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A New Extension to Kernel Entropy Component Analysis for Image-based
Authentication Systems

Sepehr Damavandinejadmonfared
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Vijay Varadharajan
vijay.varadharajan@mq.edu.au

Abstract

We introduce Feature Dependent Kernel Entropy Com-
ponent Analysis (FDKECA) as a new extension to Kernel
Entropy Component Analysis (KECA) for data transforma-
tion and dimensionality reduction in Image-based recogni-
tion systems such as face and finger vein recognition. FD-
KECA reveals structure related to a new mapping space,
where the most optimized feature vectors are obtained and
used for feature extraction and dimensionality reduction.
Indeed, the proposed method uses a new space, which is fea-
ture wisely dependent and related to the input data space, to
obtain significant PCA axes. We show that FDKECA pro-
duces strikingly different transformed data sets compared to
KECA and PCA. Furthermore a new spectral clustering al-
gorithm utilizing FDKECA is developed which has positive
results compared to the previously used ones. More pre-
cisely, FDKECA clustering algorithm has both more time
efficiency and higher accuracy rate than previously used
methods. Finally, we compared our method with three
well-known data transformation methods, namely Principal
Component Analysis (PCA), Kernel Principal Component
Analysis (KPCA), and Kernel Entropy Component Analysis
(KECA) confirming that it outperforms all these direct com-
petitors and as a result, it is revealed that FDKECA can be
considered a useful alternative for PCA-based recognition
algorithms

1. Introduction
Fundamentally data transformation is of importance in

machine learning and pattern analysis. The goal is to, al-
ternatively, represent the high-dimensional data into a typi-
cally lower dimensional form revealing the underlying for-
mat and structure of the data. There is a large amount
of literature on data transformation algorithms and meth-
ods [1], [2]. A dominant research area in data transforma-

tion is known as the so-called spectral methods. In spec-
tral methods, the bottom or top eigenvalues (spectrum) and
their corresponding eigenvectors play the main role in fea-
ture extraction and dimensionality reduction especially in
constructed data matrixes. Some recent spectral methods
include locally linear embedding [3], isometric mapping
[4], and maximum variance unfolding [5], to name a few.
See the recent review papers [6], [7] for thorough reviews
of several spectral methods for dimensionality reduction.
One of the most powerful and well known methods in the
mentioned area is Principal Component Analysis (PCA) [8]
which has been used in numerous applications and algo-
rithms in data classification and machine learning[9],[10].
However, PCA [11] is a linear method which may not be
beneficial when there might exist non-linear patterns hid-
den in the data. Over the last few decades, there have
been a number of advanced improvements on PCA trying
to overcome the drawback of linearly transformation and
make PCA influential when dealing with nonlinear data.
A very well-known and influential method is Kernel Prin-
cipal Component Analysis (KPCA) [12]. In Kernel PCA
[13], PCA is performed in a kernel feature space which is
non-linearly related to the input data. It is enabled using a
positive semi-definite (psd) kernel function computing the
inner products within the new space (kernel feature space).
Therefore, constructing the so-called kernel matrix or the
inner product matrix is vital. Then, using the top eigenval-
ues and their corresponding eigenvectors to perform met-
ric MDS [14] will lead to kernel PCA data transformation
method. Kernel PCA has extensive use in many different
contexts. For instance, kernel PCA has been used in ma-
chine learning algorithms from data classification [15] to
data denoising [16][17][18]. In [19], kernel PCA is intro-
duced for face recognition systems. Kernel PCA also has
been used in finger vein recognition algorithms [20]. In
2010 [21], R. Jenssen proposed Kernel Entropy Component
Analysis KECA as a new extension to kernel PCA. Kernel
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ECA is fundamentally different from other spectral methods
in two ways explained as follows; (1): The data transforma-
tion reveals structure related to the Renyi entropy of the in-
put space data set and (2): The method does not necessarily
use the top eigenvalues and eigenvectors of the kernel ma-
trix. Shekar in 2012 [22], implemented KECA on face data
base claiming KECA outperforms KPCA for face recog-
nition purpose. In this paper, we develop a new spectral
data transformation method, which is fundamentally differ-
ent from Kernel ECA in the following important way:

• In FDKECA the dimension of the feature space is de-
pendent on the dimension of the input data, not the
number of input data. It means no matter how many
data to analyze, the dimension of kernel matrix (kernel
feature space) is fixed.

The mentioned difference will make the following ad-
vantages FDKECA has over KECA:

• FDKECA is much less computationally expensive than
KECA as the dimension of the feature space, where the
optimal PCA axes are calculated, is just as high as the
dimension of the input data. This leads to a much faster
method than traditionally used KECA.

• FDKECA has lower error rate than KECA as the axes
obtained from our proposed feature space will con-
tribute to more efficiency and less dimension compared
to KECA.

The reminder of this paper is organized as follows: Sec-
tion 2 illustrates some examples of spectral data transfor-
mation methods of importance. Feature Dependent Kernel
Entropy Component Analysis (FDKECA) is developed in
Section 3. The image reconstruction method and eigen-
face analysis using FDKECA are developed in Section 4. A
spectral clustering algorithm using FDKECA is developed
in section 5. Experimental results are presented in section
6. Finally, section 7 concludes the paper.

2. Spectral Data Transformation

In this section, we explain the fundamentals of PCA,
KPCA, and KECA with examples to comprehend spectral
basic data transformation methods.

2.1. Principal Component Analysis (PCA)

A well-known spectral data transformation method is
PCA. Let X = [x1, ..., xn] , where xt ∈ Rd and t =
[1, ..., N ]. As PCA is a linear method, the following trans-
formation is sought assumingA is [d×d] such that yt ∈ Rd
and t = [1, ..., N ] : Ypca = AX where Ypca = [y1, ..., yn] .
Therefore, the sample correlation matrix of Ypca equals to:

1

N
YpcaY

T
pca =

1

N
AX(AX)T = A

1

N
XXTAT (1)

The sample correlation matrix of X is
1

N
XXT . Deter-

mining A such that
1

N
YpcaY

T
pca = I is the goal. Consider-

ing eigen-decomposition, we will have
1

N
XXT = V 4V T

,where 4 is a diagonal matrix of the eigenvalues δ1, ..., δn
in descending order having the corresponding eigenvectors
v1, ..., vn as the columns of V. Substituting into (1), it can
be clearly observed that A = 4−1/2V T leads to the goal
such that Ypca = 4−1/2V TX .

Performing a dimensionality reduction from d to l ≤ d
is often achieved by the projection of data onto a subspace
spanned by the eigenvectors (principal axes) corresponding
to the largest top l eigenvalues.

2.2. Kernel Principal Component Analysis (KPCA)

Scholkoft in 1998 proposed Kernel PCA which is a non-
linear version of PCA operating in a new feature space
called kernel feature space. This space is non-linearly re-
lated to the input space. The nonlinear mapping func-
tion (kernel function) is given Φ : Rd → F such that
xt = Φ(xt), t = 1, ..., N and Φ = [Φ(x1), ...,Φ(xN )].
After performing such mapping in input data, PCA if im-
plemented in F , we need an expression for the projection
of PUi

of Φ onto a subspace of feature space principal axes,
for example, top l principals. It can be given by a positive
semi-definite kernel function or Mercer kernel [23] [24],
kσ = Rd × Rd → R computes an inner product in the
Hilbert space F :

kσ(xt, x
′
t) = 〈φ(xt)φ(x′t)〉 (2)

The (N × N) kernel matrix K is defined such that ele-
ment (t, t′) of the kernel matrix equals to kσ(xt, x

′
t). There-

fore, K = ΦTΦ is the inner product matrix (Gram matrix)
in F . Then, Eigen-decomposing the kernel matrix we have
K = EDET where E is the eigenvectors e′1, ..., e

′
n col-

umn wise and their corresponding eigenvalues are in D -
λ1, ..., λn- . Williams in [25] discussed that the equivalence
between PCA and KPCA holds in KPCA as well (kernel
feature space). Hence, we have:

Φpca = PUi
Φ = D

1/2
l ETl (3)

Where Dl is the top large l eigenvalues of K andEl
is their corresponding eigenvectors stored in columns. It
means that projecting Φ onto spanned feature space (princi-
pal axes) is given by PUi

Φ =
√
λie

T
i .
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Considering the analogy in (3), Φpca = D
1/2
l ETl is the

solution to the following optimization problem:

Φpca = D
′1/2
l E′Tl : min

λ′
1,e

′
1,...,λ

′
N ,e

′
N

1T (K −Kpca)2.1. (4)

Where Kpca = ΦTpcaΦpca. Therefore, this procedure
minimizes the norm of K −Kpca.

2.3. Kernel Entropy Component Analysis

Selection of the subspace where the data is projected
onto is of importance in spectral methods, which is achieved
based on the top or bottom eigenvectors in PCA and KPCA.
In KECA, however, this stage is based on entropy estimate.
Using entropy estimate, the data transformation from higher
dimension to lower dimension is obtained by projecting the
input data onto the axes, which contribute to the entropy es-
timate of input space. The procedure of entropy estimate in
KECA is given as follows: The Renyi entropy function is
defined by

H(P ) = − lg

∫
p2(x)d(x) (5)

Where p is probability density of the input data. Consider-
ing the monotonic nature of logarithmic function, (12) can
be replaced by the following equation:

V (P ) =

∫
p2(x)d(x) (6)

Estimating V (p), (14) is given:

p̂(x) = 1/N
∑
xtεS

kσ(x, xt) (7)

k(x, xt) is the kernel centred matrix, then:
V̂ (p) = 1/N

∑p
xtεS

(xt)

1/N
∑
xtεS

1/N
∑
xtεS

kσ(x, xt) = 1/N21TK1 (8)

where K is kσ(x, xt) and 1 is an (N × 1) vector which
contains all ones. The Renyi entropy estimating can be cal-
culated for eigenvalues and eigenvectors of the Kernel ma-
trix. It is defined as K = EDET , where D includes the
eigenvectors, λ1, λ2, ..., λN , and E consists of eigenvalues,
α1, α2, ..., αN . Finally, rewriting (15), we have:

(p) = 1/N2
N∑
1

(
√
λiα

T
i 1)2 (9)

3. Feature Dependent Kernel Entropy Compo-
nent Analysis (FDKECA)

In this section, we will go through PCA and KECA fea-
ture space in details and clarify our motivation to propose
the new transformation method, and then FDKECA is in-
troduced.

3.1. Defining the Feature Dependent Kernel En-
tropy transformation

Generally, in spectral data transformation methods, find-
ing the most valuable principal axes (appropriate directions
in the feature space) is of greatest importance. In PCA,
for example, it is extracted linearly from the principal fea-
ture space. In KECA, however, these axes are extracted
from kernel Entropy feature space as discussed in previous
subsection. We define Feature Dependent Kernel Entropy
Component Analysis as a k-dimensional data transforma-
tion method obtained by projecting input data onto a sub-
space spanned by principal kernel axis contributing to the
feature dependent kernel Entropy space. Feature dependent
kernel Entropy space is defined as follows:

Let X = [x1, ..., xN ], where xt ∈ Rd and t = [1, ..., N ].
The nonlinear mapping function is given Φ : Rd → F d

such that x′t = Φ(x′t), t = 1, ..., d where x′t is an N dimen-
sional vector including all of the tth features from N in-
put data. Explaining this, we have Φ = [φ(x′1), ..., φ(x′d)].
The use of a positive semi-definite kernel function or Mer-
cer kernel computes an inner product in the new space F d:

kσ(x′t, x
′
t′) = 〈φ(x′t)φ(x′t′)〉 (10)

The (N×N) kernel matrix-we define that asKFDKECA

-is now defined such that element (t, t′) of the kernel matrix
is kσ(x′t, x

′
t′). Therefore,KFDKECA is the Gram matrix or

the inner product matrix in F d. The next stage in FDKECA
is to perform PCA on KFDKECA. Note that the kernel
matrix taken in FDKECA feature space (KFDKECA ) is
totally different from that of KPCA.

Fig. 1. illustrates a brief flow diagram of reaching kernel
Entropy feature space from scratch. As it is shown in Fig.
1, N input data are first mapped into kernel space by φ and
then the Gram matrix (kernel matrix) is calculated using in-
ner product. Note that the dimension of kernel matrix is
equal to the number of input data- N . Eigen-decomposition
is the next step where all eigenvalues and their correspond-
ing eigenvectors are extracted and reordered in a descending
manner from the greatest to the smallest value. After find-
ing the kernel axes in this space, the kernel matrix, which
represents the input data, is projected onto the kernel fea-
ture vectors (eigenvectors). The drawback to KECA is that
the dimension of feature space and kernel matrix could be-
come too high and as a result data transformation could be
computationally expensive. In addition, finding the most
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Figure 1. Flow diagram of reaching Kernel Entropy Feature Space

Figure 3. Top 63 eigenvectors obtained by PCA

optimized sub-space in kernel feature space could be chal-
lenging and sometimes inefficient.

Fig. 2. demonstrates FDKECA feature space where the
input data is projected onto a subspace spanned by princi-
pal kernel entropy axes contributing to the feature depen-
dent kernel entropy space. As it is illustrated in Fig.2, FD-
KECA considers all features having the same dimension
from all input data in separate vectors first and then maps
them into kernel space which is called FDKECA feature
space. Then it computes the kernel matrix (Gram matrix)
using inner products which is a d-dimensional space. Note
that the input data has the dimension of dwhich means there
is no growth of dimension while computing FDKECA fea-
ture space. Having d-dimensional FDKECA feature space,
the eigenvectors and their corresponding eigenvalues are de-
composed in this step using the estimation of entropy. The
original input data is projected onto a sub-space of FD-
KECA feature vectors for the purpose of transformation and
dimensionality reduction.

4. Eigenface Analysis on PCA and FDKECA

For more detailed comparison, we have performed PCA
and FDKECA on the first individuals samples and visu-
alized the first 63 feature vectors (eigenfaces) which are
shown in Fig. 4 and 5.

Figure 4. Top 63 eigenvectors obtained by FDKECA

In this analysis, we used 10 samples of the first subject of
SCface database in PCA and FDKECA. In PCA, all samples
were first converted into 1-D vectors. After calculating the
mean vector (the mean image), the co-variance matrix is ob-
tained and then, the Eigen-decomposition is performed on
the co-variance matrix. The eigenvectors (PCA eigenfaces)
were then reordered according to the greatness of their cor-
responding eigenvalues (in descending order). Fig. 4 shows
the top 63 eigenvectors obtained by PCA. As it was ex-
pected, the top eigenvector carries the most information and
the amount of information being carried by the feature vec-
tors reduces as the eigenvector gets farther from the top one
and closer to the bottom one. Another expectation is that
only the first 9 or 10 top eigenvectors have some valuable
information and the rest of the axes (eigenvectors) seem not
to be useful as almost no related information can be seen in
them. In terms of FDKECA, however, it is different.

In FDKECA, we used the polynomial kernel function
with the degree of two. Firstly, all samples were con-
verted into 1-D vectors. After calculating the mean vector
(the mean image), all samples were mapped by the poly-
nomial kernel function (as described in section III). Then,
the Eigen-decomposition was performed on KFDKECA to
achieve the feature vectors and finally the axes were re-
ordered based on entropy estimate. Fig. 5 illustrates the
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Figure 2. Flow diagram of reaching Feature Dependent Kernel Feature Space

top 63 eigenvectors obtained by FDKECA. Same as PCA,
it was expected that the top eigenvector carries the most in-
formation and the amount of information drops as the num-
ber of the eigenvector gets closer to the bottom one. How-
ever, there is a considerable discrepancy between the shown
eigenfaces obtained by PCA and FDKECA. In FDKECA,
all eigenfaces carry relevant information except for the last
12 while in PCA only the first 9 or 10 ones have informa-
tion related to the original face images. This analysis shows
that FDKECA finds more informative and valuable feature
vectors compared to PCA (as shown in Fig. 3 and4).

5. Spectral Clustring Algorithm Using FD-
KECA

In this section, a spectral clustering algorithm is devel-
oped using FDKECA transformation. The proposed algo-
rithm, actually, is suitable for image classification which
works in a supervised system as there are some samples to
train the system and then using different samples, the sys-
tem is tested. We first introduce the FDKECA clustering
algorithm and then compare it with other algorithms such
as PCA, KPCA and KECA in next section. As FDKECA
can be considered as an extension to 1-D PCA, in our clus-
tering algorithm all samples are converted into vectors. The
goal is to propose a clustering system which not only is fast
enough (not as computationally expensive as KECA), but
also outperforms PCA, KPCA and KECA in terms of clus-
tering image samples. Such an algorithm can be used in
recognition systems like face, finger print, finger vein, palm
vein etc.

Fig.5 indicates the flow diagram of the proposed cluster-
ing algorithm for image classification. We believe this al-
gorithm can be applied in image-based recognition systems
such as face and finger vein recognition. Moreover, this
algorithm is much faster than normal KECA as its dimen-
sion of feature vector is fixed and it does not become too
computationally expensive when analyzing a huge number
of data. In addition to having a high speed, this algorithm
is believed to be more appropriate than PCA, KPCA and
KECA as it was shown in previous section. We have con-
ducted different experiments on two different databases to
have a complete analysis on the proposed algorithm. Next

Figure 5. Flow diagram of the proposed clustring algorithm using
FDKECA

section gives experimental results on face and finger vein
database.

6. Experimental Results

In this section, the performance of FDKECA is evaluated
and compared with PCA, KPCA, and Kernel Entropy Com-
ponent Analysis (KECA) on two different databases- finger
vein and face. The experiments are conducted on Surveil-
lance Camera Face Database (SCface database) and Finger
vein database which are explained in two experimental se-
tups in the following part of this section.
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6.1. Experimental setup-1

The first part of the experiments is on finger vein
database. The finger vein samples are collected using our
own designed scanner. We will not go through the detailed
discussion on how the data is collected and prepared as it
might not be totally relevant to this work, See [27] for more
information on the database.

10 samples were used from each of 200 individuals
which results in a finger vein database consisting of 2000
samples. Region of Interest is detected and extracted from
each sample automatically. Fig. 6 shows an original and
cropped sample from the database. Two independent exper-
iments have been conducted on this database. Firstly, the
performance of FDKECA is compared with PCA, KPCA,
and KECA where 5 randomly selected samples were used
to train the algorithm and the remaining 5 to test. Then
we used leave-one-out strategy to have a better comparison.
Gaussian kernel is used in FDKECA, KPCA, and KECA
algorithms in this stage. As in PCA-based image analysis
the size of the samples is of importance, all finger vein sam-
ples have been normalized to the size of (10× 20) to have a
balance between speed and efficiency. In one-dimensional
PCA-based algorithms, the first step is to convert the data
from matrices into vectors which leads into vectors with the
dimension of (1 × 200). It means there could be 200 dif-
ferent implementations of FDKECA on the data using 200
different feature vectors to project the data onto. However,
it is totally different in KPCA and KECA as it is depen-
dent on the number of input data being transferred into ker-
nel space. For the sake of comparison, the first 200 ker-
nel feature vectors were used in our implementations. In
each single experiment, the implementation is repeated 200
times and the maximum accuracies and their corresponding
dimension of feature vector are gathered and shown in Ta-
ble 1. As it is observed from this table, KPCA and KECA
achieve their maximum accuracy in a much higher dimen-
sion of feature vector in comparison with PCA. It is because
feature space in KPCA and KECA is very high dimensional.
more precisely, if 9 image from each category is used to
train, it leads to a total number of 1800 train samples as
there are 200 individuals. Having 1800 input samples in
KPCA and/or KECA will result in a feature space with the
dimension of (1800× 1800) , while in PCA the dimension
is fixed and equal to 200 in this experiment. The FDKECA,
however, results in having the highest accuracy rate while
its dimension of feature vector is almost as high as PCA,
which means this method is not computationally as expen-
sive as KPCA and KECA. Moreover, there is a dramatic
gap between FDKECA and KECA which is more than 10
percent in the first experiment.

Table 1. Comparison of FDKECA with Other Methods Using the
finger vein Database

Strategy Method Max Acc % Dimension
5 for training KPCA 85.9 200

KECA 86 175
PCA 95.3 68
FDKECA 97.2 46

Leave-one-out KPCA 92.5 173
KECA 93.5 86
PCA 98.5 35
FDKECA 99.4 85

Figure 6. Original and ROI extracted finger vein sample

Figure 7. SCface classification using images of 4 cameras for train-
ing and 1 to test

6.2. Experimental setup-2

In the second experimental setup, we chose SCface
database which is already explained in section 4. There are
five different cameras located in three different distances
from the individuals to collect the face data. In this part,
we conducted the experiment using the images of 4 ran-
domly selected cameras for training and the remaining 1
camera for testing. For each algorithm, the experience was
repeated 100 times using the first 100 different eigenvectors
to project the data onto and the results were gathered and
visualized in Fig. 7. It is observed that Like the previous
setup, FDKECA outperforms PCA, KPCA, and KECA in
all experiments. As Fig.7 indicates, FDKECA reaches the
highest accuracy of almost %98 while PCA, KPCA, and
KECA get the accuracy of %89, %79 and %81 respectively.

7. Conclusion
We introduced a new data transformation method in this

research work for dimensionality reduction in image-based
recognition systems. Feature Dependent Kernel Entropy
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Component Analysis (FDKECA) is an extension to both
1D-PCA and 1D-KECA. In FDKECA, all data is mapped
into kernel space feature-wisely which results in having a
constant dimension of data as well as being able to extract
more valuable feature vectors in FDKECA feature space.
Eigenface analysis showed that the feature vectors in FD-
KECA feature space are more informative than PCA. To
examine FDKECA in practical clustering and classification
methods and to be able to have a complete comparison with
PCA, KPCA, and KECA, we proposed a clustering algo-
rithm using FDKECA which was examined in two differ-
ent areas- face recognition and finger vein recognition. Ex-
perimental results showed that FDKECA outperforms PCA,
KPCA, and KECA which shows the reliability of FDKECA
to be applied in image classification and recognition sys-
tems.
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Abstract
This paper describes a new way of using projective methods for simulating the constrained dynamics of deformable
surfaces. We show that the often used implicit integration method for discretized elastic systems is equivalent to
the projection of regularized constraints. We use this knowledge to derive a Nonlinear Conjugate Gradient implicit
solver and a new projection scheme based on energy preserving integration. We also show a novel way of adding
damping to position based dynamics and a different view on iterative solvers. In the end we apply these fresh
insights to cloth simulation and develop a constraint based finite element method capable of accurately modeling
thin elastic materials.

Keywords
Implicit integration, constraints, projection, PBD, damping, iterative solver, cloth, FEM

1 INTRODUCTION
For decades now the preferred method of simulating
elastic systems in computer graphics has been the
implicit integration of the equations of motion. The
method is very attractive due to its unconditional sta-
bility and large time steps. It has been widely used for
simulating cloth and finite difference or finite element
soft bodies in general. Constraint based methods on
the other hand have not received that much attention,
with the exception of rigid body dynamics. Only
recently there has been an increase in the number of
papers on the subject in relation to soft bodies and we
believe there is room for improvement. Many regard
the method as being an inaccurate approximation
of natural phenomena which are better described by
elasticity theory. In this paper we aim to reconcile the
two methods and show that they are two faces of the
same problem; this can prove useful for the further
development of both approaches.

1.1 Related work
Constraint based methods have appeared originally in
their acceleration based formulation for rigid body dy-
namics [Bar94]. Later on, velocity or impulse based
methods gained more popularity [AH04, Erl07]. Po-
sition based methods are actually a nonlinear version

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

of velocity based ones, in the sense that they can still
be expressed as velocity filters, but constraints are en-
forced at positional level [ST96]. Such a method was
made popular in games by [Jak01] and was later refined
and extended by [MHHR07] under the name Position
Based Dynamics (PBD). Part of the inspiration for this
method came from molecular dynamics where methods
like SHAKE or RATTLE are widely used [BKLS95]. A
more detailed study for the application to cloth simula-
tion in computer graphics was done in [Gol10]. Here
the method of fast projection is developed based on
an implicit treatment of constraint directions [HCJ*05]
and a better energy preserving integrator is also derived.
A similar method was used to develop the unified Nu-
cleus solver in Autodesk Maya [Sta09]. Position based
methods rely on projection for solving differential al-
gebraic equations (DAE), which is ultimately an opti-
mization problem [HLW06]. Another part of inspira-
tion came from strain limiting techniques used in elastic
cloth simulation [Pro96, BFA02].

Constraint based methods are often criticized for the
fact they simulate only nearly inextensible materials
and are prone to locking. In order to address this [EB08]
use fast projection in conjunction with a BDF-2 in-
tegrator on a conforming triangular mesh. They also
give a brief proof for fast projection being the limit of
infinitely stiff elastic forces. Other authors prefer to
use quad-predominant meshes or diamond subdivision
[Gol10].

Constraint regularization was employed mainly in
[Lac07] for making rigid dynamics with contact and
friction more tractable numerically. We take the name
soft constraints from [Cat10] where an older idea is
used: regularization under the mask of Constraint
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Force Mixing (CFM) [Smi06]. Recently constraint
regularization has been used for particle based fluid
simulation [MM13]. Another application was intended
for the simulation of deformable elastic models using
a constraint based formulation of the linear Finite
Element Method (FEM) [SLM06]. Similar position
based approaches can be found in [BML*14] and
[BKCW14]. The FEM constraint approach is similar
in philosophy with continuum strain limiting [TPS09].

The implicit integration of the equations of motion has
become pervasive for cloth since the seminal work of
[BW98]. The method was also applied for FEM sim-
ulation [MSJT08]. Its main attraction is its uncondi-
tional stability for very stiff equations and large time
steps. By implicit integration we usually mean the Im-
plicit Euler (IE) method, but other implicit integrators
were also employed, like BDF-2 [CK02], Implicit Mid-
point [OAW06] or Newmark [SSB13]. These integra-
tion methods offer better energy conservation and more
responsive simulation, in contrast to IE which artifi-
cially dampens out high frequency details in exchange
for stability. Other variations include approximations
made to the force Jacobian [HET01] or an implicit-
explicit (IMEX) approach [EEH00, BMF03]. Most ap-
proaches however use only one Newton solver itera-
tion. More recently a new view on IE as an optimization
problem was presented in [LBOK13].

A special class of integrators labeled variational can be
deduced directly from the discretization of the Euler-
Lagrange equations of motion [SD06]. They are also
symplectic integrators, i.e. they preserve area in phase
space, which also means they are closer to preserving
energy and momenta [HLW06]. Many of them are ex-
plicit methods (e.g. Symplectic Euler, Verlet, Leapfrog)
so care must be taken to the time step size. Varia-
tional implicit methods like Implicit Midpoint or New-
mark are more stable and can be converted to projection
schemes (e.g. through our constraint space transforma-
tion). This is why we used them as inspiration for our
energy conservation strategy.

A new alternative that is totally different from implicit
integration of elastic systems or our approach is ex-
ponential integration [MSW14] which relies on eval-
uating trigonometric matrices (in terms of exponential
functions).

1.2 Contributions
We present in this paper a constraint based simulator
that is able to reproduce fully the elastic properties of
cloth. We base our results on the fact that constraint
projection methods are in fact equivalent to implicit in-
tegration of stiff springs (Section 2). Our approach is
not entirely new as it is based on the idea of constraint
regularization [Lac07]. We chose to use a PBD method
instead as it corresponds to the nonlinear case [ST96]

and it handles fast deforming bodies more robustly.
Catto [Cat10] uses Baumgarte stabilization (ERP) and
CFM and relates them to the stiffness and damping of
an implicit harmonic oscillator. We give a more general
and accurate correspondence to elastic parameters.

In Section 3 we derive a simple implicit integration
solver based on the Variational Implicit Euler approach
in [LBOK13] and the Nonlinear Conjugate Gradient
method which is very similar to PBD. From it we obtain
the equations of regularized constraint projection (Sec-
tion 4). Using this transformation we derive a new pro-
jection method with better energy conservation (Sec-
tion 5). In Section 6 we present a novel and effective
way of adding more damping to PBD. Section 7 shows
how relaxation can be used for block solving and reg-
ularization and how to transform the Conjugate Gradi-
ent method into Conjugate Residuals. In Section 8 we
present constrained mass-spring systems for cloth and
how to prevent locking. In Section 9 we present a non-
linear Saint Vennant-Kirchoff (StVK) elasticity model
implemented through soft constraints. We take the area
and planar strain constraint from [SLM06] and derive
a method that takes into account the discretization and
elastic properties of cloth. The closest approach to our
method is [BKCW14] but they use energy as a con-
straint instead of a minimization objective. [BML*14]
is using the same energy objective as us but their nu-
merical method is different.

2 OPTIMIZATION EQUIVALENCE
In this section we would like to show that implicitly in-
tegrating stiff elastic forces is no different than using a
constraint based formulation with regularization. The
most general way to show this is by employing an op-
timization formulation for both methods. Let us start
with Implicit Euler:

M∆v = hf(x0 +∆x), (1)
∆x = h∆v (2)

where M is the mass matrix, x are positions, v are ve-
locities, h is the time step, x0 = x(n) + hv(n) and f(x)
are conservative forces, i.e. f(x) = −∇xU(x). We can
reformulate (1) as:

1
h2 M∆x =−∇xU(x0 +∆x), (3)

This is a nonlinear equation which is typically solved
using the Newton method, but it can also be regarded
as the optimality condition of an optimization problem:

minimize 1
2h2 ∆xT M∆x+U(x0 +∆x). (4)

It is shown in [GHF*07] that a similar formulation can
be used for a projection method using Lagrange multi-
pliers and implicit constraint directions:

min. 1
2h2 ∆xT M∆x−λ

T c(x0 +∆x)+Uext(x(n)), (5)
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where c(x) are the constraint functions that need to be
zero. Note that we modified the formulation so that
the external forces potential is included in the objec-
tive function. Note that the external forces are treated
explicitly, i.e. using the position at the beginning of the
frame, which is also the case for (4).

The potential term Uc = λ T c(x) gives us the internal
constraint forces. If we take the gradient of this con-
straint potential we get the principle of virtual work:

fc = ∇xc(x)λ = JT
λ . (6)

If we express the total potential in general as U =
Uint +Uext , then so far the objectives in (4) and (5) are
the same in the first (inertial) term and Uext . For Uint
we have an expression in the second case, but we have
not yet specified one for the implicit integration. And
we are not forced to provide one, but in reality, follow-
ing the approach in [BW98], this internal potential is
usually made up of quadratic elastic potentials with the
purpose of enforcing certain constraints [Lan70]:

Ue(x) = k
2‖c(x)‖

2. (7)

More generally we can replace stiffness k by a matrix:

Ue(x) = 1
2 c(x)T Ec(x),

which is extremely useful when dealing with different
stiffnesses in a mass-spring system or continuum based
constitutive laws.

The potential energy in (7) gives forces of the form:

fe(x) =−kJT c(x). (8)

By comparing (6) and (8) we can see that they act in the
same direction and by requiring that they have the same
magnitude we obtain the regularization condition:

c(x)+ ελ = 0, (9)

where ε = 1/k. We call this a soft constraint and by
enforcing it we basically set the internal potential en-
ergy in (5) to be the same as in (4), thus making the two
problems equivalent. It is clear now that when stiffness
k goes to infinity (ε→ 0) implicit integration of springs
becomes the constrained dynamics problem in (5). In
the general case ε gets replaced by E−1.

In conclusion, not only is constraint based dynamics a
limit case of implicit integration, but it can be made
equivalent by replacing the strict constraint condition
with a "softer" one. This permits us to solve a mass-
spring system or any other discretized elastic system by
casting the problem into the following form:

M∆x = h2
(

JT
λ −∇xUext(x(n))

)
,

0 = c(x0 +∆x)+ ελ

This equivalence opens up a whole range of opportu-
nities, especially for bringing results from implicit in-
tegration into the world of constraint based simulation.
This was not considered possible in the past, as projec-
tion methods were regarded as an approximation of true
elasticity based ones [Lac07, LBOK13].

3 NONLINEAR CONJUGATE GRADI-
ENT SOLVER

The most important analogy we make in this paper is
that between Implicit Euler integration and PBD. PBD
starts from a candidate position (that includes the effect
of external forces) and then runs an iterative process
that does not involve the second derivative of the con-
straint function. This process is actually a minimization
algorithm based on sequential quadratic programming
(SQP) [WN99] that involves solving a linear system at
every iteration, called fast projection [GHF*07]. This
process can be further optimized by employing an in-
exact one step SOR-Newton scheme [Jak01, MHHR07]
that reduces the cost of each iteration by running only
one relaxation step.

The same logic can be applied to the Implicit Euler
method expressed as the quadratic minimization prob-
lem in (4). If we choose the initial guess state to be one
that incorporates the external forces, i.e. positions and
velocities after an unconstrained step, we arrive at an
approach similar to fast projection. The only difference
is that the former works in configuration space, while
the latter works in constraint space.

If we consider the initial candidate state consisting of
ṽ = v(n) + hfext and x̃ = x(n) + hṽ we can rewrite (1)
using a first order Taylor expansion around x̃:

Mδv = h(f(x̃)+Kδx) , (10)

where K = ∇xf = − ∂ 2U
∂x2 is the tangential stiffness ma-

trix and δx= hδv. Most authors choose to solve the im-
plicit integration problem using only one Newton step,
meaning we only need to solve one single linear sys-
tem: Sδv = t. This works well in practice, but only
if K contains second derivatives of the constraint func-
tion. This is because these terms contain information
about the change of the constraint direction, so without
them we need an iterative algorithm that keeps updating
the constraint gradient. By dropping the second deriva-
tive term from K (see [BW98]) we get:

K =−kJT J. (11)

This is equivalent to linearizing the force in (8) as in
[EB08]. Using this formula at every Newton iteration
we get the series of linear systems we need to solve:

(M+h2kJT
i Ji)δvi+1 = hf(xi), (12)

where JT
i = ∇xc(xi) and xi+1 = xi +hδvi+1.
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Uncostrained step to x̃, ṽ
Compute Jacobian J and forces f using (8)
Compute residual r = d = hf and its square δ = r2

for iter = 1:maxIter do
Compute q = Sd = (M+h2kJT J)d
Compute impulse p = αd, where α = δ/qT d
Integrate: v← v+p, x← x+hp
Recompute Jacobian J and forces f
Compute residual r = hf and its square δ ′ = r2

Compute β = δ ′/δ and then δ ′← δ

Compute new search direction d = r+βd
Algorithm 1: NCG implicit solver

Nonlinear Conjugate Gradient (NCG) [She94] is a nat-
ural solution for solving the above problem, given its
linear version is very popular for solving the one New-
ton step approach. The only changes we need to make
to linear CG is to replace the system matrix at every
step with Si = M+ h2kJT

i Ji (the Hessian of the objec-
tive function) and the residual with ri = hf(xi). We use
a Fletcher-Reeves formula and perform the inner line
search in only one iteration - see Algorithm 1.

Note that the NCG method is not necessarily faster than
traditional CG linear implicit solvers (we found that it
takes roughly 40% more time without optimizations).
We can also add back the second derivative term if we
want. Also, visually there is no big difference between
the two methods. The only advantages you would get
with the NCG method are smaller spring elongations
and more stability for large time steps. But the main
reason for devising the scheme is the similarity with
PBD which we further exploit in the next section.

4 CONSTRAINT SPACE
Given that we already know that the regularized projec-
tion method is equivalent to implicit integration and that
the formulation in the previous section is already very
similar to PBD, we would like to transform the system
in (12) to one corresponding to fast projection. So by
multiplying (12) on the left-hand side by T = 1

hk A−1J,
where A = JM−1JT , we get:

(h2A+ εI)δλ + c(x) = 0, (13)

which is precisely the system we need to solve at ev-
ery iteration of fast projection for the regularized con-
straints in (9). In order to get this result we made the
substitution δv = hM−1JT λ which derives from the
optimality conditions of the constraint projection op-
timization problem. To back our claims you can see in
Figure 1 that NCG and PBD behave almost the same
and very closely to the exact and CG semi-implicit
solvers.

We call T a constraint space transformation from con-
figuration space and show that the inverse transform is

-50

-40

-30

-20

-10

0

10

20

1 101 201 301 401 501

Exact

CG

NCG

PBD

Figure 1: The energy evolution over 500 frames of a
15x15 piece of cloth using NCG (green), PBD (purple)
and CG (red) and exact (blue) semi-implicit solvers.

also possible by multiplying (13) to the left hand side by
Q = hkM−1JT . Note that TQ = Im (m - number of con-
straints) and QT = In (n - degrees of freedom). We thus
found a quick way of switching from one interpretation
to the other. Also, by setting ε → 0 (infinite stiffness)
we recover the classic iterative projection formula:

h2Aδλ + c(x) = 0, (14)

Note though that not all implicit formulations can be
converted this way to a constraint based formulation
and that is because the methods are equivalent as opti-
mization problems but the numerical methods used may
differ in significant ways, e.g. the use of the second
derivative. Still their results converge towards the same
solution.

5 ENERGY CONSERVATION
Implicit methods in general suffer from artificial nu-
merical dissipation, whether they are used for an elas-
ticity based formulation or a constraint based one. This
is usually regarded as a good stability property and the
extra damping is considered beneficial by the computer
graphics community. Still in many cases like the exam-
ple of cloth, this integration technique acts like a low-
pass filter that removes high frequency motion and thus
prevents the formation of high-detail wrinkles and re-
sponsive folds.
In the projection methods literature there exist en-
ergy preserving solutions like symmetric projection
[HLW06] or the Velocity Verlet method proposed in
[Gol10]. Another popular integration method that
can conserve energy exactly is the Implicit Midpoint
method [OAW06]. There exist other explicit variational
integrators (e.g. Symplectic Euler) with very good
energy conservation properties but they suffer from the
same time step limitations as any other explicit method.
Given the fact that we are not able to solve the nonlinear
equations generated by implicit methods exactly, the
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accumulated errors will make Implicit Midpoint much
less stable than Implicit Euler. One could alleviate this
problem by using techniques suited for explicit meth-
ods, e.g. smaller/adaptive time steps or adding in a
damping term. Our solution is to employ an integra-
tion scheme taken from [Lac07] which gives us more
flexibility:

1
h M∆v = fext +(1−α)f(x(n))+αf(x(n+1)), (15)

1
h ∆x = (1−β )v(n)+βv(n+1), (16)

where α and β are between 0 and 1 and we can dis-
tinguish the following special cases: Explicit Euler
(α = β = 0), Implicit Euler (α = β = 1), Implict Mid-
point (α = β = 1

2 ), and Symplectic Euler (α = 0,β = 1
or α = 1,β = 0).

Moving slightly away from the Implicit Midpoint
method and making it more implicit permits us to have
low artificial numeric dissipation while still being able
to solve the system approximately and obtain a stable,
yet responsive simulation. Using the constraint space
transformation , i.e. multiplying (15) and (16) on the
left hand side by T, we obtain the following regularized
projection:

(h2
αβAi + εI)δλ i+1 +αc(xi) = 0, (17)

where xi+1 = xi+βhM−1δ fi+1, vi+1 = vi+hM−1δ fi+1
and δ fi+1 = JT

i δλ i+1. Also the integration of the can-
didate state changes to:

x̃ = x(n)+hv(n)+h2g+h2
β (1−α)M−1JT

λ
(n),

ṽ = v(n)+hg+h(1−α)M−1JT
λ
(n),

where we replaced external force by gravity for brevity
and the Jacobian J is computed at position x(n).
At the limit ε → 0 this whole procedure is of course
equivalent to projecting the candidate positions using
the same system (14) as in fast projection and PBD. The
difference appears only in the regularization term which
gets replaced by εα−1β−1. The above formulation is
also good when stepping both positions and velocities
at the same time. Alternatively we could estimate the
new velocity only at the end using equation (16):

βv(n+1) = 1
h (x

(n+1)−x(n))− (1−β )v(n)

We could have reached a similar result using the fast
projection formalism in [Gol10] but our constraint
space transformation method ensures that we also
obtain the correct regularization term. For example,
we can apply the same technique to obtain the BDF-2
based projection method presented in [EB08] and
find that the new regularization term is 9

4 ε . Still we
prefer our method as we do not need to store previous
positions and velocities and, being a one step scheme,

it is better suited for non-smoothness. Actually more
related to ours is the Newmark scheme [SSB13]
for which we can use the same projection method
regularized with ε/β , using the Newmark β factor
between 0 and 1/2.

6 DAMPING
Now that we have reduced the amount of artificial
damping, we can add back some real damping. Our
method will be based on the damping force expres-
sion used in [BW98] which is also a special case of
the widely used method of Rayleigh damping [SSB13].
In order to extend (10) to contain the damping force
we need to consider the total force as f(x,v) = fe(x)+
fd(v), i.e. sum of elastic and damping forces:

(M−h2K−hD)δv = hf(x̃),

where D = ∂ f
∂v = ∇vf. This is equivalent to having a

damping force:

fd = d∇xc(x)ċ(x) = dJT Jv,

where d is the damping coefficient and ċ(x) = Jv.
Rayleigh damping makes the approximation D= ζ M+
γK, but we will only be using the second term as it
makes the derivations simpler and it is only damp-
ing along the constraints we are interested in (we can
achieve drag friction in other ways). The implicit inte-
gration formula (10) now becomes:

(M−h(h+ γ)K)δv = hf(x̃). (18)

If using the approximation in (11) we notice that fd =
γKv, where γ = d/k is the ratio between the damping
and the stiffness coefficients.
We can incorporate this damping force into the opti-
mization formulation using Rayleigh dissipation func-
tions [Lac07]. So we transform (18) to constraint space
and get the following projection:

h(h+ γ)Aδλ i+1 + ei = 0, (19)

where ei = c(xi) + γJvi; the second term is nothing
more than the relative velocity along the constraint
times γ . So this is a simple way to add more damping
along the constraint directions which looks more natu-
ral than plain viscous drag in all directions. The down-
side is that you may have to pay the price of more it-
erations in order to keep the same amount of constraint
violation as before damping. The final formula after
adding regularization and energy preservation is:

(hα(h+ γ)Ai + εI)δλ i+1 +αei = 0. (20)

As you can see now the projection formula includes
both a stiffness parameter (ε = 1/k) and a damping pa-
rameter (γ = d/k) and so the method is fully equivalent
to the implicit integration of a damped elastic system.
Note that even in the case of infinite stiffness, the damp-
ing parameter can remain finite and we get (19).
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7 ITERATIVE SOLVERS
As we already mentioned, the most popular methods for
solving PBD are nonlinear relaxation methods: Jacobi,
Gauss-Seidel or Successive Over Relaxation (SOR).
Jacobi for instance has the following update formula:
δλ i+1 = δλ i +µri, where µ j = ω/A j j, ω < 1 and A j j
comes from the diagonal of A. What these methods ac-
tually do is they solve each equation and its correspond-
ing unknown separately (local solve) and iterate over all
equations for a number of times in order to refine the so-
lution. The local solve formula for one constraint c in
the PBD method is:

h2
∇c(x)T M∇c(x)δλ + c(x) = 0, (21)

where M and x correspond to the s ≥ 1 particles in-
volved in the constraint. We could also solve for more
than one constraints simultaneously and we would ob-
tain a system Lδλ +c(x) = 0 that we could solve using
direct matrix inversion or a direct solver.
Looking more closely at the equation (13) we notice
that it is not that different from (14). We can re-
gard the change to the diagonal of the system matrix
as a scaling through a relaxation factor as in [Jak01].
As noted in [MHHR07] this factor is highly nonlin-
ear and we are now able to express this exact non-
linear relationship to the linear spring stiffness value:
ω j = (1+(h2k jA j j)

−1)−1 < 1, where k j is the stiffness
of spring j. On the other hand, if we use ω > 1 we ob-
tain SOR which may converge faster and produce better
inextensibility, i.e. stiffer cloth for less iterations.
Another application of the equivalence between im-
plicit integration and regularized PBD is to see what
happens to the Conjugate Gradient method when we
transform from configuration to constraint space. Let
us start with the update formula for Steepest Descent:

δvi+1 = δvi +αiρ i,

where ρ i is the residual of the system in (12) which is
related to the residual ri by ρ i = Tri and ri = Qρ i, and

αi =
ρT

i ρ i

ρT
i Sρ i

.

We would like to see how the constraint space transfor-
mation affects the update formula in constraint space.
So we write αi in terms of ri:

αi =
rT

i QT Qri

rT
i QT SQri

.

For the nominator we find that QT Q = h2k2Ã, where
Ã = JM−2JT and the denominator is QT SQ = h2k3AS.
By using the properties of matrices T and Q we get
that µi = kαi and by considering infinite stiffness, i.e.
S→ h2A when ε → 0, we get:

µi =
rT

i (h
2Ã)ri

rT
i (h2A)2ri

.

If we ignore the tilde (or all the masses are 1) we see
that we have obtained the formula for the Minimum
Residual method which was used in [FM14]. It may
be that the method breaks when M−1 is far different
from its square and the correct formula needs to be
used. Still we think this derivation is a strong argument
for why CG does not work in constraint based methods
and we need to transform it to a method that looks more
like a minimum residual version of CG, e.g. Conjugate
Residuals (CR) [Saa03].

8 CLOTH MODEL
The most straightforward application of the presented
methods to cloth is through the use of a model made
of particles and springs or rigid links connecting them.
Such links correspond to a constraint function like
c(xi,x j) = ‖xi − x j‖− li j, where li j is the initial rest
length of the link and i and j are the indices of the
two particles. Using three types of links for stretching,
shearing and bending, one can obtain a full model of
cloth. Details on how to build such links for quad
meshes are given in many papers [Pro96, OAW06].
The main advantage of our method of soft constraints
is that the stiffness of each constraint can now be
expressed naturally as an elastic parameter (related
to Young’s modulus) instead of using non-linear
attenuation factors like in [Jak01] and [MHHR07].

Figure 2: Simulation of a cloth model consisting of
6910 vertices and 13674 triangles using soft constraints

For irregular triangle meshes, one can also build bend-
ing links [Erl05], but one cannot distinguish between
stretching and shearing links anymore. For quad
meshes shearing is simple to express and is usually
less stiff than stretching. Using the same stiffness
coefficient for shearing as for stretching (infinite in the
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case of PBD) leads to locking artifacts, as the cloth
does not have enough degrees of freedom to move
naturally. Lowering the stiffness value may help with
the locking problem, but this causes stretching, which
must be avoided at all cost for cloth.

Many other solutions have been proposed for locking
[EB08], but we chose to use the model presented in
[BW98] which separates out the stretching components
(warp and weft) from shearing for each triangle. In
general a constraint involving a number of particles im-
plies calculating gradients corresponding to each parti-
cle ∇ic(x) = ∂c(x)

∂xi
. Then we can solve that constraint

independently using (21):

δλ =− c(x)
∑

s
i=1 m−1

i ‖∇ic(x)‖2
=−c(x)

ξ
. (22)

The action of the bending links is dependent on stretch-
ing so we might want to use other measures for the
curvature of the cloth. We could use directly the con-
straint between two triangles (4 vertices) defined in
[MHHR07], as it expresses the same dihedral angle as
in [BW98]. Still we chose to derive our own formulas
using (22) and the assumption made in [BW98] that the
lengths of the normals remain constant.

9 FINITE ELEMENT METHOD
The continuum formulation in [BW98] is actually a
special treatment of the finite element method. The
three constraints correspond to the strain components
εuu, εvv and εuv that make up the planar symmetric
Green-Lagrange strain tensor:

ε(x) = 1
2 (∇w∇wT − I), (23)

where w : R2→ R3 is a mapping from an undeformed
mesh parametrization (u,v coordinates) to deformed
vertex positions. Then the actual components are:

εuu =
1
2 (w

T
u wu−1), (24)

εvv =
1
2 (w

T
v wv−1), (25)

εuv = εvu = wT
u wv, (26)

where by the subscript of w we signify partial derivation
with respect to to u and v. By considering strain con-
stant over a triangle (linear FEM) we can derive simple
formulas for wu and wv like in [BW98] or [VMTF09].

The integral of the strain energy over a triangle is:

Ufem = a
2 ε̂(x)T Eε̂(x), (27)

where a is the area of the triangle, ε̂
T = (εuu,εvv,εuv)

and E is a matrix that depends on the Young modulus E
and the Poisson ratio ν (or equivalently on the Lamé co-
efficients) like the one given in [VMTF09] or [TWS07].

Note that the former expresses isotropic elasticity while
the latter expresses orthotropic elasticity, i.e. different
stiffness along warp and weft directions.

We use (27) to derive the true constraint function using
the regularization framework as in [SLM06]:

c(x) = a
1
2 ε̂(x). (28)

The resulting three constraints (cu,cv,cs) are are similar
to the ones in [BW98] and their gradients form the Ja-
cobian Jfem = (∇cT

u ,∇cT
v ,∇cT

s ). Note that in the most
rigorous approach the area of the triangle a(x) is also
varying and its derivative should also be considered.
We chose not to do so in our computations, but alter-
natively we could add an extra area constraint. Some
authors use area and volume constraints together with
edge constraints to improve on mass-spring soft body
models [THMG04].

Now we can formulate the regularization condition:

a
1
2 ε̂(x)+E−1

λ = 0. (29)

In the end we can apply the block local solve formula
from Section 7, which is equivalent to other StVK linear
FEM approaches like the one in [VMTF09]. We choose
to apply this block approach only for the stretch compo-
nents together, as the shear stress component is related
only through a diagonal term to strain, and thus decou-
pled from the normal directions. The resulting 2x2 local
linear system for the two stretching constraints is:

(h2A+ Ẽ−1)δλ + ε̂(x) = 0,

where in the case of isotropic materials

Ẽ−1 =
1

E
√

a

(
1 ν

−ν 1

)
.

Notice that we divided equation (29) by the constant
area term a1/2 and obtained a CFM matrix that con-
tains all the relevant continuous material parameters:
Young’s modulus, Poisson ratio and the triangle area
(discretization measure). We can also add damping
through the Rayleigh damping technique presented in
Section 6 or the projection in Section 5 for better en-
ergy conservation. In the end we obtain a very accurate
(iterations permitting) and physically correct model for
simulating thin nonlinear elastic materials like the one
in [VMTF09] based only on constraints (Figure 3).

10 RESULTS
We implemented a cloth simulator solely on a modu-
lar constraints architecture using C++ (single threaded).
Depending on the level of accuracy or performance the
user can choose between different constraint types, e.g.
links or FEM triangles for stretching and shearing, dif-
ferent types of bending constraints, static collision or

Journal of WSCG

Volume 23, 2015 15 ISSN 1213-6972

No.1



Figure 3: Two snapshots of a side by side real-time simulation of two 40x40 cloth pieces with the same Young’s
modulus E: regularized FEM constraints (left) and soft links (right); superimposed in purple is the strain map.
FEM offers more realistic folds and the strain is better distributed throughout the cloth.

self collision constraints etc. Note that all these con-
straints are treated in the same solver loop. Regular-
ization was implemented by modifying the diagonal of
the system matrix using equation (13) or as described in
Section 7. The resulting scheme can be modified to use
the projection in Section 5 or we could add more damp-
ing (Section 6). These options can be added depending
on the needs of the simulator and we denote them col-
lectively as soft constraint methods for enhancing PBD.
This also is why we do not provide any pseudo-code
and hope that the readers will assemble themselves the
simulator of choice.

Given our simulator is fully constraint based our colli-
sion response techniques are the same as the ones used
in [Jak01, MHHR07] and for self collision we adapted
the methods in [BFA02]. Friction is treated more ac-
curately by being solved at every contact iteration in a
similar fashion to cone complementarity programming
[TA10]. We implemented cloth-mesh collisions by test-
ing for triangle-point and edge-edge intersections be-
tween two triangles. For acceleration we used AABB
trees for both the static mesh (pre-computed) and the
cloth (rebuilt at every frame). A similar approach was
used for accelerating self-collisions too.

We tested simulations mostly visually looking for ob-
vious artifacts like jittering or instability. Our most
common test scenario was a piece of cloth hanging by
two corners, falling from a horizontal or vertical posi-
tion, with different parameters or tessellation. Given the
multitude of methods used and the differences between
them it is hard to find a metric that measures well the
quality of the simulation. We opted to measure the total
energy - kinetic and potential (gravitational and elastic)
and no damping, and chart its evolution in time (Figure
4). The NCG solver behaves well and has good conver-
gence, but decays non-monotonically. The regularized
PBD method is smoother, dissipates energy slower, but
the Gauss-Seidel solver is less accurate. Energy pre-
serving projection with α = β = 0.6 offers even slower
energy decay while the higher energy line is due to the

kinetic energy of the oscillation. This is a good energy
preserving property but it looks jittery and unnatural
and we may need to add extra (non-artificial) damp-
ing. The closer we get to α = β = 0.5 the more hor-
izontal the graph becomes, i.e. full energy conserva-
tion, but this is dangerous territory for stability. We get
the same results with a Symplectic Euler integrator with
very small time steps and a small damping factor.
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Figure 4: Total energy evolution in time for the sim-
ulation of a 10x10 rubber cloth (k = 2 N/m, 25 itera-
tions) using NCG implicit integration (blue), regular-
ized PBD (red) and regularized energy preserving pro-
jection (green).

For our damping method we measured the total energy
minus the elastic potential in order to give a clearer pic-
ture of the velocity reduction (Figure 5). As you can see
a damping factor of γ = 10h gives a significant energy
dissipation compared to soft projection (or PBD just as
well). Reaching this level of dissipation so quickly is
not possible using the method we compared against,
i.e. reducing the relative velocity along the constraint
direction (basically velocity projection). We set for the
energy preserving projector α = β = 0.55 and γ = h
in order to obtain as little artificial damping as possible
while at same time damping the simulation just a bit
less than PBD would normally do.

All simulations were performed in real time at 60 Hz,
i.e. under 16 ms of computation time depending on
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Figure 5: Damping response for the simulation of a
40x40 piece of cloth (k = 2000 N/m, 25 iterations) using
regularized PBD (blue), aggressive damping (red) and
slightly damped energy preserving projection (green).

cloth size, and with lower framerate for the dress in Fig-
ure 2 (up to 20 ms or more for the solver only).

11 CONCLUSIONS
We have shown that implicit integration of elastic sys-
tems is equivalent as an optimization problem to fast
projection. Based on the analogy to PBD we derived a
Nonlinear Conjugate Gradient implicit solver. Its draw-
back is that it is using an approximated force Jacobian
but this is compensated by running more than one inex-
act Newton iterations.

After developing a method of switching between
the two representations (configuration and constraint
space) we proved that the regularized PBD method
(soft constraints) replicates elastic behavior. We also
showed how to preserve energy better or how to
dissipate more when solving constraints. Note though
that the viscous drag term of the Rayleigh damping
matrix cannot be treated implicitly in this framework.
Also, one can use a parallel version of the Conjugate
Residuals algorithm to speed up the simulation. Finally
we showed that accurate FEM simulation of cloth
using constraints is possible and is no different from
implicit integration. We believe that these are new and
useful results for PBD.

We hope to use the Kawabata evaluation system in the
future for real fabric modeling like in [VMTF09]. We
also intend to optimize our simulator using parallel al-
gorithms for multi-core and GPGPU.
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ABSTRACT
There is an increasing interest on tele-medicine and tele-diagnostic solutions based on the remote inspection of
volume data coming from multimodal imaging. Client-server architectures meet these functionalities. The use of
mobile devices is sometimes required due to the portability and easy maintenance. However, transmission time for
the volumetric information and low performance hardware properties, make quite complex the design of efficient
visualization systems on these devices. In this paper, we present a hybrid approach which is based on regions
of interest (ROIs) and on a transfer-function aware compression scheme. It has a good performance in terms of
bandwidth requirements and storage needs in the client device, being flexible enough to represent several materials
and volume structures in the ROI. Clients store a low-resolution version of the volume data and ROI-dependent
high resolution segmented information. Data must be only sent whenever a new ROI is requested, but interaction
in the client is autonomous - without any data transmission - while a certain ROI is inspected. A benchmark
is presented to compare the the proposed scheme with three existing approaches, on two different volume data
models. The results show that our hybrid approach is compact, efficient and scalable, with compression rates that
decrease when the size of the volume model increases.

Keywords
Volume rendering, client-server, mobile devices, medical data, region of interest, ray-casting, volume data com-
pression

1 INTRODUCTION

Recently, several important research areas in three-
dimensional techniques for multimodal imaging
have appeared. Applications include neurological
imaging for brain surgery, tissue characterization,
medical school teaching, plastic surgery and others.
At the same time, scientists are more familiarized
with three-dimensional structures reconstruction from
Two-dimensional images.

The reconstruction of a volumetric model is generally
achieved by using a voxel representation of datasets.
According to the structure to be highlighted during the
visualization, a transfer function is applied to assign
color and opacity to the density value which represents
the structure properties.

The handling of three-dimensional information requires
efficient systems to achieve fast data transmission and
interactive visualization of high quality images. Client-
server applications allow these functionalities. Some-
times the use of mobile devices is necessary due to the
portability and easy maintenance. However, transmis-
sion time for the volumetric information and low per-
formance hardware properties, complicate the design of
efficient visualization systems on these devices.

The main contribution of our work is a Hybrid vi-
sualization approach that inherits the advantages of
some previous algorithms like the ones presented in [1]
and [2], while keeping a good performance in terms
of bandwidth requirements and storage needs in client
devices. The scheme is flexible enough to represent
several materials and volume structures in the Region
of Interest (ROI) at high resolution and very limited
information transmission cost.

2 PREVIOUS WORK
Client-server architectures have grown in popularity.
Mobile devices as well as desktop computers can both
function as clients requesting and receiving informa-
tion over the network. Many authors have published re-
search results in the remote volume visualization area.
However there is still scarce specific bibliography for
volume visualization in mobile devices. The major-
ity of the proposals use known algorithms like Ray-
Casting, 2D Textures, and isosurface modeling to ren-
der volume data. In order to compensate limitations in
low performance devices or to reduce costs, the number
of client-server schemes have been proposed.

In some client-server approaches the dataset is com-
pressed on the server side and sent to the client where
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the transfer function is applied after decompression and
before the rendering of the recovered data. Moser
and Weiskopf [3] proposed a 2D texture-based method
which uses compressed texture atlas to reduce interpo-
lation costs. Nogera et al. [4] proposed a webGL ap-
plication to visualize very large 3D volumes by using
multi-texturing to encode volumetric models on a set
of RGBA 2D textures. A recent application developed
by Balsa et al. [5] allows to interact with volume mod-
els using mobile devices hardware. Their scheme is not
compressing the volume data.

In other schemes, the transmitted data is a compressed
image, the transfer function is applied at the beginning
of the pipeline, followed by a 2D rendering on a tex-
ture, all done on the server side. A compressed image is
sent to the client where decompression and image ren-
dering takes place. This scheme is frequently named
"Thin Clients" [6]. The idea in multiresolution model
schemes [7] is to render only a region of interest at high
resolution and to use progressively low resolution when
moving away from that region. Both bricking and mul-
tiresolution approaches [8] need a high memory capac-
ity on the CPU for storing the original volume dataset.
Moreover, bricking requires a high amount of texture
transfers as each brick is sent once per frame; multires-
olution techniques have been built for CPU purposes
and its translation to GPUs is not straightforward due
to the required number of texture accesses.

Preprocessing of data is also a useful technique, as
it ensures the reduction of the information, combined
with different techniques for quantization, encoding
and multiresolution representation [8].

Efficient schemes require optimized algorithms to
reduce and send data through the network. The
algorithms must achieve the maximum compression
possible while allowing an easy decompression in the
client side, where sometimes hardware and memory
constraints decrease performance [8].

Wavelet transforms offer considerable compression
ratios in homogeneous regions of an image while
conserving the detail in non-uniform ones. The
idea of using 3D wavelets for volume compression
was introduced by Muraki [9]. Ihm and Park [10]
proposed an effective 3D 163-block-based compres-
sion/decompression wavelet scheme for improving the
access to random data values without decompressing
the whole dataset. Guthe et al. [11] proposed a
novel algorithm that handles a hierarchical wavelet
representation where decompression takes place in
GPU.

Some techniques advocate the use of hybrid region-
based volume rendering, by applying different shading
algorithms inside the volume model [12], or by imple-
menting multiresolution region-based schemes [1]. Luo
et al. [13] developed a technique for focusing on a user-

driven ROI while preserving context information. The
approach uses a distance function to define the region of
interest. This function controls voxel opacity, exploits
silhouette enhancement and non-photorealistic shading.

In this paper, we propose a hybrid framework that ex-
ploits the use of standard transfer functions as an al-
ternative to compress volume dataset. Our scheme is
a transfer function-aware scheme for client/server tech-
niques. It combines Wavelet-preprocessed volume data
to reduce information outside the ROI, and highlighted
segmented data in regions of interest (ROI), (Gradient
Octree shceme). From the best of our knowledge this
possibility has not been considered by any of the de-
scribed approaches in this previous work.

3 OVERVIEW OF THE APPROACH
Let us assume that we are interested in inspecting a
volume data model V which is too large in terms of
network transmission and/or client storage facilities.
Wavelet compression algorithms like the ones pre-
sented in [1, 10, 11] are able to support block-based
regions of interest (ROIs). Other approaches like
Gradient Octrees [2] can be rendered with advanced
illumination models and at a higher visual quality
level. Gradient Octrees are specific data structures
for multiresolution volume datasets. Gradient Octrees
G(V ) include an specific data structure S and a compact
data array D. The octree structure S can be sent to the
client devices in a lossless way with only one bit per
node, whereas data is compacted to 3 Bytes per octree
node, including material information and volume
gradients. Both approaches, however, have advantages
and drawbacks:

(I) TF-aware wavelet compression schemes succeed in
sending to the clients a very limited amount of infor-
mation in the areas outside the region of interest (ROI).
High quality volume information in the ROI is also
compact [1], because the 3D texture is smaller and re-
stricted to the blocks in the ROI area. Ray-casting vi-
sualization in the client can use compact 3D textures
which are suitable for many client devices. The main
drawback of this approach, however, is twofold. First,
changing the transfer function requires sending a new
version of the compress volume model to the client, and
second, it is not well suited for illumination computa-
tions that would require too many texture accesses.

(II) Approaches like Gradient Octrees overcome these
limitations by supporting multiple transfer functions
and materials and by precomputing gradients on the
server. They support advanced illumination models,
thus achieving a higher visual quality level. However,
they are not direct candidates for ROI-based visualiza-
tion paradigms, as their low level volume representa-
tions present a flat-face appearance with poor gradi-
ents. These representations at coarse tree levels are
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well suited for progressive transmission but they per-
form worse than similar-quality low-level wavelet re-
constructions.

Our hybrid scheme inherits the best of both approaches.
In this case, apart from the volume model V , the user
must supply a set of transfer functions {T Fk} and se-
lects one of them as a canonical transfer function. The
server starts by computing a Gradient Octree G(V )
from V and for the set {T Fk}, also computing the quan-
tified representation W (V ) of the wavelet transform of
V with the canonical transfer function, as described in
Section 4. G(V ) encodes materials and gradients only
in the subset of voxels of V which are relevant to same
of the transfer functions in {T Fk}.

Figure 1: Overview of the proposed scheme, showing
the preprocess on the server, the data transfer through
the network and the data structures in the client device

Users at the client side can interactively define regions
of interest, ROIs. Information over the network can be
classified into static information (being send only once
per volume model) and dynamic information. Dynamic
information must be re-sent whenever the ROI is rede-
fined by the user. Static information is compact, includ-
ing W (V ) and a set of arrays defining the tree structure
of G(V ). In cases where the size of the volume model
V is too large and the volume data at the deepest level
of G(V ) does not fit into the client’s CPU memory, the
portion of this data belonging to the ROI is generated
from the octree data on demand, as dynamic informa-
tion, whenever the user asks for a different ROI.

In the client side, a low-resolution volume model VW
is reconstructed by de-quantizing and computing a few
inverse wavelet steps in each block. Let us note as VR
the subvolume corresponding to the ROI. A two-level
ray-casting rendering algorithm in the client GPU (Sec-
tion 5) succeeds at showing a high-quality Gradient Oc-
tree rendering in VR together with a visualization of VW
in the parts of the volume outside the ROI, also support-
ing a number of interaction facilities.

The corresponding compression and decompression al-
gorithms are detailed in Section 4.

4 COMPRESSION AND DECOMPRES-
SION ALGORITHMS

We start by computing the wavelet transform W (V ) of
the volume model V and its gradient octree G(V ) on
the server, Figure 1. We use a localized, block-based
transform with a previous smoothing step to achieve lo-
cal behaviour and a better compression rate. We as-
sume standard piecewise linear transfer functions [?].
By considering these transfer functions, we virtually
segment the volume V in as many regions as linear seg-
ments defined by the {T Fk} functions. Voxels with a
density d such that the opacity of {T Fk} is zero for all
k, belong to null regions and are simply represented by
a null code. Our implementation uses a block size of
16 together with a 4-steps Haar transform, being rather
efficient in compression while supporting block-aware
interaction paradigms in the client. As already men-
tioned, the wavelet information that is sent over the net-
work to the client is a low resolution volume model
VW , obtained by computing a few wl inverse wavelet
steps in each block. Observe that in the usual case of
wl = 2, the size of the information in VW will always be
lower than 1/64 of the size of the initial model V . The
low-resolution model for wl = 2 is compressed more
than a 98.5%. In what follows, we will use the term
compression rate to name the relative size of the com-
pressed model, which in this case is 1.5%.

The gradient octree G(V ) information includes the oc-
tree structure and the octree data. Creating G(V ) in-
volves three compression steps. The first is transfer-
function aware and uses V and the set of {T Fk} to com-
pute an Edge Volume model V E(T F) which only en-
codes voxels that are relevant to the transfer functions
{T Fk}. Non-relevant voxels in V E(T F) are assigned
a Nil value. On a second step, we compress gradient
information to a total of three bytes per Grey tree node
(including material information) in a set of data arrays,
one per octree level, [2]. We use a GPU-oriented en-
coding of the proposed hierarchical data structure with
explicit volume gradient information in octree nodes, to
avoid gradient computations during GPU ray-casting.
The final Gradient Octrees representation, shown in
Figure 2, consists on a small volume model V32 with
pointers and two sets of per-level arrays, Ol and Dl .
For the sake of clarity, octree levels in Figure 2 and
in what follows will be identified by their resolution.
The example shown in Figure 2 corresponds to the com-
plete octree representation of a volume V of resolution
r = 512, with gradient and materials stored in the data
array D512. Data arrays of coarser octree levels (D256,
D128, D64 and D32) store gradient and materials data of
Grey octree nodes at these levels. In short, the octree
structure S of G(V ) consists of the pointers volume V32
and the set of per-level arrays Ol . The octree data D of
G(V ) includes the set of per-level arrays Dl .
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Figure 2: Encoding Gradient Octrees

For transmission purposes, it is possible to compact
the Gradient Octree structure (not the volume data) in
a lossless way. Instead of sending the arrays Ol , we
send a set of arrays Bl with one byte per parent node as
shown in red in Figure 2. Note that this is equivalent
to store and transmit only one bit per node: the com-
ponents in Bl simply represent the type of each child
in one bit (0 if Nil, 1 if Grey). Compressed arrays Bl
are computed on the server and sent to the client. For
every received level, the client is able to generate a Bl-
driven, increasing sequence of indexes to create a local
copy of the array of indexes to child nodes Ol (for a de-
tailed discussion, see [2]). Note that Ol indexes point
simultaneously to D2l and to O2l . The volume V32 is
sent to the GPU as a 3D texture, whereas arrays Ol and
Dl are encoded as 2D and 1D textures. In short, we
succeed in sending the tree structure S in a lossless way
and with only one bit per node, through a sequence of
compact arrays Bl . Moreover, compressing gradients
and materials in three bytes is efficient, supports GPU
decompression and suffers from a very limited loss in
visual quality.

Although ROI-dependent localizations of the octree
structure S could be defined [14], we have observed
that the corresponding compression improvements
(mainly in the information over the network) are
negligible. In our present implementation we have
therefore considered a hybrid model consisting of the
low-resolution volume VW , the gradient octree structure
S and ROI-dependent octree data D. This hybrid
model information is sent from the server to the client
(or clients) in two parts: (I) The static information
is sent only once, at the beginning of the interaction
session. It consists on the low-resolution volume VW ,
the 32× 32× 32 pointers volume V32 of the computed
Gradient Octree, the set of arrays Bl which encode
the S octree structure and the materials look-up table
of the Gradient Octree, Figure 1. The size of this
last table is very small and we will not consider it
in our compression computations. (II) The dynamic
information is sent on demand whenever the client
changes the ROI. The client sends a query with the new
ROI limits (bounding box) and the server generates and

sends a subset DR of the data arrays D of the Gradient
Octree, as we know in advance that only voxels in the
ROI will be retrieved and rendered, Figure 1.
In our present implementation we assume that users are
only interested in gradient octree data at the deepest oc-
tree level r, as lower resolutions are already shown out-
side the ROI. This makes the whole process easier, as
we can just send a compact Dr array containing only
those voxels with a non-Nil gradient value in the deep-
est octree level. This results in a very compact data
transmission. We compute and keep a temporal, ROI-
dependent version of the pointers volume V32 which we
name V R32. V R32 has Nil pointers outside the ROI and
sequential pointers for the Grey nodes inside the ROI.
The textures V R32 and Ok are now ROI-dependent, and
must be recomputed in the client from the G(V ) Struc-
ture (see Figure1) whenever the ROI is changed during
the interaction, with a very efficient algorithm which
only involves array traversal and counting.

5 RENDERING AND INTERACTION
IN THE CLIENT DEVICES

Reconstruction of any of the blocks within the non-ROI
partion of the volume can be performed at one, two,
three or four wavelet levels. The four-level reconstruc-
tion of a block generates a full piece of 16× 16× 16
voxels that represent the corresponding part of the vol-
ume. Reconstructions of the same block at three, two
or one levels generate pieces of 8× 8× 8, 4× 4× 4 or
2×2×2 voxels, representing the same part of the vol-
ume at lower resolutions.
A usual interactive session starts by inspecting the
whole volume model at a low resolution. In this case,
all blocks are usually reconstructed at one or two levels,
the corresponding 3D Texture is sent to the client GPU
and ray-casting rendered. Observe that the size of this
3D texture, in the case of two reconstruction levels, is
1/64 of the size of the original volume model V.
Alternatively, the user can decide to inspect the whole
volume model at a low resolution (two levels of re-
construction, for instance) with the ROI showing pre-
defined structures at maximum level of detail by ray-
casting the Gradient Octree. To achieve this last in-
teractive visualization, two structures, one for the non-
ROI volume (3D texture) and the other for the ROI vol-
ume (Gradient Octree), are sent to the client GPU where
an adaptive ray-casting algorithm is performed, as de-
tailed below. Since the whole model is available at the
client side, rotation and zooming operations can be au-
tonomously performed in the client without any further
transmission from the server. If a region of the model
needs to be detailed, the Gradient Octree can be dis-
played on demand.
We use a standard ray casting algorithm in the client
GPU, the main difference with the classical algorithms
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being that rays traverse a low resolution 3D texture rep-
resenting the whole volume. In the point samples along
the ray that do not belong to the ROI, the ray-casting
uses density values from the low-resolution model VW .
Samples in the ROI retrieve densities from a virtual
volume with the same resolution R as VR, instead of
traversing VR itself. In Figure 3, an example with reso-
lution R = 512 is shown. Ray-casting proceeds as usual
by advancing along rays r from the observer with a uni-
form sampling of the volume along r. Then, for each
sample s of r addressing a virtual voxel (i, j,k) in the
ROI, its volume information is found in DR.

Figure 3: The block structure of the model, a region of
interest (in white) and the octree-based ray-casting.

Ray casting within the ROI is based on the octree ad-
dressing properties. The octree search of any virtual
voxel (i, j,k) is directly driven by the base-2 representa-
tion of i, j and k, as shown in Figure 3. In this case, their
first 5 binary digits point to the corresponding voxel in
the low-res texture V32. The index i32 found in this V32
voxel element points to the low resolution data in D32
(which we don’t use if a higher resolution is required)
and also to the array of its eight child indexes in O32. A
well-known property of binary octree subdivision en-
sures that next "three bit columns" in the binary repre-
sentation of i, j,k are in fact child indexes sl . Son in-
dexes point to deeper octree levels and are able to drive
the octree traversal to the right element in DR contain-
ing data in the virtual volume voxel. Subtree traversal
from the low-res voxel in V32 to the virtual voxel data is
based on the recursion equation,

i2l = Ol [il ][sl ] (1)

for l=32, 64, 128, .. R/2

The final index iR points to the high-res data in DR, but
tree traversal can stop earlier if the virtual voxel is void
and any index il in the chain is found to be zero.

Observe that only virtual voxels in VR in the ROI will
be addressed. This means that the client must only store

a restriction of G(V ) in VR. In our present implementa-
tion we initially send the whole octree structure of G(V )
to the client, but high-resolution data DR (restricted to
VR) is only sent on demand when the user changes the
ROI

Let’s assume that ray r is crossing voxel i = 171, j =
312, k = 237 in the virtual volume of the ROI, Fig-
ure 2. In this case, the octree search starts in the voxel
(10,19,14) of V32 and is then driven by four child in-
dexes: s32 = 7, s64 = 1, s128 = 4 and s256 = 5 which
recursively generate the indexes i64, i128, i256 and i512.
Reaching the deepest level information in a Gradient
Octree of resolution R = 512 involves a maximum of
six texture queries, to V32, O32, O64, O128, O256 and fi-
nally to D512.

After retrieving high-res data in D512, materials and the
gradient vector are decompressed on the fly in the GPU.
Obviously, everything also works when lower resolu-
tion virtual volumes are considered.

6 RESULTS AND DISCUSSION
To perform a complete comparative study , we selected
the following accessible frameworks:

VrMed Viewer, an integration of libraries and func-
tionalities, designed to achieve interactive visualization
in PCs and Virtual Reality Systems, using a GPU-based
Ray-casting algorithm [15].

Volume Viewer, an Android based application [5], im-
plemented to run on mobile devices. Allows interac-
tive visualization of models with a transfer function ed-
itor with easy handling. In this case, the whole volume
model is sent to the client device.

VrMed-Thin Client The approach is based on [16]. It
achieves remote visualization of volume models with
basic user interaction tools in mobile devices. A server
running VRMed Viewer on Linux operative system,
renders images which are sent to the client through
the wireless. Clients generate control commands as
OpenGL parameters which are sent to the server using
a TPC/IP socket.

Tables 1 and 2 show a comparison of [2], [1], our
technique (Hybrid Approach), and the previously de-
scribed schemes, using two models: The skull model
with a 256×256×112 resolution and the thorax model
with a 5123 resolution. Density values are in the rang
[0...255], hence each voxel is codified using only 1
byte. Table rows show for each scheme whether multi-
resolution and progressive transmission is allowed and
the compression rate achieved for each case. Both ta-
bles also show the size of the transmitted data trough
the network and the client requirements to perform vol-
ume rendering followed by an estimation of the average
frame rates in two cases: rendering in the PC server and
rendering in the client (mobile device).
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Figure 4 shows some snapshots of the interaction with
the hybrid skull model. In all cases, two wavelet recon-
struction steps (wl = 2) have been used without lighting
computation in the low resolution area: In (a), (b) and
(d) the Wavelet have been computed by using a skin
tranfer function, whereas the image in (c) represents a
bone transfer function both in the low resolution area
and in the Region of Interest.

Some snapshots of the interaction with the hybrid tho-
rax model are shown in Figure 5. In all cases two
wavelet reconstruction steps (wl = 2) have also been
applied without lighting computation, in the low reso-
lution area: ROI showing ribs and lungs (a), internal
gases and lungs (b) and skin, ribs and lungs (d). The
snapshot in (e) shows the alveoli in the ROI, magnified
in (f) by interacting with zoom and a section plane. In
these cases wavelets are precomputed after applying to
the model a TF covering all structures in the low reso-
lution area. The snapshot in (c), shows a TF for bones
visualization in both, the low resolution area, and the
ROI. Image in (d) shows a zoom-in of (c) for showing
up the quality of the hybrid model. The server appli-
cation runs on PC with 6 GB of RAM, Intel Core 2
Duo at 3.16 GHz and a client with 4 GB of RAM, Intel
Core 2 Duo at 3.06 GHz and Nvidia GeForce GTX z80.
Client tests were performed on the HTC One smart-
phone whith a screen resolution of 1080 x 1920 pixels
2 GB RAM and an Adreno 320 Graphics processor.

A ROI-based visualization has been considered in the
Wavelets-based scheme and in the Hybrid approach,
while in the rest of columns, the whole volume V has
been rendered at a uniform resolution. This is valid in
both cases (tables 1 and 2). Zoom has been adjusted in
a way that the total amount of rendered ROI pixels in
the application viewport is a 25% of the total of view-
port pixels. The amount of ROI pixels in the viewport
is relevant, as it measures the total amount of required
high-quality casted rays during ray-casting rendering.

Compression rates correspond to the amount of data
sent over the network, and relate this amount to the to-
tal memory requirements of the volume models, which
are 7.4 MBytes in Table 1 and 128 MBytes in the
case shown in Table 2. In contrast to the previous
schemes, our techniques allow multi-resolution render-
ing with progressive transmission of volume data. For
the Wavelet based approach, the presented figures on
the amount of data over the network represent the nec-
essary information to reconstruct four levels of wavelet
compression, wl = 4. The compression rate in this case
is between 21% and 32%.

In case of the Gradient Octree approach, data includes
the octree structure plus material and gradient informa-
tion at its deepest, maximum resolution level. In the
Hybrid scheme, the information over the network rep-
resent both the necessary data to reconstruct two levels

of wavelet compression for the low resolution model
and the nodes representing the Gradient Octree leaves
in the selected region of interest (ROI). This approach
also requires a client GPU being able to manage 3D
textures. The compression rate in this case is between
20% and 22%, with an average frame rate in the mobile
device between 7 and 16 fps.

The proposal in this paper Hybrid approach results in
a compression rate which is between 4% and 18%, with
an average frame rate in the mobile device between 8
and 16 fps when wl = 2. It also requires a client GPU
being able to manage 3D textures.

The VrMed viewer is presented for comparison pur-
poses. Some of the parameters in the tables do not ap-
ply to this case, as VrMed is a stand-alone application
without network transmission. The average frame rates,
48 and 20 fps, are obviously higher than those in the
previous cases but these figures show that our proposed
approaches are performing within reasonable efficiency
limits.

The Thin Client based approach sends a maximum of
0.18 MB of data through the network per frame during
an interactive session with a single client (of course, the
total amount of transmitted data depends on the number
of interaction frames). This is due to the fact that the
technique requires the transmission of rendered images
from the server when the user interacts with the model
in the client side. This fact makes this scheme network
dependent, with framerates which decrease in network
congestion cases. We have observed that our thin-client
implementation becomes useless when the number of
clients is above 8. On the other side, this scheme does
not require sophisticated client GPUs, as clients must
only decompress and show pre-rendered images. This
can be an advantage for basic client devices, but result
in an under-utilization of client GPUs in the case of
most present devices. The asterisks in the Thin client
column in tables 1 and 2 mean that data sizes are per
frame sizes. The compression rates obviously depend
on the number of transmitted frames.

The Hybrid approach is specially well suited in the case
of large models. The comparison between tables 1 and
2 show that this is a scalable scheme, with compres-
sion rates that decrease when the size of the volume
model increases. The corresponding frame rates are
larger than in the case of Gradient Octrees, being of the
same order of magnitude than Thin Clients.

Comparing Thin clients to Wavelets, Gradient Octrees
and the Hybrid approach, we can define the break-even
interaction period as the number of frames required to
have an equivalent amount of information sent over the
network. Break-evens are computed as the ratio be-
tween the size of the compressed model as sent over
the network in our approaches and the size of a single
Thin Client frame image. In the case of the skull model
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Figure 4: Hybrid Visualization. Interaction with the
hybrid skull model. ROI size: (128×64×64).

Figure 5: Hybrid Visualization. Interaction with the
hybrid thorax model. ROI size: 416× 224× 224 (a),
256× 160× 256 (b), 96× 128× 480 (c), and 256×
512×256 (d), (e) and (f).

in Table 1, this break-even is 11 frames for Wavelets,
21 frames for Gradient Octrees and 11 frames for the
Hybrid approach.

In the case of the thorax model in Table 2, the break-
even is 51 frames for Wavelets, 79 frames for Gradient
Octrees and 17 frames for the Hybrid approach. By
considering the number of frames per second in each
case, we can conclude that the information we are send-
ing is equivalent to the total information sent by the
Thin Client approach during an interaction period in
between 1 and 10 seconds. In the case of the Hybrid

approach, break-evens are 11 frames and 17 frames,
meaning this Hybrid scheme outperform Thin Clients
in interaction cases longer than around 20 frames.

Thin Clients can also be compared with the presented
approach in terms of frame rates. Frame rates depend
on the network bandwidth, the present approach being
better than Thin Client approaches in geographic re-
gions with a limited bandwidth. In fact, the presented
proposal can be specially useful in world regions with
limited network infrastructures but requiring fast access
to 3D medical data, like non-urban areas.

The Volume Viewer approach as presented in the last
column of both tables does not require sophisticated
client GPUs, as clients are rendering stacks of 2D tex-
tures. Frame rates in the client are reasonable. The
main drawback in this case, however, is the amount of
information being sent over the network, which makes
it unusable in the case of large volume models.

The proposed hybrid scheme allows interactive inspec-
tion by rotating and zooming volume models. Users
are able to select ROI portions of the visualized model,
as well as choosing a transfer function from the set of
transfer functions ({T Fk}) inside the the selected ROI.
Interface options include also, planar section selection
and offsets structures visualization in front of the se-
lected section plane. Users can also choose the reso-
lution of the low resolution region, by reconstructing
models, by using one, two or three wavelet reconstruc-
tion steps.

Wavelets Gradient Hybrid VrMed VrMed Volume
Sheme Octrees Approach Viewer Thin Client Viewer

Multi-resolution 3 3 3 no no no
Progressive transmission 3 3 3 no no no

Compression rate (%) 32 22 18 - ∗ 100
Data over the network(MB) 1.91 3.8 2.04 - 0.18* 7.3

Client requirements 3D Tex 3D Tex 3D Tex - Image Stack
2D Tex

Frame rate (PC version) 52 24.12 46.53 48.24 48.24 -
Frame rate (mobile) 24.2 - 16.32 - 20.23 17.0

Table 1: Comparison between the approach presented
in this paper (blue column) and some previous schemes
for remote visualization of volume models. Study of
the Skull model with a resolution of 256× 256× 112
and 7.3 MB of size.

Wavelets Gradient Hybrid VrMed VrMed Volume
Sheme Octrees Approach Viewer Thin Client Viewer

Multi-resolution 3 3 3 no no no
Progressive transmission 3 3 3 no no no

Compression rate (%) 21 20 4.2 - ∗ 100
Data over the network(MB) 16.4 27 5.3 - 0.32* 128

Client requirements 3D Text 3D Tex 3D Tex - Image Stack
2D Tex

Frame rate (PC version) 14 10.31 18.03 20.34 20.34 -
Frame rate (mobile) 13.20 - 8.07 - 20.23 -

Table 2: Comparison between the approach presented
in this paper (blue column) and some previous schemes
for remote visualization of volume models. Study of the
Thorax model with a resolution of 5123 and 128 MB of
size.
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7 CONCLUSIONS & FUTURE WORK
We have proposed a Hybrid approach that inherits the
advantages of the algorithms presented in [1] and [2]
while keeping a good performance in terms of band-
width requirements and storage needs in client devices.
Information over the network consists on static infor-
mation (being only set once) and dynamic informa-
tion. Dynamic information must be re-sent whenever
the ROI is redefined by the user. The complexity (mem-
ory and data transmission requirements) of the static
and dynamic information has been discussed. The main
conclusion is that the hybrid scheme is flexible enough
to represent several materials and volume structures in
the ROI area at a very limited static and dynamic infor-
mation transmission cost.
The Hybrid approach has been proved to be specially
well suited in the case of large models. The pre-
sented experimental tables show that the Hybrid ap-
proach is a scalable scheme, with compression rates
that decrease when the size of the volume model in-
creases. Corresponding frame rates are larger than in
the case of Gradient Octrees, being of the same order
of magnitude than Thin Clients. Our compression re-
sults are better than similar client server schemes for
volume rendering, and compare favourably to March-
ing Cubes based approaches. While these last schemes
must send an average of three triangles per voxel in
segmented volumes, the presented approach only sends
three bytes/voxel. We consider that our approach may
enrich the user experience during the inspection of vol-
ume medical models in these low performance devices.
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ABSTRACT
Recent 3D reconstruction algorithms are able to generate colored meshes with high resolution details of given
objects. However, due to several reasons the reconstructions still contain some noise. In this paper we propose
the new Joint Bilateral Mesh Denoising (JBMD), which is an anisotropic filter for highly precise and smooth
mesh denoising. Compared to state of the art algorithms it uses color information as an additional constraint for
denoising; following the observation that geometry and color changes often coincide. We face the well-known
mesh shrinking problem by a new local anti-shrinking, leading to precise edge preservation. In addition we use an
increasing smoothing sensitivity for higher numbers of iterations. We show in our evaluation with three different
categories of testdata that our contributions lead to high precision results, which outperform competing algorithms.
Furthermore, our JBMD algorithm converges on a minimal error level for higher numbers of iterations.

Keywords
Mesh Denoising, Smoothing, Fairing, Joint Bilateral Filter, Local Anti-Shrinking, Color Information.

1 INTRODUCTION
Many applications, such as urban planning, industrial
measurement or human anthropometry, require recon-
structed 3D models of the respective objects with very
high precision. The traditional approach is to acquire
these models by laser scanners, since they promise
high quality results. However, they are expensive, im-
practical to use and contain still some noise. Mean-
while 3D reconstruction algorithms, such as e.g. [Agi,
FP10, NIH+11, SSC14], are able to generate colored
mesh models from devices like standard color cameras
and\or depth cameras, which are widely spread, cheap
and easy to use. These reconstructions contain color
information together with high-resolution details, but
also suffer from noise in their 3D geometry. To get
rid of this noise, several (mostly iterative) methods for
mesh denoising were proposed in the literature. Some-
times they are also referred to as smoothing, filtering
or fairing methods. They use directly the 3D geome-
try or derived measures, like distances or normals of

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

the mesh, to estimate new vertex positions. However,
none of them explicitly uses the color information pro-
vided by e.g. one of the above mentioned algorithms.
Thus, we present in this paper a new anisotropic method
called Joint Bilateral Mesh Denoising (JBMD), which
uses - besides geometric information - the color infor-
mation as an additional constraint for edge preserving
denoising.

Another well-known problem of mesh denoising are
shrinking effects. They occur mostly in curves regions
of the mesh and are caused by homogeneous shifts
of vertices in a neighborhood into one major direc-
tion. Current approaches try to compensate that ef-

(a) Input (b) BMD (c) Laplacian (d) Our JBMD

Figure 1: Comparison of different mesh denoising algo-
rithms for the fandisk mesh. Top row: meshes. Bottom
row: color-coded error distribution.
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fect, whereas they focus more on visually appealing
results than on precision. Thus, in our JBMD algo-
rithm we propose a new approach to avoid this effect
by a precise local anti-shrinking. Furthermore, many
current algorithms suffer from their high dependence
on the number of iterations. Therefore our new algo-
rithm increases the denoising sensitivity per iteration
leading to constantly low errors. A short overview
of our algorithm is also given in the following video:
https://youtu.be/odm8kr2rKPA

Summarizing, the main contributions of our proposed
JBMD algorithm are:

• explicit usage of color information as an addition
constraint for denoising,

• precise local anti-shrinking and

• increasing denoising sensitivity.

The remainder of this paper is organized as follows:
Section 2 gives an overview of existing methods for
mesh denoising. The proposed JBMD algorithm is mo-
tivated and explained in detail in Section 3, while it is
evaluated regarding precision in Section 4. The work is
concluded in Section 5.

2 RELATED WORK
Image and mesh denoising is an ongoing research topic
in the image processing and computer vision commu-
nity.

Often, mesh denoising methods are related to image
denoising approaches. State of the art approaches in
image denoising include methods such as anisotropic
diffusion [PM90], total variation [ROF92], wavelet de-
noising [Don95], robust diffusion [BSMH98], bilat-
eral filter [TM98] and joint bilateral filter [KCLU07,
HSJS08]. In particular the joint bilateral filter uses,
similar to our new approach, the color information as
an additional constraint.

State of the art algorithms for mesh denoising are
amongst others Laplacian [Fie88, Tau95, VMM99] and
bilateral [FDCO03, JDD03, ZFAT11] mesh denoising
(BMD) methods. Laplacian mesh denoising is an
iterative isotropic procedure, where the new vertex
positions are directly calculated from the positions of
the neighboring vertices. In contrast, bilateral mesh
denoising is an iterative edge preserving anisotropic
approach. New vertex positions are estimated from
the vertex’s neighborhood, where the influence of
neighboring vertices depends on their distance and on
their offset to the tangent plane. Parts of this approach
are also used for our new algorithm.

A general and well-known problem of mesh denoising
is that the mesh shrinks in convex regions with each ap-
plication of the particular algorithm, which is a huge

problem especially for iterative approaches. [Tau95]
solves this problem by alternating shrinking and expan-
sion steps. Admittedly the precision of this approach
depends heavily on the geometry of the particular mesh
[DMSB99]. Another common approach, which is e.g.
used in the Bilateral Mesh Denoising [FDCO03], is to
preserve the volume of the mesh by a global correc-
tion step as proposed in [DMSB99]. The algorithm es-
timates the volume V n of a mesh after the n-th iteration
by the sum of volumes of all ordered pyramids centered
at the origin and with a triangle of the mesh as base.
Each vertex of the mesh is then scaled by the factor β ,
which is defined by

β =

(
V 0

V n

) 1
3

, (1)

to achieve the original volume V 0. However, as mesh
shrinkage occurs only in convex regions contrary to flat
regions, a global correction has indeed appealing effects
but is not precise. Thus, we propose in this paper a
precise local shrinkage correction.

3 METHOD
In this paper we propose the Joint Bilateral Mesh De-
noising (JBMD), which is a filtering method for meshes
using local neighborhoods. The method can be subdi-
vided into two parts: the denoising itself and the subse-
quent local anti-shrinking.
The main idea of our new denoising algorithm is related
to image processing, namely motivated trough the Joint
Bilateral Filter (JBF) [KCLU07]. This anisotropic
edge-preserving filter is often used to denoise depth
images by using color images as additional constraints.
The main idea is to compute a new depth value as
a weighted average of surrounding depth values,
where the weights depend on their deviation in position
(space) and color value (range). The assumption of JBF
are coherent depth and color discontinuity, meaning
that edges in the color image coincide with edges
in the depth image and vice versa. This coherence
assumption was validated in many image processing
publications [KCLU07, WBS15] and we show in
Section 4 that it also holds for meshes.
The intention of our new local shrinkage correction is
- contrary to alternating [Tau95] or global [DMSB99]
correction - to adjust vertex positions only where
shrinkage effects occurred. This effect arises only in
convex regions, whereas flat regions are not affected.
We observed that the weighted mean signed shift of
vertices in the neighborhood, which were estimated
by the denoising in the first step, equalize in noisy flat
regions, whereas in convex (and thus shrunk) regions it
is a precise local measure for a shrinkage correction.
Like in many other mesh denoising algorithms
[FDCO03, ZFAT11] we estimate in our JBMD new
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vertex positions v′′ in a mesh by shifting along the
normal direction n. This has the positive effect that
irregularities in the resulting mesh are avoided. Our
two-step algorithm can be described by

v′′ = v+(x′ ·n)− (x′′ ·n), (2)

where (x′ ·n) is the denoising part, (x′′ ·n) the correction
part and x′|x′′ refer to the magnitude of the shift. The
algorithm is illustrated in detail in Figure 2 and defined
in the following:

Algorithm 1 Joint Bilateral Mesh Denoising (JBMD)
for the m-th iteration
Require: Vertex v, Normal n
1: {qi} = neighborhood(v)
2: sum,norm,sum′,norm′ = 0
3: for all i do
4: di = ‖v−qi‖
5: oi = 〈n,v−qi〉
6: ci = (v.r−qi.r)2 +(v.g−qi.g)2 +(v.b−qi.b)2

7: wd
i = exp(−d2

i /2σ2
d )

8: wo
i = exp(−o2

i /2(σo ·λ m)2)
9: wc

i = exp(−ci/2σ2
c )

10: sum += (wd
i ·wo

i ·wc
i ) ·oi

11: norm += wd
i ·wo

i ·wc
i

12: end for
13: x′ = sum/norm
14: v′ = v+ x′ ·n
15: for all i do
16: d′i = ‖v′−q′i‖
17: wd

i = exp(−(d′i)
2
/2σ2

d )
18: sum′ += wd

i · x′i
19: norm′ += wd

i
20: end for
21: x′′ = sum′/norm′

22: v′′ = v′− x′′ ·n
23: return v”

In the first step of our algorithm (line 3-14) the new po-
sition v′ of a vertex v is estimated as a weighted average
of neighboring vertex position qi, where the weights de-
pend on three influencing factors: distance (wd

i ), offset
(wo

i ) and color difference (wc
i ). For computing the dis-

tance di between a vertex v and neighboring vertex qi,
the geodesic distance on the smooth surface would be
the correct measure. However, for efficiency reasons
we approximate di using the Euclidean distance in line
4, since [FDCO03] demonstrated already a sufficient
impact. The offset oi is defined as the distance of ver-
tex qi to the tangent plane of vertex v. The intention
of using this offset oi is that neighboring points in flat
regions should have a higher influence than in convex
or edge regions. As described in line 5, oi can be eas-
ily estimated using the dot product. The last influence
factor is the color difference ci between a vertex qi and

(a)

(b)

(c)

Figure 2: Joint Bilateral Mesh Denoising (JBMD) ap-
plied to vertex v: (a) Denoising step (v → v′). (b)
Shrinking correction step (v′→ v′′). (c) Final result.

vertex v, which is estimated in line 6. To map the in-
fluence factors di, oi and ci to weights wd

i , wo
i and wc

i ,
we use the Gaussians of lines 7-9. The final shift x′ of
vertex v is the normalized weighted sum of offsets oi of
neighboring vertices qi.

In the second step of our algorithm (line 15-22) we cor-
rect the position of a vertex v′ due to possible shrink-
ing effects. As already mentioned before, we observed
that the weighted mean signed shift x′′ of vertices in the
neighborhood, which were estimated by the denoising
in the first step, is a good local measure for a shrinkage
correction. For the estimation of the weights for x′′ we
use the distance d′i between a vertex q′i and v′ together
with a mapping function (line 16-17) similar to the first
step of the algorithm. The weighted mean signed shift
x′′ is calculated by summing up the weighted signed
sifts x′i (line 18) and normalizing afterwards (line 21).
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Figure 3: Mean errors of the fandisk mesh for different numbers of iterations. Quantitative comparison of different
features of our new JBMD algorithm and comparison against BMD.
Dark blue: BMD [FDCO03]. Red: BMD without volume preservation. Green: Our new JBMD. Purple: JBMD
without increasing smoothing sensitivity. Light blue: JBMD without local anti-shrinking. Orange: JBMD without
increasing smoothing sensitivity and without local anti-shrinking.

The described JBMD algorithm is applied locally for
each vertex of the mesh. However, vertices at a bound-
ary of a mesh do not have a well defined neighborhood
(line 1). In our algorithm we define the size of the
neighborhood as a fixed number k. The neighborhood
of a vertex v is then defined by the k closest vertices
qi. Obviously, the shape of our neighborhood changes
from vertex to vertex, but since the distance di between
vertices v and qi is an influencing parameter, this arti-
fact has negligible influence.
Our JBMD algorithm is - like many other [FDCO03,
ZFAT11] - an iterative approach. In the first iteration
major noise is eliminated, whereas with higher number
of iterations the overall level of noise decreases. Thus,
we consider this aspect by an increasing smoothing sen-
sitivity. In our JBMD algorithm the noise influences the
result via the offset oi, whereas the corresponding map-
ping function depends on σo. Therefore, we decrease
the parameter σo by a constant factor λ with each iter-
ation; leading to constantly low error.

4 EVALUATION
In this section we benchmark our JBMD algorithm by
comparing it to competing algorithms, namely Lapla-
cian Denoising and Bilateral Mesh Denoising (BMD).
These algorithms are described in more detail in Sec-
tion 2. All methods - including ours - depend on some
parameters. For our JBMD algorithm these are σd , σo
σc and λ . Thus, we run each algorithm with a huge
number of possible parameter combinations to detect
the optimal setting. All results (Figures, diagrams, etc.)
shown in this paper are generated with optimal parame-
ter settings and numbers of iterations. For our JBMD
algorithm we used the parameter settings of Table 1
for the given datasets. Note, these parameters depend
highly on the mean vertex distance (MVD) of the given
mesh. According to our experiments MV D ≈ 2σd ≈
4σo can be used as a rough guideline for setting the pa-
rameters.

Unfortunately, a groundtruth comparison on real world
data is very difficult, since no datasets are available,
which provide both real noisy data and real denoised
data. Thus, in the recent literature it is common to use
precise models of an object and generate the noise on
it synthetically. For this paper we decided to use three
categories of testdata in our evaluation.

The first category are colored synthetic meshes with
sharp edges together with an artificially noisy version of
this mesh. We use here the well-known fandisk mesh,
where each part of the surface has another color. Fur-
thermore, we add a Gaussian noise, where the stan-
dard deviation is roughly half of the vertex distance.
The second category of testdata are highly precise re-
constructions of real objects acquired by a camera-
projector-system [KNRS13]. We also added here a
Gaussian noise with a standard deviation of approxi-
mately half vertex distance. The meshes used in this pa-
per are the lion and allegorie reconstructions. The third
category of testdata are reconstructed meshes, which
are generated by standard cameras and Agisoft Pho-
toScan [Agi]. We use in this paper the heads of two
persons: person 1 and person 2. These reconstructions
include partially strong noise due to the lack of char-
acteristic features. Obviously, for these reconstructions
no ground truth is available, but they are a real world
scenario, where the application of a mesh denoising al-
gorithm is required.

MVD σd σo σc λ

fandisk 0.1897 0.1 0.05 30 0.8
lion 0.4401 1.0 0.5 30 0.6

allegorie 0.0003 0.0008 0.0004 35 0.7
person 1 0.0030 0.01 0.005 20 0.7
person 2 0.0041 0.01 0.005 20 0.7

Table 1: Parameter settings in the evaluation of our new
JBMD algorithm for the given datasets with specified
mean vertex distance (MVD).
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(a) Input (b) BMD (c) Laplacian (d) Our JBMD

Figure 4: Comparison of different mesh denoising algorithms for the lion mesh. Top row: meshes. Bottom row:
color-coded error distribution.

Figure 5: Mean errors of the lion mesh for different numbers of iterations. Quantitative comparison of different
features of our new JBMD algorithm and comparison against BMD.

As a quality measure for denoising we use the mean
error (ME), which is defined for a denoised mesh X and
a ground truth mesh G by

ME(X ,G) =
1
n

n

∑
i=1
‖xi−gp‖ (3)

xi ∈ X ; gp ∈ G; ∀i p = arg
p

min‖xi−gp‖,

where n is the number of vertices in the mesh X . More
intuitive, it is defined by the mean distance of each ver-
tex in the mesh X to the respective closest vertex in the
ground truth mesh G.
First of all we evaluate our algorithm with the fandisk
mesh in Figure 1, which has ideal preconditions for
our JBMD, since all sharp edges coincide with color
changes. From a visual point of view, all three mesh de-
noising algorithms provide smooth results without vis-
ible noise. However, they differ strongly in their pre-
cision, as visible in the color-coded error distribution
in the bottom row. The blue color indicates low er-
rors, whereas red represents high errors. Both BMD
and Laplacian denoising have imprecise vertices at the

edges of the mesh, whereas our JBMD has only some
minor inaccuracy. Figure 3 depicts the mean error of
the fandisk mesh depending on the number of iterations.
Our JBMD has the lowest error and converges in partic-
ular on this low error level. If our JBMD is used without
the increasing smoothing sensitivity, the mean error in-
creases again from the fourth iteration on. If we switch
off our shrinking correction, we achieve better results
for a small number of iterations. This is caused by the
inhibiting effect of the shrinking correction, since it re-
verts the denoising to some extent. However, for larger
numbers of iterations superior results can be achieved
with our new local anti-shrinking. Looking at the ef-
fects of using the color information as an additional
parameter, we see that our JBMD has - even without
increasing smoothing sensitivity and without local anti-
shrinking (orange line) - always a lower mean error than
the BMD.

The lion and allegorie meshes, which correspond to
the testdata category of real reconstructions with syn-
thetic noise, are depicted in Figure 4 and 7 respectively.
Again, from a visual point of view all three mesh de-
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(a) Input (b) BMD (c) Laplacian (d) Our JBMD

Figure 6: Comparison of different mesh denoising algorithms for the person 1 mesh. Top row: meshes. Bottom
row: color-coded comparison against the input mesh.

noising algorithms deliver smooth results. However, for
both datasets at the edges of the mesh BMD and Lapla-
cian denoising are less precise than our JBMD. Figure 5
and Figure 8 depict the respective mean error of the lion
and allegorie meshes depending on the number of iter-
ations. Again, our JBMD outperforms the competing
algorithms and converges at the lowest error level.

The person 1 and person 2 meshes correspond to the
testdata category of reconstructions with real world
noise. Since no groundtruth data is available for these
datasets, we compare the denoised meshes against the
original mesh in Figure 6 and 9 respectively. The BMD
algorithms results in the biggest differences to the orig-
inal mesh. Especially the nose, but also the eyebrows
and mouth, have a huge deviation and are not precise.
The Laplacian smoothing shows less deviation, but is
by far not as close to the original mesh as our JBMD. Of
course, smaller deviations to the original do not manda-
tory result in a better quality, but from a visual point of
view all results are similarly smooth. Thus, also for this
category of testdata our JBMD outperforms the com-
peting algorithms.

Summarizing the evaluation results, we found out
that our JBMD algorithm outperforms competing
algorithms for all tested datasets in terms of precision
while creating smooth results. Notably is in particular
that our JBMD converges on the lowest error level for
higher numbers of iterations. This is the achievement
of all three main contributions of our paper: Using
color information as additional constraint, correcting

shrinking effects locally and increasing the smoothing
sensitivity with each iteration. Like illustrated in Figure
3, 5 and 8 this is only possible with the combination
of all these three contributions. As long as at least one
of them is not activated, the mean error is not minimal
and does not converge. With the local anti-shrinking it
is possible to denoise especially edges very precisely.
Furthermore, we verified with our convincing result
that the coherence assumption of coinciding geometry
and color changes holds also for meshes.

5 CONCLUSION
In this paper we proposed the new Joint Bilateral Mesh
Denoising (JBMD), which is an anisotropic filter for
highly precise and smooth mesh denoising. Under the
assumption of coinciding geometry and color changes
it uses color information as an additional constraint for
denoising. This assumption is adapted from the Joint
Bilateral Filter (JBF) of the recent image processing
research and we showed in this paper that this coher-
ence assumption also holds for meshes. Furthermore,
we proposed a precise local anti-shrinking, which leads
to precision improvements especially at the edges of the
mesh. Our third contribution increases the smoothing
sensitivity for higher numbers of iterations. In our eval-
uation we compared our new JBMD algorithm against
competing algorithm based on three categories of test
data. We showed that our contributions lead to high pre-
cision results with lowest errors. In addition our algo-
rithm converges to the minimum error level for higher
numbers of iterations.
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(a) Input (b) BMD (c) Laplacian (d) Our JBMD

Figure 7: Comparison of different mesh denoising algorithms for the allegorie mesh. Top row: meshes. Bottom
row: color-coded error distribution.

Figure 8: Mean errors of the allegorie mesh for different numbers of iterations. Quantitative comparison of
different features of our new JBMD algorithm and comparison against BMD.

(a) Input (b) BMD (c) Laplacian (d) Our JBMD

Figure 9: Comparison of different mesh denoising algorithms for the person 2 mesh. Top row: meshes. Bottom
row: color-coded comparison against the input mesh.
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ABSTRACT
We propose a Slow Feature Analysis (SFA) based classification of hand-poses and demonstrate that the property
of mutual independence of the slow feature functions improves the classification performance. SFA extracts func-
tions that describe trends in a time series data and is capable of isolating noise from information while conserving
high-frequency components of the data which are consistently present over time or in the set of data points. SFA is
a useful knowledge extraction method that can be modified to identify functions which are well suited for distin-
guishing classes. We show that by using the orthogonality property of SFA our information about classes can be
increased. This is demonstrated by classification results on the well known MNIST dataset for hand written digit
detection.
Furthermore, we use a hand-pose dataset with five possible classes to show the performance of SFA. It consistently
achieves a detection rate of over 96% for each class. We compare the classification results on shape descrip-
tive physical features, on the Principal Component Analysis (PCA) and the non-linear dimensionality reduction
(NLDR) for manifold learning. We show that a simple variance based decision algorithm for SFA gives higher
recognition rates than K-Nearest Neighbour (KNN), on physical features, PCA and non-linear low dimensional
representation. Finally, we examine Convolutional Neural Networks (CNN) in relation with SFA.

Keywords
Slow Feature Analysis, Hand-Pose Identification, Knowledge extraction, Feature Learning

1 INTRODUCTION AND BACK-
GROUND

The hand is probably the most effective tool for indi-
cating and gesticulating. Estimating the hand-pose in
frames of a sequence to detect a gesture is a common
step used in various gesture recognition approaches.
Hand gesture recognition is steadily gaining popular-
ity in tasks like navigation, selection and manipulation
in Human Computer Interactions [BVBC04]. While
complex applications like surgical simulation and train-
ing systems require dynamic hand gesture recognition
[LTCK03], simpler command and control interfaces of-
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ten employ hand-poses.
The hand-pose at each frame is treated as a feature in
some approaches [CGP07], while some methods use
this information to describe the states of a state ma-
chine [GMR+02]. A sensor free, vision based detec-
tion of pose is a challenging task because of the large
degree of freedom in the movement of hand parts and
self occlusion that might occur, moreover the calcula-
tion of local edge or corner based features is prone to
noise [CGP08]. Some methods use physical features of
the hand like the gravitational center of the palm region
and the finger location [RYZ11]. Other features include
convexity that describes the curvature of the palm hull.
The works of [PKK09, CLEL12] describe the use of
geometrical descriptors for posture detection. We ar-
gue that because of occlusion and the high degree of
freedom, high level features learnt from hand-pose data
can help in improving the classification. In [LCP12]
a method of manifold embedding for articulated hand
configuration detection is proposed. This method learns
one of the global description of data by identifying the
manifold on which the data resides.
The SFA allows unsupervised learning of invariant or
slowly varying features. It can learn translation, scale
and rotational invariances [WS02]. The SFA technique
has been modified to achieve supervised learning to
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achieve classification [Ber05]. It provides mutually or-
thogonal features thus the prominent features carry in-
dependent information about the data even though they
remain invariant to size, rotation and translation. An-
other important property of the SFA is the guaranteed
optimisation to the slowest changing function which al-
lows for easy extension when learning a new class. We
propose to learn several slow feature functions for each
class to improve classification further. To achieve this
we employ the property of mutual orthogonality of fea-
tures learnt from a class. The mutual orthogonality of
SFA features result in aggregation of information thus
it increases the effective information that a classifier re-
ceives.
Section 2.1 describes the basic ideas behind SFA, fur-
ther we discuss its use as a classifier in section 2.2. In
section 2.3 we explain the use of orthogonality to in-
crease information and describe its effect on the classi-
fication task on the MNIST dataset in section 3.1. Fi-
nally in section 3.2 we apply the technique on hand-
pose classification.
We ascertain the applicability of SFA as an informa-
tion extraction method, by demonstrating better clas-
sification rates as compared to the standard PCA and
manifold learning methods. The manifolds representa-
tion of data compensates for non-linearities. The better
performance of SFA over manifold learning proves its
strong capability of identifying the consistent proper-
ties of signals in a dataset. Apart from the compari-
son with PCA and manifold learning methods we also
make comparisons to classification performed by us-
ing shape descriptors and geometrical features calcu-
lated from the hand-pose images. We report a substan-
tial improvement over the classification done with these
features. The improvement over physical features in-
dicates that SFA is capable of information extraction
while the improved classification compared to mani-
fold embedding establishes the ability to handle non-
linearities in a dataset.
The broad contributions made through this work are:

• The applicability of SFA for hand-pose classifica-
tion using data obtained from a time of flight cam-
era.

• SFA classification based on several slow feature
functions and not just the principal slow feature.

• A comparison of classification based on physical
features and SFA features that indicates the superior
information extraction capability of SFA.

• The demonstration of improved classification per-
formance on the MNIST hand written digit dataset
and the hand-pose dataset using a modified SFA.

2 SLOW FEATURE ANALYSIS
2.1 Slow Feature Analysis as a Learning

Problem
Low level features are short duration features and are
often misleading. High level features of the data carry
information that extends beyond small neighbourhoods.
SFA learns functions that represent such high level fea-
tures. These high level representation can better explain
the property of the data space. A feature that does not
vary rapidly, yet has a slow consistent change promises
to describe the behaviour of a function in better detail
[Föl91]. The slow features thus provide a consistent
trend in the data. The SFA is originally designed for
detection of trends in temporal data [WS02]. It has
been modified to provide consistent trends within ele-
ments belonging to a static dataset [Ber05]. We first
discuss the SFA procedure for temporal data and shall
later explain the modifications for classification in static
datasets.
If a vectorial input X(t) ∈ Rd is a time series, one of
the slow features is the function g(·), such that y(t) =
g(X(t)), varies as slowly as possible while avoiding
trivial responses.
The problem is formally described by [Wis03] as min-
imising the absolute differential

∆(y j) := 〈ẏ j
2〉. (1)

Here y j is the jth component of y(t) and ẏ j is the deriva-
tive of y j with respect to time t and 〈·〉 denotes average
over time. The absolute differential is minimised under
the following conditions:

〈y j〉= 0 (2)

〈y2
j〉= 1 (3)

〈yiy j〉= 0 i 6= j. (4)

While the minimisation selects invariant features, (3)
forces some variance and removes the possibility of
obsolete solutions like a constant function and (4)
forces independence among the calculated slow fea-
tures. These constraints are forced by sphering the data
[LZ98].
Sphering of X ∈ Rd means we transform X such that
the covariance matrix of the transformed random vari-
able X∗(t) is an identity matrix. X = (x1,x2...,xn), rep-
resents a data matrix and x1,x2,x3, ...,xn are n vectors
belonging to it. If (X− µ) and Σ are respectively the
centered data matrix and the covariance matrix, then the
sphered data is expressed as:

X∗(t) = Bn(X−µ), with BT
n Bn = Σ−1. (5)

The sphered data X∗(t) is projected into a
quadratic space, resulting in data Z. The deriva-
tive Z(t +1)−Z(t), is represented by Ż. Let W be the
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eigenvectors of the covariance matrix of the derivative
matrix Ż,

〈ŻŻT〉W = λW. (6)

The eigenvectors corresponding to the smallest eigen-
values are the direction of the slowest change in differ-
ential of the data. These eigenvectors compose the slow
feature functions. These functions are the weighted lin-
ear sums over the components of the expanded signal,
where weights are the components of eigenvectors w,

g j(x) = w j
T .Z(t). (7)

Where w j is the jth column of the matrix W. The m
smallest eigenvalues correspond to the m primary slow
feature functions: g1, g2, g3 ...gm.

2.2 Slow Feature Analysis for Classifica-
tion

The slow features describe intrinsic features of a long
time series. It is the property of slow features to
conserve variations over time, this property can be
exploited for classification. The data for classification
is not temporal and thus the absolute differential
described in (1) is modified to perform a supervised
classification. To perform a supervised classification,
functions resulting in minimum inter-element differ-
ence within each class are identified. As in case of
time series SFA, the conditions of zero mean, constant
variance and linear independence are imposed. Once
again these conditions are satisfied by sphering the
data. Furthermore, the optimisation process tries to
increase the variance outside a class, to identify the
slow feature functions.
For the dataset X, we define a matrix Z, such that Z
is the quadratic expansion of the sphered transform of
X. Accordingly, the differential term for a vector zel

belonging to the expanded dataset Z is represented as:

∇el :=
N

∑
C=1

√√√√ NC

∑
n=1

(zn
C− zel)2. (8)

Thus average differential for the data Z can be re-
represented as:

∇ := 〈∇el〉. (9)

Where, zel is the vector corresponding to the element
for which the differential is calculated. zn

C is the nth

element of a class C, N is the number of classes and
NC is the number of datapoints in the class C. We
now minimise the value of ∇. This minimisation condi-
tion returns functions that forces slow variance within
classes. Each of the slow features correspond to one
of the classes, to further improve the extracted feature
functions, (9) is extended to maximise the variance

between classes while minimising it within the class
[ZT12].
To achieve this we subtract the average of the absolute
difference of the in-class element with elements outside
the class (∇o

el) from the average differential within the
class (∇el), that yields

∇
o
el :=

N

∑
C=1

√√√√ N

∑
{c=1,c6=C}

Nc

∑
n=1

(zn
c− zel)2. (10)

The calculation of the slow feature function is modified
to minimising the cost function O, where O is defined
as:

O = 〈∇el〉−〈∇o
el〉. (11)

2.3 Using Orthogonality to Increase In-
formation

The classification process described above returns
(N=number of classes) functions. These functions are
learnt from the entire dataset using the optimisation
function of (11). This procedure results in a set of
functions which provide low variance response. The
constraint of decorrelation between different slow fea-
tures creates the possibility of learning many functions
corresponding to one class.
The ready availability of features after doing an SFA
procedure, and there mutual independence motivates us
to find more features within a class. Thus we calculate
multiple slow features corresponding to each class.
Rather than learning slow features over the entire
dataset we learn a set of function for every class. Slow
features are learnt by restricting the dataset to elements
of one class, this is repeated for all classes.
As each function is orthogonal, we have more than
one function representing intrinsic properties of the
specific class. These linear functions are decorrelated
on the expanded space. Learning slow features in every
class requires a larger training dataset, meanwhile it
also results in adding information for classification.
The optimisation function (11) is further modified to
minimise variance within a class, while maximising
out-of-class variation using all other classes (13). This
modification extends (10) as follows:

∇elC :=

√√√√ NC

∑
n=1

(zn
C− zelC)2, (12)

∇
o
elC :=

√√√√ N

∑
{c=1,c 6=C}

Nc

∑
n=1

(zn
c− zelC)2, (13)

∇o
elC

in (13) is the sum of out-of-class variances calcu-
lated over the training dataset.
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OC = 〈∇elC〉−〈∇
o
elC〉. (14)

elC represents that the calculation for the differential is
done for elements belonging to the class C. The opti-
misation for class C is achieved by minimising OC.
The functions are collected as matrix WC where C is
the class for which these functions are learnt. wλCj

is

the vector corresponding to the jth eigenvalue λC j of
class matrix WC. For a test input vector P the functional
G returns an output vector G(W,P). The functional G
has m linear functions in the space corresponding to the
dimension of vector expanded in data space,

G(WC,P) = P ·W̄c
T
. (15)

The variance for the output of the function is calculated
as,

VarC = ∑
j
(P · w̄λCj

)2 = ∑G(WC,P)2. (16)

The final classification is performed as follows:

class = argmin
C

(VarC). (17)

While doing an N class classification using m functions
for each class, we have Nm functions. Some of these
functions are very similar even though they belong to
separate classes. This does not affect the minimum vari-
ance choice, because of aggregation.
The value of functions corresponding to a class when
applied to an element from the same class is centred
around a constant value. When a function is applied on
a mismatched class, the result is random. This random-
ness likely results in a wrong identification.
In the case of multiple centred functions, corresponding
to a class, the resulting output for a matching sample
has all the function outputs centred around zero. Some
functions from non-matching classes may return cen-
tred responses close to zero but, the aggregated variance
for a mismatch element is higher, resulting in clearer
distinction from the matching class.

3 EXPERIMENTS
3.1 Effect of Increased Information on

MNIST Dataset
MNIST dataset [LC12] is one of the most popular
dataset for evaluating classification problems. The Le-
cun network [LJB+95] has achieved an error rate of
less than 0.3% on the MNIST dataset. [Ber05] also
describes the original classification technique on the
MNIST Hand written digit dataset. We further tested
and compared both methods of using SFA for classifi-
cation described earlier on the same dataset. Each data-
point in the MNIST dataset is a 28x28 pixel image. We

reduce it to a 35 dimensional vector by employing PCA
and then project it into a quadratic space. The quadratic
expansion of the 35 dimensional PCA vector results in a
vector of size 630. We calculate 10 slow features func-
tions for the full dataset. Also, we calculate 10 slow
feature functions for each class. It was observed that
the identification performance for every class improved
when we used the property of orthogonality to calcu-
late slow feature functions. The comparative results are
listed in Table 1.

class 0 1 2 3 4 5 6 7 8 9
Full Dataset 81 93 79 83 77 72 77 80 73 84

Class Separation 91 96 82 85 79 81 89 91 83 84

Table 1: Classification accuracy in % for each digit
mentioned on the top row. The second row values are
accuracy percentages when slow feature functions are
learnt from the entire dataset, the third row shows the
accuracy percentages when several functions are learnt
independently for each class

Figure 1 and Figure 2 show the difference between the
two methods for classification. Figure 1 is based on
identification of feature function from the entire data
while Figure 2 is based on the classification approach
where multiple corresponding functions are learnt from
each class. The Y axis represents the distance of the
response from the mean response calculated during the
training stage, the X axis marks the index of input ele-
ment on the dataset. The input elements are stacked in
order of the classes that they belong to.
Figure 1 shows the centred response of the first three
classes to the function corresponding to class with digit
0. The deviation of elements of class ’0’ from the ori-
gin are smaller as compared to other classes. This fits
our hypothesis that SFA looks for feature functions that
minimise the in-class variance. The Figure 2 shows the
response of each data point to three functions learnt for
class 0. The response of the data points of each class is
shown in the same figure, with dark blue (the first clus-
ter) representing class 0. The lower variance of function
value to the matching class is clearly visible in these
figures, the aggregation of function 1, 2 and 3 results
in a deviation which is smaller for the matching class,
but higher for mismatch. Averaging over these function
values reduces the likely possibility of error in the first
method because of randomness of non matching func-
tion response.

3.2 Hand-pose Experiments
3.2.1 Hand-Pose Data Collection
A 3D Time-of-light, PMD-Nano camera has been
used to collect a dataset of hand-poses. The camera
is fixed vertically above the palm. The output of the
PMD-Nano time of flight camera is an 120x165x2 im-
age. The two channels of the image are the amplitude
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(a) class:0 (b) class:1 (c) class:2

Figure 1: Response of class 0, 1 and 2 to function learnt from class 0.

(a) function:1 (b) function:2 (c) function:3

Figure 2: Response of all classes to the first 3 functions learnt from class 0.

value and the depth map image data. We cover the arm
region with absorbent clothing and use the reflectance
of skin to identify the palm. The reflectance constraint
does not entirely remove the background and thus the
closest contour greater than a threshold area is chosen
as the palm region. The segmented palm region is then
converted into a binary image which is further used for
hand-pose identification.
We then learn slow feature functions for five hand-pose
classes labelled as "Fist", "Flat", "Index", "Open" and
"Grab", see Figure 3. Slow features or invariances
are learnt from a dataset of 3,000 frames of each
class from 3 subjects. 1000 frames in each class are
randomly selected and rotated in either direction, by
an angle between 10◦ and 20 ◦. These rotated frames
are added to the training dataset along with the original
frames. Note that, this spreads the poses such that they
cover the whole rotational axis, it also increases the
dataset and generates samples which train the SFA for
rotational invariances.
Three hundred frames are selected for each class
through random partitioning of the original dataset.
These samples are used as test dataset, while the
remaining original dataset is used for training. The
preprocessing follows the same procedure as described
for the training dataset.

3.2.2 Hand-pose Identification
Before learning slow features from the dataset of seg-
mented hands, the image is scaled down to one-third
of its original size. This is followed by a PCA which
reduces each image to a 35 dimension vector that is

projected to its quadratic space to allow the learning of
non-linear invariances in the principal components of
the training data.
During the SFA learning process the covariance matrix

(a) Fist (b) Flat (c) index (d) Open (e) Grab

Figure 3: The hand-pose samples.

of the differential data as well as the eigenvectors cor-
responding to the largest eigenvalues are recorded. The
eigenvectors corresponding to the ten largest eigenval-
ues correspond to the linear functions used for classifi-
cation. Each function is centred around the mean values
learnt during the training process. It is observed that the
samples of matching classes are tightly spread around
the mean values of the classes. The class which cor-
responds to the function has much smaller variance as
compared to other classes. Figure 4 shows the response
of the test dataset on the most prominent function of the
"Fist" class. The data points for each class are repre-
sented by a unique color. The "Fist" class which is rep-
resented by blue in the figure has relatively tight pack-
ing of the data-points as compared to any other class.
Like in the previous figures the X axis of the plot repre-
sents the data points which are arranged by their labels,
and the Y axis represents the centered value of the learnt
function.
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Figure 4: Slow function response for class ’Fist’.

This pattern is visible over the entire set of Nm func-
tions, 5x10=50 in the present case. Table 2 shows the
response of each data-point to the first five of the 10
learnt functions of each class. Each rows represents a
set of functions corresponding to the class.
It can be observed that the functions learnt for one class
have lower variance in the same class, while higher
variance in other classes. This observation is used to
differentiate classes. Thus we calculate the variance of
the function response over all the functions calculated
for a class.
The three hundred frames of each class in the dataset

are used for evaluations. While learning models that are
saved include, PCA mapping for each class, the spher-
ing matrix, m eigenvectors and the covariance matrices
for each class.

4 RESULTS AND COMPARISONS
We compare the results of the classification using slow
feature analysis with results from KNN on physical
features extracted from each frame. The physical
features include coordinates of the tip of the finger
(or the tip of the palm), the coordinates of the palm
centroid, the convex ratio and the concave depth of the
image and the polar and azimuth angle of the finger
[RYZ11, PKK09, CLEL12] . We also compare the
results to KNN applied on the PCA of the data and
the low dimension manifold of the raw binary image
[LCP12].
The KNN models for the physical features are gen-
erated using 1500 samples from each class and are
modelled by simple euclidean distances. The Manifold
is learned by Isomap algorithm [TDSL00] and the
learning is done by the same training data as used for
slow feature analysis.
Slow Feature Analysis based classification works
better than the physical feature based classification
evaluated in the KNN model. It also outperforms the
KNN evaluation done with 35-dimensional (35-D)
PCA and 9-dimensional (9-D) manifold representation
of the dataset. We chose 35-D PCA because it is
used as the basis for SFA calculation and 9-D isomap
because the classification by KNN performs best for it.
Table 3 shows the confusion matrix for the SFA based

classification, Table 4 shows the confusion matrix
for classification on KNN model trained on the hand
crafted physical features. Table 5 is the confusion
matrix for classification results from KNN model
trained on the 35-D PCA representation of the image
data. While classifying on the 9-D element vector
received from the isomap done on the palm region as
described earlier, the results are improved as compared
to KNN on physical features and PCA based KNN.
Table 6.
The results from the SFA are considerably better than
the results from the physical features. These features
are carefully selected for hand-pose estimation. This
underlines the ability of the method to search for
relevant features in a class. This improvement also
suggests that SFA is capable of reducing the effect of
local noise and distortion.
We compare SFA with KNN on the lower dimension
representation of the data computed by PCA. The
confusion matrices of Tables 3 and 5 clearly demon-
strate that SFA performs far better. Thus the process of
calculating the slow feature functions after doing PCA
on the data further refines the knowledge that we are
able to extract from the dataset.
SFA classification also performs better than a KNN
model trained on manifold representation of the dataset.
While the identification of the "Flat" hand-pose is bet-
ter than the SFA in case of the isomap representation,
the overall performance of SFA is superior. It is notable
that KNN is a far more complex model as compared
to simpler variance based classification of SFA. This
result suggests that SFA is capable of managing non-
linearities in the data, this can be attributed to the step
in which the PCA data is projected onto a quadratic
space.
The improvement from PCA to isomap modelling is a
result of better handling of non-linearities in the data.
The KNN model based on euclidean distances suffers
from the inability to compensate for non-linearities,
this is overcome when we use the isomap projection.
It is also important to note that while the KNN model
is learnt over the isomap projection, SFA classification
provides better results by simple variance calculations.
It is worth mentioning that the performance improve-
ment in the quality of classification was minimal when
we scaled the palm region by distances. This observa-
tion can be attributed to the characteristic of SFA that,
it explores multidimensional linear functions which
encompasses the invariances over the data points.

Discussion
The SFA, as demonstrated in the last section, performs
well for the classification task. Even though the total la-
belled data available to us was small, we compared the
performance of SFA classification for hand-pose with
CNN. The CNNs have resulted in exceptional classi-
fication results. As mentioned earlier Lecun network
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Func 1 Func 2 Func 3 Func 4 Func 5

FIST

FLAT

INDEX

OPEN

GRAB

Table 2: Scatter map showing the value for 5 SFA functions for every class on the test dataset, different colors
represent different classes.

based on CNN has achieved an error rate of less than
0.3% on the MNIST dataset, this compares favourably
with human accuracy. We tested our hand-pose dataset
for training a CNN with two convolution layers and
two Max pooling layers. Using 15000 data-points after
rescaling. The accuracy of classification reached over
98% after 30,000 iteration with a batch size of 50 im-
ages. Although, it was observed that because of the
relatively small amount of data the CNN model starts
over-fitting. The use of easily available, less specific
hand-pose datasets for pre-training the CNN is one of
the possible methods of overcoming the problem of
over-fitting with the present data. SFA also requires
a large dataset but lesser than CNN, we demonstrate
that it is capable of learning functions for each class
of hand-poses with 3000 data points. It can be argued
that the SFA learning process results in learning of in-
formation that defines the class of the dataset, but the
convolutional features learnt by a CNN using the clas-
sification based method contain information that distin-
guishes different classes. SFA results in lesser classifi-
cation accuracy than CNN on a large dataset, but SFA
gives interpretation about the nature of the class inde-

pendent, which seems to be harder to identify in a CNN
model.

5 CONCLUSION
In this paper we used SFA for classification on two
datasets. SFA was tested on MNIST dataset and a
hand-pose dataset. We approached the classification by
training SFA separately for each class and demonstrated
that, the property of orthogonality of SFA helps in ex-
tracting more information about the class. We showed
that SFA outperforms hand picked physical features
for hand-pose classification. This confirms the recent
trend of preferring global features which are learnt from
the data over extracting features by intuition. Training
and test data has considerable variances of rotation and
scale, in our experiments SFA remains robust to such
variances.
The use of slow feature analysis also reduces the on line
processing required on the test sample. SFA based clas-
sification requires a relatively large dataset for training,
additionally it employs an expensive batch learning al-
gorithm which requires large computer memory to run.
Yet, it displays a remarkable ability to extract informa-
tion and identify trends in a dataset. Usually calculating
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% FIST FLAT INDEX OPEN GRAB

FIST 97.0 1.0 0.0 1.7 0.3
FLAT 0.0 96.7 2.3 1.0 0.0
INDEX 0.0 0.0 98.7 1.3 0.0
OPEN 1.0 0.0 1.3 97.6 0.0
GRAB 0.7 2.3 0 0.3 96.7

Table 3: Confusion matrix for SFA classification. Bold
values are accuracy values for the class corresponding to
the respective row.

% FIST FLAT INDEX OPEN GRAB

FIST 97.0 0.7 1.3 0 1.0
FLAT 0.7 95.7 3.0 0 0.7
INDEX 2.7 5.7 91.7 0.3 0.0
OPEN 3.0 2.3 0 94.3 0.3
GRAB 0.7 4.7 0 0.3 94.3

Table 4: Confusion Matrix for KNN classification based
on physical features. Bold values are accuracy values for
class corresponding to the respective row.

% FIST FLAT INDEX OPEN GRAB

FIST 78.3 12.2 2.9 3.8 2.9
FLAT 1.3 80.7 6.3 6.6 5.0
INDEX 0.0 3.3 81.7 2.0 14.0
OPEN 0.0 7.7 4.7 85.3 2.3
GRAB 0.3 3.3 7.7 3.0 85.7

Table 5: Confusion Matrix for KNN classification results
on 35-D PCA. Bold values are accuracy values for the
class corresponding to the respective row.

% FIST FLAT INDEX OPEN GRAB

FIST 97.0 0.3 2.0 0.7 0
FLAT 0.3 98.3 1.3 0 0.3
INDEX 3.7 0.3 96.0 0 0
OPEN 1.7 0.0 1.0 96.3 1.0
GRAB 2.7 0.3 0.3 0.7 96.0

Table 6: Confusion Matrix for KNN classification on
9-D isomap on raw images. Bold values are accuracy
values for the class corresponding to the respective row.

features at run time is a hard task, it consumes consider-
able computing and development effort. Whereas, SFA
requires few linear operations to calculate the slow fea-
tures. Thus, it does not only improve the robustness to-
wards the data but also improves the performance of the
machine when compared with processes that use phys-
ical features.
We showed the performance on global SFA features in
this work and compared it to physical (local) features.
Note that when we tested the SFA for classification of
fixed length time series sequences, local features like
peaks and inflexion, when combined with slow features,
improved the classification performance. Classification
was made using a logistic regression classifier. How-
ever, this fusion requires online feature calculation and

a more complex classifier model.
It will be interesting to further study and quantify the
effect of noise and poor segmentation on these features.
Also further experiments with various data sources and
the influence of an increasing number of classes on the
orthogonality property of SFA will be of interest. We
plan to extend the present approach of pose detection
to gesture recognition. The batch learning approach is
not suitable for the gesture classification and recently
developed incremental SFA [KLS11] is a promising so-
lution to the problem.
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ABSTRACT
This paper presents a new approach for video completion of high-resolution video sequences. Current state-of-
the-art exemplar-based methods that use non-parametric patch sampling work well and provide good results for
low-resolution video sequences. Unfortunately, because of memory consumption problems and long computation
times, these methods handle only relatively low-resolution video sequences. This paper presents a video comple-
tion method that can handle much higher resolutions than previous ones. First, to address the problem of long
computation times, a dual inpainting-sampling filling-order completion method is proposed. The quality of our re-
sults is then significantly improved by a second innovation introducing a coherence-based matches refinement that
conducts intelligent and localized searches without relying on approximate searches or compressed data. Finally,
with respect to the computation times and memory problems that prevent high-resolution video completion, the
third innovation is a new localized search completion approach, which also uses uncompressed data and an exact
search. Combined together, these three innovations make it possible to complete high-resolution video sequences,
thus leading to a significant increase in resolution as compared to previous works.

Keywords
Video completion, high-resolution, object removal, patches coherence, localized search, multi-resolution

1 INTRODUCTION
Both image and video completion are important tasks
in many multimedia applications. Their goal is to au-
tomatically fill missing regions of an image/video in a
visually plausible manner. Two key factors differenti-
ate video completion from image completion. Firstly,
for video completion, it is important to maintain tem-
poral consistency since human vision is more sensitive
to temporal artifacts than to spatial artifacts. Using an
image completion technique individually on each frame
produces undesired temporal artifacts. Secondly, it is
more important for video completion to be time- and
memory-efficient since video contains much more data
than image.

In the past years, many new solutions have been
proposed for video completion. It has been shown
that exemplar-based methods, that use non-parametric
patch sampling, work well and provide good re-
sults. Unfortunately, they work only on relatively
low-resolution videos because larger ones require too

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

much memory. Few methods [8, 12] present results for
640×480 or 540×432 resolutions, with most [6, 7, 9–
11, 15, 17, 20, 21] presenting results of 320× 240 or
lower resolutions. Since High Definition (HD) videos
with 1920× 1080 or higher resolutions are now com-
monplace, most of these methods cannot be applied di-
rectly or they require too long computation times.

To understand the proposed method, we must first
look at the non-parametric patch sampling approaches.
Those methods are based on an iteration through each
of the patches in the missing regions and a search in all
of the patches of the existing regions to find the most
similar patch. Without optimization, this search can be
excessively time consuming: O(m3M2F) with M repre-
senting the video width and height; m the patch width,
height and depth; and F the number of frames. Even
with optimization methods, the search time of the non-
parametric patch sampling approaches still remains ex-
cessive. Furthermore, the structures needed for theses
optimization methods require too much memory, mak-
ing them inappropriate for HD videos.

Rather than focusing on the acceleration of the near-
est neighbors search, the proposed method narrows the
search space at finer (higher) resolutions using infor-
mation obtained at coarser (lower) resolutions. First,
let us consider two patches at coarser resolutions:
patch w l

p from the missing region and its most simi-
lar patch w l

p′ from the existing region. The most sim-
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Coarser resolution video sequence

Finer resolution video sequence

Frame 4

Frame 4

Frame 17

Frame 17

h
p

wh
p'

w l
p

w l
p'

Corresponding patch

at high resolution

Figure 1: First row: coarser resolution video. Patch
(w l

p) in the missing region and its most similar patch
(w l

p′ ) in the existing region. Second row: finer resolu-
tion video. The corresponding patch (wh

p) of w l
p and its

most similar patch (wh
p′ ) in the existing region.

ilar patch of the corresponding patch wh
p at finer res-

olutions is likely to be found near wh
p′ , as illustrated

in Figure 1. The proposed approach begins by com-
pleting the video at coarser resolutions using a dual
inpainting-sampling filling-order completion approach
based on Wexler et al. [20]. Since efficient but approx-
imate search approaches are used to find the most simi-
lar patches, errors are introduced and several matches
are sub-optimal patches. To solve this problem, a
coherence-based matches refinement process is used to
search for better matches. The technique then stores
the space-time location of the most similar patch found
for each patch of the missing region in a matches list
ML. This ML is then used by a localized search com-
pletion approach to narrow the search space in higher
resolution, thus enabling the completion of HD video
sequences.

The contributions of the proposed method include a
dual inpainting-sampling filling-order completion ap-
proach based on Wexler et al. [20]; a new coherence-
based matches refinement process that improves the
quality of the matches when approximate search ap-
proaches are used; and a new localized search comple-
tion approach based on an exact search using uncom-
pressed data but restricted to a localized region. We
show that the proposed methods enable the completion
of HD video sequences and that they produce visually
plausible results within reasonable timeframes. More-

over, the approach requires very little memory at the
finest resolution except for the input video storage.

2 PREVIOUS WORKS
In past years, many methods have been proposed to
replace missing regions of an image. Image inpaint-
ing techniques propose to fill the missing region by ex-
tending the surrounding existing region until the hole
vanishes. These techniques generally work only on
small and thin holes. Image completion techniques use
non-parametric patch sampling and are able to fill even
larger missing regions of an image. While video com-
pletion methods are based on image completion and
inpainting methods, video completion poses the addi-
tional challenge of maintaining spatio-temporal consis-
tency. Using image completion or image inpainting
methods on each frame independently produces tempo-
ral artifacts that are easily noticed by the viewer [3].

2.1 Video completion
Extending the image completion methods based on
Markov Random Fields (MRF) and non-parametric
patch sampling, Wexler et al. [19, 20] address the prob-
lem of video completion as a global optimization, and
thus obtain good results on relatively large missing re-
gions. Shiratori et al. [17] proposed a similar approach,
but find patches based on motion fields instead of color
values. Xiao et al. [21] extend these works by formu-
lating video completion as a new global optimization
problem defined over a 3D graph defined in the space-
time volume of the video. Liu et al. [10] later have
proposed an algorithm with two stages: motion fields
completion and color completion via global optimiza-
tion. The major drawback of all these approaches is
the amount of information that must be processed when
considering HD video sequences. While some meth-
ods use per-pixel searches [19–21], other approaches
use larger primitives instead of pixels: Shih et al. [16]
use fragments, while Cheung et al. [4] use “epitomes”.
Approaches using fragments or epitomes can reduce the
search time and improve overall coherence, but per-
pixel searches are more likely to correctly restore the
fine and subtle details found in HD video sequences.
Many methods segment the video sequence into fore-
ground and background parts [6–8, 11, 14] or into lay-
ers [22]. These methods create a static background mo-
saic of the entire sequence, and as a result, these tech-
niques are limited to video sequences with a static back-
ground using a fixed camera. Patwardhan et al. [12]
later proposed a framework for dealing with videos con-
taining simple camera motions, such as small parallax
and hand-held camera motions. The major drawback
with all these techniques is that the pixels replaced are
static across the video sequence, thus removing details
such as video noise, film grain, or slightly moving ob-
jects, such as tree leaves, from the background. At an
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HD resolution, this lack of detail is quickly noticed by
the viewer.

2.2 Coherence techniques
When Ashikhmin [2] introduced the concept of coher-
ence, he observed that the results of synthesis algo-
rithms often contain large contiguous regions of the
input texture/image when using non-parametric patch
sampling. Consequently, the independent search for
every patch in the input texture/image can be acceler-
ated by using information from previously computed
searches. Thus it limits the search space of a given
patch to the locations of the most similar patches of
its neighbors. We based our coherence-based matches
refinement on the same coherence observation and de-
veloped an novel approach that is efficient with respect
to both computation time and memory consumption.
Tong et al. [18] also proposed a coherence technique
called k-coherence. While this technique improved the
search time, the pre-processing time and the memory
consumption are major drawbacks for high-resolution
video completion methods.

This paper presents an approach for the completion of
video sequences that requires very low memory us-
age and reasonable computation time, making it us-
able for HD video sequences. Further, it presents a
new coherence-based match refinement approach that
increases the overall quality of the results by eliminat-
ing many noticeable artifacts. Unlike most of the pre-
vious works, this paper presents results on video se-
quences with non-stationary camera movements.

3 HIGH DEFINITION VIDEO COM-
PLETION

In this section, we present a new video completion
approach that is able to automatically fill missing re-
gions of HD video sequences. Section 3.1 presents
the approach overview, Section 3.2 explains the dual
inpainting-sampling filling-order completion approach,
Section 3.3 describes the coherence-based matches re-
finement process, and Section 3.4 details the new local-
ized search completion method.

3.1 Approach overview
Starting with an input video sequence V containing a
missing region or hole H (H ⊂ V ), our approach fills
H in a visually plausible manner by copying similar
patches found in the existing region E (E = V \ H ),
thus creating a completed video sequence V*. This pro-
cess is shown in Figure 2. In order to maintain spatio-
temporal consistency, we consider the input video as a
space-time volume, and thus a pixel located at (x, y)
in frame t can be represented by the space-time point
p = (x, y, t). Consenquently, a patch wp can be seen as

V - input video H - binary mask

Dual inpainting-sampling 

filling-order completion 

Matches list creation

Coherence-based matches refinement

Localized search completion

V* - (output video)

Stage 1 

Stage 2 

Stage 3 

+

Figure 2: Schematic overview of the proposed approach

V original video sequence
H missing region or hole of V, H ⊂ V
E existing region of V, E = V \ H
H* completed region
V* completed video sequence
pl point located at (x, y, t) at coarser resolution
w l

p patch centered at pl at coarser resolution
w l

p′ patch centered at p′l , most similar to patch w l
p

ph point located at (x, y, t) at finer resolution
wh

p patch centered at ph at finer resolution
wh

p′ patch centered at p′h, most similar to patch wh
p

ML matches list
c RGB color
S search region centered at p′h

Table 1: Symbols definitions

a spatio-temporal cube of pixels centered at p. Table 1
summarizes the symbols used in this paper.

The missing region H is indicated to the system by a
binary video sequence in which identified pixels are in
H. The binary video sequence can be constructed us-
ing object tracking in the video sequence. Many digi-
tal motion graphics and compositing softwares already
provide accurate and rapid tools to create such binary
video sequences. In our experimentations, we relied on
such tools to define H.

Figure 2 shows a schematic overview of our approach
while Figure 3 presents the detailed steps. First, the
input video is downsampled and completed by a dual
inpainting-sampling filling-order completion based on
the works of Wexler et al. [19, 20] using global opti-
mization and non-parametric patch sampling (see Sec-
tion 3.2). Completing the video at low-resolution with
the proposed approach is efficient and provides good re-
sults. When the dual inpainting-sampling filling-order
completion is finished, each patch w l

p (centered at pl ∈
H ) is associated with its best matching patch w l

p′ (cen-
tered at p′l ∈ E ) by creating a matches list containing
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space-time pairs pl-p′l for every pl ∈H. To complete the
search in a reasonable amount of time, the best match-
ing patches w l

p′ must be selected using approximate
search and data compression methods. Thus, the w l

p′
found might not be the best match. The second stage of
the proposed method consists of an iterative coherence-
based matches refinement process that improves the
search results for the worst matching patches w l

p′ (see
Section 3.3). This stage is efficient, and provides signif-
icant quality improvement. Finally, the matches list is
used by the localized search completion method to nar-
row the search space, thus enabling the completion of
HD video sequences (see Section 3.4). This final stage
of the method is also efficient, and it provides good re-
sults at HD resolution.

3.2 Dual inpainting-sampling filling-
order completion

A visually plausible completion of a video sequence re-
places the missing region H by a completed region H*
where pixels of H* fit well within the whole video V*.
To achieve this, a video completion approach must sat-
isfy two criteria: first, every local space-time patch of
the completed region H* must be similar to an existing
patch of E, and secondly, all patches that fill H* must
be coherent with each other. Consequently, we seek a
completed video V* that minimizes the objective func-
tion stated in Equation 1:

Coherence(H*|E) = ∏
pl ∈ H

min
p′l ∈ E

D(w l
p,w

l
p′), (1)

where D(w l
p, w l

p′) is a similarity metric between two
patches. The similarity value of two patches is eval-
uated with the Sum of Squared Differences (SSD) of
color information (in the RGB color space) for every
pair of space-time points contained in these patches.
Wexler et al. [20] added the spatial and temporal
derivatives to the RGB components to obtain a five-
dimensional representation for each space-time point.
In experimentations, RGB alone produced good results
for most videos. Problems occured when trying to re-
construct a hidden moving object. While the technique
of Wexler et al. [20] can solve these problems, it is how-
ever limited to objects with cyclic motion (i.e. like a
walking person). Moreover, it requires more memory
and computation time. For these reasons, we limited
our problem domain to videos without occluded mov-
ing objects and chosen to use only RGB components.

The first step of the dual inpainting-sampling filling-
order completion approach is to downsample V to a
coarse resolution (see Figure 3, Stage 1.1). Then, be-
fore starting the completion, the values of each space-
time point of H need to be initialized. Unlike Wexler
et al. [20] who used random values, the proposed ap-
proach fills H using an image inpainting technique [3]

1920 x 1080 x 100

480 x 270 x 100

270 x 135 x 100

Stage 1.2

Individual frame inpainting

Stage 1.3

Low resolution

filling-order

iterative

completion

Stage 2 

Matches list creation

and coherence-based

refinement

Stage 3 

Localized 

search 

completion

}

Stage 1.1

Down-

sampling

Figure 3: Steps of the proposed video completion ap-
proach

(see Figure 3, Stage 1.2). Our aim is to speed up the
convergence by using the existing information around
H. This initialization is done only once, prior to the
first iteration of the low resolution filling-order iterative
completion approach.

After the initialization, the approach performs an itera-
tive process, improving the overall coherence of H (see
Figure 3, Stage 1.3). During each iteration, the ap-
proach seeks a replacement color value for every space-
time point in H in order to minimize Equation 1. Un-
like previous methods, which used scan-line ordering,
our approach fills H using a 3D hole-filling approach,
thus ensuring that each patch w l

p contains information
that is more reliable (space-time points in E or space-
time points already processed during the current itera-
tion). Consequently, it speeds-up the convergence and
reduces discontinuities near the boundaries of H. The
patches can have different sizes in the spatial and tem-
poral dimensions. Generally, we used 5×5×5 patches
or 7×7×5 patches and we based our choice on the el-
ement structure size that needs to be completed within
the video sequence.

To seek a replacement color c for a space-time point p,
the approach uses a single best-matching patch w l

p′ that
minimizes D(w l

p, w l
p′). When w l

p′ is found, the color
c ′ is copied from space-time point p′l to pl . Compared
to other methods that blend together several matches,
using the single best-matching patch does not result
in blurring artifacts and preserves film grain and noise
from the original video. For these reasons, our ap-
proach uses the single best-matching patch.

To enforce spatio-temporal consistency, this iterative
process is done on multiple scales using spatial pyra-
mids (see Figure 3, Stage 1.3). Each pyramid level con-
tains 1/2× 1/2 of the spatial resolution while maintain-
ing the temporal resolution. The iterative process starts
with the coarsest pyramid level and propagates its re-
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(a) 

(b) 

(c) 

58th frame  70th frame  

Figure 4: Comparison of the results obtained with the
low-resolution video completion approach: (a) Original
frames; (b) results from Wexler et al. [20]; (c) results
from the proposed method

sults to finer levels. Because it involves long computa-
tion times and a lot of memory for the search structure,
this iterative process is impractical at finer pyramid lev-
els for HD videos. Therefore, the proposed approach
stops the iterative process when it reaches a fixed reso-
lution (typically 480×270).

The proposed dual inpainting-sampling filling-order
completion approach produces results with a quality
equivalent to the results of Wexler et al. [20], but within
much less time. Figure 4 shows the completion results
of the “Jogging lady” sequence of Wexler et al. [20] and
ours. Wexler’s approach took one hour per iteration at
the finest resolution level while our approach took less
than four minutes per iteration.

3.3 Coherence-based matches refinement
When Stage 1 is over, each patch w l

p ∈ H* has a corre-
sponding patch w l

p′ . Each space-time point pl is asso-
ciated with its corresponding p′l and the pairs are stored
in a matches list ML. During the high-resolution com-
pletion iterative process, ML enables the approach to
narrow the search space to only sub-regions of E. As
a reminder, our key observation is that, for a patch w l

p

at coarser resolution with its most similar patch w l
p′ ,

the most similar patch of the corresponding patch wh
p at

finer resolution is likely to be found near p′h (see Fig-
ure 1).

For efficiency reasons, optimization methods such as
principal component analysis (PCA) and approximate
nearest neighbors search (ANN) [1] are used in Stage
1. While these methods are essential to achieving ac-
ceptable search times, they often provide matches w l

p′
that do not minimize Equation 1. Consequently, ML
needs to be refined during Stage 2 (see Figure 3, Stage
2) to have better matching patches w l

p′ .

 

(b) Completed HD

frame without 

ML refinement 

(c) Completed HD 

frame with 

ML refinement  

(a) Original 

frame

Figure 5: Impact of the ML refinement iterative process
on high-resolution video completion results: (a) Orig-
inal frame; (b) completed frame without ML refine-
ment; (c) completed frame with ML refinement. The
frames were cropped to better show the missing and
completed regions
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Figure 6: Coherence-based matches refinement process

The information contained in ML must be reliable in
order for visually plausible results to be possible with
the localized search completion iterative process. The
patches w l

p and w l
p′ must be highly similar for every

pair pl-p′l of ML, otherwise, the approach will narrow
the search space to a region where it is less likely to find
the best matching wh

p′ . Figure 5 (a, b) shows an example
where the information contained in ML is not reliable.
As can be seen, there are many visible artefacts such as
the centered window and the left building edge.

To find better matching patches w l
p′ , we take advantage

of the concept of coherence. First, the approach cal-
culates the distance (L2 norm of uncompressed data)
of patches w l

p and w l
p′ for each pair pl-p′l from ML.

Then an iterative process refines pairs with distances
higher than a given threshold. During the first iteration,
this threshold is set such that 15% of the pairs are re-
fined. After each iteration, this threshold is reduced by
20% of its initial value. For each pair pl-p′l above the
threshold, the approach seeks for a replacement p′l that
decreases D(w l

p, w l
p′). Instead of using a brute force

approach that searches the entire video sequence, the
search is restricted around the best matching patches of
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pl neighbors. An example is shown in Figure 6. The
four neighbors of pl are considered: top, right, bottom,
and left; respectively p1, p2, p3, and p4. For the top
neighbor (p1) the approach considers its previously cal-
culated best matching point p′1, then from p′1, its bottom
neighbor p′′1 is considered. The L2 norm is computed
between patches pl and p′′1 , and if the norm is lower
than the current value, p′l is replaced by p′′1 and the color
from p′′1 is copied to pl . This process is repeated for p2,
p3, and p4. If there is no good replacement, the pair
pl-p′l is left unchanged, and is considered in the next
iteration.

When considering the top neighbor p1, instead of
searching anywhere around its best matching point p′1,
only its bottom neighbor (p′′1) is considered. The ratio-
nale behind this is that several successful approaches
use large primitives such as fragments or epitomes.
When considering larger primitives, the bottom neigh-
bor (p′′1) is the one that would be copied on top of pl .
This effectively reduces the search to only four points
(p′′1 to p′′4). To even further reduce the number of points
to test, each neighbor p1 to p4 is considered only if the
L2 norm of a pair, for example, p1-p′1, is below the cur-
rent threshold. This is a very rapid test since the value is
already computed and stored in the ML. Since there is
a maximum of only four potential points to consider as
opposed to the millions from the whole video sequence,
this process is extremely fast. Figure 7 shows an ex-
ample of the ML coherence-based matches refinement
process that minimizes the distance of wp and wp′ for
each pair pl-p′l in ML. The ML refinement provides a
significant quality improvement (as shown in Figure 5)
within a few seconds.

3.4 Localized search completion
This section presents the proposed approach for com-
pleting missing regions of video sequences at HD reso-
lutions. As stated earlier, current exemplar-based meth-
ods are unpratical to complete HD video sequences be-
cause best match searches require excessive amount of
memory and computation time. Many attempts have
been made to accelerate this search with optimization
methods such as ANN and dimensionality reduction
methods such as PCA, but the structures needed for
these optimization methods require too much memory
for HD video sequences. Instead of accelerating the
best match search, the proposed method narrows the
search space at HD resolution using information from
coarser resolutions.

Before the localized search completion process starts,
the information contained in ML must to be scaled up
to the finer resolution (see Figure 8). For each space-
time point ph ∈ H at a finer resolution, its correspond-
ing low-resolution pl is found as well as the space-time
location p′l associated with it. The space-time location

(a) (b) 

(d) (c) 

Avgerage distance: 305 

Maximum distance: 1842 

After 2 iterations

Time needed: 2 s.

Average distance: 276 

Maximum distance: 856 

After 5 iterations

Time needed: 3.5 s.

Average distance: 189 

Maximum distance: 755 

Original frame Without ML refinement 

Figure 7: Impact of the ML coherence-based matches
refinement process: (a) original frame; (b) distance of
wp and wp′ for each pair pl-p′l after ML creation; (c)
distances after two iterations of the ML refinement pro-
cess; (d) distances after four iterations of the ML refine-
ment process. The frames were cropped to better show
the missing and completed regions

p′l is then scaled up to a finer resolution resulting in p′h.
The pair ph-p′h is then added in a new matches list MLH
which will be used by the localized search completion
process to narrow the search space.

The main steps of the localized search completion pro-
cess are similar to those of the low-resolution process:
using a 3D hole-filling approach, the method seeks a

pl (238, 118, 20) 

p’l

(260, 32, 36)

ph

(950, 470, 20)

S

(b) Space-time 

location p’l of

the most similar

patch based in ML

(a) Corresponding low resolution

space-time location of ph 

p’h

(1040, 128, 36)

(c) Corresponding high 

resolution space-time

location of p’l
(d) The pair ph-p’h is added to MLH 

Figure 8: Creation of MLH based on ML
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p’h

p’’h

p’’’h

Region S during iteration 1

Region S during iteration 2

Region S during iteration 3

Figure 9: Locations and sizes of search regions S for
the first three iterations of the localized search comple-
tion process

replacement color c′ for every ph ∈ H using a single
best-matching patch wh

p′ . However, instead of search-
ing through the entire video sequence using a brute
force algorithm or expensive search structures, the ap-
proach only searches in a small sub-region S, based on
the information from MLH. For each space-time point
ph ∈ H, the approach first looks in MLH and seeks for
its associated p′h. Then, a small region S centered at p′h
is selected. Next, the approach searches only in S for
the best-matching patch wh

p′′ (located at p′′h ∈ S ) and
the color ch is replaced by c′′h . If p′h and p′′h are dif-
ferent, the pair ph-p′h from MLH is replaced with the
pair ph-p′′h . In the next iteration of the localized search
completion process, the sub-region S will be recentered
around this updated space-time location. During the
first iteration of the localized search completion pro-
cess, the window size of sub-region S is 17×17 pixels.
This window size is then decreased after each iteration
(13× 13, 9× 9, 5× 5). Figure 9 shows an example of
the location changes and size decreases of a search re-
gion S for three iterations.

Obviously, the search time is dramatically reduced
when using MLH to narrow the search space, as com-
pared to using methods such as ANN and PCA. When
using the proposed MLH technique, less than a thou-
sand patches are searched for each ph compared to the
tens of millions of patches from the whole video. More-
over, the computation time for the creation and the re-
finement of ML and MLH is shorter than the time
needed for the creation of the structures used by ANN
and PCA. Another important advantage of the proposed
method is that MLH requires much less memory than
typical search structures, such as ANN. Finally, the pro-
posed MLH search does not rely on compressed data,
and thus can provide better matches.

4 RESULTS AND DISCUSSION
Figure 10 shows the completion of the “Station” se-
quence and Figure 11 shows the completion of the

“Race to Mars” sequence. The main challenge of these
sequences is the constant motion of the camera. The
“Station” sequence contains a constant zooming motion
while the “Race to Mars” sequence contains complex
rotating and panning motions. Video sequences with
such motions cannot be handled by video completion
techniques using a static background mosaic because
the size and orientation of the objects contained in the
background are not constant during the entire video se-
quence.

It can be seen in Figure 10 that the proposed method
works well with large missing regions. Figures 10
and 11 demonstrate that the proposed methods produce
good results for missing regions containing stochastic
texture as well as salient structure. Since state of
the art papers introduced in Section 2 show results with
resolutions ranging from 320× 240 to 640× 480, it is
not possible to compare the quality of our results with
other techniques. Therefore, we used a structural simi-
larity method (SSIM) [13], a full reference metric, to
measure the quality of our results at high-resolution.
Even though SSIM is generally used to evaluate video
compression methods, it can also be used to measure
the similarity between a reference sequence and a com-
pleted sequence. Figure 12 shows the completion of the
“Old town cross” sequence. Considering only the pix-
els in the missing region instead of all the pixels from
the full frames of the sequence, the average SSIM in-
dex is 90.63. Since the completed region does not need
to be exactly like the reference region, as long as the
region is completed in a visually plausible manner, this
SSIM index is good.

Table 2 shows a comparison of the proposed approach
with earlier works based on different criteria (some
were taken from Shih et al. [15]):

• Missing region specification: how the user inter-
acts with the method to specify the missing region;

• Exemplar-based approach: what type of comple-
tion method is used;

• Camera motion: video sequences with stationary
or nonstationary camera;

• Maximum resolution: the highest resolution of the
video sequences presented in the paper.

All completion methods use an exemplar-based tech-
nique with different variations. Most of the comple-
tion methods only use video sequences taken with a
stationary camera to test their algorithm. Patwardhan
et al. [12] present results with a non-static camera, but
the camera motion is always parallel to the projection
plane. Thus, Patwardhan et al. [12] do not deal with
changes in size, perspective, nor zooming. Only Shih
et al. [15] and the proposed method present results with
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Camera 

motion:

zooming

Resolution:

1920 x 1080

Missing 

region:

avg.: 17,624 

pixels / frame

Time:

~ 3 min. 

/ frame

(a)

(b)

(c)

Figure 10: Results for the “Station” sequence : (a) Original frames; (b) missing regions; and (c) completed frames.
Frames from https://cs-nsl-wiki.cs.surrey.sfu.ca/wiki/Video_Library_and_Tools

Camera 

motion:

rotating, 

panning

Resolution:

1920 x 1080

Missing 

region:

avg.: 9,546

pixels / frame

Time:

~ 1.5 min. 

/ frame

(a)

(b)

(c)

Figure 11: Results for the “Race to Mars” sequence (frames were cropped to better see the regions): (a) Original
frames (with unwanted wires highlighted in red); (b) missing regions; and (c) completed frames. Frames from
“Race to Mars”, a courtesy of Galafilm and Discovery Channel Canada

different camera motions such as zooming, rotating,
and panning. Finally, the main advantage of the pro-
posed method over previous works is the maximum res-
olution it can handle. The proposed method handles HD
video sequences while the highest resolution of all pre-
vious works from Section 2 is only 640×480, which is
more than a six-fold improvement over state-of-the-art
exemplar-based methods.

5 CONCLUSION

We have presented a video completion method that
can handle much higher resolutions than previous
work. The proposed method is based on three new ap-
proaches: a dual inpainting-sampling filling-order com-
pletion, a new coherence-based matches refinement,
and a new localized search completion approach. To-
gether, these three approaches solve the memory con-
sumption and computation time problems for the com-
pletion of HD video sequences. Furthermore, the qual-
ity of the results generated by our method compares fa-
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Camera 

motion:

zooming

Resolution:

1920 x 1080

Missing 

region:

avg.: 8 456 

pixels / frame

Time:

~ 1.25 min. 

per frame

R-SSIM:

avg. 90.46

G-SSIM:

avg. 90.88

B-SSIM:

avg. 90.54

(a)

(b)

(c)

Figure 12: Results for the “Old town cross” sequence (frames were cropped to better see the regions): (a) Frames
with a synthetic object; (b) completed frames; and (c) clean frames. Frames from https://cs-nsl-wiki.
cs.surrey.sfu.ca/wiki/Video_Library_and_Tools

Criteria
Related works Missing region(s)

specification
Exemplar-based approach Camera

motions
Maximum
resolution

Kamel et al. [7] User provided mask Standard Static 80×110
Shih et al. [15] Bounding box given

by user, missing
region is tracked

Improved patch-matching Static, non-static 320×240

Liu et al. [10] User provided mask Motion fields and colors Static 320×240
Xiao et al. [21] User provided mask Motion similarity and colors Static 384×192
Shiratori et al. [17] User provided mask Motion fields Static 352×240
Wexler et al. [20] User provided mask Motion similarity and colors Static 360×288
Koochari and Soryani [8] User provided mask Standard Static 540×432
Patwardhan et al. [12] User provided mask Motion inpainting and

priority based texture
synthesis

Static, non-static 640×480

Herling and Broll [5] Rough selection by
user, missing region

is tracked

Combined pixel-based
approach

Static, non-static 640×480

The proposed approach User provided mask dual inpainting-sampling
filling-order completion,

coherent and localized search

Static, non-static 1920×1080

Table 2: Comparison of the proposed method with previous works

vorably to previous works and allows for a significant
increase of the resolutions that can be completed.

The proposed coherence-based match refinement is
promising as it could be applied at various steps of sev-
eral video completion approachs. Future work will in-
volve an investigation of when the coherence approach
provides the best improvements: between each iter-
ations; between each resolution levels; at coarser or
finer resolutions; etc. As they are used in the proposed
method, the coherence-based matches refinement and

localized search completion consider a fairly limited
number of patches. Therefore, the search could stop
in a local minimum while there are better matches else-
where in the video. Future work should look at appro-
priate techniques to expand the search to other locations
that are likely to contain good matches.
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ABSTRACT
The context of this work is predictive rendering; our objective is to previsualize materials based on physical mod-
els within computer graphics simulations. In this work we focus on paints constituted of metallic flakes within
a dielectric binder. We want to validate a "virtual material workshop" approach, where a user could change the
composition and the microstructure of a virtual material, visualize its predicted appearance, and be able to com-
pare it to an actual sample. To do so, our methodology is to start from Scanning Electron Microscopy (SEM)
imaging measures on an actual sample that allowed us to characterize two metrics: flake size and flake density.
A statistical model based on those measures was then integrated in our spectral rendering engine using raytracing
and photon mapping, with an off axis-frustum method to generate stereoscopic images for binocular visualization.
Our objective is twofold: 1) perceptually validate our physical model, we evaluate if the virtual metric perceptu-
ally corresponds to the real metric of the real samples; 2) evaluate the contribution of virtual reality techniques in
the visualization of materials. To do so, we designed a user study comparing photographs of car paint samples
and their virtual counterpart based on a design of experiments. The observers evaluated the visual correspon-
dence of different virtual materials generated from microstructures with varying metric values. The results show
a perceptual correspondence between real and virtual metrics. This result has a strong impact: it means that for a
desired appearance the proposed models correctly predict the microstructure. The second result is that stereoscopy
improves the metric correspondence, and the overall appearance score.

Keywords
virtual-reality, predictive rendering, visual perception, complex materials, metallic paints, microstructure, statisti-
cal model

1 INTRODUCTION

The study of visualization quality is a crucial step to
accurately represent digital prototypes. Manufactur-
ing departments understand this problematic, since they
rely on digital representations of the end product to
make critical choices about its final appearance. Fur-
thermore, it gives them the freedom to comprehensively
explore (simulate) a large variety of materials without

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

the need to manufacture the actual object. However, a
correct representation of real materials still remains a
challenging task. To this end, researchers focused on
developing Predictive Rendering (PR) techniques to re-
duce de gap between the observations of a physical ob-
ject and its virtual replica.

According to Wilkie et al. [1] PR, as opposed to believ-
able rendering, is a field of research that aims at cre-
ating physically correct computer images [2, 3]. The
objective is to predict the true visual appearance from
a virtual reflectance model, which takes into consider-
ation the physical parameters of the actual material. If
such a tool was to be mastered, it would allow to de-
sign a virtual material and simulate its visual appear-
ance iteratively. Then, when the desired appearance is
obtained for the digital prototype, the actual equivalent
object could be produced with the same set of param-
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eters that were used as input for the virtual reflectance
model. This process is meant to lead to better design de-
cisions at a lower cost. Predictive rendering has a very
strong potential in various application domains, rang-
ing from manufacturing industries (automotive, aero-
nautics), cosmetics to architecture (material design).
On the other hand, complex materials such as automo-
tive paints are very challenging to simulate, due to their
spatially varying reflectance. To this end, we argue that
VR tools are indispensable to fully explore the visual
aspect of such materials. Virtual Reality is used in the
industry for product design or industrial process vali-
dations. Through the use of stereoscopic displays, user
motion capture, motion parallax, VR allows for a user
to feel immersed in a 1:1 scale virtual environment, and
to observe objects and interact with them. In particular,
binocular vision and motion parallax are necessary to
provide the human visual system with valuable depth
and shape cues. These are key characteristics of VR
that are necessary to ensure “human in the loop” simu-
lations. In order to combine the physical and visual va-
lidity of Predictive Rendering and perception cues pro-
vided by Virtual Reality, the need for stereoscopy and
motion parallax for predictive rendering simulations is
being expressed by the industry.
Predictive rendering approaches require perceptual val-
idations that take into account the human visual system
in order to be valid. The field of research for such val-
idations is large and we are only starting to draw the
boundaries within which virtual material samples are
representative of real material samples. Indeed, image
quality perception can depend on a lot of parameters
that appear at several stages of the process. One should,
at least, consider the following: the human user (visual
acuity, individual color perception, visual fatigue), the
technical setup (display calibration, display resolution,
luminance), the sensory motor inputs and outputs (use
of stereoscopy, motion parallax, user’s ability to ma-
nipulate the virtual material sample), and the rendering
engine itself (light-matter interaction models, material
models). In this context, this work is part of an iterative
validation process in a research project of a predictive
rendering engine in which the objective is to link mi-
crostructure and appearance. In this work, our objective
is twofold: 1) evaluate the pertinence of a "virtual ma-
terial workshop" approach where a user could change
the composition and the microstructure of a virtual ma-
terial, visualize its predicted appearance, and be able to
compare it to an actual sample. To do so, we propose
to use a microstructure model [4] based on measures
of actual material samples presented in section 2.2; 2)
evaluate the role of stereoscopy on perception of ma-
terials that depict binocular differences such as auto-
motive paints with metallic flakes. For this purpose,
our methodology evaluates, through a user study, the
visual agreement between the observation of the com-

puter generated object and the actual object. We in-
troduce a novel approach in Computer Graphics (CG)
domain to render virtual materials by using the mi-
crostructure formulation of the real material, see figure
2.

We begin the paper with a survey of related work in
section 1.1. In section 2 we describe the simulation of
virtual automotive paints using a microstructure model.
Then, in section 3 we describe the experimental setup
of the virtual scene, and section 4 the design of exper-
iment to evaluate the response of the observers. In the
section 5 we present the results of the measured data.
The experimental results are analyzed in the section 6.
Finally, in section 7 we present our conclusions, and we
address some aspects for future work to complement
our findings.

1.1 Related Work
In this section, we first propose an overview of the ex-
isting CG (Computer Graphics) methods for computer
generated images of materials with nano/macro inclu-
sions such as car paints with flakes. We then explore
the existing literature on the role of stereoscopy on the
perception of surface aspect.

In the CG domain, several researches have proposed
different methods to simulate car paint models. These
models are based on Bidirectional Reflectance Distribu-
tion Function [5], which represents how the surface re-
flects the incident light at different angles. The distribu-
tion of the reflectance of the light can be captured by op-
tical measurement devices [6]. Then, the obtained data
is used to derive reflectance models that represent the
appearance of the physical material [7]. In addition, we
can also consider the Bidirectional surface scattering
distribution function (BSSRDF) models [8] that takes
into account the scattering of the incident beam of light
in the interior of the material.

Generally speaking, we can distinguish two groups: an-
alytical, and data-driven models. In the first, the user
tweaks several parameters until he achieves a visual as-
pect that is similar to the real paint. Durikovic et al.
[9] model the geometry of the flakes inside the paint
film. Their system is capable of generating stereo-
scopic images, and it allows to define the parameters
for the random distribution of the position of flakes and
their orientation. The approach of Ershov et al. [10] is
based on reverse engineering, the appearance attributes
such gloss are added to the physical model by adjust-
ing parameters. The inconvenient of these models is
the amount of parameters that are necessary to repre-
sent the car paint appearance.

In the second approach, Günther et al. [11] developed
an image based acquisition setup to measure the Bidi-
rectional Reflectance Distribution Function (BRDF) of
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a car paint. To this BRDF they add the sparkle simu-
lation. The distribution of the the flakes is stored as a
texture. Rump et al. [12] used a similar approach as the
previous one. The difference is that, instead of using a
sparkle simulation with the BRDF, they capture the spa-
tially varying appearance (sparkle effect) using Bidirec-
tional Texture Function (BTF) measurements. In addi-
tion, they store and simulate directional visual effects.
Sung et al. [13] determine individual flake orientations
in the car paint by using confocal laser scanning micro-
scope. They capture the angular dependent reflectance
using a goniometer. Then, they use these measurements
to build a reflectance model. In the context of this work,
we need to evaluate the perception limits in a VR envi-
ronment, when the observer perceives the aspect of the
reflectance models using binocular vision. A human
observer perceives the binocular summation of the left
and right image. In the combination of the two images,
we can identify two cases binocular fusion and rivalry.
In the first case, if two retinal points are sufficiently
similar, a binocular combination occurs. In contrast,
when two retinal points are very distinct, the observer
perceives a fluctuation between the left and right im-
ages, that is, a failed fusion occurs. This phenomenon
is known as binocular rivalry [14].

Most of the work was done on the role of stereoscopy
for the perception of gloss. In the literature the gloss
is defined to be a global property of the surface aspect
[15, 16]. Glossy surfaces reflect the incident light to
a particular outgoing direction, characterized by a spe-
cific angular interval. The perception of specular reflec-
tions is an important cue to evaluate the glossiness of
the materials. In addition, there is an influence of binoc-
ular cues such as highlight disparities on the percep-
tion of gloss [17]. The experimental results of Wendt
et al. [18] show an improvement of gloss perception
when highlights cues disparities are taken into account.
The experimental results of the work of G. Obein et
al. [19] suggest also that the binocular vision helps for
judgment of high gloss samples. They found that with
binocular vision the sensitivity to gloss is higher than
the monocular vision, for high gloss levels. Sakano et
al. [20] examined the effects of the combination of self-
motion and contingent retinal-image motion (motion
parallax) on perceived glossiness. When the observer
was able to move his head, a stronger glossiness was
perceived than when both the observer and the stimu-
lus were static. From their experimental results, they
found that the glossiness under the monoscopic condi-
tion was underestimated compared to stereoscopic con-
dition. The glossiness under static (head not moving)
condition was underestimated compared to dynamic
condition. Knill et al. [21] study the combination of
different cues for slant perception. At low slants, ob-
servers use more the binocular cues than the texture. At
slants of 50 and 70, the subjects do better slant judg-

ments using the texture information of the image. As
the slant increases the observers give more attention to
texture information.

2 MATERIAL SIMULATION
2.1 Physical Plate
This study focus on grey automotive paints with metal-
lic flakes up to 30µm. Figure1(a) shows a cross sec-
tion of the studied actual sample of a car paint. Typi-
cally an automotive paint is made of four layers: clear
coat, base coat, primer surface, and electrocoat. The
metallic flakes are made of aluminum, and are dis-
tributed with different orientations on the primer sur-
face of the plate at different depths, and the clear coat
is transparent. The amount, distribution, and the ori-
entation of the flakes are controlled by a milling ma-
chine. Due to their size, and orientation, these metallic
pigments convey distinctive visual appearances to the
object such as sparkle, and directional visual effects.
At the macroscopic scale of visualization, the appear-
ance of these nonuniform paints depend on the lighting
conditions (directional/diffuse), distance and angle of
observation, orientation, diameter, and density of the
flakes [22, 23, 24]. The nanoscopic effects such as the
chemical composition, rugosity and clustering effects
of the flakes can also influence the visual appearance.
In this work we only consider the macroscopic effects
for which we use geometric optics models.

2.2 Stack Model
As for the models of the microstructure, we can dis-
tinguish two cases: a quasistatic, where the particles
are smaller than the wavelength, consequently the hu-
man eye cannot perceive each particle. We can obtain
the macroscopic visual aspect of the microstructure,
which is visible by the human eye, by using homoge-
nization methods on agglomerations of nanoscopic par-
ticles. In this work, we are interested in the second
case, geometric optics, where the particle size is larger
than electromagnetic visible wavelength, which is suit-
able to be directly used in our render engine. In this
case the microstructure simulates the distribution of mi-
croscopic particles, such as metallic flakes, according
to the analyses of the actual object. Morphology and
statistical analysis of Scanning Electron Microscopy
(SEM) images of real objects is used to create virtual
microstructures that geometrically corresponds to the
one of the real material. These microstructures are then
used to simulate the optical behavior between the dif-
ferent particles. Secondly, it allows the user to modify
the microstructure in order to tune the visual appear-
ance keeping the physical feasibility, and therefore the
manufacture of the virtual material, see figure 2. The
stack model [4] used in our render engine distributes
the metallic flakes on the surface. Though the complex
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(a) (b)

Figure 1: On the left of the image (a), an example of a real car paint plate with a diagram of a typical coating
paint. The flakes have typically the shape of a disk with a diameter of 5µm to 50µm, in the case of a car paint.
The surface can contain rugosity and an interference film. The flakes are imbedded in the base coat with different
orientations and at different depths. The figure (b) depicts two microstructures generated by the stack model. On
the left a microstructure with metallic flakes of size 15µm, and on the right with metallic flakes of size 30µm.

geometry of a real metallic flake, the virtual metallic
flakes were modelized with a flat cylinder shapes whose
height and radius is parameterized, see figure 1(b). The
statistical variation of dispersion, size, orientation is
measured on the SEM images of the real plate us-
ing different morphological analyses. Then, the model
simulates the clusters of flakes by using a 2D Pois-
son point process. Due to the large number of flakes
on the surface. The stack model generates continuous
microstructures of size 450µm × 450µm × 20.24µm.
The generation of plates with different flake densities
and radius sizes is controlled by two parameters of the
stack model. For each microstructure we have infor-
mation about the radius size, the orientation, position,
and amount of flakes. To generate a virtual plate with
15cm×10cm, a set of 332×240 microstructures is nec-
essary to fill the surface of the virtual plate. To avoid the
large amount of geometry in our simulations, we could
consider the usage of a set of textures encoding differ-
ent types of information about the flakes, for instance
the normal vector, and depth.

2.3 Rendering of the Virtual Model
For the optical simulation of the virtual object we used
our spectral render engine raytracing with photon map-
ping. The scene was rendered within the visible spec-
trum interval [380nm−780nm] with a wavelength step
of 5nm. This interval corresponds to the range of wave-
lengths that the human eye is sensitive. Then, we used
a virtual scene with the same light conditions that were
used in the real room. We associate for each plate the
optical constants n and k of aluminium. In the virtual
scene we used the spectrum of SOLUX 4700K light.
The index of absorption was found in a prior experience
with paired comparison. The observers were asked to
evaluate which of the two virtual images was the clos-
est to the photograph. The found absorption coefficient
is k = 6. Furthermore, we noticed that the thickness
and the absorption coefficient have an important role

in the brightness of the metallic flakes. We used a vir-
tual plate with three layers. The base layer is a black
surface to minimize the back-surface reflection. The
second layer, the binder, contains the microstructure of
the metallic flakes, which was generated by the stack
model. Finally, the clear coat layer imparts a glossy ap-
pearance to the plate. The virtual samples were defined
thanks to a design of experiments. We have two factors
the flake size and the flake density. A surface response
design was chosen in order to evaluate the influence of
the main effects but also the potential non linear effects
and the interaction between factors. 13 virtual samples
were built following a central composite design with
replicated centered points.

3 SETUP
In this section we describe the configuration of the vir-
tual scene. Figure 3(a) represents the virtual scene used
in the experiments. We used a directional isotropic
light, which is emitted from the top. The virtual cam-
eras are placed at a distance of 77cm from the plate. The
stereo cameras have an interocular distance of 6.5cm
and the cyclopean camera is placed in the middle of
the left and right cameras. Figure 3(b) shows the dis-
tance of observation, and the display area to visual-
ize the virtual plates. The field of view, f ov, of the
camera was calculated using the observation distance,
a, and the width of the area of projection, b, f ov =

2× arctan
(

2a/
b
)

.

4 USER STUDY
We designed a user study with 26 subjects using exper-
imental design theory to optimize the number of trials
run in order to obtain valid results using a minimum
parameters variation of flake density and flake radius,
see figure 5 (c). During the experiment, the subjects sat
in a dark room, facing a stereoscopic screen. They ob-
served two series of plates (stereoscopic/monoscopic),
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Figure 2: Through morphological and statistical analysis of SEM images, a set of microstructures are generated in
order to fill the surface of the virtual plate. Then, the render engine computes the appearance of the virtual plate
using the information of the microstructures, and the colorimetric calibration matrices of the photographic camera
and the screen display used during the experiment.

(a) (b)

Figure 3: The image (a) is a schematic diagram used for the virtual scene. (b)The physical observation conditions
to visualize the virtual plates.

Factor Low Level High Level Physical Value
Flake Density 3.5 9.5 1.0
Metallic Flake Radius 15µm 45µm 30µm

Table 1: Based on the morphological and statistical analysis of the actual automotive paint, the flake radius is
30µm, and flake density is 1.0 (this value is unitless). The minimum and maximum range for flake density, and
flake radius were found empirically. Within each interval, 13 values were chosen through Central Composite
Design.

each one with different flake density and flake radius,
see table 1. Subjects evaluated the similarity of the vir-
tual plate to the photograph of the actual plate by using
a scale from 0 (equal to the reference plate) to 10 (dif-
ferent from the reference plate). After an answer was
given, the subject changed to the next plate with differ-
ent radius and density of metallic flakes. For each trial,
the presentation order of the stimuli follows a Williams
Latin Square Design. The main experiment was pre-
ceded by a practice trial of two stimuli to gain familiar-
ity with the experience.

The subjects used stereoscopic active shutter glasses
during both monoscopic and stereoscopic conditions.
For each trial, the subjects observed two sequences
of 13 stereoscopic images. The first sequence cor-
responds to the monoscopic-condition, while the sec-
ond corresponds to the stereoscopic case. In all ex-
periments, the subjects used stereoscopic active shutter
glasses NVIDIA 3D Vision 2 during both monoscopic
and stereoscopic conditions. For the monoscopic condi-
tions the same image was displayed for both eyes. The
images were displayed using an active stereo ASUS
VG248QE display. The stimulus was displayed with

Journal of WSCG

Volume 23, 2015 59 ISSN 1213-6972

No.1



Figure 4: The stimulus displayed to the subjects. The "Reference" material (left plate) is static through the ex-
periment, while the material of the plate "Sample" (right plate) changes according to 13 different values of flake
densities, and flake radius size.

a resolution of 1920×1080 pixels at 72Hz. The stimu-
lus consisted of two plates designated as reference, and
variable plate, see figure 4. The reference is the photog-
raphy of the actual automotive paint plate, which was
taken with a camera NikonD800. The initial high dy-
namic range (HDR) image was made by taking 6 im-
ages with film sensitivity ISO 100, and the following
shutter speeds: 1.3, 1.6, 2.0, 2.5, 3.0, and 4.0 seconds.
Then, the HDR image image was converted to the RGB
colour space using the calibration matrices of the pho-
tographic camera, and the screen display. The plates
dimensions are 10cm× 15cm. The samples are placed
inside of a dark room with one source of light SOLUX
4700K with known spectrum. The virtual stereo and
cyclopean cameras are located at 77cm from the plate,
which is the same distance of observation that was used
to take the photography of the real plate.

5 RESULTS
5.1 Data Exploration
From the box plots, we noticed that there are some ex-
treme outliers and extreme values. This is due to the
fact that there is an important agreement within the pop-
ulation to give the same evaluation to a given plate.This
is translated into a positive Kurtosis. A principal com-
ponent analysis (PCA) was applied in order to verify if
the observers generally agree in their evaluations. The
first axis represents more than 80% in the two studies
that is to say that there is an extraordinary agreement
between the subjects. Thanks to these preliminary anal-
yses, the average of the panel represents well the raw
data so this indicator can be used in Data Modeling.

5.2 Data Modeling
The experimental design allows to evaluate the interac-
tion between the two parameters, non linear effects, and
to find the optimum values for each parameter. As we

said in the previous section, we can consider that the
average of response is representative of the population.
Therefore, we can model the response according to the
parameters of the experimental design: linear and non
linear effects of density and radius size, and their inter-
action. The surface of response depicted in figures 5 (a)
and (b) have a bell shape surface. Hence, there is no
interaction between the two factors: flake density and
flake radius size. For the stereoscopic case we obtain a
better R2 pred (based on cross validation) and a smaller
PRESS (Predicted Residual Sum of Squares), see ta-
ble 3, therefore the stereoscopic model is more robust.
The average degree of proximity to the photography of
the actual sample is 5.1, and 4.6, for monoscopic and
stereoscopic. The analysis of the quadratic effects show
that for low or high density of flakes, the virtual plate is
not considered similar to the real plate. The same result
was found for small and large flakes radius. Finally, the
Least Square Difference Test (LSD) show that with the
stereoscopic condition the observers were able to dis-
criminate better the plates.

6 DISCUSSION
There is a difference between the the monoscopic and
stereoscopic observations of the plate. In average, the
stereoscopic images of the virtual plate were better
evaluated. The ANOVA repeated measure analysis on
the global response indicates that the stereoscopic vi-
sualization of the virtual plate is closer to the actual
plate. In other words, there is a better visual agreement
to the photography of the physical plate with stereo-
scopic vision. Furthermore, the second ANOVA analy-
sis on stereoscopic and monoscopic condition, confirms
that the stereoscopic vision allows a better differentia-
tion of the virtual plates. With monoscopic vision it
is more perceptible the individual white reflections of
the metallic flakes, and also the visual patterns resulted
from the clustering of metallic flakes. While with the
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Coefficient Signif. %
Monoscopic Stereoscopic Monoscopic Stereoscopic

b0 2.723 2.423 < 0.01∗∗∗ < 0.01∗∗∗

Radius Size b1 -0.590 -0.730 < 0.0927∗∗∗ < 0.0857∗∗∗

Radius Size b1−1 6.003 5.323 < 0.001∗∗∗ < 0.001∗∗∗

Flake Density b2 -0.794 -0.516 < 0.0294∗∗∗ 0.318∗∗

Flake Density b2−2 1.810 1.822 < 0.001∗∗∗ 0.0123∗∗∗

Table 2: The table of coefficients.

(a) (b) (c)

Figure 5: The graphs (a) and (b) depict the response surface of the experiment. (c) is the composite design used
in the experiment that shows how many different plates to use and the variation of density and size of the metallic
flakes. The values depicted in the graph of surface of responses are reduced and centered to the interval -1 to 1 so
the influence of the factors can be compared. In this way, we can represent the domain of each factor in the same
reference.

Monoscopic Stereoscopic
R2 0.961 0.976
R2 pred 0.726 0.838
PRESS 19.494 9.116

Table 3: The adequacy measures for the model.

stereoscopic vision it is more difficult to identify these
patterns effects due to the binocular rivalry. Instead we
can observe a glittering effect, which according to the
comments of the observers, make the virtual plates to
look more realistic.
In our experiments, we found that the radius of the flake
has a great impact in the judgment of similarity. In fig-
ures 5 (a) and (b), the ellipsoidal shape of the isometric
curve is oriented in the x2 axis. This particular orienta-
tion shows that the quadratic effects are stronger in the
x1 axis, i.e., the flakes radius size axis. This dissymme-
try is an indicator that the similarity evaluation note is
more sensible to the radius size than to the flake density
factor. In addition, according to the table of coefficients
2, the flake radius, b1−1, is three times more important
than the flake density, b2−2. In the stereoscopic case,
the shape of the isometric curve is tilted to the right.
However, the radius size factor remains more sensible
or influent than the flake density parameter.
From the obtained results, there are not particular tu-
ples of factors that makes the subject to judge that the

virtual plate is similar to the photography, for instance
a tuple with a large flake radius, and a strong flake den-
sity. For the monoscopic condition, the optimum values
calculated from the surface response, show that in order
the virtual plate to be considered similar to the photog-
raphy, the plate must contain flakes with smaller radius
size and to have a higher flake density. While in the
stereoscopic condition, the optimum values show the
inverse, higher flake radius size with lower flake den-
sity.

7 CONCLUSIONS
In this work, we evaluated the pertinence of a "virtual
material workshop" approach, and the role of stere-
oscopy on perception of materials that depict binocu-
lar differences such as automotive paints with metal-
lic flakes. For this purpose, we developed a user study
based on a design of experiments, to evaluate the visual
agreement between the observation of a computer gen-
erated object and the actual object. The results show
that there is a match between the real and virtual met-
rics. This means that for a desired appearance our
methodology can predict the microstructure. Secondly,
the stereoscopic vision improves the visual representa-
tion of the virtual plates with metallic flakes. Finally,
the size of flake radius has a great influence in the judg-
ment of the observers.
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We are currently working on the visualisation of virtual
materials with a High Dynamic Range display, to study
the influence of the high dynamic luminance on the per-
ception of materials such as car paints. The next step for
evaluating VR is to assess the pertinence of using head
tracking to generate correct dynamic perspectives.
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ABSTRACT
Importance sampling of virtual point lights (VPLs) is an efficient method for computing global illumination. The
key to importance sampling is to construct the probability function, which is used to sample the VPLs, such that it
is proportional to the distribution of contributions from all the VPLs. Importance caching records the contributions
of all the VPLs at sparsely distributed cache points on the surfaces and the probability function is calculated by
interpolating the cached data. Importance caching, however, distributes cache points randomly, which makes it
difficult to obtain probability functions proportional to the contributions of VPLs where the variation in the VPL
contribution at nearby cache points is large. This paper proposes an adaptive cache insertion method for VPL
sampling. Our method exploits the spatial and directional correlations of shading points and surface normals to
enhance the proportionality. The method detects cache points that have large variations in their contribution from
VPLs and inserts additional cache points with a small overhead. In equal-time comparisons including cache point
generation and rendering, we demonstrate that the images rendered with our method are less noisy compared to
importance caching.

Keywords
Global Illumination, Many-Light Rendering, Importance Sampling, Importance Caching

1 INTRODUCTION
Photorealistic rendering has, for many years, been an
interesting and challenging topic in the field of com-
puter graphics. It has been widely used in many ap-
plications such as movies, games, architectural design,
and so on. Indirect illumination plays an important role
in enhancing realism. However, efficient rendering with
indirect illumination is still a challenging problem due
to the high computational cost.
To compute indirect illumination efficiently, Keller
introduced an instant radiosity, which approxi-
mates the indirect illumination with virtual point
lights (VPLs) [KELLER97]. Many-light render-
ing [DACHSBACHER14], which extends the instant

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

radiosity, has been extensively researched. Many-light
rendering approximates both the direct and indirect
illumination incident onto each point to be shaded (re-
ferred to as shading points) with VPLs. Increasing the
number of VPLs increases the accuracy of many-light
rendering, but at the cost of computational time.

To handle a large number of VPLs efficiently, impor-
tance sampling methods [WANG09, GEORGIEV12,
WU13] for VPLs that estimate the outgoing radiance
of shading points have been proposed. The key compo-
nent for the importance sampling method is to construct
a probability function that is as proportional as possible
to the distribution of contributions from all the VPLs.
However, constructing a probability function perfectly
proportional to the distribution at each shading point
is computationally expensive since it requires a large
number of visibility tests between the shading point
and all VPLs. Importance caching [GEORGIEV12]
constructs a probability function by sparsely distribut-
ing the cache points on the surfaces of the scene, and
recording the contributions of all VPLs. The probabil-
ity function at each shading point is calculated by in-
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terpolating those at nearby cache points. This method,
however, distributes cache points randomly and does
not consider the variation in contributions from each
VPL. This makes it difficult to construct a probability
function that is proportional to the distribution of the
VPL contributions, leading to an increase in variance.

To address this problem, we propose an adaptive
cache insertion method for a many-light rendering
framework. Our method detects regions where the
distribution of the VPL contributions varies drastically
due to the spatial variations of the shading points, the
directional variations of the normals to the shading
points, and due to the occlusions between the VPLs and
the shading points. Additional cache points are inserted
into such regions. In addition, while importance
caching calculates the interpolated probability function
by simple averaging, our method takes into account the
spatial correlation between the shading points and the
cache points, and the directional correlation between
the normals to the shading points and cache points,
and uses these to weight the interpolation. Our results
demonstrate that, in an equal time comparison, our
method provides better performance (i.e. less variance)
than importance caching.

2 PREVIOUS WORK
Many-light rendering, which is based on the instant ra-
diosity as proposed by Keller [KELLER97], distributes
a large number of VPLs in the scene and approximates
the incident radiance from the direct and indirect illumi-
nation from the VPLs. Increasing the number of VPLs
increases the rendering accuracy at the cost of computa-
tional time. Since several thousand VPLs are required
to obtain plausible results, several methods have been
proposed that can handle many VPLs efficiently.

To handle a large number of VPLs efficiently, sev-
eral methods that cluster VPLs have been proposed.
Walter et al. proposed a hierarchical representation
of the VPLs called Lightcuts [WALTER05]. Hasan et
al. proposed the matrix row-column sampling (MRCS)
method that samples a small number of VPLs that give
a good approximation to the contributions from all the
VPLs [HASAN07]. Ou et al. proposed the Lightslice
method, which extends the MRCS method by cluster-
ing the shading points and applying the MRCS method
to each cluster to improve the accuracy [OU11]. Al-
though these clustering methods can efficiently render
realistic images by approximating the contributions of
the VPLs in each cluster by a representative VPL from
each cluster, the rendered images suffer from errors due
to VPL clustering.

Importance sampling methods for VPLs have also been
proposed. The contribution of a VPL is the product of
the incident radiance, the bidirectional reflectance dis-
tribution function (BRDF), a geometry term, and the

visibility function. By constructing probability func-
tions proportional to the contribution from VPLs and
sampling the VPL according to this probability func-
tion, the outgoing radiance can be estimated with high
accuracy and small variance. Wang and Akerlund pro-
posed a bidirectional importance sampling method for
many-light rendering [WANG09]. This method, how-
ever, does not take into account the visibility func-
tion, resulting in high variance where the incident light
is occluded. Wu et al. proposed the VisibilityClus-
ter algorithm, which clusters shading points and the
VPLs [WU13]. The visibility function is approximated
by the average values of the estimated visibilities be-
tween the clusters of shading points and the VPLs. Al-
though this method can render realistic images effi-
ciently, it can fail to sample VPLs with large contri-
butions since estimates of the average values of the vis-
ibilities are done by random sampling.

Cache-based methods that exploit correlation to
increase the rendering efficiency have been pro-
posed. Ward et al. proposed irradiance caching,
which accelerates the indirect illumination calculation
by interpolating the incident illumination stored at
cache points [WARD88]. Radiance caching meth-
ods [KRIVANEK05, KRIVANEK06] store radiance
instead of irradiance to efficiently render glossy
materials. Visibility caching stores visibility infor-
mation to accelerate the direct illumination computa-
tion [CLARBERG08] . The work that is most relevant
to our method is importance caching [GEORGIEV12].
This method randomly distributes cache points, called
importance records, in the scene and records the
contributions of all the VPLs as shown in Fig. 1(a).
Then a probability function perfectly proportional to
the contributions of the VPLs at each cache points
is calculated. At each shading point, the probability
function is calculated by interpolating the contributions
stored at nearby cache points, and a small number of
VPLs are sampled to estimate the outgoing radiance.
Although it can render plausible images efficiently, this
method has several drawbacks. Firstly, cache points are
distributed randomly. If the VPL contributions stored
at the cache points vary drastically, the interpolated
probability function may not be proportional to the
contributions of the VPLs. Secondly, the interpolated
probability function is simply an average of those
recorded at nearby cache points, which does not
account for the correlation between the shading and
cache points. To address this problem, we propose
an adaptive cache insertion method for many-light
rendering. Our method distributes cache points taking
into account variations in the VPL contributions. In
addition, our method interpolates the probability func-
tion by weighted averages of the probability functions
stored at nearby cache points taking into account the
correlations between the shading and cache points.
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Figure 1: Importance caching (a) records contributions of all VPLs at cache points c j. Tables under cache points
represent VPL contributions. (b) Probability function p at shading point is calculated by averaging those at nearby
cache points. Each graph shows the probability function, and the probability functions at cache points are calcu-
lated by normalizing VPL contributions. (c) Inefficient cases of importance caching, lack of nearby cache points
and lack of cache points with similar normals. (d) Contributions of VPLs at nearby cache points differ due to
occlusions.

3 IMPORTANCE CACHING
Importance caching [GEORGIEV12] samples VPLs
based on a probability function calculated by inter-
polation between those stored at cache points. The
outgoing radiance Lo(x,xv) at shading point x towards
the viewpoint xv is estimated by the following equation:

Lo(x,xv)=
1
N

N

∑
n=1

L(yn,x) fr(yn,x,xv)G(x,yn)V (x,yn)

p(yn)
,

(1)
where N is the number of sampled VPLs, yn is the
n-th VPL, and L, fr, G, and V are the radiance, BRDF,
the geometry, and the visibility terms, respectively
(please refer to the many-light rendering survey
paper [DACHSBACHER14] for more details). The
contribution of the VPL is the product of L, fr, G,
and V . The probability function p for sampling the
VPLs is expected to be proportional to the distributions
of the VPL contributions. However, constructing a
probability function perfectly proportional to the dis-
tribution of the VPL contributions is computationally
expensive since it requires evaluation of all the VPL
contributions.
To address this problem, importance caching randomly
distributes a small number of cache points in the scene.
At each cache point, the contributions from all the
VPLs are calculated. The probability function that is
perfectly proportional to the distribution of the VPL
contributions is calculated by normalizing the distribu-
tion. The contribution from the VPLs to the shading
point seems to be correlated with those stored at nearby
cache points. By exploiting the correlation of the con-
tributions, the probability function p at each shading
point is obtained by interpolating those at nearby cache
points. However, when geometrical information (e.g.
the normal) or the VPL contribution between a shading
point and a cache point has a small correlation as shown
in Figs. 1(c)(d), the proportionality of the interpolated
probability function decreases.

4 PROPOSED METHOD
Instead of random sampling, our method distributes
cache points taking into account the geometrical infor-
mation of the shading points and the distribution of the
VPL contributions. Fig. 2 shows an overview of our
method.

4.1 Generating Initial Cache Points
The contributions from a VPL to two shading points
xi,x j have large correlation when the positions xi,x j
and the normals ni,n j to the shading points are similar.
By exploiting this, our method first clusters the shading
points based on the positions and the normals, employ-
ing the clustering method described in [OU11]. The
shading points are represented by 6-dimensional points
consisting of the positions and the normals. Firstly,
the positions of the shading points are normalized into
[−1,1]3, which is equal to the range of the normals.
The bounding box of the 6-dimensional points is cal-
culated, and then recursively subdivided until the num-
ber of 6-dimensional points or the size of bounding box
is smaller than the thresholds. The bounding box is
split along its longest axis. After the subdivision is ter-
minated, one shading point is randomly sampled from
each cluster and is used as the cache point. At each
cache point, the contributions from all the VPLs are
calculated and a cumulative distribution function is con-
structed.

4.2 Adaptive Insertion of Cache Points
The initial cache points are distributed according to the
similarity of the shading points, but not considering
the contributions of VPLs. For example, as shown in
Fig. 1(d), the contributions of VPLs can differ at nearby
cache points due to occlusions, leading to the interpo-
lated probability function having reduced proportional-
ity and increased variance.
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Figure 2: Overview of our method. (a) Clustering shading points based on their positions and normals. (b)
Calculate contributions of VPLs at each cache point c j. (c) Calculate sum of differences of p at c2 and interpolated
probability function using c1 and c3. (d) Insert new cache point c8 from cluster C2.

To address this problem, our method exploits the fact
that each cache point records the contributions of all
VPLs and therefore, an ideal probability function per-
fectly proportional to the contributions of all the VPLs
is easily obtained. Our method detects those nearby
cache points whose recorded contributions differ due to
occlusions, and inserts additional cache points for such
regions. If the VPL contributions recorded at cache
points near to c j differ drastically from those at c j due
to occlusions, the interpolated probability function dif-
fers from the probability function of c j. Therefore, our
method calculates the sum of the differences between
the probability function recorded at c j and interpolated
probability function from nearby cache points of c j. If
the sum of differences exceeds the threshold δ , an ad-
ditional cache point is inserted. The threshold δ is set
experimentally in the current implementation.

The VPL contributions at the additional cache point
need to have large correlation with those recorded at c j.
To correlate VPL contributions between the additional
cache point and c j, small variations in the geometrical
information and the occlusions are required. However,
computing the visibilities between all VPLs and a cache
point is computationally expensive, it is difficult to de-
tect the variations in the occlusions with a small over-
head. Our method calculates the positions of the ad-
ditional cache points using the geometrical information
of c j. Since the shading points in the cluster C j corre-
sponding to c j have similar geometry information, our
method samples one shading point randomly from C j.
The insertion process for all the cache points is repeated
until the number of inserted cache points is smaller than
a threshold. The cache points are stored in a kd-tree for
fast search of cache points near to each shading point.

Fig. 3 shows the initial cache points (left) and the adap-
tively inserted cache points (right) of a Cornell box
scene. The initial cache points are distributed uniformly
on the surfaces of the scene, while the inserted cache
points are distributed near the boundaries of shadows,
where the visibilities between the VPLs and the cache
points change.

4.3 Rendering
The outgoing radiance Lo(x,xv) at shading point
x is calculated by sampling VPLs according to
the probability function p interpolated from those
recorded at a number, M, of nearby cache points.
In contrast to the simple average as in importance
caching [GEORGIEV12], our method calculates
the probability function p using a weighted average
that considers the spatial and directional correlations
between the shading and cache points. The probability
function p is calculated by the following equation:

p(yn) =
M

∑
k=1

wk pk(yn), (2)

where M is the number of cache points. M = 3 works
well for our method as proposed in [GEORGIEV12].
wk and pk are the weight and probability function
for the k-th nearest cache point, respectively. The
weight wk is calculated using the formula proposed in
[CLARBERG08].

wk =
√

1−|n ·v| · ŵ(d,θ), (3)

where n is the normal to shading point x, and v is the
normalized vector from x to the k-th nearest cache point
ck. d is the distance between the shading point and the
cache point, and θ is the angle between the normals to
the shading and cache points. The weight function ŵ is
calculated from the unnormalized weight function w:

w(d,θ) =
(

1− θ

π

)(
1− d′

1+λd′

)
, (4)

where d′ = d/dmax, dmax is the maximum search
range, and λ is a parameter. The weight function ŵ is
calculated from ŵ = (w(d,θ)− w(dmax,θmax))/(1 −
w(dmax,θmax)), where θmax is the maximum angle
between the normals. θmax = π/6 and λ = 5 are used
as proposed in [CLARBERG08].

5 RESULTS
Figs. 4, 5, and 6 show equal-time comparisons between
our method and importance caching [GEORGIEV12].
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Figure 3: Example of cache points (red points) in the
Cornell box scene. Left: initial cache points generated
by sampling each cluster of shading points. Right: in-
serted cache points generated by considering VPL con-
tributions.

The computational times are measured on a desktop
PC with an Intel Xeon CPU E3 1270 3.4GHz. All the
computations were performed in parallel using multi-
threading. The image resolutions are 1024× 768. All
the computations used in our method, except for cache
generation, adaptive insertion, and weight calculation,
are the same as those used in importance caching.
Cache points are generated randomly in importance
caching, and the same numbers of cache points are
used in our method as in importance caching. As
described in [GEORGIEV12], four sampling strategies
are used. Bilateral multiple importance sampling using
the α-max heuristic is performed for both methods.
Our method distributes VPLs in the same way as
described in [DACHSBACHER14]. The reference
images are rendered by accumulating the contributions
from all the VPLs. Table 1 shows the statistics of our
results.

Fig. 4 shows an equal-time comparison of a Sibenik
scene. The computational times (cache genera-
tion/rendering) for our method and importance caching
were 36.6s (17.8s for cache generation/18.8s for ren-
dering) and 33.7s (15.2s/18.5s), respectively. Fig. 4(a)
shows the result rendered using our method. Figs. 4(b),
(c), and (d) show close-ups of the area outlined in red
in Fig. 4(a) for the reference image, and the results
rendered by our method, and importance caching,
respectively. Figs. 4(e), (f), and (g) show close-ups
of the area outlined in blue in Fig. 4(a). As shown in
these images, our method can render images with less
noise compared to importance caching. Importance
caching [GEORGIEV12] tends to distribute cache
points near the viewpoint. Therefore regions far from
the viewpoint (e.g. the windows in Fig. 4(d)) have less
cache points, resulting in noisy images. In addition,
since importance caching does not take into account
occlusions in distributing cache points, the regions
where occlusions vary drastically (e.g. Fig. 4(g)) suffer
from noise, whereas our method can distribute cache

Table 1: Statistics of results. NT , N, and Nc are the
number of triangles, VPLs, and cache points, respec-
tively.

Scene NT N Nc
Sibenik (Fig. 4) 75,284 7,785 2,950
Sponza (Fig, 5) 66,450 6,479 1,728

Conference (Fig. 6) 331,179 5,133 2,478

points for such regions, resulting in less noise as shown
in Fig. 4(f).

Fig. 5 shows an equal-time comparison of a Sponza
scene. As shown in Figs. 5(b) to (g), our method
can render less noisy images especially for regions
(e.g. arches and pillars) where the visibilities between
the VPLs and the shading points change. The com-
putational times (cache generation/rendering) for our
method and importance caching were 24.7s (7.5s/17.2s)
and 23.3s (5.9s/17.3s), respectively.

Fig. 6 shows an equal-time comparison of a Confer-
ence scene. Figs. 6(b)(d), (c)(f), and (d)(g) show close-
ups of the reference image, the results rendered by
our method, and importance caching, respectively. In
Fig. 6(d), a large variance due to the occlusion due
to the table appears in the chair, whereas our method
(Fig. 6(c)) renders an image comparable to the refer-
ence image shown in Fig. 6(b). The computational
times for our method and importance caching were
18.7s (6.5s/12.2s) and 18.2s (6.4s/11.9s), respectively.

Figs. 7, 8, and 9 show visualizations of the root-mean-
square-error (RMSE) between each method and refer-
ence images rendered by summing all the VPL contri-
butions. The color bar shows the false color. For the
Sibenik scene, the RMSE for our method is 0.0486773
while that for importance caching is 0.0662813. As
shown in Fig. 7, our method can render less noisy im-
ages especially near windows and pillars. In the Sponza
scene, the RMSE for our method is 0.146164 while that
of importance caching is 0.207015. Since it is diffi-
cult for importance caching to distribute cache points
inside the scene, large variance can appear as shown in
Fig. 8(b), while our method can lessen this as shown in
Fig. 8(a). In the Conference scene (Fig. 9), the RMSE
for our method and importance caching are 0.0294903
and 0.032524, respectively. As shown in Fig. 9, by in-
serting additional cache points, our method reduces the
variance near chairs occluded by the table.

Since, with our method, new cache points are added
in regions where the variations in the VPL contribu-
tions are large, for the same number of cache points,
the cache points are distributed more sparsely in other
regions compared to importance caching, resulting in a
slightly increased variance (e.g. near the floor in Fig. 8).
However, our method can reduce the RMSE for the
overall scene as shown in Figs. 7, 8, and 9.
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Figure 4: Sibenik scene. (a) rendering result of our
method. (b)(c)(d) close-up images of reference, our
method, and importance caching, respectively. (e)(f)(g)
close-up images of reference, our method, and impor-
tance caching. Our method can render less noisy im-
age in equal time rendering compared to importance
caching.

To inspect the effectiveness of the adaptive insertion of
cache points and the weighting function that considers
the spatial and directional correlations, our method ren-
ders the Sibenik scene using adaptively inserted cache
points and uniform weights used in [GEORGIEV12].
The RMSE in this case is 0.0516844, while that
with random cache points and uniform weights is
0.0662813. As shown in this experiment, adaptive
cache insertion contributes to the improvements most.

6 CONCLUSIONS AND FUTURE
WORK

We have proposed an adaptive cache insertion method
for importance caching. Our method clusters the shad-
ing points and selects cache points from clusters and
exploits the spatial and directional correlations between
shading points and cache points. Our method detects
cache points whose VPL contributions differ from those
of nearby cache points and inserts further cache points,
resulting in reduced variance compared to that obtained

(a)

(b) (c) (d)

(e) (f) (g)

Figure 5: Sponza scene. (a) rendering result of our
method. (b)(c)(d) close-up images of reference, our
method, and importance caching, respectively. (e)(f)(g)
close-up images of reference, our method, and impor-
tance caching. Our method can render less noisy im-
ages, especially near arches and pillars in equal time
rendering.

in equal-time rendering using the original importance
caching method.
For future work, we plan to accelerate our method us-
ing VPL clustering. Moreover, we propose to distribute
cache points taking into account the scene saliency.
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ABSTRACT

One challenge in applying standard marching isosurfacing methods to sparse rectilinear grid data is addressed. This

challenge, the problem of finding approximating gradients adjacent to locations with data dropouts, is addressed

here by a new approach that utilizes a tetrahedral spline fitting-based strategy for gradient approximation. The

new approach offers improved robustness in certain scenarios (compared to the current state-of-the-art approach

for sparse grid isosurfacing). Comparative studies of the new approach’s accuracy and computational performance

are also presented.
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1 INTRODUCTION

One common means for visualizing scalar volumetric

data is isosurfacing, which involves finding the set of

locations in space where the phenomenon recorded in

the dataset achieves a particular value, called the iso-

value, denoted herein as α . Isosurface visualization is a

powerful approach for observing and studying the be-

havior of volumetric data. Isosurfacing can promote

discovery in disparate applications areas, such as medi-

cal diagnosis, fluid flow studies, etc.

Well-known isosurfacing methods exist for volumetric

data organized on a number of grid types [10]. Fo-

cus here is on scalar data organized on rectilinear grids,

which is very common, and on isosurfacing methods

applied to such grids that produce triangle meshes ap-

proximating the isosurface and assume data values are

available at each grid point. However, in some applica-

tions, the data is sparse; there is not a data value avail-

able at every grid point. (Here, we will use the term

sparse grid to mean a 3D rectilinear grid dataset with

some missing values.) For example, data collected from

sensor arrays may have missing data values when data

cannot be collected at every grid point due to physi-

cal limitations. Popular isosurfacing methods for recti-

linear grid data, such as the standard, marching meth-
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ods of Marching Cubes and Marching Tetrahedra, re-

quire determination of a local gradient at each mesh

vertex to estimate the isosurface orientation, and then

use that in rendering to produce a shading that is har-

monious with local data trends. When data is sparse,

the schemes these methods use for estimating orienta-

tion can fail at certain locations. Thus, sparseness can

make well-known isosurfacing rendering methods un-

able to be applied. Here, we introduce a new solution

to the challenge of isosurfacing on sparse grids.

Sparse grids may be produced from a variety of sensing

modalities and volume data generation methods. Data

from sensor arrays, particularly ones that measure phys-

ical phenomena, has the potential to have missing data

values due to sensor faults. For example, wireless 3D

sensor arrays, such as those used to capture data un-

derground [1] and underwater [17], operate under harsh

conditions and can be particularly vulnerable to sensor

faults. Low batteries, bad calibration, high noise, or en-

vironmental hazards can all contribute to faults in sen-

sor arrays [11]. Conversion of 3D mesh geometry to

volume data via voxelization algorithms [16] can pro-

duce datasets with data values only at grid points neces-

sary to reproduce the original mesh. Additionally, vol-

ume data derived from point clouds or signed distance

functions may not contain sufficient data to estimate

data gradients at all isosurface locations, in particular

the mesh vertices [12].

One prior work has proposed a work-around to the gra-

dient (orientation) determination challenge in Marching

Cubes on sparse grids. The new approach we describe

here offers improved results in certain scenarios.

The paper is organized as follows. Section 2 discusses

background material and related work. Section 3 de-
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scribes the new approach for estimating isosurface ori-

entation on sparse grid datasets. Section 4 provides

details on rendering isosurfaces extracted from sparse

grids. Section 5 provides results from experiments and

comparisons to prior orientation (or normal) estimation

approaches. Section 6 contains the paper’s conclusion.

2 BACKGROUND AND RELATED WORK

The most common method [10] for isosurfacing on

scalar data on rectilinear grids is the Marching Cubes

(MC) algorithm. MC has been adapted by Nielson et

al. [12] to allow application to rectilinear grids with

missing data values (i.e., sparse grids). We describe

that adaptation in Section 3.2. First, though, we de-

scribe the basic steps of MC and illustrate its failings

for sparse grids.

Marching Cubes isosurfacing produces a triangle mesh

representation of the isosurface by advancing cell-by-

cell through the volume. In each cell, it follows three

major steps. In the first step, the general topological

arrangement of the isosurface mesh in the cell is deter-

mined. (Each general topological arrangement is called

a “case” in this paper, reflecting the typical nomencla-

ture of the MC literature.) Second, for topologies con-

taining isosurface mesh facets, the mesh vertex loca-

tions in the cell are found. Third, the triangle mesh

is formed by connecting vertex locations into the de-

termined topology. An orientation vector is also deter-

mined for each vertex location.

In MC, mesh vertices are located on grid lines, with

positions there found via linear interpolation. At each

vertex, an orientation vector is ultimately used in ren-

dering the produced mesh. These vectors are deter-

mined by linearly interpolating the gradients of the grid

point locations bounding the grid segment containing

each mesh vertex. These gradients are computed using

central differencing; for grid point (xi,yi,zi), MC finds

the gradient ∇ f as:

∇ f (xi,yi,zi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (xi+1,yi,zi)− f (xi−1,yi,zi)

2
f (xi,yi+1,zi)− f (xi,yi−1,zi)

2
f (xi,yi,zi+1)− f (xi,yi,zi−1)

2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

(1)

where f (xi,yi,zi) is the scalar value at (xi,yi,zi).

Since the central-difference gradient uses the values of

adjacent grid points, if there is a missing data value pre-

ceding or following a grid point in any axial direction,

central-differencing will be undefined. As a result, MC

is unable to estimate the orientation vector for any mesh

vertex on a grid segment whose endpoint has an unde-

fined gradient value. Data sets with missing or unde-

fined data thus require an alternative orientation esti-

mator. One option could be use of ad-hoc alternatives

for those grid points where central differencing is un-

defined. For example, a mix of methods could be used

(e.g., forward-differencing and reverse-differencing, as

suitable) at a cost of consistency.

Other works have considered the issue of estimating

orientation in volume data without relying on differenc-

ing techniques. For example, Möller et al. [15] have

used a two-step approach for shading raytraced isosur-

face renderings. Hossain et al. [8] have proposed re-

construction filters for gradient estimation derived from

methods using Taylor series and Hilbert spaces. They

evaluated the accuracy of their filters on both Carte-

sian and Body-Centered Cubic lattices. Correa et al.

[4] have studied averaging-based and regression-based

orientation estimation approaches for use in volume

raycasting on unstructured grids. Their study recom-

mended the use of a hybrid approach that selects the

gradient estimator to use based on local properties of

the unstructured grid. Neumann et al. [9] have es-

timated orientation by fitting a hyperplane on points

nearby to a grid point and then taking a linear regression

result on data points on the hyperplane. However, while

these orientation estimation approaches do not rely on

differencing, they assume that data is available at all

grid points and thus cannot be used with sparse grids.

Other methods for producing visualizations of sparse

grid volume data have also been described. For exam-

ple, Djurcilov and Pang [6] have described some tech-

niques for visualizing weather data when sample points

are missing due to sensor failures. Their techniques re-

quire resampling data to produce a fully populated grid

prior to isosurface extraction.

2.1 Quadratic and Quintic Splines

Rössl et al. [14] have proposed a technique for volume

reconstruction by fitting a spline model to regular, rec-

tilinear volumetric data. Their technique first partitions

the volume’s grid into uniform tetrahedra and then fits

super splines on each partition. Super splines are a class

of splines in which smoothness is preserved on vertices

between adjacent tetrahedra. Each fitting uses Bézier

splines with constants drawn from the values at the ver-

tices of each tetrahedron, ensuring that the super spline

condition is not violated. Details of their process are

described later, in Section 3. Awanou and Lai [2] have

presented an approach using quintic splines to interpo-

late a volume. Their approach is similar to that of Rössl

et al., but it does not require a regular grid and uses a

higher order spline to model the volume data.
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(a) Marching Cubes output (b) LSN virtual local mesh

Figure 1: LSN perp vector estimation

2.2 Locally Supported Normals (LSN)

One methodology for determining isosurface orienta-

tion in sparse rectilinear grid data is the Locally Sup-

ported Normal (LSN) approach described by Nielson et

al. [12]. It considers isosurfacing in a Marching Cubes

context, resolving the undefined orientation problem

by an estimation process that uses a virtual mesh con-

structed on the vertices of the MC isosurface. Orien-

tation vectors computed in this manner tend to exhibit

sharper shading color transitions at triangle edges than

if central-differencing could be used, resulting in a sur-

face with a more faceted appearance. However, central-

differencing cannot be applied where grid values are

missing or undefined.

The estimation used in LSN is integrated into MC-style

isosurfacing; it produces orientation estimates as vertex

locations are calculated. The LSN approach relies on

a temporary virtual local mesh that it defines about the

point for which an orientation vector is needed. This

virtual mesh is not the Marching Cubes output mesh;

Figure 1 demonstrates the difference between a mesh

produced by MC and the virtual mesh used by LSN for

a point V . The LSN approach first computes perpen-

dicular (perp) vectors for each face in the virtual mesh;

these vertex perp operations are done independent of

the MC topology determination. Each perp vector is

found as the cross-product of edge vectors of the vir-

tual mesh face. For each of the MC internal vertices

shared by multiple triangles, all perp vectors of faces

incident to it are averaged to form a master perp vec-

tor at the vertex. The master perp vector becomes the

LSN’s estimate of the isosurface orientation at that ver-

tex. Figure 1(b) shows the LSN’s estimation of the ori-

entation for a location V in a volume. Four perp vectors,
�N1,�N2,�N3, and �N4, are shown. The average of these is

the master perp vector �N ; here, �N is 1
4 ∑4

i=1
�Ni.

The LSN’s estimation can produce erroneous results

when certain data characteristics are encountered. The

first, and most pronounced, of these errors occurs when

degenerate triangles are encountered during orientation

estimation. A degenerate triangle with two or more co-

incident vertices will yield a cross-product of zero, re-

sulting in a zero vector (because the triangle does not lie

on a unique plane in space). MC produces degenerate

triangles when the isovalue is identical to a grid point

value [13]. If a vertex is associated with only degen-

erate triangles, the orientation vector computed using

(a) Non-degenerate

mesh

(b) Degenerate mesh

used by LSN

Figure 2: LSN summed average estimation

LSN at that vertex has length zero. The rendered iso-

surface can contain artifacts at pixel locations affected

by the zero length orientation vector.

In Figure 2(a), a mesh containing no degenerate trian-

gles is shown. In contrast, Figure 2(b) displays an LSN

mesh corresponding to the same topology, but with ver-

tex V located at a cube corner, resulting in four degen-

erate triangles (one triangle degenerating to a point and

three to a line). The result from LSN is a zero length

orientation vector.

Additionally, the LSN approach makes assumptions

about what have been called ambiguous faces [10] of

cells. These assumptions can lead to inaccurate orien-

tation vectors. One example cube where this incorrect

assumption is a problem is shown in Figure 3. The cube

has the Case 13 base topology of the MC [12], shown in

Figure 3(a). However, the LSN estimation uses the vir-

tual mesh shown in Figure 3(b) to compute orientation

vectors in corners of the cube opposite to those defined

by MC. We refer to triangles used in the LSN virtual

mesh that do not appear in the MC mesh as illusory

triangles. The normals (i.e., perp vectors) associated

with these triangles may differ greatly from the orien-

tation vectors that would result if the actual MC iso-

surface facets had been used. In particular, each vector

found using an illusory triangle will contribute errors to

the orientation vector estimation at vertices of illusory

triangles. For such situations, the orientations can be

estimated incorrectly and yield incorrectly shaded ren-

derings.

The illusory triangle problem in LSN is not just lim-

ited to cubes with ambiguous faces. For example, in

Marching Cubes Case 5 LSN uses an illusory triangle

to compute a perp vector. The topology used by MC

for the Case 5 topology is shown at the top of Figure 4

(labeled “C5”). The five virtual mesh triangles used by

LSN are shown in the rest of the figure. While most

of the virtual mesh triangles should produce reasonable

results, the one used for V4 is illusory and its orienta-

tion is not consistent with the actual mesh properties

at V4. Other MC cases also exhibit illusory triangles

yielding orientations that differ markedly from that of

the MC isosurface mesh. An example of the incorrect

orientation from illusory triangles is provided later in

this work.
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(a) Topology of

cell as defined by

Marching Cubes

(b) Topology

of cell assumed

by the LSN

approach

Figure 3: Comparison of cell topologies used by MC

and LSN

��

Figure 4: Case 5 MC and LSN topologies

3 NEW GRADIENT ESTIMATION AP-

PROACH FOR SPARSE GRIDS

Next, we describe our new approach for determining

orientation vectors in MC for sparse grids. The ap-

proach is guaranteed to produce orientation vectors at

any location for which it is possible to find a Marching

Cubes isosurface vertex. That is, the scheme introduced

here can handle any rectilinear sparse grid configuration

satisfying the condition that the isosurface vertices can

be computed. (I.e., like LSN, our approach assumes

there is local support for the isosurface.) For some sce-

narios, it also offers improved performance over prior

approaches for computing MC isosurface orientation

vectors on sparse grids.

3.1 Using Quadratic Splines

Our work is motivated by Rössl et al.’s modeling of vol-

umetric data variation using quadratic Bézier-Bernstein

super splines (2BBSS) in tetrahedral regions. A tetra-

hedron allows for the use of an interpolating volumet-

ric spline using a barycentric coordinate system given

a sufficient number of data points on the tetrahedron.

Specifically, given four points v0,v1,v2,v3 defining the

four vertices of a tetrahedron, a quadratic trivariate

spline p is composed in the Bézier-Bernstein form:

p(λ) = ∑
i+ j+k+l=2

ai jklBi jkl(λ ), (2)

where the parameter λ is the location within the spline

(in barycentric coordinates with λ = (λ0,λ1,λ2,λ3)),
the coefficients ai jkl are the control points of the spline,

Figure 5: Spline control points

and the Bi jkl’s are Bernstein polynomials. The control

points are calculated as linear combinations of the ver-

tices of the tetrahedron:

ai jkl =
i

2
v0 +

j

2
v1 +

k

2
v2 +

l

2
v3, (3)

as depicted in Figure 5. The Bernstein polynomials

Bi jkl are defined as

Bi jkl(λ ) =
2!

i! j!k!l!
λ i

0λ
j

1 λ k
2 λ l

3, i+ j+ k+ l = 2, (4)

where each λ = (λ0,λ1,λ2,λ3) is a barycentric coordi-

nate with respect to the tetrahedron.

Numerous schemes exist for partitioning rectilinear grids

into collections of tetrahedra. We employ one such

scheme here to enable the use of tetrahedral splines in

the estimation of orientation vectors. Tetrahedral parti-

tions also alleviate the problem of missing data because

only 4 grid values are needed to model isosurface be-

havior within a tetrahedral partition, as opposed to the

6 necessary for a central differencing. By partitioning

rectilinear dataset cells into tetrahedra, we can calculate

an orientation in any cell intersected by the isosurface.

In the 2BBSS model, each tetrahedron must have as-

sociated data values at each tetrahedral vertex. Given

such, a spline is formulated that approximates the sur-

face within the tetrahedron.

Our approach finds the approximating spline in cells in-

tersected by the isosurface by partitioning the cell into

tetrahedra and then evaluating the spline constructed on

those tetrahedra to determine orientation vectors (i.e.,

spline normals) at any barycentric coordinate (λ0,λ1,λ2,λ3)
within each tetrahedron of interest. For each of them,

our approach uses de Casteljau’s algorithm [3] [5] to

determine the spline’s partial derivative [14] by apply-

ing the algorithm in the direction of tetrahedron edges.

The usage of de Casteljau’s algorithm to compute the

derivative of a curve is well understood [7].

For any point on a spline, the formulation of de Castel-

jau’s algorithm enables finding the directional deriva-

tives at q as follows. First, given a spline with con-

trol points of the form a0
i jkl , for a point q having the
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Figure 6: Tetrahedral partitions

barycentric coordinate λq =(λ0q ,λ1q ,λ2q ,λ3q), new con-

trol points denoted by a1
i jkl are computed as:

a1
i jkl = λ0qa0

i+1, j,k,l +λ1qa0
i, j+1,k,l+ (5)

λ2qa0
i, j,k+1,l +λ3qa0

i, j,k,l+1,

which define a subdivision of the original spline. (An-

other application of the formula would produce the

value at q, however we need just the control points

a1
i jkl of the spline subdivision because they define par-

tial derivatives for the spline.) Since the normal at any

point on a surface s(x,y,z) can be defined as

∇s(x,y,z) = (
∂ s

∂x
,

∂ s

∂y
,

∂ s

∂ z
), (6)

we compute the orientation by finding the partial deriva-

tives in the directions parallel to the coordinate system

axes. The formulation of this partial derivative is given

in Section 4.

4 ISOSURFACE RENDERING WITH

SPARSE GRIDS

Our approach defines 2BBSS splines for tetrahedral

subregions of each active cell. We consider eight can-

didate tetrahedral partitions of each cell (shown in Fig-

ure 6) and choose from these the one that enables the

most accurate estimate of the orientation vector. The

choice is described shortly. This orientation estima-

tion is based on a 2BBSS approximation of the vol-

ume within that tetrahedron. The eight tetrahedra were

chosen because they share the property that three tetre-

hdron faces are coplanar with faces of the cell which

helped simplify the construction of the spline.

For each isosurface mesh vertex, there are two candi-

date tetrahedra from which the orientation at that vertex

could be computed. Next, how our approach decides

on the one to use is described. An example situation

is shown in Figure 7. In it, the vertex shown in red is

located on the rear edge of the cell. One candidate tetra-

hedron is shown in Figure 7(a) and the other is shown

in Figure 7(b). For the case where the vertex lies on

an isosurface mesh triangle completely located within a

(a) Tetrahedral parti-

tion 1

(b) Tetrahedral par-

tition 2

Figure 7: Two choices of tetrahedral partition of the cell

tetrahedron, that tetrahedron is chosen. However, a tri-

angle’s surface may span both possible choices of tetra-

hedra. For such cases, tetrahedron selection is done

instead by considering the total number of isosurface

mesh triangle edges; we select the tetrahedron contain-

ing the greatest number of triangle edges. We have

found that selection using this criterion provides more

accurate orientation vectors than using a static tetrahe-

dral partition that is ignorant of the triangles’s location

in the cell. Our approach uses an adaptation of the MC

topological case lookup table to record the tetrahedral

selections, allowing fast determination of the tetrahe-

dron as well as supporting orientation vector determi-

nation coincident with mesh determination (i.e., within

an extended MC context).

Next, we describe the orientation determination proce-

dure. The partial derivative of the spline p(λ ) in the

direction ξφ of a tetrahedron edge vφ − v is given by

∂ p

∂ξφ
= 2 ∑

i+ j+k+l=1

(ai, j+b,k+c,l+d −ai+1, j,k,l)λ
i
0λ j

1 λ k
2 λ l

3,

(7)

where (λ0,λ1,λ2,λ3) are the barycentric coordinate vari-

ables of the spline equation and (b,c,d) is used to de-

fine an offset to a tetrahedral vertex in direction ξφ .

Figure 8 illustrates the vector calculations when finding

the partial derivative in the x direction. The arrows on

tetrahedron edges indicate a forward difference calcu-

lation using the tetrahedron vertices of that edge. The

partial derivative is a linear combination of the differ-

ences, with weights for each component dependent on

the particular tetrahedral partition being used within the

cell. Similar vectors are computed for partial deriva-

tives in the y and z directions.

h0

h1 h2
h3

h4
h5

v0 v1

v2

v3

Figure 8: Computing the orientation from sample

points
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Since cell vertices are located on grid edges, each mesh

vertex is guaranteed to have at least two zero-valued

components of its barycentric coordinate. By determin-

ing which edge type the vertex is located on, we can

choose the most appropriate equation to minimize the

number of calculations required. For instance, for the

tetrahedron shown in Figure 8, the gradient for a vertex

on any edge parallel to the base is given by:

∇F =

⎧⎨
⎩

γ0 ∑i+ j=1(ai, j+1,0,0 − ai+1, j,0,0)λ
i
0λ

j
1 ,

γ1 ∑i+k=1(ai,0,k+1,0− ai+1,0,k,0)λ
i
0λ k

2 ,

γ2 ∑i+l=1(ai,0,0,l+1 − ai+1,0,0,l)λ
i
0λ l

3

⎫⎬
⎭ ,

(8)

where γν , ν = 0,1,2,γ =±1, is an orienting coefficient.

For the example in Figure 8, formulation of the spline

assumes a tetrahedron oriented as in Figure 8, how-

ever the tetrahedral partition used may be a reflection

or rotation (or combination of both) of this orientation.

The γ coefficient, which corrects for reflected or rotated

instances, allows correcting the directions the compo-

nents of the orientation vector.

For each tetrahedron the mesh vertex is located in, a

gradient vector is produced by evaluating Equation 9.

Vertices will be shared among up to four tetrahedra, re-

sulting in as many as four separate vectors per vertex.

The orientation vector ultimately assigned to the vertex

is the mean of these four gradient vectors.

5 RESULTS

In this section we present results of experiments to eval-

uate our approach versus LSN. These experiments con-

sider accuracy of orientation vectors and the run times

to compute them. We also report a qualitative evalua-

tion of rendered images to determine the impact of de-

generate triangles on each approach.

Accuracy was tested by comparing orientation vectors

computed using our spline-derived orientations against

the orientations using the LSN approach, then compar-

ing these against orientations computed using central-

differencing. Eight well-known real (sensed) volume

datasets and five mathematically-defined datasets were

used in testing. Additionally, we performed visual com-

parisons of the rendered images to determine if there

was a difference between renderings made using the

two orientation estimation approaches.

The datasets were converted to sparse grid representa-

tions by removing all grid values that were not required

by MC to extract the isosurface with marker values.

Specifically, grid points that were not on grid edges

containing a mesh vertex were set to marker values.

By removing all data points that do not contribute to

the isosurface extraction, we could operate on volumes

with the least possible number of defined values and

thus the least favorable datasets for the classic central

difference orientation estimation approach used in MC.

(a) Our approach

(b) LSN approach

Figure 9: Renderings performed using both orientation

estimation approaches.

5.1 Measurement of Orientation Estima-

tion Accuracy

Isosurfaces were extracted using Marching Cubes for

ranges of isovalues on the eight sensed datasets. The

range was made large so that results would not be bi-

ased against a particular sub-range of isovalues. A root

mean square (RMS) error for each isosurface was calcu-

lated by comparing the angular difference (in radians)

of all orientation vectors produced by both estimation

approaches against the central-difference estimate. The

central-difference is the baseline in this error compari-

son because it is equivalent to computing the gradient

of a second-order data fitting at each grid point. The

mean RMS error of each dataset at all tested isovalues is

shown in Table 1. Inspection of individual isovalues on

some datasets showed that LSN was sometimes more

accurate than our approach, but on average ours appears

to be the superior approach. The spline orientation es-

timation produced more accurate orientation estimates

(on average) than the LSN approach in all datasets ex-

cept for the Engine dataset.

Table 2 shows the RMS errors for 9 isosurfaces ex-

tracted on the sensed datasets. LSN does occasionally

produce more accurate results, however our orientation
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Dataset Ours LSN

Foot 0.531 0.547

Frog 0.569 0.589

Lobster 0.369 0.375

MRA 0.639 0.653

Piggy bank 0.876 0.898

Backpack 0.561 0.568

Sheep heart 0.313 0.315

Engine 0.204 0.187

Table 1: Average RMS error of approaches vs. central-

difference

Dataset Isovalue Ours LSN

MRA 65 0.740 0.764

75 0.684 0.714

80 0.775 0.783

Foot 80 0.555 0.572

90 0.502 0.518

100 0.472 0.322

Frog 40 0.512 0.524

45 0.513 0.523

80 0.545 0.640

Lobster 50 0.318 0.316

65 0.329 0.332

80 0.336 0.338

Table 2: RMS error of approaches vs. central-

difference

estimation produces more accurate results in the major-

ity of cases we tested. Figure 10 shows MRA and Foot

isosurfaces (for α = 65 and 90, respectively). The mag-

nified callouts show subtle differences in the two ren-

derings, but both are very similar to the baseline images

produced using central-difference gradient estimates.

5.2 Accuracy using Mathematically De-

fined Data

Experiments were also performed to measure the ac-

curacy of the orientation estimation approaches ver-

sus exact orientation vector values. These experiments

tested scalar fields generated using five mathematically

defined fields. The isosurfaces were generated corre-

sponding to level sets (i.e., implicit surfaces) of these

fields. Orientation vectors were estimated using our

spline-based estimation, the LSN estimation, and the

standard MC central-difference approaches. Orienta-

tion vectors at each location were compared against the

exact orientation vector values computed at the isosur-

face intersection locations. Table 3 reports the RMS er-

ror with respect to the exact orientation vectors for iso-

surfaces of the zero level set. Excepting the Marschner-

Lobb dataset, the central-difference estimates are supe-

rior to both LSN and our orientation estimations. But

LSN estimates are sometimes better than ours. Thus,

empirical evidence suggests that, for mathematically

(a) Foot Ours (b) Foot LSN

(c) MRA Ours (d) MRA LSN

Figure 10: Zoomed comparison of isosurface images

Figure 11: MC lookup table base topologies

defined, noise-free data, LSN estimation may be quite

suitable; LSN estimation may provide more accurate

normal estimation than our approach for many mathe-

matically defined scalar fields.

5.3 Individual MC Topologies

Since results for the mathematically defined datasets

were incongruous with those observed for sensed data

(where our approach appears to be better than LSN),

we performed an analysis of occurrences of MC base

topologies defined in the MC lookup table [12] to deter-

mine if one estimation approach produced more accu-

rate orientation vectors for particular base topologies.
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Dataset Ours LSN
Central

Diff
Mar-
Lobb 0.0545 0.0616 0.0718

Six Peaks 0.0139 0.0534 0.0179

Genus_3 0.00622 0.00506 0.000265

Flower 0.0261 0.0261 0.0183

Peaks 0.0372 0.0235 0.0218

Table 3: RMS error calculated versus exact orientations

The base topologies are shown in Figure 11 with la-

bels Ci (Ci means “Case i”, as used throughout this sec-

tion). The isosurfaces extracted from mathematically

defined datasets showed no occurrences of the Case 4,

7, 12, and 15 topologies. Additionally, very low oc-

curences were observed for Cases 6, 10, 11, 12, 14, 15,

18 and 19. Many of these topologies consist of discon-

nected triangles within a cell. Due to the nature of the

level sets MC produced for these datasets it is not un-

expected that occurrences of these topologies would be

rare. The sensed data contained far more examples of

these topologies. While for some isovalues, there were

no instances of a few topological cases, such situations

were observed less frequently than for the synthesized

datasets. For one dataset (MRA), some isovalues did

not give rise to any cells of the type Case 15 or 18. For

one dataset (the Engine dataset), the majority of iso-

values did not give rise to any of Case 4, 7, 13, or 15

cells. This may be a result of the engine structure in

the dataset being manufactured from a CAD model that

had a limited number of basic surface types.

To determine the effect that particular base topologies

had on orientation estimation accuracy, we considered

RMS error of orientation vectors on a topological basis

for sensed data isosurfaces. The Case 7, 10 12, 13, 15,

and 19 topologies demonstrated much lower RMS er-

rors for our estimation than for LSN estimation. LSN

estimation produced consistently more accurate orien-

tation vectors for the Case 8 topology. These results

suggest that LSN estimation be considered for isosur-

faces likely having low occurrences of topologies bene-

ficial to our approach; mathematically defined datasets

similar to ones tested here may be good for LSN.

The LSN’s orientation vectors can differ substantially

from true orientation vectors and from orientation vec-

tors calculated using central-differencing, as demon-

strated in Figure 3. We also analyzed the degree each

case should be considered “at-risk” of exhibiting errors

due to the incorrect topology assumption, focusing on

error-prone vertices. Our criterion for this analysis was

if angular divergence in the vector was 90 degrees or

more from the central-difference orientation vector. We

considered only vertices at the midpoint of cell edges.

The analysis showed that 146 of the 256 possible MC

cases were potentially problematic. One to five ver-

tices demonstrated angular divergence greater than 90

Dataset Ours LSN

MRA 0.639 0.651

Foot 0.922 0.933

Frog 0.652 0.689

Lobster 0.479 0.478

Table 4: RMS error for problematic cases

Dataset Isoval. # undef. Total %

Foot 40 12204 278894 4.36

Frog 40 1263 101841 1.24

Lobster 40 2946 149250 1.97

Engine 40 4704 637854 0.74

Mar-Lobb 0 0 603343 0

Six Peaks 0 8 2004650 0

Table 5: Undefined orientations using LSN approach

Dataset Ours (secs) LSN (secs)

Flower 1.077 2.873

Six Peaks 0.926 2.428

Mar-Lobb 2.959 8.018

Table 6: Orientation estimation times

degrees in these cases. Error comparisons of orienta-

tion vectors for just the problematic cases are reported

in Table 4 over an average of 100 isovalues for each

dataset. Our approach produces orientations that are

closer to the central-difference than LSN when these

cases are encountered. Figure 9 shows isosurface ren-

derings for the Lobster dataset using both approaches.

However, the incidence of orientations that meet the an-

gular divergence criterion in sensed and simulation data

is likely much smaller since the triangle vertex locations

in the analysis were chosen to highlight the problematic

cases and the severity in angular difference is lessened

when vertices are located closer to grid point locations.

Rendering artifacts at degenerate triangles in the isosur-

face mesh can be observed in Figure 9(b). They mani-

fest here as dark spots and are a result of using a vector

cross product to compute orientation vectors on degen-

erate triangles in the virtual mesh. (MC produces a tri-

angle with three coincident vertices when a grid value

is identical to the isovalue.) Here, the orientation vec-

tor computed for this triangle has length equal to zero.

The zero-length vector leads to a zero vector for the

Phong illumination diffuse and specular components .

Our method does not exhibit this phenomenon, as is il-

lustrated in Figure 9(a), since our orientation vector re-

lies on the result of a fitting to four data values within

the cell rather than on any mesh triangles.

In Table 5, we show the number of undefined orienta-

tion vectors recorded using the LSN estimation. Vol-

umes with 8 bit integers had more undefined orienta-

tions than did those with floating point values. Far

fewer undefined orientations were present in the syn-
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thetic datasets, which all used 32 bit floating point num-

bers to store the volume’s sample values. The number

of undefined orientation vectors using LSN estimation

appeared to correspond to the data type used to store the

volume’s data values.

Finally, in Table 6 execution times for calculating ori-

entations for three of the larger datasets are shown. The

LSN estimation requires over twice the computation of

our approach. The LSN approach is not as fast as ours.

6 CONCLUSION

We have presented a new approach for estimating iso-

surface orientation vectors on sparse grid datasets. The

typical approach for orientation estimations, central-

differencing, cannot be used universally in sparse grids

due to undefined data at some grid locations. Our ap-

proach can produce isosurface orientations anywhere

that MC can produce triangles. Further, the approach

is not affected by the presence of degenerate trian-

gles, which produce shading errors in other approaches

as a result of undefined orientations. Thus, the new

approach has certain advantages even over MC’s ori-

entation estimation. Our approach has, on average,

a smaller RMS error than a competing approach (us-

ing the baseline of central-difference estimations) on

real world data. For synthetic data, advantages were

less clear. Computation times for our approach were

markedly faster. Further, the new approach guarantees

orientation vectors to be defined at all vertex locations,

making it applicable to a wider variety of data.

An area for further investigation is using spline fit-

tings that observe the continuity properties of super

splines in producing more accurate orientation estima-

tions. Also, other isosurfacing algorithms could be in-

vestigated with our approach to estimate orientations

to determine what increases in accuracy and error tol-

erance occur. Another area of further investigation is

removing random data grid values to simulate random

sensor failures. Lastly, we will evaluate the impact of

increasing noise levels on the new approach’s accuracy.
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