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ABSTRACT
Emotions play an important role in human-human interaction. But they are also expressed during human-computer
interaction, and thus should be recognised and responded to in an appropriate way. Therefore, emotion recogni-
tion is an important feature that should be integrated in human-computer interaction. But the task of emotion
recognition is not an easy one – in “in the wild” scenarios, the occurring emotions are rarely expressive and clear.
Different emotions like joy and surprise often occur simultaneously or in a very reduced form. That is why, be-
sides recognising categorial and clear emotions like joy and anger, it is also important to recognise more subtle
affects. One example for such an affect that is crucial for human-computer interaction is trouble experienced by
the human in case of unexpected dialogue course. Another point concerning this task is that the emotional status of
a person is not necessarily revealed in his or her voice. But the same information is contained in the physiological
reactions of the person, that are much harder to conceal, therefore representing the “true signal”. That is why the
physiological signals, or biosignals, should not be left unattended. In this paper we use the data from naturalistic
human-computer dialogues containing challenging dialogue stages to show that it is possible to differentiate be-
tween troubled and untroubled dialogue in acoustic as well as in physiological signals. We achieve an unweighted
average recall (UAR) of 64% using the acoustic signal, and an UAR of 88% using the biosignals.
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1 INTRODUCTION
One of the goals of human-computer spoken interaction
is to become more and more similar to human-human
interaction, turning the machine into an almost-human
companion. For this matter, not only understanding
what a human is saying is important, but also how it
is said – the emotions of the human counterpart are an
equally important part of interaction. This is why com-
puters should be able to recognise and understand emo-
tions. But this is a challenging task, since human emo-
tions can range in a variety of dimensions. As a start-
ing point, we can consider six basic emotions following
the categorial model [1]: happiness, surprise, fear, sad-
ness, anger and disgust combined with contempt. But
natural emotions comprise clearly more than that. An-
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other classification of emotions, better suited for natu-
ral emotions, is the multidimensional scale of pleasure-
arousal-dominance [2]. But not all emotions are rele-
vant for human-computer interaction. One emotion is
especially important in this aspect: the feeling that hu-
mans experience when something unexpected happens
during a dialogue. If an interaction suddenly becomes
challenging for the human counterpart, it is crucial for
the success of the dialogue to recognise it and to react
in an appropriate way.

In this paper we show that even slight emotional changes
occurring in naturalistic human-machine dialogue can
be predicted from acoustic as well as from physiolog-
ical signals. For this purpose, we use data of human-
computer interaction obtained during a naturalistic mul-
timodal Wizard-of-Oz (WOZ) experiment, consisting
of unchallenging and challenging dialogue stages. This
design allows us to look into problems that naturally
arise from challenging human-machine interaction. For
this purpose, we simplify the dialogue stages to two
main classes: the baseline class containing normal in-
teraction and the trouble class containing challenging
interaction. We show that it is possible to automatically



discriminate these dialogue stages based on acoustic
data as well as on biosignals.

The remainder of the paper is structured in the fol-
lowing manner: first, we give an overview on exist-
ing related work in section 2; in section 3 we introduce
the data set used for our experiments; in section 4 we
describe the feature extraction routines for both data
types, and the classification process; in section 5 we
present and discuss the achieved results; in section 6
we summarise the work and show some possibilities for
future development.

2 RELATED WORK
Automatic emotion recognition on acoustic data has
achieved considerable results in the last years. On acted
data, like the standard Berlin Database of Emotional
Speech [3], recognition rates of 85% are possible [4].
But in realistic tasks, emotions often cannot be divided
in discrete categories of joy, sadness, anger, etc. The au-
tomatic classification of naturalistic data is difficult and
achieves less impressive outcomes: for “in the wild”
scenarios using audio only recognition results of about
33% UAR [5] to about 24% UAR [4] and 20% accu-
racy [6] for seven-class-problems are achieved. But
even for human annotators emotion recognition from
speech alone is not an easy task – for acoustic data with-
out context, an average accuracy of 60% is achieved by
human raters [7]. To solve this problem, humans rely on
other modalities of interaction besides speech, like fa-
cial expressions, gestures, etc. This applies also to auto-
matic emotion recognition. For example, adding the di-
mension of co-speech gestures improves the results by
2 percentage points compared to speech alone [8]. An-
other experiment shows that using only facial expres-
sions outperforms using only acoustics by almost 15
percentage points in terms of accuracy, and using both
data types simultaneously in a bimodal system leads to
a further improvement of 4 percentage points [9].

Additionally, there are physiological reactions related
to emotions, like a racing heart, gasping and sweating
palms. The links between biosignals such as heart rate,
temperature, skin resistance and emotions have been
known for a long time [10] [11] [12]. One big advan-
tage of using physiological data is that biosignals can
be obtained at all times – acoustic signals can only be
obtained when the user is speaking. Another point is
that physiological reactions, in contrast to reactions in
voice, are much harder to conceal. That is why it is not
surprising, that recognition of emotions on physiologi-
cal signals achieves better results than only on acoustic
data. This has been proven many times, for example for
categorial emotions, where the recognition rate ranges
from 49% to 75% for induced emotions [13] [14] [15],
for the multidimensional valence-arousal scale with a
recognition rate of over 90% [16], also for induced

emotions, and for other scales like fun levels, with a
recognition rate of 70% [17].

There are also multimodal approaches combining both
physiological and acoustic data. One example is similar
to our setting: a WOZ quiz show with four stages, cor-
responding to four classes on the valence-arousal scale
(high and low for valence and arousal, respectively),
where six different biosignals and acoustic feedback are
used for emotion recognition [18]. The results vary de-
pending on the evaluation method (92%-69% accuracy
for subject-dependent vs. 55% accuracy for subject-
independent evaluation), but combining the physiologi-
cal and acoustic features leads to an improvement in all
cases. Although this direction seems promising, the re-
search on this topic is still rare. One possible problem is
that the gathering of naturalistic multimodal data is not
a simple process, in terms of recording (e.g. problems
concerning the synchronisation of data streams) as well
as in terms of processing (e.g. fusion of data streams).

Most of the studies presented above deal with emo-
tion recognition in general and investigate elicited emo-
tions. But on the important topic of recognising trou-
ble in human-machine communication, especially nat-
uralistic communication, not much research has been
done so far. The groundbreaking example is detecting
trouble in acted and elicited interaction using acoustic
data and detailed annotations containing part-of-speech
(POS) tagging, dialogue acts, repetitions and syntactic
boundaries, achieving 73% to 96% recall for different
scenarios [19]. One of the scenarios described in this
approach is a naturalistic WOZ experiment, here the
data was separated into two classes: one class contain-
ing prosodic peculiarities and one class containing no
prosodic peculiarities. This setup resembles the setup
of our study, but in our case we rely on much simpler
annotations of the acoustic data and, more importantly,
on biosignals.

3 THE DATA SET
3.1 The LAST MINUTE Corpus
The LAST MINUTE Corpus [20][21][22] contains nat-
uralistic multimodal recordings of German speaking
subjects in a WOZ experiment. The setup of the ex-
periment revolves around the preparations for an imag-
inary journey to an unknown place “Waiuku”. Each ex-
periment lasts about 30 minutes and consists of several
dialogue stages, each triggered by a major event. A
summary of the different dialogue stages can be seen
in Table 1. First, the subjects are asked to introduce
themselves to the “machine” in a “warm-up” dialogue
stage. After that, they are requested to imagine win-
ning a summer trip to an unknown destination called
Waiuku, and they have to pack a suitcase by choosing
items from a list in a “listing” dialogue stage. There
is also a time constraint: the trip begins immediately,



and the subjects have only fifteen minutes for the pack-
ing process. After several minutes of packing there is
another major event: the subjects learn that the suit-
case has a weight limit, so they have to remove some of
the packed items. This corresponds to the “challenge”
dialogue stage. After that, the next major event occurs
when the real destination of the trip is revealed: Waiuku
lies in the southern hemisphere. Since the subjects now
know that the trip is a winter trip instead of a summer
trip, they have to re-organise their suitcase again. This
dialogue stage is called the “Waiuku” stage. At the end
of the experiment, there is a short “conclusion” stage. It
is expected that the subjects experience different emo-
tions during the dialogue stages, and also express them.
It should be noted that like in any naturalistic scenario,
the subjects may react differently, with reactions rang-
ing from very expressive to very subtle.

Dialogue Stage Trigger Troubled?

Warm-up Introduction request No

Listing Winning the trip No

Challenge Weight Constraint Yes

Waiuku Revealing destination Yes

Conclusion Concluding remarks No

Table 1: Overview of the dialogue stages

The acoustic data is recorded using 2 directional mi-
crophones at 44100 Hz and stored in the wav format.
The biosignal data is recorded using the NeXus-32 sys-
tem1. From the various biosignals available from this
system, it proved sufficient for our analysis to use elec-
tromyogram (EMG), skin conductivity (SC) and respi-
ration (RSP). These biosignals could be obtained in sus-
tained quality throughout the experiment.

3.2 Selecting the Data
From all the recordings of the LAST MINUTE Cor-
pus we selected a subset containing the recordings of
19 subjects, of whom both the acoustic and the physi-
ological data exist. The age and sex distribution of the
subjects is nearly balanced, as shown in Table 2. The
acoustic data set and the biosignal data set are divided
into three subsets to enable subject-independent evalua-
tion. The subsets for the acoustic data contain the same
subjects as the subsets of the biosignal data, leading to
a training subset containing data of 11 subjects, a devel-
opment subset containing data of 4 subjects and a test
subset containing data of 4 subjects each. These sub-
sets are also nearly balanced regarding the distribution
of age and sex, cf. Table 2. In the classification process,
the models are built on the training subsets, fine-tuning

1 http://www.mindmedia.info/CMS2014/
products/systems/nexus-32

the parameters of the classifier takes place on the devel-
opment subsets in order to avoid overfitting to the test
data, the test subsets are used to obtain the final classi-
fication results.

Train Dev Test Overall

Sex

Female 5 2 2 9

Male 6 2 2 10

Age

Young (< 30) 7 2 2 11

Elder (> 60) 4 2 2 8

Table 2: Distribution of sex and age of the subjects.

3.3 Dividing the Data into Classes
The hypothesis of this paper is that it is possible to auto-
matically detect the different dialogue stages described
above in both acoustic and biosignal data recorded dur-
ing the experiments. For this purpose, we divide the
data into two classes: the baseline class, denoting un-
troubled interaction in the warm-up, listing and conclu-
sion dialogue stages, and the trouble class, denoting the
challenge and Waiuku dialogue stages, where the sub-
jects are expected to experience trouble during the inter-
action. It should be noted that no perception tests were
conducted, therefore the data is not annotated regarding
the level of trouble expressed by the subject. The labels
consist only of the dialogue stages. Therefore, the trou-
ble class contains different levels of trouble. We will
present the different levels using two examples from the
challenge dialogue stage.

The first example shows two snippets from a dialogue,
here the subject is an elderly woman. In the first part,
she is – for the first time – informed by the Wizard that
the weight limit is reached:

Wizard: A swimsuit or bikini cannot be added, other-
wise the maximum weight limit prescribed by the airline
would be exceeded. Before other items can be selected,
you must provide enough space in your suitcase. For
this, already packed items can be unpacked. On de-
mand, you can get a list of the already selected items.

Subject: Yes, uh ((pause)) I would like ((pause)) take
out a pair of shoes.

Wizard: Your statement cannot be processed.

After she fails to remove some items, she selects some
more items and gets the same message from the Wizard
again. Now she seems frustrated:

Wizard: Before other items can be selected, you must
provide enough space in your suitcase. For this, already
packed items can be unpacked. On demand, you can get
a list of the already selected items.



Subject: hm ((moaning)) yes (.) then I want to hear the
chosen items again please, I told you I want to unpack
shoes.

The second example shows the dialogue of a young
woman, who also learns that there is a weight limit:

Wizard: Before other items can be selected, you must
provide enough space in your suitcase. For this, already
packed items can be unpacked. On demand, you can get
a list of the already selected items.

Subject: Remove inflatable boat.

Wizard: One inflatable boat was removed, you can con-
tinue.

Subject: ((smacks)) three bikinis ((swallows))

She seems to be less influenced by the weight limit, at
least concerning her speech alone.

Both dialogue snippets are examples of the trouble
class, since both parts happen during the challenge dia-
logue stage.

4 RECOGNITION EXPERIMENTS
4.1 Pre-processing the Data
The acoustic feature set consists of the Emobase feature
set, fully described in [23], which is widely used for
emotion recognition. The features are extracted using
openSMILE [24]. The feature set includes 988 acoustic
features extracted on utterance-level, such as intensity,
loudness, 12 MFCCs, F0, voicing probability F0 en-
velope, 8 line spectral frequencies, zero-crossing rate,
and their functionals. Other feature sets widely em-
ployed for emotion recognition, such as those described
in [25] [26] were tested in a preliminary investigation,
but were rejected since they lead to poor results.

The physiological features are extracted from the biosig-
nal data on dialogue stage level (including the speak-
ing time of the Wizard), using the Augsburg Biosignal
Toolbox2. The 3 original biosignals (EMG, RSP, SC)
are preprocessed by applying a lowpass filter and nor-
malisation, then a total number of 104 features, includ-
ing first and second order derivatives and statistical fea-
tures (mean, median, standard deviation, etc.) are cal-
culated at a sampling rate of 32 Hz. The full description
of the feature set can be found in [27].

4.2 Classification
We chose random forest as a classifier for the clas-
sification of both, acoustic and biosignal data. This
classification method was chosen because of its higher
training speed and its good performance compared to
support vector machines [28], the standard classifica-
tion method widely used for emotion recognition from

2 http://www.informatik.uni-augsburg.de/
lehrstuehle/hcm/projects/tools/aubt/

speech. We employ the Weka implementation of ran-
dom forest, which is based upon the classic algorithm
by Breiman [29]. One advantage of this implementation
is that there are only two parameters to be tuned: the
number of features used in each node and the number
of trees. The hyperparameter optimisation takes place
using grid search. For both types of data, between 1
and 50 features and between 10 and 100 trees are eval-
uated using the development subsets. For the acoustic
data, the best parameters are found to be 6 features and
30 trees. For the biosignal data, the best parameters are
found to be 3 features and 10 trees.

5 RESULTS AND DISCUSSION
The recall, precision and f-measure of the classification
for the two classes of trouble and baseline are shown in
Table 3 and Table 4 for the acoustic and biosignal data,
respectively. A comparison of the UAR values for both
types of data can be seen in Fig. 1.

Figure 1: Comparison of classification results on phys-
iological and acoustic data, UAR

On acoustic data, the UAR lies at 0.70 for the devel-
opment set and 0.64 for the test set, with higher recall
values for the trouble class and lower values for the
baseline class. On biosignal data, the results are better
by roughly 25 percentage points: the UAR lies at 0.94
for the development set and 0.88 for the test set, here
the trouble class is recognised with a higher recall com-
pared to the baseline class on the development set, but
with a lower recall on the test set. But overall we can
see that the results on the test set are similar to the re-
sults on the development set, indicating that the model
is able to appropriately generalise.

Regarding the precision of the detection we can see a
comparable trend as for UAR. For the acoustic data, the
unweighted average precision lies at 0.68 and 0.64 for
the development and the test sets, respectively. For the



biosignal data, the values of unweighted average pre-
cision are 22 percentage points higher for the develop-
ment set and even 30 percentage points higher for the
test set, resulting in 0.90 for the development set and an
even higher value of 0.94 for the test set.

Recall Precision F-Measure

Development Set

Trouble 0.77 0.51 0.61

Baseline 0.63 0.84 0.72

Unweighted av. 0.70 0.68 0.67

Test Set

Trouble 0.66 0.58 0.62

Baseline 0.62 0.70 0.66

Unweighted av. 0.64 0.64 0.64

Table 3: Classification results on acoustic data.

Recall Precision F-Measure

Development Set

Trouble 1.00 0.80 0.89

Baseline 0.88 1.00 0.93

Unweighted av. 0.94 0.90 0.91

Test Set

Trouble 0.75 1.00 0.86

Baseline 1.00 0.89 0.94

Unweighted av. 0.88 0.94 0.90

Table 4: Classification results on physiological data.

Overall we can say that trouble can be recognised in
both, the biosignal and the acoustic data, but the classi-
fication on the biosignal data clearly outperforms the
classification on the acoustic data. This can be ex-
plained by the fact that, as already mentioned, the emo-
tions contained in voice are easy to conceal, in contrast
to the physiological reactions, which cannot be con-
trolled deliberately.

Comparing our results to those found in the literature,
we can say that the results on acoustic data are not as
good as presented in [19], where an average recall of
over 73% for a WOZ scenario and a two class problem
(prosodic peculiarities vs. no prosodic peculiarities dur-
ing a challenging dialogue) was reached. But as already
mentioned, the data used there had a more detailed an-
notation, including POS tagging and, more importantly,
annotations of prosodic peculiarities detected by the an-
notators, and not only annotations of dialogue stages
supposed to lead to trouble, as in our case. Concern-
ing biosignals, we achieve better results than the results
described in [18]. In a comparable WOZ setting includ-

ing four levels on the valence-arousal scale, only 55%
accuracy in subject-independent evaluation combining
acoustic and biosignal data can be achieved there.

In general, we can say that recognising challenging
stages of dialogues using biosignal data is reliable: even
in this subject-independent evaluation we can recognise
the trouble class with a very high certainty - we found
75% of all instances of the trouble class, with 0% false
alarm rate. Unfortunately, the same cannot be said for
using the acoustic data. For this case, we found only
58% of the instances, and only 70% of the found in-
stances were indeed instances of the trouble class.

Although the results for the biosignal data are very
promising, we have to consider that this data, in con-
trast to acoustic data, is not easily obtainable, especially
EMG and RSP. We can assume that the compliance of
human-computer interaction systems might suffer from
intrusiveness of physiological sensors (here intrusive-
ness means constraints to the observed human). On
the other hand, there are also easily obtainable types of
physiological data, such as pulse and skin temperature,
which can be collected from interaction devices like
smartwatches etc. For further investigations, it would
be interesting to focus on these easily obtainable types
of physiological data.

One probable explanation for the different results on
acoustic and biosignal data is that, as already men-
tioned, acoustic data can be easily manipulated by the
subject. It is imaginable that some of the subjects
forced themselves to speak calmly, since they were
speaking to a computer. But in contrast to voice, the
physiological reactions cannot be deliberately manipu-
lated, and therefore more differences between the dia-
logue stages can be found and thus automatically de-
tected. This also means, that the biosignal data can be
used as “ground truth” to detect changes in human emo-
tional state that cannot be detected from speech, and
also to annotate them. But, on the other hand, trouble
recognition using only acoustics also should not be ig-
nored: for tasks where no data other than acoustic data
is available we can still detect over 60% of challeng-
ing dialogue stages using our approach. One of such
tasks could be call center applications, where a trou-
ble detection system could support human call center
agents [30].

Another problem concerning emotion recognition from
speech is that there is still no consensus in the litera-
ture regarding which features are best suited for this
difficult task – it might be that the usually employed
features do not represent the differences between var-
ious emotions. Additionally, many feature extraction
routines base on human perception models – but, as al-
ready mentioned before, emotion recognition cannot be
done with a 100% accuracy by human annotators. This
also opens the question of gathering the “golden stan-



dard” – to build the right model for emotion recogni-
tion, we need to ensure that the emotions are labelled
correctly in the data. A widely employed but costly
solution for this problem is to obtain annotations from
multiple raters and to use only data with a high in-
terrater agreement, which, however, is also difficult to
achieve [31]. Our results encourage to rely on biosignal
data as ground truth instead, therefore saving the effort
of multiple annotation procedures.

6 CONCLUSION
In this paper, we investigated how challenging dialogue
stages in naturalistic human-computer interaction can
be automatically recognised. For this task, we used the
recordings of the LAST MINUTE Corpus. The record-
ings include non-challenging and challenging parts of
WOZ human-computer interaction, which were consol-
idated into two classes: the baseline class and the trou-
ble class. Instead of widely employed support vector
machines we used random forest for this classification
task. We achieved an UAR of 64% on acoustic data
and an UAR of 88% on biosignal data, showing that
it is possible to detect challenging parts of an interac-
tion using acoustic data as well as physiological data.
However, we did not perform human perception tests
regarding the levels of trouble audible in the acoustic
data and used only simple annotations.

There are two main directions for future research. First,
it should be investigated, whether the recognition rate
can be improved by more complex annotations of dif-
ferent levels of trouble. As mentioned before, different
subjects may experience and express different levels of
trouble. An important question is whether age, sex or
other factors influence the experienced and expressed
level of trouble during a challenging human-computer
interaction. If this is the case, using different models
for different user groups should improve the results.

Another direction for future work is to exploit the mul-
timodality of the data, using both acoustic and biosig-
nal data simultaneously, since it was already proven in
the literature that multimodal approaches can improve
the detection results [32]. Especially combinations of
acoustics and easily obtainable biosignals like pulse
could be interesting for this task. Unfortunately, a mul-
timodal investigation was not possible in this setting be-
cause of missing synchronisation of the used data sets.
We will approach this problem in future research.
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