
CellPathway: a Simulation Tool for Illustrative Visualization
of Biochemical Networks

Matthias Reisacher
TU Wien, Austria

1125358@student.tuwien.ac.at

Ivan Viola
TU Wien, Austria

viola@cg.tuwien.ac.at

Mathieu Le Muzic
TU Wien, Austria

mathieu@cg.tuwien.ac.at

ABSTRACT

The molecular knowledge about complex biochemical reaction networks in biotechnology is crucial and has received a lot
of attention lately. As a consequence, multiple visualization programs have been already developed to illustrate the anatomy
of a cell. However, since a real cell performs millions of reactions every second to sustain live, it is necessary to move
from anatomical to physiological illustrations to communicate knowledge about the behavior of a cell more accurately. In
this publication we propose a reaction system including a collision detection algorithm, which is able to work at the level of
single atoms, to enable simulation of molecular interactions. To visually explain molecular activities during the simulation
process, a real-time glow effect in combination with a clipping object have been implemented. Since intracellular processes
are performed with a set of chemical transformations, a hierarchical structure is used to illustrate the impact of one reaction on
the entire simulation. The CellPathway system integrates acceleration techniques to render large datasets containing millions
of atoms in real-time, while the reaction system is processed directly on the GPU to enable simulation with more than 1000
molecules. Furthermore, a graphical user interface has been implemented to allow the user to control parameters during
simulation interactively.

Keywords: Molecular simulation, visualization system, collision detection, particle-based data, large data

1 INTRODUCTION

The usage of illustrative tools is an established ap-
proach to communicate knowledge of complex bio-
chemical processes in cells to a broad audience. In
the beginning, illustration artists had to create time con-
suming handmade animations combined with sophisti-
cated visualization techniques to tell a structured story.
The next step was to use software tools to create images
showing complex molecular structures. While at the
beginning, render processes took hours or days to com-
plete, with increasing processing power it was possible
to explore large scenes containing millions of atoms in
real-time. However, millions of chemical reactions are
performed every second in real cells to allow intercel-
lular communication and to sustain living organisms.
To communicate knowledge about complex intracellu-
lar processes which keep the cell alive, it is necessary
to move from anatomical to physiological illustrations.
Therefore, the next logical step is to use molecular re-
action systems to simulate large scale reaction networks
which are describing the physiology of a cell.

While this area has received a lot of attention lately,
many tools to simulate and visualize molecules and re-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2016 conference proceedings, ISBN 80-903100-7-9
WSCG’2016, May 30 – June 3, 2016
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

actions inside of a cell have been proposed in the last
few years. Lately, particle-based simulators got more
popular to imitate a realistic behavior of the molecules.
Their general approach is to postpone most of the calcu-
lations and operations from the central processing unit
to the graphics card through a GPU first approach by,
for example, enabling GPU-to-GPU data flow. This
is possible due to the modern, freely programmable
GPUs. General-purpose GPU programming acceler-
ates the performance of those systems immensely. That
enables the simulation and visualization of large-scale
scenes containing billions of atoms on an average com-
puter. However, most of those approaches do not take
global collision detection into account. This improves
performance but leads to visible artifacts during the an-
imation.

My goal is to extend a modern particle-based illus-
tration tool with a basic molecular simulator and a col-
lision detection system. Additionally, a visualization
system to improve the user’s awareness of biochemical
processes and to display reaction networks inside of a
specified area is implemented. Besides, the user should
be able to interact with the system to optimize the learn-
ing effect. To implement those goals, more calculations
per frame have to be executed, which has a significant
impact on the performance. Especially the collision de-
tection needs multiple processing steps. For load bal-
ancing, the simulation is only executed in a specific part
of the scene, whereby the user can determine the size
and the position of this area. Therefore, the program’s
requirements can be scaled down manually by the user
to enable the simulation also on weaker computers.



The system is based on the technique proposed by
Le Muzic et al. [MAPV15]. While almost every aspect
of the core visualization techniques are inherited,
a simpler reaction system has been implemented.
The quantitative simulation itself is calculated by the
COPASI [HSG+06] API and the reaction system is
working with an omniscient intelligence while using
passive agents for dynamic simulation given by Kubera
et al. [KMP10]. To enable a fast and easy change
of the simulation system, the user is provided with a
simple UI, whose implementation is inspired by the
publication of Daniel Gehrer [D14].

Current techniques in mesoscale visualization of bio-
chemical processes are including collision detection
only partially or they are ignoring it at all for the sake
of performance. Tools like ZigCell3D [CKMK13] or
MegaMol [GKMRE14] are great for visualization but
because the molecular participants do not collide and
therefor don’t interact with each other beside during a
reaction, they are not able to showcase realistic anima-
tion of molecular crowding. Furthermore, visible arti-
facts occur. The main contribution of this work is to
implement a three dimensional collision detection sys-
tem which is able to detect the intersections of two or
more objects at the level of single atoms. Additionally,
an illustration technique using two adjustable cone-cut-
objects in combination with a real-time glow effect is
implemented to make complex processes visible even
in dense scenes but without losing the impression of
depth. Further, a hierarchical structure is used to illus-
trate intracellular process, by showing the impact one
reaction has on the entire simulation. Since this project
is based on the work proposed by Le Muzic et al., it also
uses the Unity3D [WSUnity] engine. Unity is a cross-
platform game engine which is also available for free
in a limited, but still functional, scope. The provided
user interface is also implemented in Unity. Simulated
molecules can be downloaded from the public PDB
database [WSPdb] and afterwards imported through the
user interface.

2 RELATED WORK
We structure the prior work review in two parts. Firstly,
we refer to agent-based simulation systems using a
game-based environment. In the second part we re-
late with research techniques that employ with Monte
Carlo-based simulation systems.

2.1 Agent-based Simulations in Game-
like Environments

Using game-like environments to reduces the software
development work-load is getting more and more pop-
ular among the visualization community [MAPV15].
A recent work on visualizing the anatomy of a cell in
a multiscale approach has been proposed by Muzic et

al. [MAPV15]. cellView has been implemented in
the Unity3D [WSUnity] game engine and uses macro-
molecular datasets, which are modeled with the cell-
PACK [JAAGS15] tool. cellPACK is publicly available
and enables the generation of large biomolecular struc-
tures. By using advanced GPU programming and accel-
eration techniques, such as hierarchical Z-buffer occlu-
sion culling and a twofold level-of-detail approach, it is
possible to render scenes containing billions of atoms.
But since no molecular dynamics are supported, cel-
lView can not be used to illustrate the physiology of a
cell.

A tool to visualize agent-based simulations has been
proposed by de Heras Ciechomski et al. [CKMK13].
An accurate simulation system is implemented in an
interactive and game-like 3D environment to illustrate
complex chemical processes at various zoom levels.
Cellular reactions are modeled with a GUI and are
represented as an SBGN [WSSbgn] network diagram.
However, the rendering module does not use GPU pro-
gramming and therefore, no real-time processing of
large scenes is possible.

To enable real-time rendering of billions of
molecules, the necessary calculations have to be done
in parallel using advanced GPU programming. Such
visual explanation tools have been proposed by Le
Muzic et al. [MPSV14] and with CellUnity[D14]. A
particle-based simulation system is used in combina-
tion with passive agents and an omniscient intelligence
to simulated biochemical reactions in a story telling
manner. Nevertheless, only a limited collision de-
tection system has been implemented and the tool
is not publicly available. Another simulation system
using this approach is CellUnity [D14] It has been
implemented in Unity3D and uses its physics engine
to apply a fully collision detection during simulation.
However, since the project is implemented entirely on
the CPU, only small scenes containing a few hundred
molecules can be used for simulation.

2.2 Monte Carlo based Simulation Sys-
tems

By using specialized Monte Carlo algorithms, MCell
[SB01] is a popular tool to simulate chemical reac-
tions in multiple compartments. The visualization tool
CellBlender [WSCB], which is an addon for the open-
source 3D computer graphics software Blender [WSB],
enables a simple and fast way to model and edit the
molecule designs of a simulation. Although, the sim-
ulation settings can be changed directly in Blender, no
interactive storytelling approach can be used to present
the outcomes.

Illustrative timelapse is a cross-platform simulation
tool with the focus on multi-scale temporal illustrative
visualization techniques. MCell is used to model and
simulate biochemical processes while the visualization



part is implemented in Unity3D using the technique
proposed by Le Muzic et al. [MPSV14] A combina-
tion of interactive temporal zooming and visual abstrac-
tion is used to communicate reaction processes in a sto-
rytelling manner. However, no collision detection has
been implemented.

3 SIMULATION
In this section we describe the reaction system and
the simulation algorithm, as well as implemented tech-
niques for load balancing.

3.1 Global Simulation
Our molecular reaction system is based on the tech-
nique proposed by Le Muzic et al. [MPSV14]. While
the individual molecules who are participating in the
simulation process are implemented as passive agents,
an omniscient intelligence (OI) is used to control
molecular interactions. Passive agents are unable to
start reactions autonomously, instead they can only
receive reaction orders from an OI, which is tightly
coupled with the quantitative simulation [MPSV14].
The system uses the COPASI API [HSG+06] as
simulation engine, which is responsible to initiate
new reactions in regular time intervals, whereby the
interval length is specified by the user. Since each
reaction has to be processed separately on the GPU, the
number of created reactions per frame is limited to 20
to increase the performance. For each initiated reaction
the reaction system searches for appropriate reactants,
which are not already included in an open reaction.
While the first reactant is picked randomly, the other
molecules of the specific reaction are selected by their
distance to the first molecule. Only the molecules
closest to the first reactant are assigned to the reaction.
Additionally, every reaction type can be linked to
protein by the user. Thus, the reactants need to enter a
random protein to perform the specific reaction.

To create the impression of chaotic behavior, the
molecular movement during a reaction is created by
interpolating direct motion with Brownian motion.
This prevents linear pathways and enables the sim-
ulation of molecular trajectories more realistically.
The molecule’s position, rotation and the calculated
movement vector are passed to the collision detection
algorithm, to find a collision with a protein. Since
proteins are much larger than the reactants, a collision
has no influence on their movement. On the other hand,
the movement vector of a reactant is shortened in case
of a collision. If a reactant needs to enter a specific
protein to perform a reaction, collision between the
protein and the reactant is ignored.

Reactions are processed when all included molecules
are colliding. When a reaction is executed, the reac-
tants are deleted and the created products are placed at
the location of the reaction. To minimize the number of

molecules stored in a compute buffer, the buffer posi-
tions of deleted molecules are saved. This way, when-
ever a product is created, deleted molecules can be over-
written.

For load balancing, not all molecules are included in
the reaction system. Instead, the simulation area is re-
duced to a spherical compartment, which is placed by
the user at the location of an arbitrary protein. Only
reactants inside of the compartment are included in
the simulation process, while the others are moved by
Brownian motion.

3.2 Compartment Simulation
Since the reaction system and the collision detection al-
gorithm are processed in real time, three techniques are
used inside of the simulation compartment to reduce
the number of overall calculations during simulation.
By using spatial subdivision, counting sort and the fast
fixed-radius nearest neighbor algorithm, the spatial po-
sition of individual objects can be included during the
processing of molecular interactions.

Spatial subdivision is an approach where objects in a
three dimensional space are ordered by their position.
The space is partitioned in a uniform grid, such that a
cell is at least as large as the largest object [Nygu07].
The objects are sorted with their corresponding cell ID
by using the counting sort algorithm. Additionally, an
array called Bin-Counter is used to keep track of the
number of objects inside of every single cell. The Bin-
Counter in combination with the list of ordered objects
allows to identify all objects contained in a specific cell
by the cell index.

Fast fixed-radius nearest neighbors is an algorithm to
find all objects inside of a sphere with a radius R. When
the sphere is centered at the position of a specific object
and the radius corresponds to the length of the move-
ment vector, the algorithm can be used to find all rele-
vant objects during collision detection. Since the time
complexity of a brute force attempt to find all neigh-
bors of all objects is O = (n2), the spatial partitioning
method is applied first. To minimize the number of cells
who are overlapping with the sphere without having too
many objects per cell, an additional requirement is es-
tablished, which states that the minimum cell size dur-
ing spacial partitioning has to be at least as large as the
radius R. This way, only objects in neighboring cells
have to be searched, which reduces the average com-
plexity to O(n ∗ log(n)) [WSNT]. Those objects can
easily be found by combining the spatially sorted ob-
jects and the Bin-Counter values.

4 VISUALIZATION
While the technique to represent molecules in a
level-of-detail manner proposed by Le Muzic et
al.[MPSV14] is inherited, three additional visualiza-
tion techniques, called real-time glow, cone clipping



and reaction tree, are implemented to communicate
knowledge of complex biochemical processes in cells.
Since the reactions are distributed throughout the com-
partment and can occur simultaneously, it is difficult for
the user to realize when and where a reaction is com-
pleted. Therefore, every created product and proteins
included in a completed reaction are highlighted with
a real-time glow effect for approximately one second.
The glowing objects are copied in a separate texture
with a compute shader and blurred by using a two-step
operation called a separable convolution [Fer04]. This
way, the two-dimensional convolution kernel is divided
into two separate one-dimensional convolutions, one in
each axis, which greatly reduces the computation costs
[Fer04]. To increase the brightness of the glow effect,
a non-uniform convolution kernel is used.

When illustrating dense scenes with millions of
atoms placed near each other, reaction processes are
easily covered by larger protein structures. With the
cone clipping method, the user is able to remove dis-
turbing protein structures, which are located between
the camera and the center of the simulation compart-
ment, to get a better view of the ongoing reactions and
molecular interactions during simulation. To allow the
user to change the amount of clipped objects, the cone
angle can be set interactively to a value between 1 and
89 degrees.
While increasing the visibility of simulation partici-
pants is the main goal of this visualization technique,
the three dimensional spatial depth impression should
be retained. Additionally, a semi-transparent area is
used to create a continuous transition between the
clipped area inside of the cone and the shown objects
outside of it. Thus, a second cone is implemented
and placed at the same position as the clipping cone,
whereby the angle of the second cone is twice as large
as the angle of the clipping cone. Objects located
between the inner and outer cone are represented
partially transparent. To create a continuous transition
between the clipped area and the opaque objects, the
amount of transparency for a specific object depends on
the location. While molecules located next to opaque
objects are rendered with less transparency, the value
increases when located closer to the clipping cone.

In this project, a hierarchical structure is used to il-
lustrate biological networks created by complex inter-
actions between different molecules and proteins in a
particular time span. Starting with only one reaction, a
dynamic tree structure is build by illustrating the path of
the reaction products with lines. When those molecules
are included in another reaction, a node at the location
of the reaction is included in the structure, while the
outgoing branches are connected with the new prod-
ucts. Therefore, the tree structure is growing over time,
showing the influence of the starting reaction on the
whole simulation. The tree structure is created during

1: Input: di f f , rm and sumRadii.
2: Output: The new vector length or −1.
3: float dist = length(di f f )
4: float cd = dot(normalize(rm),di f f )
5: if cd <= 0 then
6: return −1
7: float f = dist ∗dist− cd ∗ cd
8: float sumRadiiSquared = sumRadii∗ sumRadii
9: if f >= sumRadiiSquared then
10: return −1
11: float t = sumRadiiSquared− f
12: float newMovementLength = cd− sqrt(t)
13: return newMovementLength

Algorithm 1: Collision Detection

post-rendering by using a geometry shader. This en-
ables to visualize dynamic lines for reactants and prod-
ucts of ongoing reaction and the static structure created
by already processed reactions.

5 IMPLEMENTATION
In this section, we are going to discuss implementation
details about the used data structure and the collision
detection algorithm.

5.1 Data Structure
Data objects are stored in a two-parted data structure to
enable efficient data access and to minimize the needed
amount of storage. Passive data contains all informa-
tion needed to render molecules and is uploaded to the
GPU when a scene is loaded and when the reactants are
placed. Structural details of the molecular types, such
as the atom count, the position of single atoms and the
color are stored as passive data, as well as the position
and rotation of every single molecule. Active data on
the other hand stores the following structural informa-
tion needed for the simulation process:

• Reactant: Is created for every reactant participating
the simulation process and contains a reference to
the passive data, a specific reaction, the movement
vector and the cell id of the compartment.

• Reaction: Is created for every initiated reaction and
contains a reference to all reactants, the calculated
reaction position, which products are created and if
the reaction is part of the reaction tree.

• Collision: A reference to the colliding objects and
their movement vectors.

• Reaction Tree-Line: The start and end point and the
molecular color.



Figure 1: Snapshots from the processed reaction H +
H → H2 +H2O. (a) The two reactants approach each
other. (b) The objects are colliding and the reaction is
processed. (c) The reactants have been removed and the
products are placed.

5.2 Collision Detection
Our algorithm is structured in a two-phase approach:
a broad phase followed by a narrow phase [Nygu07].
During the broad phase, collision between molecules is
determined by using minimal bounding spheres. Those
tests are fast and cheap to calculate. However, since
approximated bounding volumes are too imprecise for
more complex shapes, errors occur in the collision tests.
Therefore, potentially colliding molecules must be fur-
ther processed in the narrow phase. By testing collision
between two objects precisely, the single atoms of both
objects have to be tested against each other. Since both
phases are comparing spherical objects the same test al-
gorithm, shown in Algorithm 1, can be used.

The algorithm calculates if two objects will collide
during the next movement step and shortens the move-
ment vector when necessary, so that both objects come
to rest just at the point of contact. As input, the relative
movement vector rm = movement1−movement2, the
spatial distance diff and the sum of the radii sumRadii
are used. The radius refers to the minimum bounding
sphere in the broad phase and to the atom radii during
the narrow phase. The closest distance cd between the
objects during the movement is calculated in line 4. For
cd <= 0, the objects are not moving towards each other
and no collision can occur. When the squared length
of the closest distance vector is larger than the square
of the summed radii compared in line 9, the objects
are not colliding during their movement. At last, the
Pythagorean theorem is used to shorten the movement
vector in line 12 and the results are returned. After the
narrow phase, the shortest calculated movement length
of all pair-wise atom tests is used for the next movement
step.

6 RESULTS
In this section we present results of the proposed algo-
rithm regarding the quality of the created images and
the performance of the simulation system. The simu-
lation system is tested with a dataset created with the
cellPACK [JAAGS15] modeling tool, showing a hu-
man blood serum surrounding HIV virus. Additionally,
50000 reactants of five different molecular types have

Figure 2: Snapshots from a reaction tree structure while
simulating four different reaction types with approxi-
mately 350 reactants.

been placed throughout the scene. By using a compart-
ment radius of 300 nm, about 350 reactants have been
included in the reaction system, processing four reac-
tion types.

Figure 1 shows snapshots from the reaction process
of the type H +H→ H2 +H2O. In Figure 1(a) the two
reactants of type A, which are included in the reaction,
are moving to the calculated reaction location. The col-
lision of the molecules is shown in Figure 1(b). Since
reactions are triggered by contact, the reaction system
removes both reactants and creates the products B and
C. Figure 1(c) shows the placement of the newly created
products. To avoid overlapping molecules, the collision
detection algorithm is used to find free areas around the
reaction location.

A screenshot from the reaction tree visualization
technique where the reactants are processed by four
reaction types is shown in Figure 2. After initiating the
starting reaction it took approximately 20 seconds of
the simulation time until the tree structure has reached
the illustrated size. It can be seen that created products
are included in further reactions, which are initiated
afterwards. By using the color of a molecular type
for single lines it is possible for the user to determine
which reaction has been processed at a specific location
and which products have been included.

An example of the real-time glow effect is given in
Figure 3. The camera is positioned in such a way that
the entire compartment is shown. By highlighting the
created products, the user is able to determine when and
where a reaction is processed during the simulation. In
Figure 3(b), a close-up of individual glowing molecules



Figure 3: Snapshots from the processed reaction A+
A→ B+C. (a) The two reactants approach each other.
(b) The objects are colliding and the reaction is pro-
cessed. (c) The reactants have been removed and the
products are placed.

is shown. By comparing the glow radius in Figure 3(a)
and (b), it can be seen that the size of the glowing effect
depends on the distance of the camera to the specific ob-
ject. When the camera is close to the highlighted prod-
uct, the size of the glow effect around the molecule is
reduced to avoid superposition of molecular structures.

A screenshot of the cone clipping effect with a
15◦ angle is given in Figure 4. For the simplified
transparency effect, the color of a translucent object is
combined with the color of concealed opaque objects
or the background color, but not with other transparent
objects. Although, excluding translucent objects during
the alpha blending process increases the rendering
performance, artifacts are created when molecules
are located at the edge of the scene. An example
of those artifacts is shown in the top right corner of
Figure 4. When no opaque objects are located behind
a transparent protein, the object color is mixed with
the background color black. This leads to a wrong
perception of depth, because transparent objects which
are located closer to the clipping cone are shown darker
than the objects behind it, which are positioned further
away.

Figure 4: Snapshots from a reaction tree structure while
simulating four different reaction types with approxi-
mately 350 reactants.

Performance Analysis
Since the implemented visualization techniques require
a processing time of approximately 1ms, only the per-
formance of the simulation system is discussed in this
section. The performance of two simulations, con-
taining 322 and 1138 reactants, has been measured on
an Intel Core i7-3930 CPU 3.20 GHz coupled with a
GeForce GTX Titan X graphics card using the Unity3D
profiler. The results of both tests are shown in Table
1. While reactions are generated and executed when
needed, only the movement step is processed per frame.
Therefore, the average processing time during approx-
imately 130 frames was measured in both tests to give
a more realistic representation of the overall process-
ing time. This time interval of about 130 frames corre-
sponds with the adjusted reaction cycle of the COPASI
API, in which new reactions are initiated. Since the
reaction system stores the list of new reactions given
by COPASI and processes them over time by initiat-
ing only 20 reactions per frame, the processing time of
the reaction generation step fluctuates between 0ms and
approximately 160ms. While the processing time of the
movement step was consistent in both tests, the reaction
execution step fluctuated as well. During the first test
the performance to execute completed reactions was in
a range between 0ms and 2ms. Since more reactions
have to be executed over time with an increased num-
ber of reactants participating in the simulation system,
the processing time of the reaction execution step in-
creased and fluctuated between 0ms and 15ms during
the second test. Those immense fluctuations of the pro-
cessing time during reaction generation and execution
lead to non-stable frame rates and possible stuttering
during the simulation.

Simulation Steps Test 1 [ms] Test 2 [ms]
Reaction Generation 3 12

Movement 13 33
Reaction Execution 1 7

Table 1: Average performance results of the single
steps of the reaction system during approximately 130
frames. The first test included 322 reactants and was
executed at 45 frames per second, while the second
test contained 1138 reactants and was performed at 18
frames per second.

7 CONCLUSION AND FUTURE
WORK

We have introduced a tool to simulate and visualize bio-
chemical reactions and biological networks in a large
and complex multiscale structural model. Due to the
collision detection algorithm, which is able to work at
the level of single atoms, the implemented reaction sys-
tem is able to simulate molecular interactions. For load
balancing, advanced GPU programming was used for



data manipulation as well as optimization algorithms to
minimize the number of calculations per frame and to
enable simulation with more than 1000 reactants partic-
ipating in the reaction process. Due to the size and com-
plexity of cells and their inner life, containing billions
of atoms, it is necessary to visually communicate the
proceedings during the simulation to the user. There-
fore, three visualization techniques have been imple-
mented. A real-time glow effect in combination with
a conical clipping object are used to point out interest-
ing areas where reactions occur. The third implemented
visualization technique, a hierarchical structure called
reaction tree, is used to illustrate a biological network,
by illustrating the impact of one reaction on the entire
reaction system.

Although this reaction system is able simulate more
realistic molecular behavior it also encloses some lim-
itations: Firstly, the explanatory visualization of bio-
chemical processes is limited by the overall amount of
ongoing reactions during the simulation. Currently, it is
not possible that the user can follow a specific molecule
during the reaction process. Therefore, a combination
of a leaded camera and a slow motion technique could
be implemented to improve the way how the processing
of individual reactions are communicated to the user.
Furthermore, this approach would allow the user to fol-
low a specific molecule through out the scene and to
illustrate the molecule’s reaction pathway. The sec-
ond limitation refers to the simplicity of the reaction
process. In CellPathway, an arbitrary protein can be
assigned to single reactions. Thus, the reaction posi-
tion is moved to the location of the specific protein,
whereby the molecular type of the protein is not taken
into account. Furthermore, proteins are not synthesized
or broken apart during the reaction process. In further
versions, a more advanced reaction system could be im-
plemented to simulate changes of the cell structure. Fi-
nally, the simplicity of the visualization tree makes it
difficult for the user to analyze the created structure.
Therefore, additional information like the direction of
a molecule’s path could be visualized by arrows or a
color transition of individual lines.

SUPPLEMENTARY MATERIAL
A video showing the basic functionality of the
project can be found at https://youtu.be/
dKFYqH1RNW0. The source code of CellPathway
is publicly available at https://github.com/
UnityDevTeam/CellPathway.

ACKNOWLEDGEMENTS
This work was supported through grants from the Vi-
enna Science and Technology Fund (WWTF) through
project VRG11-010 and by the EC Marie Curie Career
Integration Grant through project PCIG13-GA-2013-
618680.

REFERENCES
[MPSV14] Le Muzic M., Parulek J., Stavrum A.K., Viola I. Illustra-

tive visualization of molecular reactions using omniscient intel-
ligence and passive agents. Computer Graphics Forum, Vol.33,
No.3, pp.141–150, June 2014.

[HSG+06] Hoops S., Sahle S., Gauges R., Lee C., Pahle J., Simus
N., Singhal M., Xu L., Mendes P., Kummer U. Copasi - a
complex pathway simulator. Bioinformatics, Vol.22, No.24,
pp.3067–3074, 2006.

[KMP10] Kubera Y., Mathieu P., Picault S. Everything can be
agent! Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems, Vol.1, pp.1547–
1548, 2010.

[MAPV15] Le Muzic M., Autin L., Parulek J. and Viola I. cel-
lVIEW: a Tool for Illustrative and Multi-Scale Rendering of
Large Biomolecular Datasets. The Eurographics Association,
2015.

[JAAGS15] Johnson G. T., Autin L., Al-Alusi M., Goodsell D. S.,
Sanner M. F., Olson A. J. cellpack: a virtual mesoscope to
model and visualize structural systems biology. Nature meth-
ods, Vol.12, No.1 , pp.85–91, 2015.

[WSUnity] Unity Technologies. https://unity3d.com/. Accessed:
2016-02-11.

[WSPdb] PDB. Protein data bank contents guide: Atomic
coordinate entry format description version 3.30.
ftp://ftp.wwpdb.org/pub/pdb/doc/format_descriptions/Format_v33_A4.pdf.
Accessed: 2016-02-11.

[CKMK13] Ciechomski P.H., Klann M., Mange R., Koeppl H. From
biochemical reaction networks to 3D dynamics in the cell:
The ZigCell3D modeling, simulation and visualisation frame-
work. Biological Data Visualization (BioVis), IEEE Sympo-
sium, pp.41–48, 2013.

[WSSbgn] SBGN wbsite. http://www.sbgn.org/Main_Page. Ac-
cessed: 2016-02-11.

[D14] Gehrer Daniel. CellUnity - an Interactive Tool for Illustra-
tive Visualization of Molecular Reactions. Institute of Computer
Graphics and Algorithms, University of Technology, 2014.

[SB01] Stiles, Joel R. and Bartol, Thomas M. and others. Monte
Carlo methods for simulating realistic synaptic microphysiol-
ogy using MCell. Computational neuroscience: realistic mod-
eling for experimentalists, CRC Press, Boca Raton, FL, pp.87–
127, 2001.

[WSCB] CellBlender website. https://code.google.com/p/cellblender/.
Accessed: 2016-02-11.

[WSB] Blender Online Community. Blender - a 3d modelling and
rendering package, http://www.blender.org. Accessed: 2016-
02-11.

[MWPV15] Le Muzic M., Waldner M., Parulek J., Viola I. Illus-
trative Timelapse: A Technique for Illustrative Visualization
of Particle-Based Simulations. Visualization Symposium (Paci-
ficVis), 2015 IEEE Pacific, Vol., pp.247–254, 2015.

[GKMRE14] Grottel S., Krone M., Müller C., Reina G., Ertl T. Meg-
aMol - A Prototyping Framework for Particle-Based Visualiza-
tion. Visualization and Computer Graphics, IEEE Transaction,
Vol.21, No.2, pp.201–214, 2014.

[HGVV16] Hermosillaa P., Guallarb V., Vinacuaa A., Vazqueza P.P.
High quality illustrative effects for molecular rendering. Com-
puters & Graphics, Vol.54, pp.113–120, 2016.

[Nygu07] Nguyen H. GPU Gems 3, Chapter 32. Addison-Wesley
Professional, 2007.

[WSNT] Nvidia - GPU Technology Conference. http://on-
demand.gputechconf.com/gtc/2014/presentations/S4117-fast-
fixed-radius-nearest-neighbor-gpu.pdf. Accessed: 2016-02-11.

[Fer04] Fernando R. GPU Gems, Chapter 21. Addison-Wesley Pro-
fessional, 2004.


