
Real-Time Rendering of Continuous Levels of Detail for
Sparse Voxel Octrees

Szymon Jabłoński
Institute of Computer Science

Warsaw University of Technology
ul. Nowowiejska 15/19
00-665 Warsaw, Poland
s.jablonski@ii.pw.edu.pl

Tomasz Martyn
Institute of Computer Science

Warsaw University of Technology
ul. Nowowiejska 15/19
00-665 Warsaw, Poland

martyn@ii.pw.edu.pl

ABSTRACT
In this paper, we present a novel approach to real-time, continuous and symmetrical level of detail (LOD) man-
agement of a 3D object represented by a sparse voxel octree (SVO). We propose a new method for continuous
and symmetrical transition between two detail levels. The method is based on a SVO representation extended by
redundant, helper nodes which are used to achieve a proper interpolation of geometry and material data. We extend
redundant nodes with a transition direction attribute. Additional memory requirements are minimized by storing
indices in a direction vector lookup table in object space. The new method is applied for an accurate evaluation of
the required LOD. It uses an image-based evaluation function, i.e. the standard level transition function based on
camera distance is extended by the real-time calculation of the current LOD pixel fill rate. We extend typical level
transition function based on distance with real-time calculation of the current LOD pixel fill rate. Two different
image based methods of SVO node pixel fill rate calculations using compute shaders or GPU queries and parallel
reduce are presented. The developed LOD management algorithm is applicable for a raytracing and a rasterization-
based rendering pipeline. The LOD transition algorithm allows to perform a dynamic and continues control of the
SVO based objects which have not been available in other works. Moreover, the proposed fading algorithm based
on the fade out direction and scaling allows for a LOD change without any graphical artifacts or loss of the virtual
scene immersion.

Keywords
Computer graphics, level of detail, sparse voxel octree, voxel rendering, parallel reduce, image processing

1 INTRODUCTION
Computer graphic engines are perfect examples of the
soft real-time systems [Tanen07]. A key requirement
for the real-time system is the processing time mea-
sured in tenths of seconds or shorter. Interactive graphic
applications, such as computer games or virtual reality,
require that all necessary logic computation and ren-
dering is performed within a few milliseconds. Due
to the limited memory of GPUs, achieving satisfactory
rendering results requires an implementation of several
optimization methods in our graphics engine pipeline.

An important observation is that with the perspective
projection objects that are far away from observer ap-
pear on the screen much smaller than objects that are

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

near the observer. This implies that they can be ren-
dered with less geometrical or material details. Thus,
different techniques for controlling the object’s current
level of detail (LOD) have been developed to adapt the
object’s complexity to their importance within the vir-
tual scene.
The LOD is one of the oldest problems in computer
graphics. It was first presented in an article by James
H. Clark in 1976 [Clark90] and was defined as the com-
plexity of the 3D object located at a suitable distance
from the observer. The main aim of using LOD control
algorithms is to increase rendering efficiency by min-
imizing the data consumption, e.g. a number of poly-
gons or voxels. Increasing computation power of to-
day’s GPUs allowed game developers to create highly
detailed virtual scenes represented by millions of poly-
gons. As a consequence, efficient LOD management
algorithms are needed more than ever.
The tendency in recent years has been to improve the
features of continuous LOD algorithms by using the
possibilities offered by the graphics hardware, such as
the tessellation shaders [Schaf14]. The main prob-
lem with these methods is that there are no special-



ized shaders to decimate geometry on GPU. Moreover,
there is still the need to store a complex geometry in
the VRAM. As a result, the most commonly used so-
lution in today’s graphics engines is to prepare sev-
eral objects with different LODs and change them in
real-time based on their importance within the virtual
scene [Lueb02].

In this paper, we present a novel approach to real-time,
continuous and symmetrical management of a 3D ob-
ject LOD represented by the sparse voxel octree (SVO).

2 RELATED WORK
There is a wide selection of literature on performing the
LOD evaluation and control algorithms. Over the years,
many methods of geometry simplification and continu-
ous LOD controlling have been developed. However,
most of them are actually using polygonal representa-
tion of geometry and are connected to the LOD of vir-
tual scene terrains based on height fields. We will focus
on the papers that are most directly related to our work.

As we mentioned in the introduction, the most com-
monly used method is based on preparing a finite count
of objects in different LODs by artists and change the
currently used one based on the specified distance func-
tion [Lueb02]. It is very easy to implement and control
in real-time. However, the objects representing a differ-
ent LOD have to be stored in GPU memory. Alterna-
tively, a streaming functionality must be implemented
in the graphic engine. Moreover, the continuous transi-
tion between triangle based objects with a significantly
different number of polygons is quite difficult.

Schoeder et al. introduced algorithms to decimate
a triangle mesh [Schroeder92]. Rossignac and Bor-
rel extended their approach by developing vertex
clustering method that uses the bounding box of
the source mesh divided into the grid with all of
the vertices in a given cell replaced with a single
vertex [Rossignac93]. Other groups of algorithms use
an iterative approach based on primitive simplification
operators [Lueb02] such as edge collapse or vertex
removal. One of the commonly applied iterative deci-
mation technique is the QSlim algorithm [Garland97].
In this method the pair collapse operator is iteratively
replacing two vertices with one, causing neighboring
faces to become degenerated. However, the mesh
simplification has been traditionally viewed as a
non-interactive process not readily amenable to the
GPU acceleration. Using the modern programmable
GPU, many algorithms have been extended and
developed on the GPU. Ramos et al. developed a
method of continuous geometry complexity controlling
based on GPU triangle strip operations [Ramos06].
The vertex clustering method has been extended by
using geometry shaders and a general-purpose data
structure called the probabilistic octree. It enabled

a simultaneous construction of multiple LODs and
out-of-core simplification of extremely large polygonal
meshes [DeCoro07, Schiffner15, Willmott11].

Modern GPUs offer functionality to increase geome-
try complexity in real-time [Schaf14]. By using pro-
grammable tessellation shaders, we can increase the
number of mesh triangles by dividing triangle patches.
It is possible to achieve full control of how the object
geometry is dived and to calculate all required data at-
tributes such as normal vector and texture coordinates.
This method has been effectively used in case of ter-
rain rendering based on height field [Ripol12]. Even by
using low-resolution height map one can create highly
detailed terrain with continuous, distance dependent
LOD. Using tessellation shaders one can increase the
complexity of the processing object exclusively on the
selected areas. Unfortunately, today’s graphics adapters
do not offer any programmable shaders to decrease the
complexity of processing object. In order to create a
symmetrical method to increase and decrease object
LOD, it is necessary to combine simplification and tes-
sellation approach into one algorithm.

Although all of the presented methods propose interest-
ing ideas related to the LOD management, none of them
is able to provide a symmetrical, continuous and univer-
sal LOD control. A common feature of all of the pre-
sented methods is the polygonal representation of 3D
objects. The polygonal representation does not provide
any hierarchical information. A solution to that prob-
lem is the usage of the voxel representation. The SVO
is the current standard method for representing and ren-
dering voxels [Laine10, Bau11, Wil13]. Cyril Crassin
was able to perform visualization of global illumination
based on an SVO and voxel cone tracing [Crassin11].
The SVO is a hierarchical structure that, in addition
to the significant voxel memory compression, offers
object’s LODs. Based on the voxelization resolution
one can calculate the maximum tree depth which is the
number of the object’s LODs. A dynamic LOD is quite
often mentioned in various articles. However, no one
has ever described an algorithm showing how to change
the current LOD and how to perform a transition be-
tween the levels in a continuous way.

3 LOD MANAGEMENT ALGORITHM
This section describes the fundamental features of LOD
management algorithms. All algorithms can be divided
into the two main components:

• LOD evaluation — in this part one needs to deter-
mine when to change the object’s current LOD. The
initiation of the change and its direction depends on,
for example, the distance between the object and the
observer or object size on the screen.



• LOD transition — this part of the algorithm deals
with the way of how the current LOD is changing. In
the discrete model algorithm, the change is realized
by simple swapping of the object geometry or mate-
rial data. In the case of the continuous algorithm in
order to achieve proper object transition, one needs
to implement the interpolation between two selected
LODs.

The features of the developed algorithm are as follows:

• The 3D object is represented by an SVO.
• The LOD management algorithm is independent of

the rendering method. It can be used with both
the ray tracing approach and the voxel visualization
achieved with the triangle rasterization pipeline.

• Helper data needed for the algorithm execution are
minimized. In the case of ray tracing visualization,
all necessary data can be calculated on the fly.

• The LOD transition is done smoothly using interpo-
lation between two levels of SVO.

• The object geometry and material data LODs are in-
creasing or decreasing symmetrically.

4 LOD EVALUATION
The most commonly used measurement to evaluate the
object’s current LOD is the distance between the object
and the observer position. However, to do that, the
scene designer must manually find the proper distance
for each object to achieve satisfying results. The
algorithm proposed in this paper estimates the distance
using a newly developed image-based method utilizing
the object rendering results achieved in pre-processing
stage or by using rendering results of the previous
frame.

4.1 Continuous evaluation function
In general, the LOD evaluation function can be ex-
pressed as:

y = f (x) (1)

where:

y = object LOD
x = evaluation parameter

Based on the computed distance between the object and
observer position the current LOD is determined in a
way presented in Fig. 1. For simplicity, the linear de-
pendence between the distance value and the LOD is
assumed.
In this case Eq. 1 can be written in the following form:

y = max
(

0,min(N− dist
x

,N)
)

(2)

where:

Figure 1: Linearly changing object LOD based on the
distance.

y = object LOD
N = number of object LODs
dist = distance between object and observer
x = defined distance offset between adjacent LODs

The computation results must be clamped to <0,N> in
order to operate only on the existing object LODs. As-
suming N = 4, x = 2.0 and dist = 2.5 we get:

y = max
(

0,min(4− 2.5
2.0

,4)
)
= 2.75 (3)

Using mathematical round or truncate for the obtained
result, we gain an integer value which represents the
discrete LOD index. In addition, the floating result
gives the possibility to control the continuous transition
weight between two LODs.
The evaluation function presented above is based on the
linear dependence between the distance value and the
LOD. However, this approach can hardly give satisfy-
ing results on the virtual scene viewed with the perspec-
tive projection. More accurate results could be achieved
using exponential or power functions.
The biggest problem with distance based evaluation
functions is that there is no exact relationship between
the distance and the resulting image. The rendering
result will be different, but there are no algorithmic
tools to describe scene complexity changes. In the next
section, we propose a LOD evaluation method consid-
ering the image pixels as the main information car-
rier [Shannon48].

4.2 Pixel fill rate based evaluation func-
tion

Using compute shaders, data obtained from the render-
ing pass or GPU query objects according to the visual-
ization algorithm, we can calculate how many pixels are
filled by the draw operation [Wright10]. Thus, we can
calculate how many pixels will be filled by some part
of the object. The question is when we actually want
to change the current LOD. If the object is so far away
from the observer that there is no need to render it with
the current LOD because we won’t see any differences
in rendering results, we can optimize the rendering pro-
cess by decreasing the current LOD. Similarly, when
the object is close enough to be rendered with a more
complex geometry or material details we increase the
current LOD.



5 PATTERN NODE SELECTION
METHOD

In order to decide if the object is rendered with enough
details, we analyze the rendering results of the smallest
part of the object, the SVO node nearest to the observer
position. In this paper, we define this special node as a
pattern node. In order to find the pattern node, we pro-
pose two methods which differ in calculation precision
and computing performance.

5.1 Approximate pattern node selection
The first method is based on a simple and naive approxi-
mation. For simplicity, we assume that the pattern node
is exactly in the object bounding volume center posi-
tion (even if actually there is no node in the selected 3D
space). We can consider this method as an extension of
the distance based evaluation method.

Having the object bounding volume and the node size
of the current LOD, we render a single node off-screen.
If our rendering pipeline is based on the ray tracing ap-
proach, we simply render the root node of the object
scaled to the size of the current LOD node. In order to
optimize the additional ray tracing step, we can perform
ray tracing to a smaller render target than screen size.
The minimum size of the target viewport can be easily
calculated based on the object bounding volume and the
camera matrices. Using, for example, atomic counters,
we can calculate how many pixels will be filled by the
draw operation. In the case of using a polygonal repre-
sentation of the object, the same results can be achieved
using GPU query objects.

As we mentioned before, it is a naive approach but can
give satisfying results, especially on a low-power target
like mobile devices.

5.2 Accurate pattern node selection
The accurate approach is much more advanced than the
previous one. We want to find which SVO node of
the object is the biggest on the screen. In other words,
which one fills the most pixels of the resulting image.
We must find the node in the current level of the SVO
that is the closest to the observer position. We can
calculate it on CPU by performing a simple software
renderer but it is a computationally expensive solution
hardly executable in real-time.

In order to obtain an accurate result, we need to per-
form the additional rendering and computation pass be-
fore the SVO visualization step. The accurate selection
method will depend on the rendering algorithm. In this
section we describe the pattern node selection for the
ray tracing approach as well as for the triangle-based
rasterization pipeline.

The foundation of the accurate pattern node selection
algorithm is finding an SVO node with the smallest

depth value for the current viewpoint. It means that be-
fore performing the final rendering, we need to find the
node and count have many pixels will be filled by the
node. The proposed solution can be implemented in a
various way. In our work, we decided to use compute
shaders. However, the developed solution can be im-
plemented in other GPGPU interfaces such as CUDA
or OpenCL.

5.2.1 Depth and node id texture generation
We propose an image based solution to find the pattern
node utilizing the node depth information. By using the
depth buffer, we find which pixel of the resulting image
belongs to the object closest to the observer. The first
step of our algorithm is an off-screen z-pass rendering.
We use single channel render target texture with e.g.
R32F or R16F internal format and save the linearized
depth information. Further, the depth information has
to be correlated to the SVO nodes.

The first step of our method requires defining unique ids
for all SVO nodes. To optimize the node finding opera-
tion with a specified index it is recommended to create
a lookup table for the tree nodes. Then, we extend the
first pass of the algorithm by the saving node indices
to the second texture channel. With the depth-only so-
lution we could use floating point textures but unfortu-
nately, we cannot save and retrieve integer or unsigned
integer data from a float texture without data loss. A
high-resolution voxel object will have ids counted in
millions and we could lose the information. To solve
this problem we use the unsigned integer type texture.
Moreover, when saving the linearized depth informa-
tion we perform normalization to the defined data range
by multiplying depth values. We use a texture in the
RG32UI internal format.

5.2.2 Minimum depth node seeking
The next step of our algorithm is to find the minimum
depth from the rendered texture. If we need this infor-
mation on CPU, we could transfer the texture data from
GPU memory into the RAM. Due to the high cost of
this data transfer, we might not be able to evaluate the
LOD in real-time. In order to achieve real-time results,
we can use two different solutions.

First of them is based on the parallel reduce algorithm
on GPU [Buck04]. Using a compute shader, we create
a new texture with half size of the source texture. Then,
using a simple code we seek for the smallest depth value
of N neighbors and store it in the new texture. By the
defined number of iterations, we create a small texture
with candidate nodes. We perform the parallel reduce
algorithm until we create a 1x1 resolution texture and
transfer it or read it on CPU. It is also possible to stop
the iteration when our texture is small enough for be-
ing transferred to the CPU efficiently. In our imple-
mentation, we used the 1280x720 render target and 4



iterations of the parallel reduce algorithm resulting in a
80x45 resolution texture. We iterate through and find
the pattern node on the CPU.

With the parallel reduce algorithm we can efficiently
find the pattern node but we recommend an alternative
solution. When performing the rendering operation, we
can save the minimum depth of the rendered nodes with
the corresponding node id by using the atomic opera-
tions and shader storage buffer objects. Thanks to that,
we can use this information in the next step of our al-
gorithm. Additionally, the access to the data stored in
the shader storage buffer object on CPU side is very ef-
ficient. With a compute shader, we calculate how many
pixels are filled by the found SVO node. This opera-
tion is performed in the same way for the ray tracing
rendering approach and triangle based rasterization.

5.2.3 Optimizations and restrictions
The proposed solution requires an additional render-
ing step for finding the accurate pattern node. In some
cases, this might be too expensive in order to fit the de-
fined time requirements. We must render the 3D objects
twice. In order to optimize our algorithm, we can use
the previously rendered frame. In that case, apart from
rendering the final image, we need to save the depth
and voxel id data to an additional render target. After
that, using the obtained minimum depth value and the
node id stored in the shader storage buffer object, we
can calculate the fill rate value by means of a compute
shader.

The described algorithms give us the accurate results
only when all voxels of a 3D object have exactly the
same size. Otherwise, it is necessary to perform an
additional calculation to obtain the proper pattern
voxel. In order to obtain the correct interpolation
weight, which will be used in the LOD transition stage,
we must take into account the render target resolution.

5.3 Function boundary conditions
Last but not least an important part of the LOD evalu-
ation algorithm is the boundary conditions of the LOD
evaluation function. The defined evaluation boundaries
are as follows:

• Minimum condition — defines the object mini-
mum LOD. If the rendering of some object on the
virtual screen produces N pixels corresponding to
the minimum condition, there is no need to execute
the evaluation and transition algorithm. This is the
universal minimum boundary condition that is be
used for any kind of voxel visualization algorithm.
We defined N as a parameter, but the perfect func-
tion should use N defined as 1.

• Maximum condition — defines the object maxi-
mum LOD based on the position on the scene in

relation to the observer. This boundary is very im-
portant because it defines when to stop the execution
of the LOD evaluation function. It represents the sit-
uation when the object is rendered with the highest
possible complexity. The maximum boundary con-
dition is reached when exactly one voxel of the ob-
ject corresponds to exactly one pixel of the resulting
image. We can check this condition by comparing
the filled pixel number with the voxel number used
to render the image. The atomic counter can be used
to calculate how many times a SVO node was ren-
dered on the screen. After that, the sum of all used
SVO nodes can be calculated.

6 PATTERN NODE BASED EVALUA-
TION FUNCTION

The object’s current LOD can be found using the pat-
tern node pixel fill rate as an argument for the level
evaluation function. The proposed evaluation method
is based on the extended distance based function pre-
sented in section 4.1. The main difference is the usage
of the pixel fill rate instead of the distance as the eval-
uation function parameter. Another very important dif-
ference is the type of the propagation function. The dis-
tance based approach discussed earlier assumed a linear
dependence on the distance. In the case of objects that
are represented by the SVO, an object rendered with
the N-th LOD fills about four times more pixels than
the same object rendered with the N-1-th level. Based
on this fact we propose the LOD evaluation function
described by Eq. 4 and 5.

y = max
(

0.0,min(
f illRate

N−LOD
∑

i=0
maxRate∗ x

,1.0)
)

(4)

y =

 < minRate⇒ decrease level
1.0⇒ increase level

(0.0,1.0)⇒ interpolate levels
(5)

where:

y = LOD interpolation weight
f illRate = pattern node pixel fill rate
N = number of object LODs
LOD = object current LOD
x = defined geometric progression value
maxRate = defined max fill rate
minRate = defined min fill rate

An additional step, which is not necessary with the
distance-based approach is the calibration of the ob-
ject’s LOD. Before scene rendering, we must calculate
the current LOD for all SVO based objects. In order to
do that we use the following algorithm:



1. Find the pattern nodes for all LODs.
2. Calculate the pixel fill rate for all found pattern

nodes.
3. Find the minimum fill rate value. Neglect values

lower than the specified value or equal to zero.
4. Set the object’s current LOD to the level with the

minimum fill rate value.

As in the case of using the distance-based evaluation
function, our algorithm requires the user input for the
minimum and maximum fill rate for each object LODs
defined with geometric progression.

For rendering results presented in section 8 we used the
following parameters: maxRate = 16 pixels, minRate =
1 pixels and x = 1.

7 LOD TRANSITION
The core stage of the LOD management algorithm is the
implementation of the current level transition method.
The most straightforward solution to change the current
LOD is to just stop the ray tracing algorithm at a speci-
fied level acquired from the evaluation pass. In the case
of using triangle meshes, change object’s vertex data
buffers and materials. However, it may produce visible
model swapping artifacts that adversely affect the per-
ception and immersion of the virtual scene. Thanks to
the voxel representation, the proposed algorithm is free
from the limitations imposed by the polygons graphic
representation.

The LOD control algorithm aims to change two at-
tributes of the 3D object — geometry and material. In
the voxel representation, both these attributes are re-
lated. With the SVO structure, each node can be di-
vided into the maximum eight new nodes with different
attribute values. When changing to a higher LOD, some
child nodes may disappear creating changes in the ob-
ject’s geometry. Other nodes will just change the values
of their attributes. A similar situation exists when the
LOD decreases. Fig. 2 shows how the object geometry
and material complexity changes between three LODs.

We can observe that if some node has a full set of chil-
drens it is quite easy to perform the data interpolation
between the parent node and child nodes. For example,
using linear interpolation. The problem arises when
some potential child node is missing, or when a parent
has only one child. In order to accomplish the proper
level transition, it is necessary to solve these issues. Be-
low we describe the proposed algorithm for the SVO
based object geometry and material transitions.

7.1 Object material transition
The new type of an SVO node is introduced. We call
it redundant node based on its actual meaning for the
object representation. The redundant node can be the

Figure 2: Object differences between three levels of
Stanford Bunny [Stanford11].

actual part of the SVO, or it is just an information about
the additional node in the tree. If the last traversing
node has not the full set of children - we fulfill the gaps
with the redundant nodes. We treat the last traversing
level of the tree as it has a full set of child’s. The main
idea behind the redundant node is that in order to per-
form the interpolation between the parent and the child
nodes the number of nodes at both levels must be the
same. This is necessary for a continuous transition from
one level to another.

All interpolation operations are performed between the
parent and child node. Let’s start with the parent node
representation. As we mentioned before, each node
can be divided into maximum eight child nodes. This
means that we can treat the parent node as eight identi-
cal nodes with the same attributes. The more complex
issue is with the children nodes. If the current node
does not have eight children we must replace the miss-
ing nodes with the redundant nodes. Such nodes will
have identical attributes as the parent node. Thanks to
that, on both tree levels we will have an identical num-
ber of nodes. Fig. 3 presents the idea of using redun-



dant nodes for the two-dimensional grid. For a 3D data
structure like the SVO, the method is identical.

Figure 3: The idea of the dividing a parent node to eight
identical nodes with redundant child nodes. Divided
parent nodes and redundant nodes are highlighted with
stripped lines.

7.2 Object geometry transition
Using the parent node division with the redundant
child nodes we achieved the possibility to perform
the data interpolation between two LODs. However,
the redundant nodes must somehow disappear at the
end of the level transition. The most straightforward
way to achieve this is by using alpha blending with
transparency. Unfortunately, this solution affects other
nodes and create unacceptable artifacts.

We propose an alternative solution based on scaling the
redundant nodes. Parallel to the data interpolation, with
the interpolation weight parameter we change the size
of the redundant nodes from the initial values to zero.
However, the scale transformation in the defined origin
causes the formation of holes at the edges of the objects.
Thus, there is the need for an additional redundant node
position control, so that they will be absorbed by the
nearest neighbor and disappear in a more natural way.

In order to implement redundant nodes fading out we
need to find the node’s nearest neighbor and calculate
the fading direction. The SVO structure guarantees that
each node has a connected neighbor. If we cannot find
any candidates on the children level, we seek for it at
the parent level. The only exception to this rule is the
tree root node. The direction vector for the root node
will never be required. In the case of the ray tracing
approach, we have access to the neighbor nodes dur-
ing object rendering. If we do not have an access to
the neighbor nodes during object rendering, we need
to store pre-calculated values in an additional node at-
tribute. Fortunately, we have a finite number of possi-
ble directions. A node can have maximum 7 possible
neighbors on the node level and 8 possible candidates

on the parent level. In order to minimize memory re-
quirements, we can create a lookup table for direction
vectors and store only an index to the vector. However,
it is only required when our visualization algorithm is
not based on the ray tracing approach. Fig. 4 presents
an example of performing a continues transition.

Figure 4: Example of level transition based on the de-
veloped method.

8 RESULTS
In this section, we present rendering results of the de-
veloped algorithm. It is very difficult to present contin-
uous LOD management on static images or even video
samples. A fundamental feature of the continuous LOD
transition is to hide level changing from the observer.
Fig. 5 - 6 demonstrates rendering the result of the de-
veloped LOD management algorithm.

9 CONCLUSIONS AND FUTURE
WORK

We have developed a novel approach for efficient
real-time rendering and controlling the SVO LOD.
Our method can be used to algorithmically evaluate
the current LOD and perform a transition between two
levels. The pixel fill rate method instead of a distance
parameter allows for better control of virtual scene
rendering results. Moreover, regardless of the chosen
rendering method, we propose a universal pattern
node evaluation method that can be used in real-time.
In the case of the ray tracing approach, the required
additional data can be obtained from the rendering
pass or based on the previous frame. In the case of
the triangle based rasterization method based on the
parallel reduce algorithm and GPU queries offers
real-time performance.

The LOD transition algorithm allows to perform a dy-
namic and continues control of the SVO based objects
which is our main contribution. By extending the SVO
structure with a new type of node called redundant node
we achieved the full control of the level interpolation
stage. Moreover, the proposed fading algorithm based
on the fade out direction and scaling allows for a LOD
change without any graphical artifacts or loss of the
virtual scene immersion. The developed method is ap-
plicable for various voxel rendering algorithms. More-
over, the potential increase of memory consumption for
additional data has been minimized.



Figure 5: Object geometry and material transition example.

Figure 6: Example of the LOD management algorithm based on pixel fill rate evaluation for the single test object.

An obvious step forward would be to experiment with
the control of the entire virtual scene with numerous
SVO objects. The current method is dedicated to
controlling a per object LOD. Moreover, the proposed
method does not perform the LOD evaluation in the
view-depended style. We control the whole object
details even when we see just part of the object.

Last but not least, an interesting research can be con-
ducted on the situation when we reached the highest
LOD of the current object and still could get closer to
the object. In that case, the interesting solution seems
to be the procedural generation of the geometric com-
plexity using e.g. displacement maps and tessellation.

10 REFERENCES
[Bau11] Bautembach D., Animated sparse voxel oc-

trees, Bachelor Thesis, University of Hamburg,
2011.

[Buck04] Buck, I., and Purcell, T., A Toolkit for
Computation on GPUs, In GPU Gems, Addison-
Wesley, 2004, pp. 621-636.

[Clark90] Clark, J.H, Seminal graphics. New
York, NY, USA: ACM, 1998, ch. Hierar-
chical Geometric Models for Visible Surface
Algorithms, pp. 43-50. [Online]. Available:
http://doi.acm.org/10.1145/280811.280921

[Crassin11] Crassin, C., Neyret, F., Sainz, M., Green,
S., and Eisemann, E., Interactive indirect illumi-
nation using voxel cone tracing, Computer Graph-

ics Forum (Proceedings of Pacific Graphics 2011),
vol. 30, no. 7, sep 2011.

[DeCoro07] DeCoro, C., and Tatarchuk, N., Real-time
Mesh Simplification Using the GPU. Symposium
on Interactive 3D Graphics (I3D) 2007, pp. 6,
April 2007.

[Garland97] Garland, M., and Heckbert, P. S. 1997.
Surface simplification using quadric error metrics.
Proceedings of ACM SIGGRAPH 1997, 209-216.

[Laine10] Laine, S., and Karras, T., Efficient sparse
voxel octrees, in Proceedings of the 2010 ACM
SIGGRAPH Symposium on Interactive 3D
Graphics and Games, ser. I3D 2010. New York,
NY, USA: ACM, 2010, pp. 55-63.

[Lueb02] Luebke D., Watson B., Cohen, J., D., Reddy,
M., and Varshney, A., Level of Detail for 3D
Graphics. New York, NY, USA: Elsevier Science
Inc., 2002.

[Ramos06] Ramos, F., Chover, M., Ripolles, O., and
Granell, C., DGCI, volume 4245 of Lecture Notes
in Computer Science, page 460-469. Springer,
2006

[Ripol12] Ripolles, O., Ramos, F., Puig-Centelles, A.,
and Chover, M., 2012. Real-time tessellation of
terrain on graphics hardware. Comput. Geosci. 41
(April 2012), 147-155.

[Rossignac93] Rossignac, J., and Borel, P., 1993.
Multi-resolution 3D approximations for rendering
complex scenes. Modeling in Computer Graphics:



Methods and Applications (June), 455-465.
[Schaf14] Schäfer, H., Nießner, M., Keinert, B., Stam-

minger, M., and Loop, C., State of the art report
on real-time rendering with hardware tessellation,
2014.

[Schiffner15] Schiffner, D., Stockhausen, C., Ritter,
M. Surfaces for Point Clouds using Non-Uniform
Grids on the GPU, Short papers proceedings
WSCG2015.

[Schroeder92] Schroeder, W. J., Zagre, J. A., and
Lorense, W.E.1992. Decimation of triangle
meshes. In SIGGRAPH 92: Proceedings of the
19th annual conference on Computer graphics and
interactive techniques, ACM Press, New York,
NY, USA, 65-70.

[Shannon48] Shanno, C., E., A Mathematical Theory
of Communication, Bell System Technical Jour-
nal 27(3).

[Stanford11] The Stanford 3D Scanning Repository,
Stanford University, 22 Dec 2010, Retrieved 17
July 2011.

[Tanen07] Tanenbaum, A. S., Modern Operating Sys-
tems, 3rd ed. Upper Saddle River, NJ, USA: Pren-
tice Hall Press, 2007.

[Wil13] Willcocks, C. G., Sparse volumetric defor-
mation, Ph.D. dissertation, Durham University,
2013.

[Willmott11] Willmott, A., Rapid Simplification of
Multi-attribute Meshes, Proceedings of the ACM
SIGGRAPH Symposium on High Performance
Graphics, 2011.

[Wright10] Wright, R., S., Haemel, N., Sellers, G.,
Lipchak, B., OpenGL SuperBible: Comprehen-
sive Tutorial and Reference, Addison-Wesley Pro-
fessional, 2010.

Last page should be fully used by text, figures etc.
Do not leave empty space, please.
Do not lock the PDF – additional text and info will
be inserted, i.e. ISSN/ISBN etc.


