
Min-Max Mipmaps for Efficient 2D Occlusion Culling
Simon Scheckel1 Andreas Kolb2

Computer Graphics Group, University of Siegen, Hölderlinstr. 3, 57074 Siegen, Germany
1simon.scheckel@student.uni-siegen.de; 2andreas.kolb@uni-siegen.de

ABSTRACT
3D culling techniques are well established to improve rendering performance, but cannot be applied to 2D games
in which the scene is composed of partially transparent textures in a known layer arrangement. Commonly, 2D
rendering is achieved in a simple back-to-front blending scheme. This paper discusses options to realize 2D
occlusion culling techniques using standard OpenGL functionalities, and introduces a novel 2D culling technique
based on min-max mipmaps. We evaluate the performance of the different techniques for different scenarios.

Keywords
2D Picture/Image Generation; Textures and Framebuffer Operations; Mipmaps

1 INTRODUCTION & PRIOR WORK
In 2D graphics applications, such as games, the scene
consists of a set of layers (2D textures with trans-
parency) in a defined “depth” order. The resulting 2D
rendering is commonly achieved in applying a simple
back-to-front blending scheme.
While the primary target for both, 2D and 3D games
is to optimize for high-quality graphics, subject to
performance considerations and/or given hardware
restriction, the major structural difference lies in the
nearly vanishing geometry processing requirements for,
and the known “spatial” structure of, 2D applications.
Furthermore, 2D games rather target mobile platforms
which impose greater hardware restrictions.
3D Culling Techniques: In 3D graphics applications,
culling methods are commonly used in order to dis-
card geometry on object level [3]. Culling techniques
are designed to deal with the a-priori unknown depth
structure of the 3D scene to be rendered which consists
mainly of fully opaque objects.
Early culling techniques usually attempted to exploit
specific scene or object structures, such as portal culling
for buildings [13], or the aspect graph related to the
projetive structure of polygonal models [12]; see Co-
hen et al. [3] for a in-depth discussion of early culling
techniques. Alternative, image based approaches such
as a hierarchical z-buffer approach by Green et al. [7]
and the hierarchical occlusion maps by Zhang et al. [15]
are applicable to generic scenes. Both approaches are
related to our work, as they use hierarchical data struc-
tures in order to detect objects which are (potentially)
hidden by occluders; see Sec. 4.
Hardware occlusion queries offer an efficient utility
to test the visibility of bounding geometries against
the depth buffer before rendering the contained object.
Bittner et al. [1] realize an efficient coherent culling
method, which uses an octree and temporal coherence

in order to allow for an asynchronous handling of oc-
clusion queries and rendering tasks.

Overdraw Reduction: The performance of 2D appli-
cations is steered by the GPU’s fill-rate capability and
the amount of overdraw present in the current scene.
Thus, 2D culling is equivalent to reduce overdraw oper-
ations. In 3D rendering engines, deferred shading and
lighting is used to reduce unnecessary shading opera-
tions by applying a fast z-prepass [10]. This technique
can be applied to 2D image synthesis as well, however,
in the prepass only rendering of opaque areas can be
handled, while transparent regions need to be handled
differently; see Sec. 2.

An alternative 2D approach is to identify opaque and
not fully transparent texture areas and convert them into
meshes, thus preventing overdraw for fully transparent
regions. Church follows this idea by cutting off trans-
parent regions using “corner cutting” and triangulating
the remaining areas [2]. However, this technique can-
not handle multiple opaque regions and holes, which
frequently occur in 2D games.

Contribution: As the direct application of 3D occlu-
sion culling methods to 2D rendering is of limited use,
this paper discusses automated approaches to improve
performance for 2D rendering by overdraw reduction.
Beside alpha-testing (Sec. 2) and contour tracing with
triangulation (Sec. 3), which do not lead to siginifcant
performance gains, we introduce a novel 2D occlusion
culling technique based on min-max mipmaps. The
main advantages of our approach are

• generation of isosceles triangles covering fully
opaque or fully transparent regions, resulting in
superior geometry and rasterization performance,
and
• adaptivity of the triangle refinement level, leading

to a performance-optimal ratio between triangle size
and triangle count.



Figure 1: Sample scenes used for evaluation. The scene parameters are depicted in Tab. 1.

2 ALPHA-TEST-BASED CULLING
Alpha testing can naturally be used to identify the fore-
most, opaque layer at pixel level. Utilizing the alpha
test requires a two-pass process. Given a layer se-
quence layer[i] sorted in depth order, in the first
pass opaque pixels are drawn in the depth buffer in a
front-to-back manner. Due to the front-to-back pro-
cessing, areas behind near opaque regions are already
discarded in the early depth test. In the second back-
to-front pass, layer pixels hidden behind opaque pixels
are again not drawn. However, in the worst case all
layer pixels are drawn twice. Furthermore, transparent
regions are not taken care of. An extension of this al-
gorithm involves drawing already in the first pass (later
referred as alpha2), but it still has to draw all transpar-
ent parts.

The main disadvantage in the alpha test algorithm is
that all, i.e. opaque and transparent, regions are ras-
terized in each pass, even though in the first pass we
are dealing with opaque regions only and, in the sec-
ond pass, only foremost opaque pixel and transparent
regions are of interest.

3 CONTOUR TRACING AND TRIAN-
GULATION

A natural approach is to represent fully opaque inner re-
gions, as well as the outer regions (fully transparent re-
gions) in a layer texture as (triangular) meshes. Hereby,
both regions need to fulfill a consistency criteria: the
inner region may not contain pixels that are not opaque
and the outer region must cover all transparent pixels.

We generate these kinds of triangulations on the CPU
in a prepocessing step as follows:

Noise Reduction: By applying opening and closing to
remove small features without violation of our con-
sistency criteria.

Figure 2: Sample triangulations generated with the
Mip8, Mip2 and the contour-based mathods. Images
from [4].

Contour Tracing: Tracing the boundary of the open-
ing inner regions using a scanline-based, Moore-
Neighbor tracing.

Reduction of Contour Points: In order to avoid a
large set of triangles that need to be transfered to the
GPU, we further reduce the set of contour points.
However, we need to ensure, that this reduction
does not violate the consistency criteria. Thus, we
only can remove inner, collinear points.

Triangulation: The final triangulation is generated us-
ing a sweep-line algorithm and requires a list of
closed contours in the image plane as input [6].

4 MAXIMUM MIPMAPS
As contour tracing & triangulation often leads to a large
amount of long and thin triangles (see Fig. 2), we pro-
pose a novel minimum and maximum mipmaps (min-
max mipmaps) technique in order to generate nearly
ideal triangulations. Min-max mipmaps have already
been used in computer graphics, e.g., for soft shad-
ows [9], global illumination [11], collision detection
using geometry images [8], and ray casting of terrain
data [14].

Our approach computes min-max mipmaps as lower
and upper bound for the alpha values in the area rep-
resented by each pixel in the mipmap. Thus, a mipmap
pixel resembles a fully opaque or fully transparent re-
gion if its min and max mipmap values are equal to 1 or



0, respectively. We generate the min-max mipmap us-
ing a simple fragment shader, combining 4 pixels into
one in each hierarchy generation step.

The triangulation algorithm classifies layer areas as
opaque (inner triangulation) or transparent (outer trian-
gulation) directly on the min-max mipmap hierarchy in
a top-down manner. Starting from the highest (1x1 px)
mipmap level, we recursively check for maximum and
minimum pixel values and if the pixel cannot be clas-
sified as fully opaque or transparent we traverse to the
next finer hierarchy level. If a (refined) mip-map pixel
represents a fully opaque or fully transparent rectan-
gular, the related layer region is tessellated using two
isosceles triangles. The classification process for both
maximum mipmaps and contour tracing is done only
once for each layer with the outer and inner regions and
results in a list of triangles that are used to draw.

The main advantages of the mipmap-based approach is,
that we can tune the amount of generated triangles by
changing the maximum level of refinement. Apparently,
a low maximum refinement level yields large “unde-
cided” regions which need to be handled on a per-pixel
level in the compositing stage. However, these “unde-
cided” regions most likely contain many fully trans-
parent and fully opaque regions which could be as-
signed to the inner or outer region, respectively. On the
other hand, a high maximum refinement level leads to
a large number of small triangles, resulting in a compu-
tational effort in the geometry processing and rasteriza-
tion stages. We discuss the influence of the maximum
refinement level in Sec. 5.

5 RESULTS
In this section we compare the 2D occlusion techniques
to the standard back-to-front blending for 2D image
synthesis. Here ‘Alpha2’ denotes the changed version
of the alpha test with drawing in the first pass and
‘MipN’ stands for our min-max mipmap-based occlu-
sion culling, where the smallest region generated by
the refinement is a NxN pixel region in the final image.
For the comparison, we use four scenarios from the 2D
games [4, 5]. Tab. 1 depicts the relevant key features
of these scenes. The scenes consist of layers with dif-
ferent sizes, which we classified in FullHD, medium
(1400x600) and small (600x400). To get genuine re-
sults, shader operations consist only of a matrix multi-
plication for the vertex shader and a texture lookup for
the fragment shader. All scenes consist of static lay-
ers, that can be preprocessed as is the case for most 2D
games. The synthesized images are FullHD throughout.

5.1 Preprocessing
Since we assume static layer geometries, the perfor-
mance of the preprocessing stages of the individual al-
gorithms is of little practical impact. Still, we present

Layers Px Cnt Min Px Cnt
Scene 1 3 6,240k 2,238k (35.8%)
Scene 2 5 8,041k 2,148k (26.7%)
Scene 3 5 8,121k 2,088k (25.7%)
Scene 4 7 11,389k 2,132k (18.7%)

Table 1: Parameters for test scenes: Number of layers,
the total count of pixels without culling (’Px Cnt’) and
the theoretical minimal count of drawn pixels (’Min Px
Cnt’).

the preprocessing timings in Tab. 2 for FullHD, medium
and small texture layers, as a reference for the estimated
complexity.

5.2 Performance

C
on

to
ur

M
ip

32

M
ip

16

M
ip

8

M
ip

4

M
ip

2

A
lp

ha

A
lp

ha
2

6 9 12 14 8 3

−
11 2−

4

17 22 21 17

9

−
15 03

23 29 31 26

16

−
24 −
18−

1

37 41 41

25

12

−
16 −

7

Figure 3: Relative performance gain compared to stan-
dard back-to-front blending on a GTX 770 with Nvidia
Nsight [%].

C
on

to
ur

M
ip

32

M
ip

16

M
ip

8

M
ip

4

M
ip

2

13

33 31

13 4 −
313

28

47

26

10 0

13 13

28

13 13

0

34

48 52 48

34

7

Figure 4: Relative performance gain compared to stan-
dard back-to-front blending on an iPad 3 [%]

Figs. 3 and 4 show the relative performance gain of each
method compared to the standard back-to-front com-
positing scheme. Due to the fine granular culling on

Algorithm 1920x1080 1400x600 600x400
Loading layers 5 6 1
Contour tracing 127 126 33

Mip16 38 31 20
Mip8 37 33 22
Mip4 46 37 25
Mip2 49 33 24

Table 2: Preprocessing time [ms] for loading the lay-
ers and triangulation (including mipmap generation for
MipN,N ∈ {2,4,8,16}).



C
on

to
ur

M
ip

32

M
ip

16

M
ip

8

M
ip

4

M
ip

2

A
lp

ha

A
lp

ha
2

0%

99

69 82 89 95 97

−
30

27

99

75 87 94 97 98

−
24

25

99

73 86 92 95 98

−
60 −

33

99

80 89 94 97 99

−
22

4

Figure 5: Culling efficiency: The relative amount
of culled pixel, where 100% equals to the minimum
amount of pixel draw, 0% to the standard back-to-front
blending; see Tab. 1.

Scenes
Method 1 2 3 4

Con 7,457 9,895 5,750 16,154
Mip32 3,238 2,764 1,918 5,412
Mip16 7,182 6,724 4,656 12,448
Mip8 15,220 15,080 10,524 28,130
Mip4 27,668 28,814 19,722 53,822
Mip2 51,784 55,760 37,768 100,936

Figure 6: Number of triangle generated by the contour
tracing (Con) and the mipmap methods MipN for N ∈
{2,4,8,16,32} for the scenes (Sc) 1–4.

pixel level and the additional draws required to generate
the depth map, the alpha test based approach performs
very poorly. The iPad doesn’t support Alpha Test, so
only triangulation based methods are tested here. Most
interestingly, the contour based triangulation approach
performs poorly on the PC and somewhat better on the
iPad, whereas our mipmap based approach constantly
performs best for N = 8 and N = 16 on the PC and for
N = 16 and N = 32 on the iPad.

On the other hand, we investigate the culling efficiency
(see Fig. 5), i.e., the relative amount of culled pixels
compared to the maximum possible amount of culling
(see also Tab. 1). Here, the contour-based approach
delivers the most accurate coverage of the regions to
be culled. The alpha-blending approaches naturally re-
quire many additional draws in order to generate the
opaque depth map, thus their efficiency in terms of
overdraw reduction is very poor. The mipmap ap-
proach’s efficiency increases as the level for generating
triangles gets smaller, i.e., for decreasing N.

The mipmap approach generates isosceles triangles
which can be rasterized more efficiently, whereas the
contour based approach generates elongated triangles
(see Fig 2). Compared to the PC, the iPad has a bigger
performance hit for higher triangle counts, but it shows
similar results as the desktop GPU solution 4.

6 CONCLUSION & FUTURE WORK
We present a novel technique to automatically gener-
ate efficient, isosceles triangulations for inner and outer
regions of partially transparent textures which leads
to a significant overdraw reduction in 2D rendering.
Our technique can be adopted to the geometry per-
formance capacities of the targeted platform, leading
to a performance-optimal ratio between triangle size
and triangle count. Future work may include dynamic
textures, which requires efficient online triangulation
methods.

7 REFERENCES
[1] J. Bittner, M. Wimmer, H. Piringer, and W. Purgath-

ofer. Coherent hierarchical culling: Hardware occlusion
queries made useful. CGF, 23(3):615–624, 2004.

[2] A. Church. Depth-Cull Optimization of 2D Scenes for
3D Graphics Hardware. 2014.

[3] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Du-
rand. A survey of visibility for walkthrough applica-
tions. IEEE TVCG, 9(3):412–431, 2003.

[4] Daedalic Entertainment. The Dark Eye: Chains of Sati-
nav (Computer Game), 2012.

[5] Daedalic Entertainment. Deponia (Computer Game),
2012.

[6] V. Domiter and B. Žalik. Sweep-line algorithm for
constrained delaunay triangulation. J. Geo. Inf. Sci.,
22(4):449–462, 2008.

[7] N. Greene, M. Kass, and G. Miller. Hierarchical z-
buffer visibility. In Proc. SIGGRAPH, pages 231–238,
1993.

[8] A. Greß, M. Guthe, and R. Klein. Gpu-based collision
detection for deformable parameterized surfaces. CGF,
25(3):497–506, 2006.

[9] G. Guennebaud, L. Barthe, and M. Paulin. Real-time
soft shadow mapping by backprojection. In Rendering
Techniques, pages 227–234, 2006.

[10] T. Harada, J. McKee, and J. C. Yang. Forward+: A step
toward film-style shading in real time. GPU Pro 4: Adv.
Rend. Techn., 4:115, 2013.

[11] G. Nichols, J. Shopf, and C. Wyman. Hierarchical
image-space radiosity for interactive global illumina-
tion. CGF, 28(4):1141–1149, 2009.

[12] H. Plantinga and C. R. Dyer. Visibility, occlusion, and
the aspect graph. J. Computer Vision, 5(2):137–160,
1990.

[13] S. J. Teller and C. H. Séquin. Visibility preprocess-
ing for interactive walkthroughs. In Proc. SIGGRAPH,
volume 25, pages 61–70, 1991.

[14] A. Tevs, I. Ihrke, and H.-P. Seidel. Maximum mipmaps
for fast, accurate, and scalable dynamic height field
rendering. In I3D, pages 183–190, 2008.

[15] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff III.
Visibility culling using hierarchical occlusion maps. In
Proc. SIGGRAPH, pages 77–88, 1997.


