

ISSN 1213-6972 Volume 25, Number 1, 2017

Journal of
WSCG

An international journal of algorithms, data structures and techniques for
computer graphics and visualization, surface meshing and modeling, global
illumination, computer vision, image processing and pattern recognition,
computational geometry, visual human interaction and virtual reality,
animation, multimedia systems and applications in parallel, distributed and
mobile environment.

EDITOR – IN – CHIEF

Václav Skala

Vaclav Skala – Union Agency

Journal of WSCG

Editor-in-Chief: Vaclav Skala
 c/o University of West Bohemia

Faculty of Applied Sciences
Univerzitni 8

 CZ 306 14 Plzen
 Czech Republic
 http://www.VaclavSkala.eu

Managing Editor: Vaclav Skala

Printed and Published by:

 Vaclav Skala - Union Agency
 Na Mazinach 9
 CZ 322 00 Plzen
 Czech Republic

Hardcopy: ISSN 1213 – 6972
CD ROM: ISSN 1213 – 6980
On-line: ISSN 1213 – 6964

Journal of WSCG

Editor-in-Chief

Vaclav Skala

c/o University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

Univerzitni 8

CZ 306 14 Plzen

Czech Republic

http://www.VaclavSkala.eu

Journal of WSCG URLs: http://www.wscg.eu or http://wscg.zcu.cz/jwscg

Editorial Advisory Board

MEMBERS

Baranoski,G. (Canada)

Benes,B. (United States)

Biri,V. (France)

Bouatouch,K. (France)

Coquillart,S. (France)

Csebfalvi,B. (Hungary)

Cunningham,S. (United States)

Davis,L. (United States)

Debelov,V. (Russia)

Deussen,O. (Germany)

Ferguson,S. (United Kingdom)

Goebel,M. (Germany)

Groeller,E. (Austria)

Chen,M. (United Kingdom)

Chrysanthou,Y. (Cyprus)

Jansen,F. (The Netherlands)

Jorge,J. (Portugal)

Klosowski,J. (United States)

Lee,T. (Taiwan)

Magnor,M. (Germany)

Myszkowski,K. (Germany)

Oliveira,Manuel M. (Brazil)

Pasko,A. (United Kingdom)

Peroche,B. (France)

Puppo,E. (Italy)

Purgathofer,W. (Austria)

Rokita,P. (Poland)

Rosenhahn,B. (Germany)

Rossignac,J. (United States)

Rudomin,I. (Mexico)

Sbert,M. (Spain)

Shamir,A. (Israel)

Schumann,H. (Germany)

Teschner,M. (Germany)

Theoharis,T. (Greece)

Triantafyllidis,G. (Greece)

Veltkamp,R. (Netherlands)

Weiskopf,D. (Germany)

Weiss,G. (Germany)

Wu,S. (Brazil)

Zara,J. (Czech Republic)

Zemcik,P. (Czech Republic)

http://www.vaclavskala.eu/
http://www.wscg.eu/
http://wscg.zcu.cz/jwscg

WSCG 2017

Board of Reviewers

Aburumman, Nadine (France)

Adzhiev, Valery (United Kingdom)

Anderson, Maciel (Brazil)

Assarsson, Ulf (Sweden)

Averkiou, Melinos (Cyprus)

Ayala, Dolors (Spain)

Benes, Bedrich (United States)

Bilbao, Javier,J. (Spain)

Capobianco, Antonio (France)

Carmo, Maria Beatriz (Portugal)

Charalambous, Panayiotis (Cyprus)

Cline, David (United States)

Daniel, Marc (France)

Daniels, Karen (United States)

de Geus, Klaus (Brazil)

De Martino, Jose Mario (Brazil)

de Souza Paiva, Jose Gustavo (Brazil)

Diehl, Alexandra (Germany)

Dokken, Tor (Norway)

Dong, Yue (China)

Drechsler, Klaus (Germany)

Eisemann, Martin (Germany)

Feito, Francisco (Spain)

Ferguson, Stuart (United Kingdom)

Galo, Mauricio (Brazil)

Garcia-Alonso, Alejandro (Spain)

Gdawiec, Krzysztof (Poland)

Giannini, Franca (Italy)

Gobbetti, Enrico (Italy)

Gobron, Stephane (Switzerland)

Goncalves, Alexandrino (Portugal)

Gonzalez, Pascual (Spain)

Gudukbay, Ugur (Turkey)

Hernandez, Benjamin (United States)

Jones, Mark (United Kingdom)

Juan, M.-Carmen (Spain)

Kenny, Erleben (Denmark)

Kim, HyungSeok (Korea)

Kim, Jinman (Australia)

Kurillo, Gregorij (United States)

Kurt, Murat (Turkey)

Lee, Jong Kwan Jake (United States)

Liu, Yang (China)

Liu, Beibei (United States)

Liu, SG (China)

Liu, Damon Shing-Min (Taiwan)

Lobachev, Oleg (Germany)

Luo, Shengzhou (Ireland)

Marques, Ricardo (Spain)

Mei, Gang (China)

Mellado, Nicolas (France)

Meng, Weiliang (China)

Mestre, Daniel,R. (France)

Meyer, Alexandre (France)

Molina Masso, Jose Pascual (Spain)

Molla, Ramon (Spain)

Montrucchio, Bartolomeo (Italy)

Muller, Heinrich (Germany)

Murtagh, Fionn (United Kingdom)

Nishio, Koji (Japan)

Oberweger, Markus (Austria)

Oyarzun Laura, Cristina (Germany)

Pan, Rongjiang (China)

Pedrini, Helio (Brazil)

Pereira, Joao Madeiras (Portugal)

Pina, Jose Luis (Spain)

Platis, Nikos (Greece)

Puig, Anna (Spain)

Raidou, Renata Georgia (Austria)

Ramires Fernandes, Antonio (Portugal)

Richardson, John (United States)

Ritter, Marcel (Austria)

Rodrigues, Joao (Portugal)

Rojas-Sola, Jose Ignacio (Spain)

Sanna, Andrea (Italy)

Schwaerzler, Michael (Austria)

Segura, Rafael (Spain)

Serano, Ana (Spain)

Sik-Lanyi, Cecilia (Hungary)

Sommer, Bjorn (Germany)

Sousa, A.Augusto (Portugal)

Szecsi, Laszlo (Hungary)

Teschner, Matthias (Germany)

Todt, Eduardo (Brazil)

Tokuta, Alade (United States)

Tytkowski, Krzysztof (Poland)

Umetani, Nobuyuki ()

Umlauf, Georg (Germany)

Vanderhaeghe, David (France)

Vidal, Vincent (France)

Vierjahn, Tom (Germany)

Wu, Shin-Ting (Brazil)

Wuensche, Burkhard,C. (New Zealand)

Wuethrich, Charles (Germany)

Yao, Junfeng (China)

Yoshizawa, Shin (Japan)

YU, Qizhi (United Kingdom)

Zhao, Qiang (China)

Journal of WSCG

Vol.25, No.1, 2017

Contents

Mastmeyer,A., Wilms,M., Handels,H.: Interpatient Respiratory Motion Model
Transfer for Virtual Reality Simulations of Liver Punctures

1

Nysjo,F., Olsson,P., Malmberg,F., Carlbom,I.B., Nystrom,I.: Using Anti-
Aliased Signed Distance Fields for Generating Surgical Guides and
Plates from CT Images

11

Vintescu,A.-M., Dupont,F., Lavoue,G., Pooran,M., Tierny,J.: Least Squares
Affine Transitions for Global Parameterization

21

Gerrits,T., Roessl,C., Theisel,H.: Glyphs for Space-Time Jacobians of Time-
Dependent Vector Fields

31

Ben Salah,F., Belhaouari, H., Arnould,A., Meseure,P.: A Modular Approach
Based On Graph Transformation To Simulate Tearing And Fractures
On Various Mechanical Models

39

Lousada,P., Costa,V., Pereira,J.M.: Bandwidth and Memory Efficiency in
Real-Time Ray Tracing

49

Soares,A.S., Apolinario,A L.: Real-time 3D Gesture Recognition using
Dynamic Time Warping and Simplification Methods

59

Stamatakis,D., Benger,W., Shrira,L.: Flexible navigation through a multi-
dimensional parameter space using Berkeley DB snapshots

67

Interpatient Respiratory Motion Model Transfer for Virtual
Reality Simulations of Liver Punctures

Andre Mastmeyer
Univ. of Luebeck

Inst. of Med. Inform.
Ratzeburger Allee 160

23568 Luebeck,
Germany

mastmeyer@imi.uni-
luebeck.de

Matthias Wilms
Univ. of Luebeck

Inst. of Med. Inform.
Ratzeburger Allee 160

23568 Luebeck,
Germany

wilms@imi.uni-
luebeck.de

Heinz Handels
Univ. of Luebeck

Inst. of Med. Inform.
Ratzeburger Allee 160

23568 Luebeck,
Germany

handels@imi.uni-
luebeck.de

ABSTRACT

Current virtual reality (VR) training simulators of liver punctures often rely on static 3D patient data and
use an unrealistic (sinusoidal) periodic animation of the respiratory movement. Existing methods for
the animation of breathing motion support simple mathematical or patient-specific, estimated breathing
models. However with personalized breathing models for each new patient, a heavily dose relevant or
expensive 4D data acquisition is mandatory for keyframe-based motion modeling. Given the reference
4D data, first a model building stage using linear regression motion field modeling takes place. Then
the methodology shown here allows the transfer of existing reference respiratory motion models of a
4D reference patient to a new static 3D patient. This goal is achieved by using non-linear inter-patient
registration to warp one personalized 4D motion field model to new 3D patient data. This cost- and
dose-saving new method is shown here visually in a qualitative proof-of-concept study.

Keywords
Virtual Reality, Liver Puncture Training, 4D Motion Models, Inter-patient Registration of Motion Models

1 INTRODUCTION

The virtual training and planning of minimally
invasive surgical interventions with virtual real-
ity simulators provides an intuitive, visuo-haptic
user interface for the risk-sensitive learning and
planning of interventions. The simulation of liver
punctures has been an active research area for
years [For16, For15, Mas14].

Obviously first, the stereoscopic visualization of
the anatomy of the virtual patient body is impor-
tant [For12]. Second, the haptic simulation of the
opposing forces through the manual interaction,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

rendered by haptic input and output devices, with
the patient is key [For13]. Third in recent de-
velopments, the simulation of the appearance and
forces of the patient’s breathing motions is vital
[Mas17, Mas14].

The previously known VR training simulators
usually use time invariant 3D patient models. A
puncture of the spinal canal can be simulated
sufficiently plausibly by such models. In the
thoracic and upper abdominal region, however,
respiratory and cardiac movements are constantly
present. In the diaphragm area at the bottom of
the lungs just above the liver, breathing move-
ment differences in the longitudinal z direction
of up to 5 cm were measured [Sep02]. Now
for 4D animation, the necessary data consists
of a single 3D CT data set and a mathematical
or personalized animation model. Our aim here
is to incorporate these physiological-functional
movements into realistic modeling in order to

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 1

Figure 1: Left: Hardware: (1) Main stereo rendering window with successful needle insertion into a
target, (2) fluoroscopic simulation, (3) Ultrasound simulation, (4) haptic device handle. Right: Main
rendering window displaying oblique cut and color-coded patient structures just before needle insertion
into a targeted bile duct (green).

offer the user a more realistic visuo-haptic VR
puncture simulation. This means also to take
into account the intra- and intercycle variability
(hysteresis, variable amplitude during inhalation
/ exhalation).

A major interest and long term goal of virtual
and augmented reality is the planning [Rei06]
and intra-operative navigation assistance [Nic05].
However, in these works breathing motion is not
incorporated or applicability limits by neglecting
breathing motion in terms of minimal tumor size
are given [Nic05]. Published approaches from
other groups [Vil14, Vil11] model only a sinu-
soidal respiratory motion without hysteresis and
amplitude variation. First steps in the direction of
a motion model building framework were taken
by our group [Ehr11]. Accurate simulation of res-
piratory motion depending on surrogate signals is
relevant e.g. in fractionated radiotherapy. How-
ever, since a patient-specific 4D volume data set is
required for personalized breathing model build-
ing and its acquisition is associated with a high
radiation dose with 4D-CT (≥ 20-30 mSv (eff.)),
our approach is the transfer of existing 4D breath-
ing models to new 3D patient data. For compar-
ison, the average natural background radiation is
approximately 2.1 mSv (eff.) per year1.

On the other hand, there is no medical indication
to acquire 4D CT data just for training purposes

1 Intercontinental flight max. 0.11 mSv (eff.)

and model building from 4D MR data to be in-
cluded is unjustifiable for cost reasons.

In this paper, we present a feasibility study with
first qualitative results for the transfer of an ex-
isting 4D breathing model [Wil14] to static 3D
patient data, in which only a 3D CT covering
chest and upper abdomen at maximum inhalation
is necessary (approximately 2- 13 mSv (eff.))2.

2 RECENT SOLUTION
The existing solution requires a full 4D data
set acquisition for each new patient. In
[For16, Mas16, Mas13, For14], concepts for
a 3D VR simulator and efficient patient modeling
for the training of different punctures (e.g. liver
punctures) have already been presented, see
Fig. 1. A Geomagic Phantom Premium 1.5 High-
Force is used for the manual control and haptic
force feedback of virtual surgical instruments.
Nvidia shutter glasses and a stereoscopic display
provide the plausible rendering of the simulation
scene. This system uses time invariant 3D CT
data sets as a basis for the patient model. In case
of manual interaction with the model, tissue de-
formation due to acting forces of the instruments
are represented by a direct visuo-haptic volume
rendering method.

New developments of VR simulators [For15] al-
low a time-variant 4D-CT data set to be used in
real time for the visualized patient instead of a

2 Siemens Somatom Definition AS

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 2

http://www.bfs.de/EN/topics/ion/environment/natural-radiation-exposure/natural-radiation-exposure_node.html
https://static.healthcare.siemens.com/siemens_hwem-hwem_ssxa_websites-context-root/wcm/idc/groups/public/@global/@imaging/@ct/documents/download/mdaw/mtm1/~edisp/ct_somatom_definition_as_brochure-00032845.pdf

static 3D CT data set. The respiratory movement
can be visualized visuo-haptically as a keyframe
model using interpolation or with a flexible linear
regression based breathing model as described be-
low.

3 PROPOSED SOLUTION
The new solution requires only a 3D data set ac-
quisition for each new patient.

3.1 Modeling of Breathing Motion
Realistic, patient-specific modeling of breathing
motion in [For15] relies on a 4D CT data set cov-
ering one breathing cycle. It consists of Nphases
phase 3D images indexed by j. Furthermore,
a surrogate signal (for example, acquired by
spirometry) to parametrize patient breathing in a
low-dimensional manner is necessary.

We use a measured spirometry signal v(t) [ml]
and its temporal derivative in a composite sur-
rogate signal: (v(t),v′(t))T . This allows to de-
scribe different depths of breathing and the dis-
tinction between inhalation and exhalation (respi-
ratory hysteresis). We assume linearity between
signal and motion extracted from the 4D data.
First, we use the ’sliding motion’-preserving ap-
proach from [SR12] for Nphases− 1 intra-patient
inter-phase image registrations to a selected refer-
ence phase jre f :

ϕ
pat4D
j =

argmin
ϕ

(
DNSSD

[
Ipat4D

j , Ipat4D
jre f

◦ϕ

]
+αS ·RS(ϕ)

)
,

(1)

j ∈ {1, .., jre f −1, jre f +1, ..,Nphases},

where a distance measure DNSSD (normalized sum
of voxel-wise squared differences [Thi98]) and a
specialized regularization RS establishes smooth
voxel correspondences except in the pleural cavity
where discontinuity is a wished feature [SR12].
Based on the results, the coefficients apat4D

1..3 are es-
timated as vector fields over the positions x. The
personalized breathing model then can be stated
as a linear multivariate regression [Wil14]:

ϕ̂
pat4D(x, t) =apat4D

1 (x) · v(t) +

apat4D
2 (x) · v′(t) +

apat4D
3 (x), x ∈Ωpat4D. (2)

Thus, a patient’s breathing state can be repre-
sented by a previously unseen breathing signal:
Any point in time t corresponds to a shifted ref-
erence image Ipat4D

jref
◦ ϕ̂ pat4D(x, t). Equipped with

a real-time capable rendering technique via ray-
casting with bent rays (see [For15] for full tech-
nical details), the now time variant model-based
animatable CT data Ipat4D

jref
can be displayed in a

new variant of the simulator and used for train-
ing. The rays are bent by the breathing motion
model and this conveys the impression of an an-
imated patient body, while being very time effi-
cient (by space-leaping and early ray-termination)
compared to deforming the full 3D data set for
each time point and linear ray-casting afterwards
[For15].

3.2 Transfer of Existing Respiratory
Models to new, static Patient Data

Using the method described so far, personalized
breathing models can be created, whose flexibility
is sufficient to approximate the patients’ breathing
states, which are not seen in the observation phase
of the model formation.

However, the dose-relevant or expensive acquisi-
tion of at least one 4D data set has thus far been
necessary for each patient.

Therefore, here we pursue the idea to transfer a
readily built 4D reference patient breathing model
to new static patient data pat3D and to animate it
in the VR simulator described in Sec. 2.

For this purpose, it is necessary to correct for
the anatomical differences between the reference
patient with the image data Ipat4D

jref
and the new

patient image data Ipat3D
ref based on a similar

breathing phase. This is achieved, for example,
by a hold-breath scan (ref) in the maximum
inhalation state, which corresponds to a certain
phase jref in a standardized 4D acquisition
protocol. A nonlinear inter-patient registration
ϕ(x) : Ωpat3D → Ωpat4D with minimization of a
relevant image distance D ensures the necessary
compensation [Mas16, Mas13]:

ϕ
pat3D→pat4D
jref

=

argmin
ϕ

(
DSSD

[
Ipat3D
ref , Ipat4D

jref
◦ϕ

]
+αD ·RD(ϕ)

)
,

(3)

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 3

where a distance measure DSSD (sum of squared
voxel-wise differences) and a diffusive non-linear
regularization RD establishes smooth inter-patient
voxel correspondences. On both sides, the breath-
ing phase 3D image of maximum inhalation is se-
lected as the reference phase (ref). The distance
measurement can be selected according to the
modality and quality of the image data. The trans-
formation ϕ

pat3D→pat4D
jref

, which is determined in
the nonlinear inter-patient registration, can now
be used to warp the intra-patient inter-phase de-
formations of the reference patient ϕ

pat4D
j as a

plausible estimate ϕ
pat3D
j (j ∈ {1, . . . ,n}; ◦: right

to left):

ϕ
pat3D
j =(
ϕ

pat3D→pat4D
jref

)−1
◦ϕ

pat4D
j ◦ϕ

pat3D→pat4D
jref

. (4)

The approach for estimating the respiratory mo-
tion for the new patient can now be applied anal-
ogously to the reference patient (see Sec. 3.1).
With a efficient regression method [Wil14], the
breathing movement of virtual patient models,
which are only based on a comparatively low dose
of acquired 3D-CT data, can be plausibly approx-
imated:

ϕ̂
pat3D(x, t) =apat3D

1 (x) · v(t) +

apat3D
2 (x) · v′(t) +

apat3D
3 (x), x ∈Ωpat3D. (5)

Optionally, simulated surrogate signals v(t) can
be used for the 4D animation of 3D CT data.
Simple alternatives are to use the surrogate sig-
nal of the reference patient or also a (scaled) sig-
nal of the new patient pat3D, which can simply
be recorded with a spirometric measuring device
without new image acquisition.

4 EXPERIMENTS AND RESULTS
We performed a qualitative feasibility study, re-
sults are animated in the 4D VR training simulator
[For15].

For the 4D reference patient, a 4D-CT data set of
the thorax and upper abdomen with 14 respiratory
phases (5122× 462 voxel to 13 mm) and a spirom-
etry signal v(t) were used (Fig. 2). The new pa-
tient is represented only by a static 3D CT data set
(5122× 318 voxel to 13 mm).

All volume image data was reduced to a size of
2563 voxel due to the limited graphics memory
of the GPU used (Nvidia GTX 680 with 3 GB
RAM).

According to Eq. 1 we first perform the intra-
patient inter-phase registrations to a chosen ref-
erence phase jre f .

The registrations from Eqs. 1 and 3 use weights
αS = 0.1 and αD = 1 for the regularizers RS and
RD. In both registration processes, the phase with
maximum inhalation is used as the reference res-
piratory phase jre f and for the training of the
breathing model.

The respiratory signal used for model training is
shown in Fig. 2b, gray curve. We show the areas
with plausible breathing simulation and use the
unscaled respiratory signal of pat3D with larger
variance to provoke artifacts (Fig. 2b, blue curve).
The model training according to Eqs. 2 and 5 is
very efficient using matrix computations.

We use manual expert segmentations of the
liver and lungs, available for every phase of
the 4D patient, to mainly assess the quality of
the inter-patient registration in Eq. 3. Via the
availabe inter-phase registrations ϕ

pat4D
j (Eq. 1)

to the 4D reference phase, we first warp the
phase segmentation masks accordingly. After
applying the inter-patient registration to pat3D,
we have the segmentation masks of pat4D in
the space of the targeted 3D patient. Now for
this patient, also a manual expert segmentation
is availabe for comparison. Quantitatively, the
DICE coefficients of the transferred segmentation
masks (liver, lungs) can be given to classify the
quality of the registration chain of the reference
respiratory phases (single atlas approach). Quali-
tatively, we present sample images for four time
instants and a movie.

The mean DICE coefficients of the single-atlas
registration of the liver and lung masks to the
new static patient pat3D yield satisfying values of
0.86±0.12 and 0.96±0.09. Note the clearly dif-
ferent scan ranges of the data sets (Fig. 2a). The
animation of the relevant structures is shown as
an example in Fig. 3, using a variable real breath-
ing signal of the target patient pat3D (Fig. 2b).
In the puncture-relevant liver region, the patient’s
breathing states are simulated plausibly for the 4D

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 4

(a) Field of view difference between reference patient
pat4D (turquoise) and target patient pat3D (yellow).

1 2 3 4

(b) Selected times of the spirometry signal from pat3D (blue).

Figure 2: (a) Field of views and (b) respiratory signals of the patients pat4D (gray dashed) vs. pat3D.

reference patient (Fig. 3) and, more importantly,
the 3D patient (Figs. 4, 5), to which the motion
model of pat4D was transferred3.

5 DISCUSSION, OUTLOOK AND
CONCLUSION

For interested readers, the basic techiques for 4D
breathing motion models have been introduced in
[Ehr11] by our group. However there, the motion
model is restricted to the inside of the lungs and
by design a mean motion model is built from sev-
eral 4D patients. The mean motion model is ar-
tificial to some degree, more complex and timely
to build. The method described here for the trans-
fer of retrospectively modeled respiratory motion
of one 4D reference patient to a new 3D patient
data set is less complex and extends to a larger
body area. It already allows the plausible anima-
tion of realistic respiratory movements in a 4D-
VR-training-simulator with visuo-haptic interac-
tion. Of course in the future, we want to build a
mean motion model for the whole body section
including (lower) lungs and the upper abdomen,
too.

In other studies, we found αD = 1 in Eq. 3 robust
(compromise between accuracy and smoothness)

3 Demo movie, click here

for inter-patient registration with large shape vari-
ations [Mas13, Mas16]. In Eq. 1 for intra-patient
inter-phase registration, we use αS = 0.1 to allow
more flexibility for more accuracy as the shape
variation between two phases of the same patient
is much smaller [SR12].

We achieve qualitatively plausible results for the
liver area in this feasibility study. In the up-
per thorax especially at the rib cage in neighbor-
hood to the dark lungs stronger artifacts can occur
(Fig. 5c). They are due to problems in the inter-
patient registration that is a necessary step for the
transfer of the motion model. The non-linear de-
formation sometimes is prone to misaligned ribs.
The same is true for the lower thorax with perfora-
tion first of the liver and then diaphragm (Fig. 4c).
Further optimization have to be carried out as ar-
tifacts can appear on the high contrast lung edge
(diaphragm, ribs) with a small tidal volume. For
liver punctures only, the artifacts of smeared ribs
are minor as can be seen in Fig. 4.

Summing up, the previous assumption from
Sec. 2 of a dose-relevant or expensive acquisition
of a 4D-CT data set for each patient, can be
mitigated for liver punctures by the presented
transfer of an existing 4D breathing model.

Future work will deal with the better adaptation
and simulation of the breathing signal. Further

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 5

https://goo.gl/DVVYzw

(a) First time point. (b) Second time point.

(c) Third time point. (d) Fourth time point.

Figure 3: Field of view, respiratory signal and coronal views with overlayed motion field to the CT data
of the patients pat4D (a-d). The color wheel legend below indicates the direction of the motion field.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 6

(a) First time point. (b) Second time point.

(c) Third time point. (d) Fourth time point.

Figure 4: Coronal views with overlayed motion field to the CT data of the patient pat3D (a-d) deformed
with the model of pat4D. The color wheel legend below indicates the direction of the motion field.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 7

(a) First time point. (b) Second time point.

(c) Third time point. (d) Fourth time point.

Figure 5: Upper thorax coronal views of the animated CT data of the patient pat3D (a-d) deformed with
the model of pat4D. Rib artifacts are indicated by the yellow arrow in (c).

topics are the optimization of the inter-patient reg-
istration and the construction of alternatively se-
lectable mean 4D reference breathing models. As
in [For16], the authors plan to perform usability
studies with medical practitioners.

To conclude, the method allows VR needle punc-
ture training in the hepatic area of breathing vir-
tual patients based on a low-risk and cheap 3D
data acquisition for the new patient only. The re-
quirement of a dose-relevant or expensive acqui-
sition of a 4D CT data set for each new patient
can be mitigated by the presented concept. Future

work will include the reduction of artifacts and
building mean reference motion models.

6 ACKNOWLEDGEMENT
Support by grant: DFG HA 2355/11-2.

7 REFERENCES
[Ehr11] Ehrhardt, J., Werner, R., Schmidt-

Richberg, A., Handels, H. Statistical model-
ing of 4D respiratory lung motion using dif-
feomorphic image registration. IEEE Trans-
actions on Medical Imaging, 30(2):251–
265, September 2011.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 8

[For12] Fortmeier, D., Mastmeyer, A., Handels,
H. GPU-based visualization of deformable
volumetric soft-tissue for real-time simu-
lation of haptic needle insertion. German
Conference on Medical Image Processing
BVM - 2012: Algorithms - Systems - Ap-
plications. Proceedings from 18.-20. March
2012 in Berlin, pages 117–122, 2012.

[For13] Fortmeier, D., Mastmeyer, A., Handels,
H. Image-based palpation simulation with
soft tissue deformations using chainmail on
the GPU. German Conference on Medi-
cal Image Processing - BVM 2013, pages
140–145, 2013.

[For14] Fortmeier, D., Mastmeyer, A., Handels,
H. An image-based multiproxy palpation al-
gorithm for patient-specific VR-simulation.
Medicine Meets Virtual Reality 21, MMVR
2014, pages 107–113, 2014.

[For15] Fortmeier, D., Wilms, M., Mastmeyer,
A., Handels, H. Direct visuo-haptic 4D
volume rendering using respiratory motion
models. IEEE Trans Haptics, 8(4):371–383,
2015.

[For16] Fortmeier, D., Mastmeyer, A., Schröder,
J., Handels, H. A virtual reality system for
PTCD simulation using direct visuo-haptic
rendering of partially segmented image data.
IEEE J Biomed Health Inform, 20(1):355–
366, 2016.

[Mas13] Mastmeyer, A., Fortmeier, D., Magh-
soudi, E., Simon, M., Handels, H. Patch-
based label fusion using local confidence-
measures and weak segmentations. Proc.
SPIE Medical Imaging: Image Processing,
pages 86691N–1–11, 2013.

[Mas14] Mastmeyer, A., Hecht, T., Fortmeier,
D., Handels, H. Ray-casting based evalu-
ation framework for haptic force-feedback
during percutaneous transhepatic catheter
drainage punctures. Int J Comput Assist
Radiol Surg, 9:421–431, 2014.

[Mas16] Mastmeyer, A., Fortmeier, D., Handels,
H. Efficient patient modeling for visuo-
haptic VR simulation using a generic patient
atlas. Comput Methods Programs Biomed,
132:161–175, 2016.

[Mas17] Mastmeyer, A., Fortmeier, D., Handels,

H. Evaluation of direct haptic 4d volume
rendering of partially segmented data for
liver puncture simulation. Nature Scientific
Reports, 7(1):671, 2017.

[Nic05] Nicolau, S., Pennec, X., Soler, L., Ay-
ache, N. A complete augmented reality
guidance system for liver punctures: First
clinical evaluation. Medical Image Comput-
ing and Computer-Assisted Intervention–
MICCAI 2005, pages 539–547, 2005.

[Rei06] Reitinger, B., Bornik, A., Beichel, R.,
Schmalstieg, D. Liver surgery planning us-
ing virtual reality. IEEE Computer Graphics
and Applications, 26(6):36–47, 2006.

[Sep02] Seppenwoolde, Y., Shirato, H., Ki-
tamura, K., Shimizu, S., Herk, M.van ,
Lebesque, J. V., Miyasaka, K. Precise and
real-time measurement of 3D tumor motion
in lung due to breathing and heartbeat, mea-
sured during radiotherapy. Int J Radiation
Oncololgy, Biology, Physics, 53(4):822–
834, Jul 2002.

[SR12] Schmidt-Richberg, A., Werner, R., Han-
dels, H., Ehrhardt, J. Estimation of slipping
organ motion by registration with direction-
dependent regularization. Medical Image
Analysis, 16(1):150 – 159, 2012.

[Thi98] Thirion, J.-P. Image matching as a dif-
fusion process: an analogy with maxwell’s
demons. Medical Image Analysis, 2(3):243
– 260, 1998.

[Vil11] Villard, P., Boshier, P., Bello, F., Gould,
D. Virtual reality simulation of liver biopsy
with a respiratory component. Liver Biopsy,
InTech, pages 315–334, 2011.

[Vil14] Villard, P., Vidal, F., Cenydd, L., Hol-
brey, R., Pisharody, S., Johnson, S., Bulpitt,
A., John, N., Bello, F., Gould, D. Interven-
tional radiology virtual simulator for liver
biopsy. Int J Comput Assist Radiol Surg,
9(2):255–267, 2014.

[Wil14] Wilms, M., Werner, R., Ehrhardt, J.,
et al. Multivariate regression approaches for
surrogate-based diffeomorphic estimation
of respiratory motion in radiation therapy.
Phys Med Biol, 59:1147–1164, 2014.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 9

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 10

Using Anti-Aliased Signed Distance Fields for Generating
Surgical Guides and Plates from CT Images

Fredrik Nysjö, Pontus Olsson, Filip Malmberg, Ingrid B. Carlbom, and Ingela Nyström
Centre for Image Analysis, Dept. of Information Technology,

Uppsala University, Sweden
{fredrik.nysjo, pontus.olsson, filip.malmberg, ingrid.carlbom, ingela.nystrom}@it.uu.se

ABSTRACT
We present a method for generating shell-like objects such as surgical guides and plates from segmented computed
tomography (CT) images, using signed distance fields and constructive solid geometry (CSG). We develop a user-
friendly modeling tool which allows a user to quickly design such models with the help of stereo graphics, six
degrees-of-freedom input, and haptic feedback, in our existing software for virtual cranio-maxiollofacial surgery
planning, HASP. To improve the accuracy and precision of the modeling, we use an anti-aliased distance transform
to compute signed distance field values from fuzzy coverage representations of the bone. The models can be
generated within a few minutes, with only a few interaction steps, and are 3D printable. The tool has potential to
be used by the surgeons themselves, as an alternative to traditional surgery planning services.

Keywords
Implicit Modeling, Distance Fields, CT, Shells, Virtual Surgery Planning

1 INTRODUCTION
Virtual surgery planning and pre-operative design and
fabrication of plastic surgical guides and titanium plates
for bone fixation have proven valuable for improving
outcome and reducing cost in reconstructive surgery
such as cranio-maxillofacial (CMF) surgery [25]. How-
ever, existing virtual surgery planning tools, such as
Materialise’s Mimics [14], have complex user inter-
faces (UIs) limited to two-dimensional (2D) interaction
with three-dimensional (3D) data, such as computed to-
mography (CT) images, which can be non-intuitive for
clinicians to use and therefore often require the help of
a technician or an engineer. This includes the task of
designing of patient-specific models of surgical guides
and plates, something which today is often outsourced
to external companies with lead times of several days
or in some cases weeks.

The Haptics-Assisted Surgery Planning (HASP) sys-
tem [18][19] was developed within our research group
with the aim of shortening the preoperative planning
time from days to hours, by providing a user-friendly
software and UI that can be used by the surgeons them-
selves. HASP supports stereo graphics, six degrees-of-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

freedom (DOF) input, and haptic feedback in a software
that incorporates bone, vessels, and soft tissue planning
for CMF defect reconstruction. Surgeons who have
tested the software have found it to be an efficient tool
for planning so called fibula osteocutaneous free flap
reconstructions, in which a bone graft from the fibula
(calf bone) is transplanted to the defect, for example, a
resected part of the mandible (lower jaw) [19].
Previous versions of the HASP software did not support
the design of patient-specific plates for bone fixation, or
cutting guides with slots or flanges that help the surgeon
to perform precise osteotomies or resections (cuts) ac-
cording to a surgical plan. In this paper, we present the
tools we developed to enable surgeons to quickly de-
sign models for such parts within a few minutes, and
also present a method for generating the models from
segmented CT images.

1.1 Contribution
The main contributions of this paper are:

• A fast and efficient method for generating 3D print-
able models of surgical guides and plates from seg-
mented CT images.

• A method for improving the accuracy and precision
of the modeling by using fuzzy coverage represen-
tations in combination with an anti-aliased distance
transform.

2 RELATED WORK
There are a few examples in the literature of systems or
methods for helping surgeons designing surgical guides

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 11

Figure 1: The HASP user interface. A six DOF haptic device controls the virtual stylus (right) used for interaction.
The screenshot shows a mandible (in green) being reconstructed from the original mandible combined with a
transplant from the fibula (left), and surgical guides (in blue) and plates (in metal) generated in the software.

and plates. Kovler et al. [12] describe a system combin-
ing stereo graphics and haptic feedback with a sketch-
based method for plate design. However, their system
is aimed at trauma surgery and does not provide gener-
ation of surgical guides. Fornaro et al. [7] present an-
other approach to plate design, in which a virtual plate
model is deformed for planning pre-bending of physi-
cal plates. Voss et al. [24] describe a system for fracture
reduction that allows design of simple surgical guides.

The previous examples use polygonal, or mesh-based,
representations for the modeling. Volumetric, or voxel-
based, representations can be more suitable for organic
shapes such as the human anatomy, and make it eas-
ier to guarantee a 3D printable result when computing
for example surface offsets. Geomagic Freeform [9] is
an example of a commercial voxel-based sculpting soft-
ware that allows creating patient-specific parts such as
surgical guides and implants. It provides a traditional
2D UI, combined with six DOF input and haptic feed-
back for more intuitive 3D interaction. However, the
software is too complex for most clinicians to use, as it
is not aimed specifically at surgery planning.

For an overview of state-of-the-art in virtual surgery
planning and implant design, see Ritacco et al. [23].

3 METHODS
Our approach is to extract a shell (Figure 2f) around
the bone that serves as template for the part the sur-
geon wishes to design, i.e., a surgical guide or plate,

from a grayscale CT (Figure 2a) and a binary segmen-
tation (Figure 2b) of the bone, and generate a construc-
tive solid geometry (CSG) tree that includes the shell
and other components of the part. The CT and segmen-
tation data are loaded as volume images. The shapes
for the shell and other components in the CSG tree are
represented as signed distance fields (SDFs) computed
from the image data (Figures 2d–2e). Other inputs for
generating the CSG tree include osteotomy and resec-
tion planes from the planning and user-generated inputs
such as control points for defining geometry. By eval-
uating the CSG tree, we obtain an image from which a
3D printable triangle mesh can be extracted and, finally,
exported to stereolithography (STL) mesh format.

3.1 Signed Distance Fields
A signed distance field (SDF) maps a point to a pos-
itive or negative distance scalar value, depending on
whether the point lies inside or outside an object in the
image. While SDFs have many applications [11], we
are mainly interested in their use for implicit solid mod-
eling. An early example of such use is found in Payne
et al. [21], who describe operations such as Boolean set
operations. A more recent example is the framework
presented by Museth et al. [16].

3.2 Anti-Aliased Distance Transform
A distance transform (DT) is an efficient way of com-
puting SDFs from binary images. Among approximate
(non-Euclidean) 3D DTs, the Chamfer DT with integer

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 12

(a) (b) (c)

(d) (e) (f)

Figure 2: 2D slices of 3D image data for a fibula: (a) grayscale CT; (b) binary segmentation; (c) fuzzy coverage
representation; (d) SDF from binary DT; (e) SDF from AA DT; (f) shell SDF computed from (e). In (d–f), the
black iso-contour represents the zero-level, whereas the color indicate positive (red) or negative (blue) distance.

weights 〈3,4,5〉 is fast to compute and has a bounded
error of 11.8% to the Euclidean distance [2]. Effi-
cient algorithms for computing the Euclidean DT in 3D
include the vector propagation algorithm by Daniels-
son [5] and the more recent method by Felzenszwalb
and Huttenlocher [6], both which can be parallelized
for faster computation.
We implemented the Chamfer 〈3,4,5〉 DT algorithm,
since it is easy to implement, and because accurate dis-
tances are only needed close (within a few millime-
ters) to the bone template surface; we also aim to keep
the memory requirements for computing and storing
the SDFs low. We adopt the convention that voxels
inside objects have positive values and voxels outside
objects have negative values, and compute the SDF
in two passes, one for the internal distances and one
for the external distances. The computed distance val-
ues are stored as 8-bit signed integers, such that in-
teger distances are constrained (clamped) to the range
[−128,127].
Anti-aliased (AA) DTs can produce more accurate dis-
tance values compared to binary DTs, in particular
close to object surfaces, by using sub-pixel or sub-voxel
information in grayscale image data. Other benefits
are a smoother iso-surface for visualization and trian-
gle mesh extraction, and a gradient magnitude closer
to 1 near the zero-level isosurface (Figure 2e). Gus-
tavson and Strand [10] propose an extension of Daniels-
son’s [5] vector propagation algorithm, in which they
incorporate pixel coverage information when comput-

ing the DT; they suggest a fast linear approximation d f
for mapping coverage values to sub-pixel (or sub-voxel)
distances,

d f = 0.5−a, (1)

where a is a fuzzy coverage value in the range [0,1].

To retain the performance of computing the Chamfer
DT, we extend our Chamfer DT implementation to in-
corporate voxel coverage information, instead of imple-
menting the AA Euclidean DT in [10]. In each pass
(interior and exterior), we use Equation 1 to initialise
foreground voxels that otherwise would be assigned
the value zero with sub-voxel distances computed from
coverage, in order to compute an AA DT.

3.3 Binary-to-Coverage Conversion
CT images exhibit fuzzy tissue boundaries due to the
partial volume effect (PVE), and also from filtering for
removing noise. Segmented CT data, in contrast, often
provide binary label masks. When the binary segmen-
tation is computed by thresholding and a subsequent la-
beling step, for example using the method by Nysjö et
al [17], so that foreground voxels in label masks corre-
spond to foreground voxels in the original thresholded
image, we can convert the binary label masks to fuzzy
coverage representations suitable as input to an AA DT.

To perform binary-to-coverage conversion, we extract
a 2-voxel thick boundary around each labeled object,
containing the interior and exterior boundary voxels
computed for 27-connectivity. At each boundary voxel,

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 13

(a) (b) (c) (d)

Figure 3: Fibula cutting guides: (a–b) slot type (front and back); (c–d) flange type (front and back).

we supersample the original grayscale CT image by tri-
linear interpolation at 43 (64) sub-voxel positions in a
uniform grid, and compute coverage as a = 1

N ∑
N−1
i=0 xi,

where N is the number of samples and x0, . . . ,xN−1 are
thresholded sample values. The resulting fuzzy cov-
erage representation (Figure 2c) allows sub-voxel dis-
tances to be estimated at a resolution of 1

4 voxel, using
Equation 1.

3.4 Shell Generation
In order to generate a surgical guide or plate that fits the
anatomy of the patient, we should compute a shell at an
accurate and precise offset from the bone template. We
generate the shell by applying the function

dshell(x) = max(dinner− x,x−douter), (2)

where dinner and douter define the distance offsets
from the original iso-surface to the inner and outer
iso-surfaces of the shell, respectively, to the SDF of
the bone template (Figure 2d or 2e), resulting in a new
SDF for the shell (Figure 2f).

3.5 Constructive Solid Geometry
Constructive solid geometry (CSG) provides a compact
representation for Boolean set operations (unions, in-
tersections, and differences) on solid shapes, by storing
shapes and operations as nodes in a binary tree. It can
be used for implicit solid modeling with SDFs, by us-
ing Boolean set operators for SDFs [11] and images for
storing shapes and intermediate results.
For each guide or plate model, we generate a CSG tree
containing the shell and other components needed for
the part, as described in the next three sections. SDFs
for other components are either computed from vox-
elised triangle meshes or sampled from distance func-
tions of basic primitives [22].
As a final step, when the CSG result image should only
contain a single connected component, we use con-
nected component analysis to remove smaller compo-
nents, such as unwanted material generated where the
bone template is hollow.

3.5.1 Fibula Cutting Guides
Fibula cutting guides are automatically created when
the surgeon presses a button. The cut planes for the
fibula osteotomies are used to cut the shell SDF of the
bone template, the number of cut planes used deter-
mined by which type of guide (slots or flanges) the
surgeon wishes to create (Figure 3). When generat-
ing the CSG tree, we insert components for slots and
flanges, bridges for connecting the guide segments, and
drill guides for the plate screw holes. We also compute
the difference with the bone template SDF after adding
the dinner shell offset to the SDF, to remove unwanted
material inside the guide. Evaluating a CSG tree takes
a few seconds, which allows the surgeon to try different
designs and adjust the orientation of the guide.

3.5.2 Plates
To create plates, the surgeon uses the stylus to place
control points on the surface of the bone template,
where the plate should be in contact with the bone (Fig-
ure 4a), and also uses the stylus to place markers for
screws (Figure 4b). The plate is updated at interactive
speed, and existing control points and screw markers
may be moved or deleted with the stylus. The SDF of
the bone template is also used as an aid to snap con-
trol points to the surface and automatically orient screw
markers in the SDF gradient direction. When gener-
ating the CSG tree, we insert spheres interpolating the
control points, and holes at the screw markers. We also
compute the intersection with the shell SDF from the
bone template, to generate the final plate (Figure 4c).

3.5.3 Mandibular Resection Guides
A 3D brush (Figure 5a) is used to define the geome-
try of the mandibular resection guides (Figure 5b). The
surgeon controls the brush with the stylus, and switches
between additive and subtractive brushes. When gener-
ating the CSG tree, we insert spheres for brush strokes.
We also compute the intersection with the shell SDF
from the bone template, and insert drill guides for the
plate screw holes (Figure 5c).

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 14

(a) (b) (c)

Figure 4: Plate design: (a) plate geometry (in blue) interpolated along control points the user places on the bone
template (in green) using the stylus; (b) markers for screws; (c) final plate with screw holes inserted.

(a) (b) (c)

Figure 5: Mandibular resection guide design: (a) 3D brush tool; (b) painted guide geometry; (c) final resection
guide with flanges and drill guides inserted.

3.6 Visualization and Haptic Rendering

We use Marching cubes [13] (MC) to visualize the iso-
surfaces of the bone templates and the models from the
generated CSG trees. For the CSG trees, we utilize a
sparse block data structure to keep track of blocks that
contain modified data and update the iso-surface only
in those blocks during modeling. The MC iso-surfaces
are also exported to STL mesh format for 3D printing.

For the haptic rendering, we convert bone fragments
into so called Voxmap Pointshell [15] representations.
This enables haptic interaction between bone surfaces
and the stylus, as well as haptic interaction between
bone fragments. Further details about the haptic ren-
dering are provided in [18].

3.7 Implementation Details

We implement the tools for surgical guide and plate
generation in the HASP software, using C++ and our
own OpenGL 3.2 (Core profile) based rendering frame-
work. OpenMP and single instruction/multiple data
(SIMD) intrinsics are used to speed up the image pro-
cessing and the CSG operations. Our MC implementa-
tion is based on the code available at [3].

4 EXPERIMENTS AND RESULTS
To evaluate our method, we performed simulated
surgery planning on three cases. Each case included
CT or CT angio (CTA) images, in DICOM format, of
the head and neck region and of the leg from which
the bone transplant was to be harvested. The test
datasets are summarized in Table 1. The dataset for
Case 1 consisted of the MANIX and OBELIX images
from the public OsiriX DICOM repository [20]; the
OBELIX image was cropped to include only the left
leg. The datasets for Cases 2 and 3 consisted of
images from actual patients that were about to undergo
reconstructive surgery at the time of the imaging.
We used the BoneSplit [17] software to convert the
DICOM image stacks to volume images in VTK for-
mat and to segment the mandibles from the head-neck
CT images and the fibulas from the leg CT images.
For bone thresholding, we used threshold values in the
range [146,261] Hounsfield units (HU), corresponding
to conservative values for bone. We obtained cut planes
for fibula osteotomies and mandible resections from the
planning software, and also computed fuzzy coverage
representations of the reconstructed mandibles. Images
with anisotropic voxels were resampled to isotropic
voxels before we computed the SDFs. After consulta-

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 15

CT Size (voxels) Voxel spacing (mm)
Head 1 512×512×460 0.49×0.49×0.70

Leg 1 225×241×443 0.74×0.74×1.00
Head 2 512×512×159 0.30×0.30×1.00

Leg 2 137×141×135 0.88×0.88×3.00
Head 3 512×512×409 0.40×0.40×0.60

Leg 3 157×149×613 0.63×0.63×0.70
Table 1: Test datasets.

Model Shell offset (mm) Min. distance (mm) Min. distance (mm)
(specified) with Binary DT with AA DT

Fibula cutting guide 1 2.0 1.26 1.57
Mandibular resection guide 1 0.5 - 0.26

Plate 1 0.5 0.06 0.17
Fibula cutting guide 2 2.0 1.15 1.51

Mandibular resection guide 2 0.5 - 0.04
Plate 2 0.5 0.26 0.30

Fibula cutting guide 3 2.0 1.41 1.63
Mandibular resection guide 3 0.5 - 0.25

Plate 3 0.5 0.21 0.28
Table 2: Distance measurements.

tion with clinicians, we decided to use a shell offset of
2.0 mm for the fibula cutting guides, to take the mem-
brane around the bone of the fibula into account, and a
shell offset of 0.5 mm for the plates and mandibular re-
section guides, to provide some tolerance for the choice
of bone threshold value in the segmentation.

To quantitatively evaluate the accuracy and precision
of the generated models, we exported STL files of
iso-surfaces of bone templates and models and im-
ported the files in ParaView [1]. We used a Hauss-
dorf distance filter plugin for ParaView [4] to com-
pute surface-to-surface distances between bone tem-
plates and models (Figure 6). Fibula cutting guides and
plates were generated with binary and AA DTs (Fig-
ure 7), wheras mandibular resection guides had similar
properties (same shell offset) as plates and were gener-
ated only with AA DT. Table 2 compare the expected
shell offset with the minimum distance computed for
each object. Using the AA DT resulted in minimum
distances closer to the expected shell offsets, and visi-
bly smoother iso-surfaces, compared to the binary DT.
The low minimum distance for the mandibular resec-
tion guide in Case 2 was caused by two drill guide com-
ponents being inserted too close to the bone.

To test the manufacturability, we also printed a number
of exported STL files in polyactide (PLA) plastic on an
Ultimaker Original 3D printer (Figure 8).

The experiments were performed on a laptop with an
Intel Core i7-4710MQ CPU, 16 GB of RAM, and a
NVIDIA Quadro K4100M GPU.

5 DISCUSSION
Surgical guide and plate models can be efficiently gen-
erated in a few minutes from segmented CT images
with the methods we present in this paper. We are cur-
rently preparing a validation study in which we for a
larger number of patient cases will compare the planned
outcome from our software with the actual outcome of
simulated surgery on 3D printed plastic bones and mod-
els created from the plan.
An issue of the voxel-based modeling is the limited res-
olution it provides. Using an anti-aliased DT allows us
to preserve sub-voxel distances, when fuzzy coverage
representations are available, but fine details such as
threads for screw holes require higher resolution. Adap-
tive distance fields [8], or performing parts of the CSG
operations on the final iso-surface mesh, could be vi-
able options to explore.
The use of haptics is also something to explore fur-
ther for this type of application. In particular, haptic
feedback for testing the fit of models during the design
could provide valuable information to the user, and will
eventually be added to our software.

ACKNOWLEDGEMENT
We like to thank Johan Nysjö, Centre for Image Analy-
sis, for providing access to the BoneSplit segmentation
software. We would also like to thank Andreas Thor,
Andrés Rodríguez-Lorenzo, and Jan-Michaél Hirsch
from the Department of Surgical Sciences, Uppsala
University, as well as Daniel Buchbinder from the
Mount Sinai School of Medicine, NY, for their clinical
input and for providing datasets for Cases 2 and 3.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 16

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Results for Case 3: top row (a–c): iso-surfaces of generated guide and plate models; middle row (d–f):
iso-surfaces of generated models with bone templates; bottom row (g–i): computed bone-to-model distances.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 17

(a) Binary DT (b) Anti-aliased DT

(c) Binary DT (d) Anti-aliased DT

Figure 7: Comparison of bone-to-model distances for models generated with binary and anti-aliased DTs: (a–b)
fibula cutting guide; (c–d) plate. This figure is best viewed on a monitor.

Figure 8: Fibula cutting guide models 3D printed in polyactide (PLA) plastic.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 18

6 REFERENCES

[1] AHRENS, J., GEVECI, B., AND LAW, C.
ParaView: An End-User Tool for Large Data Vi-
sualization, Visualization Handbook. Elsevier,
2005, ISBN-13: 978-0123875822.

[2] BORGEFORS, G. Distance Transformations in
Arbitrary Dimensions. Computer Vision, Graph-
ics, and Image Processing 27, 3 (1984), 321–345.

[3] BOURKE, P. Polygonising a scalar field.
http://paulbourke.net/geometry/
polygonise. Accessed on February 9, 2017.

[4] COMMANDEUR, F., VELUT, J., AND ACOSTA,
O. A VTK Algorithm for the Computation of
the Hausdorff Distance. The VTK Journal (2011).
http://hdl.handle.net/10380/3322.

[5] DANIELSSON, P.-E. Euclidean Distance Map-
ping. Computer Graphics and Image Processing
14, 3 (1980), 227–248.

[6] FELZENSZWALB, P. F., AND HUTTENLOCHER,
D. P. Distance Transforms of Sampled Functions.
Theory of Computing 8 (2012), 415–428.

[7] FORNARO, J., KEEL, M., HARDERS, M., MAR-
INCEK, B., SZEKELY, G., AND FRAUENFELDER,
T. An interactive surgical planning tool for ac-
etabular fractures: initial results. Journal of Or-
thopaedic Surgery and Research 50, 5 (2010).

[8] FRISKEN, S. F., PERRY, R. N., ROCKWOOD,
A. P., AND JONES, T. R. Adaptively sampled
distance fields: A general representation of shape
for computer graphics. In Proceedings of the
27th Annual Conference on Computer Graphics
and Interactive Techniques (New York, NY, USA,
2000), SIGGRAPH ’00, ACM, pp. 249–254.

[9] GEOMAGIC. Freeform. http://
www.geomagic.com/en/products/
freeform/overview. Accessed on Febru-
ary 9, 2017.

[10] GUSTAVSON, S., AND STRAND, R. Anti-aliased
Euclidean distance transform. Pattern Recogni-
tion Letters 32, 2 (2011), 252–257.

[11] JONES, M. W., BAERENTZEN, J. A., AND
SRAMEK, M. 3D Distance Fields: A Survey
of Techniques and Applications. IEEE Transac-
tions on Visualization and Computer Graphics 12,
4 (2006), 581–599.

[12] KOVLER, I., JOSKOWICZ, L., WEIL, Y.,
KHOURY, A., KRONMAN, A., MOSHEIFF, R.,
LIEBERGALL, M., AND SALAVARRIETA, J. Hap-
tic computer-assisted patient-specific preopera-
tive planning for orthopedic fractures surgery.
Int. Journal of Computer Assisted Radiology and
Surgery 10, 10 (2015), 1535–1546.

[13] LORENSEN, W. E., AND CLINE, H. E. Marching
cubes: A high resolution 3D surface construction
algorithm. Computer Graphics 21, 4 (1987), 163–
169.

[14] MATERIALISE. Mimics. http://
www.materialise.com/en/medical/
mimics-innovation-suite. Accessed on
February 9, 2017.

[15] MCNEELY, W. A., PUTERBAUGH, K. D., AND
TROY, J. J. Six Degree-of-freedom Haptic Ren-
dering Using Voxel Sampling. In Proceedings of
the 26th Annual Conference on Computer Graph-
ics and Interactive Techniques (New York, NY,
USA, 1999), SIGGRAPH ’99, ACM, pp. 401–
408.

[16] MUSETH, K., BREEN, D. E., WHITAKER, R. T.,
AND BARR, A. H. Level set surface editing op-
erators. In Proceedings of the 29th Annual Con-
ference on Computer Graphics and Interactive
Techniques (New York, NY, USA, 2002), SIG-
GRAPH ’02, ACM, pp. 330–338.

[17] NYSJÖ, J., MALMBERG, F., SINTORN, I.-M.,
AND NYSTRÖM, I. BoneSplit - A 3D Texture
Painting Tool for Interactive Bone Separation in
CT Images. Journal of WSCG 23, 2 (2015), 157–
166.

[18] OLSSON, P., NYSJÖ, F., HIRSCH, J.-M., AND
CARLBOM, I. B. A Haptics-Assisted Cranio-
Maxillofacial Surgery Planning System for
Restoring Skeletal Anatomy in Complex Trauma
Cases. Int. Journal of Computer Assisted Radiol-
ogy and Surgery 8, 6 (2013), 887–894.

[19] OLSSON, P., NYSJÖ, F., RODRIGUEZ-
LORENZO, A., THOR, A., HIRSCH, J.-M., AND
CARLBOM, I. B. Haptics-assisted Virtual Plan-
ning of Bone, Soft Tissue, and Vessels in Fibula
Osteocutaneous Free Flaps. Plastic and Recon-
structive Surgery - Global Open 3, 8 (2015).

[20] OSIRIX. DICOM Image Library. http://
www.osirix-viewer.com/resources/
dicom-image-library. Accessed on Febru-
ary 9, 2017.

[21] PAYNE, B. A., AND TOGA, A. W. Distance field
manipulation of surface models. IEEE Computer
Graphics and Applications 12, 1 (1992), 65–71.

[22] QUILEZ, I. Distance functions. http://
www.iquilezles.org/www/articles/
distfunctions/distfunctions.htm.
Accessed on February 9, 2017.

[23] RITACCO, L. E., MILANO, F. E., AND CHAO,
E. Computer-Assisted Musculoskeletal Surgery:
Thinking and Executing in 3D. Springer Interna-
tional Publishing, 2016.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 19

[24] VOSS, J. O., VARJAS, V., RAGUSE, J.-D.,
THIEME, N., RICHARDS, R. G., AND KAMER,
L. Computed tomography-based virtual fracture
reduction techniques in bimandibular fractures.
Int. Journal of Cranio-Maxillofacial Surgery 44,
2 (2015), 177–185.

[25] ZWEIFEL, D. F., SIMON, C., HOARAU, R.,
PASCHE, P., AND BROOME, M. Are Virtual
Planning and Guided Surgery for Head and Neck
Reconstruction Economically Viable? Journal
of Oral and Maxillofacial Surgery 73, 1 (2015),

170–175.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 20

Least Squares Affine Transitions for Global
Parameterization

Ana Maria Vintescu
LTCI - Télécom ParisTech -

Institut Mines-Telecom
75013 Paris, France

vintescu@telecom-paristech.fr

Florent Dupont
Université de Lyon, CNRS

Université Lyon 1, LIRIS UMR 5205
69622 Villeurbanne, France
florent.dupont@liris.cnrs.fr

Guillaume Lavoué
Université de Lyon, CNRS

INSA-Lyon, LIRIS UMR 5205
69621 Villeurbanne, France

glavoue@liris.cnrs.fr

Pooran Memari
LIX UMR 7161, CNRS, École

Polytechnique, Université Paris Saclay
91128 Palaiseau Cedex - France

memari@lix.polytechnique.fr

Julien Tierny
Sorbonne Universités, UPMC Univ Paris

06, CNRS, LIP6 UMR 7606
75005 Paris, France
julien.tierny@lip6.fr

ABSTRACT
This paper presents an efficient algorithm for a global parameterization of triangular surface meshes. In contrast
to previous techniques which achieve global parameterization through the optimization of non-linear systems of
equations, our algorithm is solely based on solving at most two linear equation systems, in the least square sense.
Therefore, in terms of running time the unfolding procedure is highly efficient. Our approach is direct – it solves
for the planar UV coordinates of each vertex directly – hence avoiding any numerically challenging planar recon-
struction in a post-process. This results in a robust unfolding algorithm. Curvature prescription for user-provided
cone singularities can either be specified manually, or suggested automatically by our approach. Experiments on a
variety of surface meshes demonstrate the runtime efficiency of our algorithm and the quality of its unfolding. To
demonstrate the utility and versatility of our approach, we apply it to seamless texturing. The proposed algorithm
is computationally efficient, robust and results in a parameterization with acceptable metric distortion.

0.1 Keywords
surface parameterization, geometry processing,triangular mesh, mesh unfolding

1 INTRODUCTION
Surface parameterization represents a main topic in ge-
ometry processing and computer graphics fields. It is
defined as a one-to-one mapping between a surface and
typically a 2D plane, where geometrical tasks can be
carried out more efficiently. The most important ap-
plication of surface parameterization are texture map-
ping, texture synthesis, re-meshing, and morphing. In
order to unfold a surface to the plane, it must have a disk
topology; for a closed surface this requirement implies
cutting it into a single or multiple disk topology charts.
Cutting can result in visual artifacts due to the discon-
tinuities across the boundaries of the charts. To this
extent, methods for global parameterization of triangu-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

lated surfaces have been proposed. Within this frame-
work, the global parameterization of a surface with disk
topology can be defined as a homeomorphism from the
surface to a subset of the plane, such that the discrete
Gaussian curvature, i.e. the difference between 2π and
the incident triangles’ sum of angles at a vertex, is zero
everywhere except for a few vertices called cone singu-
larities. These can be thought of distortion absorbers,
being chosen as vertices of the mesh where large area
distortion can be predicted prior to the actual parame-
terization, [Kha05].

Several approaches based on metric scaling have been
proposed in the past to address global parameterization
[Jin08, Yan09]. However, these methods mostly rely on
non-linear solvers and are hence computationally ex-
pensive. Linearized approximations, although compu-
tationally attractive, are imprecise (the target metric is
only approximated and therefore is not guaranteed to be
flat). More importantly, the planar coordinates of the
surface vertices (the actual output) are not the variables
that are optimized by this family of techniques. We
will refer to those as indirect methods [Ben08]. Indeed

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 21

they focus on the surface metric, i.e. the edge lengths,
and later reconstruct the planar coordinates in a post-
process. However, this reconstruction post-process may
be computationally expensive and, more importantly,
numerically challenging. This paper addresses these
two issues by presenting a global parameterization tech-
nique which is fast by employing linear solvers, which
minimizes angular distortion through imposed confor-
mality, and reduces the area distortion through the use
of cone singularities. Our method is simple and direct.
It directly solves for the 2D coordinates. Thus, it does
not suffer from numerical instabilities due to angle-to-
uv or scaling factors-to-uv conversions, as found with
indirect approaches, [She06]. In contrast to more com-
putationally expensive techniques based on non-linear
solvers, the computational speed of our approach makes
it a good candidate for interactive applications, such as
user-driven parameterization improvement for instance,
where the users could interactively adjust the number
and locations of the cones.

Contributions
This paper makes the following new contributions:

1. A fast and robust global parameterization algo-
rithm: Our method is direct (hence robust), non-
iterative and only relies on the solving of at most
two linear systems.

2. Automatic curvature prescription: Given a list of
cone singularities, we present a fast algorithm to au-
tomatically evaluate relevant curvature prescriptions
at the cone singularities.

The next section presents related work. Next, we in-
troduce the method and its preliminaries. Sec. 4 and
5 present the proposed global parameterization algo-
rithm in detail. The modeling of the linear systems is
described in Sec. 6, while experimental results are re-
ported in Sec. 7. To demonstrate the utility and ver-
satility of our technique, we present its application to
seamless texturing in Sec. 8 and finally, Sec. 9 con-
cludes the paper.

2 RELATED WORK
In the following, we will only focus on surface parame-
terization techniques that are related to our work. We
refer the reader to survey articles [Flo05, She06] for
further reading. Most existing parameterization meth-
ods focus on conformal parameterizations (where an-
gle distortion is minimized). Several methods [Des02,
Lev02, Liu08, Ray03] focus on parameterizing sur-
faces of disk topology while reducing angular distor-
tion. These methods employ linear solvers for the min-
imization of energy functions (that are discrete analo-
gous to Laplace and Cauchy-Riemann equations) de-
fined in terms of the 2D coordinates of the vertices in

(a) LSGP (b) MIQ

Figure 1: Comparison between our approach (a) and
Mixed-Integer Quadrangulation (MIQ) [Bom09] (b).
On this example, the MIQ approach generates many
boundary self-intersections, see the unfolded blue

boundary.

the mesh. These are therefore direct methods. They al-
low a free boundary setting but pin two vertices to avoid
a non-trivial solution (a more recent approach removes
such necessity through a spectral embedding [Mul08]).

Indirect methods [She05, She00, Zay07] aim at mini-
mizing the difference between the initial angles of the
3D mesh and the final ones. The methods are computa-
tionally expensive (for advances see linearized version
[Zay07]) and suffer from numerical instability when
converting the obtained angles to actual 2D coordinates.

Indirect global parameterization methods
[Ben08, Spr08, Kha05] determine the necessary
edge lengths to parameterize the mesh to the plane be-
fore cutting it along a set of cut-paths to disk topology.
Moreover, they also make use of cone singularities to
absorb the curvature (i.e. the angle deficits), resulting
in a global parameterization where the scaling of the
surface is continuous across each cut-path.

While expensive non-linear solvers are usually em-
ployed [Jin08, Kha06, Spr08, Yan09], Ben Chen et
al. [Ben08] approximate the solution through a Finite
Element discretization of the Poisson equation, yielding
better computational complexity at the expense of met-
ric accuracy. Some methods [Spr08, Myl12, Myl13]
additionally provide the possibility of obtaining seam-
less parameterizations by iteratively quantizing the
cone angle deficits to multiples of π/2 and rectifying
the cone positions to integer locations. Myles and
Zorin [Myl12] compute seamless parameterizations, by
employing linear solvers with linear constraints in an
iterative manner for the first two steps of their algorithm
(cone detection and curvature prescription). However,
the last step consists in optimizing the non-linear
as-rigid-as-possible (ARAP) energy function. Even
though the first two steps solve linear systems, they do
so in an iterative fashion and many iterations may be
required. Moreover, the last step still requires the use of
a time-consuming non-linear solver. Quadrangulation
techniques based on structure-aligned parameteriza-
tions [Ray06, Ton06, Kal07, Bom09, Cam15, Myl14]
are also related to global parameterization (for a more

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 22

(a) (b) (c) (d)

Figure 2: Algorithm overview: (a) Given an input triangular mesh and cone singularities, the mesh is cut through
the cones in order to obtain a disk topology. The cones are shown by colored spheres and conic cuts by colored

cylinders. (b) Next, the mesh is conformally parameterized by concentrating the entire curvature at the cones. (c)
Given the cone angles resulting from the previous step, the surface is globally parameterized. (d) Optionally, the

mesh can be seamlessly parameterized.

detailed description see [Bom12]). Bommes et al.
[Bom09] obtain quadrangulations by solving two
mixed integer problems, one for the computation of a
direction-aware cross field [Ray08, Pan12, Kno13] and
one for the global parameterization, with additional
similar solves in case of singularity relocation. The
transition functions across cut-paths that we employ
are similar to the ones used by Bommes et al. [Bom09]
and Myles et al. [Myl12]. However, we formulate such
constraints in a different optimization setting, which is
based on faster, linear solvers.

Although the Mixed-Integer Quadrangulation (MIQ)
method [Bom09] generates high quality output
quadrangulations, it can yield many boundary
self-intersections in the planar domain, Fig. 1 - param-
eterization using the MIQ method obtained by Ebke
et al. [Ebk13], which may challenge their systematic
usage for sub-sequent applications (such as surface
cross parameterization for instance). An extension
of (MIQ) [Bom09] has been proposed to address this
boundary domain intersection problem [Bom13] but at
the expense of increasing further computation times.

3 METHOD OVERVIEW

3.1 Preliminaries
The input surface M is given as a mesh made of ver-
tices (V), edges (E) and triangles (T). Their num-
ber is noted with |V |, |E| and |T | respectively. The
geometry of M is given as the 3D coordinates of the
vertices Xv = (vx,vy,vz),∀v ∈ V . The output parame-
terization is represented with 2D coordinates for each
vertex Uv = (u,v). The length of an edge is given
by ei, j = ‖Xvi − Xv j‖2 in 3D or ei, j = ‖Uvi −Uv j‖2
in 2D. An angle in a triangle t is given by: α t

vi
=

arccos
(

e2
i, j+e2

i,k−e2
j,k

2ei, jei,k

)
, where vi,v j and vk are the ver-

tices of t.

The discrete Gaussian curvature is given by K ={
kvi =

{
2π−∑t∈Tvi

(α t
vi
), for an interior vertex

π−∑t∈Tvi
(α t

vi
)}, for a boundary vertex

}
,

where Tvi represents the set of incident triangles to the
vertex vi.

The Gauss-Bonnet Theorem states that the integral of
the curvature is a constant, which depends on the topol-
ogy of M: ∑K = 2πχ , where χ represents the Eu-
ler characteristic of M (χ = |V | − |E|+ |T |). Given a
mesh with disk topology, a global parameterization is a
homeomorphism to a subset of the plane, such that the
discrete Gaussian curvature is zero everywhere except
at a set of selected vertices C, called cones.

3.2 Algorithm Description

Given an input triangular mesh, our algorithm first cuts
the mesh open through a set of cut-paths that connect
cone singularities. We call those conic cuts. Such sin-
gularities will absorb the area distortion of the param-
eterization, as showcased in Fig. 3. The second step
consists in parameterizing the mesh, while minimizing
angular distortion and imposing zero curvature every-
where except at the cones. This is achieved by intro-
ducing straightness conditions for the entire boundary,
Fig. 2(b). By employing only conformality and bound-
ary straightness conditions, the two sides of a conic cut
might have different lengths in the plane, Fig. 2(b). To
ensure that the two resulting sides of a conic cut are
scaled similarly, we additionally enforce rotations and
translations between each side of a conic cut, Fig. 2(c)
note the continuity of the distortion across the cuts.

The rotation angles are either provided by the user or
detected as the angles between the conic cuts in the pa-
rameterization that resulted from the previous step, i.e.
the curvature prescription..

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 23

(a) LSCM [Lev02] (b) LSCM [Lev02], conic cuts (c) Our approach (d) Our approach - Seamless

Figure 3: Comparison between Least-Squares Conformal Maps (LSCM) [Lev02] without (a) and with conic cuts
(b) and our approach (c), (d). From top to bottom: (i) textured surface with cones (colored spheres) and cuts

(colored cylinders), as well as planar unfolding, (ii) area distortion (color map: blue (0) to red (10)) and sister
edge length distortion on the cuts (rainbow color map), (iii) histograms of sister edge length, quasi-conformal and
area distortions (ideal values: 1). Introducing cones (b) drastically reduces area distortion, while minimizing sister
edge length distortion (c) yields a global parameterization . By imposing positional and rotational constraints on

cones, and respectively on conic cuts, our approach can be used to generate seamless parameterizations (d).

4 GLOBAL PARAMETERIZA-
TION WITH ROTATIONAL CON-
STRAINTS

Given a set of cone singularities and their correspond-
ing curvature prescriptions (either provided by the user
or computed automatically, see Sec. 5), a global param-
eterization can be defined as an angle preserving home-
omorphism from the input triangular surface to a subset
of a plane, such that the discrete curvature is zero every-
where except at the cones. In this section, we present an
algorithm that computes such a mapping, by minimiz-
ing angular distortion and penalizing the deviation from
the target curvature in the least-squares sense. First, the
surface is cut open along conic cuts to become homeo-
morphic to a disk. Second, the surface is unfolded and
the target curvature is enforced by imposing affine tran-
sition functions across conic cuts.

4.1 Mesh Cutting
To be unfolded to the plane, we require the input sur-
face to have a disk topology. For surfaces with a sphere
topology, this can be obtained by introducing a bound-
ary component, by cutting the mesh along the short-
est paths that connect the cones. We detail this process
hereafter. Variants of this strategy can be derived for
surfaces with different genus.

The shortest path between each possible pair of cones is
first computed with Dijkstra’s algorithm. Next, a min-
imum spanning tree is constructed on a graph where
the nodes denote the cones and where each edge is
weighted by the geodesic distance between its cones
(i.e. the length of their shortest paths). The edges of
the spanning tree then correspond to the shortest paths
along which the surface is cut open and that we call
conic cuts. The valence of a cone corresponds to the
number of conic cuts incident to it. The actual cutting
process involves the duplication of all the surface edges
found on the paths. Given an edge initially present on
a shortest path, its copy is called its sister edge. Sim-
ilarly, the copy of a conic cut is called its sister conic
cut. Throughout the paper, sister conic cuts will be
represented by curves with matching colors (see Fig. 2
for instance). Note that after the cutting, a cone may
have a high valence. Also, similarly to Springborn et
al. [Spr08], each boundary component is treated as a
cone.

4.2 Least-Squares Conformal Maps with
Rotational Constraints

Once the mesh is cut open, we unfold it to the plane
with a new algorithm that minimizes angular distortion
and penalizes the deviation from the target curvature.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 24

Figure 4: Rotational transformation relations between
simple and complex sister conic cuts of a cube.

Our approach relies on the conformality criterion in-
troduced by Lévy et al. [Lev02], as it enables a direct
and fast optimization. We impose similar conditions
as Aigerman et al. [Aig15], but in contrast to them
we are not restricted to four cone configurations, allow-
ing a general framework. Given some prescribed target
curvatures for each cone, our approach consists in im-
posing this angle deficit by constraining combinations
of translations and rotations between sister conic cuts,
which is achieved as follows. Sister conic cuts can be
classified into two categories:

1. Simple conic cuts - cuts connected to a cone of va-
lence 1 (see the orange cuts connected to the green
cone of valence 1 in Fig. 4);

2. Complex conic cuts - cuts not connected to a cone of
valence 1 (see the dark blue cut connected in Fig. 4).

Note that simple sister cuts will be adjacent in the plane
while complex ones will not. Given a cone of valence 1,
we enforce its prescribed angle deficit θ by constrain-
ing its incident sister cuts to be related by a rotation of
angle θ (Fig. 4, left inset zoom). For complex sister
cuts, we first translate them to the origin (translation
T 2), apply the required rotation of angle θ (rotation R)
and translate them back to their original location (trans-
lation T 1):

Vs2 u
Vs2 v

1

=

1 0 C1s2 u
0 1 C1s2 v
0 0 1


T 1

·

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


R

·

1 0 −C1s1 u
0 1 −C1s1 v
0 0 1


T 2

Vs1 u
Vs1 v

1


(1)

where (Vs1 u,Vs1 v) and (Vs2 u,Vs2 v) are the unknown
(u,v) coordinates of the cut vertex Vs1 and its sister
cut vertex Vs2 (Fig. 4), and where (C1s1 u,C1s1 v) and
(C1s2 u,C1s2 v) are the unknown (u,v) coordinates of
the cone C1 on the conic cut s1 and of its duplicate
on the sister conic cut s2 (Fig. 4). For simple conic
cuts, the latter two cones will coincide (the cone being
of valence one). Therefore, for each vertex along a
conic cut, we add the following two equations to the
least-squares conformal map system:

Vs2 u =Vs1 u · cos(θ)−Vs1 v · sin(θ)−C1s1 u · cos(θ)
+C1s1 v · sin(θ)+C1s2 u

Vs2 v =Vs1 u · sin(θ)+Vs1 v · cos(θ)−C1s1 u · sin(θ)
−C1s1 v · cos(θ)+C1s2 v

(2)

5 CURVATURE PRESCRIPTION ESTI-
MATION BY STRAIGHTNESS CON-
STRAINTS

So far, we assumed that the target curvatures, i.e. the
corresponding target θ angles, were provided by the
user. We describe in this section a new, fast algo-
rithm for the automatic evaluation of relevant curva-
ture prescriptions for a set of input cone singulari-
ties. The cone singularities can be either user-provided
or automatically extracted with an existing technique
([Ben08, Spr08, Myl12]). The key idea of our algo-
rithm is to unfold the input surface while minimizing
in the least-squares sense angle distortion as well as
the deviation from zero curvature, everywhere except
at the cones. With this strategy, cone angles will self-
adjust to provide a good balance between cone curva-
ture absorption and angular distortion. This procedure
can be interpreted as a redistribution of the surface cur-
vature onto the cones in a least-squares sense. As de-
scribed below, an appealing aspect of this method is
that it only requires a single linear solving. Hence, it
is very efficient in terms of computation time. To pe-
nalize the deviation from zero curvature, we enforce
straightness constraints. First, for each vertex located
on a conic cut, we evaluate its (3D) arc-length param-
eterization along the conic cut. This parameterization
will be used as barycentric coordinates to enforce the
alignment of the conic cut in 2D, as follows. We denote
the original edge lengths vectors along a conic cut as
LCP = [eVC1 ,V

1
s
, ...,eV i

s ,V
i+1
s

, ..], Fig. 5, the total conic cut

lengths as LTot
CP =∑e∈CP LCP[e]; the relative edge lengths

will be: rCP[e] = [LCP[e]
LTot

CP
,∀e ∈CP.

We calculate the cumulative sum for the ratio vector and
obtain: RCP = [0,r1

CP,r
1
CP + r2

CP, ...,1].

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 25

Figure 5: Conic cut.

To enforce the straightness
of the conic cuts in the plane,
we impose that each vertex
along a cut is placed at a lo-
cation which is dictated by
the linear interpolation be-
tween the ending points of

the cut, with factors ri
CP. This yields two new equations

that we add to the least-squares conformal map system:

V i
s u =C1u · (1− ri

CP)+C2u · (ri
CP)

V i
s v =C1v · (1− ri

CP)+C2v · (ri
CP)

(3)

where (V i
s u,V

i
s v), (C1u,C1v) and (C2u,C2v) stand for

the unknown (u,v) coordinates of the cut vertex Vs and
the cones C1 and C2 respectively, Fig. 5. The result
of this least-squares solution is illustrated in Fig. 2(b),
where the conic cuts have been straightened in the
plane. From there, our algorithm collects for each cone

Figure 6: Possible cut intersections are recursively
resolved by cone swapping. Here, the intersection A
between segments [θ1,θ2] and [θ4,θ5] is first solved
instead of intersection B because it counts the most
intersections between its two extremities θ1 and θ5.

the angle between its incident conic cuts and provides
this value as a curvature prescription for the rest of the
pipeline, Fig. 2(c). This approach is non-iterative and
simple to implement, requiring only solving one linear
system. By applying these straightness conditions for
all paths, it is possible that such paths intersect. If such
a configuration is encountered, we simply recursively
swap the positions of their extremity cones. In particu-
lar, this swapping procedure processes intersections in
decreasing order of the number of remaining intersec-
tions between their path extremities, Fig. 6.

6 FORMULATING THE LINEAR SYS-
TEM

In this section, we detail how the equations discussed
in the previous sections can be integrated in the least-
squares conformal map system. The least-squares con-
formal map (LSCM) method [Lev02] defines the con-
formality of the mapping in terms of its gradients: the
gradient vectors inside a triangle should be orthogonal
and have the same norm. Thus, the authors propose the
minimization of the following energy ELSCM:

ELSCM = ∑
Tj⊂T

ATj

∥∥∥∥∇v−
(

0 −1
1 0

)
∇u
∥∥∥∥2

(4)

where ATj represents the area of a triangle Tj and ∇u
and ∇v stand for the gradient of the (u,v) coordinates
within the triangle Tj = {p1, p2, p3}:

∇u = (Xp1 · (vp2 − vp3)+Xp2 · (vp3 − vp1)

+Xp3 · (vp1 − vp2))/(2 ·ATj)
(5)

Similarly, for ∇v. In order to obtain a non-trivial solu-
tion, the authors fix the 2D coordinates of two vertices
(Vp), leaving the rest of the vertices evolve freely (Vf),
|Vp|+ |Vf | = |V |. The objective function will have the
form E(x) = ‖A · x−b‖2, where x represents the vec-
tor of 2D coordinates of the free vertices of the mesh
(x ∈ R2|V f |), A is a sparse matrix containing the con-
formality conditions (A ∈ R2|T |×2|V f |). b ∈ R2|T | is the
vector that introduces the 2D coordinates of the fixed
vertices into the system. Considering that the system
is defined in terms of 2D coordinates, other positional
constraints can be easily added to it, the result being
a trade-off between the conformality of the mapping
and the imposed constraints. By adding the rotation
equations (2) that impose affine transformations for sis-
ter cuts (Fig. 4), the minimization energy will become:
ELSGP = ELSCM +ERot , where:

ERot = ∑
CPi⊂CP

(
∑

V⊂CPi

∥∥∥UVS2
− (T 1 ·R ·T 2)UVS1

∥∥∥2
)
(6)

The number of additional equations will be equal to the
number of duplicated vertices Vd from each conic cut
CPi multiplied by two (one equation for each of the
two planar coordinates - u and v). Therefore in the
linear system, the number of equations will increase
(A ∈ R(2|T |+2|Vd |)×2|V f |), while the number of variables
remains the same.

In the case of straightness conditions (Sec. 5), the em-
ployed minimization energy is: ECurvature_Precription =
ELSCM +EStr, where:

EStr = ∑
Pi⊂P

(
∑

V j⊂Pi

∥∥∥UV j −UC1 ·
(

1− r j
CP

)
−UC2 · (ri

CP)
∥∥∥2
)

(7)
where P represents the entire set of paths resulted af-
ter the cutting. Therefore the total number of equa-
tions will be 2|T | to which we add 2

(
∑Pi⊂P (|Pi|−2)

)
straightness equations, corresponding to the total num-
ber of vertices along paths, except their ending points;
which is equal to (|Vbdry|−2|P|), where Vbdry represents
the total number of boundary vertices after the mesh has
been cut. To remove the need for positional constraints
of at least two vertices as in LSCM [Lev02], we em-
ploy the spectral approach described by Mullen et al.
[Mul08].

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 26

(a) Armchair (b) Fandisk (c) Hand (d) Hygeia

Figure 7: Global parameterization examples obtained with our algorithm. From top to bottom: (i) textured surface
with cones and cuts (with planar domain inset), (ii) quasi-conformal distortion, (iii) area distortion. Inset

histograms on the left indicate, from top to bottom: sister edge length, quasi-conformal and area distortions (ideal
values: 1). Our approach yields global conformal parameterizations with low area distortion.

7 EXPERIMENTS
Experiments were performed with a C++ implementa-
tion of our approach (using Eigen, Spectra and Boost li-
braries), on a laptop with a 2.50GHz i7-4710HQ CPU.
Our test data-sets were taken from the AIM@SHAPE
repository, [AIM].

7.1 Quality Estimations
We evaluated the quality of our approach with respect to
the following quantitative measures. They should ide-
ally be all equal to 1.

1. Quasi-conformal distortion [Kha06]: ratio between
the largest and smallest eigenvalues of the metric
tensor of the parameterization. This indicates a vio-
lation of the conformality condition. The color code
map depicted in Fig. 7 and Fig. 9 ranges from blue
(1) to red (1.5).

2. Area distortion: ratio between the normalized area
of a triangle in 3D and in 2D (the normalized area
refers to the proportion between the area of a tri-
angle and the total area of the mesh). This indicates
how much the surface needs to be stretched to be un-
folded. The color code map depicted in Fig. 7 and
Fig. 9 ranges from blue (0) to red (5).

3. 10th and 90th Percentile of Area distortion: area dis-
tortion values below which (and above which) are
located the top 10% triangles that have been scaled
down (and scaled up respectively) the most after pa-
rameterization.

4. Sister edge length distortion: ratio between the pla-
nar lengths of a conic cut edge and its sister’s. This
indicates the violation of the continuity of the global
parameterization.

5. L2Stretch: measure of distance preservation, com-
puted as in [San01].

Tab. 1 reports a comparison, with respect to these mea-
sures, between our technique and Least-Squares Con-
formal Maps (LSCM) [Lev02], to which conic cuts
have been applied in a pre-process (as in Fig. 3(b)),
for the sake of a fair comparison. Although slightly
higher than those of LSCM, the quasi-conformal dis-
tortion measures obtained by our approach are reason-
able, Fig. 7: in all our experiments, the worst quasi-
conformal distortion is 1.119, Fig. 7(c). For all the re-
maining criteria - area distortion, sister edge length dis-
tortion, L2stretch - our approach outperforms LSCM
with conic cuts for all surface examples but one. Al-
though our approach balances conformality for global-
ity, it still produces a quasi-conformal distortion that is
on par with Least-Squares Conformal Maps (LSCM),
while improving on the area distortion, Fig. 3. The sis-
ter edge length distortion is very close to 1.0 on all mod-
els, demonstrating the good globality of our parameter-
ization. This is further exemplified in Fig. 3(c), where
the area distortion is indeed continuous across the conic
cuts (in contrast to LSCM with conic cuts Fig. 3(b)).

7.2 Time Requirement
Tab. 2 presents the running times for the different steps
of our approach on the surfaces shown in the paper.
This table also presents the total runtime of our ap-
proach and the runtime of the LSCM approach [Lev02]
with conic cuts, including mesh cutting, as well as the
speedup. As illustrated, the most expensive steps of
our approach are the linear solvers for the curvature
prescription and the final unfolding. Note that even
combined, these two steps are still faster than the orig-
inal LSCM approach. We suspect this performance

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 27

Model |T | |C|

Distortion
Quasi Conformal Areal 10th Percentile Areal 90th Percentile Areal Sister Edge Length L2Stretch
Our LSCM Our LSCM Our LSCM Our LSCM Our LSCM Our LSCM

Approach [Lev02] Approach [Lev02] Approach [Lev02] Approach [Lev02] Approach [Lev02] Approach [Lev02]
Octa-flower (Fig. 2) 16K 6 1.016 1.016 0.965 1.089 0.808 0.661 1.166 1.428 1.002 1.294 1.010 1.063

Planck (Fig. 3) 47K 8 1.026 1.021 1.488 1.575 0.516 0.525 3.370 3.295 1.007 1.711 1.273 1.273
Fandisk (Fig. 7(b)) 13K 25 1.017 1.018 1.276 3.601 0.606 0.536 2.068 8.748 1.001 2.609 1.132 1.926

Armchair (Fig. 7(a)) 5K 12 1.056 1.042 1.215 1.560 0.633 0.525 1.961 3.156 1.014 1.626 1.099 1.252
Hand (Fig. 7(c)) 5K 11 1.119 1.085 1.868 4.166 0.451 0.350 4.134 8.445 1.036 1.365 1.455 2.010

Hygeia (Fig. 7(d)) 16.5K 14 1.039 1.037 1.235 1.521 0.618 0.462 2.123 3.013 1.011 1.448 1.111 1.247

Table 1: Comparison of distortion measures between our approach and Least Squares Conformal Maps [Lev02]
with conic cuts. For each criterion (ideal values: 1), the best measure of the two techniques is displayed in bold.

Model |T | |C|

Runtime [s] Speedup
Curvature Rotationally of our

Mesh Prescription Constrained Our LSCM approach
Cutting (Sec. 5) Unfolding approach [Lev02] vs.

(Sec. 4.1) (Sec. 4.2) Total Total LSCM
Setup Solve Setup Solve [Lev02]

Octa-flower (Fig. 2) 16K 6 0.144 0.051 0.028 0.079 0.014 0.316 2.085 6.6
Planck (Fig. 3) 47K 8 1.096 0.214 0.130 0.477 0.091 2.008 16.760 8.35

Fandisk (Fig. 7(b)) 13K 25 0.010 0.053 0.032 0.088 0.029 0.212 1.551 7.32
Armchair (Fig. 7(a)) 5K 12 0.017 0.014 0.007 0.019 0.007 0.064 0.324 5.06

Hand (Fig. 7(c)) 5K 11 0.017 0.015 0.008 0.017 0.008 0.065 0.235 3.62
Hygeia (Fig. 7(d)) 16.5K 14 0.160 0.067 0.033 0.090 0.024 0.374 2.399 6.41

Table 2: Computation times for each step of our approach in seconds.

gain is due to the fact that the original LSCM method
uses an indirect method (Conjugate Gradients) to solve
the least-squares problem, while we employ the spec-
tral method described by Mullen et al. [Mul08]. The
average speedup of our method compared to LSCM,
[Lev02] is 6.23.
In comparison to the approach by Myles and
Zorin [Myl12], who report a timing of 12.55 sec-
onds for the Fandisk mesh for only the first two
steps of their algorithm (cone detection and curvature
prescription), our method requires only 0.328 seconds
overall.

8 SEAMLESS TEXTURES APPLICA-
TION

As described previously, our approach computes global
parameterizations, where area distortion is continuous
across conic cuts, Fig. 8(a). For example, this facili-
tates texture design. Artists want to paint across cuts
without noticing distortions. However, for specific tex-
turing tasks such as procedural texturing with periodic
patterns, it is additionally beneficial to enforce planar
coordinate alignment across the cuts, to guarantee the
alignment of the periodic pattern. Such a parameteriza-
tion is called seamless and it is illustrated on a simple
cube in Fig. 8(b), where the repeating checker board
pattern is indeed well aligned across conic cuts. Seam-
less parameterizations are also useful for re-meshing
as pure quadrangulations can readily be extracted from
them. Seamless texturing requires the usage of specific
transition functions across conic cuts: translations and
rotations by multiples of π/2. Additionally, cone sin-
gularities must be located at integer texture coordinates.

(a) LSGP (b) Seamless LSGP

Figure 8: Cube unfolding with our approach (a); our
approach - seamless (b).

These two constraints can easily be integrated in our ap-
proach.

Given input cones as well as initial curvature prescrip-
tions computed automatically by our approach, we start
by rounding the curvature prescriptions to the nearest
multiples of π/2 while respecting the Gauss-Bonnet
theorem, similarly to Springborn et al. [Spr08]. In
particular if the sum of prescribed angles is different
from the allowed sum, we decrease them in descend-
ing order of their rounding error. The resulting angles
are then prescribed in the reminder of the proposed al-
gorithm. Next, we snap each cone to the nearest inte-
ger location. The resulting integer locations are then
added as hard constraints to the linear system described
in Sec. 6 and the rest of the algorithm is executed as
is. In the extreme case where several cones are quan-
tized to the same (u,v) coordinates, we relax the seam-
less constraints by not pinning such cones, but rather
adding them to the system as soft constraints. This case
appears rarely in practice and it is either caused by the
proximity of the cones in 3D, the high cone number or
the low resolution of the texture space.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 28

(a) Armchair (b) Bird

(c) Head (d) Julius (e) Rabbit
Figure 9: Seamless global parameterization obtained with our algorithm. From left to right: (i) textured surface

with cones and cuts (with planar domain inset), (ii) quasi-conformal distortion, (iii) area distortion, (iv)
quasi-conformal and area distortion histograms (ideal values: 1). Our approach yields global conformal

parameterizations with low area distortion and seamless texture transitions across conic cuts (inset zooms).

Fig. 2(d), Fig. 1(a), Fig. 3(d), Fig. 8(b) and Fig. 9 pro-
vide examples of seamless global parameterizations ob-
tained with our approach. The initial curvature pre-
scription, before rounding, has been automatically eval-
uated by our method for all surfaces. As showcased
in these examples, based on the integration of seam-
less constraints, our approach provides rapidly seam-
less global parameterizations with low area distortion.

9 CONCLUSION
We have presented a fast and efficient method for the
global parameterization of triangular surfaces.

For modeling the transition functions between pairs of
sister conic cuts, we introduced linear equations which
account for translations and rotations with given cone
angles. Also we have provided an automatic method
to compute such angles. Extensive experimental results
demonstrate the time efficiency of our algorithm which
performs better than standard, non-global parameteri-
zation algorithms [Lev02]. The average speedup of our
method compared to LSCM is 6.23. The quality of our
parameterizations has been illustrated by examining ac-
cepted distortion measures. We demonstrated the inter-
est of the computational speed of our approach in the
seamless texturing application, which requires slight
modifications to our algorithm.

In future work, we want to extend the seamless textur-
ing application. In particular, the proposed method for
detecting integer positions for the cones is not guaran-
teed to find solutions for the entire set of cones, the
quantization can be partial, but we show a number of
examples where the application provides satisfactory
results. A more robust but still efficient quantization

of the cones remains an open problem that we will ad-
dress in the future. Although our procedure for the res-
olution of conic cut intersection in the planar domain
has worked successfully in our experiments, we would
like to further investigate theoretical guarantees regard-
ing the bijective property of the maps computed by our
approach. Also, since our method handles only disk or
sphere topology, another future work direction lies in
the extension of our algorithm to surfaces of non triv-
ial topology, by applying loop computation algorithms
[Dey08, Dey13].

10 REFERENCES

[Aig15] N. Aigerman and Y. Lipman. Orbifold tutte
embeddings. ACM Trans. Graph., 34(6):190:1–
190:12, 2015.

[AIM] Digital shape workbench. AIM@SHAPE shape
repository. http://visionair.ge.imati.
cnr.it/ontologies/shapes/

[Ben08] M. Ben-Chen, C. Gotsman, and G. Bunin.
Conformal flattening by curvature prescription
and metric scaling. Comput. Graph. Forum,
27(2):449–458, 2008.

[Bom13] D. Bommes, M. Campen, H.-C. Ebke, P. Al-
liez, and L. Kobbelt. Integer-grid maps for reliable
quad meshing. ACM Trans. Graph., 32(4):98:1–
98:12, 2013.

[Bom12] D. Bommes, B. Lévy, N. Pietroni, E. Puppo,
C. Silva, M. Tarini, and D. Zorin. State of the
art in quad meshing. In Eurographics STARS, pp.
159–182.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 29

[Bom09] D. Bommes, H. Zimmer, and L. Kobbelt.
Mixed-integer quadrangulation. ACM Trans.
Graph., 28(3):77:1–77:10, 2009.

[Cam15] M. Campen, D. Bommes, and L. Kobbelt.
Quantized global parametrization. ACM Trans.
Graph., 34(6):192:1–192:12, 2015.

[Des02] M. Desbrun, M. Meyer, and P. Alliez. Intrin-
sic parameterizations of surface meshes. Comput.
Graph. Forum, 21(3), 2002.

[Dey13] T. K. Dey, F. Fan, and Y. Wang. An efficient
computation of handle and tunnel loops via reeb
graphs. ACM Trans. Graph., 32(4):1–10, 2013.

[Dey08] T. K. Dey, K. Li, J. Sun, and D. Cohen-
Steiner. Computing geometry-aware handle and
tunnel loops in 3d models. ACM Trans. Graph.,
27(3):45:1–45:9, 2008.

[Ebk13] H. C. Ebke, D. Bommes, M. Campen, and
L. Kobbelt. QEx:Robust Quad Mesh Extraction.
ACM Trans. Graph., 32(6), 2013. http://www.
rwth-graphics.de/software/libQEx

[Flo05] M. Floater and K. Hormann. Surface parame-
terization:a tutorial and survey. In Adv. Multires.
Geom. Mod. Springer, 2005.

[Jin08] M. Jin, J. Kim, and X. D. Gu. Discrete Sur-
face Ricci Flow: Theory and Applications, pp.
209–232. Springer, 2007.

[Kal07] F. Kalberer, M. Nieser, and K. Polthier. Quad-
cover – surface paramterization using branched
coverings. Comput. Graph. Forum, 26(3):375–
384, 2007.

[Kha06] L. Kharevych, B. Springborn, and
P. Schröder. Discrete conformal mappings via
circle patterns. ACM Trans. Graph., 2006.

[Kha05] L. Kharevych, B. Springborn, and
P. Schröder. Cone singularities to the rescue:
Mitigating area distortion in discrete conformal
maps. In Symp. on Geom. Processing, ACM SIG-
GRAPH/Eurographics , 2005.

[Kno13] F. Knöppel, K. Crane, U. Pinkall, and
P. Schröder. Globally optimal direction fields.
ACM Trans. Graph., 32(4):1–10, 2013.

[Lev02] B. Lévy, S. Petitjean, N. Ray, and J. Mail-
lot. Least squares conformal maps for automatic
texture atlas generation. ACM Trans. Graph.,
21(3):362–371, 2002.

[Liu08] L. Liu, L. Zhang, Y. Xu, C. Gotsman, and
S. Gortler. A local/global approach to mesh pa-
rameterization. In Proc. of the Symp. on Geom.
Processing, SGP ’08, pp. 1495–1504, 2008.

[Mul08] P. Mullen, Y. Tong, P. Alliez, and M. Des-
brun. Spectral conformal parameterization. In
Proc. of the Symp. on Geom. Processing, SGP
’08, pp. 1487–1494, 2008.

[Myl14] A. Myles, N. Pietroni, and D. Zorin. Robust
field-aligned global parametrization. ACM Trans.
Graph., 33(4):1–14, 2014.

[Myl13] A. Myles and D. Zorin. Controlled-distortion
constrained global parametrization. ACM Trans.
Graph., 32(4):1–14, 2013.

[Myl12] A. Myles and D. Zorin. Global parametriza-
tion by incremental flattening. ACM Trans.
Graph., 31(4):109:1–109:11, 2012.

[Pan12] D. Panozzo, Y. Lipman, E. Puppo, and
D. Zorin. Fields on symmetric surfaces. ACM
Trans. Graph., 31(4):1–12, 2012.

[Ray08] N. Ray, B. Vallet, W. C. Li, and B. Lévy.
N-symmetry direction field design. ACM Trans.
Graph., 27(2):10:1–10:13, 2008.

[Ray06] N. Ray, W. C. Li, B. Lévy, A. Sheffer, and
P. Alliez. Periodic global parameterization. ACM
Trans. Graph., 25(4), 2006.

[Ray03] N. Ray and B. Lévy. Hierarchical least
squares conformal map. In Pacific Graphics,
2003.

[San01] P. V. Sander, J. Snyder, S. J. Gortler, and
H. Hoppe. Texture mapping progressive meshes.
ACM SIGGRAPH, 2001.

[She06] A. Sheffer, E. Praun, and K. Rose. Mesh
parameterization methods and their applications.
Found. Trends. Comput. Graph. Vis., 2(2):105–
171, 2006.

[She05] A. Sheffer, B. Lévy, M. Mogilnitsky, and
A. Bogomyakov. Abf++: Fast and robust angle
based flattening. ACM Trans. Graph., 24(2):311–
330, 2005.

[She00] A. Sheffer and E. De Sturler. Surface parame-
terization for meshing by triangulation flattening.
In Proc. of IMR, 2000.

[Spr08] B. Springborn, P. Schröder, and U. Pinkall.
Conformal equivalence of triangle meshes. ACM
Trans. Graph., 27(3), 2008.

[Ton06] Y. Tong, P. Alliez, D. Cohen-Steiner, and
M. Desbrun. Designing quadrangulations with
discrete harmonic forms. In Symp. on Geom. Pro-
cessing, pp. 201–210, 2006.

[Yan09] Y. L. Yang, R. Guo, F. Luo, S. M. Hu, and
X. Gu. Generalized discrete ricci flow. Comput.
Graph. Forum, 28(7), 2009.

[Zay07] R. Zayer, B. Lévy, and H.-P. Seidel. Linear
angle based parameterization. In Symp. on Geom.
Proc., pp. 135–141, 2007.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 30

Glyphs for Space-Time Jacobians of Time-Dependent
Vector Fields

Tim Gerrits Christian Rössl Holger Theisel
Visual Computing Group, University of Magdeburg
{gerrits|roessl|theisel}@isg.cs.uni-magdeburg.de

ABSTRACT
Glyphs have proven to be a powerful visualization technique for general tensor fields modeling physical phenom-
ena such as diffusion or the derivative of flow fields. Most glyph constructions, however, do not provide a way
of considering the temporal derivative, which is generally nonzero in non-stationary vector fields. This derivative
offers a deeper understanding of features in time-dependent vector fields. We introduce an extension to 2D and 3D
tensor glyph design that additionally encodes the temporal information of velocities, and thus makes it possible to
represent time-dependent Jacobians. At the same time, a certain set of requirements for general tensor glyphs is
fulfilled, such that the new method provides a visualization of the steadiness or unsteadiness of a vector field at a
given instance of time.

Keywords
Tensor Glyphs, Glyph Design, Flow Visualization

1 INTRODUCTION

Glyphs have gained popularity as a tool for investigat-
ing second-order tensors and their properties. They of-
fer a convenient way to represent some of the under-
lying physical meaning encoded in tensors such as dif-
fusion or stress tensors at a given location in the data.
The Jacobian matrix J of velocity fields is a second-
order tensor, which appears in flow visualization and
describes the local behavior of the flow at a given loca-
tion, possibly in space-time. Unlike diffusion tensors,
the second-order tensor Jacobians appear as general
square matrices, including in particular non-symmetric
matrices. This is generally a 2×2 matrix in 2D space, or
3×3 in 3D that consists of the spatial partial derivatives.

Finding appropriate visualization techniques to rep-
resent these matrices has proven to be a challenging
task. Seltzer and Kindlmann [11] proposed the first
glyphs for 2D tensor data that are able to represent any
second-order tensor using the information encoded by
eigenvalues and eigenvectors. Recently, Gerrits et al.
[3] proposed a construction of glyphs for 2D tensors,
which was then extended to visualize general 3D
tensors as well. However, considering the special case
of time-dependent Jacobian matrices, both approaches

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

only deal with spatial derivatives and neglect temporal
information that might be available.

In this paper, we solve the following problem: given
an n-dimensional (n = 2,3) time-dependent vector field
v(x, t), we construct an n-dimensional glyph that en-
codes the space-time Jacobian matrix of v, i.e., all first
order derivatives, both spatial and temporal, of v. This
means that we have to find a glyph representation for a
(n+1)×(n+1) Jacobian tensor. While this is straight-
forward for n = 2 (ending up in visualizing a 3×3 ma-
trix), it is challenging for n = 3 because this requires
the 3D visualization of a 4×4 space-time Jacobian ten-
sor. We show that this tensor, which is not a general 4D
second-order tensor, has some properties that allow a
3D glyph visualization that seamlessly extends existing
3D tensor glyphs.

After analyzing related work in section 2, we present an
extension of an existing second-order tensor glyph con-
struction in section 3 that includes the temporal deriva-
tive and therefore offers, to the best of our knowledge,
the first glyph for time-dependent 2D and 3D Jacobians.
This extension is constructed to in no way impair the
glyph’s capability to encode the spatial derivatives. It
becomes invisible, when the temporal derivative van-
ishes. In this case, the resulting glyphs become identi-
cal to time-independent tensor glyphs.

The results shown in section 4 present our final glyph
designs for 2D and 3D time-dependent Jacobians. Ap-
plying them on sampled locations demonstrates how
the resulting glyphs additionally encode the temporal
derivative of given time-dependent vector fields.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 31

2 RELATED WORK AND BACK-
GROUND

2.1 Tensor Glyphs Visualization
Using visualization of flow fields to gain further insight
of the underlying behavior has produced a huge variety
of techniques that can coarsely be classified in differ-
ent groups: topology-based techniques [9], dense flow
visualization [7], geometric flow visualization [8] and
glyph-based approaches. Glyphs are a convenient vi-
sualization technique, as they are often tailored to fit
a specific application and offer a seemingly unlimited
design space, see Boro et al. [1]. Research trying to de-
velop glyphs for second-order tensors has mostly been
limited to symmetric positive definite matrices. The
pioneering work by Schultz and Kindlmann [10] uses
superquadrics to create glyphs, where shape and orien-
tation are defined by the eigenvectors of general sym-
metric tensors, including indefinite matrices. This is
convenient, as eigenvectors of symmetric matrices are
always orthogonal and therefore easily usable to define
appropriate shapes. A general discussion on different
approaches has been given by Kratz et al. [6]. Seltzer
and Kindlmann [11] recently presented glyphs for gen-
eral – symmetric and asymmetric – second-order 2D
tensors, extending the superquadrics. Gerrits et al. [3]
propose a different approach that provides glyphs also
for general second-order tensors in 3D. Both works of-
fer an in-depth discussion of tensor properties and de-
sign principles leading to a set of requirements for a
suitable glyph which will be covered in more detail in
the next section.

As opposed to steady flows, time-dependent flow fields
are only sparsely covered by glyph-based approaches.
Often pathlines of a finite set of seed points are used
to visualize flow in this case. Especially in topology-
based visualization techniques, several works have been
proposed, where the path of features over time is visu-
alized as presented by Uffinger and Sadlo [13]. And
even though there exist several approaches that try to
extract only meaningful selections to give further in-
sight [14, 4], there is still often visual clutter, overlap-
ping elements or missing information by only rendering
selected features. Hlawatsch et al. [5] downscale path-
lines to represent them as so called pathline glyphs thus
combining both techniques to address this problem.

2.2 Glyph Construction
Schultz and Kindlmann [10] present a set of construc-
tion principles to build glyphs for symmetric tensors,
which includes preservation of symmetry, continuity,
disambiguity, invariance under scaling as well as
eigenplane projection. The last requirement, however,
is not well defined for asymmetric tensors, which is
why Gerrits et al. [3] present a similar set of properties,
but the latter is replaced by the demand for direct

encoding of real eigenvalues and eigenvectors. As
these properties also influence the choices made in this
paper, they are listed and explained in short:

(a) Invariance under isometric domain transformation:
any isometric transformation of the domain should re-
sult in the same isometric transformation of the glyph’s
shape.

(b) Scaling invariance: a uniform scaling of the tensor
has to result in the same scaling of the glyph for any
real positive scaling value.

(c) Direct encoding of real eigenvalues and eigenvec-
tors: all real eigenvalues and eigenvectors of the tensor
should be directly visible within the shape of the glyph.

(d) Uniqueness: a tensor should be represented by a
unique corresponding glyph and vice-versa, such that
for any two dissimilar tensors no similar glyph is pro-
duced and no dissimilar glyphs are produced by the
same tensor.

(e) Continuity: any continuous change of the tensor
should result in a continuous change of the glyph, pre-
venting abrupt alterations of the appearance for small
changes.

A glyph that satisfies all of these properties cannot be
encoded by shape alone, but also needs at least one ad-
ditional channel such as color.

(a) (b)

Figure 1: Basic glyph construction. (a) In 2D, each pair
of scaled eigenvectors () is interpolated by four ratio-
nal quadratic Bézier curves (and). (b) The 3D case
relies on the 2D construction in a base plane () and
triangular surface patches interpolating the 2D curves
and the third scaled eigenvector.

For a 2D tensor J ∈ R2×2 with real eigenvalues, the
eigenvectors scaled by eigenvalues define an interpo-
lating ellipse. Note that the eigenvectors are not neces-
sarily orthogonal, which is the case only for symmet-
ric tensors. The geometric construction of the glyphs
is based upon modifying this ellipse, such that the di-
rections of the scaled eigenvectors are encoded by the
shape. In [3], this ellipse is parametrized by four ratio-
nal quadratic curves in Bernstein-Bézier form ([2]), and
the center control points and rational weights are modi-
fied to express properties of the glyph. Figure 1a shows
the construction for a “saddle” configuration with two

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 32

real eigenvalues with opposite sign, which results in a
concave shape. The sharp corners at the break points
between the rational pieces encode the direction of
eigenvectors and magnitude of eigenvalues. The ellipse
is also well-defined in case of non-real, i.e., a pair of
complex conjugate eigenvalues: then the right singu-
lar vectors replace the eigenvectors in the construction.
The transition between both cases is continuous.

Color is used to indicate the sign of real eigenvalues
and rotation for complex eigenvalues. With shape and
color these glyphs are capable of uniquely represent-
ing every possible 2D tensor such as the Jacobian of a
steady vector field. Moreover, they provide an intuitive
interpretation:

Convex shapes indicate that the eigenvalues share the
same sign, whereas concave shapes imply that the
eigenvalues have different signs. The color additionally
illustrates the sign of the corresponding eigenvalue.
Moreover, discontinuities of the boundary curve,
i.e., “sharp corners”, indicate direction and scale of
eigenvectors. Figure 2 shows examples.

Figure 2: The glyph’s shape indicates the relation of
both eigenvalue signs. A red glyph has two positive,
the blue one two negative eigenvalues. They are there-
fore convex shapes. If the eigenvalues have opposite
eigenvalues, the shape is concave.

An ellipse without discontinuities indicates that there
are no unique eigenvectors as the eigenvalues are either
identical – the shape is a circle – and/or complex. In the
latter case, the rotation is encoded by different colors.

Figure 3: Ellipses indicate identical and/or complex
eigenvalues. A perfect sphere indicates two identical
eigenvalues, whereas ellipses represent rotational be-
havior. Colors close to yellow indicate counterclock-
wise, those close to green clockwise rotation.

In 3D, an additional eigenvector and eigenvalue needs
to be visually encoded by the glyph. The construction
is partially based on the 2D configuration: eventually,
two eigenvectors (or two left singular vectors in case of
a complex conjugate pair of eigenvalues) span a sup-
porting base plane, in which the 2D construction is ap-

plied. The 2D curves in the plane are used together with
the remaining real eigenvector to setup a shape made
of surface patches. Figure 1b illustrates the construc-
tion of one patch, and figure 4 shows examples of 3D
glyphs with a similar color coding as for the 2D case.
This review is simplified, the different cases depend on
the eigenvalues. For an in-depth view on the construc-
tion, please refer to [3].

Figure 4: Glyphs representing different 3D Jacobians.
From left to right: All eigenvalues are positive; The two
positive eigenvalues span the base plane and the third,
negative one makes for the concave shape; The base
plane indicates rotational behavior in the corresponding
plane and additional outflow.

3 EXTENSION FOR TIME-
DEPENDENT TENSOR GLYPHS

The glyphs shown in the previous section can visualize
any given 2D or 3D Jacobian as long as the feature is
steady. We therefore use them as a construction founda-
tion to build upon. They need to be altered or extended
in some way, such that they are able to represent the ad-
ditional information encoded in time-dependent Jaco-
bians. To find a suitable extension, we need to analyze
the differences between the steady and unsteady case
and discuss, how a suitable mapping of the additional
data to the same dimension as the glyphs we build upon
can be found. First, we do this for Jacobians of 2D un-
steady vector fields and present a simple addition to the
given glyph, following a set of requirements and later
extend the idea to the 3D case.

3.1 Time Dependent 2D Tensor Glyphs
A steady 2D flow is given by

v(x,y) =

(
u(x,y)
v(x,y)

)
,

where the Jacobian matrix J is defined as

J(x,y) =

(
ux uy
vx vy

)
This is the spatial gradient of the vector field and hence
the spatial Jacobian. Using eigendecomposition, we
obtain the eigenvalues λ1,λ2 and the corresponding
eigenvectors e1,e2. An unsteady flow, however, has
time as an additional dimension. We define

v̄(x,y, t) =

u(x,y, t)
v(x,y, t)

1



ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 33

to be a time-dependent 2D vector field and the corre-
sponding space-time Jacobian (see, e.g., [15]) as

J̄(x,y, t) =

ux uy ut
vx vy vt
0 0 0


with eigenvalues λ1, λ2,0. The associated eigenvectors
are (

e1
0

)
,

(
e2
0

)
, f̄ where f̄ =:

a
b
c

 .

This Jacobian must not be mistaken with a general 3×3
matrix. Due to the fact, that the last row of J̄ is entirely
made up of zeros, two of these eigenvectors are simply
the eigenvectors e1 and e2 of J with an additional zero
as their component in the new dimension. The addi-
tional eigenvector f̄ with its components a,b,c ∈ R is
associated with the zero eigenvalue and fully encodes
the temporal derivative, included in J̄. We can there-
fore use e1 and e2 to build the corresponding 2D glyph,
which we call spatial glyph, and use only f̄ to be some-
how added to it. As we want our new glyph to be of the
same dimension as the spatial glyph, we require a pro-
jection of f̄ ∈R3 to a vector g ∈R2 on the visualization
plane. To define an appropriate and unique projection,
we demand

1. Given two eigenvectors f̄1, f̄2 corresponding to the
temporal derivative and the projected 2D vectors g1,
g2, if f̄1 and f̄2 are parallel, g1 and g2 have to be
identical.

f̄1 ‖ f̄2 ⇒ g1 = g2 .

2. If f̄1 and f̄2 are not parallel, g1 and g1 must never be
identical

f̄1 ∦ f̄2 ⇒ g1 6= g2 .

3. When the field is stationary, g should not be visible.
In this case, the resulting glyph is identical to the
glyph based on the stationary Jacobian G(J)=G(J̄).
Therefore, the corresponding vector g should be the
null vector. Additionally, the transition from unsta-
ble to stable should result in a smooth transition to
the null vector.

f̄ →

0
0
1

 ⇒ g→
(

0
0

)
.

We propose the following projection that satisfies the
above requirements:

g =
1∣∣∣∣f̄∣∣∣∣
(

a
b

)
,

(a) (b)

Figure 5: Adding sticks to the base glyphs to allow
time-dependent glyphs to be represented. The eigen-
vector f̄ corresponding to the time derivation is pro-
jected onto the vector g (). A line cast from the center
of the glyph in forward and backward direction of g in-
tersects the boundary of the glyph exactly twice, unless
g is the zero vector. Sticks () representing g and -g are
then added at those locations. (a) Construction of the
2D time-dependent Jacobian glyph. (b) Construction of
one patch and one stick representing the eigenvalue f̄ of
an 3D time-dependent Jacobian glyph.

where a and b are the first two components of f̄.
This vector is then visualized by adding two identical
sticks to the glyph, one representing g, the other −g
and both given a length of s||g||, where s > 0 ∈ R can
be used as a constant scaling factor. Rendering both ori-
entations of g is due to the fact, that f̄ is an eigenvector
of J̄, and therefore satisfies the same symmetry prop-
erties. To reduce visual clutter, we move these sticks
along the lines, given by their directions to the loca-
tions where the line intersects the boundary of the un-
derlying spatial glyph’s shape. Figure 5a illustrates this
construction.

3.2 Time-Dependent 3D Tensor Glyphs
Finding new glyphs representing 3D time-dependent
Jacobians is analogous to the 2D case. The addi-
tional temporal information encoded by the Jacobian
J̄ ∈ R4×4 is given by the additional eigenvector f̄ ∈ R4,
where f̄ = (a b c d)T.
We propose projecting f̄ onto the 3D vector g ∈ R3 by
using

g =
1∣∣∣∣f̄∣∣∣∣
a

b
c

 ,

and visualizing it by adding tubes to the spatial glyph,
created by using eigenvalues and eigenvectors of J.
These tubes are then moved along their vector direc-
tions as well, until they reach the points, where their
corresponding line would intersect the glyph patch.
In that way, they are always visible and not rendered
within the glyph, unless the temporal derivative is zero,
in which case the new vector becomes the zero vector
as demanded.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 34

Figure 6: Glyphs representing different 2D Jacobians. The underlying features are less temporally stable to the left
and more stable to the right. The stick has vanished in the last glyph, which shows that this feature is completely
stable.

Figure 7: 3D Glyphs representing the same location in an unsteady flow field over time. The glyph as well as the
stick representing the temporal derivative change smoothly over time.

Because both new constructions, 2D and 3D alike, fol-
low the presented set of rules, they are suitable for cre-
ating unique tensor glyphs for any given 2D or 3D Ja-
cobian, unsteady or steady, and also follows all of the
glyph design requirements that were discussed earlier.

4 RESULTS
First, we visualize different 2D time-dependent Ja-
cobians. Figure 6 shows a selection of 2D glyphs
for randomly chosen time-dependent 2D Jacobians
with decreasing temporal derivative from left to right.
These include glyphs based upon real-valued as well
as complex-valued eigenvalues and eigenvectors. The
additional sticks are always moved to the boundary of
the spatial glyph, for any given shape.

In figures 9 and 10, our construction is applied to build
glyphs representing the Jacobians at sampled locations
of one time slice of a 2D unsteady flow behind a cylin-
der. This is a sufficiently complex choice as a whole
variety of different features is present as can be seen by
the variety of different spatial glyphs. As the time pro-
ceeds, alternating vortices, as illustrated by the glyphs
using yellow and green colors, are created and trans-
ported to the right. Therefore, Jacobians at several lo-
cations comprise strong temporal derivatives, indicated
by the additional sticks being clearly visible. Locations
where the derivative vanishes are analogously indicated
by small or even no sticks. While figure 9 shows the
glyphs superimposed to an additional line integral con-
volution (LIC) texture of the underlying flow field, fig-
ure 10 displays the same glyphs in front of a different
LIC texture which in this case represents the feature
flow field [12] at the selected time. The projected ad-
ditional eigenvectors are therefore tangent to this field
at the given location. Two closeups for each field show
zoomed-in areas of interest inside those fields.

To further highlight the sticks, the same domain is ren-
dered without any supporting background LIC texture
in figure 11.

Figure 7 demonstrates the new 3D glyphs, as it shows
sampled time steps of the development of a 3D Jaco-
bian at the same location evolved over time. The under-
lying changing Jacobian is computed by linear interpo-
lation of two vector field time slices. The spatial glyph
changes independent of the time derivative, whereas the
added tubes change direction due to the projected vec-
tor, but change location due to change of glyph shape,
as seen in figure 8.

In figure 12, the glyphs are used to visualize regularly
sampled locations in the 3D unsteady Jacobian field of
an analytical flow with one moving center in the middle
of the field. The whole flow is steadily moved to the
right over time. To illustrate the underlying flow field,
a set of illuminated streamlines is added. Here, too,
the new glyphs show a variety of different underlying
Jacobians, including constructions based upon tensors
with complex and real-valued eigenvalues.

Figure 8: Sticks visualizing the temporal derivative are
always moved along their directions to the boundary of
the glyph, so they are always visible, no matter whether
the spatial glyph is small (left) or large (right).

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 35

Figure 9: Glyphs visualizing the Jacobian matrix of the flow around a square cylinder with two closeups (rectan-
gles). The underlying LIC image visualizes the fluid flow.

Figure 10: Glyphs visualizing the Jacobian matrix of the flow around a square cylinder with two closeups (rectan-
gles). The underlying LIC image visualizes the feature flow.

Figure 11: Glyphs visualizing the Jacobian matrix of the flow around a square cylinder without additional sup-
porting LIC textures.

5 DISCUSSION

Looking at figure 9, our newly designed 2D glyphs al-
low to see the same structures of the underlying flow
field as the steady or spatial 2D glyphs before. By find-
ing a mapping onto the same visualization plane and
moving it on the shape boundaries, encoding the addi-
tional temporal information has not changed the spatial
glyph. Therefore, rotational sections as well as laminar
flows can still be easily determined in the given exam-
ple flow. The same statement holds for the 3D case as
displayed in figure 12. Even though, the addition of a

stick or tube respectively, is only a small extension to
the known glyphs, it is one, that does not impair the
expressiveness of the spatial glyph and offers a visu-
alization technique for any 2D or 3D time-dependent
Jacobian, symmetric or asymmetric.

As the sticks or tubes added to the glyphs are rendered
in both directions of the vector, they not only follow the
mathematical nature of eigenvector symmetry, they are
also always visible, even in the 3D case, regardless of
the point of view as long as the underlying Jacobian is
unsteady. An appropriate scaling factor or a change of

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 36

Figure 12: 3D time-dependent flow with a moving vortex in the center. All features are moving to the right over
time. The newly constructed glyphs are rendered at sampled locations at one time slice. Illuminated streamlines
illustrate the underlying flow.

thickness can be chosen to further emphasize this addi-
tion if necessary.

This work focuses on finding a construction of glyphs
for general 2D and 3D time-dependent Jacobians while
meeting a set of specific design requirements. The tran-
sition between the different Jacobian glyphs is smooth,
including a change of vector direction or vector length,
which is displayed in figure 7, where a time series of the
glyphs at the same location over time is shown. This al-
lows our new construction method to seamlessly build
upon the building requirements for the initial glyphs,
and simply extend them.

When rendered on top of the feature flow field LIC tex-
ture, as seen in figure 10, the glyph’s sticks are always
tangent to it at the sampling location. This field allows
tracking critical points over time (see, e.g., [12]) and
therefore offers an insight of the progression of flow
feature. We can predict glyphs with longer sticks to
be moving or changing over time, while shorter or no
sticks indicate that a feature is quite stable. The shown
flow around the cylinder has vortices going along one
axis to the right, which is also indicated by the sticks
of the glyphs in those areas pointing in this direction.
We can remove all supporting LIC textures as in figure
11 and still understand the flow itself, visualized by the
spatial glyphs at the same time as the feature flow en-
coded by the additional sticks. Inquiring the analytic
flow shown in figure 12, all the glyphs indicate this be-
havior by having tubes added to them, similar in length
and direction, as the whole underlying flow is moving
horizontally along one axis over time.

6 LIMITATION AND FUTURE WORK
Even though these extensions for the general second-
order tensor glyphs can be applied to any temporal
derivative of first-order tensor fields, this is not a con-
struction method for general 4D second-order tensors.
The fact, that the partial derivative of the added dimen-
sion is always zero, allows us to utilize glyphs con-
structed in the remaining subspaces. This added dimen-
sion can then be projected onto the subspace and added
to the glyph.

This work did not address deeper insights on visual per-
ception of colors, controlled sampling of the underly-
ing domain, or user studies, about the acceptance of the
newly constructed glyphs. Dealing with cases of non-
uniqueness when visualizing 3D tensors of rank 1 re-
mains another inherited limitation of the glyph design
based upon [3].

Our decision to move the sticks to the boundary of the
glyph is mainly due to reducing visual clutter as well
as to ensure visibility in the 3D case. However, in the
2D case, these sticks may give the impression to be
only overlapped by the geometry and therefore be much
longer, when the glyph is larger. As the two sticks rep-
resent the symmetry property of an eigenvector, their
directions are identical and only reflected. They cannot,
however, provide any information about which choice
of sign represents the actual change of position of the
feature to the next time step.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 37

7 REFERENCES
[1] Rita Borgo, Johannes Kehrer, David H Chung,

Eamonn Maguire, Robert S Laramee, Helwig
Hauser, Matthew Ward, and Min Chen. Glyph-
based visualization: Foundations, design guide-
lines, techniques and applications. Eurographics
State of the Art Reports, pages 39–63, 2013.

[2] G. Farin. Curves and Surfaces for CAGD. Morgan
Kaufmann, 5th edition, 2002.

[3] Tim Gerrits, Christian Rössl, and Holger Theisel.
Glyphs for general second-order 2d and 3d ten-
sors. IEEE Transactions on Visualization and
Computer Graphics, 23(1):980–989, 2017.

[4] Tobias Günther, Christian Rössl, and Holger
Theisel. Opacity optimization for 3d line fields.
ACM Trans. Graph., 32(4):120:1–120:8, July
2013.

[5] Marcel Hlawatsch, Philipp Leube, Wolfgang
Nowak, and Daniel Weiskopf. Flow radar
glyphs& static visualization of unsteady flow with
uncertainty. Visualization and Computer Graph-
ics, IEEE Transactions on, 17(12):1949–1958,
2011.

[6] A. Kratz, C. Auer, M. Stommel, and I. Hotz. Vi-
sualization and analysis of second-order tensors:
Moving beyond the symmetric positive-definite
case. Computer Graphics Forum, 32(1):49–74,
2013.

[7] Robert S Laramee, Gordon Erlebacher, Christoph
Garth, Tobias Schafhitzel, Holger Theisel, Xavier
Tricoche, Tino Weinkauf, and Daniel Weiskopf.
Applications of texture-based flow visualization.
Engineering Applications of Computational Fluid
Mechanics, 2(3):264–274, 2008.

[8] Tony McLoughlin, Robert S Laramee, Ronald
Peikert, Frits H Post, and Min Chen. Over two
decades of integration-based, geometric flow vi-
sualization. In Computer Graphics Forum, vol-
ume 29, pages 1807–1829. Wiley Online Library,
2010.

[9] Armin Pobitzer, Ronald Peikert, Raphael Fuchs,
Benjamin Schindler, Alexander Kuhn, Holger
Theisel, Krešimir Matković, and Helwig Hauser.
The state of the art in topology-based visualiza-
tion of unsteady flow. In Computer Graphics Fo-
rum, volume 30, pages 1789–1811. Wiley Online
Library, 2011.

[10] Thomas Schultz and Gordon L Kindlmann. Su-
perquadric glyphs for symmetric second-order
tensors. Visualization and Computer Graphics,
IEEE Transactions on, 16(6):1595–1604, 2010.

[11] Nicholas Seltzer and Gordon Kindlmann. Glyphs
for Asymmetric Second-Order 2D Tensors. Com-
puter Graphics Forum, 2016.

[12] H Theisel and HP Seidel. Feature flow field. In
Proceedings of the symposium on Data visualisa-
tion, volume 2003, 2003.

[13] Markus Uffinger, Filip Sadlo, and Thomas Ertl.
A time-dependent vector field topology based
on streak surfaces. Visualization and Computer
Graphics, IEEE Transactions on, 19(3):379–392,
2013.

[14] T. Weinkauf, H. Theisel, and O. Sorkine. Cusps
of characteristic curves and intersection-aware
visualization of path and streak lines. In Proc.
TopoInVis, April 2011.

[15] Tino Weinkauf, Jan Sahner, Holger Theisel, and
Hans-Christian Hege. Cores of swirling parti-
cle motion in unsteady flows. IEEE Transac-
tions on Visualization and Computer Graphics,
13(6):1759–1766, 2007.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 38

A Modular Approach Based on Graph Transformation to
Simulate Tearing and Fractures
on Various Mechanical Models

Fatma BEN SALAH, Hakim BELHAOUARI, Agnès ARNOULD and Philippe MESEURE
University of Poitiers

Laboratory XLIM/ASALI , UMR CNRS 7252,
86962, Futuroscope Poitiers, France

fatma.ben.salah, hakim.belhaouari, agnes.arnould, philippe.meseure @univ-poitiers.fr

ABSTRACT
This paper introduces an extension of a general framework that allows the simulation of various mechanical models
(discrete or continuous ones, for different kinds of meshes, in any dimension). This framework relies on a topo-
logical model and a rule-based language, that performs sub-graph matching and, possibly, transformations. This
extension allows topological modifications such as tearing and fractures for all the implemented physical models.
A general process has been used to simulate fractures and tearing: the topological transformation is described us-
ing the provided rule-based language and its application is triggered when a selected criterion is verified. Several
criteria are proposed, that depend upon the strain or stress generated by a single or a set of interactions. This
method raises the question of the link between the location where a criterion is applied and the mesh elements
involved in a modification. This question has motivated us to design new criteria which are closely related to the
mesh modification. Using this method, a minimal number of mechanical data need to be updated after a transfor-
mation and any interaction relying on mesh features (vertex, edge, face, volume) that are suppressed or split can
be automatically ignored.

Keywords
Physical simulation, tearing, fracture, criterion, topological model, graph recognition.

1 INTRODUCTION
Due to their complexity, tearing and fracture are ones of
the most studied phenomena in computer graphics, es-
pecially in physically-based animation. They occur due
to the stress undergone by an object when it deforms.
Much work in the literature has studied these phenom-
ena using physical models, as they produce more real-
istic and accurate results. These physical models can
be discrete (e.g. mass/interaction) [NTB+91, HTK00,
SWB00], or based on continuous mechanics and solved
by a Finite Element Methods (FEM) [OBH02, OH99,
MMD+01, KLB14]... In this paper, we consider tear-
ing and fracture as similar phenomena, depending on
the rigidity of the material of the simulated object.

To initiate the tearing/fracture in an object, a criterion
is required. Several types of criteria have been defined
in the literature. These criteria can be based on strain or

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

deformation (for instance, when the length of a spring
goes beyond a threshold [NTB+91]). Or criteria can be
based on stress, that is forces applied by one or a set of
interaction (for instance the separation tensor defined
by [OH99]).

After selecting a criterion that initiates the tear-
ing/fracture and, more precisely, defines its location,
a topological transformation is applied. Many types
of topological transformations have also been pro-
posed in the literature. For example, splitting several
faces/edges surrounding a vertex [SWB00], removing
an element from the mesh [NTB+91], etc. These
mesh modifications have an effect both on mass
distribution and local interactions. Therefore, after
a transformation, mechanical information has to be
updated.

Previous work did not focus on the relation between
the location of a selected criterion and the location of
the topological modifications. However, it is seldom
the same location, and the link between these two lo-
cations is not necessarily immediate. For instance, in
[NTB+91], when a spring is too much stretched, the
support edge is not removed alone, but also volumes
around this edge.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 39

In [BBAM17], a general mechanical framework using a
topological structure and based on rules of graph trans-
formation for physical simulation is defined. This pa-
per proposes an extension of this framework that al-
lows tearing/fracture while still preserving its generic-
ity. More precisely, this extensions:

• Offers many types of criteria (proposed in other ap-
proaches) to initiate topological modifications ap-
plied in 2D and 3D to different physical models and
different types of elements as well as many types of
topological modifications;

• Formalizes the link between the locations of a crite-
rion and a topological modification by using a graph
transformation-based approach. New criteria that
are more closely related to topological transforma-
tion are also proposed;

• Allows topological modifications with minimal up-
date of mechanical information.

The paper is organized as follows: in Section 2, some
previous work related to fracture and tearing is briefly
presented. Section 3 details the used topological
model, the modeling approach used by the framework
described in [BBAM17]. Section 4 discussed the usu-
ally used topological modifications and how they have
been hosted in our framework. Section 5 presents the
simulation of tearing/fraction using different criteria.
Finally, some results and a discussion are given in
Section 6.

2 PREVIOUS WORK
Topological modifications of physical models have
been widely studied. Many approaches have simulated
the cutting of deformable bodies, often for medical
applications [WWD15]. However, cutting is a user-
controlled phenomenon that does not require a criterion
to trigger it. In practice, only the contact between the
body to cut and an appropriate tool is sufficient to
initiate cutting.

Although some approaches such as [LBC+14] have fo-
cused on tearing and/or fracture using meshless models,
most methods actually rely on meshed objects. Con-
trary to cutting, tearing and fracture require a criterion
to determine whether a crack should appear or not, the
location of this crack and its direction. Thus, many
types of criteria have been proposed in the literature.
These criteria can be based on local strain or stress in
an object, and can be subdivided into two categories,
namely Atomic criteria and Cumulative criteria.

Atomic criteria focus on a single interaction and
consider a force or a deformation threshold to trigger
a topological modification. For instance, Norton et
al. [NTB+91] use a mass/spring system (MSS) to

simulate deformation and check if the length of springs
exceeds a given value to decide where a fracture
should be applied. The same criterion has been used
by many following approaches: Hirota et al [HTK00]
to simulate fracture on the surface of drying clay,
Boux de Casson et al. [BL00] to simulate tearing of
biological tissues represented by triangular meshes in
2D and tetrahedral meshes in 3D. It is also been used
in [DKS+11] and [LBC+14].

Using cumulative criteria, a tearing/fracture is triggered
if the sum of internal forces applied on a vertex or an
element exceeds a threshold. Most methods that have
used this type of criteria are based on continuous me-
chanics. The pioneer approach has been proposed by
O’brien et al. for brittle materials [OH99] and ductile
ones [OBH02]. Their criterion is based on a separation
tensor computed for each vertex that triggers a fracture
when one of its eigenvalues exceeds a given thresh-
old. Recently, Koshier et al. [KLB14] used a similar
criterion, but a tensor is computed for each vertex as
the average of all stress tensors of its surrounding ele-
ments. Many other studies rely on a vertex tensor in 2D
or 3D [IO09, WRK+10, PNdJO14, PO09].

All above-mentioned approaches use various topolog-
ical transformations. Norton et al. [NTB+91] remove
one or more elements. Faces or volumes are split in
[SWB00] and [BL00], elements are cut and duplicated
in [MBF04]. In [OH99, OBH02, KLB14], for a ver-
tex to split, adjacent volumes are separated (by split-
ting a fan of faces) in 3D. In 2D, two faces must be
separated by splitting their common edge. To facilitate
this step, some studies use a predefined crack pattern
[IO09, MCK13, PO09]...

Note that the link between the criterion location and the
resulting topological transformation is not necessarily
immediate. For instance, in [DKS+11], when the length
of a spring exceeds a threshold, one of its two extremi-
ties is arbitrarily split. In [NTB+91], the same criterion
leads to an element removal, even if all the other springs
of the element do not exceed the deformation thresh-
old. Since no solution to directly deal with the support
edge of the spring has been proposed, some consecutive
methods have chosen not to rely on a mesh [LBC+14].
Any criterion that should result in a vertex split, often
requires to split a fan of faces in 3D and one or two
edges in 2D. Finally, no approach focuses on the re-
lation between the location of the fracture criterion and
the location of the consequent topological modification.

After any topological modification, some mechanical
properties (for instance, mass or stiffness) have to be
updated. Using FEM, only the mass of vertices have
to be updated, which can however be a tedious pro-
cess, depending upon the method used to take inertia
into account. Using MSS, this step can be considered
as costly [FZDJ14, MDS10], because springs split into

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 40

several elementary springs. To summarize, the applica-
tion of a topological modification can be divided into
three steps: first the choice of a criterion, second, a
topological modification to apply and, last, the update
of mechanical information.

Some general frameworks that allow objects simula-
tion using various physical models exist (Sofa is prob-
ably the most general one [Sof]). However, no gen-
eral frameworks that allow the tearing and/or fracture
with many types of criteria and topological modifica-
tions have been proposed. The approach proposed in
this paper relies on the general framework described in
[BBAM17] which is based on rules of graph transfor-
mations applied on a topological model. This frame-
work seems to be the most adapted to our needs due
to the fact that it is multi-element, multi-physics and
multi-dimension. Furthermore, all mechanical prop-
erties and forces are stored at convenient topological
places. To generate a modular system for tearing and
fracture, several types of criteria (including new ones)
and topological modifications have been integrated in
this framework.

3 MODELING AND SIMULATION
3.1 Topological Model
Much work have shown the benefits of using a topo-
logical model to simulate topological transformations
of an object [MDS10, FZDJ14]. The model used in
[BBAM17] is the generalized maps (G-maps) [DL14].
This topological model is based on the concept of dart,
that can be considered as the extremity of an edge of a
face of a volume.

A

B C

D E

(a)

d

b

c

a

m n
l

j

k

i
g h

e f

A A

B

B C

C

C

C

B

B

D

D E

E

1

1

1

11

11

2

2

2 2

2

22

2

2

2

22

0

0

0

0

0

00

(b)

d
b

c
a

m n
l

j

k

i
g h

e f

(c)

d
b

c
a

m n
l

j

k

i
g h

e f

(d)

d
b

c
a

m n
l

j

k

i
g h

e f

(e)

Figure 1: Decomposition of a 2D object and examples
of orbits: (a) Object 2D, (b) G-map (connected compo-
nent), (c) Vertex, (d) face and (e) half edge.

The representation of an object using a G-map is de-
fined from its successive subdivisions into topological
cells (volumes, faces, edges...). For example, the 2D
object presented in Fig.1a can be decomposed into 2-
dimensional cells (faces) connected by 2-links (blue
double arcs). The faces are also split into 1-dimensional
cells (edges) connected by 1-links (red arcs). In the
same way, edges are decomposed into 0-dimensional
cells (darts) connected by 0-links (black arcs). As rep-
resented in Fig. 1b, a G-map can be defined as a graph
where nodes are darts and arcs labeled in 0, ..,n are the

adjacency relationships between topological cells (ver-
tice, edge, face...).

These cells are defined by sub-graphs called orbits.
Fig. 1 presents some examples of orbits corresponding
to cells. Thus the sub-graph reachable from the dart e
using 1- and 2-links in Fig. 1c represents the vertex B
of Fig. 1a. It is noted 〈1,2〉(e). Similarly, the edge BC
is the orbit 〈0,2〉(e), and the face ABC is represented
by the orbit 〈0,1〉(e) (Fig. 1d). There exists also orbits
which are not cells, for example the half-edge in Fig. 1e,
or the connected component (Fig. 1b).

Depending on the targeted application, to model an ob-
ject , much information (geometrical, mechanical, col-
orimetric...) must be added to the topological structure.
These data are carried by all the darts and are called em-
beddings. Note that every embedding has its own data
type and is attached to a particular orbit. For example in
Fig. 1b, all the darts of the same vertex (A, B, C and D
of Fig. 1a) are supplied with the same position informa-
tion. Similarly, all darts of every face orbits 〈0,1〉 share
the same color information (blue or yellow). Evenly,
information can be associated to any type of orbits such
as corner of face 〈1〉.
In this paper, an approach based on rules of graph trans-
formation is used. These rules are created using a tool
called Jerboa [BALB14], freely available at [Jer]. A
rule in Jerboa is composed of two members and has the
following form L→ R. The left member L contains the
matched pattern that has to be recognized in the struc-
ture. The right member R corresponds to topological
and/or embeddings modifications of this matched pat-
tern. In fact, the application of a rule on a graph G con-
sists in searching the sub-graph presented in the left part
and replace it by the sub-graph presented in the right
member of the rule. If the structure does not contain
a matched pattern, the application of the corresponding
rule fails.

1

<>

0

<>

<><>

<>

<>

<> <>

0

0

0

11

1

(a) Rectangular face

<0,1>

n0

(b) Face

Figure 2: Examples of matched pattern

A matched pattern can be represented explicitly. In this
case, all nodes have to be labeled by the dart orbit (〈〉).
An example of a rectangular face with all its darts is
represented on Fig. 2a. A matched pattern can be also
represented implicitly using darts labeled by orbits. For
instance a face 〈0,1〉 is represented in Fig. 2b. This pat-
tern can match not only rectangular faces but all pos-
sible types of faces (rectangular, triangular,...). Some
examples of rules are presented in section 4.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 41

Interaction Matched pattern Interac
-tion
orbits

Forces
orbits

Stretching
spring <2,3> <2,3>0

Half-
edge:
〈0〉

Dart: 〈〉

Linear
shear
spring

0

1
<>

0 0

0

1

11

<>

<>

<> <>

<>

<>

<> Face:
〈0,1〉

Face
corner:
〈1〉

Angular
shear
spring

0
1

<>

0

<><>

<>

Face
corner:
〈1〉

Dart: 〈〉

3D shear
spring

Volume:
〈0,1,2〉

volume
corner:
〈1,2〉

Linear
bending
spring

1

<>

0 0

1

<>

<><> <> <>

2

Edge
extrem-

ity:
〈2〉

Dart: 〈〉

Angular
bending
spring

2
<> <>

<><>

0 <><>

00

2
1

0 <><>
1

0 <><>

1

0 <><>
1

Edge:
〈0,2〉

Dart: 〈〉

Co-
rotational

2

1

0

α0

α0

α0 α0

00
0

0

0

1

1

1

1

1

1

1

1
1

1

1

2

2

2

2

2 2

222
2

2

Volume:
〈0,1,2〉

Volume
corner:
〈1,2〉

Table 1: Modeling of interactions

3.2 Modeling
The framework described in [BBAM17] has been used.
It is multi-dimensional (2D,3D), multi-element (allow-
ing triangular, rectangular, hexahedral, etc. elements)
and multi-physics (mass/spring, mass/tensor, finite ele-
ment models). It represents objects by a 2D/3D mesh
and stores as specific embeddings any mechanical data
and forces needed to simulate them. Actually, it is
based on G-maps and rules of graph transformation pre-
sented in previous section. In this approach, the mass

is distributed between particles that are placed on each
vertex of the mesh. To compute forces applied by in-
teractions, the same method is defined for all mechan-
ical models and for all types of meshes. First, ev-
ery data characterizing the interaction (stiffness, damp-
ing,...) is carried by an orbit. This orbit is related to
the source/origin of the interaction and is represented
by a green frame in Table 1 and more specifically in
the third column. From this orbit, a matched pattern is
defined. This sub-graph represents the left member of
the rules used to compute forces. It allows the deter-
mination of the vertices involved in the forces compu-
tation (that contribute to the calculation and/or undergo
forces). Finally, these forces are stored in sub-orbits of
each involved vertex’ orbit. They are represented in a
red frame in Table 1 and explained in the last column.

The first lines of Table 1 presents MSS with the three
types of springs defined by Provot [Pro95] (stretching,
shear and the linear bending). Angular springs are also
defined to control the angle between two adjacent faces
[GHDS03]. In 3D, shear springs are also modeled. The
last line in Table 1 presents how the FEM based on co-
rotational [MG04] is modeled. Note that for continu-
ous models, it is compulsory to tag a dart as the first
dart to define the order of vertices and respect this or-
der while exploiting the element stiffness matrix and its
stress tensor.

3.3 Simulation
The simulation loop used in [BBAM17] to simulate ob-
jects is the same for all physical models. (see Fig. 3).
The loops begins by computing the forces applied to
each particle. This is done in three steps. First, by
walking through the structure, any orbit that embeds
properties of an interaction is found. Second, if this in-
teraction’s matched pattern is recognized, the involved
vertices are identified. Third, the interaction rule is ap-
plied that is, the interaction is calculated and the ob-
tained forces are embedded in the planned orbits. After
this process, the algorithm computes the acceleration
depending on Newton’s second law. For this purpose, it
walks through the structure and, for every vertex, col-
lect forces stored in its sub-orbits(〈2〉,〈1〉,〈0〉,〈1,2〉...).
After that, it computes new velocities and positions of
particles. Finally, it walks through the structure, eval-
uates the chosen criterion, and when the condition is
satisfied, applies the corresponding topological modifi-
cation.

A special attention must be paid to the storage of par-
ticles’ mass. In practice, the mass of a particle comes
from faces/volumes surrounding the corresponding ver-
tex. Therefore, an embedding called “corner mass” is
stored in the orbit corner of face (2D) or volume(3D)
(〈1〉 or 〈1,2〉), to memorize the contribution of each
face/volume surrounding a vertex. Moreover, to allow

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 42

Compute forces

 Compute accelerations

Compute new velocities
 and positions

 Evaluate criteria

 Apply topological
 modifications

 Update vertex mass
 embedding

YesNo

Figure 3: Fracture plan.

a fast computation of a particle behavior, its total mass
must be known and is also stored in a dedicated embed-
ding, in its corresponding vertex orbit. It is called “ver-
tex mass” and defined as the sum of all masses stored
in all its corner sub-orbits. In case of topological modi-
fication, this last embedding must be updated.

4 TOPOLOGICAL MODIFICATIONS
FOR TEARING/FRACTURE

Topological modifications such as tearing/fracture can
be simulated very easily using G-maps. More com-
plex modifications can thereafter be built using a com-
position of separations of adjacent elements. For in-
stance, it is possible to isolate an element and to remove
it [MDS10]. It is also possible to separate several faces
or volumes, to make a vertex split. In this section, we
first focus on separation of elements, since it is a fun-
damental modification, before describing modifications
based on composition of transformations.

4.1 Separation of Adjacent Elements
In 2D, two adjacent faces can be separated by splitting
their common edge, more precisely by removing the 2-
links that bind them as shown in Fig. 4. In a similar
way, two adjacent volumes can be separated by split-
ting their common face, that is, removing the 3-links
that bind them, as shown in Fig. 5. These link re-
movals are elementary transformations in G-maps, that
automatically deals with vertex splits [MDS10]. Note
that, in 2D, removing 2-links should cancel the corre-
sponding bending interactions (linear or angular). Us-
ing the rule-based approach, any suppression of topo-
logical links can automatically make any interaction be
ignored, if the support orbit of the interaction embed-
ding includes these links. Indeed, since the associated
pattern no longer matches the local, unlinked, structure,
the rule can not be applied anymore. The rule just has
to reset all the corresponding forces.
Shear springs are stored in orbits 〈0,1〉 or 〈1〉, and they
are not influenced by the removing of 2 and 3-links.
Neither do stretch springs stored in orbits 〈0〉. Con-
cerning continuous mechanics, in 2D, no embedding
are supported by orbits with 2-links. In 3D, orbits of
embeddings do not include any 3-links. Finally, no em-
bedding needs to be changed. Only vertex mass embed-
ding of split vertices must be updated.

2

1

0 0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

001

1

1 1 11

1

1 1

11
1

1 1

11
1

1 1 1 1

1

1

2

2 2

22

2 22 2

2

22

2

2 2

Before splitting After splitting

Figure 4: Edge split to separate two adjacent faces.
3

33
3

3

3

Figure 5: Face split to separate two adjacent volumes.

0
1

11

0

2

 m m1

S1 S2

m2

S1 S2

Before tearing After tearing

1

1

1

1

1 1

1 1
1

1
11

1

1

11

1

1 1
1

11

1
11

1

1
11

0

0

0

0 0

0

0

00

0

0

0

00

2

2

2
2 2

2

22
2

2

2

22

Figure 6: Impact of tearing/fracture on mass embedding
and angular springs.

For instance, in Fig. 6, if adjacent faces are separated,
2-links are broken and the common edge is split. As a
result, bending springs (angular or linear one) embed-
ded in sub-orbits 〈2〉 or 〈0,2〉 of the split edge are ig-
nored after the separation. More precisely, while iden-
tifying the sub-graph corresponding to the force com-
putation, the pattern does not match, so forces can not
be computed. This example also explains that the ac-
cumulation embedding vertex mass stored in vertices
(orbits 〈1,2,3〉) has to be updated as it relies on 2-links
that have been suppressed. In fact, as shown in Fig. 6,
the vertex mass is the contribution of two corner masses
provided by the two adjacent faces (mvertex = m1+m2).
After the edge split, this vertex splits and each new ver-
tex gets a new vertex mass value, (computed, here, us-
ing a single corner mass).

Rules for Separation of Elements

To split a face between two volumes, the rule presented
in Fig. 7 has been created. In the left member of this
rule, two faces are bound with 3-links. These faces are
represented by their orbits 〈0,1〉. In the right member,
the 3-links are broken to split the two faces. However
this rule only copes with topology and does not handle
embeddings (they are handled in a dedicated rule).

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 43

<0, 1>

n0 n1 n0 n1

<0, 1> <0, 1> <0, 1>

33

3

Figure 7: Rule to separate two adjacent volumes.

Another rule is presented in Fig. 8. It has been cre-
ated to separate two adjancent faces by splitting an
edge. In this rule, the pattern presented in the upper
part of the figure matches explicitly the 2-links between
two adjacent faces. The lower part of the figure de-
scribes the topological modification which is the sup-
pression of 2-links between faces. As linear bending
springs are stored in orbits 〈2〉 and angular ones in or-
bits 〈0,2〉, they are removed when the 2-links are bro-
ken. This single rule updates simultaneously the em-
bedding mass vertex, the topological modification and
resets the forces applied by the bending springs. When
a vertex splits, the other embeddings (position, velocity,
etc.) are automatically duplicated so the new particle is
taken into account in the forthcoming steps of the sim-
ulation.

n5

0

1

1 1

2

Vertex_Mass

n0

<>

n2

n3

n4n5

n6n7

n8

F_provot
F_angular

n9

n10 n11

<>

<> <>
<><>

<> <>

<>
<>

<><>

F_provot
F_angularF_angular2

F_angular2
F_provot
F_angular

F_provot
F_angular

F_angular2

F_angular2

n1

1

2

22

0

0 0

0

0

0

0

0

0

0

0

n7 n6

n1

n0 n2

n11n10

n3
<>

<> <>

<> <>

<> <>
n4 n8 n9

<>

<> <>

<> <>

2

2

1

11

1

Vertex_Mass Vertex_Mass

Vertex_Mass

Vertex_Mass

Vertex_Mass
Vertex_Mass

Vertex_Mass

Figure 8: Rule to separate two adjacent faces.

4.2 Mesh Element Removal
To suppress an element (a volume in 3D and a face in
2D), the same process described in [MDS10] is used.
This process consists first in the isolation of the ele-
ment: in 2D, all its edges are 2-unlinked, in 3D, all its
faces are 3-unlinked. This separation can be done using
the rules described in Section 4.1. The second step con-
sists in deleting the isolated element (using a rule with
an empty right member).

4.3 Vertex Split
As proposed in [OH99], to split a vertex, a fan of faces
surrounding this vertex can be split. In 2D, only two
edges have to be split. A tearing/fracture plane must
be computed based on the selected criterion. Then, the
sign of all elements surrounding a vertex is determined

by replacing the coordinates of the center of each ele-
ment in the plane equation. The sign is stored in the or-
bit of every element as an embedding. All edges/faces
placed between two elements with different signs have
to be split using rules described in Section 4.1. This
topological modification can be applied for any interac-
tion model (MSS, FEM).

4.4 Edge Removal
If a criterion relies on an edge, it can require that this
edge disappears. However, removing an edge from
a mesh is a tricky topological modification. Indeed,
this removal can lead to a type change of surround-
ing elements. For instance, the contraction of an edge
in a rectangle mesh can induce a transformation of
elements into triangles. Therefore, as a solution, it
is better to use more general transformations involv-
ing the concerned edge that also control adjacent ele-
ments. For example, one or more elements adjacent
to this edge can be deleted, as proposed by Norton et
al. [NTB+91]. This modification is based on element
removal described above (see Section 4.2). Vertex split
can also be used [DKS+11]. Finally, whatever the cho-
sen transformation, this last influences not only the used
criterion’s cell but also many adjacent mesh elements.

5 SIMULATION OF TEAR-
ING/FRACTURE

Tearing or fracture occurs when a given criterion is
met. Different criteria exist and have been added to
the framework. These criteria act as classical precon-
ditions used by Jerboa that trigger topological modifi-
cations (see Section 4) when they are satisfied. As ex-
plained in Section 2, criteria can be divided into two
categories: atomic and cumulative ones. Concerning
cumulative criteria, additional rules must be created to
compute the sum of needed stresses/forces.

5.1 Atomic Critera
Atomic criteria only relate to a single interaction. Cri-
teria are based on strain or stress considerations. Note
that stress-based criteria are particularly well adapted
to our models, since, as described in section 3.2, all
forces applied by all types of interactions are stored
in sub-orbits of vertex orbits. Concerning linear (resp.
angular) springs, strain or stress criteria are equiva-
lent [BL00], that is, a length (resp. angle) or a force
(resp. torque) threshold can be checked. If the chosen
threshold is exceeded, the process consists in removing
the spring. To remove a spring, the required topological
transformation depends on its type. Stretch springs are
placed on edges. As discussed in Section 4.4, volumes
can be removed, as proposed in [NTB+91, HTK00,
BL00]. If the same criterion is checked on a shear
spring, the support element (volume in 3D or face in

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 44

2D) should be suppressed. If a bending (linear or an-
gular) springs verifies the tearing/fracture criterion, the
two concerned faces must be separated, as described in
Section 4.1. In a similar way, if continuous mechan-
ics is used, eigenvalues of the stain or stress tensor of
each element can be computed and, if a threshold is ex-
ceeded, the concerned element is suppressed.

However, to avoid the design of specific rules for all
kinds of interaction, it is possible to use a more gen-
eral approach, that can be applied both in 2D and 3D.
Indeed, a criterion can be defined by checking if a
force, whatever its origin, exerted on a vertex, exceeds a
threshold. By considering a fracture plane perpendicu-
lar to this force, a vertex split transformation can be ap-
plied (Section 4.3). Note that, due to the action/reaction
principle, the two extremities of a spring or a set of in-
volved vertices for other interaction types are likely to
be concerned by a threshold exceeding. In this case, it
is possible to apply a vertex split on all the concerned
vertices (to simulate multiple cracks) or on a single (ar-
bitrarily chosen) vertex [DKS+11].

5.2 Cumulative Criteria
Cumulative criteria first compute the sum of all
forces/stresses applied on every vertex. Using con-
tinuous mechanics, this method corresponds to the
O’Brien et al.’s approach [OH99]. However, the
simplified approach proposed in [KLB14] is used in
our framework. The stress tensor (expressed here as
a 6-vector in 3D) of each element i is computed as
explained in [MDM+02]:

σi = (C∗Bi)u (1)

With C the stress-strain matrix, Bi is the strain-
displacement matrix (for more detail the reader must
refer to [MDM+02]) and u is the displacement vector.
A vertex tensor is computed by averaging the stress
tensor of surrounding elements i:

σvertex = ∑miσi/∑mi (2)

With mi the mass of the element i and σi, the 3×3 stress
tensor of this element. The eigenvalues of the vertex
tensor are computed. If one of these values exceeds a
threshold, the corresponding eigenvector is computed.
Finally, the fracture plane is defined as perpendicular to
this eigenvector. A vertex split is applied as described
in Section 4.3. A similar approach can be used in 2D.

A more general cumulative criterion can be proposed,
whatever the used deformation laws. Using a walk
through all the forces stored in every vertex orbit (see
Table 1), the sum of internal forces can be computed
for each vertex. When the magnitude of such a force
exceeds a threshold, a vertex split is triggered using a
fracture plane perpendicular to this force. Note that this
kind of criterion can only work in particular cases, for

instance when internal forces must compensate a high
external stress, or when a sudden deformation appears
locally in the mesh (after the motion of one or more ver-
tices). On the contrary, at rest, the internal forces can
be null and no tearing/fracture appears, even if atomic
interactions produce high magnitude forces.

5.3 Criteria dedicated To Mesh Elements
Separation

As stated in [MDS10], separation of elements is the
fundamental topological modification that is required
to represent tearing or fractures, since it is the core on
which the other transformations are based. However
these transformations are not enough local and involve
multiple elements not directly concerned by the used
criterion. Separations of elements are surely desirable,
but, unfortunately, no above-mentioned criterion results
in a single application of such elementary modifica-
tions. In a similar way as Smith et al.[SWB00] who
proposed a constraint-based criterion to split a face be-
tween two volumes, force-based solutions are investi-
gated to trigger element separation. On other words,
we want to find criteria that are applied on a cell and
that trigger a modification on this same cell.

In 2D, faces are separated by splitting an edge, so this
edge should support the fracture criterion. More pre-
cisely, the forces applied to the edge AB by all inter-
actions supported by the adjacent faces are compared
to check if they tend to make the edge split. First of
all, the direction n along which the forces are compared
(see Fig. 10) is computed as:

n = AB× (n1 +n2) (3)

Let f(i)A and f(i)B the forces applied by each adjacent faces
i on vertices A and B. These forces just require to walk
through the orbits of A and B restricted to each face (or-
bit 〈1〉 in 2D, orbit 〈1,2〉 in 3D) and collect all calcu-
lated forces stored in sub-orbits. Let fi = f(i)A + f(i)B , the
forces applied on the edge. A possible criterion com-
pares the effect of these forces by computing:

|(f1− f2) ·n| (4)

If the magnitude of this force is beyond a threshold,
and if each force tends to contract the elements, then
the common edge can split. This occurs when forces
f1 and f2 are along opposite directions, and at least one
of them has a high magnitude. This criterion is called
“atomic edge criterion”.

Let fA and fB the overall forces (coming from any ele-
ment) applied on these vertices. Another criterion con-
sists in computing the magnitude of the overall forces
applied on the edge, projected on n, and comparing it
to a given threshold:

|(fA + fB) ·n| (5)

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 45

(a) (b) (c) (d) (e)

Figure 9: Examples of tearing a 2D object with different criteria.

n2
n1

f1

f2

1
2

B

A

0

0
0

0

0
0

1

1
1

1

1
1

1

2

Figure 10: Computing internal forces of an edge.

This kind of criteria is called “global edge criterion”
and can also be extended as a face criterion in 3D. In
this case, the normal of the face to split n is used to
project the different faces and compute their contribu-
tion to the face split. As above, only forces stored in
the volume orbits are first collected, projected on n and
are compared to check if the common face splits. The
overall forces applied to the face vertices can also be
used to provide another criterion.

6 RESULTS AND DISCUSSION
We have implemented the criteria and topological mod-
ifications cited in the previous sections using the rule-
based language. Thus, Fig. 9 presents the same object, a
cloth modeled as a 2D triangular mesh, simulated with
different types of criteria. Its two upper extremities are
always fixed. In Fig. 9a, this cloth is modeled with
co-rotational FEM and is torn by vertex split when the
force applied by at least one of its adjacent face is be-
yond a threshold (atomic criterion). Fig. 9b presents the
same cloth modeled as MSS, but when the force gen-
erated by a spring exceeds a threshold, its extremities
split. Then, Fig. 9c presents this same system where a
vertex splits wherever the sum of applied forces exceeds
a threshold. In Fig. 9d, the same model is used, and an
edge of the mesh can split where the global edge crite-
rion is verified. Finally, Fig. 9e still presents the same
MSS with edge splits where the atomic edge criterion
is satisfied. As can be seen, different fracture criteria
produce completely different results, where tearing is
concentrated on the constraint areas or is disseminated
in the overall body.

Similar simulations can be applied on rectangular or
mixed meshes using the same criteria and topologi-
cal modifications. An example of such a rectangular

Figure 11: Edge split with criterion based on the differ-
ence between forces applied on an edge.

mesh is presented in Fig. 11. Fig. 12 presents some
other results of fractures in 3D using mass/spring sys-
tem and different criteria. An example of tearing of a
liver (consisting of 597 elements) simulated using the
co-rotational method is presented in Fig. 13.

The performance of our model is not the main concern
of this paper. Indeed, Jerboa is a tool dedicated to pro-
totyping and not interactive simulation, even if it allows
the simulation of topological transformations on com-
plex meshes. As a consequence, some of the discussed
models have been ported to C++ to measure their ef-
ficiency. This specific implementation strictly respects
all the principles described in this paper. In particu-
lar, when an interaction embedding is found, the cor-
responding graph is used to find how the interaction is
computed and where forces apply. We chose to focus
on a 2D cloth model consisting of 10× 10 rectangular
patches that can be further triangulated to produce a lo-
cal triangular mesh. An example of simulation using
this optimized implementation is presented in Fig. 14.

Some simulation times are summarized in Table 2 for
different type of meshes, using Runge-Kutta 4 inte-
gration to allow a more stable simulation. No paral-
lelization method has been used. Note that, thanks to
the ruled-based approach, the implementation allows
the simulation of heterogeneous meshes, with a little
computation over-cost (below 1%) compared to meshes
consisting exclusively of quads or triangles. Simula-
tion have been measured on a 2.7GHz Intel I7 system
(3740QM Processor). All simulation times are actu-
ally compatible with real time. Simulating with quads
is faster because this model is subdivided in less faces.
The mixed mesh triangulates half the quads of the initial
mesh. It appears as a real compromise between quad
and triangle meshes. The global edge criterion is faster

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 46

(a) Atomic force crite-
rion and vertex split

(b) Sum of forces crite-
rion and vertex split

(c) Atomic forces criterion and
volume suppression

(d) Atomic force criterion of
shear springs and edge sup-
pression by removing volumes

(e) Atomic force crite-
rion applied on a face
and face split

Figure 12: Examples of fracture of a 3D object with different criteria.

Figure 13: Elementary forces and vertex split (FEM).

Figure 14: A cloth simulated in real-time (mass = 100g,
stretching stiffness = 60 N/m, shear stiffness = 43 N/m,
bending stiffness = 10 N/m, damping = 0.1, fracture
threshold = 0.5 N), using a global edge criterion.

Basic step Global edge Atomic edge
criterion criterion

Quads 0.37 0.41 0.55
Triangles 0.78 0.95 1.3
Mix 0.61 0.72 0.97

Table 2: Simulation times (in ms) for a cloth depending
upon the type of mesh. Basic step shows the simulation
times without any tearing detection.

than the atomic one, because this last requires to store
atomic forces in the model instead of only accumulat-
ing them in each vertex, which can be a costly process.
However, this criterion triggers tearing only on points
of very high stress (constrained particles in the exam-
ple), which can be a desired behavior.

7 CONCLUSION/PROSPECTS
This paper proposes an extension of the framework pre-
sented in [BBAM17] which relied on rules of graph
transformations and a topological model to simulate
various deformable bodies in 2D and 3D. This exten-
sion provides this framework with topological transfor-
mations such as tearing and fractures. The proposed
approach is modular, since the user can select a crite-
rion (or more) and a suitable mesh modification. This
makes it an interesting tool to control tearing in an an-
imation/simulation system. Many known types of cri-
teria are implemented, some of them are specific to a
given mechanical model and others are completely gen-
eral. To produce mesh modifications when a criterion

is met, several types of topological transformations are
proposed. However, some of these modifications (ver-
tex split, edge removal) tend to involve a lot of adja-
cent elements and are surely not enough local, so often
require to use a high resolution mesh or subdivide the
elements locally. To circumvent this problem, we pro-
pose to use more closely-related criteria and topological
modifications, that is, criteria and topological modifi-
cations based on the same topological cell (face in 3D,
edge in 2D). The mechanical information of the model
is stored in an atomic way, therefore no update of in-
teraction properties such as spring stiffness is needed
after a topological change. The same way, any interac-
tion that depends on the modified cells is automatically
ignored thereafter. Only mass of particles must be up-
dated, but this process consists in gathering elementary
masses stored in the associated vertex’ orbit. Simula-
tions based on different scenarios show the effective-
ness of our approach.

We have investigated its efficiency through a C++ im-
plementation of some 2D models. The measured simu-
lation times allow interactive and real-time simulations.
However, it is possible to get even better simulation
times by combining some interactions that appear as re-
dundant: For instance, all stretch springs corresponding
to the same edge can be cumulated in a single spring
(that is, stiffness and damping values are added) and
resulting forces computed once instead of being com-
puted for each atomic spring. In 2D, only two springs
are to be cumulated, but in 3D, more atomic springs
are generally involved. Other redundancies exist, in
particular in 3D (shear springs of 3-linked faces, lin-
ear provot springs placed between the same vertices,
etc.). However, this approach implies that some cumu-
lated interaction properties should be updated after any
topological change, and that some atomic forces will
no longer be available to contribute to a tearing/fracture
criterion. In future work, we want to include these op-
timization solutions to our framework, whenever the
selected criterion allows it, and enhance it with other
complex types of topological transformations, for in-
stance subdivisions of elements or local remeshing .

8 ACKNOWLEDGMENTS
This work has been partially funded by the European
Erasmus Mundus - Al Idrisi II scholarship program. It
also received fundings from the MIRES federation.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 47

9 REFERENCES
[BALB14] Hakim Belhaouari, Agnès Arnould, Pascale

LeGall, and Thomas Bellet. Jerboa: A graph
transformation library for topology-based ge-
ometric modeling. In ICGT, pages 269–284,
2014.

[BBAM17] Fatma Ben Salah, Hakim Belhaouari, Agnès
Arnould, and Philippe Meseure. A general
physical-topological framework using rule-
based language for physical simulation. In
VISIGRAPP, 2017.

[BL00] François Boux de Casson and Christian Laugier.
Simulating 2D tearing phenomena for interac-
tive medical surgery simulators. In Computer
Animation, pages 9–14, 2000.

[DKS+11] Emmanuelle Darles, Saman Kalantari, Xavier
Skapin, Benoît Crespin, and Annie Luciani. Hy-
brid physical topological modeling of physical
shapes transformations. In CASA, 2011.

[DL14] Guillaume Damiand and Pascal Lienhardt.
Combinatorial Maps: Efficient Data Structures
for Computer Graphics and Image Processing.
A K Peter/CRC Press, 2014.

[FZDJ14] Elsa Fléchon, Florence Zara, Guillaume
Damiand, and Fabrice Jaillet. A unified
topological-physical model for adaptive refine-
ment. In VRIPHYS, pages 39–48, 2014.

[GHDS03] Eitan Grinspun, Anil N Hirani, Mathieu Des-
brun, and Peter Schroder. Discrete shells. In
Symp. on Computer Animation, 2003.

[HTK00] Koichi Hirota, Yasuyuki Tanoue, and Toy-
ohisa Kaneko. Simulation of three-dimensional
cracks. Visual Computer, pages 371–378, 2000.

[IO09] Hayley N. Iben and James F. O’Brien. Gener-
ating surface crack patterns. Graphical Models,
pages 198–208, 2009.

[Jer] http://xlim-sic.labo.univ-poitiers.fr/jerboa.

[KLB14] Dan Koschier, Sebastian Lipponer, and Jan Ben-
der. Adaptive tetrahedral meshes for brittle
fracture simulation. In Symp. on Computer Ani-
mation, pages 57–66, 2014.

[LBC+14] Joshua A. Levine, Adam W. Bargteil, Christo-
pher Corsi, Jerry Tessendorf, and Robert Geist.
A peridynamic perspective on spring-mass frac-
ture. In Symp. on Computer Animation, pages
47–55, 2014.

[MBF04] Neil Molino, Zhaosheng Bao, and Ronald Fed-
kiw. A virtual node algorithm for changing
mesh topology during simulation. Trans. on
Graphics, pages 385–392, 2004.

[MCK13] Matthias Müller, Nuttapong Chentanez, and
Tae-Yong Kim. Real time dynamic fracture
with volumetric approximate convex decom-
positions. Trans. on Graphics, pages 115:1–
115:10, 2013.

[MDM+02] Matthias Müller, Julie Dorsey, Leonard McMil-
lan, Robert Jagnow, and Barbara Cutler. Stable

real-time deformations. In Symp. on Computer
Animation, pages 49–54, 2002.

[MDS10] Philippe Meseure, Emmanuelle Darles, and
Xavier Skapin. Topology based physical simu-
lation. In VRIPHYS, pages 1–10, 2010.

[MG04] Matthias Müller and Markus Gross. Interactive
virtual materials. In Graphics Interface, pages
239–246, 2004.

[MMD+01] Matthias Muller, Leonard McMillan, Julie
Dorsey, , and Robert Jagnow. Real time simu-
lation of deformation and fracture of stiff mate-
rials. In Works. on Animation and Simulation,
pages 113–124, 2001.

[NTB+91] Alan Norton, Greg Turk, Robert Bacon, John
Gerth, and Paula Sweeney. Animation of frac-
ture by physical modeling. Visual Computer,
pages 210–219, 1991.

[OBH02] James F. O’Brien, Adam W. Bargteil, and Jes-
sica K. Hodgins. Graphical modeling and ani-
mation of ductile fracture. In SIGGRAPH, pages
291–294, 2002.

[OH99] James F. O’Brien and Jessica K. Hodgins.
Graphical modeling and animation of brittle
fracture. In SIGGRAPH, pages 137–146, 1999.

[PNdJO14] Tobias Pfaff, Rahul Narain, Juan Miguel
de Joya, and James F. O’Brien. Adaptive tearing
and cracking of thin sheets. Trans. on Graphics,
pages 110:1–110:9, 2014.

[PO09] Eric G. Parker and James F. O’Brien. Real-time
deformation and fracture in a game environ-
ment. In Symp. on Computer Animation, pages
165–175, 2009.

[Pro95] Xavier Provot. Deformation constraints in a
masss/pring model to describe rigid cloth be-
haviour. In Graphics Interface, pages 147–154,
1995.

[Sof] https://www.sofa-framework.org/.

[SWB00] Jeffrey Smith, Andrew P. Witkin, and David
Baraff. Fast and controllable simulation of the
shattering of brittle objects. In Graphics Inter-
face, pages 27–34, 2000.

[WRK+10] Martin Wicke, Daniel Ritchie, Bryan Matthew
Klingner, Sebastian Burke, Jonathan Richard
Shewchuk, and James F. O’Brien. Dynamic
local remeshing for elastoplastic simulation.
Trans. on Graphics, pages 49:1–49:11, 2010.

[WWD15] Jun Wu, Rüdiger Westermann, and Christian
Dick. A survey of physically based simula-
tion of cuts in deformable bodies. Computer
Graphics Forum, pages 161–187, 2015.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 48

Bandwidth and Memory Efficiency in Real-Time Ray Tracing

Pedro Lousada
INESC-ID/Instituto
Superior Técnico,

University of Lisbon
Rua Alves Redol, 9
1000-029 Lisboa,

Portugal
pedro.lousada@ist.utl.pt

Vasco Costa
INESC-ID/Instituto
Superior Técnico,

University of Lisbon
Rua Alves Redol, 9
1000-029 Lisboa,

Portugal
vasco.costa@ist.utl.pt

João M. Pereira
INESC-ID/Instituto
Superior Técnico,

University of Lisbon
Rua Alves Redol, 9
1000-029 Lisboa,

Portugal
jap@inesc-id.pt

ABSTRACT
Real time ray tracing has been given a lot of attention in recent years in the academic and research community.
Several novel algorithms have appeared that parallelize different aspects of the ray tracing algorithm through
the use of a GPU. Among these, the creation of Bounding Volume Hierarchies (BVHs). We believe that recent
approaches have failed to consider the performance impact of memory accesses in GPU and how their cost affects
the overall performance of the application. In this work we show that by reducing memory bandwidth and footprint
we are able to achieve significant improvements in BVH traversal times. We do this by compressing the BVH and
the triangle mesh in a parallel manner after its creation, in each frame, and then decompressing it as needed while
traversing the BVH.

Keywords
Ray-tracing, bounding-volume-hierarchy, parallelization, gpu, quantization, memory.

1 INTRODUCTION

Real-time rendering typically concerns itself with the
generation of synthetic images at a rate fast enough that
the viewer can interact with a virtual environment. As
an image appears on screen, the viewer acts or reacts,
and this feedback affects what is generated next. Two
of the most popular approaches to synthetic image gen-
eration are Rasterisation and Ray-Tracing. Both have
been used in computer graphics for the past decades.
Each method allow us to generate 2D images from 3D
scenes composed of virtual objects.

Real-time ray-tracing received little attention outside
the academic world mainly due to its high computa-
tion costs which made it a much more expensive and
slow approach compared to rasterisation. Ray tracing
offers a fairly long list of advantages over rasterisation.
Ray-tracing can easily simulate non-local effects such
as shadows, reflections and refractions. In Rasterisa-
tion reflections and shadows are hard to compute; re-
fractions are very hard.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Due to its mathematical correctness, ray tracing can
make generated images look more realistic. The issue
is being able to generate them at a rate fast enough as
required by these real-time applications.

1.1 Problem
At its core, the ray tracing algorithm follows the fol-
lowing logic: for each pixel of the display, we cast rays
that propagate in a straight line until they intersect an
element of the scene being rendered. The color of the
pixel is computed as a function of the material at the in-
tersected element’s surface, the incident light (radiance)
function at the intersection point, and of the viewing di-
rection (observer’s position). For a simple scene with
no secondary rays (i.e. reflections, shadows, refrac-
tions, etc) this means having at least NxM intersection
tests (N being the number of rays and M the number of
polygons in the scene). For its nature, ray tracing in-
herently leads to a high number of expensive floating
point operations. This, together with an irregular and
high bandwidth memory access pattern, means perfor-
mance will be an issue when trying to achieve real time
rendering.

One way to optimize the standard ray tracing algorithm
is through the use of acceleration structures. Accelera-
tion structures allow us to lower the number of intersec-
tions tests needed to render an image. Currently Bound-
ing Volume Hierarchies (BVHs) are the most popular
solution. The state of the art in this kind of structure

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 49

has been targeted towards generating the structure at a
rate fast enough to be usable in a real time application,
typically creating a new BVH or refitting an existing
one at each frame.
Most modern algorithms use a GPU to achieve the per-
formance they need. Despite their capability of per-
forming a high number of floating point operations per
second, GPUs suffer from slow memory access. Yet
most algorithms that focus on constructing a BVH in
parallel manner tend to overlook this and are careless
with both memory accesses and bandwidth, resulting in
poorer overall performance than otherwise possible.

1.2 Contributions
We believe that by optimizing GPU memory footprint
and bandwidth efficiency we will be able to improve
render performance. In this work we show how to de-
velop a ray tracing application based on a state of the
art algorithm in parallel BVH construction and then
improve it further through memory compression tech-
niques.
Our contribution is a novel algorithm, based on existing
techniques for real time BVH construction, with focus
on improvements in BVH and triangle mesh compres-
sion. We are able to reduce the total size of memory
used to store both the BVH and the triangle mesh as
well as reduce the memory bandwidth of the applica-
tion. We saw improvements of up to 40% in occupied
memory, and reductions of up to 20% in memory band-
width, with our techniques.

2 BACKGROUND
First introduced by Whitted [Whi80], ray tracing is an
algorithm for image synthesis where direct illumination
(including shadows), and perfect reflections/refractions
are simulated. It employs the use of ray casting to in-
tersect eye rays with objects in a computer simulated
scene. Eye rays which intersect objects lead to the cre-
ation of extra secondary rays: e.g. shadow, reflection
and refraction rays.

The main difference between rasterisation and raytrac-
ing is the ability to simulate complex light effects such
as shadows, reflections and refractions. Whereas raster-
isation engines often simulate these effects through the
use of texturing, ray tracing takes a more accurate an-
alytical approach. Since these effects are highly geom-
etry dependent, simulated methods can look unrealistic
when changing object position or viewer position. The
difference in ability to simulate secondary visual effects
between rasterisation and ray tracing can be seen in Fig-
ure 1.

2.1 Bounding Volume Hierarchies
One of the major problems of ray tracing is the sheer
number of intersection tests one must perform in or-
der to check if a certain ray intersects an object of the

Figure 1: Rasterisation vs ray tracing (source: Intel)

scene. Acceleration structures help us reduce the num-
ber of intersections to test by organizing the geometry
of the scene into a data structure that can easily be ex-
plored. The organization of an acceleration structure is
typically hierarchical, loosely meaning that the topmost
level encloses the levels below it, and so on.

Bounding Volume Hierarchies (BVHs) are a tree-like
structure that subdivides a scene into smaller portions.
A BVH partitions a scene’s objects. Each geometric
primitive object is wrapped with an individual bounding
volume. These form the leaf nodes of the tree. Bound-
ing volumes are then recursively merged together until
we are left with a single bounding volume wrapping the
entire scene.

In a typical object hierarchy data structure it is easy to
update the data structure as an object moves, because
an object lives in just one node, thus the bounds for
that node can be updated with relatively simple and lo-
calized update operations. For deformable scenes, just
refitting a BVH - i.e., recomputing the hierarchy node’s
bounding volumes, but not changing the hierarchy it-
self - is sufficient to produce a valid BVH for the new
frame. BVHs also allow for incremental changes to the
hierarchy [WMG+09].

In BVHs, primitives are referenced exactly once, allow-
ing us to save GPU memory and bandwidth. Empty
cells, that frequently occur in spatial subdivision, do not
exist in object hierarchies either. The effectiveness of a
Bounding Volume Hierarchy for a particular scene de-
pends on the characteristics of the hierarchy the build
algorithm produces.

2.2 GPU Computing
Modern GPUs are SIMD (Single Instruction Multiple
Data) devices [GPKB12], meaning that they can per-

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 50

form the same operation on multiple data points simul-
taneously. Even though a modern CPU core can dis-
patch more operations per second than a GPU core, the
GPU as a whole can vastly outperform a CPU by hav-
ing thousands of cores running the same operations ver-
sus the 4-8 cores present in a CPU. The massive par-
allelism of programmable GPUs lends itself to inher-
ently parallel problems such as ray tracing. A given
compute kernel executes a single program across many
parallel threads. Typically, each kernel completes ex-
ecution before the next kernel begins, with an implicit
barrier synchronization between kernels. GPUs have
support for multiple, independent kernels to execute si-
multaneously, but many kernels are large enough to fill
the entire device. Threads are decomposed into thread
blocks; threads within a given block may efficiently
synchronize with each other and have shared access to
per-block on-chip memory.

3 RELATED WORK
Generating an acceleration structure is a necessary step
when trying to achieve real-time performances. One
can take two approaches: To construct a new structure
every frame or to reuse the same structure and adjust
it at each frame. The latter option has been explored
[KA13] but lacks performance when processing large
trees or large modifications to the data structure are re-
quired.

Approaches that explore a construction of new hierar-
chy at each frame tended to rely on serial algorithms
running on the CPU to construct the necessary hierar-
chical acceleration structures [GPM11]. While this was
once necessary due to architectural limitations, modern
GPUs provide all the facilities necessary to implement
hierarchy construction directly. Doing so should pro-
vide a strong benefit, as building structures directly on
the GPU avoids the need for the relatively expensive
latency introduced by copying data structures between
CPU and GPU memory spaces.

The first to explore such a method were Lauterbach et
al. [LGS+09]. Lauterbach et al. introduced a novel al-
gorithm using spatial Morton codes [Mor66] to reduce
the construction of BVHs to a sorting problem. Morton
codes are used to determine a primitive’s order along a
space filling curve. They can be computed directly from
a primitive’s geometric coordinates. The algorithm en-
closes each input primitive with an Axis-Aligned min-
imum Bounding Box (AABB) and determines the en-
closing AABB of the entire input geometry. By taking
the barycenter of each primitive’s AABB as its repre-
sentative point, and by quantizing each of the 3 coor-
dinates of the representative points into k-bit integers,
a 3k-bit Morton code is constructed by interleaving the
successive bits of these quantized coordinates. Figure 2

shows a 2D representation of this. Sorting the Mor-
ton codes will automatically lay the associated points
in order along a Morton spatial curve. It will also or-
der the corresponding primitives in a spatially coherent
way. Because of this, sorting geometric primitives ac-
cording to their Morton code is used to improve cache
coherence since a ray that hits a certain primitive will
likely also hit the primitive adjacent to it.
The main problem of this family of algorithms
[LGS+09, PL10, GPM11] is that, in order to build
the resulting BVH, a series of sequential steps must
be taken. Lauterbach et al. create their BVH by
sequentially observing each bit of each Morton code
and grouping the primitives according to the value of
the bit. At each level if said bit has value 0 then the
primitive is placed in a group, if the bit has value 1 then
it is placed in the opposite group. Garanzha et al. take
a different approach by generating one level of nodes
at a time, starting from the root. They then process
the nodes of the BVH on a given level in parallel. For
this they use binary search to partition the primitives
contained within each node. The resulting child nodes
are then enumerated using an atomic counter, and
subsequently processed on the next round.

Karras et al. [Kar12] further developed this line of
thought by describing an algorithm to build a BVH in
a totally parallel manner. Karras et al. introduce an
in-place algorithm for constructing a binary radix tree
(also called a Patricia tree) which can directly be con-
verted into a BVH.
Their approach is based on the fact that for a scene with
N primitives we know we can make a Patricia tree with
N−1 internal nodes to represent it. The similarities
between each Morton code and its neighbours are ana-
lyzed to determine the position of each internal node in
the Patricia Tree. The child-parent association is then
calculated based on the range of same-value-bits with
the rest of the Morton codes.
BVHs have a large memory footprint due to the need
to store the bounding boxes. Hence several approaches
have been used, over the CPU, to allow the visualiza-
tion of large models without paging data from disk.
Mahovsky et al. [MW06] and Bauszat et al. [BEM10]
quantize the bounding box data, with significant mem-
ory and bandwidth savings, at the expense of extra com-
putations. These approaches degrade rendering perfor-
mance for models that fit uncompressed within main
memory, even with a ray-bundle scheme, due to limited
available CPU math performance. However a GPU is
more bandwidth than math constrained so this conclu-
sion needs to be revisited in that case.

4 APPROACH AND ARCHITECTURE
In order to achieve a high frame rate one must reduce
the time it takes to generate an image at each frame.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 51

Figure 2: Example 2-D Morton code ordering of trian-
gles with the first two levels of the hierarchy. Blue and
red bits indicate x and y axes, respectively. (source:
NVIDIA)

For this we make use of a GPU to help us accelerate
all the floating point operations required to compute
the intersections in a ray-tracer. We aim to reduce the
memory bandwidth and memory footprint of our ap-
plication. We make use of research, made in the area
of parallel BVH construction in GPUs, to reduce the
number of intersection tests performed (thus reducing
memory bandwidth as well). We then explore BVH
and triangle meshes compression techniques. With a
compressed BVH and triangle mesh we expect our ren-
dering kernels to achieve better rendering times since
the data transferred between the GPU’s global memory
and the kernel’s local memory will be smaller.
This is described in further detail in the following sec-
tions.

4.1 Binary Radix Tree Properties
Before we describe our algorithm there are a few Bi-
nary Radix Tree properties we should cover as these
are important to understand our work.
A radix tree is a space-optimized tree often used for in-
dexing string data, although it can also be used to index
any data divisible in smaller comparable chunks such as
characters, binary numbers, etc. For simplicity, assume
that from now on our radix tree only contains binary
values and that they are in a lexicographical order as
in our application each key will correspond to a sorted
Morton code.
Given a set of keys k0,,kn−1 represented as bits, a
radix tree can be seen as a hierarchical representation
of the common bits of each key. The keys are repre-
sented in the leaf nodes of the tree, and each internal
node corresponds to the longest common prefix shared
between the keys in that subtree.
Assume the example referenced in Figure 3. As one
would expect the root of the tree covers the full range

of keys. At each level the keys are partitioned accord-
ing to their first differing bit. The first difference occurs
between keys k3 and k4, thus, the left child of the root
node contains keys k0 to k3 and the right child contains
k4 to k7. We continue this process to essentially get a
hierarchical representation of the common prefixes be-
tween each key. At the bottom level of the tree we will
find that each child references a key.

Figure 3: A visual representation of an ordered radix
tree. The numbers 0-7 act as keys (leaf nodes) of the
tree. Each internal node represents a common range
prefix of the binary value of all the leaf nodes bellow it.
Notice we have N−1 internal nodes for N keys.

A radix tree is considered a compact data structure, as it
omits nodes which only have one child, thus removing
redundant information and decreasing the overall size
of the tree in memory.

One property of a binary radix tree is that any given
tree with N keys will have n−1 internal nodes. This
allows us to know, even before we construct the tree,
how many nodes, and thus how much memory, we will
require. Assuming that we have a lexicographically or-
dered tree allows us to express [i, j] as the range of keys
covered by any given internal node. We use δ (i, j) to
denote the length of the longest common prefix between
the keys ki and k j. The ordering of the keys automati-
cally implies that δ (i′, j′)≥ δ (i, j′) for any i′, j′ ∈ [i, j]
[Kar12]. We can then determine the common prefix
shared between a key under a given node by compar-
ing the first and last key it covers - all the other keys
in between are guaranteed to share the same or a larger
prefix.

In practice each internal node partitions the keys under
it on their first differing bit, the one following δ (i, j).
We can safely assume that in the range [ki,k j] part of the
keys will have said bit set to 0 and others will have it set
to 1. Since we are working with an ordered tree all of
the keys with the bit set to 0 will be presented before the
keys with the bit set to 1. We call the position of the last
key, where this bit has value 0, the split position denoted
by γ ∈ [i, j−1]. Since the split position is where the first
bit differs between the keys in the range we can say that

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 52

δ (γ,γ + 1) = δ (i, j). The ranges [ki,kγ] and [kγ+1,k j]
will be subdivided at the next differing bit. We can thus
say for sure is that δ (i,γ) > δ (i, j) and δ (γ + 1, j) >
δ (i, j). Taking Figure 3 once more as reference, we can
see that the first differing bit happens between keys k3
and k4, the range is then split at γ = 3 resulting in the
subranges [k0,k3] and [k4,k7]. The left child then splits
its range [k0,k3] at the third bit, γ = 1. The right child
splits the range [k4,k7] at γ = 4, at the second bit, and
so on.

4.2 Morton Codes
We start our process with a series of primitives repre-
sented by 3D points. In order to generate our BVH
we first start by deciding in which order each leaf node
will be represented in the tree. A good approach is to
sort the leafs according to their position, generally we
will want primitives close to each other in 3D space to
appear close to each other on the tree. In order to do
this we sort them via a space-filling curve, more specif-
ically a Z-order curve. For this we take the centroid of
each triangle and express it relative to the bounding vol-
ume of the entire scene, known after loading the scene’s
data.
Let bvhmin be defined as the minimum extents of the
scene’s bounding volume and bvhmax as its maximum.
If we define c as the centroid point of a given triangle
then we can express q, the same point, but now in co-
ordinates relative to the bounding volume of the scene
through the following formula:

q =
c−bvhmin

bvhmin−bvhmax
(1)

q’s coordinate values now vary between 0 and 1. We
can think of it as a point within the 3D space delimited
by the scene’s bounding volume. The closer each coor-
dinate is to 0 the closer the point will be to the minimum
point of the bounding volume, and, the closer it is to 1
the closer it will be to its maximum point.
We now want to express this 3D point as a Morton
code. The first step in this process is to transform our
point from a continuous space into a discrete one. We
achieve this by quantizing each floating point coordi-
nate into a range created by the difference between the
scene’s bounding volume maximum and minimum ex-
tremes. Morton codes are most efficiently expressed as
a single integer so to represent a 3D point in a single
integer value we will have to make some precision sac-
rifices. We assume a machine architecture with 32 bit
sized integers, meaning that in order to represent 3 dis-
tinct values in 32 bits we will have 10 bits for each of
the 3 Cartesian coordinates. We are thus left with the
following quantization equation:

q =
(c−bvhmin)×210

bvhmin−bvhmax
(2)

Where q is now a 3D point whose coordinates are com-
posed of 10 bit integers. To correctly represent this
point along a Z-order curve we interleave the bits of
all three coordinates together to form a single binary
number. We take the value of each coordinate, expand
the bits by inserting 2 bit ”gaps” after each bit and then
interleave them. Beyond this point it is simply a matter
of calculating the Morton codes for each primitive and
sorting them via a parallel sorting algorithm, we used
radix sort for this operation.

4.3 Parallel Construction of BVH
This section follows the same line of thought described
by Karras in [Kar12]. The idea is to assign indexes for
the internal nodes in a way that enables finding their
children without depending on earlier results, this way
we can fully parallelize the construction of the BVH.

We create two separate arrays to store our nodes, L for
the leaf nodes and I for the internal nodes. We define
the layout of I as having the root node at the index 0,
denoted by I0. The index of each internal node will be
defined by its split position. For any given node the left
child will be defined in Iγ if it covers more than one
key and at Lγ if it doesn’t. Similarly the right child
will be located either at Iγ+1 or at Lγ+1. This layout
has an important property, the index of every internal
node will either coincide to the first or the last key it
covers. Take for example the root node, it covers the
entire range of keys [0,n−1] and is located at position
I0. A node covers the range [i, j]; its left child will be
located at the end of the range [i,γ] and its right child
located at the beginning of the range [γ +1, j].

Figure 4: Bar representation of the keys covered by
each internal node.

In Figure 4 we present a visual example of this prop-
erty. Node 0 covers the entire range [k0,k7] and is there-
fore located at I0. Its children, node 3 and 4 cover the
ranges [k0,k3] and [k4,k7] and are placed at I3 and I4,
respectively. Interestingly, this process will never result
in gaps or duplicates when populating the internal node
array. An advantage of using this scheme is that each
internal node is conveniently placed next to a sibling

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 53

node in memory. And since internal nodes run from 0
to n− 1 we can use them to directly address the nodes
in memory.

In order to construct the BVH, we need to know more
than simply which nodes cover which keys, we need to
know how the nodes connect amongst themselves, i.e.
the parent-child relations.

Lets say we want to determine the direction in which
the range of keys covered by node Ii extends in. We call
this direction d. In order to determine d we compare the
length of the common prefix between the keys ki−1, ki,
and ki+1. If δ (i−1, i)> δ (i, i+1) then d =−1. And if
δ (i−1, i)< δ (i, i+1), then d =+1.

Knowing this we can say that ki and ki+d both belong
to node Ii, and that ki−d belongs to node Ii−d.

We now need to know how far the range of each node
extends. Since ki−d does not belong to the range of keys
covered by node Ii, we can safely assume that the keys
which are share amongst themselves a larger common
prefix than ki and ki−d do. We call this common prefix
δmin so that δmin = δ (i,d−1).

δ (i, j) > δmin for any ki belonging to Ii. This being
said all we need to do to find the other end of the range
is to search for the largest l that satisfies the equation
δ (i, i+ ld)> δmin. The fastest way to do this is to start
at ki and in powers of 2 increase the value of l until it no
longer satisfies δ (i, i+ ld) > δmin. Once this happens
we know that we have gone too far and we have left
the range of keys covered by Ii. Lets call this upper
bound lmax. We know for sure the correct value of l
is somewhere in the range [lmax/2, lmax− 1]. Now it is
only a matter of using a binary search to find the value
of l under which δ (i,d(l +1)+ i)≤ δmin.

After finding the value of l we can use j = i+ ld to spec-
ify the other end of the range.

Lets call δnode the length of the common prefix shared
between ki and k j, given by δ (i, j). We use δnode to
search the split position γ that partitions the keys cov-
ered by Ii. Now we perform a search for the largest
s ∈ [0, l− 1] that satisfies δ (i, i+ sd) > δnode. i.e., we
need to find the furthest key which shares a larger prefix
with ki than k j does.

Discovering γ allows us to determine the ranges cov-
ered by each children. The left child will have a range
covering [min(i, j]),γ] and the right child will cover
[γ +1,max(i, j)].

For the final step we analyze the values of i, j and γ .
If i = γ we know Ii’s left child is the leaf node Lγ ,
otherwise it’s the internal node Iγ . Correspondingly if
j = γ + 1 we say Ii’s right child is the leaf node Lγ+1,
otherwise it’s internal node Iγ+1. Pseudocode for this
algorithm can be found in Algorithm 1.

Algorithm 1 Pseudocode for the parallel construction
of a BVH [Kar12].

for all internal node with index i ∈ [0,n−2] do
// Determine direction of the range (+1 or -1)
d← sign(δ (i, i+1)−δ (i, i−1)
// Compute upper bound for the length of the range
δmin← δ (i, i−d)
lmax← 2
while δ (i, i+ lmax ·d)> δmin do

lmax← lmax ·2
// Find the other end using binary search
l← 0
for t← lmax/2, lmax/4, ...,1 do

if δ (i, i+(l + t) ·d)> δmin then
l← l + t

j← i+ l ·d
// Find the split position using binary search
δnode← δ (i, j)
s← 0
for t←{dl/2e,dl/4e, ...,1} do

if δ (i, i+(s+ t) ·d)> δnode then
s← s+ t

γ ← i+ s ·d
// Output child pointers
if min(i, j) = γ then le f t← Lγ else le f t← Iγ

if max(i, j) = γ +1 then right← Lγ+1 else right← Iγ+1
Ii← (le f t,right)

4.4 Compression
Reducing memory footprint and bandwidth is our goal.
A certain amount of bandwidth is reduced by simply us-
ing a BVH. We can further improve our gains by com-
pressing both the BVH and the triangle mesh.

4.4.1 BVH Compression

We start a thread at each internal node and make our
way up to the top of the tree. Once we reach the top
of the tree we start walking the same path in the oppo-
site direction, that is, from the root node to the internal
node in question. As we descend each level we take the
bounding box of the previous parent and subdivide each
dimension in 1024 segments. We treat this 10243 grid
as a voxel space and map the minimum and maximum
points of the current level’s node bounding box into the
nearest corresponding voxels.

It becomes clear that we lose some precision as we de-
scend each level since we are going from floating point
coordinates into integer indexes. Each index will be
contained in the range [0,1024[, so we can store 3 of
these indexes in a single 32 bit integer. Each bounding
box can then be stored as a single 2 integer data struc-
ture instead of a 6 float data structure, reducing its size
down from 24 bytes to 8 bytes. It is obvious that with
this method our BVH will become more loosely cou-
pled since we lose precision when going from a con-
tinuous space (world coordinates) into a discrete one
(voxel indexes). We round up when mapping the maxi-
mum point of a bounding volume to a voxel and round
down when mapping the minimum so our bounding

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 54

(a) SHINY

(152 triangles)
(b) BUNNY

(70K triangles)
(c) ASIAN DRAGON

(7.2M triangles)
Figure 5: Test Scenes.

volumes remain coherent. We predict this loss of preci-
sion will not have a big impact in our intersection tests,
we will most likely intersect a few more bounding vol-
umes, as they will be slightly larger in size, but we do
not expect a significant increase in the number of tests.
One thing to take into account is that in each thread we
must quantize the entire path from the root to each inter-
nal node otherwise our BVH will become incoherent.

4.4.2 Mesh Compression
Karras [Kar12] uses each leaf node as a redirect to a
primitive. We can remove an indirection level by having
each leaf node envelop a single triangle and store said
triangle in the node itself. We can also try and diminish
the number of memory necessary to store a triangle by
following the same line of thought from the BVH com-
pression. By quantizing the position of each vertex of
each triangle, into the bounding box that encapsulates
it, we can go from having to store 9 floats to just 3 in-
tegers. This will of course have an impact on the model
itself as we will be losing the original coordinates of
each vertex. When recalculating each vertex back to
world coordinates we will be changing the final world
positions of each triangle, resulting in slight mesh de-
formation. Interestingly enough, this effect isn’t notice-
able unless examining models up close. In a practical
application like a game or simulation where the camera
and the objects are constantly moving this effect could
pass up unnoticed. This compression step can be done
in the same kernel as the quantization of the internal
nodes of the tree, thus having little to no effect on the
post-processing time of the BVH.

5 RESULTS
Tests were made using an NVIDIA GeForce GTX 970
with 4 GB of RAM. We chose to render our images in
1280x720p as this is one of the most commonly used
resolutions for multimedia content.

We tested our algorithm with three different scenes,
ASIAN DRAGON, SHINY and BUNNY.

SHINY (see Figure 5a) is a scene representative of
highly reflective and refractive scenes. It also represents
a low polygon scene. It consists of an icosphere sur-
rounded by five mirrors and a glass prism. This scene

focuses on testing performance in scenes with a high
number of secondary rays.

BUNNY (see Figure 5b) is what we would call a
”medium” sized scene. It serves as a midterm between
low polygon scenes (SHINY) and high polygon scenes
(ASIAN DRAGON). This scene only features eye and
shadow rays.

ASIAN DRAGON (see Figure 5c) is representative of
complex objects with a high number of triangles. It is a
dense model with a great number of triangles in a small
space. Our intent with this scene is measure the per-
formance gains of BVH compression for dense BVHs.
This scene only features eye and shadow rays.

5.1 Ray-Box Intersection Tests
Despite SHINY being a small, enclosed scene we no-
tice that lack of precision of the bounding volume areas
causes an increase of 9% in the intersection tests (see
Figure 6). We assume this is caused by reflected and
refracted rays, that would normally pass tangent to the
icosphere, but are instead tested and categorized as a
hit. In BUNNY we notice an increase of 7.1% in the
number of ray-box intersection tests, making it the less
affected of all the 3 scenes. In ASIAN DRAGON we
notice an increase of 12.38% in the number of ray-box
intersection tests. Since this scene has a high tree we
expect rounding ”errors” to accumulate over the levels
thus leading to this increase in the number of intersec-
tion tests.

5.2 Ray-Triangle Intersection Tests
SHINY has an increase of 11.1% in the tests performed.
We believe this number is greater, in comparison to the
other test scenes, because in this scene almost every ray
will hit an object and thus it will have to traverse the
entire BVH, making it more prone to the effects of loss
of precision of the bounding volumes.

In BUNNY we notice an increase of 7.4% in the number
of tests performed. This increase in the number of ray-
triangle test seems to be similar to the increase of ray-
box intersection tests.

ASIAN DRAGON has an increase of 10.75% tests per-
formed. As in BUNNY this number seems to go in hand

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 55

N
u

m
b

er
 o

f
R

ay

Figure 6: Amount of ray-box intersections.

0

500

1000

Karras Node
Compression

Node + Mesh
Compression

2000

2500

3000

2968
2652

2467

Figure 7: Memory read in each frame (MB).

with the increase of ray-box intersection tests, although
slightly lower.

5.3 Global Memory Reads
The following results are based in the number of in-
tersection tests performed and the size of each internal
node, leaf node and primitive.

In SHINY we notice we are able to achieve a significant
impact in the amount of memory read with node com-
pression (14.5%), but see little to no gains when im-
plementing mesh compression (see Figure 7). This is
because, in this scene, the number of ray-box intersec-
tions dwarfs the number of ray-triangle intersections,
hence optimizations made to the execution time of ray-
triangle tests will have little impact.

BUNNY reduces its memory accesses by 14% when
compressing internal nodes alone and 22% when com-
pressing the mesh alike. These results go in hand with
the results obtained in ASIAN DRAGON providing some
insight that every reasonably complex model is posi-
tively affected by our improvements.

In ASIAN DRAGON we see a steady decrease of ac-
cessed memory with our algorithms. We reduce mem-
ory accesses by 11.9% with node compression and, by
20.3% with mesh compression.

5.4 Kernel Execution Time
In this section we measure the execution time for each
of the most relevant kernels. KARRAS represents the
basic algorithm, as described by Karras in [Kar12].
NODE is the same algorithm with BVH compression.
NODE+MESH is the same algorithm with BVH and tri-
angle compression.

SHINY does not benefit significantly from our mod-
ifications. We notice a reduction in rendering time
of 6.7% when compressing internal nodes and 10.7%
when compressing the mesh. BVH construction and
compression time improvements are marginal at best.
We believe our modifications do not have an impact on
this scene since it’s easy to fit in the GPU caches.

KARRAS NODE NODE+MESH

TIME (MS) TIME (MS) TIME (MS)
BVH CREATION 2.17 2.17 2.17
NODE COMP 0 0.01 0.01
MESH COMP 0 0 0.01
RENDERING 48.93 45.68 43.68

Table 1: Kernel execution time for SHINY frame.

KARRAS NODE NODE+MESH

TIME (MS) TIME (MS) TIME (MS)
BVH CREATION 7.82 7.82 7.82
NODE COMP 0 0.24 0.24
MESH COMP 0 0 0.35
RENDERING 80.74 64.15 46.83

Table 2: Kernel execution time for BUNNY frame.

In the BUNNY scene we notice most of the time is spent
executing the rendering kernel as in SHINY. The cre-
ation of the BVH has a slight impact on the time re-
quired to render each frame and remains constant across
all 3 variations. Compression is quick but greatly im-
pacts the time it takes to render the scene. Here we
can see a reduction in rendering time of 20.55% when
compressing the BVH’s internal nodes and a reduction
of 41.01% when compressing both internal nodes and
triangles. We are able to achieve a 37.62% overall im-
provement in time to frame performance with a full re-
build.

KARRAS NODE NODE+MESH

TIME (MS) TIME (MS) TIME (MS)
BVH CREATION 424.64 424.64 424.64
NODE COMP 0 16.33 16.33
MESH COMP 0 0 24.43
RENDERING 246.36 194.44 160.95

Table 3: Kernel execution time for ASIAN DRAGON
frame.

In ASIAN DRAGON we see a time reduction of 21.08%
in rendering kernel execution when compressing just
the internal nodes, and 34.67% when compressing both
internal nodes and triangles. As we can see our algo-
rithm has a significant impact in high poly models, we
fetch a large number of BVH nodes in this scene. Un-

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 56

fortunately the BVH CREATION kernel takes up most
of the time in each frame when dealing with such a high
number of polygons. So overall we are only able to
achieve a 6.6% improvement in time to frame perfor-
mance with a full rebuild.

6 CONCLUSIONS
In our tests we used the vanilla version of Karra’s al-
gorithm as a control benchmark. Tests showed all com-
plex test scenes benefit from our compression approach.
As we hypothesized the number of intersection tests in-
creases but the overall time to traverse the BVH and
perform each intersection test decreases. Some scenes
benefit more from our algorithm than others. We no-
tice that in scenes with a high number of polygons the
construction of the BVH becomes a bottleneck, taking
most of the time in the frame. This affects our algo-
rithm as much as the control algorithm. Gains from our
approach were diluted by this bottleneck for this kind
of scene.

As we initially expected real time ray tracing bene-
fits from a reduction in memory footprint and band-
width. Despite having to spend more time compressing
and then decompressing both the BVH and the scene’s
primitives in each frame this penalty is compensated by
the reduced time it takes to fetch the scene’s data from
global memory.

7 FUTURE WORK
BVH construction times are a bottleneck in high poly-
gon scenes. Our compression techniques improve ren-
dering times, but the construction times are still an is-
sue, in particular in large scenes with full rebuilds, these
could also benefit from working set minimization, com-
pression, or both. Using 64 bit types to store quantized
values could also be a solution worth exploring.

8 ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for
their insightful comments.
This work was supported by national funds through
Fundação para a Ciência e Tecnologia (FCT) with ref-
erence UID/CEC/50021/2013.

REFERENCES
[BEM10] Pablo Bauszat, Martin Eisemann, and

Marcus A Magnor. The Minimal Bound-
ing Volume Hierarchy. In VMV, pages
227–234, 2010.

[GPKB12] Jayshree Ghorpade, Jitendra Parande,
Madhura Kulkarni, and Amit Bawaskar.
GPGPU processing in CUDA architec-
ture. arXiv preprint arXiv:1202.4347,
2012.

[GPM11] Kirill Garanzha, Jacopo Pantaleoni, and
David McAllister. Simpler and faster
HLBVH with work queues. In Proceed-
ings of the ACM SIGGRAPH Symposium
on High Performance Graphics, pages
59–64. ACM, 2011.

[KA13] Tero Karras and Timo Aila. Fast paral-
lel construction of high-quality bounding
volume hierarchies. In Proceedings of the
5th High-Performance Graphics Confer-
ence, pages 89–99. ACM, 2013.

[Kar12] Tero Karras. Maximizing parallelism in
the construction of BVHs, octrees, and k-
d trees. In Proceedings of the Fourth ACM
SIGGRAPH/Eurographics conference on
High-Performance Graphics, pages 33–
37. Eurographics Association, 2012.

[LGS+09] Christian Lauterbach, Michael Garland,
Shubhabrata Sengupta, David Luebke,
and Dinesh Manocha. Fast BVH con-
struction on GPUs. In Computer Graphics
Forum, volume 28, pages 375–384. Wiley
Online Library, 2009.

[Mor66] Guy M Morton. A computer oriented
geodetic data base and a new technique
in file sequencing. International Business
Machines Company New York, 1966.

[MW06] Jeffrey Mahovsky and Brian Wyvill.
Memory-Conserving Bounding Volume
Hierarchies with Coherent Raytracing. In
Computer Graphics Forum, volume 25,
pages 173–182. Wiley Online Library,
2006.

[PL10] Jacopo Pantaleoni and David Luebke.
HLBVH: hierarchical LBVH construction
for real-time ray tracing of dynamic ge-
ometry. In Proceedings of the Conference
on High Performance Graphics, pages
87–95. Eurographics Association, 2010.

[Whi80] Turner Whitted. An Improved Illumina-
tion Model for Shaded Display. Commun.
ACM, 23(6):343–349, Jun 1980.

[WMG+09] Ingo Wald, William R Mark, Johannes
Günther, Solomon Boulos, Thiago Ize,
Warren Hunt, Steven G Parker, and Peter
Shirley. State of the art in ray tracing ani-
mated scenes. In Computer Graphics Fo-
rum, volume 28, pages 1691–1722. Wiley
Online Library, 2009.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 57

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 58

Real-time 3D Gesture Recognition using Dynamic Time
Warping and Simplification Methods

Alan dos Santos Soares
Federal University of Bahia, Brazil
Av. Adhemar de Barros, Ondina

40.170-110, Salvador, Bahia
alan.soares@ufba.br

Antonio L. Apolinário Jr
Federal University of Bahia, Brazil
Av. Adhemar de Barros, Ondina

40.170-110, Salvador, Bahia
antonio.apolinario@ufba.br

ABSTRACT
The recognition of dynamic gestures of hands using pure geometric 3D data in real-time is a challenge. RGB-
D sensors simplified this task, giving an easy way to acquire 3D points and track them using the depth maps
information. But use this collection of raw 3D points as a gesture representation in a classification process is
prone to mismatches, since gestures of different people can vary in scale, location and velocity. In this paper we
analyze how different techniques of simplification and regularization can provide more accurate representations of
the gestures. Using Dynamic Time Warping (DTW) as the classification method, we show that the simplification
and regularization steps can improve the recognition rate and also reduce the time of gesture recognition.

Keywords
Hands Gesture; Geometric Modeling; 3D Gesture Classification; Real-Time; Gesture Acquisition;

1 INTRODUCTION
The use of hand gestures in the construction of com-
puter systems has many challenges [Pal+13]. For ex-
ample, a single gesture can have different meanings
depending on the culture of each country or region
[HK12]. Furthermore gestures of different people can
vary in scale, location and velocity.

The complexity of a gesture depends on the amount of
body parts used in the movement [Pal+13], so it is nec-
essary to define a descriptor or method to simplify the
gesture in such a way that only key points are stored
to improve the performance of the recognition. Our
work provides an approach that recognizes gestures in
real-time, regardless of position, lighting and physical
aspects of the user. We define gesture as sequence of
hand positions performed in the 3D space like "let’s
go", "bye bye", etc. We evaluated the recognition rate
and performance using different combinations of regu-
larization and simplification methods.

The main contributions of this paper are:

• A purely geometrical approach to gesture recogni-
tion.

• A method to recognize gestures in sequence without
human intervention, requiring only an time interval
between the executions.

• A comparison of different methods for curve simpli-
fication, showing that a step of pre-processing can
reduce about a half the time consumption needed to
recognize gestures.

• Support to recognize gestures with one or both
hands, trained or not.

As an secondary contribution, we create a new dataset
composed of depth, image and tracking information for
7 gestures performed by 7 people with different physi-
cal aspects, totalizing a set of 1099 executions.

This article is structured as follows: in Section 2 we
discuss the advantages and drawbacks of related works.
In Section 3 we show our proposed solution in detail.
In Section 4 we present the results of the evaluation
of different simplification and regularization methods
through the performance and recognition aspects. In
Section 5 we state our final remarks and suggest some
future works.

2 RELATED WORK
Many works for gesture recognition have been pub-
lished in the last few years [RA15] [Che+13] [HK12]
[MA07].

The gesture recognition approaches can be divided in
three main: glove-based, vision-based and depth-based.
The glove-based approach uses a device to capture the
3D information (position and orientation) about hands
or fingers directly, having the advantage of less input
data and high speed [Bar+15]. However, the device
has to be used all the time, besides it has a lot of ca-
bles and is considered more invasive [HK12]. Vision-
based approaches are less invasive that the glove-based
ones because the user does not need to use wearable de-
vices [RA15]. However, vision-based approaches have

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 59

Depth-map Detection

Simplification Tracking

Dataset
• Recognition

• Tracking	
• Smoothing
• Simplification

• Acquisition	
• Detection

Smoothing

RGB-D	Sensor

Figure 1: Overview of the proposed approach.

some disavantages like sensitiveness to lighting, color
and shadow, limited acquisition by the distance, and the
3D information cannot be obtained directly [Han+13]
[HK12].

Recent works uses the Dynamic Time Warping (DTW)
[RK05] algorithm to recognize gestures. The DTW
finds the cost of similarity through the alignment of
two time series. [Iba+14] proposed a framework called
EasyGR (Easy Gesture Recognition) that assists de-
velopers in the implementation of NUI applications,
reducing the complexity through the encapsulation of
the algorithms and management of the gesture data.
[Bau+13] improved the recognition rates compared to
the usual DTW [SC07] and Hidden Markov Model
(HMM) [Rab89] using a probability-based DTW that
updates the cost of the DTW according to a Gaussian
model [Mat01]. However, both approaches were not
evaluated taking into account the gestures obtained by
people with different physical aspects.

[Wu+14] proposed a new method for view-invariant
gesture recognition using a shape representation that is
build from a set of euclidean distances between all tra-
jectory points. The shape is smoothed using a ten-order
B-Spline interpolation and the classification was per-
formed using a Support Vector Machine (SVM) clas-
sifier [Mul+01]. Other approach [Bar+15] uses a wear-
able camera coupled to the user’s head to recognize ges-
tures performed by hands. This type of approach is can
generate movement restriction, as it relies on wearable
devices, batteries, cables, besides it can only recognize
gestures that are in the field of view of the camera.

Our work provides an approach that use purely geo-
metric information to recognize gestures. Different of
some related works [Wu+14], we do not need train a

model to recognize gestures. Different of [Bar+15], as
we use a RGB-D sensor users do not need to use wear-
able devices to perform gestures. We introduce a step
of simplification that can reduce the time consumption
to recognize a gesture. This step allow the recognition
in real-time.

3 PROPOSED SOLUTION
Our solution aims to use simplification and regulariza-
tion techniques to speedup the recognition in real-time.
We proposed an approach that is focused only in the use
of geometric information.

The figure 1 shows an overview of our approach. First
we use a RGB-D sensor (Microsoft Kinect) to cap-
ture the geometric information through the depth-map.
Then, we use an algorithm [Sen13] to detect and track
the 3D hands movement. The next step smooths and
simplifies the gesture to remove noise and capture the
key points. Finally, we use the DTW to classify the
gesture.

3.1 Detection and Tracking
The first step aims to detect the hands using an RGB-D
sensor. The RGB-D sensor used to acquire the depth
information was the Kinect [CLV12]. We use a sample
algorithm of the OpenNI 1 library to detect and track
the movement of the hands. Detection begins from the
execution of some of the basic gestures implemented
by OpenNI, such as "bye bye". After the hand detec-
tion, the algorithm is able to track the movement of the
hands, providing the central position Pi(x,y,z) of the
hand in each frame.

1 http://www.openni.org/

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 60

We have developed an algorithm to automatically detect
when a gesture starts and ends. This allow the continu-
ous gesture recognition without human intervention us-
ing only a time interval between gestures. The gesture
start consists of verifying if the sum S of the distances
Di between the previous n positions is greater than a
threshold t.

S =
n−s

∑
i=1

Di (1)

If the sum S is greater than the threshold t, then the hand
is in motion, otherwise it is stopped. We choose n = 25
25 empirically to detect the hand’s movement.

3.2 Normalization
The next step normalizes the gesture since it can vary
in scale and location. We use the same normalization
proposed by [Iba+14] first calculating the centroid ci of
the gesture by dividing the sum of the points by the total
number of points n of the gesture.

ci = (x̄, ȳ, z̄) =
∑

n
i=1(xi,yi,zi)

n
(2)

Then, the centroid is used to move all points to the ori-
gin with (3), that subtracts from each point of the ges-
ture the respective coordinate of the centroid.

(xi,yi,zi)
′
= (xi− x̄,yi− ȳ,zi− z̄) (3)

In the end, we scale the gesture in the interval−1 and 1.
These processes ensures that the gesture is recognized
regardless of the location and physical aspects of the
user.

3.3 Smoothing
Once normalized the gesture, the next step smooths the
raw gesture data to reduce noise by the depth sensor.
The method used was the Laplacian [Tau95], which
consist of recalculating all points using the mean of
each point and its neighbors, according to (4). In our
approach we used the 1-ring neighbourhood to smooth
one time the gesture. Figure 2 shows the smoothing.

x̄i =
n−1

∑
i=1

(
xi

xi−1 + xi + xi+1
) (4)

3.4 Simplification
After the normalization and smoothing of the gesture,
the next step consists on its simplification. We use this
step to provide a compact representation of the gesture,
further improving the performance of the gesture recog-
nition.

RAW

LAPLACIAN

Figure 2: A raw gesture before and after smoothing us-
ing the Laplacian operator.

We use two algorithms to perform this task. The first
approach simplifies the gesture using a curvature-based
method and the second uses the Douglas-Peucker (DP)
algorithm [DP73]. As we will show in the section 4,
both of them keep the high recognition rate, while im-
proving the algorithm’s performance.

3.4.1 Curvature
The first simplification method of the gesture consists
in checking whether the curvature of each segment is
below a pre-defined threshold t = 0.01. In section 4.2
we explain how we choose this value.

S1
S6

S7

S8

S2

S3

S4

S5

Figure 3: The endpoints in blue cannot be removed.
The green points are points evaluated that cannot be
removed. The red points can be removed because its
curvature are below the threshold t.

As shown in Figure 3, the curvature-based method
evaluates the curvature iteratively using segments
defined by a point and its neighborhoods, e.g.
Si = (pi−1, pi, pi+1). Then, for each segment Si, if the
curvature of Si is below the threshold t, then the middle
point pi is removed. The point pi−1 of the next segment
is the point pi+1 of the previous segment.

3.4.2 Douglas-Peucker
The Douglas-Peucker (DP) algorithm introduced by
[DP73] is a polyline simplification. As shown in the

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 61

figure 4, the DP algorithm first use the endpoints [A,B]
to find and calculate the distance to the furthest point
C. Then it uses the points [A,C] and [B,C] to calcu-
late again the furthest points of [A,C] and [B,C], that is
D and E. Finally it add the points [C,D,E] if distance
exceeded the tolerance t. This condition of similarity
is based on the maximum distance measured between
the original and the simplified curve. The original end-
points always are inserted in the simplified curve.

Figure 4: Steps of the DP algorithm to simplify a curve
with 10 points.

We choosed this algorithm because it can reduce the
number of points of the gesture while retaining its
shape. Furthermore, the DP algorithm is faster then oth-
ers algorithms like Bend Simplify [VH99].

3.5 Recognition
The last step use Dynamic Time Warping (DTW)
[RK05] as classification method to recognize gestures.
We use the nearest neighborhood algorithm with DTW
to find the closest gesture according with the cost
distance provided by it.

3.5.1 Dynamic Time Warping - DTW
The DTW algorithm finds the cost of similarity through
the alignment of two time series, which in our case are
the gestures. The basic idea is to construct an array
of distances between the two trajectories and find the
minimum distance between each pair of points. The
result of the comparison is the sum s of the smallest
distances found. The lower the value of s, the higher
the degree of similarity between the two trajectories.

One of the main advantages of using the DTW is that
it allows to compare two trajectories, even if they have
different lengths [RK05]. This property of the DTW is
important, since the gestures can be done with different
speeds, so that the sampling rate is not always the same.

4 EXPERIMENTAL RESULTS
This section describes in detail the experimental setup
and results. First we did a cross-validation to evaluate

different parameters and obtain the optimal values to
use in the Curvature, DP and DTW algorithms. Then
we use the parameters found to evaluate the recognition
rate and performance for each class of gesture applying
these algorithms. Also, we evaluate the recognition and
performance using as template the median gesture from
each class.

The experimental evaluation was performed in a Mac-
book Pro (13-inch, Late 2011), Processor 2.4GHz In-
tel Core i5, Memory 4GB 1333 MHz DDR3, Intel HD
Graphics 3000 384 MB, macOS Sierra version 10.12.3.

4.1 Dataset

G4G1

G7

G2 G3

G6G5

Figure 5: Set of 7 gestures of our dataset.

We tried use the MSRC-12 [Fot+12] dataset, but it has
gestures written continuously in a single file and we did
not have the executions separator to do it. ChaLearn
[Guy+14] has only RGB and depth videos. Therefore,
we create our own dataset.

Our dataset contains 1099 gestures, collected from 7
individuals performing 7 gestures, with different phys-
ical aspects and positions. In our dataset, we have 5
gestures performed using two hands and 2 gestures per-
formed by one hand. The gestures were recorded using
the Kinect XBox 360 sensor at a sample rate of 30Hz.
We recorded both RGB, depth and 3D motion of hands,
but we only used the motion of hands. Each motion
contains a set of 3D positions of both hands. Figure 5
shows our 7 gestures, 6 of them are the same defined in
dataset [Fot+12].

After create the dataset, we splits our dataset with 1099
gestures to perform the evaluation using 70% for test
and 30% as template matching for each class of gesture.
The next step was to generate 7 median gestures from
our dataset to use as template and evaluate the recogni-
tion rate using all 1099 as tests.

To generate median gestures, we first apply for each
gesture class a method to normalize the distance be-
tween points according with the desired Euclidean dis-

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 62

tance k = 0.1. The method calculate the Euclidean dis-
tance di of each segment si and remove the point pi+1 if
di < k, otherwise we apply a linear interpolation in the
segment si until di < k. Then, we equalize the number
of points removing or adding points according with the
average point of each gesture class. Finally, we calcu-
late a simple mean for each gesture class gi with (5),
where we divide the sum of xi, yi and zi by the total
number of gestures n of each class.

gi =
∑

n
i=1(xi,yi,zi)

n
(5)

4.2 Cross-validation

45
3

45
3

45
3

45
3

45
4

45
5

45
6

45
7

45
7

45
9

71
2

71
2

71
2

71
2

71
1

71
3

71
2

71
3

71
5

71
6

75
3

75
3

75
3

75
3

75
3

75
4

75
4

75
4

75
4

75
4

75
6

75
6

75
6

75
6

75
6

75
7

75
7

75
7

75
7

75
7

75
8

75
8

75
8

75
8

75
8

75
9

75
9

75
9

75
9

75
9

0

100

200

300

400

500

600

700

800

0.0001 0 .0002 0 .0003 0 .0004 0 .0005 0 .0006 0 .0007 0 .0008 0 .0009 0 .001

NU
M
BE
R	
OF

	TR
UE

	P
OS

ITI
VE
	R
EC
OG

NI
ZE
D

PARAMETERS	 DOUGLAS-PEUCKER

RECOGNITION	DOUGLAS-PEUCKER

0,1 0,2 0,3 0,4 0,5

Figure 6: Cross-validation applied for DP with DTW
using the parameters in Table 1.

36
6

17
3

65

29 26 32 44 49 43 47

71
3

69
7

67
1

65
4

63
2

60
4

57
3

55
6

55
6

55
3

75
3

75
1

74
8

74
5

74
5

74
3

73
7

72
7

72
2

71
5

75
6

75
5

75
2

75
6

76
0

75
9

75
6

76
1

76
0

76
0

76
1

76
1

75
8

76
1

76
2

76
0

75
8

76
3

76
2

76
1

0

100

200

300

400

500

600

700

800

900

0.01 0 .02 0 .03 0 .04 0 .05 0 .06 0 .07 0 .08 0 .09 0 .1

NU
M
BE
R	
OF

	TR
UE

	P
OS

ITI
VE
	R
EC
OG

NI
ZE
D

PARAMETERS	 CURVATURE

RECOGNITION	 CURVATURE

0,1 0,2 0,3 0,4 0,5

Figure 7: Cross-validation applied for Curvature with
DTW using the parameter shown in Table 1.

Algorithm Parameter domain Final
Curvature 0.01 <= t <= 0.1 0.01
DP 0.0001 <= t <= 0.001 0.001
DTW 0.1 <= d <= 0.5 0.5

Table 1: Table with the cross-validation parameter do-
mains for each algorithm and the chosen ones.

To perform cross-validation, we use all the gestures in
our dataset, totaling 1099 gestures of different classes.

We selected 30% of each class for tests, being the same
applied for the different combinations of parameters.

After the data preparation phase, we selected a param-
eter domain for each method described in Table 1. The
domains of the parameters were defined according to
the normalization of the gesture in the interval of −1 to
1 and in some values tested manually to find the mini-
mum and maximum thresholds of each algorithm. The
best threshold criteria was the recognition rate resulting
from each combination. The column Final in the Table
1 shows the selected final parameters for each method.

Figures 6 and 7 show the cross-validation result applied
in the DP and Curvature algorithms for each DTW pa-
rameter shown in Table 1.

4.3 Recognition rate
We have created an algorithm to automate the execution
of the tests. Initially the algorithm loads and divides the
data into test and template according with section 4.1.
Then, the pre-processing is applied for each test itera-
tion before the classification using the DTW algorithm.
We save in a file all the parameters used, including the
time needed to process and classify the gesture.

As we can see in the Table 2, the results show a recog-
nition rate above 90% with 83.75% on average, even
applying a simplification step. The Laplacian with DP
provides an improvement of 1.73% compared to the
recognition with raw data simplification. Compared to
the DTW results of [Iba+14], our approach with sim-
plification showed an improvement of 2% in the recog-
nition rate. We noticed that some classifications of the
G1 gesture always made matching with the G6 gesture,
however the opposite did not occur. The same occur to
the one hand gestures G3 and G7, where the recogni-
tion rate for G3 was 100% while the G7 had an average
of 94.5%.

Table 3 show the results using median gestures as tem-
plate. We get a reduction in the recognition rate for the
gesture G2, where we identified matching with G1 that
are similar with it. Using the DP algorithm we get an
improvement of 47,62% over the raw data. In general
the recognition rate was above 90%.

We also identified during the cross-validation process
that the variation of the parameter for simplification us-
ing curvature did not affect the recognition rate for an
evaluation of ten-order threshold. On the other hand
the parameter for the DP reduced the recognition rate
for larger values, being not robust to variation.

4.4 Performance
Figures 8 and 9 shows the performance results using
simplification and regularization methods. In figure 8,
compared to the classification with the raw data, the
time needed to recognize the gesture was reduced more

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 63

0.3
62
11
16
38

0.3
63
14
73
41

0.5
68
87
92
73

0.4
44
35
53
09

0.5
51
32
94
44

0.4
30
06
73
24

0.5
95
51
00
55

0.3
67
35
07
32

0.3
74
35
07
05

0.5
81
87
86
1

0.4
49
80
41
91

0.5
56
41
26
3

0.4
35
16
04
41

0.6
00
54
66
73

0.1
14
40
76
22

0.1
14
67
14
55

0.1
68
96
71
62

0.1
36
18
31
6

0.1
64
70
16
81

0.1
32
45
40
98

0.1
76
15
76
45

0.0
58
13
11
18

0.0
58
08
25
45

0.0
57
79
03
77

0.0
60
96
16
91

0.0
61
75
77
93

0.0
58
92
96
67

0.0
59
28
88
45

0.1
17
03
61
73

0.1
17
80
81
36

0.1
68
49
30
84

0.1
39
34
62
87

0.1
67
50
77
19

0.1
34
61
29
12

0.1
75
13
80
09

0.0
62
93
18
82

0.0
62
78
93
18

0.0
62
86
48
77

0.0
65
30
83
72

0.0
66
46
00
81

0.0
70
16
18
53

0.0
69
16
19
45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G1 G2 G3 G4 G5 G6 G7

AV
ER
AG

E	
TIM

E	
PR

OC
ES
SIN

G	
IN
	SE

CO
ND

S

GESTURES	RECOGNIZED	WITH	DIFFERENT	METHODS

AVERAGE	 TIME	PROCESSING

Raw Laplacian Curvature DouglasPeucker Laplacian	+	Curvature Laplacian	+	DouglasPeucker

Figure 8: Average time processing for recognize each class of gesture. The process includes both pre-processing
and classification time.

Raw Laplacian Curvature DP Laplacian + Curvature Laplacian + DP
G1 90.55 90.55 90.55 90.55 90.55 90.55
G2 100 100 100 100 100 100
G3 100 100 100 100 100 100
G4 98.93 98.93 98.93 98.93 98.93 98.93
G5 100 100 100 100 100 100
G6 100 100 100 100 100 100
G7 94.55 91.81 94.54 95.54 93.63 97.27

Table 2: Recognition rate using different combinations of algorithms for simplification and smoothing for each
gesture class.

than a half using a simplification step. Also, figure 9
shows that the average time processing to recognize
with median gestures as templates was lower then 2
milliseconds. The Curvature was better then DP for me-
dian gestures.

The gestures G3, G5 and G7 had a longer processing
time because they are more complex, as can be seen in
figure 5. The difference between the raw and Lapla-
cian gestures was very subtle, with a slight increase in
the time of recognition with the Laplacian, since it only
smooths without simplifying the gesture.

4.5 Discussions
As shown in this section, the recognition rate does not
changed significantly when we apply a step to simplify
the gestures. However, the performance was reduced
more then a half when we apply the simplification. Fur-
thermore, the median gestures reduced the average time

processing to 2 milliseconds. With median gestures
we allow recognize without compare all samples of the
dataset.

The DP algorithm shown better results in performance,
but lost for curvature in the recognition rate. We note
that the curvature-based method is more robust in sim-
plification in the sense of maintaining the key points
that describe the shape of the gesture. This explains
why the curvature algorithm obtained better recognition
rate results than DP and because DP processing time
was better. The DP tends to remove more points in the
simplification.

As we conclude, the filter is interesting because can im-
prove the performance without affect the recognition
using specifically the DTW.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 64

3.9
42
45
60
44

3.9
42
58
73
02

3.0
25
86
36
36

4.9
15
66
66
67

6.1
59
98
96
91

4.6
95
37
41
5

3.2
41
72
78
484.0

15
96
15
38

4.0
34
49
20
63

3.2
26
74
54
55

5.0
52
77
03
7

6.2
62
84
02
06

4.8
17
75
51
02

3.4
14
39
87
34

1.1
68
31
31
87

1.1
75
20
63
49

1.0
60
83
63
64

1.4
19
73
33
33

1.7
16
89
17
53

1.3
99
30
61
22

1.1
15
30
37
971.7

60
72
52
75

2.0
31
92
06
35

1.8
29
38
18
18

2.1
45
25
92
59

2.5
11
58
76
29

1.9
41
75
51
02

1.9
50
01
89
87

1.2
56
78
57
14

1.2
51
22
22
22

1.1
56
91
36
36

1.4
98
10
37
04

1.8
63
96
90
72

1.4
98
96
59
86

1.2
31
91
77
22

1.7
28
23
07
69

1.7
76
22
22
22

1.6
98
35
90
91

2.1
13
91
11
11

2.4
30
49
48
45

1.9
16
42
85
71

1.8
50
24
68
35

0

1

2

3

4

5

6

7

G1 G2 G3 G4 G5 G6 G7

AV
ER
AG

E	T
IM

E	P
RO

CE
SS
IN
G	
IN
	M

ILI
SE
CO

ND
S

GESTURES	RECOGNIZED	WITH	DIFFERENT	METHODS

AVERAGE	 TIME	PROCESSING	 FOR	MEDIAN	GESTURES

Raw Laplacian Curvature DouglasPeucker Laplacian	+	Curvature Laplacian	+	DouglasPeucker

Figure 9: Average time processing for recognize each class using as template the median gesture. The process
includes both pre-processing and classification time.

Raw Laplacian Curvature DP Laplacian + Curvature Laplacian + DP
G1 93.40 93.40 93.40 93.95 93.40 93.40
G2 44.44 44.44 47.61 92.06 52.38 79.36
G3 100 100 100 100 100 100
G4 99.25 99.25 99.25 99.25 99.25 99.25
G5 91.23 92.78 93.29 93.29 93.29 93.29
G6 100 100 100 98.63 100 97.27
G7 100 100 100 100 100 100

Table 3: Recognition rate using as template median gestures and different combinations of algorithms for simpli-
fication and smoothing.

5 CONCLUSION
In this paper, we propose an approach to gesture recog-
nition based on geometric data and simplification of its
representation. We analyzed two simplification meth-
ods based on curvature and DP algorithm. In the first,
we obtained a recognition rate of 97.7% on average,
while for the DP algorithm, we have obtained 98.1%.
Using median gestures, we obtained a recognition rate
above 90% with exception of the gesture G2. Both sim-
plification methods evaluated reduced the recognition
time in more than 2 times, being the DP more efficient
for the first case, while for median gestures the Curva-
ture was better then DP.
Simplification plays an important role in gesture recog-
nition systems that have large robust datasets. The clas-
sification in such systems can not be robust in real-time
without a pre-processing step because we noted in our
results that performance depends of the number of ges-

tures and points. This makes sense, because we must
compare all gestures template to ensure the best match.
One of the more important advantages of the simplifi-
cation is the recognition time reduction.

As future work, we want to create more sophisticated
gesture descriptor and use it with a tree decision to
avoid full comparison of gestures in the dataset. We
also will evaluate the simplification in supervised ap-
proaches with HMM to check if the recognition keeps
robust after the simplification. As future work, we will
also use standard datasets to evaluate our approach. Fi-
nally, we will try to recognize gestures continuously,
without human intervention and without the need for
time intervals between the beginning and end between
the gestures.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 65

6 REFERENCES
[DP73] David H Douglas and Thomas K Peucker.

“Algorithms for the reduction of the number of points
required to represent a digitized line or its carica-
ture”. In: Cartographica: The International Jour-
nal for Geographic Information and Geovisualiza-
tion 10.2 (1973), pp. 112–122.

[Rab89] Lawrence R Rabiner. “A tutorial on hidden
Markov models and selected applications in speech
recognition”. In: Proceedings of the IEEE 77.2
(1989), pp. 257–286.

[Tau95] Gabriel Taubin. “A signal processing ap-
proach to fair surface design”. In: Proceedings of the
22nd annual conference on Computer graphics and
interactive techniques. 1995, pp. 351–358.

[VH99] Mahes Visvalingam and Simon Herbert. “A
computer science perspective on the bendsimplifica-
tion algorithm”. In: Cartography and Geographic In-
formation Science 26.4 (1999), pp. 253–270.

[Mat01] Mark W Matsen. “The standard Gaussian
model for block copolymer melts”. In: Journal of
Physics: Condensed Matter 14.2 (2001), R21.

[Mul+01] K-R Muller et al. “An introduction to
kernel-based learning algorithms”. In: IEEE trans-
actions on neural networks 12.2 (2001), pp. 181–
201.

[RK05] Chotirat Ann Ratanamahatana and Eamonn
Keogh. “Three myths about dynamic time warping
data mining”. In: Proceedings of the 2005 SIAM
International Conference on Data Mining. SIAM.
2005, pp. 506–510.

[MA07] Sushmita Mitra and Tinku Acharya. “Ges-
ture recognition: A survey”. In: IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews) 37.3 (2007), pp. 311–324.

[SC07] Stan Salvador and Philip Chan. “Toward
accurate dynamic time warping in linear time and
space”. In: Intelligent Data Analysis 11.5 (2007),
pp. 561–580.

[CLV12] Leandro Cruz, Djalma Lucio, and Luiz
Velho. “Kinect and rgbd images: Challenges and
applications”. In: Graphics, Patterns and Images
Tutorials (SIBGRAPI-T), 2012 25th SIBGRAPI
Conference on. IEEE. 2012, pp. 36–49.

[Fot+12] Simon Fothergill et al. “Instructing people
for training gestural interactive systems”. In: Pro-
ceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems. ACM. 2012, pp. 1737–
1746.

[HK12] Haitham Sabah Hasan and S. Abdul Kareem.
“Human Computer Interaction for Vision Based
Hand Gesture Recognition: A Survey”. In: 2012
International Conference on Advanced Computer
Science Applications and Technologies (ACSAT)
(Nov. 2012), pp. 55–60.

[Bau+13] Miguel Angel Bautista et al. “Probability-
based dynamic time warping for gesture recognition
on RGB-D data”. In: Advances in Depth Image Anal-
ysis and Applications. Springer, 2013, pp. 126–135.

[Che+13] Lingchen Chen et al. “A survey on hand
gesture recognition”. In: Computer Sciences and Ap-
plications (CSA), 2013 International Conference on.
IEEE. 2013, pp. 313–316.

[Han+13] Jungong Han et al. “Enhanced computer
vision with microsoft kinect sensor: A review”.
In: IEEE transactions on cybernetics 43.5 (2013),
pp. 1318–1334.

[Pal+13] Jose Manuel Palacios et al. “Human-
computer interaction based on hand gestures using
RGB-D sensors.” In: Sensors (Basel, Switzerland)
13.9 (Jan. 2013), pp. 11842–60.

[Sen13] Prime Sense. “NITE Algorithms”. In: Prime-
Sense NITE Algorithms 1.5. Feb. 2013, pp. 1–3.

[Guy+14] Isabelle Guyon et al. “The ChaLearn ges-
ture dataset (CGD 2011)”. In: Machine Vision and
Applications 25.8 (2014), pp. 1929–1951.

[Iba+14] Rodrigo Ibanez et al. “Easy gesture recog-
nition for Kinect”. In: Advances in Engineering Soft-
ware 76 (2014), pp. 171–180.

[Wu+14] Xingyu Wu et al. “View-invariant gesture
recognition using nonparametric shape descriptor”.
In: Pattern Recognition (ICPR), 2014 22nd Interna-
tional Conference on. IEEE. 2014, pp. 544–549.

[Bar+15] Lorenzo Baraldi et al. “Gesture Recogni-
tion using Wearable Vision Sensors to Enhance Visi-
tor’s Museum Experiences”. In: IEEE Sensors Jour-
nal 15.5 (2015), pp. 2705–2714.

[RA15] Siddharth S. Rautaray and Anupam Agrawal.
“Vision based hand gesture recognition for human
computer interaction: a survey”. In: Artificial Intel-
ligence Review 43.1 (2015), pp. 1–54.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 66

Flexible navigation through a multi-dimensional parameter
space using Berkeley DB snapshots

Dimokritos Stamatakis
Brandeis University

415 South St
02453, Waltham, MA

United States
dimos@cs.brandeis.edu

Werner Benger
AHM Software GmbH
Technikerstrasse 21a

A-6020 Innsbruck,
Austria

w.benger@ahm.co.at

Liuba Shrira
Brandeis University

415 South St
02453, Waltham, MA

United States
liuba@cs.brandeis.edu

ABSTRACT
The concept of a visualization pipeline is central to many applications providing scientific visualization. In practi-
cal usage scenarios, when the pipelines fuse multiple datasets and combine various visualization methods they can
easily evolve into complex visualization networks directing data flow. Creating and managing complex visualiza-
tion networks, especially when data itself is time-dependent and requires time-dependent adjustment of multiple
visualization parameters, is a tedious manual task with potential for improvement. Here we discuss the benefits of
using Berkeley Database (BDB) snapshots to make it easier to create and manage visualization networks for time-
dependent data. The idea is to represent visualization network states as BDB snapshots accessed via the widely
used Hierarchical Data Format (HDF5), and exploit the snapshot indexing system to flexibly navigate through the
high-dimensional space of visualization parameters. This enables us to support useful visualization system fea-
tures, such as dynamic interpolation of visualization parameters between time points and flexible adjustments of
camera parameters per time point. The former allows fast continuous navigation of the parameter space to increase
animation frame rate and the latter supports multi-viewpoint renderings when generating Virtual Reality panorama
movies. The paper describes how the snapshot approach and the new features can be conveniently integrated into
modern visualization systems, such as the Visualization Shell (Vish), and presents an evaluation study indicating
that the performance penalty of this convenience compared to maintaining visualization networks in HDF5 files is
negligible.

Keywords
Scientific Visualization, Big Data, HDF5, Database Snapshots, Parameter space exploration

1 INTRODUCTION
Creating high-quality scientific visualizations of large
time-dependent datasets can be time-consuming for the
scientists. In data-flow based visualization systems this
process can involve step by step creation of manually
tuned instructions in the form of visualization pipelines
(networks) that describe the flow of data from sources
to sinks and are the basis elements of more complex
visualization networks [1].

For large observational or computational data sets,
common in todays systems, the list of visualization
instructions can be long and different data points may
need different structures, e.g. direct different number of

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

cameras representing different validation perspectives,
like in Virtual Reality environments.
Current visualization systems do not provide satisfac-
tory support for managing long varying visualization
instruction lists. For example, visualization systems
store lists of instructions in spreadsheets, but the rigid
structure makes it hard to accommodate instructions
with varying number of parts [2]. Instruction lists are
represented by specifying transformations that map
each instruction into its successor instructions [3],
which provides instruction derivation provenance
but makes it hard to flexibly navigate through the
visualization starting from arbitrary data point of
interest.
To better support the large time-dependent datasets,
visualization systems need to provide features that
make instruction management more flexible and easier
to manage. For example, it would be beneficial if
the visualization systems could support visualization
parameter interpolation between different time steps
(similar to dead reckoning in video games or any
non-linear video editing software such as Adobe

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 67

Premiere [4]) to reduce creation effort by avoiding
storing redundant instructions. Furthermore, dynamic
parameter interpolation would also allow to achieve
higher animation rates or provide coarser views as
needed during the visualization. Many current systems
however do not support interpolation.

This paper discusses the benefits of using database
snapshots to improve visualization system support for
time-dependent data. Specifically, we describe how
we extended the Visualization Shell (Vish) [5] using
Retro [6], a snapshot system for the Berkeley Data
Base (BDB) [7] to provide dynamic interpolation and
flexible navigation for lists of visualization networks
for time-dependent data in HDF5 format [8]. Our
system represents lists of network states as a list of
network versions stored as successive BDB snapshots.
This representation can easily accommodate instruc-
tions with varying structure. We can take advantage of
the snapshot indexing system to navigate the network
versions and can support flexible traversals of the
high-dimensional visualization parameter space stored
in snapshots from arbitrary data points. The snapshot
representation also makes it easy to support dynamic
interpolation of parameters between the time points.

Our visualization system uses the portable HDF5 for-
mat to represent both the time-dependent data and the
visualization networks. The time-dependent data is
stored via HDF5 library in a file system well-suited for
the large files. A natural question arises, why not store
visualization networks in HDF5 files as well. To this
effect, we have also experimented with a system that
stores visualization networks directly in HDF5 files, in-
stead of snapshots, implementing the flexible naviga-
tion manually, instead of relying on snapshot index-
ing. Using the snapshot system however was consid-
erably simpler. Moreover, an important benefit of using
database snapshot system is providing a reliable trans-
actional storage for visualization networks that repre-
sent a substantial scientist time investment. By us-
ing the transactional snapshots we benefit from an au-
tomatic recovery of the visualization network struc-
tures after an early or involuntary program termination,
something that would need to be achieved with com-
plex ad-hoc recovery methods in a system that stores
the networks in HDF5 files.

Our system therefore uses two different backend stor-
age systems, HDF5 files for time-dependent data, and
BDB snapshot system for the visualization instructions.
Such approach, combining multiple storage systems
each optimal for intended data use is becoming increas-
ingly common in the new generation of big data sys-
tems due to the realization that no single storage sys-
tem is optimal for the rich set of data comprising to-
days big data systems [9]. Our implementation takes
advantage of the recently introduced HDF5 VOL soft-

ware layer [8] that allows applications to access HDF5
data objects in different storage backends. For our sys-
tem, we have implemented a new VOL that provides
access to BDB snapshots, allowing the Vish system to
seamlessly manipulate data and visualization metadata
through the same HDF5 API.
A visualization system must perform well. We have
conducted a study that evaluates the performance of our
snapshot based Vish system and its new interpolation
and navigation features, using micro benchmarks. We
have also compared our system performance to the de-
sign that stores both data and visualization instructions
in the HDF5 files. The measurement results indicate
that our snapshot based system performs well, and the
performance penalty we pay for the simplicity of imple-
mentation and reliability compared to storing instruc-
tions in HDF5 files is acceptable.
Our main contributions in this paper are the following:

• A simple database snapshot-based approach
for managing visualization metadata for time-
dependent HDF5 datasets

• Design and implementation of the BDB VOL plugin
for HDF5

• Design and implementation of the Interpolation
component in Vish visualization system

• Performance evaluation study of our snapshot-based
approach and the interpolation feature

The rest of the paper is organized as follows. Section 2
describes a concrete scenario that motivated our work.
Section 3 discusses related work, Section 4.1 explains
the software structure of Vish system, the context of
our work, Section 4.2 describes the interpolation fea-
ture, Section 4.3 highlights the salient points of our im-
plementation, Section 5 presents the performance study
and Section 6 our conclusions.

2 MOTIVATION
Solving Einstein’s equations on supercomputers [10] is
a grand challenge involving many institutions and gen-
erations of scientists. These efforts have culminated
by the recently announced detection of gravitational
waves. Numerical simulations of black hole collisions
as the strongest sources are essential for the proper anal-
ysis of the detected signals. A milestone in numeri-
cal relativity was the first fully three-dimensional sim-
ulation of a grazing collision of two black holes [11].
Fig. 1 is showing four time steps from this simula-
tion. Shown is the real part of the complex Newmann-
Penrose pseudoscalar Ψ4, an indicator of the outgoing
gravitational radiation field, as elaborated in more de-
tail in [12]. Visualizations like those are not only es-
thetically pleasing [13], but also important for scien-
tific development to assess the quality and features of

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 68

(a) T=10 (b) T=11

(c) T=16 (d) T=20
Figure 1: Burst of gravitational waves emerging from
colliding black holes

big data. The first confirmed detection of gravitational
waves [14], known as GW1509014, was simulated at
the Max-Planck Institute for Gravitational Physics ac-
cording to the observed collision parameters. This sim-
ulation produced a dataset of 400GB of binary data of
much higher detail and precision than the 1999 dataset,
particularly also covering a significantly longer time
range lasting several orbits. Due to the nature of these
astrophysically violent events the dynamic range of the
data is huge, in space and time. While the 1999 dataset
could be covered with parameters of constant range,
trying the same approach on the 2016 dataset does not
yield pleasing results, as shown in Fig. 2a: Initially the
radiation is so weak that it is hardly visible at all, but
its strength increases rapidly to emerge like a “flash”
during a very small amount of time, leaving only resid-
ual radiation of a “wobbling” rotating black hole. This
residual radiation fades away quickly at low intensity to
ultimately form a non-radiating Kerr black hole.
The situation is similar to high dynamic range render-
ing: The output medium (images with 8 bits of inten-
sity for each color) just cannot cover the entire range
of the input data (orders of magnitude). In this case
of evolving data a more suitable range can be found at
each time step. Determining this range computationally
is difficult though because of the wave-like nature of
this astrophysical process leading to visually disturbing
oscillations. This leaves manual adjustment of the data
mapping range for color-coding as the only option, sim-
ilar to controlling animations according to a movie di-
rector’s intention via any non-linear video editing soft-
ware. With the ability to fine-tune any parameter of a
visualization network over time, we can thus extract the
maximum structural information out of time-dependent
data at the cost of less quantitative assessment abilities.
Another approach to cover high dynamic range is a
global transformation such as computing the logarithm,
as demonstrated in Fig. 2b. This approach worked in

(a) (b)
Figure 2: (a) Evolution of ℜΨ4, positive components in
red, negative in cyan. (b) Evolution of log |ℜΨ4|, cov-
ering a wider range at the cost of signature and detail.

this specific situation to provide an overview of the
dataset without manual interaction at the loss of signa-
ture information – we can only see the absolute value of
ℜΨ4, but not if its positive or negative, which roughly
corresponds to stretching or compression of spacetime
at the very location.

So while specific workarounds were able to yield visu-
ally pleasing results for the particular application sce-
nario, a more systematic approach for arbitrary fine-
tuning similar to professional video editing systems is
desirable.

3 RELATED WORK
Visualization data management systems support ver-
sions of visualization graphs for different reasons and
correspondingly use different approaches. The use of
a visualization pipeline is pretty much a core stan-
dard among software frameworks for scientific visu-
alization. Paraview[15] and Visit[16] are based on
the Visualization Toolkit VTK[17]; OpenDX[18] and

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 69

Amira/Avizo[19] are other widely used frameworks.
Vish system [5] is an independent visualization system
with a much smaller user community, but comes with
the most systematic approach to deal with visualization
concepts while being academically open-source and a
comparable small codebase; it is therefore the frame-
work of our choice for our work, as described in 4.1.

VisTrails [20] is more of a management system to vi-
sualization systems than a visualizion framework itself.
It uses executable XML specifications to generate se-
quences of visualization network graphs (Vistrail spec-
ifications) that can vary in structure and provides ef-
ficient runtime that allows efficient incremental visual-
izations along the time line. This method supports regu-
lar structure and parameter variations between networks
at different time points but does not support flexible
time and data dependent variations supported by our ap-
proach. VisTrails stores graphs using SpreadSheets so
when the schema of the graph evolves, the history needs
to be reformatted. Our snapshot approach supports ar-
bitrary evolving network schemes without reformatting.
The VisTrails data management system [3] represents
specifications corresponding to successive data points
by storing operations that transform one network into
another to support derivation provenance. The repre-
sentation requires to apply the full operation history
to visualize a given data point making it inconvenient
to traverse the version graph from arbitrary points. In
contrast, our snapshot approach allows to navigate vi-
sualizations from arbitrary time points and can sup-
port provenance programmatically by storing transfor-
mations as additional attributes in snapshots.

ModelDB [21] manages a branching version history of
machine learning models and visualizations aimed at
exploration of alternative parameter configurations and
like VisTrails specifies transitions using operations to
support provenance. Our snapshot based approach, spe-
cialized for time-dependent data, currently only sup-
ports linear version histories.

Polystore [9] is a new generation scientific data man-
agement system that uses multiple storage backends to
optimally accommodate data of different types, and im-
plements an integrating layer to provide a unifying ac-
cess to the different data parts. We adopt a similar ap-
proach by storing time-dependent data and visualiza-
tion metadata in different storage backends, and take
advantage of the HDF5 VOL infrastructure to add the
snapshot system backend by implementing a new VOL.

4 SYSTEM DESIGN
This section describes our approach to managing vi-
sualization instructions for time-dependent data, and
highlights the salient points of our implementation. We
start by summarizing our requirements motivated by the
use case of gravitational wave data visualization. To

support visualization of time-dependent data a system
needs to support:

• incremental creation of time-dependent visualiza-
tion instructions, allowing scientists to conveniently
adjust parameters for different time points, and ex-
ploit parameter interpolation to save effort when pa-
rameter changes can be computed.

• varying visualization instruction structure (e.g. extra
cameras, or light sources) to offer customized views
for different time points.

• adjustable frame rate (higher to lower) during visu-
alizations using dynamic parameter interpolation.

• flexible navigation through the visualization param-
eter space from arbitrary time points.

• reliable persistent storage for instruction lists pro-
tecting scientist time investment in the presence of
system crashes.

We describe below how our system design satisfies
these requirements. We start by briefly explaining the
features of Vish visualization environment, the context
of our work. We then explain how we use a snap-
shot system to create and navigate instruction lists and
present the design of the parameter interpolation fea-
ture. We then describe how we integrated the snapshot
system backend into Vish.
A general view of the software layers in our system can
be seen in Figure 3, where we show the Vish Visual-
ization system (described in 4.1) and how its several
components use the HDF5 library. First, we have the
existing visualization module which is responsible for
visualizing datasets aimed by networks. Then, we de-
veloped the parameter interpolation module, described
in Sec. 4.2, and finally the dataset and network access-
ing modules allowing access to HDF5 data in native
HDF5 format and BDB VOL format, respectively.

Vish Visualization System

parameter
interpolation

module

dataset
accessing

module

HDF5

BDB VOL
plugin

visualization
module

native HDF5
plugin

network
accessing

module

Figure 3: The software layering of our system

4.1 Vish
The Vish Visualization Shell [5] is a software environ-
ment specifically designed to “make everything a plu-
gin”. It manages all its plugins functionally through

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 70

time 1 10…

Network@t=1

1 S1=snapshot_now S2=snapshot_now

update parameters2

3

Network@t=10

Da
ta

flo
w

Dataset
@time t=1 … @time t=10

(a) Create a sequence of visualization pipelines for time-
dependent data only for the desired time steps

get_interpolated(t=2-9)
asof_snapshot

(get_snap_id(t=10))

Network@t=1

time 1 10…

Network@t=10Network@t=3

Da
ta

flo
w

asof_snapshot
(get_snap_id(t=1))

Network@t=2

Dataset
@time t=1 … @time t=10

(b) Display time-dependent data using the sequence

Figure 4: The process of dynamic parameter interpolation

a small kernel of abstract object interfaces which are
used to implement graphics, user interface, I/O, or ob-
ject relationships itself. This approach allows for mod-
ular well-encapsulated components that can be imple-
mented independently of each other. The concept of a
visualization pipeline and the resulting graphs for prac-
tical applications are built into this minimalistic object
management framework. It can then be managed via
a runtime-loaded graphical user interface, for instance
via visual programming, or to interface any language
that supports scripting.

As a reference implementation, Vish comes with its
own, minimalistic scripting language that allows to
store and load a visualization’s network state, while
remaining human-readable and human-editable. It is
however not optimized for performance since parsing
text inherently comes with a performance overhead.
Using the Vish plugin architecture, it is straightforward
to implement an alternative way of loading and storing
a visualization network state using another format such
as HDF5, which then avoids a parsing overhead due to
its self-descriptive binary nature. This is the format we
use in our work for storing visualization networks.

Even more, a visualization network’s state can be man-
aged while loaded by some Vish object itself. A graphi-
cal user interface is nothing else than a plugin providing
a Vish object with such management functionality. Via
the Vish kernel API, objects, their parameters and con-
nections are exposed in an abstract way to allow generic
interaction. We can use this very functionality to also
produce new network states from existing ones, for in-
stance via interpolation as explained below.

Time is supported in various Vish modules as a contin-
uous floating-point quantity, leaving the notion of "time
steps" to be implemented locally to each data set. This
way also non-equidistant time steps, such as produced
by the CFL condition in numerical simulations [22],

are taken care of. Consequently, indexing data given
at discrete time steps by a continuous time value re-
quires data interpolation. When producing an anima-
tion with a given frame rate, the continuous time is sub-
sampled by discrete steps again, however, independent
of the time steps of the original data. We can hereby
smoothly fuse data from different sources with different
time discretizations. The Vish user interface contains
plugins to sample the continuous time parameter space
and produce discrete time steps for animation. We use
this feature to navigate time points for network states
and data.

4.2 Parameter Interpolation
Visualization of time-dependent datasets might require
adjusting parameters other than time as visualization
proceeds along successive time points in the data set.
In this case, we want to keep track of different states
of the network graph corresponding to different time
points. In order to easily manage these states, we de-
cided to use a Database snapshot system that provides
a simple interface for creating and accessing data ver-
sions as database snapshots. We store the visualization
networks in BDB [7], a key-value database, and man-
age network states using Retro [6], a snapshot system
for BDB. Retro supports an easy implementation of the
simple network state management workflow where a
scientist visualizes the current data point using the cur-
rent network state, adjusts the network state parame-
ters as needed, stores the new network state by taking
a snapshot of the adjusted state, and proceeds to the
next time point. However, creating a separate network
state manually for each key frame is time consuming
and maybe unnecessary if the parameter changes can
be interpolated automatically. Thus, we decided to add
an option for dynamic parameter interpolation, which
will calculate the missing intermediate parameter val-
ues and remove the burden from the scientists. This

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 71

can be easily implemented with our snapshot approach,
since Retro allows programs to access snapshots and
compute with data stored in snapshots the same way as
with data stored in the database [6]. Thus our system
can create only needed states and during visualization
load the two corresponding consecutive snapshots and
then calculate the desired network parameters dynami-
cally for the individual intermediate time points.

Figure 4 illustrates the interpolation workflow. In Fig-
ure 4a we show the process of creating snapshots for a
time-dependent dataset, representing an animation. We
see the states of the visualization network graph at each
time point, representing directions for how to visualize
at that point. Each node in the graph represents a visual-
ization object, which disseminates data from the dataset
(source) to the sink. Within each object we see the ob-
ject’s parameters, with different color representing dif-
ferent parameter value. Arrows point to the direction of
the data flow. Initially, we have the visualization net-
work at time point t = 1 which points to the dataset at
time point t = 1, and then we take a snapshot so that to
store the network state at that point using the snapshot
system API operation snapshot_now. This opera-
tion takes a snapshot of the current state and returns a
snapshot identifier (S1 in this case). We enhanced the
implementation to store a persistent mapping from time
point to snapshot identifier (get_snap_id(t=x)),
so that to correlate each snapshot with a time step.
Then, moving at time point t = 10, we update some
parameters of the very first node in the graph (differ-
ent color boxes) and when visualization looks good, we
call the snapshot_now again for time t = 10, which
returns snapshot identifier S2.

Simply displaying the network as of t = 1 for time
points t = 2 to t = 9 might cause the visualization
to change rapidly when reaching time point t = 10
which is undesirable for animations. Thus, we will use
interpolation to smooth it. Figure 4b shows the process
of loading the states of the visualization network graph
from snapshots and displaying, resulting in playing
the animation. For each time point, the visualization
system has to check the time-snapshot mapping
whether there is a corresponding snapshot and if not,
interpolate parameters after loading two consecutive
snapshots. At time t = 1, the system calls the Retro op-
eration asof_snapshot(get_snap_id(t=1)),
where get_snap_id(t=1) returns S1 and
asof_snapshot(S1) loads the snapshot with iden-
tifier S1. Thus, we load the snapshot corresponding to
time point t = 1 providing the visualization network as
it was at the time we took the snapshot.

Since time points t = 2 to t = 9 do not have correspond-
ing snapshots, they are remapped to time t = 10 allow-
ing us to load snapshot S2. Once we have parameter
values for t = 1 and t = 10, we can calculate values for

t = 2− 9 using linear interpolation such that for each
parameter A given at discrete time steps t0 and t1 we
can compute its value as a smooth function

A(t) = A(t0)(1− τ)+A(t1)τ , (1)

where τ is the relative time, i.e. τ = (t − t0)/(t1− t0)
with t0 ≤ t ≤ t1. Higher order interpolations such as
used on cubic splines [23] are possible as well, but re-
quire more snapshots to be accessed and evaluated, and
a more complex time-to-snapshot mapping. We do the
same for all intermediate time steps that we don’t have
a corresponding snapshot.

Of course, interpolation can also be used at creation
time to create one snapshot per time point. This ap-
proach simplifies time to snapshot indexing but poten-
tially stores a much larger number of snapshots and also
does not allow flexible coarser or finer grained interpo-
lations. The only case it could be beneficial is if the in-
terpolation is effortsome, so storing snapshots for later
playback would be faster. Thus, we believe the dynamic
interpolation approach is preferable. Our performance
evaluation considers both approaches in Section 5.

4.3 Berkeley DB VOL plugin
The current version of the Vish visualization system
supports HDF5 format for both computational or ob-
servational data objects and visualization network ob-
jects, storing both data and networks in the HDF5 file
system, and accessing them via the HDF5 library. This
section describes how we extended the HDF5 library in
the visualization system to support managing versioned
visualization network objects in a snapshot system.

Since the native HDF5 file system does not support ver-
sioning, we had to provide versioning ourselves. We
had two goals for our design. We wanted to provide
versioning in a light way manner without modifications
in the HDF5 codebase, and we wanted to allow the vi-
sualization system to continue use the HDF5 API for
data and networks. Our design builds on a recent fea-
ture in HDF5 called Virtual Object Layer (VOL) plu-
gins that allows the implementation of custom storage
back-ends. A VOL plugin is a seamlessly connected
component of the HDF5 library that is responsible for
storing and accessing HDF5 data containers in a partic-
ular storage back-end.

We support versioning of visualization networks using
a VOL plugin that stores network states represented
as HDF5 objects in a backend that supports version-
ing. Our versioning back-end storage is Retro system
that provides snapshots for Berkeley DB [6]. Retro al-
lows easy versioned network state creation, simple ver-
sion indexing and supports easy computation with ver-
sioned states e.g. to support dynamic interpolation fea-
ture explained earlier. Importantly, Retro provides reli-
able crash consistent storage for versions thus satisfying

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 72

Current-state queries are unchanged by Retro
 results ¬	¬	 { gid = H5Gopen2(fid, node_name, …);
 attr = H5Aopen(gid, attr_name, …);
 H5Aread(attr, mid, buf);
 … }

Applications may declare snapshots at any time and
get back a snapshot identifier
 S ¬	¬	 snapshot_now

As of queries are delimited with the snapshot identifier
 results ¬	¬	 asof_snapshot S { gid = H5Gopen2(fid, node_name, …);
 attr = H5Aopen(gid, attr_name, …);
 H5Aread(attr, mid, buf);
 … }

Figure 5: Example of using the Retro API to retrieve
attributes from a visualization network

our requirement for consistent recovery of complex net-
work graphs stored in memory during a crash. We can
obtain versioning by simply implementing a new VOL
plugin. Moreover, since networks are stored in Retro in
HDF5 format, the visualization system can continue to
manipulate them using the HDF5 API. This approach
achieves both our design goals.

Figure 5 shows an example of using the Retro API
to retrieve an attribute of a node from a visualization
network stored as HDF5 objects. The query opens
a group with name node_name from the HDF5 file
with identifier fid. Then, it opens an attribute with
name attr_name and reads the attribute value in
the specified buffer buf. We create snapshots by us-
ing the snapshot_now operation which returns a
snapshots identifier. In order to perform a past state
query in state S, we simply wrap the same query with
asof_snapshot S.

We developed a new HDF5 BDB VOL plugin to inter-
vene between regular HDF5 API calls and Retro. The
VOL plugin developer is responsible for mapping the
HDF5 data model to the schema of the backing store. In
our case, BDB schema is simple and consists of tables
and key/value pairs within the tables. Thus, we can or-
ganize HDF5 objects as separate BDB tables and store
their attributes as key/value pairs. Connections between
HDF5 objects are represented as pointers between BDB
tables.

We represent visualization networks as HDF5 objects,
as shown in Figure 6a. In this example network, nodes
source and sink are stored as subgroups under /vs.v5
group. HDF5 soft links are used for node connections
and HDF5 attributes to store node parameters. The
mapping from HDF5 objects to BDB tables in this ex-
ample is illustrated in Figure 6b.

We are using Berkeley DB transactions for all accesses
to networks, so that to support recoverability and
crash consistency. We extended therefore HDF5 user
API with operations to begin and end transactions,
and with Retro API operations snapshot_now and
asof_snapshot. Since Retro assigns a number as

/vs.v5

HDF5 group

/vs.v5/
source

/vs.v5/
sink

HDF5 group HDF5 group

p1=>p1
HDF5

soft link

HDF5 attribute p2: v2

HDF5 representation

HDF5 file
‘vs.v5’

(a) Network representation in HDF5

__group_vs.v5/vs.v5/source

__group_vs.v5/vs.v5

__child_group_vs.v5/vs.v5/source

__child_group_vs.v5/vs.v5/sink

__link_p1=>p1 __group_vs.v
5/vs.v5/obj2

__group_vs.v5/vs.v5/sink

__attr_group_p2 v2

BDB representation

BDB Database
Environment

BDB table

BDB table BDB table

(b) Network representation in BDB

Figure 6: Visualization network representations

an identifier for snapshots, we preserve the mapping
from time steps to snapshot identifiers using a separate
mapping table stored in BDB. BDB and by extension
Retro is optimized for relatively small data accesses
and would not be efficient backend for large scientific
time-dependent data. Our design therefore exploits the
flexibility of VOL and continues to store data objects
in the native HDF5 file system.

5 PERFORMANCE EVALUATION
We have implemented the versioned metadata module
in Vish and conducted an evaluation study. The goal of
the study is to evaluate the cost of managing versioned
visualization networks using BDB snapshots, and com-
pare it to a simple alternative design where network ver-
sions are stored in HDF5 files. In all cases the time-
dependent datasets are stored in HDF5 files. Our ex-
periments use Vish to visualize the time-dependent data
set, measuring the performance of creating and loading
network versions to visualize successive data points.

Our experimental setup consists of a machine with a 6-
core i7 at 4.6GHz, equipped with 32GB memory, 6GB

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 73

Figure 7: Displaying a time-dependent dataset on Vish, by loading snapshots and performing dynamic interpolation

GPU Nvidia GTX 1060 and an SSD drive. It is running
Ubuntu Linux 16.10 with the Retro Berkeley DB C API
5.3, HDF5 1.9.3 with the VOL support, and the devel-
oper’s edition of the Vish Visualization Shell. We used
several datasets for our experimental setup ranging to
several GB in size and used up to 81 time steps.

Our versioned metadata module using Retro/BDB im-
plements the design we described in earlier sections.
When the user performs modifications to the network
through the GUI, the modifications are forwarded to the
Retro/BDB VOL that performs them with a transaction
that writes them into the BDB log. Later, when user
creates a version (a snapshot) or terminates visualiza-
tion, the transaction commits, flushing the log contain-
ing these modifications at commit time, and eventually
writing the modifications lazily at low cost to the Retro
store. Thus, all committed modifications are preserved
after a system crash.

For the versioned metadata module using native HDF5
files we used a simple-minded design (called Native
HDF5) that stores consecutive versions of the network
as different HDF5 groups. HDF5 groups are analogous
to directories in a typical file system. They may con-
tain other groups (subgroups), attributes, datasets, etc.
When creating a version, the Native system creates a
new HDF5 group, writes it in its entirety to the new
group, and associates that group with a unique identifier
that allows to access the version later using a simple in-
dex to support interpolation. Since both the new group
and the index are written to the file system at version
creation time this approach does not provide crash con-
sistency. Obviously, the simple-minded approach stores
redundant data if only few parameters change between
versions. A diff-based encoding and additional index-

ing would provide a more compact solution but would
require more substantial development effort, including
a more complex recovery procedure after crash to avoid
version and index corruption.

Our experiment emulates a user workflow similar to
Figure 4, where a user creates a versioned visualization
for a time-dependent data set, starting with an initial
network specification for the first data point. When vi-
sualizing at a certain time step the user adjusts the visu-
alization parameters, stores them by creating a version
(a snapshot, or a new group) and repeats these steps for
all data points. At any point, the user can visualize the
data for any time step, or play all time steps as an ani-
mation. We used a 2.8GB time-dependent data set from
an astrophysical simulation [24] using 81 time steps.
Figure 7 shows a single visualization time step of that
simulation obtained in our experiment by loading snap-
shots and performing dynamic interpolation.

Our experiment measures the basic cost of writing
the consecutively created versions (not including
think time) and of subsequently loading the versions
and visualizing consecutive data points, using either
the simple versioning module with HDF5 (native
HDF5), or the Retro/BDB VOL snapshot system. Our
experiments also evaluate the dynamic interpolation
feature that allows to only create network versions
for selected data points omitting intermittent points
and interpolating them dynamically at display time as
seen in Section 4.2. Additionally, we also evaluate
an alternative approach with one-to-one snapshot to
time step mapping, which interpolates missing values
between manually adjusted versions at creation time,
rather than at display. This creates a network version
for each data time point avoiding the need to interpolate

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 74

at run time. As we explained, the dynamic interpolation
is preferred, but the one-to-one mapping approach can
use simpler indexing.

In Figure 8 we see the cost of creating a snapshot by
using the native HDF5 approach and the Retro/BDB
VOL, when doing one-to-one mapping and dynamic.
Initially we observe that the native HDF5 approach is
costlier in snapshot creation, as expected. This is be-
cause it writes the entire network in HDF5, regardless
of which parameters are updated. It takes 35ms to cre-
ate a snapshot when doing one-to-one mapping, and
44ms when doing dynamic interpolation. The one-to-
one mapping is slightly faster than the dynamic, since
the creations are performed in a loop, without involving
a user interface. We see better performance for Retro
because this design only stores the updated parameters,
rather than the entire network and keeps track of dif-
ferent versions natively. Note Retro costs reflect the
writing of the transactional log, which includes writing
to disk all updates to the committed version at commit.
As we can see from Figure 8, Retro only takes about
0.5ms to create a snapshot in one-to-one mapping and
less than 4ms in dynamic, including both the creation of
a new snapshot and the transaction commit. It is slower
in dynamic, per version, since we perform more mod-
ifications between two snapshots. In general, even the
44ms to create a version with native HDF5 are not per-
ceptible for a user in an interactive setting. However,
the one-to-one mapping that creates many versions, can
cause noticeable latencies of up to a second with our
data set.

Figure 9 shows the overhead of loading from a ver-
sion when using the native HDF5 or Retro with one-
to-one mapping and dynamic. Loading from a snap-
shot involves opening the snapshot for a specified time
step and reading only the interpolated parameters. This
avoids accessing the entire network but also incurs the
overhead of snapshot indexing in order to find the spec-
ified snapshot. In this case, the native HDF5 is faster
because while it writes the entire version it only has
to open the specified version (from the corresponding
HDF5 group within the same HDF5 file) and get the
required parameters.

When loading a snapshot created with one-to-one map-
ping, we saw a response time of 565µs on average,
compared to Retro which took 663µs. Next, when load-
ing snapshots in dynamic, both methods are faster be-
cause there are less snapshots to manage. Native HDF5
takes 271µs and Retro 364µs. Obviously, version load-
ing time is typically more important than creation since
in the common case we expect versions to be created
manually but displayed automatically. Nevertheless,
we do not expect automatic visualization to be limited
by the metadata accessing time, since the typical ex-
pected bottleneck is reading the large time-dependent

 0

 10

 20

 30

 40

 50

 60

one-to-one dynamic

Ti
m

e
 (

m
s)

Snapshot Creation Time

HDF5
Retro/BDB

Figure 8: Time to create a snapshot of the current visu-
alization network under different configurations.

 0

 0.2

 0.4

 0.6

 0.8

 1

one-to-one dynamic

Ti
m

e
 (

m
s)

Snapshot Loading Time

HDF5
Retro/BDB

Figure 9: Time to load from snapshot and update the
visualization network under different configurations.

datasets. In both cases of native HDF5 and Retro, we
have around 0.5ms response time to bring metadata for
displaying a frame. This is negligible compared to the
time to load the big data, and does not limit the frame
rate.

6 CONCLUSION
We have presented a new, database snapshot system
based method for managing visualization instructions
for large time-dependent scientific datasets that are not
well supported in current visualization systems. We ex-
plained how a simple programming model provided by
the snapshot system makes it easy to manage versioned
visualization metadata and to provide new labor-saving
visualization system features such as version interpola-
tion that reduce the manual effort needed to develop vi-
sualizations. We have described how we implemented
our approach in the Vish visualization system and pre-
sented experimental results using a small data set from
an astrophysical simulation indicating satisfactory per-
formance while providing better reliability guarantees.
Future work is using our approach for developing visu-
alization for the large gravitational waves dataset.

Acknowledgment
This work is partially supported by National Science
Foundation awards CNS-1318798, IIS-1251037, and
IIS-1251095. We thankfully acknowledge Nikos Tsik-
oudis for his support with the Retro BDB.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 75

7 REFERENCES

[1] R. B. Haber et al. Visualization Idioms: A Con-
ceptual Model for Scientific Visualization Sys-
tems. In Visualization in Scientific Computing.
1990.

[2] Jankun-Kelly et al. A Spreadsheet Interface for
Visualization Exploration. In Proceedings of the
Conference on Visualization ’00, VIS ’00, pages
69–76, Los Alamitos, CA, USA, 2000. IEEE
Computer Society Press.

[3] Steven P. Callahan et al. VisTrails: Visualization
Meets Data Management. In Proceedings of the
2006 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’06, pages
745–747, New York, NY, USA, 2006. ACM.
doi:10.1145/1142473.1142574.

[4] Adobe Premiere. URL: http://www.adobe.
com/products/premiere.html.

[5] Werner Benger et al. The Concepts of VISH. In
4th High-End Visualization Workshop, Obergurgl,
Tyrol, Austria, June 18-21, 2007, pages 26–39.
Berlin, Lehmanns Media-LOB.de, 2007.

[6] Ross Shaull et al. A Modular and Efficient Past
State System for Berkeley DB. In Garth Gibson
and Nickolai Zeldovich, editors, 2014 USENIX
Annual Technical Conference, USENIX ATC ’14,
Philadelphia, PA, USA, June 19-20, 2014., pages
157–168. USENIX Association, 2014.

[7] Michael A. Olson et al. Berkeley DB. In Proceed-
ings of the Annual Conference on USENIX Annual
Technical Conference, ATEC ’99, pages 43–43,
Berkeley, CA, USA, 1999. USENIX Association.

[8] HDF5. Hierarchical data format version 5.
http://www.hdfgroup.org/, 2009. The
HDF Group.

[9] Jennie Duggan et al. The BigDAWG Polystore
System. SIGMOD Rec., 44(2):11–16, August
2015. doi:10.1145/2814710.2814713.

[10] Gabrielle Allen et al. Solving Einstein’s Equa-
tion on Supercomputers. IEEE Computer,
32(12):52–59, December 1999. doi:10.1109/
2.809251.

[11] Miguel Alcubierre et al. The 3D Grazing Col-
lision of Two Black Holes. Phys.Rev.Lett., 87,
2001.

[12] Werner Benger et al. Using Geometric Alge-
bra for Navigation in Riemannian and Hard Disc
Space. In Vaclav Skala and Dietmar Hildebrand,
editors, GraVisMa 2009 - Computer Graphics,
Vision and Mathematics for Scientific Comput-
ing. UNION Agency, Na Mazinach 9, CZ 322 00
Plzen, Czech Republic, 2010.

[13] Werner Benger et al. Visions of numerical relativ-

ity. In A.Gyr et. al., editor, Proceedings of the 3d
International Conference on the Interaction of Art
and Fluid Mechanics (SCART2000), pages 239–
246, ETH Zürich Switzerland, Feb 28 – Mar 3
2000. Kluwer Academic Publishers.

[14] Abbott B. P. et al. Observation of gravitational
waves from a binary black hole merger. Phys.
Rev. Lett., 116:061102, Feb 2016. doi:10.
1103/PhysRevLett.116.061102.

[15] Kitware, Inc. Paraview - open-source scien-
tific visualization, 2010. URL: http://www.
paraview.org/.

[16] DOE/ASCI. Visit, 2002-2010. URL: https://
wci.llnl.gov/codes/visit/.

[17] Kitware. Visualization toolkit, 2005. URL:
http://www.kitware.org/.

[18] Visualization and Inc. Imagery Solutions. Ibm
open visualization data explorer, 2000-2006.
URL: http://www.opendx.org/.

[19] D. Stalling, M. Westerhoff, and H.-C. Hege.
Amira - an object oriented system for vi-
sual data analysis. In Christopher R. John-
son and Charles D. Hansen, editors, Visualiza-
tion Handbook. Academic Press, 2005. URL:
http://www.amiravis.com/.

[20] L. Bavoil et al. VisTrails: enabling interactive
multiple-view visualizations. In VIS 05. IEEE
Visualization, 2005., pages 135–142, Oct 2005.
doi:10.1109/VISUAL.2005.1532788.

[21] Manasi Vartak et al. ModelDB: A System
for Machine Learning Model Management. In
Proceedings of the Workshop on Human-In-
the-Loop Data Analytics, HILDA ’16, pages
14:1–14:3, New York, NY, USA, 2016. ACM.
doi:10.1145/2939502.2939516.

[22] Stefano Nativi et al. Differences among the data
models used by the geographic information sys-
tems and atmospheric science communities. In
In: Proceedings American Meteorological Soci-
ety - 20th Interactive Image Processing Systems
Conference. (2004.

[23] Edwin Catmull et al. A Class of Local Interpo-
lating Splines. In ROBERT E. BARNHILL and
RICHARD F. RIESENFELD, editors, Computer
Aided Geometric Design, pages 317 – 326. Aca-
demic Press, 1974. doi:http://dx.doi.
org/10.1016/B978-0-12-079050-0.
50020-5.

[24] Dominik Steinhauser et al. Simulations of ram-
pressure stripping in galaxy-cluster interactions.
591:A51, 2016. doi:10.1051/0004-6361/
201527705.

ISSN 1213-6972 Journal of WSCG Vol.25, 2017
No.1

http://www.WSCG.eu 76

http://dx.doi.org/10.1145/1142473.1142574
http://www.adobe.com/products/premiere.html
http://www.adobe.com/products/premiere.html
http://www.hdfgroup.org/
http://dx.doi.org/10.1145/2814710.2814713
http://dx.doi.org/10.1109/2.809251
http://dx.doi.org/10.1109/2.809251
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://www.paraview.org/
http://www.paraview.org/
https://wci.llnl.gov/codes/visit/
https://wci.llnl.gov/codes/visit/
http://www.kitware.org/
http://www.opendx.org/
http://www.amiravis.com/
http://dx.doi.org/10.1109/VISUAL.2005.1532788
http://dx.doi.org/10.1145/2939502.2939516
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-079050-0.50020-5
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-079050-0.50020-5
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-079050-0.50020-5
http://dx.doi.org/10.1051/0004-6361/201527705
http://dx.doi.org/10.1051/0004-6361/201527705

	G53-full.pdf
	INTRODUCTION
	RECENT SOLUTION
	PROPOSED SOLUTION
	Modeling of Breathing Motion
	Transfer of Existing Respiratory Models to new, static Patient Data

	EXPERIMENTS AND RESULTS
	DISCUSSION, OUTLOOK AND CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

	H07-full.pdf
	H43-full.pdf
	H67-full.pdf
	I11-full.pdf
	I29-full.pdf
	I43-full.pdf
	J41-full.pdf
	Introduction
	Motivation
	Related Work
	System Design
	Vish
	Parameter Interpolation
	Berkeley DB VOL plugin

	Performance Evaluation
	Conclusion
	REFERENCES

	J61-full.pdf
	J79-full.pdf
	Introduction
	Background
	Related Work
	Proposed Schemes
	Optimization Approach
	Evaluation
	Conclusions

	K41-full.pdf
	Introduction
	Background
	Micro-expression
	Integral Projection

	Proposed method
	Face tracking and Registration
	Crop, Mask and Divide face into blocks
	Feature Extraction Using IP
	Feature difference analysis
	Reference frames selection
	Thresholding and Peak Detection

	Experiments
	Datasets and experiment sets
	Datasets
	Parameters setup

	Results
	Conclusion
	REFERENCES

	K47-full.pdf
	K83-full.pdf
	K89-full.pdf
	L59-full.pdf
	M59-full.pdf
	Introduction
	Supervised error measures
	How to create precise ground truth images? How to evaluate a filtering technique?
	Ground truth images
	Minimum of the measure

	Experimental results
	Conclusion
	Acknowledgements
	REFERENCES

