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ABSTRACT
In this paper, we propose an approach for human activity recognition using gradient orientation of depth maps
and spatio-temporal features from body-joints data. Our approach is based on an amalgamation of key local
and global feature descriptors such as spatial pose, temporal variation in ‘joints’ position and spatio-temporal
gradient orientation of depth maps. Additionally, we obtain a motion-induced global shape feature describing the
motion dynamics during an action. Feature selection is carried out to select a relevant subset of features for action
recognition. The resultant features are evaluated using SVM classifier. We validate our proposed method on our
own dataset consisting of 11 classes and a total of 287 videos. We also compare the effectiveness of our method
on the MSR-Action3D dataset.
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1 INTRODUCTION
Human action recognition has been an active area of
research for over a decade. With the proliferation of
online videos and personalized cameras, the task of hu-
man action recognition for applications such as content-
based video retrieval, surveillance, human-computer in-
teraction has attained newer meanings. Further, the in-
troduction of depth sensors such as Microsoft Kinect
has added a new dimension. The depth data available
from Kinect consists of depth maps and body-joints
data. A number of ways have been used in the liter-
ature for action recognition from depth data [16], [4],
[18], [8], [9], [21], [10]. Broadly, these could be cat-
egorized as methods that are based on data from depth
maps and those, which use joints data.

Li et al.[8] use action graph to model the dynamics
of action from depth maps sequences. They use a
bag of 3D points to characterize a set of salient pos-
tures corresponding to nodes in action graph. Ni et
al.[9] use depth-layered multi-channel representation
based on spatio-temporal interest points. They propose
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a multi-modal fusion scheme, developed from spatio-
temporal interest points and motion history images, to
combine color and depth information. In [21], the
average difference between the depth frames is com-
puted and summarized in a single Depth Motion Maps
(DMM), from which Histogram of Oriented Gradients
features (HOG) are extracted. Oreifej and Liu [10] con-
struct an activity descriptor called Histogram of Ori-
ented 4D surface normal analogous to the histogram
of gradients in color sequences. Jetley and Cuzzolin
[3] divide the video into temporally overlapping blocks
and generate motion history template (MHT) and bi-
nary shape template (BST) for each block. Gradient
analysis is performed on MHT and BST to describe mo-
tion and shape respectively.

Amongst approaches driven by body-joints data, Sung
et al.[16] use features extracted from estimated skele-
ton and use a two-layered Maximum-Entropy Markov
Model (MEMM) where the top layer represents ac-
tivites and the mid-layer represents sub-activities con-
nected to the corresponding activites in top layer. In
[4], the authors propose an encoding scheme to con-
vert skeleton data into symbolic representation and use
longest common subsequence for activity recognition.
Wang et al.[18] use skeleton data and depth maps to
construct novel Local Occupancy Pattern (LOP) fea-
ture wherein, each 3D joint is associated with a LOP
feature which can be treated as depth appearance of a
joint. They further propose fourier temporal pyramid
and use these features in a mining approach to obtain a



subset of joints or an actionlet. In [14], the authors ex-
tract features in spherical coordinate system from body-
joints data. The features are represented using bag-of-
joint-features (BoJF) model for each joint. To incor-
porate temporal variations of an action, a hierarchical-
temporal histogram (HT-hist) model is used. A new re-
lational geometric feature called Trisarea has been pro-
posed in [17]. It is a pose-based feature defined as the
area of trianlge formed by three joints. An approach
for reducing pose data over time to histograms of rel-
ative location, velocity, and their correlations has been
presented in [2]. Subsequently, the partial least squares
have been used to learn a compact and discriminative
representation for an action sample.

The use of depth maps has the advantage that cues such
as shape and geometry are better represented. Body-
joints data, on the other hand, provides pose informa-
tion which has been known to facilitate action recogni-
tion as humans tend to recognize actions easily from a
sequence of poses. In this paper, we exploit both the
data streams by learning a model based on features ex-
tracted from depth maps as well as body-joints data.
The features extracted can be categorized as local or
global depending on whether the feature descriptors are
defined over a local region or the entire video volume.
In this paper we propose a novel scheme by integrating
both the depth maps and joints data. We estimate Gra-
dient Orientation from depth maps (depthHOG) and
motion-induced shape (MIS) features from depth maps.
Further, we augment these features with Relative Joint
Distance (RJD) and Temporal Joint Distance (T JD)
features obtained from body-joints data.

The rest of the paper is organized as follows: Section
2 presents the proposed approach. In section 3, we
present the experiments and results. Finally, in section
4 we discuss the conclusion and future extensions.

2 PROPOSED APPROACH
In this section, we present our proposed approach based
on fusion of key local and global attributes such as pose,
temporal joint distance, orientation of gradient and mo-
tion information.

2.1 Local Attributes
2.1.1 Spatial Features

It has been widely acknowledged that humans tend to
recognize actions easily from a sequence of poses. We
use this idea to extract spatial pose-based features, Rel-
ative Joint Distance (RJD), by computing mean of joint
positions in each frame. Let it be denoted by µ f . Sub-
sequently, in each frame f we compute a Relative Joint
Distance (RJD) R f

j of a joint j from the mean as fol-
lows:

R f
j = ||p

f
j −µ

f || (1)

where p f
j (x,y,z) is the 3D position of a joint j in frame

f and µ f is the mean position of all the given joints in
a frame f . We normalize the RJD with respect to the
height(H) of a person as follows:

R̂ f
j = R f

j /H (2)

The RJD of each joint over all the frames is concate-
nated to yield the final spatial descriptor from body-
joints data. In particular, we have a 20-dimensional
RJD feature vector corresponding to the 20 body-joints
in a frame. Further, since the execution speeds of an ac-
tion may vary for different actors, we select N number
of frames with a step size of n f /N and compute RJD in
these frames only, where n f is the number of frames in a
video. The resultant N ∗20 features capture spatial pose
information. However, if an action involves movements
such as circular motion of an arm or waving of hands,
there will not be significant change in pose. Therefore,
there is a need to augment spatial pose features with
information from other sources as well.

2.1.2 Temporal Features
We propose to augment spatial pose features with
Temporal Joint Distance (T JD) features extracted from
body-joints data. As with the spatial pose features,
we first select N frames from a video sequence of n f
frames. We then compute T JD for the selected frames
as follows:

T f
j = ||p f

j − p f+1
j || (3)

Since there are N selected frames, the resultant T JD
consists of (N−1)∗20 features.

2.1.3 Spatio-Temporal Features
The RJD and T JD features are extracted from body-
joints data. Additionally, we use depth map sequence
to exploit cues such as shape, which are better rep-
resented in depth maps. We obtain gradient based
spatio-temporal features, henceforth referred to as
depthHOG. Use of histogram of gradients(HOG)
for action recognition has been reported earlier in the
literature for RGB data [13], [5], [11], [7]. In [5], the
authors compute gradients in spatio-temporal pyramid
and use regular polyhedrons for quantization of 3D
orientations. In [11], the authors combine histogram of
gradients into orientation tensors per frame.
As a pre-processing step, we normalize the input depth
map by performing histogram equalization of inten-
sity values within a person mask on each frame. The
normalization step results in the depth values of per-
son being covered over the entire intensity range. We
then compute gradient (Gx,Gy,Gt) of the depth map
sequence along the x, y and t directions. Let D(i, j, f )
denote the depth value at pixel (i, j) and frame f . The
gradients are computed using the following:

Gx(i, j, f ) = D(i, j+1, f )−D(i, j−1, f ) (4)
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Figure 1: (a)Depth map sequence. (b)Gradient mask
for a pixel along temporal domain.

Gy(i, j, f ) = D(i+1, j, f )−D(i−1, j, f ) (5)

Gt(i, j, f ) = D(i, j, f +1)−D(i, j, f −1) (6)

Figure 1(a) shows a sample depth map sequence for
‘hand wave’ action. Figure 1(b) shows the gradient
mask across temporal domain. We use the computed
gradients (Gx,Gy,Gt ) to find local 3D orientations in
depth maps. Let Gx(i, j, f ) denote the gradient at pixel
(i, j) and frame f computed along x direction. Similarly
Gy(i, j, f ) and Gt(i, j, f ) denote the gradients computed
along y and t directions respectively. In order to find the
local 3D orientation of depth gradients, we convert Gx,
Gy, Gt values into spherical coordinates. This results
in a gradient magnitude M(i, j, f ) and angles θ(i, j, f )
and φ(i, j, f ).

M =
√

G2
x +G2

y +G2
t , M ≥ 0 (7)

φ = arccos(Gt/M) , 0≤ φ ≤ π (8)

θ = arctan(Gy/Gx) , 0≤ θ < 2π (9)

Although, tan(θ) is defined for −π/2 ≤ θ ≤ π/2, we
map the values in the range 0 ≤ θ < 2π . It may be
noted that there is a slight variation from the formu-
lation in [7], in that, their formulation is for RGB data
whereas ours is on depth maps. Secondly, in our case, φ

signifies the orientation of gradient vector with respect
to the temporal axis whereas in [7], φ is the angle that
the gradient vector makes with its projection on the x-y
plane.

The aggregation of the orientation values over the depth
map sequence is done by dividing the depth map se-
quence into a spatio-temporal grid. In order to construct
such a grid, we consider a Region of Interest (ROI) for a
depth map sequence by finding a maximum of all possi-
ble bounding boxes (a bounding box contains a person)
in a depth map sequence. We then divide this region

(a) (b)
(c)

Figure 2: (a)Maximum bounding box for a depth map
sequence. (b)Spatio-Temporal grid. (c)Cell in a Spatio-
Temporal grid.
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Figure 3: (a)Spherical coordinates for gradient of a
pixel. (b)depthHOG in a cell.

into a grid consisting of nx ∗ ny cells in the spatial do-
main and nt cells in the temporal domain. For aggregat-
ing the gradient orientations in a cell, we quantize the
θ and φ angles into nθ and nφ bins respectively and the
bins are weighted according to the gradient magnitude.

Figure 2 illustrates the process of cell creation. Figure
3 illustrates the conversion of pixel gradient into spher-
ical coordiante system and the depthHOG as two 1D
histograms, namely θ − histogram and φ − histogram.
Each histogram is normalized within a cell. Figure 4(a)
and 4(b) illustrates the process of creating angular bins
for φ and θ . Figure 4(c) and 4(d) illustrate sample his-
tograms in a cell.

The histograms from all the cells are concatenated to
give the final depthHOG features. The depthHOG
features are obtained by concatenating nx ∗ ny ∗ nt his-
tograms for both nθ and nφ bins. A typical choice of the
parameters for creating spatio-temporal grid and gradi-
ent orientation bins is given as nx = 5, ny = 8, nt = 6,
nθ = 12, nφ = 6. This would result in 4320 depthHOG
features.

2.2 Global Attributes
Recent research [21], [3], suggests that additional body
shape and motion information from projections of
depth map onto three orthogonal planes can be used to
enhance performance of action recognition systems.
We use this idea to define a Motion-Induced-Shape
(MIS) feature. Yang et al. [21] obtain three 2D maps
corresponding to top, front and side views for each
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Figure 4: (a)Illustrative example showing 4 angular
bins for φ . (b)Illustartive example showing 8 an-
gular bins for θ . (c)-(d)Sample φ −Histogram and
θ −Histogram for a cell.

depth frame. And for each projected map, obtain
motion energy by computing and thresholding the dif-
ference between two consecutive maps. This, however,
requires one to empirically set a threshold value. We
modify this by extracting binary projections along the
three directions. In particular, given a depth frame k,
we obtain three masks B f

k , Bs
k and Bt

k corresponding to
the three views as:

• Front view: B f
k (i, j) = 1, if D(i, j,k) = z and z > 0

• Side view: Bs
k(z, j) = 1, if D(i, j,k) = z and z > 0

• Top view: Bt
k(i,z) = 1, if D(i, j,k) = z and z > 0

In all other cases, resultant pixel value will be 0. It may
be noted that this procedure is applied only on human
silhouette. Obtaining depth information of only human
body has been greatly facilitated with devices such as
Kinect.

We now aggregate the difference between consecutive
binary masks as:

S f (i, j) =
n f−1

∑
k=1
|B f

k (i, j)−B f
k+1(i, j)| (10)

Ss(i, j) =
n f−1

∑
k=1
|Bs

k(i, j)−Bs
k+1(i, j)| (11)

St(i, j) =
n f−1

∑
k=1
|Bt

k(i, j)−Bt
k+1(i, j)| (12)

where, B f
k (i, j) Bs

k(i, j) and Bt
k(i, j) are binary masks

corresponding to front, side and top view of depth
frame k for pixel (i, j), respectively. Next, we normal-
ize the obtained motion maps as follows:

Ŝ f (i, j) =
S f (i, j)−min f

max f −min f
(13)

where, min f and max f are the minimum and maximum
pixel values of S f respectively. Similarly, we normal-
ize St and Ss to obtain Ŝt and Ŝs. Figure 5 illustrates
the normalized motion maps for the ‘High arm wave’
action.

2.2.1 Motion-Induced-Shape features

We obtain MIS features by extracting HOG descriptor
from the motion maps Ŝ f , Ŝt , Ŝs corresponding to the
three views. A typical choice of cell size is cx ∗ cy with
number of orientation bins as no = 9 and a block size of
2∗2. cx and cy varies for different datasets.

The number of MIS features obtained from a single
view (say front view) is given as N f

MIS = nb ∗ δb ∗ no
where nb = nx

b ∗ny
b is the number of blocks, δb = bx ∗by

is the block size. Typical value of bx = by = 2 indicates
that a block consists of 2∗2 cells. If the image is of size
W ∗H, then the number of blocks is given as:

nb = b(
W
cx
−bx

(bx−bx
o)

+1)c ∗ b(
H
cy
−by

by−bo
y
+1)c (14)

where bx
o ∗by

o denote the block overlap. Typically, bx
o =

by
o = 1. Likewise, Ns

MIS and Nt
MIS can be computed from

Ŝs and Ŝt for side and top views respectively. Finally,
the concatenated MIS descriptors from each of the three
views constitute the final MIS.

2.3 Classification
The RJD, T JD, depthHOG and MIS features from a
video are concatenated to form the final feature vector
for the corresponding video. We perform classification
on the features using SVM with RBF kernel. The re-
sultant feature vector may contain some redundant or
irrelevant features leading to large computational load
on the classifier. We propose to obtain the most rele-
vant set of features using a feature selection (FS) ap-
proach such as RELIEFF [6], [12]. It gives the relative
importance of attributes or predictors by keeping into
account k nearest neighbors in a class (called as near-
est hits) and k nearest neighbors from each of the other
classes (called as nearest misses). Prior probability of a
class is taken into account while estimating the quality
of an attribute.

Using RELIEFF we obtain a ranking order of all the
features. From the entire set of ranked α features, we
select a subset of α̂ top ranked features. We perform
classification on the top ranked α̂ features using SVM
with RBF Kernel. In section 3, we discuss the perfor-
mance of proposed approach in relation to the number
of top ranked features.
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Figure 5: Normalized Motion Maps for High Arm Wave action. (a)Front View (b)Side View (c)Top View

3 EXPERIMENTS
In this section, we evaluate the proposed method. We
tested our method on the MSR-Action3D dataset [8]
and a dataset created by us.

3.1 MSR-Action3D
The MSR-Action3D dataset [8] consists of 20 actions
namely ‘high arm wave’, ‘horizontal arm wave’,
‘hammer’, ‘hand catch’, ‘forward punch’, ‘high throw’,
‘draw x’, ‘draw tick’, ‘draw circle’, ‘hand clap’, ‘two
hand wave’, ‘side-boxing’, ‘bend’, ‘forward kick’,
‘side kick’, ‘jogging’, ‘tennis swing’, ‘tennis serve’,
‘golf swing’, ‘pick up and throw’. Each action is
performed by 10 actors and has a total of 567 depth
map sequences as well as body-joints data.
Li et al. [8] divide the 20 actions into three subsets, each
having 8 actions as listed in Table 1. The AS1 and AS2
group similar actions with similar movements, while
AS3 consists of complex actions. We used the same di-
visions as well for testing our method. The performance
of entire feature set has been compared with that of re-
duced feature set obtained using RELIEFF in Tables 2
and 3 under 2 scenarios: ‘cross-subject’[8] and ‘five-
fold cross validation’. “Without FS” column refers to
the accuracy obtained when the entire set of α features
is used. “With FS” column refers to the accuracy ob-
tained using top α̂ features. From a total of α = 11512,
we selected α̂ = 2000 top ranked features.
In ‘cross-subject’[8] setting, half of the subjects are
used for training and the remaining are used for test-
ing. In Table 2, we report the accuracy obtained using
cross-subject test scenario. We observed an increase
in the overall accuracy from 91.28% to 94.61% using
feature selection. In ‘five-fold cross-validation’ the en-
tire dataset is split into five folds and training is done

Action Set 1 Action Set 2 Action Set 3
(AS1) (AS2) (AS3)

Horz. arm wave High arm wave High throw
Hammer Hand catch Forward kick

Forward punch Draw x Side kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve
Tennis serve Forward kick Golf swing
Pickup-throw Side boxing Pickup-throw

Table 1: The three subsets of actions in MSR Action3D
dataset

on four folds and tested on remaining fold. This is re-
peated so that each fold is tested once. The results of
the same are reported in Table 3. The accuracy reported
is the average over all the folds. We observed an in-
crease in the overall accuracy from 93.73% to 95.92%
using feature selection.

Figure 6 illustrates the confusion matrix for AS1, AS2
and AS3 under the ‘cross-subject’ scenario. It may
be observed from fig 6(b) that misclassification oc-
curs mostly for the first five actions since ‘draw x’,
‘draw circle’, ‘hand catch’ involve similar movement
of hands. We compare the performance of proposed
method (‘With FS’) with the state-of-the-arts in Table
4.

We also tested our approach on the MSR-Action3D
dataset in another scenario wherein the data is not di-
vided into action sets i.e. all the 20 classes were used
for evaluation. We obtained an accuracy of 85.09%
without feature selection and an accuracy of 87.64%
with feature selection in cross-subject test scenario.
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Figure 6: Confusion matrix for MSR Action3D Dataset. (a)AS1 (b)AS2 (c)AS3

Without FS With FS
AS1 92.45% 96.23%
AS2 84.96% 89.38%
AS3 96.43% 98.21%

Overall 91.28% 94.61%
Table 2: Cross-subject accuracy on MSR-Action3D
dataset

Without FS With FS
AS1 93.36% 96.9%
AS2 90.04% 92.64%
AS3 97.78% 98.23%

Overall 93.73% 95.92%
Table 3: Five-fold cross-validation accuracy on MSR-
Action3D dataset

Method Accuracy
BOP[8] 74.7%

HOJ3D[19] 79.0%
EigenJoints[20] 82.3%
MHT+BST[3] 83.8%

BoJFH[14] 84.5%
GRMD[15] 86.21%

DMM-HOG[21] 91.63%
Ours 94.61%

Table 4: Comparative results on MSR-Action3D
dataset in cross-subject scenario

3.2 Our Dataset

We created a dataset of depth maps and joints data us-
ing Microsoft Kinect to test our proposed approach.
The dataset consists of 11 actions namely ‘bending’,
‘clapping’, ‘drinking water’, ‘hand washing’, ‘jump-
ing’, ‘kicking’, ‘left hand wave’, ‘right hand wave’,
‘punching’, ‘standing’, ‘stretching’. The data set con-
sists of 287 videos where various actions were per-
formed by 13 actors. Figure 7 shows a few sample
frames from our dataset.

The total number of features(α) from each video
turns out to be 16192 from which we select top 2000
features(α̂). Table 5 shows the accuracy for 2 testing
scenarios: five-fold cross-validation (FFCV) and New
Subject(NS). In FFCV scenario, the entire dataset is
divided into five folds and training is done on four
folds and tested on remaining fold. This is repeated so
that each fold is tested once. In ‘NS’ Test scenario six
subjects were chosen for training and the remaining for
testing. We observed that the accuracy increased by
selecting α̂ top ranked feature.

Figure 8 illustrates the confusion matrix obtained in
‘NS’ scenario. Figure 9 shows the performance vari-
ation with respect to the number of selected top ranked
features for MSR Action3D and our dataset. The hori-
zontal axis indicates the number of selected top ranked
features and the vertical axis indicates the accuracy ob-
tained using the selected features.
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Figure 9: Recognition accuracies using different num-
ber of top ranked features.

Without FS With FS
Five-Fold CV 98.6% 99.3%
New Subject 97.67% 98.45%

Table 5: Results on Our dataset

4 CONCLUSION
In this paper, we have presented a new approach for ac-
tion recognition based on fusion of local and global fea-
tures from depth maps and body-joints data. We have
proposed a novel gradient based spatio-temporal fea-
ture called as depthHOG and a motion-induced shape
(MIS) feature, both extracted from depth maps. Further,
we have augmented these features with Relative Joint
Distance (RJD) and Temporal Joint Distance (T JD)
feature obtained from body-joints data. We have used
RELIEFF to obatin a small but more relevant subset
of features from the entire feature pool. Experimental
study reveals that the classification accuracy improves
when relevant features are used. This further reduces
the computational complexity of classification process.
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