machine (CMM) for

high precision measurement.

The output is a calibration data file with the camera

parameters and a 3D grid of correction coefficients

covering the calibration domain in the view frustum of

the depth camera.

This paper is organized as follows. Section 2 gives a

brief introduction of the camera’s intrinsic parameters,

then it presents related works about RGB-D cameras

calibration. Section 3 presents our method and provides

all the details on the hardware setup. Section 4 contains

some experimental results along with a validation

approach for our method. Finally, Section 5 is a

discussion/conclusion on our work.

2 BACKGROUND AND RELATED

WORK

Camera calibration is the process of mathematically

describing how 3D spatial points project into the

camera image sensor. That is, a mathematical model of

the camera is required for calibration. We use the

pinhole camera model for the camera’s parameters

description.

2.1 Camera’s Intrinsic Parameters

The pinhole camera model describes the projection of

3D world points into the camera’s (2D) image plane.

Let us consider a point 𝑀𝑐 = [𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐]𝑇 in the camera

frame. We want to express the projection of Mc using

image coordinates which we denote 𝑃𝑐 = [𝑢𝑐 , 𝑣𝑐]𝑇

using the pinhole model.

First, we begin by normalizing the point Mn:

𝑀𝑛 = [𝑥𝑛 , 𝑦𝑛]𝑇 = [𝑥𝑐 𝑧𝑐⁄ , 𝑦𝑐 𝑧𝑐⁄]𝑇.

In the pinhole camera model, the rays are considered to

pass linearly through the optical center, which in the

case of real cameras is not true. In fact, the use of lenses

alters the linearity of the light rays which causes non-

linear distortion on the final images.

Using the normalized point, the distortion is performed

in two steps [HKH12]:

𝑀𝑔 = [
2𝑘3𝑥𝑛𝑦𝑛 + 𝑘4(𝑟2 + 2𝑥𝑛

2)

𝑘3(𝑟2 + 2𝑦𝑛
2) + 2𝑘4𝑥𝑛𝑦𝑛

]

𝑀𝑘 = (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘5𝑟6)𝑀𝑛 + 𝑀𝑔

where 𝑟2 = 𝑥𝑛
2 + 𝑦𝑛

2 and 𝑘𝑐 = [𝑘1, … , 𝑘5] is the vector

of the distortion coefficients.

The point Pc that we are looking for is:

[
𝑢𝑐

𝑣𝑐
] = [

𝑓𝑐𝑥 0
0 𝑓𝑐𝑦

] [
𝑥𝑘

𝑦𝑘
] + [

𝑢0𝑐

𝑢0𝑐
]

The parameters {𝑓𝑐𝑥, 𝑓𝑐𝑦 , 𝑝0𝑐 , 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5} are

called the intrinsic parameters of the camera where

{𝑓𝑐𝑥 , 𝑓𝑐𝑦} are the focal lengths and 𝑝0𝑐 = [𝑢0𝑐 , 𝑣0𝑐] is

the camera principal point. Intrinsic calibration

consists in finding these parameters. To do so, we

should establish the correspondence between a set of

3D points and their projected 2D image points

[Sem16].

Zhang [Zha04a] made the following classification for

calibration techniques, based on the dimensionality of

the calibration object:

1) 3D reference object-based calibration: the typical

3D calibration object is composed of two or three

orthogonal planes [Hei00]. The geometry of the

object should be known with high precision.

2) 2D plane-based calibration: consists in using a

planar object such as a checkerboard or circular

patterns printed on a panel captured from different

point of views. Many resources are available on the

subject [Zha00], [SM99].

3) 1D line-based calibration: first proposed by

Zhang [Zha04b], it consists in observing a set of

collinear points moving around a fixed point.

4) Self-calibration: or 0D calibration as referred to

by Zhang [Zha04a] because no calibration object is

required. The method consists in calibrating the

camera form a sequence of images of a static scene,

without any prior knowledge of the camera’s motion

[HZ05].

2.2 Depth Cameras Calibration

Although built around the Kinect v1 sensor, most of the

methods that we cite are supposed to be compatible

with a wide range of low cost structured light cameras

according to their respective authors. When the

calibration object is known (shape, color, size), the

calibration method is said to be supervised. Otherwise,

the method is called unsupervised.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

31 ISBN 978-80-86943-40-4

Smisek et al. [SJP11] proposed a geometrical model for

the Kinect v1 and estimated the intrinsic parameters of

both the IR and RGB cameras as well as their relative

pose. They also estimated internal parameters of the

depth camera. They used a checkerboard as the

calibration target of both the RGB and IR cameras of

the Kinect.

Herrera et al. [HKH12] have used a high-resolution

color camera rigidly attached to the Kinect to

compensate for the Kinect lower resolution color

sensor. The calibration target is a planar board where a

checkerboard is printed or stuck. In addition to the

intrinsic parameters and the relative pose, the authors

estimated the depth camera intrinsics.

Jin et al. [JLG14] have performed an intrinsic

calibration of a Kinect unit, using a set of well-

manufactured cuboids as their calibration target. Their

objective function is a linear combination of the

distance and angle errors from the cuboid. They re-

wrote the objective function in terms of the intrinsic

parameters of the camera prior to the optimization step.

Staranowicz et al. [SBMM15] have used a video of a

spherical object moving in front the camera as input to

their method. After a robust feature-extraction process,

their algorithm infers an initial estimation of the depth,

as well as the other calibration parameters, and then it

performs a refinement estimate of the different

parameters.

3 CALIBRATION METHOD

Our technique works as follow. First, the camera’s

intrinsic parameters are computed via a classical

checkerboard approach, to correct the x and y

coordinates. Then, the sensor is mounted on a CMM in

front of the measure plane. Successive captures of the

plane are acquired while moving towards it by using the

corrected model from the first step. Then, we compute

a 3D grid of correction coefficients that we infer from

the collected data (plane’s captures).

We could have dropped the checkerboard step, and

instead rotated the plane by 45 degrees at each of its

axis, but the errors in each direction would mix up. An

alternative would be also to drop the checkerboard

calibration, and to capture a calibrating sphere at

different positions, then compute the errors, but we

would be using inaccurate captures as we rely on the

manufacturer’s calibration.

3.1 2D Calibration

As previously said, to get more accurate camera’s

intrinsic parameters (i.e. in order to remove the

distortion shown in Fig. 2) we use a classical

checkerboard calibration. We photograph a

checkerboard from different viewpoints using the

camera, and simply use OpenCV calibration module to

compute the camera’s parameters, in our case we are

interested in the intrinsic values of the IR sensor.

Practically, we use the intrinsic values to compute the

point’s coordinates. The relationship between a 3D

point (x, y, z) in space and its correspondent (u, v) in the

depth image is as follows:

𝑥 =
(𝑢 − 𝑝𝑥)𝑧

𝑓𝑥

𝑦 =
(𝑣 − 𝑝𝑦)𝑧

𝑓𝑦

Where: (fx, fy) is the focal distance and (px, py) the

optical center coordinates. The coordinate z is the depth

that the sensor returns for the depth image pixel (u, v).

Finally, we apply on x and y a similar iterative

distortion compensation scheme to the one used in

OpenCV. The correction over the X and Y axes is

equivalent to correcting the camera’s ray directions.

Now, we need to adjust the position of each acquired

point all along its corresponding camera ray.

3.2 Depth Calibration

At this step, we compute a regular 3D grid of correction

coefficients over the view frustum of the sensor (a

truncated pyramid) or a part of it. A set of captures of a

calibrating plane is used to “feed” the grid’s nodes in

terms of point correction.

The process consists in two main steps:

• Data acquisition: “Real” points spread over the

calibration domain and their correction.

• Grid definition and nodes filling: “Virtual”

points embedding the local correction information

and regularly spread over the calibration domain.

For a given sensor, these steps are performed only once

to define its proper correction grid.

3.2.1 Data Acquisition
The input data is a set of points, captured by the sensor

that we want to calibrate spread over the calibration

domain which is the subspace defined by the correction

grid. Every point should have a correction coefficient.

To this end, we used a matte white plane with a marker

printed on its center. We place our plane against the

inner panel of the CMM as shown in Fig. 3. We adjust

the sensor’s orientation so that it sits parallel to the

calibrating plane (more details about the plane and the

sensor adjustments are given in section 3.4). Successive

captures of the plane are acquired by starting from the

farthest distance in the calibrating domain and moving

the sensor towards the plane with a fix step until the

whole domain is covered.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

32 ISBN 978-80-86943-40-4

Figure 3. The calibrating plane and its setup

on the CMM.

The 2D calibration process corrected the X and Y

coordinates, that is the camera rays. Therefore, for

every acquired point (of the plane), the correction

coefficient we are looking for should slide the point

back or forth along the camera ray so that the point’s

depth matches the real depth. In other words, we are

looking for the real distance between the plane and the

sensor to compute the correction coefficient.

To compute the real distance between the plane and the

sensor, we use image processing to detect the marker

printed on the calibrating plane and we apply the

similar triangles principle using the focal distance that

we already computed with the checkerboard method.

Once the first distance computed, we use the CCM in

order to infer the next distances for the successive

calibrating plane captures.

The correction coefficient of a given point P is equal to

the real distance of the plane tD(P), which is the true

depth, divided by the depth returned from the sensor

sD(P) as shown in Fig. 4. Therefore, the correction

coefficient c(P) is:

𝑐(𝑃) = 𝑡𝐷(𝑃)/𝑠𝐷(𝑃)

3.2.2 Grid Definition and Node Filling

3.2.2.1 Grid Definition

The 3D grid is a regular truncated pyramid shaped set

of nodes over the calibration domain. Every node is a

4D vector such that the first three components are the

nodes coordinates and the fourth component is the

correction scalar corresponding to the node. The nodes

are not actually sensor’s acquired points, but rather

“virtual” points embedding the correction information

of their neighborhood.

Figure 4. Correction coefficient for a given

point P: the real depth of the calibrating plane

tD(P) divided by the z coordinate of P returned

by the sensor sD(P).

The grid shape was chosen in order to guarantee a fair

distribution of the points contributing to the correction

computation in each node, regardless of the distance

from the sensor.

We divide the Z-axis according to a fix step. We use

the same step for capturing the calibrating plane with

the couple sensor/CMM.

For the X-axis and Y-axis, we also use fixed steps. In

addition, we take into account the maximum resolution

of the depth sensor that we should not exceed.

Finally, it is important to consider the approximate

number of points that will contribute to the correction

of a node via interpolation.

3.2.2.2 Nodes Filling

The nodes positions are defined by the grid

construction. Still, we need to compute the error

correction in each node. To do so, we begin by defining

the neighborhood of a node as all the cells that it

belongs to. Using the points from the calibrating

plane’s captures, we interpolate every subset of points

belonging to a neighborhood in order to compute its

corresponding node’s correction. In fact, each node

embeds the correction information of the subspace

defined by its neighborhood.

To interpolate over the defined neighborhoods, we used

the inverse distance weighting interpolation method. It

is defined as follows:

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

33 ISBN 978-80-86943-40-4

Let P the point to be corrected (the node), {Pi, i=1..N}

the vertices of its neighborhood, d(P, Pi) the distance

between the node P and the neighbor Pi, ci the

coefficient correction of the neighbor Pi, p a smoothing

parameter and c(P) the coefficient correction that we

are looking for:

𝑐(𝑃) = {
∑ 𝜔𝑖(𝑃)𝑁

𝑖=1 𝑐𝑖 ∑ 𝜔𝑖(𝑃)𝑁
𝑖=1⁄ , 𝑖𝑓 𝑑(𝑃, 𝑃𝑖) ≠ 0 ∀𝑖

𝑐𝑖 , 𝑖𝑓 𝑑(𝑃, 𝑃𝑖) = 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖

Where:

𝜔𝑖(𝑃) = 1 𝑑(𝑃, 𝑃𝑖)𝑝⁄

The smoothing parameter p controls the influence of far

points on the interpolation. We took p = 3.

Once filled, the grid can be used to correct any point

cloud captured within the subspace defined by it.

3.3 Applying the correction

In order to qualify for correction, a captured point cloud

must belong partially or totally to the domain defined

by the correction grid. That is, any point outside the

calibration area cannot be rectified.

Let PC a point cloud captured with a calibrated sensor

and G its correction grid. For every point P in PC, we

start by finding the point’s bounding cell BC in the grid

G. Therefore, the inverse weighting interpolation can

be applied across the nodes of BC to compute the

correction for the point P. Finally, we multiply P by the

computed coefficient to get a rectified point.

To determine the bounding cell of a given point, we

define a 3D grid (a truncated pyramid) in which cells

are numbered following IJK (K direction follows each

ray from camera center over our domain). The

coordinates (i,j,k) refer to the cell with the top-left-front

vertex (from the point of view of the sensor. See Fig. 5.

Figure 5. Top view of the newly defined 3D

space, IJK (top view).

Therefore, beside the (x,y,z) coordinates of a given

point M(x,y,z), we just defined new coordinates (i,j,k)

in the IJK grid which indicates the bounding cell of the

point as follows:

1 - We start by finding K-coordinate. In fact, for a

given k, all the nodes corresponding to the “level” k

share the same depth. Thus, for every level, we can

compare the current point’s depth to the first node of

each level starting from the farthest level to the

sensor. The first level for which the first node’s

depth is less than the point’s depth defines the K

component. Thus, the bounding cell that we are

looking for lays on that level.

2 - To find the J-coordinate, we restrict our search to

the kth level obtained from the previous step. We

compute a signed angle between OMYZ and Z-axis,

where OMYZ(0,y,z) is the orthogonal projection of M

on the plane YZ. We compare this angle against the

signed angles computed between the projections on

the plane YZ of the first node of each row from the

level k, and the Z-axis.

3 - For the I-coordinate, we restrict our search to the

kth level obtained from the first step, and the jth row

obtained from the second step. We compute a signed

angle between OMXZ and Z-axis, where OMXZ(x,0,z)

is the orthogonal projection of M on the plane XZ.

We compare this angle against the signed angles

computed between the projections on the plane XZ

of each node of the jth row from the kth level, and the

Z-axis.

3.4 Hardware Setup

We secure the calibrating plane against the inner panel

of the CMM using modeling clay. In fact, it allows

adjusting the plane, so it lays orthogonal to the Y-axis

of the CMM. We attach a mechanical touch probe to

the CMM and we “draw” a rectangle near the border of

calibrating plane. The probe should touch the

calibrating plane in the entire trajectory. If the test fails

in some area of the plane, we compensate for the

displacement of the calibrating plane using modeling

clay. Fig. 6 shows our setup.

Once the calibrating plane is properly set, we detach the

mechanical touching probe from the CMM and we

attach the couple geared head/sensor instead. Then, we

track the marker on the calibrating plane, and use the

geared head to fine tune the sensor’s orientation. To this

end, we perform the detection on the IR camera stream

and we highlight the marker’s corners when they align

over the X-axis or the Y-axis of the sensor in our

software. We align the corners couple wise, for

example top-left with top-right then top-left with

bottom-left. That is, we perform the alignment one

direction at a time (fig. 7).

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

34 ISBN 978-80-86943-40-4

Figure 6. Top: the calibrating plane laying on

the “inner panel” of the CMM. Bottom: the

mechanical probe used to check the

orthogonality of the plane with CMM Y-axis.

Figure 7. A real successful alignment; we used

the green circles to highlight the aligned corners.

When the four corners of the marker align, meaning the

sensor is parallel to the calibrating plane, we use the

CMM joystick to move the sensor over the X-Y axes of

the CMM so that the center of the marker matches the

optical center of the sensor in the IR image. We recall

that the optical center was computed during the

checkerboard calibration. Therefore, we can apply the

similar triangles principle to compute the ground truth

distance.

In order to enhance the marker’s detection, we turn off

sensor’s IR projector and use an external IR light

source to illuminate the plane for a continuous IR

illumination as the projector projects changing patterns.

Once the distance is measured, we spray a white matte

powder to hide the marker in order to avoid the black

color of the marker to distort theses points in the

captured point cloud.

4 RESULTS AND VALIDATION

4.1 Calibration domain

 According to the inner dimensions of the working

space of the CMM, and for the calibrating plane to be

fully covering the “frame” for each point cloud

captured, we defined our calibration domain as the

subspace of the depth view frustum located between 10

cm and 27 cm approximately from the IR camera

center. The correction grid is of 64x48x50 size.

4.2 Checkerboard Calibration

We performed a checkerboard calibration on the IR

sensor giving the results on table 1. We took 48 pictures

of a checkerboard using a 640x480 resolution. The

checkerboard has 10x8 square tiles of 3 cm edges.

Fig. 8 shows a picture of the checkerboard before and

after the correction via the computed distortion values.

See Table I for the numerical results.

Parameter Our values Intel SDK’s

extracted values

Focal distances

(pixels)

(473.448,

473.073)

(474.263,

474.263)

Principal point

(pixels)

(308.148,

242.341)

(304.816,

245.449)

Radial

distortion

(-0.117456,

-0.0642003,

0.0390934)

(-0.120845,

-0.0660312,

0.0516015)

Tangential

Distortion

(-0.00148510,

0.000892128)

(-0.00265185,

-0.00182552)

Average re-

projection

error

0.64 4.79

Table 1. The checkerboard calibration values vs

sdk’s

To compare the intrinsic parameters that we obtain

against those of Intel’s SDK, we use the re-projection

error. Meaning, we re-project back feature points using

the SDK’s camera matrix and compare against the

checkerboard reference positions, then we repeat the

process using our camera matrix. In the end, we

compute the average errors. See Table I for all the

numerical values. Our computed parameters give a

lower re-projection error than Intel’s parameters.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

35 ISBN 978-80-86943-40-4

Fig. 8. On the top, a checkerboard picture without

correction. On the bottom, the same picture after

correcting the distortion. Straight red lines shows

the distortion effect.

4.3 Depth Calibration

Before introducing our validation approach, we refer

the reader to the in-depth RealSense SR300 assessment

from a metrological point of view by Carfagni et al.

[CFG+17]. Authors give an overview of the RealSense

SR300 sensor capabilities and limits as a 3D scanning

device.

Fig. 9. The calibration sphere used in our

validation process: diameter 50.80 mm (2 inches).

Keeping the same hardware setup that we used for

depth calibration, we replace the plane by a calibration

sphere with a precisely known diameter Fig. 9. The

goal is to capture the sphere at different positions of the

calibration domain, then, estimate all the sphere centers

using a best-fit approach to form a trajectory with the

centers as nodes. For each capture or trajectory node,

we acquire two point-clouds, one using the SDK’s

calibration values and the other using our calibrating

values (checkerboard inferred intrinsic parameters). To

the set of clouds captured using our values, we

additionally apply depth correction.

We compute two errors per trajectory, a global error

and a local error.

4.3.1 Global Error

For this estimator, no reference sphere is chosen, hence

the term global. We denote the global error E.

We compute the distance of each sphere center to the

next sphere center, in the order of their captures as no

specific order is required. We will refer to the first set

of distances as point cloud distances and we will denote

it DPC. Equivalently, we compute the distances between

the successive CMM positions of the captures that we

will call CMM distances and we will denote DCMM. We

define the global error as the following:

𝐸 = ∑ |𝑑𝑃𝐶 − 𝑑𝐶𝑀𝑀|

𝑑𝑃𝐶 ∈ 𝐷𝑝𝑐

𝑑𝐶𝑀𝑀 ∈ 𝐷𝐶𝑀𝑀

/(𝑛𝑢𝑚_𝑠𝑝ℎ𝑒𝑟𝑒𝑠 − 1)

Where: dCMM is the correspondent of dPC in DCMM.

4.3.2 Local Error

A local error can be computed at each sphere center that

we captured. For a sphere S, we compute the local error

e(S) by taking the distances to all the other sphere

centers and comparing them against the respective

CMM inferred distances in a similar way of the global

error. The local error at the sphere’s center is:

𝑒(𝑆) = ∑ |𝑑𝑃𝐶 − 𝑑𝐶𝑀𝑀|

𝑑𝑃𝐶 ∈ 𝐷𝑝𝑐(𝑆)

𝑑𝐶𝑀𝑀 ∈ 𝐷𝐶𝑀𝑀(𝑆)

/(𝑛_𝑠𝑝ℎ𝑒𝑟𝑒𝑠 − 1)

 Where DPC(S) is the set of distances computed from

the point clouds and DCMM(S) is the set of distances

computed from the respective CMM positions. dCMM is

the correspondent of dPC in DCMM(S).

4.3.3 Results
We captured the calibrating sphere on twenty-seven

different positions as shown in Fig. 10.

We recorded sets of three calibrations using our method

under the same conditions. The plots in fig. 11 depict

the global and local errors that we obtained. Although

there are some positions where the RealSense SDK

calibration performed better than our calibration, our

average global error is lower in all the experiments, see

Table II for the average global error of each

experiment. Concerning local error, we can see that our

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

36 ISBN 978-80-86943-40-4

calibration is much better than the SDK’s in all the

experiments.

Fig. 10. The calibrating sphere captures over the

calibration domain. The blue line corresponds to

the Z-axis of the sensor.

Fig. 11. Shows a point cloud before and after the

calibration. We chose a flat surface point cloud in order

to see the actual difference. In fact, it is near the corners

of a flat surface covering the whole “frame” that the

distortion is mostly visible.

Fig. 11. Compared global error and local error

plots SDK versus our method. We averaged over 3

experiments.

Our calibration

average error

(mm)

SDK average

error (mm)

1st experiment 0.18 0.76

2nd experiment 0.27 0.76

3rd experiment 0.32 0.76

Table 2. The global error evaluation

Fig. 12 Left: front and top view of a point cloud

(flat surface) before correction. Right, the same

plane after correction using our method.

4.3.4 Notes on the method’s precision

The accuracy of our method essentially depends on two

factors:

• The average re-projection error of the

checkerboard calibration (see Table I). In our test,

the error is 0.64 pixels.

• The precision of the ground-truth distance

computed through image processing.

We will try to evaluate the second factor that is the

accuracy of the ground-truth distance. It heavily relies

on the average re-projection error as the corrected and

undistorted IR frames are used in the image-processing

step.

Using the similar triangles principle, the ground truth

distance 𝑑 is computed as follows:

𝑑 =
𝐿 𝑓

𝑙

Where, 𝐿 is the marker half-width (in millimeters), 𝑙 is
the marker half-width detected in the IR frame (in

pixels) and 𝑓 is the computed focal distance (in pixels)

from the checkerboard calibration.

Now, suppose that we make a mistake of 𝑛 pixels in our

detection, and that the computed distance is 𝑑′. Then,

the error corresponding to this detection is

approximatively:

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

37 ISBN 978-80-86943-40-4

𝐸(𝑛) ≈ d − d′ =
𝐿𝑓

𝑙
−

𝐿𝑓

𝑙 + 𝑛

Thus,

𝐸(𝑛) ≈
𝑛𝐿𝑓

𝑙(𝑙 + 𝑛)

The first thing to notice is that the bigger the value 𝑙,
the smaller the error. To increase 𝑙, the IR camera

should be set to its maximum resolution, that is

640x480 for the RealSense SR300, and the sensor

should be very close to the camera in such a way that

the marker cover most of the frame while still entirely

enclosed in for detection sake.

To get an idea about the precision we achieved in our

setup, we could get as close for a value of 225 pixels

for 𝑙.

Knowing that 𝐿 = 79.5 𝑚𝑚 and 𝑓 = 473.448 𝑝𝑖𝑥𝑒𝑙,

the error is:

𝐸(0.64 𝑝𝑖𝑥𝑒𝑙𝑠) ≈ 0.47 𝑚𝑚

Thus, we have approximatively a half millimeter

precision in our ground truth distance.

5 CONCLUSION

In this paper, we have proposed a supervised intrinsic

calibration method for the Intel RealSense SR300 that

relies on the use of a CMM for robust ground truth. It

has proven to give superior accuracy over the

manufacturer’s default calibration, as shown in the

“Results and Validation” Section. In addition, we can

apply it to other structured-light sensors, as we do not

use any special or exclusive calibration parameter to the

Intel RealSense SR300 sensor.

On the limitations side, when computing the X and Y

coordinates, the method involves the use of a non-

corrected yet depth coordinate (see equations page 3).

Still, our approach performs better than the default

manufacturer calibration, but as a future improvement,

we will estimate the gap and if needed perform iterative

calibration steps. On another side, we plan to make our

method fully automated.

6 REFERENCES

[Int16]https://software.intel.com/sites/default/files/ma

naged/0c/ec/realsense-sr300-product-datasheet-

rev-1-0.pdf

[HZ05] Hartley, R., & Zisserman, A. (2005). Multiple

view geometry in computer vision. Robotica, 23(2),

271-271.

[MVGV09] Moons, T., Van Gool, L., & Vergauwen,

M. (2009). 3D reconstruction from multiple images,

Part 1: Principles. Now Publishers Inc.

[HKH12] Herrera, D., Kannala, J., & Heikkilä, J.

(2012). Joint depth and color camera calibration

with distortion correction. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 34(10),

2058-2064.

[Sem16] Semeniuta, O. (2016). Analysis of Camera

Calibration with Respect to Measurement

Accuracy. Procedia CIRP, 41, 765-770.

[Zha04a] Z. Zhang, "Camera Calibration", Chapter 2,

pages 4-43, in G. Medioni and S.B. Kang, eds.,

Emerging Topics in Computer Vision, Prentice Hall

Professional Technical Reference, 2004.

[Hei00] Heikkila, J. (2000). Geometric camera

calibration using circular control points. IEEE

Transactions on pattern analysis and machine

intelligence, 22(10), 1066-1077.

[Zha00] Zhang, Z. (2000). A flexible new technique for

camera calibration. IEEE Transactions on pattern

analysis and machine intelligence, 22(11), 1330-

1334.

[SM99] Sturm, P. F., & Maybank, S. J. (1999). On

plane-based camera calibration: A general

algorithm, singularities, applications. In Computer

Vision and Pattern Recognition, 1999. IEEE

Computer Society Conference on. (Vol. 1). IEEE.

[Zha04b] Zhang, Z. (2004). Camera calibration with

one-dimensional objects. IEEE transactions on

pattern analysis and machine intelligence, 26(7),

892-899.

[SJP11] J. Smisek, M. Jancosek, T. Pajdla, 3D with

Kinect, in: IEEE Workshop on Consumer Depth

Cameras for Computer Vision, 2011.

[JLG14] Jin, B., Lei, H., & Geng, W. (2014,

September). Accurate intrinsic calibration of depth

camera with cuboids. In European Conference on

Computer Vision (pp. 788-803). Springer

International Publishing.

[SBMM15] Staranowicz, A. N., Brown, G. R.,

Morbidi, F., & Mariottini, G. L. (2015). Practical

and accurate calibration of RGB-D cameras using

spheres. Computer Vision and Image

Understanding, 137, 102-114.

[CFG+17] Carfagni, M., Furferi, R., Governi, L., Servi,

M., Uccheddu, F., & Volpe, Y. (2017). On the

performance of the Intel SR300 depth camera:

metrological and critical characterization. IEEE

Sensors Journal, 17(14), 4508-4519.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

38 ISBN 978-80-86943-40-4

Assessing Objective Image Quality Metrics for Bidirectional
Texture Functions

Banafsheh Azari
CogVis/MMC,

Faculty of Media,
Bauhaus-University Weimar

Bauhausstrasse 11
99423 Weimar, Germany

banafsheh.azari@uni-
weimar.de

Sven Bertel
Usability,

Flensburg University of
Applied Sciences,

Kanzleistrasse 91-93,
24943 Flensburg, Germany

sven.bertel@hs-flensburg.de

Charles A. Wüthrich
CogVis/MMC,

Faculty of Media,
Bauhaus-University Weimar

Bauhausstrasse 11
99423 Weimar, Germany
charles.wuethrich@uni-

weimar.de

ABSTRACT
Bidirectional Texture Functions (BTFs) are view- and illumination-dependent textures used in rendering for ac-
curate simulation of the complex reflectance behavior of fabrics. One major issue in BTF rendering is the large
number and size of images which requires lots of storage. "Visually lossless" compression offers the potential to
use higher compression levels without noticeable artifacts, but requires a rate-control strategy that adapts to image
content and loss visibility.
In this contribution, we investigate the applicability of objective image quality metrics to predict levels of percep-
tion degradation for compressed BTF textures. We apply traditional error-sensitivity and structural similarity based
approaches to predict levels of perceptibility for compressed BTF textures to achieve visually lossless compres-
sion. To confirm the validity of the present study, the results of an experimental study on how decreasing the BTF
texture resolution influences the perceived quality of the rendered images with the results of the applied image
quality metrics are compared.
In order to compare two representatives from each group were selected. The Visible Differences Predictor (VDP)
and Visual Discrimination Model (VDM) are typical examples of an image quality metric based on error sensi-
tivity, whereas the Structural SIMilarity index (SSIM) and Complex Wavelet Domain Structural Similarity Index
(CWSSIM) are specific examples of a structural similarity quality measure.

Keywords
Perceptual experiment, Realistic rendering, Visual quality metric.

1 INTRODUCTION
To have a photo realistic display of fabrics, a real illu-
mination and view dependent surface texture represen-
tation, called the Bidirectional Texture Function (BTF),
was introduced in [1].

SBTF =
∫

p∈P
(θi,φi,xp,yp,θo,φo) δ p, (1)

BTF is a six-dimensional function representing the ap-
pearance of a material sample surface for variable illu-
mination (θi,φi) and view (θo,φo) directions, where θ

and φ are elevation and azimuthal angles, respectively,
and (x,y) is the planar position over a material surface.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

The three-dimensional textured models rendered
through BTF rendering method are subject to various
types of distortion during acquisition, synthesis, com-
pression and processing. An appropriate image quality
assessment scheme is a useful tool for evaluating image
processing algorithms, specially algorithms designed to
leave the image visually unchanged (e.g. compression
algorithms) [2].

While the quality assessing task is simple for human ob-
servers, it actually involves very complex psychophys-
ical mechanisms. Due to the high complexity of the
human visual system (HVS), understanding it with cur-
rent psychophysical knowledge is nearly impossible.

Currently, the only reliable way is to compare the over-
all visual similarity of two textures by independent ob-
servers in a psychophysical experiment [3–6]. How-
ever, this method is expensive, and it is usually too slow
to be useful in real-world applications. As an alterna-
tive solution, BTF data modeling quality can be verified
using objective image quality metrics (IQMs).

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

39 ISBN 978-80-86943-40-4
https://doi.org/10.24132/CSRN.2018.2801.5

This paper makes an attempt to validate these models
with regard to predicting the visible quality differences
in images rendered by compressed and non compressed
BTFs.

For comparison of the traditional error-sensitivity and
structural similarity based approaches, two represen-
tatives from each group were selected: The Visible
Differences Predictor (VDP; [7]), Visual Discrimina-
tion Model (VDM; [8]), the Structural SIMilarity index
(SSIM; [9]) and Complex Wavelet Domain Structural
Similarity Index (CWSSIM; [10]).

The metrics were implemented and the results obtained
from the predictions of the models were compared with
each other and with the outcomes of a subjective quality
measure experiment, which involved quality compari-
son tasks with pairs of textured objects of varying BTF
quality levels [11].

In the next section, we will introduce the fundamentals
of objective image quality assessment and review rele-
vant full-reference objective quality metrics. Next some
instances of the predictions of the models are presented
and their performance is characterized accordingly. Af-
ter discussion on the models, the detection results of
metrics are compared with each other and with the out-
comes of the user study, which is then followed by a
conclusion and an outlook.

2 OBJECTIVE IMAGE QUALITY
METRICS

The goal of Objective Quality Metrics is to design
mathematical models that are able to predict the qual-
ity of an image accurately and automatically. An ideal
method should be able to mimic the quality predictions
of an average human observer.

Pixel-Based Metrics such as Root Mean Square (RMS)
error or Peak Signal to Noise Ratios (PSNR) fail to as-
sess the perceived degree of realism since they neglect
important properties of the human visual system and
�poorly predict the differences between the images.

The philosophy used in constructing an objective image
quality metrics is one of the major criterion employed
for their classification. While traditional perceptual ap-
proaches to image quality assessment (bottom-up) are
directly connected with the characteristics of HVS and
try to simulate all the relevant components and psy-
chophysical features as basic building blocks, and then
combine them together, the ultimate goal of the struc-
tural similarity based approaches (top-down) is to make
hypotheses about the overall functionality of the entire
HVS and treat it as a black box, where only its input-
output relationship is of concern. This section gives a
overview of the general philosophy of both metrics and
introduces the most popular and widely used metrics in
each category.

2.1 Error Sensitivity Based Image Qual-
ity Measurement

A great variety of objective image quality assessment
methods follow an error sensitivity based paradigm that
attempts to analyze and quantify the error signal in a
way simulating the characteristics of human visual error
perception. In this part we will outline the perceptually
driven image quality metrics that are used in this study
that we will describe in the following, namely, VDP and
VDM.

2.1.1 Visible Differences Predictor
The Visible Differences Predictor (VDP; [7]) is one of
the well-known image distortion metrics, which con-
sists of three main components: calibration of the input
images, a HVS model and a method for displaying the
visible differences.

The algorithm receives a pair of images (original and
compressed images), and parameters for viewing condi-
tions as input. After the calibration of the input images,
in the next stage the HVS is modeled i.e. the lower-
order processing of the visual system, such as the op-
tics, retina, lateral geniculate nucleus, and striate cor-
tex. The HVS model uses processes to limit the visual
sensitivity.

Firstly, the original pixel intensities are compressed by
the amplitude non-linearity based on the local lumi-
nance adaptation. Afterwards, the contrast sensitivity
function (CSF) is processed to model the variations as
a function of spatial frequency and so as to take into ac-
count the global state of luminance adaptation, orienta-
tion, image size and eccentricity from the fovea region.
The sensitivity S as a function of ρ radial spatial fre-
quency in c/deg is modeled by the following equation
([7]):

S(ρ,θ , l, i2,d,e) = (2)

P ·min[S1(
ρ

ra · re · rθ

, l, i2),S1(ρ, l, i2)],

where θ is the orientation in degrees, l is the light adap-
tation level in cm/m2, i2 is the image size in visual de-
grees, d is lens accommodation due to distance in me-
ter, and e is eccentricity in degrees. The parameters ra,
re and rθ model the changes in resolution due to the ac-
commodation level, eccentricity and orientation and P
is the absolute peak sensitivity of the CSF.

The resulting images are decomposed into the spa-
tial frequency and orientation channels using the cor-
tex transform introduced by [12]. Cortex transform is
a multi-resolution pyramid that simulates the spatial-
frequency and orientation tuning of simple cells in the
primary visual cortex. For every channel and every
pixel, the global contrast and elevation of the detec-
tion threshold based on masking is calculated. This

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

40 ISBN 978-80-86943-40-4

detecting threshold is then used to normalize the con-
trast differences between target and mask images. The
normalized differences are input into the psychometric
function which estimates the probability of detection of
differences for a given channel. This estimated prob-
ability value is summed across all channels for every
pixel, and visualization of visible differences between
the target and mask images is performed.

While this metric is designed for low dynamic range
(LDR) images, [13] proposed an high dynamic range
(HDR) extension of VDP, that can handle the full lu-
minance range visible to the human eye. The modi-
fications improve the prediction of perceivable differ-
ences in the full visible range of luminance and under
the adaptation conditions corresponding to real scene
observation.

2.1.2 Visual Discrimination Model

Another frequently used image discrimination measur-
ing method is the Sarnoff Visual Discrimination Model
(VDM; [8]). The Visual Discrimination Model acts in
the spatial domain by firstly using an approximation of
the point spread function of eye’s optics, according to
which the input data are convoluted. Next, the signals
are re-sampled to be able to reproduce the sampling of
photo-receptor in the retina. To break down the images
into seven different resolutions, VDM uses a Laplacian
pyramid [14]. At this stage each resolution must be one-
half of the immediate higher image. Band-limited con-
trast computations are then performed.

In the next step, the selectivity of orientations in four
different orientations is applied. To do this through
steerable filters of Freeman and Adelson [15], a group
of orientation filters were implemented. CSF was
modelled through normalization of the output of every
frequency-selective channel by the base-sensitivity
for that channel. To implement masking, a nonlinear
sigmoid is used. This is performed after convolving
the errors at each level with disk-shaped kernels.
Eventually, JND (Just Noticeable Differences) map or
a distance measure is calculated as the Lp-norm of the
responses of the masks. In the visual field of an ob-
server, the eccentricity of images is an important factor.
VDM is one of the few models that appropriately takes
this into account. For color video, VDM was modified
to the Sarnoff JND metric [8],

J =
1

ln2

∫ 0

Vmax

√
M(V)

Mt(V)

dV
V

, (3)

where Vmax is the maximum spatial frequency dis-
played, M(V) is the modulation transfer function of
display and Mt(V) is the threshold modulation transfer
function of the human visual system.

2.2 Structural Distortion Based Image
Quality Measurement

The fundamental principle of the structural approach
is that the human visual system is highly adapted to
extract structural information (the structure of objects)
from the visual scene, and therefore a measurement
of structural similarity (or distortion) should provide a
good approximation of perceptual image quality.

In this section, we will mainly focus on two very re-
cent and exceptionally successful general-purpose im-
age quality assessment approaches, the Spatial Domain
Structural Similarity Index (SSIM; [9]) approach and
the Complex Wavelet Domain Structural Similarity In-
dex (CWSSIM; [10]) approach. These approaches are
based on high-level top-down hypotheses regarding the
overall functionality of HVS (see [16]).

2.2.1 Spatial Domain Structural Similarity Index

Under the assumption that human visual perception
is not built for detecting absolute, exact intensities,
instead it is adapted to help us navigate the three-
dimensional space we live in and, consequently, is
highly adapted for extracting structural information
from a scene, [9] introduced the Structural SIMilarity
Index (SSIM).

In particular the SSIM index is a framework for qual-
ity assessment based on the degradation of structural
information and is mostly sensitive to distortions that
break down natural spatial correlation of an image such
as blur, blocking, ringing, and noise.

The SSIM separates the task of measurement into three
functions: Luminance l(x,y), contrast c(x,y), and struc-
ture s(x,y). Given two images (or image patches) of x
and y for comparison, the three similarity functions are
then combined to yield the general form of the SSIM
index structural similarity:

SSIM(x,y) = l(x.y)α · c(x.y)β · s(x.y)γ , (4)

where α ,β ,γ are positive constants used to weight each
comparison function.

SSIM is a window-based algorithm that uses a square
window, moving pixel-by-pixel over the image to mea-
sure loss of correlation, luminance distortion and con-
trast distortion locally [9]. To evaluate the overall image
quality, a mean SSIM (MSSIM) index is calculated as
follows:

MSSIM(X ,Y) =
1
M

M

∑
i=1

SSIM(xi,yi), (5)

where M is the number of samples in the quality map,
xi and yi are the image contents at the i-th local window,
and X, Y are the input images.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

41 ISBN 978-80-86943-40-4

The structural similarity metric yields a result in a range
of 0.0 to 1.0, where zero corresponds to a loss of all
structural similarities and one corresponds to being an
exact copy of the original image. Images with lighting-
related distortions alone yield a high SSIM value while
other distortions result in low similarities, correspond-
ing well with the intuitive perception of quality.

2.2.2 Complex Wavelet Domain SSIM

A major drawback of the spatial domain SSIM algo-
rithm is that it is highly sensitive to translation, scal-
ing and rotation of images while perceptual metrics can
successfully account for contrast and luminance mask-
ing, they are quite sensitive to spatial shifts, intensity
shifts, contrast changes, and scale changes.

[10] suggested to implement a structural similarity
metric in the complex wavelet domain and make it
insensitive to these "non-structured" image distortions
that are typically caused by the movement of image ac-
quisition devices, rather than the changes in the struc-
ture of objects in the visual scene [10]. In addition, if an
application requires an image quality metric that is un-
responsive to spatial translation, this extension of SSIM
can be adopted.

Given complex wavelet coefficients cx and cy that corre-
spond to compared image patches x and y, the complex
wavelet structural similarity (CWSSIM) is yielded by:

CWSSIM(cx,cy) =
2 | ∑N

i=1 cx,i,c∗y,i |+K

∑
N
i=1 | cx,i |2 + | cy,i |2 +K

, (6)

where c∗ denotes the complex conjugate of c and K is a
small positive constant.

The proposed algorithm shows some interesting con-
nections with several computational models that have
been successfully used to account for a variety of bi-
ological vision behaviors such as those pointed out by
[17–19]. However, the algorithm does not provide any
information on correspondences between the pixels of
the two compared images and the method works only
when the level of translation, scaling, and rotation is
small (compared to the wavelet filter size).

3 EXPERIMENT
The goal of the experiment is to investigate the valida-
tion of error sensitivity and structural distortion based
image quality metrics to predict the visible differences
between compressed and non compressed texture reso-
lutions. To achieve this, we analyze and compare the
results of these models against each other and with the
outcomes of the user study such as, performance of sub-
jects (i.e., the subjects’ ability to judge image quality
differences) and the gaze data (locations and frequen-
cies of fixations).

In the experimental study three datasets have been
used. The first one was corduroy, available in the
BTF database of the University Bonn1, which we will
refer to as Cord-256, whereby its texture pictures are
256x256 pixels. We generated two additional datasets
by downscaling the Cord-256 set through bilinear
interpolation to respective resolutions of 128x128
pixels (Cord-128) and 64x64 pixels (Cord-64). For
each of the three texture data sets, a three dimensional
textured model of a sofa was rendered through the
standard BTF rendering method at a screen resolution
of 1920x1080 pixels.

The sofa model was oriented for presentation to the
viewer so as to present textured parts across a large
range of picture depth. We chose a sofa to have an
object with a structured surface and composition (e.g.,
individual buttons, cushions, etc.). This is important
in order to ensure that a large set of fitting BTF pic-
tures will be selected as basis for the object’s texture,
with widely varying illumination and viewing angles
(see Figure 1).

Pairs of images were displayed on a full screen in na-
tive resolution mode. Each pair consist of a sequentially
presented rendering with the use of two of the three tex-
ture resolutions (256x265, 128x128 and 64x64). After
the presentation of each pair, subjects were asked to
make a decision about the comparative image quality
within the pair: was the first or second image of bet-
ter visual quality? Or were the two images of the same
visual quality? A SMI RED250 remote eye tracking
system was used in binocularmode with 250 Hz fixa-
tion detection, in order to record subjects’ fixation be-
havior. A total number of 20 subjects, 12 males and 8
females, participated in the experiment, and they were
not informed about the purpose of the experiment prior
to conducting it.

The same sofa object model in the experimental study
stimuli as well as one additional spherical object, which
contains various angles and depth combinations, were
utilized for making performance and detection results
comparable with the outcomes of the experimental
study. For the texture, two cases were considered in-
cluding the Cord already known from the experimental
study and Pulli, which is also available in the BTF
database of the University Bonn.

Both objects are rendered in three levels of resolutions
namely: 256x256, 128x128 and 64x64 pixels, which
are referred to as Cord-256 / Pulli-256, Cord-128 /
Pulli-128 and Cord-64 / Pulli-64, respectively.

The images were presented on a 24-inch monitor with
a resolution of 1920x1080 pixels at a distance of 70
cm from the viewer. The screen measured 22.35x15.80

1 http://btf.cs.uni-bonn.de/.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

42 ISBN 978-80-86943-40-4

VDP VDM SSIM CWSSIM
Fixation location Fixation location Fixation location Fixation location

Cord-256 _ Cord- 64 -0.808 -0.1772 -0.498 -0.643
Cord-128 _ Cord- 64 -0.753 -0.1728 -0.320 -0.582
Cord-256 _ Cord-128 -0.015 -0.473 -0.155 -0.0617

Table 1: Correlations between IQMs results >75% of fixation location independently of presentation order. (p >
0.0001)

VDP-Depth VDM-Depth SSIM-Depth CWSSIM-Depth Fixation-Depth
of the pixel of the pixel of the pixel of the pixel of the pixel

Cord-256 _ Cord- 64 -0,1636 -0,6961 -0,0173 -0,2872 -0.2705
Cord-128 _ Cord- 64 -0,1124 -0,6929 -0,0092 -0,4498 -0.2305
Cord-256 _ Cord-128 -0,0061 -0,6413 -0,0055 -0,5105 -0.2405

Table 2: Correlations between IQMs results, number of fixation and depth of the pixel independently of presenta-
tion order. (p > 0.0001)

#equal #correct V DM SSIM CWSSIM
Cord-256 _ Cord- 64 49 382 0.93624 0.963 0.822
Cord-128 _ Cord- 64 44 383 0.89378 0.971 0.838
Cord-256 _ Cord-128 423 63 0.39004 0.994 0.949

Table 3: Frequencies of correct answers, incorrect equal-quality answers (accumulated over all 20 subjects; sum
of answers per pair: 480); and dprime value from VDM, SSIM and CWSSIM

inches and subtended approximately 33 degrees of vi-
sual angle. Due to the texture pattern, the minimal tex-
ture detail (i.e., for the parts of the sofa at the great-
est depth in the image) had a cycle of 4 pixels, which
means a subtended angle for a viewer of about 6 cycles
per minute of a degree of arc. We employed the same
condition for all the metrics.

3.1 Detection Results and Performances
In this section both, the output detection images of
the image quality metrics, and the outcome of the user
study are compared. The implemented metrics received
pairs of images as input. The output detection images
of the metrics were then compared and discussed.

For all the models, the following approach was em-
ployed [20]: the numerical value of the difference be-
tween images is the percentage of pixels for which the
probability of difference detection is greater than 0.75.
It is assumed, that the difference can be perceived for
a given pixel when the probability value is greater than
0.75 (75%), which is the standard threshold value for
discrimination tasks, [21]. This output value therefore
ranges between 0 and 100 , where 0 means the best re-
sult (no pixel with probability of difference detection
greater than 0.75), while 100 means that all the pixel
differences are above the difference detection threshold
(the worst result).

However, since we also need a single overall quality
measure, we use a mean index in the case of SSIM
and CWSSIM models and JND for VDM. The index
values fall within a range of 0 to 1, where 1 in JND

value of VDM means the worst quality, and 0 denotes
an indistinguishable difference between the input im-
ages, which is in case of SSIM and CWSSIM mean in-
dex conversely.

Figures [1,2–4] present the output images of the met-
rics. To have a better comparison between metrics the
results of two famous pixel-based metrics, the MSE and
PSNR, for each image pair are also presented.

Next gaze fixation distributions of subjects across the
sofa images were analyzed in order to assess whether
differences exist for different image pair comparisons.
Fixation counts for cells in an overlaid 16x16 grid are
shown in Figure 1 (upper part) for three conditions.

Correlations between VDP/ VDM results (above 75%)
and respective fixation location patterns can be ob-
served in Table 1. We observed strong correlations be-
tween locations of predicted visually perceivable differ-
ences by VDP and observed fixation patterns only for
Cord-256 and Cord-64 as well as Cord-128 and Cord-
64, while significant, albeit a very poor correlation ex-
ists for VDM and fixation patterns for all image pairs.
The results show a poor correlation for SSIM and CWS-
SIM.

In the next step, the responses of objective quality met-
rics to pixel depth for each image pair and the percent-
age of fixation in each depth were controlled.

Table 2 illustrates the correlation between IQMs re-
sponses and the depth of pixels as well as the corre-
lation between fixation position and the depth of these
pixels. The results show a poor correlation between

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

43 ISBN 978-80-86943-40-4

Figure 1: The output images of four IQMs by sofa with different ’Cord’ texture resolution pairs. The color-
scales on the right side indicate probability values of metrics in each pixel. The last row presents Just Noticeable
Difference (JND) values of VDM, SSIM and CWSSIM. Additionally the MSE and PSNR, for each image pairs
are also presented.

VDP, VDM and fixation and a significant correlation
between SSIM, CWSSIM and pixel depth.
As shown by Figures 7, all curves react similarly to
depth from quality perspective, but VDM is less sen-
sitive than other metrics.
The first two columns of Table 3 illustrate the number
of correct and equal answers yielded for each of image
pairs, and the remaining columns present the result of
VDM, SSIM and CWSSIM. The results show a signif-
icant correlation between subjects’ ability to perceive
differences between images and IQMs predictions.
In order to control the correlation between the saliency
map (SM), Regions of Interest (ROI) and the responses

of IQMs, we followed [22] and computed a ROI map
from the subjects’ fixations.

The ROI map is a probability distribution of the gaze di-
rection, therefore its integral is normalized to 1. Figure
5 (left-down) shows the ROI map obtained from indi-
vidual fixations.

To define the saliency map the algorithm proposed by
[23] was employed, with a new definition of the visual
features (intensity, colour and orientation), which is the
most popular in computer science, and has led to more
convincing oculometric validations (see Figure 5 (right-
up)). The Saliency Toolbox for Matlab, which is avail-
able online, was utilized in the present study [24].

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

44 ISBN 978-80-86943-40-4

Figure 2: The output images of four IQMs by sofa with
different ’Pulli’ texture resolution.

Total execution time (s)
Sofa Sphere

VDP 7.256 4.654
VDM 0.340 0.152
SSIM 0.282 0.134
CWSSIM 0.929 0.432

Table 4: Total execution time in second. All the metrics
run on the same machine.

Compared to the saliency maps shown in Figure 5, the
ROI map is smoother. The saliency map and ROI are
significantly correlated when r = 0.560 and p < 0.001.

Table 5 illustrates the correlation between IQM re-
sponses and ROI as well as the correlation between
IQM responses and saliency map. As observed, the
value between each IQM for ROI and saliency map
is highly correlated when r = 0.893 and p < 0.001.
The correlation coefficients between the adopted exper-
imental subjective data set (ROI) and IQM responses
exhibit that all models, except for VDM model, exhibit
a good level of consistency with the subjective data.

The computation time is also another significant factor
for selecting the image quality assessment. The com-
putational complexity is measured in terms of time re-
quired by each of the metrics to assess the quality of a
pair of images. In this step, each metric was computed
for all pairs of images and then the average time was

Figure 3: The output images of four IQMs by sphere
with different ’Cord’ texture resolution.

determined. The metrics were run on a computer with
a 3.20 GHz Intel Xeon Six-Core processor.

In order to allow for a fair comparison, the publicly
available Matlab implementation of each metric was
used. The average performance of all the methods is
provided in Table 4. SSIM, CWSSIM and VDM have
a complexity of O(N). This is due to the fact that these
metrics work in the spatial domain avoiding the expen-
sive FFT and FFT−1 transformations. This transfor-
mation can take up to 40% of the total execution time
in VDP, and thus increase the complexity of this model
to O(NlogN) with an upper bound of O(N2) (see [25]).

To control the reaction of the metrics to different geo-
metrical distortions the object in the scene (sofa) was
shifted without any other quality distortions and then
used as a distorted image. Additionally we applied the
metrics to blurred, salt & pepper and Gaussian noise
contaminated images. Figure 6 illustrates the output de-
tection images of the metrics.

4 DISCUSSION
The differences between the metrics are caused by plac-
ing pressure on different aspects of human visual per-
ception. Nevertheless the results show that all metrics
can be an appropriate replacement for subjective quality
measurement matrices.

The vision models have different ways to visualize the
detected probability. While VDP uses a psychometric

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

45 ISBN 978-80-86943-40-4

VDP VDM SSIM CWSSIM
ROI SM ROI SM ROI SM ROI SM

Cord-256 _ Cord- 64 0.71 0.79 0.21 0.19 0.75 0.61 0.72 0.84
Cord-128 _ Cord- 64 0.63 0.57 0.23 0.20 0.73 0.58 0.83 0.85
Cord-256 _ Cord- 128 0.013 0.011 0.19 0.21 0.15 0.12 0.35 0.47

Table 5: Correlation between objective image quality metrics; VDP, VDM, SSIM and CWSSIM with ROI and
saliency map (p > 0.0001).

Figure 4: The output images of four IQMs by sphere
with different ’Pulli’ texture resolution.

function, which describes the relationship between the
threshold contrasts and detection probabilities, to con-
vert the normalized threshold contrasts into detection
probabilities, all other models make direct use of JND
map and neglect the psychometric function.

An advantage of the output map is that the nature of the
difference can be observed and this observation can be
used for further rendering optimizations.

The results show a significant correlation between sub-
jects’ ability to perceive existing differences between
the images and predictions of VDM/CWSSIM mod-
els. Based on this investigation, it seems that VDM and
CWSSIM can well predict the differences between two
images.

The responses of objective quality metrics to pixel
depth for each image pair shows that all react similarly
to depth but VDM is less sensitive than other metrics.
Due to the textured pattern, the texture details for the
parts of the sofa from the depth of 0.3 to 0.8 have

Figure 5: Depth map (left-up) ROI map (left-down),
saliency map (right-up) and fixation map (right-down)

a 4 to 5 cycles per degree. HVS is most sensitive
to intermediate ranges of spatial frequencies (around
4-6 cycles/degree), and is less sensitive to spatial
frequencies both lower and higher than this. This
explains why the metrics and the number of fixations
have a higher rank in these depths.

The results of this experimental study showed that two
groups of image comparisons exist. The first group con-
sists of comparisons between Cord-256 and Cord-128.
For this group, subjects are largely unable to perceive
existing differences between the images. All models
predict few visually perceivable differences for image
pairs in this group.

The second group consists of comparisons between
Cord-256 and Cord-64 as well as between Cord-128
and Cord-64. For this group, subjects are largely able
to see the differences between the pairs. The models
predict a larger number of differences which are also
detectable with a higher probability.

Where strong correlations were observed between lo-
cations of predicted visually perceivable differences by
VDP/CWSSIM and observed fixation patterns, a signif-
icant correlation was also observed between subjects’
ability to perceive existing differences (the number of
correct answers) and the results of VDM and CWSSIM
tests (JND).

As observed, all models, expect VDM, are able to
detect regions of interest in images. This feature is
promising for future research on ROI issues. The com-
putation of VDM, SSIM and CWSSIM does not require

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

46 ISBN 978-80-86943-40-4

time consuming Fourier transformations (as VDP does)
and they are certainly faster than that of VDP model.

Second, it was observed that all metrics are highly sen-
sitive to small translations, scaling and rotations, which
lead to high predicted perceptability values in metrics,
even though no quality differences are available in com-
pared images. In the frequency domain, small trans-
lations, rotations and scalings lead to consistent phase
changes. Due to the fact that VDP works in frequency
domains, it reacts with greater sensitivity to geometri-
cal distortions than other metrics. According to [16],
this problem can be overcome by analyzing images in
complex wavelet domains through Structural Similarity
based metrics, but the results were not promising in the
case of the presented study.

Another common problem shared by the models is the
disregard for color perception by HVS as well as incor-
poration of just the contrast sensitivity and luminance
adaptation. A promising direction in the future would
be an analysis of full-colored images.

Additionally, there is a lack of no-reference perceptual
picture quality metrics, since both of the metrics are
relative (full-reference). It is supposed that more work
could be done in the field of no-reference image quality
assessment.

Figure 6: Objective quality metrics responses to shifted,
salt & pepper and Gaussian noise contaminated and
blurred images.

5 CONCLUSION
In the contribution, we investigated the suitability and
integrity of certain image quality metrics, the traditional
error-sensitivity and structural based to predict levels of
perceptibility for compressed BTF textures. To confirm
the validity of obtained results, they were compared

Pixel Depth
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[%
] o

f p
ix

el
 w

ith
 IQ

M
 V

al
ue

 >
=

75

0

5

10

15

20
Cord-256 - Cord-64

[%
] o

f p
ix

el
 w

ith
 F

ix
at

io
n

>
=

1

0

5

10

15

20

Fixation
VDP
VDM
SSIM
CWSSIM

Pixel Depth
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[%
] o

f p
ix

el
 w

ith
 IQ

M
 V

al
ue

 >
=

75

0

5

10

15

20
Cord-128 - Cord-64

[%
] o

f p
ix

el
 w

ith
 F

ix
at

io
n

>
=

1

0

5

10

15

20

Fixation
VDP
VDM
SSIM
CWSSIM

Pixel Depth
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[%
] o

f p
ix

el
 w

ith
 IQ

M
 V

al
ue

 >
=

75

0

5

10

15

20
Cord-256 - Cord-128

[%
] o

f p
ix

el
 w

ith
 F

ix
at

io
n

>
=

1

0

5

10

15

20

Fixation
VDP
VDM
SSIM
CWSSIM

Figure 7: The percentage of fixation in each depth and
the responses of VDP and VDM to the pixel depth be-
tween Cord-256 _ Cord- 64 (top), Cord-128 _ Cord- 64
(middle) and Cord-256 _ Cord-128 (bottom).

with those obtained by an experimental study. In our
validation experiment, it was observed that VDM and
CWSSIM can in general better predict the differences
between two images. On the other hand, VDP is bet-
ter able to detect the location of visible differences in
images.

Structural based IQMs are able to successfully predict
image quality in close agreement with traditional error-
sensitivity based IQMs.

The computation time is also another significant fac-
tor in image quality assessment, specially so when real-
time image resolution changes need to be introduced as
per the assessed quality of the rendered scene. In this
scenario, all models, except VDP, prove to be proper
options. This is because VDM, SSIM and CWSSIM
operate in the spatial domain and unlike VDP, do not
use the Fourier transform. However, in situations where
one needs to improve the image quality of only parts of
an object, only VDP can provide enough information
on those areas requiring a higher resolution.

As observed, all models, expect VDM, are able to
detect regions of interest in images. This feature is
promising for future research on ROI issues.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

47 ISBN 978-80-86943-40-4

6 REFERENCES

[1] K. J. Dana, B. Van Ginneken, S. K. Nayar, and
J. J. Koenderink, “Reflectance and texture of real-
world surfaces,” ACM Transactions on Graphics
(TOG), vol. 18, no. 1, pp. 1–34, 1999.

[2] J. Filip and M. Haindl, “Bidirectional texture
function modeling: A state of the art survey,”
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 31, no. 11, pp. 1921–1940,
2009.

[3] J. Meseth, G. Müller, R. Klein, F. Röder, and
M. Arnold, “Verification of rendering quality
from measured btfs,” in Proceedings of the 3rd
symposium on Applied perception in graphics and
visualization, pp. 127–134, ACM, 2006.

[4] G. Müller, J. Meseth, and R. Klein, “Compression
and real-time rendering of measured btfs using lo-
cal pca,” in Vision, Modeling, and Visualization:
Proceedings, p. 271, AKA, 2003.

[5] J. Filip, M. J. Chantler, and M. Haindl, “On op-
timal resampling of view and illumination de-
pendent textures,” in Proceedings of the 5th sym-
posium on Applied perception in graphics and
visualization, pp. 131–134, ACM, 2008.

[6] J. Filip, M. J. Chantler, P. R. Green, and
M. Haindl, “A psychophysically validated met-
ric for bidirectional texture data reduction.,” ACM
Trans. Graph., vol. 27, no. 5, p. 138, 2008.

[7] S. Daly, “Digital images and human vision,”
ch. The Visible Differences Predictor: An Al-
gorithm for the Assessment of Image Fidelity,
pp. 179–206, 1993.

[8] J. Lubin, “A visual discrimination model for imag-
ing system design and evaluation,” Vision mod-
els for target detection and recognition, vol. 2,
pp. 245–357, 1995.

[9] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Si-
moncelli, “Image quality assessment: from error
visibility to structural similarity,” IEEE transac-
tions on image processing, vol. 13, no. 4, pp. 600–
612, 2004.

[10] Z. Wang and E. P. Simoncelli, “Translation in-
sensitive image similarity in complex wavelet
domain,” in Acoustics, Speech, and Signal Pro-
cessing, 2005. Proceedings.(ICASSP’05). IEEE
International Conference on, vol. 2, pp. ii–573,
IEEE, 2005.

[11] B. Azari, S. Bertel, and C. A. Wuethrich, “A
perception-based threshold for bidirectional tex-
ture functions,” Proceedings of the 38th Annual
Meeting of the Cognitive Science Society, CogSci
2016, Philadelphia , USA, Agust 10-13, 2016,
2016.

[12] A. B. Watson, “The cortex transform: rapid com-
putation of simulated neural images,” Computer
vision, graphics, and image processing, vol. 39,
no. 3, pp. 311–327, 1987.

[13] R. Mantiuk, S. J. Daly, K. Myszkowski, and H.-P.
Seidel, “Predicting visible differences in high dy-
namic range images: model and its calibration,”
in Electronic Imaging 2005, pp. 204–214, Inter-
national Society for Optics and Photonics, 2005.

[14] P. Burt and E. Adelson, “The laplacian pyramid
as a compact image code,” IEEE Transactions
on communications, vol. 31, no. 4, pp. 532–540,
1983.

[15] W. T. Freeman and E. H. Adelson, “The design
and use of steerable filters,” IEEE Transactions
on Pattern analysis and machine intelligence,
vol. 13, no. 9, pp. 891–906, 1991.

[16] Z. Wang and A. C. Bovik, “Modern image quality
assessment,” Synthesis Lectures on Image, Video,
and Multimedia Processing, vol. 2, no. 1, pp. 1–
156, 2006.

[17] J. A. Solomon and D. G. Pelli, “The visual filter
mediating letter identification,” Nature, vol. 369,
no. 6479, pp. 395–397, 1994.

[18] I. Ohzawa, G. C. DeAngelis, R. D. Freeman,
et al., “Stereoscopic depth discrimination in the
visual cortex: neurons ideally suited as disparity
detectors,” Science, vol. 249, no. 4972, pp. 1037–
1041, 1990.

[19] O. Schwartz and E. P. Simoncelli, “Natural sig-
nal statistics and sensory gain control,” Nature
neuroscience, vol. 4, no. 8, p. 819, 2001.

[20] K. Myszkowski, “The visible differences predic-
tor: Applications to global illumination prob-
lems.,” Rendering Techniques, vol. 98, pp. 223–
236, 1998.

[21] H. Wilson, “Psychophysical models of spatial
vision and hyperacuity,” Vision and Visual Dis-
function, vol. 10, pp. 179–206, 1991.

[22] O. Le Meur, P. Le Callet, D. Barba, and
D. Thoreau, “A coherent computational approach
to model bottom-up visual attention,” IEEE trans-
actions on pattern analysis and machine intelli-
gence, vol. 28, no. 5, pp. 802–817, 2006.

[23] L. Itti and C. Koch, “Computational modelling
of visual attention,” Nature reviews neuroscience,
vol. 2, no. 3, pp. 194–203, 2001.

[24] D. Walther, “Planes of the head.” http://www.
saliencytoolbox.net/, 2006.

[25] B. Li, G. W. Meyer, and R. V. Klassen, “Com-
parison of two image quality models,” in Human
Vision and Electronic Imaging III, San Jose, CA,
USA, January 24, 1998, pp. 98–109, 1998.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

48 ISBN 978-80-86943-40-4

Barycentric Combinations Based Subdivision Shaders

Lucas Morlet, Marc Neveu, Sandrine Lanquetin, and Christian Gentil
Laboratoire Electronique, Informatique et Image

UFR Sciences et Techniques, allée Alain Savary, 21000 Dijon, France
{lucas.morlet, marc.neveu, sandrine.lanquetin, christian.gentil}@u-bourgogne.fr

ABSTRACT
We present a new representation of uniform subdivision surfaces based on Iterated Functions Systems formalism.
Main advantages of this new representation are the formalization of topological subdivision, multiscale representa-
tion of limit surface, separation of iterative space where the attractor is computed once for all and modeling space
where the attractor is projected many times. An important consequence of this approach is that all uniform subdi-
vision schemes are handled in the same way whatever there are primal or dual, approximating or interpolating.

Subdivision surfaces are no longer viewed as a set of rules but as a list of barycentric combinations to apply
on neighborhoods of the coarse mesh. These combinations are representative subsets of the attractor which is
deduced from a Controlled Iterated Functions System automaton. From this new point of view we present in this
paper a straightforward implementation to directly compute a tessellation of the subdivision surface from a control
mesh. This implementation takes full advantage of Graphics Processing Units high capability of computation and
Tessellation Stage of OpenGL/GLSL rendering pipeline to generate on the fly a tessellation of the limit surface
with a chosen Level of Details.

Keywords
Shape Modeling, Subdivision Surfaces, Iterated Functions Systems, Tessellation Shaders

1 INTRODUCTION
With their overpowered capability of computation,
Graphics Processing Units (GPUs) became an unavoid-
able tool for parallel computing in the last ten years.
Whenever a big amount of independent computations
are required, an implementation GPU-based must be
prioritized over Central Processing Unit (CPU) com-
putations. During the graphics pipeline, several usual
steps are highly parallelizable : the vertices positioning
and the fragment colorization and blending.

Unfortunately, GPU dedicated memory is limited and
transfer times may be longer than computation itself so
transmitted information should be as compact as pos-
sible. A usual solution is to compress the information
before sending them to the GPU and decompress it on
the fly during the rendering. This kind of solution re-
duces occupied memory space and information transfer
time but computations are added onto the GPU ; a com-
promise must be found to maximize the efficiency.

The main scope of this article is on the fly generation
of geometry for subdivision surfaces. From a given
control mesh, a tessellation of the limit surface is di-
rectly computed for a chosen Level of Details (LoD)
by applying precomputed barycentric combinations on
each patch of the coarse mesh. Patches are defined as
in [Sta98] and combinations are deduced from a Con-
trolled Iterated Function System (CIFS) automaton. In-
deed barycentric combinations are a representative sub-

set of the attractor of the CIFS which is unique in iter-
ative space but can be projected multiple times in mod-
eling space.

Usually, subdivision surfaces are computed with a set of
subdivision rules, which are different for each scheme,
applied iteratively on a control mesh. Thanks to this
new representation, steps which are blended in these
rules are separated : first the iterative process represents
by the generation of barycentric combinations with a
CIFS automaton, then the projection in modeling space
which is the application of combinations on a patch.
This separation enables to implement all uniform sub-
division schemes in the same way only by changing the
input list of precomputed barycentric combinations and
the connectivity of input patches.

Another interest of our method is that a vertex position
does not depend on the level of tessellation: whatever
the chosen LoD, the vertex always belongs to the limit
surface. This property is very useful in the CAGD con-
text where usual tools work on limit surfaces rather than
meshes. Moreover, isogeometric analysis using sub-
division surfaces is more and more often integrated in
CAD systems [PXXZ16] [BHU10]. This analysis relies
on a compatible representation for geometric modeling
and finite element simulation. A general representation
of meshes and surfaces, with different LODs is highly
recommended to handle isogeometric problems. Our
model is quite well adapted for this purpose.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

49 ISBN 978-80-86943-40-4
https://doi.org/10.24132/CSRN.2018.2801.6

2 RELATED WORKS
Many subdivision schemes have been proposed in the
last forty years as [CC78], [DS78], or [Loo87] for in-
stance. From the beginning, authors have paid great
attention to the limit surface. Reif [Rei95] proposed a
general method to study convergence to the limit sur-
face. Halstead [HKD93] and Stam [Sta98] gave meth-
ods to directly compute points on the limit surface. To
cover the field of NURBS, extensions have been pro-
posed to cope for non uniform cubic schemes, first by
Sederberg [SZSS98], extended by Müller [MRF06] and
to high degree surfaces by Cashman [CADS09]. All
these schemes present a careful study of the conver-
gence to the limit surface.

Other consideration has been paid on Iterative Func-
tion Systems (IFS). In [ZT96], the distinction between
the iteration space, where attractors are defined, and
the modeling space, where shapes are modeled, en-
ables the generalization of IFS modeling and the def-
inition of attractor projection. Free form fractals and
usual free forms curves and surfaces (Bézier, uniform
B-splines) can also be defined as an IFS. A link be-
tween IFS and subdivision surfaces has been proven
very early by Warren and Weimer [WW01] and Shae-
fer et al [SLG05]. To our knowledge, the interest of the
separation between iteration and modeling spaces has
not been fully explored for subdivision surfaces.

Indeed, whatever the scheme, different aspects of sub-
division surfaces are usually blended in subdivision
rules: the connectivity of the control mesh, the subdivi-
sion in the parameterization space and the correspond-
ing subdivision in the geometrical space. On the other
hand, by using the IFS formalism, we can clearly sep-
arate these three aspects and enlarge the possibilities of
subdivision surfaces processing. An example can be
find in [PGSL14], where Podkorytov builds junctions
between two subdivision surfaces, one defined from a
primal scheme and the other from a dual scheme.

In video game context, real-time rendering of subdivi-
sion surface is an important challenge. Some works
[NLMD12][BFK+16] devoted to GPU implementation
focus on tessellation. Those works are mainly based
on Stam’s method [Sta98] with different adaptations.
But, they essentially deal with Catmull-Clark subdivi-
sion without general formalism. To our knowledge, no
proof of a possible extension of their methods to other
schemes has been produced.

3 OVERVIEW
To begin, the Iterated Function Systems formalism is
briefly presented in Section 4. In particular addresses
notion and its influence on equivalence between para-
metric and barycentric spaces are highlighted as well as
projection from barycentric to modeling space.

Then our method is explained step-by-step for the well-
known Catmull-Clark subdivision scheme [CC78] in
Section 5. First the mesh is cut in several patches. Then
barycentric combinations are computed for both regu-
lar and irregular cases. To finish, corresponding combi-
nations are applied on each patch to compute the limit
surface of the control mesh.

In Section 6, application of our method on several
subdivision schemes is presented. Doo-Sabin [DS78],
Loop [Loo87], and Simplest [PR97] schemes are han-
dled in the same way as Catmull-Clark scheme with dif-
ferences only on patches construction and coefficients
of barycentric combinations.

A simple and efficient implementation of our method
is precisely described in Section 7. It relies on the
OpenGL/GLSL rendering pipeline, in particular on the
Tessellation Stage which is the core of our implementa-
tion. Thanks to our formalism, all subdivision schemes
are handled in the same graphics pipeline. This im-
plementation also manages mesh animation, trimming,
and dynamic LoD without distinction between subdivi-
sion schemes. Some results are presented and compar-
isons with previous method are discussed.

In Section 8, a problem which appears along with
patches size expansion is presented. High-degree or
approximating schemes as Butterfly [DLG90] and
Quads-interpolating [Kob96] are used as examples to
highlight the combinatorial issue.

4 ITERATED FUNCTION SYSTEMS
Iterated Function Systems (IFS) [Hut81][Bar14] are a
very efficient tool to represent self-similar objects like
fractals, Bézier surfaces, B-spline surfaces... A self-
similar object F is defined as an object composed of
smaller copies of itself, which can be formalized by :

F =
N−1⋃
i=0

Ti(F). Each transformation Ti ∈ T maps F on

a subpart of itself. The set of transformations T =
{T0 . . .TN−1} is called an IFS. The fixed point F is
called the attractor associated to the IFS. According to
some conditions, each transformation Ti is contractive
for instance, F can be approximated from any initial

compact set K0 : Kn =
N−1⋃
i=0

Ti(Kn−1).

Every point of the attractor corresponds to an infinite
sequence of transformations. The sequence of transfor-
mation indexes is called the address of the point. The
simplest way to obtain points belonging to the attrac-
tor is to compute the fixed point Pi of each contractive
transformation Ti of the IFS. In the case of affine or
linear contractive transformations this can be done by
linear algebra. The address of Pi is iω (an infinite se-
quence of i). This means that any point of the attractor,
whose address is σ iω (where σ is a finite word) can be
computed in a finite time.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

50 ISBN 978-80-86943-40-4

The address function φ , mapping an address to its corre-
sponding point, defines a continuous parameterization
of the attractor. Given two IFS I and I ′ with the same
joining conditions (see [ZT96]), φ ′ ◦φ−1 defines a mor-
phism between the two attractors. The first attractor
may be used as a parametric space. For a quadrangu-
lar surface (like a Bézier Patch), the first attractor could
be the unit square defined with an appropriate IFS. The
computation of φ−1 can be achieved with the escape
algorithm [Bar14].

By choosing the right parameterizations, in a way their
addresses have the form σ iω , uniformly spaced and
cover the whole parametric space, a tessellation of the
attractor can be computed. The maximal authorized
length of σ is the level of tessellation of the attractor.
The higher it is, the closer from the real attractor the
tessellation is. Examples of second tessellation level for
two IFS in the parametric space are given in Figure 1.

P3

P0 P1

P2T3T3 T3T2 T2T3 T2T2

T2T1T2T0T3T1T3T0

T0T3 T0T2

T0T0 T0T1 T1T0

T1T3 T1T2

T1T1

T1P0

T2P1T3P0

T2P3

P0 P1

P2

T1P0

T3T2

T2T2

T2T1

T0T2

T0T0 T0T1 T1T0
T1T3
T1T2

T1T1

T2P1

T0T3

T3T3
T3T0

T2T3

T2T0 T3T1
T1P0

Figure 1: Two examples of IFS in parametric space :
on the left, the unit square is cut in four squares ; on the
right the "unit" equilateral triangle is cut in four equi-
lateral triangles. Both spaces have four transformations
labeled T0 . . .T3 and associated fixed points P0 . . .P3

Usually the iterative space, where a tessellation of the
attractor is computed, is the modeling space, where the
attractor is displayed. In our case, the iterative space is
a barycentric space, where every point is a barycentric
combination so that the sum of its coordinates is 1. The
computed tessellation is then projected in the model-
ing space by applying the generated combination onto
a control mesh. The whole process is summarized in
Figure 2.

0 1

t

(1;0;0) (0;1;0)

(0;0;1)

(a;b;c)

1

V0

V

V2

(aV +bV +cV)0 1 2

Parametric
space

Barycentric
space

Modeling
space

N(t) V.N(t)

Figure 2: Morphisms between parametric, barycentric,
and modeling spaces for a uniform quadratic B-Spline.
N is the function that associate a point of the parametric
space to the point of barycentric space of same address.
V is the projection of a barycentric combination onto a
control polygon
The subdivision process consisting in application of the
same set of transformations at each level of iteration

can be controlled using an automaton describing which
transformations can be apply at each state. Such IFS
are called Controlled Iterated function Systems (CIFS).
The notion of address remains the same and correspond
to the set of words accepted by the automaton.

Since subdivision surfaces are iterative models, an IFS
and so a CIFS automaton can be created to generate
them. For a given list of parametric points, addresses
are generated. These addresses are words which are
read by the CIFS automaton to compute a set of combi-
nations in a barycentric space. Resulting combinations
are then projected onto a control mesh : a tessellation
of the attractor, which is the limit surface in the subdi-
vision surface case, is computed.

5 CATMULL-CLARK
For sake of clarity, we first present our method with the
well-known Catmull-Clark scheme.

5.1 Patch construction
A mesh patch (denoted hereafter patch for short) is a set
of vertices necessary and sufficient to compute a piece
of the limit surface. No confusion must be made be-
tween these two terms. According to the subdivision
scheme, patches have different connectivities. In the
Catmull-Clark case, patches are composed of a central
face surrounded by a ring of faces [Sta98]. Some ex-
amples can be found in Figure 3.

3

0 1

2

12 11 10 9

8

7

65415

14

13

0

1

23

12 11 10 9

8

7

654
171615

14

13

Figure 3: Two examples of Catmull-Clark patches and
their indexation. In blue a regular patch (with all the
central vertices of valence 4) and in red an irregular
patch (with a central vertex of valence 5). Notice that
the irregular central vertex, which is unique, is always
indexed as 0.
Every central vertex of a regular patch has a regular va-
lency. On the other hand, a patch containing at least
one extraordinary vertex (with irregular valency) in its
central face is considered as irregular. In this paper, the
number of extraordinary vertices per face is limited to
a single one to avoid a combinatorial explosion of the
number of cases.

When a patch is subdivided, with respect to usual sub-
division method, several subpatches are obtained. Each
subpatch is also a patch and so can be subdivided at its
turn. Every subdivision matrix associates a patch to one
of its subpatches. It can be easily deduced from subdi-
vision rules. The set of these transformations is a CIFS

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

51 ISBN 978-80-86943-40-4

whose the attractor is the piece of the limit surface de-
fined by the patch. This CIFS depends on the valency of
the irregular vertex, if it exists. For the sake of simplic-
ity, regular patches are treated first, then generalized to
irregular patches.

5.2 Regular patches
In the regular case, a Catmull-Clark subdivision surface
is identical to a bicubic uniform B-Spline surface. So
regular patches are grids of 4 by 4 vertices. Subpatches
are four in number and each one is also a regular patch.
The regular patch subdivision is presented in Figure 4.

15 4 5 6

7

813

14

12 11 10 9

3

0 1

2

15 4 65

7

8
9

101112

13

14
0 1

23

Figure 4: The regular patch subdivision of Catmull-
Clark scheme into four regular subpatches. Notice that
vertices are indexed in the same way in subpatches as
in their parent patch.
Four square subdivision matrices Mi∈[0;3] can be cre-
ated to transform the parent patch in each regular sub-
patches. The M0 subdivision matrix is given as an ex-
ample in Figure 5.

M0 =

V E F E E F F E F
B B C C C C
A A A A
B C C B C C
B C B C C C
A A A A
C B C B C C
E V E F F E F E F
C B B C C C
F E V E F E F E F
C C B B C C
E F E V F E F E F
C B C C B C
A A A A
B C C C B C
A A A A

A = 1

4 B = 3
8 C = 1

16

V = 9
16 E = 3

32 F = 1
64

Figure 5: The M0 subdivision matrix for the Catmull-
Clark subdivision scheme. Null coefficients are omit-
ted.
These subdivision matrices are stochastic and have a
unique eigenvalue equals to 1 and all others in inter-
val [0;1[. This implies that the associated transforma-
tion is contractive and so apply an infinity of times the
transformation on a patch will end in a unique fixed-
point. As proven in [HKD93], this fixed-point can be
computed directly by using the left eigenvector associ-
ated to the eigenvalue 1 as a barycentric combination Bi
which associates a patch to a point of the limit surface.

From every given a point (u;v) = TaTb . . .TyPz in the
parametric space, its address is used to compute the
corresponding barycentric combination BzMy . . .MbMa.
This combination transforms a regular patch into the
point of the limit surface of the local parameterization
(u;v). Computations of combinations can be expressed
as a CIFS automaton whose an example is given in Fig-
ure 6.

Figure 6: The CIFS automaton for the regular case of
Catmull-Clark subdivision scheme.
For a given Level of Details, several parametric points
are chosen to represent a discretization of parametric
space. These points must be uniformly spaced, cover
the whole parametric space, and correspond to a finite
address. Then each barycentric combinations associ-
ated to these points are computed. Apply all these com-
binations on the same patch create a tessellation of the
limit surface with the chosen Level of Details.

5.3 Irregular patches
A major interest of subdivision schemes is the manage-
ment of irregular connectivity. For example, bicubic
uniform B-Spline surfaces can not be computed on a
non-grid mesh. Catmull-Clark scheme, in addition to
generate bicubic uniform surfaces in regular case, per-
mits to generate C1-continue surfaces around extraor-
dinary vertices.

15

4 5 6

7

813

14

12 11 10 9

3

0
1

2

15
4 65

7

8
9

101112

13

14
0 1

23

16

17

16

17

Figure 7: An irregular patch (valence 5) subdivision of
Catmull-Clark scheme into four subpatches. Notice that
the red subpatch has the same connectivity as its parent
patch whereas the other ones become regular patches.
In presence of extraordinary vertices, patch connectiv-
ity and subdivision rules are different, so some barycen-
tric combinations should be recomputed. As showed in
Figure 7, subpatches connectivities are also different.

As long as the applied transformation is the one cen-
tered on the extraordinary vertex, the subpatch keeps
the connectivity of its parent. As soon as another trans-
formation is applied, the subpatch becomes regular.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

52 ISBN 978-80-86943-40-4

To manage irregular transformations, irregular subdivi-
sion matrices M̂i,k, which depend on the valency k of
the unique extraordinary vertex have to be introduced.
M̂i>0,k matrices are not so different from Mi>0 except
there are not square anymore. On the other hand, M̂0,k
is square but depends on the valency k of the extraordi-
nary vertex. This matrix is presented in Figure 8.

M̂0,k≥4 =

v e f e e f f e f · · · e f
B B C C C C
A A A A
B C C B C C
B C B C 0 · · · 0 C C
A A A A
C B C B C C
E V E F F E F E F
C B B C C C
F E V E F E F E F
C C B B C C
E F E V F E F E F
C B C C B C
A A A A
B B C B C C

A 0
. . . A A A

. . .
...

... C C B C C
... 0

. . . A A A
. . .

B C C C B C

A A
. . . A A

v = 4k2−7k
4k2 e = 6

4k2 f = 1
4k2

Figure 8: The M̂0,k>4 subdivision matrix for the
Catmull-Clark subdivision scheme. Black coefficients
are the fixed ones and the red depends on the valency
of the extraordinary vertex. A, B, C, V, E, and F coeffi-
cients are the same as in Figure 5.

Concerning computations of fixed points, B̂i>0,k do not
need to be computed because there are equal to BiM̂i,k.
Conversely every B̂0,k has to be computed : it is the
eigen-vector associated to the eigen-value 1 of M̂0,k.
Everything is summerized in the automaton of irregu-
lar case given in Figure 9.

M̂0

B̂0

B0

M0

M̂1

M1

B1
B2

M2

M̂2
B3M̂3

M3

Figure 9: The CIFS automaton associated to irregular
cases of Catmull-Clark subdivision scheme.

6 OTHER SUBDIVISION SCHEMES
As said before, our formalism handles any uniform sub-
division schemes. In this section, some usual schemes
are presented as CIFS automata.

6.1 Loop scheme
As for the Catmull-Clark scheme, the Loop subdivision
scheme [Loo87] creates C2-continue surfaces. Patches
are created in the same way : a central face and a ring
of faces as shown in Figure 10.

0 1

2

67

8

9

10 11 3

4

57 6

5

4

31110

9

8 2

0 1
0

1

2

67

8

9

10 3

4

57 6

5

4

310

9

8 2

0 1

Figure 10: Patches and subpatches of the Loop subdi-
vision scheme for the regular case (valence 6) and an
irregular case (valence 5). Notice that the red subpatch
is connectively-identical to the parent one and the other
three are regular.
The structure of CIFS automaton associated to the Loop
scheme is identical to the Catmull-Clark one. There are
three states which correspond to irregular patches, the
regular patch, and limit surface points and the transi-
tions are labeled exactly in the same way.
Since the subdivision rules of the two schemes are dif-
ferent, the transformation matrices associated to the
transitions are not the same in the two automata. Sub-
division of the parametric space is also different so ad-
dresses are generated differently as shown on the right
of Figure 1.

6.2 Doo-Sabin scheme
Unlike Catmull-Clark and Loop subdivision schemes,
which are primal, Doo-Sabin [DS78] is a dual subdi-
vision scheme which means that faces are not subdi-
vided anymore but vertices. So corresponding patches
are composed of a central vertex and a ring of adja-
cent faces. The valency of all the vertices is 4 ; irreg-
ular patches contain a unique non-quadrilateral face as
shown in Figure 11.

0
3

456

7

8

9 1 2

0

1 2

3

456

7

8 9

Figure 11: Irregular patch (with a pentagonal face) of
the Doo-Sabin subdivision scheme and its four sub-
patches. Once more, the red subpatch is connectively
identical to the parent one and the three others become
regular.
At this point it is important to say that Doo-Sabin and
Catmull-Clark subdivision schemes are identical from
a topological subdivision point of view : it is a quad-
rangular subdivision with the same kind of connection
between subdivided faces. As for the Loop scheme, the
CIFS associated to Catmull-Clark and Doo-Sabin sub-
division schemes have the same structure (states and
transition labels). The only difference to highlight is
the difference of transformation matrices.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

53 ISBN 978-80-86943-40-4

6.3 Simplest scheme
Introduced by Peters and Reif [PR97] the Simplest sub-
division scheme, also called Midedge scheme, inserts a
vertex in the middle of each edge and creates new edges
between new vertices. Then old vertices and edges are
deleted.

As shown in Figure 12, applying the Simplest subdivi-
sion scheme twice is connectively-identical with Doo-
Sabin but with different coefficients. So the CIFS au-
tomaton associated to the Simplest scheme is the same
as Doo-Sabin one but coefficients of transformation
matrices are different.

Figure 12: Subpatches of the Simplest subdivision
scheme after one (red) and two (green) subdivisions.
After two subdivisions, the result is connectively-
identical with the Doo-Sabin scheme (see Figure 11).

7 IMPLEMENTATION

Geometry

Fragment

TES

TPG

TCS

Vertex Animation

Abstract patch
construction

Barycentric
computation

Trimming

Illumination

Abstract patch
parameterization

Input
Vertices

Modified
Vertices

Patches

Indexed
Patches

Barycentric
Combinations

...

...

...

...

...

x
y
z

x
y
z

x
y
z

x
y
z

x'
y'
z'

x'
y'
z'

x'
y'
z'

x'
y'
z'

16 12

0.75 0.25 0.66 0

{ {

Render

Buffers Shaders

Figure 13: Implementation overview.

In this section, we suggest an implementation of our
method in OpenGL/GLSL. Because our implementa-
tion needs Shader Storage Buffer Objects, the min-
imum version required for both core version is 4.3
or 4.0 with ARB_shader_storage_buffer_object exten-
sion. An overview is given in Figure 13.

7.1 First steps
For a given maximal Level of Details and a minimal and
maximal valence of extraordinary vertices authorized,
all combinations are computed for a chosen subdivision

scheme. Then meshes are cut in several patches respect-
ing inherent rules of the scheme. These two steps are
done once for all and results are written in buffers.

7.2 Buffers
Buffers require to have an array of arbitrary length so
they must be Shader Storage Buffer Objects (SSBOs).
Referring to OpenGL specifications, SSBOs reads and
writes use incoherent memory accesses and guarantee a
minimum possibility of memory allocation of 128MB.
Most GPU-implementations enable allocating a size up
to the limit of GPU memory.

Vertices buffers

There are two vertices buffers : the Input Vertices Buffer
which contains all vertices of the input control mesh
and the Modified Vertices Buffer which contains the ver-
tices after modification by the Vertex Shader.

Patches buffers

The GLSL Tessellation Shaders does not handle dy-
namic patch size. To bypass this constraint, two patches
buffers are created. The first one, called Patches Buffer,
contains all mesh patches written in a row, each patch
containing index of its vertices. The second one, the In-
dexed Patches Buffer, indexes patches of Patches Buffer
by a pointer to the begin and the length of each mesh
patch.

Barycentric Combinations Buffer

For a given valence of extraordinary vertex, each
barycentric combination contains as many coefficients
as vertices in patch. The number of combinations of
each patch size depends on the chosen maximal Level
of Details. The Barycentric Combinations Buffer is a
row containing all coefficients of all combinations of
each kind of patch. By knowing the maximal Level
of Details, the valence of extraordinary vertex, and
the parameterization (u;v) of the current limit surface
point, the index of associated barycentric combinations
can be computed.

7.3 Programmable rendering pipeline
Once all buffers are filled, the usual OpenGL/GLSL
rendering pipeline with the succession of shaders is per-
formed.

Vertex Shader

This shader treats one by one all the vertices of Input
Vertices Buffer and write them into theModified Vertices
Buffer. Vertices are ordered in the same way in both

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

54 ISBN 978-80-86943-40-4

buffers. Vertex Shader can be simply a pass-through
shader by copying the Input Vertices Buffer into the
Modified Vertices Buffer but can also be the step where
mesh is animated. Animation is discussed in Subsec-
tion 7.4.

Tessellation Control Shader (TCS)

This shader configures the Tessellation Primitive Gen-
erator (TPG) which creates an abstract patch and trans-
fers it to Tessellation Evaluation Shader. An abstract
patch is a set of parametric points connected with trian-
gles. These triangles are chosen by the TPG in a way
to cover all the parametric space. The parametric space
can be of two types depending on the abstract patch
configuration : the unit square or the "unit" equilateral
triangle (cf Figure 1). The TCS describes how many
points of the abstract patch are on each bounding-edge
of parametric space and how many interior rings are
created but can not choose how to rely them. The more
detailed the limit surface is desired, the more important
is the number of inserted points. Level of Details can be
the same everywhere or adaptive and chosen on the fly
for each patch. More information about adaptive LoD
is given in Subsection 7.5.

Tessellation Evaluation Shader (TES)

This shader is the core of our implementation. From
one side, it reconstitutes the current mesh patch by
reading Indexed Patches Buffer which points to Patches
Buffer which contains indexes of vertices in Modified
Vertices Buffer. From the other side it reads the param-
eterization of all points of the abstract patch and de-
duced a list of associated barycentric combinations. To
finish, it applies every combination on the patch to com-
pute points of limit surface and rely them as describes
by the abstract patch.

Geometry Shader

This shader takes an OpenGL primitive (a triangle in
this case) as input and emits zero or more primitives
(triangle-strip). It can be simply a shader which applies
the Model-View-Projection matrix on each received tri-
angle but can also be used to trim the limit surface. Sub-
section 7.6 is dedicated to the trimming of the limit sur-
face by parametric space restriction.

Fragment Shader

As usual, this shader is in charge of coloration and illu-
mination, with a Phong model for example. As proven
in [BGN09], normal associate to every point of thelimit
surface is the cross-product of the two half-tangents
computed for the address of the point.

7.4 Animated meshes
The main idea is instead of animating the subdivide
mesh, the coarse mesh is animated and then subdivided.
Animation time is greatly reduce but time is spent to
generate geometry. In the common case of animation
by skeleton with an average of two bones by vertex ge-
ometry generation is slightly less two times longer than
animation. Resulting surfaces are not the same in both
methods : subdivide then animate deforms the limit sur-
face whereas animate then subdivide assures the con-
servation of limit surface continuity.

7.5 Adaptive Level of Details
An efficient method to avoid the time-consuming dis-
play of very detailed distant objects is the LoDs strat-
egy : the closer the object is, the more detailed it is ;
the farther it is, the faster it is displayed. In most im-
plementations, several meshes, with different LoDs, are
generated and one of them is picked up at display time.

The limit of this approach is that the different meshes
have to be predefined. On the contrary, with subdivision
surfaces, only the coarse mesh is defined and the LoDs
gives the number of subdivision. Iteratively generating
geometry on the fly can be quite long with a multipass
render. With our method, geometry is not iteratively
generated but directly only by selecting the appropriate
set of barycentric combinations to apply on the mesh
patch.

Another advantage of our method is that an object does
not need to be uniformly subdivided (i.e. all faces are
subdivided the same number of times). Each face is
independently treated from the others, with its own tes-
sellation that can be non-uniform. To avoid cracks, a
condition has to be imposed : even faces can be subdi-
vided as wanted, edges are subdivided in the same way
on both sides.

A naive method to ensure respect of edge uniform sub-
division is to project every face of control mesh in im-
age plane. Each edge is subdivided in function of its
screen length and face is subdivided in function of its
screen area. The OpenGL’s invariance rules insures that
multiple projection of the same edge results in the same
screen length and so same subdivision for both adjacent
sides.

7.6 Trimming
Trimming is a restriction of the parametric space that
results in a restriction (holes for instance) on the limit
surface. Quality of trimming is strongly dependent on
the level of tessellation. To enhance quality, trimmed
faces have to be more tessellated. Thanks to dynamic
LoDs, untrimmed faces do not need to be as tessellated
as trimmed ones.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

55 ISBN 978-80-86943-40-4

First, tessellation is traced in parametric space. If a
point is outside the restriction it is tagged as valid other-
wise not. For every triangle of tessellation, the number
of valid vertices is counted. Each case is treated differ-
ently. All of them are presented in Figure 14.

Figure 14: Example of trimming on a parametric space
tessellated by 8 original triangles represented by their
colored bounds. New triangles are filled if they are dis-
played, empty if not. Red triangles have three valid ver-
tices so they are displayed as is. Blue triangles have an
invalid vertex which becomes a vertex on each adjacent
edge and the quadrilateral result is split into two trian-
gles. Green triangle has two invalid vertices so both are
recomputed. Black triangle is completely included in
the restriction so they are discarded.

The intersections between the triangles edges are new
point of parametric space. New points means new ad-
dresses and so new barycentric combinations. In order
to get valid trimmed boundary points, new combina-
tions have to be computed and applied on the patch.

7.7 Results and performance
In this section, several methods are compared in term of
occupied memory space and computation time for the
regular case of the Catmull-Clark subdivision scheme.
These methods are three in number :

1. LoD meshes : one mesh is defined for each LoD.
Only one is picked up and display.

2. Iterative subdivision : only patches of coarse mesh
are transfered to the GPU and geometry is generated
iteratively with respect to subdivision rules.

3. Ours : as Iterative subdivision, only patches are
transfered to the GPU but geometry is generated di-
rectly by applying barycentric combinations.

Let n the maximal LoD, Vi the number of vertices and Fi
the number of faces/patches of the mesh associated to
the LoD of i. k is the number of existing valences. Two
tables are given to compare these three methods in term
of occupied memory space (Table 1) and computation
time (Table 2).

Methods LoD It. sub. Ours
Vertices Vn V0 V0

Indexed vertices 4
n
∑

i=0
4iF0 18F0 18F0

Combinations 0 0 k ∗ (2n +1)2

Table 1: Comparisons of occupied memory space be-
tween the three methods. A face is defined by 4 point-
ers to vertices and an average patch by 16 pointers to
vertices plus 2 pointers to index the patch.

Methods LoD It. sub. Ours
Animated vertices Vn V0 V0

Subdivision 0
n−1
∑

i=0
Fi 0

Combinations 0 0 (2n +1)2F0

Table 2: Comparisons of computation time between the
three methods. Animation of a vertex costs 25 basic op-
erations (times or plus) per bones (matrix-vector prod-
uct of size 4). A subdivision corresponds to the compu-
tation of 1 face-vertex, 4 edge-vertices and 4 vertex-
vertices so 267 basics operations. Application of a
barycentric combination costs an average of 93 basics
operations (application of a 16 coefficients combination
onto a patch of three coordinates vertices).

Name Gaussian Tetris Head Body
Vertices 100 74 4276 13 652
Faces 81 72 4249 13 650

LoD = 0 0.26 0.27 0.79 1.82
LoD = 1 0.26 0.28 1.24 3.27
LoD = 2 0.29 0.32 3.41 10.2
LoD = 3 0.42 0.57 16.4 47.6
LoD = 4 1.06 1.48 62.5 ≈200
LoD = 5 2.53 3.58 167 ≈500

Table 3: Computation times (in ms) of our method for
different meshes and LoD. Tests are performed on a
Dell Precision T7600 : Intel Xeon CPU E5-2609 @
2.40 GHz x8 and a Nvidia Quadro K2000/PCIe/SSE2.

In term of occupied memory space, subdivision meth-
ods are obviously better than the LoD method because
only the coarse mesh is needed. Because barycen-
tric combinations have to be loaded in the memory,
our method required a little more space than iterative
method.
In term of computation time, our method is faster than
iterative method because application of barycentric
combination requires less computation than subdivi-
sion. On another side, our implementation is slower
than LoD methods because animation is approxima-
tively two times quicker than generation. Even if
dynamic Level of Details permits to reduce the gap
between the two methods, LoD method is still the
fastest one.
Our method has been tested on some meshes : results
are presented in Figure 15 and computation times are
compared in Table 3.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

56 ISBN 978-80-86943-40-4

Figure 15: From left to right : Catmull-Clark and Doo-Sabin schemes applied on Tetris meshes ; Loop scheme
applied on an Icosphere and Catmull-Clark scheme applied on Human Head mesh enlightened by a Blinn-Phong
shader. Red faces correspond to regular patches, green to extraordinary valence of 3, blue of 5 and magenta of 6.

8 LIMITS
Even if our formalism can handle every uniform sub-
division scheme, for certain schemes a combinatorial
issue appears because of many possibilities of irregular-
ities. In this case, the CIFS automaton still contains a
unique regular state but also several irregular states that
must be treated separately. Some examples are given in
this section.

8.1 High degree schemes
The only condition for building patches is : "at most
one extraordinary vertex inside a valid patch" (there is
no condition on the exterior ring). The higher the de-
gree of the surface is, the larger the patch is and so
more possibilities of irregularities appear as shown in
Figure 16.

Figure 16: From left to right : subdivision patch for
bicubic subdivision (Catmull-Clark), biquintic, and bi-
heptic. Red vertices are the maintained possibilities of
extraordinary vertices after reduction by symmetry and
rotation. Notice the number of red vertices increases
with the degree of surface.

A recurrence appears for odd degree regarding these
three examples : the number of possibilities of extraor-
dinary vertices for a surface of degree d is the sum of
integer from 1 to (d−1)/2.

8.2 Interpolating schemes
Interpolating schemes need larger patches than approx-
imating schemes so they suffer from the same issue
as the high-degree schemes. For example Butterfly
[DLG90] and Quads-interpolating [Kob96] schemes
need a supplementary ring with respect to Catmull-
Clark and Loop schemes in order to build a mesh patch.
These patches and their subpatches are presented in
Figure 17.

Figure 17: The parent patch and one of its subpatches
for the regular case of Quads-interpolating (left) and
Butterfly (right) subdivision schemes. Patches are cen-
tered on the filled face and the supplementary faces
(compared to corresponding approximating schemes)
are transparent.

9 CONCLUSION
In this article, subdivision surfaces are presented in the
Controlled Iterated Functions Systems formalism. In
this formalism, subdivision schemes are not viewed as
a set of rules anymore but as a list of barycentric com-
binations. From this new point of view, all the uniform
schemes, whatever they are approximating or interpo-
lating, primal or dual, are handled in the same way.
Usual tools as trimming and multi-resolution render are
also independent from the chosen scheme.

An implementation based on this formalism is also sug-
gested. This implementation generates directly and on
the fly the limit surface from a control mesh faster than
usual iterative subdivision surfaces but required a lit-
tle more memory space. Compared to a usual LoD ap-
proach, our method is slower but saves a lot of memory
space.

10 REFERENCES
[Bar14] Michael F Barnsley. Fractals everywhere.

Academic press, 2014.
[BFK+16] Wade Brainerd, Tim Foley, Manuel

Kraemer, Henry Moreton, and Matthias
Nießner. Efficient gpu rendering of subdi-
vision surfaces using adaptive quadtrees.
ACM Trans. Graph., 35(4):113:1–113:12,
July 2016.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

57 ISBN 978-80-86943-40-4

[BGN09] Hicham Bensoudane, Christian Gentil,
and Marc Neveu. Fractional half-tangent
of a curve described by Iterated Function
Systems. Journal of Applied Functional
Analysis, 4(2):311–326, April 2009.

[BHU10] Daniel Burkhart, Bernd Hamann, and
Georg Umlauf. Iso-geometric Finite El-
ement Analysis Based on Catmull-Clark
Subdivision Solids. Computer Graphics
Forum, 2010.

[CADS09] Thomas J Cashman, Ursula H Augsdörfer,
Neil A Dodgson, and Malcolm A Sabin.
Nurbs with extraordinary points: high-
degree, non-uniform, rational subdivision
schemes. In ACM Transactions on Graph-
ics (TOG), volume 28, page 46. ACM,
2009.

[CC78] Edwin Catmull and James Clark. Recur-
sively generated b-spline surfaces on arbi-
trary topological meshes. Computer-aided
design, 10(6):350–355, 1978.

[DLG90] Nira Dyn, David Levine, and John A Gre-
gory. A butterfly subdivision scheme for
surface interpolation with tension control.
ACM transactions on Graphics (TOG),
9(2):160–169, 1990.

[DS78] Daniel Doo and Malcolm Sabin. Be-
haviour of recursive division surfaces near
extraordinary points. Computer-Aided De-
sign, 10(6):356–360, 1978.

[HKD93] Mark Halstead, Michael Kass, and Tony
DeRose. Efficient, fair interpolation us-
ing catmull-clark surfaces. In Proceed-
ings of the 20th Annual Conference on
Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’93, pages 35–44,
New York, NY, USA, 1993. ACM.

[Hut81] John E Hutchinson. Fractals and self sim-
ilarity. Indiana University Mathematics
Journal, 30(5):713–747, 1981.

[Kob96] Leif Kobbelt. Interpolatory subdivision
on open quadrilateral nets with arbitrary
topology. In Computer Graphics Forum,
volume 15, pages 409–420. Wiley Online
Library, 1996.

[Loo87] Charles Loop. Smooth subdivision sur-
faces based on triangles. 1987.

[MRF06] Kerstin Müller, Lars Reusche, and Di-
eter Fellner. Extended subdivision sur-
faces: Building a bridge between nurbs
and catmull-clark surfaces. ACM Transac-
tions on Graphics (TOG), 25(2):268–292,
2006.

[NLMD12] Matthias Nießner, Charles Loop, Mark

Meyer, and Tony Derose. Feature-adaptive
gpu rendering of catmull-clark subdivision
surfaces. ACM Transactions on Graphics
(TOG), 31(1):6, 2012.

[PGSL14] Sergey Podkorytov, Christian Gentil,
Dmitry Sokolov, and Sandrine Lanquetin.
Joining Primal/Dual Subdivision Sur-
faces, pages 403–424. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

[PR97] Jörg Peters and Ulrich Reif. The simplest
subdivision scheme for smoothing poly-
hedra. ACM Transactions on Graphics
(TOG), 16(4):420–431, 1997.

[PXXZ16] Qing Pan, Guoliang Xu, Gang Xu, and
Yongjie Zhang. Isogeometric analysis
based on extended catmull-clark subdi-
vision. Computers & Mathematics with
Applications, 71(1):105 – 119, 2016.

[Rei95] U. Reif. A unified approach to subdivi-
sion algorithms near extraordinary ver-
tices. volume 12, pages 153–174, 1995.

[SLG05] S. Schaefer, D. Levin, and R. Goldman.
Subdivision schemes and attractors. In
Proceedings of the Third Eurographics
Symposium on Geometry Processing, SGP
’05, Aire-la-Ville, Switzerland, Switzer-
land, 2005. Eurographics Association.

[Sta98] Jos Stam. Exact evaluation of catmull-
clark subdivision surfaces at arbitrary pa-
rameter values. In Proceedings of the 25th
Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH
’98, pages 395–404, New York, NY, USA,
1998. ACM.

[SZSS98] Thomas W Sederberg, Jianmin Zheng,
David Sewell, and Malcolm Sabin. Non-
uniform recursive subdivision surfaces.
In Proceedings of the 25th annual con-
ference on Computer graphics and inter-
active techniques, pages 387–394. ACM,
1998.

[WW01] Joe Warren and Henrik Weimer. Subdi-
vision Methods for Geometric Design: A
Constructive Approach. Morgan Kauf-
mann Publishers Inc., San Francisco, CA,
USA, 1st edition, 2001.

[ZT96] Chems Eddine Zair and Eric Tosan. Frac-
tal modeling using free form techniques.
Computer Graphics Forum, 15(3), 1996.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

58 ISBN 978-80-86943-40-4

Fuzzy image inpainting aimed to medical images

Pavel Vlašánek
Institute for Research

and Applications of Fuzzy
Modeling

30. dubna 22
701 03 Ostrava 1, Czech

Republic
pavel.vlasanek@osu.cz

ABSTRACT
This paper focuses on a reconstruction of low color depth images using fuzzy mathematics. For demonstration
purposes, we chose medical images taken from magnetic resonance imaging (MRI) and computed tomography
(CT). The proposed technique is based on idea of diffusion where pixels surrounding damaged region are used
to determine the corrupted ones. As it is illustrated, the classical diffusion techniques are not so effective. In the
paper, we describe the reason why and propose the solution in a form of the new algorithm. The algorithm is
demonstrated and visually compared with another ones.

Keywords
image inpainting, fuzzy transform, clustering

1 INTRODUCTION

Image inpainting based on fuzzy mathematics is topic
which belongs to soft computing image processing. The
term stands for image processing tasks performed by
soft computing techniques such as neural networks or
fuzzy based approaches. The image inpainting stands
for unwanted region removal followed by its recovery.

The image inpainting was introduced by Bertalmio et
al. [1], who proposed to use partial differential equa-
tions (PDE). It consists in a propagation of the colors
inward damaged area. The technique is successful for
corruptions like scratches or thin inscriptions. In gen-
eral, small damaged regions without any big hole. The
diffusion based inpainting applied to the big hole leads
to the unnaturally blurry reconstruction because of its
inability to keep the patterns. The solution for this prob-
lem is in the patch based approach [2, 3]. For this
approach, the algorithm searches for a square patches
used latter as a replacement for the similar patches in
the damaged region. This approach keeps the potential
patterns and/or textures. From techniques using both,
we can mention [4, 5].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

As we stated above, the problem of diffusion is in blur-
ring. The reason is in isotropic nature of the common
algorithms which propagates the information to the all
directions. We propose to segment the input image
first, and apply the inpainting on the each segment sep-
arately. The algorithm is demonstrated on the low color
depth images where successfully prevents creation of
the unwanted artifacts.

Structure of this paper is as follows. Notation and his-
tory of image inpanting is given in Section 2. Section 3
contains information about fuzzy transform and fuzzy
clustering. The details of the proposed algorithm are
described in Section 4. Section 5 includes experiments
and comparison. The paper is concluded in Section 6.

2 NOTATION AND HISTORY
Notation used in the paper is as follows. Dis-
crete image I is a 2D matrix function such as I :
[0,M]Z× [0,N]Z→ [0,255]3Z , where [0,255]3Z stands for
the pixel intensities in three color channels. We denote
[0,M]Z = {0,1,2, . . . ,M}, [0,N]Z = {0,1,2, . . . ,N}
and [0,255]Z = {0,1,2, . . . ,255}. Thus, image width
is equal to M + 1 and height to N + 1. Image I is
partially known. The region Φ stands for known
(undamaged) pixels and Ω for unknown (undefined,
damaged). Their border is denoted by δΩ and
taken as unknown. We assume that Φ ∩Ω = /0 and
Φ∪Ω∪δΩ = [0,M]Z× [0,N]Z . To distinguish between
Φ and Ω, a mask S is used. The mask is a binary image
where black pixels denote unknown area Ω∪ δΩ. Let
us remark that the mask must be given by user.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

59 ISBN 978-80-86943-40-4
https://doi.org/10.24132/CSRN.2018.2801.7

The digital image inpainting is demonstrated in Fig. 1.

(a) Input image I (b) Reconstructed image O

Figure 1: Demonstration of image inpainting. The
noise was erased by proposed algorithm.

The general principle and formal description was given
by pioneers Bertalmio et al. [1] and it is as follows

Iz+1(x,y) = Iz(x,y)+∆tIz
t (x,y),∀(x,y) ∈Ω, (1)

where z is the iteration step, (x,y) stands for pixel coor-
dinates, ∆t is the rate of improvement and Iz

t (x,y) stands
for the update of image Iz(x,y). The Iz

t (x,y) step is com-
puted using a smoothness Lz(x,y) estimated by Lapla-
cian operator. The change of smoothness is propagated
from known region Φ to the border δΩ in the direction
~N(x,y). This statement is shown in Fig. 2.

Figure 2: Illustration of the Bertalmio et. al. inpainting
process. (Figure taken from [1])

Bertalmio et al. [1] proposed formula

Iz
t (x,y) = ~δLz(x,y) · ~Nz(x,y), (2)

where ~δLz(x,y) is the measure of the change in smooth-
ness Lz(x,y) and direction defined as orthogonal to im-
age gradient

~Nz(x,y) = (5Iz(x,y))⊥. (3)

Another principle was proposed by Ogden et al. [6].
The authors used Gaussian pyramid based technique.
The technique builds the pyramid using convolution
and sub-sampling followed by linear interpolation.

Elad et al. [7] recommended to separate image to the
geometry part Dg and texture part Dt where inpainting
is done separately for both. Image decomposition using
Dg and Dt matrices is as follows

I = Dgαg +Dtαt , (4)

where αg and αt stands for geometry and texture coef-
ficients. Its illustration is in Fig 3.

Figure 3: Image decomposed to the texture (bottom
left) and geometry (bottom right) parts (figure taken
from [7])

Their image representation is defined as follows

min
(αg,αt):I=Dgαg+Dt αt

‖αg‖p +‖αt‖p, (5)

where p is the coefficient of the `-norm
‖α‖p = (∑‖α(g)‖p)1/p. The model proposed by
Elad et al. [7] is as follows

min
(αg ,αt)

‖αg‖1 +‖αt‖1 +λ‖I−Dgαg−Dt αt‖2
2 + γTV (Dgαg).

TV stands for total variation, p = 1 and λ ,γ > 0. Adap-
tation for image inpainting is

min
(αg ,αt)

‖αg‖1 +‖αt‖1 +λ‖C(I−Dgαg−Dt αt)‖2
2 + γTV (Dgαg),

where C = 1 stands for the undamaged pixels and C = 0
for damaged ones. More information is in [7]. Our
novel algorithm extends the idea of the separation and
combines it with diffusion approach using fuzzy math-
ematics.
For sake of comparison, let us mention two other tech-
niques1. First of them is based on Navier-Stokes equa-
tion [8]. The authors use physics of viscous fluid mo-
tion to propagate the information inward damaged re-
gion. Second one is based on fast marching method

1 Both of them are implemented in OpenCV framework.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

60 ISBN 978-80-86943-40-4

(FMM) [9] which highlights an importance of filling
order.

3 PRELIMINARIES
First to describe is F-transform which is a technique for
changing an image representation. Second one is clus-
tering algorithm fuzzy C-Means.

3.1 F-transform
We propose a fuzzy based approach to solve image in-
painting task [10]. Let us describe fuzzy transform (F-
transform) [11] given by a fuzzy partition satisfying fol-
lowing definition. Fuzzy sets A0, . . . ,Am;m < M identi-
fied with their membership functions (basic functions)
A0, . . . ,Am : [0,M]→ [0,1], establish a fuzzy partition
of [0,M] with nodes 0 = x0 < x1 < · · ·< xm = M if the
following conditions are fulfilled:

1) Ak : [0,M]→ [0,1], Ak(xk) = 1;

2) Ak(x) = 0 if x /∈ (xk−1,xk+1), k = 0, . . . ,m;

3) Ak(x) is continuous;

4) Ak(x) strictly increases on [xk−1,xk],
k = 2, . . . ,m; and strictly decreases on [xk,xk+1], k =
1, . . . ,m−1;

5) ∑
m
k=0 Ak(x) = 1, x ∈ [0,M].

Assume that fuzzy sets A0, . . . ,Am establish a fuzzy par-
tition of [0,M]. The vector of real numbers Fm[I] =
(F0, . . . ,Fm) is the (direct) discrete F-transform of I
w.r.t. A0, . . . ,Am where the component Fk is defined by

Fk =
∑

M
x=0 Ak(x)I(x)

∑
M
x=0 Ak(x)

, k = 0, . . . ,m. (6)

Let us introduce F-transform of a 2D gray-scale im-
age I. Let A0, . . . ,Am and B0, . . . ,Bn be basic func-
tions, A0, . . . ,Am : [0,M]→ [0,1] be fuzzy partition of
[0,M] and B0, . . . ,Bn : [0,N]→ [0,1] be fuzzy partition
of [0,N]. If for all k ∈ 0, . . . ,m(∃x ∈ [0,M]) Ak(x) > 0,
and for all l ∈ 0, . . . ,n(∃y ∈ [0,N]) Bl(y) > 0 with re-
spect to Φ, we say that the set of pixels Φ is sufficiently
dense with respect to the chosen partitions.

We say that the m× n-matrix of real numbers [Fkl]
is called the (discrete) F-transform of I with re-
spect to {A0, . . . ,Am} and {B0, . . . ,Bn} if for all
k = 0, . . . ,m, l = 0, . . . ,n,

Fkl =
∑

N
y=0 ∑

M
x=0 I(x,y)Ak(x)Bl(y)

∑
N
y=0 ∑

M
x=0 Ak(x)Bl(y)

. (7)

The coefficients Fkl are called components of the F-
transform. The formula (7) is called direct step. In

order to reconstruct the original function, it is usually
followed by inverse step as follows

O(x,y) =
m

∑
k=0

n

∑
l=0

FklAk(x)Bl(y), (8)

where O is the reconstructed image. According to for-
mula (8), the computation takes particular component
Fkl and spread it to the appropriate region of O with
respect to Ak and Bl . For details see [10].

In order to omit the damaged pixel from the computa-
tion, mask S is used as follows

Fkl =
∑

N
y=0 ∑

M
x=0 I(x,y)Ak(x)Bl(y)S(x,y)

∑
N
y=0 ∑

M
x=0 Ak(x)Bl(y)S(x,y)

. (9)

The mask is binary image where 0 denotes damaged
pixel. According to formula (9), these pixels are not
taken into consideration during the F-transform com-
ponent computation.

This algorithm works well for photos [12, 13, 10, 14]
but not so sufficiently for low depth color images. The
reason is in isotropic nature of the algorithm where dif-
ferent regions are mixed together in the inpainted area
Ω. The addressed issue is illustrated in Fig. 4.

(a) (b)

(c)

Figure 4: Demonstration of the unwanted blurriness in
the reconstruction . a) Damaged image I; b) image in-
painting using diffusion [10]; c) image inpainting using
the proposed algorithm.

F-transform has been proven to work on various image
processing tasks such as edge detection [15, 16], image
fusion [17] or image compression [18].

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

61 ISBN 978-80-86943-40-4

3.2 Fuzzy clustering
Segmentation is important part of our technique. We
propose to use fuzzy C-Means (FCM) which proved it-
self as very useful for image processing [19]. The algo-
rithm was developed by J.C. Dunn [20] and improved
by J.C. Bezdek [21]. It belongs to soft clustering which
refers to the fact that each data point (pixel) belongs to
the more than one cluster.

The input for the algorithm is set of elements X =
{x1, ...,xn} into a collection of K fuzzy clusters defined
by centers C = {c1, ...,cK} such as

ck =
∑x wk(x)

mx
∑x wk(x)

m , (10)

where wk(x) stands for membership degree of element
x to cluster ck. Besides the clusters, the algorithm re-
turns partition matrix W = wi, j ∈ [0,1], i = 1, ...,n, j =
1, ...,K where wi j stands for membership degree of xi to
cluster c j.

The FCM minimize function

argmin
C

n

∑
i=1

c

∑
j=1

wm
i j
∥∥xi− c j

∥∥2
, (11)

where

wi j =
1

∑
c
k=1

(
‖xi−c j‖
‖xi−ck‖

) 2
m−1

. (12)

4 NOVEL APPROACH DESCRIPTION
We propose to divide an image to the several indepen-
dent parts and process them one by one where the pro-
cessing consists in image inpainting. The division is
performed using fuzzy C-Means algorithm. Let us de-
fine discrete binary image Vi : [0,M]Z × [0,N]Z → 0,1
where the image is identified with cluster ci and pixels
which belongs to it with maximum membership degree.
All regions are inpainted using F-transform based algo-
rithm and in the end, all of them are put together to
create output image O.

4.1 Algorithm
Let us describe the algorithm on the image in Fig. 5.

First problem to solve is to determine to which cluster
which damaged pixel belongs. For the rough estima-
tion, we propose to use fuzzy image inpainting. Result
is in Fig. 6.

In this step, the pixels from damaged region Ω are re-
placed by the blended colors of the surrounding ones.

(a) I (b) S

Figure 5: a) Image I; b) mask S.

Figure 6: Image inpainting [10] of Fig. 5.

For small holes, the average of surrounding colors can
be used. For bigger holes, it is better to use more ad-
vanced techniques. Because of a robustness, accessi-
bility and a way of processing, we propose to use F-
transform inpainting described above which can handle
both.

We assume that inpainting fills in Ω using colors from
the close neighborhood. Thus, we can estimate the re-
gion used later for the separated reconstruction.

Because of the nature of the low color depth images,
each blurriness caused by reconstruction is highly visi-
ble. The blurriness is caused by mixing of colors from
the clearly separated places. Thus, we propose the sep-
aration for future region-by-region processing. For that
purpose, fuzzy C-Means is proposed as can be seen in
Fig. 7. The inpainted image from previous step is used
as an input.

Figure 7: Fuzzy C-Means applied to Fig. 6.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

62 ISBN 978-80-86943-40-4

The regions are recognized using binary images
V1,V2, ...,VK identified with the clusters. Image V
labels valid pixels. Therefore, the separated regions are
reconstructed from pixels of the known part of them-
selves. This feature makes the inpainting algorithm
anisotropic which prevents the unwanted color mixing.
Demonstration of the segmented regions for K = 5 is
in Fig. 8.

Figure 8: Left column contains images V1,V2,V3,V4,V5
and right column respective parts of input image I. The
division is based on Fig. 7.

Next step is to create a set of masks S1,S2, ...,SK to use
together with V1,V2, ...,VK . Each mask labels damaged
pixels just in particular region. The image V influences
the computation of the F-transform components as fol-
lows

Fkl =
∑

N
y=0 ∑

M
x=0 I(x,y)S(x,y)V (x,y)Ak(x)Bl(y)

∑
N
y=0 ∑

M
x=0 S(x,y)V (x,y)Ak(x)Bl(y)

. (13)

Each region is inpainted independently using proper S
and V . Example for K = 5 is illustrated in Fig. 9. For
better illustration, Fig. 10 shows detail of a brain and
comparison between our novel algorithm and an origi-
nal one.

Figure 9: Left column contains masks S1,S2,S3,S4,S5.
Middle one contains valid pixels V1,V2,V3,V4,V5 and
right one reconstructed parts in each region. The divi-
sion is based on Fig. 7.

The proposed algorithm is focused on the specific im-
ages which are very sensitive to blurred reconstruction
due to their low depth colors. Thus, the algorithm is
demonstrated on medical images in Fig. 11 and applied
to each color channel.
Let us summarize all steps:

1. Inpaint input image using conventional F-transform
image inpainting.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

63 ISBN 978-80-86943-40-4

(a) (b)

Figure 10: a) Novel algorithm with more clear and uni-
fied output; b) original algorithm [10]. Adjacent colors
are more uniform for figure a). Visible difference is in
white spot region and even not so shattered edge.

(a) Brain (b) Brain

(c) Torso

Figure 11: A set of images for demonstration purposes.

2. Cluster the inpainted image using fuzzy C-Means.

3. Identify each cluster region with binary image Vi.

4. Separate input mask S to the several regions Si based
on clusters.

5. Inpaint input image region by region using appropri-
ate Vi and Si.

Implementation of our new technique is based on pub-
licly available F-transform source code from OpenCV2.
For testing images, one reconstruction lasts few sec-
onds on the average PC. Results are available in Fig. 12.

A deep comparison with plenty of techniques is not pos-
sible due to lack of their implementations and/or their

2 opencv-contrib framework, module fuzzy

(a) Brain (b) Brain

(c) Torso

Figure 12: Image inpainting of Fig. 11. Target was to
erase purple text, lines and noise.

inabilities to work with specific types such as noisy im-
ages3.

4.2 Qualitative comparison
Let us compare the novel technique with basic principle
of the enhanced diffusion idea [10], Navier-Stokes [8]
and FMM [9]. The various outputs can be seen in
Fig. 13, 14 and 15.

Due to size limitation, the details are not obvious. Let
us demonstrate the main feature of the proposed tech-
nique which is to keep sharp reconstruction without
blurred artifacts. The details are given in Fig. 16.

5 CONCLUSION
In this initial study, we proposed a technique aimed to
low color depth images usable for medical ones from
MRI or CT. Its novelty consists in separation according
to colors followed by region-by-region processing. For
the separation, the fuzzy C-Means is proposed and for
the processing the fuzzy image inpainting. To make the
separation possible, we need to estimate to what clus-
ters all damaged pixels belong. For that purpose, it is
necessary to do inpainting of the whole image as a first
step.

Disadvantage of the common techniques lays in their
isotropic way of processing. As was demonstrated, this

3 For instance, the exemplar based techniques are not effec-
tive for highly damaged pictures, moreover with damage dis-
tributed all over them.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

64 ISBN 978-80-86943-40-4

(a) (b)

(c) (d)

Figure 13: Comparison of the various image inpaint-
ing techniques. a) Novel algorithm; b) fuzzy image in-
paintg; c) Navier-Stokes; d) FMM.

(a) (b)

(c) (d)

Figure 14: Comparison of the various image inpaint-
ing techniques. a) Novel algorithm; b) fuzzy image in-
paintg; c) Navier-Stokes; d) FMM.

fact leads to blurry reconstruction which is more ob-
vious in low depth color images. The separation part
of our algorithm successfully prevents this issue and in
fact it could come after any common inpainting algo-
rithm as a second step. To achieve this, we use sub-
mask labeling the damaged pixels of the particular re-
gion and valid pixels labeling pixels of the cluster ded-
icated to the same region. User should provide image,
mask and specify a number of clusters. Everything else
is performed automatically by algorithm and the imple-
mentation respectively.

We explained the way of working of our algorithm and
compared it with another techniques. For future re-

(a) (b)

(c) (d)

Figure 15: Comparison of the various image inpaint-
ing techniques. a) Novel algorithm; b) fuzzy image in-
paintg; c) Navier-Stokes; d) FMM.

search, we would like to extend the idea for heuris-
tic and probability estimation of the reconstructed part
specifically aimed to medical usage.

ACKNOWLEDGMENT
This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sus-
tainability (NPU II) project "IT4Innovations excellence
in science - LQ1602".

6 REFERENCES
[1] M. Bertalmio, G. Sapiro, V. Caselles, and

C. Ballester, “Image inpainting,” in Proceed-
ings of the 27th annual conference on Com-
puter graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co., 2000, pp.
417–424.

[2] A. A. Efros and T. K. Leung, “Texture synthesis
by non-parametric sampling,” in Computer Vi-
sion, 1999. The Proceedings of the Seventh IEEE
International Conference on, vol. 2. IEEE, 1999,
pp. 1033–1038.

[3] A. Criminisi, P. Pérez, and K. Toyama, “Region
filling and object removal by exemplar-based im-
age inpainting,” Image Processing, IEEE Trans-
actions on, vol. 13, no. 9, pp. 1200–1212, 2004.

[4] N. Komodakis and G. Tziritas, “Image comple-
tion using efficient belief propagation via priority
scheduling and dynamic pruning,” Image Pro-
cessing, IEEE Transactions on, vol. 16, no. 11,
pp. 2649–2661, 2007.

[5] I. Drori, D. Cohen-Or, and H. Yeshurun,
“Fragment-based image completion,” in ACM

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

65 ISBN 978-80-86943-40-4

Transactions on Graphics (TOG), vol. 22, no. 3.
ACM, 2003, pp. 303–312.

[6] J. M. Ogden, E. H. Adelson, J. R. Bergen, and
P. J. Burt, “Pyramid-based computer graphics,”
RCA Engineer, vol. 30, no. 5, pp. 4–15, 1985.

[7] M. Elad, J.-L. Starck, P. Querre, and D. L.
Donoho, “Simultaneous cartoon and texture im-
age inpainting using morphological component
analysis (mca),” Applied and Computational Har-
monic Analysis, vol. 19, no. 3, pp. 340–358, 2005.

[8] M. Bertalmio, A. L. Bertozzi, and G. Sapiro,
“Navier-stokes, fluid dynamics, and image and
video inpainting,” in Computer Vision and Pat-
tern Recognition, 2001. CVPR 2001. Proceedings
of the 2001 IEEE Computer Society Conference
on, vol. 1. IEEE, 2001, pp. I–355.

[9] A. Telea, “An image inpainting technique based
on the fast marching method,” Journal of graphics
tools, vol. 9, no. 1, pp. 23–34, 2004.

[10] I. Perfilieva and P. Vlašánek, “Image reconstruc-
tion by means of F-transform,” Knowledge-Based
Systems, vol. 70, pp. 55–63, 2014.

[11] I. Perfilieva, “Fuzzy transforms: Theory and ap-
plications,” Fuzzy sets and systems, vol. 157,
no. 8, pp. 993–1023, 2006.

[12] I. Perfiljeva, P. Vlašánek, and M. Wrublova,
“Fuzzy transform for image reconstruction,” Un-
certainty Modeling in Knowledge Engineering
and Decision Making, pp. 615–620, 2012.

[13] P. Vlašánek and I. Perfilieva, “Image reconstruc-
tion with usage of the F-transform,” in Interna-
tional Joint Conference CISIS’12-ICEUTEÂ´12-
SOCOÂ´12. Springer, 2013, pp. 507–514.

[14] ——, “Interpolation techniques versus F-
transform in application to image reconstruction,”
in 2014 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE). IEEE, 2014, pp. 533–
539.

[15] I. Perfilieva, P. Hodáková, and P. Hurtík, “Dif-
ferentiation by the F-transform and application to
edge detection,” Fuzzy Sets and Systems, 2014.

[16] M. Danková, P. Hodáková, I. Perfilieva, and
M. Vajgl, “Edge detection using F-transform.”
in ISDA, 2011, pp. 672–677.

[17] M. Vajgl, I. Perfilieva, and P. Hod’áková, “Ad-
vanced F-transform-based image fusion,” Ad-
vances in Fuzzy Systems, vol. 2012, p. 4, 2012.

[18] I. Perfilieva and B. De Baets, “Fuzzy transforms
of monotone functions with application to image
compression,” Information Sciences, vol. 180,
no. 17, pp. 3304–3315, 2010.

[19] M. J. Christ and R. Parvathi, “Fuzzy c-means
algorithm for medical image segmentation,” in

Electronics Computer Technology (ICECT), 2011
3rd International Conference on, vol. 4. IEEE,
2011, pp. 33–36.

[20] J. C. Dunn, “A fuzzy relative of the isodata
process and its use in detecting compact well-
separated clusters,” Cybernetics, vol. 3, pp. 32–
57, 1973.

[21] J. C. Bezdek, “Objective function clustering,” in
Pattern recognition with fuzzy objective function
algorithms. Springer, 1981, pp. 43–93.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

66 ISBN 978-80-86943-40-4

(a) (b)

(c) (d) (e)

(f) (g)

(h) (i) (j)

(k) (l)

(m) (n) (o)

Figure 16: Details of the reconstruction in Fig. 15, 13
and 14. a) f) k) Damaged image; b) g) l) image in-
painted by the novel algorithm; c) h) m) image in-
painted by original fuzzy inpainting [10]; d) i) n) image
inpainted by Navier-Stokes [8]; e) j) o) image inpainted
by FMM [9].

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

67 ISBN 978-80-86943-40-4

Single image summary of time-varying Earth-features

Gaurav Tripathi
Masters student

University of Calgary
Department of Computer

Science
Calgary, AB T2N 1N4,

Canada
gaurav.tripathi@ucalgary.ca

Katayoon Etemad
Postdoctoral Fellow

University of Calgary
Department of Computer

Science
Calgary, AB T2N 1N4,

Canada
ketemad@ucalgary.ca

Faramarz Samavati
Full Professor

University of Calgary
Department of Computer

Science
Calgary, AB T2N 1N4,

Canada
samavati@ucalgary.ca

Figure 1: Lake Urmia 89 layers SIS from 2013-2017.

ABSTRACT
The Earth’s surface is live and dynamic due to natural and manmade events. Tracking and visualizing Earth-features
(e.g. water, snow, and vegetation) is an important problem. Earth observation satellite imagery like Landsat 8 makes
the tracking feasible by providing detailed multispectral imagery at regular intervals. In this paper, we explore a
single image summary approach to detecting changes in Earth-features by using the Landsat 8 dataset. In our system,
we use appropriate thresholds for spectral indices to identify features, reference datasets, and combine multiple
images using predefined color palettes to generate a single image summary of features for a region. Furthermore, we
illustrate the benefit of our method over traditional visualizations with case-studies for the Lake Urmia, the Amazon
Rainforest, and the Bering Glacier.

Keywords
Visualization, Remote sensing, Landsat 8, Spectral indices, Deforestation, Drought, Glacial melting

1 INTRODUCTION
Earth is dynamic and ever-changing planet. Natural re-
source managers, policymakers, researchers, and, the
general public need information about these changes to

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

detect environmental changes and assess the impacts of
global warming [30]. Displaying a video or scientific
charts are useful but not sufficient to clearly show the
changes in the Earth-features (e.g. Vegetation, water,
snow) present on the Earth’s surface, due to phenomenon
like desiccation of lakes, melting of glaciers, and defor-
estation. Changes in individual Earth-features are not
always visible in regular RGB images. Moreover, it is
hard to perceive significant changes in a short period
of time. Capturing changes in the Earth-features and
visualizing them in an appropriate way is a fundamental
and important problem.

1

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

68 ISBN 978-80-86943-40-4
https://doi.org/10.24132/CSRN.2018.2801.8

kiv
Rectangle

The regular collection of datasets performed by Earth
observation satellites can play an important role in ad-
dressing the issue of capturing Earth-feature changes. In
this paper, we use Landsat 8 satellite imagery datasets
to identify and detect changes in Earth-features. In ad-
dition to regular RGB images, Landsat 8 data contains
spectral bands (i.e. a range of frequencies along the elec-
tromagnetic spectrum) that can reveal important features
of a region such as the prevalence of snow, water, and
vegetation.

With respect to the visualization challenge, techniques
like animated timelapses and image lineups are tradi-
tionally used. These techniques are used to represent
temporal changes in Earth-features. One major prob-
lem with the animated timelpase approach, like Google
Timelapse [11], is the loss of context. To identify Earth-
feature changes using a video, the observer needs to
move back and forth between video frames. In the sec-
ond traditional approach, a number of images are placed
side-by-side to allow for comparisons between multi-
ple frames. The main drawback to the use of multiple
images on screen (or on paper) is that the size of the indi-
vidual images needs to be reduced to fit all of them in a
single frame. The size reduction results in detail loss for
high-resolution images, and is especially pronounced
when there are many images. "small multiples large
singles" mentioned in [35] is in congruence to using SIS
and making it convenient for users to perform effective
visual exploration.

To address the limitations of these traditional techniques,
in this paper, we propose a novel single image summary
(SIS) for Earth-features using Landsat 8 images (e.g.
Figure 1). SIS represents temporal changes to the Earth-
features in a given region over a fixed duration of time.
To create a SIS, we determine the Earth-feature recur-
rence, e.g. water existence, for any location in the region
of interest (ROI) and then map the resulting recurrence
values to predefined colors. To provide a better context
for the feature of interest, we call this location-based re-
currence distribution a recurrence map. We also add an
overlay of the traditional map of the surrounding areas.
SIS representation resolves the loss of context issue and
retains the resolution of the original image dataset.

To prepare a SIS, we download data for a region covering
the duration of interest. The cloudy pixels are detected
using the Quality Assurance band provided by Landsat
8. In the next step, relevant Earth-features are identified
by using spectral band operations. After feature iden-
tification, we generate the recurrence map by counting
the occurrence of that feature in every location in the
region. To facilitate these operations, and as a proof of
concept, we have implemented a software prototype. In
our system, we use the recurrence map and predefined
color palettes to generate single image summaries for
three Earth-features: vegetation, water, and snow. We

use our system in three case studies : (i) Lake Urmia ,
(ii) the Amazon Rainforest, and, (iii) the Bering Glacier.
We also discuss the impact of different color palettes on
results.

The paper is arranged as follows. Section 2 covers pre-
vious work and related material on Landsat 8, spectral
indices and geospatial visualization. Section 3 details
our approach and implementation. Section 4 discusses
the case-studies. Section 5 concludes this article and
suggests future works.

2 BACKGROUND AND RELATED
WORK

2.1 Landsat 8
For over 40 years, seven Landsat satellites have col-
lected spectral information regarding the Earth’s surface.
The latest satellite dataset in the series, Landsat 8, was
made available for free public use on May 30, 2013 [30].
The near polar orbit of Landsat 8 allows it to regularly
visit an area every 16 days. This temporal resolution al-
lows researchers to track seasonal changes on the Earth’s
surface, as in this work, which tracks changes in time-
varying Earth-features. The Landsat 8 sensors collect
data at a spatial resolution of 30 meters (visible, NIR,
SWIR); 100 meters (thermal); and 15 meters (panchro-
matic).

Landsat 8 measures the energy reflected by land surface
across different frequency ranges from the electromag-
netic spectrum. Each range of frequency is called a band.
Land features like water, vegetation, and snow reflect en-
ergy based on their unique surface characteristics. Thus,
measuring reflected energy helps one identify the ob-
served feature. In multispectral satellite imagery, multi-
ple band data is used to create spectral indices that make
it possible to identify features. The Green (0.533 - 0.590
micrometers), Red (0.636 - 0.673 micrometers), Near-
infrared (0.851 - 0.879 micrometers), and Shortwave
infrared (1.566 - 1.651 micrometers) bands have been
used in this research. These bands are combined to cre-
ate metrics that assist in discriminating Earth-features.

2.2 Spectral Indices
A spectral index is a metric used to identify specific
features or phenomena in remote sensing imagery. It
is prepared by linear or nonlinear combinations of two
or more bands. Vegetation, water, and snow indices are
one of the most studied and commonly used spectral
indices [37] in the field of remote sensing. An optimally
designed spectral index is supposed to be as sensitive as
possible to the essential feature of interest and insensi-
tive to nonessential features in the observation area [36].
In this paper, we particularly focus on spectral indices
for vegetation, water, and snow.

2

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

69 ISBN 978-80-86943-40-4

kiv
Rectangle

The normalized difference vegetation index (NDVI) is a
spectral index that can be used to analyze remote sensing
measurements and assess whether the target contains live
green vegetation [26, 29]. Live vegetation absorbs so-
lar radiation in the photosynthetically active range with
a wavelength between 400 to 700 nanometers. Wave-
lengths up to red can be used by leaves to synthesize
organic molecules while NIR and longer wavelengths
cannot be used for synthesis. Hence, the leaves reflect
energy of the NIR range. NDVI utilizes these facts in a
simple form as

NDV I(p) =
NIR(p)−Red(p)
NIR(p)+Red(p)

(1)

where NIR(p) and Red(p) are respectively the near in-
frared and red reflectance at a pixel p in the band. It is
clear that NDVI values occupy the range [-1,1].

For areas with dense vegetation, NDVI has a high value
(between 0.3 to 0.8) [10]. Other vegetation indices are
also utilised to detect vegetation but NDVI is the most
frequently used in remote sensing studies [37].

NIR radiation is strongly absorbed by water bodies
and strongly reflected by soil and other surfaces. Fur-
thermore, visible radiation (Red, Green, and Blue) is
strongly reflected by water bodies. Normalized Differ-
ence Water Index (NDWI) utilizes these facts in a simple
form as

NDWI(p) =
Green(p)−NIR(p)
Green(p)+NIR(p)

(2)

where NIR(p) and Green(p) are respectively the near
infrared and green reflectance at a pixel p in the band.
The positive values of NDWI segregate open water bod-
ies. The spectral response of water bodies indicates that
the Green band is more suited towards segregating wa-
ter features and keeping suitable ranges of NDWI as
compared to Red and Blue bands [17, 27].

Its challenging to identify snow in satellite images be-
cause snow and clouds are equally bright in the visible
wavelength. While snow cover absorbs Shortwave in-
frared (SWIR) radiation, clouds reflect SWIR radiation
strongly. To utilize this difference in contrast between
different bands, a normalized difference snow index
(NDSI) is formulated [22]. NDSI utilizes these facts in
a simple form as

NDSI(p) =
Green(p)−SWIR(p)
Green(p)+SWIR(p)

(3)

where Green(p) and SWIR(p) are respectively the green
and short-wave infrared reflectance at a pixel p in the
band. Again, values range from -1 to 1. The threshold
for determining the presence of snow varies and needs
to be decided on a per-region basis.

2.3 Geospatial visualization
Time-varying data visualization is a well-studied area in
information visualization of abstract data [15, 38]. Visu-
alizing time-varying geospatial data is more challenging
because of its location dependency [20].

Videos are commonly used to visualize changes in time-
varying datasets. In [28], video synopsis has been used
to reduce video size while retaining dynamic activities
in a video. Google has created a timelapse tool us-
ing satellite imagery datasets to visualize changes in
the Earth over past three decades [11]. In [25], the
authors use videos to visualize changes in the Great
Salt Lake. In general, the use of videos for visualizing
these changes provides a sense of the overall trends but
comparisons between consecutive frames is hard. For
geospatial datasets, the comparison becomes harder, as
the position of geospatial features in time is also impor-
tant. The videos of time-varying geospatial data can
be visualized on a physical globe for easy understand-
ing [19].

To enable better frame comparison, multiple image line-
ups can be used [16, 39]. For example, multiple image
lineups have been used to show changes in Lake Ur-
mia over time [34]. To prepare the lineup, the authors
use Moderate Resolution Imaging Spectroradiometer
(MODIS) data [8] from 2000 to 2014. There are three
disadvantages of the image lineup approach. First, the
size of an individual image is decreased to accommodate
all in a lineup. Second, only a limited number of frames
can be placed in a lineup while still retaining the im-
portant details of a region. Third, it is hard to compare
more than two images at a time in order to understand
the changes occurring at a location.

Figure 2: Basic color wheel [1].

Images can present and retain time-varying information
in a single frame when using an appropriate color palette.
An appropriate color-palette helps in logical organiza-
tion of data and captures the trends and relationship
within data. In addition to an appropriate palette, choos-
ing the right number of colors for the color palette is an
important aspect of identifying time-varying changes in
Earth-features. In [23], two categories of color schemes,
called sequential and diverging, were suggested. Further-
more, a low number of color palette is suggested for the
proper representation of data classes in thematic maps.
In sequential schemes, low data values are represented

3

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

70 ISBN 978-80-86943-40-4

kiv
Rectangle

by light colors and high data values are represented
by dark colors. Sequential color schemes are used to
represent data that changes from a high to low value.
In diverging color schemes, the mid data value is rep-
resented using one color and two different sequential
schemes diverge from this shared middle value. It is evi-
denced in [21] that palettes with fewer colors are more
discriminable while more colors are harder for users to
process.

The color wheel is a common tool used to design colors
for a palette. Figure 2 shows one of the most commonly
used wheels. Adjacent colors on the color wheel are
called analogous colors. They are frequently found in
nature and harmonize well to avoid jarring effects in the
image [1, 18].

3 METHODOLOGY
The main goal of this work is to create a single image
summary of Earth-features in a selected region that sum-
marizes a certain duration of time. One challenge lies
in how to capture changes in Earth-features. Another
challenge is how to visualize these features. We use
relevant bands from Landsat 8 datasets to create spectral
indices that help in identifying the Earth-features. To vi-
sualize Earth-feature changes, we generate a recurrence
map for the ROI and apply a color palette based on the
recurrence of feature in any location. This leads to the
generation of a SIS.

3.1 Capturing Earth-feature changes
Landsat 8 data can be accessed freely on Amazon Web
Services (AWS) and Earthexplorer [6]. Earthexplorer
only allows bulk data download for scenes, which results
in long download times and more storage usage. We
use AWS as the downloading source as it offers good
speed and the option to download individual band data.
AWS is also a suitable target for creating a web crawler
because it provides a hyperlink for each file.

Landsat 8 images are separated into scenes for easy
downloading. Each scene represents an area of approx-
imately 185 km by 185 km and contains 11 bands and
metadata files. The bands are delivered as 16-bit images
in GeoTIFF file format. The hyperlinks for around 2
million Landsat 8 scenes are available in a file called
scene-list that is provided by AWS. The file is updated
daily with the latest scenes and each line in the file con-
tains the details of the geographic location of the scene
and a url for scene download.

We developed a downloader program that downloads
scenes based on scene-list, date, bands, path, and row
parameters. To download data in the range of 2013-2017
takes approximately an hour of time. After the down-
loading step, our system detects cloudy pixels using the
Quality Assurance (QA) band provided by Landsat 8.

The QA band contains bit-packed information about the
surface conditions, which helps to indicate clouds. If
the decimal value of a pixel is above 31744, the pixel is
likely to be cloudy [5].

Due to the non-spherical shape of the Earth and near-
polar orbit of Landsat 8, different day scenes from the
same region (identical path and row) are not exactly
aligned. Exact alignment is crucial for temporal stacking
of images.

Landsat 8 scenes are projected using the Universal Trans-
verse Mercator projection system [7]. There is a lin-
ear mapping between the image coordinate (rows and
columns) and the (geographical) UTM coordinate. Our
system uses this linear mapping for the purpose of align-
ing images. The system uses the image and UTM coor-
dinate system values from metadata files to align pixels
for all layers from the ROI. The system loads all the
referenced layers in memory for the spectral index cal-
culation used to identify the feature of interest (Section
2.2).

The calculated value is compared to a threshold and,
based on whether the spectral index value is above or
below that threshold, the pixel at point p in each of
the layers is classified as belonging to a feature. The
threshold for identifying features depends on a number
of factors, including the physical properties of observed
features or the analyst making the observation [22, 27].
For example, values of NDWI greater than zero com-
monly indicate water. In our system, an appropriate
threshold is decided for each region based on visual in-
spection. Note that the same threshold is used for all
layers in a single region.

Figure 3: Recurrence map creation.

3.2 Recurrence map creation
After the stack of layers is classified into features, the
recurrence map is prepared. A recurrence map repre-
sents the recurrence of a particular feature in the ROI.
Our system has the capability to choose the ROI for
the recurrence map preparation. For this research, the
ROI is chosen to be inside the boundaries of a Land-
sat 8 scene.To better understand the recurrence map, n
temporal layers in the image collection are considered.
For each point p of the map, the repetition of the fea-
ture at p, r(p), is stored in the recurrence map. Figure

4

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

71 ISBN 978-80-86943-40-4

kiv
Rectangle

3 illustrates the recurrence map. The value of r(p), is
normalized by the total number of non-cloudy layers at
that point. The recurrence map can be constructed via a
one time traversal of all layers in the current time range
and stored. Once a recurrence map is created, various
color maps can be used on it without the need to traverse
all layers again.

3.3 Color-mapping
Our system follows a color-mapping procedure to apply
a particular color-palette to the recurrence map in order
to generate a SIS. Let us denote the current color palette
by c ={c1, ..., cm} where m is the number of colors.
Each recurrence value is mapped to a color ci (for some
i). The color-palette and range of the recurrence map are
also indicated in the SIS results. To provide a stronger
distinction among feature categories, we choose palettes
with a small number of colors [33]. Since the range
of r(p), is normally larger than m, a lookup table L is
needed to assign a color to any r(p)

L : r(p)→ c.

In our system, L is a uniform sampling of color maps
by default. For practical case studies, one may tweak
this transfer function to customize the result. Based on
user preferences, our system can easily apply predefined
sequential, divergent, and user-defined custom color-
palettes to the recurrence map. We can also apply natural
colors present in the RGB satellite images of the region.
The color schemes for each of the case studies have been
chosen in order to highlight the changes in features and
maintain the context of surrounding regions.

4 CASE STUDIES
To evaluate our method and the implemented prototype,
we have experimented on three case studies to highlight
changes in Lake Urmia in north west Iran, the Amazon
Rainforest in Brazil and the Bering Glacier in Alaska.

4.1 Lake Urmia
There has been a decrease in the water level of lake Ur-
mia since the 1990s [4]. Some of the major speculated
reasons for this decline are dam construction, divert-
ing water for irrigation, less precipitation, and warmer
climates [24]. There are many repercussions of this phe-
nomenon. Reduction in water level is causing the salt
levels to increase, thus causing the native brine shrimp
population to decrease [14]. Since brine shrimp is the
major food source for the bird population in this region,
it is causing significant ecological disruption. The cur-
rent increase in salt content is also causing the surround-
ing plant population to decrease as the drying of the lake
also leaves a huge salt trail around the lake boundary.

In this section, SIS have been prepared for lake Urmia
in order to observe the time-varying changes in water
recurrence. A description of the area of study, choices
of relevant spectral indices, and color palette are crucial
elements of generating the summary images.

The study area is the Lake Urmia region in Iran lying
between Urmia and Tabriz cities (as shown in Figure
1). According to the Landsat 8 operational orbit WRS-2
[13], scenes correspond to path 169 and row 34. Cloudy
pixels in the dataset were detected using the QA band
(as shown in Section 3.1). Positive values of NDWI are
assumed to indicate the presence of water in this region.
After classification of water in each layer, the recurrence
map is prepared. In the next step a color-mapping is
applied to the recurrence map. A color range from red to
blue from the color wheel was used in order to represent
Lake Urmia (as shown in Figure 2). Blue is assigned
to the maximum recurrence value as water is typically
represented as blue in pictures. Furthermore, a range of
analogous colors and a variety of colors are used in order
to represent close recurrences while at the same time
distinguishing recurrences easily. Recurrences close to
zero indicate feature absence and are assigned to a white
color so that they don’t distract one from observing
nonzero feature presence. The objective is to maintain
an intuitive understanding of the feature of interest with
this color choice. Finally, the SIS is overlaid atop Google
maps. In order to maintain a relevant location context in
the SIS results, only important information such as roads,
labels, and major city names have been kept. Figure 1
shows the result for Lake Urmia with a 12 color palette
from a recurrence map created in the period 2013-2017.

There are some important observations evident from the
result:

1. A desiccation in the wet region of the lake is clearly
visible in the result. The inner region is blue while
the boundary of the lake is colored otherwise. The
upper part of Urmia has water present most of the
time, as can be seen in the result image. Because of
the difference in recurrence in the upper and lower
parts, it looks like the lake could separate into upper
and lower parts. Similar conclusions are obtained
by combining elevation and surface water data from
multiple sensors and satellites to track lake water
level [34].

2. Another observation is the existence of several
streams and rivers around the lake. It seems that they
are important sources of water intake, however in
the visualization they are usually presented in dark
red. Dark red is assigned to places that rarely have
water recurrence during the observation period. The
limited sources of water inflow is one of the main
reasons for the drying of lake over the years.

5

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

72 ISBN 978-80-86943-40-4

kiv
Rectangle

(a) January (b) February (c) March (d) April (e) May (f) June

(g) July (h) August (i) September (j) October (k) November (l) December

Figure 4: Multiple image lineup of Lake Urmia from 2015.

3. The figure also shows that there is a large red area
surrounding the lake boundary. The red color sug-
gests that the region rarely has water present. In [32],
it has been speculated that the boundary of the lake
usually has salt deposits. Winds carry salt deposits to
settlements near the lake which impacts vegetation
and causes health problems for people living in these
surrounding areas.

Here we discuss the advantages of SIS (Figure 1) over
traditional methods of visualizing the layers frame-by-
frame (timelapse or animation) or by placing them in a
lineup (Figure 4).

• Only one layer at a time can be observed with the
timelapse visualization, and the context of both pre-
vious and subsequent images are lost. With SIS, its
possible to see all changes in the water recurrence
over time without losing the context. The recurrence
of a feature at p can be easily deciphered by the shade
of color at p.

• Showing 12 layers as images side-by-side requires
more space and, consequently, either the resolution
of each layer has to be decreased or it needs to be
presented on a larger screen. As the number of layers
increase, both of the previous problems are exacer-
bated. The resolution of SIS is independent of the
number of layers that need to be visualized. So,
whether 89 layers or 12 layers are being visualized,
the resolution of the summary image doesn’t change.

• SIS captures the trends of changes happening in the
region. By using SIS, one can evaluate how fre-
quently a feature occurs in a region. The SIS with
its color palette easily and immediately highlights

which regions have a permanent occurrence of a fea-
ture. An example is shown in Figure 1, where one
can observe that the upper part of Lake Urmia always
has water while the lower part has lesser occurrence.

4.1.1 Comparison of two SIS
Although using one SIS illustrates a number of time-
varying changes, experiments were conducted to observe
the benefits of comparing two SIS (as shown in Figure
5). In our experiments, comparisons of two different
time periods were done and the results have been shown
in Figure 5 On comparing Figure 5a and Figure 5b, the
island area in white near the lower right of the image
seems to be increasing in size from 2013-2014 to 2015-
2016. The islands have almost merged in 2015-2016.
The yellow area near Gamichi is increasing in area over
time. This indicates less water recurrence and drying of
the lake, providing clear support for the increased salt
deposition in the area as mentioned in [32].

4.1.2 Experimentation with different color
counts

To test the impact of different color counts on results,
summaries for 2 year durations have been prepared us-
ing a color palette with 6 colors (as shown in Figure 6).
One can see similar trends in Figure 5 with 12 colors
and Figure 6 with 6 colors. There are some advantages
of using a larger number of colors. The color transition
is smoother in case of 12 colors. The small number of
colors in the palette can mask the underlying changes
taking place in the region. For example, the difference
between recurrences in the upper and lower parts of
Urmia is more prominent in Figure 5b as compared to
Figure 6b. There are some patchy deep blue colors that
we observe in lower parts of Figure 6b because a wide
range of recurrences have been assigned to a deep blue

6

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

73 ISBN 978-80-86943-40-4

kiv
Rectangle

(a) 2013-2014 (b) 2015-2016

Figure 5: Experimental results with 12 colors.

(a) 2013-2014 (b) 2015-2016

Figure 6: Experimental results with 6 colors.

color so its possible to segregate these recurrences in
Figure 5b but not in 6b. However, there are some disad-
vantages of choosing a large number of colors. Using a
large number of colors increases redundant patterns in
the images (red patches for low recurrences). Moreover,
having a large number of colors can make it difficult to
distinguish different recurrences.

4.2 Amazon Rainforest
Deforestation helps humans in some sense, but it has
extreme negative impacts on climate change and the
extinction of flora and fauna [12]. Brazil has recently
made huge progress in reducing deforestation and in
increasing reforestation [3]. As a result of this progress,
heat trapping emissions have been lowered in Brazil
as compared to other nations. The international effort
known as "Reducing emissions from deforestation and
forest degradation" (REDD+) contributed significantly
to this achievement [9]. As part of this effort, developing
nations reduce deforestation whilst wealthy nations com-
pensate for economic loss. Norway pledged 2.5 billion

dollars for the effort and Brazil pledged to reduce the
rate of deforestation drastically by 2020.

Rondonia, a state in Brazil, was the most deforested part
of the Amazon ecosystem in recent decades [12]. To
observe the vegetation trends in the region, a SIS for the
region has been created using path 232 and row 68 of
Landsat 8 data. A natural and sequential color-palette
has been used to generate the SIS. For example, dense
vegetation usually looks dark-green in nature as well
as in satellite imagery. Thus, a palette of dark-green
to white has been used in the Amazon Rainforest case
to represent high to low recurrences. A similar palette
is used by Google Earth for showing regions with live
and dead vegetation. In a recent work, a similar palette
was adopted to apply cell shading to terrain features
in order to represent trees [18]. The color palette was
sampled from the paintings of famous panorama maps
artist Heinrich Berann in order to replicate his hand-
drawn style.

7

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

74 ISBN 978-80-86943-40-4

kiv
Rectangle

(a) 2013-2014 (b) 2015-2016

Figure 7: SIS for the Rondonia region (Amazon Rainforest).

The results are created using 34 layers from the dura-
tion of 2013-2014 and 34 layers from the duration of
2015-2016. On comparing Figure 7a and Figure 7b, one
can observe that the amount of vegetation has gener-
ally decreased in the region. The dark green regions on
left of Figure 7a have changed to light green in Figure
7b, which indicates decreased recurrence of vegetation
(shown as A in Figure 7). White regions in the cen-
ter have increased and green regions have decreased in
Figure 7b when compared to Figure 7a, which again
indicates a decrease in vegetation recurrence. In a few
places, there is an increased recurrence too. These re-
sults suggest that the deforestation is still going on over
the years (shown as A in Figure 7) while there has been
some positive results from reforestation efforts (shown
as B in Figure 7).

4.3 Bering Glacier
The Bering Glacier is one of the largest glaciers in North
America and is located in Alaska. According to [2], the
glacier has been retreating at an alarming rate of 10 miles
per year. Ground measurements are hard to perform
for glaciers due to the harsh conditions prevailing in
glacial regions. Thus, remote sensing measurements
make it easier to understand ongoing processes in glacial
regions.

Using Landsat 8 data from 2013-2017 and Normalized
Difference Snow index with an intuitive color palette,
Figure 8 has been prepared. The results are shown in
Figure 8. The scenes correspond to path 64 and row 18
and we use 5 colors to indicate the snow recurrence. 39
layers from 2013-2014 and 43 layers from 2015-2016
were used to prepare the SIS results. The green color

corresponds to very low values of snow recurrence. The
cyan color in the bottom half of the image indicates the
North Pacific ocean.

Most of the glacier region has snow present all around
the observed duration, which is indicated by deep blue
color. The image clearly shows the glacier retreating.
The central medial moraine region [31] in the top left
between the Bering and Steller Glaciers shows sparse
and periodic snow cover (shown as A in Figure 8). On
comparing Figure 8a to Figure 8b, it seems that the front
of the Bering Glacier has retreated from 2013-2014 to
2015-2016. Furthermore, in 2015-2016, the occurrence
of snow around the boundary of the glacier seems to be
decreasing (vegetation-snow interface in Figure 8).

5 CONCLUSION
In this paper, we have explored the key aspects of gen-
erating single image summaries of Earth-features using
Landsat 8 data. We have discussed techniques to identify
Earth-features, detect and ignore clouds, reference lay-
ers, calculate recurrence of features, and apply a color
palette to generate the result. We have presented results
and discussed the implications of the results using dif-
ferent counts of colors and layers. We have shown the
utility of summaries in detecting changes by describing
case studies of several sample areas. Landsat 8 data was
obtained from AWS for this research. Our results show
change trends which are consistent with other studies
and identify new trends which may be utilized by other
researchers.

There is room for future work. Clouds hamper the abil-
ity to observe land cover in Landsat 8 and sometimes

8

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

75 ISBN 978-80-86943-40-4

kiv
Rectangle

(a) 2013-2014 (b) 2015-2016

Figure 8: SIS for the Bering Glacier region.

bring noise into the results. An automatic method for
reconstructing data that is hidden by clouds would gen-
erate better results. Additionally, it would be interesting
to use Landsat 8 along with MODIS and other satellite
imagery datasets. Although MODIS has a coarse spatial
resolution, its fine temporal resolution of 1 day seems
promising towards capturing the change trends.

6 ACKNOWLEDGMENTS
This research received generous support from the Nat-
ural Sciences and Engineering Research Council of
Canada - Collaborative Research and Development
(NSERC-CRD) grant. We would like to thank Global
Grid Systems and Shima Dadkhahfard for their insight-
ful discussions and inputs. We would also like to thank
Troy Alderson for his editorial comments.

7 REFERENCES
[1] Basic color schemes: Color theory introduction,

http://www.tigercolor.com/color-lab/
color-theory/color-theory-intro.htm,
(Accessed on 11/13/2017).

[2] Bering glacier melts faster | far north
science, http://www.farnorthscience.
com/2007/06/04/climate-news/
bering-glacier-melts-faster/, (Ac-
cessed on 11/10/2017).

[3] Brazil’s success in reducing deforestation
(2011), https://www.ucsusa.org/global_
warming/solutions/stop-deforestation/
brazils-reduction-deforestation.html#
.Wi7nPd-nFqR, (Accessed on 12/11/2017).

[4] Lake urmia: how irans most famous lake
is disappearing-world news-the guardian,
theguardian.com/world/iran-blog/2015/
jan/23/, (Accessed on 12/18/2017).

[5] Landsat 8 pre-collection quality assessment band |
landsat missions, https://landsat.usgs.gov/
qualityband, (Accessed on 01/15/2018).

[6] Landsat data access | landsat missions, https://
landsat.usgs.gov/landsat-data-access.

[7] Landsat processing details | landsat
missions, https://landsat.usgs.gov/
landsat-processing-details, (Accessed on
11/12/2017).

[8] Modis web, https://modis.gsfc.nasa.gov/
data/, (Accessed on 12/19/2017).

[9] Redd+ - home, http://redd.unfccc.int/, (Ac-
cessed on 12/11/2017).

[10] Remote sensing phenology, https://phenology.
cr.usgs.gov/ndvi_foundation.php, (Ac-
cessed on 12/15/2017).

[11] Timelapse : Google earth engine, https://
earthengine.google.com/timelapse/, (Ac-
cessed on 12/05/2017).

[12] World of change: Amazon deforestation : Fea-
ture articles, https://earthobservatory.
nasa.gov/Features/WorldOfChange/
deforestation.php, (Accessed on 12/11/2017).

[13] The worldwide reference system Â« landsat
science, https://landsat.gsfc.nasa.gov/
the-worldwide-reference-system/, (Ac-
cessed on 11/21/2017).

[14] M Abbaspour and A Nazaridoust, Determination
of environmental water requirements of lake ur-
mia, iran: an ecological approach, International
Journal of Environmental Studies 64 (2007), no. 2,
161–169.

[15] Wolfgang Aigner, Silvia Miksch, Heidrun Schu-
mann, and Christian Tominski, Visualization of
time-oriented data, Springer Science & Business
Media, 2011.

9

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

76 ISBN 978-80-86943-40-4

http://www.tigercolor.com/color-lab/color-theory/color-theory-intro.htm
http://www.tigercolor.com/color-lab/color-theory/color-theory-intro.htm
http://www.farnorthscience.com/2007/06/04/climate-news/bering-glacier-melts-faster/
http://www.farnorthscience.com/2007/06/04/climate-news/bering-glacier-melts-faster/
http://www.farnorthscience.com/2007/06/04/climate-news/bering-glacier-melts-faster/
https://www.ucsusa.org/global_warming/solutions/stop-deforestation/brazils-reduction-deforestation.html#.Wi7nPd-nFqR
https://www.ucsusa.org/global_warming/solutions/stop-deforestation/brazils-reduction-deforestation.html#.Wi7nPd-nFqR
https://www.ucsusa.org/global_warming/solutions/stop-deforestation/brazils-reduction-deforestation.html#.Wi7nPd-nFqR
https://www.ucsusa.org/global_warming/solutions/stop-deforestation/brazils-reduction-deforestation.html#.Wi7nPd-nFqR
theguardian.com/world/iran-blog/2015/jan/23/
theguardian.com/world/iran-blog/2015/jan/23/
https://landsat.usgs.gov/qualityband
https://landsat.usgs.gov/qualityband
https://landsat.usgs.gov/landsat-data-access
https://landsat.usgs.gov/landsat-data-access
https://landsat.usgs.gov/landsat-processing-details
https://landsat.usgs.gov/landsat-processing-details
https://modis.gsfc.nasa.gov/data/
https://modis.gsfc.nasa.gov/data/
http://redd.unfccc.int/
https://phenology.cr.usgs.gov/ndvi_foundation.php
https://phenology.cr.usgs.gov/ndvi_foundation.php
https://earthengine.google.com/timelapse/
https://earthengine.google.com/timelapse/
https://earthobservatory.nasa.gov/Features/WorldOfChange/deforestation.php
https://earthobservatory.nasa.gov/Features/WorldOfChange/deforestation.php
https://earthobservatory.nasa.gov/Features/WorldOfChange/deforestation.php
https://landsat.gsfc.nasa.gov/the-worldwide-reference-system/
https://landsat.gsfc.nasa.gov/the-worldwide-reference-system/
kiv
Rectangle

[16] Roger Beecham, Jason Dykes, Wouter Meulemans,
Aidan Slingsby, Cagatay Turkay, and Jo Wood,
Map lineups: effects of spatial structure on graphi-
cal inference, IEEE transactions on visualization
and computer graphics 23 (2017), no. 1, 391–400.

[17] Dale HP Boland, Trophic classification of lakes us-
ing landsat-1 (erts-1) multispectral scanner data,
US Environmental Protection Agency, Office of
Research and Development, Corvallis Environmen-
tal Research Laboratory, Assessment and Criteria
Development, 1976.

[18] S. Alex Brown and Faramarz Samavati, Real-time
panorama maps, Proceedings of the Symposium
on Non-Photorealistic Animation and Rendering
(New York, NY, USA), NPAR ’17, ACM, 2017,
pp. 6:1–6:11.

[19] Shima Dadkhahfard, Katayoon Etemad, John
Brosz, and Faramarz Samavati, Area preserving dy-
namic geospatial visualization on physical globe,
9th International Conference on Information Visu-
alization Theory and Applications, IVAPP 2018,
2018.

[20] Jason Dykes, Alan M MacEachren, and M-J Kraak,
Exploring geovisualization, Elsevier, 2005.

[21] Connor C Gramazio, David H Laidlaw, and
Karen B Schloss, Colorgorical: Creating dis-
criminable and preferable color palettes for in-
formation visualization, IEEE transactions on
visualization and computer graphics 23 (2017),
no. 1, 521–530.

[22] Dorothy K Hall and George A Riggs, Normalized-
difference snow index (ndsi), Encyclopedia of
snow, ice and glaciers, Springer, 2011, pp. 779–
780.

[23] Mark Harrower and Cynthia A. Brewer, Color-
brewer.org: An online tool for selecting colour
schemes for maps, The Cartographic Journal 40
(2003), no. 1, 27–37.

[24] M Hoseinpour, A Fakheri Fard, and R Naghili,
Death of urmia lake, a silent disaster investigating
causes, results and solutions of urmia lake drying,
1st International Applied Geological Congress,
Department of Geology, Islamic Azad University,
Islamic Azad University-Mashad Branch, Iran,
2010.

[25] M.C. Hung and Y.H. Wu, Mapping and visualiz-
ing the great salt lake landscape dynamics using
multitemporal satellite images, 1972 to 1996, In-
ternational Journal of Remote Sensing 26 (2005),
no. 9, 1815–1834.

[26] FJ Kriegler, WA Malila, RF Nalepka, and
W Richardson, Preprocessing transformations
and their effects on multispectral recognition, Re-
mote Sensing of Environment, VI, 1969, p. 97.

[27] S. K. McFEETERS, The use of the normalized
difference water index (ndwi) in the delineation
of open water features, International Journal of
Remote Sensing 17 (1996), no. 7, 1425–1432.

[28] A. Rav-Acha, Y. Pritch, and S. Peleg, Making a
long video short: Dynamic video synopsis, 2006
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06), vol. 1,
June 2006, pp. 435–441.

[29] J_W Rouse Jr, RH Haas, JA Schell, and DW Deer-
ing, Monitoring vegetation systems in the great
plains with erts, (1974).

[30] David P Roy, MA Wulder, TR Loveland, CE Wood-
cock, RG Allen, MC Anderson, D Helder, JR Irons,
DM Johnson, R Kennedy, et al., Landsat-8: Sci-
ence and product vision for terrestrial global
change research, Remote Sensing of Environment
145 (2014), 154–172.

[31] Robert Allan Shuchman and Edward George Jos-
berger, Bering glacier: interdisciplinary studies of
earth’s largest temperate surging glacier, vol. 462,
Geological Society of America, 2010.

[32] Richard Stone, Saving iran’s great salt lake, Sci-
ence 349 (2015), no. 6252, 1044–1047.

[33] Alexandru C Telea, Data visualization: principles
and practice, CRC Press, 2014.

[34] M.J. Tourian, O. Elmi, Q. Chen, B. Devaraju, Sh.
Roohi, and N. Sneeuw, A spaceborne multisensor
approach to monitor the desiccation of lake ur-
mia in iran, Remote Sensing of Environment 156
(2015), no. Supplement C, 349 – 360.

[35] Stef van den Elzen and Jarke J van Wijk, Small
multiples, large singles: A new approach for vi-
sual data exploration, Computer Graphics Forum,
vol. 32, Wiley Online Library, 2013, pp. 191–200.

[36] M. M. Verstraete and B. Pinty, Designing optimal
spectral indexes for remote sensing applications,
IEEE Transactions on Geoscience and Remote
Sensing 34 (1996), no. 5, 1254–1265.

[37] Andrés Viña, Anatoly A Gitelson, Anthony L
Nguy-Robertson, and Yi Peng, Comparison of dif-
ferent vegetation indices for the remote assessment
of green leaf area index of crops, Remote Sensing
of Environment 115 (2011), no. 12, 3468–3478.

[38] Chaoli Wang, Hongfeng Yu, and Kwan-Liu Ma,
Importance-driven time-varying data visualization,
IEEE Transactions on Visualization and Computer
Graphics 14 (2008), no. 6, 1547–1554.

[39] Hadley Wickham, Dianne Cook, Heike Hofmann,
and Andreas Buja, Graphical inference for infovis,
IEEE Transactions on Visualization and Computer
Graphics 16 (2010), no. 6, 973–979.

10

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

77 ISBN 978-80-86943-40-4

kiv
Rectangle

Real-Time Visual Off-Road Path Detection
Marc Steven Krämer, Lars Kuhnert and Klaus-Dieter Kuhnert
Department of Electrical Engineering & Computer Science

Institute of Real-Time Learning Systems
University of Siegen, Germany

marc.kraemer@uni-siegen.de, lars.kuhnert@uni-siegen.de, kuhnert@fb12.uni-siegen.de

ABSTRACT
In this paper, we propose a fast and real-time capable system for visual off-road path detection. We equipped
our robot AMOR with a single monocular camera and explored unstructured environments like woods. In these
areas, it is almost harder to identify and classify drivable and non-drivable parts in an image. In urban regions,
roads can be detected by lane markers or delimitations whereas the boundaries of a forest path blend into the
environment almost seamlessly. In our work, we developed a software system that is based on mostly simple and
low computationally intensive algorithms. We developed and tested the functions with a large dataset of camera
images and also generated a manually Ground Truth for the evaluation.

Keywords
Road Detection, Off-road Autonomous Navigation, Image Segmentation, Terrain Classification, Mobile Robots

1 INTRODUCTION

In recent years, interest in autonomously operating
robots has increased. The main task is the navigation
from point A to point B as well as the necessary
road detection. In general, a distinction can be made
between structured roads and unstructured roads (off-
road) [8]. Most of the problems in identifying roads in
urban areas have widely been solved by the automotive
industry[1]. The road boundaries and landmarks are a
great help for the detection task in this environment [6].
Therefore, the current challenge is the path recognition
in natural, off-road environments. Since it is not
necessary to have roads available, the area is divided
into passable and non-passable corridors.

The developed path recognition systems are based on
various sensors. A laser scanner or stereo camera can
detect areas close in front of the vehicle precisely in 3D.
However, in order to reach higher speeds it is also nec-
essary to cover other distances that radar or monocular
cameras can detect [8]. Other previous projects mainly
use stereo cameras .[8][7][4][9][6][5]. In the case of
monocular camera-based methods, the main focus was
on terrain classification by means of textures and ob-
stacle detection. The classifier used for the path recog-
nition is previously trained with different types of road

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

images. This training is expensive because it has to be
done for many types of roads [2] [5] [1]. Another ap-
proach splits the camera image into separate grid cells.
The cells are now compared by their similarity and sub-
divided into drivable and non-drivable areas. This is
based on a cell directly in front of the vehicle, which is
assumed as being a part of the road [3].

The majority of the previously presented procedures
have been developed for the use during the DARPA
Challenge in America. This runs through the Mojave
Desert. In this Paper, we also present a monocular cam-
era based system. The algorithms used in this work
have been created especially for our local areas and en-
vironments. These include forest areas with more or
less fortified paths and different seasons.

This paper is organized as follows: In the next section,
we describe the hardware setup and the generated test
dataset. The general software architecture and some
sub functions are explained in section 3. In section
4, the analyses algorithms for detecting roads are de-
scribed and will be evaluated in the following section
before the paper is finally concluded.

2 HARDWARE SETUP
In this section, we describe our experimental setup.
First, we introduce our off-road robot AMOR followed
by a description of the test areas and the test image data
set.

2.1 Robot AMOR
For our tests, we used the Robot AMOR (Autonomous
Mobile Outdoor Robot) which is shown in Figure 1.
The outdoor suitable robot was built on the base of

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

78 ISBN 978-80-86943-40-4
https://doi.org/10.24132/CSRN.2018.2801.9

a quad from Yamaha. The basic concept was the fu-
sion of a large number of redundant sensors to achieve
a robust function even in complex and variable envi-
ronments. The robot is equipped with various different
cameras, starting from simple USB webcams to indus-
trial highly-sensitive monocular or stereo camera sys-
tems.

Figure 1: Autonomous Mobile Outdoor Robot.

2.2 Test Dataset
To achieve a robust functioning system we needed to
collect a huge set of test data. Therefore, we selected
five different test paths with a total length of 7.5km and
changing road surfaces. The individual routes were ap-
proached at different seasons and weather conditions.
Thus, we generated a dataset with 23 sequences and
43961 images.

Figure 2: Manual Ground Truth with binary mask.

To evaluate our results, we manually created a Ground
Truth and labeled a part of our dataset. This resulted
in 1884 images pairs of an original camera image and a
corresponding binary mask, where we marked the driv-
able path (see Figure 2).

2.3 Auxiliary Rectangles
The recordings of the dataset were made with different
cameras on various positions on the robot. In addition
to the resolution and the aspect ratio even the opening
angle of the lens and the position differs. In addition,
there are other objects in the visual field, like a lidar
sensor or parts of the robots frame. To deal with these
problems, we used auxiliary rectangles. As a simple
and good option, it has been found to use three rectan-
gles. One rectangle, which points to the road directly in

Figure 3: Auxiliary rectangles.

front of the vehicle and two more to the right and left
environment. Figure 3 shows this.

These rectangles are not fixed, so the position and size
are variables. In a future system, it is planned to use a
three-dimensional sensor, like a lidar or stereo-camera,
to precisely detect the near surroundings of the robot
and classify them into drivable and non-drivable areas.
Based on these informations we can adjust the road and
environment rectangles to detect the distant surround-
ings in a fast image processing.

3 SOFTWARE ARCHITECTURE
This section describes the basic structure of the soft-
ware. The development was based on the idea of a mod-
ular and extendible system. In order to understand this
structure, we briefly go through the processing chain
and describe the individual functions. Figure 4 shows
the interaction of the software components in a flow
chart.

At the beginning of the path recognition, a pre-test on
the recorded image is done which will detect unusable
and useless images. In this, for example, care is taken
that the image is not extremely over- or underexposed,
so that further processings would be impossible. A de-
tailed description is given later in this chapter. If the
pre-test fails, the image analysis is canceled and the
software waits for the next image. Otherwise, the path
type is determined. For this purpose, the current im-
age is classified into a specific path type in a fast pro-
cess. For example, differences are made between a for-
est path and a tarred road.

Based on the type of path thus determined, the anal-
ysis algorithms used for further analysis are selected.
Each analysis algorithm tries to find the path by another
method. For example, based on the saturation in the im-
age, the natural environment can be distinguished from
the road or, in another method, the edges of the street
can be tracked. These chosen analysis algorithms are
then executed in parallel.

Each of these functions provides a binary black-and-
white mask as output, which specifies where is a path in
the image and where not. This mask is evaluated with a
plausible test. The results of all analysis algorithms are
then merged. This results in a matrix in which parts of
the path have a high and the environment a low value.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

79 ISBN 978-80-86943-40-4

Pre-Test
 failed

Detection of Road Type &
Analysis Algorithms Selection

successful

Image Input

evaluate &
merge results

A
nalysi s A

lgori thm
 1

A
nalysi s A

lgori thm
 n

...

A
nalysi s A

lgori thm
 2

A
nalysi s A

lgori thm
 n-1

...

Path Detection
on the overall Result

Figure 4: Software flow chart.

In other words, when expressed as an image, the result
of the addition is a gray-scale image in which the rec-
ognized path has a color value greater than zero. The
higher this value is in one pixel, the safer it is a drivable
part.

3.1 Image Pre-Test

To detect unusable images we use a pre-test. These
can occur, for example, while driving in places where
individual shots are overexposed. One of the many
other possibilities here is the position directly in front
of a house wall, where there is no path to detect. To
save computation time we recognize these images and
prevent the execution of the analysis algorithms. The
method developed here therefore tries to cautiously de-
tect inappropriate images. We use the image areas
within the rectangles to make a statement with as lit-
tle effort as possible whether an image is usable or not.
For this, we calculate the mean values of the saturation
and blue channel in the segments and compare the ratio
between road and environment with a threshold value.
In the following equation, this is done by the example
of the left environment rectangle and the blue channel.

max(meanle f t
blue,meanroad

blue)

min(meanle f t
blue,meanroad

blue)
< minDiff (1)

Analogue for the right rectangle and the saturation of
both ones. We found 1.4 for the best working minDiff
value. If two or more of the four tests fail, the image is
rejected.

During the image pre-test, additionally a binary mask
is created which indicates bad points due to high expo-
sure. These occur especially during trips in dark forest
areas. In order to detect this, the brightness values (V)
in the HSV color space are checked against a threshold
value (250) up to the half of the image height, like Fig-
ure 5 shows. All image points that are contained in the
mask are set to zero.

Figure 5: Highlight test with binary mask on the right.

3.2 Road Type Classification
After a successful pre-test, we detect the road type.
Based on this type, the appropriate analysis algorithms
will be selected and executed. The road type is dis-
tinguished between the drivable path and the surround-
ings. It is classified into normal road (for example
tarred road), dirt road and dirt road with tracks. Fig-
ure 6 shows these different path types.

Figure 6: Path types: normal road(1), dirt road sat-
urated environment(2), dirt road (3), dirt road with
tracks(4).

We differentiate the environment only between satu-
rated and unsaturated, where a saturated environment
is characterized by a (natural) green vegetation. Figure
7 shows how to distinguish a road and a dirt road. On
the bottom of the images a histogram of the road rect-
angle (see Figure 3) is drawn. The histogram of a dirt

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

80 ISBN 978-80-86943-40-4

road is usually relatively wide, whereas the histogram
of normal roads are quite narrow. To make efficient use
of this, we calculate the standard deviation of all RGB-
channels. The mean of these values is used to assess
the condition of the path in dirt road or normal road.
A value greater than 12 means dirt road, a lower one
normal road. In case of a dirt road, we also try to de-
tect tracks for the sub type dirt road with tracks. This
algorithm is explained in 4.2.

Figure 7: Road Types and Histograms.

In a final step, we have look at the environment. For
this, we consider the standard deviation of the satura-
tion channel. If this exceeds the threshold value of 20,
the environment is saturated.

4 ANALYSE ALGORITHMS
The following section describes the individual analysis
algorithms. Since the total number of algorithms is thir-
teen, they are only briefly discussed and not considered
in detail. However, due to relatively simple procedures,
these are easy to understand. Every algorithm gets as
an input image a RGB, HSV or grayscale image and re-
turns a binary mask. This mask separates the drivable
from the non-drivable parts of the image. All following
functions are named by their general idea.

4.1 Normal Road and Dirt Road
In the first part, we describe the analyses algorithms,
which we use for the detection of normal and dirt roads.

Blur and Contours Detection
The algorithm BlurAndContours is a method to detect
roads within a natural environment. After the image has
been blurred, a contour recognition is performed. The
result is then converted into a polygon. Figure 8 shows
the processing steps. The blurring of the image elim-
inates fine structures that are common in forest roads,
caused for example by fallen leaves. As a result, larger
structures are detected during the following contour de-
tection.

The contour detection is performed using the integrated
OpenCV function. The necessary threshold value is
determined iteratively. For this purpose, the contour

Figure 8: Algorithm Blur and Contours: Input (1),
greyscale image (2), greyscale image after bluring (3),
mask (4), mask without holes (5), fitted Polygon(6)

recognition is carried out until the suspected path at the
top has a width of more than 75 pixels, the last thresh-
old is accepted. The result is usually a large contour,
where the narrowest point is the upper edge of the path.
After this, we produce a polygon, which starts on two
pre-defined origin points in front of the vehicle and ends
in this point. The inner of this polygon represents the
returned mask.

Equalize Saturation
The Equalize Saturation analysis method is based on
changing the saturation values in the HSV color space
and comparing the before and after RGB images. At
first a histogram equalization in the saturation channel
is done. In the histogram equalization process, the color
values of a single channel (here saturation) are stretched
so that they fill the entire range (0..255), as Figure 9
shows.

Figure 9: Saturation Histogram Equalization

Subsequently, a comparison of the blue and saturation
channels is performed before and after the saturation
equalization. Figure 10 shows the differences. In order
to decide whether the difference images can be used for
a road detection, we calculate the mean difference val-
ues in the road and both environment rectangles for the
blue color channel. If the changes on the road are above
a threshold and the ratio between road and environment
changes is very low, the image is rejected, because the
differences are not high enough. After the blue channel,
the same process is repeated for the saturation channel
and both results are added. Figure 11 gives a complete
overview of the algorithm.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

81 ISBN 978-80-86943-40-4

Figure 10: Differences before and after saturation
equalization in blue (left) and saturation(right)-channel

Figure 11: Equalize Saturation: Input(1), blue channel
result(2), saturation channel result (3), final result(4).

Polygon Fitting
The polygon fitting method (see Figure 12) offers a very
simple and fast, but often well-working way to recog-
nize the road. Here the mask is represented by a poly-
gon whose lower vertices are defined by the street rect-
angle and upper one by a simple procedure. The re-
sult of the algorithm is a mask into which a trapezoid is
drawn. The trapezoid is determined by the two bottom
and two top points. The two lower points are calculated
using an auxiliary point in the center of the street rect-
angle, where a constant value is added to both sides.
For the top points, another upper auxiliary point is re-
quired whose X coordinate determines the image col-
umn with the highest sum of color values and Y co-
ordinate the image line with the smallest sum of color
values as shown in Equation 2 and 3. In order to de-
fine two upper points for the trapezoid, here as well as
at the lower points, a constant value is added to the left
and right point.

Px = x, with max(
height

∑
y=1

(Iblue
xy)),x ∈ {1, ..,width} (2)

Py = y, with min(
width

∑
x=1

(Iblue
xy)),y ∈ {1, ..,height} (3)

Histogram Back Projection
The Histogram Back Projection is a very simple
method, which is working on a single channel. The

Figure 12: Polygon Fitting: Input(left), Resulting Poly-
gon with auxiliary points(right).

color values inside the road rectangle are stored. All
image pixels are compared with this list. If the current
value is listed, the pixel is marked as road, otherwise
as environment. Before the execution, a pre-test is
made on the road rectangle. The distance between the
maximum and minimum pixel value has to be lower
than a given threshold of 100. Figure 13 shows an
example. An alternative method of this function uses
the values in the range between the minimum and
maximum value in the road values and not only the
exact values.

Figure 13: Histogram Back Projection: Input (with
road rectangle)(1), Blue channel result (2), Green chan-
nel result (3), Val channel result (4).

Template Matching
The template matching method uses the standard
OpenCV algorithm. As template area, we use the road
rectangle. The following correlation function is used
for the template matching process.

Rccorr(x,y) = ∑([T (x′,y′)∗ I(x+ x′,y+ y′)]2) (4)

As result we get a 2-dimensional matrix, with the values
of the match, like the third image in Figure 14 shows.
To separate the drivable and non-drivable part, a thresh-
old is needed. We calculate this one from the matrix
values in the road rectangle as follows

threshold = minVal− meanVal−minVal
2

(5)

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

82 ISBN 978-80-86943-40-4

After a binarization of the matrix based on this thresh-
old the resulting image is generated.

Figure 14: Template Matching:Input(1), Template(2),
Template Matching Matrix(3), Result(4).

Region Growing

In a region growing procedure all neighboring points
(starting from an initial point) whose colors are within
a certain tolerance are marked. In our case, the initial
point is in the middle of the road rectangle. As de-
scribed above, the method sounds quite simple. The
challenge is to determine the tolerance values. The eas-
iest way to allow the whole color range within the street
rectangle mostly misses. This is because even small
disturbances, such as leaves, extend the color space too
much. To solve this problem we calculated a histogram
of the street rectangle and used only the values in the
second and third quartile, as shown green highlighted
in Figure 15.

Figure 15: Region Growing: Input with drawn road
rectangle(left), histogram and quartile (right).

Before the region growing process, the interquartile
range is checked against a threshold. If it is higher than
30, the image is rejected. Figure 16 shows the complete
algorithm, which is very well working on normal roads.
After the region growing, we eliminate holes in the re-
sulting mask by walking through the lines and selecting
the first and last pixel greater than zero.

Increase Saturation

Here we use, similar to the Equalize Saturation method,
the difference in the RGB color space before and after

Figure 16: Region Growing: Input(1), Mask after Re-
gion Growing(2), Hole Elimination (3), Final Result
(4).

a saturation increase. In the RGB color space, differ-
ences of the environment are higher than on the street.
In contrast to the Equalize Histogram version, a fac-
tor for the saturation enhancement is determined in this
method. This is done iterative by increasing the fac-
tor and comparing the average blue values in the road
and environment rectangles until they differ clearly. We
found 50 as a good working threshold.

In order to determine the bounds for the comparison,
the average change in the road rectangle and the max-
imum change downwards and upwards between the
original and higher saturated image are calculated. road
means the road rectangle:

di f f Low = min(Iorig
x,y − IhighSat

x,y), (x,y) ∈ road (6)

di f f High = max(Iorig
x,y − IhighSat

x,y), (x,y) ∈ road (7)

meanDi f f =
1
n ∑(Iorig

x,y − IhighSat
x,y), (x,y) ∈ road (8)

We found the following dynamic threshold values as a
good choice for the bounds.

low = |(|meanDi f f |− |di f f Low|)| ∗0.5 (9)

high = |(|meanDi f f |− |di f f High|)| ∗0.5 (10)

Based on the lower and upper limits, the original im-
age is compared with the higher saturated one. If the
color values are within the limits, the point is marked as
road, otherwise as environment. An Example is shown
in Figure 17. To improve the result we only use parts
connected to the road rectangle.

Simple Method Function
This method is a very simple and fast but good method
for road detection. It is based on a comparison of all

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

83 ISBN 978-80-86943-40-4

Figure 17: Increase Saturation: Input(1), increased sat-
uration(2), difference between 1 and 2 (3), Final Result
(4).

pixel values with a threshold. The first version is work-
ing in RGB color space with the blue channel. We cal-
culate the minimum, maximum and mean blue values in
the road rectangle of the image. Based on these values
a threshold is determined as follows

thrblue =
maxblue +3∗minblue +meanblue

5
(11)

Pixel values greater than this threshold will be selected
as road, lower or equal as environment. An analogue
function can be applied in HSV color space for the sat-
uration and value channel. Here we use the average
values of both environment rectangles for the threshold
generation.

thresholdsat =
maxsat +2∗meansat

3
(12)

thresholdval = minval (13)

An example in the HSV-Color space is shown in Fig-
ure 18. Furthermore, all three simple functions perform
a pre-test based on the comparison between road and
environment rectangle to reject images.

Roadside Detector
The Roadside detector method searches the two road-
sides to differentiate the road from the environment.
Figure 19 shows the procedure. Beginning from a start
point (center of the road rectangle), we follow scan-
lines and try to find the border. In order to detect it,
we are going through each scanline and compare the
mean color value in a rectangle with the color value at
the starting point. This is shown for a single and for
all scanlines in parts two and three of the Figure. The
angles of the scanlines are calculated using the follow-
ing angular step function. From the roadside points de-
termined this way, a polygon is then assembled which
indicates the road.

αi+1 = αi +(10◦−|sin(2∗αi| ∗αstep/2) (14)

Figure 18: Simple Method Functions: Input satura-
tion(1), Input Value(2), Result saturation (3), Result
Value (4).

Figure 19: Roadside Detector: Scanline scheme(1),
Single Scanline(2), Detected Roadside (3), Final Result
(4).

4.2 Dirt Road with Tracks
Next to the previously mentioned roads, we developed
special functions for the detection of dirt roads with
tracks. At first, we developed a method to detect if
tracks in a dirt road are present. The tracks are searched
based on a horizontal baseline defined by the position of
the road rectangle. This can be seen on the left in Fig-
ure 20. Rectangles are now formed on this line, within
which the average color values (saturation and blue) are
calculated and stored. Subsequently, starting from the
middle point, the right and left rectangles are gradually
compared with each other. If the saturation subsides,
i.e. the green area in the middle has been exceeded and
the color values of the rectangles match, these two de-
termine the path tracks. In addition to the statement as
to whether tracks are present, the function supplies one
point each within the right and left track.

For the detection of dirt roads with tracks, we mostly
adapted the previously used functions to this special

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

84 ISBN 978-80-86943-40-4

Figure 20: Find Tracks: Horizontal Scanline (1), De-
tected Tracks (2).

case. Thus, the basic idea is not new and we will only
describe these new algorithms brief.

Follow Tracks

The core of the algorithm provides the functionality to
follow a track from a given starting point. For this,
we compare the color values inside rectangles (cells) as
shown in Figure 21. The color values used are the mean
values in the saturation, blue, green and red channel.

meanch =
1
n ∑(Ich(x,y)), (x,y) ∈ cell (15)

We try to find the best fitting cell in the next horizontal
line. It starts with a cell drawn around the starting point
and continues recursively until the color values differ
too much (difference in two channels is more than 20).
For the comparison, we calculate the following metric
for each cell

di f f i = 2∗meani
sat +2∗meani

blue+meani
green+meani

red
(16)

Figure 21: Follow Tracks: Detected Tracks(1), Final
Result(2).

Other Track Detection Functions

All other track detection methods are adapted versions
of already existing functions and will only be listed
and explained within a few sentences. We extended
the roadside detection for tracks by running the origin
analysis method twice, once in the right and once in
the left track. For the result, a polygon with respec-
tive outer points is drawn. In the case of the histogram
back projection, the reference values can be calculated
from rectangles in each of the two tracks instead of the
road rectangle, as Figure 22 shows. With the help of the

Figure 22: Histogram Back Projection Tracks: De-
tected Track Startpoints(1), Left and Right Tracks(2),
connected mask(3), Final Result(4).

highest points in the individual tracks, a mask can now
be generated which describes the road.

Analog to the Histogram Backprojection we adapted
the template Matching and both Simple method func-
tions with two seeding rectangles inside the tracks.

4.3 Evaluation Function
As already described in the last sections, some of
the analysis functions detect in an additional pre-test
whether the input image is suitable for the implemented
method. Generally, we make a plausible test with the
resulting mask for all algorithms. For this purpose,
several conditions are checked and a scoring with a
value between 0 and 100 is done. At first, we check
the coverage of the rectangle in the mask. The road
rectangle should be covered at least with 25 percent
and the environment rectangles with a maximum of 20
percent. If one of these conditions fails, we devalue the
score for this mask. The same if the whole mask (more
than 95 percent) is covered.

4.4 Algorithm Selection
We made many tests with our dataset to generate a ma-
trix, in which we assign the algorithms to the road and
environment types. Some algorithms can be used with
RGB or HSV input images, others only with single
channels. Thus, the matrix in the following Figure 23
lists also the possible input data and provides as a result
a lookup table for which method can be used in which
conditions.

As can be seen in the matrix, a larger amount of anal-
ysis algorithms is available for the different road types.
As already shown in the flow chart in Figure 4, the indi-
vidual analysis algorithms are executed in parallel and
the result masks are combined into a total result. A re-
sulting image built with six algorithms is shown in Fig-
ure 24 with a simple implemented point structure for

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

85 ISBN 978-80-86943-40-4

n
o

rm
a

lr
o

a
d

n
o

rm
a

lr
o

a
d

,
sa

t.
E

n
v

d
irt

ro
a

d

d
irt

ro
a

d
sa

t.
E

n
v

d
irt

ro
a

d
sa

t.
tr

a
ck

s

Simple Method RGB RGB,HSV RGB,HSV RGB,HSV
Region Growing RGB,B B,S RGB,B B,S
Road Border Detection B B,S B B,S
Polygon Fitting RGB RGB RGB RGB RGB
Hist. Back Projection B B B B,S
Blur and Contours RGB RGB RGB RGB
Equalize Saturation RGB RGB
Increase Saturation RGB RGB
Track Algorithms x

Figure 23: Analysis algorithm matrix.

Figure 24: Total Result: pseudo-colored(1), path point
structure(2).

the path description. The evaluation function returns a
quality value after each analysis method. If the number
of algorithms is restricted, only the best n methods of
the previous run will be used. Since the rating is con-
tinuous, the used algorithms can change with each new
input image. This ensures that only those methods are
used that have proven themselves in past images. With
the help of this option and the number of threads, it is
now possible to adapt the complete software system to
the processing power of the hardware.

In our software we describe the resulting road with a
path-point structure, as shown in Figure 24 on the right.
This structure is simply created on the total result mask
of all analysis algorithms. To build the point structure,
the algorithms walks, starting in the middle of the road
rectangle, vertically and determines the width of the
road in the total mask. Thus a path is generated where
the points lie in the middle of the road.

5 EXPERIMENTAL RESULTS
In this section, we will verify the result of the analysis
algorithms with the test dataset. In a first step, it makes
sense to compare the resulting mask with the manually
created ground truth mask. This comparison evaluates
how many points are covered in the ground truth mask
and how many additional ones are outside. The two
values are given here in percent. So they reflect what
percentage of the road was detected and what percent-
age of the environment was falsely classified as road.

The sole comparison of the mask values as described
above would not be enough, because some algorithms

(for example Simple Method Functions), usually gener-
ate road-pixels outside of the ground-truth mask. Since
they occur only sporadically, these are not significant
in the generation of the road point structure. Therefore,
the main idea of how well the analysis worked can be
best determined by the positions of the road points. So
we compare the road structure generated on the ground
truth mask with the one on the algorithm result mask
and calculate the mean and maximum deviation (in pix-
els).
Our observation showed, that with an average differ-
ence of less than 85 pixels the result is useful and de-
scribes the path well. If the difference is higher, the
result will be worse or unusable. If more road points
are detected in one structure than in the other, we de-
valuate the result. In our evaluation we combined every
analysis algorithm with every possible input data (RGB,
HSV, red, blue, ...) and interpreted the results. Based
on these informations we created the matrix in Figure
23.
In Figure 25 we show one plot as an example. Here it is
the algorithm Histogram Back Projection with the blue
channel as input data in a short 275 images sequence.
At the beginning, the robot was heading towards a wall
so that there was nothing to detect. The top plot shows,
that during the drive in the later image sequence, the
algorithm detects mostly more than 90 percent of the
road (green graph). Nevertheless, there are also wrong
detections outside the ground truth mask, but they are
mostly low (blue graph). On the bottom of the Figure
we compared the road point structure created from the
algorithms result mask against the one from the ground
truth mask. The mean deviation is drawn in red and
the maximum (per point) in orange. Additionally there
is a line at 85px. This represents the above mentioned
border for useful path detections. Between image 200
and the end of the sequence the algorithm gets problems
to detect the road. This can be seen by the graphs on the
top. In most of these cases the mask evaluation function
detected that the images are not suitable. Thus, we rated
the deviation in the road point structure as -10, because
our software was able to detect, that one function is not
working and rejected the image instead of delivering
wrong results.
All in all, using a variety of algorithms can cover a wide
range of possible mobile robot operating areas. Roads
are reliably recognized. Nevertheless, in some parts of
the test data the detection unfortunately does not work
satisfactorily with any of the algorithms. It is note-
worthy, however, that the software detects this and thus
does not provide any false results.

5.1 Runtime
An important goal in the implementation was the real-
time capability of the software. We determined the run-
time for each analysis algorithm on a single core with

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

86 ISBN 978-80-86943-40-4

0 50 100 150 200 250
0

50

100
O

ut
si

de
 (%

)

0

50

100

In
si

de
 (%

)

0 50 100 150 200 250
Image

0
50

100
150
200
250
300
350
400

m
ax

 d
ev

ia
tio

n
(p

x)

0
50
100
150
200
250
300
350
400

ø
de

vi
at

io
n

(p
x)

Figure 25: Evaluation of a single analysis algorithm.

the complete image set. The measurement was done on
an AMD 635 X4 CPU and a 32-bit Linux operating sys-
tem. Current high-end CPUs have about ten times the
power. The runtimes of the individual algorithms are
shown in Figure 26. The short runtime of the template
matching is caused on the OpenCV multi-core imple-
mentation.

Blur and Contours

Increase Saturation

Equalize Saturation

Region Growing (3C)

Template Matching Tracks

Region Growing (1C)

Track Following

d Border Detection Tracks

Hist Back Projection

Template Matching Tracks

Polygon Fitting

Road Border Detection

Simple Method

0 50 100 150 200 250 300 350
time (ms)

Figure 26: Runtimes of the analysis algorithms.

6 CONCLUSION
In this paper, we presented a software that can per-
form real-time path detection in different terrains based
on monocular camera images using simple algorithms.
The results have been obtained and validated with the
help of a large test and ground truth dataset. Our soft-
ware system can be adapted to the available comput-
ing resources by an intelligent scheduler, so that it can
also be used on low power machines like ARM and no
high-end machine is needed. Because of the required
real-time capability, more complex approaches to path
recognition were not pursued. In a further step, the aux-
iliary rectangles should be determined dynamically us-
ing 3D sensors. For example, a lidar scanner detects
the drivable area in front of the vehicle with the spatial
information. This road area is now used as a reference
for the camera-based path recognition. With his exten-
sion, we plan to test the system for autonomous driving
with our robot. In addition, the algorithms are to be

tested with image data sets of other authors and com-
pared with their results.

7 REFERENCES
[1] Y. Alon, A. Ferencz, and A. Shashua. Off-road path

following using region classification and geometric
projection constraints. 2012 IEEE Conference on
Computer Vision and Pattern Recognition, 1:689–
696, 2006.

[2] A. Angelova, L. Matthies, D. Helmick, and P. Per-
ona. Fast terrain classification using variable-length
representation for autonomous navigation. In Com-
puter Vision and Pattern Recognition, 2007. CVPR
’07. IEEE Conference on, pages 1 –8, june 2007.

[3] A. Broggi, C. Caraffi, S. Cattani, and R. Fedriga.
A decision network based frame-work for visual
off-road path detection problem. In Intelligent
Transportation Systems Conference, 2006. ITSC
’06. IEEE, pages 951 –956, 2006.

[4] A. Broggi, C. Caraffi, R. Fedriga, and P. Grisleri.
Obstacle detection with stereo vision for off-road
vehicle navigation. In Computer Vision and Pattern
Recognition - Workshops, 2005. CVPR Workshops.
IEEE Computer Society Conference on, page 65,
june 2005.

[5] S. Cattani, P. Medici, and G. Vezzoni. Path detec-
tion system for autonomous off-road navigation.

[6] H. Kong, J.-Y. Audibert, and J. Ponce. General
road detection from a single image. Image Pro-
cessing, IEEE Transactions on, 19(8):2211 –2220,
aug. 2010.

[7] R. Manduchi, A. Castano, A. Talukder, and
L. Matthies. Obstacle detection and terrain classifi-
cation for autonomous off-road navigation. Auton.
Robots, 18(1):81–102, Jan. 2005.

[8] A. Nefian and G. Bradski. Detection of drivable
corridors for off-road autonomous navigation. In
Image Processing, 2006 IEEE International Con-
ference on, pages 3025 –3028, oct. 2006.

[9] P. Vernaza, B. Taskar, and D. Lee. Online, self-
supervised terrain classification via discrimina-
tively trained submodular markov random fields.
In Robotics and Automation, 2008. ICRA 2008.
IEEE International Conference on, pages 2750 –
2757, may 2008.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

87 ISBN 978-80-86943-40-4

Markerless Structure-based Multi-sensor Calibration for
Free Viewpoint Video Capture

Alexandros Papachristou Nikolaos Zioulis Dimitrios Zarpalas Petros Daras
Information Technologies Institute, Centre for Research and Technology - Hellas

papachra@iti.gr nzioulis@iti.gr zarpalas@iti.gr daras@iti.gr

ABSTRACT
Free-viewpoint capture technologies have recently started demonstrating impressive results. Being able to capture
human performances in full 3D is a very promising technology for a variety of applications. However, the setup
of the capturing infrastructure is usually expensive and requires trained personnel. In this work we focus on one
practical aspect of setting up a free-viewpoint capturing system, the spatial alignment of the sensors. Our work aims
at simplifying the external calibration process that typically requires significant human intervention and technical
knowledge. Our method uses an easy to assemble structure and unlike similar works, does not rely on markers or
features. Instead, we exploit the a-priori knowledge of the structure’s geometry to establish correspondences for
the little-overlapping viewpoints typically found in free-viewpoint capture setups. These establish an initial sparse
alignment that is then densely optimized. At the same time, our pipeline improves the robustness to assembly
errors, allowing for non-technical users to calibrate multi-sensor setups. Our results showcase the feasibility of our
approach that can make the tedious calibration process easier, and less error-prone.

Keywords
Spatial Alignment, External Multi-Sensor Calibration, Semantic Segmentation, Free-viewpoint Capture, RGBD

1 INTRODUCTION
Capturing the complete appearance of real people and
general scenes has matured and attracted much interest
lately. Be it either offline for high quality free view-
point video [Ye13] and streamable 3D content [Col15],
or in real-time for tele-presence [Esc16, Bec13] and
tele-immersion [Zio16] scenarios, it can open up the
potential for new immersive experiences in a variety of
applications like gaming [Zio16] or remote interactions
[Esc16, Bec13].

The backbone of these new experiences is the acqui-
sition of a full 3D representation of general scenes or
performances. While a variety of single sensor meth-
ods exist, some focusing only on geometry informa-
tion [New15, Inn16, Zol14], and others also produc-
ing fully textured outputs [Guo17, Cao17], truly im-
mersive experiences can only be facilitated by complete
360o captures via multi-sensor systems. These systems
present with both high-quality but expensive solutions
[Dou16, Dou17], as well as lower cost ones [Ale17].
Either option utilizes color and depth (RGB-D) infor-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

mation acquired from multiple viewpoints that are spa-
tially aligned, or otherwise externally calibrated, to a
common coordinate system. Therefore, this external
calibration step is a necessity for all performance cap-
ture methods alike.
However, multi-sensor calibration is typically a com-
plex procedure that requires trained users, a require-
ment that inhibits the applicability of this technology
to the consumer public. The complexity arises from
the fact that most methods require capturing a calibra-
tion object in numerous poses into the captured area
[Bec15, Bec17, Fur13, For17], and in some cases this
is also performed in a sensor pairwise manner [Hei97].
Some recent methods utilize a static calibration struc-
ture to spatially align all viewpoints. In [Col15], cali-
brating a large amount of cameras is accomplished by
using a very complex octagonal tower. There also exist
lower complexity structures for setups with less sensors
[Kow15, Ale17]. These structure-based multi-sensor
calibration methods are more suitable for non-technical
users as they require minimal human intervention apart
from assembling the structure.
In this work, we lift the requirement of using markers or
patterns when utilizing a known structure for calibrat-
ing multiple RGB-D sensors. Our main contribution
is a correspondence identification step that requires no
feature extraction or marker identification. We exploit
only the structure’s geometrical semantics and segment
input depth maps into labeled regions. Therefore, lift-
ing the requirement of markers or patterns, our pro-

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

88 ISBN 978-80-86943-40-4
https://doi.org/10.24132/CSRN.2018.2801.10

posed method does not require color input and operates
on a markerless basis.

In the remainder of the paper we review related work in
Section 2 and present our method in detail in Section 3.
Then, in Section 4 a detailed evaluation follows, with a
concluding discussion presented in Section 5.

2 RELATED WORK
Precise spatial alignment of multi-sensor 3D capturing
systems is essential for the creation of realistic 3D hu-
man models and assets. Preliminary methods relied
only on distributed RGB cameras and were based on the
simultaneous capture of a planar rigid printed checker-
board with known dimensions from at least 2 cameras
[Hei97, Zha00]. This technique, which is typically used
for stereo calibration, is the de facto method to esti-
mate the intrinsics parameters along with the relative
pose between neighboring cameras. Despite producing
high accuracy results, it requires great effort from the
user because the printed checkerboard must be slowly
moved and (re-)positioned inside the capturing area. In
addition, it also requires knowledge of the technical de-
tails behind the calibration process to avoid hard-to-
detect checkerboard poses and partial views. Further-
more, it requires hardware synchronized sensors or oth-
erwise, a precise synchronization step for all cameras
should precede. Furthermore, the solution is anchored
on a selected reference camera as it is not possible to
transform all viewpoints to a common global coordinate
system. In systems composed of more than 2 sensors,
a potential erroneous estimation could be accumulated
during the aggregation of relative transformations.

To address the aforementioned limitation, state-of-the-
art systems based on the same checkerboard pattern,
have incorporated additional optical tracking systems
[Bec15, Bec17] or IMU sensors [Fur13]. These alterna-
tive methods rely heavily on the tracking systems which
are mainly responsible to track the checkerboard’s loca-
tion and define the global coordinate system. Nonethe-
less, tracking systems require special technical knowl-
edge to mount and operate. Moreover, capturing of
the moving checkerboard still requires human interven-
tion, which potentially introduces errors. Further, tem-
poral alignment of the sensors is also needed to syn-
chronously capture the input images. Another asso-
ciated challenge is the motion blur introduced by the
moving checkerboard that can deteriorate the calibra-
tion’s overall performance.

Specifically for RGB-D sensors, some methods ex-
ploit the availability of depth measurements as well
as the color information to detect a set of 2D features
[Low04, Bay08, Rub11, Alc11] within the capturing
area, which can then be converted to 3D points using
the depth data. When matched between neighboring
viewpoints 3D-to-3D correspondences are established

[Dou14], that are used to estimate the relative pose be-
tween the sensors. Several works have attempted to en-
rich the capturing area with features or markers placed
on a structure to establish robust 3D correspondences
[Ale17, Kow15, Kai12]. Using a common structure of-
fers the advantage of avoiding pairwise calibration and
instead, spatially aligns all sensors onto the same coor-
dinate system directly.

However, establishing only sparse correspondences
based on detected 2D features or markers is frequently
prone to errors due to measurement inaccuracies. To
overcome this, dense alignment methods are used that
exploit the overlap between viewpoints. Albeit, these
still require a rough initial alignment that is given
by sparse feature correspondences. Dense methods
are usually developed using a variant of the Itera-
tive Closest Point (ICP) algorithm [Kow15, Kin05],
graph-based optimization [Ihr04] or bundle adjustment
[Van17]. A comprehensive review of refinement
methods can be found in [Pom13]. In a similar fashion,
other approaches densely estimate the viewpoints of
spatially distributed sensors by initially detecting lines
and planes [Den14, Owe15, Xu17]. This is succeeded
by a post-refinement step to find a globally optimal
solution. More recently, a color-based object was
utilized and tracked to simultaneously align multiple
RGB-D sensors both in the spatial and temporal
domain [For17]. It still remains though, a complex
process that requires a user to move the object within
the scene.

While machine learning algorithms are now abundantly
used in various computer vision tasks due to their high
performance, they have found little use in calibration
tasks. They have been mostly used in localization tasks
utilizing decision trees on pure color [Sho13] or RGB-
D [Bra14, Bra16] information. Similarly, deep learn-
ing variants of these methods have emerged [Ken15,
Zam16, Mel17, Nak17, Poi16]. Despite having dis-
played promising initial results, their accuracy and ro-
bustness have not been put to the test of multi-sensor
alignment in order to demonstrate their applicability to
this specific problem.

3 MARKERLESS STRUCTURE-
BASED SPATIAL ALIGNMENT

Our goal is to perform a multi-sensor extrinsic calibra-
tion aiming to spatially align the generated point clouds
into a common, global, coordinate system. We rely on
an easy to deploy calibration structure that is assem-
bled by four equally sized boxes, and more specifically,
low-cost commercially available packaging boxes. This
approach requires minimal human intervention and is
inspired by [Ale17]. Unlike the structure assembled in
[Ale17] though, we opt for a simpler assembly process
where the boxes are positioned on top of each other,

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

89 ISBN 978-80-86943-40-4

Figure 1: Left: The symmetric calibration structure
used in [Ale17]. Middle: Our asymmetric structure
with its corresponding semantic labels per face (Right).
Instead of aligning the boxes on top of each other us-
ing their diagonals, they are now snapping on their top
sides’ corners, following a 90◦ rotational pattern.

while using their side corners instead of their diagonals
to snap each box with the one placed on top of it. Fig. 1
showcases the structure of [Ale17], as well as our mod-
ified assembly. Another advantage associated to this
modification is that the structure is now fully asymmet-
ric, compared to the previous symmetric (i.e. mirrored)
assembly. The calibration structure serves as a spatial
anchor as all sensor viewpoints’ relative pose to its co-
ordinate system (depicted in Fig. 1) will be estimated.
This simplifies the calibration process as it removes the
necessity of complex pairwise alignments.

Our approach differs from similar approaches that uti-
lize boxes [Kow15] or structures [Ale17], as it does not
rely on feature extraction or marker detection. Instead,
our correspondence estimation is only reliant on the
structure’s geometry, as observed by the depth sensor.
We exploit the a-priori knowledge related to the struc-
ture’s shape by training a Fully Convolutional Network
(FCN) [Lon15] to identify the structure’s boxes’ sides.
In this way, we perform an initial viewpoint estimation
which we then densely refine via a global optimization.

3.1 Semantic Correspondences
Given the now asymmetric geometry, we assign a
unique label to each distinct box side and train an FCN
for a dense classification task that aims to identify each
side in an input depth image. The updated structure’s
asymmetry allows for easier learning of unique feature
descriptors for each viewing direction and is free of
any ambiguities that would arise from a symmetric
one. The multi-view spatial alignment process can
potentially involve a very wide variety of different
captured depth data as it involves the full 6 DOF of
both the structure and sensor. Training an FCN means
we don’t have to rely on hand-crafted features or
a customized methodology. Training a network for
the task of labeling each side, given the numerous
possible poses that a sensor can observe the structure,
requires a very large dataset. We circumvent the
difficult task of manually labeling such a large dataset

Figure 2: Pose generation process. The range limits of
each parameter in equation (1) used to sample/generate
the poses are visually presented, showcasing the possi-
ble sensor positions around the calibration structure.

by synthesizing it. This is accomplished by building
a virtual model replica of the calibration structure
using the boxes’ known dimensions. Nonetheless,
creating such a dataset requires a very large amount of
storage. Therefore, we chose to simply generate the
depth images and labels on-the-fly, using the graphics
pipeline to render our data and simulate realistic depth
data capturing conditions.

Pose Generation: The structure’s coordinate system,
and therefore the global coordinate system that all sen-
sors’ data will be transformed to, resides on the virtual
structure’s origin as shown in Fig. 1. Each sensor i’th
pose [R|t]i ∈ SE3 with respect to the structure, con-
sists of a rotation Ri ∈ SO3 and translation ti ∈ R3. To
generate a large amount of poses we sample positions
ti = (t i

x, t
i
y, t

i
z) in a circular pattern around the structure

looking towards its origin. We use a cylindrical coor-
dinates sampling (ρ,θ ,z) for the position of each sam-
pled viewpoint, omitting the superscripts i for the re-
mainder of this section. A free viewpoint capture setup
requires its sensors to look inwards towards its captur-
ing space’s center. In our case, this resides on the struc-
ture’s center position, i.e. the global coordinate frame’s
origin. Therefore, the poses’ rotations R are set to look
at (0,0,0). In practice, though, one cannot achieve such
an accurate positioning of the sensor. To compensate
for this, we compose additional rotational perturbations
ρx and ρy to each sampled viewpoint, to further aug-
ment the variety of sampled poses and capture realistic
positioning conditions. These are rotations around the
x and y axis respectively, which essentially represent
the sensor’s pan(right/left) and tilt(up/down) rotations
as shown in Fig. 2. For each of these variables we
generate discrete samples from a uniform distribution
U(a,b,c) at the interval [a,b] in steps of c units:

θ
α∼ U(α−10◦,α +10◦,2.5◦),
z∼ U(0.28m,0.68m,0.02m),

ρ ∼ U(2.0m,2.5m,0.02m),

ρx ∼ U(−10◦,10◦,2.5◦),
ρy ∼ U(−3◦,3◦,3◦).

(1)

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

90 ISBN 978-80-86943-40-4

where α = {45◦,135◦,225◦,315◦}. The bounds for
range ρ and height z, confine the viewpoint within the
limits of fully capturing a human subject given a rea-
sonable vertical field of view. In addition, the sensor
originated rotations ρx and ρy, are set in a range of val-
ues that are reasonable to position the captured subject
close to the sensor’s center. Regarding the distribution
of the viewpoints around the structure as offered by the
cylindrical angle θ , we restrict it around specific 90◦

intervals, thus focusing only on the case of 4 viewpoint
capture. The 4 sensor case is the most optimal solu-
tion in terms of cost against quality when aiming for
full 360◦ coverage with the least amount of sensors. By
considering an approximate positioning of the sensors
around the structure, offered by the selected range of
θ angles, we add a restriction in order to decrease the
number of input poses and increase the robustness of
our predictions. This restriction is a structure place-
ment guideline: "to have the sides of all boxes looking
in between of two sensors", as illustrated in Fig. 2. The
same figure also presents the aforementioned sampling
spaces, as well as the relative to the structure position-
ing of the sensor poses that are generated for creating
the training data. We generate a total of N = 530712
poses [R|t].
Data Generation: The on-the-fly data generation pro-
cess takes as input the 3D virtual model which is de-
composed into parts, each part being one side of each
box comprising the structure. We generate N samples
using the poses [R|t] to position the virtual camera and
render the model, acquiring the generated z-buffer as
the input data depth map D(u,v). Each part is also as-
signed a unique label for a total of 25 distinct labels, six
sides for each box plus the background. Each labeled
part is rendered with a unique color. By also acquiring
the swapped color buffer we obtain the ground truth per
pixel labeled image L(u,v). To simulate more realis-
tic input, we add noise on the rendered depth map ran-
domly choosing the noise function for each sample. We
use a noise model better suited for disparity based depth
maps (e.g. structured light) as presented in [Bar13] as
well as a random noise simulation scaled with the depth
value of each pixel:

Dn(u,v)= sign(U(−1,1))∗D(u,v)∗σd ∗(1−e
−U(0,1)2)

2)
(2)

where Dn and D are the noisy and rendered depth
maps respectively, U denote random uniform distribu-
tions, and σd is a depth scaling factor. In addition,
we composite the rendered model onto random back-
grounds. These are selected uniformly from various
cases: i) white noise, ii) Gaussian noise, (both scaled
appropriately to produce values within the expected
depth ranges), iii) 159 backgrounds drawn from the
database of [Was16] (selected one per 30 frames) and
iv) 326 backgrounds drawn from in-house recordings

with actual people being captured. Therefore, we aug-
ment our online generated training corpus using a mix
of noisy and real backgrounds as well as two distinct
depth noise models, with some examples presented in
the supplementary material. It should be noted that we
also generate a smaller test dataset from sensor posi-
tions not included in the train data, as a result of choos-
ing different starting values and step units in the same
ranges as those presented in (1).
Architecture: The detailed deep Fully Convolutional
Network (FCN) configuration and architecture used is
presented in Figure 3 (Left). It comprises of a multi-
layer convolution and a symmetric deconvolution net-
work. The first part learns to extract various features
from the input depth map, while the second learns to
produce the semantic segmentation of the input into its
distinct labels, i.e. box sides, out of the extracted fea-
tures. The final densely predicted labels are computed
out of a probability feature vector of size equal to the
amount of labels (25) for each pixel, which constitutes
the output of our network that is estimated via a soft-
max function. The resulting prediction map matches
the resolution of the input depth map, as while the con-
volution part reduces the size of the activations, the fol-
lowing deconvolution part enlarges them back to their
original size.
Correspondence Establishment: After segmenting
the depth map into regions that correspond to each
distinct box’s sides, we can use this semantic informa-
tion to establish correspondences between the acquired
depth map and the virtual structure model. Initially, we
discard the regions labeled as background or the box
sides that are facing upwards/downwards. Then, for
each remaining segmented region L, we back-project
all depth map pixels to 3D (in the sensor’s local coordi-
nate system), and extract their median 3D position mL.
Small area labeled regions are heuristically discarded
when containing less than n elements. The 3D point
mL corresponds to the labeled box’s rectangular side
center point and therefore, we can establish a corre-
spondence in 3D with the known point’s coordinates
in the asymmetric structure’s virtual model. This 3D
correspondence establishment is illustrated in Fig.
3 (Right), where the matching of the corresponding
median points between two real views and the virtual
structure model is presented.

3.2 Global Spatial Alignment
Given the 3D-to-3D correspondences as an input, we
determine an initial alignment of all viewpoints by us-
ing the generalized Procrustes analysis [Ken05]. For
each viewpoint s we obtain its pose Ps with respect to
the global coordinate system that is originated in the
structure’s virtual model. However, this initial view-
point estimation may often present slight errors as a re-
sult of the sparseness or inaccuracy of correspondences

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

91 ISBN 978-80-86943-40-4

Figure 3: Left: The architecture of our semantic segmentation FCN. Having a single depth image as an input,
it segments and densely classifies it in order to identify the per-pixel labels of the observed calibration structure.
Right: Correspondences are established by extracting the 3D medians of the detected labeled regions. These
3D points are then matched against the midpoints of their corresponding virtual structure’s box sides to establish
3D-to-3D correspondences. (best viewed in color)

used. This will lead to a visible drop of quality for the
produced / captured content. Another reason for inac-
curate correspondences is the possibility of an imper-
fect assembling of the structure, which is more typical
when using markers (misplacement) or features (impre-
cise localization). Thereby, a second step is needed
to refine the initial viewpoint estimations by densely
aligning the point clouds of adjacent sensors. Instead of
a simple pairwise optimization, we solve for an optimal
global solution using all viewpoints simultaneously. We
use a graph-based optimization where the spatial rela-
tionships between the sensor set S are represented by a
graph G = (P,E).

The nodes of the graph are the estimated poses Ps ∈ SE3

of each sensor s in the global (virtual structure) coordi-
nate system. The edges Ei j represent constraints in the
poses between the nodes i and j in the form of obser-
vations of j from node i. These observations are es-
tablished as correspondences Pivi↔ P jv j with v ∈ R3

being a point in the sensor’s local coordinate system.
These correspondences are acquired by nearest neigh-
bor searches between viewpoints i and j after trans-
formed to the common coordinate system. Each corre-
spondence / edge is encoded as point-to-plane distance:

Ei j = ‖(P−1
i P jv j−vi)

T ni‖2 (3)

where ni ∈R3 is the normal vector of vi. As depth maps
can be noisy around edges, in order to reduce the ef-
fect of outliers, we only establish 3D point correspon-
dences within a radius rcuto f f between adjacent sensors,
with their adjacency estimated by their initial sparse
spatial alignment. The graph-based optimization uses
the Levenberg-Marquardt method [Mar63] to solve the
underlying system, with an iterative scheme. We per-
form a fixed number of iterations while also dropping
rcuto f f after a set number of iterations. Solving for all
poses simultaneously instead of in a pairwise fashion,
we get a globally optimum solution. The refined poses
of the viewpoints effectively maximize the overlap be-
tween neighboring point clouds. Overall, this dense re-

finement step rectifies any human-related or systematic
errors and improves the quality of the spatial alignment.

4 RESULTS AND DISCUSSION
We evaluate our multi-sensor external calibration
method under a variety of 4-sensor setups all focused
on free viewpoint capture of human performances.
Consequently, the sensors are all looking inwards,
towards the center of the capturing area.

Implementation details: Our experiments are based
on the Microsoft Kinect 2.0, a Time-of-Flight RGB-D
sensor. Our semantic labeling FCN was trained on a
NVIDIA Titan X using the Caffe framework [Jia14].
We rendered the generated data using the average
Kinect intrinsics parameters (512× 424 resolution, a
366.66 focal length baseline and placed the principal
point at the depth maps center) to create the projection
matrix and trained the FCN on the full resolution
images. We train our network for 100k iterations
with an initial learning and batch size of 0.001 and
5 respectively. We increase the batch size to 15 after
50k iterations and linearly decay the learning rate with
a gamma of 0.9 every 10k and 15k iterations when
the batch size is 5 and 15 respectively. We use the
ADAM optimizer [Kin14] with its standard momentum
and epsilon parameters. The threshold for discarding
labeled regions npixel was heuristically selected to be
2000 pixels to discard potential erroneous estimations
predicted by the FCN. After training is over, our model
achieves a mean Intersection over Union (mIoU)
of 86.23% on the generated test dataset. For the
refinement step we use the g2o framework [Kum11]
for 10 iterations and initially set rcuto f f to 0.05m and
drop it to 0.01m after 5 iterations.

Data acquisition: As the data acquisition requires cap-
turing a static structure object, the process is free of
temporal synchronization or motion blur issues. We ex-
ploit this to aggregate frame information within a time
window of N frames. Thus, we obtain a median depth
map out of 30 frames capturing the static structure. The

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

92 ISBN 978-80-86943-40-4

Figure 4: Example calibration views as captured by
the color sensor. The SIFT correspondences are also
shown, as well as the marker placement for [Ale17] and
[Kow15]. SIFT features are matched against the tex-
ture applied to the virtual calibration structure model.
LiveScan3D marker detections are highlighted on the
color images.

median depth map cancels out noise and has less holes,
while also being robust to any interference between the
sensors. Further, the acquisition process requires mini-
mal human intervention which is limited to assembling
the structure near the center of the capturing area, so as
to be visible from all sensors simultaneously.

Metric: We measure the accuracy of the registration us-
ing the Rooted Mean Squared Euclidean (RMSE) dis-
tance between the closest points of overlapping areas
of adjacent point-clouds (back-projected from the cor-
responding depth maps). Given that we seek to mea-
sure how well the overlapping surfaces fit and since
the viewpoints’ overlap is limited as a result of their
90o intervals placement around the capturing space, we
only use those correspondences with distances less than
0.02m for each viewpoint pair. We calculate the RMSE
error across all adjacent viewpoint pairs for each sensor
and average the overall error.

4.1 Evaluation
We compare our method against the structure-based
method [Ale17] and "LiveScan3D" [Kow15] that is
similarly reliant on attaching markers on rigid surfaces
(i.e. boxes). For [Ale17] we utilize the publicly of-
fered markers offered that we attached on the structure
following the available instructions. This method only
performs spatial alignment based on sparse correspon-
dences. For extracting the SIFT [Low04] correspon-
dences we opt for a brute force matching strategy, in-
stead of approximate versions as we are not bounded
by timing constraints. The marker placement and fea-
ture matching process is shown in Fig. 4.

For [Kow15], we use the offered set of markers which
are used to obtain initial pose estimates. These are
then refined by a dense optimization step using pairwise

ICP. The "LiveScan3D" markers were also attached on
the same calibration structure to allow for simultaneous
comparison between all methods as shown in Fig. 4.
Markers’ positions in the structure’s (i.e. global) coor-
dinate system were calculated as they are required as in-
put by [Kow15] to drive the initial registration. For box
assemblies that are not perpendicular (e.g. the structure
of [Ale17]), this would require some effort by the users
to calculate the markers’ positions using trigonometry.

Both [Kow15] and our method utilize a post dense re-
finement step to improve the spatial alignment results,
while [Ale17] does not. As a result, we also offer results
for [Ale17] by adding a graph-based dense refinement
step after the initial alignment obtained by the sparse
feature correspondences. We refer to the sparse version
as "Sparse-Only" and to the extended post-refinement
version as "Sparse+Graph".

We conduct experiments for a variety of setups in order
to evaluate all methods in terms of accuracy and robust-
ness. We even purposefully include defective assem-
blies of the calibration structure to assess each method’s
efficacy with respect to mis-assemblies (namely f , g
and h in Table 1). Given that our markerless correspon-
dence estimation focuses on a particular capturing setup
and was trained on these poses only, we use an approx-
imate 4 sensor placement at 90o intervals around a cir-
cle. It should be noted that markers for [Ale17] and
[Kow15] were placed on the structure without overlap-
ping as seen in Fig. 4.

Table 1 presents quantitative results of our experiments
while also offering each setup’s approximate sensor
placements. Fig. 6 displays the qualitative results for
the same setups. Even though experiments (a) and
(b) included sensor poses that were out of the train-
ing range, there was no meaningful accuracy degra-
dation compared to other setups, demonstrating how
our model has generalized efficiently, well-behaving
even in unseen poses. More importantly, while trained
on synthetic data with an assortment of augmentations
(noise and backgrounds) it has managed to produce
high quality segmentation results in realistic data ac-
quired from various sensors as seen in Fig. 5. Seg-
mentation results for all experiments are available in the
supplementary material.

Overall, the results presented in Table 1 show that our
method outperforms others, except for the SIFT-based
one enhanced with the graph-based refinement step.
However, our method removes the need for markers,
which is a cumbersome and error-prone procedure dur-
ing the assembly of the structure. Moreover, in the mis-
assembly experiments the semantic based method out-
performs the marker-based one and, as seen in Fig. 6
it was able to converge in all cases despite the errors,
compared to the other methods that did not converge in
all cases. This is due to a robuster initial alignment (and

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

93 ISBN 978-80-86943-40-4

a b c d e f g h
LiveScan3D 6.2 6.42 7.07 6.44 7.35 9.57 6.30 10.40
Sparse-Only 10.85 11.94 7.50 8.42 8.66 11.44 11.01 12.36

Sparse+Graph 5.8 6.52 5.84 6.18 6.29 9.50 7.43 12.25
Ours 6.39 6.30 6.31 6.61 7.56 6.67 6.68 7.15

Table 1: RMSE results (in mm) of our method and the compared ones. Approximate sensors’ placements were:
a ∼ {ρ : 1.7m,z : 0.5m}, b ∼ {ρ : 1.7m,z : 0.28m}, c ∼ {ρ : 2.0m,z : 0.28m}, d ∼ {ρ : 2.0m,z : 0.5m}, e ∼ {ρ :
2.0m,z : 0.5m globally rotated compared to d }, f ∼ {ρ : 2.0m,z : 0.5m with translational error}, g∼ {ρ : 2.0m,z :
0.5m with rotational error} and h∼ {ρ : 2.0m,z : 0.5m with both rotation and translational errors}

by extension correspondence estimation) that helps the
dense post-refinement step rectify any potential errors.

5 CONCLUSIONS
In this work, we have presented a markerless structure-
based external calibration method for multi-sensor se-
tups oriented towards 3D performance capture. Instead
of relying on markers to establish correspondences, we
exploit the known structure’s geometry and train a CNN
to semantically label perspective depth maps acquired
when viewing the calibration structure. It is an inno-
vative alternative to sparse feature-based spatial align-
ment that only works with depth input instead of relying
on color information. We have demonstrated that this
is indeed an effective approach that minimizes human
error when assembling the structure and simplifies the
overall process. In addition, we showcase how machine
learning can be used in the task of multi-sensor spa-
tial alignment. Overall, our method offers an easier and
more practical multi-sensor calibration process that is
more appropriate for a wider offering of free-viewpoint
capture technologies.
Regarding the limitations of our method, it cannot be
used to spatially align viewpoints that are looking out-
wards like showcased in [Kow15]. Additionally, its ef-
fectiveness in greater distances is questionable, but that
is also a concern in general for depth sensors, whose ac-
curacy degrades proportionally to the measured depth.
Further, generalization to any position around the struc-
ture is something that should be explored in the future
to allow for arbitrary positioning of the sensors (e.g.
setups focusing on frontal captures only). Moreover,
sparse alignment is reliant on a good segmentation re-
sult as erroneous estimates would cause the median cal-
culation to drift. Finally, given that training is coupled
to the selected sensor, applicability to a variety of sen-
sor types might require re-training using new intrinsic
parameters, however re-training is an one-time require-
ment.

6 ACKNOWLEDGEMENTS
This work was supported and received funding from the
European Union Horizon 2020 Framework Programme
funded project Hyper360, under Grant Agreement no.
761934. We are also grateful and acknowledge the sup-
port of NVIDIA for a hardware donation.

REFERENCES
[Alc11] P. F. Alcantarilla and T. Solutions. Fast

explicit diffusion for accelerated features in
nonlinear scale spaces. IEEE Trans. Patt.
Anal. Mach. Intell, 34(7):1281–1298, 2011.

[Ale17] D. S. Alexiadis, A. Chatzitofis, N. Zioulis,
O. Zoidi, G. Louizis, D. Zarpalas, and
P. Daras. An integrated platform for live 3d
human reconstruction and motion capturing.
IEEE Transactions on Circuits and Systems
for Video Technology, 27(4):798–813, 2017.

[Bar13] J. T. Barron and J. Malik. Intrinsic scene
properties from a single rgb-d image. In Pro-
ceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp.
17–24, 2013.

[Bay08] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool.
Speeded-up robust features (surf). Comput.
Vis. Image Underst., 110(3):346–359, 2008.

[Bec13] S. Beck, A. Kunert, A. Kulik, and
B. Froehlich. Immersive group-to-group
telepresence. IEEE Transactions on Visual-
ization and Computer Graphics, 19(4):616–
625, 2013.

[Bec15] S. Beck and B. Froehlich. Volumetric cal-
ibration and registration of multiple rgbd-
sensors into a joint coordinate system. In
2015 IEEE Symposium on 3D User Inter-
faces (3DUI), pp. 89–96, 2015.

[Bec17] S. Beck and B. Froehlich. Sweeping-based
volumetric calibration and registration of
multiple rgbd-sensors for 3d capturing sys-
tems. In 2017 IEEE Virtual Reality (VR), pp.
167–176, 2017.

[Bra14] E. Brachmann, A. Krull, F. Michel,
S. Gumhold, J. Shotton, and C. Rother.
Learning 6d object pose estimation using 3d
object coordinates. In European conference
on computer vision, pp. 536–551. Springer,
2014.

[Bra16] E. Brachmann, F. Michel, A. Krull,
M. Y. Yang, S. Gumhold, and C. Rother.
Uncertainty-driven 6d pose estimation of
objects and scenes from a single rgb image.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

94 ISBN 978-80-86943-40-4

Figure 5: Qualitative results of our model on realistically acquired depth maps. (best viewed in color)

Figure 6: Qualitative results for all experiments. Each row depicts experiment (a-h), whilst each column shows the
calibrated point clouds (color-per-sensor) for the evaluated methods in top and side views. (best viewed in color)

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

95 ISBN 978-80-86943-40-4

In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[Cao17] H. Zhu, Y. Liu, J. Fan, Q. Dai, and X. Cao.
Video-based outdoor human reconstruction.
IEEE Transactions on Circuits and Systems
for Video Technology, 27(4):760–770, 2017.

[Col15] A. Collet, M. Chuang, P. Sweeney, D. Gillett,
D. Evseev, D. Calabrese, H. Hoppe, A. Kirk,
and S. Sullivan. High-quality streamable
free-viewpoint video. ACM Transactions on
Graphics (TOG), 34(4):69, 2015.

[Den14] D. Teng, J. C. Bazin, T. Martin, C. Kuster,
J. Cai, T. Popa, and M. Gross. Registration of
multiple rgbd cameras via local rigid trans-
formations. IEEE International Conference
on Multimedia & Expo, 2014.

[Dou14] M. Dou and H. Fuchs. Temporally enhanced
3d capture of room-sized dynamic scenes
with commodity depth cameras. In 2014
IEEE Virtual Reality (VR), pp. 39–44, 2014.

[Dou16] M. Dou, S. Khamis, Y. Degtyarev, P. David-
son, S. R. Fanello, A. Kowdle, S. Orts-
Escolano, C. Rhemann, D. Kim, and J. Tay-
lor. Fusion4d: Real-time performance cap-
ture of challenging scenes. ACM Transac-
tions on Graphics (TOG), 35(4):114, 2016.

[Dou17] M. Dou, P. Davidson, S. R. Fanello,
S. Khamis, A. Kowdle, C. Rhemann,
V. Tankovich, and S. Izadi. Motion2fusion:
real-time volumetric performance capture.
ACM Transactions on Graphics (TOG),
36(6):246, 2017.

[Esc16] S. Orts-Escolano, C. Rhemann, S. Fanello,
W. Chang, A. Kowdle, Y. Degtyarev, D. Kim,
P. L. Davidson, S. Khamis, M. Dou,
V. Tankovich, C. Loop, Q. Cai, P. A.
Chou, S. Mennicken, J. Valentin, V. Pradeep,
S. Wang, S. B. Kang, P. Kohli, Y. Lutchyn,
C. Keskin, and S. Izadi. Holoportation: Vir-
tual 3d teleportation in real-time. In Proceed-
ings of the 29th Annual Symposium on User
Interface Software and Technology, UIST
’16, pp. 741–754. ACM, 2016.

[For17] A. Fornaser, P. Tomasin, M. D. Cecco,
M. Tavernini, and M. Zanetti. Automatic
graph based spatiotemporal extrinsic cali-
bration of multiple kinect v2 tof cameras.
Robotics and Autonomous Systems, 98(Sup-
plement C):105 – 125, 2017.

[Fur13] P. Furgale, J. Rehder, and R. Siegwart.
Unified temporal and spatial calibration for
multi-sensor systems. In 2013 IEEE/RSJ In-
ternational Conference on Intelligent Robots
and Systems, pp. 1280–1286, 2013.

[Guo17] K. Guo, F. Xu, T. Yu, X. Liu, Q. Dai, and
Y. Liu. Real-time geometry, albedo, and mo-

tion reconstruction using a single rgb-d cam-
era. ACM Transactions on Graphics (TOG),
36(3):32, 2017.

[Hei97] J. Heikkila and O. Silven. A four-step cam-
era calibration procedure with implicit im-
age correction. In Proceedings of IEEE
Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 1106–
1112, 1997.

[Ihr04] I. Ihrke, L. Ahrenberg, and M. Magnor. Ex-
ternal camera calibration for synchronized
multi-video systems. In WSCG 2004 : the
12th International Conference in Central Eu-
rope on Computer Graphics, Visualization
and Computer Vision 2004 ; short com-
munication papers proceedings, Journal of
WSCG, pp. 537–544, Plzen, Czech Repub-
lic, 2004. UNION Agency.

[Inn16] M. Innmann, M. Zollhöfer, M. Nießner,
C. Theobalt, and M. Stamminger. Volumede-
form: Real-time volumetric non-rigid recon-
struction. In European Conference on Com-
puter Vision, pp. 362–379. Springer, 2016.

[Jia14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, and
T. Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[Kai12] B. Kainz, S. Hauswiesner, G. Reitmayr,
M. Steinberger, R. Grasset, L. Gruber,
E. Veas, D. Kalkofen, H. Seichter, and
D. Schmalstieg. Omnikinect: Real-time
dense volumetric data acquisition and appli-
cations. In Proceedings of the 18th ACM
Symposium on Virtual Reality Software and
Technology, VRST ’12, pp. 25–32, New
York, NY, USA, 2012. ACM.

[Ken05] D. G. Kendall. A survey of the statistical
theory of shape. Statist. Sci., 4(2):87–99, 05
1989.

[Ken15] A. Kendall, M. Grimes, and R. Cipolla.
Posenet: A convolutional network for real-
time 6-dof camera relocalization. In 2015
IEEE International Conference on Computer
Vision (ICCV), pp. 2938–2946, 2015.

[Kin05] B. J. King, T. Malisiewicz, C. V. Stewart, and
R. J. Radke. Registration of multiple range
scans as a location recognition problem: hy-
pothesis generation, refinement and verifica-
tion. In Fifth International Conference on 3-
D Digital Imaging and Modeling (3DIM’05),
pp. 180–187, 2005.

[Kin14] D. P. Kingma and J. Ba. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

96 ISBN 978-80-86943-40-4

[Kow15] M. Kowalski, J. Naruniec, and M. Daniluk.
Livescan3d: A fast and inexpensive 3d data
acquisition system for multiple kinect v2
sensors. In 2015 International Conference
on 3D Vision, pp. 318–325, 2015.

[Kum11] R. Kummerle, G. Grisetti, H. Strasdat,
K. Konolige, and W. Burgard. G2o: A
general framework for graph optimization.
In 2011 IEEE International Conference on
Robotics and Automation, pp. 3607–3613,
2011.

[Lon15] J. Long, E. Shelhamer, and T. Darrell. Fully
convolutional networks for semantic seg-
mentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 3431–3440, 2015.

[Low04] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. Int. J. Comput. Vi-
sion, 60(2):91–110, 2004.

[Mar63] D. W. Marquardt. An algorithm for least-
squares estimation of nonlinear parameters.
Journal of the society for Industrial and Ap-
plied Mathematics, 11(2):431–441, 1963.

[Mel17] I. Melekhov, J. Ylioinas, J. Kannala, and
E. Rahtu. Relative Camera Pose Estimation
Using Convolutional Neural Networks, pp.
675–687. Springer International Publishing,
2017.

[Nak17] Y. Nakajima and H. Saito. Robust camera
pose estimation by viewpoint classification
using deep learning. Computational Visual
Media, 3(2):189–198, 2017.

[New15] R. A. Newcombe, D. Fox, and S. M. Seitz.
Dynamicfusion: Reconstruction and tracking
of non-rigid scenes in real-time. In Proceed-
ings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 343–352,
2015.

[Owe15] J. L. Owens, P. R. Osteen, and K. Daniilidis.
Msg-cal: Multi-sensor graph-based calibra-
tion. In 2015 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems
(IROS), pp. 3660–3667, 2015.

[Poi16] P. Poirson, P. Ammirato, C. Y. Fu, W. Liu,
J. Kosecka, and A. C. Berg. Fast single
shot detection and pose estimation. In 2016
Fourth International Conference on 3D Vi-
sion (3DV), pp. 676–684, 2016.

[Pom13] F. Pomerleau, F. Colas, R. Siegwart, and
S. Magnenat. Comparing icp variants
on real-world data sets. Auton. Robots,
34(3):133–148, 2013.

[Rub11] E. Rublee, V. Rabaud, K. Konolige, and
G. Bradski. Orb: An efficient alternative to
sift or surf. In Proceedings of the 2011 In-
ternational Conference on Computer Vision,

ICCV ’11, pp. 2564–2571, Washington, DC,
USA, 2011. IEEE Computer Society.

[Sho13] J. Shotton, B. Glocker, C. Zach, S. Izadi,
A. Criminisi, and A. Fitzgibbon. Scene co-
ordinate regression forests for camera relo-
calization in rgb-d images. In 2013 IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 2930–2937, 2013.

[Van17] F. Vasconcelos, J. P. Barreto, and E. Boyer.
Automatic camera calibration using multi-
ple sets of pairwise correspondences. IEEE
Transactions on Pattern Analysis and Ma-
chine Intelligence, PP(99):1–1, 2017.

[Was16] O. Wasenmüller, M. Meyer, and D. Stricker.
Corbs: Comprehensive rgb-d benchmark for
slam using kinect v2. In Applications of
Computer Vision (WACV), 2016 IEEE Win-
ter Conference on, pp. 1–7. IEEE, 2016.

[Xu17] C. Xu, L. Zhang, L. Cheng, and R. Koch.
Pose estimation from line correspondences:
A complete analysis and a series of solu-
tions. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(6):1209–1222,
2017.

[Ye13] G. Ye, Y. Liu, Y. Deng, N. Hasler, X. Ji,
Q. Dai, and C. Theobalt. Free-viewpoint
video of human actors using multiple hand-
held kinects. IEEE Transactions on Cyber-
netics, 43(5):1370–1382, 2013.

[Zam16] A. R. Zamir, T. Wekel, P. Agrawal, C. Wei,
J. Malik, and S. Savarese. Generic 3D Repre-
sentation via Pose Estimation and Matching,
pp. 535–553. Springer International Publish-
ing, Cham, 2016.

[Zha00] Z. Zhang. A flexible new technique for
camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
22(11):1330–1334, 2000.

[Zio16] N. Zioulis, D. Alexiadis, A. Doumanoglou,
G. Louizis, K. Apostolakis, D. Zarpalas, and
P. Daras. 3d tele-immersion platform for
interactive immersive experiences between
remote users. In 2016 IEEE International
Conference on Image Processing (ICIP), pp.
365–369, 2016.

[Zol14] M. Zollhöfer, M. Nießner, S. Izadi,
C. Rehmann, C. Zach, M. Fisher, C. Wu,
A. Fitzgibbon, C. Loop, and C. Theobalt.
Real-time non-rigid reconstruction using
an rgb-d camera. ACM Transactions on
Graphics (TOG), 33(4):156, 2014.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

97 ISBN 978-80-86943-40-4

	!!_FULL-Binder5.pdf
	O41-full
	O47-full
	O89-full
	P47-full
	Q07-full
	Q73-full
	R02-full
	R61-full
	Introduction
	Background and related work
	Landsat 8
	Spectral Indices
	Geospatial visualization

	Methodology
	Capturing Earth-feature changes
	Recurrence map creation
	Color-mapping

	Case studies
	Lake Urmia
	Comparison of two SIS
	Experimentation with different color counts

	Amazon Rainforest
	Bering Glacier

	Conclusion
	Acknowledgments
	REFERENCES

	R67-full
	S05-full

