
Enabling Gesture Interaction with 3D Point Cloud

Harrison Cook
School of Computing,

Engineering and
Mathematics, Western

Sydney University
harrison.cook42@gmai

l.com

Quang Vinh Nguyen
MARCS Institute and
School of Computing,

Engineering and
Mathematics, Western

Sydney University
q.nguyen@westernsyd

ney.edu.au

Simeon Simoff
MARCS Institute and
School of Computing,

Engineering and
Mathematics, Western

Sydney University
s.simoff@westernsydn

ey.edu.au

Mao Lin Huang
School of Software,

Faculty of Engineering
& IT, University of

Technology, Sydney
Mao.Huang@uts.edu.a

u

ABSTRACT
This paper presents a novel 3D point cloud gesture recognition system, based on an existing low-cost, accurate
and easy to implement 2D point cloud gesture recognition system called $P. Our work improves recognition
rates and lowers algorithmic complexity. We develop new 3D gestures, such as the GUN gesture and the
SHAKE gesture, while also developing 3D poses like the L pose, OK pose, ROCK pose and PEACE pose for the
LeapMotion Device. We demonstrate proposed gesture and pose methods on various 3D environments including
a Monsoon mini-game, a cave painting interaction and a target practice scene. The average recognition rates for
3D gestures and poses were compared against the 2D, 3D and 3D+ recognition systems. The results indicate that
most gestures in the proposed system were improved in comparison to the existing ones.

Keywords
User Interaction, Gesture Recognition, Finger Interaction, Leap Motion, 3D Point Cloud.

1. INTRODUCTION
Gesture recognition refers to determining when a
gesture has occurred and to the general process of
determining when a gesture has started and stopped
[Yin14]. Natural gestures can be grouped into
manipulative and communicative gestures.
Manipulative gestures are about moving or
interacting with objects, such as pressing a button or
rotating an object around, while communicative
gestures have the intent of conveying information to
others. Communicative gestures can be an
interpretation or movement via a symbol or via an
act. A gesture via a symbol is often conveyed with a
static hand pose and a gesture via an act is
determined by the movement of the hand itself.
While natural gestures work in the real world,
determining when the user is making a gesture
requires our computer implementation to take on a
more structured approach of flow and form gestures.
A flow gesture could be a continuous gesture, where
it progresses over a period of time or series of
moments of time. The form gesture can be defined by
determining whether the gesture follows a distinct
path (such as scrolling a webpage based on position
of words) or if it is based on a pose. This research

uses the flow and form gestures as a guide to develop
our own discrete and continuous gestures to allow the
user a range of possibilities.
Hand gesture interaction should be simple enough to
understand, while distinct enough so that the user
understands which gesture has occurred. For
example, uWave is an interactive application using
gestures for various mobile devices that have a very
small custom gesture recognition system to allow
maximum space on the device [Liu09]. We expand
this idea for maximum recognition rates while using
only a small dataset.
This paper presents gesture recognition techniques
that aim to allow better recognition of 2D and 3D
gestures by extrapolating gesture sets using similar
classifiers. We develop new gesture recognition
algorithms that provide a seamless and effective
natural interaction at various distances and screen
resolutions. The contribution of our paper is as
follows.
• New gesture recognition algorithms for fingertip
interactions. The gesture pattern recognitions are
identified in a simpler and faster way than the
available techniques that use databases to store
gesture templates for matching, such as [Ren11].
• An expansion of a 2D gesture recognition system
[Vat12] into 3D, based on utilising LeapMotion
device as input for the gesture recognition system.
• An evaluation of the developed system in terms of
user experience and its effectiveness.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

2. RELATED WORK
Kinect devices have been useful for medical practices
for doctors and staff to interact with patient
information without the requirement of the typical
mouse and keyboard and the more inaccurate voice
recognition [Ebe13]. Using third party libraries such
as OpenNI [Pri16] and Libfreenect [Ope16] they
were able to implement finger gestures into the
OsiriX system [Ebe13]. This was achieved by taking
the Kinect depth image, collecting the closest objects
to the sensor then approximating the hand and fingers
based on this blob. Once the hand and fingers have
been recognised from the blob, each point around the
hand is recorded and over time is checked with a
database of other hands already recorded. However,
the use of the Kinect V1 in [Ebe13] restricts the
range of the interaction due to the limitations of the
depth camera on these devices. The other major
limitation of their system is the lack of explanation of
the gestures to the user.
Another major work develops a new Kinect hand
recognition system using the ‘golden’ energy
function [Sha15]. It renders all possible poses of the
hand and selects the pose, whose corresponding
rendering best matches the input image while
accounting for the prior probability of poses. The
technique uses regions of interest (RoI) to determine
the approximate hand position from the depth image
stream and a learned pixel-wise classifier [Sho13].
When used with 3Gear [3Ge16] and LeapMotion
device, this technique achieves a better percentage of
3D hand detection than those described previously.
This system requires extremely large FingerPaint
datasets of 3.2GB of storage space [Sha15] that could
make portability and memory management an issue.
High memory latency and a high end GPU are
required when accessing the dataset in the memory in
real time. In addition, the inability to work with both
hands and the lack of a gesture recognition system
for fingers could limit the utilisation.
Tang [Tan11] introduced a method for identifying
grasping and pointing gestures in which a person’s
hand model was estimated based on a skeletal
tracker. This is limited in terms of tracking resolution
and inability to track at a close distance. Chen and
Wong introduced an interactive sand art drawing
using Kinect [Che14]. Four key gestures were
detected by the system, including sing-point finger
for single point erosion, single splicing and leaking,
V-shape 2 fingers for pinch spilling and pinch
erosion. Lee and Tanaka used databases for fingertips
and hand shapes to enable gesture cognition with any
finger in the palm as well as two fingers (thumb and
index finger) [Lee13]. The interaction techniques
were applied to sample applications for finger
painting and mouse controlling. Song et al proposed
an algorithm for gesture recognition algorithm based

on depth information from a Kinect device [Son13].
Cook et al also introduced a real-time finger-gesture
interaction system using Kinect v2 that identifies
finger gestures at close range [Coo15]. However,
vision-based systems are often limited in terms of
accuracy, occlusion and inconsistency when
changing the environment, such as dark light and
rough background.

3. GESTURE RECOGNITION
Our gesture recognition system was developed based
on gestures as point clouds approach [Vat12], to
address the problems identified in Section 2. The
Point-Cloud Recogniser ($P) is a gesture recognition
system designed for quick and simple recognition of
two dimensional gestures from a user’s input. $P
works by collecting a bunch of pre-determined points
already created in the system, i.e. the database of
gestures that the system can recognise. When ready
to, it takes the users current points as an input to
determine the closest matching set of user points to
data points using a nearest neighbour classifier.
We expanded the recognition system from 2D to 3D
that improved recognition accuracy and performance.
The enhancement includes additional classifiers to
the dataset to improve comparisons and collections of
points by segmenting cloud stroke points based on
certain parts of the hand and fingertips.

Gesture Recognition Systems
Gesture recognition systems that use $P include
single stroke ($1) and multi stroke ($N) systems. A
single stroke system can handle only one stroke on a
canvas for comparisons. A multi stroke system can
handle more than one stroke. $P uses the $1s
algorithm for nearest neighbour matching and gesture
recognition, while also using $Ns algorithm for
allowing multiple strokes to be recognised. The
benefit of the dollar family gestures is how users can
add their own variations to the data set to be used for
future recognition [Wob07].
The uni-stroke recogniser ($1) developed by
[Wob07] is the first gesture recognition system
developed in the $ family. Its implementation is
similar to the $P system, which uses the nearest
neighbour and Euclidean scoring systems. $1 is an
extension of an existing recognition system called
SHARK2 [Kri04]. It performs extremely well with
recognising gestures even when given a low amount
of training samples to compare user input.
The multi-stroke recogniser ($N) is a solution to $1’s
problem of not being able to use multiple strokes to
determine a gesture [Ant10]. $N was designed so that
the input of strokes would be stroke and direction
invariant. This was achieved by recording all distinct
directional behaviours of the gesture to compare the
user data. $N has an immensely increased complexity
by loading all of these permutations. This issue could

be improved by removing multiple stroke types and
directional changes when comparing single stroke
gestures [Ant10]. Protractor uses a closed-form
template-matching method eliminating the simplicity
and complexity of the Golden Section Search
algorithm [Ant12].
We adopted multi-stroke recognition system that
could handle multiple start and stop points. The
system needs to be fast without the need to remember
any permutations in the strokes as the stroke order is
not important for our gesture recognition. This rules
out $N and $N-Protractors complex algorithms
leaving $P. $P does have one drawback with its
implementation, where the point clouds are rotation
variant. This means that each gesture is not rotated
when comparing point clouds. To overcome this
problem, when we developed the database we added
gestures of different angles to the training set to
compensate for this drawback.

$P in a 3D world space ($P3D)
Extending $P into a 3D implementation was done by
following the same algorithms in 3D space, such as
Protractor [Kra11]. We utilise the practicality,
simplicity and usability of the $P algorithm,
extending it to operate with three-dimensional
gestures.
We take the existing method for gathering and
assigning points with each gesture created and
change the creation method depending on the data.
Because the protractor recogniser takes the Euclidean
distance between points in 2D to determine the
distance, they take the Z position of the set of points
when applicable. The result means that the distances
between points when classifying gestures will be
slightly more between 2D and 3D gestures because
of the added axis.
The 3D centroid formula determines the centre of the
3D data points which is defined by equation 1. We
used a 32-point sampling resolution (N) [Kra11] to
define the insignificant change in accuracy.
Translating the data requires the 3D centroid position
to be equal to the subtraction of each of the data
points with the centroid. The new translated data
points will make the centroid be at position (0, 0, 0).
This translating makes it possible to centre the data
for recognition.

Cx=� xi

N-1

i=0

N� , Cy=� yi

N-1

i=0

N� , Cz= � zi

N-1

i=0

N� (1)

Where Centroid C = (𝐶𝐶,𝐶𝐶,𝐶𝐶) and N is the
sampling resolution.
Resampling the data points is the most crucial of the
pre-processing techniques. It requires multiple
calculations to convert the data from any number of

points to the sampling resolution of 32 that we want
for 1:1 conversions between user data and gesture
data. We extended the 2-dimensional method to
create the linear interpolation (LERP) point as
equation 2, where a new 3D point (P) was calculated
by LERP point (∂), first point (ƒ) and current point
(p).

𝛼 = (𝐼−𝐷)
𝐷

 𝑤ℎ𝑒𝑒𝑒 𝐷 ! = 0

𝜕 = �
𝜕 𝑖𝑖 𝛼 > 0.0 𝑎𝑎𝑎 𝛼 < 1.0

1.0 𝑖𝑖 𝛼 ≥ 1.0
0.0 𝑖𝑖 𝛼 ≤ 0.0

𝑃. 𝑥 = (1.0 − 𝜕) ∗ ƒ. 𝑥 + 𝜕 ∗ 𝑝. 𝑥
𝑃.𝑦 = (1.0 − 𝜕) ∗ ƒ. 𝑦 + 𝜕 ∗ 𝑝.𝑦

 𝑃. 𝑧 = (1.0 − 𝜕) ∗ ƒ. 𝑧 + 𝜕 ∗ 𝑝. 𝑧 (2)

$P3D+
While $P3D generally provides good gesture
recognition in 3D, its effectiveness normally depends
on datasets and user inputs. We added to the $P
system a set of classifications and ordering the
LeapMotion data so that each finger and palm
position was its own stroke and followed its previous
position. Our goal is to improve the 3D recognition
system by eliminating the need to search all the
gestures within the database. We also improved pre-
processing gestures by assigning stroke IDs to point
clouds to remove inaccuracies. The enhancements are
as follows.
Removing Redundant Point Clouds
We limited the complexity of the gesture recognition
by only selecting gestures that reach a certain
classification. These classifications would remove
the ambiguity of searching through all possible
gestures and instead focus on the range. We
developed three classifiers in the $P3D system. The
first classifier determines whether the recorded
gesture was in 3D or 2D. This classifier only worked
when there was a 2D gesture being recognised. The
second classifier is for identifying whether the
gesture is a pose or not. A pose gesture features the
input to contain very little movement to no
movement whereas a normal gesture requires much
more movement over a series of time. The third
classifier determines which left or right hand that the
gesture is used with. This implementation aims to
remove ambiguity and noise when comparing
gestures from the left hand that could increase
recognition when using the right hand. For example,
a left PEACE pose matches well with a right OK
pose and vice versa.
Assigning and Ordering Stroke IDs to the Hand
$P was designed for a 2D drawing scenario that was
inputted one stroke at a time and it did not take the
stroke ID into consideration. While this is normally
fine when the user draws the gesture one stroke at a
time, it could be a problematic when recording

different strokes currently. This is because the system
thinks the entire gesture is made of single strokes.
$P does not take into consideration the stroke order,
stroke direction and stroke permutations as in $N/$N-
Protractor solutions [Ant10, Kra11]. It implements
the stroke system for pre-processing, resampling and
calculating the path length for the gesture. We
assigned the palm and the fingers with their own
stroke IDs. The IDs of Palm, Thumb, Index finger,
Middle finger, Ring finger, and Little finger were
numbered 0 to 5 respectively. The order of stroke
indexes of the hand and fingers was used to improve
the matching rate between these point clouds. This
improvement provides a closer approximation on
how to interpret the data where inaccuracies can be
reduced to produce a closer match to determine the
correct gesture.

4. INTERACTION WITH
LEAPMOTION – A CASE STUDY
The LeapMotion is a controllable device that tracks
hand and finger movements using LEDs and infrared
cameras. While the Kinect can track skeletons from
long distances with its sensors, the LeapMotion is
dedicated to tracking hands and fingertips with a
shorter range and more accurate than the Kinect.

Capturing the 3D Point Clouds
In order for the LeapMotion to be recognised by the
point cloud gesture recognition system, we created
the training set that was used in the classifications of
the gestures. The chosen data from the LeapMotion
system to determining these gestures were the
stabilised palm position and the stabilised tip position
of all the fingertips. Other points such as the wrist
and distal bone positions were not considered for the
training set because these details were not used for
the recognition system.

Environment Building
We used Unity 3D game engine to develop our
interaction environment. Unity provides an excellent
framework for developing tools and applications
within its integrated development environment
(IDE). Unity’s IDE allows for 2D or 3D applications
with a variety of different tools that will improve a
user’s experience with the system.
It is crucial for first time users to learn about the
system interactively. We developed a tutorial system
to illustrate all the different elements of our
environment in such a way that is easy to follow and
understand. The system also allows the user to revisit
old lessons when required. Once completing the
tutorial, we provide a showcase scene where users
can collaborate and manipulate objects within the
scene using these new abilities learnt.

Monsoon Minigame
We developed a simple minigame to help the users
be familiar with the interaction using the
LeapMotion. The game revolves around the user
trying to catch as many boxes, barrels, orbs and
traffic cones as they can. The objects are spawned
above the user and trickle down every second. It is up
to the user whether they want to hold these objects or
to play around with them (See Figure 1). This
minigame serves as an initial learning task for
beginners and a challenge for the experts who want
the highest score.

Tutorial System
The tutorial system was developed to help the users
understand the systems. They included 2D drawing,
2D gesture recognition, moving the camera, 3D pose
recognition and 3D gesture recognition. Each of
these systems is also a state within the tutorial system
that the user can cycle through. Each state has its
own visual, written and interactive way of showing
the user the current state.
2D Drawing
This state trains the user how to draw 2D objects on a
canvas. The drawing system requires the use of the
LeapMotion and a set of criteria needs to be met to
begin drawing (see Figure 2). To begin with, the only
hand that the drawing system recognises is the
primary hand selected by the user in the first tutorial
state. The index finger is chosen for drawing. When
the user wants to stop drawing, they can either move
all their fingers back from the sensor, or open their
thumb out without the need of moving. If a user
makes a mistake and wishes to undo the previous
stroke on the canvas, they can do so by swiping right.
2D Gesture Recognition
The 2D gesture recognition scenes goal is to help the
user with recognising 2D shapes. While this process
could have been combined with the drawing state,
our experiences show that learning to draw first with
the added gesture recognition was too steep a
learning curve for first time users. Once users are

Figure 1. Mosoon Minigame monsoon state.

familiar with the drawn shapes, they can move their
hand by positioning all the fingers forward on the
LeapMotion device. The system then classifies the
gesture using $P and returns the best scoring point
cloud for each gesture. The implemented gestures in
this tutorial stage are Circle, Rectangle, Triangle and
Cross. The user can create shapes and then grab,
move or throw them away.
Moving the Camera
This tutorial follows the main principle where users
can move around the play area with their secondary
hand by closing it into a fist. This scene is used as a
breaker from the 3D gesture recognition.
3D Pose Recognition
The 3D pose recognition scene teaches users how to
hold their secondary hand when performing a pose.
To perform a pose, the user positions their hand so
that it forms a symbolic gesture and hold that pose
until it is recognised. The Pose recognition system
can use 4 different poses including the L Pose, the
ROCK Pose, the OK Pose and the PEACE Pose (See
Figure 3).
Poses are recognised within the gesture recognition
system through the use of velocity within the

LeapMotion device. We use this data to find the
minimum x, y or z value from the hands and fingers
velocity data. We then check if the hand has stopped
moving with a velocity of under a minimum value.
Once this occurs, the gesture recognition system
records the position information from the fingers and
palm for that frame. This process repeats until either
the hand is moving quicker than the minimum
velocity and our data points need to be reset, or the
user holds their hand over the minimum number of
frames required, 75 frames in our implementation.
Making users wait while performing a pose could be
an issue if there is no hint or indication. To overcome
this, a pose gesture indicator was presented showing
the progression of a pose gesture until the pose
recognition system can determine the pose.
3D Gesture Recognition
The 3D gesture recognition follows the 3D pose
recognition state where we want to teach the user
how to do gestures in the environment. To perform
gestures, the user uses their secondary hand and
makes a quick movement. As opposed to poses that
require little to no movement, gestures requires a
sudden movement that when slowed down is
recognised as a gesture. We implemented two sample
gesture recognitions in our system including SHAKE
and GUN.
To recognise a gesture, the system gathers the same
velocity data from the palm and fingers as with the
pose recognition system but determines the
maximum velocity from the x, y and z values instead.
It then waits until the velocity from the palm or
fingers is greater than the maximum velocity of 500
millimetres and then it starts recording the gesture.
Once this happens, each frame is recorded until the
hand or fingers velocity has fallen under 500
millimetres or the number of gesture frames is over
our sampling resolution of 32 points. A gesture
indicator was also created to assist the interaction.

Practice Systems
We developed two practice systems to complement
the lessons taught in the LeapMotion tutorial
environment. The first system is a target practice
scene that uses 2D drawings to create objects for the
user to fling around and 3D poses for altering those
shapes properties. This scene also uses 3D gestures
for users to interact with the environment as opposed
to just the shapes. The second system is a Cave
Painting system that emulates how users could use
the 2D recognition system in a creative and fun way
with an image matching game.
Target Practice System
The target practice system is the showcase scene for
our LeapMotion environment. It contains a number
of gestures in both 2D and 3D and offers an open

Figure 2. Tutorial state default template.

Figure 3. L Pose, ROCK Pose, OK Pose and

PEACE Pose respectively.

sandbox where the user can use all these different
systems together to interact with the environment.
The interactable objects within the play area are cube
walls and targets. Targets generate points based on
how close an object gets to the centre from the users
throw and a cube wall acts as a breakable barrier
which users can break open by using multiple objects
at once (see Figure 4).
The types of 3D Poses that our system can recognise
are: L Pose this turns the gravity off for all created
objects, OK Pose changes the colours of all newly
created objects, ROCK Pose triples the current
objects created and the PEACE Pose makes all the
objects heavier/lighter. The 3D gestures that the
Target Practice scene can also recognise are SHAKE
Gesture that shakes the camera around and the GUN
Gesture that creates a bullet launched from the
fingertips that explode on impact.
Cave Painting
The Cave Paintings goal is to closely match one of
the 5 popular animals from the Australian outback
(see Figure 5). The Bat and Turtle contain the fewest
shapes; the Emu and Lizard are more complicated
due to their curves and the Kangaroo is the most
difficult one with both curves and difficult shapes.
Users are required to trace the animal drawing using
their finger as close as they can. The system gives the
users feedback on how close they were to the
drawing as well as acknowledge their performance.
These messages do not have negative comments
written on the drawing to provide an enthusiastic
approach when trying to draw the animal.

5. EVALUATION
We compared the results of three different point
cloud gesture recognition systems ($P, $P3D and
$P3D+). Using the training set defined and created
by using the program, we evaluated the performance
(time complexity and the average recognition
percentages) of the original 2D algorithm ($P), the
added 3D gesture recognition algorithm ($P3D) and
our improved 3D recognition algorithm ($P3D+).
The gesture set consists of 15 gestures ranging from
iconic aboriginal animals, 2D shapes, 3D poses and

3D gestures. The results in these experiments were
evaluated based two sample gesture databases.
The first database consists of all 15 gestures from the
gesture set, from which each pose per hand has 4
angle variations that were split into normal, rotated
forward, rotated left/right (based on what hand was
used) and rotated back. Each gesture on each left-
and right-hand has five variations. Each of the 2D
animal gesture contains three similar variations while
each 2D shape also has five variations in average per
shape. Overall, this database totals to 28 poses and
gestures recorded (300kb) and 35 animal and shape
drawings (600kb).
The second database expands the 3D gesture set by
doubling the number of variations per hand to 10
each. The 3D poses also receive an increased number
of variations per hand, from five to six. We also
exclude all 2D gestures to focus on 3D recognition.
To create unbiased results, the classification of the
results uses the 3D poses and gestures from one
database as the gesture/pose input to compare point
clouds and determine the minimum distance by using
another training set.
We initially used the scoring equation defined in
[Wob07, Ant10]. However, this scoring method
produces scores within the 95%-99% margin with
very few scores ranging outside this segment. Our
implementation requires the scores to range based on
our observed minimum distances for the correct and
incorrect gestures. To overcome this limitation, the
scores were calculated using a polynomial formula to
extrapolate the data explained above into a curve to
map the distance data to the following percentage
values, particularly 0.5 = 99%, 0.9 = 90%, 1.1 =
85%, 1.3 = 80%, 1.5 = 75%, 3.5 = 20%, and 4 =
0%.
We do not consider the average recognition rate for
$P on 2D gestures as the recognition average has
already been conducted by [Ant12]. We test $Ps
ability to recognise 3D gestures versus $P3D
recognition system using both databases.

Figure 5. The 2D drawing gestures recognised in
the Cave Painting scene. (a) Bat, (b) Kangaroo,

(c) Emu, (d) Turtle, (e) Lizard.

Figure 4. Target Practice system with multiple

objects in play.

Comparing $P to $P3D

First Dataset
From the results on the first dataset (see Figure 6),
we can see a clear indication that $P could not
determine any differences between 3D and 2D data.
It is a surprise that the recognition rate in the L pose,
$P proved to be more efficient when compared to
$P3D (84% Range CI = [81, 87] to 77% CI = [74,
80]). However, the recognition rates for other
gestures were higher in $P3D in comparison to $P
particularly the L pose. There is no clear indication
from the noise of the other gestures like Bat 90% CI
= [87, 93], Circle 89% CI = [87, 91], Kangaroo 89%
CI = [85, 93], Lizard 89% CI = [86, 92], Rectangle
91% CI = [88, 94] that the L pose was the most
recognised gesture. All other poses and gestures have
significantly decreased average recognition rates for
the correct gesture with high recognition rates for the
wrong gestures. With the ROCK pose, $P does have
a high average recognition rate of 91% CI = [86, 96],
but is still beaten by $P3Ds average of 95% CI = [93,
97]. This indicates our 3D implementation works
better than the traditional 2D system.
Second Dataset
From the second dataset (see Figure 7) with a larger
3D database, $P performs miserably when
determining the GUN gesture with an average
recognition rate (< 50%) as well as an extremely low
average recognition rate for SHAKE gesture (< 5%
recognition mark). $P3Ds performs much better
above the 95% recognition average, for example the
SHAKE Left Hand (96% CI = [94, 98]), Right Hand
(98% CI = [97, 99]) and GUN Left Hand (98% CI =
[97, 99]) and GUN Right Hand (100%). When
presented with a larger L pose database, the $P
recognition average actually performs better than
$P3D with the Left Hand scoring an excellent 90%
(CI = [89, 91]) versus $P3Ds 85% (CI = [83, 87])
recognition average and the Right Hand achieving
similar results with a 83% (CI = [76, 90]) average
compared to $P3Ds 78% (CI = [72, 84]). This means
that while the $P system performs worse on all
gestures it has the ability to perform well or better
than $P3D on pose recognition.

Comparing $P3D to $P3D+
With the improvements made to $P3D+, we evaluate
whether our new $P3D+ performed better than the
original $P3D. These evaluations follow the above
comparisons, and T-value tests are used to determine
if the improvements are statistically significant
(alpha level of .05 for all statistical tests).
First Dataset
Figure 6 shows the GUN gesture has a decreased
recognition rate from $P3Ds 98% (CI = [97, 99]) to
$P3D+s 95% (CI = [92, 98]) but there is no statistical
significant difference between these two systems

Figure 6. Gesture recognition averages using $P,

$P3D and $P3D+ on small dataset with L, Ok,
Gun, Peace, Rock and Shake Respectively.

t(38)=1.71, p=0.09. This result means that while
$P3D+ recognition average is lower than $P3D, there
is not enough evidence to class both sets of data as
different. With the PEACE Pose, we found that there
was a significant difference in recognition averages
for $P3D 88% (CI = [84, 92]) and $P3D+ 96% (CI =
[93, 99]) t(22)=3.01, p<0.01. This result suggests that
the improvements made to increase the recognition
for the PEACE pose have increased the average
enough to be statistically significant.
Second Dataset
Figure 7 also indicates that our hypothesis of the
best-case scenario is apparent in the GUN
(Left/Right) hand. For the Left Handed GUN gesture,
the $P3D Right Handed GUN recognition average is
almost the same as the Left Handed average (99% CI
= [98, 100]) while the $P3D+ system has a lower
percentage of 98% (CI = [96, 100]) - t(8) = 0.59, p =
0.57. This means that the $P3D+ system is missing
the best recognisable gun gesture and that is lowering
its average. With the Right Handed L pose we can
also determine that the recognition average is not
significant between these systems while $P3D+ has a
significantly increased recognition rate when
compared to $P3D (92% CI = [82, 100]) and 78% CI
= [72, 84]) respectfully - t(8) = 1.00, p = 0.35. For
the Left Handed L pose the difference is extremely
noticeable. For the $P3D system, the average
recognition rate is around 85% CI = [82, 88]). The
$P3D+ system achieves a higher recognition rate of
98% (CI = [95, 100]) with a significant difference
between the 3D and 3D+ systems t(6) = 5.97, p <
0.01. This shows that when the user performs an L
pose, the $P3D+ system is going to recognise that
pose easier.

Discussion
When differentiating $P with $P3D, the assumption
was that $P3D would outperform $P. With the
majority of gestures, $P3D recognises the 3D point
cloud with excellent gesture recognition average
while $P has high averages. The L Pose interestingly
with the small database and the L and Rock Poses in
the large database, the $P gesture recognition system
perform better than the 3D system.
When comparing $P3D and $P3D+, the improved
gesture recognition system hypothetically yields
slightly lower results based on the limitations of the
training data gathered for testing. Our experiment
shows that with some gestures, it actually increased
the recognition rate by a small margin of 4.55%. The
Left Hand L pose was the best result that achieved an
increased recognition average of 13.17%. While this
improvement increased the recognition average, we
can claim that the confidence interval for the $P3D+
gesture recognition average falls way out of the more
condensed $P3D versions interval as $P3D factors in

all gestures and gets the best-case scenario for each
pose/gesture. However, the GUN gesture and the OK
Pose did follow our hypothesis of having a smaller
recognition rate compared to the traditional 3D
gesture recognition. This is because of the small
difference between left and right hand GUN gestures.

User Experiences
We demonstrated the system to several people during
various events hosted by the Western Sydney
University. While no formal questionnaires were
given, we have documented the difficulties and
differences between users who have used the system
for the first time and some who have had experience
with this device before. The users were a variety of
ages ranging from primary school children, high
school students, university undergraduates and some
academic researchers. The users mostly inciated that
they never used the LeapMotion system before.
From those who have no prior experience with the
LeapMotion it was clearly that they found it difficult
to first locate the LeapMotion system and use it
properly. The main problem was the simplicity in the
LeapMotions design causing users to not believe that
the system could perform 3D hand recognition.
Another issue was users who would immediately try
to move their hand as close to the sensor as possible.
While the LeapMotion can detect hands from a short
distance, if the hands are too close to the IR cameras
they could not distinguish the hands properly. Once
instructed to move their hands upward, users
understood the distance required for recognition and
rarely brought their hands too close to the sensor
again. Users were presented with either the default
LotsOfBlocks demo or the Monsoon minigame
developed for the first time users.
For the users who were presented with the Monsoon
minigame, comments were made about what they
were supposed to do while the minigame was
playing. As the premise for the scene was to catch as
many objects as possible, users found that the
LeapMotion could not track their hands very well
when they were cupped together. Some users decided
to ignore grabbing the objects but rather tried to fling
the objects around and as far as they could to see who
could get the furthest.
The overall consensus with most individuals who
used these demos was overwhelmingly positive.
While some had seen the LeapMotion technology
before or were not enthusiastic with the devices
capabilities, the majority enjoyed using the tracking
system.

6. CONCLUSIONS
In this paper, we have presented gesture recognition
techniques that allowed recognition of both 2D and
3D gestures using point cloud gesture recognition.
These techniques extrapolate gesture sets using

similar classifiers to recognise when to start looking
for a gesture. We implemented tools that collected
gesture data for recognition and processing. We also
developed new 2D and 3D interactive environments
that acted as a visual representation of the data.
We enhanced a 2D point cloud gesture recognition
system into a 3D gesture recognition system that
supports the data points from the LeapMotions hand,
palm and fingers. We implemented four poses and
two gestures to demonstrate the effectiveness of the
new 3D gesture recognitions. We used a small
database system for our gesture set in comparison to
large database in existing systems.
Our experimental results showed that the 3D system
outperformed the traditional 2D system in most cases
as well as some small improvements on the $P3D+ in
comparison to the original $P3D.

7. REFERENCES
[3Ge16] 3GearSystems. (Feb 2016). Nimble VR.

http://nimblevr.com/
[Ant10] Anthony, L. and Wobbrock, J. O. A

lightweight multistroke recognizer for user
interface prototypes. In Proc. Graphics Interface
2010, Ottawa, Ontario, Canada, 2010.

[Ant12] Anthony, L. and Wobbrock, J. O. $N-
protractor: a fast and accurate multistroke
recognizer. In Proc. Graphics Interface 2012,
Toronto, Ontario, Canada, 2012.

[Che14] Chen, K.-M. and Wong, S. K. Interactive
Sand Art Drawing Using Kinect. In Proc. 7th
International Symposium on Visual Information
Communication & Interaction, pp. 78-87, 2014.

[Coo15] Cook, H., Nguyen, Q.V., Simoff, S.,
Trescak, T. and Preston, D. A Close-Range
Gesture Interaction with Kinect. In Proc. IEEE
International Symposium on Big Data Visual
Analytics, Hobart, Australia, pp. 1-8, 2015.

[Ebe13] Ebert, L. C., Hatch, G., Thali, M. J., and
Ross, S. Invisible touch—Control of a DICOM
viewer with finger gestures using the Kinect
depth camera. Journal of Forensic Radiology and
Imaging, vol. 1, pp. 10-14, 2013.

[Kra11] Kratz, S. and Rohs, M. Protractor3D: A
Closed-Form Solution to Rotation-Invariant 3D
Gestures. Intelligent user interfaces, pp. 371,
2011.

[Kri04] Kristensson, P.-O. and Zhai, S. SHARK2: A
Large Vocabulary Shorthand Writing System for
Pen-based Computers. pp. 43, 2004.

[Lee13] Lee, U and Tanaka, J. Finger identification
and hand gesture recognition techniques for

natural user interface. In Proc. Asia Pacific
Conference on Computer Human Interaction,
pp. 274-279, 2013.

[Liu09] Liu, J., Zhong, L., Wickramasuriya, J. and
Vasudevan, V. uWave: Accelerometer-based
personalized gesture recognition and its
applications. Pervasive and Mobile Computing,
vol. 5, pp. 657-675, 2009.

[Pri16] PrimeSense and Apple. (Feb 2016). OpenNI.
https://github.com/OpenNI/OpenNI

[Ope16] OpenKinect. (Feb 2015). Libfreenect.
https://github.com/OpenKinect/libfreenect.

[Ren11] Ren, Z. Meng, J., Yuan, J. and Zhang, Z.
Robust hand gesture recognition with kinect
sensor. In Proc. ACM International Conference
on Multimedia, pp. 759-760, 2011.

[Sha15] Sharp, T., Wei, Y., Freedman, D., Kohli, P.,
Krupka, E., Fitzgibbon, A. et al. Accurate,
Robust, and Flexible Real-time Hand Tracking.
Computer Human Interaction, pp. 3633-3642,
2015.

[Sho13] Shotton, J., Sharp, T., Kipman, A.,
Fitzgibbon, A., Finocchio, M., Blake, A. et al.
Real-time human pose recognition in parts from
single depth images. Communications of the
ACM, vol. 56, p. 116, 2013.

[Son13] Song, L., Hu, R., Xiao, Y., Gong, L. Real-
Time 3D Hand Gesture Recognition from Depth
Image. In Proc. the 2nd International Conference
On Systems Engineering and Modeling
(ICSEM-13), pp. 1134-1137, 2013.

[Tan11] Tang, M. Recognizing hand gestures with
Microsoft’s kinect. Department of Electrical
Engineering, Stanford University, CA, USA,
Technical Report, 2011.

[Vat12] Vatavu, R.-D., Anthony, L. and Wobbrock,
J. O. Gestures as Point Clouds: A $P Recognizer
for User Interface Prototypes. In Proc.
International Conference on Multimodal
Interaction, p. 273, 2012.

[Wob07] Wobbrock, J.O., Wilson, A.D. and Li, Y.
Gestures without libraries, toolkits or training: a
$1 recognizer for user interface prototypes. User
Interface Software & Technology, pp. 159, 2007.

 [Yin14] Yin, Y. Real-time continuous gesture
recognition for natural multimodal interaction.
PhD thesis, Electrical Engineering and Computer
Science, Massachusetts Institute of Technology,
2014.

http://nimblevr.com/
https://github.com/OpenNI/OpenNI
https://github.com/OpenKinect/libfreenect

 Figure 7. Gesture recognition averages on a large dataset with L, Ok, Gun, Peace, Rock and

Shake on both left and right hands respectively.

	Enabling Gesture Interaction with 3D Point Cloud
	ABSTRACT
	Keywords

	1. INTRODUCTION
	2. RELATED WORK
	3. GESTURE RECOGNITION
	Gesture Recognition Systems
	$P in a 3D world space ($P3D)
	$P3D+
	Removing Redundant Point Clouds
	Assigning and Ordering Stroke IDs to the Hand

	4. INTERACTION WITH LEAPMOTION – A CASE STUDY
	Capturing the 3D Point Clouds
	Environment Building
	Monsoon Minigame
	Tutorial System
	2D Drawing
	2D Gesture Recognition
	Moving the Camera
	3D Pose Recognition
	3D Gesture Recognition

	Practice Systems
	Target Practice System
	Cave Painting

	5. EVALUATION
	Comparing $P to $P3D
	First Dataset
	Second Dataset

	Comparing $P3D to $P3D+
	First Dataset
	Second Dataset

	Discussion
	User Experiences

	6. CONCLUSIONS
	7. REFERENCES

