
Fracturing Sparse-Voxel-Octree objects
using dynamical Voronoi patterns

Jakub Domaradzki
Institute of Computer Science

Warsaw University of Technology
ul. Nowowiejska 15/19
00-665 Warsaw, Poland

J.Domaradzki@stud.elka.pw.edu.pl

Tomasz Martyn
Institute of Computer Science

Warsaw University of Technology
ul. Nowowiejska 15/19
00-665 Warsaw, Poland

martyn@ii.pw.edu.pl

ABSTRACT
We introduce a new Voronoi-based method to fracture objects represented by sparse voxel octrees (SVOs). Our
approach is inspired by the pattern-based methods, however, in contrast to them, it doesn’t require pattern pre-
computation. Moreover, thanks to the octree structure, the surfaces of the fractured pieces of geometry are created
efficiently and robustly. Every fracture pattern is unique and centered at the impact location. A novel islands detec-
tion technique is also provided, which is tunable to a desired level-of-detail accuracy. The fractured pieces, which
are determined as a consequence of the object’s destruction, are represented by individual SVOs, and treated and
simulated as rigid bodies. For this purpose, we also propose a new collision detection technique, which extends the
previous image-based methods to voxels. As a result, deep penetrations of colliding objects, resolved on various
levels of physics that can be specified individually for each pair of the objects, are handled in parallel with no extra
cost. In order to demonstrate our technique, a number of scenarios are presented, including a partial fracturing of
objects with fine details.

Keywords
SVO, Voronoi decomposition, pattern fracturing, rigid body physics

1 INTRODUCTION
For many years voxels have been successfully used in
lots of applications in computer graphics. From special
effects up to medical imaging, we benefit from volu-
metric information delivered by voxels. Transparent,
layered and with vague surfaces models are the main
target for this object representation. There were many
limitations that came along with voxels, such as large
memory consumption and lack of hardware support,
and some of them are still present nowadays. How-
ever, many new techniques have been developed, which
made voxels more competitive than ever. With con-
stant increase in computational power of modern graph-
ics processing units, we may be facing situation, when
methods based on voxels will gradually supersede the
ones based on triangles.

In this context, probably one of the best promising con-
cepts is Sparse Voxel Octree (SVO) [Cra11] — a hier-
archical structure that lately has made voxels popular as
a representation for solid objects in computer graphics.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Less memory consumption, various levels of detail, and
necessary access only to small subset of full voxel data
are some benefits of SVO that have led to creation of
realistic, high-resolution voxel models and large voxel
environments. In this paper, we made an attempt to take
advantage of this representation and shed a new light on
the problem of objects fracturing.

Special effects of destruction are widely present in to-
day’s computer games and movie industry. Depend-
ing on a purpose, they can be either highly realistic
but requiring lots of computational power, or fast but
giving only an approximate illusion of observed phe-
nomena. The latter approach is aimed for real-time per-
formance, where accuracy is not as important, that this
is usually the case in games. Many methods are used
in order to do that in a fast but somewhat "fake" way,
such as pre-fracturing of objects and replacing models
when collision happens. Such an approach, however,
requires preparations of lots of game assets. Recently,
pattern-based fracture methods have been proposed for
the mesh representation. They deal with this problem
by decomposing the destruction process into two parts:
the generation of a fracture pattern and then its multiple
application on number of objects. While the first part
can be done by an artist, the latter requires specialized
techniques in order to robustly cut objects, mainly due
to their geometrical complexity. Similarly, after the ob-



ject’s destruction, the movement of fractured pieces is
simulated and it also suffers from the same reason: the
more detailed object, the harder to calculate collision.

We strongly believe, that representing objects with
sparse voxel octrees is a remedy to all these problems.
With spatial information about an object, built from
basic geometric figures like boxes, many algorithms
can be simplified. What is more, due to the SVO hi-
erarchical structure, many calculations can be avoided
and performed on different levels of details. Our main
contribution include:

• a method to dynamic fracture with Voronoi decom-
position, which can be applied locally;

• a method for detecting separated volumes in a SVO;

• an algorithm for collision detection, that adopts the
image-based approach [FBAF08] to voxels.

2 RELATED WORK
Fracture Simulation. Fracture modeling for computer
graphics greatly enhances physics simulation widely
present in modern computer games and special effects
in movies. Probably it wouldn’t be so common today
if it weren’t for work by Terzopoulos et al. [TF88] and
Norton et al. [NTB*91] which pioneered this area of
study in computer graphics. O’Brien and Hodgins fol-
lowed them and focused in their papers on simulating
brittle [OH99] and ductile fracture [OBH02]. Their ap-
proach was based on the finite element method (FEM)
used to compute internal stresses and fracture propa-
gation directions. Unfortunately, cutting a mesh and
its actualization, which is one of the most challeng-
ing issues in such approaches, are still present nowa-
days [WRK*10]. There are also methods that formu-
late the problem of fracture simulation as a quasi-static
stress analysis [ZBG15]. They have the potential to be
cheaper than a fully dynamic deformation simulation,
but tends to produce deadened motions. An example of
another interesting work can be [CYFW14], in which
low resolution objects are enriched during fracture with
extra details based on material strength field.

Although, from the "physical" viewpoint, the results of
the mentioned methods can be perceived as acceptable,
our main interest lies in solutions aimed for real-time
systems. Since the pattern-base approach, at least con-
ceptually, plays well with voxel representations and,
moreover, is efficient and robust, we decided to uti-
lize it in our SVO fracture method. A number of
methods have been proposed to generate fracture pat-
terns, such as the ones based on Voronoi diagrams
[SSF09][BCC*11][MCK13] or engaging simulations
[IO09]. In our approach, in contrast to the previous
ones, we don’t need any precalculated fracture pattern,
as it is generated on-the-fly (like in [SO14]), when col-
lision happens.

Collision Detection and Response. Collision detec-
tion itself covers broad area of investigation in com-
puter graphics. Due to colliding objects geometrical
complexity it is common to take advantage of hierar-
chical bounding structures, including bounding boxes
[GLM96] and bounding spheres [Hub95]. Fortunately,
in the case of SVO, objects are inherently represented
hierarchically, so there is no need for any additional
space searching optimizing structure.

More recently, some work on collision detection has
been focused on exploiting GPUs, taking advantage of
their inherent computational parallelism. Most of the
presented techniques return pairs of colliding primitives
delivering necessary information for objects separation.
In particular, Layer Depth Images (LDIs) proved to be
very useful for this goal [HTG04]. In this method, at
the first stage, a broad phase collision check is per-
formed, resulting in bounding boxes representing the
intersection volume of boxes’ pairs that enclose collid-
ing objects. Then, the volumes are rendered to LDIs
using GPU. Finally, iterating over LDIs along a cho-
sen viewing axis, one can calculate the collision vol-
ume by inspecting the pairs of consecutive texels. In the
original LDI method as presented by Heidelberger et al.
only collision detection but not its response was taken
into account. That was addressed later by Faure et al.
[FBAF08] by delivering the derivatives at the vertices
of the meshes of colliding objects in order to generate
forces for minimizing the volume of collision. In ad-
dition to the penalty-based method used in [FBAF08],
Allard et al. [AFC*10] proposed also the constraint-
based one including Coulomb friction.

In the context of collision detection, our method can be
viewed as an extension of that by Faure et al., and it
can also be incorporated into the method by Allard et
al. Our main contribution lies in the efficient determi-
nation of the collision area. The main advantage of our
method is that we can generate collision information in
parallel for all collided objects at accuracy specified in-
dividually for a given pair of objects. While Faure dealt
with objects represented with meshes, we utilize SVOs.
One should notice that this new problem formulation
fits very well to the LDI-based solution by Faure.

Sparse Voxel Octrees. The pursuit of efficient ex-
ploitation of voxel structures as representations of solid
objects in computer graphics lasts for years. Nowa-
days, with the aid of modern GPUs along with the new
GPU-specialized programming techniques, the benefits
of voxel model of solids become not only evident but
even more and more spectacular. Probably the best ex-
ample of this new life of voxels in computer graphics
is Crassin’s research on SVO [Cra11] — one of the no-
table results is a global illumination method based on
SVO and cone tracing [CNS*11]. Moreover, there are
also some work that focuses mainly on efficient raytrac-



ing over SVO [LK10], which shows that ray casting us-
ing SVO can be faster than when objects are represented
with meshes. Although the majority of papers focus
on visualization of static voxel models, there were also
some approaches to animation of voxel models. Crassin
proposed to animate objects by constant voxelization to
SVO, which unfortunately requires object’s input mesh
and scales poorly. Nevertheless, the SVO animation can
be realized in other ways. An example is the method de-
veloped by Bautembach [Bau11], in which SVO is ani-
mated only during visualization, without any influence
on the structure of an input model. His approach was
then extended by Willcocks [Wil13], who presented a
method for volumetric deformation and animation of
large number of objects in the scene. What is more, oc-
trees can be built very fast using recent techniques pre-
sented in [ZGHG11][GPM11][Kar12]. If there is not
enough memory in GPU to build SVO by means of the
methods, one can use the out-of-core approaches de-
scribed by [BLD14][PK15], which utilize only a frac-
tion of memory required to store the model.

The above and inevitably incomplete set of citations
show that the computer graphics community nowadays
experiences a renaissance of voxels, which manifests in
constant development of new voxel techniques and ap-
plications. Nevertheless, to the best of our knowledge,
this paper is the first report on the application of SVO
in the tasks such as physics of rigid body collisions and
fracture simulation.

3 SVO STRUCTURE
Our SVO structure is very similar to the one used by
Crassin et al. [Cra11]. First of all, there is an octree for
nodes’ descriptors, represented as two 32 bit integers.
Each node descriptor has the information about whether
the node: is terminal (1 bit), represents empty space (1
bit), is internal (1 bit). The remaining 29 bits of the
first integer are used as a pointer to the descriptor of
the first of node’s eight children. What is more, with
each descriptor there is associated another pointer, as
a second integer, to the densely packed voxel’s data:
color and normal vector.

3.1 Voxel Types
In our SVO structure, there are three kinds of nodes:
boundary, internal and empty. Boundary nodes are the
nodes that represent the boundary of the object and they
are used in visualization. If the SVO is derived from a
mesh, then the nodes are created during voxelization
process and contains information about color and nor-
mal vector. They can be expanded further up to the
finest SVO level. One of their child nodes can be an
empty node. The empty node indicates that its volume
doesn’t intersect the object’s surface, that is the node
lies either inside or outside of the object — it is always a

terminal node. There are also internal nodes that, from
the algorithmic point of view, can be considered as a
special case of empty nodes, because an empty node is
flagged as internal when it passes the test (Sec. 3.2)
whether it is located inside of the object. As such, in-
ternal nodes represent the interior of the object. These
nodes are very important as they deliver the informa-
tion that is necessary for objects fracturing and physics
calculations.

3.2 Internal Nodes Test
After the SVO creation, the test for internal nodes is
conducted for each empty node on every SVO level,
because empty non-internal nodes are skipped during
the fracturing process and collision detection. The test
is based on ray casting. A ray is shot from the empty
node center and has the same direction as the normal
vector of the parent node. Next, the ray traverse the
SVO down to its leaves. The two outcomes of this op-
eration are possible. Either the ray doesn’t hit anything
or it encounters one of the leaves. In the first case, the
internal node test has failed. In the second case, an ad-
ditional test must be performed to determine which side
of the leaf node was hit. The test rely on the compari-
son of the ray direction and the node normal vector. If
the angle between them is smaller than 90 degrees, then
the internal node test passed and the node is assumed to
belong to the interior of the object (in other case, the
empty node lies outside the object, so the test failed).

4 FRACTURING SVO OBJECT
4.1 Fracture Algorithm
In this section we outline our algorithm for fracturing
SVO objects.The underlying assumption is that a SVO
object is cut into pieces with a fracture pattern repre-
sented by a space-partitioning structure that divides the
3D Euclidean space into convex regions (Sec. 4.2). As
such, the fracture pattern consists of (planar) faces de-
termining the slicing areas which are then used to par-
tition the SVO object.

The main part of the algorithm is to determine subsets
of the SVO voxels that represent the surfaces of frac-
tured pieces at the accuracy of the SVO highest level.
The voxels that constitute the subsets are the boundary
voxels (Sec. 3.1) from the SVO leaves as well as inter-
nal voxels that are intersected by a pattern face at the
SVO highest level — we call the latter voxels the HL
internal voxels. One should note, however, that internal
voxels do not have children in the SVO, so the HL inter-
nal voxels that are not children of boundary voxels are
not physically present in the original SVO. Therefore
the HL internal voxels have to be dynamically created
during the fracturing process.

In order to determine the HL internal voxels the SVO is
traversed from the root to the leaves, and at each SVO



level the intersections of voxels with the pattern faces
are tested (Sec. 4.3). If an internal voxel is intersected
by a pattern face and the voxel is not the HL internal
voxel, then its eight child internal voxels are dynam-
ically created at the next SVO level. With regard to
the voxel-face intersection tests the two following facts
should be pointed out. First, the necessary condition for
a child voxel to be intersected with a pattern face is the
presence of the intersection of the face with the voxel’s
parent. Secondly, the parent of an internal voxel may
be an internal voxel (in this case the child voxel was
dynamically created) or a boundary voxel. Therefore
at each SVO level the voxel-face intersection tests are
performed for both interior and boundary voxels whose
parent voxels have been intersected at the previous SVO
level (Fig. 1).
Having the subsets of voxels, we regard the voxels as
the boundary voxels of the fractured pieces (Sec. 4.4)
represented by the subsets, and for each subset we build
a SVO (Sec. 4.6) on the basis of the subset’s component
voxels treated as the SVO leaves.
One should note, however, that the SVO partition pro-
cedure does not guarantee that the resulting subsets of
voxels will be connected sets. It may happen that a sub-
set can be partitioned into two groups of voxels such
that for all voxels in one group there is no adjoint voxel
in the other group. In such a case the subset represents
two (or more) disjoint fracture pieces which should be
treated as individual objects by a physics engine. Such
autonomous groups of voxels within a single subset we
call islands. In order to detect them, the additional test
(Sec. 4.5) has to be performed before the SVO creation.

4.2 Voronoi Fracture Pattern
Patterns used to fracture objects can be obtained in
many ways. Usually, it is a precomputed decomposi-
tion of space, based on Voronoi diagrams. During the
fracture process performed at run-time, the pattern is
aligned with the target object at an impact location and
properly rotated. Such an approach was recently pre-
sented by Sue et al. in [SSF09]. In their method, the
fracture pattern is applied to a mesh object using the
level set-based approach, which requires high resolu-
tion grids to get thin features and, consequently, it is
both computationally expensive and memory consump-
tive. On the other hand, the fracture pattern may be
applied directly to a mesh. However, a naive applica-
tion of this idea would be cumbersome to implement
robustly. To deal with it, Müller et al. [MCK13] imple-
ment a fracture pattern as a set of meshes, and a mesh
to fracture is initially split to convex pieces with the use
of the Volumetric Approximate Convex Decomposition
(VACD). As a result, they are capable to locally destruct
mesh objects in real-time.
In contrast to the previous methods, in our approach we
represent a fracture pattern by a finite set of 3D points

Figure 1: Voxels located on both the object’s boundary
and the Voronoi faces are expanded into child nodes on
the next SVO level. The voxels marked with blue color
lie on the boundary, while the green ones are internal,
generated on-the-fly.

which are treated as seeds of a Voronoi diagram used
to fracture a SVO object and generated dynamically at
run-time. To deliver the impression that the fracture
concentrates around the impact location, the Voronoi
seeds are generated at random on a set of spheres of
growing radii and centered at the point of impact. By
manipulating the length of the radii we can obtain a va-
riety of patterns and different sizes of fractured pieces.
Of course, there is also a possibility to locate the seeds
in a more physical way, which would make the outcome
of the fracture process even more realistic.

4.3 Voxel-Pattern Faces Intersection Test
One of the main operations of our algorithm for frac-
turing SVO objects is the voxel-pattern faces intersec-
tion test which is performed at each level of the SVO
as described in Sec. 4.1. The intersection test does not
require the determination of the faces of the Voronoi di-
agram since it is realized directly on the basis of the set
of the Voronoi seeds.

Let S = {1, . . . ,n} be the set of the indices of the seeds
{si}i∈S defining a Voronoi fracture pattern. Define a
function γ : R3→ 2S such that

γ(x) = {k ∈ S : ‖sk− x‖= min
i∈S
‖si− x‖}. (1)

Since there is the one-to-one correspondence between
the Voronoi seeds and the Voronoi cells, given a point
x ∈ R3, the function γ determines the set of the indices
of the Voronoi cells that include x. (The resulting set of
indices is not a singleton, if x lies on a face, an edge, or
a vertex of the Voronoi diagram).

Now, we can move to the voxel domain and define a
function that, given a voxel specified by the set V =
{vi}i=1,...,8 of its vertices, maps the voxel into the set of
the indices of the Voronoi cells the vertices are located
in:

f(V ) =
⋃
v∈V

γ(v). (2)

Since the voxel V is intersected by a face of the Voronoi
pattern if V has a (nonempty) intersection with at least
two Voronoi cells, it is easy to see that the intersection



exists if the set of indices given by f(V ) is not a sin-
gleton. Of course, in a practical implementation of the
intersection test we can stop computing the set f(V ) if
its subset obtained in an intermediate step contains at
least two indices.

4.4 Fracture Boundary Set
As a result of the voxel-pattern faces intersection tests
performed while traversing the SVO, we obtain an un-
ordered set of the HL internal voxels (see Sec. 4.1).
The set together with the set of the SVO leaf bound-
ary voxels constitute the set B of voxels which are the
boundary voxels representing the surfaces of the frac-
tured pieces at the accuracy of the SVO finest level. In
order to assign these boundary voxels to the adequate
pieces we should decompose the set B into the disjoint
family of the connected subsets of voxels that represent,
first of all, the pieces induced by the Voronoi cells, and
then islands within a piece, if the piece proves to be a
disconnected set.
Nevertheless, the voxels in B that have a nonempty in-
tersection with a pattern face belongs to two or more
Voronoi cells of the pattern and, as such, they should be
"divided" between the cells. This leads us to the frac-
ture boundary set (FBS) which is constructed from B
by computing for each V ∈B the set of indices f(V ),
creating copies of V in a number equal to the cardinal-
ity of f(V ), and assigning to each copy the consecutive
index from f(V ). Since the indices from f(V ) deter-
mine the Voronoi cells that V belongs to (Sec. 4.3), the
copies of a voxel in FBS are treated as disjoint sets from
the point of view of the voxel space partitioned with the
fracture pattern. The FBS is the set on which we carry
out the operations of grouping voxels into connected
sets of fractured pieces — the algorithm described in
the next section.
Apart from an index of the Voronoi cell, each voxel
in FBS has to store attributes required for visualiza-
tion, i.e., color, position, and normal vector. The at-
tributes are determined on the basis of the attributes of
original voxels from the SVO. The voxel’s position is
computed during the SVO traversal on the basis of the
location of the voxel within the SVO. The remaining
two attributes depend on whether the original voxel is
a boundary voxel or a HL internal voxel. The copies
of a boundary voxel inherit a color and normal vector
from their original. In the case of the copies of a HL
internal voxel the color may be obtained from a volu-
metric texture or it can be generated procedurally. In
turn, their normal vectors are determined on the basis
of the normals of the Voronoi faces that intersect the
HL internal voxel. If the HL internal voxel does not lie
on an edge or a vertex of the intersecting Voronoi face,
the normal for the copy of the voxel in FBS is just equal
to the face normal pointing outside the Voronoi cell as-
sociated to the copy; otherwise the normal is computed

by averaging the normals of all faces that intersect the
HL internal voxel.

4.5 FBS connected-component detection
Since FBS is just an unordered set of boundary voxels,
we have to group the voxels into the connected sub-
sets of the individual fractured pieces, i.e., the pieces
induced by the Voronoi cells and eventually the is-
lands within a piece, if the piece is a disconnected set
(Sec. 4.1). However, before the actual voxel grouping
takes place, in the initial step, FBS is sorted by the
voxel positions represented by Morton codes [Kar12]
(Fig. 2). Thanks to that, the voxels can be addressed by
one-dimensional index, which is essential for the island
detection algorithm as well as later, for constructing the
SVOs (Sec. 4.6).
Now, we obtain the FBS voxels grouped with regard to
the fracture pattern cells, just by carrying out the stable
sorting by the f(V ) indices, which were assigned to the
voxels during the FBS construction (as described in the
previous section). As a result, the groups are placed one
after another in linear memory, and the voxels within
each group are ordered by Morton code. We call the
groups of voxels Voronoi cell pieces (VCPs). In the
next step each of the VCP groups has to be checked
for connectivity, that is the island detection test is per-
formed.

4.5.1 Island detection algorithm
We assume that a voxel is connected with another voxel
from its nearest neighborhood if the voxels share a face,
an edge or a vertex, so we assume 26-connectivity. Our
solution to the island detection problem is based on the
well-known conception of connected-component label-
ing (CCL — see e.g. [SB10]). The CCL underling idea
is to label the elements of an input set with consecutive
numbers, and then, to maximize iteratively the labels
in the range of the elements’ adjacent neighbors. This
way, for each connected subset, the maximum label in
the subset propagates between the subset’s elements. At
the end of the procedure the connected subsets are dis-
tinguished from one another by a maximum label that
is associated to each element of a connected subset.
Although there are a number of efficient CCL algo-
rithms, both sequential and parallel ones, to our best
knowledge, all of them assume and operate on the in-
put data organized in a regular structure such as a 2D
uniform grid of pixels or a 3D uniform grid of vox-
els. Therefore the necessary neighborhood informa-
tion for each basic structure element is easily accessi-
ble. Unfortunately, this is not the case for SVO and,
as a consequence, for FBS, since the voxel neighbor-
hood information does not follow from the ordering of
elements inherent for these structures. Of course, one
could augment the structures in the additional informa-
tion by storing the pointers to neighbors of each voxel,



Figure 2: Fractured object represented by a quadtree.
Node positions are described with Morton codes and
new objects’ ids are assigned.

but this would require a lot of additional memory space
and extra processing during the SVO constructions. In-
stead, we decided to base our island detection algorithm
on the direct application of the CCL underling concep-
tion realized in the form of a parallel implementation
on GPU in CUDA.

In the initial step of the algorithm the voxels in FBS are
labeled with consecutive numbers. Then, for each voxel
within each VCP group one thread is launched. Every
thread loops over the VCP voxels existing in the 26-
neighborhood of the relevant central voxel, taking the
maximum of the label values of the central voxel and
the neighboring voxels and relabeling with the maxi-
mum the voxels of the lower label value. Since, at the
same time, other "neighboring" threads may try to re-
label the voxels, the relabeling is done using an atomic
operation (atomicMax in CUDA). The central voxel’s
neighbors are determined on the basis of their Morton
codes by means of the binary search on voxels from
the same VCP group, and their memory addresses are
cached in thread local memory. Each thread continues
until there is no change in the labels of the voxels pro-
cessed by the thread.

Then, for each VCP group in which relabeling took
place, the threads are launched again, and the algorithm
continues this way until there is no VCP group to rela-
bel.

Finally, in the FBS voxels, the f(V ) indices are substi-
tuted with the labels, and FBS itself is stably sorted by
the labels to obtain the required partition on the groups
of the connected voxel subsets, which preserves the or-
der of the Morton codes within each group.

4.5.2 Optimizations

The original 26-neighborhood each thread is supposed
to operate on can be reduced by half. Let V be the
voxel space induced by the cubic lattice that coincides
with VCP; thus VCP ⊂ V. Let Nk(V ) be a k-element
subset of the 26-neighborhood N26(V ) ⊂ V of a voxel
V ∈ V. Assuming that the threads operate on the sub-
sets Nk(V )∩VCP, V ∈ VCP, it is easy to see that the
sufficient condition for the correct propagation of labels
by the threads within a connected component is that for

all voxels V,V ′ ∈ V such that V ′ ∈ N26(V )\Nk(V ), the
voxel V belongs to Nk(V ′). If Nk(V ) satisfies this con-
dition, then this guarantees that if label(V )< label(V ′)
for some voxel V ′ ∈ N26(V ) ∩VCP, then there is a
thread to propagate label(V ′) to V . A little thought
shows that for k = 13, N13(V ) can be composed with
9 voxels of coordinates (x+ a,y+ b,z− 1) and 4 vox-
els of coordinates (x + a,y + 1,z), (x− 1,y,z), where
a,b ∈ {−1,0,1}, and (x,y,z) are coordinates of the
voxel V . Moreover, one can easily check that k = 13
is the minimum number of voxels for Nk(V ) to obey the
above condition.

There are also other possible optimizations that we use
in the island detection algorithm. First, there are de-
pendency chains between voxels in the same neighbor-
hood, which results in equivalence trees [SB10], that
can be flatten in each iteration. Secondly, there is no
need to re-launch threads which have propagated the
VCP maximum labels to their neighborhoods. Since we
label the FBS voxels, we know the maximum value of
the labels within each VCP group, so we exclude such
"maximum" threads from further operations. Thirdly,
each voxel V stores the information about its existing
neighbors (i.e., the voxels from N13(V )∩VCP) in or-
der to reduce the costly binary search being done by a
thread only to these neighbors. The information is ob-
tained during the first execution of the thread and coded
in one integer by setting appropriate bits. Lastly, some
speed/precision trade can be made, as the island detec-
tion can be performed on other SVO level than the finest
one. In order to do so, one have to construct an ap-
proximation of FBS composed of the ancestor voxels
of the FBS voxels at a given SVO level. The appropri-
ate ancestors can be easily determined on the basis of
the Morton codes of the FBS voxels. Then the island
detection test can be carried out on that approximated
FBS set, and the result propagated down to the voxels
from the original FBS.

4.6 SVO Building
Having FBS partitioned on the connected voxel subsets
distinguished by labels (Sec. 4.5.1), for each subset a
SVO has to be built. As mentioned in Sec. 2, there are a
number of fast methods for building a SVO, but we are
interested on those that utilize Morton code. A SVO
can be build in depth-first order [Kar12] by creating all
levels in one kernel call. In turn, the breadth-first order
is obtained iteratively [ZGHG11], and this approach is
most suitable for our purposes. Moreover, the original
algorithm can be easily extended to build many SVOs
simultaneously (voxels from different SVOs are distin-
guished by the piece labels). Our implementation re-
mains almost the same as in [ZGHG11], with two ex-
ceptions. First, the parallel prefix scan primitive is re-
placed with its segmented version [HB10]. Secondly,
the sorting primitive operation has to be changed into



the stable sorting primitive and performed two times:
first by Morton codes and second by the piece label.

4.7 Local Fracture
Apart from fracturing the whole object, there is also a
possibility to perform this operation locally. In order to
do that, one can attribute to every Voronoi seed an extra
object identifier. Then, on the last level of applying the
fracture pattern, voxels are assigned to piece objects on
the basis of these identifiers instead of the seed indices
(see Sec. 4.4). The assignment of the same identifier to
many seeds allows large parts of the fractured object to
remain intact and to properly create surfaces for pieces.
However, the voxels intersected by Voronoi faces must
still be detected, and on the last SVO level the inter-
section test must be altered. The modification concerns
internal voxels intersected by a Voronoi face that is in-
duced by seeds with the same identifier — these voxels
should not be considered in the output result. Other-
wise, some extra surfaces would be generated inside a
part of the SVO that is supposed to stay intact.

5 SVO COLLISION AND RESPONSE
In this section we address the problem of the rigid body
simulation of objects represented by SVOs. Lots of
techniques have been proposed over the years to simu-
late physics behavior of objects in virtual environments.
The methods have been mainly designed for meshes,
but often tended to use other forms of representation
and structures to model physical shapes and properties.
For example, one may utilize particles located on the
object’s surface to detect collision and generate repul-
sion forces. However, the surface-based methods are
characterized by short range of reactions and may not
easily recover from deep penetrations. Another ex-
ample are the distance-based methods. They rely on
a spatial map that encodes the signed distance from a
given point in 3D space to the object surface. Although
they better handle deep intersections, the calculation of
the distance map can be computationally expensive and
memory consumptive.

The approach we chose to adapt to voxel domain is
based on the volume minimization method [FBAF08].
In order to resolve collision, the technique models the
intersection of colliding objects, and then computes
the size of the intersection volume and the repulsion
forces—the latter derived from the volume gradients.
No precomputation is required and the efficiency of the
surface-based methods is combined with the robustness
of the distance-based ones.

5.1 Collision
In [FBAF08] to model the intersection of colliding ob-
jects the Layer Depth Images (LDIs) were used along
with GPU to benefit from parallelism. Our approach is

slightly different. First, the voxelization of objects into
LDI is no longer necessary, since our objects are build
with voxels. Secondly, in place of images of different
resolutions, we take advantage of the SVO hierarchy
and utilize it in the collision test.

5.1.1 Intersection of SVOs
In order to detect collision, we start with a broad-phase
check in which the intersections of SVOs’ roots of the
objects are tested. Then, the potentially colliding ob-
jects are paired and their SVOs traversed simultane-
ously. When traversing down, pairs of voxels (a voxel
from one SVO and a voxel from the other SVO) on a
given level of the SVOs are examined for an intersec-
tion (performed between two AABBs in the local space
of one of the SVOs), until the desired level of detail is
reached. The process is very efficient, since the inter-
section test is continued only for the pairs of those child
voxels whose parents intersect each other. Moreover,
the pairs of internal voxels are omitted, since our goal
is to follow the boundary voxels so as to enclose the
intersection of the chosen levels, and calculate the size
of the volume of the set and gradients of this volume.
In turn, we use this information in order to generate the
collision response forces (see 5.2).

5.1.2 Collision Points
The next step is the approximation of the surface of
the SVOs’ intersection. For this purpose we generate
a set of collision points when the desired SVO level
is reached during the traversal of the trees. The colli-
sion points correspond to the intersections between the
pairs of voxels from the colliding SVO objects. For a
boundary-internal voxel intersection, the position of the
collision point is determined as the center of the inter-
section volume between the pair of the voxels. In turn,
for a boundary-boundary voxel intersection two colli-
sion points are generated; each is positioned on the face
of one of the voxels from the pair by translating the cen-
ter of the intersection volume along the normal vector
of the voxel.

Moreover, with each collision point the normal vector
of the surface of the SVOs’ intersection is associated,
which is just the normal vector of the corresponding
boundary voxel.

Finally, we perform discretization of the collision
points by averaging their positions and normal vectors
within the cells of the cubic lattice coincident with
the voxels on the chosen SVO level. The operation is
straightforward as the collision points data is kept in
the local space of one of the SVOs.

5.1.3 Intersection Volume and Gradients
Having the collision points, we can calculate the size of
the intersection volume of the colliding objects. In or-
der to do that, we integrate the intersection volume by



(a) (b) (c) (d)
Figure 3: (a) Two colliding objects. (b) The SVO structure drawn on the top of the blue object. (c) The intersection
area modeled with voxels. (d) The dots represent averaged collision points and volume gradients.

iterating over the collision points located in the columns
of the cubic lattice used for discretization. We examine
pairs of subsequent collision points. Our goal is to find
the pairs of the collision points such that their normal
vectors’ coordinates in the axis we iterate on have oppo-
site signs, and the same requirement is fulfilled for the
normal vector of the first collision point and the search
direction. If this condition is satisfied, the pair of colli-
sion points represent the local entry and exit of the in-
tersection volume surface, so the difference between the
positions of such collision points (in the axis we iterate
on), when multiplied by the voxel face area, is a par-
tial volume of the intersection. Therefore, to obtain the
entire volume of the intersection we sum these partial
volumes. Moreover, we compute the volume gradients
as the collision points’ normal vectors multiplied by the
voxel face area [FBAF08].

5.2 Response Forces
To resolve collision, the colliding objects have to be
separated. For this purpose we utilize the penalty-based
method as in [FBAF08]. It results in the generation of
two forces for each collision point. First, there is a re-
pulsion force, which can be formulated as:

frep =−kVintgi (3)

where k is an arbitrary positive constant, Vint – the size
of the intersection volume, and gi – the volume gradi-
ent at the i-th collision point. The second force is the
friction, expressed by the equation:

ffrc = µvta (4)

where µ is an arbitrary positive constant, vt – the rela-
tive tangential velocity, and a – the voxel face area.

6 RESULTS
In this section, we discuss the performance and quality
of the presented solution. All depicted timings were ob-
tained on Intel Core i7 960 CPU with Nvidia GeForce
GTX Titan Black GPU. All algorithms were imple-
mented using CUDA framework to fully exploit the par-
allelism delivered by GPU.

6.1 Varying Physics Level
Our collision detection method, due to the hierarchical
structure of SVO, supports varying physics levels at no
extra cost. As a result, one can easily balance between
precision of performed calculations and performance.
However, the object’s volume is changing with physics
level. The higher SVO level, the more accurate object’s
description. In order to obtain the volume of an object,
its boundary voxels must be sorted along one axis and
the pairs of the entry and exit voxels must be found. As
a consequence, small objects at lower SVO levels may
not have volume at all and collision forces would not
have affect on them.

Moreover, the chosen physics level doesn’t have to
be the same for all collided objects’ pairs. It can be
adapted to the current situation or, for example, based
on objects distance to the camera. When something
happens far away from the observer, it doesn’t have to
be presented precisely, as the observer couldn’t see all
the details anyway. In addition, sorting collision points
and forces calculations can be performed in parallel for
pairs on different physics level.

6.2 Fracture Performance
Table 1 presents timings of consecutive fracture stages
on chosen test scenes. Studying the results, one can
observe that increasing SVO level with the same num-
ber of Voronoi seeds, multiplies the fracture time by
a factor of 3–4 with reference to the fracture time on
the previous SVO level. This is directly connected with
the number of voxels on the current SVO level, which
changes in a similar manner. Moreover, the impact lo-
cation and the fracture pattern itself also has great in-
fluence on fracture time. The more fragmented objects,
the more surfaces to create, and the more voxels to pro-
cess.

6.3 Physics Performance
The physics part of our solution was tested using a num-
ber of various scenarios. First, the simplest scene is
presented in fig. 4. The Bunny was fractured and new



Scene SVO Voronoi FBS Voxels Islands SVOs Internal Total
level nodes extraction sorting detection building nodes detection

Bunny 8 90 2.5 ms 1.1 ms 2.7 ms 4.1 ms 2.5 ms 12.9 ms
(Fig. 4) 9 90 6.4 ms 2.5 ms 9.2 ms 5.9 ms 6.7 ms 30.7 ms

10 90 21.0 ms 10.4 ms 40.1 ms 13.8 ms 25.5 ms 110.8 ms
Columns
(Fig. 5) 10 70 17.5 ms 9.5 ms 38.8 ms 11.8 ms 22.2 ms 99.8 ms

Buddha
(Fig. 6) 10 40 5.1 ms 3.4 ms 12.9 ms 6.3 ms 17.6 ms 45.3 ms

Dragons 15 2.1 ms 1.7 ms 6.8 ms 4.5 ms 7.0 ms 22.1 ms
(Fig. 7) 9 35 2.5 ms 2.1 ms 7.3 ms 4.9 ms 7.7 ms 24.5 ms

50 2.7 ms 2.2 ms 8.5 ms 5.4 ms 8.8 ms 27.6 ms
Table 1: Fracture timings on different scenes. For the Columns and Buddha timings are an average of all fractures.
In the Dragons scene, every dragon has an independent result, as different fracture parameters where used.

Figure 4: Fracturing the Stanford Bunny with the 8th physics level. Physics time was 4–9 ms per time step.

Figure 5: Fracturing three columns with physics calculated on the 7th SVO level. Physics time was 4–8 ms per
time step.

Figure 6: Local fracture of the Happy Buddha figure with the 9th physics level. Physics time was 5–7 ms per time
step.

Figure 7: Three dragons dropped and fractured on collision points’ locations. The objects had a different number
of Voronoi seeds used during fracturing: 15, 35, 50. Physics was set to the 8th level and calculation time varied
from 3 to 11 ms per time step.



pieces were scattered over the box’s surface. The op-
eration was rather energetic and rich with objects from
a wide range of volumes. The physics time was 4–9
ms obtained on the 8th physics level. Even though, the
lower physics level (7th) was used in Columns scene
(fig. 5), the average time was similar to the previous
one, and varied from 4 to 8 ms. It was the result
of a larger number of collision points detected during
the collision test. The opposite situation happened in
Happy Buddha scene (fig. 6), where the 9th physics
level produced better performance (5–7 ms) for local
fracture. The last scene (fig. 7) presents three drag-
ons dropped and fractured on collision points locations.
The objects were cut into rather big pieces. However,
due to their complexity, the average physics time var-
ied from 3 to 11 ms. The time step for all simulations
was set to 0.01 s, as we use the penalty-based response
method with the implicit Euler method as an integrator.

7 CONCLUSION
We have presented a novel method for fracturing
objects represented with sparse voxel octrees. Our
method applies a fracture pattern to the object in the
impact location, and cut the object into pieces, which
are then also represented with SVOs. No precom-
putation of the pattern is required, as it is generated
on-the-fly. After fracturing, new rigid objects are
simulated. Thanks to our collision detection and
response method, which is an extension of Faure’s
image-based approach [FBAF08], we can efficiently
calculate physics in parallel on different levels of
details with no extra cost.

8 REFERENCES
[AFC*10] Allard J., Faure F., Courtecuisse H., Falipou F., Duriez C.,

Kry P. G.: Volume contact constraints at arbitrary resolution.
ACM Trans. Graph. 29, 4 (July 2010), pp. 82:1-82:10.

[Bau11] Bautembach D.: Animated sparse voxel octrees. Bachelor’s
Thesis (feb 2011).

[BCC*11] Baker M., Carlson M., Coumans E., Criswell B., Harada
T., Knight P., Zafar N. B.: Destruction and dynamic artist
tools for film and game production. In ACM SIGGRAPH
2011 course notes (2011).

[BLD14] Baert J., Lagae A., Dutra’ P.: Out-of-core construction of
sparse voxel octrees. Computer Graphics Forum 33, 6 (2014),
220-227.

[CNS*11] Crassin C., Neyret F., Sainz M., Green S., Eeisemann
E.: Interactive indirect illumination using voxel cone tracing.
Computer Graphics Forum (Proceedings of Pacific Graphics
2011) 30, 7 (sep 2011).

[Cra11] Crassin C.:. PhD thesis, Grenoble University, 2011.
[CYFW14] Chen Z., Yao M., Feng R., Wang H.: Physics-inspired

adaptive fracture refinement. ACM Trans. Graph. 33, 4 (July
2014), 113:1-113:7.

[FBAF08] Faure F., Barbier S., Allard J., Falipou F.: Image-based
Collision Detection and Response between Arbitrary Volume
Objects. In Eurographics/SIGGRAPH Symposium on Com-
puter Animation (2008).

[GLM96] Gottschalk S., Lin M. C., Manocha D.: OBBTree: A
hierarchical structure for rapid interference detection, 1996.

[GPM11] Garanzha K., Pantaleoni J., Mcallister D.: Simpler and
faster HLBVH with work queues. In Proceedings of the ACM
SIGGRAPH Symposium on High Performance Graphics,
HPG ’11, ACM, pp. 59-64.

[HB10] Hoberock J., Bell N.: Thrust: A parallel template library,
2010. Version 1.7.0.

[HTG04] Heidelberger B., Teschner M., Gross M. H.: Detection of
collisions and self-collisions using image-space techniques. In
WSCG (2004), pp. 145-152.

[Hub95] Hubbard P. M.: Collision detection for interactive graphics
applications. IEEE Transactions on Visualization and Com-
puter Graphics 1 (1995), 218-230.

[IO09] Iben H. N.,O’Brien J. F.: Generating surface crack patterns.
Graph. Models 71, 6 (Nov. 2009), 198-208.

[Kar12] Karras T.: Maximizing parallelism in the construction of
BVHs, Octrees, and k-d Trees. In High Performance Graphics
(2012), Eurographics Association, pp. 33-37.

[LK10] Laine S., Karras T.: Efficient sparse voxel octrees. In Pro-
ceedings of the 2010 ACM SIGGRAPH Symposium on Inter-
active 3D Graphics and Games, I3D ’10, ACM, pp. 55-63.

[MCK13] Müller M., Chentanez N., Kim T.-Y.: Real time dynamic
fracture with volumetric approximate convex decompositions.
ACM Trans. Graph. 32, 4 (July 2013), 115:1-115:10.

[NTB*91] Norton A., Turk G., Bacon B., Gerth J., Sweeney P.: Ani-
mation of fracture by physical modeling. The Visual Computer
7, 4 (1991), 210-219.

[OBH02] O’Brien J. F., Bargteil A. W., Hodgins J. K.: Graphical
modeling and animation of ductile fracture. In Proceedings
of the 29th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’02, ACM, pp. 291-294.

[OH99] O’Brien J. F., Hodgins J. K.: Graphical modeling and ani-
mation of brittle fracture. In Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’99, pp. 137-146.

[PK15] Pätzold M., Kolb A.: Grid-free Out-of-core Voxelization to
Sparse Voxel Octrees on GPU. Proceedings of the 7th Con-
ference on High-Performance Graphics, HPG ’15, ACM, pp.
95-103.

[SO14] Schvartzman S. C., Otaduy M. A.: Fracture Animation
Based on High-dimensional Voronoi Diagrams. Proceedings
of the 18th Meeting of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, I3D ’14, ACM, pp.
15-22.

[SSF09] Su J., Schroeder C., Fedkiw R.: Energy stability and frac-
ture for frame rate rigid body simulations. In Proceedings
of the 2009 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (2009), SCA ’09, ACM, pp. 155-164.

[SB10] Stava O., Benes B.: Connected component labeling in
CUDA. GPU computing gems emerald edition (2010), pp.
569-581.

[TF88] Terzopoulos D., Fleischer K.: Modeling inelastic deforma-
tion: Viscolelasticity, plasticity, fracture. SIGGRAPH Com-
put. Graph. 22, 4 (June 1988), 269-278.

[Wil13] Willcocks C. G.: Sparse volumetric deformation. PhD The-
sis (apr 2013).

[WRK*10] Wicke M., Ritchie D., Klingner B. M., Burke S.,
Shewchuk J. R., O’Brien J. F.: Dynamic local remeshing
for elastoplastic simulation. ACM Transactions on Graphics
29, 4 (July 2010), 49:1-11. Proceedings of ACM SIGGRAPH
2010, Los Angles, CA.

[ZBG15] Zhu Y., Bridson R., Greif C.: Simulating rigid body frac-
ture with surface meshes. ACM Transactions on Graphics (to
appear) (2015).

[ZGHG11] Zhou K., Gong M., Huang X., Guo B.: Data-parallel oc-
trees for surface reconstruction. IEEE TRANSACTIONS ON
VISUALIZATION AND COMPUTER GRAPHICS (2011).


