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Abstract
Many large scale volume visualization techniques are based on partitioning the data into bricks, which are stored
and rendered using mipmaps. To generate such mipmaps, in most cases an averaging is applied such that an
area in a lower mipmap level is presented by the areas’ average in the next higher mipmap level. Unfortunately,
this averaging results in the fact that mipmaps are not feature-preserving, as details are often lost. In this paper,
we discuss and compare mipmap modification schemes which have been developed to support feature-preserving
reconstruction during rendering. In particular, we focus on reconstruction schemes which are capable to support
anisotropic and non-linear reconstruction, as these are promising to preserve features that are often sacrificed
by averaging. The presented techniques are discussed in detail and are thoroughly compared in a quantitative and
qualitative analysis. We will discuss their impact on performance, memory footprint and visual quality with respect
to feature preservation. Based on the findings we present guidelines for generating and using mipmaps in various
visualization scenarios.
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1 INTRODUCTION
Large data in volume visualization is a very common
case in modern visualization [1]. With current methods
of data acquisition the resolution of volume data gets
too big to be handled in a straightforward way, even on
modern graphics hardware. To be able to handle these
amounts of data, multi-resolution techniques are often
used. Besides plain bricking, most of these techniques
rely on downsampling at least parts of the volume to
achieve lower resolutions in more distant parts of the
volume [2]. This results in a smaller memory footprint
of the data to be rendered. Although we will compare
different three dimensional downsampling strategies to-
wards mipmapping, our results can also be applied to
other approaches in large volume rendering, especially
multi-resolution techniques. Mipmaps were originally
introduced in computer graphics for two dimensional
textures [3] and have later also been extended to volu-
metric data sets (e.g., [4]). Volume visualization ben-
efits from mipmapping, as it reduces aliasing problems
and at the same time lowers the amount of memory nec-
essary for rendering.

While most modern volume visualization algorithms
rely on mipmaps (or similar techniques for data down-
sampling) to support large data [2], mipmaps do not
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preserve the underlying data very well and thus details
are often lost. We identify two main reasons for this
loss: the representation of the entire data range of a cell
to a single average value, and the disregard of direc-
tional information during the averaging process. Due
to the importance of mipmapping in large-scale volume
visualization, we investigate and analyze mipmapping
modifications, which tackle these shortcomings. We
focus on those approaches which do maintain a low
memory footprint and enable a direct interactive trans-
fer function change, without requiring extra computa-
tions. We see those two criteria as essential capabilities
for a technique which shall be scalable to large-scale
data. Furthermore, as mipmapping can be considered
sufficient for the first downscaling level, where linear
interpolation would be used on the GPU, we primarily
focus on higher levels, where averaging forbids feature-
preservation in the final visualization.
In this paper, we compare two groups of mipmapping
techniques in order to investigate their impact on the
averaging and directional issues as mentioned above.
The first method is named ‘Non-Linear Reconstruction’
and uses an enhancement of mipmaps that not only
stores the average value of each lower resolution voxel
but also minimum and maximum values of the covered
area. During rendering, we use these values to recon-
struct a power function inside each voxel that tries to
resemble the intensity distribution.
With ‘Anisotropic Mipmaps’ we try to encode direc-
tional information in lower resolution volumes to be
able to better reconstruct anisotropy inside each voxel.
We use piecewise linear functions to achieve this which
are also evaluated during rendering. For each of these
techniques we compare different variants with respect
to performance, memory footprint and image quality.



Aneurysm
(
2563

)
Male

(
5122×460

)
Brain (128×256×109) SEGY

(
2563

)
Spherical

(
2563

)
Medical (CT) Medical (CT) Medical (MRI) Seismic Synthetic

Table 1: Overview of the datasets used throughout the paper; the name, dimensions, and acquisition modality are
listed. The images show renderings of the highest resolution with the respective transfer functions applied.

2 RELATED WORK
Today, several different approaches exist to support ren-
dering of multi-resolution volumes. On a data struc-
ture level, octrees and kd-trees are widely used tech-
niques to handle large-scale volumetric data sets [2, 5].
Other techniques use hierarchical grids to represent the
data [6, 7]. In both cases mipmaps [3] are commonly
used for storing and downsampling the volume.

In the recent past several approaches have been put for-
ward to improve the visual quality of mipmapping by
trying to reconstruct the intensity distribution of the
region covered by the downsampled voxel. Such ap-
proaches are based on Gaussians [8] or sparse PDFs [9,
10]. The latter group of techniques uses a hierarchi-
cal representation of the data making use of Gaussians
to resemble the data range. This comes at the need
of performing calculations with every change in trans-
fer function. Independent of the method used to store
the intensity distribution, the memory footprint of these
methods is larger than with plain mipmaps. Therefore,
we have omitted these approaches from our compari-
son, as we aim for a low memory footprint while still
being able to edit the transfer function during render-
ing without a significant computational overhead. In-
stead, we investigate an improved aggregation tech-
nique which is similar to the Min-/Maxmaps used for
2D shadow mapping by Guennebaud et al. [11] and for
storing minimum and maximum positions of geometry
in Mipmaps by Carr et al. [12]. Thus, to reconstruct
the data distribution of each voxel, we use a volume
texture storing for each voxel the minimum, maximum,
and average values of the region they cover. We found
this relevant, because the usage of minimum and maxi-
mum values in volume rendering is a frequently used
approach. Lacroute and Levoy [13] for instance in-
troduced Min-Max Octrees in which each octree node
stores a minimum and maximum value of the contained
volume to allow empty space skipping. A similar con-
cept is used by Dong et al. [14]. As many of the fea-
tures suppressed in standard mipmapping have a direc-
tional nature, we also look into encoding the change
of intensity within a downsampled voxel by using a
technique similar to deep shadow mapping [15]. Thus,
anisotropic features can be captured with anisotropic
voxels [16, 17].

Kraus and Ertl [18] introduced an approach to down-
sampling that tried to preserve the topology of isosur-

faces. Their memory requirements are the same as con-
ventional mipmapping, but there are cases where it is
not possible to preserve the topology, for example, if
there are more than one local minima or maxima in
the original resolution data that corresponds to a sin-
gle downsampled voxel. Later Kraus and Ertl have ad-
dressed a similar issue for downsampling RGBA vol-
ume data [19]. We have not included these approaches
in our evaluation, as the first one is intended for extract-
ing isosurfaces from a downsampled volume. While
some ideas as the need to preserve extreme intensity
values also apply to raycasting volumes this approach is
not entirely suitable. The latter technique is only appli-
cable to volumes that evaluate the transfer function as
a preprocessing step which we want to avoid, because
of the inability to change the transfer function without
recomputing the volume.
While we will not focus on compression techniques,
we would like to mention that they can be combined
with the tested techniques to further reduce the required
memory footprint. Often, for instance, wavelet repre-
sentations are used to compress large volumes and thus
reduce the loss of information [20, 21]. These or other
techniques, may also be combined with the approaches
discussed in this paper.

3 METHODOLOGY
The evaluation presented in this paper is motivated by
two common problems that arise when using mipmaps.
One problem that is also addressed in other papers is
the loss of information about the intensity distribution
due to averaging the voxels intensity values. We use
a simple non-linear reconstruction approach to address
this issue and show, that even under very harsh condi-
tions and high frequency transfer functions, we can pro-
vide convincing results. We have selected the method
described in Section 4.1 among the known techniques
addressing similar issues as it is simple to realize and
can be directly integrated into existing volume render-
ers. Furthermore, it fulfills our requirements with re-
spect to low memory footprint and the flexibility of
post-classification. Kraus and Ertl [18] point out the
importance of preserving the topology of isosurfaces
within the volume. This includes the ability to recon-
struct the extreme values for each downsampled voxel.
We do not target the generation of isosurfaces, but the
importance of keeping the extreme values for a better
reconstruction of intensity values is still applicable.



The second problem when using mipmaps is that di-
rectional information is lost, also due to the averaging
which occurs in the process of generating the mipmaps.
To deal with this issue, we aim at evaluating how the
encoding of directional intensity changes can improve
feature preservation. The idea is to derive a more ac-
curate intensity value from this directional information,
to which we then apply the transfer function during ren-
dering. The underlying method for realizing this encod-
ing is described in Section 4.2.
In this paper, the i-th mipmap level is specified using
the convention `i where `0 represents the full resolution
data. For each subsequent level `i+1 the resolution is
halved compared to the previous level `i.
By taking the two exemplary techniques into account,
we want to evaluate the impact of non-linear recon-
struction vs. anisotropic reconstruction, when using
mipmaps in volume rendering. Based on our own ob-
servations as well as the results reported in recent pa-
pers, e.g., [10], we consider the mipmap levels `0 and
`1 (the highest and second highest resolution) sufficient
in terms of quality of the resulting image, and there-
fore focus on the higher levels. The representative ap-
proaches are implemented inside a basic raycaster for
volume data which incorporates early ray termination.
Our testing environment contains five different data sets
(see Table 1). We use several volumes from the med-
ical domain. We also include a seismic data set, and
one synthesized by using a simple spherical function
(as was also used by Younesy et al. [8]). These differ-
ent volumes represent a wide range of different appli-
cations. Transfer function design is discussed in Ap-
pendix A.
The measurements we used to determine the quality of
each technique in the different scenes are as follows.
We measure memory footprint and performance com-
pared to rendering a full resolution volume and the orig-
inal mipmapping. We also take into account the error
rates (PSNR) of the images in comparison to an image
produced using the highest resolution data as a ground
truth. In terms of quality we will look at different fea-
tures of the datasets that are visible if we render the
high resolution data and discuss how well these are pre-
served in downscaled renderings.

4 EVALUATED RECONSTRUCTION
TECHNIQUES

In this section, we describe the two techniques we use to
improve reconstruction of downsampled values in dif-
ferent situations. One technique aims to preserve the
intensity distribution of each downsampled voxel using
a non-linear function. We will call this technique ‘non-
linear reconstruction’. The other approach is to pre-
serve a directional distribution of values in downsam-
pled voxels. This technique will be called ‘anisotropic
reconstruction’.

4.1 Non-Linear Reconstruction
To reconstruct the intensity distribution of a downsam-
pled voxel in a non-linear manner, we want to find a

xentry xexit

vmin

vmax

vavg

Figure 1: Reconstruction function (red) inside a voxel
defined by the ray entry (xentry) end exit (xexit) points
and the minimum (vmin), maximum (vmax) and average
(vavg) values of the covered high resolution voxels in `0.

simple representation of that distribution encoded us-
ing low memory footprint. Using only three values –
the minimum, maximum, and average in a specified re-
gion, we fit a power function to these values covering
the interval between the minimum and the maximum
value while still preserving the average. To be able to
create such a representation during rendering we need
to preprocess the volume data and store for each down-
sampled voxel the minimum (vmin), maximum (vmax),
and average (vavg) value of that voxel’s equivalent re-
gion in the original volume.
When ray-casting the volume represented by `2 or
lower we use these values to reconstruct a non-linear
function representing the intensity distribution inside
each voxel. Younesy et al. [8] use a Gaussian to recon-
struct this value from the mean and standard deviation
values they store. They then use a preintegrated transfer
function to calculate the color value at each voxel. Our
method works without any precalculations directly
using the transfer function. To generate the final color
value we sample the reconstructed function, apply
the transfer function to each value, and composite the
colors using the scheme determined by the raycasting
algorithm. Therefore the reconstructed function is
interpreted as a one dimensional function along the
ray used to calculate the current pixels color. This
introduces an error as we have no actual information
about the locations of each value contained in the
intensity distribution, but imply these locations by
using our reconstruction. However, as Kraus and
Ertl have discovered [18], this omission of the actual
sample orders can be in most cases neglected. The
function we use for reconstruction, is a scaled power
function:

f (x) = (vmax− vmin)

(
x− xentry

xexit− xentry

)a

+ vmin , (1)

where xentry is the rays entry point into the voxel and
xexit is its exit point. The parameter a is determined
by the voxels average value (vavg) to ensure the average
of f (x) matches that of the voxel. Figure 1 illustrates
this function and the parameters used for its reconstruc-



tion. This parameter is calculated on the fly during ray-
casting by solving the definition of the average value:

vavg =
1

xexit− xentry

∫ xexit

xentry
f (x)dx , (2)

which gives us a as follows:

a =
vmax− vmin

vavg− vmin
−1 (3)

The impact of minimum, maximum and average value
on the shape of the function is illustrated in Figure 1.

The resulting function is then evaluated at different po-
sitions within the voxel and the transfer function is ap-
plied to these results. The final values are then com-
posited in a straightforward way by using front to back
composition. To further improve the coverage of the
intensity distribution inside the voxel we adapt the step
size we use to fit the function. The same step size is
used for the composition. In general we use values
that are evenly distributed across the intensity range,
whereby we use the minimum and maximum values
to determine the possible range of values. When sam-
pling the function at N different positions inside the
voxel we use the values vi (i = 0 . . .N − 1) defined
as vi =

i
N−1 (vmax− vmin)+ vmin and calculate the step

sizes needed to correctly weight those values during
composition. The corresponding sampling points for
the values vi are xi defined as:

xi =
a

√
i

N−1
(
xexit− xentry

)
+ xentry (4)

With these points we use the following equation to
calculate the step sizes (∆i) for ray-casting by using
the midpoints between two sampling points to separate
steps:

∆i = min
(

xi+1 + xi

2
,xentry

)
−max

(
xi + xi−1

2
,xexit

)
(5)

Figure 2 illustrates the different vi, xi and ∆i determined
by a given function f (x).

To directly see the impact of the non-linear density dis-
tribution reconstruction, we will also evaluate the same
approach, whereby we replace the non-linear with a lin-
ear function. This approach only uses the minimum and
maximum values, and we will refer to it as ‘Linear Re-
construction’ throughout this paper.

4.2 Anisotropic Reconstruction
The second identified downside of plain mipmapping
is the fact, that directional features are not preserved.
To deal with this issue, intensity changes for selected

v0

x0

v1

x1

v2

x2

v3

x3
∆0 ∆1 ∆2 ∆3

Figure 2: Step sizes (blue) for raycasting a recon-
structed function (red) with N = 4 sampling points. The
sampled values vi are shown with their corresponding
sampling positions xi.

directions in each region would need to be encoded.
This idea forms the basis for the evaluated anisotropic
approach, where we – for each major axis within a
downsampled voxel – encode how the intensity changes
along the axis, and store this information as a piecewise
linear function. This approach requires an explicit pre-
processing step where intermediate axis functions are
computed and later encoded into piecewise linear func-
tions. These functions can later in the rendering part be
sampled and composited into intensity values. In the
following three subsections, we discuss how to com-
pute and encode the axis functions, as well as how to
combine values of the three piecewise linear functions
into one representative intensity value.

4.2.1 Computing Axis Functions

To compute the axis functions, we begin by studying
each of the major axes of a voxel which we intend to
downsample (Fig. 3a). The three axes are split into
stacks of 2D slices (Fig. 3b), and the mean of each slice
is calculated and stored to represent the overall inten-
sity at this location (Fig. 3c). This is always done at
the highest possible resolution inside of the region of
voxels to capture as many details as possible of the un-
derlying data.

4.2.2 Encoding Axis Functions

With the axis functions represented as lists of N inten-
sity values (Fig. 3c), we aim to compress these using a
piecewise linear function PWLF. In our case, a piece-
wise linear function is a function that sparsely stores
a set of 2D sample-points (x,y) and the function value
can be evaluated at any position x using linear interpo-
lation between the neighbouring points of x. In order
to encode the list of intensity values into a PWLF, we
employ the following greedy algorithm:

1. We initialize the PWLF (Fig. 3d) by adding the full
set of axis intensity values with their corresponding
positional values along the axis.



(a) The targeted voxel and
its data that is about to un-
dergo downsampling.

(b) The data is divided
along the axis into slices
containing M×N samples.

(c) The mean intensity of
each slice is computed
and stored with its local
position x within the voxel
region as an intermediate
list of pairwise points.

(d) The pairs of (x, inten-
sity) are added to a piece-
wise linear function and is
padded with copies (yel-
low) of the first and last
points to aid the computa-
tion in the next step.

(e) In an iterative process,
the point within the set that
has the lowest cost is re-
moved. The cost is cal-
culated as the triangular
area between its neigh-
bouring points.

(f) The process is stopped
when a targeted num-
ber of points has been
reached or the error of
removing the next point
above a certain threshold.

Figure 3: The preprocessing step of computing a piece-
wise linear function that approximates the intensity val-
ues along one major axis.

2. We then remove the point in the set which is deemed
as the least destructive to overall shape of the func-
tion using a cost metric (Fig. 3e). The cost of re-
moving a point is equal to the triangular area which
spans the point and its two closest neighbours before
and after removal of this point.

3. Step 2 is repeated until we are left with a desired
amount of points (Fig. 3f).

4.2.3 Sub-sampling Anisotropic Voxels
When traversing the voxels a sub-sampling approach is
used to reconstruct the intensity values within the voxel
using the piecewise linear functions stored within it (see
Fig. 4). The input arguments for the PWLFs are the lo-
cal coordinates (x,y,z ∈ [0,1]) of the sub-sample within
the frame of the voxel. The intensity values (Eq. 7)
returned by the three PWLFs are then combined into
one single intensity value using the dot product of the
squared viewing vector d and intensity values v(x) as
shown in Eq. 6

Figure 4: A sub-sample (Light-blue dot) along the tra-
versed ray (Blue) is being composited into a represen-
tative value of the intensity within a voxel by using the
piecewise linear functions that provide the directional
in intensity along each major axis.

intensity(x) = dot(d�d,v(x)) , (6)
where

v(x) = {PWLFx(xx),PWLFy(xy),PWLFz(xz)} . (7)
The major downside of this technique is that it does not
allow trilinear interpolation. If trilinear interpolation is
used, the resulting intensity values from all of the piece-
wise linear functions will be averaged over the neigh-
bouring region of the voxel thus resulting in an average
intensity, almost indistinguishable from plain mipmap-
ping. This forces us to only use values from within the
traversed voxel disregarding the neighbourhood of it.
The visual impact of this is that the boundaries of the
voxels can be seen in most of the cases.

5 EVALUATION
In this section we analyze the impact of the mipmap
shortcomings resulting from the area averaging and
the non-directional reconstruction. We do so by
comparing standard mipmapping against non-linear
and anisotropic reconstruction, as they have been
described in the previous section. The achieved
results are evaluated quantitatively and qualitatively.
A more comprehensive list of results can be found in
Appendix B.

5.1 Quantitative Evaluation
The presented techniques are meant to produce better
images than standard mipmapping while still using less
GPU memory and being faster as compared to ren-
dering the highest resolution data. For performance
measurements we ray-casted the volume data with a
screen resolution of 1280× 720 with the volume fit-
ting roughly to the screen, whereby we have used the
same images in the subsequent error analysis. The re-
sults of the performance evaluation, as summarized in
Table 2, have been measured on a 3.60 GHz Intel i7
Haswell system with 16GB RAM and a NVIDIA GTX
980 GPU.
As it can be seen in Table 2, the results of non-linear re-
construction highly depends on the size of the volume.



Dataset Non-Linear Anisotropic Mipmaps

Aneurysm (`2) 76% 60% 122%

Male (`3) 232% 51% 385%

Brain (`2) 69% 16% 109%

Spherical (`3) 138% 90% 207%

SEGY (`2) 102% 16% 150%

Table 2: Performance measurements of different tech-
niques relative to rendering at the original resolution
(`0). A value of 200% signifies that the technique is
twice as fast as the reference, while a value of 50%
signifies that only half the speed of the reference was
achieved.

For volumes that use a lot of memory (see Table 1) in
the first place texture fetches are more expensive (due
to cache misses) and a reduction of the volumes’ reso-
lution improves the frame rates drastically. For lower
resolution volumes this is not the case, and the com-
putation time overhead for the evaluation of the recon-
structed function seems to have more impact. The ren-
dering performance of the ‘Spherical’ data set is in gen-
eral rather high, as the chosen transfer function makes
the volume appear very dense which triggers the early
ray termination.
The performance results of the anisotropic voxels seem
worse than rendering the high resolution data, this is
due to a bigger number of texture fetches which are
needed to retrieve the data of the piecewise linear func-
tions. The memory requirements for the anisotropic
voxels is noticeably larger than with the other tech-
niques, but has been implemented in a very naïve way
where one voxel stores three unique piecewise linear
functions. In practice, many of the piecewise linear
functions are identical or very similar, which makes
them a good candidate for lossless or lossy compres-
sion through clustering.
With no compression applied the memory requirements
for the tested techniques directly depend on the reso-
lution of the original data. The piecewise linear func-
tions of the anisotropic mipmaps are always represented
using eight 8-bit integers per pixel – four for position
and four for intensity. The non-linear reconstruction on
the other hand uses the same bit-depth as the original
volume. Thus, the memory requirements of the recon-
struction methods (as well as regular mipmapping) are
a fixed percentage of the original memory (118% for
non-linear reconstruction, 116% for linear reconstruc-
tion and 114% for regular mipmapping), whereas the
anisotropic mipmaps use 156% of the original data sets
memory for 8-bit volumes. The percentage gets lower
for higher bit-depths of the original volume due to the
used 8-bit quantization.
The more interesting figures are the error measurements
of the rendered final images. The images can be seen
in Appendix B. We calculated the Peak Signal to Noise
Ratio (PSNR) of the resulting images, by taking into
account the images produced with the high resolution
data sets as a ground truth. We measured these values

for both, a high resolution (1280× 720 Pixels) as well
as a low resolution (128× 72) image. The high reso-
lution was chosen to be able to clearly see differences
and errors introduced by both types of methods. The
lower resolution represents the actual size of the images
when the size of one voxel in the data set should corre-
spond to the size of one pixel, whereby the mipmap lev-
els have been chosen accordingly. To avoid aliasing we
use downsampled versions of the high resolution im-
ages. The results are shown in Table 3.

In general, the lower resolution images show better
quality with respect to the PSNR because quality
shortcomings depending on the resolution are avoided.
These differences can be seen best for the anisotropic
mipmaps as this technique does not support interpola-
tion and thus produces ‘blocky’ results when rendering
them in a resolution higher than they are meant for.
When comparing the different reconstruction tech-
niques the non-linear reconstruction provides the best
results in nearly all cases. The exception is the Spher-
ical data set where the intensity values are linear with
the distance from the center. The linear reconstruction
ensures that this linearity is preserved well while the
non-linear reconstruction might introduce some errors.

(a) Reference `0 (b) Mipmaps `2

(c) Non-Linear `2 (d) Anisotropic `2

Figure 5: The Aneurysm dataset, rendered at its origi-
nal resolution `0 (a) and at resolution `2 for the down-
sampled methods. It shows a region with a lot of high
frequency details.

5.2 Qualitative Evaluation
By visually comparing the results of the different tech-
niques we can make assumptions about how to address
mipmapping problems in general. In Figures 5 and 7
the plain mipmapping clearly shows a loss of informa-
tion. In Figure 5b the high frequency details are lost
due to averaging. The most obvious case is the seismic
data set. There nearly all information is lost as can be
seen in Figure 7b. When looking at the Spherical data
set in Figure 6b most features seem to be preserved.
However, when taking a closer look the colors observed
seem to be exaggerated and are shifted towards the cor-
ners of the volume.



Dataset
Non-Linear Linear Anisotropic Mipmaps

high
Resolution

low
Resolution

high
Resolution

low
Resolution

high
Resolution

low
Resolution

high
Resolution

low
Resolution

Aneurysm (`2) 20.62 dB 22.18 dB 16.23 dB 17.00 dB 24.49 dB 30.35 dB 23.82 dB 26.95 dB

Male (`3) 21.02 dB 22.25 dB 18.13 dB 18.84 dB 22.86 dB 24.78 dB 18.96 dB 19.78 dB

Brain (`2) 26.20 dB 28.33 dB 23.60 dB 24.77 dB 25.05 dB 26.60 dB 23.27 dB 24.79 dB

Spherical (`3) 23.04 dB 27.45 dB 24.09 dB 28.88 dB 19.93 dB 23.52 dB 22.02 dB 26.04 dB

SEGY (Top) (`2) 22.23 dB 22.96 dB 21.36 dB 21.98 dB 26.97 dB 32.04 dB 17.69 dB 17.97 dB

Table 3: Error ratios (PSNR) of different techniques, datasets and resolutions.

(a) Reference `0 (b) Mipmaps `3

(c) Non-Linear `3 (d) Anisotropic `3

Figure 6: The Sphere dataset, rendered at its original
resolution `0 (a) and at resolution `3 for the downsam-
pled methods. The fading to grey in Non-Linear recon-
struction (c) is an expected artifact to avoid aliasing.

From a qualitative point of view, the anisotropic
voxels seem to preserve details better over the plain
mipmapping technique, but have the downside of
looking ‘blocky’. This ‘blockiness’ comes from the
fact that doing trilinear interpolation is too expensive
in terms of performance to be practical, and if applied,
the intensity is again averaged over the neighbouring
region and the result ends up being indistinguishable
from mipmapping. A similar problem arises when
the different directions need to be interpolated due to
a view that is not parallel to the volumes coordinate
axes. This can be seen clearly in the geological data
set. When choosing a view that is parallel to the
volumes up coordinate as can be seen in Figure 7c the
results are very similar to the reference image. When
dealing with high frequencies as in the Aneurysm
data set, anisotropic approaches also generate a good
reconstruction of most details as can be observed in
Figure 5d. The worst scenario is presented in Figure 6d.
Here, preservation of the anisotropy is not important in
the final rendering as the volume is very dense. Due

(a) Reference `0 (b) Mipmaps `2 (c) Anisotropic `2

Figure 7: The SEGY dataset, rendered from a top view
at its original resolution `0 (a) and at resolution `2 for
the downsampled methods. Plain mipmapping does not
preserve the structure of this dataset. From this perspec-
tive the Anisotropic Mipmapping (c) provides results
that are very similar to the reference image.

to the interpolation of axis functions the result is very
similar to the plain mipmapping.
When studying the non-linear reconstruction ap-
proaches, the different regions classified by the transfer
function are well preserved. Due to the lower resolution
of the volume these areas seem bigger in all cases. This
can be seen especially well in Figure 5c where the high
frequency details are rendered as bigger structures.
This also leads to more saturated colors in nearly all
of the results achieved using this approach. Several
images show that preserving not only the extreme
values but also the average value is important to create
convincing results. In nearly all cases the non-linear
reconstruction which preserves the average value
provides results that are closer to the ground truth. The
only exception is the synthetic Spherical data set which
only contains intensity values linear in respect to the
distance to the volumes center. This explains the close
fit that a linear reconstruction provides.

5.3 Guidelines
We have seen different approaches which in general
provide better quality compared to plain mipmapping
depending on the type of data and the transfer function
used. Based on these observations we provide guide-
lines for using the mentioned approaches in different
scenarios.
As mentioned above the non-linear reconstruction ex-
aggerates the color saturation. Generally the regions
colored by a transfer function are the ones with features
that the observer wishes to emphasize. This may prove
useful in cases like seismic visualization to use these
or similar approaches to be able to observe all details



in the volume. The same applies to medical datasets
where it may be crucial for the observer not to miss any
details of significance. In these cases using a non-linear
reconstruction will benefit the visualization.

In the cases where you want to preserve high frequen-
cies within data sets, an anisotropic approach may be
a viable option. And if the data set contains intensi-
ties layered along one major direction, an anisotropic
approach may also provide better results.

If rendering speed is the top priority plain mipmaps
are the most obvious choice to use due to the native
hardware integration existent in all modern GPUs. The
Non-Linear Reconstruction provides reasonable speed
especially with bigger datasets while providing an im-
proved image quality.

When dealing with large volumes the overall difference
in memory between plain mipmaps and techniques bet-
ter preserving the intensity distribution of downsampled
voxels is very small. Using such a technique may be a
viable option in those cases.

6 CONCLUSION & FUTURE WORK
We have discussed two shortcomings of plain mipmaps
and evaluated techniques that address these using dif-
ferent data sets from different domains together with
transfer functions that have been designed to visualize
interesting features in these volumes. As a conclusion
of the conducted evaluation, we can say that all tested
approaches can be implemented as an improvement to
plain mipmapping. Also, conserving the intensity dis-
tribution of a downsampled voxel looks like a very
promising approach that is applicable in the general
case. An anisotropic approach also provides promis-
ing results but lacks hardware support and a proper so-
lution for feature preserving interpolation in the tech-
nique presented in this paper. The different strengths of
the provided techniques calls for a combination of both
approaches that should provide a reconstruction of the
intensity distribution of downsampled voxels as well as
a directional component.

In our opinion, the ideal technique for mipmaps in vol-
umetric visualization should fulfill three important re-
quirements. First, it should preserve the intensity dis-
tribution of all the data contained within the region of
the voxel. Second, it should utilize the GPU’s hardware
support for interpolation when fetching data. And third,
the intensity distribution contained within the voxel
should be able to be integrated with the transfer func-
tion in an efficient manner enabling interactive editing
of the transfer function together with interactive frame
rates.

As it seems to be more important to preserve the inten-
sity distribution in a correct way rather than to store the
directional intensity changes within a voxel an interest-
ing approach would be to approximate this distribution
by using piecewise linear functions. On the other hand
the directional interpolation problems of Anisotropic
Mipmaps could be tackled encoding directional inten-
sity using spherical harmonics.
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