

C
om

p
u

te
r

S
ci

en
ce

 R
es

ea
rc

h
 N

ot
es

CSRN 2701

(Eds.)

Paul Bourke
University of Western Australia, Australia
Vaclav Skala
University of West Bohemia, Czech Republic

25. International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision
WSCG 2017
Plzen, Czech Republic
May 29 – June 2, 2017

Proceedings

WSCG 2017

Full Papers Proceedings

ISSN 2464–4617 (print) ISSN 2464–4625 (CD-ROM)

ISSN 2464–4617 (print) ISSN 2464–4625 (CD-ROM)

C
om

p
u

te
r

S
ci

en
ce

 R
es

ea
rc

h
 N

ot
es

CSRN 2701

(Eds.)

Paul Bourke
University of Western Australia, Australia
Vaclav Skala
University of West Bohemia, Czech Republic

25. International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision
WSCG 2017
Plzen, Czech Republic
May 29 – June 2, 2017

Proceedings

WSCG 2017

Full Papers Proceedings

Vaclav Skala – Union Agency

ISSN 2464–4617 (print) ISSN 2464–4625 (CD-ROM)

This work is copyrighted; however all the material can be freely used for educational and

research purposes if publication properly cited. The publisher, the authors and the editors

believe that the content is correct and accurate at the publication date. The editor, the authors

and the editors cannot take any responsibility for errors and mistakes that may have been

taken.

Computer Science Research Notes
CSRN 2701

Editor-in-Chief: Vaclav Skala

 c/o University of West Bohemia

Univerzitni 8

 CZ 306 14 Plzen

 Czech Republic

 skala@kiv.zcu.cz http://www.VaclavSkala.eu

Managing Editor: Vaclav Skala

Publisher & Author Service Department & Distribution:

Vaclav Skala - UNION Agency

 Na Mazinach 9

 CZ 322 00 Plzen

 Czech Republic

 Reg.No. (ICO) 416 82 459

ISSN 2464-4617 (Print) ISSN 2464-4625 (CD/DVD)

ISBN 978-80-86943-49-7 (Print) ISBN 978-80-86943-44-2 (CD/DVD)

WSCG 2017

International Program Committee

Adzhiev, Valery (United Kingdom)

Anderson, Maciel (Brazil)

Benes, Bedrich (United States)

Bilbao, Javier,J. (Spain)

Bourke, Paul (Australia)

Daniel, Marc (France)

de Geus, Klaus (Brazil)

Drechsler, Klaus (Germany)

Feito, Francisco (Spain)

Ferguson, Stuart (United Kingdom)

Galo, Mauricio (Brazil)

Giannini, Franca (Italy)

Gobbetti, Enrico (Italy)

Gudukbay, Ugur (Turkey)

Juan, M.-Carmen (Spain)

Kenny, Erleben (Denmark)

Kim, Jinman (Australia)

Kim, HyungSeok (Korea)

Lobachev, Oleg (Germany)

Molla, Ramon (Spain)

Montrucchio, Bartolomeo (Italy)

Muller, Heinrich (Germany)

Murtagh, Fionn (United Kingdom)

Pan, Rongjiang (China)

Pedrini, Helio (Brazil)

Platis, Nikos (Greece)

Ramires Fernandes, Antonio (Portugal)

Richardson, John (United States)

Ritter, Marcel (Austria)

Rojas-Sola, Jose Ignacio (Spain)

Sanna, Andrea (Italy)

Segura, Rafael (Spain)

Skala, Vaclav (Czech Republic)

Sousa, A.Augusto (Portugal)

Szecsi, Laszlo (Hungary)

Teschner, Matthias (Germany)

Tokuta, Alade (United States)

Umetani, Nobuyuki (Japan)

Wu, Shin-Ting (Brazil)

Wuensche, Burkhard,C. (New Zealand)

Wuethrich, Charles (Germany)

Yao, Junfeng (China)

WSCG 2017

Board of Reviewers

Aburumman, Nadine (France)

Adzhiev, Valery (United Kingdom)

Anderson, Maciel (Brazil)

Assarsson, Ulf (Sweden)

Averkiou, Melinos (Cyprus)

Ayala, Dolors (Spain)

Benes, Bedrich (United States)

Bilbao, Javier,J. (Spain)

Capobianco, Antonio (France)

Carmo, Maria Beatriz (Portugal)

Charalambous, Panayiotis (Cyprus)

Cline, David (United States)

Daniel, Marc (France)

Daniels, Karen (United States)

de Geus, Klaus (Brazil)

De Martino, Jose Mario (Brazil)

de Souza Paiva, Jose Gustavo (Brazil)

Diehl, Alexandra (Germany)

Dokken, Tor (Norway)

Dong, Yue (China)

Drechsler, Klaus (Germany)

Eisemann, Martin (Germany)

Feito, Francisco (Spain)

Ferguson, Stuart (United Kingdom)

Galo, Mauricio (Brazil)

Garcia-Alonso, Alejandro (Spain)

Gdawiec, Krzysztof (Poland)

Giannini, Franca (Italy)

Gobbetti, Enrico (Italy)

Gobron, Stephane (Switzerland)

Goncalves, Alexandrino (Portugal)

Gonzalez, Pascual (Spain)

Gudukbay, Ugur (Turkey)

Hernandez, Benjamin (United States)

Jones, Mark (United Kingdom)

Juan, M.-Carmen (Spain)

Kenny, Erleben (Denmark)

Kim, HyungSeok (Korea)

Kim, Jinman (Australia)

Kurillo, Gregorij (United States)

Kurt, Murat (Turkey)

Lee, Jong Kwan Jake (United States)

Liu, Yang (China)

Liu, Beibei (United States)

Liu, SG (China)

Liu, Damon Shing-Min (Taiwan)

Lobachev, Oleg (Germany)

Luo, Shengzhou (Ireland)

Marques, Ricardo (Spain)

Mei, Gang (China)

Mellado, Nicolas (France)

Meng, Weiliang (China)

Mestre, Daniel,R. (France)

Meyer, Alexandre (France)

Molina Masso, Jose Pascual (Spain)

Molla, Ramon (Spain)

Montrucchio, Bartolomeo (Italy)

Muller, Heinrich (Germany)

Murtagh, Fionn (United Kingdom)

Nishio, Koji (Japan)

Oberweger, Markus (Austria)

Oyarzun Laura, Cristina (Germany)

Pan, Rongjiang (China)

Pedrini, Helio (Brazil)

Pereira, Joao Madeiras (Portugal)

Pina, Jose Luis (Spain)

Platis, Nikos (Greece)

Puig, Anna (Spain)

Raidou, Renata Georgia (Austria)

Ramires Fernandes, Antonio (Portugal)

Richardson, John (United States)

Ritter, Marcel (Austria)

Rodrigues, Joao (Portugal)

Rojas-Sola, Jose Ignacio (Spain)

Sanna, Andrea (Italy)

Schwaerzler, Michael (Austria)

Segura, Rafael (Spain)

Serano, Ana (Spain)

Sik-Lanyi, Cecilia (Hungary)

Sommer, Bjorn (Germany)

Sousa, A.Augusto (Portugal)

Szecsi, Laszlo (Hungary)

Teschner, Matthias (Germany)

Todt, Eduardo (Brazil)

Tokuta, Alade (United States)

Tytkowski, Krzysztof (Poland)

Umetani, Nobuyuki ()

Umlauf, Georg (Germany)

Vanderhaeghe, David (France)

Vidal, Vincent (France)

Vierjahn, Tom (Germany)

Wu, Shin-Ting (Brazil)

Wuensche, Burkhard,C. (New Zealand)

Wuethrich, Charles (Germany)

Yao, Junfeng (China)

Yoshizawa, Shin (Japan)

YU, Qizhi (United Kingdom)

Zhao, Qiang (China)

WSCG 2017

Full Papers Proceedings

Contents

Keynote – Abstract

Telea,A.: Image-based information visualization
(or how to unify SciVis and InfoVis)

Paduraru,C.: Increasing diversity and usability of crowd animation systems 1

Bujack,R., Flusser,J.: Flexible Moment Invariant Bases for 2D Scalar and

Vector Fields
11

Afrin,N., Lai,W.,Mohammed,N.: Performance Analysis of Corner Detection
Algorithms Based on Edge Detectors

21

Ganoni,O., Mukundan,R.: A Framework for Visually Realistic Multi-robot
Simulation in Natural Environment

29

Brice,D., Rafferty,K.: A Novel Force Feedback Haptics System with
Applications in Phobia Treatment

37

Jaillot,V., Pedrinis,F., Servigne,S., Gesquière,G.: A generic approach for
sunlight and shadow impact computation on large city models

45

Macatangay,J., Ruiz Jr.,C., Usatine,R.: A Primary Morphological Classifier
for Skin Lesion Images

55

Ferreira,A.E.T., Espinoza,B.L.M, Vidal,F.B.: Predicting vehicle trajectories
from surveillance video in a real scenario with Histogram of Oriented
Gradient

65

Kacala,V., Mino,L.: Speeding up the Computation of Uniform Bicubic Spline
Surfaces

73

Farhadifard,F., Radolko,M., von Lukas,U.F.: Marine-Snow Detection and
Removal: Underwater Image Restoration using Background Modeling

81

Kim,J.-B., Choi,S.-R., Choi,J.-H., Ahn,S.-J., Park,Ch.-M.: Head Movement
Based Temporal Antialiasing for VR HMDs

91

Shcherbakov,A., Frolov,V.: Accelerating Radiosity on GPUs 99

Santana,J.M., Trujillo,A. , Suarez,J.P. , Ortega,S.: Accurate Triangular
Regular Network adjustment to Large Digital Elevation Models

107

Gerighausen,D., Hausdorf,A., Zaenker,S., Zeckzer,D.: iDotter - an
interactive dot plot viewer

117

Arvanitis,G., Lalos,A., Moustakas,K., Fakotakis,N.: Fast and Effective
Dynamic Mesh Completion

125

Hartmann,S., Weinmann,M., Wessel,R., Klein,R.: StreetGAN: Towards Road
Network Synthesis with Generative Adversarial Networks

133

Mylo,M., Klein,R.: Pushpins for Edit Propagation 143

Bohdal,R.: Improvement of Some Interpolation Methods for Terrain
Reconstruction from Scattered Data

153

Image-based information visualization
(or how to unify SciVis and InfoVis)

Alexandru Telea

Institute Johann Bernoulli
University of Groningen

The Netherlands

ABSTRACT
For decades, scientific visualization (SciVis) and information visualization (InfoVis) have been related, but still

distinctly separated disciplines. Methods and techniques in the two areas have developed relatively separately,

causing an arguably unnecessarily separation in the visualization field. Attempts for unification exist, but are

largely based on heuristics, and subject to critique from both the SciVis and InfoVis angles. In this talk, we argue

that this separation is not necessary, and, up to large extents, artificial. More specifically, we argue that the

difference between SciVis and InfoVis is not a matter of design decisions only, but, more centrally, a matter of

representing the structure of large data collections by means of smooth, continuous, encodings. We present a way

to cast InfoVis along the same principles as the more classical SciVis, based on a continuous, multiscale, spatial

representation of data. Putting it simply, we argue that visualizing large amounts of InfoVis data can use encoding

techniques which share the same continuity and multiscale principles as most classical spatial SciVis (or image

processing) methods use. In turn, we show how this is possible by means of defining appropriate similarity metrics

and encoding principles for InfoVis data. This leverages a wealth of data simplification, encoding, and perception

principles, since long available for SciVis data, for the richer realm of InfoVis data. We demonstrate our image-

based paradigm by examples covering the visualization of relational, multidimensional, and time-dependent

InfoVis.

.

Increasing diversity and usability of crowd animation
systems

Ciprian Paduraru
University of Bucharest and Electronic Arts

Bucharest, Romania
ciprian.paduraru2009@gmail.com

ABSTRACT
Crowd systems are a vital part in virtual environment applications that are used in entertainment, education, training
or different simulation systems such as evacuation planning. Because performance and scalability are key factors,
the implementation of crowds poses many challenges in many of its aspects: behaviour simulation, animation, and
rendering. This paper is focusing on a different model of animating crowd characters that support dynamically
streaming of animation data between CPU and GPU. There are three main aspects that motivate this work. First,
we want to provide a greater diversity of animations for crowd agents than was possible before, by not storing any
predefined animation data. Another aspect that stems from the first improvement is that this new model allows the
crowd simulation side to communicate more efficiently with the animation side by sending events back and forth at
runtime, fulfilling this way use-cases that different crowd systems have. Finally, a novel technique implementation
that blends between crowd agents’ animations is presented. The results section shows that these improvements are
added with negligible cost.

Keywords
animation, crowd, skeleton, GPU, blending, memory, compute shader, vertex shader

1 INTRODUCTION

Crowd simulations are becoming more and more
common in many computer graphics applications. It is
a critical component nowadays in video games industry
(games like Fifa 2017®, Ubisoft’s Assassin’s Creed®,
RockStar’s Grand Theft Auto® series), evacuation
planning software (e.g. Thunderhead’s Pathfinder
software®) or phobia treatments applications, where
it is being used to create realistic environments.
However, crowd simulation and rendering is a costly
operation and several techniques were developed to
optimize CPU, GPU or bandwidth usage to have as
many agents as possible. In our paper, by agent, we
mean an individual visible entity in the crowd. Entities
can be humans, cars or every other instance the client
desires to configure and use. We split a crowd system
implementation into two logical parts: simulation and
render side. The simulation usually deals with driving
behaviours, actions, and events for crowd agents, while
the render side deals with animation and rendering

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

of the crowd’s agents. The focus of this paper is on
the render side, and especially on how to deal with
the agents’ animations. The main motivation to study
animation systems for crowds is that realistic motion
and diversity of animations are important aspects of
user perception. There are three contributions that
this paper adds to the field of animations for crowd
systems:

• We do not require to store all animations pose data
on the GPU side as similar solutions does. In-
stead, we use a streaming model of poses which
has insignificant performance overhead; This allows
crowd systems to have a greater diversity of anima-
tion data than before ([Rud05], [Ngu07], [Sho08],
[Bea14]).

• Fulfill the requirements of modern crowd systems,
where the simulation side often needs to request
complex blending between the motion of groups or
individual agents, by feeding dynamic input states
or events. The inverse communication is also possi-
ble: animations can trigger events to the simulation
side (more details on Section 3).

• At the moment of this paper, the first documented
method to perform blending between animations of
agents that share the same animation data streams
with different time offsets.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 1 ISBN 978-80-86943-49-7

Overall, we consider that by using our approach, ani-
mation systems for crowds can get more usability and
variation with minimal performance loss.

The rest of the paper is organized as follows. Related
work in the field is presented in Section 2. A deeper in-
troduction into current techniques and some other tech-
nical requests that are driving our work are presented
in Section 3. Section 4 describes the usability of our
framework and strategies that we use to implement it.
Comparative results are shown in Section 5. Finally,
conclusions are given in the last section.

2 RELATED WORK
The ability to adjust the skin mesh of a character with-
out having to redefine the animation is highly desir-
able, and this is possible using a technique called vertex
skinning [Ryd05], [Bea16]. By using vertex shaders, a
lot of the computation that was previously done on the
CPU side is now moved on GPU side, which proves to
be faster for this kind of computations [Sho08]. The
main technique applied for rendering animated charac-
ters using vertex skinning in crowd systems is called
skinned instancing, which significantly reduce the num-
ber of draw calls needed to render agents. The way
skinned instancing work in [Rud05], [Ngu07], [Sho08],
[Bea14] is by writing all the animations data on a GPU
texture at once, then have the vertex shader perform
skinning operations by extracting the correct pose from
that texture for each individual instance. In our ap-
proach, the difference is that the GPU texture doesn’t
have to be filled at initialization time with all anima-
tions data. Instead, with some bandwidth cost, we send
the poses of some template animations from CPU to
the GPU, facilitating this way client driven blending be-
tween motions.

While the skinned instancing and skeletal animation are
highly desirable for rendering high-quality agents for
crowds, mainly because of the current GPUs capabil-
ities nowadays, there are other techniques that can be
used to limit the number of polygons rendered with-
out having users notice artifacts. These methods are
described below and are used in our framework to de-
cide how to render characters at a lower level of details
(LOD). Even if the focus of our paper is to use skele-
tal animations using instancing for crowds, these tech-
niques can reduce substantially the resources needed
to render and animate agents at lower LODs. Image-
based approaches have been used to simplify render-
ing of large crowds in an urban simulation [Tec00]. A
discrete set of possible views for a character is pre-
rendered and stored in memory. A single quad is then
used when rendering the character by using the clos-
est view from the set. Also, as mentioned in [Mil07],
impostors present great advantages in current graph-
ics hardware when rendering crowd characters using

instancing. In the shader program, the current view-
ing frustum and character heading can be obtained to
compute the texture coordinates that are most similar
to the current view and animation pose. In the same
category of optimizations, but targeted for simplifying
the work of content creators (animators), is the cage-
based method mentioned in [Kim14]. This method can
be used for lower level of details in parallel with our
technique, to increase the number of animations avail-
able for lower LODs.

In our approach, we consider that blending between
motions of individual or larger groups of agents can
be requested by the simulation side (e.g an agent ex-
iting from a boids behavior because an emergent event
started). This means that a decision mechanism at simu-
lation layer (e.g. a finite state machine, a behaviour tree
or even a neural network) feeds our animation blend-
ing mechanism with concrete parameters. Several pa-
pers presented below provided an inspirational point for
our work and can be used in conjunction with our tech-
niques as plugins.

Motion warping [Wit95] is one of the core techniques
used to create whole families of realistic motions which
can be derived from a small subset of captured motion
sequences and by modifying a few keyframes. [Kov02]
presents a method that automatically blends motions in
the form of a motion graph. This method can be used by
the locomotion system of a crowd to choose the anima-
tions needed at runtime from an initial database of as-
sets. The main strategy is to identify a portion between
two motion frames that are sufficiently similar such that
blending is almost certain to produce a nice looking
transition. The identification process compares the dis-
tances between the pairs of frames of the two motions
to identify the best points for transition. The concept
of registration curve was introduced by [Kov03]. Con-
sidering the problem of blending two motions, the reg-
istration curve creates an alignment curve which aligns
the frames for each point on the timewarp curve. A sta-
tistical model that can do unsupervised learning over
a motion captured database and generate new motions
or resynthesize data from it, is introduced by [Bra00]
under the name of Style Machines. Finally, an interest-
ing survey of the animation techniques used by several
games engines is presented by [Greg14]. This proved
to be a motivation for this paper, due to the complex
requirements of different game engines.

Compression techniques have also been studied in sev-
eral papers. One that can be adapted to the same use
case as our paper, is [Ari06] where the author is mainly
using PCA and clustering (along other tricks, such as
virtual markers per bone instead of angle) to compress
clips of a motion database that is to be streamed at
runtime. The same problem is also tackled in [Hij00]
and [Sat05]. Another technique to reduce the memory

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 2 ISBN 978-80-86943-49-7

needed to store animations is to use dual quaternions
representation [Kav07]. These memory footprint opti-
mization techniques can be used independently of the
methods described in this paper to allow even more va-
riety. A study for improving crowd simulations in VR
is described in [Pel16].

3 METHODS
This section provides an introduction on how skeletal
animation works, how the existing solutions are imple-
menting this technique for crowd animations and the
new requirements for different crowd systems that ap-
peared over the few past years.

3.1 Basics
One of the most used techniques for animating 3D char-
acters is skeletal animation [Mag88]. Using this tech-
nique, a skeleton (represented by a hierarchy of bones)
and a skin mesh must be defined for an animated char-
acter (a skin mesh is a set of polygons where vertices
are associated with their influencing bones and their
weights; the process is called rigging). A pose is a
specification that assigns for each bone of the skele-
ton a geometric transformation. The process of skele-
ton and mesh authoring is defined in a reference pose
(usually called bind pose). An animation can be de-
fined by a series of keyframes, each one defining a pose
and other metadata attributes or events (as described be-
low). When playing an animation for a given charac-
ter, the vertices of its skin mesh will follow the associ-
ated bones (also called skin deformation). The formula
for computing each vertex transform is given in Eq. 1.
Consider that each vertex with the initial transform v
in the reference pose is influenced by n bones. M−1

re fi
is

the inverse transform matrix of the ith bone’s reference
pose transform. This moves the vertex multiplied on the
right from model space to the bone’s local space. Mul-
tiplying this with Mi, the world space bone’s transform
in the current pose, returns the vertex transform with re-
spect to bone i at the current pose. Finally, multiplying
this with the associated weight wi, and summing up all
results give the final vertex transform in world space.

v′ =
n

∑
i

wiMiM−1
re fiv, where

n

∑
i

wi = 1 (1)

3.2 Current Techniques
The common pattern in animating crowds is to store the
entire animation data set on the GPU memory [Ngu07],
[Sho08], [Bea16]. The memory representation is a tex-
ture where animations are contiguously stored on tex-
ture’s rows, each row representing a single pose for a
single animation. Since the bone’s transformation can
be stored as a 4x3 float matrix, and knowing that a texel
(a cell in a texture) can store 4 floats, then each bone

transformation for a pose can be stored in 3 columns of
a texture. The skin mesh geometry is stored on GPU
memory, in vertex buffers. A vertex shader program
created for skinning transforms each vertex according
to equation 1. The weights and M−1

re fi
matrix are con-

stant and provided at initialization time. Knowing the
current time and animation index assigned to each ver-
tex, transform Mi, is sampled from the texture men-
tioned above.

The animations must be shared between agents since
the memory requirements and processing power won’t
allow playing individual animations per each agent on
large crowds at a reasonable framerate (e.g. have a set
of normal walk animations being shared by all agents
having a walking speed). To break repetition, an off-
set system is usually used: if two agents A and B are
sharing the same animation T , then agents can have dif-
ferent time offset in this animation, randomly assigned.
If offsets are different, then the user could hardly no-
tice the sharing since the postures of agents A and B are
different at each moment of time [Ngu07].

3.3 Current limitations and requirements
In the past few years, the requirements for animation
systems have evolved significantly [Greg14], and the
current documented implementations of crowd systems
described above are not able to satisfy these require-
ments. A collection of these are defined below:

1. Animation state machines instead of simple anima-
tion clips are more and more common, with tran-
sitions between clips decided by a decision-making
layer on the simulation side.

2. Generalized two-dimensional blending depending
on input parameters feed at runtime.

3. Animation clips can be authored with event tags
such that when the playback gets at certain points
on their timeline it triggers an event to the simula-
tion side (e.g play a sound when an agent is hit at
correct timing).

4. Partial skeleton blends depending on state and ani-
mation layering: agents should be able to play mul-
tiple animations at the same time (e.g. walking and
waving hands only when observing the human user).

Since the animation data is statically stored in a GPU
texture for performance reasons, the above require-
ments can’t be satisfied because input feed and deci-
sions dynamically taken from the simulation side can
have only a limited effect on the agent’s animations (i.e.
the system could allow only simple blending between
existing poses). Also, storing the entire animation data
set on GPU would significantly limit the number of pos-
sible animations that a crowd system can use. These

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 3 ISBN 978-80-86943-49-7

two main limitations are addressed by our solution and
described in Sections 4 and 4.3.

3.4 Animation controllers in our frame-
work

As stated in Section 3.2, a visual animating charac-
ter definition can be represented as a pair AnimDe f =
(Skeleton,Skinmesh). Additionally, the implementa-
tion of its animation needs a pose buffer and a root ani-
mation controller: AnimA = (AnimDe fA,PA,CtrlA)

The pose buffer represents the transformation data for
each bone at the current time of the animation: PA(i) =
transform of the ith bone of the animation A’s skeleton.
The concept of animation controller used in our frame-
work is similar to the one presented in [Greg14] and
[Uni16]. Usually, every animation framework system
has a visual editor that let users customize a controller
and its internal evaluation operation. A base use case
is to define an animation controller as representing a
single motion clip (no child). Its evaluation returns the
pose data at the specified time parameter, and it could
involve decoding the animation clip data and perform-
ing interpolations between keyframes. Controllers can
be represented as trees of operations. Evaluating a con-
troller at time t, means evaluating recursively its chil-
dren nodes then combining the pose buffer from each
child into its own pose buffer (the one attached to the
animation it is controlling).

Listing 1: Pseudocode for evaluating a controller
C o n t r o l l e r A : : E v a l u a t e (t)

C h i l d r e n L i s t = {Ci |
Ci i s t h e ith c h i l d c o n t r o l l e r }

E v a l u a t e (t , C h i l d r e n L i s t)
PA = Combine (PCi) .

Another base use case is to use a controller to blend
between two animations (A and B). Such a controller
can have two children controllers: CtrlA and CtrlB. As
shown in Eq. 2, the resulting pose of evaluating CtrlC is
an interpolation between the resulting poses of its two
children by variable s (normalized blend time; 0 means
start, 1 end).

Pc(t) = Pa(t)+(Pb(t)−Pa(t))∗ s, s ∈ [0,1]. (2)

Complex trees of controllers can be customized for an
animation. For instance, one could use a blend mask
to consider only parts of the bones from each children
controller. Eq. 3 presents a controller evaluation with
three children: from CtrlA it takes only the pose for
head, CtrlB gives the pose for arms, and finally CtrlC
provides the pose for legs of a biped character. A blend
mask is defined as an array of 0−1 values and has the

same length as the pose array. The dot product be-
tween the two cancels the pose for bones that are not
interesting for the mask (e.g. only the set of bones
S = {i|Bmask(i) = 1} are considered).

Pr(t) = Bhead ∗Pa(t)+Barms ∗Pb(t)+Blegs ∗Pc(t). (3)

Another example of common animation controller are
state machines ([Greg14]) where the transitions are
generated / evaluated by triggers / values set from the
simulation side (e.g. an AI system). If the controllers
above can be implemented on GPU side using shaders
for optimizing performance, the ideal running place
for the controller representing a state machine would
be CPU because of the tight communication between
simulations and online data that are usually provided
on the CPU side. Another motivation for running
controllers on the CPU side instead of GPU, is the use
case of authoring motion clips with certain events on
their timeline that need to be communicated back to
the CPU side. The frequent communication from GPU
to CPU would cause serious performance problems
that could eliminate the benefits of doing the math
operations in shader programs. Usually, modern
animation frameworks allow users to customize their
own controllers and inject them into the animation
system using a provided editor.

4 IMPLEMENTATION
Our solution to solve the requirements 1-4 described in
3.3 and the memory limitation of having all animation
data set in memory is addressed by using a mixed model
between streaming animations data from CPU to GPU,
and storing only a part of the animation data set on the
GPU memory.

4.1 User authoring and control
In our framework, an animation stream repre-
sents an extension to the tuple definition of
an animation (A), as given in Section 3.4:
AStreamA = (AnimDe fA,PA,CtrlA,PHA). The last
parameter added is a circular buffer storing the history
of the last M values evaluated for PA. Parameter M
can be configured by user and represents the number
of frames to be saved in the PHA buffer - many
applications typically consider sampling at 30Hz or
60Hz).

The user input for our framework system can be
defined as a tuple: UserCon f ig = (StreamPool :
AStream[],UniquePool : Anim[],NT,M). The Stream-
Pool array contains streams of animations that can be
shared by multiple agents. As a demo setup example
for a crowd animation system, three types of animation
streams could be defined: one playing a walk controller

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 4 ISBN 978-80-86943-49-7

Animation Backend

StreamPool

UniquePool

Transition slots

Inputs (Similar to the CPU one)

CPU pose storage

update

GPU pose storage

CPU side GPU side

(sync)Controllers evaluation

Skinning using vertex shader programs

read poses

Figure 1: Overview of the CPU-GPU data flow on each frame.

animation, another playing an idle, and finally one
waving hands to the user when approaching the camera.
Initially, the agents are assigned to one of the streams
in the StreamPool array, and one offset value in the
space of the history poses of that animation stream
(random normal distribution or customized by user).

More specifically, if each crowd agent has a unique id
assigned, then its animation reference can be defined as
a tuple: AgentAnimID = (IDSI , IDO), where the first ar-
gument is its stream index in StreamPool, and the sec-
ond is the offset in the history of that stream’s saved
poses (PHSI). The offset value is relative to the PH’s
head (i.e. an offset value of 0, means the head of the
ring buffer, while an offset N, represents N frames be-
hind head - PH(N)). The purpose of the pose history
buffer is to allow multiple agents that share the same
animation stream look differently by having different
offsets. From a quality perspective, having randomiza-
tions both at stream index and offset levels decreases
significantly the probability of user observing agents
that play the same animation at any point in time. This
probability can be controlled by adding more or fewer
streams of animations and by modifying parameter M.

UniquePool is an array of simple animation definitions
that are not meant to be shared between agents - e.g.
users can inject at runtime live motions recorded which
they want to replicate for the agents in the crowd. Using
a streamed animation for this use-case would generate
a useless memory footprint for storing the PH param-
eter. Finally, parameter NT defines the number of pre-
allocated transition slots. Transition slots are internal
customizable components that can be used to blend the
animation of a single agent from his current animation
(and offset) to another one (more details about them in
Section 4.3). At runtime, user can request a transition
from the current animation of an agent to one of the
animations from the stream or unique pools:

• TransitionToStreamed(ID, streamIndex)

• TransitionToUnique(ID, uniqueIndex)

4.2 CPU-GPU data flow
The data flow between CPU and GPU on each frame
is presented in Figure 1. The Inputs block is respon-
sible for gathering the inputs for the animation sys-
tem (e.g. decision making systems deriving states for
animation controllers executing state machines or live
recorded motions providing online data). Component
AnimationBackend executes all registered animation
controllers and updates their pose information. The
CPU pose storage object contains the history poses
for StreamPool, and only the current pose for unique
animations and transition slots. If the pose data for
UniquePool and transition slots look like an array (one
component for each used animation), the StreamPool
has a more complex representation, presented in Figure
2.

Stream 0

Stream 1

Stream N-1

Bone 0 Bone 1 Bone T-1

Array size = ring buffer size (M)

 .

.

.

.

.

.

Figure 2: StreamPool storage representation for both
CPU and GPU, having N pooled animations, T max-
imum number of bones and M slices. Each row of a
slice represents a pose buffer and has enough capacity
to store all skeletons used in the animation system.

At each frame F , for each streamed animation (S), the
root controller attached to these animations is evaluated

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 5 ISBN 978-80-86943-49-7

and writes data on slice (array index) F mod M, on row
IndexO f (S). All these updates (plus the unique and
transition slots’ poses) are packed and sent to GPU to
keep in sync both pose storages. The GPU needs the
pose data for skinning purposes, since the shader knows
for each vertex the global animation index (unified in-
dex system between streamed, unique pools and tran-
sition slots), the offset (valid in the case of streamed
animations) and fetches the transformation matrix asso-
ciated with the bones that affect that vertex. The CPU
side needs the same pose data because of the blending
system explained in the next section.

4.3 Blending between animations
The blending operations in the crowd animation
systems is different from the traditional blending
mainly because of the opportunities that appear in
reusing computations, sharing strategies, and the
offset system added to support variety. The transition
slots from Figure 1 are responsible for blending
between animations, and support transition requests
between any animations A and B, with both of them ∈
{UniquePool,DynamicPool}. A transition slot T can
be defined formally as a tuple:

TrT =(PT ,CtrlT ,A,B,OA,OB,T0,L,StartPT ,TargetPT).
As with the previous definitions, CtrlT is the controller
attached to this animation and needs to be evaluated
to write the output - PT , representing the current pose
of the transition. Skinning is performed using this
current pose, similar to the system described in 4.2
(but considering the offset as 0 since only the current
pose is written). A,B are the source respectively the
target animation for blending, while OA and OB, are
the offsets that the agent using this transition slot has in
each animation (because animations can have different
lengths, or for variety purposes, the user can request
to blend the agent to a different offset than his current
one). T0 is the start time when the transition started,
while L represents the transition duration. Finally,
the last two components are explained in the next
sub-section.

4.4 Evaluation dependency graph
A typical blend operation between animations A and B
using controllers would follow the steps defined in Sec-
tion 3.4: evaluate controllers for both animations then
combine the resulted poses. In the crowd animation
system presented in this paper, and knowing that most
of the agents are transitioning between streamed anima-
tions, blending can be done faster by reusing evaluation
results on each frame. The strategy used by our imple-
mentation is to create a dependency graph, where tasks
(nodes) are the set of all active controllers, and links
between them represent dependencies. There is a link
between Ctrl1 and Ctrl2, if controller Ctrl1 needs the

evaluation results (pose) from Ctrl2. In the case of an-
imations ∈ {StreamPool,UniquePool}, there is no de-
pendency. If the transition T is used to play a blending
animation between A and B, then CtrlT depends only
on CtrlB. The reason why it doesn’t depend on CtrlA
too is that a snapshot of A can be saved, as shown be-
low. Parameter TargetPT represents the target pose and
is evaluated per frame, as follows:

• If B ∈ UniquePool, then TargetPT = PB (the pose
evaluated in the current frame)

• If B ∈ StreamPool, it must take the value from the
pose history of B corresponding to the agent offset
in the target animation: TargetPT = PHB(OB).

Parameter StartP represents the pose that the agent
had at the moment of transition request in animation A
(fixed during transition and internally initialized at the
request moment of time):

• If A ∈UniquePool, then StartPT = PA

• If A ∈ StreamPool, StartPT = PHA(OA).

Practically, the blending operation is done on each
frame between StartPT and TargetPT , by using an in-
terpolation that considers the current time of transition
(t−T0) and total transition time (L). Since the starting
pose is static, an additive blending method is suitable.
Listing 2 shows the pseudocode for evaluating the
transition controllers.

Listing 2: Pseudocode for transition controller with S
representing the normalized blend time, and P the re-
sult of evaluation. Note that, according to the definition
given above, when transitioning from animation A to
animation B, the StartP variable holds the current pose
of animation A at the moment of the transition request.
T r a n s i t i o n C o n t r o l l e r : : E v a l u a t e (t)

w a i t CtrlB j o b t o f i n i s h

S = (t−T0)
L

i f B ∈UniquePool t h e n
T a r g e t P = PB

e l s e
T a r g e t P = PHB(OB)

D i f f P o s e = (T a r g e t P − S t a r t P)* S
P = S t a r t P + D i f f P o s e

4.5 Parallelization on CPU and GPU
The dependency graph described in the previous
subsection can be parallelized efficiently since only
the evaluations of transition controllers have depen-
dencies. More, there is one subtle observation that
can remove the dependency if the target animation is
in StreamPool: the wait on CtrlB is needed only if

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 6 ISBN 978-80-86943-49-7

PHB(OB) is not already computed (there is a good
change to avoid the wait since agent’s offsets are
statistically behind the head of the pose buffer). For the
same use case, the biggest parallelization improvement
in our implementation was to move the transition
controllers evaluation on the GPU side (i.e using
compute shaders). These computations are suitable for
compute shaders since the only job of the evaluation is
to perform a straight interpolation between poses, and
these are already cached on the GPU memory in sync
with the CPU storage (Section 4.2).

5 EVALUATION
The animation techniques described in this
paper were used in the FIFA17® game
(https://www.easports.com/fifa). The
purpose was to animate a crowd of over 65000 agents
displaced in a football stadium, representing different
categories of football fans (home, away or ultras).
Their animations involved: scoring celebrations, dis-
appointing reactions, anticipation of goals, disagreeing
the referee or players’ decisions, walking around
chairs, etc. Each of these were considered templates
and in our tests, we had 256 animations defined in
StreamPool, and a maximum offset (M) of 60 frames.
The number of transition slots allocated was 800, and
this number was mainly targeted to support the mexican
wave celebration in the stadium (i.e. characters in a
specified stadium’s area were supposed to stand up and
raise their hands at specified moments of time).

For the first purpose of this paper, we are analyzing be-
low the variety of animations in the stadium’s crowd
that was possible using the techniques described in
[Ngu07], [Sho08], [Bea16] (and used in the previous
editions of our game) compared against our new imple-
mentation. The mixed technique between sending pose
data from CPU to GPU and storing only a part of the
animations data on the GPU memory increases the va-
riety of supported animations for crowd agents.

On top of this optimization, our new animation sys-
tem supported dynamic input events as the ones de-
scribed in Section 3. We were able to make the crowd
more realistic with event driven behaviors. One exam-
ple was agents waving hands or performing different
animations on specific bones when a goal scorer was
close to them, which was not possible before using pre-
processed animations data stored on the GPU memory.

For each skeletal motion clip, on each sampled frame,
data must store the SQT (scale, quaternion and trans-
form) of each bone. Denoting by NBones the number
of bones of the skeleton and by SizePerBone the av-
erage compressed data for storing the SQT per bone,
then the pose data size for a single frame is PoseSize =
NBones×SizePerBone. Denoting by MotionLength the

average number of motion keys per animation, the av-
erage size of a clip is: ClipSizeOLD = MotionLength×
PoseSize. The memory allocated for animation data
must fall under a GPU budget specified by the appli-
cation. If this variable is denoted by MemBudget, then
the number of clips that can be used with the previous
methods is: NumClipsOLD = bMemBudget

ClipSizeOLD
c.

By using our new approach, the GPU data
that needs to be stored for each clip size is
ClipSizeNEW = M × PoseSize (recall that M rep-
resents the configurable parameter for the maximum
offset value that an agent can have in its shared
animation stream). This means that the number of clips
that can be stored now relative to the old method is:
NumClipsNEW = bMotionLength

M ×NumClipsOLDc. The
left term is always in (0,1] since the maximum offset
cannot exceed the number of frames in the animation.

Figure 3: Image showing a side of a stadium in a foot-
ball match

.

Analyzing this in the context of our application, where
a skeleton with 82 bones was used and with the help of
the techniques presented in [Ari06], [Hij00], [Sat05],
the resulted PoseSize was reduced from 3.2KB to
0.8KB. MotionLength was 300 since the average
clip length was 10 seconds, and the sampling rate
30 frames per seconds (fps). In these conditions, the
ClipSizeOLD = 246KB. With a GPU memory budget
of 520MB, if the previous version of application sup-
ported only 216 clips, by using a particular maximum
offset value M of 60 frames, resulted in supporting up
to 1080 different animation clips at the same time. The
value used for M was high enough to let the 65000
agents in the crowd look like they perform different
animations with only 256 animation streams, and a
maximum offset (M) of 60 frames (the number of
bones used was 82). The quality of the animations (i.e.
if agents animations look different from each other)
was evaluated by a quality assurance team who also did
some tuning over the variables such that we get good
enough results without stressing performance.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 7 ISBN 978-80-86943-49-7

In terms of performance, the only theoretical problem
could be the bandwidth between CPU and GPU, to
keep the pose buffers in sync for the animations driven
from the CPU side. However, with modern GPUs and
computer architectures, a theoretical bandwidth of 32
GB/s (as specified by PCIe 3.0 standard) between CPU
and GPU, would allow our application to send data for
more than 100.000 animations on each frame consider-
ing our current setup and the other resources compet-
ing for the same bandwidth. The techniques described
are scalable and can be used on any GPU as long as
it satisfies the memory requirements and computational
power (shader units) given by the configuration param-
eters and application’s budgets.

Regarding to reactions, consider the case when the ball
hits the crowd (i.e one or more agents). In this case, the
agents which are effected would blend between their
current animation and a hit by ball animation by using
a transition slot. The target blend animation could be ei-
ther a pooled one (hit by ball animation being shared by
multiple agents) or a unique one (specific to one agent,
client application having custom for the agent using the
animation).

6 CONCLUSION

This paper presented some techniques for increasing the
diversity and usability of animation systems in appli-
cations that use crowds of agents. To increase the di-
versity, this work changed the strategies used in previ-
ous approaches by not storing all the animations data
on GPU memory, and by creating a data flow between
CPU and GPU. Having animation controllers that can
be evaluated using this strategy provides several advan-
tages for the client system in terms of usability: the
client is now able to send events back and forth between
a simulation layer (e.g. a decision-making system) and
an animation system. The techniques presented are
used for skeletal animations that target a high level of
details and can be combined with existing rendering
and animation techniques targeted for a lower level of
details. Then, the paper describes a blending technique
that is able to perform an efficient transition between
agents’ animations, considering the sharing strategies
specific to crowd systems. Also, a way to parallelize
the controllers’ evaluation both on CPU and GPU side
was sketched. The crowd source code is currently in-
side a commercial package that we plan to decouple
and make it open source for future research. We also
want to invest more time in improving the parallelism
of the computations and on the AI side of the agents
since now we support better animations and instant re-
action events.

7 REFERENCES

[Ari06] Arikan, O. Compression of motion capture
databases, In Proceedings of SIGGRAPH, ACM,
pp. 890-897, 2006.

[Bea14] Beacco A, Pelechano N, CAVAST: The
Crowd Animation, Visalisation, and Simula-
tion Testbed, Proceedings of Spanish Computer
Graphics Conference, CEIG, pp: 1-10, 2014.

[Bea16] Beacco A, Pelechano N, Andujar C, A Sur-
vey of Real-Time Crowd Rendering, Computer
Graphics Forum 35(8), pp: 32-50, 2016.

[Bra00] Brand M, Hertzmann A. Style machines, Pro-
ceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co, pp: 183-
192, 2000.

[Greg14] Gregory, J. Game Engine Architecture, Sec-
ond edition, Chapter 11: Animation Systems,
CRC Press, pp. 543-647, 2014.

[Hij00] Hijiri T., Nishitani K., Cornish T., Naka T.,
Asahara S. A spatial hierarchical compression
method for 3d streaming animation. Proceedings
of Web3D-VRML ACM, pp. 95-101, 2000.

[Kav07] Kavan L., Collins S., Zara J., O’Sullivan C.
Skinnig with dual quaternion. In Proceedings
of the Symposium on Interactive 3D Graphics
(SI3D), pp 39-46, 2007.

[Kov02] Kovar Lucas, Gleicher Michael, Pighin F.
Motion graphs, ACM Transactions on Graphics
(TOG)., 21(3), pp: 473-482, 2002.

[Kov03] Kovar Lucas and Gleicher Michael. Flexi-
ble Automatic Motion Blending with Registration
Curves. In Proceedings of ACM SIGGRAPH, Eu-
rographics Symposium on Computer Animation,
pp. 214-224, 2003.

[Kim14] Kim J, Seol Y, Kwon T, Lee J, Interactive ma-
nipulation of large-scale crowd animation, ACM
Transactions on Graphics (TOG) - Proceedings of
ACM SIGGRAPH 2014, 33(4), 2014.

[Mag88] Magnenat-Thalmann N, Laperrire R, Thal-
mann D, Montreal U. D. Joint-dependent local de-
formations for hand animation and object grasp-
ing, Proceedings on Graphics interface’88, pp.
26-33, 1988.

[Mil07] Millan E, Isaac Rudomin. Impostors, pseudo-
instancing and image maps for GPU crowd ren-
dering. Proceedings of the The International Jour-
nal of Virtual Reality, Volume 6, Issue 1, pp.
35-44, 2007.

[Ngu07] Nguyen H. GPU Gems 3, Chapter 2: An-
imated Crowd Rendering. Addison-Wesley, pp.
39-52, 2007.

[Poi09] Poirier M., Paquette E. Rig retargeting for 3d

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 8 ISBN 978-80-86943-49-7

animation. In Proceedings of the Graphics Inter-
face Conference ACM Press, pp. 103-110, 2009.

[Rud05] Rudomin I, Millan E, Hernandez Z. Fragment
shaders for agent animation using finite state ma-
chines.Simulation Modelling Practice and The-
ory, Volume 13, Issue 8 (November), Elsevier, pp.
741-751, 2005.

[Ryd05] Ryder G, and Day A. M, Survey of Real-
Time Rendering Techniques for Crowds, Com-
puter Graphics forum 24(2), Wiley, pp: 203-215,
2005.

[Sat05] Sattler M., Sarlette R., Klein R. Simple and
efficient compression of animation sequences.
In Proceedings of Eurographics Symposium on
Computer Animation, pp. 209-217, 2005.

[Sho08] Shopf Jeremy, Joshua Barczak, Christopher
Oat, Natalya Tatarchuk , March of the Froblins:
simulation and rendering massive crowds of intel-
ligent and detailed creatures on GPU, Proceeding
of ACM SIGGRAPH, pp 52-101, 2008.

[Tec00] Tecchia F, Chrysanthou Y. Real-time render-
ing of densely populated urban environments. In
Proceedings of the Eurographics Workshop on
Rendering Techniques, Springer, pp. 83-88, 2000.

[Uni16] Unity engine manual - animation section
https://docs.unity3d.com/Manual/AnimationSection.html

[Wit95] Witkin A, Popovic Z. Motion warping, Pro-
ceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques. ACM,
pp. 105-108, 1995.

[Pel16] Pelechano N. and Allbecky J. M., In Proceed-
ings of IEEE Virtual Humans and Crowds for
Immersive Environments (VHCIE), pp. 17-21,
2016.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 9 ISBN 978-80-86943-49-7

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 10 ISBN 978-80-86943-49-7

Flexible Moment Invariant Bases
for 2D Scalar and Vector Fields

Roxana Bujack
Los Alamos National Laboratory

P.O. Box 1663
USA, 87544 Los Alamos, NM

bujack@lanl.gov

Jan Flusser
Institute of Information Theory and Automation

Pod Vodarenskou vezi 4
Czech Republic, 182 08 Praha 8

flusser@utia.cas.cz

ABSTRACT
Complex moments have been successfully applied to pattern detection tasks in two-dimensional real, complex, and
vector valued functions.
In this paper, we review the different bases of rotational moment invariants based on the generator approach with
complex monomials. We analyze their properties with respect to independence, completeness, and existence and
present superior bases that are optimal with respect to all three criteria for both scalar and vector fields.

Keywords
Pattern detection, moment invariants, scalar fields, vector fields, flow fields, generator, basis, complex, monomial

1 INTRODUCTION

Pattern detection is an important tool for the genera-
tion of expressive scientific visualizations. Scientific
datasets are ever increasing in size, yet the bandwidth
of the human visual channel remains constant. Pattern
detection algorithms allow us to reduce this abundance
of information to simply features in which the scientist
is interested.

One of the challanges in pattern detection is that physi-
cal phenomena expressed in coordinates usually come
with some degrees of freedom that make the search
more complex and time-consuming than inherently
necessary. The underlying feature is present no matter
how it is oriented. Likewise, the exact position or
the scale in which a pattern occurs should not change
whether or not it is detected. Using pattern detection
algorithms that are independent with respect to these
coordinate transformations can therefore significantly
accelerate the process.

A common and successful class of such algorithms is
based on moment invariants. These are characteristic
descriptors of functions that do not change under cer-
tain transformations. They can be constructed from mo-
ments in two different ways: the generator approach

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

and normalization. Moments are the projections of a
function onto a function space basis.

During normalization, certain moments are put into
a predefined standard position. The remaining mo-
ments are then automatically invariant with respect to
this transformation. In contrast, the generator approach
uses algebraic relations to explicitly define a set of mo-
ment invariants that are constructed from the moments
through addition, multiplication, or other arithmetic op-
erations.

Each of these approaches comes with its own advan-
tages and disadvantages. Depending on the application,
one may be superior to the other. In this paper, we
will concentrate on the generator approach. We begin
with a review of generators currently in the literature
for two-dimensional scalar and vector fields, demon-
strating their differences and dicussing shortcomings;
we present a flexible basis able to overcome them.

A set of moment invariants should have the following
three important qualities:

Completeness: The set is complete if any arbitrary mo-
ment invariant can be constructed from it.

Independence.: The set is independent if none of its
elements can be constructed from its other elements.

Existence: The set is existent, in other words flexible,
if it is generally defined1 without requiring any specific
moments2 to be non-zero.

1 We use the arithmetic meaning of defined. For example, the
operation 1/x is defined for x 6= 0 and undefined if x = 0.

2 As a counter example, the so far suggested basis for real val-
ued functions requires at least one moment to be non-zero that
suffices p0−q0 = 1.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 11 ISBN 978-80-86943-49-7

Completeness ensures that the set has the power to dis-
criminate two objects that differ by something other
than only a rotation. Independence accelerates feature
detection by preventing comparison of redundant val-
ues. Finally, existence guarantees that the set can detect
any pattern and does not have restrictions to its specific
form, such as having a non-vanishing linear component.

In the real-valued case, a complete and independent set
of moment invariants was proposed by Flusser in [1].
We build upon his results to construct a basis that gener-
ally exists. Since our basis is flexible, it can be adapted,
making it robust even if all moments that correspond to
rotational non-symmetric complex monomials are close
to zero. Further, it is automatically suitable for the de-
tection of symmetric patterns without prior knowledge
of the specific symmetry.

Schlemmer et al. [2] were pioneers in the field, being
the first to extend the concept of moment invariants to
vector fields. Their suggested generator falls short of
being a bona fide basis, according to their own defi-
nition, as it does not meet the requirements of com-
pleteness and independence. A proof can be found in
Section 5.1. Later, Flusser et al. [3] proposed the first
complete and independent basis of moment invariants
for flow fields. In this paper, we build upon these ef-
forts and introduce a novel basis that meets the full set
of standards for a basis. As in the real-valued case, our
suggested basis is independent, complete, solves the in-
verse problem, and additionally is generally existent.

2 RELATED WORK
In 1962, moment invariants were introduced to the im-
age processing society by Hu [4]. He used a set of seven
rotation invariants.

Teague [5] and Mostafa and Psaltis citeAMP84 advo-
cated for the use of complex moments. This particularly
simplifies the construction of rotation invariants as ro-
tations take the simple form of products with complex
exponentials.

In 2000, Flusser [1] presented a calculation rule to com-
pute a complete and independent basis of moment in-
variants of arbitrary order for 2D scalar functions. He
also showed that the invariants by Hu [4] are not in-
dependent and that his basis solves the inverse prob-
lem [6].

Building on Flusser’s work, Schlemmer et al. [2] were
the first to derive moment invariants for vector fields.
In their pioneering work in 2007, they provided a set of
five invariants. Later, in his thesis, Schlemmer also pre-
sented a general rule for moments of arbitrary order [7].

Apart from the use of complex numbers, moment ten-
sors are the other common framework for the con-
struction of moment invariants. They were suggested
by Dirilten and Newman in 1977 [8]. The principal

idea is that tensor contractions to zeroth order are nat-
urally invariant with respect to rotation. It is more
difficult to answer questions of completeness or inde-
pendence in the tensor setting [9], but in contrast to
the complex appproach, it generalizes more easily to
three-dimensional functions. Pinjo et al. [10], for ex-
ample, estimated 3D orientations from the contractions
to first order, which behave like vectors. Another path
that has been successfully taken uses spherical harmon-
ics [11, 12, 13, 14] and their irreducible representation
of the rotation group. A generalization of the tensor ap-
proach to vector fields was suggetsed by Langbein and
Hagen [15].
In contrast to the derivation of explicit calculation rules
that generate invariants, normalization can be used. A
description of normalization for scalar fields can be
found in [3]. Bujack et al. followed the normal-
ization approach to construct moment invariants for
two-dimensional [16] and three-dimensional [17] vec-
tor fields. Additionally, while Liu and Ribeiro [18] do
not call it moment normalization, they follow a very
similar approach.
The interested reader can find a detailed introduction to
the theory of moment invariants in [3] and an overview
of feature-based flow visualization in [19].

3 REAL-VALUED FUNCTIONS
Two-dimensional real valued functions R2→ R are of-
ten embedded into the complex plane C∼R2→R⊂C
to make use of the easy representation of rotations in the
setting of complex numbers. We briefly revisit the foun-
dation of moment invariant bases of complex monomi-
als. A more detailed introduction can be found in [3].
For a function f : C→ C and p,q ∈ N, the complex
moments cp,q are defined by

cp,q =
∫
C

zpzq f (z)dz. (3.1)

Let f ′(z) : C→ C differ from f by an inner rotation by
the angle α ∈ (−π,π]

f ′(z) = f (e−iα z), (3.2)

then, the moments c′p,q of f ′ satisfy

c′p,q = eiα(p−q)cp,q. (3.3)

Starting with (3.3), Flusser [1] shows that a rotational
invariant can be constructed by choosing n ∈ N and for
i = 1, ..,n integers ki, pi,qi ∈ N0. If they satisfy

n

∑
i=1

ki(pi−qi) = 0, (3.4)

then, the expression

I =
n

∏
i=1

cki
pi,qi (3.5)

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 12 ISBN 978-80-86943-49-7

is invariant with respect to rotation. From this formula,
infinitely many rotation invariants can be generated, but
most of them are redundant. In order to minimize re-
dundancy, Flusser constructs a basis of independent in-
variants. The following definitions and the theorem
stem from [1].

Definition 3.1. An invariant J of the shape (3.5) is con-
sidered to be dependent on a set I1, ..., Ik if there is a
function F containing the operations multiplication, in-
volution with an integer exponent and complex conju-
gation, such that J = F(I1, ..., Ik).

Definition 3.2. A basis of a set of rotation invariants
is an independent subset such that any other element
depends on this subset.

3.1 Flusser’s Basis
The following basis was suggested by Flusser in [1],
where the proof of the theorem can be found.

Theorem 3.3. Cited from [1]. Let M be a set of com-
plex moments of a real-valued function, M̄ the set of
their complex conjugates and cp0,q0 ∈M∪ M̄ such that
p0− q0 = 1 and cp0,q0 6= 0. Let I be the set of all ro-
tation invariants created from the moments of M ∪ M̄
according to (3.5) and B be constructed by

∀p,q, p≥ q∧ cp,q ∈M∪ M̄ : φ(p,q) := cp,qcp−q
q0,p0
∈B,
(3.6)

then B is a basis of I .

This basis satisfies another important property as it
solves the inverse problem, meaning up to the one de-
gree of freedom stemming from the rotational invari-
ance, the original moments can be unambiguously re-
constructed from the basis [6].

In certain situations, it may occur that no non-zero mo-
ment with p0− q0 = 1, required for Theorem 3.3, can
be found. In this case, Flusser’s basis is undefined.
However, it is sufficient for cq0,p0 to have a value close
to zero to make the produced invariants unstable and
therefore unusable.

Example 3.4. The function

f (x,y) = (−y3 +3x2y+ x2− y2)χ(x2 + y2 ≤ 1) (3.7)

with χ corresponding to the characteristic function, has
the complex moments c2,0 = π/6, c0,2 = π/6, c3,0 =
iπ/8, c0,3 =−iπ/8, c3,1 = π/8, c1,3 = π/8.

All other moments up to fourth order are zero. There
is no p0− q0 = 1 with cp0,q0 6= 0. Therefore, the basis
from Theorem 3.3 does not exist. Still, it would be pos-
sible to construct moment invariants for f , for example,
c3,1c0,2 = π2/48.

Function (3.7)
without rotational
symmetry.

Its quadratic part
with two-fold
symmetry.

Its cubic part with
three-fold rota-
tional symmetry.

Figure 1: The function (3.7) from Example 3.4 and its
components visualized using the height colormap.

It should be noted that the situation of vanishing mo-
ments always occurs with symmetric functions. In this
case, Flusser et al. [20] provide a different basis, tai-
lored toward the specific n-fold rotational symmetry,
which needs to be known in advance. However, as can
be seen in Example 3.4, all moments with p0− q0 = 1
can be zero for non-symmetric functions, too.

3.2 Flexible Basis
Motivated by Example 3.4, we propose the following
basis. Since it is adaptive, it exists for any pattern.

Theorem 3.5. Let M = {cp,q, p+ q ≤ o} be the set of
complex moments of an arbitrary real-valued function
f : R2 → R up to a given order o ∈ N. If there is a
0 6= cp0,q0 ∈M with p0−q0 < 0, we define the set B by
B := {φ(p,q), p+q≤ o, p≥ q} with

φ(p,q) := cp,qc
− p−q

p0−q0
p0,q0 , (3.8)

and otherwise by B := {cp,p, p+ p≤ o}. Then B is a
basis of all rotation invariants of M, which is generally
existent independent of f .

Before embarking on the proof of this theorem, we
would like to provide useful context towards a better
understanding of the proof.

We start by noting that this basis is tailored toward a
given function. Different functions may result in dif-
ferent bases and a basis that exists for one function may
not exist for another function. In order to maximize sta-
bility, we suggest choosing the lowest order moment,
cp0,q0 , with a magnitude above the average:

|cp0,q0 | ≥
∑p+q<o |cp,q|

∑p+q<o
. (3.9)

The fraction in the exponent of (3.8) corresponds to a
root of a complex number, which has |p0 − q0| solu-
tions. It is not necessary to store the invariants for all
complex roots, but only for a single arbitrary but con-
sistent one. However, during the comparison step with
the pattern, we need to take this ambiguity into account

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 13 ISBN 978-80-86943-49-7

and compare the arbitrary root of the function to each
of the multiple roots of the pattern. We do not need to
store the multiple roots of the pattern either as we can
compute the missing ones if we know just one invariant
φ(p,q) and the chosen p0,q0 from (3.9) using the rule

φ(p,q)e
2iπk

p0−q0 (3.10)

for k = 1, ..., p0− q0. Please note though it is crucial
that all elements φ(p,q) of the set of stored invariants
were generated using the same complex root. We show
in detail why it is necessary to work with this ambiguity
in Subsection 3.3.

Proof. This proof consists of four parts.

Invariance. We can see from (3.5) and (3.4) that
the elements φ(p,q) are rotation invariant, because of
1(p−q)+(p0−q0)(−(p−q)/(p0−q0)) = 0. The el-
ements cp,p are naturally invariant with respect to arbi-
trary rotations, because of (3.2).

Completeness. We will solve the inverse problem. The
assertion then follows from the fundamental theorem
of moment invariants [21]. Analogous to [6], we can
pick one orientation to remove the degree of freedom
that comes from the rotation invariance. We assume
cp0,q0 ∈ R+. Firstly, since cp0,q0 ∈ R+, it coincides
with its absolute value, which can be constructed from
φ(q0, p0) via

cp0,q0 = |cp0,q0 |=
√

cp0,q0cp0,q0 =
√

cq0,p0cp0,q0

=

√
cq0,p0c

− q0−p0
p0−q0

p0,q0 =
√

φ(q0, p0)
(3.11)

because real valued functions suffice

cp,q = cq,p. (3.12)

Please note that the invariant φ(q0, p0) is part of the
basis, because from the restriction on the normalizer
p0− q0 < 0 follows the restriction for the elements of
the basis p > q with p = q0,q = p0. Secondly, for all
p > q, the original moment cp,q can be reconstructed
from any of the possibly multiple φ(p,q) using the cal-
culation rule

cp,q = φ(p,q)c
p−q

p0−q0
p0,q0 . (3.13)

Then, for all p < q, the original moments can
afterwards be reconstructed from cq,p using the rela-
tion (3.12). Finally, for p = q, the moments are already
part of the basis.

Existence. If all moments with p0−q0 6= 0 are zero, the
basis reduces to {cp,p, p+ p≤ o}. It is known from [20]
that this is a basis for circular symmetric functions3.

3 We call a function circular symmetric or completely rotation-
ally symmetric if its rotated version coincides with the origi-

For all other functions, a non-zero non-symmetric mo-
ment cp0,q0 with p0−q0 6= 0 can be chosen. If it should
suffice p0− q0 > 0, then we automatically know from
(3.12), that cq0,p0 6= 0, too. It satisfies the constraint
q0− p0 < 0 and the basis exists as defined.

Independence. We use the polar representation
cp0,q0 = reiφ of the normalizer of a function f to
construct the new function

f ′(z) := r
1

p0−q0 f (e
iφ

p0−q0 z). (3.14)

Using (3.2), we see that moments of f ′ suffice c′p,q =

cp,qc−(p−q)/(p0−q0)
p0,q0 and therefore coincide with the ba-

sis elements φ(p,q) of f . Since the moments of f ′ are
independent, so is the basis. If no normalizer cp0,q0 can
be found, the basis consists solely of moments and is
therefore independent, too.

Example 3.6. The flexible basis exists for the func-
tion (3.7) from Example 3.4 and Figure 1. In agree-
ment with (3.9) among the moments up to fourth order,
we pick p0 = 0,q0 = 2. Then, the non-zero elements of
the basis are

φ(2,0) = c2,0c0,2 =
π2

36
,

φ(3,0) = c3,0c
3
2
0,2 =±

iπ
√

π
3

8
√

6
3 ,

φ(3,1) = c3,1c0,2 =
π2

48
.

(3.15)

Pleas note that during the pattern recognition task, the
flexible basis that is tailored toward the pattern will
be evaluated on the field where the chosen normalizer
cp0,q0 may vanish. The moment invariants always be-
come unstable if the moment cp0,q0 is close to zero,
which leads to very high values in the invariants. But
because of 3.9 these areas must be very different from
the pattern. So this kind of instability does not influence
the result of the pattern matching.

3.3 Multiple Complex Roots
In this subsection, we will show why the proposed treat-
ment of the multiple complex roots is necessary in order
to guarantee independence, invariance, completeness,
and existence. It may be skipped on first reading.

Invariance. If we restrict the basis from Theorem 3.5
to one representative of the possibly multiple complex
roots, the resulting set is no longer invariant with re-
spect to rotation. Without loss of generality, let us
choose the root with the lowest non-negative angle to

nal function independent from the rotation angle α , meaning
it suffices ∀α ∈ [0,2π) : f (z) = Rα f (z). One could say, it is
n-fold symmetric with n = ∞.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 14 ISBN 978-80-86943-49-7

the positive real axis. Then, using function f from (3.7)
as in Example 3.6, we would pick

√
π/6 as the repre-

sentative complex root of c0,2 = π/6. The generated
set would have the form φ(2,0) = c2,0c0,2 = π2/36,

φ(3,0) = c3,0c3/2
0,2 = iπ

√
π

3
/8
√

6
3
, φ(3,1) = c3,1c0,2 =

π2/48. Let f ′ be f if we rotate it by π , then the mo-
ments of

f ′(x,y) = (y3−3x2y+ x2− y2)χ(x2 + y2 ≤ 1) (3.16)

are the same as in Example (3.4) except that the ones
of odd order in the middle row change their sign. As
a result, the chosen representative root of c0,2 is still√

π/6, and the new generated set differs from the pre-

vious, because φ(3,0) = c3,0c3/2
0,2 =−iπ

√
π

3
/8
√

6
3

has
the opposite sign.

Completeness. In many applications, the full discrim-
inative power of a complete basis is not necessarily re-
quired. In these cases, we can replace φ(p,q) from The-
orem 3.5 by the simpler formula

φ
′(p,q) := cp0−q0

p,q c−(p−q)
p0,q0 . (3.17)

The resulting generator B can be used instead of the
basis from Theorem 3.5. It has only one unique ele-
ment for each p,q because it does not contain complex
roots. But note that this set is not generally complete.
To prove that, we revisit the function from Example 3.6
with moments calculated up to fourth order. If we use
the basis from (3.8), the invariant c3,1c0,2 = π2/48 is
part of the basis and can therefore be constructed from
the basis trivially.

However, if we use φ ′(p,q) from (3.17), we get
φ ′(2,0) = c2

2,0c2
0,2 = π4/64, φ ′(3,0) = c2

3,0c3
0,2 =

−π5/8263, φ ′(3,1 = c2
3,1c2

0,2 = π4/8262, from which
c3,1c0,2 cannot be constructed. We can only use
φ ′(3,1) = (c3,1c0,2)

2, which does not contain the more
detailed information that c3,1c0,2 = π2/48 was actually
positive. As an example, the function

g(x,y) =(31(x2− y2)−40(x4− y4)− y3 +3x2y)

χ(x2 + y2 ≤ 1)
(3.18)

shown in Figure 2 has the moments c2,0 = π/6,
c0,2 = π/6, c3,0 = −iπ/8, c0,3 = iπ/8, c3,1 = −π/8,
c1,3 = −π/8. The basis from Theorem 3.5 shows
the difference between g and f , because here
φg(3,1) = c3,1c0,2 = −π2/48 has opposite sign than
φ f (3,1) = π2/48 in (3.15). In contrast to that, the
generator defined in (3.17) assumes the exact same
values φ ′g(3,1) = c2

3,1c2
0,2 = π4/8262 = φ ′f (3,1) for g

as for f .

Existence. If we restrict ourselves to moments that
have no symmetry with respect to rotation whatsoever,
i.e. p0−q0 = 1, then we have no complex roots and get

one unique solution for each p,q. In this case, the basis
reduces to the one suggested by Flusser and it may not
exist even for non-symmetric functions as was already
seen in Example 3.4.

Independence. Considering the multiplicity of the
complex roots does not violate the independence if we
interpret them in the following way. The multiple roots
of an invariant are not independent invariants them-
selves, but merely manifestations of the same invari-
ant. We do not have to store them separately, because
we can construct all roots from one representative using
formula (3.10).

Figure 2: The function
g(x,y) from (3.18) visual-
ized using the height color
map. The generator (3.17)
produces the same invari-
ants as for f (x,y) from Fig-
ure 1, even though they are
clearly different.

Figure 3: Arrow glyphs
and line integral convolu-
tion (LIC) [22] of the func-
tion (5.10) from Example
5.2. Color and size of the
arrows represent the speed.
The generator (5.5) does
not exist for this pattern.

4 COMPLEX FUNCTIONS
The bases from the previous section were tailored to-
wards real valued functions. Since they satisfy cp,q =
cq,p, it was sufficient to only include φ(p,q) for p > q.
Analogous to Theorem 3.5, a flexible basis for arbitrary
complex functions that behave under rotations as given
in (3.3) can be constructed using the following theorem.

Theorem 4.1. Let M = {cp,q, p+ q ≤ o} be the set of
complex moments of a complex function up to a given
order o ∈N. If there is a 0 6= cp0,q0 ∈M with p0−q0 6=
0, we define the set B by B := {φ(p,q), p+ q ≤ o} \
{φ(p0,q0)}∪{|cp0,q0 |} with

φ(p,q) := cp,qc
− p−q

p0−q0
p0,q0 , (4.1)

and otherwise by B := {cp,p, p+ p≤ o}. Then B is a
basis of all rotation invariants of M that exists for any
arbitrary complex function.

Proof. The proof works analogously to the proof of
Theorem 3.5.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 15 ISBN 978-80-86943-49-7

5 FLOW FIELDS
We can interpret a complex function f : C→ C as a
two-dimensional vector field by means of the isomor-
phism between the complex and the Euclidean plane.
Analogously to scalar functions, we can make use of
the complex moments cp,q as defined in (3.1).

In contrast to the scalar case, flow fields transform by a
total rotation. Therefore, we assume that f ′(z) : C→C
suffices

f ′(z) = eiα f (e−iα z). (5.1)

In this case, the moments c′p,q of f ′ are related to the
moments of f by

c′p,q = eiα(p−q+1)cp,q. (5.2)

A proof can, for example, be found in [16].

Schlemmer and Heringer [2] showed that analogously
to (3.5), any expression of the shape

I =
n

∏
i=1

cki
pi,qi (5.3)

with n∈N and for i = 1, ...,n : ki, pi,qi ∈N0 is invariant
to total rotation, if

n

∑
i=1

ki(pi−qi +1) = 0, (5.4)

because of (5.2).

5.1 Schlemmer’s Generator
The first moment invariants for vector fields were sug-
gested by Schlemmer et al. in 2007 [2]. In that paper,
instead of presenting a rule for the generation of mo-
ment invariants of arbitrary order, a set of five invari-
ants was explicitly stated. Two years later, in his the-
sis [7], Schlemmer provided the general formula with
which invariants of arbitrary order can be produced.
The five moments from [2] are exactly the invariants
that are produced from this formula if the maximal or-
der of the moments is restricted to two. We therefore
assume that Schlemmer at al. used this formula in their
2007 paper [2], although not explicitly stated.

Theorem 5.1. Cited from [7]. Let M be the set or a
subset of all complex moments cp,q of order (p+ q) ∈
{0, ...,o}, o ≥ 2. Let I be the set of all moment in-
variants being constructed according to (3.5) from the
elements of M. Let cṗ,q̇ and cp̈,q̈ ∈ M, with ṗ− q̇ =
q̈− p̈ = 2 and c ṗ,q̇ as well as c p̈,q̈ 6= 0 If the set B is
constructed as follows:

B = {φ(p,q) := cp,qcap−q
ṗ,q̇ cbp−q

p̈,q̈ ,cp,q ∈M}, (5.5)

with

am =

{
0, if m≥−1
(|m|+1)div3, if m≤−2

(5.6)

and

bm =

{
m+1, if m≥−1
(m+1)mod3, if m≤−2

(5.7)

then B is a basis of I .

This theorem in fact happens to be slightly incorrect.
Schlemmer’s generator is neither independent nor com-
plete and therefore no basis in the sense of Definition
3.2. We prove why in the two following paragraphs and
give two explicit examples. In our opinion, this minor
inaccurateness does not lessen the impact of their con-
tribution to the pattern detection and flow visualization
communities.

Independence. This generator is not independent, be-
cause the invariant φ(ṗ, q̇) and φ(p̈, q̈) are identical. We
can see that from ṗ− q̇ = 2, p̈− q̈ =−2, and

φ(ṗ, q̇)
(5.5)
= cṗ,q̇ca2

ṗ,q̇cb2
p̈,q̈

(5.6),(5.7)
= cṗ,q̇c0

ṗ,q̇c3
p̈,q̈ = cṗ,q̇c3

p̈,q̈,

φ(p̈, q̈)
(5.5)
= cp̈,q̈ca−2

ṗ,q̇ cb−2
p̈,q̈

(5.6),(5.7)
= c p̈,q̈c1

ṗ,q̇c2
p̈,q̈ = c ṗ,q̇c3

p̈,q̈.
(5.8)

Completeness. This generator is not complete, because
the magnitudes |cṗ,q̇| and |c p̈,q̈| cannot be reconstructed
from its elements. That follows from the fact that given
the moments c ṗ,q̇ and c p̈,q̈ of a function f , any function
f ′ with c′ṗ,q̇ = s3cṗ,q̇ and c′p̈,q̈ = cp̈,q̈/s with arbitrary s∈
R+ will produce the same φ(ṗ, q̇) = φ(p̈, q̈), because of

φ
′(ṗ, q̇)

(5.8)
= c′ṗ,q̇c′3p̈,q̈ = s3c ṗ,q̇(

1
s

c
p̈,q̈
)3 = φ(ṗ, q̇).

(5.9)

The generator can be transformed into a basis via B \
{φ(ṗ, q̇)}∪{|cṗ,q̇|}. But even with this correction, the
basis is not well-chosen. For one, it is unnecessarily
complicated, because it requires evaluation of the two
auxiliary functions (5.6) and (5.7) and each element can
consist of up to thee factors. Further, it does not ex-
ist for functions that do not have non-zero c ṗ,q̇ 6= 0 as
well as cp̈,q̈ 6= 0 with ṗ− q̇ = q̈− p̈ = 2. This situa-
tion is similar to the one in Subsection 3.1. But in this
case, even two non-vanishing moments of specific or-
ders need to be present, which increases the number of
cases in which the generator does not exist.

Example 5.2. The vector field given by the function

f (z) = z2
χ(|z| ≤ 1) (5.10)

has only one non-zero moment up to third order c0,2 =
π/3. It is visualized in Figure 3. Even though it is
not symmetric, Schlemmer’s generator does not exist,
because cṗ,q̇ 6= 0 cannot be found to suffice ṗ− q̇ = 2.

Example 5.3. The vector field given by the function

f (z) = (z2 +2z2)χ(|z| ≤ 1), (5.11)

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 16 ISBN 978-80-86943-49-7

The function has
no symmetry.

Its two-fold sym-
metric part.

Its three-fold sym-
metric part.

Figure 4: Arrow glyphs and LIC of the function (5.11)
from Example 5.3 and its components. The color and
the size of the arrows represent the speed of the flow.

with χ being the characteristic function, is visualized in
Figure 4. It has two non-zero moments up to third order

c0,2 =
π

3
, c2,0 =

2π

3
. (5.12)

Here, Schlemmer’s generator does exist, because we
can choose cṗ,q̇ = c2,0 and cp̈,q̈ = c0,2, but it contains
only the redundant information

φ(0,2) = c0,2ca−2
2,0 cb−2

0,2 = c0,2c1
2,0c2

0,2 = 2(
π

3
)4,

φ(2,0) = c2,0ca2
2,0cb2

0,2 = c2,0c0
2,0c3

0,2 = 2(
π

3
)4,

(5.13)

from which we cannot reconstruct the magnitudes of
the moments.

5.2 Flusser et al.’s Basis
A straight forward approach to generate a basis of
moment invariants for vector fields was suggested by
Flusser et al. in [3].

Theorem 5.4. Let M be the set of moments up to the
order o ∈ N and cp0,q0 6= 0 satisfying p0 − q0 = −2.
Further let I be the set of all rotation invariants cre-
ated from the moments of M according to (5.3) and B
be constructed by

∀p,q, p+q≤ o : φ(p,q) := cp,qc(p−q+1)
p0,q0 ∈B,

(5.14)
then B \{φ(p0,q0)}∪{|φ(p0,q0)|} is a basis of I .

This produces not only an independent and complete
set, but is also more flexible than Schlemmer’s genera-
tor as it only needs a single specific non-zero moment,
not two. Further, it is simpler and more intuitive be-
cause it does not need any additional series such as (5.6)
and (5.7).

Example 5.5. Flusser’s basis exists for the vector field
given by the function (5.10) from Example 5.2 and Fig-
ure 3. It has one non-zero element |c0,2|= 2π/3.

Example 5.6. Flusser’s basis exists for the vector field
given by the function (5.11) from Example 5.3, visual-
ized in Figure 4, and, up to one degree of freedom, the
moments can be reconstructed from the basis

|c0,2|=
2π

3
, φ(2,0) = c2,0c3

0,2 = 8(
π

3
)4. (5.15)

To show that, we fix the rotational degree of freedom
by setting c0,2 ∈ R+ and get

c0,2 = |c0,2|= 2
π

3
, c2,0 = φ(2,0)c−3

0,2 =
π

3
.

(5.16)

The function has
no rotational sym-
metry.

Its linear part with
two-fold symme-
try.

Its quadratic part
with three-fold
symmetry.

Figure 5: Arrow glyphs and LIC of the function (5.17)
from Example 5.7. The color and the size of the arrows
represent the speed of the flow.

Example 5.7. The vector field given by the function

f (z) = (z+ z2)χ(|z| ≤ 1) (5.17)

has three non-zero moments up to third order

c1,0 =
π

2
, c2,0 =

π

3
, c2,1 =

π

4
(5.18)

and is visualized in Figure 5. Here, Flusser’s basis does
not exist because we cannot find any cp0,q0 6= 0 with
p0−q0 =−2, even though the function is not symmet-
ric.

5.3 Flexible Basis
Analogous to the scalar case, we can derive a robust
basis even for patterns that do not have a numerically
significant moment of one-fold symmetry.

Theorem 5.8. Let M = {cp,q, p+ q ≤ o} be the set of
complex moments of a vector field f : R2→ R2 up to a
given order o∈N. If there is a 0 6= cp0,q0 ∈M with p0−
q0 + 1 6= 0, we define the set B by B := {φ(p,q), p+
q≤ o}\{φ(p0,q0)}∪{|cp0,q0 |} with

φ(p,q) := φ(p,q) := cp,qc
− p−q+1

p0−q0+1
p0,q0 , (5.19)

and otherwise by B := {cp,p+1, p+ p+ 1 ≤ o}. Then
B is a basis of all rotation invariants of M, which gen-
erally exists independent of f .

Proof. The proof works analogously to the proof of
Theorem 3.5.

Remark 5.9. This last basis of invariants is equivalent
to the normalization approach proposed by Bujack et al.
[23].

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 17 ISBN 978-80-86943-49-7

Algorithm 1 Pattern Detection with Flexible Basis.

Input: Nx×Ny scalar field: f , Br(0) pattern: g, scales:
{s1, ..,sNs}, maximum moment order: n,

1: for p+q≤ n do
2: moments of pattern: cg

p,q
(3.1)
=

∫
Br(0) zpzqg(z)dz,

3: end for
4: for o = 0, ..,n, p = 0, ..,o,q = p, ..,o− p, do
5: if |cp,q| ≥

∑p+q<o |cp,q|
∑p+q<o

then
6: choose normalizer (3.9) p0 = p,q0 = q
7: break
8: end if
9: end for
10: for p+q≤ n do
11: basis for pattern: φ g(p,q)

(3.8)
= cg

p,q(c
g
p,q)
− p−q

p0−q0 ,
12: end for
13: for x ∈ Nx×Ny,s = s1, ..,sNs do
14: for p+q≤ n do
15: field mom.: c f

p,q(x,s) =
∫

Bs(x) zpzq f (z)dz,
16: end for
17: for p+q≤ n do
18: basis: φ f (p,q)(x,s)

(3.8)
= c f

p,q(x,s)(c
f
p,q)
− p−q

p0−q0 ,
19: end for
20: Euclidean distance over |p0 − q0| roots (3.10):

D(x,s) = min
k=1,..,|p0−q0|

(∑p+q≤n(φ
f (p,q)(x,s) −

φ g(p,q)e
2iπk

p0−q0)2)
1
2 ,

21: end for
Output: similarity of the pattern p to the field f at po-

sition x and scale s: S(x,s) = D(x,s)−1.

Example 5.10. The flexible basis exists for the vec-
tor field (5.17) from Example 5.7, visualized in Fig-
ure 5. Any of the three non-zero moments up to third
order (5.18) can be chosen as normalizer cp0,q0 . In or-
der to maximize stability, the proposed algorithm would
choose cp0,q0 = c1,0, resulting in two solutions of the
complex square root c−1/2

1,0 =±
√

π

2 and the basis

|c1,0|=
π

2
, φ(2,0) =±

√
2π

3
, φ(2,1) =

1
2
.

(5.20)

The algorithmic description of the pattern detection for
the scalar case can be found in Algorithm 1.

6 EXPERIMENT
We apply the different vector field bases to a pattern
detection task in a vector field. The dataset is a compu-
tational fluid dynamics simulation of the flow behind a
cylinder. The characteristic pattern of the fluid is called
the von Kármán vortex street. A visualization of the
vortices with removed average flow can be found in

Figure 6a. The direction of the flow is visualizaed us-
ing line integral convolution [22] and the speed is color
coded using the colormap from Figure 7.

The non-flexible bases do not exist for moments up to first
order. The algorithm does not produce any output.

The flexible basis does exist with normalizer c1,0. The pat-
tern from Figure 7 and its repetitions are correctly detected.

Figure 6: Result of the pattern detetction task using
only moments up to first order. The speed of the flow is
encoded using the colorbar on the top, the similarity of
the field to the pattern using the colorbar on the bottom.

In our experiments, we consider moments up to first or-
der in Figure 6 and moments up to second order in Fig-
ure 8. Please note that the basis suggested by Schlem-
mer [7] from Theorem 5.1 and the one suggested by
Flusser [3] from Theorem 3.3 do not exist for moments
calculated only up to first order, because a moment
cp0,q0 with p0− q0 = −2 cannot be found using only
c0,0,c1,0, and c0,1. For moments up to second order,
there is only one potential moment cp0,q0 = c0,2 satify-
ing p0−q0 =−2, which is why there is only one basis
configuration for these two approaches. They coincide
for the moments up to second order, except for the mag-
nitude of the normalizer |c0,2|. The remaining moment
invariants are

c0,0c0,2, c0,1, c1,0c2
0,2, c1,1c0,2, c2,0c3

0,2, (6.1)

as already presented in [2].

Then, as long as the normalizer c0,2 is numerically non-
zero, all three bases will produce stable and identical
results up to minor numerical differences. To show the
difference between the flexible and non-flexible bases,
we therefore use the pattern from Figure 7a, which sat-
isfies |c0,2|< 0.01. This pattern was extracted from the
dataset itself. Its position in the von Kármán vortex
street can be found in the lower, rightmost circle of Fig-
ure 6b. Since the only element which differs in the two
non-flexible bases is close to zero, the results of the two
are almost identical. The differences are numerically
small and cannot be perceived by the human eye. To

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 18 ISBN 978-80-86943-49-7

save space, we plot only the instance that corresponds
to Schlemmer’s basis. The other is identical.

(a) Pattern cut out
from the dataset.

(b) The pattern ro-
tated by π/3.

(c) The pattern ro-
tated by π/2.

Figure 7: The pattern in different orientations. It was
cut out from the dataset at the position of the lower
right-most white circle in Figure 6b.

The output of our pattern detection algorithm are circles
that indicate the position, the size, and the similarity of
the matches. Similarity is encoded in the colormap in
the bottom row of Figure 6. The higher the similarity,
the brighter the color of the corresponding circle. The
color white applies to all matches that have a Euclidean
distance of all the moment invariants of less than 0.02.
A more detailed description of the algorithm and the
visualization can be found in [16].

In Figure 6b, we can see that the flexible basis exists
even for this pattern and that it correctly finds the pat-
tern’s original position. It further detects similar occur-
rences as it repeats itself in the periodic von Kármán
street. As expected, the further we move towards the
obstacle, the similarity in each repetition decreases, as
indicated by the decreasing brightness of the circles.

non-flexible bases for the pat-
tern oriented as in Figure 7a.

Flexible bases for the pattern
oriented as in Figure 7a.

non-flexible bases for the pat-
tern oriented as in Figure 7b.

Flexible bases for the pattern
oriented as in Figure 7b.

non-flexible bases for the pat-
tern oriented as in Figure 7c.

Flexible bases for the pattern
oriented as in Figure 7c.

Figure 8: Result of the pattern detetction task using mo-
ments up to second order. The result of the algorithm
using the non-flexible bases is unstable (left). It de-
pends on the orientation of input pattern. In contrast
to that, the flexible basis produces consistent results
(right).

Figure 8 compares the output of the algorithm using
the flexible basis from Theorem 5.8 and the two non-
flexible bases for moments up to second order. To show
the instability of the non-flexible bases, we used three
different instances of the pattern. They differ solely
by their orientation. Theoretically, the invariants of all
three bases should be invariant with respect to this de-
gree of freedom and produce the same results for all
three instances. But as can be seen in the left column
of Figure 8, this is not true for the non-flexible bases.
Depending on the orientation of the pattern, the simi-
larity of the exact location of the pattern in the field is
rather low. Sometimes its position is not the match with
the highest similarity, or multiple fuzzy matches occur.
On the right side, we can see that the flexible basis pro-
duces coherent, stable, and correct results independent
from the orientation of the pattern.

7 DISCUSSION

We have reviewed the different bases of moment invari-
ants built from complex monomials using the generator
approach and compared their behavior with respect to
three important qualities such a basis should suffice: in-
dependence, completeness and general existence.

For scalar fields, the basis suggested by Flusser [1] is
complete and independent, but it only exists if the pat-
tern has a non-zero moment that is not rotationally sym-
metric. We have extended his basis to one that always
exists, no matter how the values of the moments of a
function are distributed.

For vector fields, the first generator approach was sug-
gested by Schlemmer [7]. We show that his set of mo-
ment invariants is neither complete nor independent and
therefore does not satisfy the properties of a basis. As
a result, Flusser et al. [3] were the first to provide a
basis of moment invariants for vector fields using the
generator approach. As in the scalar case, their basis is
complete and independent, but requires a non-zero mo-
ment that has no rotational symmetry. We have derived
an extension that exists for arbitrary vector fields and
found it to coincide with the normalization approach by
Bujack et al. [16].

One of the most interesting observations in this work
is the equivalence of the optimal generator approach
with the optimal normalization approach. Assuming
that this fact should also be true for three-dimensional
fields, it might be used for the study of 3D moment in-
variants. The 3D situation is much more complex and
neither the generator nor the normalization approach
have so far resulted in a set of moment invariants that is
complete, independent, and generally existing. Assum-
ing equivalence might guide future research to improve
both methods.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 19 ISBN 978-80-86943-49-7

8 ACKNOWLEDGEMENTS
We would like to thank Sebastian Volke and the
FAnToM development group for the visualization tool,
Mario Hlawitschka for the dataset, and Terece Turton
for editing assistance. This work is published under
LA-UR-17-20144. It was funded by the National
Nuclear Security Administration (NNSA) Advanced
Simulation and Computing (ASC) Program and by the
Czech Science Foundation under Grant GA15-16928S.

9 REFERENCES
[1] Jan Flusser. On the independence of rotation mo-

ment invariants. Pattern Recognition, 33(9):1405–
1410, 2000.

[2] Michael Schlemmer, Manuel Heringer, Flo-
rian Morr, Ingrid Hotz, Martin Hering-Bertram,
Christoph Garth, Wolfgang Kollmann, Bernd
Hamann, and Hans Hagen. Moment Invariants
for the Analysis of 2D Flow Fields. IEEE Trans-
actions on Visualization and Computer Graphics,
13(6):1743–1750, 2007.

[3] J. Flusser, B. Zitova, and T. Suk. 2D and 3D Im-
age Analysis by Moments. John Wiley & Sons,
2016.

[4] Ming-Kuei Hu. Visual pattern recognition by mo-
ment invariants. IRE Transactions on Information
Theory, 8(2):179–187, 1962.

[5] Michael Reed Teague. Image analysis via the gen-
eral theory of moments∗. Journal of the Optical
Society of America, 70(8):920–930, 1980.

[6] Jan Flusser. On the inverse problem of rota-
tion moment invariants. Pattern Recognition,
35:3015–3017, 2002.

[7] Michael Schlemmer. Pattern Recognition for
Feature Based and Comparative Visualization.
PhD thesis, Universität Kaiserslautern, Germany,
2011.

[8] Hudai Dirilten and Thomas G Newman. Pattern
matching under affine transformations. Com-
puters, IEEE Transactions on, 100(3):314–317,
1977.

[9] Tomas Suk and Jan Flusser. Tensor Method for
Constructing 3D Moment Invariants. In Computer
Analysis of Images and Patterns, volume 6855 of
Lecture Notes in Computer Science, pages 212–
219. Springer Berlin, Heidelberg, 2011.

[10] Ziha Pinjo, David Cyganski, and John A Orr. De-
termination of 3-D object orientation from projec-
tions. Pattern Recognition Letters, 3(5):351–356,
1985.

[11] C.H. Lo and H.S. Don. 3-D Moment Forms: Their
Construction and Application to Object Identifi-
cation and Positioning. IEEE Trans. Pattern Anal.
Mach. Intell., 11(10):1053–1064, 1989.

[12] Gilles Burel and Hugues Henocq. 3D Invariants
and their Application to Object Recognition. Sig-
nal procesing, 45(1):1–22, 1995.

[13] Michael Kazhdan, Thomas Funkhouser, and Szy-
mon Rusinkiewicz. Rotation Invariant Spherical
Harmonic Representation of 3D Shape Descrip-
tors. In Symposium on Geometry Processing,
2003.

[14] Nikolaos Canterakis. Complete moment invari-
ants and pose determination for orthogonal trans-
formations of 3D objects. In Mustererkennung
1996, 18. DAGM Symposium, Informatik aktuell,
pages 339–350. Springer, 1996.

[15] Max Langbein and Hans Hagen. A generalization
of moment invariants on 2d vector fields to tensor
fields of arbitrary order and dimension. In Inter-
national Symposium on Visual Computing, pages
1151–1160. Springer, 2009.

[16] Roxana Bujack, Ingrid Hotz, Gerik Scheuermann,
and Eckhard Hitzer. Moment Invariants for 2D
Flow Fields via Normalization in Detail. IEEE
Transactions on Visualization and Computer
Graphics (TVCG), 21(8):916–929, Aug 2015.

[17] Roxana Bujack, Jens Kasten, Ingrid Hotz, Gerik
Scheuermann, and Eckhard Hitzer. Moment In-
variants for 3D Flow Fields via Normalization. In
IEEE PacificVis in Hangzhou, China, 2015.

[18] Wei Liu and Eraldo Ribeiro. Scale and Rota-
tion Invariant Detection of Singular Patterns in
Vector Flow Fields. In IAPR International Work-
shop on Structural Syntactic Pattern Recognition
(S-SSPR), pages 522–531, 2010.

[19] Frits H. Post, Benjamin Vrolijk, Helwig Hauser,
Robert S. Laramee, and Helmut Doleisch. The
State of the Art in Flow Visualisation: Feature
Extraction and Tracking. Computer Graphics Fo-
rum, 22(4):775–792, 2003.

[20] Jan Flusser and Tomas Suk. Rotation Moment In-
variants for Recognition of Symmetric Objects.
Image Processing, IEEE Trans.on, 15(12):3784–
3790, 2006.

[21] Thomas H. Reiss. The revised fundamental the-
orem of moment invariants. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
13(8):830–834, 1991.

[22] Brian Cabral and Leith Casey Leedom. Imag-
ing vector fields using line integral convolution.
In Proceedings of the 20th annual conference on
Computer graphics and interactive techniques,
SIGGRAPH ’93, pages 263–270. ACM, 1993.

[23] Roxana Bujack, Ingrid Hotz, Gerik Scheuermann,
and Eckhard Hitzer. Moment Invariants for 2D
Flow Fields Using Normalization. In IEEE Paci-
ficVis in Yokohama, Japan, pages 41–48, 2014.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 20 ISBN 978-80-86943-49-7

Performance Analysis of Corner Detection Algorithms
Based on Edge Detectors

Naurin Afrin
Department of Computer

Science and Software
Engineering,

Swinburne University of
Technology,

Australia
nafrin@swin.edu.au

Wei Lai
Department of Computer

Science and Software
Engineering,

Swinburne University of
Technology,

Australia
wlai@swin.edu.au

Nabeel Mohammed
Department of Computer
Science and Engineering,
University of Liberal Arts,

Bangladesh
nabeel.mohammed@ulab.edu.bd

ABSTRACT
Detecting corner locations in images plays a significant role in several computer vision applications. Among the
different approaches to corner detection, contour-based techniques are specifically interesting as they rely on edges
detected from an image, and for such corner detectors, edge detection is the first step. Almost all the contour-based
corner detectors proposed in the last few years use the Canny edge detector. There is no comparative study that
explores the effect of using different edge detection method on the performance of these corner detectors. This
paper fills that gap by carrying out a performance analysis of different contour-based corner detectors when using
different edge detectors. We studied four recently developed corner detectors, which are considered as current
state of the art and found that the Canny edge detector should not be taken as a default choice and in fact the
choice of edge detector can have a profound effect on the corner detection performance. We examined commonly
used predefined threshold-based Canny detector with the adaptive Canny detector and found that adaptive Canny
detector gives better results to work with.

Keywords
corners, edge detector, Canny, adaptive Canny

1 INTRODUCTION
Corners play an important role in different computer
vision applications such as image matching and pat-
tern recognition. Among different types of corner de-
tectors, contour-based corner detectors are more sta-
ble and less sensitive to noise [Fmo01, Xia04, Moh07,
Xia07, RMN11b]. The primary step of these detectors
[Moh08, RMN11a, Moh09, Fmo01, Moh07, Zha10] is
to extract the edges that are relevant for corner detec-
tion. A few applications like medical imaging requires
perfect edge identification which is time-consuming,
while different applications like mobile robot vision re-
quires real time vision calculations and do not rely on
impeccable edge recognition.

For contour-based corner detection, researchers have
been using the Canny edge detector since its popular-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

isation by [Moh08] and this trend has continued with-
out question in [Moh08, RMN11a, Moh09, Fmo01] and
others. As a part of our work, we analyse the role of
edge detection method on the current state of the art
chord-based corner detectors and what role, if any, dif-
ferent edge detectors can play in this process.

We considered the performances of very popular chord-
to-point distance accumulation (CPDA) corner detec-
tor [Moh08], Chord to Triangular Arms Ratio (CTAR)
[RMN11a], Difference of Gaussian(DoG) [Xia09] and
Curve to Chord Ratio (CCR) [Ten15]. The DoG de-
tector is not a chord-based detector, but it is presented
to compare against a popular non-chord-based corner
detector. Previous studies like [Ten15] have performed
a comparative study on multiple edge detection tech-
niques i.e. Canny [Can86], Sobel, Roberts, Prewitt
[Pre70], LoG [Kam98] and Zerocross [Avl13] from
an edge-quality perspective. In this paper we com-
pare these techniques in the context of corner detection,
more specifically, we tried to investigate its role on cor-
ner detection techniques based on some questions for
the diverse nature of the different techniques:

1. Does Canny edge detector give best result in all con-
ditions?

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 21 ISBN 978-80-86943-49-7

2. If not, then which edge detector performs better for
detecting corners under which situations?

3. Which edge detector results in the maximum num-
ber of repeatably found corners?

4. Which edge detector ’works best’ for which trans-
formation?

5. Which edge detector is fast for which corner detec-
tor?

6. Which detector finds and extracts the edges quickly?

We observe that most of the contour-based corner de-
tectors use Canny edge detector with threshold 0.2 and
0.7, which is not suitable to find corners in natural im-
ages. Thus, instead of following the trend, we examined
the performance using the adaptive Canny edge detec-
tor and found that it gives excellent results for extract-
ing edges, which results in detecting more corners.

This paper is organised as follows. Section 2 discusses
about some classic edge detection techniques. Section 3
explains the importance of edge detection methods for
detecting corners, while section 4 discusses about some
current state of the art corner detectors. The perfor-
mance analysis is presented in section 6. Finally, sec-
tion 7 concludes the paper.

2 EDGE DETECTION
Generally, Edges refer to the sharp change in image
brightness. So, if there is a high difference between two
neighbouring pixels, a possible edge is detected. The
edge detector determines the transition between these
two regions based on grey level discontinuity. Edge de-
tectors can be classified into two classes: First, the clas-
sical operators such as Roberts, Prewitt and Sobel op-
erators and then Gaussian operators like Canny. Gaus-
sian operator is used to blur images and remove noise.
Both classes of edge detectors apply some simple con-
volution masks on the entire image in order to compute
the first order (Gradient) and/or second order deriva-
tives (Laplacian).

In the following sections we will present a few popular
edge operators.

2.1 Sobel Operator
The Sobel operator is a pair of 3×3 convolution kernels
as shown in Figure 1. These kernels are orthogonal to
each other and is perfect for the edges that existed ver-
tically and horizontally. This two masks are convolved
with the image to calculate the gradient magnitude and
gradient orientation.

Figure 1: Masks used by Sobel Operator.

2.2 Robert Cross operator
The Roberts Cross operator consists of a pair of 2× 2
convolution kernels as shown in Figure 2. These kernels
respond to edges that existed at 45◦ to the pixel grid.
One kernel is used for each of the two perpendicular
orientations.

Figure 2: Masks used for Robert Operator.

2.3 Prewitt operator
Similar to Sobel Operator, Prewitt Operator also uses
two 3× 3 matrix which are convolved with the origi-
nal image to find vertical and horizontal edges [Pre70].
This operator calculates the gradient of the image inten-
sity at each point and gradient orientation shows how
abruptly the image changes at that point.

Figure 3: Masks used for Prewitt Operator.

2.4 Laplacian of Gaussian (LoG) opera-
tor

The Laplacian of Gaussian operatorcalculates the sec-
ond derivative of an image and does not require the edge
direction [Kam98]. Commonly used kernels for LoG
operator is shown in Figure 4.

2.5 Canny Operator
The Canny edge detector is one of the most popular
methods to find edges by separating noise from input
image. [Can86]. The steps of the Canny edge de-
tection algorithm are filtering, hysteresis thresholding,

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 22 ISBN 978-80-86943-49-7

Figure 4: Masks used for LoG

edge tracking and non-maximal suppression. It uses
Gaussian filter Gσ to smooth the image in order to re-
move the noise.

g(m,n) = Gσ (m,n)∗ f (m,n) (1)

where Gσ = 1√
2πσ2 exp(−m2+n2

2σ2)

We have used Canny operator along with Canny
using predefined high and low threshold, 0.7 and
0.2 respectively. We referred Canny with this
predefined threshold as Canny_threshold in our
experiment. Most of the corner detectors in the
literature are using Canny_threshold edge detectors
[Moh08, RMN11a, Moh09, Fmo01, Moh07, Zha10].

2.6 Zero cross
The Zerocross Operator finds the location where the
Laplacian value goes through zero.The main disadvan-
tage is susceptibility to noise [Avl13].

3 IMPORTANCE OF EDGE DETEC-
TION FOR DETECTING CORNERS

A corner can be defined as the intersection of two edges
or, as a point for which there are two dominant and dif-
ferent edge directions in a local neighbourhood. There-
fore, corner detection process is closely related to edge
detection.
The goal of an edge detection process is to mark the
points at which the intensity changes sharply. Differ-
ent effects, such as change of direction, or poor focus
can result in change in the intensity values, resulting in
errors such as false edge detection, loss of true edges,
poor edge localization, as well as high computational
time and problem due to noise.
Edge detectors that depend on Gaussian smoothing,
leads to poorer localization of corner position for the
rounding effect at corner neighbourhood. Moreover,
the non-maximum suppression used in common edge
detectors can make the straight lines curved.
Therefore, the choice of an edge detection process has
significance of chord-based corner detectors. It may be
obvious that the number of detected corners is depends
on the number of edges extracted. However, it is not
just how many edges are detected, but which edges are
detected, that may be more important in the actual ap-
plication of corner detectors.

4 CORNER DETECTION
A corner is one of the most stable features in a 2D im-
age. In this section we will discuss four recent contour-
based corner detectors [Moh08, RMN11a, Xia09]. All
such detectors first extract the image edges, which they
call contours, and then traverse these edges to search for
points at which the curvature values are locally max-
imum or minimum [Fmo01, Xia04, Moh08]. As al-
most all methods in this category apply a Gaussian de-
noising step, the actual curvature value estimation is
relatively robust against noise.

4.1 CPDA: Distance accumulation with
multiple chord lengths

Chord to Point Distance Accumulation technique
(CPDA) was proposed in [Moh08] and is one of the
most instructive contour-based corner detectors. The
method uses the distance accumulation technique to
measure the curvature of every point on an edge.

CPDA detector uses three different chords of length 10,
20 and 30. These chords are moved along each curve.
Before calculating the curvature values, each curve is
smoothed with an appropriate Gaussian kernel (i.e. σ =
1, 2 or 3) in order to remove quantization noises. The
accumulated curvature values for each chord are then
normalized.

Next, CPDA finds the candidate corners by rejecting
weak corners using local maxima of absolute curvature
by comparing the curvature values with threshold Th,
which the authors set to 0.2. Based on the hypothesis
that a well defined corner should have a relatively sharp
angle [Xia04], CPDA calculates angle from a candidate
corner to its two neighbouring candidate corners from
the previous step, and compare with the angle threshold
δ to remove false corners. The angle-threshold δ is set
to 157◦.

4.2 CCR: Distance accumulation using
distance ratio

CCR first puts a chord along the curve and then cal-
culates the flatness by using the ratio of the length of
the curve to the length of the chord. Before that it uses
Gaussian smoothing to remove the noise. The number
of pixels within the curve segment intersected by the
chord is 7 and Gaussian smoothing σ = 3 have been
used to detect the corners. The threshold for the cor-
ners is defined as Th = 0.986.

4.3 CTAR: Chord to Triangular Arms
Ratio

CTAR uses triangular measurement theory to estimate
the curvature values. First it places a chord that is
moved along the curve and a triangle is formed using
the two intersection points between the chord and the

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 23 ISBN 978-80-86943-49-7

curve, and the middle point within those two intersected
points. The ratio between the Euclidean distance of the
two intersected points and the summation of the other
two arms length of that triangle is computed. The main
advantage of CTAR method is that it is not sensitive to
noise as it does not use any derivative based measure-
ments.

Like CCR detector, CTAR also used only one chord of
length 7 along the curve. After estimating the curvature
values, the local minima that are found from each curve
estimation, is considered as corner location based on a
threshold which is set to 0.989. The angle-threshold δ

is set to 163◦

4.4 DoG: Difference of Gaussian detector
DoG detector [Xia09] applies multiple levels of Differ-
ence of Gaussian (DoG) on a curve to obtain several
corresponding planar curves. These planar curves are
then convolved with Difference of Gaussian (DoG) fil-
ters for detecting the corners. The main advantage of
DoG detector is that it uses two scales, a low and a high
scale, and then combines them into the detection of the
candidate corner so that the coarse-to-fine tracking may
be supplanted

5 USING ADAPTIVE CANNY EDGE
DETECTOR

The choice of an edge detection process has a great sig-
nificance in chord-based corner detectors. It may be
obvious that the number of detected corners depends
on the number of edges extracted. Most of the contour-
based corner detection process uses Canny edge detec-
tor [Moh08], [RMN11a], [Moh07] for the initial edge
extraction step. CPDA corner detector [Moh08] first
uses Canny edge detector with thresholds low = 0.2
and high = 0.7 and this trend continues in [RMN11a],
[Moh07] and other recent chord-based corner detec-
tors. Instead of following the trend, we analyse the
role of Canny edge detection method with both adaptive
and pre-defined threshold on the current state of the art
chord-based corner detectors. We use adaptive Canny
edge detection method that follows the most popular
Otsu method to calculate the thresholds which is de-
duced by least square(LS) method based on gray his-
togram. We use the adaptive Canny edge detector from
the implementation of MATLAB 2012b. The result has
been discussed in Section 6.

6 PERFORMANCE STUDY
In this section, we discuss the performance of the edge
detectors while applying them to detect corners using
the corner detectors. First, the dataset is described.
Next, the evaluation method and Finally the results are
shown.

6.1 Dataset
We have used an image dataset of 23 different types of
grey scale images to evaluate the performance of the
corner detectors using different edge detectors. Seven
different transformations have been applied to these
base 23 images that includes Scaling, Shearing, Rota-
tion, Rotation-Scale, Non-uniform Scale, JPEG Com-
pression, Gaussian Noise to obtain more than 8000
transformed test images (see Table 1) . All the exper-
iments were run on Matlab 2012b on an Windows 7
(64bit) machine with an Intel Core i5-3470 processor
and 8GB of RAM.

Transform- Transformation Number
ations factors of

images
Scaling Scale factors sx=sy in

[0.5,2.0] at 0.1 apart, ex-
cluding 1.0

345

Shearing Shear factors shx and
shy in [0, 0.012]at 0.002
apart.

1081

Rotation 18 different angles of
range −90◦ to +90◦ at
10◦

437

Rotation-
Scale

in [-30 , +30] at 10◦

apart, followed by uni-
form and non uniform
scale factors sx and sy in
[0.8, 1.2] at 0.1 apart.

4025

Nonuniform
Scale

Scale factors sx in [0.7,
1.3] and sy in [0.5, 1.5]
at 0.1 apart.

1772

JPEG com-
pression

Compression at 20 qual-
ity factors in [5, 100] at 5
apart.

460

Gaussian
noise

Gaussian (G) noise at 10
variances in [0.005,0.05]
at 0.005 apart.

230

Table 1: Image Transformations applied on 23 base im-
ages

6.2 Evaluation Method
We have applied automatic corner detection evaluation
process proposed by Awarangjeb [Moh08] to examine
the number of repeated corners. In this process the de-
tected corner locations of an image are referred to as
the reference corners and then compared the locations
of the detected corners in the transformed image of the
former one with the reference corners. If a reference
corner is detected in a corresponding transformed lo-
cation, then that corner is considered as repeated. The
repeatability is the process of detecting the same cor-
ner locations in two or more different images of the
same scene. The main advantage of this process is that

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 24 ISBN 978-80-86943-49-7

there is no limit on the number of images in the dataset.
Moreover, this process does not require any human in-
tervention.

6.3 Results and Discusssion
We studied the most commonly used Canny [Can86],
Sobel, Roberts, Prewitt [Pre70], LoG [Kam98] and Ze-
rocross [Avl13] edge detection methods and conducted
our experiment to find out the answers of the questions
mentioned earlier.

Figure 5 shows the detected corner locations for only
CPDA corner detector after using different edge detec-
tors to an image. It is clearly seen that each edge de-
tector gives different corner locations for the same im-
age because of the discrete edge extraction structures.
As Canny, LoG and Zerocross extracts a good number
of edges, the number of detected corners are also high.
Prewitt, Roberts and Sobel derives less edges, resulting
in low numbers of corner locations.

Initially, we have conducted our test to find out the ef-
fects of different geometrical transformations for find-
ing edges, corner and repeatable corners. The compar-
ative results of the edge detectors in terms of number
of extracted edges, detected corners and repeatable cor-
ners under various conditions are presented in Figure 6,
7, 8 respectively.

First, we tried to find out the average number of edges
retrieved using different corner detectors with differ-
ent edge detectors after applying the transformations
mentioned earlier. Our first experiment is conducted
to notice the effects of different geometrical transfor-
mations on the images for detecting edges. Figure 6
shows that the Canny edge detector lefts others behind
for detecting edges in almost every conditions. Each
edge detectors perform differently in various geomet-
rical changes. Evaluation of the images showed that
under several conditions, Canny, LoG, Zerocross, So-
bel, Prewitt, Roberts exhibit better performance, re-
spectively.

Numbers of detected corners also depend on the num-
ber of extracted edges. However, if an edge detector
extracts a good number of loosely connected edges, the
detected corners will be few and not suitable for prac-
tical application (see Figure 5). We performed our ex-
periment to figure out the average numbers of corners
using different edge detectors under several transfroma-
tions and from Figure 7, we found that Canny edge de-
tector results best under most of the geometrical trans-
formations for finding corners. This happened for the
same reason as Canny finds more edges results in find-
ing more corners. However, Zerocross and LoG opera-
tors performs better in scale and shear transformations
than Canny edge detector.

We analyzed how the different edge detectors effect the
performances of finding repeatable corners under ge-

Table 2: Time computation for different detectors (in
seconds)

ometrical changes in Figure 8. It is noticeable that
though Canny edge detector finds a large number of
edges, resulting more corners, it is not best for finding
repeatable corners. LoG operator is best followed by
Zerocross operator for finding average repeatable cor-
ners. Though LoG and Zerocross operators give better
result than Canny, it malfunctions at corners and curves.
The edges are not connected like Canny, thus it results
more edges and corner locations which may not be sig-
nificant for practical applications.

To find which detector is more efficient, we have exam-
ined the execution time for each of the four corner de-
tectors using different edge detectors showed in table 2.
We have found that Prewitt and Sobel detectors are fast
compared to others to detect edges and Robert operator
is quicker than others for curve extractions. However,
Canny edge detector using thresholds is best for finding
corners followed by Zerocross and log operator.

Now from figure 9, we found that Canny edge detec-
tor using adaptive threshold extracts more edges, re-
sults in finding a good number of corners, instead of
using pre-defined threshold values. We evaluate the
performance of these two edge detectors after applying
seven different transformations and from figure 10 we
find that Adaptive Canny edge detector performs better
than Canny using pre-defined threshold in terms of the
number of edge extractions and finding corners and re-
peated corners. So we use adaptive Canny edge detec-
tion method in the primary edge extraction step before
detecting corners.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 25 ISBN 978-80-86943-49-7

Figure 5: Corner detected by CPDA method using different edge operators

Figure 6: Number of extracted edges after applying different transformations

Figure 7: Number of corners after applying different transformations

7 CONCLUSION

We have analysed the performance of different edge
operators on different contour-based corner detectors
and investigate the performance under different trans-
formations. Since edge detection is the early step in of

contour-based corner detection, it is significant to know
the performance of different edge detection techniques.
In this research paper, the relative performance of var-
ious edge detection techniques is carried out with four
contour-based corner detectors. It has been observed

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 26 ISBN 978-80-86943-49-7

Figure 8: Number of repeated corners after applying different transformations

(a) Original (b)Adaptive Canny (c) Canny (low = 0.2
, high = 0.7)

Figure 9: Extracted edges and detected corners using Canny adaptive and Canny (0.2-0.7)

Figure 10: Performance comparison of Canny adaptive and Canny(0.2-0.7)

that Canny edge detection algorithm results higher ac-
curacy in detection of edges and corners, but it is not
best for finding repeatable corners, which is considered
as one of the most important criterion to evaluate the
performance of corner detection. Instead, LoG opera-

tor gives best results. In terms of efficiency, Prewitt,
Roberts and Sobel operators are fast compared to oth-
ers to detect edges. Therefore, we can choose different
edge detectors, rather than choosing Canny edge detec-
tor as an ideal for each scenario. More importantly, we

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 27 ISBN 978-80-86943-49-7

observed the limitations of commonly used Canny edge
detector using predefined threshold and applied adap-
tive Canny detector instead, which shows better results.

8 REFERENCES
[Dav80] David Marr, Ellen Hildreth. Theory of

edge detection, Proceedings of the Royal Soci-
ety of London. Series B. Biological Sciences,
207(1167):187–217, 1980.

[Dmi03] Chetverikov, Dmitry. A simple and efficient
algorithm for detection of high curvature points in
planar curves, International Conference on Com-
puter Analysis of Images and Patterns. Springer
Berlin Heidelberg, 2003.

[Dum99] Du-Ming Tsai, H-T Hou, H-J Su. Boundary-
based corner detection using eigenvalues of co-
variance matrices,Pattern Recognition Letters,
1999.

[Fan88] Fang-Hsuan Cheng, Wen-Hsing Hsu. Paral-
lel algorithm for corner finding on digital curves,
Pattern Recognition Letters, 8(1):47–53, 1988.

[Fmo01] F Mokhtarian, F Mohanna. Enhancing the
curvature scale space corner detector, pages O–
M4B, 2001.

[Joh86] John Canny. A computational approach to
edge detection,Pattern Analysis and Machine In-
telligence, IEEE Transactions,(6):679–698, 1986.

[Moh07] Mohammad Awrangjeb, Guojun Lu. A ro-
bust corner matching technique, Multimedia and
Expo,2007 IEEE International Conference on,
pages 1483–1486. IEEE, 2007.

[Moh08] Mohammad Awrangjeb, Guojun Lu. Robust
image corner detection based on the chord-to-
point distance accumulation technique, Multime-
dia, IEEE Transactions, 10(6):1059–1072, 2008.

[Moh10] Mohammad Awrangjeb, Guojun Lu, Clive S
Fraser. A comparative study on contour-based
corner detectors, Digital Image Computing:
Techniques and Applications (DICTA), 2010.

[Moh12] Mohammad Awrangjeb, Guojun Lu, Clive S
Fraser. Performance comparisons of contour-
based corner detectors, Image Processing, IEEE
Transactions, 21(9):4167–4179, 2012.

[Pen13] Peng-Lang Shui, Wei-Chuan Zhang. Corner
detection and classification using anisotropic di-
rectional derivative representations, Image Pro-
cessing, IEEE Transactions, 22(8):3204–3218,
2013.

[RMN11a] RM Najmus Sadat, Shyh Wei Teng, Guo-
jun Lu. An effective and efficient contour-based
corner detector using simple triangular theory,
Pacific Graphics Short Papers, The Eurographics
Association, 2011.

[RMN11b] RMN Sadat, Zinat Sayeeda, MM Sale-
hin, Naurin Afrin. A corner detection method us-
ing angle accumulation, Computer and Informa-
tion Technology (ICCIT), 2011 14th International
Conference, pages 95–99. IEEE, 2011.

[Xia04] Xiao Chen He, Nelson HC Yung. Curvature
scale space corner detector with adaptive thresh-
old and dynamic region of support,Pattern Recog-
nition,Proceedings of the 17th International Con-
ference, IEEE, 2004.

[Xia07] Xiaohong Zhang, Ming Lei, Dan Yang, Yuzhu
Wang, Litao Ma. Multi-scale curvature prod-
uct for robust image corner detection in cur-
vature scale space, Pattern Recognition Letter,
28(5):545–554, 2007.

[Xia09] Xiaohong Zhang, Honxing Wang, Mingjian
Hong, Ling Xu, Dan Yang, Brian C Lovell. Robust
image corner detection based on scale evolution
difference of planar curves, Pattern Recognition
Letters, 2009.

[Zha10] X Zhang, H Wang, A.W.B Smith, X Ling, B.C
Lovell, D Yang. Corner detection based on gra-
dient correlation matrices of planar curve, Pattern
Recognition 43, April 2010.

[Moh09] M Awrangjeb, Guojun Lu, C.S. Fraser,
M.Ravanbakhsh. A fast corner detector based
on the chord-to-point distance accumulation tech-
nique, in Proceedings of the 2009 Digital Image
Computing: Techniques and Applications, ser.
DICTA, Washington, DC, USA: IEEE Computer
Society, 2009, pp. 519–525.

[Ten15] Teng S, Sadat R, Lu G. Effective and ef-
ficient contour-based corner detectors, Pat-
tern Recognition, vol. 48, no. 7, pp. 2185
– 2197, 2015. [Online]. Available: http:
//www.sciencedirect.com/science/
article/pii/S0031320315000357

[Can86] J. Canny. A computational approach to edge
detection, Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. PAMI-8, no. 6,
pp. 679 –698, nov. 1986.

[Pre70] J. M. Prewitt. Object enhancement and ex-
traction, Picture processing and Psychopictorics,
vol. 10, no. 1, pp. 15–19, 1970.

[Kam98] B. Kamgar-Parsi, A. Rosenfeld. Optimally
isotropic laplacian operator, IEEE transactions
on image processing: a publication of the IEEE
Signal Processing Society, vol. 8, no. 10, pp.
1467–1472, 1998.

[Avl13] M. Avlash, D. L. Kaur. Performances analysis
of different edge detection methods on road im-
ages, International Journal of Advanced Research
in Engineering and Applied Sciences, vol. 2,
no. 6, 2013.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 28 ISBN 978-80-86943-49-7

A Framework for Visually Realistic Multi-robot Simulation in
Natural Environment

Ori Ganoni
Department of Computer Science

University of Canterbury
Christchurch, New Zealand

ori.ganoni@pg.canterbury.ac.nz

Ramakrishnan Mukundan
Department of Computer Science

University of Canterbury
Christchurch, New Zealand

mukundan@canterbury.ac.nz

ABSTRACT
This paper presents a generalized framework for the simulation of multiple robots and drones in highly realistic
models of natural environments. The proposed simulation architecture uses the Unreal Engine4 for generating both
optical and depth sensor outputs from any position and orientation within the environment and provides several key
domain specific simulation capabilities. Various components and functionalities of the system have been discussed
in detail. The simulation engine also allows users to test and validate a wide range of computer vision algorithms
involving different drone configurations under many types of environmental effects such as wind gusts. The paper
demonstrates the effectiveness of the system by giving experimental results for a test scenario where one drone
tracks the simulated motion of another in a complex natural environment.

Keywords
Robot simulation, Drone simulation, Natural environment models, Natural feature tracking, Unreal Engine 4
(UE4).

1 INTRODUCTION

Graphical models of realistic natural environments are
extensively used in games, notably simulation games
and those that use immersive environments. These vir-
tual environments provide a high degree of interactive
experience and realism in simulations. Modern game
engines provide tools for prototyping realistic, complex
and detailed virtual environments. Recently, this capa-
bility of game engines has been harnessed to the advan-
tage of computer vision community to develop frame-
works that can be used in scientific applications where
vision based algorithms for detection, tracking and nav-
igation could be effectively tested and evaluated with
various types of sensor inputs and environmental condi-
tions. This paper focuses on the development of a com-
prehensive standalone framework for multi-robot simu-
lation (specifically, multi-drone simulation) in complex
natural environments, and proposes suitable configura-
tions of tools, simulation architectures and also looks at
key performance issues.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Several robot simulation engines exist which simulate
different robots and vehicles e.g. multicopters, rovers,
fixed wing UAV, etc. Each engine has its advantages.
The engines use large simulation environments consist-
ing of models, sceneries, etc. generated by other sim-
ulation packages and frameworks. Following are some
examples of such engines with dependencies on other
simulation packages:

• Standalone robot simulation engines using a flight
simulator for models, sceneries and functions for vi-
sualization and simulation. Examples of such pack-
ages are: (i) ArduPilot [1] which communicates
with Xplane [12] and Flightgear [4] (ii) PX4 [8]
communicates with jmavsim [7]. Flight simulators
are usually much larger projects than robot simula-
tion projects. They are more focused on user experi-
ence and interaction, but they also have visualization
and dynamic simulation capabilities which are use-
ful characteristics for drone projects.

• Standalone simulation packages that use physics en-
gines, graphical interfaces and simulation capabili-
ties provided by other simulation tools: for example
PX4 [8] with Gazebo [5]. Robot simulation en-
vironments are dedicated simulation environments.
They are focused on giving proper tools for mod-
eling and simulating robots but are less focused on
visualization.

• Stand alone robot simulation environment: those
environments include the robots and flying vehi-

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 29 ISBN 978-80-86943-49-7

cle models. An example of that kind of environ-
ment is: Modular Open Robots Simulation Engine
(MORSE). Those environments are suitable for test-
ing and evaluating ideas, but they don’t have roots
in real robot projects specifically in drone projects.

• Game engine stand alone environment: the robot
is simulated inside a game engine. For example a
benchmark for tracking based on UE4 [22]. Sim-
ilarly to robot simulation environment, the drones
inside game engines don’t have roots in real drone
projects. Additionally drone simulated in game en-
gines don’t share the dynamics of real drones. For
example, they don’t have to deal with wind gusts and
vibrations.

In this paper, we propose a novel configuration that use
game engines for the simulation environment, the pri-
mary motivation being the enhanced capabilities of a
game engine such as UE4 in providing highly realistic
environments and various modes of visualization. One
of the primary advantages of this type of a configuration
is that a game engine such as UE4 can provide realtime
videos of camera output based on the position and at-
titude information of the robot. This paper also gives
an overview of the DroneSimLab [3] developed by us,
which has constantly evolved with the analysis of vari-
ous requirements and concepts related to the simulation
architecture presented later in this work. The design
and implementation aspects of the key components of
this simulation engine have been presented in detail.

This paper is organized as follows: in section 2 we give
an overview of the DroneSimLab project. In section 3
we describe previous related work with game engines.
Section 4 gives detailed information about the frame-
work simulation architecture and design goals. Section
5 focuses on modifications needed to be made to meet
the simulation design goals. Section 6 describes ex-
perimental results and performance. Section 7 provide
information on future research directions as well as ref-
erences to online demos of this research.

2 THE DRONESIMLAB PROJECT
We developed DroneSimLab as an opensource project
to foster collaborative development of drone simulation
packages that use the power and capabilities of the UE4
as discussed in the previous sections. Some of the main
functionalities which the current implementation pro-
vides are:

• Multi-robot - can handle more than one robot and
create visual interaction.

• Software In The Loop (SITL) driven - can simulate
two drone models: ArduPilot and PX4

• Based on Game Engine - Uses UE4 as an optical and
depth sensor

• Realtime - depends on the hardware but can run at
30 fps.

• Natural environments - can simulate trees, wind
grass, etc. (comes with Game Engines assets).

3 RELATED WORKS
Some image processing and image-based algorithms
have already been integrated into game engine/image
simulation environments, although using game engines
dedicated for games (like UE4, CryEngine, and Unity)
in simulations is much less common. We believe the
reason for that is due that they are more focused on
game experience as opposed to any real-world scien-
tific applications involving simulations with associated
mathematical and physical models and computer vision
algorithms.

One example of such an approach is the autonomous
landing of a Vertical Takeoff and Landing (VTOL) Un-
manned Aerial Vehicle (UAV) on a moving platform us-
ing image based visual servoing [25], where they used
gazebo simulation simultaneous localization and map-
ping. Simultaneous Localization and Mapping (SLAM)
[13] is also tested and developed for indoor scenarios
using gazebo simulation [5] [20]. Some environments
are combined to create a more powerful engine. For
example, MORSE [17] combined with BGE (blender
game engine) [16] and JSBsim (an open source flight
dynamics model)

Lately, game engines have been increasingly used for
simulations. Successful attempts have been made to
evaluate the stability of structure using UE4, creating
photo-realistic scenes of stacks of blocks and applying
deep learning methods [19]. A series of towers made
from wooden cubes were created in a simulated envi-
ronment using UE4 [18]. Some of the towers were sta-
ble structures, and some collapsed when the dynamic
simulation was run. A network was trained to detect
the outcome of the experiments. Testing the network
on real environments achieved equal performance com-
pared to human subjects in predicting whether the tower
will fall. The most important aspect of this research is
the fact that they could train the network on 180,000
scenarios which seems not feasible in a real life envi-
ronment.

A more recent work connected UE4 with OpenCV [15],
the project is called UnrealCV [23]. It extends the
UE4 with a set of commands to interact with the vir-
tual world. Another work [22] proposed a new aerial
video dataset and benchmark for low altitude UAV tar-
get tracking, as well as a photorealistic UAV simula-
tor that can be coupled with tracking methods. Skinner

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 30 ISBN 978-80-86943-49-7

[27] proposed a high-fidelity simulation for evaluating
robotic vision performance for repeating robotic vision
experiments under identical conditions. Similarly, we
are providing a sandbox for high-fidelity simulations
not only for algorithms but also for full SITL simula-
tions.

Recently Microsoft released AirSim [26], an open
source simulator based on Unreal Engine for au-
tonomous vehicles from Microsoft AI & Research
which has a similar architecture as our proposed
architecture. In their released implementation they are
using their physics engine and control libraries.

Game Engine

Plugin

Vehicle1

SIT L1

Vehicle2

SIT L2

...

VehicleN

SIT LN

6
D

O
FVideo

Container1

Container2

Containern

ContainerUE4

Figure 1: Simulation architecture

4 SIMULATION ARCHITECTURE
In this paper, we propose a simulation architecture de-
signed to meet the following primary goals: (i) ability
to generate realtime camera outputs for any arbitrary
position and orientation in a natural environment, (ii)
ability to integrate software and hardware in the loop
simulations (iii) ability to combine multiple simulations
and (iv) ability to reproduce results. These aspects are
elaborated below.

4.1 Domain Specific Simulation Engine
We focused on three simulation engines for the frame-
work.

• The game engine provides video, depth data and ad-
ditional visual environmental effects like wind and
dust.

• The physical model engine, usually supplied by the
robot development framework.

• Supplimental simulation objects like communica-
tion channels models , computation power restric-
tions and additional simulation filters (for example a
lens distortion filter).

Engines can create an environment for a single robot.
For instance in the case of SITL, the simulation engine
interacts with only one vehicle and produces sensory
information for only one robot. On the other hand, the
game engine can provide visual information for mul-
tiple robots as described in Figure 1, this is especially
necessary if a visual interaction exists, for example; one
robot can block the field of view for another robot, and
this aspect should be implemented in the simulation.
By embedding SITL into our framework we ensure that
the simulation is highly correlated with the real robot
architecture (since it is used for the robot development).
Hardware In The Loop (HIL) can be later used for fur-
ther validation.

4.2 Simulated sensor architecture
We identified three types of simulated sensors that can
be used.

• Single domain sensor - lives only in one engine.
For example a simulated RGB camera from UR4
[18]. Another example is the gyro sensor, which is
simulated only in the SITL software e.g. gazebo,
jmavsim, jsbsim etc.

• Multi domain sensor - lives in more then one engine.
For example such a sensor can be seen in Figure 2.
In this example the simulated distance sensor gets
information in from various sources like an external
Digital Elevation Model (DEM).

• Complex sensor - lives in both the physical domain
and in the simulated domain. An example of such
sensor is a camera in front of a screen. The display
provides the visual information and the camera is
used just as in the real system, enabling monitoring
real system performance and hardware issues. This
concept is an extension of the HIL mode which com-
bines hardware testing and software testing.

UE4 Depth
Map

UE4
Collision
Detection

Data
Elevation

Map

Sensor
Input

Fusion

Ground
Truth

Output

Noise
Model

System
Output

Figure 2: Example of a multi-domain distance sensor,
The simulated sensor accepts inputs from different en-
gine resources and produces ground truth information
and noisy output.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 31 ISBN 978-80-86943-49-7

4.3 Containers as vehicles
We used a container approach to combine simulations
not originally intended to work alongside each other.
The container approach enables us to use different op-
erating systems and libraries on the same machine. We
can also control the network configuration in each con-
tainer. This approach is different from other frame-
works like AirSim [26] by maintaining the original
firmware developed by the Robot Simulation Frame-
work. Our architecture can utilize the benefits of new
features and continuing development of those environ-
ments.

4.4 Reproducibility
The ability to reproduce results under differing or con-
stant conditions is vital in system development as well
as in research, and becomes more and more difficult
as the complexity of the system increases. To real-
ize this concept, we are using several existing software
tools. We are using the Docker engine to manage sys-
tem configuration, and Git version control to handle the
software development. Since the experiments are in a
simulation, other reproducibility aspects such as high-
fidelity are built-in. In section 6, we demonstrate test-
ing of algorithms in complex natural environments by
controlling simulation parameters. In this simulation,
we can see that outdoor natural environment can be
problematic for testing visual algorithms since we don’t
have full control of the environment. It seems that true
reproducibility in an outdoor natural environment may
be achieved only in simulation [27].

4.5 Build system & configuration man-
agement

The simulation environment uses these software tools:

• Version Control - All files of this project are man-
aged by Git version control under GitHub servers
[6]. The only exceptions are the UE4 projects which
are managed locally due to the large file sizes. The
UE4 [18] source code is still managed by git in dedi-
cated GitHub repository. For the purpose of sending
realtime ground truth position, changes have been
made both to ArduPilot Project and to PX4 and are
managed in separate forks. Those changes are not
compatible with the design and purpose of the orig-
inal projects. Changes that were compatible (e.g. a
turbulence model) were returned to the community
as pull requests and then pulled back into our local
fork.

• Containers - Created with Docker engine.

• ArduPilot Fork [1] (Drone Project)

• ROS - Supporting firmware for the PX4 project.

• PX4 Fork [8] (Drone Project)

• UE4PyServer plugin [10]

5 ENGINE MODIFICATIONS
5.1 UE4 Plugin
Game engines are not dedicated research tools, obvi-
ously, but conveniently for our usage scenario they sup-
ply mechanisms like plugins to extend the capabilities
of the engine. The plugin we used for the UE4 [18] is
called UE4PyServer [10] Plugin and was developed for
the purpose of this research. The main concepts behind
the plugin development were:

• Realtime: For this simulation, we took advantage of
the realtime capabilities of the game engine. Real-
time simulation (RT) is important when you want to
run many tests in a short period. RT simulation is
also necessary when human interaction is involved
because users expect realtime or near realtime be-
havior. To maintain RT behavior, the UE4 plugin
was developed with minimal processioning on the
UE4 side. The primary purpose of the plugin is
to communicate with other parts of the simulation.
e.g. receiving 6 DOF information and sending video
data.

• Multi-Robot support - UE4 enables capture of the
viewable screen to a file or a buffer, but this pro-
vides us with only one camera feed. To allow multi-
ple cameras in the simulation, we used rendering-
to-texture technique with object ScreenCapture2D
[9]. The method is used in the game engine usually
to render surfaces like security cameras, billboards,
mirrors, etc. We used it to simulate a camera robot
and depth sensors using the depth map provided by
the ScreenCapture2D Object.

• Synchronization - We wanted the sampling to be
synchronized for all the visual objects in the sim-
ulation. It is an important concept and might be crit-
ical for some applications, for example, simulating
stereo camera. For this purpose, we used coroutines
which are a light version of synchronized pseudo-
threads.

5.2 Building realistic environment inside
game engine for computer vision

There are some special considerations when building
virtual environments in game engines for computer vi-
sion purposes.

• Level of Details (LOD) - in game engines using
multiple LOD [21, Chapter 3] in order to maintain
graphics performance especially frame rate. This
may create unnatural textures changes which can be

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 32 ISBN 978-80-86943-49-7

Figure 3: Open world Overview - these are the assets
used to build a forest environment

destructive for computer vision algorithms. For the
purpose of this research, we can control the envi-
ronment and the simulation, and we can use that to
create a scene with only one LOD.

• Repeating patterns - In Figure 3 we can see the
meshes used to build the realistic scene. To reduce
the effect of repeating patterns, each element is po-
sitioned in a different orientation and slightly differ-
ent scaling. Also, the elements are positioned with
some overlap with other objects which reduces the
repeating effect.

• Culling adjustments - the area rendered in the scene
also known as frustum should be large enough for
all the objects in the scene to be rendered, so we
will avoid popping effects due to movements of the
cameras or the objects themselves.

• Dynamic shadows adjustments - moving objects in
the scene like trees and robots should always cast
dynamic shadows to imitate real scenarios.

5.3 SITL
The SITL engine needs to send 6 DOF information at a
high rate to the game engine (at least 30 fps) to maintain
realtime constraints. For that purpose, some modifica-
tions are needed to the engine, so the SITL engine will
send ground truth information directly to the game en-
gine, and also to logging mechanisms for later analysis
as described in Figure 1.

6 EXPERIMENTAL RESULTS AND
PERFORMANCE ANALYSIS

6.1 Plugin tests in natural environment
Running visual algorithms in a natural environment can
be very challenging. Relative to artificial environments,
natural scenes can by highly dynamic due to atmo-
spheric conditions such as wind, and usually will not
have distinct characteristics like straight lines, circles

Figure 4: Scene architecture - In the UE4 Editor, we
placed a camera at an initial position, in front of a tree.
We moved the camera diagonally away from the tree,
and then returned to the same point. Camera maneu-
vers which starts and ends in the same position are ideal
for tracking tests. Ideally, the tracked points should get
back to the same original coordinates.

corners, etc. Using UE4PyServer [10] (which was de-
veloped as part of the simulation framework) and UE4
[18] we developed a tracking simulation (live video can
be found here [11]) to demonstrate the uniqueness of
natural environment. The simulation is based on the
Lucas-Kanade Optical Flow tracker implemented in the
OpenCV library [14] which we use it to track an or-
dered grid of points (no feature extraction). The ma-
neuver is a simple camera facing forward and moving
diagonally back and then return to the original position
as described in Figure 4. Ideally, we would expect that
the tracked points will return to the same coordinates
when the simulation cycles back to the starting frame.
Since this is a complex 3D scene, not all the points will
return to the same location due to the loss of tracking,
but in Figure 5 we can see that running the experiment
twice produces similar results. Similar but not exact,
since there is still some randomness in the scene due
to movement of leaves that might cause slight differ-
ences. In Figure 6 we conducted two experiments with
the same setup, but in the second test, we add the wind
to the scene by adding to the UE4 a Wind Direction
Force object. We can see that the results are now very
different. We repeated the experiment under various
conditions and calculated the following MSE grade to
quantify the tracking quality:

G =
1
N ∑

P∈Tp

|Pe−Ps|2 (1)

where: G is the tracking error, Tp is the tracked points,
Ps an Pe are the start and end coordinates of the tracked

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 33 ISBN 978-80-86943-49-7

points and N is the number of tracked points. Summa-
rized results are in the following table:

low-wind high-wind

low-alt
96.36 (98.54%) 219.99 (97.40%)
81.15 (98.54%) 225.48 (98.05%)
87.69 (98.54%) 234.41 (97.89%)

high-alt
55.72 (97.56%) 243.59 (98.54%)
53.82 (98.21%) 757.61 (97.73%)
48.94 (97.40%) 382.78 (98.38%)

Table 1: Tracking error (MSE) values in pixels2. The
numbers in brackets give the percentage of correctly
tracked points.

In Table 1, we can see the behavior of the tracking al-
gorithm under different environmental conditions. As
expected in high altitude (near the tree tops) with the
combination of strong wind will be the most challeng-
ing scenario. As seen in the first column, the track-
ing error under low wind conditions is larger at low
altitudes compared to high altitudes due to the pres-
ence of a higher density of objects such as leaves and
branches that occlude the camera view at low altitudes.
On the other hand, when the wind speed increases, the
trend is reversed because leaves and branches tend to
move more than the objects closer to the ground like
tree trunk rocks, etc.

We developed a tool for profiling and monitoring the
framework in addition to the existing tools in the UE4
editor. This is a high-level profiling tool that gives us
the summary of the system utilization. An example of a
test case is presented in Figures 4 and 7. fig 4 explains
the scene architecture and Figure 7 the corresponding
profiling graph. The peaks in the GPU utilization are
due to camera IO-intensive movements as would be ex-
pected. In this example, the GPU peaks in the graphs
correspond to camera movement. When the camera is
moving, we can see that the GPU is fully utilized (it
reaches 100%) resulting in reduced framerate and when
the frame rate is reduced the CPU was less occupied
because it was processing the images at a lower frame
rate.

6.2 DroneSimLab tests
We created a setup in DroneSimLab for an experiment
of one drone tracking another drone. The drones are
Ardupilot drones simulated using their internal SITL
engine. We simulated the wind in the UE4 as well as in
the SITL engine including wind gusts. The two drones
fly into the forest and then return to the original posi-
tion [2]. One of the drones is using HSV tracker [24]
to track the other drone (Figure 9). We repeated this
experiment four times and the results are presented in
Figure 8.

In all four scenarios, we can observe the loss of tracking
capabilities when the drones enter the forest (black dots

(a)

(b)
Figure 5: Simulation outputs (a) and (b) showing repro-
ducability of results under similar environmental condi-
tions.

between frames 300 to 500 in all four scenarios). When
the drones enter the woods, the shades from the forest
canopy affects the color and brightness components of
the drone as can be seen in this demo video [2]. The
threshold for tracking is not updated dynamically to
demonstrate this behavior. Other interesting phenom-
ena is the high frequencies observed in the graph. These
high frequencies result from the continuous maneuver-
ing and changes in the 3D orientation of the drone to
compensate for the high wind forces, which in turn re-
sults in variations in the estimation of the drones center
position. In the last two experiments, we can see espe-
cially large amplitude in the beginning and at the end
of the experiments as a result of the takeoff and landing
process which provided different angles of viewing of
the drone body led to a different estimation of the drone
center.

The above results have clearly demonstrated the useful-
ness of a game engine in not only producing realistic
natural environments and their camera outputs, but also
providing the ability to add and modify realistic envi-
ronmental effects such as changes in wind parameters
and illumination conditions. These features allow us to

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 34 ISBN 978-80-86943-49-7

(a)

(b)
Figure 6: Simulation outputs showing the variations in
results under differing environmental conditions. The
output in (a) was generated without simulated wind,
while in (b), wind was added to the simulation. We
can observe degradation in the tracking quality of the
grid features.

Figure 7: Profiling scene - high level profiling dur-
ing scene playback created with nvidia-smi and Python
psutil.

Figure 8: Tracking results - Four consecutive tracking
experiments results. The black dots represents tracking
failures. The X axis is frame number and the Y axis is
pixel position. Green and red lines are the X,Y pixel
coordinates respectively.

Figure 9: Tracking Experiment - A drone following an-
other drone in DroneSimLab.

generate ground truth data for various test conditions
and to evaluate machine vision algorithms.

7 CONCLUSIONS
The creation of visually realistic environments is a very
powerful tool for computer vision research as can be
seen in section 6 and this corresponding video demo
[11]. The DroneSimLab project [3] aims to be a tool
which adds game engines capabilities to the current ex-
isting robot simulation environments. The current work
mainly focuses on UE4, but adding another game en-
gine may increase the dimensionality of modifiable pa-
rameters in our systems. For instance, training deep
learning algorithms on multiple worlds each created by
a different game engine may more accurately general-
ize to the real world domain. This paper has presented
a new framework for simulating multi-robot (specifi-
cally, multi-drone) motion in such environments, where
environmental effects can be easily incorporated, and
complex computer vision tasks evaluated. The simula-
tion architecture along with the key functionalities of
the simulation engine have been discussed in detail.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 35 ISBN 978-80-86943-49-7

8 REFERENCES
[1] Ardupilot fork.

https://github.com/orig74/ardupilot.
[2] Drone tracking drone in dronesimlab.

https://youtu.be/Mj9xZECG40Q.
[3] Dronesimlab.

https://github.com/orig74/DroneSimLab.
[4] flightgear. http://www.flightgear.org.
[5] gazebo. http://gazebosim.org.
[6] Github. https://github.com.
[7] jmavsim. https://pixhawk.org/dev/hil/jmavsim.
[8] Px4 firmware fork.

https://github.com/orig74/Firmware.
[9] Scene capture 2d.

https://docs.unrealengine.com/latest/INT/Resources
/ContentExamples/Reflections/1_7.

[10] Ue4pyserver.
https://github.com/orig74/UE4PyServer.

[11] Unreal engine 4 with python & opencv.
https://youtu.be/q8kAooRaf7g.

[12] X-plane. http://www.x-plane.com/.
[13] Ilya Afanasyev, Artur Sagitov, and Evgeni Magid.

Ros-based slam for a gazebo-simulated mobile
robot in image-based 3d model of indoor environ-
ment. In International Conference on Advanced
Concepts for Intelligent Vision Systems, pages
273–283. Springer, 2015.

[14] Jean-Yves Bouguet. Pyramidal implementation of
the affine lucas kanade feature tracker description
of the algorithm. Intel Corporation, 5(1-10):4,
2001.

[15] G. Bradski. The opencv library. Dr. Dobb’s Jour-
nal of Software Tools, 2000.

[16] Arnaud Degroote, Pierrick Koch, and Simon
Lacroix. Integrating Realistic Simulation Engines
within the MORSE Framework. In Workshop
on Rapid and Repeatable Robot Simulation (R4
SIM), at Robotics: Science and Systems, Roma,
Italy, July 2015.

[17] Gilberto Echeverria, Nicolas Lassabe, Arnaud
Degroote, and Séverin Lemaignan. Modular open
robots simulation engine: Morse. In Robotics
and Automation (ICRA), 2011 IEEE International
Conference on, pages 46–51. IEEE, 2011.

[18] Epic Games. Unreal engine 4.
http://www.unrealengine.com.

[19] Adam Lerer, Sam Gross, and Rob Fergus. Learn-
ing physical intuition of block towers by example.
CoRR, abs/1603.01312, 2016.

[20] Johannes Meyer, Alexander Sendobry, Stefan
Kohlbrecher, Uwe Klingauf, and Oskar Von Stryk.
Comprehensive simulation of quadrotor uavs us-

ing ros and gazebo. In International Conference
on Simulation, Modeling, and Programming for
Autonomous Robots, pages 400–411. Springer,
2012.

[21] Thomas Mooney. Unreal Development Kit Game
Design Cookbook. Packt Publishing Ltd, 2012.

[22] Matthias Mueller, Neil Smith, and Bernard
Ghanem. A benchmark and simulator for uav
tracking. In European Conference on Computer
Vision, pages 445–461. Springer, 2016.

[23] Weichao Qiu and Alan Yuille. Unrealcv: Con-
necting computer vision to unreal engine. arXiv
preprint arXiv:1609.01326, 2016.

[24] Adrian Rosebrock. Ball tracking with opencv.
http://www.pyimagesearch.com/2015/09/14/ball-
tracking-with-opencv/.

[25] Pedro Serra, Rita Cunha, Tarek Hamel, David
Cabecinhas, and Carlos Silvestre. Landing on
a moving target using image-based visual servo
control. In 53rd IEEE Conference on Decision
and Control, pages 2179–2184. IEEE, 2014.

[26] Shital Shah, Debadeepta Dey, Chris Lovett, and
Ashish Kapoor. Aerial Informatics and Robotics
platform. Technical Report MSR-TR-2017-9, Mi-
crosoft Research, 2017.

[27] John Skinner, Sourav Garg, Niko Sünderhauf, Pe-
ter Corke, Ben Upcroft, and Michael Milford.
High-fidelity simulation for evaluating robotic
vision performance. In Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International
Conference on, pages 2737–2744. IEEE, 2016.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 36 ISBN 978-80-86943-49-7

A Novel Force Feedback Haptics System with Applications
in Phobia Treatment

Daniel Brice
Queen’s University

Belfast
Northern Ireland

dbrice01@qub.ac.uk

Scott Devine
Queen’s University

Belfast
Northern Ireland

sdevine08@qub.ac.uk

Karen Rafferty
Queen’s University

Belfast
Northern Ireland

K.Rafferty@qub.ac.uk

ABSTRACT
It is well known that multi-sensory stimulation can enhance immersion within virtual environments. Whilst there
has been rapid development of devices which can enhance the visual immersion, technology to stimulate other
senses, such as touch, is still under developed. Currently there is a problem wherein a surface in a virtual envi-
ronment, such as a wall, cannot replicate the physical properties of a solid object. In this paper a novel system
is proposed utilising the HTC VIVE and Rethink Robotics’ Baxter Robot to replicate surfaces. A demonstration
has been created whereby a user climbs a wall in a virtual environment by grabbing onto ledges which exist as a
physical body located on Baxter’s end effector. The system uses bi-directional TCP communication between an
environment developed in Epic Games’ Unreal Engine and the Baxter robot running the Robot Operating System
framework. When an ascending user reaches out and grabs a ledge on the virtual wall they will be applying a torque
to the Baxter arm which can be measured and the intended movement of the user inferred, resulting in the ledge
being moved through a suitable Inverse Kinematics path. This has provided the user with the ability to climb a
wall in VR in the absence of any hand tracking methods whilst receiving force feedback from the ledges they grasp
onto. Current alternative systems only exist as wearables or operate in small spaces. The increased immersion in
this VR demo can be used to assist those with phobias of heights.

Keywords
Encounter Haptics, Baxter, Virtual Reality, Phobia, Psychotherapy, HTC Vive, Unreal;

1 INTRODUCTION
Within recent years there has been a large rise in the
popularity of Virtual Reality (VR). This has been due to
the release of consumer available VR platforms, HTC
Vive[1], Oculus Rift and PlayStation VR, which are
now being used by early adopters. This increase in the
availability of higher visual quality VR systems has re-
sulted in industries investigating the feasibility of im-
proving processes, such as training or demonstrating
solutions. Some usage of VR has been in psychother-
apy, where the ability to immerse one into any type of
environment has been found to be beneficial [2]. How-
ever, it is known that multi sensorial stimulation can en-
hance presence within a VR environment. In particular,
the ability to feel and touch something directly impacts
our feeling of immersion. This paper proposes a hap-
tic system with applications for psychotherapy of peo-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ple with acrophobia (fear of heights). It is desirable to
maximise the immersion of an individual during psy-
chotherapy in VR [3]. The motivation is therefore to
enable more effective treatment by improving the im-
mersion of the individual into VR through the use of
haptic feedback.

The current haptic feedback from both the Oculus Rift
and the HTC Vive is limited to vibrations in the hand-
held controllers. In the event where a user wants to in-
teract with a rigid body in VR, a wall for instance, they
will only be able to receive feedback in the form of
vibrations when the controller moves through the sur-
face of the object. One significant problem in room-
scale VR haptics is that the user is currently not able
to receive a force feedback preventing them from mov-
ing through the object, therefore replication of the sur-
face’s physical presence is not achieved. This force
feedback style of haptics, where the user is unable to
penetrate a rendered surface, is the style used by the in-
dustry standard Sensable Phantom Omni [4] haptics de-
vice. The Phantom, commonly used for surgical train-
ing [5], provides the desired force feedback, but is lim-
ited to a workspace area of 160mm x 120mm x 70mm
(0.001344m3), insufficient for room-scale VR. The pro-
posed system will demonstrate the ability to provide

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 37 ISBN 978-80-86943-49-7

force feedback haptics in a workspace volume of over
1m3, by utilising Rethink Robotics’ Baxter robot’s large
7 Degree-Of-Freedom (DOF) arms [6] as a proof of
concept.

A second common limitation in VR haptics is the teth-
ering of the user to the haptic device. The Phantom
requires that the user be holding a stylus at all times for
force feedback. Similarly for vibrational feedback in
VR systems the user will need to be holding the con-
trollers. This limits the user’s immersion in VR as they
are unable to fully interact with the object using their
hands. The proposed system is able to provide force
feedback in the absence of any tethered objects, such as
controllers, wearables or styluses. This is done by cre-
ating an encounter haptic system, whereby the Baxter
robot will produce force feedback for objects the user
will be interacting with in VR.

The novel force feedback haptic system with 1:1 map-
ping of objects between VR and the physical world is
presented in this paper. This system is comprised of an
HTC Vive Head Mounted Display(HMD), Rethink Ro-
bitics’ Baxter robot and two workstations. Additional
functionality in the form of hand tremor measurements,
measured by the Baxter robot, is explored. Applications
for phobia treatment through a wall climbing demon-
stration are discussed, with suitability of the system ex-
plained.

2 BACKGROUND
Current Haptic Systems
One of the most popular force feedback haptic systems
for professionals is the Omni Phantom. The phantom
is best suited when the intention is to interact with a
small object where fine manipulation and accuracy are
essential. The Phantom will not permit the user to move
through surfaces, applying a maximum resistive force
of 3.3N. As previously mentioned the Phantom is lim-
ited to a small workspace. This is far from ideal when
the user wants to perform tasks that are performed with
great ranges of movement, such as scaling a wall or
throwing a ball. The Phantom also requires that the
user constantly holds a stylus. This stylus is attached
to a series of mechanical linkages which is where the
force feedback is provided. This is acceptable in the
case where a surgeon will be training with a scalpel be-
ing replicated by the stylus. This does not however al-
low the user to contact surfaces with their hands alone.
This haptic interface provided by the Phantom is com-
mon, i.e. using an intermediary object to transfer force
feedback, such as in the Novint Falcon Haptic System.
The Falcon has had successful results from users [7],
but again is also not room scale.

The Dexmo F2 VR exoskeleton [8] is an electro-
mechanical device attached to the hand of a user to

allow haptics by means of holding virtual objects. The
Dexmo is mounted onto the backside of the hand and
fixed to each of the fingers. This system applies a
mechanical brake on the finger joints when the user
attempts to close their hand through a surface. This
is effective in replicating the physical boundaries of
an object held in the hand, i.e. one cannot close their
fingers through a virtual ball being held. There is also
no limited workspace using this design technique, it
is theoretically room-scale. The force feedback of the
device is limited to objects’ surfaces which are held
within the hand. This means that the braking system
on the Dexmo will not be able to replicate a wall
being pushed against by the user. The Dexmo is also a
tethered device, requiring that the user must wear it at
all times to receive force feedback.

In the work of Covarrubias and Bordegoni [9] re-
searchers created a haptic device which is able to
replicate curved geometry in a VE by manipulating
a servo-actuated metallic strip with mechatronics
mounted to a desk. In their work the geometry of a
shape existing in the Unity game engine was passed
through to an Arduino board connected to a series of
servo motors. This enabled the curvature of shapes in
Unity to be mimicked by the metallic strip. The results
of this proposed system was the ability to feel the
curvature of surfaces. This is a system which is also
free hand, there are no intermediary objects such as a
stylus or controller, increasing the haptic immersion.
This system is however limited in a couple of ways.
Though the curvature of a shape can be replicated,
it can only be done over the narrow metallic strip,
therefore the full geometry is not realized. Similar to
other systems the workspace is limited, it is clear the
system is only suitable for small objects and is not
room scale.

Both the HTC Vive and Oculus Rift utilise vibrations in
controllers to stimulate the sense of touch to the user.
In the case of the user interacting with an object in
VR they will be made aware of the contact between
their hands and an object in a virtual environment (VE)
through the use of these vibrations. This is sufficient
in indicating the collision of surfaces in VR, but does
not prevent users from moving their hands through sur-
faces they shouldn’t be able to using force feedback.
The users are also required to constantly be tethered to
the controller to be able to feel any of these vibrations,
denying the freedom of movement of the hand.

Current Phobia Treatment
Clinical psychology describes a phobia as an anxiety
disorder, characterized by intense irrational fear of
specific objects or situations. Many researchers have
shown their progress in performing psychotherapy
with the assistance of VR, to treating these phobias

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 38 ISBN 978-80-86943-49-7

[10]. The majority of treatments involve creating 3d
models related to the phobia, such as city skylines in
the case of acrophobia, 360 degree panorama images
and sounds or videos in VR.

Acrophobia is the specific fear of heights, one which
can be highly impactful on the quality of life a person
can achieve if not treated. Work has been undertaken
in the university of Ontario to create a VE room where
people could receive treatment [11] . In this treatment
patients would train in a small VE room, called the
cave, using projectors to create the VE. The patients in
this treatment would have physiological sensing equip-
ment attached to them to observe their stress levels. The
patients would progress through increasingly stressful
acrophobic exercises as their tolerance increased. They
would always retain the option to take a break from the
VE if anxiety levels were too much to handle. What is
notable about this study is that there is a focus on im-
mersion, safety and objective data on the stress levels of
the patient. These are aspects which have been retained
in the proposed phobia treatment system.

Some have attempted to create games for the treatment
of phobias. A system was designed with using the Mi-
crosoft Kinect controller with phobia treatment games
on a pc for patients to work through [12],[13]. A sys-
tem such as this with objectives and rewards for move-
ment outside of the comfort zone for the phobic receiv-
ing treatment can be highly motivating and have a posi-
tive impact on their progress. This concept of measured
progress and milestones has also been retained in the
proposed phobia treatment system.

Research has shown how critical immersion is for in-
ducing anxiety in patients for psychotherapy of phobias
[2]. This need for immersion, alongside the absence of
haptics in most VR therapy, is the motivation for the
proposed system.

3 WALL CLIMBING DEMONSTRA-
TION

Concept Features
We propose a wall climbing demonstration in VR with
haptic force feedback to be used in psychotherapy treat-
ment of those with acrophobia. The primary function of
the proposed system is the ability to use the HTC Vive
Head Mounted Display (HMD) as a VR viewer into a
VE where the user can climb a tall wall, shown in Fig-
ure 1. By using VR the effect of ascending a wall and
therefore increasing height can be achieved. This is es-
sential in being able to trigger the fear of the phobic for
treatment. The Baxter robot’s role in this system will
be to allow force feedback during wall climbing and
enable tremor of the hand to be measured. This demon-
stration is absent of any hand held controller. Instead
the Baxter robot’s end effector will be used for input,

Figure 1: Wall in Unreal.

in the form of hand tremor and torque application. It
is similarly used as an output, providing the force feed-
back of ledges in the VE. The Baxter robot itself is also
referred to as a ’safe robot’, due to the robots elastic
actuators and torque sensing limbs. It can therefore op-
erate alongside humans without the need for cages as
most non-compliant robots require. This is what makes
it suitable for haptics [6]. The sacrifice with this safety
is that the arm is never entirely rigid and can be moved
passively by a small amount (<15mm) by the user. This
also leads to a tolerance of approx. +-5mm on the end
effector accuracy[6].

Using VR allows for data to be collected from treat-
ments, such as the height to which the patient ascends
the wall or the time taken to perform a task. The
user Point Of View (POV) can also be recorded, using
software such as NVIDIA GeForce Experience Shad-
owPlay, during treatment, alongside external cameras
recordings with timestamps. This means that areas
of interest during the timestamped data, such as wall
height position, can be further analysed by seeing ex-
actly what the participant was seeing at the time. Simi-
larly a camera recording the user allows for their body
language to be observed retrospectively. Features such
as this can be beneficial in indicating the progress of the
users throughout treatment, as well as analysis to iden-
tify areas they may have been more or less comfortable
with. Using a HMD for VR as opposed to creating a
projector powered VE allows the system to exist in a
much smaller working volume, though the Baxter is a
large robot with reach of 1.21m [6]. This solves one of
the big issues clinics have with VR treatment, being the
amount of space used for their VE [14].

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 39 ISBN 978-80-86943-49-7

Using a VE allows for panoramic images to be stitched
onto the Unreal Skybox, the VR background behind
the wall. This means that patients can perform their
treatment in urban city conditions with tall buildings,
or more outdoor environments. This can be used for
more specific treatment of participants, some of whom
may be more acrophobic in certain settings.

The Baxter robot’s end effector is used in an encounter
haptics system, providing the ledges that the partici-
pants will be grasping onto, as shown in Figure 2. This
will enable the users to move up and down the wall.
The users are not required to be tethered to a device,
other than the HMD for viewing purposes. This enables
more natural and intuitive interactions between user and
ledges. Another reason for designing the system where
the users hands are free is to increase the immersion of
the participant by providing them full sense of touch on
their hands. One drawback of this design choice where
the users hands directly contact objects is that the ge-
ometry of the object in a VE must match the geometry
and scale of the physical object on the Baxter end ef-
fector.

Shaking or trembling of the hands is a common physi-
cal symptom experienced by people with phobias dur-
ing anxiety inducing tasks. Links between tremor and
anxiety have been made in a number of studies and it
has also been recognized in a study of phobics in VR
treatment [15], [3]. The Baxter is capable of both po-
sitional feedback, in the form of Cartesian coordinates,
and torque sensing at the end effector. Using this torque
feedback from the end effector hand tremor can be mea-
sured throughout the treatment of the user, providing
objective feedback of stress levels. This can show not
only progress throughout an entire treatment program,
but also indicate the exact parts of the demonstration
where the phobia was most stressful.

Safety and comfort are essential when performing any
form of psychotherapy. By allowing free hand haptics
absent of any tethering to a device the user is able to
completely remove themselves from the environment
simply by taking off their headset. The fact that the
treatment is delivered through a VE allows users to push
themselves to accomplish anxiety inducing tasks whilst
retaining the option to completely remove themselves
from the scene at any moment. As the participants are
inside a VE they are also in no physical danger when
performing tasks, such as wall climbing, as they would
be if they were to perform the task outside of VR.

It is proposed that a user study be conducted, whereby
people with acrophobia experience the demo with hap-
tic feedback, as well as without haptic feedback (us-
ing controllers to climb the VR wall). Comparisons of
the system with and without the haptic feedback can
be made subjectively from user opinion as well as ob-
served behaviour to validate the impact of the immer-

sion, through haptics, on the anxiety levels of the pho-
bic.

4 CONCEPT IMPLEMENTATION
The entire system, shown in Figure 4, is physically
comprised of a Baxter robot, a Vive HMD and a Win-
dows development machine, with a guest Ubuntu Vir-
tual Machine (VM). The software used within the sys-
tem are Ubuntu 14.04, Windows 10, ROS Indigo ,
MoveIt!, Unreal Engine 4 and Steam VR. The Ubuntu
VM is the machine within which communication to the
Baxter Robot is undertaken. The Windows PC is where
the VR is controlled, using a VE created in Unreal with
a plugin for the HTC Vive to be used as a viewer.

Figure 2: Example of user interacting with ledge.

Figure 3: Example of user’s view of ledge.

Setup
There were a small number of calibrations in prepar-
ing the haptic system. Initially an end effector, Fig-
ure 5,was manufactured of a pine wood cut (100mm x
130mm x 40mm), this geometry was mapped 1:1 with
a corresponding Unreal model which would act as the
ledges for users to grab onto on the wall. Once this was
attached to the Baxter robot the robot gripper’s weight
was recalibrated to handle the additional mass.

To use the HTC Vive a Steam VR room setup was re-
quired. This calibration procedure was done carefully

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 40 ISBN 978-80-86943-49-7

User
Physical

Input

Tremor
Ledge
Force

User Visual
Output

User HMD

MoveIt!
Inverse

Kinematic
Solver

Recorded Bag
Files

Baxter
Reference

Frame

Joint Torque

End Effector
Position

Ledge Position

User Height

Unreal
Reference

Frame

Unreal ROS Baxter Robot

Unreal Scene

Figure 4: Information flow for Unreal, ROS and the Baxter Robot.

in an effort to align the coordinate reference frame of
the Baxter with the coordinate reference frame of the
HTC Vive. The distances between these axes were then
derived using the Vive controllers in Unreal and sending
the Baxter arm end effector to a known Cartesian coor-
dinate, where this would be compared to a correspond-
ing Cartesian coordinate sent to the PC by the controller
occupying the same space.

Figure 5: Manufactured physical ledge.

MoveIt! is a common library used in robotics for path
planning. In this case the library is used for its Inverse

Kinematics (IK) solver. In such a solver cartesian co-
ordinates with quaternions can be provided as input.
These are used to determine joint angles resulting in
the robot end effector being in the desired place. Not
all IK solutions paths can be achieved smoothly by the
Baxter robot. It is therefore important that the VEs be
designed with consideration to the optimal workspace
of the Baxter and movement of the Baxter end effectors
be similarly limited to optimal IK solution paths.

A bi-directional TCP socket connection is formed
between Unreal and ROS on the Ubuntu VM, using
Rosserial Windows, a library required for ROS com-
munication over Microsoft Windows. This permits the
passing of messages from Unreal to ROS, such as ledge
positions, to be used with the robot. There are a num-
ber of different types of ROS messages being passed
between the Ubuntu and Windows workstations, in
the form of Booleans, ROS Pose messages (Cartesian
coordinates in the form of floats) and ROS Publishers
and Subscribers, to enable positional data to be taken
from Unreal and have the Baxter robot’s end effector
move to the same location in space.

Runtime
At start up a VE developed within Unreal is shown to
the user through the Vive headset, shown in Figure 3.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 41 ISBN 978-80-86943-49-7

-4.5

-4.3

-4.1

-3.9

-3.7

-3.5

-3.3

-3.1

-2.9

-2.7

-2.5

0.01 0.51 1.01 1.51 2.01 2.51 3.01 3.51 4.01 4.51 5.01

To
rq

u
e

 (
N

m
)

Time (s)

Baxter Torque Measurements

Resting Hand No Hand Tremor Hand

Figure 6: Tremor detection data plot.

There is an initial ledge shown through colour indica-
tion for the user grasp. As soon as this VE starts posi-
tional data is stored in ROS Pose messages which are
then altered in Unreal for offsets calculated during the
calibration procedure. These messages are then passed
to ROS on the Ubuntu VM containing information re-
garding the location of the ledge. A ROS Node, an ex-
ecutable on ROS, will receive these Pose messages, us-
ing functions and scripts from the MoveIt! libraries to
produce an IK solution which is forwarded to the Bax-
ter robot. This results in the initial ledge which the user
sees in VR being matched by a physical ledge held by
the Baxter arm at the same location in space.

Once the IK solution has been met and the Baxter robot
end effector is in the correct location the user is noti-
fied by a colour change in the VE, this is when they can
grasp the ledge. When the user holds and moves the
ledge downward torque sensing in the joints of the Bax-
ter robot arm is used to deduce which direction the user
is attempting to move the ledge in, currently limited to
2-DOF, as well as the magnitude of torque applied to
each joint. With the direction of movement deduced
an IK solution is provided for a new set of Cartesian
coordinates, translated by 1mm in the direction of de-
sired movement. The translation distance is adjusted
in runtime based on the torque measured from the end
effector, with a greater torque resulting in larger IK co-
ordinate changes. The overall effect of this is that as
the user moves the ledge the robot arm will move with
them at the desired speed, whilst retaining the correct
orientation of its end effector. The user is unable to
move the end effector in other DOFs, such as towards
or away from themselves, as the Baxter robot will be in

a control mode called Positional Mode which requires
IK solutions to be published for the arm to move.

As the user moves a ledge the Pose messages, contain-
ing the coordinates for the end effector, are passed from
ROS to Unreal through the use of the ROS network.
These are then used to adjust the height of the user in
the VE, resulting in a 1:1 mapping of the ledge main-
tained between real world and VE during transit. At
the same time torque measurements of the end effec-
tor are saved in timestamped logs. Both wall height
and small tremor forces can be later analysed, inferring
times when the user was most anxious and how high up
the wall they were at the time. Throughout this move-
ment of the ledge the robot arm will constantly be pro-
viding the rigid body of the ledge with force feedback.
It should be noted that the force feedback will never be
greater than 5N at the end effector.

Whilst one end effector is being moved downwards the
other robot arm aligns itself to the next ledge for the
user to grasp. This second ledge will then be ready to
be grabbed irrelevant of the position of the first ledge
due to the continuous 1:1 mapping and height changes
of end effector and VR user height in the VE.

Measuring Hand Tremor
Hand tremor is measured through torque sensing in the
Baxter robot’s joints. As a user’s hand tremors whilst
holding the ledge they apply a force to the robot’s end
effector. This is then transmitted as a torque through to
the closest joint. This can be recorded at 95Hz. Cor-
responding timestamps can then be used to align the
tremor data with the Unreal recording.

To evaluate tremor detecting capabilities of the system
a simple test was performed. Torques were recorded

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 42 ISBN 978-80-86943-49-7

in three scenarios:(1) no user contact with the ledge;
(2) when the user held the ledge with minimum hand
tremor; (3) when the user replicated mild hand tremor.

With the naked eye the tremoring hand was not visibly
distinguishable from the resting hand, it was however
very distinguishable in the data, Figure 6. The small-
est tremor amplitude during the test corresponded to a
torque change of approx. 0.2Nm, which could still be
defined from the resting hand or no hand contact. In the
case where a user’s hand will tremor more during high
levels of anxiety it will be clearly identifiable from the
regions of lighter tremor. To more effectively evaluate
the capabilities of the proposed system in determining
stress levels. Results of the hand tremor will be com-
pared to heart rate recordings for a participant during a
future user study.

5 CONCLUSION
A novel, large volume, encounter haptics system is pro-
posed. The system has features suitable for VR psy-
chotherapy, in the form of offering the ability to record
the POV of a user during treatment and objective feed-
back of anxiety levels. This haptic system is limited
by the shapes available to add to the end effector of the
Baxter robot and is most effective when VEs are de-
signed with optimal IK solutions for the Baxter in mind.
The increased immersion of the treatment through the
use of haptic force feedback could help improve current
VR treatment. The author believes that the most suit-
able users of such a system would be a VR treatment
clinic wanting to conduct highly immersive and inter-
active phobia treatment. A user study to analyse the
impact of these haptics in a VR treatment by compar-
ing anxiety levels, objectively and subjectively inferred,
is necessary in future work to compare a VR treatment
with and without haptics.

6 REFERENCES
[1] HTC, “HTC Vive,” https://www.vive.com/uk/,

2011, [Online; accessed 14-February-2017].
[2] D. P. Jang, J. H. Ku, Y. H. Choi, B. K. Wiederhold,

S. W. Nam, I. Y. Kim, and S. I. Kim, “The devel-
opment of virtual reality therapy (vrt) system for
the treatment of acrophobia and therapeutic case,”
IEEE Transactions on Information Technology
in Biomedicine, vol. 6, no. 3, pp. 213–217, Sept
2002.

[3] S. Shunnaq and M. Raeder, “Virtualphobia: A
model for virtual therapy of phobias,” in 2016
XVIII Symposium on Virtual and Augmented Re-
ality (SVR), June 2016, pp. 59–63.

[4] Geomagic, “Phantom Omni,” http://www.
geomagic.com/en/products/phantom-omni/
overview, 2011, [Online; accessed 14-February-
2017].

[5] M. Mortimer, B. Horan, and A. Stojcevski, “4
degree-of-freedom haptic device for surgical sim-
ulation,” in 2014 World Automation Congress
(WAC), Aug 2014, pp. 735–740.

[6] R. Robotics, “Baxter Specifications,” http://www.
rethinkrobotics.com/baxter/tech-specs/, 2008,
[Online; accessed 14-February-2017].

[7] E. Tanhua-Piiroinen, J. Pystynen, and R. Raisamo,
“Haptic applications as physics teaching tools,” in
2010 IEEE International Symposium on Haptic
Audio Visual Environments and Games, Oct 2010,
pp. 1–6.

[8] Dexmo, “Dexmo,” http://www.dextarobotics.
com/, 2008, [Online; accessed 14-February-
2017].

[9] M. Covarrubias and M. Bordegoni, “Immersive vr
for natural interaction with a haptic interface for
shape rendering,” in 2015 IEEE 1st International
Forum on Research and Technologies for Soci-
ety and Industry Leveraging a better tomorrow
(RTSI), Sept 2015, pp. 82–89.

[10] D. HorvÃ¡thovÃ¡, V. SilÃ¡di, and E. LackovÃ¡,
“Phobia treatment with the help of virtual reality,”
in 2015 IEEE 13th International Scientific Con-
ference on Informatics, Nov 2015, pp. 114–119.

[11] J. P. Costa, J. Robb, and L. E. Nacke, “Physi-
ological acrophobia evaluation through in vivo
exposure in a vr cave,” in 2014 IEEE Games Me-
dia Entertainment, Oct 2014, pp. 1–4.

[12] M. B. Haworth, M. Baljko, and P. Falout-
sos, Treating Phobias with Computer Games.
Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 374–377. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-34710-8_36

[13] S. Corbett-Davies, A. DÃ 1
4 nser, and A. Clark, “An

interactive augmented reality system for exposure
treatment,” in 2012 IEEE International Sympo-
sium on Mixed and Augmented Reality - Arts, Me-
dia, and Humanities (ISMAR-AMH), Nov 2012,
pp. 95–96.

[14] B. Wiederhold, “Keynote address: Ten years of
virtual reality clinical practice - lessons learned,”
in 2006 International Workshop on Virtual Reha-
bilitation, 2006, pp. 35–35.

[15] S. J. K. Prasad, D. C. Priyanka, and V. Talasila, “A
frame work for classifying physiological tremor
variants employing principal component anal-
ysis,” in International Conference on Circuits,
Communication, Control and Computing, Nov
2014, pp. 173–176.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 43 ISBN 978-80-86943-49-7

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 44 ISBN 978-80-86943-49-7

A generic approach for sunlight and shadow impact
computation on large city models

Vincent Jaillot, Frédéric Pedrinis, Sylvie Servigne, Gilles Gesquière

Univ Lyon, LIRIS, UMR-CNRS 5205, F-69622, LYON, France

{vincent.jaillot, frederic.pedrinis, sylvie.servigne, gilles.gesquiere}@liris.cnrs.fr

Figure 1 - Multi-scale and multi-object sunlight and shadow computation

ABSTRACT
Study of sunlight and shadow effects on the city has become more accessible with the development of 3D city

models. It allows measuring when and how an object is exposed to the sunlight, which enables conducting many

related studies such as energy analyses or urban planning. While many works have been done for this purpose, it

may be interesting to know which objects (terrain, buildings, trees, etc.) prevent other objects from being

exposed to the sunlight. In this paper we propose a method which detects the sunlit zones on a city model and the

shadow impact of its objects. As these objects can be of various natures and as the acquisition processes varies

from one city to another, they are not all necessarily available in each city model. Since an object’s shadow can

impact other very distant objects, we must have a method that handles efficiently large areas, especially knowing

that city models can have fine geometric and semantic definitions. The generic approach we propose can manage

these different city models by supporting every type of the above-mentioned objects and by relying on the use of

standards.

This paper presents a generic method which allows sunlight and shadow computation on arbitrarily large 3D city

models for impact analyses of each city object on its surroundings (close and far). This means that besides

checking if a city object is shaded or not, we know which objects are responsible for the shade, thus allowing

various impact analyses on cities.

Keywords
Sunlight and Shadow Computation; 3D City Models; Generic Approach; Different Scales; Large areas; Impact

study

1. INTRODUCTION
More than half of the people on earth live in cities

and this number should continue growing over the

next few years. It implies that cities’ size is

constantly evolving. Governments and urban

planners have thus a lot of responsibilities regarding

renovation and construction projects. With this

responsibility comes an increase in the will of

citizens to understand their city by accessing the data

describing it. Cities now offer open accesses to their

3D numerical models or to other data such as

orthographies, maps, etc. For decades, 3D mostly had

a visual role, but these past years, various other

applications emerged [Bil15].

Sunlight computation on a 3D city model, as

illustrated in Figure 1, is one of these new emerging

topics. For example, it can help choosing the best

area for a specific project such as a cafe terrace,

photovoltaic panels [Dia11], urban agriculture

[Joh15], etc. However, if many studies focus on the

impact of the sun on city objects, none really

considers the impact of their shadow on other city

objects (shadow impact). We indeed do not only

want information about which city objects are

Permission to make digital or hard copies of all or part

of this work for personal or classroom use is granted

without fee provided that copies are not made or

distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first

page. To copy otherwise, or republish, to post on servers

or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 45 ISBN 978-80-86943-49-7

illuminated or in the shade but we also need to know

which objects create these shadows, in order to

quantify the impact of a given object or a region (e.g.

a well-known mountain).

City objects of virtual city models can be aggregated

in layers according to their nature (buildings,

vegetation, transportation, etc.). Every city model

does not always have the same layers. If buildings

and terrain are the most frequent, other layers such as

vegetation, urban furniture or monuments can also

have a significant shadow impact on the city. We

thus want a method which is adaptable to all layers

available in city models.

Furthermore, 3D city models can represent hundreds

of km² of data (which can correspond to millions of

triangles). It is necessary to be able to process it

entirely because high towers or big mountains can

have a very large shading impact. Our method must

therefore be able to handle large scale data.

The temporal aspect must also be addressed because

we want to compute the sunlight and shadow at

different dates and times corresponding to different

sun positions. This could for example be used to

study the shadow impact brought by changes in the

city between two dates.

The results of our method must be usable in different

contexts by practitioners such as urban planners or

geographers. Our objective is to be able to produce

complete results allowing them to make different

analyses according to their needs.

The method should be generic to be used with

different city models across the world. We thus have

to use international standards in order to make our

process interoperable.

In this paper, we will first present a state of the art on

this subject. We will then propose a new method to

compute sunlight and shadow on large city models.

Finally, we will present several possible applications

on the city of Lyon in France before concluding.

2. RELATED WORKS
Real time shadow computation is a well-studied

problem in video games and visual rendering

oriented applications. McGuire et al. present several

methods for computing real time shadow rendering

by rasterization [McG03]. These methods allow fast

shadow computation but do not allow knowing which

object caused the shadow (they only give information

about which pixels are in the shadow) and we need

this information for quantifying the impact of objects

on the city. Moreover, as these methods focus on

visualisation, they only work within the frustum of

the camera and the level of detail depends on the

distance to the camera.

Most of the projects interested in solar analyses focus

on solar radiation computation with several possible

applications such as energy planning or evaluation of

photovoltaic potential. Industrial solutions, such as

CiberCity1, GTA GeoService GmbH2 or I-Scope3, as

well as projects like OpenSolarMap4 propose

solutions to compute the solar radiation of roofs in

order to study their solar potential. However, they

only address one part of our needs as they only focus

on roof surfaces for studying the deployment of

photovoltaic panels.

Freitas et al. present a detailed state-of-the-art review

on modelling solar potential in the urban

environment [Fre15]. They present and compare

several methods based on numerical radiation

algorithms coupled with GIS tools allowing 2D

representation, analyses and visualisation, but also

some more complex methods involving 3D models.

The v.sun module [Hof12] for GRASS GIS is one of

the latter. It offers a method to compute the solar

radiation of 3D vector data using a novel vector-

voxel approach allowing computing shadowing

effects of city objects. However, they only focus on

solar radiation of buildings on small areas (0.5 km²)

and do not address the impact of city objects on their

surroundings. Most of other methods presented by

Freitas et al. [Fre15] are meant for 2D or 2.5D raster

data. However, the one proposed by Redweik et al.

allows computing the solar radiation on horizontal,

tilted and vertical surfaces of LIDAR data [Red13].

Even if the results are precise, it is a quite complex

approach which is meant for small areas (160 m²

composed of 9 main buildings in their case). In

addition, it is difficult to have semantic information

linked to LIDAR data.

Alam et al. [Ala12] and Strzalka et al. [Str12], which

are part of Simstadt project [Nou15], are also

interested in the study of photovoltaic potentiality

and integration in cities. They both propose an

interesting algorithm for computing shadows in cities

based on a ray-tracing process with a triangulated 3D

city model. The rays go from the centroid of the

triangles of the model to the sun positions during the

period of computation, and if an intersection with

another object is found, the triangle at the origin of

the ray is set as in the shadow. In order to have more

precise results, if a triangle is detected in the shadow,

it is subdivided and other rays are thrown from the

centroid of the newly created triangles until a

predefined resolution is reached. Even if this

algorithm may answer some of our needs (shadow

computation of city objects), it would need to be

extended to fulfil all of them. It is indeed only

1 CiberCity : http://www.cybercity3d.com/

2 GTA GeoService GmbH : http://www.gta-geoservice.de/

3 I-Scope : http://www.iscopeproject.net/

4 OpenSolarMap : opensolarmap.org

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 46 ISBN 978-80-86943-49-7

applied on a small area (1.5 km²) and only with roofs

having a high photovoltaic potential (found in a pre-

processing step). In addition, only the shadows casted

by buildings are addressed here and other objects

such as terrain or vegetation are not considered.

Results do not provide information about which

objects casted the shadow and thus about the shadow

impact of city objects. Wieland et al. [Wie15] also

propose a way of computing solar radiation on 3D

city models using a ray-tracing method. However,

instead of triangulating the 3D models until reaching

a predefined resolution, they create a regular grid on

each building face (walls and roofs) and generate

rays from the points of this grid. This method is also

only focusing on buildings and even if the shadow is

computed along a regular grid with a resolution

which can be modified, it does not allow linking the

shadow with city objects having a semantic

definition.

Alam et al. propose another way of computing the

shadow of a 3D city model, in order to study the

influence of its levels of details on the computation

of the photovoltaic potential [Ala16]. Their method is

highly adaptable as it allows choosing between

different time intervals for sun positions, different

resolutions of objects (which can be different

between shadow receiver objects and shadow caster

objects) and different sky resolutions. They indeed

consider the sky as being a dome and divide it in

patches. In a first step, they compute the visible part

of the sky for each point of the buildings. In order to

do that, they perform a ray-tracing process per

triangle and for each sky-patch using a kd-Tree,

which is very efficient for accelerating ray-tracing

when looking for intersections with close neighbours.

They compute and store a sky view factor [Wat87]

for each sky-patch and each triangle for which the

solar radiation will be computed. After doing that,

they compute the sun positions and get the sky view

factors of the active sky patch (where the sun is) in

order to compute the solar radiation. Even if this

method is flexible, interoperable and proposes a

solution for accelerating the computation process, it

only focuses on buildings, and on their photovoltaic

potential, and does not address visibility and shadow

impact issues.

To sum up, most methods only tackle problems

related to shadow visualisation (mainly in visual

rendering) or to solar radiation computation for

energy analyses or photovoltaic potential evaluations.

None is interested in computing and analysing the

shadow impact of city objects. Moreover, most of

them only consider buildings, plus terrain for some.

None proposes a generic way for handling all city

objects. In addition, most of the applications are

applied on small areas as they mainly focus on

neighbouring objects and not on the entire city.

However, the temporal aspect is frequently

considered as sunlight computations are often made

on time periods. Standards are not always used but

they are required for having an interoperable method,

especially if the results are generated for usage in

further processes.

3. SUNLIGHT AND SHADOW

COMPUTATION PROCESS
We use the CityGML standard [Kol05] for describing

our city models. Even if our method is not dependant

on this standard, its use is spreading among cities and

meets our needs. It allows describing 3D city models

according to different layers of city objects which

can have geometric and semantic information.

Loading an entire city model can be problematic

since it costs a lot in terms of memory. To be able to

manage arbitrarily large scale city models, we use a

tiling process [Ped17]. This automatic process splits

the 3D city model according to a regular grid with a

cell size defined by the user (Figure 2). A tiled city

model allows controlling the memory cost of the

process since we can then load one tile at a time. Our

method can thus cover entire city models without

memory limitations.

Figure 2 - A city model tiled according to a

regular grid.

In order to compute the sunlight and shadow of a city

model, we first need to compute the position of the

sun corresponding to the dates and times of the study.

We consider the sun’s rays as parallel beams so we

only need to compute the azimuth and elevation

angles of the sun to know the direction of the rays.

Michalsky [Mic88] presents an algorithm to compute

these angles from the year 1950 to 2050 with

uncertainties of +- 0.01°, which is acceptable for our

application. We use this method to compute the N

sun’s positions corresponding to the N dates and

times for which we want to compute sunlight and

shadow.

With this information, we want to generate rays from

each object of the city model toward the desired sun

positions (corresponding to multiple dates and times).

We then have to detect for every ray if it intersects

another object of the city model or if it is exposed to

sunlight. Each city object intersected by a ray is

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 47 ISBN 978-80-86943-49-7

identified as an object shading the origin of the ray,

and the object corresponding to this origin is thus

considered in the shadow. All our computations are

made assuming a clear sky.

We implemented two simple tests to simplify the

process by avoiding unnecessary computations. First,

if we detect that a face is not oriented toward the sun,

we directly set it as in the shadow since it is

necessarily shaded by other faces of the city object.

Then, based on the fact that sun rays always come

from above, we do not compute the intersection

between a ray and a face if this one is below the

origin of the ray.

Figure 3 - Different semantically defined objects

that may compose a bridge according to the

CityGML standard. (Image extracted from

CityGML 2.0 documentation).

To avoid testing the intersections with the 3D

geometry of every city model object, we set up a

semantic Bounding Volume Hierarchy (sBVH).

This is a Bounding Volume Hierarchy where each

level corresponds to a semantic level of the city

model: for each semantically defined object of a city

model, a bounding volume will be computed and

stored in the hierarchy. For example, in the CityGML

standard, a bridge is a semantically defined object of

a city model (see Figure 3) and will thus have a

bounding box and correspond to a node in our sBVH.

In figure 3, we can see that in this standard, a bridge

can be decomposed in various objects that have a

semantic definition (Window, OuterCeilingSurface,

etc.). All of them will then also have a bounding box

and be children nodes of the bridge in our sBVH.

This principle is applied to all city objects and sub-

objects until it reaches the last level of defined

semantic objects in the city model.

We quickly navigate through the city model by

testing intersections with bounding boxes instead of

geometries. We then only have to load the 3D

geometries of the objects of the lowest levels of the

hierarchy which bounding boxes are intersected. The

sBVH of a city model is presented in Figure 4: it is

organized in several layers that have been tiled

according to a regular grid, and each tile is composed

of multiple levels of city objects having a semantic

definition.

The use of the CityGML standard is important since

it allows many possibilities in terms of semantic

definition of city objects like buildings. Moreover,

some of the current development of the standard

(CityGML 3.0) concerns the addition of new

semantic structures such as storeys for buildings,

which will feed the sBVH. Some layers such as

terrain are however rarely decomposed in multiple

distinct objects so the use of the hierarchy would not

be very effective in this case. The contribution of the

sBVH thus depends on the semantic precision of the

city model and is not the same for each layer.

The tile level of the sBVH is only defined using

geometric information and not semantic. It is

required for processing large areas because loading a

complete layer at once can cause memory issues.

Since there is no available semantic information

Figure 4 - sBVH of a city model composed of different tiled layers and of semantically defined city

objects. A bounding box is precomputed for each of them.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 48 ISBN 978-80-86943-49-7

allowing partitioning the city model, we chose to use

an existing method based on geometry to partition

the city [Ped17].

For each point of the city model, we consider N rays

going toward the N precomputed sun’s positions. We

test intersections between the rays and the bounding

boxes of the model by going through the sBVH

presented in Figure 4. For each object of the lowest

level of the hierarchy, we store a list of the rays

intersecting its bounding box. Note that each ray

holds a link to its origin and the date and time

corresponding to a sun position. This enables us to

store this in the intersected objects.

After having generated every ray and identified the

possible intersected city objects (without having to

load any 3D geometry, besides for initializing the

rays), we browse them, load their 3D geometry and

make intersection tests with every ray contained in

their list. This way, we only have to parse and load

the geometry of each intersected object once (just

before computing intersection with every ray that has

intersected its bounding box).

For a given ray generated from an object O1, if we

find an intersection with the geometry of an object

O2, we store the information that O2 shades O1 at

the corresponding date and time. After processing the

entire sBVH of the city model, the shadow impact

and the sunlight information of every object can be

measured.

Figure 5 - 3 rays, which correspond to 3 hours,

generated from a building toward the sun

position, in a simple city model composed of 9 tiles

and 3 layers (Terrain, Building and Vegetation).

Figure 5 shows an example of 3 rays generated for 3

sun positions from a point of a building B. Based on

the first level of sBVH, for each ray {R1, R2, R3},

we search all tiles whose bounding boxes are

intersected, as illustrated in Figure 6. The bounding

boxes BB2, BB3, BB4 and BB7 are intersected by

the rays. This means that we are going to go down in

the sBVH for these 4 tiles. The other tiles are not

intersected so we will not consider them for the rest

of the computation for this point of B.

We then test the next level of the sBVH by

computing intersections between each ray and the

bounding boxes contained in the tiles previously

intersected by these (Figure 7). Since R2 does not

intersect any bounding box in the only tile it goes

through, it intersects nothing in the city model. It is

then directly going to the sun. In other words, the

tested point of the building B is illuminated by

sunlight at 01:00 pm.

Figure 6 - Computation of intersections between

the 3 rays and the bounding boxes of the tiles.

For rays R1 and R3, we need to continue browsing

the sBVH because bounding boxes of the current

level are intersected: T1 (corresponding to a terrain

object) and B1 (corresponding to a building) are

crossed by R1 while V1 (corresponding to

vegetation) is crossed by R3.

Figure 7 - Computation of intersections between

the 3 rays and the bounding boxes of the objects

of the intersected tiles of Figure 6.

The next level of intersections tests is represented in

Figure 8. The terrain object T1 does not possess any

sub object (it corresponds to the lowest level of the

sBVH in its branch) so no more tests are needed. We

just link it to the ray R1 (and its information: the

point of the building B it comes from and the

corresponding date and time), and we put it aside

pending the next step.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 49 ISBN 978-80-86943-49-7

We detect that R1 only intersects the bounding box

of the wall part W1 of the building B1, and that R3

intersects the bounding box of the tree Tr1. These

two objects are at the lowest level of the hierarchy in

their respective branch of the sBVH, so we link them

to the corresponding rays.

The next and final step consists in loading one by one

the geometries of the city model whose bounding

boxes possess at least one link with a ray in order to

compute the last intersection tests (Figure 9).

Figure 8 - Computation of intersections between

the 2 remaining rays and the bounding boxes of

the sub objects of the intersected objects of Figure

7.

Figure 9 - Computation of intersections between

the 3D geometries and the linked rays.

Finally, we can conclude that the tested point from

the building B is shaded at 09:00 am by the wall part

W1 of the building B1 and by the terrain T1, is

illuminated at 01:00 pm and is shaded by the tree Tr1

at 08:00 pm. For all of them, the 3D position(s) that

actually create the shade (corresponding to the

intersection between the ray and the 3D geometry)

are also known.

By querying the results, it is then easy to know that

the wall W1 shades this point of the building B at

09:00 pm (at the 3D position intersected the ray R1).

We can also do the same for the terrain T1 or the tree

Tr1.

As presented in this section, we perform a ray tracing

process with rays going from points of the city model

to the sun in order to know if they are sunlit or if they

are shaded by city objects. To compute such an

analysis on the entire city model, we then need to

propose a discretization process in order to have a set

of points that describes the entire 3D geometry of

city objects.

In our datasets, we already have a triangulated 3D

city model and we chose to keep it: we generate a ray

for each triangle initially existing in the triangulated

city model. Its origin is at the centroid of the triangle

and it is oriented toward the sun positions. This

induces some imprecisions since the triangulation is

not necessarily homogeneous: some triangles are

large and they can only store a single sunlight result

even if they cover large areas. We should also

address the fact that the triangles shapes may vary: an

elongated triangle will produce imprecise results with

our sunlight computation method even if it has a

small area. A triangle subdivision process should

thus also take into account the elongation. However,

it was not a point we wanted to address in this paper

since it concerns input files quality and many

methods already exist to generate a precise

triangulation of 3D models, especially for this kind of

application. For example, before processing their

sunlight computation, Alam et al. [Ala12] and

Strzalka et al. [Str12] compute a more precise

triangulation until the area and the elongation of each

triangle are below threshold values.

The results are stored in a database in a way that

offers possibilities to aggregate them at the user’s

convenience (for micro or macro analyses) in order

to make them more workable for further

computations. Each sunlight and shadow result is

linked to the concerned objects in the city model.

This allows retrieving all information linked to the

objects: the geometric ones (e.g. the area, the

perimeter, etc.) as well as the semantic ones (e.g. the

address of a building, the name of a road, etc.). This

permits users to aggregate various information

allowing diverse applications.

4. APPLICATIONS

4.1 One method, multiple outputs
The implementation work has been done using the

features of 3D-Use5 platform (3D Urban Scene

Editor) in which we implemented the process

presented in this paper. This tool supports various

GIS (Geographic Information System) data and

permits to elaborate and validate new processes. 3D-

Use can open many file formats like CityGML, 3ds,

5 3D-Use : liris.cnrs.fr/vcity/wiki/doku.php?id=3duse_en

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 50 ISBN 978-80-86943-49-7

obj or Shapefile and proposes a 3D visualization of

data coming from these files.

Figure 10 presents the total workflow of the sunlight

and shadow computation: given the sun positions and

a 3D city model, 3D-Use computes the sunlight and

shadow information and adds them to a database.

This data can then be fetched in order to generate

outputs depending on what one would like to analyse.

It is for instance possible to generate 2D shadow

maps which can be useful for analysing the shadow

impact on non-vertical surfaces. It is also possible to

generate various types of charts depending on what

one would like to know in term of sunlight and

shadow impacts. Examples and uses of shadow maps

and charts will be presented in the next sections. In

addition, we will propose a temporal visualisation of

the results in 3D-Use platform in section 4.5.

The purpose of the applications presented in this

section is to illustrate the type of results that our

method allows. However, domain specialists like

urban planners will elaborate more pertinent usages

of our method (e.g. comparison of the shadow impact

of concurrent construction projects, understanding

why a square or a park has been created in a certain

area, etc.). In this goal, 3D-Use has been made

available in open source6 to our partners in order to

make these dedicated studies.

Figure 10 - Multiple outputs generation.

4.2 Application to the city of Lyon dataset
More than 500 Km² of data are available for the city

of Lyon (France) and its surroundings. They are

composed of 3D models stored in CityGML files

already organized in different layers: LoD2

buildings, water and Digital Terrain Model (DTM).

In addition to this 3D data, a large number of

vectorial 2D datasets describe the territory (nearly

600 different datasets are available in the Lyon open

data7). For example, we have an access to the road

network, to forested areas or to the trees database and

we can use them to generate or enhance 3D geometry

in order to improve the virtual model of the city of

Lyon and to get more relevant results.

6 http://liris.cnrs.fr/~vcity/wiki/doku.php?id=3duse_en

7 Lyon open data: https://data.grandlyon.com/

Figure 11 shows three tiles: one from a sparse district

of Quincieux (small city near Lyon in France - on the

left), one from a residential district of Francheville

(another city close to Lyon - in the middle) and one

really dense from the city centre of Lyon (on the

right). We computed the sunlight and shadow on

these three tiles of the same size (500m*500m) but of

different densities (within these areas and without),

on an i7-4770 @ 3.40GHz CPU.

Table 1 presents the computation results of the 3

different tiles presented in Figure 11 with two layers

(LoD2 building and terrain) and for two different

periods of time (one day and one month) with a time

step of one hour.

Figure 11 - Three tiles (500m*500m) of various

urban densities: sparse tile of a district of

Quincieux (on the left), residential district of

Francheville (in the centre) and dense district of

the city centre of Lyon (on the right).

 Table 1 - Computation time of our method for

three tiles (500m*500m) of various urban

densities on two different time periods: 1 day (the

07th of April 2017) and 1 month (October 2016).

We can note that it can take more than one day to

compute the sunlight and shadow of a tile for a

period of one day in the case of a very dense area but

it can also be very quick in some less populated

regions such as the districts of Quincieux or

Francheville. However, we can clearly see that the

computation for one month takes a lot less than 30x

more the time of computation for one day. This is

due to our way of managing data presented in section

3: we only open 3D geometry once to test its

intersection with all rays coming through its

bounding box. Thus, the complexity of our method is

linear but with a small factor depending on the

dataset of the city. This means that increasing the

Tile Layer Triangles Time Period Process Time

1 day 43 s

1 month 54 s

1 day 8 min 30 s

1 month 11 min 22 s

1 day 1h 52 min 12 s

1 month 3 h 8 min 43 s

1 day 3h 48 min 34 s

1 month 6 h 35 min 2 s

1 day 22 h 42 s

1 month 35 h 56 min 13 s

1 day 6 h 19 min 39 s

1 month 12h 39 min 20 s

Quincieux

Buildings 460

Terrain 2840

Francheville

Buildings 8095

Terrain 13057

Lyon

Buildings 35455

Terrain 8767

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 51 ISBN 978-80-86943-49-7

number of sun positions has a limited influence in

terms of computation time.

Since our goal is to generate results more

semantically precise than usual methods for

computing shadows, our solution is mostly slower.

However, our method is highly parallelizable as the

computation process is the same for each triangle

which means that we could use computing grids or

GPGPU to reduce computational times.

4.3 Impact of a tower on its surroundings
The genericity of the method presented in section 3,

the output possibilities detailed in section 4.1 and the

available data described in the previous section allow

a lot of different applications to our process. In this

section, we will present an example of one of these

possible applications: an analysis of the impact of the

shadow of ‘Tour Part-Dieu’, a tower of Lyon on its

surroundings in terms of distance and surface during

two different days of the year (18/02/2016 and

04/07/2016). This tower, shown in Figure 12, is

165m high and its footprint covers 1 115 m². Our

way of storing data presented in section 3 and the

information about the object which casts the shadow

allow to easily extract information allowing an

impact analysis.

Figure 12 - The ‘Tour Part-Dieu’, a tower of Lyon

(165m high).

Figure 13 shows the evolution of the maximum

length of the shadow of this tower on the 18/02/2016

(in dark blue) and on the 04/07/2016 (in light blue).

The curves have a similar shape: a spike at sunrise, a

slowly decreasing path until the middle of the day

and a slowly increasing path during the afternoon

followed by another spike just before sunset. We can

notice the big maximum lengths at sunrise and

sunset. Actually, when the sun is low the impacted

city objects situated far from the tower are also in the

shade due to other closer objects, but this measure

gives the theoretical impact of the tower. This

information about which other city objects shade this

particular object can also be extracted from the

results of our method. During the other hours of

sunlight of the day, we can note that the impact is of

several hundred meters. This justifies considering

entire territories for sunlight and shadow

computation, allowing computing the full shadow

impact of high-rise buildings and mountains. Large

scale data management is fundamental to provide

complete results.

We generated charts representing the evolution of the

shadowed area caused by the tower at different times

of the day. These graphs are presented in Figure 14.

On the top, we can see the evolution of the shadow

area on buildings, and on the bottom, the one on the

terrain (without the buildings). In the two charts, the

curve in dark blue represents the values on the

18/02/2016 and the one in light blue the values on the

04/07/2016.

Figure 13 - Maximum length (in meters) of the

shadow of ‘Tour Part-Dieu’ on its surroundings

on the 18/02/2016 (in black blue) and the

04/07/2016 (in light blue).

Figure 14 - Area (in square meters) of the shadow

of ‘Tour Part-Dieu’ on the buildings (top) and on

the terrain (bottom) of its surroundings on the

18/02/2016 (in dark blue) and the 04/07/2016 (in

light blue).

We could pair the results shown in Figures 13 and 14

with other output information which our process

allows to generate such as the semantic information

of the shadowed parts of the model (roof, wall,

owner, etc.). Moreover, we can generate these charts

for other towers and compare their respective shadow

impacts. We could also generate such analyses for

concurrent construction projects of a tower. This

would allow urban planners to easily take into

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 52 ISBN 978-80-86943-49-7

account the shadow impact of concurrent projects.

For example, if the results produced by our process

shows that one of the construction project shades

80% of an urban agriculture farm, urban planners

will probably not keep this project or will propose

modifications before the construction to avoid

conflicts of interests.

4.4 Sunlight and Shadow Map
Our results can also be exploited to generate 2D

sunlight and shadow maps representing the number

of hours of sunlight of non-vertical surfaces of city

models (such as roofs or terrain). Figure 15 shows

the sunlight and shadow map of two tiles (see Figure

11): a district of Francheville on the left and a district

of the centre of the city of Lyon on the right, both on

the 17th of April 2017. On both figures, the triangles

of the models are coloured from blue to red,

depending on the number of hours they are exposed

to the sun during this day.

Figure 15 - Sunlight and shadow map of a district

of Francheville (on the left) and of a district of the

center of Lyon (on the right), both on the

17/04/2017.

On the shadow map of a district of Francheville (left

side of Figure 15), we can distinguish the houses

surrounded by small areas with little sun (red shapes

surrounded by blue and yellow zones) and the two

valleys on the upper left corner of the picture (light

orange zones). On the shadow map of the district of

the centre of Lyon (right side of figure 15), we can

clearly see the roofs of the buildings which are a lot

more illuminated than the terrain in their

surroundings, indicating that the buildings are quite

high and close to each other, unlike the houses of the

district of Francheville. These sunlight and shadow

maps can, for instance, help identifying which roofs

or which terrain areas have a strong photovoltaic

potential. We could also pair these results with the

solar irradiance values of roofs and terrain which we

could easily compute using one of the methods

presented, analysed and compared by Loutzenhiser et

al. [Lou07]. Once this solar irradiance values

computed, we could store them with the information

already computed.

In this application case, the sunlight and shadow

maps represent the results for a day but it is of course

possible to generate the same maps for a longer (or

shorter) period depending on what one needs, and to

choose the time step between two measures.

Moreover, it is also possible to generate more macro

results than one value per triangle by colouring for

example each building in only one colour depending

on the mean value of hours of sunlight of its

triangles.

4.5 Temporal visualisation of the sunlight

and shadow in Lyon and its surroundings
Another possible output is the temporal visualisation

of sunlight and shadow on a 3D urban model. In

order to do that, we improved some of the features of

3D-Use (allowing to manage temporal changes of

cities [Cha17]) to be able to visualise the evolution of

the shadow during a time period chosen by the user.

In Figure 16, the sunlight and shadow visualisation of

a city district of Quincieux (presented in section 4.1,

figure 11) at the same time (15:05) but at different

dates: the 7th of January 2017 (on the left) and the

17th of July 2017 (on the right). On these images, we

can clearly see the change of sun position between

January and July.

Figure 16 - Sunlight and shadow visualisation of a

district of Quincieux on the 7th of January 2017 at

15:05 (on the left) and on the 17th of July 2017 at

15:05 (on the right).

In Figure 17, we show the visualisation of the

sunlight results computed for a district of

Francheville (see Figure 11) on the 17th of April

2017 at different times: 08:00 in the upper left

corner, 10:00 in the upper right corner, 14:00 in the

lower left corner and 19:00 in the lower right corner.

At 08:00 and at 19:00, we can clearly notice the

impact of the small hill and that the shadow

generated by the houses is more important than at

10:00 and 14:00.

Figure 17 - Sunlight and shadow visualisation on a

district of the city of Francheville on the

17/04/2017 at different times.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 53 ISBN 978-80-86943-49-7

5. CONCLUSION & FUTURE WORKS
We have presented a method allowing sunlight and

shadow impact computation on large city models.

Our method allows not only to know which objects

are sunlit and which are in the shadow at any time of

the studied period but also which objects create the

shadows. The genericity of our method allows

considering all types of city objects and the use of

standards permits to apply our method to datasets of

various cities of the world. The sBVH structure

presented in this paper allows to handle very large

areas and to consider both close and far shadow

impacts. Finally, the multiple possible outputs allow

urban specialists to study the shadow impact of city

objects and thus to understand today’s city and better

plan its future.

The accuracy of our results depends on the precision

of the geometry and semantic of the input city model.

In order to obtain more precise results, one can either

provide improved input quality of the 3D geometries

(through pre-processing) or add more semantic levels

in the city model (as planned in CityGML 3.0).

Computation time would be increased but the parallel

nature of our method has the potential to drastically

reduce the global computation time.

6. ACKNOWLEDGMENTS
This work was performed within the BQI program of

Université Lyon 1. This work was also supported by

the LABEX IMU (ANR-10-LABX-0088) of

Université de Lyon, within the program

“Investissements d'Avenir” (ANR-11-IDEX-0007)

operated by the French National Research Agency

(ANR). Special thanks to Clémence Dutel who

designed most of the figures. We would also like to

thank Eric Boix and Jeremy Gaillard for their

feedbacks.

7. REFERENCES
[Ala12] Alam, N., Coors, V., Zlatanova, S. & Oosterom,

P.V. Shadow effect on photovoltaic potentiality

analysis using 3D city models. International Society for

Photogrammetry and Remote Sensing (ISPRS), 2012.

[Ala16] Alam, N., Coors, V., Zlatanova, S. & Oosterom, P.

J. M. Resolution in Photovoltaic Potential

Computation. ISPRS-International Archives of the

Photogrammetry, Remote Sensing and Spatial

Information Sciences, 89-96, 2016.

[Bil15] Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S. &

Çöltekin, A. Applications of 3D city models: state of

the art review. ISPRS International Journal of Geo-

Information, 4(4), 2842-2889, 2015.

[Cha17] Chaturvedi, K., Smyth, C. S., Gesquière, G.,

Kutzner, T. & Kolbe, T. H. Managing versions and

history within semantic 3D city models for the next

generation of CityGML. In Advances in 3D

Geoinformation (pp. 191-206), 2017.

[Dia11] Díaz-Dorado, E., Suárez-García, A., Carrillo, C. J.

& Cidrás, J. Optimal distribution for photovoltaic solar

trackers to minimize power losses caused by shadows.

Renewable Energy, 36(6), 1826-1835, 2011.

[Fre15] Freitas, S., Catita, C., Redweik, P. & Brito, M. C.

Modelling solar potential in the urban environment:

State-of-the-art review. Renewable and Sustainable

Energy Reviews, 41, 915-931, 2015.

[Hof12] Hofierka, J. & Zlocha, M. A New 3‐D Solar

Radiation Model for 3‐D City Models. Transactions in

GIS, 16(5), 681-690, 2012.

[Joh15] Johnson, M. S., Lathuillière, M. J., Tooke, T. R. &

Coops, N. C. Attenuation of urban agricultural

production potential and crop water footprint due to

shading from buildings and trees. Environmental

Research Letters, 10(6), 064007, 2015.

[Kol05] Kolbe, T. H., Gröger, G. & Plümer, L. CityGML:

Interoperable access to 3D city models. In Geo-

information for disaster management, (883-899), 2005.

[Lou07] Loutzenhiser, P.G., Manz, H., Felsmann, C.,

Strachan, P. A., Frank, T. & Maxwell, G.M. Empirical

validation of models to compute solar irradiance on

inclined surfaces for building energy simulation. Solar

Energy, 81(2), 254-267, 2007.

[McG03] McGuire, M., Hughes, J. F., Egan, K., Kilgard,

M. J. & Everitt, C. Fast, practical and robust shadows.

Brown University Computer Science Tech Report CS-

03-19, November 2003.

[Mic88] Michalsky, J.J. “The Astronomical Almanac’s

Algorithm for Approximate Solar Position (1950-

2050)”. Solar Energy. Vol. 40, No. 3, 1988; pp. 227-

235, USA. 1988.

[Nou15] Nouvel, R., Brassel, K.H., Bruse, M., Duminil, E.,

Coors, V., Eicker, U. & Robinson, D. A New

Workflow-driven Urban Energy Simulation Platform

for CityGML City Models. CISBAT 2015, September

9-11, 2015.

[Ped17] Pedrinis, F. & Gesquière, G. Reconstructing 3D

Building Models with the 2D Cadastre for Semantic

Enhancement. In Advances in 3D Geoinformation (pp.

119-135), 2017.

[Red13] Redweik, P., Catita, C. & Brito, M. Solar energy

potential on roofs and facades in an urban landscape.

Solar Energy, 97, 332-341, 2013

[Str12] Strzalka, A., Alam, N., Duminil, E., Coors, V. &

Eicker, U. Large scale integration of photovoltaics in

cities. Applied Energy, 93, 413-421, 2012.

[Wat87] Watson, I. D. & Johnson, G. T. Graphical

estimation of sky view‐factors in urban environments.

Journal of Climatology, 7(2), 193-197, 1987.

[Wie15] Wieland, M., Nichersu, A., Murshed, S.M. &

Wendel, J. Computing solar radiation on CityGML

building data. In 18th AGILE international conference

on geographic information science, 2015.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 54 ISBN 978-80-86943-49-7

A Primary Morphological Classifier for Skin Lesion Images

Jules Matthew A. Macatangay
De La Salle University
2410 Taft Ave., Malate

Philippines 1004 Manila,
Metro Manila

jules_macatangay@dlsu.edu.ph

Conrado R. Ruiz, Jr.
De La Salle University
2410 Taft Ave., Malate

Philippines 1004 Manila,
Metro Manila

conrado.ruiz@dlsu.edu.ph

Richard P. Usatine
University of Texas

Health Science Center
8529 Raintree Woods Dr.

USA 78015 Fair Oaks
Ranch, Texas

usatine@uthscsa.edu

ABSTRACT
Classifying skin lesions, abnormal changes in skin, into their morphologies is the first step in diagnosing skin
diseases. In dermatology, morphology is a categorization of a skin lesion’s structure and appearance. Rather
than directly classifying skin diseases, this research aims to explore classifying skin lesion images into primary
morphologies. For preprocessing, k-means clustering for image segmentation and illumination equalization were
applied. Additionally, features utilized considered color, texture, and shape. For classification, k-Nearest Neigh-
bors, Decision Trees, Multilayer Perceptron, and Support Vector Machines were used. To evaluate the prototype,
10-fold cross validation was applied over a dataset assembled from online resources. In experimentation, the mor-
phologies considered were macule, nodule, papule, and plaque. Moreover, different feature subsets were tested
through feature selection experiments. Experimental results on the 4-class and 3-class tests show that of the clas-
sifiers selected, Decision Trees were best, having a Cohen’s kappa of 0.503 and 0.558 respectively.

Keywords
Skin lesion, classification, machine learning, computer vision.

1 INTRODUCTION
Skin lesions are abnormalities in the surface of one’s
skin. These differences include changes in color, tex-
ture, and consistency. Various groups have become in-
terested in applying technologies such as computer vi-
sion and machine learning techniques into the domain
of skin lesions. Given that skin cancer is one of the most
common, dangerous, and prevalent types of cancer, it
has attracted many researchers to the development of
effective automated detection of malignancies in skin
lesions. With the technology available, many have done
research on the computer-assisted analysis and diagno-
sis of skin lesions. For instance, [Oku13a], [Met14a],
and [Sol16a] used images of skin lesions in determining
whether the skin lesion is malignant or benign.

As much of the research focus on processing images
of skin lesions has been on detecting malignancy, less
have focused on classification besides the malignancy
of a skin lesion. For one, [Ari12a] presented an auto-
mated dermatological diagnostic system that can clas-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

sify skin lesion images into acne, eczema, psoriasis,
tinea corporis, scabies, or vitiligo. On the other hand,
[Yas14a] proposed the use of computer vision-based
techniques to distinguish a skin lesion image as either
acne, eczema, psoriasis, tinea corporis, scabies, vitiligo,
foot ulcer, leprosy, or pityriasis rosea. It can be noted
that one of the major differences between the research
done by [Ari12a] and [Yas14a] is that the latter has a
larger set of skin diseases as compared to the former.
As much of the focus has been directly classifying from
images to specific skin diseases, there is a research op-
portunity in shifting the focus of the classification prob-
lem.

Because of the vast amount of skin diseases that exist,
another higher level categorization scheme that is inclu-
sive of most, if not all, skin lesions may prove to be a
useful and novel approach to the problem. Moreover,
[Jam11a] wrote that the identification of a skin lesion’s
morphology is the first step in diagnosis. These along
with the fact that morphology is indicative of a skin le-
sions’ structure and appearance, makes morphology a
proper means of categorizing skin lesions.

Morphology can be divided into primary and secondary.
Primary morphology refers to the characteristic ap-
pearance of a skin lesion while secondary morphology
refers to the temporal changes and modifications that
occur on the skin lesion [Bol12a]. Only the primary
morphologies will be explored in this research, as by

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 55 ISBN 978-80-86943-49-7

Figure 1: Examples of primary skin lesions: (a) Bulla (b) Macule (c) Nodule (d) Papule (e) Patch (f) Plaque, (g)
Pustule, (h) Vesicle, and (i) Wheal.

definition they are more indicative of the skin lesion’s
core form and structure.

Thus, this research aims to explore classifying skin le-
sion images into primary morphologies. This is done by
adapting techniques present in prior skin cancer malig-
nancy and skin disease classification research to model
a system that can classify images of skin lesions into
the primary categorization of morphologies. As this
research presents the novel research problem of clas-
sification by morphology, it sets the foundation for fu-
ture work on further modeling of the diagnostic pro-
cesses, or utilizing the higher level categorization to re-
duce complexity for classifying specific skin diseases.

2 RELATED WORK
Multiple research works have been done to create skin
lesion classification systems. These works can be cate-
gorized, by their focus, into two groups. The first group,
those focusing on skin malignancy classification, in-
clude studies determining whether a skin lesion is a ma-
lignant or benign, studies determining the severity of
a skin cancer, and studies determining whether a skin
cancer is a melanoma skin cancer or a non-melanoma
skin cancer. The second group, those focusing on skin
disease classification, include studies on classifying a
skin lesion into a specific skin disease given a set of skin
diseases. As of writing, there are no published studies
focused on classifying skin lesions into their morphol-
ogy.

2.1 Features and Feature Selection
There are a large variety of feature sets that have been
defined in the literature. Most of the feature sets can
be categorized into their focus. Primarily, features ex-
tracted from skin lesion images are those that describe
the following elements of the skin lesion: color, texture,
and shape.

Color is one common descriptor used in feature extrac-
tion for skin lesions. Commonly, an image can be ex-
pressed into a variety of color spaces. One example of

this is to break down an image into the 3 color channels
of the RGB color space. The resulting data can then
be processed to extract features. In one study, [Yas14a]
made use of the YCbCr color-encoding system in the
extraction of color within a masked region.

Another crucial descriptor to skin lesions is their tex-
ture. Texture can be computationally expressed in a va-
riety of ways [Mas13a]. One popular method is through
the Grey Level Co-occurrence Matrix (GLCM). GLCM
can be used to measure the spatial relationship between
pixels, becoming a suitable means of extracting infor-
mation on the texture of a skin lesion.

The shape of a skin lesion can be described in a va-
riety of ways, such as area, size, and edge. [Yas14a]
extracted features that quantify the area of a skin lesion
and its apparent edges. [Yas14a] applied computations
on the histogram and a masked region of the image for
the area feature extraction, and applied the sobel oper-
ation on the masked region to extract the edges of the
skin lesion.

In the study done by [Met14a], the Support Vector Ma-
chines Recursive Feature Elimination (SVMRFE) per-
formed the best as compared to Information Gain and
Correlation-based Feature Subset Selection. On the
other hand, for [Mag09a], Correlation-based Feature
Selection (CFS) performed the best as compared to us-
ing Principal Component Analysis (PCA) or General-
ized Sequential Feature Selection (GSFS) for feature
selection.

2.2 Classifiers
A lot of work has gone on the application of different
classification methods in the context of skin lesions. A
variety of methods can be applied to skin lesions: sta-
tistical classifiers, artificial neural networks, rule-based
methods. [Yas14a] made use of a feed-forward back-
propagation neural network in order to classify a skin
lesion to one of 9 predefined skin diseases.

On the accuracy of such systems, many of the systems
in the related works perform well in the detection and

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 56 ISBN 978-80-86943-49-7

Figure 2: Process Flow

classification of skin cancer. For instance, [Yas14a] re-
ports 91% - 97% accuracy for skin diseases that are low
in elevation and 85% - 88% for skin diseases with high
elevation. These studies served as the reference in se-
lecting the various components of the classifier.

3 SKIN LESION MORPHOLOGIES
It is important to understand that morphology in this
research is specifically in the context of dermatology.
Morphology in dermatology is defined as the general
appearance and structure of a particular skin lesion re-
gardless of its function, etiology or pathophysiology
[Bol12a]. Morphology can be further separated into
primary and secondary morphology.

According to [Win86a], skin lesions can be grouped
into two categories, primary and secondary morpholo-
gies. Primary morphologies differ in color or texture
and are either acquired from birth, such as moles or
birthmarks, or during a person’s lifetime, as in the case
of infectious diseases and allergic reactions. Secondary
morphologies on the other hand are lesions that result
from primary skin lesions, either as a natural progres-
sion or as a result of agitating the primary lesion. Be-
cause of this distinction, the categorization can be made
to only consider primary morphologies.

Despite the vast amount of literature discussing skin
lesions and morphology, different sources tend to list
different sets of morphologies. For instance, the list
presented by [Wol08a] is different from the one by
[Pap04a], and by [Bic12a].

Regardless of these different listings, the description of
each morphology is consistent amongst different refer-
ences, so any of the references can be selected and uti-
lized. For this study, a subset from the set of morpholo-
gies as listed by [Bic12a] and shown in Figure 1 is be-
ing used. This subset of morphologies was chosen to
maximize the use of the data gathered for the research.

[Wel08a] provided the following brief description of the
primary morphologies listed by [Bic12a]:

• Bulla - a fluid-filled circumscribed elevation of skin
that is over 0.5 cm in diameter

• Macule - a small flat area with color or texture dif-
fering from surrounding skin

• Nodule - a solid mass in the skin that is palpated or
elevated and is, in diameter of both width and depth,
greater than 0.5 cm

• Papule - a solid elevation of skin that is less than 0.5
cm in diameter

• Patch - a large flat area with color or texture differing
from surrounding skin

• Plaque - an elevated area of skin without substantial
depth but is greater than 2 cm in diameter

• Pustule - an evident accumulation of pus in skin

• Vesicle - a fluid-filled circumscribed elevation of
skin that is less than 0.5 cm in diameter

• Wheal - a white elevated compressible and faded
area often surrounded by a red flare

As the descriptions for each morphology show, mor-
phology in the dermatological sense is not only refer-
ring to shape but also referring to visual traits such as
size, color, texture, and elevation. Furthermore, since
no metric data will be utilized in this research, the sys-
tem is limited in discriminating between morphologies.
Another limitation is that this study focuses on skin le-
sions that are labelled as one morphology only, whereas
cases wherein a particular skin lesion can be classi-
fied under multiple morphologies (e.g. a maculopapular
rash belongs to both macule and papule) are not used in
this research.

4 SKIN LESION CLASSIFIER
This section describes the concepts involved in the cre-
ation of a skin lesion classifier as outlined in Figure 2.

4.1 Preprocessing
Starting with an image, two major processes had to be
made before proceeding with feature extraction: resolv-
ing nonuniform illumination and image segmentation.

Nonuniform illumination is the discrepancy between
the images resulting from them being taken at differ-
ent angles and lighting conditions, such as the exam-
ple in Figure 3. For many instances, illumination nor-
malization was enough to correct nonuniform illumi-
nation. However for other instances, Retinex [Zos13a]
was used in tandem with segmentation. These methods
simply refine the images and reduce nonuniform illu-
mination rather than fix them completely.

Following the illumination refinements, the image will
then be converted to the CIELab color space. After con-
version, the k-means clustering algorithm was applied

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 57 ISBN 978-80-86943-49-7

on the a and b channels of the image in a CIELab color
space to separate the image into two segments, as can
be seen in Figure 4. Of the two segments, the one with
the higher standard deviation was marked as the skin
lesion, a step based on preliminary tests and observa-
tions. For a majority of cases, these steps were enough,
whereas manual corrections had to be applied for the
rest.

Once the two segments had been marked appropriately,
the skin lesion segment was transformed into a mask.
The mask was refined by filling holes, applying mor-
phological opening, and removing small regions, a sam-
ple of which is at Figure 5. Lastly, this mask was then
reapplied to the illumination refined image to get the
properly divided skin lesion and healthy skin segments.

4.2 Features
After the image is properly segmented into normal skin
and skin lesion, the segments undergo feature extrac-
tion. Many features extracted from skin lesion images
covered in skin cancer and skin disease research revolve
around three types: color, texture, or shape. Although
many of these features were formulated for use in those
specific research problems, there are features that could
be adapted to classification by morphology.

4.2.1 Color
For color features, similar to [Sol16a], the common
color features such as the mean and standard deviation
of a value for each color channel in the RGB, HSV, and
CIELab color spaces of the image were included. Ad-
ditionally, by taking the mean color of the healthy skin,
the difference between the mean color of the healthy
skin and the mean color of the skin lesion can be com-
puted and serve as a separate feature. These basic fea-
tures, also used in this research, were previously uti-
lized by works such as [Ari12a] and [Yas14a].

Figure 3: Issues in the dataset: (a) nonuniform illumi-
nation, (b) hair, (c) uneven skin surfaces, and (d) un-
clear skin lesion borders

Statistical measures such as uniformity or energy, and
entropy applied to color channels also served as fea-
tures, as done by [Met14a] for skin cancer classifica-
tion. Both uniformity, computed through the equation

Uni f ormity =
M−1

∑
k=0

p(k)2 (1)

and entropy, computed as

Entropy =
M−1

∑
k=0

p(k) log2(p(k)) (2)

define M as the number of bins of a distinct pixel value,
and p(k) as the probability associated with a specific
color value k.
Moreover, the window-based color features of [Ari12a]
were adapted to this research; in this case dropping the
concentric circles scheme for a core, inner, and outer
region division scheme.

Figure 4: Segmentation steps: (a) Input, (b) K-means
applied to a and b channels of image transformed to
CIELab color space with k=2, (c) Skin Lesion, and (d)
Healthy Skin

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 58 ISBN 978-80-86943-49-7

Figure 5: Mask refinements: (a) Input, (b) Filling holes,
(c) Morphological opening, and (d) Removing small re-
gions

Another feature, color asymmetry, was used by
[Sma13a] for skin diseases through the chi-squared
distance formula

D(h1,h2) =
N

∑
i=1

(h1−h2)
2

h1 +h2
(3)

wherein D(h1,h2) is the chi-square distance of two his-
tograms, N is the number of bins in histograms h1 and
h2, and h1 and h2 are color histograms of opposite areas
divided along a designated axis. This formula was ap-
plied over the two halves of an image as divided along
either the minor or major axes; as was the feature des-
ignated for the relative distance of the intensity centroid
and the mass centroid. In this research, the major and
minor axes of a skin lesion is the same major and mi-
nor axes of an ellipse which has the same normalized
second central moments as the skin lesion.

4.2.2 Texture
For texture features, many works have utilized
various features available through the Gray-Level

Co-occurence Matrix (GLCM). Generally, the com-
mon set which was selected for this research include
energy, contrast, correlation and homogeneity. Energy
is defined similar to how uniformity was treated in
Equation 1, whereas the other three GLCM features are
computed through the following equations

Contrast =
N

∑
i=1, j=1

|i− j|2 p(i, j) (4)

Correlation =
N

∑
i=1, j=1

(i−µi)(j−µ j)p(i, j)
σiσ j

(5)

Homogeneity =
N

∑
i=1, j=1

p(i, j)
1+ |i− j|

(6)

wherein i and j refer to the current column and row
of the generated GLCM, µ is the mean of the current
column or row, σ is the standard deviation of the current
column or row, and p(i, j) is the value found in the i-th
column and j-th row of the GLCM.

Additionally, another set of features were derived from
the Tamura texture features, which represent a visual
description of texture based on human perception. As
noted by [Cas02a], the first three features are enough
for a metric on the general perception of texture. More-
over, as directionality is not visually emphasized in skin
lesions and is more utilized in healthy skin, only con-
trast and coarseness were utilized for this research.

4.2.3 Shape
Shape features are not limited to the shape of the skin
lesion, but also include how they are scattered and their
number, as these are representative to how skin lesions
present themselves. This means that the number of con-
nected components serves as a feature as does distri-
bution, as modified from [Ari12a] which is calculated
through the formula

Distribution =

(
∑

N
i=1, j=1 disti j

N

)
× 1

mmal
(7)

wherein N is the number of regions, disti j is the dis-
tance between the current region i and the current re-
gion j wherein both sets of regions refer to all skin le-
sions found, and mmal refers to the lowest measured
minor axis length across all regions.

Moreover, [Ari12a] and [Paw14a] utilized features per-
taining to the normalized area of the skin lesion, and
the ratio of the min and max area, both of which were
included for this research. The ratio of axis lengths and
asymmetry along the major and minor axes as used by
[Met14a] all served as features.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 59 ISBN 978-80-86943-49-7

Data Source Image Count
DermIS 6621
Global Skin Atlas 2551
DermAtlas 1114
Dermoscopy Atlas 394
Total 10680

Table 1: Raw dataset sources and image count

For shape features focusing on the skin lesion border,
features such as circularity, solidity, fractal dimension
index and border solidity all served as varying means
of measuring how defined, ragged, and uniform the bor-
ders appear to be [Met14a].

4.3 Feature Selection
Due to the large amount of features available, feature
selection was also explored through two methods. Pri-
marily, a reduced feature set was assembled based on
preliminary tests and observations.

Alternatively, a genetic algorithm was also used to
come up with a different reduced feature set. Genetic
algorithms are based on the process of natural evolu-
tion. Generally, genetic algorithms use a heuristic to
generate a solution to a specified problem.

4.4 Classification Methods
After feature extraction, different classifiers were then
trained using a fraction of the generated dataset. Two of
the classifiers chosen are standard algorithms utilized
in machine learning, while the other two are based on
what skin cancer and skin disease classification litera-
ture support.

4.4.1 K-Nearest Neighbors
The first classifier, K-Nearest Neighbor (kNN), is an
algorithm that compares a given test sample described
by a number of attributes to samples with similar at-
tributes. Its name is derived from the fact that given a
new sample, the algorithm searches the n-dimensional
pattern space for k number of training samples similar
to it based on a given distance metric. This algorithm is
one of the simplest of the machine learning algorithms
and yet still performs relatively well in particular clas-
sification problems.

4.4.2 Decision Trees
The second classifier, Decision Trees (DT), are inverted
tree-like graphs that represents a prediction model for a
target attribute given several input attributes. Each in-
terior node of the tree corresponds to an input attribute,
while the leaf nodes represents the predicted value of
the target attribute upon traversal of the tree. Algo-
rithms such as ID3 and C4.5 create decision trees based
on attribute values of a dataset. In particular, these al-
gorithms utilize information gain in order to designate

Morphology Image Count
nodule 110
papule 108
plaque 93
macule 21
Total 332

Table 2: Final dataset size

the root node and recursively partition the values of the
attributes into different nodes. It should also be noted
that there is a chance that the algorithm may not be able
to accommodate all data entries from the training data
due to noise.

4.4.3 Multilayer Perceptron
According to [Ari12a], [Paw14a], and [Yas14a], Feed-
Forward Back Propagation Artificial Neural Networks
perform the best in classification problems on skin dis-
eases. Artificial neural networks (ANN) consist of
smaller processing units or neurons that are highly in-
terconnected to form a computational model. Train-
ing involves having each neuron adjust their weights
to accommodate the current input. Furthermore, ANN
are popular in dermoscopic image analysis according to
both [Mag09a] and [Mas13a]. A Multilayer Perceptron
(MLP) is a type of artificial neural network that is an
extension of perceptrons, and is said to be the simplest
kind of feed-forward neural network.

4.4.4 Support Vector Machines
According to [Mag09a] and [Mas13a], Support Vec-
tor Machines (SVM) perform the best in classification
problems concerning skin lesion malignancy. SVMs
work based on statistical learning theory, essentially
finding the optimal hyperplane between classes in a
dataset through the resolution of an optimization prob-
lem.

5 EXPERIMENTS AND RESULTS
Given the flow outlined in Figure 2 and discussed in
Section 3, specific experiments were designed and ran
to evaluate the classifiers generated from the processes
described.

5.1 Dataset and Experiment Setup
First, images and textual data were gathered from 4
data sources: DermIS [Hei03a], Global Skin Atlas
[Aus05a], the Interactive Dermatology Atlas [Usa06a],
and Dermoscopy Atlas [Aus07a]. After extraction, the
data was combined based on the morphologies tagged
and filtered further to images that were tagged with
only one morphology belonging to the four utilized
in this research. Furthermore, instances were also
excluded from processing due to various issues such as
uneven skin surfaces and unclear skin lesion borders,

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 60 ISBN 978-80-86943-49-7

Classifier w/ Feat Select accuracy kappa
kNN No 46.06% 0.215

Yes 49.40% 0.264
DT No 60.38% 0.427

Yes 65.48% 0.501
MLP No 67.17% 0.530

Yes 65.14% 0.502
Table 3: Accuracy and Cohen’s kappa for 4 Class
dataset with or without genetic feature selection applied

Classifier Feature Set accuracy kappa
KNN Base 46.06% 0.215

Reduced 56.10% 0.363
DT Base 60.38% 0.427

Reduced 65.63% 0.503
MLP Base 67.17% 0.530

Reduced 64.03% 0.486
SVM Base 32.16% -0.014

Reduced 59.57% 0.408
Table 4: Accuracy and Cohen’s kappa for 4 Class
dataset with differing feature sets

such as those in Figure 3. Due to the aforementioned
constraints, the number of instances in the dataset
dwindled from 10,680 in Table 1 to 332 in Table 2.
For the configurations of the classifiers, preliminary
tests were done to find the configurations that per-
formed well for the classification problem. Firstly, the
kNN classifier was set to use a weighted voting scheme
with k = 5. For the DT, the criterion of accuracy was
utilized and the classifier was set to have a maximal
depth of 20, with pruning and pre-pruning active. The
MLP utilized was set to have 10 maximum training cy-
cles and run over 10 generations with 4 MLPs per en-
semble. Lastly, A C-SVC type SVM with the rbf kernel
was utilized.

5.2 Feature Selection Experiments
For this test, Table 3 shows the result of the genetic
feature selection algorithm as trained using the SVM
classifier. Alternatively, Table 4 shows the comparison
between utilizing the full feature set or a manually re-
duced feature set. The reduction was done by removing
features that correspond to any of the HSV and CIELab
color space channels, leaving just color features based
on intensity.
As can be observed from both Table 3 and 4, applying
the genetic feature selection to the feature set did not
affect the performance of the classifiers consistently.
Moreover, the kNN classifier performed less as com-
pared to both DT and MLP, which may be attributed to
the still high dimensionality of the feature space even
after many features had been filtered out.
On the contrary, utilizing the reduced feature set yielded
similar if not better results than utilizing the whole fea-
ture set, with MLP being the exception. Furthermore,

as the reduction on the feature set is high for this test,
the improvements for the kNN and SVM classifiers is
easily evident. As utilizing the reduced feature set al-
lows for faster processing and utilizes a smaller feature
set, it was the feature set utilized for the succeeding 4
class and 3 class tests.

An important insight is that although the reduced fea-
ture set provided better improvements than genetic fea-
ture selection, as Table 5 includes features relating to
the removed HSV and CIELab colors pace channel fea-
tures, these features not present in the reduced feature
set may still hold considerable value.

5.3 4 Class
The 4 class test were done over the four specific classes,
namely: macule, nodule, papule, and plaque.

As can be observed from Table 6, nodules and papules
were the two classes that the system had the easiest
time distinguishing. All of the classifiers seem to have
difficulty with detecting skin lesions that are macules
but did better with plaques. Given that the data is un-
balanced in that there are fewer instances of macule
than the other classes, this may have skewed the result
against the class. For this test, DT and MLP performed
better as compared to kNN and SVM.

5.4 3 Class
The 3 class tests were those that included only three
classes: nodule, papule, and plaque. For this test, mac-
ule was removed as it contained a significantly fewer
amount of cases as compared to the other three classes.

In Table 7, as compared to that of Table 6, the removal
of the macule class showed improvements but certain
trends remain. For instance, the classes of nodule and
papule have higher f-measures than plaque which is still
lagging behind. This may be attributed to the fact that
papule and plaque are very similar. For instance, Figure
7 shows a set of plaque skin lesions tagged correctly and
incorrectly which visually look to have the same texture
and border definition. However, possibly due to the dif-
ferences in their distribution and color, the samples on
the left were misclassified.

Additionally, it must be noted that all three classes in
the 3 class test are all categorically classified as raised

Distribution Color(Inner - H)
Tamura Contrast Color(Outer - I)
Contrast(Lesion) Mean a(Lesion-Skin)
Uniformity b Solidity
Circularity Correlation(Lesion/Skin)
Mean b(Lesion-Skin) Color(Inner - I)
Relative a Centroid Color P. Asym.(Minor - I)

Table 5: Features in pruned decision tree based from
genetic feature selection feature set

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 61 ISBN 978-80-86943-49-7

macule nodule papule plaque
kNN 0.00% 64.67% 69.54% 35.48%
DT 29.03% 71.77% 72.38% 55.11%
MLP 28.95% 72.22% 71.22% 52.91%
SVM 0.00% 64.74% 72.48% 43.83%

Table 6: F-measure for 4 Class test

Figure 6: Sample images: (left) papules classified as
nodules; (right) papules classified as papules

skin lesions (with macule being part of the flat mor-
phologies) and so share many similarities with one an-
other, making discrimination between them more diffi-
cult. For instance, Figures 6, 7, and 8 all show a series
of nodules, papules, and plaques, all of which appear
to be above the general elevation of skin. Based on the
results shown in Table 7 for this test, DT performed the
best, only slightly falling behind MLP in distinguishing
nodules. Given Table 8, it can be inferred that based on
both accuracy and Cohen’s Kappa, the Decision Tree
classifier is able to create the best classification model,
a notion supported by all tests recorded.

nodule papule plaque
kNN 68.58% 70.40% 43.12%
DT 77.80% 71.26% 60.50%
MLP 77.94% 70.87% 56.98%
SVM 69.48% 70.84% 42.27%

Table 7: F-measure for 3 Class test
4 Classes 3 Classes

accuracy kappa accuracy kappa
kNN 56.10% 0.363 62.23% 0.429
DT 65.63% 0.503 70.71% 0.558
MLP 64.03% 0.486 69.39% 0.539
SVM 59.57% 0.408 62.55% 0.434

Table 8: Accuracy and Cohen’s kappa for 4 Class and 3
Class tests

Figure 7: Sample images: (left) plaques classified as
papules; (right) plaques classified as plaques

6 CONCLUSION
This research study was able to explore classifying skin
lesion images into primary morphologies. Out of the
four classifiers, Decision Trees performed best and thus
is the recommended classifier both due to its resiliency
and performance. For feature selection, genetic feature
selection provides inconsistent results, and utilizing a
reduced feature set showed an increase in performance
in all except for MLP. In conclusion, the classification
of skin lesion images by morphology is possible. How-
ever, more research is needed for significant use of a
system based on the technology can be utilized, espe-
cially as the research area has not been thoroughly ex-
plored.

Further research can benefit from a larger and more
consistent dataset, especially as the current dataset has
many variations in lighting, scaling, and resolution. A
new dataset built through strict guidelines may provide
valuable insight into the deeper exploration of classi-
fication by morphology. Additionally, testing a new
feature set, formulating new features specific to the re-
search problem, and exploring features outside prior
skin cancer and skin disease classification works may
prove beneficial. Moreover, a multi-tier classification
scheme may be possible given that morphologies can be
grouped (e.g. papule, nodule, and plaque are all raised)

Figure 8: Sample images: (left) nodule classified as
plaque; (right) nodule classified as nodule

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 62 ISBN 978-80-86943-49-7

Figure 9: Sample macules correctly classified

Figure 10: Sample nodules correctly classified

Figure 11: Sample papules correctly classified

Figure 12: Sample plaques correctly classified

and that some pairs of morphologies are very similar to
each other (e.g. papule and plaque are similar but dif-
fering in size). Also, further research can be made on
multilabel classification to accommodate skin lesions
that fall on multiple morphologies. Alternatively, the
use of convolutional neural networks (CNNs) with re-
gards to the research problem is also worth investigat-
ing. Lastly, further work can be on measuring the bene-
fits of including the automatically tagged morphologies
as a component in the classification of skin diseases.

7 ACKNOWLEDGMENTS
This research was made possible with funding from the
University Research Coordination Office (URCO) of
the De La Salle University. Many thanks to Dr. Arnulfo
Azcarraga, Dr. Joel Ilao, Dr. Maria Franchesca Quinio
and Dr. Erin Jane Tababa for their input, and to Der-
mIS [Hei03a], Global Skin Atlas [Aus05a], the Inter-
active Dermatology Atlas [Usa06a], and Dermoscopy
Atlas [Aus07a] for the dataset.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 63 ISBN 978-80-86943-49-7

8 REFERENCES
[Ari12a] Arifin, M. S., Kibria, M. G., Firoze, A.,

Amini, M. A., & Yan, H. (2012). Dermatological
disease diagnosis using color-skin images. In
International Conference on Machine Learning
and Cybernetics (ICMLC 2012), 5, 1675-1680.

[Aus05a] The Skin Cancer Society of Australia.
(2005). Global Skin Atlas. Retrieved from
http://www.globalskinatlas.com/index.cfm

[Aus07a] The Skin Cancer Society of Australia.
(2007). Dermoscopy Atlas. Retrieved from
http://www.dermoscopyatlas.com/index.cfm

[Bic12a] Bickley, L., & Szilagyi, P. G. (2012). Bates’
guide to physical examination and history-taking.
Philadelphia, PA: Lippincott Williams & Wilkins.

[Bol12a] Bolognia, J. L., Jorizzo, J. L., Schaffer, J. V.,
Cerroni, L., Heymann, W. R., & Callen, J. P.
(2012). Dermatology (Vol. 2). New York, NY:
Mosby.

[Cas02a] Castelli, V., & Bergman, L. D. (2002).
Image Databases: Search and Retrieval of Digital
Imagery. New York, NY: John Wiley & Sons.

[Hei03a] University of Heidelberg - Department of
Clinical Social Medicine, & University of
Erlangen - Department of Dermatology. (2003).
DermIS - Dermatology Information System.
Retrieved from http://www.dermis.net/

[Jam11a] James, W. D., Elston, D., & Berger, T.
(2011). Andrew’s diseases of the skin: clinical
dermatology (11th ed.). London, UK: Saunders
Elsevier .

[Mag09a] Maglogiannis, I., & Doukas, C. N. (2009).
Overview of advanced computer vision systems
for skin lesions characterization. IEEE
transactions on information technology in
biomedicine, 13(5), 721-733.

[Mas13a] Masood, A., & Ali Al-Jumaily, A. (2013).
Computer aided diagnostic support system for
skin cancer: a review of techniques and
algorithms. International journal of biomedical
imaging, 2013, 22.

[Met14a] Mete, M., & Sirakov, N. M. (2014). Optimal
set of features for accurate skin cancer diagnosis.
In 2014 IEEE International Conference on Image
Processing (ICIP), 2256-2260.

[Oku13a] Okuboyejo, D., Olugbara, O., & Odunaike,
S. (2013). Automating skin disease diagnosis
using image classification. In Proceedings of the
World Congress on Engineering and Computer
Science, 2.

[Pap04a] Papier, A., Chalmers, R. J., Byrnes, J. A., &
Goldsmith, L. A. (2004). Framework for
improved communication: the Dermatology
Lexicon Project. Journal of the American
Academy of Dermatology, 50(4), 630-634.

[Paw14a] Pawar, M., Sharma, D. K., & Giri, R. N.
(2014). Multiclass Skin Disease Classification
Using Neural Network. International Journal of
Computer Science and Information Technology
Research. 2, 189-193.

[Sma13a] Smaoui, N., & Bessassi, S. (2013). A
developed system for melanoma diagnosis.
International Journal of Computer Vision and
Signal Processing, 3(1), 10-17.

[Sol16a] Solomon, A. M., Murali, A., Sruthi, R. B.,
Sreekavya, M. K., Sasidharan, S., & Thomas, L.
(2016). Identification of Skin Cancer based on
Colour, Subregion and Texture. International
Journal of Engineering Science, 8331

[Usa06a] Usatine, P., & Madden, B. (2006).
DermAtlas - The Interactive Dermatology Atlas.
Retrieved from
http://www.dermatlas.net/index.cfm

[Wel08a] Weller, R., Hunter, J., Savin, J., & Dahl, M.
(2008). Clinical Dermatology (4th ed.).
Massachusetts, MA: Malden Publishing.

[Win86a] Winkelmann, R. K. (1986). Glossary of
basic dermatology lesions. The International
League of Dermatological Societies Committee
on Nomenclature. Acta dermato-venereologica.
Supplementum, 130, 1-16.

[Wol08a] Wolf, K., Goldsmith, L., Katz, S. I.,
Gilchrest, B., Paller, A. S., & Leffell, D. J.
(2008). Fitzpatrick’s Dermatology in General
Medicine (7th ed.). USA: McGraw-Hill.

[Yas14a] Yasir, R., Rahman, M. A., & Ahmed, N.
(2014). Dermatological disease detection using
image processing and artificial neural network. In
2014 International Conference on Electrical and
Computer Engineering (ICECE), 687-690.

[Zos13a] Zosso, D., Tran, G., & Osher, S. (2013). A
unifying retinex model based on non-local
differential operators. In International Society for
Optics and Photonics IS&T/SPIE Electronic
Imaging, 865702.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 64 ISBN 978-80-86943-49-7

Predicting vehicle trajectories from surveillance video in a real
scenario with Histogram of Oriented Gradient

Arthur Emidio T. Ferreira

University of Brasilia, Brazil

arthur.500@gmail.com

Bruno Luiggi M. Espinoza

University of Brasilia, Brazil

bruno@cic.unb.br

Flavio de Barros Vidal

University of Brasilia, Brazil

fbvidal@unb.br

Abstract
We propose a method capable to predict vehicle trajectories in a real scenario based on an unsupervised approach
using Histogram of Oriented Gradients (HOG) features to construct an uniform path. The proposed algorithm
extracts a sub-region of the input image defined as Field of View of the target vehicle, to output a possible trajectory
that the given vehicle will follow through. We perform many experiments using the proposed technique, and based
on qualitative/quantitative analyses, we conclude it is successfully able to predict reasonable trajectories.

Keywords
Histogram of Oriented Gradients, Path Prediction and Planning, Trajectory Forecasting.

1 INTRODUCTION

Consider the scene described in Figure 1. We, as hu-
mans, are able to predict the trajectory that the high-
lighted vehicle is likely to traverse in order to reach the
goal indicated by the red circle. This ability is possible
due to our capacity of using prior knowledge to forecast
visual events [CBM12]. For instance, we may infer that
in order to reach the destination, the vehicle won’t col-
lide with any other cars or pedestrians, nor have any
contact with the sidewalk.

Figure 1: Given the highlighted vehicle and a goal
point. What would be the trajectory traversed by the
car before reaching the destination?

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

In computer vision, the topic of trajectory prediction
has been explored in recent works, as presented in
[WJM14, YY3, HSZ16], with the goal to forecast the
trajectories of active elements in a static input image.
A characteristic, that these works share in common, is
the use of training data in order to give an output. In
[HSZ16], for example, uses deep learning techniques
to compute the most possible paths that an active agent
is likely to traverse.
Trajectory forecasting is a very important topic in com-
puter vision. For instance, predicting paths can improve
the effectiveness of object tracking algorithms when
dealing with significant occlusions [FBV16]. More-
over, prediction takes a very important role in scene un-
derstanding.
Is it possible to predict trajectories using a method that
is not based on training data? In this work, we attempt
to answer such question by proposing a framework that
uses HOG features of the input image to compute future
paths traversed by vehicles in a road.
The gradient of an image is an interesting approach
to extract information about texture [ZZS14]. Based
on previous knowledge, we know that vehicles tend
to move on roads, a surface that is usually uniform
in terms of texture. Therefore, we can compare HOG
[DTB05] blocks to analyse different trajectories (shar-
ing the same start and goal points) to determine which
one is more suitable for a moving vehicle.
The previously mentioned works in trajectory fore-
casting propose generalized frameworks of prediction,
meaning that it should be able to predict various types
of active agents in different scenarios (e.g. pedestrians),
based on what the training data consists of. In our
proposed work, we restrict the domain of application
because the characteristic of trajectories on uniform
textured surfaces is inherent in vehicles moving on

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 65 ISBN 978-80-86943-49-7

a road. However, since our method is primarily
based on HOG features, which are very robust to
be computed, then the time and space efficiency can
be greatly increased, meaning that our approach can
provide prediction results significantly faster than other
approaches, since ours doesn’t rely on training.

This paper is organized as follows: Section 2 provides
a brief background knowledge regarding event forecast-
ing; Section 3 presents the proposed approach applied
for path prediction; Section 4 presents the application
and validation of the proposal in a specific vehicle path
forecasting; and final remarks and future work envi-
sioned are provided in Section 5.

2 RELATED WORKS
Prediction is an inherent human ability [SK10a], and
has also been observed in several animal species
[RW14], such as in Western scrub-jays [CSP07]. Event
prediction is an important trait to comprehend and
respond to the environment. Therefore, various recent
works have been developed with the goal to bring such
skill to the field of computer vision.

In computer vision, prediction has started to be ex-
plored in recent years for: i) tracking occluded objects
[FHS10], ii) predicting missing frames or extrapolat-
ing future frames in a video [RMB14], iii) semantically
forecasting the future contextual events that are likely
to happen in unlabeled videos [VCP15], iv) predicting
the future motion of individual pixels in a static image
[MH16], v) anticipating human events so robots can
better assist humans in daily activities [KS13], and vi)
predicting the consequences of forces applied to objects
in images [MR16].

We explore the topic of path prediction. Several tech-
niques have been developed to predict the trajectories
of active agents in a given scene. In the current lit-
erature, there are many works to predict: trajectories
in egocentric videos [SKK16], the most likely trajec-
tories of players in football games [LN16], predict tra-
jectories performed by pedestrians [KKZ12, PS11], and
more general approaches [WJM14, YY3, HSZ16].

The work done by [WJM14] consists of an unsuper-
vised technique to predict the most possible trajectories
that an active agent is likely to follow in a scene. The
proposed method is based on the extraction of mid-level
patches [SSG12] present in each frame. Then, it is cre-
ated a transition matrix containing information about
how each element can move or transition into another
patch. It is also created a reward function for each
element, which maps how likely a patch can move to
any point in space. The problem of prediction is thus
solved by modelling a graph, where each node is a state
(i.e. a patch located in a 2-dimensional point in the im-
age), and each edge corresponds to the transition from
one state to another, weighted based on the information

present in the transition matrix and the reward function.
This turns into an maximization problem: find the se-
quence of states that maximizes the reward function,
where the goal states are along the edges of the image.
The author solves this problem using Dijkstra’s algo-
rithm [CTH2]. The work shows results of this tech-
nique using datasets of vehicles and pedestrians.

One limitation of the work of [WJM14] is that the
proposed method does not take the movement of co-
occurring elements into consideration. However, the
work presented in [YY3] uses a Kanade-Lucas-Tomasi
(KLT) trackers [SJ94] to obtain object trajectories,
where each trajectory is converted into a quantized
form. The work proposes an unsupervised Hierarchical
Topic-Gaussian Mixture Model (HTGMM) that ex-
tracts semantical movement patterns (e.g. go straight,
turn left) based on quantized trajectories. These pat-
terns are divided into groups, such that all movement
patterns inside a group may occur simultaneously.
Based on this information, an energy potential map
is created and iteratively updated, allowing to predict
future trajectories considering the movement of other
agents in scene.

Another recent work in the field of path prediction is
presented in [HSZ16]. It proposes a framework that
uses deep learning to predict future trajectories. The
proposed method is based on two CNNs: a Spatial
Matching Network and an Orientation Network. The
Spatial Matching Network is responsible for generating
a reward map of the scene, which is used to check if an
agent is likely to reach a given region. The Orientation
Network is responsible for estimating the agent orienta-
tion in order to predict the most possible direction that
the agent is likely to pursue in the near future. Based
on the information present in the reward map and in the
estimated orientation, the technique of [HSZ16] uses a
unified path planning scheme to predict future trajecto-
ries.

Our method is based on the technique of Histogram
of Oriented Gradients (HOG) [DTB05]. The HOG
technique has been commonly used with Support
Vector Machines to perform human and object detec-
tion [BH2014]. HOG has also been used to assist on
some previous prediction techniques. In the work of
[WJM14], each extracted patch is considered to be a
HOG cluster. The work of [KT10] uses HOG as one
of the image representations to predict what could be
observed if the camera changed its position. Here, we
propose a technique that considers HOG as the main
element of the path prediction process.

One similarity between the methods proposed in the
works of [WJM14, YY3, HSZ16] is that they use a pre-
viously training stage in order to forecast future trajec-
tories. One of the reasons for doing this is to make
predictions more accurate in various types of scenar-

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 66 ISBN 978-80-86943-49-7

ios. Here, we propose a simpler framework to forecast
vehicle trajectories. In this domain, we observe that ve-
hicles tend to move in uniform regions (e.g. a vehicle
usually maintains itself in a road area, which tends to
be different in texture compared to a sidewalk, a pedes-
trian, or another vehicle). HOG can be a useful tech-
nique to find texture differences inside a small region.
Therefore, we propose HOG to be used as a feature to
detect regions that a vehicle is likely to move at. Ad-
ditionally, the computational time of HOG features can
be done in a very efficient manner, both in terms of time
and space, therefore we propose a method that can be
executed very close to real-time in today’s hardware.

3 PROPOSED APPROACH
The objective behind our method is to predict the tra-
jectory that a vehicle will follow to reach a given desti-
nation point using only the information from an image.

Therefore, we propose a framework (Figure 2) with the
following input and output descriptions:

Figure 2: A flowchart describing the stages of the pro-
posed approach.

Input: a small sequence of n sequential image frames
F = (f1, f2, ..., fn) s.t. n > 1 taken by a stationary cam-
era, the bounding rectangle R covering the vehicle that
will have interest in its trajectory predicted in f1, and a
destination point D.

Output: a trajectory T = (p1, p2, ..., pm), where pi is
the ith two-dimensional point composing the path. T
is the predicted trajectory for the input vehicle to reach
the destination point D, based on frame f1. The next

four subsections explore each stage of the proposed al-
gorithm and a visual representation of all these stages
can be see in Figure 3.

Figure 3: A visual representation of our proposed ap-
proach.

3.1 Target selection
The initial step of our approach is to provide the inputs
from the image frame. First, we delimit a rectangle that
covers the vehicle we are interested to have the trajec-
tory predicted in frame f1. Second, we mark the desti-
nation point D inside the boundaries of f1.

3.2 Computing the "Field of View"
We denote the meaning of "Field of View" of a given
vehicle as the set of all points that are located in the
plane of 180o created in terms of the orientation on
which the vehicle is heading to. A visual representa-
tion of a field of view can be seen in F̧igure 3b.

We compute a "Field of View" to minimize the number
of HOG cells to be computed in next step, with the goal
of optimizing the average execution time of the algo-
rithm.

The reason for using n input frames instead of only one
is because we must infer in the selected vehicle’s ori-
entation. Therefore, we need a small number of n con-
secutive frames which should be enough to observe a
noticeable motion of the vehicle between frames f1 and
fn. Concurrently, n should not be too large, otherwise
we could infer an incorrect vehicle’s orientation.

Therefore, in order to find an orientation between
frames f1 and fn, we must find the vehicle’s location
at frame fn. The vehicle’s location is achieved using
template matching [FBV07] on frame f2, having
as a template image the Region of Interest (ROI)
corresponding to the initial selection in the first step.
Then, we update the template image, following the
schema described in [FBV07], with the previous result

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 67 ISBN 978-80-86943-49-7

from template matching, and repeat the process until
the vehicle is located at frame fn.

Let Mi be the 2-dimensional point of the center of mass
on the selected vehicle at frame fi. Thus, we can com-
pute the orientation of the vehicle between frames f1
and fn by calculating the slope m of the line connect-
ing M1 and Mn. Based on the slope, we can obtain the
orientation angle θ.

From θ, we can compute 180 parallel lines starting at
M1 and reaching the edges of frame f1, in terms of
the vehicle’s direction. All points composing these 180
lines are defined as the "Field of View" of the vehicle
with center of mass M1 in f1.

3.3 Computing HOG for each cell in the
"Field of View"

In order to use the field of view in our prediction
scheme, we must discretize it as an irregular matrix,
which each element in the matrix corresponds to a
point in the field of view (see Figure 3c). We do this
using Algorithm 1.

Input
I: current frame.
D: the distance between two neighboring

nodes sharing the same line in the
field of view.

VP: the vehicle’s initial position point.
EndInput.

Output
M: the irregular matrix.

DV: a matrix storing the HOG descriptor
values for each element in M.

EndOutput.

Begin
For each ith line L in the Field of View:

CP := VP
j := 1
While CP is in frame:

M[i][j] := CP
DV[i][j] := compute HOG in a 32x32

ROI of I st. the central
point is M[i][j].

CP := point P in L
s.t. dist(P, CP) = D

j := j + 1
EndWhile.

EndFor.
End.

Algorithm 1: Algorithm to compute HOG for each cell
in the field of view

The next step is to calculate the HOG features for each
element in the irregular matrix (Figure 3d). We do this
by extracting a ROI of size 32× 32 pixels defining the

central point of this region as the point stored in the
matrix element. Then, we compute the HOG features
of the ROI using a HOG block of the same size as the
ROI. The resulting vector DVi, j, containing the descrip-
tor values for each element in the irregular matrix of
row i and column j, must be saved for future use.

3.4 Predicting the path
The last step of our approach consists in transform-
ing the irregular matrix into a directed graph, where
each vertex corresponds to an element of the irregular
matrix, being adjacent to all vertices that are in its 8-
neighborhood region in the irregular matrix.

We assign a cost ci, j for every edge connecting the ver-
tex vi to v j. In order to show how it is calculated, let
Hx be the resulting HOG features vector for node vx,
which was obtained in the previous step. Consider the
following equation:

|Hi−H j|=

∣∣∣∣∣∣∣∣∣


hi1
hi2
...

him

−


h j1
h j2
...

h jm


∣∣∣∣∣∣∣∣∣=

|hi1 −h j1 |
|hi2 −h j2 |

...
|him −h jm |

 (1)

Based on Equation 1, we define the cost ci, j in Equation
2.

ci, j = 1T |Hi−H j|= |hi1 −h j1 |+ . . .+ |him −h jm | (2)

Finally, we use the A* search algorithm to compute the
predicted path of our proposed framework [PNR68].
However, we must first set the initial and goal vertices.
Let the initial vertex be the one corresponding to the
first element in the 90th line of the field of view. Addi-
tionally, let the goal vertex be the one which is nearest
to the destination point D which was selected as input
in the first step of our approach.

The optimal path given by the A* algorithm is the result
of our prediction model, which can be seen in Figure
3e.

4 EXPERIMENTAL RESULTS
In order to demonstrate the effectiveness of our pro-
posed methodology, we performed many experiments
with several frames obtained from a image dataset, and
compared the predicted trajectory with a ground truth
achieved manually from the image sequence. We anal-
ysed the results in qualitative and quantitative manners.
In the next subsections we describe the dataset, and
present and discuss our results.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 68 ISBN 978-80-86943-49-7

4.1 Dataset
For our experiments, we were interested in using a
dataset that would contain several elements apart from
vehicles and roads, such as pedestrians, sidewalks,
trees, and different types of terrain (e.g. grass). We
found all these elements of interest in the Minsk
dataset [SNA14]. The Minsk dataset consists in a
collection of video recordings from four different
angles. In one of the angles, we are able to see a road
intersection in aerial view. We used this subset as
our primary experimental data presented in this work,
given that crossroads present many possibilities of
vehicle movements, and usually include more obstacles
in scene.

4.2 Experiments
We present the result of two different input images from
the Minsk dataset, which can be seen in Figures 4 to 9.

Figure 4: Exp. 1: The selected vehicle (in yellow) and
its goal (in red).

Figure 5: Exp. 1: The field of view of the selected
vehicle.

For both experiments, we used the following parame-
ters for the computation of HOG features:

• Block size: 16x16 pixels.

Figure 6: Exp. 1: The predicted trajectory of the se-
lected vehicle.

Figure 7: Exp. 2: The selected vehicle (in yellow) and
its goal (in red).

Figure 8: Exp. 2: The field of view of the selected
vehicle.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 69 ISBN 978-80-86943-49-7

Figure 9: Exp. 2: The predicted trajectory of the se-
lected vehicle.

• Cell size: 8x8 pixels.

• Number of bins: 9.

• Distance between blocks (in terms of its centroid): 8
pixels.

The Field of View from all experiments were obtained
using a total of 5 (five) consecutive frames from the
video sequence. Moreover, the goal from all experi-
ments are the real vehicle’s destination point, obtained
from the ground truth. We choose two experiment sce-
narios, as described below.

4.3 Experiment 1
First, we can observe in Figure 5 that the field of view
matches the direction that the vehicle is pointed towards
to. Second, we can visualize the predicted trajectory
in Figure 6. The path successfully avoids any contact
with the pedestrians that are close to the selected vehi-
cle. It is also observable that a considerable part of the
trajectory remains in the road’s center line, this can be
explained due to the uniformity that this region tends to
have, therefore, the absolute difference between HOG
blocks in these parts of the frame are minimal.

4.4 Experiment 2
In this example, we select a goal that is farther away
compared to the first experiment. Hence, the field of
view, seen in Figure 8, is considerable larger, but still
coinciding with the vehicle’s direction. In the predicted
trajectory, seen in Figure 6, we can observe that the ve-
hicle is capable in avoiding a collision with the white
car located in its front. Given that the goal was selected
to be at where the bus is located, a collision is unavoid-
able. However, it can be seen that such collision only
happens very close to the goal point.

After describing the experiments scenarios, for a quan-
titative analysis, we ran our technique for all frames that

the selected vehicle is present in scene, and computed
the average error between the predicted trajectory and
the path obtained from the ground truth. We used the
Equation 3 to compute the error for iteration i:

Ei =
∑

n
j=1 minDist(B j,GT)

n
, (3)

where n is the number of points in the predicted tra-
jectory, B j is the jth point of the predicted path, GT is
the set of points in the ground truth, and the function
minDist(x,Y) computes the euclidean distance from
point x to the its nearest neighbor in the set of points
Y .

We present the mean errors in Figures 10 and 11 using
the selected vehicles from experiments 1 and 2.

Figure 10: The errors calculated using the vehicle from
Experiment 1.

Figure 11: The average errors calculated using the ve-
hicle from Experiment 2.

As we can observe in both plots, the mean error tends
to decrease in each iteration. This can be explained due
to the fact that the vehicle’s field of view is smaller, and
consequently the number of possible trajectories are de-
creased. Therefore, our method is expected to provide
more accurate predictions when the vehicle is closer to
its goal.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 70 ISBN 978-80-86943-49-7

5 CONCLUSION
We have proposed a simple and efficient method to
predict vehicle trajectories in a real scene using the
Histogram of Oriented Gradients as the main feature
and optimization algorithms. Based on the assump-
tion that vehicles are likely to move in uniform regions
(i.e. avoiding obstacles and different types of terrain),
we have shown that the comparison between HOG de-
scriptor vectors is an interesting approach to find dif-
ferences in texture between small adjacent regions. We
have demonstrated that our proposed framework pro-
vides satisfactory results with aerial view videos, being
able to propose paths that don’t intersect with additional
vehicles, pedestrians, and other non-asphalt regions.

Additionally, given the time complexity O(|E|) of the
A* search algorithm, and considering that the compu-
tation of HOG descriptors can be performed consider-
ably fast in today’s hardware, we have shown that the
time/space efficiency of predicting vehicle trajectories
is considerably positive and achievable for any com-
puter architecture, including the mobile and embedded
devices.

However, it is important to remark that our proposed
method is an initial step in trajectory prediction in
video. For future work, we plan to be able to predict
trajectories of a vehicle by considering the existence of
changes in the environment (e.g. movement of other
vehicles and pedestrians). Additionally, we plan to use
HOG as a feature in a trained model in order to ob-
serve whether we are able to forecast better trajectories.
By using a trained model, we also plan to predict the
vehicle’s final position. Furthermore, since our goal is
to predict paths executed by vehicles, it is very impor-
tant to construct a framework that infers common traffic
laws, such as recognizing whether a street only allows
one-way traffic.

6 REFERENCES

[BH2014] Bristow, Hilton, and Lucey, Simon. 2014.
Why do linear SVMs trained on HOG features
perform so well? CoRR, abs/1406.2419.

[CBM12] Cheung, Olivia S, & Bar, Moshe. 2012. Vi-
sual prediction and perceptual expertise. Int J
Psychophysiol, 83(2), 156–63.

[CTH2] Cormen, T. H., Leiserson, C. E., Rivest, R. L.,
& Stein, C. Dijkstra’s algorithm. Chap. 24, pages
595–599 of: Introduction to Algorithms 2nd edi-
tion. MIT Press.

[CSP07] Correia, Sérgio P.C., Dickinson, Anthony, &
Clayton, Nicola S. 2007. Western Scrub-Jays An-
ticipate Future Needs Independently of Their Cur-
rent Motivational State. Current Biology, 17(10),
856 – 861.

[DTB05] Dalal, N., & Triggs, B. 2005 (June). His-
tograms of oriented gradients for human detec-
tion. Pages 886–893 vol. 1 of: 2005 IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), vol. 1.

[FBV16] de Barros Vidal, Flavio, Koike, Carla M.
C. C., Cordoba, Diego A. L., & Zaghetto, Alexan-
dre. 2014. Improving Visual Tracking Robustness
in Cluttered and Occluded Environments using
Particle Filter with Hybrid Resampling. Pages
605–612 of: Proceedings of the 9th International
Conference on Computer Vision Theory and Ap-
plications (VISIGRAPP 2014).

[FHS10] Fu, Hui-Xuan, Sun, Feng, & Liu, Sheng.
2010 (July). Anti-occlusion tracking algo-
rithm based on LSSVM prediction and Kalman-
MeanShift. Pages 6031–6036 of: Intelligent Con-
trol and Automation (WCICA), 2010 8th World
Congress on.

[HSZ16] Huang, Siyu, Li, Xi, Zhang,
Zhongfei (Mark), He, Zhouzhou, Wu, Fei, Liu,
Wei, Tang, Jinhui, & Zhuang, Yueting. 2016.
Deep Learning Driven Visual Path Prediction
from a Single Image. CoRR, abs/1601.07265.

[KT10] Kaneva, B., Sivic, J., Torralba, A., Avidan, S.,
& Freeman, W. T. 2010. Matching and Predicting
Street Level Images. In: ECCV 2010 Workshop
on Vision for Cognitive Tasks.

[KKZ12] Kitani, Kris M., Ziebart, Brian D., Bagnell,
James Andrew, & Hebert, Martial. 2012. Activity
Forecasting. Berlin, Heidelberg: Springer Berlin
Heidelberg. Pages 201–214.

[KS13] Koppula, H. S., & Saxena, A. 2013 (Nov).
Anticipating human activities for reactive robotic
response. Pages 2071–2071 of: 2013 IEEE/RSJ
International Conference on Intelligent Robots
and Systems.

[LN16] Lee, Namhoon, & Kitani, Kris M. 2016. Pre-
dicting wide receiver trajectories in American
football. Pages 1–9 of: 2016 IEEE Winter Confer-
ence on Applications of Computer Vision, WACV
2016, Lake Placid, NY, USA, March 7-10, 2016.

[MR16] Mottaghi, Roozbeh, Rastegari, Mohammad,
Gupta, Abhinav, & Farhadi, Ali. 2016. "What
happens if..." Learning to Predict the Effect of
Forces in Images. CoRR, abs/1603.05600.

[PNR68] P. E. Hart, N. J. Nilsson, & Raphael, B. 1968.
A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Sys-
tems, Science, and Cybernetics, SSC-4(2), 100–
107.

[PS11] Pellegrini, Stefano, Ess, Andreas, & Van Gool,
Luc. 2011. Predicting Pedestrian Trajectories.
London: Springer London. Pages 473–491.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 71 ISBN 978-80-86943-49-7

[RMB14] Ranzato, Marc’Aurelio, Szlam, Arthur,
Bruna, Joan, Mathieu, Michaël, Collobert, Ro-
nan, & Chopra, Sumit. 2014. Video (language)
modeling: a baseline for generative models of
natural videos. CoRR, abs/1412.6604.

[RW14] Roberts, William A. 2012. Evidence for future
cognition in animals. Learning and Motivation,
43(4), 169 – 180. Remembering the Future: The
Influence of Past Experience on Future Behavior.

[SNA14] Saunier, Nicolas, Ardo, Hakan, Jodoin, Jean-
Philippe, Nilsson, Aliaksei Laureshyn Mikael,
Svensson, Åse, Miranda-Moreno, Luis, Bilodeau,
Guillaume-Alexandre, & Astrom, Kalle. 2014.
A Public Video Dataset for Road Transportation
Applications.

[SJ94] Shi, Jianbo, & Tomasi, Carlo. 1994. Good
Features to Track. Pages 593 – 600 of: 1994
IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR’94).

[SKK16] Singh, Krishna Kumar, Fatahalian, Kayvon,
& Efros, Alexei A. 2016. KrishnaCam: Using a
longitudinal, single-person, egocentric dataset for
scene understanding tasks. Pages 1–9 of: 2016
IEEE Winter Conference on Applications of Com-
puter Vision, WACV 2016, Lake Placid, NY, USA,
March 7-10, 2016.

[SSG12] Singh, Saurabh, Gupta, Abhinav, & Efros,
Alexei A. 2012. Unsupervised Discovery of Mid-
level Discriminative Patches. In: European Con-
ference on Computer Vision.

[SK10a] Szpunar, Karl K. 2010. Episodic Future
Thought: An Emerging Concept. Perspectives
on Psychological Science, 5(2), 142–162.

[FBV07] Vidal, F. B., & Alcalde, V. H. C. 2007 (June).
Object Tracking by introducing Stochastic Filter-
ing into Window-Matching Techniques. Pages
31–36 of: 2007 International Symposium on
Computational Intelligence in Robotics and Au-
tomation.

[VCP15] Vondrick, Carl, Pirsiavash, Hamed, & Tor-
ralba, Antonio. 2015. Anticipating the fu-
ture by watching unlabeled video. CoRR,
abs/1504.08023.

[WJM14] Walker, Jacob, Gupta , Abhinav, & Hebert ,
Martial. 2014 (March). Patch to the Future: Un-
supervised Visual Prediction. In: Proc. Computer
Vision and Pattern Recognition.

[MH16] Walker, Jacob, Doersch, Carl, Gupta, Abhi-
nav, & Hebert, Martial. 2016. An Uncertain Fu-
ture: Forecasting from Static Images using Varia-
tional Autoencoders. CoRR, abs/1606.07873.

[YY3] Yoo, YoungJoon, Yun, Kimin, Yun, Sangdoo,
Hong, JongHee, Jeong, Hawook, & Young Choi,
Jin. 2016 (June). Visual Path Prediction in Com-

plex Scenes With Crowded Moving Objects. In:
The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[ZZS14] Zuo, W., Zhang, L., Song, C., Zhang, D., &
Gao, H. 2014. Gradient Histogram Estimation
and Preservation for Texture Enhanced Image De-
noising. IEEE Transactions on Image Processing,
23(6), 2459–2472.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 72 ISBN 978-80-86943-49-7

Speeding up the computation of uniform bicubic spline
surfaces

Viliam Kačala
Institute of Computer Science,

Faculty of Science,
P. J. Šafárik University in Košice

Jesenná 5,
040 01 Košice, Slovakia

viliam.kacala@student.upjs.sk

Lukáš Miňo
Institute of Computer Science,

Faculty of Science,
P. J. Šafárik University in Košice

Jesenná 5,
040 01 Košice, Slovakia

lukas.mino@upjs.sk

ABSTRACT
Approximation of surfaces plays a key role in a wide variety of computer science fields such as graphics or CAD
applications. Recently a new algorithm for evaluation of interpolating spline surfaces with C2 continuity over
uniform grids was proposed based on a special approximation property between biquartic and bicubic polynomials.
The algorithm breaks down the classical de Boor’s computational task to reduced tasks and simple remainder ones.
The paper improves the reduced part’s implementation, proposes an asymptotic equation to compute the theoretical
speedup of the whole algorithm and provides results of computational experiments.
Both de Boor’s and our reduced tasks involves tridiagonal linear systems. First of all, a memory-saving optimiza-
tion is proposed for the solution of such equation systems. After setting the computational time complexity of
arithmetic operations and clarifying the influence of modern microprocessors design on the algorithm’s remainder
tasks, a new expression is suggested for assessing theoretical speedup of the whole algorithm. Validity of the
equation is then confirmed by measured speedup on various microprocessors.

Keywords
Spline interpolation, Bicubic spline, Hermite spline, Biquartic polynomial, Uniform grid, Tridiagonal systems,
Speedup

1 INTRODUCTION
The paper is devoted to effective computation of tridi-
agonal systems. Since evaluation of such systems be-
longs to challenges of computer science and numerical
mathematics, designing fast algorithms for their com-
putation is a fundamental task. One of many appli-
cations of tridiagonal linear systems is construction of
spline curves and surfaces that pass through the pre-set
input points.

Our reduced algorithm is based on an interre-
lation between bicubic and biquartic polynomi-
als that has been proved in [Sza16a], [Min16a]
and its application was thoroughly described
in [Min16a], [Min15a], [Min15b]. This interrelation
was inspired by a similar property between cubic and
quartic polynomials uncovered in [Tor14a]. A proof of
this interrelation both in 2D and 3D is based on the IZA

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

representation [Tor13a], [Sza13a] which incorporates
both interpolation and approximation. The IZA repre-
sentation was obtained using an r-point transformation
that is a generalization of three point model introduced
by Dikoussar [Dik97a]. A three point transformation
was successfully applied to various approximation
problems such as the assessment of unknown degrees
in regression polynomials [Tor00a], [Mat05a] or a
method for detecting piecewise cubic approximation
segments for data with moderate errors [Dik06a].

An idea, based on which the IZA representation has
been ultimately derived, appeared in [Rev07a]. The pa-
per [Tor09a] showed how to properly use the IZA repre-
sentation’s reference points for segment connection and
their relation to derivatives. Papers [Dik07a], [Sza13a]
contain results on approximating 3D data utilizing the
reference point approach. The basis for the quartic-
cubic interrelation makes up a two-part model, which
was first thoroughly studied in [Rev13a] and [Tor13a].
These works proved the validity of the two-part ap-
proximation model, which led first to approximation
of a quartic polynomial by two cubic ones in [Tor14a]
and then to approximation of a biquartic polynomial
by two bicubic ones in [Min16a]. The reduced sys-
tem approach to spline curve construction was proposed

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 73 ISBN 978-80-86943-49-7

in [TorTA] and afterwards it was generalized for case of
spline surface construction in [Min15b]. The main goal
of this work is both the theoretical and practical confir-
mation that the reduced algorithm for spline surfaces is
faster than the de Boor’s original algorithm which we
refer to as full algorithm.
The structure of this article is as follows. Section 2 is
devoted to a problem statement. To be self-contained,
Section 3 briefly describes de Boor’s algorithm and
our recent algorithm based on reduced systems. Sec-
tion 3.1 shows the standard way of solving tridiago-
nal linear systems and proposes a modified approach to
solve such systems with lesser memory requirements.
The next section analyses the architecture of micropro-
cessors in search of a way to speedup the algorithms.
The assessed speedup stated in Section 5 is confirmed
by real-world measurements summarized in Section 6.

2 PROBLEM STATEMENT
This section defines inputs for the spline surface and
requirements, based on which it can be constructed.
Consider a uniform grid

[u0,u1, . . . ,uI−1]×[v0,v1, . . . ,vJ−1], (1)

where

ui = u0+ ihx, i = 1,2, . . . ,I−1, I = 2m+1,m ∈N,

v j = v0+ jhy, j = 1,2, . . . ,J−1, J = 2n+1,n ∈N.
According to [Boo62a], a spline surface is defined by
given values

zi, j, i = 0,1, . . . ,I−1, j = 0,1, . . . ,J−1 (2)

at equispaced grid-points, and given first directional
derivatives

dx
i, j, i = 0,I−1, j = 0,1, . . . ,J−1 (3)

at boundary verticals,

dy
i, j, i = 0,1, . . . ,I−1, j = 0,J−1 (4)

at boundary horizontals and cross derivatives

dx,y
i, j , i = 0,I−1, j = 0,J−1 (5)

at four corners of the grid.
The task is to define a quadruple [zi, j,dx

i, j,d
y
i, j,d

x,y
i, j]

at every grid-point [ui,v j], based on which a uniform
bicubic clamped spline surface S of class C2 can be con-
structed with properties

S(ui,v j) = zi, j,

∂S(ui,v j)

∂x
= dx

i, j,

∂S(ui,v j)

∂y
= dy

i, j,

∂
2S(ui,v j)

∂x∂y
= dx,y

i, j ,

where the adjacent spline segments are twice continu-
ously differentiable.

3 FULL AND REDUCED ALGO-
RITHMS

This section is devoted to the description of two algo-
rithms for computing the unknown first derivatives of a
C2-class uniform spline surface’s unknown first deriva-
tives. The classic de Boor’s algorithm is based on solv-
ing tridiagonal linear systems of equations that are fur-
ther described in [Boo62a]. Henceforward we will refer
to the de Boor’s algorithm as the full algorithm. The re-
cently proposed reduced algorithm based on the special
approximation property between biquartic and bicubic
polynomials breaks down the classical de Boor’s com-
putational task to reduced tasks and simple remainder
ones as proposed in [Min15a], [Min15b]. The cen-
tral part of the reduced algorithm comprises three new
model equations and five new explicit formulas. Cross
derivatives at the boundaries are computed using the
classic de Boor’s approach. Both algorithms are de-
scribed in Appendix, thus the paper is self contained
and the reader can count the number of mathematical
operations for precise comparison.

3.1 Tridiagonal LU factorization
The standard way of solving tridiagonal linear systems

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1 1 0
1 b2 1
0 1 b3

⋱ ⋱ ⋱ ⋱

bK

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¸¹¹¶
AAA

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1
d2
d3
⋮

dK

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
ddd

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r1−d0
r2
r3
⋮

rK −dK+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
rrr

uses the LU factorization AAAddd = LLL UUU ddd
°

yyy

= rrr, where

LLL =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
l2 1
0 l3 1

⋱ ⋱ ⋱ ⋱

lK 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

UUU =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1 1 0
0 u1 1

u2
⋱ ⋱ ⋱

uK

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

the ui and li elements are computed as, see [Bjo15a],

LLLUUU ∶ u1 = b, {li =
1

ui−1
, ui = b− li}, i = 2, ...,K, (6)

and the forward (Fw) and backward (Bw) steps of the
solution are

Forward: LLLyyy = rrr, (7)

where y1 = r1, {yi = ri− liyi−1}, i = 2, . . . ,K;

Backward: UUU ddd = yyy, (8)

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 74 ISBN 978-80-86943-49-7

where dK =
yK
uK

, {di =
1
ui
(yi−di+1)}, i =K−1, . . . ,1.

1: Input: b, r[1..K]

2: Output: d[1..K]

3: l[2..K]

4: u[1..K]

5: y[1..K]

6: u[2] ← b
7: y[1] ← r[1]
8: for i from 2 to K do
9: l[i] ← 1/u[i−1]
10: u[i] ← b− l[i]
11: y[i] ← r[i]− l[i] ⋅y[i−1]
12: d[K] ← y[K]/u[K]

13: for i from K−1 downto 1 do
14: d[i] ← (y[i]−d[i+1])/u[i]

Algorithm 1: LU factorization

1: Input: b, r[1..K]

2: Output: r[1..K]

3: p[1..K]

4: m← 1/b
5: p[1] ←m
6: r[1] ←m ⋅ r[1]
7: for i from 2 to K−1 do
8: m← 1/(b− p[i−1])
9: p[i] ←m
10: r[i] ←m ⋅ (r[i]− r[i−1])
11: m← 1/(b− p[K])

12: p[K] ←m
13: r[K] ←m ⋅ (r[K]− r[K−1])
14: for i from K−1 downto 1 do
15: r[i] ← r[i]− p[i] ⋅ r[i+1]

Algorithm 2: LU factorization

Tridiagonal systems of equations for full and reduced
algorithms are solved by LU factorization. All the sys-
tems of these algorithms are diagonally dominant with
elements 1, 4, 1 or 1, −14, 1.

The process of computing a tridiagonal system is indi-
cated in Algorithm 1. Since b1 = b2 = ⋅ ⋅ ⋅ = bT−1, where
T =K in case of the full algorithm or T =K−1 in case of
the reduced algorithm, this method can been improved,
see Algorithm 2, requiring less memory as stated in the
lemma below.

Lemma 1 Let K be the number of equations in a linear
tridiagonal system with constant diagonals. Then Al-
gorithms 1 and 2 require 5K and 2K of memory space,
respectively.

4 MICROPROCESSOR’S DESIGN IN-
FLUENCE

In Section 3 we described the full and reduced algo-
rithms for computing the unknown derivatives of spline
surfaces. Their time complexity is O(IJ). When de-
termining the asymptotic time complexity it is com-
mon to ignore the speed of the algorithm’s individual
steps, arithmetic operations, etc. Since the asymptotic
time complexity is equal for both aforementioned al-
gorithms, it is vital to consider the influence of their
individual steps.

One should also keep in mind that larger numbers of
operations don’t necessarily mean slower completion
times as computation time also depends on the type of
performed operations. In case of floating point opera-
tions it holds that additions and multiplications are sim-
ilarly fast, but divisions are multiple times slower, see
Table 1 and Table 2. In this section we briefly discuss
some technical principles how modern CPUs work with
data and how one can utilize this in implementation of
algorithms. Results of computational experiments are
presented in the last section.

Nowadays a performance increase cannot be achieved
by just increasing the clock speed. The architectures of
modern CPUs use other ways to improve performance,
such as superscalar designs, pipelined instructions or
thread parallelism.

4.1 Caching
One of the most important ways for a programmer to
optimize the algorithm’s implementation is the choice
of proper data structures. To store input and output val-
ues of the two suggested algorithms we use matrices.
A matrix can be represented as a jagged array or as a
single continuous array where the element of the i-th
row and j-th column has an index n ⋅ i+ j, where n is the
number of columns.

The main system memory is slower than the CPU which
has to wait tens or hundreds of machine cycles to load
a value from the main memory. To address this la-
tency issue, modern microprocessors are equipped with
small and fast caches that preloads both data and ma-
chine instructions of programs from the main memory.
Caching is an automated process controlled by the CPU
[Pat15a].

Consider an m×n matrix represented by jagged arrays.
When element a0,0 is loaded from the matrix, the micro-
processor might also cache elements a0,1, a0,2, . . . , but
not element a1,0. Therefore an evaluation of a0,0 +a0,1
will be faster than the one of a0,0+a1,0.

In our case the jagged array representation proved to be
more effective as most operations are evaluated on rows
and so we do not need to cache the entire matrix which
can be unfeasible considering large values of m and n.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 75 ISBN 978-80-86943-49-7

4.2 Evaluation time of arithmetic opera-
tions

Microprocessor cores consist of several execution units
specialized in different types of operations with varied
instruction latencies. Values of latencies and through-
puts can be found in CPU micro-architecture documen-
tations. The x86 instruction set has many extensions
and because it is not practical to include all instruc-
tion sets to this test, we chose the most commonly
used instruction set extension, namely the Streaming
SIMD Extensions 2 (SSE2) as all 64 bit x86 micro-
architectures supports these. The sets got a more mod-
ern replacement in Advanced Vector Extensions (AVX)
whose main advantage lies in the improved vector oper-
ations. However vector operations require independent
calculations on each particular vector element [Pat15a]
and this isn’t the case of the considered full and reduced
algorithms.

The speedup measurement of the reduced algorithm
compared to the full one was conducted on five x86
CPUs covering the generations from AMD K10 to Intel
Skylake. In the Table 1 we present four basic arithmetic
instruction speeds on these four micro-architectures.
The first column contains the name of the architecture
and the year of its release to the market. The archi-
tectures are ordered alphabetically by the manufacturer
and then by the year of release. Instruction latency is
the number of CPU clocks it takes for an instruction
to have its data available. Instruction throughput is
the number of CPU clocks it takes for an instruction to
execute. Some instructions have greater latency than
throughput, meaning that the execution unit can pro-
cess another instruction before the data from a current
one are available for further processing. This is referred
as pipelining which is one form of the instruction paral-
lelism. The table confirms the expectation that addition
and subtraction are equally fast. Therefore these oper-
ations will be jointly denoted as ±. Hereafter when we
mention the operation of addition we are meaning the
subtraction as well. It is clear from the table that divi-
sion is the slowest operation.

Latency/Throughput
Architecture (year) + − × ÷
AMD K10.5 Llano (2011) 4/1 4/1 4/1 20/15
Intel Westmere (2010) 3/1 3/1 5/1 7-22/7-22
Intel Sandy Bridge (2011) 3/1 3/1 5/1 16-22/22
Intel Haswell (2013) 3/1 3/1 5/0,5 14-20/13
Intel Skylake (2015) 3/1 4/0,5 3/0,5 14/4

Table 1: Number of machine cycles for SSE2 dou-
ble precision floating point arithmetic operations on
different x86 generations by [Int16a], [Amd11a] and
[Fog16a].

In Table 2 operations were measured in an array con-
taining 512 random elements with the calculations re-
peated 500 000 times. The last two columns represent

measured time ratio of multiplication to addition and
ratio of division to addition. For the last two columns
we define the following notations:

Definition 1

• Value γ
× is the execution time ratio between multi-

plication and addition. It means the performance of
one multiplication is equivalent to γ

× additions.

• Value γ
÷ is the execution time ratio between divi-

sion and addition. It means the performance of one
division is equivalent to γ

÷ additions.

Operations were in the form of a[i] = a[i] ○ a[i − 1],
where ○ ∈ {±,×,÷} to simulate the form of calculations
in Algorithm 2.

A reason to perform measurements instead to rely on
processor documentation is the fact, that given latencies
and throughput for division of some microarchitectures
depends on the input values which are not usually de-
scribed in documentations. The rows of Table 2 corre-
sponds to the rows of Table 1 but instead of architecture
they indicate names of concrete microprocessors.

CPU ± × ÷ γ
×

γ
÷

A6-3420M 368 336 1747 0.91 5.20
Core i5 430M 253 347 544 1.37 2.15
Core i3 2350M 227 341 907 1.50 4.00
Core i7 4790 144 207 488 1.44 3.39
Core i7 6700K 135 136 422 1.01 3.13

Table 2: The speed of arithmetic operations on specific
CPUs measured in milliseconds.

Comparing the second and fourth columns of Table 1
with the second and third columns of Table 2 we can
say that addition and multiplication are similarly fast.

4.3 Parallelism of arithmetic operations
It remains to emphasize another property of the mi-
croprocessor’s architecture called the instruction level
parallelism (ILP). Modern processors are pipelined, su-
perscalar and support vectorized computations as we
briefly mentioned in the part 4.2. While the vector-
ization is not the concern for us due to form of Al-
gorithm 2, the superscalar pipelined nature of modern
CPU’s is to be considered.

Consider the equations in Lemmas 3 and 4 in Sec-
tion 9. The right-hand sides of the equation contain
more than one arithmetic operation. Such expressions
are broken automatically into more mutually indepen-
dent subexpressions and evaluated automatically in par-
allel [Pat15a].

Table 3 shows how the increase in number of operations
will extend the calculation time. For example from
the second column in Table 3 it follows that evaluating

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 76 ISBN 978-80-86943-49-7

a[i] = a[i]+a[i−1]+a[i−2] will be 1.61 times slower
than a[i] = a[i]+a[i−1]. Operations were measured in
an array containing 512 elements with the calculations
repeated 500 000 times. Table 4 then shows similar val-
ues also for other CPU’s, but for the sake of readability
only for expressions containing ten numeric operators.

Num. of ops. ± × ÷

2 1.61 1.61 2.00
3 2.15 2.16 3.00
4 2.59 2.6 4.01
5 3.03 3.04 5.01
6 3.43 3.45 6.02
7 3.85 3.86 7.02
8 4.25 4.27 8.03
9 4.68 4.69 9.03
10 5.09 5.11 10.04

Table 3: Evaluation times of arithmetical operation on
Intel Core i7 6700K depending on the number of oper-
ations.

The results of this section will be used in Section 6.

CPU ± × ÷ β
±

β
×

A6-3420M 6.56 7.19 2.40 1.52 1.39
i5 430M 3.84 5.31 10.03 2.60 1.88
i3 2350M 5.10 5.93 9.99 1.96 1.67
i7 4790 6.43 6.17 10.00 1.56 1.62
i7 6700K 5.09 5.11 10.04 1.96 1.96

Table 4: Evaluation times multiples for mathematical
expressions containing ten operations of said type com-
pared to those expressions containing only a single op-
eration.

Following the results of the Tables 3 and 4 we define
the following notation:

Definition 2

• Value β
± denotes performance effect of instruction

level parallelism on expressions containing more
than one addition or subtraction. It means that an
expression containing enough number of said oper-
ations will be evaluated in 1

β±
time compared to a

CPU without such a feature.

• Analogous, the value β
× denotes performance ef-

fect of instruction level parallelism on expressions
containing more than one multiplication.

Remark 1 Since both considered algorithms doesn’t
contain expressions with more than one floating point
division, value β

÷ is not necessary.

5 THEORETICAL SPEEDUP OF THE
ALGORITHM

In this section we count the number of operations and
their cost for full and reduced algorithms and provide

our main result about the speedup of the latter. In Ta-
ble 5 we have the cost of arithmetic operations for LU
factorization of tridiagonal systems covering both de
Boor’s and the reduced algorithms. In summary we
have the cost of operations for solving one tridiagonal
system with K being the size of a matrix. The cost is
defined as the sum of arithmetic operations where val-
ues for multiplications and divisions are multiplied by
their execution time ratios of γ

× or γ
÷ respectively. The

expressions containing more than one addition or mul-
tiplication operand were also multiplied by 1

β±
or 1

β×
to

accommodate the ILP effect on such expressions.

Expression ± × ÷

LU (6) + Fw (7) + Bw (8) 3K 2γ
×K γ

÷K
RHS (11), (12), (13), (14) K γ

×K 0

Fu
ll

Summary full al. 4K 3γ
×K γ

÷K
LU (6) + Fw (7) + Bw (8) 3K 2γ

×K γ
÷K

RHS dx, dy (15), (17) 3
β±

K 2
β×

γ
×K 0

Summary dx, dy 3(1+ 1
β±

)K 2(1+ 1
β×

)γ
×K γ

÷K
RHS dx,y (21) 31

β±
K 17

β×
γ
×K 0

R
ed

uc
ed

Summary dx,y (3+ 31
β±

)K (2+ 17
β×

)γ
×K γ

÷K

Table 5: Cost of operations for LU factorization of full
and reduced algorithms in regards to the number of un-
knowns K.

Full ± × ÷

dx (11) 4IJ 3γ
×IJ γ

÷IJ
dy (12) 4IJ 3γ

×IJ γ
÷IJ

dx,y (13) 8I 6γ
×I 2γ

÷I
dx,y (14) 4IJ 3γ

×IJ γ
÷IJ

Summary 12IJ 9γ
×IJ 3γ

÷IJ
Table 6: Cost of operations for the full algorithm.

Reduced ± × ÷

dx (15) 3
2(1+ 1

β±
)IJ (1+ 1

β×
)γ
×IJ 1

2 γ
÷IJ

dx (16) 3
2β±

IJ 1
β×

γ
×IJ 0

dy (17) 3
2(1+ 1

β±
)IJ (1+ 1

β×
)γ
×IJ 1

2 γ
÷IJ

dy (18) 3
2β±

IJ 1
β×

γ
×IJ 0

dx,y (19), (20) 8(I+J) 6γ
×(I+J) 2γ

÷(I+J)
dx,y (21) 1

4(3+ 31
β±

)IJ 1
4(2+ 17

β×
)γ
×IJ 1

4 γ
÷IJ

dx,y (22), (23), (24) 21
4β±

IJ 8
4β×

γ
×IJ 0

Summary (15
4 + 19

β±
)IJ (5

2 +
41

4β×
)γ
×IJ 5

4 γ
÷IJ

Table 7: Cost of operations for the reduced algorithm.

Remark 2 Let us consider I being the number of grid-
points along the x-axis, J is the same along the y-axis.
The cost of operations has the form aIJ+bI+cJ+d, but
we provide the count for IJ only.

Tables 6 and 7 show the cost of operations for individual
steps and imply the following result.

Lemma 2 Consider a uniform grid of size I and J. The
total costs of operations are

(12+9γ
×
+3γ

÷)IJ

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 77 ISBN 978-80-86943-49-7

for the full algorithm and

(
15
4
+

19
β±

+(
5
2
+

41
4β×

)γ
×
+

5
4

γ
÷
)IJ

for reduced algorithm.

We are ready to provide our main result about the speed
increase achieved by the reduced algorithm in compar-
ison with the classical full algorithm.

For measuring the expected speedup of the reduced al-
gorithm with respect to the full one, the next theorem
proposes an asymptotic expression.

Theorem 1 Consider a uniform grid of size I and J. If
I,J →∞, then the expected asymptotic speedup of the
reduced algorithm is

12+9γ
×+3γ

÷

15
4 + 19

β±
+(5

2 +
41

4β×
)γ×+ 5

4 γ÷
(9)

Proof. Consider a uniform grid of size I and J. From
Lemma 2 we get the following costs of operations

• (12+9γ
×+3γ

÷)IJ for the full algorithm,

• (15
4 + 19

β±
+(5

2 +
41

4β×
)γ
×+ 5

4 γ
÷)IJ for reduced algo-

rithm.

The speedup is expressed as a cost ratio of both algo-
rithms

(12+9γ
×+3γ

÷)IJ

(15
4 + 19

β±
+(5

2 +
41

4β×
)γ×+ 5

4 γ÷)IJ
,

what completes the proof.

We underline that the asymptotic expression was
derived in accordance with Remark 2.

6 MEASURED SPEEDUP
In the previous section, an asymptotic expression for
the theoretical speedup has been derived. In this one
we show the results of real measurements.

The tested data sets comprises of uniform grid
[u0,u1, . . . ,u2000] × [v0,v1, . . . ,v2000] where u0 = −20,
u2000 = 20, v0 = −20, v2000 = 20 and values zi, j, dx

i, j, dy
i, j,

dx,y
i, j , see (2) – (5), are given from function sin

√
x2+y2

at equispaced grid-points. The speedup values were
gained averaging 50 measurements of each algorithm.

The benchmark was implemented in C++14 and com-
piled with a 64 bit GCC 6.3 using -Ofast optimization
level. Tests were conducted on five different computers
with microprocessors from Tables 1 and 8, all equipped

with 8 – 32 GB of RAM and Windows 10 operating sys-
tem. The tests were conducted on freshly booted PCs
after 10 minutes of idle time without running any non-
system services or processes like browsers, database
engines, etc.

The two γ
× and γ

÷ columns of Table 8 contains the exe-
cution time ratios of arithmetic operations with respect
to addition taken from Table 2. For assessing the the-
oretical speedup from Theorem 1 we consider the in-
struction parallelism values β

± and β
× from Table 4.

The last column holds the values for the real measured
speedup of the sequential reduced algorithm with re-
spect to the full one.

Ratios Speed-up
CPU γ

×
γ
÷

β
±

β
× Asses. Meas.

A6-3420M 0.91 5.20 1.52 1.39 1.13 1.05
i5 430M 1.37 2.15 2.60 1.88 1.24 1.24
i3 2350M 1.39 3.43 1.96 1.67 1.15 1.15
i7 4790 1.44 3.39 1.56 1.62 1.07 1.10
i7 6700K 1.01 3.13 1.96 1.96 1.21 1.23

Table 8: Comparison of assessed and measured
speedups on a 2001×2001 grid.

As we can see, the theoretical speedup is comparable
with the measured one on the chosen CPU architec-
tures.

7 DISCUSSION
Let us discuss the results from the numerical and ex-
perimental point of view. The reduced algorithm works
with five types of tridiagonal system, see (15), (17),
(19), (20) and (21), that differ from each other with the
right hand sides similarly to the de Boor’s full systems.
Since three of these systems contains two times less
equations then the corresponding full systems and their
diagonal elements equal −14 instead of 4, from the the-
oretical view the reduced systems are diagonally dom-
inant and therefore computationally stable [Bjo15a].
The second half of unknowns are computed from sim-
ple explicit formulas, see (16), (18), (22), (23), (24) and
therefore do not present any issue from the computa-
tional view. The model equations of the reduced system
were derived to fulfil the requirement of class C2. The
maximal error between the full and reduced system so-
lutions is 10−12, so we can conclude that the proposed
reduced method yields numerically accurate results.

Although the reduced one contains twice as many cheap
addition, subtraction and multiplication operations, it
also contains less than half of expensive divisions giv-
ing to new approach a speed increase of factor 1.05 to
1.24 on the rest of tested CPU micro-architectures.

In the future we aim to improve the reduced algorithm
for spline surfaces on a uniform grid with simpler equa-
tions and formulas for cross derivatives and so further
increase the speedup.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 78 ISBN 978-80-86943-49-7

8 CONCLUSION
We achieved performance increase of derivatives com-
putation at uniform grid-points for spline surfaces and
halved the memory space requirements.
The achieved speedup can be attributed to two inter-
esting facts. Firstly, the reduced algorithm contains
less than half the number of divisions. Depending on
the CPU microarchitecture a floating-point division is
several times slower than addition while floating point
multiplication and addition are similarly fast.
Secondly, microprocessor cores are pipelined and su-
perscalar. The reduced algorithm contains many ex-
pressions containing more than one arithmetic opera-
tion that can be and are evaluated in parallel on most
modern x86 CPUs.
Although the reduced one contains twice as many cheap
addition, subtraction and multiplication operations, it
also contains less than half of expensive divisions giv-
ing to new approach a speed increase of factor 1.05 to
1.24 on the tested CPU micro-architectures.

9 APPENDIX
The full and reduced algorithms are given by two lem-
mas:

Lemma 3 (Full) If the z values and d derivatives are
given, see (2) – (5), then the values

dx
i, j, i = 1, . . . ,I−2, j = 0, . . . ,J−1,

dy
i, j, i = 0, . . . ,I−1, j = 1, . . . ,J−2,

dx,y
i, j , i = 1, . . . ,I−2, j = 0, . . . ,J−1,

and i = 0, . . . ,I−1, j = 1, . . . ,J−2

(10)

are uniquely determined by the following 2I +J+2 lin-
ear systems of altogether 3IJ−2I−2J−4 equations:
for j = 0, . . . ,J−1,

dx
i+1, j +4dx

i, j +dx
i−1, j =

3
hx

(zi+1, j − zi−1, j), (11)

where i = 1, . . . ,I−2;
for i = 0, . . . ,I−1,

dy
i, j+1+4dy

i, j +dy
i, j−1 =

3
hy

(zi, j+1− zi, j−1), (12)

where j = 1, . . . ,J−2;
for j = 0,J−1,

dx,y
i+1, j +4dx,y

i, j +dx,y
i−1, j =

3
hx

(dy
i+1, j −dy

i−1, j), (13)

where i = 1, . . . ,I−2;
for i = 0, . . . ,I−1,

dx,y
i, j+1+4dx,y

i, j +dx,y
i, j−1 =

3
hy

(dx
i, j+1−dx

i, j−1), (14)

where j = 1, . . . ,J−2.

Lemma 4 (Reduced) If the z values and d derivatives
are given, see (2) – (5), then the values dx

i, j, dy
i, j, dx,y

i, j
from (10) are uniquely determined by the following
3I+2J+5

2 linear systems of altogether 5IJ−I−J−23
4 equa-

tions and 7IJ−7I−7J+7
4 formulas:

for j = 0,1, . . . ,J−1,

dx
i+2, j −14dx

i, j +dx
i−2, j =

=
3
hx

(zi+2, j − zi−2, j)−
12
hx

(zi+1, j − zi−1, j),
(15)

where i = 2,4, . . . ,I−3;

dx
i, j =

3
4hx

(zi+1, j − zi−1, j)−
1
4
(dx

i+1, j +dx
i−1, j), (16)

where i = 1,3, . . . ,I−2, j = 1,3, . . . ,J−2;
for i = 0,1, . . . ,I−1,

dy
i, j+2−14dy

i, j +dy
i, j−2 =

=
3
hy

(zi, j+2− zi, j−2)−
12
hy

(zi, j+1− zi, j−1),
(17)

where j = 2,4, . . . ,J−3;

dy
i, j =

3
4hy

(zi, j+1− zi, j−1)−
1
4
(dy

i, j+1+dy
i, j−1), (18)

where i = 1,3, . . . ,I−2, j = 1,3, . . . ,J−2;
for j = 0,J−1,

dx,y
i+1, j +4dx,y

i, j +dx,y
i−1, j =

3
hx

(dy
i+1, j −dy

i−1, j), (19)

where i = 1, . . . ,J−2;
for i = 0,I−1,

dx,y
i, j+1+4dx,y

i, j +dx,y
i, j−1 =

3
hy

(dx
i, j+1−dx

i, j−1), (20)

where j = 1,2, . . . ,J−2;
for i = 2,4,6, . . . ,I−3,

dx,y
i, j+2−14dx,y

i, j +dx,y
i, j−2 =

= 1
7
(dx,y

i−2, j+2+dx,y
i−2, j−2)−2dx,y

i−2, j+

+ 3
7hx
(dy

i−2, j+2+dy
i−2, j−2)+

3
7hy
(−dx

i−2, j+2+dx
i−2, j−2)+

+ 9
7hx
(dy

i, j+2+dy
i, j−2)+

9
7hxhy

(−zi−2, j+2+ zi−2, j−2)+

+ 12
7hx
(−dy

i−1, j+2−dy
i−1, j−2)+

12
7hy
(dx

i−2, j+1−dx
i−2, j−1)+

+ 3
hy
(dx

i, j+2−dx
i, j−2)+ 27

7hxhy
(−zi, j+2+ zi, j−2)+

+ 36
7hxhy

(zi−1, j+2− zi−1, j−2+ zi−2, j+1− zi−2, j−1)−

− 6
hx

dy
i−2, j +

12
hy
(dx

i, j+1+dx
i, j−1)+ 108

7hxhy
(zi, j+1− zi, j−1)−

− 18
hx

dy
i, j +

144
7hxhy

(−zi−1, j+1+ zi−1, j−1)+ 24
hx

dy
i−1, j,

(21)

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 79 ISBN 978-80-86943-49-7

where j = 4,6, . . . ,J−5;

dx,y
i, j =

1
16

(dx,y
i+1, j+1+dx,y

i+1, j−1+dx,y
i−1, j+1+dx,y

i−1, j−1)−

−
3

16hy
(dx

i+1, j+1−dx
i+1, j−1+dx

i−1, j+1−dx
i−1, j−1)−

−
3

16hx
(dy

i+1, j+1+dy
i+1, j−1−dy

i−1, j+1−dy
i−1, j−1)+

+
9

16hxhy
(zi+1, j+1− zi+1, j−1− zi−1, j+1+ zi−1, j−1),

(22)

where i = 1,3, . . . ,I−2, j = 1,3, . . . ,J−2;

dx,y
i, j =

3
4hy

(dx
i, j+1−dx

i, j−1)−
1
4
(dx,y

i, j+1+dx,y
i, j−1), (23)

where i = 1,3, . . . ,I−2, j = 2,4, . . . ,J−3;

dx,y
i, j =

3
4hy

(dx
i, j+1−dx

i, j−1)−
1
4
(dx,y

i, j+1+dx,y
i, j−1), (24)

where i = 2,4, . . . ,I−3, j = 1,3, . . . ,J−2.

10 ACKNOWLEDGEMENT
This work was partially supported by the research
grants VEGA 1/0073/15 and VVGS-PF-2015-477.

11 REFERENCES
[Bjo15a] A. Björck: Numerical Methods in Matrix

Computations, Springer, 2015.
[Boo62a] C. de Boor: Bicubic Spline Interpolation,

Journal of Mathematics and Physics, 41(3), 1962,
pp. 212–218.

[Dik97a] N. D. Dikoussar: Function parametrization
by using 4-point transforms, Comput. Phys. Com-
mun. 99 (1997), pp. 235–254.

[Dik06a] N. D. Dikoussar, Cs. Török: Automatic Knot
Finding For Piecewise Cubic Approximation,
Mat. Model., 2006, T-17, N.3.

[Dik07a] N. D. Dikoussar, Cs. Török: On one ap-
proach to local surface smoothing, Kybernetika
43 (4), N.4, pp. 533-546, 2007.

[Fog16a] A. Fog: Lists of instruction latencies,
throughputs and micro-operation breakdowns for
Intel, AMD and VIA CPUs, Technical University
of Denmark, 1996 – 2016, Last updated 2016-12-
01, http://www.agner.org/optimize/
instruction_tables.pdf

[Int16a] Intel 64 and IA-32 Architectures Op-
timization Reference Manual, Intel Corp.,
2016 http://www.intel.com/content/
dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-
optimization-manual.pdf

[Mat05a] A. Matejčiková, Cs. Török: Noise Sup-
pression in RDPT, Forum Statisticum Slovacum,
3/2005, Bratislava, ISSN 1336-7420, pp. 199–
203.

[Min15a] L. Miňo: Efficient Computational Algorithm
for Spline Surfaces, ITAT 2015, pp. 30–37.

[Min16a] L. Miňo, I. Szabó, Cs. Török: Bicubic
Splines and Biquartic Polynomials, Open Com-
puter Science, Volume 6, Issue 1, Pages 1–7, ISSN
(Online) 2299–1093, February 2016.

[Min15b] L. Miňo, Cs. Török: Fast Algorithm for
Spline Surfaces, Communication of the Joint In-
stitute for Nuclear Research, Dubna, Russian Fed-
eration, E11-2015-77, (2015), pp. 1–19.

[Amd11a] Software Optimization Guide for AMD
Family 10h and 12h Processors, 2011 http:
//support.amd.com/TechDocs/40546.
pdf

[Pat15a] J. R. C. Patterson: Modern Micropro-
cessors - A 90-Minute Guide, 2001-2015
http://www.lighterra.com/papers/
modernmicroprocessors/

[Rev07a] M. Révayová, Cs. Török: Piecewise Approx-
imation and Neural Networks, Kybernetika, Vol.
43 (4), No. 4, 2007, pp. 547–559.

[Rev13a] M. Révayová, Cs. Török: Reference Points
Based Recursive Approximation, Kybernetika,
Vol. 49, No. 1, 2013, pp. 60–72.

[Sza16a] I. Szabó: Approximation Algorithms for 3D
Data Analysis, PhD Thesis, P. J. Šafárik Univer-
sity in Košice, Slovakia, 2016.

[Sza13a] I. Szabó, Cs. Török: Smoothing in 3D with
Reference points and Polynomials, 29th Spring
Conference on Computer Graphics SCCG 2013,
Smolenice - Bratislava, Comenius University,
ISBN 9788022333771, pp. 39–43.

[Tor00a] Cs. Török: 4-point transforms and approxi-
mation, Comput. Phys. Commun., 125 (2000) pp.
154–166.

[Tor14a] Cs. Török: On reduction of equations’ num-
ber for cubic splines, Matematicheskoe mod-
elirovanie, vol. 26 (2014), no. 11, ISSN 0234-
0879, pp. 33–36.

[Tor09a] Cs. Török: Piecewise smoothing using shared
parameters, Forum Statisticum Slovacum, 7/2009,
pp. 188–193.

[Tor13a] Cs. Török: Reference Points Based Trans-
formation and Approximation, 2013, Kyber-
netika, Vol. 49, No. 4, 2013, http://www.
kybernetika.cz/content/2013/4/
644/paper.pdf

[TorTA] Cs. Török: Speed-up of Interpolating Spline
Construction, to appear.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 80 ISBN 978-80-86943-49-7

Marine Snow Detection and Removal: Underwater Image
Restoration using Background Modeling

Fahimeh Farhadifard
University of Rostock,

Germany
fahimeh.farhadifard@igd-

r.fraunhofer.de

Martin Radolko
University of Rostock,

Germany
martin.radolko@igd-

r.fraunhofer.de

Uwe Freiherr von Lukas
Fraunhofer IGD Rostock,

University of Rostock,
Germany

uwe.freiherr.von.lukas@igd-
r.fraunhofer.de

ABSTRACT
It is a common problem that images captured underwater (UW) are corrupted by noise. This is due to the light
absorption and scattering by the marine environment; therefore, the visibility distance is limited up to few meters.
Despite blur, haze, low contrast, non-uniform lightening and color cast which occasionally are termed noise,
additive noises, such as sensor noise, are the center of attention of denoising algorithms. However, visibility of
UW scenes is distorted by another source termed marine snow. This signal not only distorts the scene visibility
by its presence but also disturbs the performance of advanced image processing algorithms such as segmentation,
classification or detection. In this article, we propose a new method that removes marine snow from successive
frames of videos recorded UW. This method utilizes the characteristics of such a phenomenon and detects it in
each frame. In the meanwhile, using a background modeling algorithm, a reference image is obtained. Employing
this image as a training data, we learn some prior information of the scene and finally, using these priors together
with an inpainting algorithm, marine snow is eliminated by restoring the scene behind the particles.

Keywords
Underwater Image Processing, Marine Snow, Background Model, Inpainting

1 INTRODUCTION
The growing interest in UW image processing lies in
the poor performance of devices used to capture UW
scenes. The major barrier is that light, unlike sound,
is poorly propagated in water. This is explained by
the propagation properties of light in water ([McG80,
Wel69]). Light is exponentially attenuated while trav-
eling in water. This is caused by two factors: light ab-
sorption and scattering, which leads to poor contrast,
haze, blur and color cast.

• Light absorption reduces the light energy; therefore,
colors drop one by one based on their wavelength
(color cast). One can augment the visibility range
by using artificial lightening; however,

• water reflects a significant fraction of light back to
the camera before it even reaches the object in the
scene. This so-called backscattering yields degraded

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

contrast scene and a foggy appearance. Further-
more,

• a fraction of light reflects from the object to the cam-
era with a small angle (forward scattering) which
generally leads to a blurry image. Finally,

• organic and inorganic floating particles in water dis-
tort the scene visibility as an unwanted signal and
are considered as noise, although, they belong to the
scene.

As a result, visibility UW is limited at a distance of
about twenty meters in clear water and five meters or
less in turbid water [ABMK05b]. Naming distortions
for UW imaging, the one which is not well-researched
and mostly neglected from image processing algo-
rithms, is the presence of floating particles. Although,
in orders of magnitude these particles together with
Backscatter have the greatest degradation factor
[ABMK05b].
Marine snow is the term which is used for the macro-
scopic aggregates of detritus, dead material and dis-
solved organic matter floating in water. According to
the properties of light propagation in water, smaller
particles scatter the light more, thus, marine snow is
one of the main sources of scattering (more specifi-
cally backscatter). Light reflection on marine snow cre-
ates white bright spots that lead to an inhomogeneous

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 81 ISBN 978-80-86943-49-7

(a) (b)

(c) (d)

Figure 1: Illustration of physical characteristics of ma-
rine snow in acquired data. (a) particles with different
sizes (3× 3 to 20× 20, (b) geometry of particles, (c)
particles are present in different camera-scene depths
(contrary to additive noise) and (d) strong light reflec-
tion of particles due to using artificial illumination.

medium [BG12]. Not only scattering and absorption
are increased due to this phenomenon, but also it may
appear dominant enough to reduce the scene percep-
tion (some examples are shown in Figure 1 (c) and (d)).
Due to all the difficulties caused by marine snow, in this
work, it is considered and treated as noise.

In this paper, we consider a novel approach to remov-
ing marine snow from frames of a video where the
camera is assumed to be static. The information pro-
vided by the video sequence is used to eliminate marine
snow from each individual frame. Our algorithms has
three main steps, first, we employ our previously pro-
posed background modeling algorithm [RG15] (which
is based on the well-known Gaussian background mod-
eling approach) and obtain an accurate model of the
static components of the video. This model gives us
the information about the background which is covered
with the marine snow. Second, we detect the corrupted
pixels based on our detection algorithm [FRvL17] and
extract a mask which indicates the location of marine
snow. Next, using the background model as a train-
ing data, some prior information about the scene are
learned [RB05]. Finally, we employed the trained pri-
ors and the inpainting algorithm proposed by Roth and
Black [RB05] together with the extracted mask, and
eliminate marine snow by restoring the scene behind
it with the most related prior information. Experiments
show promising results where marine snow is almost
completely removed and even small details are pre-
served.

The rest of this paper is structured as follows: in Section
2, we present a summary of the related works. Section
3 introduces marine snow and provides a short sum-
mary of its characteristics. Section 4.1 contains the
explanation of background modeling method used to
provide the training data [RG15]. In Section 4.2, we
explain how to extract an accurate mask containing ma-
rine snow locations from a single frame. And at last, the
inpainting algorithm in [RB05] is detailed in Section
4.3. Evaluation of the algorithm is provided in Section
5.

2 RELATED WORK
The popular approaches towards denoising consist of
filtering [ABMK05a, LNHL15], wavelet decomposi-
tion and high-pass filtering [SZW11, PK10], a combi-
nation of curvelet and filtering [SSS13]. These methods
assume that every kind of present noise including ma-
rine snow can be defined as one of the additive noises.
Thus, salt & pepper, Gaussian and speckle noise are
considered and with this assumption, authors provide a
solution.

However, considering marine snow as an unwanted
signal in UW images, these algorithms can not ad-
dress eliminating of this phenomenon. This is due to
their main assumptions (additive and single pixel noise)
which do not match marine snow’s characteristics. Ma-
rine snow is an object in the scene and has a structure of
several pixels and covers the scene. Usually, these par-
ticles do not carry interesting information of the scene
and therefore, are disturbing for image processing algo-
rithms.

Banerjee et al. [BSG+14] proposed a probabilistic ap-
proach using median filtering to eliminate this phe-
nomenon from single images. This approach checks
the probability of the existence of marine snow in each
patch. This is done by looking for high luminance pix-
els in a patch using a predefined threshold and calculat-
ing its probability as follows:

P(MS) = 1− NHL

N
(1)

where NHL and N stand for the number of high lumi-
nance pixels and the total number of pixels in the cur-
rent patch respectively. They consider a cross-checking
to avoid misclassification of the true objects as marine
snow. To this end, keeping the same center pixel, they
increased the patch size by 2 (in both directions) and
calculate the probability one more time. If the prob-
ability of having marine snow in the resized patch is
still high (low number of high luminance pixels) then
the center pixel is replaced by the median value of the
local patch. The logic behind this is that they assume
marine snow to have a structure of two or three pixels;

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 82 ISBN 978-80-86943-49-7

Figure 2: Comparison of different update schemes for the background modeling. In the top row are the first and
2000th frames of the Town Center Video. Second and the third rows correpond to the background models for
the 2000th frame created with different updating mechanisms: the partial updating, a complete update, and GSM
respectively.

therefore, if the probability of high luminance pixels in-
creased it means that it is a bigger object which can not
be marine snow.

However, this assumption does not hold always since
usually marine snow, depending on the image resolu-
tion, have bigger structures (in our case it reaches to
20×20 pixels). Thus, considering it to have sizes big-
ger than three pixels, this criterion cannot differentiate
between marine snow and other objects in the image.
Increasing the patch size to take into account bigger
sizes of marine snow may lead to a significantly blurred
image. Moreover, this method does not use all the in-
formation provided in an image since it only considered
gray scale image which could result in false detection of
similar structures with different colors.

3 MARINE SNOW AND ITS CHARAC-
TERISTICS

Decaying dead material and dissolved organic matter in
water is referred to as marine snow since it is white and
looks like snowflakes falling. These particles grow as
they fall, some reaching several centimeters in diame-
ter, this is due to aggregation of smaller particles. Thus,
in an image, marine snow appears as white bright spots
of different sizes and geometries randomly distributed
in the image (Figure 1).

In view of Figure 1 (provided as an example), we could
observe some physical characteristics of marine snow
in captured images:

• it appears in different sizes depending on the image
resolution. Usually between 3×3 to 20×20 pixels
(Figure 1(a)).

• it can be roughly estimated as a Gaussian distribu-
tion in all directions, a high peak in the middle and

lower intensities elsewhere proportional to the dis-
tance to the peak’s location (Figure 1(b)).

• in contrary to additive noise, marine snow is present
in all layers of a scene (considering the depth map
of a scene consists of several layers) and can have a
highly overlapped and non-uniform distribution over
the image (Figure 1(c)).

• the most challenging fact about this phenomenon is
that in the case of using an artificial light at the time
of photography, it scatters the light to the camera and
appears as circle shaped reflection (Figure 1(d)).

4 PROPOSED APPROACH
Having a video of reasonable length, we divide it into
two parts. The first ∼ 500 frames are used for training
and the rest for testing. Although, the number of frames
used for training can vary e.g. in the case of video in
Figure 7 which is short (only 150 frames), we duplicate
the training set by mirroring the order of training frames
and conduct a bigger training set. The training frames
are then used to learn a background model using Gaus-
sian background modeling [RG15] (Section 4.1). Next,
for each test frame, a mask containing marine snow lo-
cations is derived. The details of mask extraction are
provided in Section 4.2. Once the background model of
the scene and the mask corresponding to each test frame
is available, the inpainting algorithm [RB05] is trained
over the background model and recovers the scene be-
hind marine snow using the corresponding mask (Sec-
tion 4.3).

4.1 Gaussian Switch Model
It is a common practice to use a Gaussian distribution to
model the color information of frame pixels in a video

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 83 ISBN 978-80-86943-49-7

sequence and extract one image which only contains the
background. For this purpose, one can use the Mixture
of Gaussian models [SG99, WBSP14], however, they
are not ideal due to difficulty at unifying the different
Gaussian distributions again. On the other hand, single
Gaussian [WADP97] approaches lack accuracy. Thus,
to keep the balance between accuracy and complexity,
we use our Gaussian Switch Model (GSM) proposed in
[RG15].

The idea behind this algorithm comes from the short-
coming of a single Gaussian approach which includes
the information from foreground objects into the back-
ground model and corrupts it. Especially when there is
a constant presence of many foreground objects. This
can be solved by applying a partial update, this means
that instead of updating the whole model, only the pix-
els that are classified as background are updated. Ide-
ally, now only background information is included into
the model which should lead to a more robust and pre-
cise model. For this, the segmentation of the current
frame is computed by background subtraction before
the model is updated with the information from this new
frame. Then the segmentation can be used to update the
background pixels and exclude foreground objects. In
general, this improves the segmentation and stabilizes
the model, but since the model is used to improve its up-
dating process itself, a kind of self-fulfilling prophecy
can occur.

An example of this is the presence of a foreground ob-
ject in the initialization. This foreground object is a
part of the model in the beginning and should slowly be
overwritten with the background information during the
updating process. However, when partial updating is
applied, this usually does not happen because the actual
background in that area will be marked as foreground;
therefore, it does not get included into the model.

To still get the benefits from the partial updating with-
out facing these problems, the GSM uses two Gaussians
to model the background. The first Gaussian is par-
tially updated and is taken as the background model and
the second Gaussian is fully updated with every frame.
The errors of the partially updated model can be dis-
covered by a comparison between these two Gaussians
since they always show the same characteristics:

• the means of the two Gaussians slowly diverge from
each other as the Gaussian with the full update
adapts to the new background and the other stays
constant.

• for many successive frames a foreground object is
detected at the same position.

If these characteristics are true for a specific pixel, the
partial updated Gaussian for that pixel is overwritten
with the values of the full updated Gaussian as it does

R

G

B

Figure 3: The pixels of current patch are visualized as
points in RGB color space. The pink sphere demon-
strates the search environment for the density calcula-
tion.

not reflect the true background anymore. The represent
version of the background model can then be simply
extracted by taking the mean of the partially updated
model for each pixel and color channel.
An example of the background modeling with the GSM
compared to the partial and full update approaches can
be seen in Figure 2 (the mean values of the Gaussians
are displayed) where it is compared to the full and par-
tial updating schemes on a video with many foreground
objects. The parameters of the modeling are the same
for all three methods and it can be seen that the com-
plete update created a model which is very corrupted
with the current foreground objects of the scene. The
partial update eliminates this problem but many objects
from the first frame can still be seen in the model there
as they never get eliminated. The GSM can combine
the advantages of both methods and can create an al-
most uncorrupted background model.

4.2 Mask Extraction
Knowing how marine snow appears in an image, we ap-
plied a detection algorithm to extract a mask indicating
corrupted pixels in the image. This is done by looking
for the pixels with the same characteristics as marine
snow within the patches of an image. First, a rough de-
tection of corrupted pixels is obtained and then, a voting
algorithm conducts the final detection.
Marine snow is more visible and disturbing when the
background is darker (lower intensity), although the
particles are presented everywhere but they decrease
the visibility of the scene especially when there is a
higher contrast to the background. Thus, generally, the
light reflection on the small particles are represented as
bright spots in an image.
Thereby, the intensity of pixels within a patch is
checked and a sudden high-intensity occurrence is
marked as potential marine snow. A candidate pixel p
has to satisfy the following inequality:

‖p−µ(Ω)‖2
2 >W1 ·σ(Ω) p ∈Ω, (2)

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 84 ISBN 978-80-86943-49-7

here W1 is an empirical weight, σ(Ω) is the standard
deviation, and µ(Ω) denotes the mean value of the local
patch Ω. W1 is defined heuristically and is affected by
the image resolution, in our case where the data has a
resolution about 850×478, W1 = 1.7 is the best choice.
Next, we look for general outliers within the candi-
date pixels from the last step. This is done to dis-
tinguish between a high-intensity outlier and a high-
intensity object’s edge. For this, the idea of Gutzeit et
al. [GOK+10] is employed. The RGB color space is
considered as Euclidean space. The pixels within the
current patch are then represented in this space and the
density surrounding each candidate pixel is calculated.
Figure 3 demonstrates this process. A sphere covering
an area surrounding each high-intensity pixel defined in
the last step is explored.
The number of pixels within this sphere

#{v ∈Ω | ∃p ∈Ω : ‖p− v‖2
2 < σ(Ω)}, (3)

together with the volume of the sphere and the overall
number of pixels in the patch gives us the density. Here
v and p are pixels in the local patch where p 6= v, and
σ(Ω) is the standard deviation. The radius of the sphere
is defined dynamically based on the weighted standard
deviation of Ω to make the approach adaptive.
Another observation can be derived from marine snow
characteristics: it mostly appears having high intensity
and low saturation. Thus, by applying the following
inequality the pixels with high saturation are discarded:

|pc− pl |< T ∀c, l ∈ {R,G,B} ∧ c 6= l. (4)

Thereby, the candidate pixels are limited to have col-
ors close to white by using a predefined threshold T
(e.g. T = 2). All the pixel values that satisfy the afore-
mentioned conditions are then discarded and the me-
dian value of the remaining pixel values within the lo-
cal patch Ω is calculated. For now, all the eliminated
values in this patch are replaced by this median value.
The filtering is done in a copy version of the original
image. This procedure, initial filtering, is repeated for
the whole image.
The patches are extracted highly overlapped; this means
each pixel can be in n×n possible patches except for the
pixels at the border of the image with fewer possibilities
(n×n is the patch size). Therefore, each pixel of the im-
age could have been filtered in different patches accord-
ingly, which results in having several filtered versions
for a single pixel. The final decision about each pixel
is then made by using a voting algorithm. If the major-
ity of the filtered versions correspond to each pixel in
the original frame indicate that it contains marine snow
then, the location of that pixel is marked as noisy in
a mask image. A mask image is a matrix, the same
size as the original frame, whose pixel values are bi-
nary (one indicating marine snow and zero elsewhere).

Figure 4: marine snow detection shows overlapping
patches for marine snow (left) versus an object edge
(right).

Figure 4 illustrates the condition with an example. This
is applied on Laplacian pyramid of the image to detect
marine snow with different sizes.
Once the final mask indicating marine snow locations
is acquired, it is used to recover the denoised image
using inpainting. At the end of this stage, we already
can remove marine snow using filtering detected pix-
els. However, the results may suffer from smoothing
the edges. In addition, in locations where the intensity
of the image pixels varies (not only at the edges of the
objects but also for example where color shades of a
fish changes), the filtering can result in a wrong pixel
value. An example of this situation is illustrated in the
zoom-in presentation in Figure 6.
Thus, to improve the results, instead of filtering the im-
age directly, we apply an inpainting algorithm which
learns the most relevant priors to the test image by train-
ing over the background model of the same scene and
restore the image accordingly.

4.3 Inpainting
Image inpainting is a useful application in several sce-
narios of image processing. It is used to fill in pixels
which are missing in an image. Examples of inpainting
in image manipulation include the removal of scratches
on a photograph, unwanted occluding objects, super-
posed text, road-signs or publicity logos [ESQD05].
Generally, inpainting uses the information provided by
the neighbors to fill in the missing pixels. However,
whenever there is noise or any uncertainty, prior mod-
els of images such as depth maps, flow fields, etc. come
into play. In our case where an object is considered
as noise, prior information about the scene is advanta-
geous. Therefore, we employ the inpainting algorithm
proposed by Roth and Black [RB05]. This algorithm
uses Field of Experts (FoE) to learn image priors from
external data. We employ this algorithm rather than tra-
ditional inpainting algorithms so if the detection could
not extract the particles precisely, the restoration will
not be highly affected due to using direct neighbor-
hoods.
FoE employs both sparse coding and Markov Random
Field (MRF) to learn rich, generic prior models of any

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 85 ISBN 978-80-86943-49-7

class of images. Sparse coding provides an elegant and
powerful way of learning prior distributions on small
image patches. However, the result does not general-
ize to give a prior model for the whole image. This is
where MRF provides not very rich but general prior in-
formation of the whole image.
The key idea behind FoE [RB05] is to extend MRF by
modeling the local field potentials with learned bases.
These bases capture important structural properties of
images, respond to various edge and texture features.
For this, they used the idea of the Product of Experts
(PoE) framework [Hin02] and trained a model on a data
set and develop a diffusion-like scheme that exploits the
prior for approximate Bayesian inference.
For more insight, consider the pixels in an image be
presented by nodes V in a graph G = (V,E), where E
stands for the edges connecting nodes. A rectangle re-
gion of m×m neighborhood connecting all nodes is de-
fined, where every such neighborhood is centered on a
node (pixel). The probability density of such a graphi-
cal model is defined as a Gibbs distribution:

p(x) =
1
Z

exp(−∑k Vk(xk)) (5)

here x stands for an image and Vk(xk) is the potential
function for clique xk. They further assumed that the
MRF is homogeneous which leads to translation invari-
ance of MRF model. The potential Function V is then
learned using training images. And as a result, the prob-
ability density of a full image is obtained as follows:

p(x) =
1

Z(Θ) ∏
k

N

∏
i=1

Φi(JT
i xk;αi), (6)

where Z(Θ) is a normalizing function, Ji is a linear
filter, Φi the experts and N stands for the number of
experts. This model works for different image sizes,
enjoys translation invariant property which is desirable
for generic image priors and has few parameters which
need to be learned. The parameters αi and linear filters
Ji are learned from the training images by maximizing
its likelihood.
Once the parameters are learned, the inpainting algo-
rithm propagates information using only FoE prior and
refills the pixels iteratively by introducing an iteration
index t and an update rate η as follows:

x(t+1) = x(t)+ηM
N

∑
i=1

J−i ∗Ψi(Ji ∗ x(t)) (7)

let Ψi(y) = d
dy logΦi(y;αi), J−i denotes the filter ob-

tained by mirroring Ji around its center pixel [ZM97],
and ∗ stands for convolution.

5 EXPERIMENTAL RESULTS AND
DISCUSSIONS

We have performed our experiments on two different
scenes. One is taken at Ozeaneum Stralsund (Figure

6), and the other one is courtesy of GEOMAR which is
taken in the Black sea (Figure 7). For the first video
(Figure 6), the first 500 frames are used to train the
background model and the rest (50 frames) are added to
the testing set for evaluation of the algorithm. Second
video (Figure 7) is shorter; therefore, only 150 frames
are available for training (and 5 frames for testing). For
this video, we have duplicated the training frames to
expand the training set for a better result. The back-
ground models of both scenes are obtained using GSM
background modeling algorithm [RFvL16] (an exam-
ple: Figure 5). Once the background model is avail-
able, we applied [RB05] to learn the FoE priors. For
each frame in the testing set, we obtain a mask con-
taining marine snow locations by applying the method
explained in section 4.2. Finally, using the inpainting
algorithm and mask together with the priors, the scene
behind marine snow is recovered.

To quantitatively evaluate our algorithm, we need
ground truth data which is not available in our case.
Therefore, we have provided simulated frames. To this
end, one simple approach would be to generate a salt
and pepper noise on the image. However, as it was
discussed before, this model does not take into account
various physical parameters such as the effect of water
absorption and scattering on the signal backscattered
by the particles, the size, and shape of the particles
or the defocus effect. Boffety and Galland [BG12]
consider most of these properties and proposed a
method to model this phenomenon by assuming that
these particles behave like white Lambertian scatters.
However, it still does not cover different geometries of
marine snow and gives an artificial look to the image.

Thus, we have employed a different strategy. First, ma-
rine snow is extracted from the a test frame of each
scene. This is done by human experts where the parti-
cles are manually extracted with pixel accuracy. Then,
we have restored the scene behind marine snow with
information of the neighborhood pixels and frames and
conduct a ground-truth image. Once this image is avail-
able, we have placed the extracted marine snow ran-
domly in the frame. This simulated image together with
the ground truth image is then used to evaluate the per-
formance of our proposed method. This way, we obtain
a simulated data with a very natural look where marine
snow has the most accurate model and is highly corre-
lated to the real frames.

Our result is compared to the method in [BSG+14], the
result by directly filtering marine snow using the ex-
tracted mask (explained at the end of Section 4.2), our
proposed algorithm when inpainting is trained on an
arbitrary training set of the same class (UW images),
and finally our proposed algorithm when inpainting is
trained using the background model. Comparison is
done via PSNR and MSE calculation (Table 1).

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 86 ISBN 978-80-86943-49-7

Figure 5: Results of the GSM background modeling on an UW video. On the left is the original frame of the video
and on the right the background model is depicted.

In view of Table 1, one notices that filtering marine
snow using the extracted mask has already succeeded
by about 4 and 6.3 dB improvement on the results of
[BSG+14] for simulated images of scene 1 and 2 re-
spectively. The advantage of using inpainting algorithm
together with the extracted mask has been proved by
achieving further improvement of 1.2 and 3.4 dB re-
spectively. It can be seen that training data for the in-
painting algorithm plays an effective role, where the re-
sult of the proposed algorithm differs when the training
data changes. When the training data has a high corre-
lation with the input image, the algorithm can achieve
about 0.2 dB and 0.5 dB improvement, for the first and
the second scene respectively, compared to the situation
where a set of arbitrary images of the same class (UW
images) are used.

Figures 6 and 7 illustrate the qualitative results cor-
responding to the table 1. The improvement over
[BSG+14] is clear, where the edges are smoothed
and marine snow is not removed completely. Filter-
ing the image using the extracted mask has already
succeeded to remove marine snow effectively without
smoothing the edges too much. However, a closer
look demonstrates the shortcoming of this approach.
It fails at removing marine snow correctly where it
lies on the edges of objects or where there is no edge
but the intensity values change (e.g. color shades of a
fish). It happens due to the fact that median value of
different candidate patches may not exactly match the
true value. An example can be seen in the zoom-in
presentation of Figure 6. In these situations, inpainting
provides smoother results because it does not use the
neighborhood pixels directly but the learned priors of
the whole scene.

6 CONCLUSION
In this paper, we have proposed an algorithm to elim-
inate marine snow from UW videos where the camera
is static. The approach has three main steps; first, our
background modeling algorithm [RG15] has been em-
ployed to extract an accurate model of the static com-
ponents of a video. Second, we have detected marine

PSNR Values
Approach Scene 1 Scene 2
[BSG+14] 43.6504 37.4235

Mask + Filtering Only 47.4818 43.7806
P. A. without BG model 48.6403 47.1723
P. A. with BG model 48.8275 47.6833

MSE Values
[BSG+14] 1.6750 3.4306

Mask + Filtering Only 1.0776 1.6501
P. A. without BG model 0.9430 1.1167
P. A. with BG model 0.9229 1.0529
Table 1: Evaluation using PSNR and MSE values.

particles in each individual test frame and a mask con-
taining marine snow locations is derived. Finally, the
background model is used as training data for an in-
painting algorithm to extract the generic distribution of
the scene which is then used together with the mask to
restore the information behind the marine snow.

The results have illustrated the success of the proposed
algorithm at eliminating marine snow. Simple filtering
using the extracted mask has shown superior to the re-
sults of [BSG+14] both quantitatively and qualitatively.
In addition, employing inpainting has enhanced the re-
sults by restoring the image more accurately.

However, there is still space for improvement espe-
cially in extracting the mask. If the mask is not accu-
rate enough to cover marine snow completely, inpaining
may rebuild it back. Furthermore, when marine snow
lies at the edge of two regions with low and high lumi-
nance, the algorithm may not be able to detect it. This
is due to our first assumption that a sudden high lumi-
nance occurrence in a patch is a candidate to be marine
snow.

7 ACKNOWLEDGMENTS

This research has been supported by the German Fed-
eral State of Mecklenburg-Western Pomerania and the
European Social Fund under grant ESF/IV-BM-B35-
0006/12.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 87 ISBN 978-80-86943-49-7

Figure 6: Results of marine snow removal for a frame of the first video. From top to bottom and left to right: input
corrupted image, result of [BSG+14], result of filtering using the proposed mask and final result of the proposed
algorithm. Marked areas illustrate the improvement of the proposed method on previous work.

Figure 7: Results of marine snow removal for a simulated frame of the second video. From left to right and top to
bottom: input corrupted image, result of [BSG+14], result of filtering using the proposed mask and final result of
the proposed algorithm. The marked areas show some examples of [BSG+14] failure which are improved using
the proposed method. Full video of this scene is courtesy of JAGO-Team, GEOMAR Kiel, Germany.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 88 ISBN 978-80-86943-49-7

8 REFERENCES

[ABMK05a] A. Arnold-Bos, J. P. Malkasse, and G. Kervern.
A preprocessing framework for automatic un-
derwater images denoising. In European Con-
ference on Propagation and Systems, 2005.

[ABMK05b] A. Arnold-Bos, J. P. Malkasse, and G. Kervern.
Towards a model-free denoising of underwater
optical images. In Europe Oceans 2005, pages
527–532, June 2005.

[BG12] M. Boffety and F. Galland. Phenomenologi-
cal marine snow model for optical underwa-
ter image simulation: Applications to color
restoration. In OCEANS, 2012-Yeosu, pages
1–6. IEEE, 2012.

[BSG+14] S. Banerjee, G. Sanyal, S. Ghosh, R. Ray, and
S. N. Shome. Elimination of marine snow ef-
fect from underwater image - an adaptive prob-
abilistic approach. In Electrical, Electronics
and Computer Science (SCEECS), 2014 IEEE
Students’ Conference on, pages 1–4, 2014.

[ESQD05] M. Elad, J. L. Starck, P. Querre, and D. L.
Donoho. Simultaneous cartoon and texture im-
age inpainting using morphological component
analysis (mca). Applied and Computational
Harmonic Analysis, pages 340–358, 2005.

[FRvL17] F. Farhadifard, M. Radolko, and U. F. von
Lukas. Single image marine snow removal
based on a supervised median filtering scheme.
to appear in 12th International Joint Confer-
ence on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications VIS-
APP 2017, 2017.

[GOK+10] E. Gutzeit, S. Ohl, A. Kuijper, J. Voskamp,
and B. Urban. Setting graph cut weights for
automatic foreground extraction in wood log
images. In VISAPP 2010, pages 60–67, 2010.

[Hin02] G. E. Hinton. Training products of experts
by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

[LNHL15] X Liu, R. Nian, B. He, and A. Lendasse. A
rapid weighted median filter based on saliency
region for underwater image denoising. In
OCEANS 2015 - MTS/IEEE Washington, pages
1–4, Oct 2015.

[McG80] B. L. McGlamery. A computer model for un-
derwater camera systems. volume 0208, pages
221–231, 1980.

[PK10] C. J. Prabhakar and P. P. Kumar. Underwa-
ter image denoising using adaptive wavelet
subband thresholding. In Signal and Image
Processing (ICSIP), 2010 International Con-
ference on, pages 322–327. IEEE, 2010.

[RB05] S. Roth and M. J. Black. Fields of experts: A
framework for learning image priors. In Com-
puter Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Confer-
ence on, pages 860–867, 2005.

[RFvL16] M. Radolko, F. Farhadifard, and U. F. von
Lukas. Dataset on underwater change detec-
tion. 2016.

[RG15] M. Radolko and E. Gutzeit. Video segmenta-
tion via a gaussian switch background-model
and higher order markov random fields. In Pro-
ceedings of the 10th International Conference
on Computer Vision Theory and Applications
VISAPP 2015, pages 537–544, 2015.

[SG99] C. Stauffer and W.E.L. Grimson. Adap-
tive background mixture models for real-time
tracking. In Proceedings 1999 IEEE Computer
Society Conference on Computer Vision and
Pattern Recognition Vol. Two, pages 246–252.
IEEE Computer Society Press, June 1999.

[SSS13] M. Shanmugasundaram, S. Sukumaran, and
N. Shanmugavadivu. Fusion based denoise-
engine for underwater images using curvelet
transform. In Advances in Computing, Com-
munications and Informatics (ICACCI), 2013
International Conference on, pages 941–946,
2013.

[SZW11] F. Sun, X. Zhang, and G. Wang. An approach
for underwater image denoising via wavelet
decomposition and high-pass filter. In Intelli-
gent Computation Technology and Automation
(ICICTA), 2011 International Conference on,
pages 417–420. IEEE, 2011.

[WADP97] C. Wren, A. Azarbayejani, T. Darrell, and
A. Pentland. Pfinder: Real-time tracking of
the human body. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19:780–
785, 1997.

[WBSP14] R. Wang, F. Bunyak, G. Seetharaman, and
K. Palaniappan. Static and moving object de-
tection using flux tensor with split gaussian
models. In 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition Work-
shops, pages 420–424, June 2014.

[Wel69] W. H. Wells. Loss of resolution in water as a re-
sult of multiple small-angle scattering. JOSA,
59(6):686–691, 1969.

[ZM97] S. C. Zhu and D. Mumford. Prior learning and
gibbs reaction-diffusion. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
19(11):1236–1250, 1997.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 89 ISBN 978-80-86943-49-7

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 90 ISBN 978-80-86943-49-7

Head Movement Based Temporal Antialiasing for VR HMDs

Jung-Bum Kim Soo-Ryum Choi Joon-Hyun Choi Sang-Jun Ahn Chan-Min Park

Samsung Electronics
{jb83.kim, sooryum.choi, jh53.choi, sjun.ahn, chanmin.park}@samsung.com

ABSTRACT
Inherent properties of VR HMDs cause degradation of visual quality which disrupts immersive VR experience.
We identify a new temporal aliasing problem caused by unintended tiny head movement of VR HMD users. The
images that users see slightly change, even in the case that the users intend to hold and concentrate on a certain part
of VR content. The slight change is more perceivable, because the images are magnified by lenses of VR HMDs.
We propose the head movement based temporal antialiasing approach which blends colors that users see in the
middle of head movement. In our approach, the way to determine locations and weights of colors to be blended is
based on head movement and time stamp. Speed of head movement also determines proportions of colors in the
past and at present in blending. The experimental result shows that our approach is effective to reduce the temporal
aliasing caused by unintended head movement in real-time performance.

Keywords
Temporal antialiasing, head movement, virtual reality, head mounted displays

1 INTRODUCTION
VR, Virtual Reality, has been recently gaining enor-
mous attention, since the advent of advanced VR HMD,
Head Mounted Display, devices such as Oculus Rift
[Ocu16a], Vive [Viv16a], and Gear VR [Gea16a]. The
devices significantly enhance immersiveness of VR ex-
perience by displaying images full of users’ field of
view, which promptly reflect movement of users’ head
posture [Ear14a]. That is, the VR HMDs provide a part
of VR content at which users look at a real-time frame
rate. However, in terms of visual quality, improvement
is required because of inherent properties of the recent
VR HMDs. VR HMDs are equipped with optics sys-
tems which magnify display panels showing images of
VR content. In order to manufacture lightweight and
affordable hardware, the optics systems in the recent
VR HMDs are relatively uncomplicated, which cause
problems with visual quality including spherical and
chromatic aberrations [Hen97a]. Although modern dis-
plays, in terms of resolution, are dense enough so that
users are not able to recognize individual pixels in a
panel, they are insufficient for VR HMDs which mag-
nify displays using their lenses. As a result, screen-
door effect, which is a problem of a grid of fine lines

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

between pixels is observable, appears. Furthermore, in-
significant visual artifacts such as aliasing become no-
ticeable, although they are not serious defects in typical
smartphone and desktop environment.
This paper concentrates on identifying and solving a
visual quality degradation problem caused by inherent
characteristics of VR HMDs. In general, users hold
their heads when appreciating a certain part of VR con-
tent. However, it is unavoidable for users to make
tiny movement which sensors in VR HMDs are able
to detect. In response to the tiny head movement, VR
HMDs slightly change the images that users see, even
in the case that they intend to hold their heads. This
slight change in the images is perceived as a tempo-
ral aliasing which disturbs comfortable VR experience.
In this paper, we define the temporal aliasing which is
caused by unintended tiny head movement as head jit-
tered aliasing. Although many researches have inves-
tigated to resolve aliasing problems, constraints of VR
HMDs have not been their concerns. Most of the pre-
vious researches are not suitable for eliminating head
jittered aliasing. In addition, in VR environment, real-
time performance is critical for immersive and long-
lasting experience, since users feel motion sickness if
high frame rate is not supported [Lav00a] . To preserve
real time performance, an antialiasing technique for VR
HMDs should be very fast as well as not burdensome.
Therefore, a new antialiasing which takes into account
VR HMDs is necessary.
In this paper, we propose a head movement based tem-
poral antialiasing which blends the colors that a user
sees in the middle of head movement. In terms of per-
formance, the approach is executed at a real time frame

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 91 ISBN 978-80-86943-49-7

rate on a modern mobile VR HMD. Distinctive fea-
tures of our approach in blending colors are 1) the lo-
cation of the colors to be blended is determined by par-
tially inverting head movement, 2) the way to derive the
weight of the colors is based on speed of head move-
ment and time stamp, 3) blending is localized based on
the amount of temporal change of colors. To evaluate
our approach, we define a measurement which com-
putes the amount of temporal change of colors in the
images. The measurement accounts for how effective
an antialiasing is to reduce change in temporally con-
secutive images. As a value of the measurement low-
ers, it becomes more effective to reduce head jittered
aliasing. The experimental result indicates that our ap-
proach outperforms other candidate approaches in re-
ducing head jittered aliasing, and is accomplished at a
real-time frame rate.

2 RELATED WORK
2.1 Spatial antialiasing techniques
Supersample Anti-Aliasing(SSAA) and Multisample
Anti-Aliasing(MSAA) are basic antialiasing tech-
niques. They have been used to reduce spatial aliasing
as generic methods for the past years.
SSAA reduces aliasing artifacts by the following 3
steps; generating the image at a higher resolution,
filtering multiple samples for each pixel and then
downsampling to the final resolution. Since SSAA
is performed for the whole pixel in the image, it
has the highest-quality results. However, it is the
most expensive method in terms of its processing and
memory bandwidth requirements [Jim11a]. Recently
most of graphical processors have stopped supporting
SSAA to avoid performance degradation [Jia14a].
MSAA is a special case of SSAA that is only per-
formed for pixels at the edges of polygons. By
reducing number of samples, it becomes less expen-
sive and faster than SSAA, but it could not improve
aliasing artifacts inside geometries and textures. It is
supported by all of the latest graphics processors and
application programming interfaces(APIs) [Jim11a].
Morphological Anti-Aliasing(MLAA), developed by
Intel Labs, blends colors around silhouettes which
are detected with certain patterns [Res09a]. These
patterns (Z-shapes, U-shapes and L-shapes) are used
to search for color discontinuities and determine
blending weights. It has advantages in terms of quality
and implementation. MLAA provides the quality
comparable to 4X SSAA. It also allows for better
processor utilization, since it is independent from the
rendering pipeline and parallel with rendering threads.
However, MLAA might produce temporal artifacts
between frames, because it uses only image data for
reconstruction. In addition, it cannot identify pixel-size
features which very small or thin geometries and

unfiltered textures have. Thus, it could be resulted in
moire pattern with these input.
Fast approXimate Anti-Aliasing(FXAA), developed
by NVIDIA [Lot09a], reduces edge aliasing in a
similar way to MLAA. However, it is simpler and
faster. It detects edges by checking for a significant
change in average luminance, and filters directions of
sub-pixel on the edge perpendicularly. It can be easily
implemented as one per-pixel filter. In addition, it
is extremely fast, averaging just 0.11 ms per million
pixels on NVIDIA GTX 480 [Jim11a]. It can handle
edge alias even inside textures by processing with all
the pixels on the screen. However, FXAA also cannot
solve the temporal artifacts.
These spatial antialiasing techniques introduced in
this section are not enough to solve temporal aliasing
artifacts between consecutive frames, because they
only uses a current frame image [Sch12a].

2.2 Temporal antialiasing techniques

Temporal aliasing is caused due to incoherence between
continuous frames. This artifact is shown as flickering
or crawling pixels temporally during camera and object
motions. There are some approaches to reduce tempo-
ral aliasing.
A temporal antialiasing method for CryENGINE 3.0
has been popularly used in video games [Jim11a], be-
cause it is a simple method which is also known as Mo-
tion Blur. It is performed in real-time by using two im-
ages of previous and current frame and a velocity vector
between them.
Amortized supersampling by Yang et al.[Yan09a] pro-
posed an adaptive temporal antialiasing with supersam-
pling, reusing shading samples from previous frames. It
controls the tradeoff between blurring and aliasing with
the smoothing factor calculated in a recursive temporal
filter. However, it cannot properly handle temporal arti-
facts resulted in fast changes which cannot be predicted
by reprojection.
Recently, Karis [Kar14a] presented high-quality tempo-
ral supersampling as a temporal antialiasing technique
for Unreal Engine [Epi16a]. It generates super samples
by jittering the camera projection, and then takes sam-
ples with a pattern such as Halton [Hal60a] Sequence.
It accumulates the previous moving average of samples
and uses it as the smoothing factor to reduce temporal
alias.
Some approaches with supersampling, such as Yang’s
and Karis’s methods, produce high quality results, but
they have a limitation in terms of the performance with
high-resolution images. In addition, temporal reprojec-
tion can cause ghosting artifacts, since it cannot ac-
curately reproject when the images are significantly
changed between consecutive frames.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 92 ISBN 978-80-86943-49-7

3 HEAD JITTERED ALIASING
A majority of advanced VR HMDs consist of sensors,

displays, and an optics system. Sensors in a VR HMD
detect movement of users’ head posture at a very high
frequency. As users’ head posture change, VR HMDs
render images of VR content in the direction of users’
field of view to the displays. The images in the dis-
plays are magnified by the optics system to fully occupy
users’ field of view. By instantly displaying images full
of users’ field of view in response to head movement,
VR HMDs provide users with immersive experience.
The magnification of the images influences density of
pixels in the displays to be decreased, and makes it
more vulnerable for insignificant visual artifacts to be
noticed. We identify a visual quality problem that users
with a VR HMD experience, when they intend to hold
and concentrate on a certain part of VR content. It is un-
avoidable for users to make tiny head movement, even
in the case they attempt to hold. The tiny head move-
ment of users is detected by the sensors, then the im-
ages displayed to users are slightly changed. Figure 1
illustrates the slight change in the images in response
to the tiny head movement. Since VR HMDs update
images at real-time frame rate, the slight change is sup-
posed to be noticed as temporal aliasing artifact. While
it is not critically noticeable at typical devices such as
smartphones, users with VR HMDs are able to easily
perceive the temporal aliasing because of the magnifi-
cation of the optics system. In Figure 1, it is difficult to
observe the difference between the two images. How-
ever, in the magnified regions in the images, the change
in colors of the images is more perceivable. There-
fore, this is a problem that arises due to inherent prop-
erties of VR HMDs. The temporal aliasing problem
occurs in various cases including computer generated-
geometries, texts, and images.

Figure 1: Slight change of temporally consecutive im-
ages in the case that users concentrate on a certain part
of VR content.

In this paper, we define the temporal aliasing caused by
unintended tiny head movement as head jittered alias-
ing, as it occurs because of head jittering of users. The
previous antialiasing techniques, introduced in section
2, are not appropriate to remove this artifact. The spa-
tial antialiasing techniques which aim to solve alias-
ing problems in a spatial manner are not effective for
eliminating temporal aliasing. The temporal antialias-

ing techniques are not feasible for mobile VR HMDs.
They are designed for desktop GPUs such as NVIDIA
GeForce, which indicates that supporting real-time per-
formance is not achievable. We propose a temporal an-
tialiasing approach which is based on head movement
to solve the problem. Our approach is suitable for mo-
bile VR HMDs in terms of performance and effective-
ness.

4 HEAD MOVEMENT BASED TEMPO-
RAL ANTIALIASING

Head jittered aliasing is basically caused due to abrupt
change of colors in images during tiny head movement.
Blending colors with organized weights is a common
technique to compensate abrupt change of colors. Basi-
cally, our temporal antialiasing approach blends colors
that users see in the middle of head movement. Our ap-
proach is head movement based temporal antialiasing,
which indicates selection of colors and deriving weights
to be blended are based on head movement.

4.1 Interpolated reprojection
In order to select a color that a user sees during head
movement, we partially invert head movement. In this
paper, we assume that the type of head movement de-
tected by VR HMDs is rotation. It is possible to extend
our approach to 6 DoF head movement. To achieve
a partial inverse of head movement, we introduce in-
terpolated reprojection which transforms a sample at
which a user is currently looking to the past locations in
the middle of head movement. A location of a color that
interpolated reprojection returns is a two-dimensional
coordinate in an image space. We call a location of a
color in an image space a sample. Interpolated repro-
jection is represented by the following function.

s = P · slerp(Vn−1,Vn,d) ·V−1
n · vp (1)

s is a past sample that is acquired after applying a par-
tial inverse of head movement. d is a degree of invert-
ing head movement, which is equivalent to closeness to
the current head posture. d ranges from 0 to 1, and the
value of 0 indicates a full inversion of head movement.
vp is a three-dimensional coordinate in R3 ∈ [−1,1],
which is also known as a clip space. vp represents a
sample in the current image with a depth information
and is obtained after applying a projection. Vn is a view
matrix that denotes the current head posture. Vn−1 is a
view matrix that denotes the head posture in the previ-
ous frame. slerp is a spherical linear interpolation func-
tion that calculates a matrix in the middle of the two
view matrices Vn and Vn−1. d is used as a parameter that
determines closeness to Vn−1. P is a projection matrix
applying camera parameters. Interpolated reprojection
is a process that finds a sample to be blended. By using
multiple different values of d, it is possible to variously

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 93 ISBN 978-80-86943-49-7

control the number of samples to be blended. By sub-
stituting the slerp function to a function that returns an
intermediate transform between two transforms, Inter-
polated reprojection is extended to support 6 DoF head
movement.

4.2 Determination of blending weight
In our approach, determination of a weight of individ-
ual color to be blended is based on both time stamp and
speed of head movement. Basically, we assign a greater
or equal weight to a more recent sample. We compute
cpast , accumulated colors of past samples, using the fol-
lowing equation.

cpast =
n−1

∑
0

W (di)Ck(si) (2)

n is the number of past samples. si is a past sample
which is an output of Equation (1). d is a closeness to
the current head posture. di is used to compute a sample
si. That is, a past sample with a value of d closer to 1 is
more recent one. Ck is a function that returns a color of
a sample from an image displayed in the kth frame. W
is a monotone function that returns a weight of a sample
based on value d. Given the number of samples n, the
total sum of the values returned by the function W is 1.
According to the function W , a more recent sample has
a greater or equal weight.
Head jittered aliasing becomes serious when users at-
tempt to hold their head movement. In addition, blend-
ing with past colors is possible to cause an excessive
blur which deteriorates quality of images. Therefore,
we decrease strength of blending, as speed of head
movement gets faster. In order to find ck - a color in
the kth frame, we blend the current color with the accu-
mulated past color through the following equation.

ck = (1−A(h))
n−1

∑
0

W (di)Ck−1(si)+A(h)Ck(sc) (3)

The first term of the equation comes from Equation (2).
As the function Ck−1 is used in the first term, colors
of past samples are obtained from the k− 1th frame.
Accordingly, sc is a sample in the kth frame. Since a
color ck is derived from colors in the kth and k− 1th

frames, blending in our approaches recursively accu-
mulates colors in a period of frames. A is a function
that determines a weight of a color of sc from h, speed
of head movement, as an input. The function A should
be monotonously increasing for speed of head move-
ment, and has a curve similar to a ease-in and ease-out
curve. Figure 2 illustrates a graph of the function A,
which satisfies the conditions. The graph has different
forms depending on a parameter specifying a minimum
weight, wmin in Figure 2.

Figure 2: A graph representing the function A in Equa-
tion (3)

From experiments, we conclude that an appropriate
function for A is as follows.

w = (1−wmin){−
1
2
∗ (cos(π

h
hmax

)−1)}2 +wmin ,

w = 1 i f h > hmax (4)

w is a result weight value. h is speed of head movement,
and hmax is a maximum value of speed of head move-
ment. wmin is a minimum value of a weight. Using the
function A, a weight of an accumulated past color gets
smaller, as speed of head movement becomes faster.

4.3 Localization of blending weight
The blending function in Equation (3) assigns a con-
stant weight to the entire colors in an image. How-
ever, the amount of change of each color in an image
during head movement is diversified. And we observe
that temporal aliasing is more noticeable in areas that
have larger color change. In order to enhance effective-
ness of our temporal antialiasing, we locally assign a
weight depending on a temporal difference of individ-
ual colors. A sample with a larger color difference has
a smaller weight. wmin in Equation(4) is substituted to
w′min to achieve localization of blending weight as fol-
lows.

w′min = wmin− (wmin−wlb)∗ cdi f f (5)

cdi f f is a temporal difference of a color. wlb is a lower
bound of a minimum weight, which indicates that the
largest value of cdi f f has a weight value of wlb.
Our localized weight determination is devised to be
suitable for parallel processing on GPUs. VR HMDs
normally produce images using GPU for better perfor-
mance. Calculation of each color in images is paral-
lelly executed on shaders of GPUs. However, computa-
tion of functions with high complexity such as Equation
(4) for all the colors in a image is burdensome, which
leads performance degradation. To secure high perfor-
mance, our approach minimizes the amount of weight
computation on shaders of GPUs, by separating a com-
plex part of the computation - Equation (4) in this case

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 94 ISBN 978-80-86943-49-7

- that is globally applied to all the colors in an image.
The complex part is operated on CPU, and the result of
computation is delivered to shaders. As a result, in our
approach, the relatively simple function - Equation (5)
- is performed on GPUs for weight computation.

4.4 Compatibility with dynamic scenes
Blending of temporally consecutive images possibly
causes a motion blur problem. To avoid this problem,
one of common methods is to analyze a velocity of indi-
vidual colors, and to selectively apply blending. How-
ever, in VR HMD environment, high performance is
a top priority for users not to experience motion sick-
ness. Therefore, complicated analysis requiring enor-
mous computation is not feasible. Our approach is de-
signed to be compatible with a map which is a form of a
2D image specifying dynamic areas. By referencing the
map, we selectively apply blending to static regions in
images. For a performance reason, we take advantage
of scene information. Our approach rasterizes a region
on which static objects are projected on the map, which
is a process marking static regions on the map. Since
rasterization of the map, with less cost, is accompanied
with rendering of a scene with the help of a functional-
ity of GPUs, producing the map in our approach is able
to preserve performance.

5 EVALUATION
5.1 Mean Temporal Color Difference
To quantitatively evaluate effectiveness of temporal an-
tialiasing approaches, we define a new measurement -
MTCD, Mean Temporal Color Difference, which com-
putes the average amount of change in colors from tem-
porally consecutive images. Some researches employ
PSNR, Peak signal-to-noise ratio, for evaluation of an-
tialiasing. However, PSNR to an optimal image is not
appropriate for measuring effectiveness of temporal an-
tialiasing. It is even possible that a sequence of tempo-
rally consecutive images having considerable temporal
aliasing is able to achieve low PSNR to corresponding
optimal images. Suppose that all the images in a tem-
poral sequence of images has a specific PSNR value ε

to corresponding images in an optimal sequence of im-
ages. All the difference between pixels in kth images
is negative and that of k− 1th images is positive. In
this case, temporal change of colors in images is possi-
bly regarded larger than PSNR indicates. Therefore, we
need a new measurement that takes into account tempo-
ral coherence of image sequences. MTCD of an image
sequence is defined as Equation (6).

MTCD(I, t) =
1

nm(t−1)

t−1

∑
k=1

m−1

∑
j=0

n−1

∑
i=0

di jk,

di jk=
√

(ri j(k−1)−ri jk)
2+(gi j(k−1)−gi jk)

2+(bi j(k−1)−bi jk)
2 (6)

I is a sequence of temporally consecutive images in a
period of t frames. A width and a height of an image
in I are n and m. i and j denote x and y coordinates
in an image, and k represents the kth image in a se-
quence of images. r,g,b represent color components
for red, green, and blue respectively. An optimal value
of MTCD is definitely zero. As MTCD gets smaller, a
sequence of images is more robust to temporal aliasing.

5.2 Experimental result
For evaluation of efficiency and effectiveness of tem-
poral antialiasing, we build a platform that consists of
a mobile VR HMD (Gear VR), a smartphone (Galaxy
S7), and an image viewer. The resolution of the VR
HMD in our experiments is 1024x1024 for each left
and right eye. The device is equipped with Exynos
8890 processor which includes a 2.3GHz Quad-core
and 1.6 GHz Quad-core CPU, and a Muli-T880 MP12
GPU. The dataset in the experiments includes 11 im-
ages. With the dataset, we perform experiments mea-
suring performance using frame rate, and effectiveness
of reducing temporal aliasing using MTCD.

5.2.1 Performance
Real-time performance is essential for immersive and
long-lasting VR experience. Temporal antialiasing is
an additional process that requires more execution time.
Therefore, performance requirement is very intensive
to preserve real-time performance of applied applica-
tions. In the experiments, we measure additional exe-
cution time after applying our approach. The additional
execution time of our approach is approximately 2 msec
in average. As antialiasing is applied for each left and
right eye in VR environment, the measured execution
time contains the amount of time for applying our ap-
proach twice for both eyes. For quality experience, we
observe that the entire execution time for an application
to render one frame should be less than 32 msec. Be-
cause the additional execution time of our approach is
approximately less than 10% of 32 msec, we conclude
that our approach performs at reasonable performance
for immersive VR experience.

5.2.2 Effectiveness
We utilize MTCD measurement to quantitatively mea-
sure effectiveness of our approach for the purpose of
reducing head jittered aliasing. To measure MTCD, we
set up experiments simulating an image viewing appli-
cation. In the experiment, participants are requested to
hold and concentrate on a certain part of an input im-
age. Then, we compute MTCD from a sequence of im-
ages displayed to users while the participants attempt to
hold. A sequence of images in experiments contains 10
images.
For comparison, we choose MSAA [Jim11a] which is
the most common antialiasing in mobile environments

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 95 ISBN 978-80-86943-49-7

because of its high performance. Other recent antialias-
ing techniques are possibly considered as candidates.
The techniques, however, are not feasible for adopting
mobile environment such as Gear VR for a performance
reason, since they are intended to operate on desktops
or consoles. In experiments, three variations - no an-
tialiasing, MSAA, and our approach - are compared.
The comparison result of the approaches is plotted in
Figure 3. The parameter values used are as follows. d
in Equation(3) is 2/3. One past sample is used in the
experiments, so n in Equation(3) is 1. hmax in Equation
(4) is 25. For Equation (5), values of wmin and wlb are
0.3 and 0.1 respectively. For measuring MTCD values,
the number of images in a sequence - t - is 10.

Figure 3: A comparison of MTCD results

The experimental result shows maximum, minimum,
and average MTCD values of the approaches for the
dataset. Our approach achieves the lowest MTCD in
average, which implies it is the most effective to reduce
temporal aliasing. The average MTCD of our approach
is approximately 56% of MSAA. The results of no an-
tialiasing and MSAA are almost identical, because an-
tialiasing is applied to edges in case of MSAA and our
dataset mostly consists of textures. Minimum values
of all the approach are almost same, although a min-
imum MTCD value of our approach is slightly lower
than other two approaches. One of the images in the
dataset has almost same color in the entire image, and
its spatial color change is insignificant. This image con-
tributes to the result that minimum values of MTCDs
are almost indistinguishable.
It is possible for our approach to be applied in combina-
tion with MSAA. Combined with MSAA, our approach
is expected to perform most effectively.
Figure 4 illustrates a comparison of result images. In
Figure 4(a), the result images of MSAA are repre-
sented. And k− 1th (left) and kth (center) images in a
temporal sequence of images are depicted. The smaller
images with red borders on the right side of each image
magnify red rectangular regions on the corresponding
images. The difference between the two images on left
and center is shown on the rightmost side. The images
in Figure 4(b) are the result of our approach. The differ-
ence images on the rightmost side describe the amount

of change of colors in temporally consecutive images.
Darker regions represent larger difference. The differ-
ence images indicate that the result of our approach is
more effective for reducing temporal aliasing.

6 CONCLUSION
In this paper, we define head jittered aliasing which is a
new temporal aliasing problem identified due to prop-
erties of VR HMDs. To alleviate head jittered aliasing,
we propose head movement based temporal antialias-
ing which blends colors that users see in the middle
of head movement. Our approach determines weights
for blending based on head movement, time stamp,
and speed of head movement. In addition, the derived
weight is localized based on the amount of temporal
color difference. For quantitative evaluation of effec-
tiveness, we define a new metric - MTCD - which mea-
sures the average amount of change in colors from tem-
porally consecutive images. In the experimental results,
our approach has the lowest MTCD among other com-
petitive antialiasing approaches, which implies that our
approach is the most effective for reducing head jittered
aliasing. In terms of performance, the additional exe-
cution time after applying our approach is 2.5 msec in
average, which is reasonable for quality VR experience.

7 FUTURE WORK
Our approach takes advantage of a map specifying dy-
namic regions to be compatible with dynamic scenes.
For an easier and a more portable application of our
approach, we plan to develop a method identifying dy-
namic regions independent upon scenes at high perfor-
mance.
Also, we expect that reducing head jittered aliasing is
effective to alleviate visual fatigue which is one of the
serious problems of VR HMDs. To validate the expec-
tation, we plan to conduct qualitative analysis on ef-
fectiveness of our approach for relieving visual fatigue,
and figure out correlation between MTCD and the qual-
itative measurement.

8 REFERENCES
[Ocu16a] Oculus Rift website:

http://www.oculus.com/rift/, 2016.
[Viv16a] HTC Vive website:

https://www.vive.com/, 2016.
[Gea16a] Samsung Gear VR website:

http://www.samsung.com/global/galaxy/gear-vr/,
2016.

[Ear14a] Earnshaw, Rae A., ed. Virtual reality systems.
Academic press, 2014.

[Hen97a] Hendee, William R., and Peter NT Wells.
The perception of visual information. Springer
Science & Business Media, 1997.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 96 ISBN 978-80-86943-49-7

Figure 4: A comparison of result images. Two temporally consecutive images and their difference of the cases of
no antialiasing (a) and our approach (b)

[Lav00a] LaViola Jr, Joseph J. A discussion of cyber-
sickness in virtual environments. ACM SIGCHI
Bulletin 32.1: 47-56, 2000.

[Jim11a] Jimenez, Jorge, et al. Filtering approaches
for real-time anti-aliasing. ACM SIGGRAPH
Courses 2.3: 4, 2011.

[Jia14a] Jiang, X. D., Sheng, B., Lin, W. Y., Lu, W.,
Ma, L. Z. Image anti-aliasing techniques for Inter-
net visual media processing: a review. Journal of
Zhejiang University SCIENCE C, 15(9), 717-728,
2014

[Res09a] Reshetov, Alexander. Morphological an-
tialiasing. Proceedings of the Conference on High
Performance Graphics, ACM, 2009.

[Lot09a] Lottes, T. FXAA-Whitepaper. Tech. rep.,
NVIDIA, 2011. 2, 2009.

[Sch12a] Scherzer, Daniel, et al. Temporal Coher-
ence Methods in Real-Time Rendering. Computer
Graphics Forum. Vol. 31. No. 8. Blackwell Pub-
lishing Ltd, 2012.

[Yan09a] Yang, Lei, et al. Amortized supersampling.
ACM Transactions on Graphics (TOG). Vol. 28.
No. 5. ACM, 2009.

[Kar14a] Karis, B. High-quality temporal supersam-
pling. Advances in Real-Time Rendering in
Games, SIGGRAPH Courses 1, 2014.

[Epi16a] EPIC GAMES: Unreal Engine 4.
https://www.unrealengine.com/, 2016.

[Hal60a] Halton, J. H. On the efficiency of certain
quasi-random sequences of points in evaluating
multi-dimensional integrals. Numerische Mathe-
matik, 2(1), 84-90, 1960.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 97 ISBN 978-80-86943-49-7

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 98 ISBN 978-80-86943-49-7

Accelerating Radiosity on GPUs

Alexandr Shcherbakov
Lomonosov Moscow State University

GSP-1, Leninskie Gory
119991, Moscow, Russia

alex.shcherbakov@graphics.cs.msu.ru

Frolov Vladimir
Lomonosov Moscow State University

Keldysh Institute of Applied Mathematics
(Russian Academy of Sciences)

GSP-1, Leninskie Gory
119991, Moscow, Russia

vfrolov@graphics.cs.msu.ru

ABSTRACT
We propose a novel approach to implement radiosity on GPU with specific optimizations via form-factor matrix
transformations. The proposed transformations enable to reduce the amount of computations for multiple-bounce
global illumination and apply DXT compression (with subsequent hardware decompression when reading form-
factors on GPU). Our implementation is 10 times faster running and requires 3 times less memory than the naive
radiosity GPU implementation.

Keywords
Global illumination, radiosity, real-time applications.

1 INTRODUCTION
The main difficulty of real time global illumination in-
volves accurate evaluation of reflected light. Precise
value can be computed only through the lighting in-
tegral evaluation, which becomes much more compli-
cated with each new reflection. Therefore, in practice
different approximate methods are used. Today, there
are a variety of popular techniques for global illumi-
nation evaluation. Each of them represents the evolu-
tion of some basic method of global illumination with
several modifications, which make it more suitable for
specific conditions and hardware.

2 INTERACTIVE GLOBAL ILLUMI-
NATION METHODS

2.1 Instant Radiosity
Despite its name, instant radiosity [1] is not a variation
of radiosity method [4]. The idea behind this method
is to approximate indirect illumination with the direct
light from a large number of "secondary" point light
sources placed on the surface. The Reflective Shadow
Maps (RSM) algorithm [3] is the most popular exten-
sion of instant radiosity method for GPU applications.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

RSM creates a set of secondary light sources from mip-
mapped texture of shadow map [9]. These lights are
used further in the fragment shader just like any other
lights. The shadows from indirect light sources are not
included in this case. The RSM method is the fastest
and requires the least amount of memory over all exist-
ing methods of real-time global illumination solutions.
However, its main disadvantage is poor accuracy.

2.2 Light Propagation Volumes
The main idea of Light Propagation Volumes (LPV) is
to represent the lighting in a scene sampled on the lat-
tice or grid. The algorithm consists of the four main
steps:

1. Generate a radiance point set by rendering the scene
into the reflective shadow map;

2. Inject virtual light sources into the radiance field;

3. Propagate radiance by iteratively solving a differen-
tial scheme inside the grid;

4. Apply a result radiance volume to the scene.

The disadvantage of LPV is O(n3), where n is the size
of grid, complexity and memory consumption. The sig-
nificant performance disadvantage appears in the prop-
agation light through large empty spaces. Through, the
Cascaded LPV [2] algorithm amortizes some of these
problems, the accuracy of this method is not enough
for many cases (especially for architecture-related ap-
plications).

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 99 ISBN 978-80-86943-49-7

2.3 Voxel Cone Tracing
Voxel Cone Tracing (VCT) [5] allows for voxelized ap-
proximation of the scene and trace cones via ray march-
ing through the different mip-map levels of 3D texture.
The key idea of VCT is to pre-integrate the incoming
light via mip-mapping: gather the nearby light from the
detailed mip level and the far light from the coarse mip
level which averaged the emitted light from many sur-
faces. Therefore, distant areas are used with less preci-
sion.

The main disadvantage of VCT is a computational cost,
because it traces several cones per pixel. The algorithm
also suffers from light leaks due to coarse approxima-
tion of geometry by voxels.

2.4 Spherical Harmonics
The method of Spherical Harmonics [7] is a popular
global illumination method based on the approximation
of complicated functions by decomposition into a sum
of simple spherical functions. For each vertex in scene
polygons (or grid positions called light probes [8]) its
own representation of lighting function is computed and
approximated by spherical harmonics. The next stage
of evaluating the global illumination is relatively cheap.
Thus, the large part of computation is executed on a
precomputing stage.

It generates acceptable global illumination. On the edge
of light and shadow, it can create some artifacts caused
by rough approximation of illumination functions.

2.5 Radiosity
Despite the considerable effort of researchers in real-
time global illumination, an original radiosity method
[4] has some advantages over the previously discussed
methods. The first advantage is the conservation of en-
ergy and sufficiently high accuracy of the solution. The
second one is low computational cost for a small num-
ber of patches, because the main evaluation runs on the
precompute stage. However, it is difficult to use radios-
ity directly due to the fact that in modern 3D-scenes
there are millions of polygons.

One of the modern versions of radiosity is the "En-
lighten" [11] graphics engine in which simplified geom-
etry is used for global illumination computing. Simpli-
fication is provided manually by 3D artists using some
tools in 3D content modeling programs. Their imple-
mentation uses CPU for computing and updates indirect
illumination once per 5-10 frames.

3 PROPOSED SOLUTION
3.1 GPU Radiosity
There were several works related to the implementa-
tion of radiosity on GPU. In [6] the progressive refine-
ment radiosity algorithm running completely on GPU

is presented. The work is mostly focused on form-
factors computation with adaptive subdivision and us-
ing fixed functionality of GPU (like Rasterizer). In [13]
an extended GPU progressive radiosity is presented.
Their solver integrates ideal diffuse as well as specu-
lar transmittance and reflection and is capable to handle
multiple specular reflections with correct mirror-object-
mirror occlusions. In [14] another adaptive subdivision
implementation on GPU is presented.

Unlike those discussed above, the work [10] is focused
on the efficient linear system equation solution and ma-
trix operations. It deals with the performance of differ-
ent floating point format for matrix of form-factors and
investigates the differences between GPU and CPU per-
formance on matrix operations; it also explores a hier-
archical radiosity approach via multiresolution meshed
atlas. The authors of [10] pack 4 sequential form fac-
tors to a single color of texture. However, they didn’t
explore hardware compression and didn’t propose al-
gorithmic optimizations (except hierarchical radiosity).
The work [10] also suggests sub surface scattering com-
putation possibility via radiosity.

We believe that all the GPU radiosity works discussed
above can be significantly improved. In this paper, we
propose a new multibounce method based on special
modifications of the radiosity algorithm [4] for global
illumination computing. Our extensions are aimed to
accelerate radiosity, reduce the required memory for
form-factors storing and increase the accuracy of com-
putation in comparison to popular global illumination
methods.

3.2 Automatic Geometry Simplification
It is impractical to use radiosity for scenes that consist
of millions of polygons, due to the high computational
complexity of this problem. Therefore, in practice, ra-
diosity is applied to a simplified scene and the produced
result is used for original scene. We used the geometry
simplification method based on the voxel representation
of original scene [12].

3.3 Key Terms and Definitions
Global illumination computing is performed according
to the following scheme. For each patch, initial lu-
minance is computed or set. These values form vec-
tor emission. Each element of this vector is a three-
component vector, one component per color.

emissioni = (red,green,blue) (1)

Vector excident consists of colors that are sent from
patches. It can be computed using emission.

excidenti = emissioni ∗ colori (2)

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 100 ISBN 978-80-86943-49-7

colori is the color of i-th patch. Then, form-factors ma-
trix F is multiplied by excident. The result of this op-
eration is the lighting received by patches from light
sources incident.

incidenti =
n

∑
j=0

Fi j · excident j (3)

n is the number of patches.

excident(1)i = incident(0)i · colori (4)

excident is the lighting sent from patches after first re-
flection.

Then we repeat multiplication of form-factors matrix
and excident vector for computing lighting after first re-
flection. We can repeat these operations for an arbitrary
number of reflections.

3.4 Optimizing radiosity for multi-bounce
global illumination

First, we define color form-factors matrix Fc. Element
of this matrix on row i and column j are defined in the
following way:

Fc
i j =Fi j · color j =

= (red j ·Fi j,green j ·Fi j,blue j ·Fi j)
(5)

Then, we can change the computing of patches lighting
after the first reflection using equations (3), (4) and (5).

incident(1) = Fc · emission (6)

Furthermore, we can generalize this equation for com-
puting lighting received by patches after arbitrary re-
flection.

incident(h) = Fc · incident(h−1) = (Fc)h ·emission (7)

Total lighting of the patch for k reflections is summa-
rized from values of lighting received after each reflec-
tion.

incidenttotal =
k

∑
h=0

incident(h) =

=
k

∑
h=0

(
(Fc)h

)
· emission) =

=

(
k

∑
h=0

(Fc)h

)
· emission =

= Fk−re f lection · emission

incidenttotal = Fk−re f lection · emission

(8)

So, we can use matrix Fk−re f lection to perform multipli-
cation only once for k reflections. However, this matrix
needs 3 times more memory than the original one.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

matrix values

100

101

102

103

104

105

106

107

0.000 0.005 0.010 0.015 0.020

matrix values

0

500000

1000000

1500000

2000000

2500000

Figure 1: Distribution of form-factors values on the test
scene (logarithm and linear scales).

3.5 Using DXT1 compression for form-
factor matrix compression

For the form-factor matrix values less than 0.005 are
prevailed (see Fig. 1). Since the contribution of these
values in result is less than the others, they can be ef-
fectively compressed with losses.

For this reason, we split a form-factor matrix in two
parts.

The first part contains 4% biggest numbers for each
color channel for each row in the matrix. This value
is based on the experimental results shown on figure 2.
It provides a high quality of image.

Figure 2: Total compression error for different parts of
uncompressed values.

The second part has the same shape as the original ma-
trix, but values from the first part are set to zero. Since
these values fail to make significant contribution, accu-
racy for exponent is more important than accuracy for
mantissa. Therefore, we apply some transformations to
them.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 101 ISBN 978-80-86943-49-7

30 25 20 15 10 5 0
0

50000

100000

150000

200000

250000

300000

350000

Figure 3: Distribution of lower form-factors values af-
ter normalization and logarithmization.

Firstly, values for each channel are divided on the max-
imum value for this channel. Secondly, the logarithm
function is applied to the values (see Fig. 3).

0 50 100 150 200 250 300
0

50000

100000

150000

200000

250000

300000

350000

Figure 4: Result distribution of values in form-factors
matrix.

Since the computed values are lie between -30 and 0
(see Fig. 3), we add a positive constant to them (in this
case we add 25, because the values that remain negative
are not important for computation). Then these values
become to range from 0 to 255 (see Fig. 4).

Figure 5: Form-factor matrix before reordering.

DTX1 compression is applied to a transformed form-
factor matrix (see Fig. 5). To reduce the losses, we
swap some rows of matrix. In this process, we also
swap columns and patches matched these rows (see Fig.
6).

Figure 6: Scheme of columns/rows swapping.

Since we make matrix reorganization to reduce com-
press losses, we want to store similar values closer and
hence we strive to place similar rows and columns next
to each other. We use Euclidean distance as a measure
of similarity.
In general case, if we represent columns or rows of ma-
trix as vertices of full graph and set the measure of sim-
ilarity as edges weights, then the problem of finding of
the optimal order of rows and columns is the problem of
finding of the shortest path in the graph, which includes
all vertices. This problem is assigned to NP class.
Since the number of patches is the number of the order
of several thousand, we use a heuristic approach. The
first row always stays in the place. Most similar to the
first row is put in the second place. Most similar to the
second of the remaining row is put in the third place,
etc. These matrix transformations decrease compres-
sion losses about 5 times (see Fig. 7).

Without
reordering

Reordering
by rows

Reordering
by rows &
columns

Avg. error 1,28E-06 8,13E-07 5,88E-07
Max error 0,4622 0,4684 0,1524
Total error 47,12 18,86 9,40

Figure 7: Comparison of error for reordering.

Then, we apply second reordering, but measure is com-
puted for columns.
After all reorderings, resulting texture is saved using
DXT1 compression. Matrix after compression is pre-
sented in the figure 8. It is difficult to tell the difference,
so the difference for the red component of the texture is
shown in the figure 9. For green and blue channels, dif-
ference is similar in structure.

3.6 Implementation Details
All computations are executed on GPU using OpenGL
framework. Form-factors matrix stored as a com-
pressed texture. Other data stored in array buffers. The
order of computation is the following:

1. Rendering of shadow maps for all light sources;

2. Running compute shader. This shader uses shadow
maps for computing emission on the patches. Emis-
sion is square of illuminated part of patch;

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 102 ISBN 978-80-86943-49-7

Figure 8: Compressed form-factor matrix after two re-
ordering.

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 9: Form-factor matrices difference in red com-
ponent.

3. Next, we run another compute shader for radiosity.
On this step compressed form-factor matrix is used.
The form-factor matrix is multiplying by emission
vector;

4. And the last compute shader transfers indirect illu-
mination from the simplified scene to the original;

5. The final step is the scene rendering.

4 EXPERIMENTAL RESULTS
In this paper, Naive Radiosity and Path Tracing are
compared with our approach.

4.1 Comparison with naive radiosity im-
plementation

4.1.1 Computation speed comparison
Our multibounce radiosity implementation is asymptot-
ically faster than both naive radiosity and the algorithm
described in [10]. Presented method can be used with
other optimization techniques for radiosity (for exam-
ple, hierarchical radiosity).

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Figure 10: Form-factor matrices difference in all com-
ponents.

Figure 11: Speed comparison.

It can be seen in the figure 11, our method significantly
superiors the naive implementation of radiosity. In ad-
dition, using the compressed by DXT1 form-factor ma-
trix is faster due to decreased memory amount that we
need to transfer between DRAM and GPU multiproces-
sor.

4.1.2 Memory Requirements Comparison

Figure 12: Memory comparison.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 103 ISBN 978-80-86943-49-7

In figure 12 we show the sizes of files containing form-
factor matrices. After compression, matrix requires sig-
nificantly less memory. Thus, our modifications reduce
the amount of data being stored and loaded into video
memory.

4.1.3 Images Comparison
Our approach generates an image with similar qual-
ity as naive radiosity implementation, but we use less
amount of memory and execute the radiosity algorithm
faster.

4.2 Comparison with Light Propagation
Volumes

Light Propagation Volumes generates image with vi-
sually perceptible inaccuracy as can be seen on figure
13. A column in selection (green rectangle) is pink,
but on reference image this column painted with a gra-
dient. Both images (our approach and LPV) rendered
with 40 FPS. The size of voxel grid for LPV was cho-
sen to reach the same fps with our implementation of
radiosity.

4.3 Comparison with Path Tracing
In comparison with Path Tracing (see Fig. 13) we show
that our method generates a similar image. Meanwhile,
our image was generated less than 17ms. Path Trac-
ing needs more than 5 minutes to generate a reference
image on the same GTX670.

5 CONCLUSION
In this paper, we present a practical approach for real-
time global illumination on GPU using radiosity. First,
we reduced the multiple bounce computation cost by in-
troducing color information to a form-factor matrix and
powering it. Second, we apply rows/columns reorder-
ing and DXT compression to both save memory and
increase speed when reading form-factors from DRAM
on GPU (because radiosity is memory-bound). Our im-
plementation runs 10 times faster than naive radiosity
and requires 3 times less memory. The resulting image
hardly differs from the path-traced reference and has
comparable FPS to other real-time global illumination
algorithms.

6 ACKNOWLEDGMENTS
This work is supported by RFBR 16-31-60048
mol_a_dk.

7 REFERENCES
[1] Alexander Keller. 1997. Instant radiosity. In

Proceedings of the 24th annual conference on
Computer graphics and interactive techniques
(SIGGRAPH ’97). ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 49-56.
DOI=http://dx.doi.org/10.1145/258734.258769

[2] Anton Kaplanyan and Carsten Dachsbacher.
2010. Cascaded light propagation volumes for
real-time indirect illumination. In Proceed-
ings of the 2010 ACM SIGGRAPH sympo-
sium on Interactive 3D Graphics and Games
(I3D ’10). ACM, New York, NY, USA, 99-107.
DOI=http://dx.doi.org/10.1145/1730804.1730821

[3] Carsten Dachsbacher and Marc Stamminger.
2005. Reflective shadow maps. In Proceed-
ings of the 2005 symposium on Interac-
tive 3D graphics and games (I3D ’05).
ACM, New York, NY, USA, 203-231.
DOI=http://dx.doi.org/10.1145/1053427.1053460

[4] Cindy M. Goral, Kenneth E. Torrance, Donald P.
Greenberg, and Bennett Battaile. 1984. Model-
ing the interaction of light between diffuse sur-
faces. In Proceedings of the 11th annual con-
ference on Computer graphics and interactive
techniques (SIGGRAPH ’84), Hank Christiansen
(Ed.). ACM, New York, NY, USA, 213-222.
DOI=http://dx.doi.org/10.1145/800031.808601

[5] Cyril Crassin, Fabrice Neyret, Miguel Sainz,
Simon Green, and Elmar Eisemann. 2011.
Interactive indirect illumination using voxel-
based cone tracing: an insight. In ACM SIG-
GRAPH 2011 Talks (SIGGRAPH ’11). ACM,
New York, NY, USA, , Article 20 , 1 pages.
DOI=http://dx.doi.org/10.1145/2037826.2037853

[6] Greg Coombe, Mark J. Harris, and Anselmo Las-
tra. 2004. Radiosity on graphics hardware. In Pro-
ceedings of Graphics Interface 2004 (GI ’04).
Canadian Human-Computer Communications So-
ciety, School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada, 161-168.

[7] Ian G. Lisle and S.-L. Tracy Huang. 2007. Al-
gorithms for spherical harmonic lighting. In Pro-
ceedings of the 5th international conference on
Computer graphics and interactive techniques
in Australia and Southeast Asia (GRAPHITE
’07). ACM, New York, NY, USA, 235-238.
DOI=http://dx.doi.org/10.1145/1321261.1321303

[8] Jaroslav Krivanek, Pascal Gautron, Sumanta
Pattanaik, and Kadi Bouatouch. 2008. Ra-
diance caching for efficient global illumina-
tion computation. In ACM SIGGRAPH 2008
classes (SIGGRAPH ’08). ACM, New York,
NY, USA, , Article 75 , 19 pages. DOI:
https://doi.org/10.1145/1401132.1401228

[9] Michael Wimmer, Daniel Scherzer, and Werner
Purgathofer. 2004. Light space perspective
shadow maps. In Proceedings of the Fifteenth
Eurographics conference on Rendering Tech-
niques (EGSR’04). Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 143-151.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 104 ISBN 978-80-86943-49-7

Figure 13: Our method (left-bottom), Light Propagation Volumes (Unreal Engine 4) (left-top), naive radiosity
(right-top) and Path Tracing (right-bottom).

Figure 14: Comparison with Light Propagation Vol-
umes and Path Tracing

DOI=http://dx.doi.org/10.2312/EGWR/EGSR04/143-
151

[10] Nathan A. Carr, Jesse D. Hall, and John C. Hart.
2003. GPU algorithms for radiosity and sub-
surface scattering. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware (HWWS ’03). Eurographics
Association, Aire-la-Ville, Switzerland, Switzer-

land, 51-59.
[11] SamMartin, Per Einarsson. A Real Time Radios-

ity Architecture for Video Games. Siggraph 2010.
http://advances.realtimerendering.com/s2010/
Martin-Einarsson-RadiosityArchitecture
(SIGGRAPH%202010%20Advanced%20
RealTime%20Rendering%20Course).pdf

[12] Shcherbakov, A., and Frolov, V. Automatic ge-
ometry simplification for computation of indi-
rect lighting using radiosity. In Graphicon-2016
(2016), NNGASU, pp. 34-38

[13] Wallner, G. Vis Comput (2009) 25: 529.
doi:10.1007/s00371-009-0347-z

[14] Wallner, G. GPU radiosity for triangular meshes
with support of normal mapping and arbitrary
light distributions. J. WSCG 16(1-3), 1-8 (2008)

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 105 ISBN 978-80-86943-49-7

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 106 ISBN 978-80-86943-49-7

Accurate Triangular Regular Network adjustment to Large
Digital Elevation Models

José M. Santana
University of Las
Palmas de G.C.

Imaging Technology
Center (CTIM)

Spain (35017), Las
Palmas de G.C.

josemiguel.santana
@ulpgc.es

Agustín Trujillo
University of Las
Palmas de G.C.

Imaging Technology
Center (CTIM)

Spain (35017), Las
Palmas de G.C.

agustin.trujillo@ulpgc.es

José P. Suárez
University of Las
Palmas de G.C.

Division of
Mathematics,
Graphics and
Computation

(MAGiC), IUMA
Spain (35017), Las

Palmas de G.C.
josepablo.suarez

@ulpgc.es

Sebastián Ortega
University of Las
Palmas de G.C.

Division of
Mathematics,
Graphics and
Computation

(MAGiC), IUMA
Spain (35017), Las

Palmas de G.C.
sebastian.ortegatrujillo

@gmail.com

ABSTRACT
Nowadays, large volumes of terrain data are available to use as Digital Elevation Models, from which coarser
meshes can be progressively generated for visualization and other purposes. Previous studies compared different
methods to adjust those meshes, concluding that no method performs the best for all kinds of terrain. In this work,
a pipeline to accurately adjust TRNs to DEM is proposed. An initial approximation is calculated by solving a
linear system from input data. Vertices with a major contribution to the global error of the mesh are then tuned
using a local refinement algorithm. Experimentation shows that meshes adjusted using the proposed pipeline fit
better the original DEM than ones generated using classic methods as linear interpolation for several benchmark
elevation models.

Keywords
Triangular Regular Networks, adjustment, Digital Elevation Model, level of detail, terrain visualization.

1 INTRODUCTION

The growing capacity to adquire and store data has al-
lowed that big volumes of terrain data are currently
available for the general public, in which the earth is
modelled with fine resolutions. These data are pre-
sented as Digital Elevation Models or DEM, which
can be structured in several raster and vector formats.
The visualization of large terrain models in applica-
tions like virtual globes [Tru12a] requires an intensive
use of computation and memory, so it is usual to gen-
erate multi-resolution schemes [Lue02a] in which dif-
ferent, progressively coarser meshes represent points in
the original model. In this regard, the number of trian-
gles that a 3D scene is going to display is highly depen-
dent on the implemented LoD test, which ideally limits

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

the graphics requirements for any given point of view
[Sua15a].
We are particularly interested in finding a method that
maximizes the vertical accuracy of the generated mesh
in relation with the model. In this regard, some studies
have researched on how to generate surface points from
discrete elevation models. These techniques are ulti-
mately used to generate continuous terrain representa-
tions that try to fit the original model as well as possible.
Comparatives between different interpolation methods
have been introduced in [Agu05a] and [Cha06a], from
which can be extracted that no method performs the
best for all terrain scenarios, being more convenient to
use different methods depending on the terrain to be
represented. It is also worth considering that, for multi-
resolution schemes and visualization purposes, vertical
accuracy between two inmediate levels of detail should
also be maximized in order to avoid popping artifacts in
dynamic multi-lod visualizations whenever possible.
In this study, a pipeline to adjust TRNs to fit large
DEMs is proposed. An initial mesh is obtained by ap-
proximating the solution of a linear system from the in-
put data. After that, a refinement method tunes vertices
to optimize the global error of the mesh. Finally, exper-

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 107 ISBN 978-80-86943-49-7

imentation has been conducted to ensure the applicabil-
ity of our proposed algorithm to very large DEMs. In
this regard, a tiling strategy to speed up the process is
analyzed. Tests are also conducted to check the behav-
ior of the whole pipeline, compared with classic meth-
ods, in a benchmark elevation model.

1.1 Related work
There are several methods to generate meshes from ter-
rain data. One of the most popular approaches is the
use of Triangular Irregular Networks (TIN) [Peu78a],
which minimize the amount of triangles to be rendered
given an acceptable error threshold. Different authors,
such as Hoppe [Hop98a], Puppo [Pup96a] or El-Sana
and Varshney [Els99a], have worked with TIN applied
to multi-resolution schemes and variable mesh resolu-
tions. Other option is the use of regular grids and Trian-
gulated Regular Networks (TRN) [Agu03a], which are
easier to implement and consists of triangle meshes that
represent a surface in which all vertices are placed on
a regular grid. In this line, the studies of Lindstrom et
al. [Lin96a] and Pajarola [Paj98a] can be highlighted.
More approaches on TRN and TIN are introduced in a
survey from Pajarola and Gobbetti [Paj07a].

An alternative approach, known as Right-Triangulated
Irregular (RTIN) Networks, has also been discussed in
the literature. This variation of the TIN structure places
the vertices on a grid, but still uses fewer triangles
where they are not needed. However, when presented as
raster information to the GPU, this scheme is not more
efficient in terms of memory, and saving triangle draw-
ing implies a local lost of detail. The work of Suárez
and Plaza [Sua03a] describes a pipeline to refine this
kind of model.

At the present time, lines of work are more focused
on taking advantage of the capacities of GPU for ter-
rain visualization. Authors such as Yusov and Shevtsov
[Yus11a] or Kang et al. [Kan15a] have proposed to per-
form the triangulation task in the tessellation stage of
OpenGL, saving computation time and data transfers
between CPU and GPU. However, on-the-fly tessella-
tion of surfaces is an intensive process that is not avail-
able on many graphics pipelines, e.g. mobile platforms
implementing OpenGL ES 2.0. Besides, the downscal-
ing of these models normally relies on linear interpola-
tions of the underlying DEM, which does not assure a
solution with the best height accuracy.

2 DEM REPRESENTATION ERROR
METRIC

The proposed system utilizes a linear system to approx-
imate a terrain sector using TRNs of resolutions lower
than the one of the provided DEM. Given the input
data defining punctual values of the terrain elevation,

X

Y
Vi

λj,lλk,l

λi,l

Pl

VkVj

Figure 1: Barycentric coordinates of Pl

the proposed method adjusts the TRN by approximat-
ing the solution of a linear system. For any point Pl of
the input elevation data, it is determined which triangle
of the final triangular mesh is going to represent that
particular point in cartographic space. As the triangles
do not overlap on the latitude/longitude plane, this cal-
culation is rapidly achieved by mapping the geographic
coordinates of Pl to the barycentric coordinates of the
tested triangle.

Thus, for all triangles present on the final TRN, the al-
gorithm defines the projection of its vertices (V i, V j, V k)
in geographic space, by linearly interpolating their po-
sition within the TRN geographic sector. On this 2D
triangle, the coordinates of Pl are transformed to its
barycentric coordinates as depicted in Figure 1. If the
three barycentric components are equal or greater than
zero, the projection of Pl falls into the triangle area.

Barycentric coordinates are homogenous so they can be
used to interpolate any point within the triangle. By us-
ing normalised barycentric coordinates, any inner point
can be computed as a weighted sum of the triangle ver-
tices. This coordinate system conversion can be effi-
ciently achieved applying Cramer’s rule.

Considering an input elevation data of n points and a
desired TRN of t triangles, the limiting behavior of the
algorithm that composes the linear system is of O(n∗ t)
asymptotically. This could lead to efficiency prob-
lems due to these magnitudes growing exponentially as
both the DEM and the TRN increase their geographical
space or spatial resolution.

In practice, however, the regularity of TRNs can be ex-
ploited to speed up the generation of the barycentric co-
ordinates. First, all the DEM points must be expressed
as x,y,z coordinates, orthogonal to the grid axis. Then,
the normalized x,y coordinates, relative to their grid cell
inner coordinates, can be expressed as:

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 108 ISBN 978-80-86943-49-7

{xC,yC}= {
((x−X0) mod ∆X)

∆X
,
((y−Y0) mod ∆Y)

∆Y
}

(1)

where {X0,Y0} are the origin of the TRN, and {∆X ,∆Y}
are the distances in X and Y between two consecutive
vertices. The barycentric coordinates can then be com-
puted in linear time, within a set of 2 two triangles. To
determine in which triangle each point falls, the condi-
tion xC > yC indicates a point belonging to the upper
triangle.

For each point in the input data, its corresponding pro-
jection on the TRN can be calculated as an interpola-
tion of the three vertices of the triangle weighted by the
barycentric coordinates calculated on the previous step.
On that assumption, the error function for a particular
point Pl on the input set is given by Equation 2:

El = Plz − (λilViz +λ jlVjz +λklVkz) (2)

In this equation, i, j and k are, for the point Pl, the in-
dices of the vertices of its enclosing triangle, and λil are
the barycentric coordinates of Pl xy on the V i xy, V j xy,
V k xy projection of the triangle V i,V j,V k with respect to
the V i vertex.

Given a similar expression for every point of the DEM,
we can express the resulting linear system as a matrix
equation of the form A ·X = B.

The A matrix is a large non-square sparse matrix which
contains the coefficients of Equation 2. These coeffi-
cients are the above-mentioned barycentric coordinates
computed in 2D. This way, for any given row l, it ex-
presses the error function of the input datum Pl.

The B vector is conformed by Pl z, which are the heights
associated to the Pl coordinates based on the input data.
Finally, the X vector represents the to-be-computed
heights of all the vertices of the TRN.

This linear system is conformed by a coefficient matrix
of size n×(q ·w), being n the number of input points on
the DEM and (q ·w) the resolution of the desired TRN.
This final size can be extremely high considering the
size of most available DEMs.

The solution of this system, in case of existing, is a
set of heights from which a triangulation that perfectly
matches the provided DEM can be generated. For most
cases, the system is unsolvable and the goal is to find
an X that optimises the vertical accuracy by minimising
µ(‖A ·X −B‖). Ultimately, µ(A ·X −B) is the mean
error produced by the method for a given TRN resolu-
tion.

3 METHOD PROPOSAL
There are many ways to approximate the solution of
the above-mentioned linear system. The Least Square

Method [Pai82a] is a regression analysis technique that,
given the equations system, minimises the value ‖(A ·
X −B)‖ by exploring the space of solutions via gradi-
ent descent. This numerical approach is a suitable op-
tion for our case, as it does not require the matrix to be
square, and is specially efficient for sparse matrices like
A. Finally, the execution of the Least Square Method
can be accelerated by providing a X0 from which the
space of solutions starts to be explored. In our case,
we have calculated this first approximation to the solu-
tion by assigning to every TRN vertex an initial height
equivalent to the closest point on the DEM.

In case many levels of detail are computed for the same
DEM, a multi-grid strategy can be followed. This tech-
nique is broadly used to approximate solutions of linear
systems that represent spatial characteristics at differ-
ent resolutions [Qua16a]. In our case, the TRNs can
be generated from the finest to the coarsest. Thus, an
alternative value for X0 could be provided by the im-
mediately coarser model, improving the initial approx-
imation and shortening the computation time.

After obtaining a first approximation to the solution, we
propose to use an iterative stage to tune vertices with a
strong contribution to the global error. Every iteration
in the algorithm processes the input solution as follows:

1. A list of the contribution to the overall error of each
one of the vertices of the TRN, Q, is obtained by the
following expression : Q = AT ·E, where A is the
matrix presented in Section 2 and E is the result of
the expression A ·X−B.

2. For all vertices in the TRN whose Q value is non-
zero, a new value for the vertex is computed using
the expression V n := V n−α ·Qn . This will be the
height of the vertex in the following iteration only
if the change decreases the global error. Otherwise,
the vertex remains at the same height. In the rule, α

is a factor which ranges between 0 and 1. Experi-
mentally, a value of 0.7 gives us good results.

3. The process stops when the error difference between
two iteration is below a tolerance of 10−10 meters.

4 LARGE DEM SIMPLIFICATION
PIPELINE

The main drawback of the iterative stage proposed
in the previous section is its execution time for large
TRNs. A higher number of iterations could be needed
to find the solution, each of them modifying vertex
heights and checking the error for a rising number
of vertices in the TRN, thus, heavily increasing the
execution time.

A straightforward technique we propose to reduce the
complexity of the linear system is to subdivide the de-
sired TRN into tiles that cover a maximum number of

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 109 ISBN 978-80-86943-49-7

X

Y
Surrounding Frame

TRN Tile

DEM Values

TRN

m

f

n

Figure 2: Division in tiles of a TRN

data points. Considering a regular axis-aligned DEM, a
n-fold subdivision in each dimension of the DEM sector
generates n2 linear systems, reducing their coefficient
matrix by a factor of 1/n4. Thus, the overall dimen-
sionality of the systems to be solved is reduced by a
factor of n2 by tiling. Furthermore, the generated linear
systems are independently solvable, hence it is easier
for the available hardware to parallelise their resolution,
taking advantage of multi-core and distributed architec-
tures. However, the TRN-DEM adjustment is not inde-
pendent between different zones, and tiling induces a
penalty on the error results, since border vertices lack
information about neighboring areas outside of the tile,
leading in an inaccurate adjustment. To avoid undesired
effects, a frame area should be added so the vertices
of the tile do not present significant variations against
the same vertices when the entire mesh is computed at
once. The results for that frame are dismissed, using
only the results for the tile itself. Such a configuration
can be seen in Figure 2.
When the used frame area has enough width, the height
values for the boundary of two adjacent tiles should not
have appreciable differences and thus it is possible to
treat tiles independently. However, as a safety mech-
anism, the average of the values of a boundary vertex
in both tiles is taken to address any discontinuity that
could happen during the process. Experimentation has
been conducted to determine the ideal width of the re-
ferred frame and can be read in Section 5.2.

5 EXPERIMENTATION
During this work, experiments have been designed to
test the impact of the proposed splitting strategy, find
the best size for a tile and check the accuracy and good-
ness of the proposed solution. The following subsec-
tions present detailed descriptions of each experiment
and its results.

5.1 Case of study and machine specs
Two different elevation models have been used during
the experimentation work. The first elevation model

Tenerife Puget Sound

Resolution 2089 x 2849 7169 x 6657
Minimum height 0 0
Maximum height 3689 2429.6

Mean 326.05 230.38
Standard deviation 604.72 355.31

Maximum cliff 504 484
Table 1: Resolution and characteristics of the chosen
datasets. All height data are expressed in meters.

covers the Puget Sound region (NW coast of the United
States), is downloadable at the website [Pug00a] and
has been used as a showcase of DEM analyses by other
works such as [Kan15a],[Los04a] or [Liv09a]. The sec-
ond elevation model covers the island of Tenerife. It
was chosen due to its variable morphology and it can be
downloaded from the NASA Worldwind services, spec-
ifying a bounding box ranging from 27.99◦to 28.59◦in
latitude and -16.9322◦to -16.0978◦in longitude. Table 1
contains some information about these elevation mod-
els. There, maximum cliff refers to the maximum dif-
ference between a point and its neighbours.

All experiments in this section have been executed us-
ing Matlab R2013a and run in a machine whose internal
specifications include a CPU Intel Core i7-4790 at 3.60
GHz with a main memory size of 8 GB and uses Win-
dows 8 as a operating system.

5.2 Determining whether splitting is pos-
sible for a large TRN

This first experiment checks the error penalty produced
due to splitting a TRN in tiles, and particularly, how er-
rors induced by splitting are distributed in the tile. We
are checking if differences over a maximum allowed er-
ror are found near the edges of the tile after comparing
the results obtained from calculating a tile and comput-
ing the whole TRN. For the sake of this experiment,
that tolerance was set to 0.1 m. If this hypothesis can
be confirmed, splitting in tiles can be considered and
a frame margin of f vertices of width will be set and
added to every tile area to be calculated so the error-
prone border area can be discarded.

Let us consider ratio as the quotient between the length
of the edge of a squared DEM and the length of the
edge of a squared TRN to be generated from it. For
different chosen ratios, different squared tiles of n× n
vertices are selected, representing N×N-point areas of
the DEM. Using the pipeline, the tiles are adjusted in-
dependently so they fit their corresponding areas in the
DEM. A TRN for the whole DEM is also adjusted at
once. After the adjustment, differences between the tile
mesh and the tile area in the global TRN have been
measured. The relation between the error induced on
a TRN vertex and its distance to the border of the tiles

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 110 ISBN 978-80-86943-49-7

Ratio n N f

1:2 49 97 5
1:2 241 481 5
1:2 497 993 6

1:4 49 193 7
1:4 241 961 10
1:4 497 1985 8

1:8 49 385 7
1:8 241 1921 7
1:8 497 3969 9

Table 2: Frame margin f needed for different tile sizes
and levels of detail.

has been analyzed, as it is shown in Figure 3. The pairs
of selected n and N values, among with the results of
the described analysis are presented in Table 2.

Figure 3: Distribution of differences between meshes
for case n = 241, N = 961 (Ratio = 1 : 4).

As expected, the results show that all errors greater than
the tolerance are present in the edges for all the experi-
ments, with a maximum depth of 10 vertices. That leads
us to infer it is possible to split the calculation of a TRN
in tiles. Adding a frame of width f = 10 vertices guar-
antees that the obtained results will be similar to those
achieved by processing the whole DEM at once.

5.3 Minimising execution times for large
TRNs

The second test is aimed to determine the proper tile
size t that minimises the time required to generate a full
large TRN using the proposed pipeline.

For the sake of this experiment, we are trying to gener-
ate a TRN of size 3585× 3329 from the Puget Sound
DEM. For it, a set of different tile sizes are selected so
the entire TRN can be split in an exact number of adja-
cent tiles. We are adding the frame margin f calculated
in Section 5.2 to all tiles before processing them using

Tiles Vertices per tile Time per tile

8x8 449 x 417 3718
12x12 299 x 278 389.6
16x16 225 x 209 171.7
20x20 180 x 139 130.7
24x24 150 x 119 80.60
28x28 129 x 119 51.43
32x32 113 x 105 40.03
40x40 90 x 84 32.77
48x48 75 x 70 20.97
56x56 65 x 60 15.21
64x64 57 x 53 12.55

128x128 29 x 27 5.295
Table 3: Chosen tile sizes and execution times. All
times are expressed in seconds.

0 50 100 150 200 250 300 350 400 450

Tile maximum edge length (vertices)

10

20

30

40

50

60

70

80

T
o
ta

l
a
d
ju

s
tm

e
n
t
ti
m

e
 (

h
o
u
rs

)

Time
Time Trend

Figure 4: Evolution of estimated time to complete a
TRN for the first LoD of the Puget Sound elevation
model.

the pipeline. Execution times have been calculated by
averaging several execution samples on different DEM
areas. Finally, the margin area is discarded, using only
the inner area to compound the final TRN, from which
a total execution time is also obtained. We will choose
the t which minimizes this final execution time. The
selected tile sizes and their average execution times can
be seen in Table 3.

By analyzing the results it is observed that, for large
resolutions, the cost of computing a tile is greater than
the cost of splitting the tile in four equally-sized subtiles
and computing all of them. This can be seen in Table
3: a tile with a resolution of 225×209 needs 171.7 sec-
onds to be computed, whilst the computation of 4 tiles
of resolution 57×53 lasts in average 50.2 seconds. On
the other hand, very low resolutions have an overhead
due to the redundant calculation of vertices which fall
in frames of different tiles. The ideal size for the tile
should have a cost similar to the one resulting of the
computation of its four possible children.

As seen in Figure 4, the ideal t for this experiment is of
113×105 vertices, plus a frame of width f = 10.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 111 ISBN 978-80-86943-49-7

5.4 Accuracy of the proposed method

L1 L2 L3 L4
0

100

200

300

400

500

M
a
x
 e

rr
o

r
(m

)

LI

LS

PI

PLS

PPI

L1 L2 L3 L4
0

2

4

6

8

10

12

M
e
a

n
 e

rr
o
r

(m
)

LI

LS

PI

PLS

PPI

Figure 5: Maximum and mean errors between meshes
for levels of detail L1 (most detailed) to L4 (coarsest)
and the Puget Sound DEM, for all considered tech-
niques. All units are expressed in meters.

L1 L2 L3 L4
0

100

200

300

400

500

M
a
x
 e

rr
o
r

(m
)

LI

LS

PI

PLS

PPI

L1 L2 L3 L4
0

1

2

3

4

5

6

M
e
a
n
 e

rr
o
r

(m
)

LI

LS

PI

PLS

PPI

Figure 6: Maximum and mean errors between meshes
for levels of detail L1 (most detailed) to L4 (coarsest)
and the Tenerife DEM, for all considered techniques.
All units are expressed in meters.

As this work describes a method to adjust TRN to a
large DEM, comparing the results given by the pro-
posed pipeline with classic techniques becomes of in-
terest.

Using the two models presented in Section 5.1, two ex-
periments were designed in which four levels of detail
for both DEMs are calculated, each one with a reso-
lution 2 times lower than the immediate most detailed
level, for our proposed pipeline and other reference
methods. The generated meshes have been compared
to the DEM and also between them, calculating their
vertical accuracy.

These new experiments differ in how subsequent levels
of detail are calculated via the same adjustment meth-
ods. For the first one, all levels of detail are calculated
using a downsampled version of the DEM as initial ap-
proximation. The different methods used in this exper-
iment are the linear interpolation (LI), LSQR (LS) and
the proposed pipeline (PI). In the second one, the result
of the generation of the precedent level of detail has
been used instead as initial approximation. The meth-
ods for this case are labeled as Progressive LSQR (PLS)
and Progressive Pipeline (PPI).

Regarding the LI method, it is important to clarify
that the value of an intermediate point is computed as
the bilinear interpolation of the four neighbouring data
points. In contrast, the LSQR-based method obtains the
optimal values for each vertex by iteratively approx-
imating the solution of a linear system of equations.
The LSQR implementation of Matlab has been set to
seek a tolerance of 10−6 meters in the achieved solu-
tion, within a maximum of 300 iterations. As the exper-
imentation shows, however, that number of iterations
is never met whereas the total error is several orders
of magnitude greater than the tolerance, indicating that
the LSQR method finds itself stalled at undesired local
minimums.

A first analysis of the results was done and presented in
Figures 5 and 6, focusing on the resemblance between
the meshes and the DEM. It is observed that the use of
PI or PPI gives, for all levels, TRN with lower mean
errors related to the DEM than the ones generated with
the classic methods. Some examples are shown in Fig-
ures 11 and 12. They have also maximum errors similar
to the ones obtained using the linear interpolation. On
the other hand, LS and PLS only outrun the linear in-
terpolation, in both maximum and mean error, for the
TRNs of the coarsest levels of detail (3-4).

It is also observed that, for both scenarios in this ex-
periment and all the tested techniques, the maximum
error of a given TRN versus the DEM is always over
250 meters, with some cases presenting errors of 463
meters. By carefully analyzing those errors, it was dis-
covered that all tested methods find difficulties in mod-
eling large cliffs, as it is seen in Figure 10. The larger
space between points in a regular grid implies that some
sea points adjacent to the actual cliff will have a great
height value in the TRN, thus, large errors will be pro-
duced. Moreover, line-shaped artifacts have been ob-

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 112 ISBN 978-80-86943-49-7

L1−L2 L2−L3 L3−L4
0

100

200

300

400

500
M

a
x
 e

rr
o

r
(m

)

LI

LS

PI

PLS

PPI

L1−L2 L2−L3 L3−L4
0

2

4

6

8

10

12

M
e
a

n
 e

rr
o

r
(m

)

LI

LS

PI

PLS

PPI

Figure 7: Maximum and mean errors between two con-
secutive levels of detail of the Puget Sound model, for
all considered techniques. All units are expressed in
meters.

served in some regions of the Puget Sound model, as
it is presented in Figure 9. Variations on the height of
the affected vertices can be of hundreds of meters com-
pared with the surrounding regions, making hard the
adjustment of TRNs from the model.

L1 L2 L3
0

50

100

150

200

250

300

M
a
x
 e

rr
o
r

(m
)

LI

LS

PI

PLS

PPI

L1 L2 L3
0

1

2

3

4

5

6

7

M
e
a
n
 e

rr
o
r

(m
)

LI

LS

PI

PLS

PPI

Figure 8: Maximum and mean errors between two con-
secutive levels of detail of the Tenerife model, for all
considered techniques. All units are expressed in me-
ters.

(a) Line-shaped artifacts in a DEM region.

700

750

800

850

900

950

1000

1050

(b) TRN compared with original DEM in an affected area.

Figure 9: An example of line-shaped artifacts in regions
of the Puget Sound model.

The second analysis compares the resulting levels with
their inmediate precedent and its results are given in
Figures 7 and 8. In general, it is seen that the linear
interpolation provides the best results in both models.
Computing TRNs directly from the DEM using LS,
PLS or PI becomes inadvisable for visualization pur-

Figure 10: A cliff showing high errors in Tenerife
DEM. Green markers represent DEM points to be con-
fronted with TRN vertices.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 113 ISBN 978-80-86943-49-7

Figure 11: Area surrounding the highest point in the
Puget Sound model, for all levels of detail generated
using the proposed pipeline.

poses since it produces much higher errors between two
consecutive levels of detail, unless a popping reduc-
tion technique such as geomorphing is applied to make
smoother transitions. However, the use of PPI achieves
better inter-level mean errors than the classic methods
for detailed TRNs and only slightly worse mean errors
for the coarsest levels. As this technique also allows to
generate more accurate TRNs than the linear interpola-
tion, as it was commented in the first analysis, the PPI
method is also competitive for the adjustment of terrain
models.

6 CONCLUSIONS
The present work has explored a way to adjust TRNs to
better fit large DEMs. It consists in solving a linear sys-
tem of equations that represent the height error of our
representation. A technique to solve the linear system,
such as LSQR, is used to approximate the system solu-
tion, and a later vertex refinement stage narrows down
the mesh error.

The local refinement algorithm has an initial drawback
due to large execution times when it is applied to large

Figure 12: Results of the proposed pipeline for different
levels of detail. In this case, the highest mountain of the
Tenerife DEM (El Teide) is represented.

grids, but experimentation demonstrates that computa-
tional needs can be reduced by splitting the TRN in
smaller windows without affecting the final result of the
process.

The proposed pipeline was tested, generating meshes
that fit the Puget Sound and Tenerife elevation models
with promising results. Every mesh adjusted using our
pipeline fits better the model than ones resulting of us-
ing classic methods as linear interpolation, without in-
creasing heavily the difference between every level of
detail. This fact suggests the pipeline can be used to
generate meshes in order to visualize terrain in applica-
tions like virtual globes.

Future work will be focused on testing the pipeline ver-
sus other interpolation techniques in different scenarios
and accelerating the local refinement stage. Moreover,
a GPU implementation of the technique is also thought
as future line of work.

7 ACKNOWLEDGEMENTS
The first author wants to thank Agencia Canaria de In-
vestigación, Innovación y Sociedad de la Información,
and the European Social Fund, for the grant “Formación
del Personal Investigador-2012” that made possible this
work.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 114 ISBN 978-80-86943-49-7

The fourth author wants to thank Universidad de Las
Palmas de Gran Canaria for its grant ‘Programa de
personal investigador predoctoral en formación 2015’,
which made possible this work.

8 REFERENCES

[Hop98a] Hoppe, H. Smooth View-dependent Level-
of-detail Control and Its Application to Terrain
Rendering, in Conf. proc VIS ’98, Research Tri-
angle Park, North Carolina, USA, IEEE Computer
Society Press, pp. 35-42, 1998

[Els99a] El-Sana, S., and Varshney, A. General-
ized View-Dependent Simplification. Computer
Graphics Fourm, 1999.

[Pup96a] Puppo, E. Variable Resolution Terrain Sur-
faces, 1996.

[Lin96a] Lindstrom, P., and Koller, D., and Rib-
arsky, W. , and Hodges, L.F., and Faust, N., and
Turner, G.A. Real-time, Continuous Level of De-
tail Rendering of Height Fields, in Conf. proc
SIGGRAPH ’96, ACM Press, pp. 109-118, 1996.

[Paj98a] Pajarola, R. Large Scale Terrain Visualization
Using the Restricted Quadtree Triangulation,in
Conf. proc VIS ’98, Research Triangle Park,
North Carolina, USA, IEEE Computer Society
Press, pp. 19-26, 1998

[Paj07a] Pajarola, R., and Gobbetti, E. Survey of Semi-
regular Multiresolution Models for Interactive
Terrain Rendering. Vis. Comput., vol. 23, pp.
583-605. Springer-Verlag New York, Inc. , July
2007.

[Yus11a] Yusov, E., and Shevtsov, M., High-
Performance Terrain Rendering Using Hardware
Tessellation., Journal of WSCG, vol. 19, pp. 85-
92, 2011

[Kan15a] Kang, H., and Jang, H. , and Cho, C.S., and
Han, J. Multi-resolution Terrain Rendering with
GPU Tessellation. Vis. Comput., vol. 31, pp. 455-
469, Springer-Verlag New York, Inc. , April 2015.

[Agu05a] Aguilar, F.J., and Aguera, F., and Aguilar,
M.A., and Carvajal, F. Effects of terrain morphol-
ogy, sampling density, and interpolation methods
on grid DEM accuracy. Photogrammetric Engi-
neering and Remote Sensing, vol. 71, pag 805-
816, American Society for Photogrammetry and
Remote Sensing, 2005.

[Cha06a] Chaplot, V., and Darboux, F., and Bouren-
nane, H., and Leguédois, S., and Silvera, N.,and
Phachomphon, K. Accuracy of interpolation tech-
niques for the derivation of digital elevation mod-
els in relation to landform types and data density.
Geomorphology, vol. 77, pp. 126-141, 2006.

[Qua16a] Quaglino, A., and Krause, R. Towards a
multigrid method for the minimum-cost flow
problem. arXiv preprint arXiv:1612.00201, 2016.

[Pai82a] Paige, C.C., and Saunders, M.A. LSQR: An
algorithm for sparse linear equations and sparse
least squares. ACM transaction on mathematical
software, vol. 8, pp. 43-71, 1982.

[Peu78a] Peucker, T.K., et al. The triangulated irregu-
lar network. In Amer. Soc. Photogrammetry Proc.
Digital Terrain Models Symposium. 1978. p. 532.

[Lue02a] Luebke, D., and Watson, B., and Cohen, J.D.,
and Reddy, M., and Varshney, A. Level of Detail
for 3D Graphics. Elsevier Science Inc., 2002.

[Agu03a] Aguero, J. C., and Feuer, A., and Goodwin,
G. C. Terrain Modelling via Triangular Regular
Networks. MODSIM 2003, vol. 33, 2003.

[Pug00a] Finlayson, D., and Haugerud, R., and
Greenberg, H., and Logsdon, M. : Com-
bined Bathymetry and Topography DEM
of Western Washington State. School
of Oceanography of the University of
Washington. October 2000. Web resource:
http://www.ocean.washington.edu/data/pugetsound
(Last accessed: 2017.02.17)

[Los04a] Losasso, F., and Hoppe, H. Geometry
Clipmaps: Terrain rendering using Nested Reg-
ular Grids. ACM Transactions on Graphics, vol.
23, n. 3, pp. 769-776. August 2004.

[Liv09a] Livny, Y., and Kogan, Z., and El-Sana, J.
Seamless patches for GPU-based terrain render-
ing. The Visual Computer, vol. 25, no 3, p. 197-
208. 2009

[Tru12a] Trujillo, A., Suárez, J.P., De La Calle,
M., Gómez-Deck, D., Santana, J.M. An open
source virtual globe framework for iOS, Android
and WebGL compliant browser. In Conf.Proc.
COM.Geo’12, New York, NY, USA; ACM Press;
212, p. 22:1 - 22:10

[Sua03a] Suárez, J.P., Plaza, A. Refinement and hi-
erarchical coarsening schemes for triangulated
surfaces. Journal of WSCG., vol. 11, no. 1-3,
2003.

[Sua15a] Suárez, J.P., Trujillo, A., Santana, J.M.,De
La Calle, M., Gómez-Deck, D. An efficient ter-
rain Level of Detail implementation for mobile
devices and performance study. Computers, Envi-
ronment and Urban Systems, vol. 52, pp. 21-33.
2015.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 115 ISBN 978-80-86943-49-7

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 116 ISBN 978-80-86943-49-7

iDotter – an interactive dot plot viewer

Daniel Gerighausen1,2

daniel@informatik.uni-
leipzig.de

Alrik Hausdorf1

hausdorf@informatik.uni-
leipzig.de

Sebastian Zänker1

sebastianz541@gmail.com

Dirk Zeckzer1

zeckzer@informatik.uni-
leipzig.de

1Image and Signal Processing Group,
Leipzig University

2Bioinformatics,
Leipzig University

ABSTRACT
Bioinformaticians judge the likelihood of the overall RNA secondary structure based on comparing its base pair
probabilities. These probabilities can be calculated by various tools and are frequently displayed using dot plots
for further analysis. However, most tools produce only static dot plot images which restricts possible interactions
to the capabilities of the respective viewers (mostly PostScript-viewers). Moreover, this approach does not scale
well with larger RNAs since most PostScript viewers are not designed to show a huge number of elements and
have only legacy support for PostScript. Therefore, we developed iDotter, an interactive tool for analyzing RNA
secondary structures. iDotter overcomes the previously described limitations providing multiple interaction mech-
anisms facilitating the interactive analysis of the displayed data. According to the biologists and bioinformaticians
that regularly use out interactive dot plot viewer, iDotter is superior to all previous approaches with respect to
facilitating dot plot based analysis of RNA secondary structures.

Keywords
Bioinformatics Visualization, Tabular Data, User Interfaces, Dot Plots

1 INTRODUCTION
In bioinformatics, one frequent task is judging the like-
lihood of the overall RNA secondary structure. This
judgment is based on comparing the base pair proba-
bilities of RNA secondary structures. Therefore, the
probabilities for two nucleotides of an RNA sequence
forming such base pairs are calculated. Dot plots are
used for displaying probabilities or similarity measures
between a row and a column of a matrix. Hence, dot
plots are frequently used for RNA secondary analysis
displaying the probability of a row and a column nu-
cleotide forming a base pair.

Most currently available tools produce dot plots in post-
script (ps) format (e.g., [6,8]). These ps-images are then
viewed using suitable postscript viewers. However,
postscript itself is no longer actively developed and was
replaced by the portable document format (pdf). More-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

over, the images are static and possible interactions are
restricted to standard viewing interactions like zoom-
ing and panning the image. Further, the scalability of
this approach is low as during zoom-in the nucleotide
sequence that is displayed at the border of the image
might not be visible any more.

Therefore, we developed iDotter, an interactive tool
for analyzing RNA secondary structures that overcomes
these limitations. Concretely, the contributions of this
paper are:

• Sophisticated zooming and panning methods

• Presenting details for each dot on demand

• Highlighting of elements in the dot plot

• Recoloring of the dot plot

• Export of parts or the whole dot plot for further anal-
ysis

• A powerful API for using iDotter within analysis
pipelines

• A sharing function for collaborative analyses

iDotter provides an interactive web interface that is
implemented using the current state of the art web-
programming languages HTML5, PHP, and JavaScript.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 117 ISBN 978-80-86943-49-7

It proved superior to all previous approaches, and is
already regularly used by biologists and bioinformati-
cians.

2 BACKGROUND AND RELATED
WORK

Dot plots were introduced by Gibbs and Mcintyre [5].
Originally, dot plots were used to visualize alignments
of two nucleotide sequences or proteins. A dot plot is
a two dimensional matrix where the sequences ‘A’ and
‘B’ that are compared are visualized on the x- and y-
axis, respectively. A dot in a cell means that Sequence
‘A’ is similar to Sequence ‘B’ at this nucleotide/amino
acid (position). Both color and size of a dot represent
the similarity of the sequences calculated using appli-
cation dependent measurements. With the aid of dot
plots, identifying highly similar regions between two
sequences is easily possible. These regions are the di-
agonal lines in the matrix. An example for an inter-
active dot plot viewer for alignments was introduced
by Sonnhammer and Durbin [12]. We, however, focus
on RNA folding structures that can not be handled by
their program. Moreover, we allow additional interac-
tions like highlighting, semantic zoom, and export of
(sub-)sequences not provided by their tool.

While the nucleotide sequence (RNA primary struc-
ture) is important for the analysis of RNA sequences,
the folded structure of the RNA (RNA secondary struc-
ture) provides additional vital information. With the
emergence of RNA folding tools [8–10], visualizing
RNA secondary structure became more and more im-
portant to foster its analysis. Tools like Varna [4] or the
NAVIEW algorithm [2] generate graph-based, node-
link visualizations of RNA secondary structure show-
ing one possible folding of the RNA, only. Further, dot
plots were adapted to visualize the predicted base pair
probabilities within a single RNA sequence. Thus, they
support analyzing the changes of an RNA sequence be-
tween different species. Usually, the size of a dot de-
scribes the probability of a base pair between the corre-
sponding nucleotides.

Static dot plots can be calculated with R using the R
package R-CHIE [3]. The ViennaRNA package [8]
can generate one dot plot in postscript format for each
RNA secondary structure prediction (an example be-
ing shown in Figure 1a). Moreover, the ViennaRNA
Web Services [6] provide the functionality of the Vien-
naRNA package without the necessity to compile the
package. Therefore, it can be used platform indepen-
dently. We use the ViennaRNA package for generating
the initial dot plots, importing the data from them, and
providing additional interactive visualizations for ana-
lyzing them. While the original dot plots of Gibbs and
Mcintyre [5] for alignments show the same information
in the upper and the lower triangle, dot plots generated

by RNA folding software contain two different folding
predictions, e.g., the energetically best solution and all
possible base pair probabilities in the upper and lower
triangles, respectively. As iDotter is based on the latter,
it supports comparing two different folding probabili-
ties predicted by the respective folding algorithms.

An alternative for visualizing RNA secondary predic-
tions is the arc diagram introduced by Wattenberg [14]
and later implemented as arc plot in R [7]. The RNA
sequence is plotted as a linear sequence and an arc be-
tween two nucleotides describes a base pair while the
color of an arc might encode the probability of the pair.
Besides the fact, that this approach has limited scala-
bility, the arcs produce a lot of clutter and it is hard to
determine the corresponding base pair.

Arc diagrams and dot plots can be used for character
sequence comparison (alignment) in general. For arc
diagrams this was already introduced in the original pa-
per [14]. Abdul-Rahman et al. [1] use dot plots to visu-
alize text alignments between different documents.

3 PROBLEM, SOLUTION, AND
METHOD

3.1 Problem Statement and Proposed So-
lution

Current state and Issues A dot plot fulfills the stan-
dard design goals taken from the information visualiza-
tion literature [13]. Dot plots

1. are flexible (can be used for different tasks and ap-
plication areas)

2. are space efficient

3. provide a good overview of the data

4. ease the identification of pattern in the data

5. are fast to create

However, dot plots are static images without any inter-
action provided. Figure 1 shows a relatively small RNA
having a length 165nt. As can be seen in the ps ver-
sion (Figure 1a), the nucleotide names are no longer
readable. Moreover, it is difficult to impossible to spot
small base pair probabilities. Zooming into a part of the
ps view is possible (Figure 1a). Then, all dots become
larger and small base pair probabilities are more eas-
ily spotted. However, due to the limitations of the ps-
viewers, the nucleotide sequence related to the zoomed-
in area might no longer be visible.

Solution To overcome these limitations of existing
dot plot generators, we propose iDotter, a fully inter-
active web-interface that supports experts in analyzing
RNA secondary structure. iDotter is based on the dot
plots generated by existing folding tools and provides

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 118 ISBN 978-80-86943-49-7

A U A C U U A C C U G G C A G G G G A G A U A C C A U G A U C A C G A A G G U G G U U U U C C C A G G G C G A G G C U U A U C C A U U G C A C U C C G G A U G U G C U G A C C C C U G C G A U U U C C C C A A A U G U G G G A A A C U C G A C U G C A U A A U U U G U G G U A G U G G G G G G A C U G C G U U C G C G C U U U C C C C U A

A U A C U U A C C U G G C A G G G G A G A U A C C A U G A U C A C G A A G G U G G U U U U C C C A G G G C G A G G C U U A U C C A U U G C A C U C C G G A U G U G C U G A C C C C U G C G A U U U C C C C A A A U G U G G G A A A C U C G A C U G C A U A A U U U G U G G U A G U G G G G G G A C U G C G U U C G C G C U U U C C C C U AA
U

A
C

U
U

A
C

C
U

G
G

C
A

G
G

G
G

A
G

A
U

A
C

C
A

U
G

A
U

C
A

C
G

A
A

G
G

U
G

G
U

U
U

U
C

C
C

A
G

G
G

C
G

A
G

G
C

U
U

A
U

C
C

A
U

U
G

C
A

C
U

C
C

G
G

A
U

G
U

G
C

U
G

A
C

C
C

C
U

G
C

G
A

U
U

U
C

C
C

C
A

A
A

U
G

U
G

G
G

A
A

A
C

U
C

G
A

C
U

G
C

A
U

A
A

U
U

U
G

U
G

G
U

A
G

U
G

G
G

G
G

G
A

C
U

G
C

G
U

U
C

G
C

G
C

U
U

U
C

C
C

C
U

A

A
U

A
C

U
U

A
C

C
U

G
G

C
A

G
G

G
G

A
G

A
U

A
C

C
A

U
G

A
U

C
A

C
G

A
A

G
G

U
G

G
U

U
U

U
C

C
C

A
G

G
G

C
G

A
G

G
C

U
U

A
U

C
C

A
U

U
G

C
A

C
U

C
C

G
G

A
U

G
U

G
C

U
G

A
C

C
C

C
U

G
C

G
A

U
U

U
C

C
C

C
A

A
A

U
G

U
G

G
G

A
A

A
C

U
C

G
A

C
U

G
C

A
U

A
A

U
U

U
G

U
G

G
U

A
G

U
G

G
G

G
G

G
A

C
U

G
C

G
U

U
C

G
C

G
C

U
U

U
C

C
C

C
U

A

(a) Overview of the postscript dot plot generated by ViennaRNA [8]. The nucleotide
sequence is always shown at the borders.

(b) Overview of the iDotter interface showing the same dot plot as Figure 1a. The
nucleotide sequence is only shown at the borders, if the nucleotides are readable in the
current zoom level.

Figure 1: Complete dot plot showing base pair probabilities of an RNA. Black squares are used for showing the
possibility of two nucleotides forming a base pair. The probability for forming a base pair is encoded in the size of
these squares. Large squares imply a high probability, while small squares imply a low probability. The diagonal
is used as a landmark only. It divides the upper-right triangle showing the centroid probabilities from the lower-left
triangle showing the probabilities according to the energetically best solution.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 119 ISBN 978-80-86943-49-7

(a) PostScript-View, zoom-in of Figure 1a

(b) iDotter view, zoom-in of Figure 1b

Figure 2: Comparison of the dot plot interfaces after
zooming into a sub-sequence. In the postscript view,
the nucleotide sequence is no longer visible, while in
iDotter it stays visible at all borders easing the analysis
of sub-sequences.

additional interactions. After importing the data (Sec-
tion 3.2.1), the dot plot is shown in the web browser
(Section 3.2.2). Then, the expert can zoom in and
out as well as pan the view (Section 3.2.3). More-
over, the expert can mark rectangular regions of dots
in the dot plot as well as single columns and single
rows (Section 3.2.3). Finally, the highlighted part of
the dot plot or the complete dot plot can be exported
in postscript-format (Section 3.2.4). A web-based API
provides a connection with dot plot generating services
(Section 3.2.5).

3.2 Methods

3.2.1 Data Import

After starting iDotter, the original ps-file generated by
the ViennaRNA package [8] is transformed into a JSON
file by iDotter, if the JSON file does not already exist.
To do so, the RNA sequence, as well as the ubox and
lbox containers are extracted from the ps-file and stored
in a JSON array representing the box plot. Each ubox
and lbox container comprises an x- and a y-coordinate
designating the cell in the dot plot matrix, the size of
the dot, and the color of the dot. The color information
is optional. By transforming the input file into a generic
JSON file iDotter can easily be extended for other input
types by implementing a corresponding import routine.

3.2.2 Dot Plot View

The JSON file is imported by iDotter and the complete
dot plot (zoom out) is displayed in the browser (Fig-
ure 1b). This follows the Shneiderman Mantra, pre-
senting an “overview first” [11]. On each border, the
nucleotide sequence is displayed. For convenience, the
diagonal showing the same nucleotide on both the x-
and the y-axis is shown in red. At the same time, this
diagonal separates the upper from the lower triangle of
the matrix. In the upper and lower triangle, either the
same or two different base pair probabilities (encoded
as size in the input file) are shown. The size of each dot
is relatively encoded depending on the zoom level so
that the expert can compare the probabilities easily on
each zooming level. As default, we show the centroid
probabilities in the upper and the energetically best so-
lution probabilities in the lower triangle of the matrix,
respectively. The probability of a dot is mapped to its
size. The color can be used to represent, e.g., the con-
servation of the sequence between species. An adaptive
background grid is displayed to enable an easy counting
of the base pairs. Matching the zoom-level of the dot
plot, the different grid levels can be shown or faded out.
This view corresponds to the zoomed out standard dot
plots, except that the nucleotide sequence is not shown,
if the text becomes unreadable.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 120 ISBN 978-80-86943-49-7

3.2.3 Dot Plot Interaction
The second step in Shneiderman’s Mantra is “zoom and
filter” [11]. The expert can use the semantic zoom to
more closely analyze a sub-sequence (Figure 2b). The
expert benefits from the sequence labels staying visible
at all borders of the dot plot all the time. This is an
improvement over the state of the art (Figure 2a) where
the nucleotide sequence might disappear during zoom.
This improves the scalability with respect to the size
of the data that can be analyzed conveniently. More-
over, the individual nucleotides of the nucleotide se-
quence are only shown, if the zoom level allows dis-
playing them in a readable manner. Otherwise, they are
hidden (Figure 1b). The semantic zoom is triggered by
mouse wheel motion. Moreover, the expert can pan the
viewport by holding the left mouse button and moving
the mouse.

Filtering is not provided for the original data. It would
not be useful in this context. However, parts of the dot
plot can be selected and this selection can then be ex-
ported (see below). This corresponds to a filtering step
while its primary use is for reporting and collaborating.

The third step in Shneiderman’s Mantra is “details on
demand” [11]. While working with the dot plot, infor-
mation about individual dots can be displayed on de-
mand as a tool tip by mouse over. All available infor-
mation is shown (Figure 3). Thus, the user can get ex-
act information about the nucleotides (names and posi-
tions) involved in a base pair even though the respective
names are not longer visible at the corners because they
would be too small to read. Moreover, the values for
the size (here: representing the base pair probability)
and the color are shown.

Following the taxonomy of Yi et al. [15], selecting dots
is provided by iDotter. The expert can mark a dot by
left clicking on it (Figure 4a). Then, the selected dot
is highlighted with the dot marker color. Moreover, the
expert can select multiple dots by left clicking into the
viewing area and dragging the mouse while holding the
‘Shift’ key pressed. This creates a rectangular region.
Within this region, all columns and rows that contain
dots are highlighted with the dot marker color (Fig-
ure 6). Additionally, the selected dots are highlighted in
a different color (currently yellow) in both cases. De-
selecting a region of dots is achieved by pressing the
‘Ctrl’ key while using the mouse. Besides marking
dots, the expert can mark single columns by left click-
ing on them (Figure 4b). Then, the selected column is
highlighted with the line marker color (see Figure 6). In
the same way, the expert left clicks on a row to select
it (Figure 4b). Both—marking dots as well as mark-
ing columns and rows—can be combined (Figure 5) to
mark those parts of the dot plot that are of interest to the
expert. Finally, the highlighting can be reset by press-
ing the ‘Remove Marker’ button in the settings view

Figure 3: Each dot provides details on demand by
mouse-over showing a tool tip: element ID, X shows
the nucleotide of the column and its position, and Y
shows the nucleotide of the row and its position. The
(biological) attributes mapped onto ‘Size’ and ‘Color’
are application dependent.

which is invoked by left clicking on the ‘three horizon-
tal bars’ icon in the upper right corner of the dot plot.

The color coding (corresponding to ‘encode’ [15]) can
be adapted using the settings view. The two colors,
the color gradient is generated from (Figure 6) can be
changed. This directly influences the colors of the dots.
Moreover, the colors of the marked dots (Dotmarker
Color) and of the marked lines (Linemarker Color) can
be chosen.

3.2.4 Data Export
After working with the data, the expert can export the
highlighted parts of the dot plot into a new ps-file for
publication or other purposes by pressing the disc icon
in the upper left corner and selecting the menu item ’ex-
port only selection’. Further, the expert can export the
complete dot plot into a new ps-file by pressing the disc
icon and selecting the menu item ’export all’. This is
useful, if the API functionality of iDotter is used.

3.2.5 API
We designed a web-based API that provides a connec-
tion with dot plot generating services like the Vien-
naRNA Web Services [6]. This API supports direct im-
port of ps-files into the view, pre-selecting highlighted
regions, and exporting the highlighted regions for auto-
matic workflows. The API is controlled by URL param-
eters. This type of control provides iDotter with addi-
tional possibilities for collaboration between users. The

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 121 ISBN 978-80-86943-49-7

(a) The ‘mark dot’ interaction allows selecting single dots by click-
ing on them. In this case, the selected dot is highlighted with the dot
marker color (see Figure 6). Moreover, multiple dots can be selected
by marking a rectangular region. (Clicking into the viewing area and
dragging the mouse while holding the ‘Shift’ key pressed. For des-
election, the ‘Ctrl’ key should be pressed instead.) All columns and
rows that contain dots in the selected region are highlighted with the
dot marker color (Figure 6). All selected dots are highlighted in a
different color (currently yellow).

(b) The ‘mark row’ interaction allows selecting single rows by click-
ing on them. In this case, the selected row will be highlighted with
the line marker color (see Figure 6). In the same way, columns can be
selected.

Figure 4: Highlighting dots (a), and rows and
columns (b).

Figure 5: Marking dots and regions of dots (Figure 4a)
and marking rows and columns (Figure 4b) can be com-
bined.

expert can export her current settings, like zoom level,
position, and color settings, and share these with her
collaborators or save them for documentation purposes.
The URL export is triggered by pressing the clipboard
icon in the lower left corner. The URL contains all nec-
essary parameters and is copied into the clipboard of
the operating system. The expert can copy it afterwards
to any application.

3.3 Interaction Properties
iDotter supports all interaction mechanisms required by
the scientists for the analysis of dot plots. All use-
ful steps of Shneiderman’s Mantra [11] are supported.
Moreover, the interactions ‘select’ and ‘encode’ pro-
posed by Yi et al. [15] are supported.

4 EVALUATION
Dot plots are one of the default visualizations for
the analysis of secondary RNA structure predictions.
Therefore, the requirement was to enhance and extend
this visualization for state of the art interaction tech-
niques. In our case study our biological collaborator
used iDotter for analyzing the evolution of so called
long non coding RNAs (lncRNA). Since these RNAs
are longer than 200nt, it is challenging to analyze the
generated dot plots in ps-format due the lack of inter-
activity. Furthermore, it is hard to compare specific
regions between different dot plots. For that reason,
the expert used the interactivity features for selecting
regions of interests. By exporting these regions with
the API from all investigated RNA samples, it was
possible to detect evolutionary changes between several
species.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 122 ISBN 978-80-86943-49-7

Figure 6: In contrast to the postscript visualization,
iDotter provides choosing the color gradient. Addi-
tionally, choosing the highlighting colors for dots (Dot-
marker Color, Figure 4a) and columns/rows (Line-
marker Color, Figure 4b) is possible. Moreover, it is
possible to reset highlighting in the dot plot by pressing
the ‘Remove Marker’ button.

5 DISSEMINATION AND FUTURE
WORK

The iDotter project is available under the GNU GPL v3
on https://git.gurkware.de/biovis/
idotter.git. In the future, a close integration with
the ViennaRNA Web Services [6] using the already
existing API (Section 3.2.5) will be provided.
With respect to interaction, it is planned to add a small
inset that provides an overview which part of the RNA
sequence is currently zoomed-in. All interactions of the
Shneiderman Mantra [11] and the interactions “select”,
“encode”, “abstract/elaborate” (details on demand) and
“filter” from the taxonomy proposed by Yi et al. [15]
are already provided. Regarding the remaining three
interactions from latter taxonomy, “explore” requires a
closer integration with the folding tools using the al-
ready existing API. The “reconfigure” and “connect”
interactions, however, are beyond the scope of the anal-
ysis task.
Further, it is planned to extend iDotter for analyzing
data from other application areas similar to, e.g., align-
ments or text similarity [1]. Adapting iDotter for the
different input file formats is straight forward. For this,
a new data wrapper has to be created in iDotter that
transforms the input data into a valid JSON input file.

6 CONCLUSION
We introduced iDotter, an interactive dot plot viewer
for RNA secondary predictions. According to the biol-

ogists and bioinformaticians that regularly use out inter-
active dot plot viewer, iDotter is outperforms previous
approaches with respect to facilitating dot plot based
analysis of RNA secondary structures. By using the dif-
ferent interaction methods the experts were able to gen-
erate new insights and new hypotheses for their further
work. The API enables the automated usage of iDotter
in analysis pipelines or common RNA folding web ser-
vices. The collaboration functionality allows the expert
sharing her focus with her collaborators and document-
ing her insights.

7 ACKNOWLEDGMENTS
We thank all our colleagues from the BSV and Bioin-
formatics research groups for fruitful discussions on
earlier versions of the project. This work was par-
tially funded by the German Federal Ministry of Educa-
tion and Research (BMBF) within the project Compe-
tence Center for Scalable Data Services and Solutions
(ScaDS) Dresden/Leipzig (BMBF grant 01IS14014B).

8 REFERENCES
[1] A. Abdul-Rahman, G. Roe, M. Olsen, C. Glad-

stone, R. Whaling, N. Cronk, R. Morrissey, and
M. Chen. Constructive Visual Analytics for Text
Similarity Detection. Computer Graphics Forum,
36(1):237–248, 2016. doi: 10.1111/cgf.12798

[2] R. E. Bruccoleri and G. Heinrich. An improved
algorithm for nucleic acid secondary structure dis-
play. Computer applications in the biosciences:
CABIOS, 4(1):167–173, 1988.

[3] D. Charif and J. Lobry. SeqinR 1.0-2: a con-
tributed package to the R project for statistical
computing devoted to biological sequences re-
trieval and analysis. In U. Bastolla, M. Porto,
H. Roman, and M. Vendruscolo, eds., Structural
approaches to sequence evolution: Molecules,
networks, populations, Biological and Medical
Physics, Biomedical Engineering, pp. 207–232.
Springer Verlag, New York, 2007.

[4] K. Darty, A. Denise, and Y. Ponty. VARNA: Inter-
active drawing and editing of the RNA secondary
structure. Bioinformatics, 25(15):1974–5, 2009.

[5] A. J. Gibbs and G. A. Mcintyre. The Diagram,
a Method for Comparing Sequences. European
Journal of Biochemistry, 16(1):1–11, 1970. doi:
10.1111/j.1432-1033.1970.tb01046.x

[6] A. R. Gruber, R. Lorenz, S. H. Bernhart,
R. Neuböck, and I. L. Hofacker. The vienna
RNA websuite. Nucleic acids research, 36(suppl
2):W70–W74, 2008.

[7] D. Lai, J. R. Proctor, J. Y. A. Zhu, and I. M.
Meyer. R-CHIE: a web server and R package for
visualizing RNA secondary structures. Nucleic
acids research, p. gks241, 2012.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 123 ISBN 978-80-86943-49-7

[8] R. Lorenz, S. H. Bernhart, C. H. Z. Siederdissen,
H. Tafer, C. Flamm, P. F. Stadler, and I. L. Ho-
facker. ViennaRNA Package 2.0. Algorithms for
Molecular Biology, 6(1):26, 2011.

[9] N. R. Markham and M. Zuker. UNAFold. Bioin-
formatics: Structure, Function and Applications,
pp. 3–31, 2008.

[10] J. S. Reuter and D. H. Mathews. RNAstructure:
software for RNA secondary structure prediction
and analysis. BMC bioinformatics, 11(1):129,
2010.

[11] B. Shneiderman. The Eyes Have It: A Task by
Data Type Taxonomy for Information Visualiza-
tions. VL ’96. IEEE Computer Society, Washing-
ton, DC, USA, 1996.

[12] E. L. Sonnhammer and R. Durbin. A dot-matrix
program with dynamic threshold control suited
for genomic DNA and protein sequence analysis.
Gene, 167(1):GC1–GC10, 1995.

[13] C. Ware. Information Visualization: Perception
for Design. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2 ed., 2004.

[14] M. Wattenberg. Arc diagrams: visualizing struc-
ture in strings. In IEEE Symposium on In-
formation Visualization, 2002. INFOVIS 2002.,
pp. 110–116, 2002. doi: 10.1109/INFVIS.2002.
1173155

[15] J. S. Yi, Y. ah Kang, J. Stasko, and J. Jacko. To-
ward a Deeper Understanding of the Role of Inter-
action in Information Visualization. IEEE Trans-
actions on Visualization and Computer Graphics,
13(6):1224–1231, Nov 2007. doi: 10.1109/TVCG
.2007.70515

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 124 ISBN 978-80-86943-49-7

Fast and Effective Dynamic Mesh Completion

Gerasimos Arvanitis Aris S. Lalos Konstantinos Moustakas Nikos Fakotakis
Dept. of Electrical and Computer Engineering

University of Patras, Rio, Patras, Greece
{arvanitis, aris.lalos, moustakas}@ece.upatras.gr, fakotaki@upatras.gr

ABSTRACT
We introduce a novel approach to support fast and efficient completion of arbitrary animation sequences, ideally
suited for real-time scenarios, such as immersive tele-presence systems and gaming. In most of these applications,
the reconstruction of 3D animations is based on dynamic meshes which are highly incomplete, stressing the need
of completion approaches with low computational requirements. In this paper, we present a new online approach
for fast and effective completion of 3D animated models that estimates the position of the unknown vertices of
the current frame by exploiting the connectivity information and the current motion vectors of the known vertices.
Extensive evaluation studies carried out using a collection of different incomplete animated models, verify that the
proposed technique achieves plausible reconstruction output despite the constraints posed by arbitrarily complex
and motion scenarios.

Keywords
3D animated meshes, missing vertices, weighed iterative function

1 INTRODUCTION

Recently, there has been increasing interest in real-time
3D capture enabling the acquisition of dynamically de-
forming shapes at sustained ”video” rates. Although
resolution and accuracy of 3D scanners are constantly
improving, they are still unable to capture the full sur-
face at once. Even in scenarios where multiple sensors
are placed around the subject, most scanned shapes are
likely to exhibit large holes, noise and outliers due to
occlusions [BTSAL14], limited sensor range capabili-
ties, high light absorption and low surface albedo.

Although a large number of prior works [SGP03]
has investigated the problem of completion in static
geometries, resulting in excellent filled static meshes,
their direct application to every frame separately
usually causes incorrect topologies and temporally
incoherent surfaces. A fast and efficient approach for
reconstructing surfaces from a set of known points have
been proposed in [SC04] where the authors reconstruct
meshes with a prescribed connectivity that approximate
a set of control points in a least-squares sense.

Building on this direction, in this work we introduce a
novel technique for reconstruction of highly incomplete

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

dynamic meshes1, by exploiting a known connectivity
and set of motion vectors corresponding to the known
points in an online setting. In this setting the animation
sequence in not known a priori and at each time our
method exploits information that has been presented so
far. An extensive analysis has demonstrated that the
high-frequency details of the animated model can be
adequately recovered from a highly incomplete geome-
try dataset at very fast execution times.

2 RELATED WORKS & CONTRIBU-
TIONS

In recent years, a lot of research has been carried out
into the field of 3D mesh reconstruction, having pre-
sented excellent results applied to incomplete static
meshes. However, little attention has been given to
the reconstruction of animated meshes. Traditional
methods usually cause temporally incoherent surfaces
when they are directly applied to each frame individu-
ally. These methods do not take advantage of previous
frames knowledge, as a result they basically deal with
n individual meshes instead of a sequence of tempo-
rally coherent meshes. A common approach to produce
a temporal consistent dynamic mesh is to use a tem-
plate prior [ZA04], however, this approach is not ideal
for real-time applications because the entire captured
animated mesh is required before the execution of the
process.

The authors in [ACSTD07] focus on reconstructing
watertight surfaces from unoriented point sets using a

1 A dynamic mesh is a common term defined as a series of
static, mainly triangular, meshes representing a 3D animation.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 125 ISBN 978-80-86943-49-7

Voronoi-based variational approach, while the method
in [SLS07] tries to handle the missing points by try-
ing to infer topological structures in the original sur-
face at the potential expense of retaining geometric fi-
delity. The researchers in [DGQ12] perform recon-
struction only on the available information, effectively
preserving the boundaries from the scan. Recently, a
new signal processing technique known as matrix com-
pletion (MC) [CAN12] has been successfully applied
to several computer vision problems, including the re-
covery of occluded faces/dynamic meshes [DDZ11],
[VLMB07], [SWG08] and the face image alignment
[PGWXM12]. It has been also used for the fusion of
point clouds from multiview images of the same object
[DDZW12]. In [RPMR13], it is applied on RGB-D data
for the simultaneous tracking and reconstruction of 3D
objects.

The common limitation of all the aforementioned ap-
proaches is the high computational complexity that sig-
nificantly affects the execution time and renders them
inappropriate for real time applications. These limi-
tations motivated us to search for a fast and effective
approach that can satisfy the reconstruction efficiency
supporting at the same time real time applications. In
summary, the main contributions of our work are:

• A general out-of-core approach to dynamic mesh
completion ideally suited for fast and accurate filling
(in spatial or temporal space) of incomplete arbitrary
mesh sequences.

• An extensive experimental evaluation under differ-
ent configurations and mesh animations showing
that our approach achieves the highest reconstruc-
tion quality offering at the same time faster execu-
tion times as compared to previous methods.

The rest of this paper is organized as follows: Section
2 includes a detailed summary of prior art. Section 3
presents an overview of our method. Section 4 presents
our experimental results and discusses the advantages
and limitations of the proposal method. Section 5 draws
conclusions and identifies future directions.

3 OVERVIEW OF OUR METHOD
Initial Assumptions and Preliminaries
In this section we present the basic assumptions and
preliminaries related to animated meshes. Firstly, a dy-
namic mesh is defined A = [M1; M2; . . . Mn] as a se-
quence of n static meshes consisting of k vertices. Each
one of these meshes can be represented by two differ-
ent sets M = (V ,F) corresponding to the vertices (V)
and the indexed faces (F) of the mesh. Each vertex
can be represented as a point in the Euclidean space.
Let us define with v = [x, y, z] a vector of vertices

in a 3D coordinate space denoted as x,y,z ∈ ℜk×1,
v = [v1, v2, ... vk] ∈ ℜk×3 and V = {v1, v2, ... vk} is
the corresponding set of vertices. Additionally, each
face is represented as a set of 3 connected vertices
fi = [vi1, vi2, vi3] ∀ i = 1,m where m > k and the corre-
sponding set of faces is denoted by F = { f1, f2, ... fm}.
The set of edges E can be directly derived from V and
F , corresponds to the connectivity information.

Let us assume that A′ is a highly incomplete dynamic
mesh. In other words, each mesh of the animation
has only a subset of known vertices while the rest
have been removed. The incomplete animated model
is represented by a sequence of incomplete meshes
A′ = [M1; M′2; . . . M′n] where M′i ⊂Mi ∀ i = 2,n. Each
incomplete dynamic mesh is described by a matrix of
dimension 3k×n:

A′=



M1
M′2
M′3
M′4
...

M′n


=



v11 v12 v13 v14 ... v1k−1 v1k
0 v22 0 0 ... 0 0

v31 0 0 v34 ... 0 0
0 0 v43 0 ... v4k−1 v4k
...

...
...

...
...

...
...

0 vn2 0 0 ... vnk−1 0


The incomplete meshes are created by randomly
removing points from the original ones. Fig. 1 depicts
some indicative frames (meshes) assuming different
densities of known points.

Adjacency and Laplacian Matrix
To estimate the coordinates of the missing points, we
initially use a prescribed connectivity information (i.e.,
adjacency matrix), constructed from the faces of the
mesh. Despite the fact that the position of vertices is
changing, the adjacency matrix remains fixed over time,
since we assume that every mesh has the same connec-
tivity [WJHB07]. This observation allows us to esti-
mate the adjacency matrix only once and use it repeat-
edly for any subsequent mesh of the same model. More-
over, we assume that we have full knowledge of the first
mesh M1 of the sequence. We define as R ∈ ℜk×k the
adjacency matrix which is estimated as described be-
low:

Ri j =

{
1 i f i, j ∈ E
0 otherwise (1)

The matrix R is binary and it is used for the creation of
the Laplacian matrix defined as:

L = D−R (2)

D = diag{d1, . . . ,dk} is a diagonal matrix with di =

∑
k
j=1 ri j, being the degree of its node.

Spatial Classification of Each Frame Ver-
tices
We create k cells of nodes ci ∀ i = 1,k using the knowl-
edge of the adjacency matrix R. Each cell ci rep-

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 126 ISBN 978-80-86943-49-7

(a) (b) (c) (d) (e)

Figure 1: Indicative incomplete frames of the animated sequence: (a) original mesh (10002 points), (b) 10% of
original points, (c) 30% of original points, (d) 50% of original points, (e) 70% of original points

resents the first ring area of each vertex i. We de-
fine as C = [c1 c2 . . . ck] the set of k cells where
ci = [ċi1 ċi2 . . . ċi j] ∀ i = 1,k. However, it is worth
mentioning here that each cell has different connectiv-
ity valence denoted by j. The element ċip represents the
index of p-th connected vertex with the vertex i. The set
C remains fixed for every frame (mesh) and it is used
for recovering the missing points. Fig. 2 illustrates an
example of two connected cells c1,c2 with their related
connections, cell c1 has j = 6 connected neighbors (va-
lence), while c2 has a valence j = 5.

𝑐1
c2

ሶ𝑐11

ሶ𝑐12

ሶ𝑐13

ሶ𝑐14

ሶ𝑐15

ሶ𝑐16

ሶ𝑐21

ሶ𝑐22

ሶ𝑐23

ሶ𝑐24

ሶ𝑐25

Figure 2: Representation of two connected cells

After the definition of cells we focus on the classifica-
tion of vertices for each frame M′i ∀ i = 2,n. This pro-
cess is executed in a sequential manner for each mesh
starting from the second mesh until the end of the ani-
mation sequence. We assume three different classes for
each vertex:

• Anchor vertices are the known vertices of the mesh.

• Satellites vertices are those belonging to a cell of an
already known vertex. If a vertex belong to a cell of
an anchor vertex then is defined as first generation
satellite otherwise is defined as second generation
satellite and so on.

• Unknown vertices are the vertices that do not be-
long to a cell of an already known vertex. Those
vertices will be recovered and placed in the mesh at
a future iteration.

The classification procedure is an iterative process that
tries to eliminate any remaining unknown vertex so that
the mesh will be composed of only anchor or satel-
lite vertices. This means that the coordinates of an
unknown vertex are evaluated in a following iteration.
This method has been proved to be robust and all the
missing vertices are always recovered. The method
starts with the assumption that if the position of a vertex
is known then it is called anchor point, i ∀ i = 1,k′ k′ <
k . All the vertices that belong to the cell ci are classi-
fied as satellite vertices (first generation satellite). The
rest vertices are classified as unknown. At the follow-
ing iteration the position of the satellite points are taken
into account and their cells are used for identifying new
satellites (second generation satellites).

(a) (b)

(c) (d)

Figure 3: (a) Part of mesh with unknown points, (b) An-
chors are indicated with red (Iteration 1), (c) First gen-
eration satellites identified based on anchors cells (Iter-
ation 2), (d) Second generation satellites are set based
on first generation satellites cells (Iteration 3).

Fig. 3 illustrates the aforementioned classification pro-
cedure. Red points represent the known vertices (an-
chor points). Blue points represent the satellites (first
generation) which are connected with the anchor points,
and correspondingly green point represent the satellites

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 127 ISBN 978-80-86943-49-7

∀ 𝑡 = 2, 𝑛

⋮

⋮

Temporal process for the animation reconstruction

𝑀𝑡
′

𝑀𝑡−1

Reconstructed
Animated Mesh

Spatial iterative
process for the

mesh
reconstruction

𝑀𝑡
Reconstructed

Mesh

Figure 4: The animation is reconstructed frame by
frame (temporal process) taking into account the pre-
vious reconstructed mesh and the current incomplete
(spatial iterative process).

(second generation) that are connected with the first
generation satellites. It is important to mention here,
that a satellite point can be also a satellite point of more
than one anchor point while, an anchor point can be a
satellite point for another neighbor anchor point.

A cell ci can indicate the existence of satellite vertices
in a first ring area of vertex i, nevertheless it does not
specify their real position. The classification procedure
is used for assigning weights and then estimating the
unknown vertex position using a weighted filtering ap-
proach based on their previous position and the motion
vector of the anchor points. A detailed description of
the method is provided in the following section.

Geometry Completion Based on Topologi-
cal Characteristics
In this section we present the main steps of our interpo-
lation procedure which is divided in two stages. In the
first stage, a spatial iterative process is executed for re-
constructing the mesh using only the known vertices of
the current mesh. In the second stage, a temporal pro-
cess tries to reconstruct the entire animated mesh us-
ing knowledge of the previous frame. Fig. 4 presents
the process while the reconstruction takes place gradu-
ally, starting from the second mesh and continues until
the end of the animation sequence rendering the method
appropriate for online setups.

As mentioned earlier, a cell c represents the first ring
area where points (satellite vertices) are connected with
an anchor vertex. Therefore we decided to build upon
the assumption that the satellite vertices are expected to
move towards the direction of an anchor keeping their

Figure 5: Example of large and small variations in cell
movements.

common topological characteristics (e.g., distances be-
tween each other) unchanged. However, some satellites
are connected with more than one anchors, meaning
that their new position will be affected by the motion
vectors of every connected anchor.

For making the estimation of coordinates more accurate
we suggest a weighted reconstruction function which is
defined by exploiting the following observations. As
it was mentioned earlier, when a satellite is connected
with more than one anchors then its new position is af-
fected by the motion vectors of all the anchors. How-
ever, each anchor contributes with a different weight
that is related to the relative distance between anchors
and satellites. Smaller cells are more rigid so that their
satellite points are expected to follow the motion vec-
tors of the closest anchor, as shown in Fig. 5.

The second rule that we apply, is based on the fact that
some points are more trustworthy than others. In other
words we give more emphasis on the anchor points in-
stead of the satellites due to their known position. Sub-
sequently, we give more emphasis in the first genera-
tion satellites rather than the next generation because
they are connected directly with the anchor points so
that their estimated position is expected to be more ac-
curate. According to the aformentioned observations,
we distinguish two different weighted factors:

(a) the weighting factor si j that represents the inverse
distance between points j (new discovered satellite) and
i (already known point) such as si j = 1/||vi−v j||22.

(b) the weighting factor wi that represents the prioriti-
zation weight of vertex i. More specifically, anchors
prioritization weights have the highest value while the
last generation satellites have the smallest one.

For each vertex v j∀ j = 1,k− k′ we define a weighted
matrix S j = [s1 j s2 j · · · sn j] that consists of n′ elements
that represent the distance between the current vertex
and the known vertices that are connected with the ver-
tex v j. The matrix W = [w1 w2 · · · wk′] is universal and
can be used by every vertex v j. However, in each itera-
tion the values of their elements increase by one, while
in every new element we assign a unit weight. For each
satellite j we estimate its new coordinates in the (p+1)

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 128 ISBN 978-80-86943-49-7

v(p)i v(p+1)iM(p) M(p+1)

v(p)j v(p+1)j

1/s(p)ij

dp(p+1)j

dp(p+1)i
1/s(p+1)ij

Figure 6: Anchor and satellites movement in a cell of
two sequential meshes.

mesh, by updating its previous coordinates in (p) mesh,
based on the following equation:

v(p+1) j = v(p) j +dp(p+1) j (3)

where

dp(p+1) j =
∑

n
i=1 si jwidp(p+1)i

∑
n
i=1 |si jwi|

(4)

The dp(p+1) j represents the motion vector of vertex vi
from (p)-th mesh to (p + 1)-th mesh (see Fig. 6), i
represents the known vertex vi (anchors and satellites)
and d = [dx = |x(p+1)− x(p)| dy = |y(p+1)− y(p)| dz =
|z(p+1)− z(p)|] is a distance vector. An overview of the
proposed method is briefly presented in the following
Algorithm 1.

Algorithm 1: Reconstruction of 3D animated model
Function: 3D mesh reconstruction based on previous

complete mesh
Input : Animated 3D model A′ with missing data.
Output : A reconstructed animated model Ā.

1 Find the connectivity R of M1;
2 for i≤ n do
3 while Number of known vertices < k do
4 Search for satellate points using the connectivity of

C;
5 Estimate the wighted distance via Eq. (4);
6 Update vertex based on its previous frame

coordiantes via Eq. (3) ;
7 end
8 end
9 return Reconstructed animated model Ā;

4 RESULTS
In this section, we present an experimental analysis
of the proposed completion approach on different dy-
namic meshes. The evaluation of both the execution
time and the reconstruction quality shows the effective-
ness of our method even in complex motion scenario
that include rapid changes between sequential frames
or in cased with a small percentage of known points.

Experimental Setup
In all the experiments we have used a PC Intel core i7-
4710HQ CPU @ 2.50GHz 2.50GHz, 8 GB RAM. The
algorithms have been implemented using the Julia sci-
entific language.

Metrics
The quality of the reconstructed results are evaluated
using the metrics that are briefly presented below:

NMSVE. Normalized mean square visual error is used
in order to evaluate the reconstruction quality of results,
by capturing the average distortion between the original
and the approximated frame [CG04]:

NMSV E =
1
2k

k

∑
j=1

(‖vi − ṽi‖
2
+‖GL(vi)−GL(ṽi)‖

2
) (5)

GL(vi) = vi−
∑ j∈Ni d−1

i j v j

∑ j∈Ni d−1
i j

(6)

di j denotes the Euclidean distance between i and j.

Heatmap. To efficiently highlight the visual differ-
ence between reconstructed and original mesh we use
heatmap visualization of |Mi− M̄i| ∀ i = 1,n.

Dataset
Two types of 3D animated models were used in our ex-
periments. These models represent different case stud-
ies because of their inherent properties and the fact
that they target on different applications (e.g., immer-
sive tele-presence systems, gaming). Specifically, (a)
Handstand has many smooth areas, while there are no
abrupt temporal changes (175 frames, 10002 vertices
and 20000 triangles). (b) Ocean on the other hand is full
of repetitive abrupt changes (1500 frames 2500 vertices
and 4802 triangles).

Comparison Methods
For comparison purposes, we have also employed con-
ventional techniques for the reconstruction of the ani-
mation models, namely the least-square meshes (LSM)
algorithm [SC04] and the Laplacian interpolation ap-
proach (LIA) [OOH89]. LSM is described as the solu-
tion of an extended system of equations [LT IT

n×k′]
T xp =

[0T ,xk′,k], for p = 1, · · · ,n, for k′ known (anchor) ver-
tices in the p-th frame. Laplacian interpolation is de-
scribed as a fast and effective method with a lot of sim-
ilarities with LSM. According to [OOH89] a way to in-
terpolate a triangulated mesh is by putting constraints
on the Laplacian ∆ f of the function and trying to mini-
mize its Euclidean norm.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 129 ISBN 978-80-86943-49-7

Experimental Results
The processing time is related to the number of ini-
tial known vertices. Specifically, the execution time in-
creases linearly with the number of unknown vertices.
In Fig. 7 we present the processing time for the recon-
struction of each mesh of the animated sequence us-
ing different initialization schemes. The required num-
ber of iterations for a complete mesh reconstruction de-
pends on the percentage of known vertices. Addition-
ally, we can observe that the two models have a similar
behavior.

Number of Iterations
0 1 2 3 4 5 6

N
um

be
r

of
 P

oi
nt

s

0

2000

4000

6000

8000

10000

0.98 sec. !

0.56 sec. !

0.32 sec. !

0.29 sec. !

Handstand (10002 points per mesh)

10% of initial points
30% of initial points
50% of initial points
70% of initial points

Number of Iterations
0 1 2 3 4 5 6

N
um

be
r

of
 P

oi
nt

s

0

500

1000

1500

2000

2500

0.27 sec. !

0.17 sec. !

0.12 sec. !

0.07 sec. !

Ocean (2700 points per mesh)

10% of initial points
30% of initial points
50% of initial points
70% of initial points

Figure 7: Number of iteration and processing time for
a full mesh reconstruction.

In Fig. 8 the missing vertices are visualized with red
color and the known vertices with blue (1st and 3rd
row). A heatmap visualization is also offered present-
ing the squared difference between original and recon-
structed mesh for different numbers of known vertices
(2nd and 4th row). The compared results of our ap-
proach and LIA are presented in Fig. 9 showing that our
method outperforms LIA in both reconstruction quality
and execution time. A major disadvantage of LIA is
the smoothed results even in cases with a high percent-
age of remaining points. In terms of execution time, our
method becomes faster when more remaining points are
used, because of the less iterations that are required,
contrary to LIA where the execution time increases be-
cause of the larger matrix operations. Fig. 10 illustrates
some indicative reconstructed frames of the Handstand
model after using the aforementioned approaches. Our
method seems to outperform the others while LIA and
LSM have similar performance. Fig. 11 presents some
indicative reconstructed frames of different animated

(a) (b) (c) (d)

Figure 8: Visualized missing data and heatmap visual-
ization for different density of points (a) 10% of origi-
nal points, (b) 30% of original points, (c) 50% of orig-
inal points, (d) 70% of original points. (Handstand
frame 110, Ocean frame 1500).

Percentage of remaining points (%)
0 10 20 30 40 50 60 70

N
M

S
V

E
 (

dB
)

-62

-60

-58

-56

-54

-52

-50

-48

-46

-44

-42

0.98 sec. !

0.56 sec. !

0.32 sec. !

0.29 sec. !

2.83 sec. #
4.48 sec. #

5.66 sec. #

7.09 sec. #

Handstand (mesh 55)

Proposed method
Laplacian Interpolation

Figure 9: NMSVE and processing time results for the
two compared methods.

models. For the sake of completeness, the NMSVE val-
ues are also illustrated under each reconstructed mesh.
Finally, it should be noted that despite the high motion
variance of animated trajectories, the perceptual quality
of the reconstructed dynamic meshes when the density
of the known point is higher than > 30% is consider-
ably high. This totally satisfies the main goal of this
work which is the design and implementation of fast
and effective dynamic mesh reconstruction approaches.

5 CONCLUSIONS AND FUTURES EX-
TENDS

In this work we introduced a fast and effective method
for reconstructing animated 3D models with missing
data. The proposed method takes advantage of the adja-
cency matrix information in order to identify the coor-
dinated of the missing vertices. After that a weighted

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 130 ISBN 978-80-86943-49-7

3
0

%
 o

f
th

e
o

ri
gi

n
al

 p
o

in
ts

(a) (b) (c)

5
0

%
 o

f
th

e
o

ri
gi

n
al

 p
o

in
ts

Figure 10: Handstand with 30% of original points
(Frames 150 & 80) and with 50% of the original points
(Frames 55 & 120) (a) our method, (b) LIA, (c) LSM.

iterative procedure estimates the position of missing
vertices based on their previous position and the mo-
tion vectors of the connected anchors. An extensive
evaluation study using a collection of different 3D an-
imation models verified that the proposed technique
achieve plausible reconstruction output and fast execu-
tion times.

6 REFERENCES
[BTSAL14] M. Berger, A. Tagliasacchi, L. Sever-

sky, P. Alliez, J. Levine, et al.. State of the Art
in Surface Reconstruction from Point Clouds.
Eurographics 2014 - State of the Art Reports,
Apr 2014, Strasbourg, France. 1 (1), pp.161-185,
2014, EUROGRAPHICS.

[SGP03] P. Liepa. 2003. Filling holes in meshes. In
Proceedings of the 2003 Eurographics/ACM SIG-
GRAPH symposium on Geometry processing
(SGP ’03). Eurographics Association, Aire-la-
Ville, Switzerland, Switzerland, 200-205

[OOH89] Thom F Oostendorp, Adriaan van Oosterom
and Geertjan Huiskamp, Interpolation on a tri-
angulated 3D surface. Journal of Computational
Physics, 80: 331-343, 1989.

[CG04] Z. Karni and C. Gotsman, Compression
of soft-body animation sequences, Computers
Graphics, vol. 28, pp. 25-34, 2004.

[WJHB07] M. Wand, P. Jenke, Q. Huang, M. Bokeloh,
L. Guibas, and A. Schilling, Reconstruction of
Deforming Geometry from Time-Varying Point
Clouds, EUROGRAPHICS, 2007.

[DDZ11] Y. Deng, Q. Dai, and Z. Zhang, Graph
laplace for occluded face completion and recog-
nition, IEEE Transactions on Image Processing,
vol. 20, no. 8, pp. 2329-2338, Aug 2011.

[PGWXM12] Y. Peng, A. Ganesh, J. Wright,W. Xu,
and Y. Ma, Rasl: Robust alignment by sparse and
low-rank decomposition for linearly correlated
images, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, no. 11, pp.
2233-2246, Nov 2012.

[CAN12] Candes, Emmanuel, and Benjamin Recht.
"Exact matrix completion via convex optimiza-
tion." Communications of the ACM 55.6 (2012):
111-119.

[DDZW12] Y. Deng, Y. Liu, Q. Dai, Z. Zhang, and
Y.Wang, Noisy depth maps fusion for multiview
stereo via matrix completion, IEEE Journal of Se-
lected Topics in Signal Processing, vol. 6, no. 5,
pp. 566-582, Sept 2012.

[SWG08] J. Süßmuth, M. Winter, G. Greiner, Re-
constructing animated meshes from time-varying
point clouds, Eurographics Association, vol. 27,
no. 5, pp. 1469-1476, 2008.

[RPMR13] C. Ren, V. Prisacariu, D. Murray and I.
Reid, STAR3D: Simultaneous Tracking And Re-
construction of 3D Objects Using RGB-D Data,
IEEE International Conference on Computer Vi-
sion, 2013.

[ACSTD07] P. Alliez, D. Cohen-Steiner, Y. Tong, M.
Desbrun, Voronoi-based variational reconstruc-
tion of unoriented point sets. In Computer Graph-
ics Forum (Proc. of the Symposium on Geometry
Processing), 2007.

[SLS07] A. Sharf, T. Lewiner, G. Shklarski, S. Toledo
and D. Cohen-Or, Interactive topology-aware sur-
face reconstruction. ACM Trans. Graph. (Proc.
SIGGRAPH), 2007.

[DGQ12] T. K. Dey, X. Ge, Q. Que, I. Safa, L. Wang,
Y. Wang, Feature-preserving reconstruction of
singular surfaces, In Computer Graphics Forum,
2012.

[SC04] Least-Squares Meshes. In Proceedings of the
Shape Modeling International 2004 (SMI ’04).
IEEE Computer Society, Washington, DC, USA,
191-199.

[VLMB07] E. Vlachos, A. Lalos, K. Moustakas, K.
Berberidis, Efficient graph-based matrix comple-
tion on incomplete animated models, IEEE Inter-
national Conference on Multimedia and EXPO
(ICME) 2017, At HONG KONG.

[ZA04] Li Zhang et. al., ’Spacetime faces: High reso-
lution capture for modeling and animation,’ ACM
Trans. Graph., vol. 23, no. 3, pp. 548-558, Aug.
2004.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 131 ISBN 978-80-86943-49-7

Fr
am

e
2

Fr
am

e
5

5
Fr

am
e

1
2

0

-59.84 dB -61.10 dB -62.34 dB -64.29 dB

-46.67 dB -52.62 dB -55.87dB -58.37 dB

-46.17 dB -52.02 dB -56.21 dB -59.44 dB

(a) (b) (c) (d) (e)

Fr
am

e
2

Fr
am

e
1

0
0

0
Fr

am
e

1
5

0
0

-46.93 dB -47.77 dB -48.78 dB -50.16 dB

-48.60 dB-43.69 dB -45.96 dB-40.07 dB

-51.28 dB-44.24 dB -47.09 dB-40.31 dB

Figure 11: Reconstructed meshes for different density of remaining points (a) 10% of original points, (b) 30% of
original points, (c) 50% of original points, (d) 70% of original points, (e) original mesh. (Handstand & Ocean)

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 132 ISBN 978-80-86943-49-7

StreetGAN: Towards Road Network Synthesis with
Generative Adversarial Networks

Stefan Hartmann Michael Weinmann Raoul Wessel Reinhard Klein
University of Bonn

Institute for Computer Science II
Friedrich-Ebert-Allee 144

Germany, 53113 Bonn
{hartmans,mw,wesselr,rk}@cs.uni-bonn.de

ABSTRACT
We propose a novel example-based approach for road network synthesis relying on Generative Adversarial Net-
works (GANs), a recently introduced deep learning technique. In a pre-processing step, we first convert a given
representation of a road network patch into a binary image where pixel intensities encode the presence or absence
of streets. We then train a GAN that is able to automatically synthesize a multitude of arbitrary sized street net-
works that faithfully reproduce the style of the original patch. In a post-processing step, we extract a graph-based
representation from the generated images. In contrast to other methods, our approach does neither require domain-
specific expert knowledge, nor is it restricted to a limited number of street network templates. We demonstrate the
general feasibility of our approach by synthesizing street networks of largely varying style and evaluate the results
in terms of visual similarity as well as statistical similarity based on road network similarity measures.

Keywords
deep learning, generative modeling, generative adversarial networks (GANs), road network generation.

1 INTRODUCTION

High-quality productions such as video games, sim-
ulations or movies rely on high-quality content in-
cluding detailed virtual environments, buildings and
realistic road networks. However, the manual design
and modeling of such content from scratch is a time-
consuming and tedious task. Therefore, the automa-
tion of high-quality content production has become an
active line of research in recent years. Automatic con-
tent generation has been addressed using various ap-
proaches that follow the concepts of procedural mod-
eling, inverse-procedural modeling or example-based
modeling. While procedural approaches rely on man-
ually designed grammar snippets and rule sets to de-
rive geometric representations of buildings, plants or
road networks, inverse procedural approaches try to
infer the production rules from a given set of existing
examples. In contrast, example-based approaches in-
spect small real-world examples and decompose them
into a set of building blocks in an offline step. Novel
content is then generated by custom tailored algo-
rithms that reshuffle, recombine, and bend the con-
tent in order to statistically and perceptually match the
style present in the examples. Furthermore, the poten-
tial of deep learning techniques for procedural content
generation [23, 15, 32] has been investigated. These
techniques based on convolutional neural networks
(CNNs) have already been established as promising
workhorses in other areas of computer graphics like
texture synthesis [11, 20].

In this work, we propose a novel example-based ap-
proach for road network generation that leverages the
potential of modern deep learning techniques. The in-
put for our method is a road network patch extracted
from OpenStreetMap (OSM). As the data is publicly
available and maintained by a large community no fur-
ther domain-specific expert knowledge for data prepa-
ration and/or annotation is required. Our method com-
prises three major components. The first component
prepares and converts an input road network into a
binary image, where the pixel intensities encode the
presence or absence of roads. The second component
trains a generative adversarial network (GAN) [14] on
image patches extracted from the prepared road net-
work image. The third step utilizes the GAN to syn-
thesize arbitrary sized images that contain a rastered
road network. In order to use the produced road net-
work encoded in the image in GIS applications such
as CityEngine[8], we extract the road graph and post-
process it in a final step. The results shown in Section
5 illustrate that our approach is able to synthesize road
networks that are visually similar when compared to

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 133 ISBN 978-80-86943-49-7

the original road networks. Moreover, they also faith-
fully reproduce road network properties like city block
area, compactness and block aspect ratio (see Sec-
tion 5.2). The statistical evaluation furthermore shows
that the major characteristics and the style of the road
network present in the original networks can also be
found in the synthesized results.

To the best of our knowledge, no other method for
road network generation using a GAN approach has
been published so far. However, we believe that this
technique is particularly well-suited for the envisioned
task, as due to their nature GANs try to learn the
distributions that underlie a set of training images or
patches. This might overcome the need for manual
definition of rule sets and parameter tuning for proce-
dural algorithms which can be tedious for non-expert
users. In addition, such a technique might boost the
expressiveness of custom-tailored example-based syn-
thesis algorithms that is typically limited by the varia-
tion found within the input template.

2 RELATED WORK
The first part of this section reviews procedural and
example-based approaches with a strong focus on road
network generation. In the second part, we briefly re-
view content generation approaches that leverage the
power of deep learning techniques. As no approach
for road network generation that leverages deep learn-
ing techniques has been presented so far, we instead
review approaches that combine CNNs with procedu-
ral and data-driven content generation algorithms.

Procedural approaches: In a comprehensive survey
on procedural and inverse procedural modeling, Sme-
lik et al. [29] discuss different approaches and appli-
cations. In general, procedural methods rely on the
use of manually defined or automatically determined
rule sets for content generation. Such approaches have
e.g. been followed by Parish and Müller [25], where
Open L-Systems are used to procedurally grow road
networks from an initial seed point. Galin et al. [10]
generate procedural roads between two end points by
computing the anisotropic shortest path incorporating
the underlying terrain and user defined environmen-
tal cost functions. In Galin et al. [9], the focus is
on generating road networks for inter-city connection.
Benes et al. [2] grow street networks from multiple
seed points. Each seed points represents an individual
city, that is expanded by guiding the growth process
with a virtual traffic simulation. The controllability
of procedural road networks was improved by Chen
et al. [4] using tensor and direction fields to guide
the road network generator. Emilien et al. [6] focus
on procedural generation of villages on arbitrary ter-
rain. Their road network generator is custom tailored
to courses of streets found in small villages.

Example-based approaches: In contrast to procedu-
ral approaches, example-based methods do not require
an underlying rule set to generate content. Instead,
they rely on analyzing the data such as the road net-
work or a city layout in a pre-processing step to extract
templates and/or statistical information. In Aliaga
et al. [1], intersections are enriched with attributes
such as intersection degree, street level, etc. A novel
network is generated by employing a random walk
using the attributes stored at junctions as guidance.
Yang et al. [31] focus on the synthesis of suburban
areas and districts. Starting from an empty domain
they apply a recursive splitting technique based on ei-
ther template matching followed by deformation, or
streamline-based splitting using a crossfield. Emilien
et al. [7] learn distributions from small patches of gen-
erated or manually modeled 3D content. The learned
distributions are applied in a brushed-based modeling
metaphor in order to steer the underlying procedural
content generators that produce roads, foliage, trees
or buildings. Nishida et al. [22] extract road patches
from real road networks. From an initial seed point
a road network is grown by attaching road patches to
connector streets taking the terrain into account. In
cases where no example-based growth is possible, sta-
tistical growing similar to [1] is employed.

Learning-based approaches: Emerging deep
learning techniques have been used for procedural
and data-driven content generation. In Yumer et
al. [32], a low-dimensional generative model from
high-dimensional procedural models incorporating
shape features is learned. Novel models can then
be generated by interpolating between points in a
low-dimensional latent space enabling faster and
more intuitive modeling of shape variations. Huang
et al. [15] present a sketch-modeling system using
CNNs. CNNs are trained on synthetic line drawings
produced by procedural models with varying parame-
ters. Novel shapes can then be generated by regressing
the parameters according to a user provided sketch
depicting the desired output. A similar approach was
proposed by Nishida et al. [23] focusing on interactive
modeling of buildings. The authors train CNNs for
classifying the type of a rule snippet as well as for
regressing their parameter sets from synthetic line
renderings of the rule snippets. The user iteratively
sketches building mass, roof, etc., and the CNNs are
used to classify the resulting shapes and to infer their
parameters. Ritchie et al. [27] focus on controlling
procedural algorithms using neural networks. In par-
ticular, the neural network manipulates the next steps
of the algorithm based on the content generated so far.
Apart from the approaches that require the existence
of procedural models/algorithms, pure image-based
algorithms have been investigated for controlled
content generation. Isola et al. [16] investigate GANs

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 134 ISBN 978-80-86943-49-7

OpenStreetMap

Street Graph
Preparation

Road Network
Raster

GAN Training

Noise Image Road Network
Raster

Post-Processing

Vector Road
Network

PatchesOffline Stage

Online Stage

Generator
Network

Weights:
Generator

Weights:
Generator

Figure 1: Our system is composed of two components. In an offline step, a road network patch taken from a real-
world city is rastered into an image. The rastered road network is used to train a GAN and the generator weights
are stored. In an online step, the trained model, i.e. the generator weights, are used to synthesize road network
variations from images containing uniformly sampled noise. A clean graph is extracted from the produced image
ready to use in GIS applications.

for transfer learning, i.e. they learn a mapping from
one object representation into another such as urban
map to aerial image or sketch to image. The authors
show that GANs can be used to learn such a mapping
without custom feature engineering. More recently, a
texture synthesis approach utilizing GANs has been
proposed by Jetchev et al. [17]. With their framework,
they are able to synthesize textures of arbitrary size
from spatial noise. This technique called Spatial GAN
(SGAN), a specialized GAN technique, serves as basis
for our approach.

3 REVIEW OF GENERATIVE AD-
VERSARIAL NETWORKS

Before outlining our approach in Section 4, we pro-
vide a brief overview about generative adversarial net-
works (GANs) that we apply to generate road net-
works. GANs are a technique to learn a generative
model based on concepts from game theory. The key
ingredients of GANs are given by two players, a gen-
erator G and a discriminator D. The generator is a
function Gθ G(z) : Rd → Rw×h×c that takes as input a
vector z∈Rd sampled from a d-dimensional prior dis-
tribution pz(z) such as a uniform distribution and uses
the parameters θ (G) to transform it into a sample im-
age x′. The fabricated sample x′ = G(z) is an image
x′ ∈ Rh×w×c, where w and h denote its width and its
height and c denotes its channels. In contrast, the dis-
criminator D is a function Dθ D(x) : Rw×h×c→ R that
takes as input either an image patch x from the train-
ing set or a fabricated image x′, and uses its parameters
θ (D) to produce a scalar that represents the probabil-
ity that the investigated sample is a example x from
training set, or a fabrication x′ produced by G. The
discriminator cost is accordingly given by

J(D)(θ (D),θ (G)) =−1
2
Ex∼pdata(x) log(D(x))

−1
2
Ez∼pz(z) log(1−D(x′))

which is the standard cross-entropy for a binary classi-
fication problem. The discriminator tries to minimize
J(D)(θ (D),θ (G)) while it controls only θ (D), however,
it also depends on the parameters θ (G) of the gener-
ator. The term, Ex∼pdata(x)[log(D(x)], measures the
skill of D to distinguish fabricated samples x′ from
real ones x that are produced by the data-generating
distribution pdata. In contrast, Ez∼pz(z)[log(1−D(x′)]
measures the skill of G to fabricate examples, that
are misclassified by D and thus considered as real ex-
amples. In the previous terms, E represents the ex-
pectation value of the log-probability, which in prac-
tice boils down to the arithmetic mean of the log-
probabilities computed using the samples of the cur-
rent training iteration. The cost function of G is given
by J(G)(θ (D),θ (G)) = −J(D)(θ (D),θ (G)) and its goal
is to maximize D’s error on the fabricated examples
x′. As both cost functions follow different goals and
compete against each other, the underlying problem is
described as a game between the two players [13, 12].
One strategy to solve the described problem is in terms
of a zero-sum game also called minimax game. The
game is accordingly described by the objective

argmin
θ (G)

max
θ (D)
− J(D)(θ (D),θ (G))

where −J(D)(θ (D),θ (G)) represents the discrimina-
tor’s pay-off. The overall goal of such a game is to

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 135 ISBN 978-80-86943-49-7

minimize the possible loss for a worst case maximum
loss. In particular, this is realized by performing a
minimization in an outer loop, while performing a
maximization in an inner loop. We refer the reader
to a recent tutorial by Goodfellow [12] for additional
details.

In practice, G and D are represented as neural net-
works and training them is similar to finding the Nash
equilibrium of the described minimax game played
by G and D. A Nash equilibrium in such a context
can be described as a parameter state (θ (D),θ (G)) that
is a local minimum of J(D) and a local minimum of
J(G). In order to keep the problem tractable, G and
D are trained in an alternating fashion instead of us-
ing the nested loops as described above. Further-
more, G’s cost function J(G)(θ (D),θ (G)) is changed to
− 1

2Ez∼pz(z) log(D(x′)). The term in the original cost
function− 1

2Ez∼pz(z) log(1−D(x′)) would lead to van-
ishing gradients during the training, when D success-
fully rejects examples fabricated by G. Instead of pre-
viously minimizing the log-probability that the sam-
ple x′ is classified as fabricated, the new goal of the
generator G is now to maximize the log-probability
that D performs a wrong classification. As noted in
[12], that change enables both G and D to produce
strong gradients during the final training.

For the modified game and its training this particu-
larly means that in one iteration D is trained, while in
the next iteration G is trained. As we search a local
minimum for D and G, the parameters of current com-
ponent are updated in each iteration using stochastic
gradient descent. When G is trained, its parameters
are tuned towards the production of samples x′ that
are indistinguishable from the real training data and
thus to fool the discriminator D. In contrast, when D
is trained its parameters are tuned to improve D’s skill
to discriminate the fabricated samples x′ from the real
samples x. For additional details about the theoretic
background we refer the interested reader to [12, 17].

So far, when the GAN is trained using neural net-
works, no well-founded theory about the determina-
tion of the success of training procedure of a GAN
can be found in literature. Therefore, it is necessary
to visually check generated samples and to capture
the weights θ G of G that fabricate visually pleasing
outputs. Note, there is no need to capture θ D be-
cause after the training D can be omitted and only
the generator G is necessary to produce new samples
[13, 12, 17].

4 ROAD NETWORK SYNTHESIS US-
ING GAN

In this Section, we outline our street network genera-
tion approach by providing an brief description of its
major components.

4.1 Pipeline Overview
In order to successfully apply a GAN model to street
network data in vector representation as provided by
OpenStreetMap (OSM), we developed three compo-
nents to approach this task (see Figure 1). In an of-
fline step, a sample map from OSM is used to create
an image that contains a raster representation of the
street network (see Section 4.2). The produced im-
age is used to extract a set of randomly chosen image
patches of size n× n. These patches contain subparts
of the initial road network and are used to train the
GAN (see Section 4.3). Afterwards, novel road net-
work patches can be generated from a d-dimensional
z with samples drawn from pz(z). z serve as input for
the generator network G that maps them to a grayscale
image x ∈ Rw×h×1 representing a rastered road net-
work. The resulting road network is encoded by pixel
intensities (cf. Section 4.4) and the discrete represen-
tation is transformed into a graph-based one in a post-
processing step.

4.2 Road Network Preparation
We use publicly available community mapping data
from OpenStreetMap (OSM) [24] datasets in which
road networks are represented as piecewise-linear
polylines, that are attached a highway label in order to
distinguish them from other structures like buildings,
rivers, and parks. Among other polylines in an OSM
dataset roads can be identified by the label highway
attached them. Each road is assigned a specific
highway type representing its category. For all our
examples, we extract roads from the OSM dataset
that have one of the following highway-categories:
motorway, primary, secondary, tertiary, resi-
dential, living_street, pedestrian. The raw road
network extracted from OSM is represented as vector
data in geo-coordinates. As well-established CNN
pipelines require images as input, we transform the
road network into a raster representation. First, we
project the geo-coordinates to WGS84, which is a
well-established coordinate projection that transforms
geo-coordinates given in Latitude/Longitude to me-
ters. Next, we scale the road network that each pixel
in the rastered representation represents an area of
3× 3 meters. Finally, we raster the road segments
as lines with a width of 15 pixels using the line
rasterization routine of OpenCV [3] to produce a
binary image, in which white pixels now represent
the presence of roads while black pixels represent the
absence of roads. Please note that we inverted the
colors in the Figures shown in the paper.

4.3 Training Procedure
We train the GAN on images patches with fixed size
of n×n pixels extracted from the image containing the

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 136 ISBN 978-80-86943-49-7

rastered road network. In order to provide a suitable
large training set and to enable the network to capture
the local statistics well, we perform the training on im-
ages patches. A well-established approach for training
GANs is an iterative and alternating training proce-
dure. This means that G and D are trained in an alter-
nating fashion every second iteration. In the step when
G is trained, it takes as input a set Z = {z0, . . . ,zk}. As
described in Jetchev et al. [17], that serves as basis
for our training, each zi is a tensor zi ∈Rm×n×d where
at each spatial location a d-dimensional vector drawn
from pz it used. The zi and is then transformed by G
into a grayscale image x′i = G(zi) of size x′i ∈ Rn×n×1.
When D is trained, a set X = {x0, . . . ,xk} of k image
patches xi ∈Rn×n×1 and the set X ′ = {x′0, . . . ,x′k} gen-
erated by G in the previous step serve as input. The
samples x ∈ X are extracted from random locations
inside the training image. We refer the reader to the
work by Jetchev et al. [17] for additional details about
the training procedure. Please note that we use only
a single image, that provides patches for the training
procedure, but using multiple different images would
be possible and would increase the examples in the
training set.

4.4 Road Network Post-Processing
In order to use the resulting road network in GIS
applications or in a road network analysis task, we
need to transform grayscale image intensities to a road
network graph. For this purpose, we apply a post-
processing to the synthesized images.

Image post-processing: The grayscale images pro-
duced by the generator network contain pixel intensi-
ties in the range [0,255] (see Figure 4). In a first step,
we threshold the gray values at 127 in order to pro-
duce a binary image where pixels set to true represent
the presence and non-set pixels represent the absence
of road. Applying the threshold might produce unde-
sirable isolated pixels and also small cusps along road
regions. In order to get rid of these artifacts, we ap-
ply a morphological erosion operation. However, the
produced result might still contain small holes or road
regions that do not touch within a radius of up to five
pixels. In order to close such small gaps, we apply five
steps of morphological dilation. For all morphological
operations, we use a 3×3 structuring element with the
shape of a cross. The obtained initial road network,
however, contains road regions that are too thick to
extract an initial road graph. Therefore, we thin out
the result to extract a skeleton from the cleaned binary
image using the algorithm from Zhang et al. [33].

Road graph construction: We utilize the pixel-
skeleton from the previous step to construct an initial
graph G = (V ,E) representation of the synthesized
road network, where V are its vertices and E are its

𝑒𝑖 = 2

edges 𝑒𝑖 to
remove:

area: 𝐴 = 0.5
1.0

Figure 2: Block artifacts resulting from graph con-
struction

edges. In order to construct G , we add a node Vi to
V for each of the skeleton pixels. Next, we examine
the 8-neighborhood of each Vi in the image. For each
skeleton pixel Vj inside the 8-neighborhood of Vi, we
add an edge Ei j = (Vi,Vj).

Cityblock cleanup: The graph construction from the
pixel skeleton produces regions within the road net-
work that have a very small area of 0.5 square pix-
els (see Figure 2), which are removed in a first step.
The regions within a road network graph are typically
called city blocks. Strictly speaking, a city block is
a region within the graph G , that is enclosed by a set
of road segments and might contain dead-end street
segments. In order to identify these small regions,
we first compute all the city blocks of the graph. As
the graph is a directed graph and embedded in R2, the
city blocks can be computed by determining the mini-
mal cycles of the graph by computing loops of edges.
Next, we filter out blocks with an area of 0.5 pixels.
These artifact blocks can be removed by identifying
and removing their longest edge, which has a length
of
√

2.

Road courses smoothing: Another artifact produced
by constructing G from the image raster are jagged
edges. In order to smooth these in the final graph, we
extract a set of street chains S = {Si} from the graph.
Each Si = {V0, . . . ,Vn} consists of n nodes, while the
degrees of V0 and Vn are constrained by deg(V0) 6= 2
and deg(Vn) 6= 2. From each of the Si, a polyline
Pi = {p0, . . . , pn}with n positions is built. A smoothed
version of the positions can be obtained by applying
5 steps of local averaging p̂i =

1
4 pi−1 +

1
2 pi +

1
4 pi+1

to the pi’s with i ∈ [1,n− 1], and replacing the orig-
inal pi’s with their smoothed version p̂i. Finally, we
additionally straighten the road courses, by removing
superfluous nodes using the Douglas Peucker simpli-
fication [5]. We allow to remove nodes that deviate up
to 3 meters from a straight line. The last step removes
short dead-end street chains with an total length of less
than 25 meters.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 137 ISBN 978-80-86943-49-7

5 CASE STUDY: ROAD NETWORK
TYPES

In order to showcase the versatility of our road net-
work synthesis approach, we evaluate our approach on
a set of challenging test cases. We composed a collec-
tion of real-world as well as synthetic road network
examples (see Figure 3 a)-d)). The real-world exam-
ples were taken from OSM, while the synthetic ones
were taken from [21]. For all the examples shown in
here, we used a patch size of 321×321 (cf. Figure 9)
pixel during the training procedure, because that size
captures the local structures found in the our test road
networks. Furthermore, we used only a single road
network image from which patches were extracted.
We synthesized two examples for each road network
shown in Figure 3 a)-d). In our evaluation, we investi-
gate the visual appearance of the generated results and
analyse the similarity in terms of road networks mea-
sures such as area, compactness and aspect ratio of the
city blocks by comparing the resulting distributions.

5.1 Visual Evaluation
Irregular: Synthetic As a first test case, we con-
sidered a synthetic road network (see Figure 3a).
The major characteristics of this road network are
blocks of different sizes with and without dead-ends,
and similar sized blocks, that form small groups.
Nearly all blocks have a rectangular shape except
for a few exceptions. Figure 4 (a) and (b) show road
networks generated by GAN model after passing
our post-processing pipeline. It can be noticed, that
the generated results contain blocks similar in shape
and size when compared to the original network.
Notice, that the results even contain the small groups
of nearly square shaped blocks that are present in the
original network. Larger road courses are present in
the examples, although they have a curvature different
to that in the original network.

Irregular: San Marco Next, we evaluated a street
network patch from a village in Italy (see Figure 3b).
A major characteristic of that network is its large
amount of small city blocks in comparison to only a
few larger ones. Generated samples of this network
type are depicted in Figure 4c and 4d. Both samples
contain a significant number of small blocks when
compared to the number of medium sized and large
city blocks. It is also noticeable that smaller blocks
are located next to each other. Furthermore, the result
contains large scale structure such as connected road
courses that separate groups of smaller blocks. An-
other produced sample visualized using CityEngine
can be seen in Figure 12.

Irregular: Berlin In contrast to the previous example,
the next network shown in Figure 3c is composed of a

significant amount of larger, mainly square or rectan-
gular shaped blocks. Only a few blocks are irregularly
shaped and contain dead-ends. The generated samples
shown in Figure 4e and 4f contain a significant amount
of nearly square shaped blocks and rectangular shaped
blocks. It can be recognized that the generated net-
works also contain irregularly shaped blocks and even
L-shaped blocks not being present in the examples.

Suburban: Synthetic Next we show results generated
from a synthetic network of a suburban region with
structures mainly found in suburban regions of the US
(see Figure 3d). A major property of such network
types is the presence of curved road courses. Our pro-
duced results shown in Figure 4g and 4h contain these
typical curved roads shapes.

5.2 Statistical Evaluation
Apart from the visual comparison of the results, we
performed an evaluation of graph measures computed
on the synthesized road networks and the original road
networks. These considered measures include the
cityblock area, the compactness, i.e. the ratio between
block area and its minimal bounding box, and the city
block aspect ratio, i.e. the ratio between the shorter
and the longer side of the minimal bounding box.

Irregular: Synthetic Figure 5 compares the graph
measures between the synthetic irregular network
shown in Figure 3a with the ones obtained from our
synthesized results. While the distributions of the
block area and the compactness have a similar shape,
the aspect ratio distribution varies as the generated
result contains much more variation of rectangular
shaped blocks than the original road network.

Irregular: San Marco In this result (see Figure 3b),
the distributions of block area, aspect ratio and com-
pactness are similar (see Figure 6). The resulting net-
work mostly consists of small city blocks as illus-
trated by the block area distribution. Both the origi-
nal and the generated road network contain a signif-
icant amount of nearly rectangular blocks (see com-
pactness). As the aspect ratios within the generated
network are also similar, thus, learned model has cap-
tured the properties of the original network.

Irregular: Berlin In Figure 7, we illustrate the dis-
tributions for the Berlin example shown in Figure 3c.
While the block area and the aspect ratio of the blocks
found in the generated example tend to be similar,
the compactness varies more than in the previous ex-
amples. As the streets in the produced network are
not perfectly straight anymore, the compactness of the
blocks deviates from being nearly 1.0.

Suburban: Synthetic For suburban networks such as
the one shown in Figure 3d, the distributions of block
area and aspect ratio differ, while especially the as-
pect ratios within the generated network have a few

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 138 ISBN 978-80-86943-49-7

(a) (b) (c) (d) (e)

Figure 3: Overview of the different road network styles used in our case study: (a) Synthetic irregular, (b) Cellino
San Marco irregular, (c) Berlin irregular, (d) Synthetic suburban, (e) Portland with highway ramps

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Different samples fabricated by the generator learned from the synthetic irregular example shown in
Figure 3. Synthetic irregular (a) and (b), Cellino San Marco (c) and (d), Berlin irregular (e) and (f), Synthetic
suburban (g) and (h). The results are discussed in detail in Section 5.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500
0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00
0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

block area

aspect ratio

compactness

observed
synthesized

observed
synthesized

raster output

road graph

observed
synthesized

m2

Figure 5: Statistical evaluation of Synthetic irregular

block area

aspect ratio

compactness

raster output

road graph

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00
0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

observed
synthesized

observed
synthesized

observed
synthesized

m2

Figure 6: Statistical evaluation of Cellino San Marco

block area

aspect ratio

compactness

raster output

road graph

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

observed
synthesized

observed
synthesized

observed
synthesized

m2

Figure 7: Statistical evaluation of Berlin irregular

block area

aspect ratio

compactness

raster output

road graph

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

observed
synthesized

observed
synthesized

observed
synthesized

m2

Figure 8: Statistical evaluation of synthetic suburban

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 139 ISBN 978-80-86943-49-7

spikes (cf. Figure 8). However, at a larger scale the
overall shape of the distribution is similar. As this
road network type contains large-scale structures such
as curved roads that pass through the whole network
the chosen context size cannot capture these, thus,
the generated network will suffer from these missing
global properties. This leads to a structurally differ-
ent generated road network which is reflected by the
distributions of the different graph measures.

original image

synthesized image

Figure 9: Illustration of the context size using during
the training stage. Left: Original image with overlaid
extent of the training image. Right: Generated sample
with an overlay of the training image size.

5.3 Limitations

Large-scale structures and ramps. We noticed that
our approach cannot successfully handle road network
patches that contain highway ramps and networks that
contain street lanes that are located very close to each
other, as illustrated in the road network example taken
from Portland (see Figure 3e). When the road net-
work is rastered nearby lanes will be merged with and
form even thicker lanes. If highway ramps are present,
additional pixel blobs are introduced as illustrated in
the synthesized example shown in Figure 10. It can
be noticed that the grid-like road pattern is faithfully
reproduced. However, due to the thick lanes and the
limited context size (see Figure 9) the highway struc-
tures present in the training data cannot be recovered
successfully. Instead, thick road structures occur on
the left border (cf. green arrows) and blob shaped ar-
tifacts are scattered over the synthesized example (cf.
region surrounded by green ellipses). When the post-
processing is applied, these artifacts will be alleviated,
however, irregularly shaped blocks will be present in
the final road network.

Deadend roads. All the synthesized examples con-
tain much more dead-ends when compared with the
number of dead-ends present in their corresponding
original road network. This might be due to the patch-
based training procedure. Each patch that is used for
training typically contains virtual dead-end street seg-
ments that abruptly end at the patch boundary.

Figure 10: In case of nearby located highway lanes
and highway ramps, the GAN fails to capture these
properties. This leads to blob-like artifacts in the gen-
erated samples.

5.4 Street Network Generation with Tex-
ture Synthesis Techniques

We complete our case study with a brief evaluation
of texture synthesis algorithms for street network gen-
eration. In particular, we synthesize road networks
with patch-based texture synthesis algorithms such as
method of Portilla and Simoncelli [26] and Kwatra et
al. [19]. Furthermore, we evaluate recent CNN based
texture synthesis algorithms, specifically the method
of Gatys et al. [11] and the Generative ConvNet tech-
nique proposed by Xie et al. [30] for road network
generation. Figure 11a illustrates results from Por-
tilla and Simoncelli on the left-hand side and results
from the method of Kwatra on the right-hand side. For
both algorithms a variation of the irregular road net-
work shown in Figure 3a was synthesized. As it can
be clearly noticed, these methods are not able to pro-
duce large scale structures such as city blocks. Fur-
thermore, both algorithms have problems in consis-
tently producing connected road courses. CNN-based
algorithms are able to produce large scale structure as
illustrated in Figure 11b. The road network produced
by Gatys et al. [11], however, lacks visual similarity to
the original network. In contrast, the approach by Xie
et al. [30] is able to produce a visual similar road net-
work and captures that properties found in the original
road network.

6 IMPLEMENTATION DETAILS
Our algorithms are implemented in Python and we
used the GAN implementation of [17] as a basis for
learning the different road network models. However,
we changed the original implementation in order to
consistently support single channel images. The GAN
model for the different road networks is trained on a
single NVidia TitanX (Pascal). Each epoch takes 100
iterations with a batch size of 64 and takes about 90
seconds to compute. We trained all the models for
at least 100 epochs and decided from a visual exam-
ination of samples taken from various epochs which
model to choose. The overall training is done in
an offline step that takes up to 3 hours. The single

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 140 ISBN 978-80-86943-49-7

 Kwatra et alPortilla and Simoncelli

(a) Patch-based texture synthesis methods

Gatys et al. Xie et al.

(b) CNN based texture synthesis methods

Figure 11: Evaluation of texture synthesis algorithms using the irregular road network illustrated in Figure 3a. In
11a the result of patch-based synthesis algorithms i.e. the approach of Portilla and Simoncelli and the method of
Kwatra et al. are illustrated. These methods suffer from producing larger scale structures such as city blocks and
connected road structures. In contrast 11b illustrates result from modern CNN based methods, i.e. the algorithm
Gatys et al. and the method Xie et al. are able to reproduce connected structure and even city blocks, however,
they are only able to produce images of fixed that need additional resizing.

synthesized

geometry generated using CityEngine

Figure 12: The resulting road network is directly us-
able in urban planning tools such as CityEngine.

steps of the online synthesis steps takes up to a few
seconds. In more detail, the generation of a sam-
ple of size 769× 769 pixels produced from a tensor
z ∈ R25×25×100 sampled from pz(z), takes on average
0.08 seconds on a single NVidia TitanX (Pascal). The
post-processing steps are performed on a Intel Core-
i7 5820K, with only a single core in use. Each step
takes: for graph construction: 1.5s, for block compu-
tation: 1.6s, for simplification: 2.0s and for deadend
removal: 0.02s in average.

7 CONCLUSION

We have investigated the suitability of GANs for road
network synthesis. In order to make it possible to
train GAN on road network data we developed a pre-
processing step. A post-processing step enabled us to
extract a graph-based representation. Our results have
demonstrated that GANs are able to produce novel
road network patches, that are structurally sound and
visually similar, when compared to the input network.
Furthermore, we substantiated our results by a statisti-
cal evaluation of different road network measures such

as city block area, city block compactness, and city
block aspect ratio.

During the evaluation of our pipeline, we identified
several limitations. First, structures like roundabouts,
highway ramps and also roads that are very close to
each other are not sufficiently captured during the
training. This means that roundabouts or highway
ramps cannot be successfully synthesized with our ap-
proach. Second, currently we consider all highway
categories as part of the same street level. We did
not succeed in learning models for different street lev-
els, thus, we decided to perform the experiments us-
ing only a single street level (cf. Section 4.2). Typ-
ically, a road network naturally splits into multiple
street levels such as major and minor roads. Thus,
it is necessary to perform an in-depth evaluation of
multiple street levels in future work. Furthermore,
large-scale road courses are typically present in ev-
ery road network. Although, these structures are rudi-
mentary present in the synthesized examples shown
in Section 5, our post-processing step lacks an ad-
ditional step to consistently enforce such large-scale
structures. One possibility to address this issue, would
be fitting curves to road individual courses and enforc-
ing global constraints such as parallelism. Another
limitation is that we have only limited control over the
output of the generator. In real road networks the road
courses are specifically planned to fulfil specific re-
quirements regarding landuse or terrain. Furthermore,
the urban planner might also incorporate existing ob-
jects into its road design decisions. As our approach
is a very first step towards using GANs for road net-
work generation, we did not incorporate such external
constraints. However, such constrains are necessary to
steer the output of the generator G and leave this for
future work as it would exceed the scope of the paper.

There are several interesting directions for future
work. First, we would like to add attribute layers
e.g. density maps, landuse maps, terrain maps etc.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 141 ISBN 978-80-86943-49-7

in order to condition the learning process. This
would make it possible to improve controllability
of the generator network. Second, we would like to
investigate further steps in order to train a GAN model
that is able to synthesize multiple street levels. The
post-processing needs to be extended to reproduce
large-scale structures so that a fair comparison to
existing example-based or procedural algorithms for
road network generation can be given. Third, we
would like to extend our approach and investigate the
suitability of GANs to generate building footprints
given a predefined city block shape. Finally, we
would like to extend the road network generation in
terms of a growing based road generation system.
Apart from using GANs for urban structures we might
also investigate their use for feature map generation
for texture synthesis algorithms such as [28, 18].

8 REFERENCES
[1] Daniel G. Aliaga, Carlos A. Vanegas, and Bedřich Beneš. In-

teractive example-based urban layout synthesis. In ACM TOG
SIGGRAPH Asia, pages 160:1–160:10, 2008.

[2] Jan Beneš, Alexander Wilkie, and Jaroslav Křivánek. Proce-
dural modelling of urban road networks. Computer Graphics
Forum, 2014.

[3] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000.

[4] Guoning Chen, Gregory Esch, Peter Wonka, Pascal Müller,
and Eugene Zhang. Interactive procedural street modeling. In
ACM transactions on graphics (TOG), volume 27, page 103.
ACM, 2008.

[5] David H Douglas and Thomas K Peucker. Algorithms for the
reduction of the number of points required to represent a dig-
itized line or its caricature. Cartographica: The International
Journal for Geographic Information and Geovisualization,
10(2):112–122, 1973.

[6] Arnaud Emilien, Adrien Bernhardt, Adrien Peytavie, Marie-
Paule Cani, and Eric Galin. Procedural generation of villages
on arbitrary terrains. The Visual Computer, 28(6-8):809–818,
2012.

[7] Arnaud Emilien, Ulysse Vimont, Marie-Paule Cani, Pierre
Poulin, and Bedrich Benes. Worldbrush: Interactive example-
based synthesis of procedural virtual worlds. ACM Transac-
tions on Graphics (TOG), 34(4):106, 2015.

[8] Esri Inc. Cityengine, 2017.

[9] Eric Galin, Adrien Peytavie, Eric Guerin, and Bedrich Benes.
Authoring Hierarchical Road Networks. Computer Graphics
Forum, 30(7), 2011.

[10] Eric Galin, Adrien Peytavie, Nicolas Marechal, and Eric
Guerin. Procedural Generation of Roads. Computer Graphics
Forum (Proc. of Eurographics), 29(2):429–438, 2010.

[11] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Tex-
ture synthesis using convolutional neural networks. In NIPS,
pages 262–270, 2015.

[12] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial
networks. arXiv preprint arXiv:1701.00160, 2016.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. pages 2672–
2680. Curran Associates, Inc., 2014.

[15] Haibin Huang, Evangelos Kalogerakis, ME Yumer, and
Radomir Mech. Shape synthesis from sketches via proce-
dural models and convolutional networks. IEEE Transactions
on Visualization and Computer Graphics, 2016.

[16] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial net-
works. arxiv, 2016.

[17] Nikolay Jetchev and Roland Bergmann Urs, Vollgraf. Texture
synthesis with spatial generative adversarial networks. pages
2672–2680. Curran Associates, Inc., 2016.

[18] Alexandre Kaspar, Boris Neubert, Dani Lischinski, Mark
Pauly, and Johannes Kopf. Self tuning texture optimization.
In Computer Graphics Forum, volume 34, pages 349–359.
Wiley Online Library, 2015.

[19] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwa-
tra. Texture optimization for example-based synthesis. ACM
Transactions on Graphics (ToG), 24(3):795–802, 2005.

[20] Chuan Li and Michael Wand. Precomputed real-time texture
synthesis with markovian generative adversarial networks. In
European Conference on Computer Vision, pages 702–716.
Springer, 2016.

[21] TANVI MISRA. X-ray your city’s street network, 2017.

[22] G Nishida, I Garcia-Dorado, and DG Aliaga. Example-driven
procedural urban roads. In Computer Graphics Forum. Wiley
Online Library, 2015.

[23] Gen Nishida, Ignacio Garcia-Dorado, Daniel G Aliaga,
Bedrich Benes, and Adrien Bousseau. Interactive sketching
of urban procedural models. ACM Transactions on Graphics
(TOG), 35(4):130, 2016.

[24] Foundation OpenStreetMap. Openstreetmap, 2017.

[25] Yoav I. H. Parish and Pascal Müller. Procedural modeling of
cities. ACM TOG (Proceedings of SIGGRAPH), 19, 2001.

[26] Javier Portilla and Eero P Simoncelli. A parametric texture
model based on joint statistics of complex wavelet coeffi-
cients. International journal of computer vision, 40(1):49–70,
2000.

[27] Daniel Ritchie, Anna Thomas, Pat Hanrahan, and Noah D
Goodman. Neurally-guided procedural models: learning to
guide procedural models with deep neural networks. arXiv
preprint arXiv: 1603.06143, 2016.

[28] Roland Ruiters, Ruwen Schnabel, and Reinhard Klein. Patch-
based texture interpolation. Computer Graphics Forum (Proc.
of EGSR), 29(4):1421–1429, June 2010.

[29] Ruben M. Smelik, Tim Tuenel, Rafael Bidarra, and Bedrich
Benes. A survey on procedural modelling of virtual worlds.
Computer Graphics Forum, pages n/a–n/a, 2014.

[30] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Ying Nian
Wu. A theory of generative convnet. arXiv preprint
arXiv:1602.03264, 2016.

[31] Yong-Liang Yang, Jun Wang, Etienne Vouga, and Peter
Wonka. Urban pattern: Layout design by hierarchical do-
main splitting. ACM TOG (Proceedings of SIGGRAPH Asia),
32, 2013.

[32] M. E. Yumer, P. Asente, Mech R., and L. B. Kara. Procedural
modeling using autoencoder networks. In Proceedings of the
ACM Symposium on User Interface Software and Technology
(UIST), pages –. ACM, 2015.

[33] TY Zhang and Ching Y. Suen. A fast parallel algorithm
for thinning digital patterns. Communications of the ACM,
27(3):236–239, 1984.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 142 ISBN 978-80-86943-49-7

Pushpins for Edit Propagation

Mylo, Marlon
Fraunhofer FKIE
KOM Department

Fraunhoferstraße 20
53343, Wachtberg,

Germany
and

University of Bonn
Institute of Computer

Science II
Regina-Pacis-Weg 3

53113, Bonn, Germany
mylo@cs.uni-bonn.de

Klein, Reinhard
University of Bonn

Institute of Computer
Science II

Regina-Pacis-Weg 3
53113, Bonn, Germany

rk@cs.uni-bonn.de

ABSTRACT
In this paper we present an approach for stroke-input based foreground estimation of measured materials with a
near regular structure. To enable extraction of high-quality editing masks even from difficult materials, we combine
a state of the art lattice-detection algorithm with a novel frequency convolution scheme, which we call pushpins.
Despite being highly specialized, we consider this use-case as important for material design. A comparison with
other state of the art editing and material recognition approaches will give proof of the robustness and ability of
our algorithm.

Keywords
SVBRDF, Near Regular Texture, edit propagation.

1 INTRODUCTION
Measured materials are used to render 3D-scenes into
images which evoke the impression of photorealism.
While being able to edit those digital material represen-
tations is highly desirable for many applications, e.g.
in film and advertising, manipulations are still a chal-
lenging tasks. Solving this problem may spare acquisi-
tion costs and admits to construct imaginary materials
which appear as if they were real.

Editing measured materials is indivisibly tied to the
process of isolating the geometrical or the radiometric
regions which shall be manipulated.

While many brilliant algorithms have been published to
master this classification problem, the productive use
of those algorithms has to meet high demands. Small
misclassifications lead to ugly artefacts in the resulting
renderings and have to be corrected in tedious hand-
craft. The increasing quality in image segmentation
and image matting is mostly based on a subtle exploita-
tion of colour spaces and spatial continuity constraints.
While those approaches do also apply for segmentation
of materials, the results are often not good enough be-
cause different material components can very often not
be distinguished by colour. But most digital material
representations provide more than one diffuse colour
channel. And many materials bear a near regular struc-

ture (NRS). In this paper we want to make use of those
two facts to generate editing masks for measured mate-
rials in a quality which makes handcrafted optical de-
bugging steps unnecessary. Our approach consists of
a separated lattice detection step and and a classifica-
tion by a support vector machine (SVM). The SVM-
classification allows to use complex, high-dimensional
descriptors whereas the lattice detection enables to con-
struct only one model tile-mask and to propagate this
mask via the detected lattice.

The technical contribution of this paper is 2-fold:

1. We provide a workchain to robustly solve the fore-
ground estimation problem for measured materials
with a NRS.

2. We introduce a convolutional technique to tag tex-
els which have a similar environment like a given
seed texel of the same material patch. This similarity
recognition step alone is not reliable enough for sta-
ble lattice detection but it delivers a global similarity
map which may be used to guide the indeterministic
lattice detection step.

The structure of the paper is as follows: after a short
section on the relevant related work (section 2), we will
give an overview (section 3), which provides notations,

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 143 ISBN 978-80-86943-49-7

the problem statement and a walk-through. The algo-
rithm is presented in section 4 and followed by the eval-
uation in section 5. The conclusion (section 6) closes
with considerations about the possibilities to parallelize
our system.

2 RELATED WORK
Editing measured opaque materials is an intensively
studied field and there have been by far too many pub-
lications to give an exhaustive catalogue in this con-
text. According to [7], interpolated reflectance data
may directly be used for rendering materials. But those
representations are expensive to store, lack explanatory
power and are difficult to edit so there have been many
approaches to fit measured reflectance data to analyti-
cal reflectance models, like [8,16,19,26]. Editing those
analytical representations is still not easy. Some ap-
proaches operate directly on the radiometric data like
the retargeting approach of An et al. [1] or the manifold
based on aging simulation by Wang et al. [25]. Others
try to estimate a propagation map, first, to isolate the
texels to edit. Pellacini and Lawrence suggested, to use
an k-nearest neighbour graph to construct a sparse adja-
cency matrix [21]. An and Pellacini made another step
in this direction with AppProp [2], which has been ex-
tended to tabulated reflectance data by Xu et al. [27]. A
recent state of the art report by Schmidt et al. [23] gives
an extensive overview.

3 OVERVIEW
The overview provides the notations, the problem state-
ment and a short walk through.

3.1 Notations and definitions
In this section we want to clarify our use of language.

Material By material we mean the digital representa-
tion of an existing or imaginary material-surface to-
gether with a description of the light exchange in
every point of the surface.

BRDF A BRDF maps an incoming and an outgo-
ing light direction onto a wavelength-dependent
reflectance probability. Being reflectance distribu-
tions, BRDFs are limited to the upper directional
hemisphere. In this paper we concentrate on
analytical, measured BRDFs, meaning, that an

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

analytical reflectance model has been optimized
to fit a given set of reflectance measurements.
We tested our algorithms also on tabulated re-
flectance representations. But to describe those
reflectance tables in order to make them applicable
for usage with a classifier it is necessary to bring
them into a comparable format like for example
Rusinkiewicz-parametrization [22] which makes a
resampling-step necessary and to collect at least
some elementary statistics. Investigations of this
kind are beyond the scope of this paper.

SVBRDF A spatially varying BRDF (SVBRDF) is a
material where the light exchange is described by a
BRDF.

Ashikhmin Shirley reflectance model The measured
reflectance distributions are modelled in the way
suggested by Peter Ashikhmin and Michael Shirley
in 2000 [3]. This is a Phong-like model which addi-
tionally controls the eccentricity of the specular lobe
and is given by:

ρ(ωin,ωout)

=

√
(ex +1)(ey +1)

8π

〈n,h〉ex cos2 φ+ey sin2 φ

〈ωin,h〉max(〈ωin,h〉,〈ωout ,h〉)
·(Rs +(1−Rs)(1−〈ωin,h〉)5)

+Rd(1−Rs)
28

23π

·

(
1−
(

1− 〈ωin,n〉
2

)5
)(

1−
(

1− 〈ωout ,n〉
2

)5
)

(1)

for the incoming and outgoing directions ωin and
ωout. The vector n is the surface normal, h =
(ωin +ωout)/||ωin +ωout|| and φ is the azimuth of
h.

This model has four reflectance parameters:
the wavelength dependent diffuse and specular
reflectance shares Rd and Rs and the surface rough-
ness along the x-axis ex and the surface roughness
along the y-axis ey. In the following, we will refer
to Rd and Rs as the diffuse colour and the specular
colour. We will assume that those colours are RGB
colours and the term lightness will refer to the HSL
description of the RGB-space. We assume that the
parameters are stored in rectangular maps.

Being based on the Phong model, the Ashikhmin-
Shirley model is neither normalized nor is the dis-
tribution function for the lobe physically founded.
An up-to-date comparison between anisotropic ana-
lytical BRDF-models and a suggestion for a model
without the mentioned flaws has been published by
Murat et al. [14].

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 144 ISBN 978-80-86943-49-7

3.2 Problem statement

Given an SVBRDF, where at least some of the param-
eter channels bear a roughly periodic pattern in the fol-
lowing sense: there exists a periodic pattern which may
be warped into those channel maps alongside of a small
continuous flow field. Here we mean by periodic pat-
tern an image which may be generated from a model
tile and a concatenation of translations and rotations ac-
cording to an appropriate wallpaper group. A specifica-
tion of the term small is difficult and depends not only
on the settings of the algorithm but also on the texturiz-
ing of the SVBRDF, itself.

Further we assume, that a user has marked a foreground
component F of the SVBRDF and a background com-
ponent B by the use of a stroke input SF for the fore-
ground and a stroke input SB for the background stroke.
Than we want to propagate this stroke input in a way
that the periodic pattern is respected and a texel with
the index i and the average reflectance distribution ρi
obtains a value αi which decomposes ρi into a con-
vex combination of a foreground BRDF φ and a back-
ground BRDF ψ

ρi = αiφi +(1−αi)ψi

For the classical matting problem, the parameter α is
described as opacity or transparency. For our appli-
cation, this interpretation is not good, as transparency
leads to complicated reflectance properties. α should
be merely seen as area share of the foreground re-
flectance distribution. We will define the foreground
F = {ti|αi = 1}, the background B = {ti|αi = 0} and
the boundary ∂ = {ti|0 < αi < 1}.

3.3 Walk through

In figure 1 you can see an overview of our new algo-
rithm. As input we take a SVBRDF together with a
stroke input. Then we apply in parallel a segmentation
via a support vector machine (paragraph 4.1.2) on the
descriptors described in paragraph 4.1.1 and estimate a
lattice on the diffuse colour (paragraph 4.2). Based on
the detected lattice we extract a model tile (paragraph
4.3.1), calculate an optical flow between this model tile
(paragraph 4.3.2) and all other tiles and warp the tiled
SVM-classification results into the model tile. This set
of warped masks is used to compose an average tile-
mask which is then warped into the original tile posi-
tions (paragraph 4.3.3).

4 THE ALGORITHM IN DETAIL

In this section we want to describe the algorithm in de-
tail.

∗ 𝑋
Correlate Pushpin

∗ 𝑋=

Calculate Pushpin

Mean Shift Belief

Propagation

𝑃 ∗ 𝑋

Cut Out Tiles and extract model tile

Get Descriptors

∗

Input:

SVBRDF

User stroke

Classify - SVM

Sec 4.2.2

Calculate optical flow and compose tile mask

Edit

Output:

edited

SVBRDF

Sec 4.2.2

Sec 4.2.1

Sec 4.1.2

Sec 4.1.1

Sec 4.

Sec 4.3.1

Sec 4.3.2

Sec 4.3.3.

Sec 4.4.

Figure 1: Overview: the arrows contain the processing
steps and the boxes show the resulting data. In the top
of the arrows we give the numbers of the paragraphs
where the processing step is described in detail.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 145 ISBN 978-80-86943-49-7

Figure 2: The mask resulting from the SVM classifica-
tion step.

4.1 Classification
Based on the stroke input, we classify in this step all
texels of the material probe, without reference to the
NRS, into foreground and background texels. We tried
several different descriptors and several different clas-
sifiers:

4.1.1 Descriptors
Additionally to the 8 reflectance parameters and the
2 parameters of the surface normal provided by the
Ashikhmin-Shirley model (equation 1), we add the fil-
ter responses of Gabor filters. We use 8 different orien-
tations and a wavelength of 3 texels. Gabor filters are
applied to the volume-channel of the diffuse color. This
strengthens the influence of line features on the classi-
fication result. We compare every texel on a patch with
size 5x5 texel. So the dimension of our descriptor is
altogether (8 + 2 + 8) x 5 x 5 = 450.

4.1.2 Classifier
We tried different state of the art classifiers: Support
Vector Machines [6], Deep Belief Networks [10] and
Convolutional Neural Networks [15]. The latter have
been implemented in Theano for Python, for the SVM
we used the implementation by Chang [5].

Though we made good experiences with neural net-
works in the past, they failed in the current scenario.
According to a rule of thumb given in [18], the number
of samples should be equal or more than the number of
weights of the neural network. As stated in paragraph
4.1.1, the descriptor of a texel has the dimension of
450 which makes, dependent on the concrete topology,
about 50,000 weights in a three layer neural network,
whereas a stroke input provides between 100 and 500
samples. So the networks have simply not enough data
for training. SVMs, in contrast, can be trained with a
small amount of data and are easy to apply and quickly
trained.

The trick of the SVM is that it estimates a decision
boundary in an infinite dimensional space which makes
it possible to have non-linear boundaries between clus-
ters. By maximizing the margin between the decision
boundary and the training-samples, the SVM reaches
even in the linear setting better generalization than other
linear classifiers. For the optimization, it is not neces-
sary to map the data into the infinite dimensional feature
space, but it is enough to calculate the inner product (so

called Kernel Trick). We use radial basis functions as
inner product kernels and parameter estimation is done
by grid-search and 5-fold cross-validation.

In figure 2 you can see that the result of the svm classi-
fication step is already a good segmentation. Still there
are some noticeable misclassifications.

4.2 Lattice detection
Our algorithm gains its strength from the combination
of lattice detection and pattern-recognition. In our tests,
the most successful approach to detecting lattices was
the mean shift belief propagation (MSBP), published by
Park et al. [20].

4.2.1 Mean Shift Belief Propagation
MSBP makes the assumption that a repeating structure
in an image is a slightly deformed periodic pattern. As
such it is possible to find an ideal pattern element and
two linearly independent lattice base vectors to recon-
struct this periodic pattern by operating via the corre-
sponding wallpaper group [9, 17]. By clustering points
of interest, MSBP estimates the base vectors for the pe-
riodic pattern and a seed point, and the algorithm ex-
tracts a characteristic tile around this seed point. The
lattice base vectors define symmetry-mappings, so the
seed point and all symmetry-images of this seed point
may be mapped to further symmetry-images by trans-
lation along the base vectors. Those images are the
vertices of the constructed lattice. As the lattice is de-
formed by assumption, the exact symmetry mapping
has to be found by searching for a good fit for the char-
acteristic tile in the area of the estimated new vertex
position. This search is done for all new lattice-vertex
candidates simultaneously, meaning that the search for
two neighbouring vertices is constrained by an energy
term which punishes deviation from the according base
translation. Mean shift belief propagation has proven
to be an extremely powerful algorithm. Still we had to
struggle with two problems:

1. The results are not deterministic.

2. Regions of big distortions like the fold in the grey
mesh material often stop the expansion of the lattice.

Both difficulties are illustrated in figure 3. The result of
MSBP, reflected by the red lattice in the left image was
successful: the algorithm found the smallest possible
tile and the lattice covers the whole material patch. On
the right image, we have an example for an abortive run
of MSBP: you can see that the algorithm was not able
to cross the fold in the material and the base vectors are
the sum and the difference of the base vectors found in
the right image.

We clear this problem by the use of a cross-correlation
based approach we call pushpins.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 146 ISBN 978-80-86943-49-7

Figure 3: Two different runs of mean shift belief prop-
agation on the grey mesh material.

4.2.2 Pushpins
To make the results of MSBP more stable and more pre-
dictable, we guide the lattice detection step by a weaker
but therefore global repetition detector. The main idea
is to mask the frequency spectrum of a given material
T in such a way that a specific quadratic region P ⊂ T
in the spatial domain and therefore all similar regions in
the spatial domain show a peak. This may be done by
cross correlating T with P , but simple cross correlation
does not bring the desired results. Instead, we construct
a patch which generates a peak when convolved with
P .

Masking the frequency domain in order to isolate par-
ticular features is a common technique in signal pro-
cessing but we did not find our approach in the com-
puter graphics literature so we will briefly introduce it.

Lets first assume that we are looking for a texture X
with the same size as P so that:

P ∗X = δ

where δ models a spike in form of the dirac distribu-
tion. By convolution and application of the convolution
theorem, we get:

FPFX = C

for a constant texture C. F is the fourier-transform and
F−1 its inverse. Thus, a candidate for X is:

F−1
(
C

FP

)
Here we presumed correct scaling and frequency sam-
pling and point wise multiplication.

For numerical reasons it is advisable to suppress high
frequencies. Thus we substitute C by a gaussian filter G
and get:

P ∗F−
1
(G−1/σπ2

FP

)
= G−σ

for the variance σ . Note that equation 4.2.2 becomes
wrong, when FP is not continued by zeros, but by the

(a) Mesh(P ∗X) (b) Mesh(P ∗X∆) (c) T ∗X (d) T ∗X∆

Figure 4: The effect of regularization to push pins.
From left: the response of the original tile (P) to an
unregularized pushpin (X), the reponse to a regular-
ized push pin (X∆), the response of a distorted material-
patch (T) to the unregularized pushpin and the reponse
of the same material-patch to the regularized filter. In
image (c) you can see that the unregularized pushpin
fails to produce some spikes (see red circle).

surrounding pixels in the material. This can be circum-
vented by calculating X not by convolution but by de-
convolution as the solution of

n−1

∑
i=0, j=0

X (i, j)T (i0− i, j0− j) = Gσ (i0, j0) (2)

∀i0, j0 ∈ supp(P). n is the edge length of P . As n is
also the edge length of X , we have the same number of
variables and equations.

We will call the solution X of equation 2 a pushpin and
P(b n

2c,b
n
2c) the puncture of the pushpin. By nailhead

we mean the support of P .

A pushpin, constructed in this way, does respond a bit
stiff: tiles have to be very similar to the original tile to
generate a detectable spike. This may be relaxed mas-
sively by using a regularization: instead of solving the
equation system 2, we constrain this equation system
by a spatial smoothing term namely by the minimiza-
tion of the discrete laplace operator (∆). This leads to a
minimization problem:

X = argminW(

n−1

∑
i0=0, j0=0

||
n−1

∑
i=0, j=0

W(i, j)T (i0− i, j0− j)−Gσ (i0, j0)||

+||
n−1

∑
i=0, j=0

∆(i, j)(k,l)W||

)
(3)

The effectiveness of this regularization step is illus-
trated in figure 4. Pushpins can be made tolerant against
noise or small distortions by adding energyterms to
equationsystem 3. And the other way round it is pos-
sible to concentrate on certain regions of the pushpin
by adding weights to the corresponding equations.

In figure 5 we visualize the influence of push pins to
the lattice detection process. We have made several
test runs some of which had one or two nodes miss-
ing, but we obtained always the same lattices covering
the whole material patch.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 147 ISBN 978-80-86943-49-7

Figure 5: The left image shows the grey mesh mate-
rial, the image in the middle depicts the filter response
of a push pin applied to the volume channel of the dif-
fuse color of the grey mesh material and the third image
shows the result of MSBP on a combined map of the
filter response and the diffuse channel. Now the lattice
detection is extremely stable.

Figure 6: On the left side you can see in light blue
the filter response of a pushpin with nailhead radius ap-
proximately equal to the size of half a small square on
the right side we used a pushpin with a nailhead radius
approximately equal to half a big square.

To conctruct a pushpin, it is necessary to determine a
centerpoint and a radius. We have chosen the mean of
the positions of the stroke inputs as center point and the
size of the nailhead was chosen so as to cover the whole
stroke.

Nested symmetry groups

Pushpins generate automatically a region of dominance.
This shall be demonstrated on a simple example. In fig-
ure 6 you may see a simple texture consisting of small
squares arranged in groups to bigger squares. On the
left side, you can see the response of a pushpin with
a nailhead diameter in the size of a small square, on
the right side we used a pushpin with a nailhead di-
ameter in the size of a big square. The clipped filter
response of the smaller pushpins are held blue the fil-
ter response of the bigger pushpins is shown in yellow.
You can see that the pushpin on the left side detected the
crossings between the small squares whereas the push-
pins on the right side detected exclusively the crossings
between the big squares. This means that pushpins can
distinguish between nested symmetry groups. That is
an improvement against plain mean shift belief propa-
gation because MSBP simply uses the symmetry group
it gets first.

Though pushpins are not limited to a certain number of
channels, particularly not to 1, we confine their use to

the lightness channel of Rs or Rd . Note that the use of
more channels does also lead to more noise in the filter
response.

4.3 Generation of a mask
In the next step we combine the results of the classi-
fication and of the lattice detection to obtain a model
mask tile and a warping field to plaster the whole ma-
terial patch with this model mask patch. After cutting
the mask and the material into a set of tiles which we
interpret as distorted version of the same model tile, we
extract a model tile, we calculate an optical flow be-
tween the model tile and all other tiles and we compose
a mask for the whole material probe.

4.3.1 Finding a model tile
To generate a reliable segmentation of a single tile we
first choose one tile which is every bodies friend. We
assume that changes in the size of tiles are due to per-
spective distortion. Thus the best fit for an average
tile should be a tile with maximum edge-length. So in
the first step we resize all tiles to the maximum edge-
length. The comparison is made on base of the L2-norm
applied to the difference of the diffuse channel of two
tiles. As the number of tiles is small, we simply apply
a brute force approach and compare all tiles pairwise.
This procedure is quadratic in the number of tiles, so
for big numbers of tiles, the time requirement may be
optimized by using a dynamic programming approach.
Note that generating a mean tile instead of searching
the tile with the most friends is not advised as we want
to calculate the optical flow between this model tile and
all other tiles. This is more difficult with a mean tile
because the algorithm has to find features.

4.3.2 Optical flow
For the estimation of the optical flow between the prin-
cipal tile and the test tile, we use the algorithm sug-
gested by Sun et al. [24]. For warping we use thin-plate
splines [4].

4.3.3 Reconstruction
An arithmetical mean mask is calculated from the
warped masks. This mean mask is warped back into
the position of the original tiles.

4.4 Applying the edits
Our algorithm assigns an alpha value to every texel.
This value will scarcely be exactly one or zero. So we
will do a segmentation by thresholding. Aside from dis-
tortions the alpha-values may be seen as voting for the
background or the foreground, so 0.5 is a good thresh-
old. The segmentation mask is of course not suitable
for editing as it will obviously lead to strong artefacts.
So we will substitute all texels, which have at least one

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 148 ISBN 978-80-86943-49-7

Figure 7: On the top the binary mask, on the right
the original superposed mask and on the left the mixed
mask.

corner-neighbour from the opposite component, by its
alpha-value, so that the intuitive use of the word bound-
ary and the definition given in section 3.2 coincide.

On the foreground component, editing can of course be
done as e.g. described in the literature cited in section
2, but on the boundary it has to be taken under consid-
eration, that for many edits it is necessary to know the
exact decomposition ρi = αiφi +(1−αi)ψi, which to
find is an ill-posed problem.

5 EVALUATION
In the evaluation section we will show that our algo-
rithm is capable of dealing with materials, which do not
show the strong colour-contrasts, which are mostly nec-
essary for matting and foreground-segmentation pur-
poses.

5.1 Test set-up
To describe our test set-up we will start with a short
description of the input data. Next, we will give a de-
tailed overview over the competing algorithms to con-
vey an idea where those algorithms run into problems.
Of course the test set-up is strongly biased into the di-
rection of our algorithm as both algorithms, AppProp
and RepSnapping are by far more general. But we did
not find a more fitting approach in literature.

5.1.1 Input data
The materials we use in this paper have been acquired
with an enhanced version of the linear light source re-
flectometer (LLSR), introduced by Gardner et al. [8].
This new system has been developed by Meseth et al.
[19] and is capable of measuring anisotropic reflectance
distributions.

Additionally to the reflectance properties (equation 1),
LLSR has to estimate a surface normal n. All values
have been stored as 16 bit integer values. One texel
represents a surface of roughly 1/4 mm2.

We use two different materials for the comparison: the
grey mesh material which we have used to demonstrate
the single steps of the algorithm and a structured steel
material (see figure 8).

The grey mesh material is nearly uni coloured. It is
particularly difficult to derive a near regular structure
because it contains a strong bulge and the material nor-
mals do not convey much information.

While it is really simple, to derive the regular struc-
ture from the structured steel material, the only visi-
ble difference between foreground and background is
a slightly less isotropic distribution of the noise. The
metal material does not have a diffuse colour channel
so we have to use Rs, instead.

5.1.2 Comparison with other algorihtms
Our algorithm combines techniques from the field of
material manipulation with techniques from the field of
repetition finding in images. Thus for comparison we
have chosen one outstanding algorithm from each of
those field. For the task of segmenting repetitions in im-
ages we decided for the RepSnapping algorithm [12],
published in 2011 by Huang et al. And to cover the
field of SVBRDF-editing we will compare against App-
Prop [2], published by An and Pellacini in 2008. More-
over, we compare those results with the segmentation
of the SVM from step 4.1.

AppProp

The authors use a low rank approximation of the full ap-
pearance adjacency matrix and minimize the following
functional:

∑
i,k

wkzik(ei−gk)
2 +λ ∑

i, j
zi j(ei− e j)

2

with

zi j := exp(−|| fi− f j||2/σa)exp(−||xi− x j||2/σs).

Where i and j go over all texel in the texture, k goes
over all texels in the stroke input, w are weights, e is
the edit and therefore the solution of the optimization
problem, g is the stroke-input and therefore the right
hand of the optimization problem, x is the position of
the texel, λ the weight of the smoothing term and f is a
texel-dependent appearance term. The resulting equa-
tion system is roughly solved by a low-rank approxi-
mation. The appearance comparison of AppProp is not
limited to three dimensions or a single texel, so we can
apply it to our descriptor (section 4.1.1).
The spatial parameter σs is not interesting in our set-
ting, but to find a reasonable value for σa is difficult for
our high dimensional descriptor and has to be done in
a preprocessing step for every material separately. This
is not surprising because the term

exp(−||xi− x j||2/σs) = ∏
k

1

e(x
k
i−xk

j)
2/σs

consists of 450 factors in our case and has therefore the
inclination to explode or to collapse beyond numerical
accuracy. λ controls the consistency of the edit and had
not much influence. We set λ and wk to one. Thresh-
olding has been done manually, in order, to get the best
possible segmentation.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 149 ISBN 978-80-86943-49-7

(a) Input (b) PushPin (c) RepSnap (d) AppProp (e) SVM

Figure 8: On the left a patch from the original image
with the stroke input the second image shows the mask
generated by RepSnapping. The third mask is the result
of AppProp and the last mask is our result. The first row
shows the grey mesh material the second row shows a
metal.

RepSnapping

RepSnapping has been published by Huang et al. in
2011 [12], and is based on the idea of co-segmentation
[11]. It is specialized to cutting out repeated elements in
natural images. The algorithm solves the energy func-
tional:

E(e) :=∑
i

Di(ei)+∑
i< j

Vi, j(ei,e j)+ ∑
i, j∈H

Ui, j∈Nbh(ei,e j)

by the use of graph cuts [13]. Here Di describes the
probability that ei ∈ F and is given as a normalized
set distance to a clustering (H) of the foreground.

Di(ei = 1) =
mink∈H(F) || fi− fk||

mink∈H(F) || fi− fk||+mink∈H(B) || fi− fk||
with the

appearance function f and Di(ei = 0) = 1−Di(ei = 1).
Vi, j = λ |ei − e j|exp(−β || fi − f j||2) is a smooth-
ing term and goes over all adjacent pixel pairs.
U j, j = µ|ei − e j|exp(−βγ(i, j)2) assures that pixels
with similar appearance are treated similar. The main
idea is that the neighbourhood graph is extended by
the neighbourhood-system Nbh which contains edges
between the pixels i and j iff γ(i, j) < ε , where γ is a
correlation based similarity measure, described in [11].

We applied RepSnapping with the parameters given
in [12], namely: µ = 10, β = 0.1, λ = 2 and ε = 4.
RepSnapping might easily be extended to the high-
dimensional descriptor used in our algorithm but it
would suffer from the same stability issues as AppProp.

5.2 The results
In figure 8 we present the comparison of the image seg-
mentation step. You can see that our algorithm delivers
artefact-free masks for both materials (8.b). The other
three algorithms are more successful on the grey mesh
material than on the metal material. An interesting re-
sult is, that the raw SVM delivers the second best re-
sults. We see the main reason in the descriptors: App-
Prop is numerically overcharged with the big number of
descriptors, which results in this big amount of noise,
and RepSnapping uses a correlation based approach to

(a) Original (b) Changed Rd (c) Changed Rs

Figure 9: On the left the original material in the middle
a rather subtle edit of Rd , on the right a more noticeable
manipulation of Rs.

Figure 10: In the close-up of the edit of the grey mesh
material one may see that the editing boundary coin-
cides exactly with the perceived boundary of the fore-
ground material.

Figure 11: A shiny material. The left image shows the
unedited material. In the right image the background
has been changed: Rs has been changed from yellow to
green.

Figure 12: On the left the metal material, on the right a
rendering of the edited material.

describe texel neighbourhoods. Autocorrelating the Rs-
channel of the metal material reveals that the surface
does not have enough structure to provide significant
correlation results. Together with the fact that Rs is uni-
coloured, this explains, why RepSnapping fails com-
pletely.

5.3 Editing examples
In this section we want to present the resulting edits on
four different materials (figure 9 - 12).

5.4 Time Requirement
The bottleneck of the algorithm was to calculate the op-
tical flow on all tiles (paragraph 4.3.2). For the grey-
mesh material we had about 180 tiles. Calculating the
optical flow on one tile (~80x40 texel) took about 2.2
s, which sums up to about 7 min. Depending on the

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 150 ISBN 978-80-86943-49-7

number of training samples, the SVM classification step
took between 10 s and 3 min (paragraph 4.1.2). MSBP
(paragraph 4.2.1) ran for about 45 s. Warping a tile with
tps took about 0.03 s. Finding a principal tile took less
than a second. So the overall processing time lay be-
tween 8 and 12 minutes.

For comparison: RepSnapping took 3 s, SVM took 10
s and AppProp took 40 s.

5.5 System
Computations have been done on an i5-2500 with a
clock rate of 3.3 G/s and 8 GB RAM.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we demonstrated an algorithm to solve the
task of extracting a repeating foreground pattern from
a high dimensional reflectance representation map in
a way, which is robust and reliable enough, to make
additional optical debugging steps unnecessary. While
the task is relatively simple on suitable materials, we
could show, that the competing state of the art algo-
rithms failed for difficult material probes. Our algo-
rithm permits high quality segmentation and editing on
complex materials.

Yet our algorithm is too slow for productive and indus-
trial use. But many steps of the algorithm may be par-
allelized, particularly with respect to computations on
the tiling, so that efficiency and responsiveness may be
improved drastically.

7 REFERENCES
[1] Xiaobo An, Xin Tong, Jonathan D. Denning, and

Fabio Pellacini. Appwarp: retargeting measured
materials by appearance-space warping. In Pro-
ceedings of the 2011 SIGGRAPH Asia Confer-
ence, SA ’11, pages 147:1–147:10, New York,
NY, USA, 2011. ACM.

[2] Pellacini F. An X. Appprop: all-pairs appearance-
space edit propagation. ACM Transactions on
Graphics, 27(3):1–9, 2008.

[3] Michael Ashikhmin and Peter Shirley. An
anisotropic phong brdf model. Journal of graph-
ics tools, 5(2):25–32, 2000.

[4] Fred L. Bookstein. Principal warps: Thin-plate
splines and the decomposition of deformations.
IEEE Transactions on pattern analysis and ma-
chine intelligence, 11(6):567–585, 1989.

[5] Chih-Chung Chang and Chih-Jen Lin. LIBSVM:
A library for support vector machines. ACM
Transactions on Intelligent Systems and Tech-
nology, 2:27:1–27:27, 2011. Software avail-
able at http://www.csie.ntu.edu.tw/
~cjlin/libsvm.

[6] Corinna Cortes and Vladimir Vapnik. Support-
vector networks. Machine learning, 20(3):273–
297, 1995.

[7] Kristin J. Dana, Bram van Ginneken, Shree K.
Nayar, and Jan J. Koenderink. Reflectance and
texture of real-world surfaces. In IEEE Confer-
ence on Computer Vision and Pattern Recogni-
tion, pages 151–157, 1997.

[8] Andrew Gardner, Chris Tchou, Tim Hawkins, and
Paul Debevec. Linear light source reflectome-
try. In ACM Transactions on Graphics (TOG),
volume 22, pages 749–758. ACM, 2003. No. 3.

[9] Branko Grünbaum and Geoffrey Colin Shephard.
Tilings and patterns. Freeman, 1987.

[10] Geoffrey E Hinton, Simon Osindero, and Yee-
Whye Teh. A fast learning algorithm for deep be-
lief nets. Neural computation, 18(7):1527–1554,
2006.

[11] Dorit S Hochbaum and Vikas Singh. An efficient
algorithm for co-segmentation. In Computer Vi-
sion, 2009 IEEE 12th International Conference
on, pages 269–276. IEEE, 2009.

[12] Hua Huang, Lei Zhang, and Hong-Chao Zhang.
Repsnapping: efficient image cutout for repeated
scene elements. In Computer Graphics Forum,
volume 30, pages 2059–2066. Wiley Online Li-
brary, 2011. No. 7.

[13] Vladimir Kolmogorov and Ramin Zabin. What
energy functions can be minimized via graph
cuts? IEEE transactions on pattern analysis
and machine intelligence, 26(2):147–159, 2004.

[14] Murat Kurt, László Szirmay-Kalos, and Jaroslav
Křivánek. An anisotropic brdf model for fitting
and monte carlo rendering. ACM SIGGRAPH
Computer Graphics, 44(1):3, 2010.

[15] Yann LeCun, Bernhard Boser, John S Denker,
Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropaga-
tion applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

[16] Hendrik PA Lensch, Jan Kautz, Michael Goe-
sele, Wolfgang Heidrich, and Hans-Peter Seidel.
Image-based reconstruction of spatially varying
materials. In Rendering Techniques 2001, pages
103–114. Springer, 2001.

[17] Yanxi Liu, Robert Collins, and Yanghai Tsin. A
computational model for periodic pattern percep-
tion based on frieze and wallpaper groups. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 26(3):354 – 371, March 2004.

[18] Timothy Masters. Practical neural network
recipes in C++. Morgan Kaufmann, 1993.

[19] Jan Meseth, Shawn Hempel, Andrea Weidlich,

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 151 ISBN 978-80-86943-49-7

Lynn Fyffe, Graham Fyffe, Craig Miller, Paul
Carroll, and Paul Debevec. Improved linear light
source material reflectance scanning. In ACM
SIGGRAPH 2012 Posters, page 42. ACM, 2012.

[20] Minwoo Park, Kyle Brocklehurst, Robert T
Collins, and Yanxi Liu. Deformed lattice de-
tection in real-world images using mean-shift be-
lief propagation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(10):1804–
1816, 2009.

[21] Fabio Pellacini and Jason Lawrence. Appwand:
editing measured materials using appearance-
driven optimization. In ACM Transactions on
Graphics (TOG), volume 26, page 54. ACM,
2007. No. 3.

[22] Szymon M Rusinkiewicz. A new change of vari-
ables for efficient brdf representation. In Render-
ing techniques 98, pages 11–22. Springer, 1998.

[23] Thorsten-Walther Schmidt, Fabio Pellacini, Derek
Nowrouzezahrai, Wojciech Jarosz, and Carsten
Dachsbacher. State of the art in artistic editing of
appearance, lighting and material. In Computer
Graphics Forum. Wiley Online Library, 2015.

[24] Deqing Sun, Stefan Roth, and Michael J Black.
Secrets of optical flow estimation and their princi-
ples. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 2432–
2439. IEEE, 2010.

[25] Jiaping Wang, Xin Tong, Stephen Lin, Minghao
Pan, Chao Wang, Hujun Bao, Baining Guo, and
Heung-Yeung Shum. Appearance manifolds for
modeling time-variant appearance of materials.
In ACM SIGGRAPH 2006 Papers, SIGGRAPH
’06, pages 754–761, New York, NY, USA, 2006.
ACM.

[26] Hongzhi Wu, Julie Dorsey, and Holly Rushmeier.
A sparse parametric mixture model for btf com-
pression, editing and rendering. In Computer
Graphics Forum, volume 30, pages 465–473. Wi-
ley Online Library, 2011. No. 2.

[27] Kun Xu, Jiaping Wang, Xin Tong, Shi-Min Hu,
and Baining Guo. Edit propagation on bidirec-
tional texture functions. In Computer Graphics
Forum, volume 28, pages 1871–1877. Wiley On-
line Library, 2009. No. 7.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 152 ISBN 978-80-86943-49-7

Improvement of Some Interpolation Methods for Terrain
Reconstruction from Scattered Data

Róbert Bohdal
Comenius University in

Bratislava
Faculty of Mathematics,
Physics and Informatics

Mlynská dolina
Slovakia, 842 48

Bratislava
robert.bohdal@fmph.uniba.sk

ABSTRACT
Using GPS modules it is easy to obtain 3D data for areas that have not been digitized yet. Such terrain data are
usually not arranged in a grid, and therefore we have to use scattered data interpolation methods. The aim of the
paper is to create a digital terrain model from 3D data using modifications of known methods. Sibson interpolation
method is often used when we need to interpolate large data sets. This method has low memory requirements, it
is sufficiently fast, but creates undesired surface artefacts. Our aim is to have the resulting interpolation surface as
similar as possible to the original surface. We have decided to replace the heights at specified points by local func-
tions. We use biquadratic and bicubic polynomials, Hardy’s multiquadrics and thin plate spline as local functions.
In the paper, we have evaluated the time requirements and the accuracy with which the interpolated area matches
the actual 3D data on 2 terrain samples (the Little Carpathians and a small part of the Little Carpathians).

Keywords
Digital terrain model, Radial basis functions, Inverse distant weights, Thin plate spline, Natural neighbours, Sibson
interpolation

1 INTRODUCTION

Digital terrain model (DTM) can be used in many ar-
eas and applications. It is commonly used in urban
planning, hydrology, geosciences, for investigating soil
erosion, modelling of movement of avalanches, army
applications, graphics information systems, creation of
topographic maps and similarly. DTM can be under-
stood as a 3D representation of a part of the Earth sur-
face in digital format. It is commonly created from
a large amount of 3D points in the form of surfaces,
which are created using interpolation and approxima-
tion functions. These 3D points are obtained, for exam-
ple, using stereophotogrammetry, laser scanning and
radargrametry.

Creating of digital terrain from scattered data is still an
interesting area of research. This is suggested by sev-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

eral comparative studies that we can find currently in
literature.

In our research, we have decided to use local inter-
polants, which replace the specified height points that
are used in creating the terrain model. We want to im-
prove the accuracy of methods using the weighted aver-
age and remove shape artefacts that these methods pro-
duce in the final models. We want to take advantage
of their algorithmic simplicity and their speed of cal-
culation. In conclusion, we show that the use of local
functions is meaningful, even at the cost of slightly in-
creased computational time. We consider radial basis
functions (RBF) to be the best local functions, which
are currently used in many areas of research.

2 RELATED WORK
There are several methods that can be used to create a
DTM from scattered data. In most cases interpolation
methods are used. It is then possible to calculate the
height value at any point of the considered area.

The most commonly used methods are based on trian-
gulation entry points, the weighted average methods,
methods using radial basis functions and others. Less-
known techniques use, for example, dividing the input

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 153 ISBN 978-80-86943-49-7

data into areas using local interpolants or neural net-
works. There are also approaches that use a combina-
tion of several methods.

For the methods using triangular irregular networks
(TIN), one first constructs a suitable triangulation from
the input data, for example, Delaunay triangulation.
Methods which use a piecewise continuous interpolant
can be used afterwards, for example, Bezier patches in
case of Clough-Tocher [Hug04] or Powell-Sabin [PS77]
method. Further, one can use a triangular network
method called triangle based blending (TBB) [GS13,
DG02, Ami02], which uses the weighted average of
three functions from a preselected class of local func-
tions interpolating the corresponding vertex of the tri-
angle and its nearest neighbours. Triangular network is
also used by a method described earlier [HZDS01], in
which one first constructs a uniform triangular network,
and local approximation polynomials (Bezier triangu-
lar patches) are calculated using the method of least
squares. The resulting spline function is then created
using a combination of these polynomials with the use
of Bernstein-Bezier smoothness conditions. Among the
methods using triangular networks, we can also use
a method of the natural neighbours (Sibson’s inter-
polant) [DG02], which uses Voronoi diagram, which is
the dual graph to the Delaunay triangulation. The func-
tion value (height at the searched point) is given by the
weighted average of local height values of the relevant
vertices.

Among the methods using only the weighted average,
Shepard’s method also known as the Inverse Distance
Weighting (IDW) is the most famous [AAAC05, GG13,
GS13, Hu13, Hug04]. Since Shepard’s method does not
give good results, its modification is used more often.
The modification uses local interpolant calculated by
the method of least squares [GS13].

To create a model of the terrain, RBF methods are prob-
ably the ones used the most often [AAAC05, CL12,
CL13, GG13, GS13, Hu13, Hug04, MS16, PGTG04,
SS09]. Thin plate splines (TPS) and Hardy’s multiquar-
ics (HMQ) are the most famous from this class of func-
tions. However, the disadvantage of these methods is
that for their calculation it is necessary to solve a system
of equations. If the number of input points is big, we
use methods that produce a final interpolation surface
using a local interpolant. In [PGTG04], there is a pro-
cedure which in the first step recursively splits the in-
put area into an overlapping sub-regions using k-d trees.
The second step is calculating the functional value as a
weighted average of two functions recursively enumer-
ated in the respective sub-regions. For a large number
of data points, we can use a RBF approximation given
in [MS16]. The method uses a determination of signif-
icantly fewer so-called referent points, which together
with the given points create an overdetermined system

of equations. This system of equations is then solved
by the method of least squares to obtain the unknown
coefficients of the resulting interpolation function.

For the needs of creating a model of the terrain, we of-
ten use a geostatistics method called Kriging [GS13,
Hug04]. It is based on predicting the value of a function
at a given point using the weighted average of points in
the neighbourhood of the calculated point.

From less-known methods for the terrain construction,
it is necessary to mention also neural networks of type
MLP, Support Vector Machine Regression and Neural
Networks in [ON15] or genetic algoritms in [BSS14].

3 METHODS
The creation of a digital terrain model from scattered
data points can be easily solved using suitable inter-
polation methods. In our case, we have focused on
the modification of known methods, using local inter-
polants, which are used instead of the height values.
As local interpolants, we choose thin plate splines and
Hardy’s multiquadrics [Isk03] and also well-known cu-
bic and quadratic polynomials of two variables. As a
further option, we choose the replacement of height val-
ues by planes, while their normal vector is calculated as
a gradient of the local interpolation function.

Let us have a set P of N mutually different input points
P = {p1[px

1, py
1], . . . ,pN [px

N , py
N] | pi ∈R2} with height

values hi ∈R, for i= 1, . . . ,N. We search for such func-
tion f : R2 → R, for which the interpolation condition
is true:

f (pi) = hi, i = 1, . . . ,N. (1)

3.1 Inverse Distance Weighted (IDW)
The simplest form of IDW interpolation is called Shep-
ard’s method. Shepard defined his interpolating func-
tion f (x) with argument x ∈ R2 to be the weighted av-
erage of the heights hi [HL93]:

f (x) =
N

∑
i=1

ωi(x)hi. (2)

Weight functions ωi(x) from formula (2) can be ex-
pressed as:

ωi(x) =
σi(x)

∑
N
j=1 σ j(x)

,

where σi(x) = ||x−pi||−µi , for µi > 0. The parameter
µi allows to control the shape of the final surface in the
neighbourhood of the interpolated points. The standard
value for this parameter is µi = 2.

The global character of this method can be made local
by multiplying the weighted function ωi(x) by the mol-
lifying function [HL93]:

λi(x) =
(

1− σi(x)
Ri

)µi

+

, where Ri > 0.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 154 ISBN 978-80-86943-49-7

For example, we can set the radius Ri to D
2

√
Nw
N , where

D is the maximum distance between arbitrary two
points of the set P and Nw = 19 [TH10].

3.2 Radial Basis Functions (RBF)
Radial basis functions have gained immense popularity
in the multi-dimensional interpolation of scattered data.
They are simple to implement, and they generate an in-
terpolation surface with a sufficient smoothness.
We can write the interpolation function f (x) in the fol-
lowing form [HL93]:

f (x) =
N

∑
i=1

λiR(‖x−pi‖)+
l

∑
k=1

ckΦk(x), (3)

where Φk(x) ∈ π2
m, l = dim(π2

m) =
(m−1+2

2

)
. Symbol

πd
m denotes a linear space containing all polynomials

over the field R with d variables and a degree at most
m−1. Functions R(‖x−xi‖) are radial basis functions
with an argument expressing the euclidean distance be-
tween points x and xi.
Unknown coefficients λλλ = (λ1, . . . ,λN)

T and
c = (c1, . . . ,cl)

T in relation (3) are given by solv-
ing a system of equations:(

A P
PT 0

)(
λλλ

c

)
=

(
h
0

)
, (4)

where Ai, j = R(‖pi − p j‖), Pi,k = Φk(pi) and
h = (h1, . . . ,hN), for i, j = 1, . . . ,N and k = 1, . . . , l.
Due to the fact that both RBFs described below
are conditional positive definite [Fas07], the system
of equations (4) has a solution if the points xi are
non-collinear.

3.2.1 Thin Plate Splines (TPS)
Thin plate splines belong to the class of polyharmonic
splines:

Rd,m(‖x‖) = Rd,m(r) =

{
r2m−d if d is odd
r2m−d log(r) if d is even

The name is derived from a relation, in which we search
for the minimum of an integral describing the distribu-
tion of so-called bending energy on an infinitely thin
elastic plate. According to [Isk03], it is possible to write
the interpolation function in the form:

f (x) =
N

∑
i=1

λiRd,m(‖x−pi‖)+ ∑
|ααα|<m

cααα xααα , (5)

where ααα = (α1, . . . ,αd) is so-called multi-index and
xααα = xα1

1 · · ·x
αd
d , |ααα| = α1 + . . .+αd , αk ∈ Nd

0 . After
substituting d = m = 2 (dimension of space R2) we get
a standardly used interpolation function:

f (x) = f (x,y) =
N

∑
i=1

λir2
i log(ri) + c1 + c2x+ c3y, (6)

where ri = ‖x−pi‖=
√
(x− px

i)
2 +(y− py

i)
2.

3.2.2 Hardy’s Multiquadrics (HMQ)
This method is very similar to the previous method, but
it uses different RBFs, and for d = 2 it does not have a
polynomial term. For our interpolation problem, we get
the following interpolation function:

f (x) = f (x,y) =
N

∑
i=1

λi

√
r2

i + c2. (7)

Value c changes the shape of the resulting interpolation
surface. In general, a smaller value of the parameter c
creates so-called “sharp extremes” in the graph of the
function, while its greater value “smoothes” the func-
tion. In literature, there are several ways of how to suit-
ably choose it [HL93]:

• c = 0.815d, where d is the average distance between
the points pi of set P to their closest neighbours,

• c = 1.25 D
n , where D is the average of the smallest

circle, which contains all points of the set P ,

• c =
√

1
10 maxi, j ‖pi−p j‖,

• c =
√

3
5 mini, j ‖pi−p j‖.

3.3 Triangle Based Blending (TBB)
This method belongs to a group of methods that use
triangular irregular network T created from given
points pi. Delaunay’s triangulation is the most common
method because it maximizes the minimum angle of
triangles. There is a large number of optimal algo-
rithms that construct this triangular net with O(n logn)
complexity. We can find one of these approaches
in [BDH96]. First, we calculate for each point pi from
set P a biquadratic polynomial interpolating this point
and its five nearest neighbours:

fi(x,y) =a1(x− px
i)

2 +a2(x− px
i)(y− py

i)+

a3(y− py
i)

2 +a4(x− px
i)+a5(y− py

i)+hi.

The unknown coefficients a1, . . . ,a5 are calculated from
the condition that interpolates all 6 points. If we need to
calculate the value of the height h for the point x[x,y] we
have to find in which triangle ∆i jk of the triangulation
T this point lies. Then the height h is calculated as the
weighted average of three values of the corresponding
local functions [Ami02]:

f (x) = f (x,y) = wi fi(x,y)+w j f j(x,y)+wk fk(x,y),
(8)

where i, j,k are indices of vertices of triangle ∆i jk with
vertices pi,p j,pk (see Figure 1). In Figure 1, black stars
denote vertices, from which local interpolant fi(x,y)
corresponding to the vertex pi is calculated. Similarly,
blue circles denote vertices giving interpolant f j(x,y)

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 155 ISBN 978-80-86943-49-7

Figure 1: Local function is calculated by one of the tri-
angle vertices and its adjacent vertices.

and green squares denote vertices creating local inter-
polant fk(x,y).
Smooth continuous transition between two triangles
can be guaranted by calculating weights using relation:

wi = d r
i /(d

r
i +d r

j +d r
k),

where appropriate value for r is r = 2 or r = 3 and
lengths di,d j,dk can be determined by using barycen-
tric coordinates of the point x[x,y] of the triangle ∆i jk.

3.4 Natural Neighbours (NN)
This interpolation method belongs to the weighted av-
erage methods. To calculate the unknown height h at
point x, it uses a Voronoi diagram which can be con-
structed very effectively from Delaunay’s triangulation
by an algorithm with complexity O(n) [LH10]. We can
simply say that a Voronoi diagram is the union of all
Voronoi cells defined by the description:

V (pi) = {x ∈ R2 | ‖x−pi‖< ‖x−p j‖ ∀ j 6= i},

where pi ∈P .
Let us call natural neighbours of a point pi such points
p j, whose Voronoi cells V (p j) have a common edge
with Voronoi cell V (pi). It is also possible to extend
the previous definition for an arbitrary point x ∈ R2 by
including the point x in the set of given points P , and
then we create a new Voronoi diagram. Natural neigh-
bours of the point x are all its natural neighbours in the
newly created Voronoi diagram (see Figure 2, the grey
polygon represents a cell in the newly created Voronoi
diagram).
As in the TBB method, the unknown height value h is
calculated using the weighted average:

f (x) = ∑
n
i=1 aihi

∑
n
i=1 ai

, (9)

where hi are heights of n natural neighbours of the point
x and weights ai are areas of the polygon that are taken
from the area of the original Voronoi cell V (pi) af-
ter including the point x into the set P . Detailed de-
scription of the algorithm that calculates these weights

x

p1

p2

p3
p4

p5

V (p1)

V (p2)

V (p3)

V (p4)

V (p5) a1

a2

a3
a4

a5

Figure 2: The original Voronoi diagram and the new
Voronoi diagram which was created by including the
point x.

without creating the new Voronoi diagram can be found
in [LH10].

3.5 Least Square Methods (LSM)
Methods of least squares create approximation surfaces
that do not meet the interpolation condition (1). For
our purposes, we use it to determine the gradient at the
points [pi,hi] ∈ R3. Bivariate polynomials are used the
most often for terrain modelling using LSM:

f (x) = f (x,y) =
m

∑
k=0

∑
r+s=k

arsxrys, (10)

where m is chosen polynomial degree (m = 2 or m = 3)
and ars are unknown coefficients. To determine them,
we need at least (m+1)! given points pi. Unlike inter-
polation functions, which usually lead to solving a sys-
tem of equations with a number of columns equal to the
number of unknowns, in the method of least squares, we
solve a system of equations with more equations than
the number of unknowns. Consequently, the resulting
surface cannot pass through the given entry points.
Let us calculate the bivariate polynomial for each point
of pi[px

i , py
i] and error ei. Than we can create a system

of equations:

hi ≈
m

∑
k=0

∑
r+s=k

ars(px
i)

r(py
i)

s + ei, i = 1, . . . ,N, (11)

where N� m.
We search for such values of coefficients ars so that the
following holds:

N

∑
i=1

e2
i → 0

After rewriting the system of equations (11) into matrix
form, we obtain:

h≈ Pa+ e. (12)

It is true that the sum of the squared errors ∑
N
i=1 e2

i has
a minimum for such vector of coefficients a that we can
calculate using a system of normal equations [GR70]:

PTh = PTPa

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 156 ISBN 978-80-86943-49-7

Vector of unknown coefficients a can be calculated
from relation:

a = (PTP)−PTh,

where (PTP)− is a pseudoinverse matrix to matrix
(PTP). It is numerically convenient to use singular
value decomposition (SVD) method while solving
the system (12). We can find the SVD method, for
example, in [GR70].

4 OUR APPROACH
Each of these interpolation methods has some draw-
backs. RBF methods require solving systems of equa-
tions, which for a large number of input points results
in high memory costs, very long calculation time and
problems with numerical stability of the calculations.
IDW methods, in addition to long calculation time, cre-
ate unwanted artefacts (see Figure 7) in the shape of the
resulting interpolation surface, which are present also
in the TBB and NN methods.

Using local interpolation functions in this context is
new. We have not found any study which uses lo-
cal functions in interpolation methods for digital ter-
rain model creation. In our comparison, we try to find
such an interpolation method that has sufficient visual
smoothness and does not suffer from shape artefacts. It
should also have sufficient accuracy and a short time of
calculation.

In this section, we give a procedure for finding close
neighbours to a given point pi, which are necessary for
constructing local interpolants. We will also introduce
alterations to the methods using the weighted average,
while we replace given height values hi of points pi by
local functions fi(x).

4.1 Nearest Neighbours
Close neighbours of a point pi can be found using
Delaunay triangulation T created in-advance, because
each vertex contains a pointer to all adjacent vertices
when the triangulation is created. To determine local
interpolants, we need to specify the minimum number
of close neighbours of point pi. Without this condition,
it is not possible to calculate all the unknown coeffi-
cients of local functions.

The procedure of finding these neighbours is shown in
Figure 3. First, we find all adjacent vertices in the tri-
angulation T to the vertex (point) pi, and we add them
to the list of close neighbours. In Figure 3, they are
marked by circles, and their index in the upper left cor-
ner has value 1 (level of the depth). If necessary, we
add also the neighbouring vertices of these vertices to
the list. They are marked by a star in the picture, and
their index in the upper left corner shows depth value
2. We continue to the chosen level in this way. If the

number of close neighbours does not achieve the nec-
essary value, we find other vertices using the euclidean
distance from vertex pi. In Figure 3, such vertices are
labeled by green rectangles. To speed up the search by
distance, we use a hash table in which all entry points
pi are assigned in advance.

p5p6

Figure 3: Selecting close neighbours of vertex pi based
on the neighbourliness and euclidean distance.

4.2 Modification of the Methods Using the
Weighted Average

Replacing given height values by local interpolation
functions allows the methods using the weighted aver-
age to make the resulting interpolation surface much
more similar to the ideal (real) surface of the terrain.

Let us rewrite the expressions for interpolation func-
tions f (x) such that we use a local function fi(x) in-
stead of the height hi:

• We get the following expression for the IDW method
(see relation (2)):

f (x) =
N

∑
i=1

ωi(x) fi(x).

• The expression remains the same in the TBB meth-
ods (see relation (8)), but the original biquadratic
polynomial is replaced by a general local function.

• For the method NN (relation (9)), we get the follow-
ing expression:

f (x) = ∑
n
i=1 ai fi(x)
∑

n
i=1 ai

,

where n is number of natural neighbours of point x.

4.3 Local Interpolants
At first, we choose thin plate splines (paragraph 3.2.1)
and Hardy’s multiquadrics (paragraph 3.2.2) as the lo-
cal interpolants in our tests. Secondly, we use bivariate
polynomial:

fi(x,y) =
m

∑
k=0

∑
r+s=k

ars(x− px
i)

r(y− py
i)

s +hi

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 157 ISBN 978-80-86943-49-7

Figure 4: Original height map of the Little Carpathians
is on the left, and the model created using TPS is on the
right.

with m = 2 (biquadratic polynomial) and m = 3 (bicu-
bic polynomial). Unknown coefficients ars are cal-
culated from interpolation conditions fi(px

l , py
l) = hl ,

where pl [p
x
l , py

l] are nearest neighbours of point pi.

Value of the height hi at point pi can be replaced by
a relatively simple function of plane going through the
point pi[p

x
i , py

i ,hi] with expression:

fi(x,y) =
nx

nz
(x− px

i)+
ny

nz
(y− py

i)+hi,

while the normal vector n(nx,ny,nz) is calculated from
the gradient:

n(nx,ny,nz) =

(
∂ f (px

i , py
i)

∂x
,

∂ f (px
i , py

i)

∂y
,−1

)
,

where f (x) is any of the previously mentioned local
functions, from which we can easily calculate the gra-
dient.

5 TEST OF METHODS AND RESULTS
To test our modifications and compare different in-
terpolation methods for creating digital terrain model,
we have used a dataset of height points of the Lit-
tle Carpathians obtained from the United States Geo-
logical Survey in SRTM format with a resolution of
1 arc second (30 meters). From this height map, we
have created two files. The first contains the area
region: 48.00◦N,17.00◦E− 49.00◦N,18.00◦E, in fig-
ures and tables it is labelled with the name Karpaty
(see Figure 4). The second file contains the area re-
gion: 48.15◦N,17.05◦E−48.20◦N,17.10◦E labelled as
KarpatyCrop.

For both files, we have created samples with N = 2000,
4000, 7000 and 10000 randomly selected points that
were used to create the model of the terrain. We have
also created a sample of M = 20000 test points to ver-
ify the accuracy of the model. We could not use a larger
number of points for comparing interpolation methods

because the TPS and HMQ methods require using ma-
trices with a large number of nonzero elements. In
this article, we present results only for a sample of
N = 10000 points because of the limited space.

To create a digital terrain model, we have used not
only all previously described methods, but also Powell-
Sabin [PS77] and Clough-Tocher [Ami02] methods.
However, we do not include these two methods in the
results because we have not obtained for them an in-
terpolation surface without unwanted artefacts, even
though we have used the optimal normal vectors calcu-
lated from the gradient of the local TPS interpolation.

While evaluating the precision with which the model
approximates the real terrain surface, we have used two
statistical metrics:

RMSE =

√
∑

M
j=1(f (x j,y j)−h j)2

m

and

Max Absolute Error = max
j=1,...,M

{| f (x j,y j)−h j|}.

In addition to these metrics, we have been interested
also in the visual smoothness, calculation time, mem-
ory demand and suitability for creating contours, which
are used in topographic maps. Our results are shown in
Table 1. Value Accuracy rank in the third column indi-
cates the average rank of the given method, or group
of methods (lower value is better). For a group of
methods, we have always chosen the best candidate
for the current sample of test points. Suitability sign
“+/o/-” of accuracy is based on the accuracy rank.
Similarly, suitability of the calculation time is based
on the elapsed time in Table 2 and 3, memory demand
is based on if large matrices are used in the algorithm
and visual smoothness is decided visually using the ob-
tained images (see Figure 7), depending on whether sur-
faces contain artefacts.

In the graphs, tables and pictures, we use the follow-
ing abbreviations: lHMQ, lTPS, lQLS, lCLS denote us-
ing Hardy’s multiquadrics, thin plate spline, biquadratic
and bicubic polynomials as the local interpolant. Ab-
breviations gHMQ, gTPS, gQLS, gCLS denote using
the relevant local functions while calculating the gradi-
ent of the tangent plane.

In the right part of Figure 4, we can see the terrain
model of the Little Carpathians which has been calcu-
lated using the TPS method using 10000 points. This
figure also demonstrates the suitability of this method
for creating topographic maps with contour lines.

In Figure 7, we can see how using local functions in
methods IDW, TBB and NN improves the shape of the
resulting surface of the model of the terrain, and re-
moves existing shape artefacts. In the top row, we can

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 158 ISBN 978-80-86943-49-7

see at the same time the impact of improperly selected
shape parameter in Hardy’s multiquadrics, which leads
to undesirable sharp points.
In Table 2 and Figure 5, we can see the evaluation of the
accuracy of the resulting interpolation surfaces for data
file Karpaty, and in Table 3 and Figure 6 for the data file
KarpatyCrop. In the last column, we give in seconds
the time necessary to calculate the height values for a
grid 5463× 8192 points. The evaluation time does not
contain time for creating the hash table and the initial
triangulation.
All methods have been tested on a desktop PC with In-
tel(R) Core(TM) i5-4670K CPU @3.40GHz processor
with 8GB RAM.

Method Accuracy Accuracy
rank

Calculation
time

Memory
demand

Visual
smooth-

ness
HMQ +/-1 5.5 - - +/-1

TPS + 5.3 - - +
NN - 17.4 o/+ + o
NN + plane + 7.9 o/+ + +
NN + local + 4.1 o + +
IDW - 22.3 - + -
IDW + plane o 10.3 - + -
IDW + local + 3.3 - + +
TBB - 23.9 + + -
TBB + plane o 12.5 + + -
TBB + local + 4.9 + + o

Table 1: Suitability of using interpolation method.
Symbol “+” represents suitability, “-” unsuitability and
“o” average suitability of using a method.

6 CONCLUSION
We have shown that using local functions to the known
methods (IDW, TBB and NN) for creating a digital ter-
rain model significantly improves the visual smooth-
ness of the resulting spline surface. It also increases
the accuracy with which this surface approximates the
actual surface of the terrain, and it suppresses unde-
sired shape artifacts. With a suitable local function, we
can even achieve results comparable with RBF meth-
ods, which have great memory and calculation require-
ments. At the same time, we have also pointed out
that a wrong choice of the shape parameter in the HMQ
method leads to a problematic surface shape.
The most appropriate method for creating the digital
model, taking into account the computation time, accu-
racy, memory requirements and visual smoothness, is
the method of Natural Neighbor with a local thin plate
spline interpolant. As the second in order, we could
use Triangle Based Blending method again with the lo-
cal TPS interpolant, which is faster to calculate, but has
worse visual smoothness.
An interesting finding is also the fact that the number of
near vertices in LSM methods relates to the complexity

1 Depends on the shape parameter c.

Method Max
Absolute

Error

Mean
Absolute

Error

RMSE Elapsed
Time (s)

HMQ 184.857 10.726 20.199 6715
TPS 236.593 10.839 20.787 20930
NN - gQLS 185.654 11.221 21.090 95
NN - gCLS 204.537 11.570 21.838 107
NN - gHMQ 247.088 11.754 22.616 67
NN - gTPS 279.048 12.416 24.074 84
NN - lQLS 188.975 11.114 20.900 87
NN - lCLS 468.349 11.256 21.660 84
NN - lHMQ 205.663 10.781 20.332 86
NN - lTPS 210.575 10.732 20.495 171
IDW - gQLS 195.854 11.582 21.817 2541
IDW - gCLS 283.569 11.664 22.367 2532
IDW - gHMQ 259.551 11.762 22.775 2536
IDW - gTPS 298.943 12.436 24.255 3347
IDW - lQLS 203.549 11.669 21.666 2552
IDW - lCLS 500.426 20.895 39.873 2547
IDW - lHMQ 202.336 10.816 20.400 2616
IDW - lTPS 199.480 10.855 20.771 3603
TBB - gQLS 244.792 11.755 22.490 8
TBB - gCLS 271.387 11.918 22.991 7
TBB - gHMQ 257.001 11.992 23.461 8
TBB - gTPS 300.422 12.764 25.434 8
TBB - lQLS 245.993 11.565 22.098 8
TBB - lCLS 316.560 11.542 22.305 9
TBB - lHMQ 193.657 10.799 20.338 18
TBB - lTPS 201.006 10.780 20.562 21
Table 2: Accuracy and time of calculation for the tested
methods for data file Karpaty.

of the terrain. For a rugged terrain, we have achieved
better results when we used more points, and for a less
rugged terrain when we used fewer points.

7 FUTURE WORKS
In future work, we would like to focus on other ways
to estimate parameter c, which occurs in some RBFs.
In addition, we would like to verify the effect of select-
ing different neighbours on the accuracy of the interpo-
lation surface and use compactly supported RBFs for
calculation of a digital terrain model. Our testing algo-
rithm has not used any accelerating techniques such as
using parallelization or GPU, but it would be interest-
ing to investigate the acceleration obtained using these
techniques.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 159 ISBN 978-80-86943-49-7

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

Absolute

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

Figure 5: A plot showing the ranking of accuracy of
individual methods for data file Karpaty.

8 REFERENCES
[AAAC05] Aguilar, F., Agüera, F., Aguilar, M., and

Carvajal, F. Effects of terrain morphology, sam-
pling density, and interpolation methods on grid
dem accuracy. Photogrammetric Engineering &
Remote Sensing, 71(7), pp.805-816, 2005.

[Ami02] Amidror, I. Scattered data interpolation meth-
ods for electronic imaging systems: a survey.
Journal of electronic imaging, 11(2), pp.157-176,
2002.

[BDH96] Barber, B., Dobkin, D., and Huhdanpaa, H.
The quickhull algorithm for convex hulls. ACM
Transactions on Mathematical Software (TOMS),
22(4), pp.469-483, 1996.

[BSS14] Bagheri, H., Sadjadi, Y., and Sadeghian, S.
Exploring the Role of Genetic Algorithms and
Artificial Neural Networks for Interpolation of
Elevation in Geoinformation Models, pages 107-
121. Springer International Publishing, 2014.

[CL12] Chen, C., and Li, Y. A robust method of thin
plate spline and its application to DEM construc-
tion. Computers & Geosciences, 48, pp.9-16,
2012.

Method Max
Absolute

Error

Mean
Absolute

Error

RMSE Elapsed
Time (s)

HMQ 10.535 0.672 1.151 6603
TPS 8.817 0.583 0.968 26203
NN - gQLS 10.267 0.723 1.216 168
NN - gCLS 11.345 0.742 1.241 138
NN - gHMQ 13.767 0.650 1.094 76
NN - gTPS 14.911 0.665 1.128 79
NN - lQLS 10.171 0.742 1.255 171
NN - lCLS 10.163 0.677 1.142 281
NN - lHMQ 11.131 0.744 1.275 100
NN - lTPS 8.925 0.650 1.109 164
IDW - gQLS 12.914 0.790 1.311 2433
IDW - gCLS 11.689 0.757 1.242 2473
IDW - gHMQ 11.791 0.684 1.122 2441
IDW - gTPS 11.638 0.690 1.139 3131
IDW - lQLS 11.627 0.789 1.315 2443
IDW - lCLS 9.967 0.706 1.169 2479
IDW - lHMQ 10.552 0.763 1.283 2481
IDW - lTPS 8.666 0.654 1.093 3399
TBB - gQLS 11.778 0.754 1.274 8
TBB - gCLS 11.242 0.739 1.242 9
TBB - gHMQ 10.396 0.652 1.093 9
TBB - gTPS 11.587 0.675 1.128 8
TBB - lQLS 10.779 0.769 1.306 12
TBB - lCLS 9.515 0.702 1.185 11
TBB - lHMQ 10.557 0.747 1.277 20
TBB - lTPS 9.117 0.669 1.122 50
Table 3: Accuracy and time of calculation for the tested
methods for data file KarpatyCrop.

[CL13] Chen, C., and Li, Y. A robust multiquadric
method for digital elevation model construction.
Mathematical Geosciences, 45(3), pp.297-319,
2013.

[DG02] Dakowicz, M., and Gold, C. Visualizing ter-
rain models from contours - plausible ridge, val-
ley and slope estimation. In Proceedings of the
International Workshop on Visualization and An-
imation of Landscape, 2002.

[Fas07] Fasshauer, G. Meshfree approximation meth-
ods with MATLAB. vol. 6, World Scientific,
2007.

[GG13] Garnero, G., and Godone, D. Comparisons be-
tween different interpolation techniques. ISPRS-
International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sci-
ences, 1(3), pp.139-144, 2013.

[GR70] Golub, G., and Reinsch, C. Singular value
decomposition and least squares solutions, vol-
ume 14, pages 403-420. Springer, 1970.

[GS13] Gumus, K., and Sen, A. Comparison of spa-
tial interpolation methods and multi-layer neural
networks for different point distributions on a dig-
ital elevation model. Geodetski vestnik, 57(3),
pp.523-543, 2013.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 160 ISBN 978-80-86943-49-7

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

Absolute

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

I
D
W

Figure 6: A plot showing the ranking of accuracy of
individual methods for data file KarpatyCrop.

[HL93] Hoschek, J., and Lasser, D. Fundamentals of
Computer Aided Geometric Design, pages 388-
421. A K Peters, Wellesley, MA, 1993.

[Hu13] Hu, C. Comparison of the interpolation meth-
ods on digital terrain models. Master’s thesis,
Politecnico di Milano, 2013.

[Hug04] Hugentobler, M. Terrain Modelling with Tri-
angle Based Free-Form Surfaces. PhD thesis,
Mathematisch-naturwissenschaftlichen Fakultät
der Universität Zürich, 2004.

[HZDS01] Haber, J., Zeilfelder, F., Davydov, O., and
Seidel, H. Smooth approximation and rendering
of large scattered data sets. In Proceedings of
the Conference on Visualization ’01, VIS ’01,
pp.341-348. IEEE Computer Society, 2001.

[Isk03] Iske, A. Radial basis functions: basics, ad-
vanced topics and meshfree methods for transport
problems. Rendiconti del Seminario Matematico,
Polytechnic University of Turin, 61(3), pp.247-
285, 2003.

[LH10] Liang, L., and Hale, D. A stable and fast im-
plementation of natural neighbor interpolation,
2010.

[MS16] Majdisova, Z., and Skala, V. A radial ba-
sis function approximation for large datasets. In
Proceedings of SIGRAD 2016, May 23rd and
24th, Visby, Sweden, number 127, pages 9-14.
Linköping University Electronic Press, 2016.

[ON15] Okwuashi, O., and Ndehedehe, C. Digital ter-
rain model height estimation using support vector
machine regression. South African Journal of Sci-
ence, 111(9-10), pp.148-152, 2015.

[PGTG04] Pouderoux, J., Gonzato, J.-C., Tobor, I.,
and Guitton, P. Adaptive hierarchical rbf interpo-
lation for creating smooth digital elevation mod-
els. In Proceedings of the 12th Annual ACM In-
ternational Workshop on Geographic Information
Systems, GIS ’04, pages 232-240, New York,
USA, 2004. ACM.

[PS77] Powell, M., and Sabin, M. Piecewise quadratic
approximations on triangles. ACM Transactions
on Mathematical Software (TOMS), 3(4), pp.316-
325, 1977.

[SS09] Soycan, A., and Soycan, M. Digital elevation
model production from scanned topographic con-
tour maps via thin plate spline interpolation. Ara-
bian Journal for Science and Engineering, 34(1),
pp.121-134, 2009.

[TH10] Thacker, W., et al. Algorithm 905: SHEP-
PACK: Modified Shepard algorithm for interpola-
tion of scattered multivariate data. ACM Transac-
tions on Mathematical Software (TOMS), 37(3),
2010.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 161 ISBN 978-80-86943-49-7

(a) Clough-Tocher (b) Hardy Multiquadrics (c) Thin Plate Spline

(d) IDW (e) IDW - gTPS (f) IDW - lTPS

(g) TBB (h) TBB - gTPS (i) TBB - lTPS

(j) NN (k) NN - gTPS (l) NN - lTPS

Figure 7: Removing shape artefacts while using local functions. Surfaces of the original methods are on the left,
modifications using the tangent planes are in the middle, using local TPS is on the right.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 162 ISBN 978-80-86943-49-7

	G97-full.pdf
	H05-full.pdf
	H17-full.pdf
	H89-full.pdf
	I17-full.pdf
	I19-full.pdf
	I37-full.pdf
	I73-full.pdf
	J31-full.pdf
	K13-full.pdf
	K31-full.pdf
	K61-full.pdf
	L41-full.pdf
	L53-full.pdf
	M05-full.pdf
	M47-full.pdf
	M67-full.pdf
	N02-full.pdf

