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A New Extension to Kernel Entropy Component Analysis for Image-based
Authentication Systems
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Vijay Varadharajan
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Abstract

We introduce Feature Dependent Kernel Entropy Com-
ponent Analysis (FDKECA) as a new extension to Kernel
Entropy Component Analysis (KECA) for data transforma-
tion and dimensionality reduction in Image-based recogni-
tion systems such as face and finger vein recognition. FD-
KECA reveals structure related to a new mapping space,
where the most optimized feature vectors are obtained and
used for feature extraction and dimensionality reduction.
Indeed, the proposed method uses a new space, which is fea-
ture wisely dependent and related to the input data space, to
obtain significant PCA axes. We show that FDKECA pro-
duces strikingly different transformed data sets compared to
KECA and PCA. Furthermore a new spectral clustering al-
gorithm utilizing FDKECA is developed which has positive
results compared to the previously used ones. More pre-
cisely, FDKECA clustering algorithm has both more time
efficiency and higher accuracy rate than previously used
methods. Finally, we compared our method with three
well-known data transformation methods, namely Principal
Component Analysis (PCA), Kernel Principal Component
Analysis (KPCA), and Kernel Entropy Component Analysis
(KECA) confirming that it outperforms all these direct com-
petitors and as a result, it is revealed that FDKECA can be
considered a useful alternative for PCA-based recognition
algorithms

1. Introduction
Fundamentally data transformation is of importance in

machine learning and pattern analysis. The goal is to, al-
ternatively, represent the high-dimensional data into a typi-
cally lower dimensional form revealing the underlying for-
mat and structure of the data. There is a large amount
of literature on data transformation algorithms and meth-
ods [1], [2]. A dominant research area in data transforma-

tion is known as the so-called spectral methods. In spec-
tral methods, the bottom or top eigenvalues (spectrum) and
their corresponding eigenvectors play the main role in fea-
ture extraction and dimensionality reduction especially in
constructed data matrixes. Some recent spectral methods
include locally linear embedding [3], isometric mapping
[4], and maximum variance unfolding [5], to name a few.
See the recent review papers [6], [7] for thorough reviews
of several spectral methods for dimensionality reduction.
One of the most powerful and well known methods in the
mentioned area is Principal Component Analysis (PCA) [8]
which has been used in numerous applications and algo-
rithms in data classification and machine learning[9],[10].
However, PCA [11] is a linear method which may not be
beneficial when there might exist non-linear patterns hid-
den in the data. Over the last few decades, there have
been a number of advanced improvements on PCA trying
to overcome the drawback of linearly transformation and
make PCA influential when dealing with nonlinear data.
A very well-known and influential method is Kernel Prin-
cipal Component Analysis (KPCA) [12]. In Kernel PCA
[13], PCA is performed in a kernel feature space which is
non-linearly related to the input data. It is enabled using a
positive semi-definite (psd) kernel function computing the
inner products within the new space (kernel feature space).
Therefore, constructing the so-called kernel matrix or the
inner product matrix is vital. Then, using the top eigenval-
ues and their corresponding eigenvectors to perform met-
ric MDS [14] will lead to kernel PCA data transformation
method. Kernel PCA has extensive use in many different
contexts. For instance, kernel PCA has been used in ma-
chine learning algorithms from data classification [15] to
data denoising [16][17][18]. In [19], kernel PCA is intro-
duced for face recognition systems. Kernel PCA also has
been used in finger vein recognition algorithms [20]. In
2010 [21], R. Jenssen proposed Kernel Entropy Component
Analysis KECA as a new extension to kernel PCA. Kernel
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ECA is fundamentally different from other spectral methods
in two ways explained as follows; (1): The data transforma-
tion reveals structure related to the Renyi entropy of the in-
put space data set and (2): The method does not necessarily
use the top eigenvalues and eigenvectors of the kernel ma-
trix. Shekar in 2012 [22], implemented KECA on face data
base claiming KECA outperforms KPCA for face recog-
nition purpose. In this paper, we develop a new spectral
data transformation method, which is fundamentally differ-
ent from Kernel ECA in the following important way:

• In FDKECA the dimension of the feature space is de-
pendent on the dimension of the input data, not the
number of input data. It means no matter how many
data to analyze, the dimension of kernel matrix (kernel
feature space) is fixed.

The mentioned difference will make the following ad-
vantages FDKECA has over KECA:

• FDKECA is much less computationally expensive than
KECA as the dimension of the feature space, where the
optimal PCA axes are calculated, is just as high as the
dimension of the input data. This leads to a much faster
method than traditionally used KECA.

• FDKECA has lower error rate than KECA as the axes
obtained from our proposed feature space will con-
tribute to more efficiency and less dimension compared
to KECA.

The reminder of this paper is organized as follows: Sec-
tion 2 illustrates some examples of spectral data transfor-
mation methods of importance. Feature Dependent Kernel
Entropy Component Analysis (FDKECA) is developed in
Section 3. The image reconstruction method and eigen-
face analysis using FDKECA are developed in Section 4. A
spectral clustering algorithm using FDKECA is developed
in section 5. Experimental results are presented in section
6. Finally, section 7 concludes the paper.

2. Spectral Data Transformation

In this section, we explain the fundamentals of PCA,
KPCA, and KECA with examples to comprehend spectral
basic data transformation methods.

2.1. Principal Component Analysis (PCA)

A well-known spectral data transformation method is
PCA. Let X = [x1, ..., xn] , where xt ∈ Rd and t =
[1, ..., N ]. As PCA is a linear method, the following trans-
formation is sought assumingA is [d×d] such that yt ∈ Rd
and t = [1, ..., N ] : Ypca = AX where Ypca = [y1, ..., yn] .
Therefore, the sample correlation matrix of Ypca equals to:

1

N
YpcaY

T
pca =

1

N
AX(AX)T = A

1

N
XXTAT (1)

The sample correlation matrix of X is
1

N
XXT . Deter-

mining A such that
1

N
YpcaY

T
pca = I is the goal. Consider-

ing eigen-decomposition, we will have
1

N
XXT = V 4V T

,where 4 is a diagonal matrix of the eigenvalues δ1, ..., δn
in descending order having the corresponding eigenvectors
v1, ..., vn as the columns of V. Substituting into (1), it can
be clearly observed that A = 4−1/2V T leads to the goal
such that Ypca = 4−1/2V TX .

Performing a dimensionality reduction from d to l ≤ d
is often achieved by the projection of data onto a subspace
spanned by the eigenvectors (principal axes) corresponding
to the largest top l eigenvalues.

2.2. Kernel Principal Component Analysis (KPCA)

Scholkoft in 1998 proposed Kernel PCA which is a non-
linear version of PCA operating in a new feature space
called kernel feature space. This space is non-linearly re-
lated to the input space. The nonlinear mapping func-
tion (kernel function) is given Φ : Rd → F such that
xt = Φ(xt), t = 1, ..., N and Φ = [Φ(x1), ...,Φ(xN )].
After performing such mapping in input data, PCA if im-
plemented in F , we need an expression for the projection
of PUi

of Φ onto a subspace of feature space principal axes,
for example, top l principals. It can be given by a positive
semi-definite kernel function or Mercer kernel [23] [24],
kσ = Rd × Rd → R computes an inner product in the
Hilbert space F :

kσ(xt, x
′
t) = 〈φ(xt)φ(x′t)〉 (2)

The (N × N) kernel matrix K is defined such that ele-
ment (t, t′) of the kernel matrix equals to kσ(xt, x

′
t). There-

fore, K = ΦTΦ is the inner product matrix (Gram matrix)
in F . Then, Eigen-decomposing the kernel matrix we have
K = EDET where E is the eigenvectors e′1, ..., e

′
n col-

umn wise and their corresponding eigenvalues are in D -
λ1, ..., λn- . Williams in [25] discussed that the equivalence
between PCA and KPCA holds in KPCA as well (kernel
feature space). Hence, we have:

Φpca = PUi
Φ = D

1/2
l ETl (3)

Where Dl is the top large l eigenvalues of K andEl
is their corresponding eigenvectors stored in columns. It
means that projecting Φ onto spanned feature space (princi-
pal axes) is given by PUi

Φ =
√
λie

T
i .
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Considering the analogy in (3), Φpca = D
1/2
l ETl is the

solution to the following optimization problem:

Φpca = D
′1/2
l E′Tl : min

λ′
1,e

′
1,...,λ

′
N ,e

′
N

1T (K −Kpca)2.1. (4)

Where Kpca = ΦTpcaΦpca. Therefore, this procedure
minimizes the norm of K −Kpca.

2.3. Kernel Entropy Component Analysis

Selection of the subspace where the data is projected
onto is of importance in spectral methods, which is achieved
based on the top or bottom eigenvectors in PCA and KPCA.
In KECA, however, this stage is based on entropy estimate.
Using entropy estimate, the data transformation from higher
dimension to lower dimension is obtained by projecting the
input data onto the axes, which contribute to the entropy es-
timate of input space. The procedure of entropy estimate in
KECA is given as follows: The Renyi entropy function is
defined by

H(P ) = − lg

∫
p2(x)d(x) (5)

Where p is probability density of the input data. Consider-
ing the monotonic nature of logarithmic function, (12) can
be replaced by the following equation:

V (P ) =

∫
p2(x)d(x) (6)

Estimating V (p), (14) is given:

p̂(x) = 1/N
∑
xtεS

kσ(x, xt) (7)

k(x, xt) is the kernel centred matrix, then:
V̂ (p) = 1/N

∑p
xtεS

(xt)

1/N
∑
xtεS

1/N
∑
xtεS

kσ(x, xt) = 1/N21TK1 (8)

where K is kσ(x, xt) and 1 is an (N × 1) vector which
contains all ones. The Renyi entropy estimating can be cal-
culated for eigenvalues and eigenvectors of the Kernel ma-
trix. It is defined as K = EDET , where D includes the
eigenvectors, λ1, λ2, ..., λN , and E consists of eigenvalues,
α1, α2, ..., αN . Finally, rewriting (15), we have:

(p) = 1/N2
N∑
1

(
√
λiα

T
i 1)2 (9)

3. Feature Dependent Kernel Entropy Compo-
nent Analysis (FDKECA)

In this section, we will go through PCA and KECA fea-
ture space in details and clarify our motivation to propose
the new transformation method, and then FDKECA is in-
troduced.

3.1. Defining the Feature Dependent Kernel En-
tropy transformation

Generally, in spectral data transformation methods, find-
ing the most valuable principal axes (appropriate directions
in the feature space) is of greatest importance. In PCA,
for example, it is extracted linearly from the principal fea-
ture space. In KECA, however, these axes are extracted
from kernel Entropy feature space as discussed in previous
subsection. We define Feature Dependent Kernel Entropy
Component Analysis as a k-dimensional data transforma-
tion method obtained by projecting input data onto a sub-
space spanned by principal kernel axis contributing to the
feature dependent kernel Entropy space. Feature dependent
kernel Entropy space is defined as follows:

Let X = [x1, ..., xN ], where xt ∈ Rd and t = [1, ..., N ].
The nonlinear mapping function is given Φ : Rd → F d

such that x′t = Φ(x′t), t = 1, ..., d where x′t is an N dimen-
sional vector including all of the tth features from N in-
put data. Explaining this, we have Φ = [φ(x′1), ..., φ(x′d)].
The use of a positive semi-definite kernel function or Mer-
cer kernel computes an inner product in the new space F d:

kσ(x′t, x
′
t′) = 〈φ(x′t)φ(x′t′)〉 (10)

The (N×N) kernel matrix-we define that asKFDKECA

-is now defined such that element (t, t′) of the kernel matrix
is kσ(x′t, x

′
t′). Therefore,KFDKECA is the Gram matrix or

the inner product matrix in F d. The next stage in FDKECA
is to perform PCA on KFDKECA. Note that the kernel
matrix taken in FDKECA feature space (KFDKECA ) is
totally different from that of KPCA.

Fig. 1. illustrates a brief flow diagram of reaching kernel
Entropy feature space from scratch. As it is shown in Fig.
1, N input data are first mapped into kernel space by φ and
then the Gram matrix (kernel matrix) is calculated using in-
ner product. Note that the dimension of kernel matrix is
equal to the number of input data- N . Eigen-decomposition
is the next step where all eigenvalues and their correspond-
ing eigenvectors are extracted and reordered in a descending
manner from the greatest to the smallest value. After find-
ing the kernel axes in this space, the kernel matrix, which
represents the input data, is projected onto the kernel fea-
ture vectors (eigenvectors). The drawback to KECA is that
the dimension of feature space and kernel matrix could be-
come too high and as a result data transformation could be
computationally expensive. In addition, finding the most
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Figure 1. Flow diagram of reaching Kernel Entropy Feature Space

Figure 3. Top 63 eigenvectors obtained by PCA

optimized sub-space in kernel feature space could be chal-
lenging and sometimes inefficient.

Fig. 2. demonstrates FDKECA feature space where the
input data is projected onto a subspace spanned by princi-
pal kernel entropy axes contributing to the feature depen-
dent kernel entropy space. As it is illustrated in Fig.2, FD-
KECA considers all features having the same dimension
from all input data in separate vectors first and then maps
them into kernel space which is called FDKECA feature
space. Then it computes the kernel matrix (Gram matrix)
using inner products which is a d-dimensional space. Note
that the input data has the dimension of dwhich means there
is no growth of dimension while computing FDKECA fea-
ture space. Having d-dimensional FDKECA feature space,
the eigenvectors and their corresponding eigenvalues are de-
composed in this step using the estimation of entropy. The
original input data is projected onto a sub-space of FD-
KECA feature vectors for the purpose of transformation and
dimensionality reduction.

4. Eigenface Analysis on PCA and FDKECA

For more detailed comparison, we have performed PCA
and FDKECA on the first individuals samples and visu-
alized the first 63 feature vectors (eigenfaces) which are
shown in Fig. 4 and 5.

Figure 4. Top 63 eigenvectors obtained by FDKECA

In this analysis, we used 10 samples of the first subject of
SCface database in PCA and FDKECA. In PCA, all samples
were first converted into 1-D vectors. After calculating the
mean vector (the mean image), the co-variance matrix is ob-
tained and then, the Eigen-decomposition is performed on
the co-variance matrix. The eigenvectors (PCA eigenfaces)
were then reordered according to the greatness of their cor-
responding eigenvalues (in descending order). Fig. 4 shows
the top 63 eigenvectors obtained by PCA. As it was ex-
pected, the top eigenvector carries the most information and
the amount of information being carried by the feature vec-
tors reduces as the eigenvector gets farther from the top one
and closer to the bottom one. Another expectation is that
only the first 9 or 10 top eigenvectors have some valuable
information and the rest of the axes (eigenvectors) seem not
to be useful as almost no related information can be seen in
them. In terms of FDKECA, however, it is different.

In FDKECA, we used the polynomial kernel function
with the degree of two. Firstly, all samples were con-
verted into 1-D vectors. After calculating the mean vector
(the mean image), all samples were mapped by the poly-
nomial kernel function (as described in section III). Then,
the Eigen-decomposition was performed on KFDKECA to
achieve the feature vectors and finally the axes were re-
ordered based on entropy estimate. Fig. 5 illustrates the
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Figure 2. Flow diagram of reaching Feature Dependent Kernel Feature Space

top 63 eigenvectors obtained by FDKECA. Same as PCA,
it was expected that the top eigenvector carries the most in-
formation and the amount of information drops as the num-
ber of the eigenvector gets closer to the bottom one. How-
ever, there is a considerable discrepancy between the shown
eigenfaces obtained by PCA and FDKECA. In FDKECA,
all eigenfaces carry relevant information except for the last
12 while in PCA only the first 9 or 10 ones have informa-
tion related to the original face images. This analysis shows
that FDKECA finds more informative and valuable feature
vectors compared to PCA (as shown in Fig. 3 and4).

5. Spectral Clustring Algorithm Using FD-
KECA

In this section, a spectral clustering algorithm is devel-
oped using FDKECA transformation. The proposed algo-
rithm, actually, is suitable for image classification which
works in a supervised system as there are some samples to
train the system and then using different samples, the sys-
tem is tested. We first introduce the FDKECA clustering
algorithm and then compare it with other algorithms such
as PCA, KPCA and KECA in next section. As FDKECA
can be considered as an extension to 1-D PCA, in our clus-
tering algorithm all samples are converted into vectors. The
goal is to propose a clustering system which not only is fast
enough (not as computationally expensive as KECA), but
also outperforms PCA, KPCA and KECA in terms of clus-
tering image samples. Such an algorithm can be used in
recognition systems like face, finger print, finger vein, palm
vein etc.

Fig.5 indicates the flow diagram of the proposed cluster-
ing algorithm for image classification. We believe this al-
gorithm can be applied in image-based recognition systems
such as face and finger vein recognition. Moreover, this
algorithm is much faster than normal KECA as its dimen-
sion of feature vector is fixed and it does not become too
computationally expensive when analyzing a huge number
of data. In addition to having a high speed, this algorithm
is believed to be more appropriate than PCA, KPCA and
KECA as it was shown in previous section. We have con-
ducted different experiments on two different databases to
have a complete analysis on the proposed algorithm. Next

Figure 5. Flow diagram of the proposed clustring algorithm using
FDKECA

section gives experimental results on face and finger vein
database.

6. Experimental Results

In this section, the performance of FDKECA is evaluated
and compared with PCA, KPCA, and Kernel Entropy Com-
ponent Analysis (KECA) on two different databases- finger
vein and face. The experiments are conducted on Surveil-
lance Camera Face Database (SCface database) and Finger
vein database which are explained in two experimental se-
tups in the following part of this section.
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6.1. Experimental setup-1

The first part of the experiments is on finger vein
database. The finger vein samples are collected using our
own designed scanner. We will not go through the detailed
discussion on how the data is collected and prepared as it
might not be totally relevant to this work, See [27] for more
information on the database.

10 samples were used from each of 200 individuals
which results in a finger vein database consisting of 2000
samples. Region of Interest is detected and extracted from
each sample automatically. Fig. 6 shows an original and
cropped sample from the database. Two independent exper-
iments have been conducted on this database. Firstly, the
performance of FDKECA is compared with PCA, KPCA,
and KECA where 5 randomly selected samples were used
to train the algorithm and the remaining 5 to test. Then
we used leave-one-out strategy to have a better comparison.
Gaussian kernel is used in FDKECA, KPCA, and KECA
algorithms in this stage. As in PCA-based image analysis
the size of the samples is of importance, all finger vein sam-
ples have been normalized to the size of (10× 20) to have a
balance between speed and efficiency. In one-dimensional
PCA-based algorithms, the first step is to convert the data
from matrices into vectors which leads into vectors with the
dimension of (1 × 200). It means there could be 200 dif-
ferent implementations of FDKECA on the data using 200
different feature vectors to project the data onto. However,
it is totally different in KPCA and KECA as it is depen-
dent on the number of input data being transferred into ker-
nel space. For the sake of comparison, the first 200 ker-
nel feature vectors were used in our implementations. In
each single experiment, the implementation is repeated 200
times and the maximum accuracies and their corresponding
dimension of feature vector are gathered and shown in Ta-
ble 1. As it is observed from this table, KPCA and KECA
achieve their maximum accuracy in a much higher dimen-
sion of feature vector in comparison with PCA. It is because
feature space in KPCA and KECA is very high dimensional.
more precisely, if 9 image from each category is used to
train, it leads to a total number of 1800 train samples as
there are 200 individuals. Having 1800 input samples in
KPCA and/or KECA will result in a feature space with the
dimension of (1800× 1800) , while in PCA the dimension
is fixed and equal to 200 in this experiment. The FDKECA,
however, results in having the highest accuracy rate while
its dimension of feature vector is almost as high as PCA,
which means this method is not computationally as expen-
sive as KPCA and KECA. Moreover, there is a dramatic
gap between FDKECA and KECA which is more than 10
percent in the first experiment.

Table 1. Comparison of FDKECA with Other Methods Using the
finger vein Database

Strategy Method Max Acc % Dimension
5 for training KPCA 85.9 200

KECA 86 175
PCA 95.3 68
FDKECA 97.2 46

Leave-one-out KPCA 92.5 173
KECA 93.5 86
PCA 98.5 35
FDKECA 99.4 85

Figure 6. Original and ROI extracted finger vein sample

Figure 7. SCface classification using images of 4 cameras for train-
ing and 1 to test

6.2. Experimental setup-2

In the second experimental setup, we chose SCface
database which is already explained in section 4. There are
five different cameras located in three different distances
from the individuals to collect the face data. In this part,
we conducted the experiment using the images of 4 ran-
domly selected cameras for training and the remaining 1
camera for testing. For each algorithm, the experience was
repeated 100 times using the first 100 different eigenvectors
to project the data onto and the results were gathered and
visualized in Fig. 7. It is observed that Like the previous
setup, FDKECA outperforms PCA, KPCA, and KECA in
all experiments. As Fig.7 indicates, FDKECA reaches the
highest accuracy of almost %98 while PCA, KPCA, and
KECA get the accuracy of %89, %79 and %81 respectively.

7. Conclusion
We introduced a new data transformation method in this

research work for dimensionality reduction in image-based
recognition systems. Feature Dependent Kernel Entropy

6

Journal of WSCG http://www.wscg.eu

Vol.23, No.1-2 6 ISBN 978-80-86943-64-0

Cumulative Edition

Skala
Obdélník



Component Analysis (FDKECA) is an extension to both
1D-PCA and 1D-KECA. In FDKECA, all data is mapped
into kernel space feature-wisely which results in having a
constant dimension of data as well as being able to extract
more valuable feature vectors in FDKECA feature space.
Eigenface analysis showed that the feature vectors in FD-
KECA feature space are more informative than PCA. To
examine FDKECA in practical clustering and classification
methods and to be able to have a complete comparison with
PCA, KPCA, and KECA, we proposed a clustering algo-
rithm using FDKECA which was examined in two differ-
ent areas- face recognition and finger vein recognition. Ex-
perimental results showed that FDKECA outperforms PCA,
KPCA, and KECA which shows the reliability of FDKECA
to be applied in image classification and recognition sys-
tems.

References
[1] R.O. Duda, P. E. Hart, and D.G. Stork Pattern Classification., John

Wiley and Sons, 2001.

[2] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic
Press, 1999.

[3] S. Roweis and L. Saul, Nonlinear Dimensionality Reduction by Lo-
cally Linear Embedding, Science, vol. 290, pp. 2323-2326, 2000.

[4] J. Tenenbaum, V. de Silva, and J.C. Langford, A Global Geometric
Framework for Nonlinear Dimensionality Reduction, Science, vol.
290, pp. 2319-2323, 2000.

[5] K.Q. Weinberger and L.K. Saul, Unsupervised Learning of Image
Manifolds by Semidefinite Programming, Intl J. Computer Vision,
vol. 70, no. 1, pp. 77-90, 2006.

[6] L.K. Saul, K.Q. Weinberger, J.H. Ham, F. Sha, and D.D. Lee, Spec-
tral Methods for Dimensionality Reduction, Semisupervised Learn-
ing, O. Chapelle, B. Scholkopf, and A. Zien, eds., chapter 1, MIT
Press, 2005.

[7] C.J.C. Burges, Geometric Methods for Feature Extraction and Di-
mensional Reduction, Data Mining and Knowledge Discovery Hand-
book: A Complete Guide for Researchers and Practitioners, O. Mai-
mon and L. Rokach, eds., chapter 4, Kluwer Academic Publishers,
2005.

[8] Jolliffe, I. 2005. Principal Component Analysis. Encyclopedia of
Statistics in Behavioral Science.

[9] L. Sirovich and M. Kirby, Low-Dimensional Procedure for Charac-
terization of Human Faces, J. Optical Soc. Am., vol. 4, pp. 519-524,
1987.

[10] M. Kirby and L. Sirovich, Application of the KL Procedure for the
Characterization of Human Faces, IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 12, no. 1, pp. 103-108, Jan. 1990.

[11] I.T. Jolliffe, Principal Component Analysis. Springer Verlag, 1986.

[12] B. Scholkopf, A.J. Smola, and K.-R. Mu ller, Nonlinear Component
Analysis as a Kernel Eigenvalue Problem, Neural Computation, vol.
10, pp. 1299-1319, 1998.

[13] Schlkopf, Bernhard, Alexander Smola, and Klaus-Robert Mller.
”Kernel principal component analysis.” Artificial Neural Network-
sICANN’97. Springer Berlin Heidelberg, 1997. 583-588.

[14] H. Hotelling, Analysis of a Complex of Statistical Variables into Prin-
cipal Components, J. Educational Psychology, vol. 24, pp. 417- 441,
1933.

[15] M.L. Braun, J.M. Buhmann, and K.-R. Mu ller, On Relevant Dimen-
sions in Kernel Feature Spaces, J. Machine Learning Research, vol.
9, pp. 1875-1908, 2008.

[16] J.T. Kwok and I.W. Tsang, The Pre Image Problem in Kernel Meth-
ods, IEEE Trans. Neural Networks, vol. 15, no. 6, pp. 1517- 1525,
2004.

[17] S. Mika, B. Scholkopf, A. Smola, K.R. Mu ller, M. Scholz, and G.
Ratsch, Kernel PCA and Denoising in Feature Space, Advances in
Neural Information Processing Systems, 11, pp. 536-542, MIT Press,
1999.

[18] B. Scholkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Mu ller, G.
Ratsch, and A.J. Smola, Input Space versus Feature Space in Kernel-
Based Methods, IEEE Trans. Neural Networks, vol. 10, no. 5, pp.
1299-1319, 1999.

[19] Kim, Kwang In, Keechul Jung, and Hang Joon Kim. ”Face recog-
nition using kernel principal component analysis.” Signal Processing
Letters, IEEE 9.2 (2002): 40-42.

[20] Damavandinejadmonfared, Sepehr, et al. ”Finger Vein Recognition
using PCA-based Methods.” World Academy of Science, Engineer-
ing and Technology 6.6 (2012): 1079-1081.

[21] Jenssen, Robert. ”Kernel entropy component analysis.” Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on 32.5 (2010):
847-860.

[22] Shekar, B. H., et al. ”Face recognition using kernel entropy compo-
nent analysis.” Neurocomputing 74.6 (2011): 1053-1057.

[23] J. Mercer, Functions of Positive and Negative Type and Their Con-
nection with the Theory of Integral Equations, Philosophical Trans.
Royal Soc. London, vol. A, pp. 415-446, 1909.

[24] K.R. Mu ller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, An In-
troduction to Kernel-Based Learning Algorithms, IEEE Trans. Neural
Networks, vol. 12, no. 2, pp. 181-201, Mar. 2001.

[25] C.K.I. Williams, On a Connection between Kernel PCA and Met-
ric Multidimensional Scaling, Machine Learning, vol. 46, pp. 11-19,
2002.

[26] Grgic, Mislav, Kresimir Delac, and Sonja Grgic. ”SCfacesurveil-
lance cameras face database.” Multimedia tools and applications
51.3 (2011): 863-879.

[27] S.Damavandinejadmonfared, and V.Varadharajan. Finger Vein
Recognition in Row and Column Directions Using Two Dimensional
Kernel Principal Component Analysis Proceedings of the 2014 Inter-
national Conference on Image Processing, Computer Vision Pattern
Recognition, IPCV14, July 2014, USA.

7

Journal of WSCG http://www.wscg.eu

Vol.23, No.1-2 7 ISBN 978-80-86943-64-0

Cumulative Edition

Skala
Obdélník



 

Journal of WSCG http://www.wscg.eu

Vol.23, No.1-2 8 ISBN 978-80-86943-64-0

Cumulative Edition



Cloth Simulation Using Soft Constraints

Mihai Frâncu
Politehnica University
Bucharest, Romania

mihai.francu@cs.pub.ro

Florica Moldoveanu
Politehnica University
Bucharest, Romania

florica.moldoveanu@cs.pub.ro

Abstract
This paper describes a new way of using projective methods for simulating the constrained dynamics of deformable
surfaces. We show that the often used implicit integration method for discretized elastic systems is equivalent to
the projection of regularized constraints. We use this knowledge to derive a Nonlinear Conjugate Gradient implicit
solver and a new projection scheme based on energy preserving integration. We also show a novel way of adding
damping to position based dynamics and a different view on iterative solvers. In the end we apply these fresh
insights to cloth simulation and develop a constraint based finite element method capable of accurately modeling
thin elastic materials.

Keywords
Implicit integration, constraints, projection, PBD, damping, iterative solver, cloth, FEM

1 INTRODUCTION
For decades now the preferred method of simulating
elastic systems in computer graphics has been the
implicit integration of the equations of motion. The
method is very attractive due to its unconditional sta-
bility and large time steps. It has been widely used for
simulating cloth and finite difference or finite element
soft bodies in general. Constraint based methods on
the other hand have not received that much attention,
with the exception of rigid body dynamics. Only
recently there has been an increase in the number of
papers on the subject in relation to soft bodies and we
believe there is room for improvement. Many regard
the method as being an inaccurate approximation
of natural phenomena which are better described by
elasticity theory. In this paper we aim to reconcile the
two methods and show that they are two faces of the
same problem; this can prove useful for the further
development of both approaches.

1.1 Related work
Constraint based methods have appeared originally in
their acceleration based formulation for rigid body dy-
namics [Bar94]. Later on, velocity or impulse based
methods gained more popularity [AH04, Erl07]. Po-
sition based methods are actually a nonlinear version

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

of velocity based ones, in the sense that they can still
be expressed as velocity filters, but constraints are en-
forced at positional level [ST96]. Such a method was
made popular in games by [Jak01] and was later refined
and extended by [MHHR07] under the name Position
Based Dynamics (PBD). Part of the inspiration for this
method came from molecular dynamics where methods
like SHAKE or RATTLE are widely used [BKLS95]. A
more detailed study for the application to cloth simula-
tion in computer graphics was done in [Gol10]. Here
the method of fast projection is developed based on
an implicit treatment of constraint directions [HCJ*05]
and a better energy preserving integrator is also derived.
A similar method was used to develop the unified Nu-
cleus solver in Autodesk Maya [Sta09]. Position based
methods rely on projection for solving differential al-
gebraic equations (DAE), which is ultimately an opti-
mization problem [HLW06]. Another part of inspira-
tion came from strain limiting techniques used in elastic
cloth simulation [Pro96, BFA02].

Constraint based methods are often criticized for the
fact they simulate only nearly inextensible materials
and are prone to locking. In order to address this [EB08]
use fast projection in conjunction with a BDF-2 in-
tegrator on a conforming triangular mesh. They also
give a brief proof for fast projection being the limit of
infinitely stiff elastic forces. Other authors prefer to
use quad-predominant meshes or diamond subdivision
[Gol10].

Constraint regularization was employed mainly in
[Lac07] for making rigid dynamics with contact and
friction more tractable numerically. We take the name
soft constraints from [Cat10] where an older idea is
used: regularization under the mask of Constraint
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Force Mixing (CFM) [Smi06]. Recently constraint
regularization has been used for particle based fluid
simulation [MM13]. Another application was intended
for the simulation of deformable elastic models using
a constraint based formulation of the linear Finite
Element Method (FEM) [SLM06]. Similar position
based approaches can be found in [BML*14] and
[BKCW14]. The FEM constraint approach is similar
in philosophy with continuum strain limiting [TPS09].

The implicit integration of the equations of motion has
become pervasive for cloth since the seminal work of
[BW98]. The method was also applied for FEM sim-
ulation [MSJT08]. Its main attraction is its uncondi-
tional stability for very stiff equations and large time
steps. By implicit integration we usually mean the Im-
plicit Euler (IE) method, but other implicit integrators
were also employed, like BDF-2 [CK02], Implicit Mid-
point [OAW06] or Newmark [SSB13]. These integra-
tion methods offer better energy conservation and more
responsive simulation, in contrast to IE which artifi-
cially dampens out high frequency details in exchange
for stability. Other variations include approximations
made to the force Jacobian [HET01] or an implicit-
explicit (IMEX) approach [EEH00, BMF03]. Most ap-
proaches however use only one Newton solver itera-
tion. More recently a new view on IE as an optimization
problem was presented in [LBOK13].

A special class of integrators labeled variational can be
deduced directly from the discretization of the Euler-
Lagrange equations of motion [SD06]. They are also
symplectic integrators, i.e. they preserve area in phase
space, which also means they are closer to preserving
energy and momenta [HLW06]. Many of them are ex-
plicit methods (e.g. Symplectic Euler, Verlet, Leapfrog)
so care must be taken to the time step size. Varia-
tional implicit methods like Implicit Midpoint or New-
mark are more stable and can be converted to projection
schemes (e.g. through our constraint space transforma-
tion). This is why we used them as inspiration for our
energy conservation strategy.

A new alternative that is totally different from implicit
integration of elastic systems or our approach is ex-
ponential integration [MSW14] which relies on eval-
uating trigonometric matrices (in terms of exponential
functions).

1.2 Contributions
We present in this paper a constraint based simulator
that is able to reproduce fully the elastic properties of
cloth. We base our results on the fact that constraint
projection methods are in fact equivalent to implicit in-
tegration of stiff springs (Section 2). Our approach is
not entirely new as it is based on the idea of constraint
regularization [Lac07]. We chose to use a PBD method
instead as it corresponds to the nonlinear case [ST96]

and it handles fast deforming bodies more robustly.
Catto [Cat10] uses Baumgarte stabilization (ERP) and
CFM and relates them to the stiffness and damping of
an implicit harmonic oscillator. We give a more general
and accurate correspondence to elastic parameters.

In Section 3 we derive a simple implicit integration
solver based on the Variational Implicit Euler approach
in [LBOK13] and the Nonlinear Conjugate Gradient
method which is very similar to PBD. From it we obtain
the equations of regularized constraint projection (Sec-
tion 4). Using this transformation we derive a new pro-
jection method with better energy conservation (Sec-
tion 5). In Section 6 we present a novel and effective
way of adding more damping to PBD. Section 7 shows
how relaxation can be used for block solving and reg-
ularization and how to transform the Conjugate Gradi-
ent method into Conjugate Residuals. In Section 8 we
present constrained mass-spring systems for cloth and
how to prevent locking. In Section 9 we present a non-
linear Saint Vennant-Kirchoff (StVK) elasticity model
implemented through soft constraints. We take the area
and planar strain constraint from [SLM06] and derive
a method that takes into account the discretization and
elastic properties of cloth. The closest approach to our
method is [BKCW14] but they use energy as a con-
straint instead of a minimization objective. [BML*14]
is using the same energy objective as us but their nu-
merical method is different.

2 OPTIMIZATION EQUIVALENCE
In this section we would like to show that implicitly in-
tegrating stiff elastic forces is no different than using a
constraint based formulation with regularization. The
most general way to show this is by employing an op-
timization formulation for both methods. Let us start
with Implicit Euler:

M∆v = hf(x0 +∆x), (1)
∆x = h∆v (2)

where M is the mass matrix, x are positions, v are ve-
locities, h is the time step, x0 = x(n) + hv(n) and f(x)
are conservative forces, i.e. f(x) = −∇xU(x). We can
reformulate (1) as:

1
h2 M∆x =−∇xU(x0 +∆x), (3)

This is a nonlinear equation which is typically solved
using the Newton method, but it can also be regarded
as the optimality condition of an optimization problem:

minimize 1
2h2 ∆xT M∆x+U(x0 +∆x). (4)

It is shown in [GHF*07] that a similar formulation can
be used for a projection method using Lagrange multi-
pliers and implicit constraint directions:

min. 1
2h2 ∆xT M∆x−λ

T c(x0 +∆x)+Uext(x(n)), (5)
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where c(x) are the constraint functions that need to be
zero. Note that we modified the formulation so that
the external forces potential is included in the objec-
tive function. Note that the external forces are treated
explicitly, i.e. using the position at the beginning of the
frame, which is also the case for (4).

The potential term Uc = λ T c(x) gives us the internal
constraint forces. If we take the gradient of this con-
straint potential we get the principle of virtual work:

fc = ∇xc(x)λ = JT
λ . (6)

If we express the total potential in general as U =
Uint +Uext , then so far the objectives in (4) and (5) are
the same in the first (inertial) term and Uext . For Uint
we have an expression in the second case, but we have
not yet specified one for the implicit integration. And
we are not forced to provide one, but in reality, follow-
ing the approach in [BW98], this internal potential is
usually made up of quadratic elastic potentials with the
purpose of enforcing certain constraints [Lan70]:

Ue(x) = k
2‖c(x)‖

2. (7)

More generally we can replace stiffness k by a matrix:

Ue(x) = 1
2 c(x)T Ec(x),

which is extremely useful when dealing with different
stiffnesses in a mass-spring system or continuum based
constitutive laws.

The potential energy in (7) gives forces of the form:

fe(x) =−kJT c(x). (8)

By comparing (6) and (8) we can see that they act in the
same direction and by requiring that they have the same
magnitude we obtain the regularization condition:

c(x)+ ελ = 0, (9)

where ε = 1/k. We call this a soft constraint and by
enforcing it we basically set the internal potential en-
ergy in (5) to be the same as in (4), thus making the two
problems equivalent. It is clear now that when stiffness
k goes to infinity (ε→ 0) implicit integration of springs
becomes the constrained dynamics problem in (5). In
the general case ε gets replaced by E−1.

In conclusion, not only is constraint based dynamics a
limit case of implicit integration, but it can be made
equivalent by replacing the strict constraint condition
with a "softer" one. This permits us to solve a mass-
spring system or any other discretized elastic system by
casting the problem into the following form:

M∆x = h2
(

JT
λ −∇xUext(x(n))

)
,

0 = c(x0 +∆x)+ ελ

This equivalence opens up a whole range of opportu-
nities, especially for bringing results from implicit in-
tegration into the world of constraint based simulation.
This was not considered possible in the past, as projec-
tion methods were regarded as an approximation of true
elasticity based ones [Lac07, LBOK13].

3 NONLINEAR CONJUGATE GRADI-
ENT SOLVER

The most important analogy we make in this paper is
that between Implicit Euler integration and PBD. PBD
starts from a candidate position (that includes the effect
of external forces) and then runs an iterative process
that does not involve the second derivative of the con-
straint function. This process is actually a minimization
algorithm based on sequential quadratic programming
(SQP) [WN99] that involves solving a linear system at
every iteration, called fast projection [GHF*07]. This
process can be further optimized by employing an in-
exact one step SOR-Newton scheme [Jak01, MHHR07]
that reduces the cost of each iteration by running only
one relaxation step.

The same logic can be applied to the Implicit Euler
method expressed as the quadratic minimization prob-
lem in (4). If we choose the initial guess state to be one
that incorporates the external forces, i.e. positions and
velocities after an unconstrained step, we arrive at an
approach similar to fast projection. The only difference
is that the former works in configuration space, while
the latter works in constraint space.

If we consider the initial candidate state consisting of
ṽ = v(n) + hfext and x̃ = x(n) + hṽ we can rewrite (1)
using a first order Taylor expansion around x̃:

Mδv = h(f(x̃)+Kδx) , (10)

where K = ∇xf = − ∂ 2U
∂x2 is the tangential stiffness ma-

trix and δx= hδv. Most authors choose to solve the im-
plicit integration problem using only one Newton step,
meaning we only need to solve one single linear sys-
tem: Sδv = t. This works well in practice, but only
if K contains second derivatives of the constraint func-
tion. This is because these terms contain information
about the change of the constraint direction, so without
them we need an iterative algorithm that keeps updating
the constraint gradient. By dropping the second deriva-
tive term from K (see [BW98]) we get:

K =−kJT J. (11)

This is equivalent to linearizing the force in (8) as in
[EB08]. Using this formula at every Newton iteration
we get the series of linear systems we need to solve:

(M+h2kJT
i Ji)δvi+1 = hf(xi), (12)

where JT
i = ∇xc(xi) and xi+1 = xi +hδvi+1.
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Uncostrained step to x̃, ṽ
Compute Jacobian J and forces f using (8)
Compute residual r = d = hf and its square δ = r2

for iter = 1:maxIter do
Compute q = Sd = (M+h2kJT J)d
Compute impulse p = αd, where α = δ/qT d
Integrate: v← v+p, x← x+hp
Recompute Jacobian J and forces f
Compute residual r = hf and its square δ ′ = r2

Compute β = δ ′/δ and then δ ′← δ

Compute new search direction d = r+βd
Algorithm 1: NCG implicit solver

Nonlinear Conjugate Gradient (NCG) [She94] is a nat-
ural solution for solving the above problem, given its
linear version is very popular for solving the one New-
ton step approach. The only changes we need to make
to linear CG is to replace the system matrix at every
step with Si = M+ h2kJT

i Ji (the Hessian of the objec-
tive function) and the residual with ri = hf(xi). We use
a Fletcher-Reeves formula and perform the inner line
search in only one iteration - see Algorithm 1.

Note that the NCG method is not necessarily faster than
traditional CG linear implicit solvers (we found that it
takes roughly 40% more time without optimizations).
We can also add back the second derivative term if we
want. Also, visually there is no big difference between
the two methods. The only advantages you would get
with the NCG method are smaller spring elongations
and more stability for large time steps. But the main
reason for devising the scheme is the similarity with
PBD which we further exploit in the next section.

4 CONSTRAINT SPACE
Given that we already know that the regularized projec-
tion method is equivalent to implicit integration and that
the formulation in the previous section is already very
similar to PBD, we would like to transform the system
in (12) to one corresponding to fast projection. So by
multiplying (12) on the left-hand side by T = 1

hk A−1J,
where A = JM−1JT , we get:

(h2A+ εI)δλ + c(x) = 0, (13)

which is precisely the system we need to solve at ev-
ery iteration of fast projection for the regularized con-
straints in (9). In order to get this result we made the
substitution δv = hM−1JT λ which derives from the
optimality conditions of the constraint projection op-
timization problem. To back our claims you can see in
Figure 1 that NCG and PBD behave almost the same
and very closely to the exact and CG semi-implicit
solvers.

We call T a constraint space transformation from con-
figuration space and show that the inverse transform is
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Figure 1: The energy evolution over 500 frames of a
15x15 piece of cloth using NCG (green), PBD (purple)
and CG (red) and exact (blue) semi-implicit solvers.

also possible by multiplying (13) to the left hand side by
Q = hkM−1JT . Note that TQ = Im (m - number of con-
straints) and QT = In (n - degrees of freedom). We thus
found a quick way of switching from one interpretation
to the other. Also, by setting ε → 0 (infinite stiffness)
we recover the classic iterative projection formula:

h2Aδλ + c(x) = 0, (14)

Note though that not all implicit formulations can be
converted this way to a constraint based formulation
and that is because the methods are equivalent as opti-
mization problems but the numerical methods used may
differ in significant ways, e.g. the use of the second
derivative. Still their results converge towards the same
solution.

5 ENERGY CONSERVATION
Implicit methods in general suffer from artificial nu-
merical dissipation, whether they are used for an elas-
ticity based formulation or a constraint based one. This
is usually regarded as a good stability property and the
extra damping is considered beneficial by the computer
graphics community. Still in many cases like the exam-
ple of cloth, this integration technique acts like a low-
pass filter that removes high frequency motion and thus
prevents the formation of high-detail wrinkles and re-
sponsive folds.
In the projection methods literature there exist en-
ergy preserving solutions like symmetric projection
[HLW06] or the Velocity Verlet method proposed in
[Gol10]. Another popular integration method that
can conserve energy exactly is the Implicit Midpoint
method [OAW06]. There exist other explicit variational
integrators (e.g. Symplectic Euler) with very good
energy conservation properties but they suffer from the
same time step limitations as any other explicit method.
Given the fact that we are not able to solve the nonlinear
equations generated by implicit methods exactly, the
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accumulated errors will make Implicit Midpoint much
less stable than Implicit Euler. One could alleviate this
problem by using techniques suited for explicit meth-
ods, e.g. smaller/adaptive time steps or adding in a
damping term. Our solution is to employ an integra-
tion scheme taken from [Lac07] which gives us more
flexibility:

1
h M∆v = fext +(1−α)f(x(n))+αf(x(n+1)), (15)

1
h ∆x = (1−β )v(n)+βv(n+1), (16)

where α and β are between 0 and 1 and we can dis-
tinguish the following special cases: Explicit Euler
(α = β = 0), Implicit Euler (α = β = 1), Implict Mid-
point (α = β = 1

2 ), and Symplectic Euler (α = 0,β = 1
or α = 1,β = 0).

Moving slightly away from the Implicit Midpoint
method and making it more implicit permits us to have
low artificial numeric dissipation while still being able
to solve the system approximately and obtain a stable,
yet responsive simulation. Using the constraint space
transformation , i.e. multiplying (15) and (16) on the
left hand side by T, we obtain the following regularized
projection:

(h2
αβAi + εI)δλ i+1 +αc(xi) = 0, (17)

where xi+1 = xi+βhM−1δ fi+1, vi+1 = vi+hM−1δ fi+1
and δ fi+1 = JT

i δλ i+1. Also the integration of the can-
didate state changes to:

x̃ = x(n)+hv(n)+h2g+h2
β (1−α)M−1JT

λ
(n),

ṽ = v(n)+hg+h(1−α)M−1JT
λ
(n),

where we replaced external force by gravity for brevity
and the Jacobian J is computed at position x(n).
At the limit ε → 0 this whole procedure is of course
equivalent to projecting the candidate positions using
the same system (14) as in fast projection and PBD. The
difference appears only in the regularization term which
gets replaced by εα−1β−1. The above formulation is
also good when stepping both positions and velocities
at the same time. Alternatively we could estimate the
new velocity only at the end using equation (16):

βv(n+1) = 1
h (x

(n+1)−x(n))− (1−β )v(n)

We could have reached a similar result using the fast
projection formalism in [Gol10] but our constraint
space transformation method ensures that we also
obtain the correct regularization term. For example,
we can apply the same technique to obtain the BDF-2
based projection method presented in [EB08] and
find that the new regularization term is 9

4 ε . Still we
prefer our method as we do not need to store previous
positions and velocities and, being a one step scheme,

it is better suited for non-smoothness. Actually more
related to ours is the Newmark scheme [SSB13]
for which we can use the same projection method
regularized with ε/β , using the Newmark β factor
between 0 and 1/2.

6 DAMPING
Now that we have reduced the amount of artificial
damping, we can add back some real damping. Our
method will be based on the damping force expres-
sion used in [BW98] which is also a special case of
the widely used method of Rayleigh damping [SSB13].
In order to extend (10) to contain the damping force
we need to consider the total force as f(x,v) = fe(x)+
fd(v), i.e. sum of elastic and damping forces:

(M−h2K−hD)δv = hf(x̃),

where D = ∂ f
∂v = ∇vf. This is equivalent to having a

damping force:

fd = d∇xc(x)ċ(x) = dJT Jv,

where d is the damping coefficient and ċ(x) = Jv.
Rayleigh damping makes the approximation D= ζ M+
γK, but we will only be using the second term as it
makes the derivations simpler and it is only damp-
ing along the constraints we are interested in (we can
achieve drag friction in other ways). The implicit inte-
gration formula (10) now becomes:

(M−h(h+ γ)K)δv = hf(x̃). (18)

If using the approximation in (11) we notice that fd =
γKv, where γ = d/k is the ratio between the damping
and the stiffness coefficients.
We can incorporate this damping force into the opti-
mization formulation using Rayleigh dissipation func-
tions [Lac07]. So we transform (18) to constraint space
and get the following projection:

h(h+ γ)Aδλ i+1 + ei = 0, (19)

where ei = c(xi) + γJvi; the second term is nothing
more than the relative velocity along the constraint
times γ . So this is a simple way to add more damping
along the constraint directions which looks more natu-
ral than plain viscous drag in all directions. The down-
side is that you may have to pay the price of more it-
erations in order to keep the same amount of constraint
violation as before damping. The final formula after
adding regularization and energy preservation is:

(hα(h+ γ)Ai + εI)δλ i+1 +αei = 0. (20)

As you can see now the projection formula includes
both a stiffness parameter (ε = 1/k) and a damping pa-
rameter (γ = d/k) and so the method is fully equivalent
to the implicit integration of a damped elastic system.
Note that even in the case of infinite stiffness, the damp-
ing parameter can remain finite and we get (19).
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7 ITERATIVE SOLVERS
As we already mentioned, the most popular methods for
solving PBD are nonlinear relaxation methods: Jacobi,
Gauss-Seidel or Successive Over Relaxation (SOR).
Jacobi for instance has the following update formula:
δλ i+1 = δλ i +µri, where µ j = ω/A j j, ω < 1 and A j j
comes from the diagonal of A. What these methods ac-
tually do is they solve each equation and its correspond-
ing unknown separately (local solve) and iterate over all
equations for a number of times in order to refine the so-
lution. The local solve formula for one constraint c in
the PBD method is:

h2
∇c(x)T M∇c(x)δλ + c(x) = 0, (21)

where M and x correspond to the s ≥ 1 particles in-
volved in the constraint. We could also solve for more
than one constraints simultaneously and we would ob-
tain a system Lδλ +c(x) = 0 that we could solve using
direct matrix inversion or a direct solver.
Looking more closely at the equation (13) we notice
that it is not that different from (14). We can re-
gard the change to the diagonal of the system matrix
as a scaling through a relaxation factor as in [Jak01].
As noted in [MHHR07] this factor is highly nonlin-
ear and we are now able to express this exact non-
linear relationship to the linear spring stiffness value:
ω j = (1+(h2k jA j j)

−1)−1 < 1, where k j is the stiffness
of spring j. On the other hand, if we use ω > 1 we ob-
tain SOR which may converge faster and produce better
inextensibility, i.e. stiffer cloth for less iterations.
Another application of the equivalence between im-
plicit integration and regularized PBD is to see what
happens to the Conjugate Gradient method when we
transform from configuration to constraint space. Let
us start with the update formula for Steepest Descent:

δvi+1 = δvi +αiρ i,

where ρ i is the residual of the system in (12) which is
related to the residual ri by ρ i = Tri and ri = Qρ i, and

αi =
ρT

i ρ i

ρT
i Sρ i

.

We would like to see how the constraint space transfor-
mation affects the update formula in constraint space.
So we write αi in terms of ri:

αi =
rT

i QT Qri

rT
i QT SQri

.

For the nominator we find that QT Q = h2k2Ã, where
Ã = JM−2JT and the denominator is QT SQ = h2k3AS.
By using the properties of matrices T and Q we get
that µi = kαi and by considering infinite stiffness, i.e.
S→ h2A when ε → 0, we get:

µi =
rT

i (h
2Ã)ri

rT
i (h2A)2ri

.

If we ignore the tilde (or all the masses are 1) we see
that we have obtained the formula for the Minimum
Residual method which was used in [FM14]. It may
be that the method breaks when M−1 is far different
from its square and the correct formula needs to be
used. Still we think this derivation is a strong argument
for why CG does not work in constraint based methods
and we need to transform it to a method that looks more
like a minimum residual version of CG, e.g. Conjugate
Residuals (CR) [Saa03].

8 CLOTH MODEL
The most straightforward application of the presented
methods to cloth is through the use of a model made
of particles and springs or rigid links connecting them.
Such links correspond to a constraint function like
c(xi,x j) = ‖xi − x j‖− li j, where li j is the initial rest
length of the link and i and j are the indices of the
two particles. Using three types of links for stretching,
shearing and bending, one can obtain a full model of
cloth. Details on how to build such links for quad
meshes are given in many papers [Pro96, OAW06].
The main advantage of our method of soft constraints
is that the stiffness of each constraint can now be
expressed naturally as an elastic parameter (related
to Young’s modulus) instead of using non-linear
attenuation factors like in [Jak01] and [MHHR07].

Figure 2: Simulation of a cloth model consisting of
6910 vertices and 13674 triangles using soft constraints

For irregular triangle meshes, one can also build bend-
ing links [Erl05], but one cannot distinguish between
stretching and shearing links anymore. For quad
meshes shearing is simple to express and is usually
less stiff than stretching. Using the same stiffness
coefficient for shearing as for stretching (infinite in the
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case of PBD) leads to locking artifacts, as the cloth
does not have enough degrees of freedom to move
naturally. Lowering the stiffness value may help with
the locking problem, but this causes stretching, which
must be avoided at all cost for cloth.

Many other solutions have been proposed for locking
[EB08], but we chose to use the model presented in
[BW98] which separates out the stretching components
(warp and weft) from shearing for each triangle. In
general a constraint involving a number of particles im-
plies calculating gradients corresponding to each parti-
cle ∇ic(x) = ∂c(x)

∂xi
. Then we can solve that constraint

independently using (21):

δλ =− c(x)
∑

s
i=1 m−1

i ‖∇ic(x)‖2
=−c(x)

ξ
. (22)

The action of the bending links is dependent on stretch-
ing so we might want to use other measures for the
curvature of the cloth. We could use directly the con-
straint between two triangles (4 vertices) defined in
[MHHR07], as it expresses the same dihedral angle as
in [BW98]. Still we chose to derive our own formulas
using (22) and the assumption made in [BW98] that the
lengths of the normals remain constant.

9 FINITE ELEMENT METHOD
The continuum formulation in [BW98] is actually a
special treatment of the finite element method. The
three constraints correspond to the strain components
εuu, εvv and εuv that make up the planar symmetric
Green-Lagrange strain tensor:

ε(x) = 1
2 (∇w∇wT − I), (23)

where w : R2→ R3 is a mapping from an undeformed
mesh parametrization (u,v coordinates) to deformed
vertex positions. Then the actual components are:

εuu =
1
2 (w

T
u wu−1), (24)

εvv =
1
2 (w

T
v wv−1), (25)

εuv = εvu = wT
u wv, (26)

where by the subscript of w we signify partial derivation
with respect to to u and v. By considering strain con-
stant over a triangle (linear FEM) we can derive simple
formulas for wu and wv like in [BW98] or [VMTF09].

The integral of the strain energy over a triangle is:

Ufem = a
2 ε̂(x)T Eε̂(x), (27)

where a is the area of the triangle, ε̂
T = (εuu,εvv,εuv)

and E is a matrix that depends on the Young modulus E
and the Poisson ratio ν (or equivalently on the Lamé co-
efficients) like the one given in [VMTF09] or [TWS07].

Note that the former expresses isotropic elasticity while
the latter expresses orthotropic elasticity, i.e. different
stiffness along warp and weft directions.

We use (27) to derive the true constraint function using
the regularization framework as in [SLM06]:

c(x) = a
1
2 ε̂(x). (28)

The resulting three constraints (cu,cv,cs) are are similar
to the ones in [BW98] and their gradients form the Ja-
cobian Jfem = (∇cT

u ,∇cT
v ,∇cT

s ). Note that in the most
rigorous approach the area of the triangle a(x) is also
varying and its derivative should also be considered.
We chose not to do so in our computations, but alter-
natively we could add an extra area constraint. Some
authors use area and volume constraints together with
edge constraints to improve on mass-spring soft body
models [THMG04].

Now we can formulate the regularization condition:

a
1
2 ε̂(x)+E−1

λ = 0. (29)

In the end we can apply the block local solve formula
from Section 7, which is equivalent to other StVK linear
FEM approaches like the one in [VMTF09]. We choose
to apply this block approach only for the stretch compo-
nents together, as the shear stress component is related
only through a diagonal term to strain, and thus decou-
pled from the normal directions. The resulting 2x2 local
linear system for the two stretching constraints is:

(h2A+ Ẽ−1)δλ + ε̂(x) = 0,

where in the case of isotropic materials

Ẽ−1 =
1

E
√

a

(
1 ν

−ν 1

)
.

Notice that we divided equation (29) by the constant
area term a1/2 and obtained a CFM matrix that con-
tains all the relevant continuous material parameters:
Young’s modulus, Poisson ratio and the triangle area
(discretization measure). We can also add damping
through the Rayleigh damping technique presented in
Section 6 or the projection in Section 5 for better en-
ergy conservation. In the end we obtain a very accurate
(iterations permitting) and physically correct model for
simulating thin nonlinear elastic materials like the one
in [VMTF09] based only on constraints (Figure 3).

10 RESULTS
We implemented a cloth simulator solely on a modu-
lar constraints architecture using C++ (single threaded).
Depending on the level of accuracy or performance the
user can choose between different constraint types, e.g.
links or FEM triangles for stretching and shearing, dif-
ferent types of bending constraints, static collision or
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Figure 3: Two snapshots of a side by side real-time simulation of two 40x40 cloth pieces with the same Young’s
modulus E: regularized FEM constraints (left) and soft links (right); superimposed in purple is the strain map.
FEM offers more realistic folds and the strain is better distributed throughout the cloth.

self collision constraints etc. Note that all these con-
straints are treated in the same solver loop. Regular-
ization was implemented by modifying the diagonal of
the system matrix using equation (13) or as described in
Section 7. The resulting scheme can be modified to use
the projection in Section 5 or we could add more damp-
ing (Section 6). These options can be added depending
on the needs of the simulator and we denote them col-
lectively as soft constraint methods for enhancing PBD.
This also is why we do not provide any pseudo-code
and hope that the readers will assemble themselves the
simulator of choice.

Given our simulator is fully constraint based our colli-
sion response techniques are the same as the ones used
in [Jak01, MHHR07] and for self collision we adapted
the methods in [BFA02]. Friction is treated more ac-
curately by being solved at every contact iteration in a
similar fashion to cone complementarity programming
[TA10]. We implemented cloth-mesh collisions by test-
ing for triangle-point and edge-edge intersections be-
tween two triangles. For acceleration we used AABB
trees for both the static mesh (pre-computed) and the
cloth (rebuilt at every frame). A similar approach was
used for accelerating self-collisions too.

We tested simulations mostly visually looking for ob-
vious artifacts like jittering or instability. Our most
common test scenario was a piece of cloth hanging by
two corners, falling from a horizontal or vertical posi-
tion, with different parameters or tessellation. Given the
multitude of methods used and the differences between
them it is hard to find a metric that measures well the
quality of the simulation. We opted to measure the total
energy - kinetic and potential (gravitational and elastic)
and no damping, and chart its evolution in time (Figure
4). The NCG solver behaves well and has good conver-
gence, but decays non-monotonically. The regularized
PBD method is smoother, dissipates energy slower, but
the Gauss-Seidel solver is less accurate. Energy pre-
serving projection with α = β = 0.6 offers even slower
energy decay while the higher energy line is due to the

kinetic energy of the oscillation. This is a good energy
preserving property but it looks jittery and unnatural
and we may need to add extra (non-artificial) damp-
ing. The closer we get to α = β = 0.5 the more hor-
izontal the graph becomes, i.e. full energy conserva-
tion, but this is dangerous territory for stability. We get
the same results with a Symplectic Euler integrator with
very small time steps and a small damping factor.
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Figure 4: Total energy evolution in time for the sim-
ulation of a 10x10 rubber cloth (k = 2 N/m, 25 itera-
tions) using NCG implicit integration (blue), regular-
ized PBD (red) and regularized energy preserving pro-
jection (green).

For our damping method we measured the total energy
minus the elastic potential in order to give a clearer pic-
ture of the velocity reduction (Figure 5). As you can see
a damping factor of γ = 10h gives a significant energy
dissipation compared to soft projection (or PBD just as
well). Reaching this level of dissipation so quickly is
not possible using the method we compared against,
i.e. reducing the relative velocity along the constraint
direction (basically velocity projection). We set for the
energy preserving projector α = β = 0.55 and γ = h
in order to obtain as little artificial damping as possible
while at same time damping the simulation just a bit
less than PBD would normally do.

All simulations were performed in real time at 60 Hz,
i.e. under 16 ms of computation time depending on
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Figure 5: Damping response for the simulation of a
40x40 piece of cloth (k = 2000 N/m, 25 iterations) using
regularized PBD (blue), aggressive damping (red) and
slightly damped energy preserving projection (green).

cloth size, and with lower framerate for the dress in Fig-
ure 2 (up to 20 ms or more for the solver only).

11 CONCLUSIONS
We have shown that implicit integration of elastic sys-
tems is equivalent as an optimization problem to fast
projection. Based on the analogy to PBD we derived a
Nonlinear Conjugate Gradient implicit solver. Its draw-
back is that it is using an approximated force Jacobian
but this is compensated by running more than one inex-
act Newton iterations.

After developing a method of switching between
the two representations (configuration and constraint
space) we proved that the regularized PBD method
(soft constraints) replicates elastic behavior. We also
showed how to preserve energy better or how to
dissipate more when solving constraints. Note though
that the viscous drag term of the Rayleigh damping
matrix cannot be treated implicitly in this framework.
Also, one can use a parallel version of the Conjugate
Residuals algorithm to speed up the simulation. Finally
we showed that accurate FEM simulation of cloth
using constraints is possible and is no different from
implicit integration. We believe that these are new and
useful results for PBD.

We hope to use the Kawabata evaluation system in the
future for real fabric modeling like in [VMTF09]. We
also intend to optimize our simulator using parallel al-
gorithms for multi-core and GPGPU.
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ABSTRACT
There is an increasing interest on tele-medicine and tele-diagnostic solutions based on the remote inspection of
volume data coming from multimodal imaging. Client-server architectures meet these functionalities. The use of
mobile devices is sometimes required due to the portability and easy maintenance. However, transmission time for
the volumetric information and low performance hardware properties, make quite complex the design of efficient
visualization systems on these devices. In this paper, we present a hybrid approach which is based on regions
of interest (ROIs) and on a transfer-function aware compression scheme. It has a good performance in terms of
bandwidth requirements and storage needs in the client device, being flexible enough to represent several materials
and volume structures in the ROI. Clients store a low-resolution version of the volume data and ROI-dependent
high resolution segmented information. Data must be only sent whenever a new ROI is requested, but interaction
in the client is autonomous - without any data transmission - while a certain ROI is inspected. A benchmark
is presented to compare the the proposed scheme with three existing approaches, on two different volume data
models. The results show that our hybrid approach is compact, efficient and scalable, with compression rates that
decrease when the size of the volume model increases.

Keywords
Volume rendering, client-server, mobile devices, medical data, region of interest, ray-casting, volume data com-
pression

1 INTRODUCTION

Recently, several important research areas in three-
dimensional techniques for multimodal imaging
have appeared. Applications include neurological
imaging for brain surgery, tissue characterization,
medical school teaching, plastic surgery and others.
At the same time, scientists are more familiarized
with three-dimensional structures reconstruction from
Two-dimensional images.

The reconstruction of a volumetric model is generally
achieved by using a voxel representation of datasets.
According to the structure to be highlighted during the
visualization, a transfer function is applied to assign
color and opacity to the density value which represents
the structure properties.

The handling of three-dimensional information requires
efficient systems to achieve fast data transmission and
interactive visualization of high quality images. Client-
server applications allow these functionalities. Some-
times the use of mobile devices is necessary due to the
portability and easy maintenance. However, transmis-
sion time for the volumetric information and low per-
formance hardware properties, complicate the design of
efficient visualization systems on these devices.

The main contribution of our work is a Hybrid vi-
sualization approach that inherits the advantages of
some previous algorithms like the ones presented in [1]
and [2], while keeping a good performance in terms
of bandwidth requirements and storage needs in client
devices. The scheme is flexible enough to represent
several materials and volume structures in the Region
of Interest (ROI) at high resolution and very limited
information transmission cost.

2 PREVIOUS WORK
Client-server architectures have grown in popularity.
Mobile devices as well as desktop computers can both
function as clients requesting and receiving informa-
tion over the network. Many authors have published re-
search results in the remote volume visualization area.
However there is still scarce specific bibliography for
volume visualization in mobile devices. The major-
ity of the proposals use known algorithms like Ray-
Casting, 2D Textures, and isosurface modeling to ren-
der volume data. In order to compensate limitations in
low performance devices or to reduce costs, the number
of client-server schemes have been proposed.

In some client-server approaches the dataset is com-
pressed on the server side and sent to the client where
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the transfer function is applied after decompression and
before the rendering of the recovered data. Moser
and Weiskopf [3] proposed a 2D texture-based method
which uses compressed texture atlas to reduce interpo-
lation costs. Nogera et al. [4] proposed a webGL ap-
plication to visualize very large 3D volumes by using
multi-texturing to encode volumetric models on a set
of RGBA 2D textures. A recent application developed
by Balsa et al. [5] allows to interact with volume mod-
els using mobile devices hardware. Their scheme is not
compressing the volume data.

In other schemes, the transmitted data is a compressed
image, the transfer function is applied at the beginning
of the pipeline, followed by a 2D rendering on a tex-
ture, all done on the server side. A compressed image is
sent to the client where decompression and image ren-
dering takes place. This scheme is frequently named
"Thin Clients" [6]. The idea in multiresolution model
schemes [7] is to render only a region of interest at high
resolution and to use progressively low resolution when
moving away from that region. Both bricking and mul-
tiresolution approaches [8] need a high memory capac-
ity on the CPU for storing the original volume dataset.
Moreover, bricking requires a high amount of texture
transfers as each brick is sent once per frame; multires-
olution techniques have been built for CPU purposes
and its translation to GPUs is not straightforward due
to the required number of texture accesses.

Preprocessing of data is also a useful technique, as
it ensures the reduction of the information, combined
with different techniques for quantization, encoding
and multiresolution representation [8].

Efficient schemes require optimized algorithms to
reduce and send data through the network. The
algorithms must achieve the maximum compression
possible while allowing an easy decompression in the
client side, where sometimes hardware and memory
constraints decrease performance [8].

Wavelet transforms offer considerable compression
ratios in homogeneous regions of an image while
conserving the detail in non-uniform ones. The
idea of using 3D wavelets for volume compression
was introduced by Muraki [9]. Ihm and Park [10]
proposed an effective 3D 163-block-based compres-
sion/decompression wavelet scheme for improving the
access to random data values without decompressing
the whole dataset. Guthe et al. [11] proposed a
novel algorithm that handles a hierarchical wavelet
representation where decompression takes place in
GPU.

Some techniques advocate the use of hybrid region-
based volume rendering, by applying different shading
algorithms inside the volume model [12], or by imple-
menting multiresolution region-based schemes [1]. Luo
et al. [13] developed a technique for focusing on a user-

driven ROI while preserving context information. The
approach uses a distance function to define the region of
interest. This function controls voxel opacity, exploits
silhouette enhancement and non-photorealistic shading.

In this paper, we propose a hybrid framework that ex-
ploits the use of standard transfer functions as an al-
ternative to compress volume dataset. Our scheme is
a transfer function-aware scheme for client/server tech-
niques. It combines Wavelet-preprocessed volume data
to reduce information outside the ROI, and highlighted
segmented data in regions of interest (ROI), (Gradient
Octree shceme). From the best of our knowledge this
possibility has not been considered by any of the de-
scribed approaches in this previous work.

3 OVERVIEW OF THE APPROACH
Let us assume that we are interested in inspecting a
volume data model V which is too large in terms of
network transmission and/or client storage facilities.
Wavelet compression algorithms like the ones pre-
sented in [1, 10, 11] are able to support block-based
regions of interest (ROIs). Other approaches like
Gradient Octrees [2] can be rendered with advanced
illumination models and at a higher visual quality
level. Gradient Octrees are specific data structures
for multiresolution volume datasets. Gradient Octrees
G(V ) include an specific data structure S and a compact
data array D. The octree structure S can be sent to the
client devices in a lossless way with only one bit per
node, whereas data is compacted to 3 Bytes per octree
node, including material information and volume
gradients. Both approaches, however, have advantages
and drawbacks:

(I) TF-aware wavelet compression schemes succeed in
sending to the clients a very limited amount of infor-
mation in the areas outside the region of interest (ROI).
High quality volume information in the ROI is also
compact [1], because the 3D texture is smaller and re-
stricted to the blocks in the ROI area. Ray-casting vi-
sualization in the client can use compact 3D textures
which are suitable for many client devices. The main
drawback of this approach, however, is twofold. First,
changing the transfer function requires sending a new
version of the compress volume model to the client, and
second, it is not well suited for illumination computa-
tions that would require too many texture accesses.

(II) Approaches like Gradient Octrees overcome these
limitations by supporting multiple transfer functions
and materials and by precomputing gradients on the
server. They support advanced illumination models,
thus achieving a higher visual quality level. However,
they are not direct candidates for ROI-based visualiza-
tion paradigms, as their low level volume representa-
tions present a flat-face appearance with poor gradi-
ents. These representations at coarse tree levels are
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well suited for progressive transmission but they per-
form worse than similar-quality low-level wavelet re-
constructions.

Our hybrid scheme inherits the best of both approaches.
In this case, apart from the volume model V , the user
must supply a set of transfer functions {T Fk} and se-
lects one of them as a canonical transfer function. The
server starts by computing a Gradient Octree G(V )
from V and for the set {T Fk}, also computing the quan-
tified representation W (V ) of the wavelet transform of
V with the canonical transfer function, as described in
Section 4. G(V ) encodes materials and gradients only
in the subset of voxels of V which are relevant to same
of the transfer functions in {T Fk}.

Figure 1: Overview of the proposed scheme, showing
the preprocess on the server, the data transfer through
the network and the data structures in the client device

Users at the client side can interactively define regions
of interest, ROIs. Information over the network can be
classified into static information (being send only once
per volume model) and dynamic information. Dynamic
information must be re-sent whenever the ROI is rede-
fined by the user. Static information is compact, includ-
ing W (V ) and a set of arrays defining the tree structure
of G(V ). In cases where the size of the volume model
V is too large and the volume data at the deepest level
of G(V ) does not fit into the client’s CPU memory, the
portion of this data belonging to the ROI is generated
from the octree data on demand, as dynamic informa-
tion, whenever the user asks for a different ROI.

In the client side, a low-resolution volume model VW
is reconstructed by de-quantizing and computing a few
inverse wavelet steps in each block. Let us note as VR
the subvolume corresponding to the ROI. A two-level
ray-casting rendering algorithm in the client GPU (Sec-
tion 5) succeeds at showing a high-quality Gradient Oc-
tree rendering in VR together with a visualization of VW
in the parts of the volume outside the ROI, also support-
ing a number of interaction facilities.

The corresponding compression and decompression al-
gorithms are detailed in Section 4.

4 COMPRESSION AND DECOMPRES-
SION ALGORITHMS

We start by computing the wavelet transform W (V ) of
the volume model V and its gradient octree G(V ) on
the server, Figure 1. We use a localized, block-based
transform with a previous smoothing step to achieve lo-
cal behaviour and a better compression rate. We as-
sume standard piecewise linear transfer functions [?].
By considering these transfer functions, we virtually
segment the volume V in as many regions as linear seg-
ments defined by the {T Fk} functions. Voxels with a
density d such that the opacity of {T Fk} is zero for all
k, belong to null regions and are simply represented by
a null code. Our implementation uses a block size of
16 together with a 4-steps Haar transform, being rather
efficient in compression while supporting block-aware
interaction paradigms in the client. As already men-
tioned, the wavelet information that is sent over the net-
work to the client is a low resolution volume model
VW , obtained by computing a few wl inverse wavelet
steps in each block. Observe that in the usual case of
wl = 2, the size of the information in VW will always be
lower than 1/64 of the size of the initial model V . The
low-resolution model for wl = 2 is compressed more
than a 98.5%. In what follows, we will use the term
compression rate to name the relative size of the com-
pressed model, which in this case is 1.5%.

The gradient octree G(V ) information includes the oc-
tree structure and the octree data. Creating G(V ) in-
volves three compression steps. The first is transfer-
function aware and uses V and the set of {T Fk} to com-
pute an Edge Volume model V E(T F) which only en-
codes voxels that are relevant to the transfer functions
{T Fk}. Non-relevant voxels in V E(T F) are assigned
a Nil value. On a second step, we compress gradient
information to a total of three bytes per Grey tree node
(including material information) in a set of data arrays,
one per octree level, [2]. We use a GPU-oriented en-
coding of the proposed hierarchical data structure with
explicit volume gradient information in octree nodes, to
avoid gradient computations during GPU ray-casting.
The final Gradient Octrees representation, shown in
Figure 2, consists on a small volume model V32 with
pointers and two sets of per-level arrays, Ol and Dl .
For the sake of clarity, octree levels in Figure 2 and
in what follows will be identified by their resolution.
The example shown in Figure 2 corresponds to the com-
plete octree representation of a volume V of resolution
r = 512, with gradient and materials stored in the data
array D512. Data arrays of coarser octree levels (D256,
D128, D64 and D32) store gradient and materials data of
Grey octree nodes at these levels. In short, the octree
structure S of G(V ) consists of the pointers volume V32
and the set of per-level arrays Ol . The octree data D of
G(V ) includes the set of per-level arrays Dl .
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Figure 2: Encoding Gradient Octrees

For transmission purposes, it is possible to compact
the Gradient Octree structure (not the volume data) in
a lossless way. Instead of sending the arrays Ol , we
send a set of arrays Bl with one byte per parent node as
shown in red in Figure 2. Note that this is equivalent
to store and transmit only one bit per node: the com-
ponents in Bl simply represent the type of each child
in one bit (0 if Nil, 1 if Grey). Compressed arrays Bl
are computed on the server and sent to the client. For
every received level, the client is able to generate a Bl-
driven, increasing sequence of indexes to create a local
copy of the array of indexes to child nodes Ol (for a de-
tailed discussion, see [2]). Note that Ol indexes point
simultaneously to D2l and to O2l . The volume V32 is
sent to the GPU as a 3D texture, whereas arrays Ol and
Dl are encoded as 2D and 1D textures. In short, we
succeed in sending the tree structure S in a lossless way
and with only one bit per node, through a sequence of
compact arrays Bl . Moreover, compressing gradients
and materials in three bytes is efficient, supports GPU
decompression and suffers from a very limited loss in
visual quality.

Although ROI-dependent localizations of the octree
structure S could be defined [14], we have observed
that the corresponding compression improvements
(mainly in the information over the network) are
negligible. In our present implementation we have
therefore considered a hybrid model consisting of the
low-resolution volume VW , the gradient octree structure
S and ROI-dependent octree data D. This hybrid
model information is sent from the server to the client
(or clients) in two parts: (I) The static information
is sent only once, at the beginning of the interaction
session. It consists on the low-resolution volume VW ,
the 32× 32× 32 pointers volume V32 of the computed
Gradient Octree, the set of arrays Bl which encode
the S octree structure and the materials look-up table
of the Gradient Octree, Figure 1. The size of this
last table is very small and we will not consider it
in our compression computations. (II) The dynamic
information is sent on demand whenever the client
changes the ROI. The client sends a query with the new
ROI limits (bounding box) and the server generates and

sends a subset DR of the data arrays D of the Gradient
Octree, as we know in advance that only voxels in the
ROI will be retrieved and rendered, Figure 1.
In our present implementation we assume that users are
only interested in gradient octree data at the deepest oc-
tree level r, as lower resolutions are already shown out-
side the ROI. This makes the whole process easier, as
we can just send a compact Dr array containing only
those voxels with a non-Nil gradient value in the deep-
est octree level. This results in a very compact data
transmission. We compute and keep a temporal, ROI-
dependent version of the pointers volume V32 which we
name V R32. V R32 has Nil pointers outside the ROI and
sequential pointers for the Grey nodes inside the ROI.
The textures V R32 and Ok are now ROI-dependent, and
must be recomputed in the client from the G(V ) Struc-
ture (see Figure1) whenever the ROI is changed during
the interaction, with a very efficient algorithm which
only involves array traversal and counting.

5 RENDERING AND INTERACTION
IN THE CLIENT DEVICES

Reconstruction of any of the blocks within the non-ROI
partion of the volume can be performed at one, two,
three or four wavelet levels. The four-level reconstruc-
tion of a block generates a full piece of 16× 16× 16
voxels that represent the corresponding part of the vol-
ume. Reconstructions of the same block at three, two
or one levels generate pieces of 8× 8× 8, 4× 4× 4 or
2×2×2 voxels, representing the same part of the vol-
ume at lower resolutions.
A usual interactive session starts by inspecting the
whole volume model at a low resolution. In this case,
all blocks are usually reconstructed at one or two levels,
the corresponding 3D Texture is sent to the client GPU
and ray-casting rendered. Observe that the size of this
3D texture, in the case of two reconstruction levels, is
1/64 of the size of the original volume model V.
Alternatively, the user can decide to inspect the whole
volume model at a low resolution (two levels of re-
construction, for instance) with the ROI showing pre-
defined structures at maximum level of detail by ray-
casting the Gradient Octree. To achieve this last in-
teractive visualization, two structures, one for the non-
ROI volume (3D texture) and the other for the ROI vol-
ume (Gradient Octree), are sent to the client GPU where
an adaptive ray-casting algorithm is performed, as de-
tailed below. Since the whole model is available at the
client side, rotation and zooming operations can be au-
tonomously performed in the client without any further
transmission from the server. If a region of the model
needs to be detailed, the Gradient Octree can be dis-
played on demand.
We use a standard ray casting algorithm in the client
GPU, the main difference with the classical algorithms
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being that rays traverse a low resolution 3D texture rep-
resenting the whole volume. In the point samples along
the ray that do not belong to the ROI, the ray-casting
uses density values from the low-resolution model VW .
Samples in the ROI retrieve densities from a virtual
volume with the same resolution R as VR, instead of
traversing VR itself. In Figure 3, an example with reso-
lution R = 512 is shown. Ray-casting proceeds as usual
by advancing along rays r from the observer with a uni-
form sampling of the volume along r. Then, for each
sample s of r addressing a virtual voxel (i, j,k) in the
ROI, its volume information is found in DR.

Figure 3: The block structure of the model, a region of
interest (in white) and the octree-based ray-casting.

Ray casting within the ROI is based on the octree ad-
dressing properties. The octree search of any virtual
voxel (i, j,k) is directly driven by the base-2 representa-
tion of i, j and k, as shown in Figure 3. In this case, their
first 5 binary digits point to the corresponding voxel in
the low-res texture V32. The index i32 found in this V32
voxel element points to the low resolution data in D32
(which we don’t use if a higher resolution is required)
and also to the array of its eight child indexes in O32. A
well-known property of binary octree subdivision en-
sures that next "three bit columns" in the binary repre-
sentation of i, j,k are in fact child indexes sl . Son in-
dexes point to deeper octree levels and are able to drive
the octree traversal to the right element in DR contain-
ing data in the virtual volume voxel. Subtree traversal
from the low-res voxel in V32 to the virtual voxel data is
based on the recursion equation,

i2l = Ol [il ][sl ] (1)

for l=32, 64, 128, .. R/2

The final index iR points to the high-res data in DR, but
tree traversal can stop earlier if the virtual voxel is void
and any index il in the chain is found to be zero.

Observe that only virtual voxels in VR in the ROI will
be addressed. This means that the client must only store

a restriction of G(V ) in VR. In our present implementa-
tion we initially send the whole octree structure of G(V )
to the client, but high-resolution data DR (restricted to
VR) is only sent on demand when the user changes the
ROI

Let’s assume that ray r is crossing voxel i = 171, j =
312, k = 237 in the virtual volume of the ROI, Fig-
ure 2. In this case, the octree search starts in the voxel
(10,19,14) of V32 and is then driven by four child in-
dexes: s32 = 7, s64 = 1, s128 = 4 and s256 = 5 which
recursively generate the indexes i64, i128, i256 and i512.
Reaching the deepest level information in a Gradient
Octree of resolution R = 512 involves a maximum of
six texture queries, to V32, O32, O64, O128, O256 and fi-
nally to D512.

After retrieving high-res data in D512, materials and the
gradient vector are decompressed on the fly in the GPU.
Obviously, everything also works when lower resolu-
tion virtual volumes are considered.

6 RESULTS AND DISCUSSION
To perform a complete comparative study , we selected
the following accessible frameworks:

VrMed Viewer, an integration of libraries and func-
tionalities, designed to achieve interactive visualization
in PCs and Virtual Reality Systems, using a GPU-based
Ray-casting algorithm [15].

Volume Viewer, an Android based application [5], im-
plemented to run on mobile devices. Allows interac-
tive visualization of models with a transfer function ed-
itor with easy handling. In this case, the whole volume
model is sent to the client device.

VrMed-Thin Client The approach is based on [16]. It
achieves remote visualization of volume models with
basic user interaction tools in mobile devices. A server
running VRMed Viewer on Linux operative system,
renders images which are sent to the client through
the wireless. Clients generate control commands as
OpenGL parameters which are sent to the server using
a TPC/IP socket.

Tables 1 and 2 show a comparison of [2], [1], our
technique (Hybrid Approach), and the previously de-
scribed schemes, using two models: The skull model
with a 256×256×112 resolution and the thorax model
with a 5123 resolution. Density values are in the rang
[0...255], hence each voxel is codified using only 1
byte. Table rows show for each scheme whether multi-
resolution and progressive transmission is allowed and
the compression rate achieved for each case. Both ta-
bles also show the size of the transmitted data trough
the network and the client requirements to perform vol-
ume rendering followed by an estimation of the average
frame rates in two cases: rendering in the PC server and
rendering in the client (mobile device).
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Figure 4 shows some snapshots of the interaction with
the hybrid skull model. In all cases, two wavelet recon-
struction steps (wl = 2) have been used without lighting
computation in the low resolution area: In (a), (b) and
(d) the Wavelet have been computed by using a skin
tranfer function, whereas the image in (c) represents a
bone transfer function both in the low resolution area
and in the Region of Interest.

Some snapshots of the interaction with the hybrid tho-
rax model are shown in Figure 5. In all cases two
wavelet reconstruction steps (wl = 2) have also been
applied without lighting computation, in the low reso-
lution area: ROI showing ribs and lungs (a), internal
gases and lungs (b) and skin, ribs and lungs (d). The
snapshot in (e) shows the alveoli in the ROI, magnified
in (f) by interacting with zoom and a section plane. In
these cases wavelets are precomputed after applying to
the model a TF covering all structures in the low reso-
lution area. The snapshot in (c), shows a TF for bones
visualization in both, the low resolution area, and the
ROI. Image in (d) shows a zoom-in of (c) for showing
up the quality of the hybrid model. The server appli-
cation runs on PC with 6 GB of RAM, Intel Core 2
Duo at 3.16 GHz and a client with 4 GB of RAM, Intel
Core 2 Duo at 3.06 GHz and Nvidia GeForce GTX z80.
Client tests were performed on the HTC One smart-
phone whith a screen resolution of 1080 x 1920 pixels
2 GB RAM and an Adreno 320 Graphics processor.

A ROI-based visualization has been considered in the
Wavelets-based scheme and in the Hybrid approach,
while in the rest of columns, the whole volume V has
been rendered at a uniform resolution. This is valid in
both cases (tables 1 and 2). Zoom has been adjusted in
a way that the total amount of rendered ROI pixels in
the application viewport is a 25% of the total of view-
port pixels. The amount of ROI pixels in the viewport
is relevant, as it measures the total amount of required
high-quality casted rays during ray-casting rendering.

Compression rates correspond to the amount of data
sent over the network, and relate this amount to the to-
tal memory requirements of the volume models, which
are 7.4 MBytes in Table 1 and 128 MBytes in the
case shown in Table 2. In contrast to the previous
schemes, our techniques allow multi-resolution render-
ing with progressive transmission of volume data. For
the Wavelet based approach, the presented figures on
the amount of data over the network represent the nec-
essary information to reconstruct four levels of wavelet
compression, wl = 4. The compression rate in this case
is between 21% and 32%.

In case of the Gradient Octree approach, data includes
the octree structure plus material and gradient informa-
tion at its deepest, maximum resolution level. In the
Hybrid scheme, the information over the network rep-
resent both the necessary data to reconstruct two levels

of wavelet compression for the low resolution model
and the nodes representing the Gradient Octree leaves
in the selected region of interest (ROI). This approach
also requires a client GPU being able to manage 3D
textures. The compression rate in this case is between
20% and 22%, with an average frame rate in the mobile
device between 7 and 16 fps.

The proposal in this paper Hybrid approach results in
a compression rate which is between 4% and 18%, with
an average frame rate in the mobile device between 8
and 16 fps when wl = 2. It also requires a client GPU
being able to manage 3D textures.

The VrMed viewer is presented for comparison pur-
poses. Some of the parameters in the tables do not ap-
ply to this case, as VrMed is a stand-alone application
without network transmission. The average frame rates,
48 and 20 fps, are obviously higher than those in the
previous cases but these figures show that our proposed
approaches are performing within reasonable efficiency
limits.

The Thin Client based approach sends a maximum of
0.18 MB of data through the network per frame during
an interactive session with a single client (of course, the
total amount of transmitted data depends on the number
of interaction frames). This is due to the fact that the
technique requires the transmission of rendered images
from the server when the user interacts with the model
in the client side. This fact makes this scheme network
dependent, with framerates which decrease in network
congestion cases. We have observed that our thin-client
implementation becomes useless when the number of
clients is above 8. On the other side, this scheme does
not require sophisticated client GPUs, as clients must
only decompress and show pre-rendered images. This
can be an advantage for basic client devices, but result
in an under-utilization of client GPUs in the case of
most present devices. The asterisks in the Thin client
column in tables 1 and 2 mean that data sizes are per
frame sizes. The compression rates obviously depend
on the number of transmitted frames.

The Hybrid approach is specially well suited in the case
of large models. The comparison between tables 1 and
2 show that this is a scalable scheme, with compres-
sion rates that decrease when the size of the volume
model increases. The corresponding frame rates are
larger than in the case of Gradient Octrees, being of the
same order of magnitude than Thin Clients.

Comparing Thin clients to Wavelets, Gradient Octrees
and the Hybrid approach, we can define the break-even
interaction period as the number of frames required to
have an equivalent amount of information sent over the
network. Break-evens are computed as the ratio be-
tween the size of the compressed model as sent over
the network in our approaches and the size of a single
Thin Client frame image. In the case of the skull model
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Figure 4: Hybrid Visualization. Interaction with the
hybrid skull model. ROI size: (128×64×64).

Figure 5: Hybrid Visualization. Interaction with the
hybrid thorax model. ROI size: 416× 224× 224 (a),
256× 160× 256 (b), 96× 128× 480 (c), and 256×
512×256 (d), (e) and (f).

in Table 1, this break-even is 11 frames for Wavelets,
21 frames for Gradient Octrees and 11 frames for the
Hybrid approach.

In the case of the thorax model in Table 2, the break-
even is 51 frames for Wavelets, 79 frames for Gradient
Octrees and 17 frames for the Hybrid approach. By
considering the number of frames per second in each
case, we can conclude that the information we are send-
ing is equivalent to the total information sent by the
Thin Client approach during an interaction period in
between 1 and 10 seconds. In the case of the Hybrid

approach, break-evens are 11 frames and 17 frames,
meaning this Hybrid scheme outperform Thin Clients
in interaction cases longer than around 20 frames.

Thin Clients can also be compared with the presented
approach in terms of frame rates. Frame rates depend
on the network bandwidth, the present approach being
better than Thin Client approaches in geographic re-
gions with a limited bandwidth. In fact, the presented
proposal can be specially useful in world regions with
limited network infrastructures but requiring fast access
to 3D medical data, like non-urban areas.

The Volume Viewer approach as presented in the last
column of both tables does not require sophisticated
client GPUs, as clients are rendering stacks of 2D tex-
tures. Frame rates in the client are reasonable. The
main drawback in this case, however, is the amount of
information being sent over the network, which makes
it unusable in the case of large volume models.

The proposed hybrid scheme allows interactive inspec-
tion by rotating and zooming volume models. Users
are able to select ROI portions of the visualized model,
as well as choosing a transfer function from the set of
transfer functions ({T Fk}) inside the the selected ROI.
Interface options include also, planar section selection
and offsets structures visualization in front of the se-
lected section plane. Users can also choose the reso-
lution of the low resolution region, by reconstructing
models, by using one, two or three wavelet reconstruc-
tion steps.

Wavelets Gradient Hybrid VrMed VrMed Volume
Sheme Octrees Approach Viewer Thin Client Viewer

Multi-resolution 3 3 3 no no no
Progressive transmission 3 3 3 no no no

Compression rate (%) 32 22 18 - ∗ 100
Data over the network(MB) 1.91 3.8 2.04 - 0.18* 7.3

Client requirements 3D Tex 3D Tex 3D Tex - Image Stack
2D Tex

Frame rate (PC version) 52 24.12 46.53 48.24 48.24 -
Frame rate (mobile) 24.2 - 16.32 - 20.23 17.0

Table 1: Comparison between the approach presented
in this paper (blue column) and some previous schemes
for remote visualization of volume models. Study of
the Skull model with a resolution of 256× 256× 112
and 7.3 MB of size.

Wavelets Gradient Hybrid VrMed VrMed Volume
Sheme Octrees Approach Viewer Thin Client Viewer

Multi-resolution 3 3 3 no no no
Progressive transmission 3 3 3 no no no

Compression rate (%) 21 20 4.2 - ∗ 100
Data over the network(MB) 16.4 27 5.3 - 0.32* 128

Client requirements 3D Text 3D Tex 3D Tex - Image Stack
2D Tex

Frame rate (PC version) 14 10.31 18.03 20.34 20.34 -
Frame rate (mobile) 13.20 - 8.07 - 20.23 -

Table 2: Comparison between the approach presented
in this paper (blue column) and some previous schemes
for remote visualization of volume models. Study of the
Thorax model with a resolution of 5123 and 128 MB of
size.
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7 CONCLUSIONS & FUTURE WORK
We have proposed a Hybrid approach that inherits the
advantages of the algorithms presented in [1] and [2]
while keeping a good performance in terms of band-
width requirements and storage needs in client devices.
Information over the network consists on static infor-
mation (being only set once) and dynamic informa-
tion. Dynamic information must be re-sent whenever
the ROI is redefined by the user. The complexity (mem-
ory and data transmission requirements) of the static
and dynamic information has been discussed. The main
conclusion is that the hybrid scheme is flexible enough
to represent several materials and volume structures in
the ROI area at a very limited static and dynamic infor-
mation transmission cost.
The Hybrid approach has been proved to be specially
well suited in the case of large models. The pre-
sented experimental tables show that the Hybrid ap-
proach is a scalable scheme, with compression rates
that decrease when the size of the volume model in-
creases. Corresponding frame rates are larger than in
the case of Gradient Octrees, being of the same order
of magnitude than Thin Clients. Our compression re-
sults are better than similar client server schemes for
volume rendering, and compare favourably to March-
ing Cubes based approaches. While these last schemes
must send an average of three triangles per voxel in
segmented volumes, the presented approach only sends
three bytes/voxel. We consider that our approach may
enrich the user experience during the inspection of vol-
ume medical models in these low performance devices.
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ABSTRACT
Recent 3D reconstruction algorithms are able to generate colored meshes with high resolution details of given
objects. However, due to several reasons the reconstructions still contain some noise. In this paper we propose
the new Joint Bilateral Mesh Denoising (JBMD), which is an anisotropic filter for highly precise and smooth
mesh denoising. Compared to state of the art algorithms it uses color information as an additional constraint for
denoising; following the observation that geometry and color changes often coincide. We face the well-known
mesh shrinking problem by a new local anti-shrinking, leading to precise edge preservation. In addition we use an
increasing smoothing sensitivity for higher numbers of iterations. We show in our evaluation with three different
categories of testdata that our contributions lead to high precision results, which outperform competing algorithms.
Furthermore, our JBMD algorithm converges on a minimal error level for higher numbers of iterations.

Keywords
Mesh Denoising, Smoothing, Fairing, Joint Bilateral Filter, Local Anti-Shrinking, Color Information.

1 INTRODUCTION
Many applications, such as urban planning, industrial
measurement or human anthropometry, require recon-
structed 3D models of the respective objects with very
high precision. The traditional approach is to acquire
these models by laser scanners, since they promise
high quality results. However, they are expensive, im-
practical to use and contain still some noise. Mean-
while 3D reconstruction algorithms, such as e.g. [Agi,
FP10, NIH+11, SSC14], are able to generate colored
mesh models from devices like standard color cameras
and\or depth cameras, which are widely spread, cheap
and easy to use. These reconstructions contain color
information together with high-resolution details, but
also suffer from noise in their 3D geometry. To get
rid of this noise, several (mostly iterative) methods for
mesh denoising were proposed in the literature. Some-
times they are also referred to as smoothing, filtering
or fairing methods. They use directly the 3D geome-
try or derived measures, like distances or normals of

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

the mesh, to estimate new vertex positions. However,
none of them explicitly uses the color information pro-
vided by e.g. one of the above mentioned algorithms.
Thus, we present in this paper a new anisotropic method
called Joint Bilateral Mesh Denoising (JBMD), which
uses - besides geometric information - the color infor-
mation as an additional constraint for edge preserving
denoising.

Another well-known problem of mesh denoising are
shrinking effects. They occur mostly in curves regions
of the mesh and are caused by homogeneous shifts
of vertices in a neighborhood into one major direc-
tion. Current approaches try to compensate that ef-

(a) Input (b) BMD (c) Laplacian (d) Our JBMD

Figure 1: Comparison of different mesh denoising algo-
rithms for the fandisk mesh. Top row: meshes. Bottom
row: color-coded error distribution.
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fect, whereas they focus more on visually appealing
results than on precision. Thus, in our JBMD algo-
rithm we propose a new approach to avoid this effect
by a precise local anti-shrinking. Furthermore, many
current algorithms suffer from their high dependence
on the number of iterations. Therefore our new algo-
rithm increases the denoising sensitivity per iteration
leading to constantly low errors. A short overview
of our algorithm is also given in the following video:
https://youtu.be/odm8kr2rKPA

Summarizing, the main contributions of our proposed
JBMD algorithm are:

• explicit usage of color information as an addition
constraint for denoising,

• precise local anti-shrinking and

• increasing denoising sensitivity.

The remainder of this paper is organized as follows:
Section 2 gives an overview of existing methods for
mesh denoising. The proposed JBMD algorithm is mo-
tivated and explained in detail in Section 3, while it is
evaluated regarding precision in Section 4. The work is
concluded in Section 5.

2 RELATED WORK
Image and mesh denoising is an ongoing research topic
in the image processing and computer vision commu-
nity.

Often, mesh denoising methods are related to image
denoising approaches. State of the art approaches in
image denoising include methods such as anisotropic
diffusion [PM90], total variation [ROF92], wavelet de-
noising [Don95], robust diffusion [BSMH98], bilat-
eral filter [TM98] and joint bilateral filter [KCLU07,
HSJS08]. In particular the joint bilateral filter uses,
similar to our new approach, the color information as
an additional constraint.

State of the art algorithms for mesh denoising are
amongst others Laplacian [Fie88, Tau95, VMM99] and
bilateral [FDCO03, JDD03, ZFAT11] mesh denoising
(BMD) methods. Laplacian mesh denoising is an
iterative isotropic procedure, where the new vertex
positions are directly calculated from the positions of
the neighboring vertices. In contrast, bilateral mesh
denoising is an iterative edge preserving anisotropic
approach. New vertex positions are estimated from
the vertex’s neighborhood, where the influence of
neighboring vertices depends on their distance and on
their offset to the tangent plane. Parts of this approach
are also used for our new algorithm.

A general and well-known problem of mesh denoising
is that the mesh shrinks in convex regions with each ap-
plication of the particular algorithm, which is a huge

problem especially for iterative approaches. [Tau95]
solves this problem by alternating shrinking and expan-
sion steps. Admittedly the precision of this approach
depends heavily on the geometry of the particular mesh
[DMSB99]. Another common approach, which is e.g.
used in the Bilateral Mesh Denoising [FDCO03], is to
preserve the volume of the mesh by a global correc-
tion step as proposed in [DMSB99]. The algorithm es-
timates the volume V n of a mesh after the n-th iteration
by the sum of volumes of all ordered pyramids centered
at the origin and with a triangle of the mesh as base.
Each vertex of the mesh is then scaled by the factor β ,
which is defined by

β =

(
V 0

V n

) 1
3

, (1)

to achieve the original volume V 0. However, as mesh
shrinkage occurs only in convex regions contrary to flat
regions, a global correction has indeed appealing effects
but is not precise. Thus, we propose in this paper a
precise local shrinkage correction.

3 METHOD
In this paper we propose the Joint Bilateral Mesh De-
noising (JBMD), which is a filtering method for meshes
using local neighborhoods. The method can be subdi-
vided into two parts: the denoising itself and the subse-
quent local anti-shrinking.
The main idea of our new denoising algorithm is related
to image processing, namely motivated trough the Joint
Bilateral Filter (JBF) [KCLU07]. This anisotropic
edge-preserving filter is often used to denoise depth
images by using color images as additional constraints.
The main idea is to compute a new depth value as
a weighted average of surrounding depth values,
where the weights depend on their deviation in position
(space) and color value (range). The assumption of JBF
are coherent depth and color discontinuity, meaning
that edges in the color image coincide with edges
in the depth image and vice versa. This coherence
assumption was validated in many image processing
publications [KCLU07, WBS15] and we show in
Section 4 that it also holds for meshes.
The intention of our new local shrinkage correction is
- contrary to alternating [Tau95] or global [DMSB99]
correction - to adjust vertex positions only where
shrinkage effects occurred. This effect arises only in
convex regions, whereas flat regions are not affected.
We observed that the weighted mean signed shift of
vertices in the neighborhood, which were estimated
by the denoising in the first step, equalize in noisy flat
regions, whereas in convex (and thus shrunk) regions it
is a precise local measure for a shrinkage correction.
Like in many other mesh denoising algorithms
[FDCO03, ZFAT11] we estimate in our JBMD new
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vertex positions v′′ in a mesh by shifting along the
normal direction n. This has the positive effect that
irregularities in the resulting mesh are avoided. Our
two-step algorithm can be described by

v′′ = v+(x′ ·n)− (x′′ ·n), (2)

where (x′ ·n) is the denoising part, (x′′ ·n) the correction
part and x′|x′′ refer to the magnitude of the shift. The
algorithm is illustrated in detail in Figure 2 and defined
in the following:

Algorithm 1 Joint Bilateral Mesh Denoising (JBMD)
for the m-th iteration
Require: Vertex v, Normal n
1: {qi} = neighborhood(v)
2: sum,norm,sum′,norm′ = 0
3: for all i do
4: di = ‖v−qi‖
5: oi = 〈n,v−qi〉
6: ci = (v.r−qi.r)2 +(v.g−qi.g)2 +(v.b−qi.b)2

7: wd
i = exp(−d2

i /2σ2
d )

8: wo
i = exp(−o2

i /2(σo ·λ m)2)
9: wc

i = exp(−ci/2σ2
c )

10: sum += (wd
i ·wo

i ·wc
i ) ·oi

11: norm += wd
i ·wo

i ·wc
i

12: end for
13: x′ = sum/norm
14: v′ = v+ x′ ·n
15: for all i do
16: d′i = ‖v′−q′i‖
17: wd

i = exp(−(d′i)
2
/2σ2

d )
18: sum′ += wd

i · x′i
19: norm′ += wd

i
20: end for
21: x′′ = sum′/norm′

22: v′′ = v′− x′′ ·n
23: return v”

In the first step of our algorithm (line 3-14) the new po-
sition v′ of a vertex v is estimated as a weighted average
of neighboring vertex position qi, where the weights de-
pend on three influencing factors: distance (wd

i ), offset
(wo

i ) and color difference (wc
i ). For computing the dis-

tance di between a vertex v and neighboring vertex qi,
the geodesic distance on the smooth surface would be
the correct measure. However, for efficiency reasons
we approximate di using the Euclidean distance in line
4, since [FDCO03] demonstrated already a sufficient
impact. The offset oi is defined as the distance of ver-
tex qi to the tangent plane of vertex v. The intention
of using this offset oi is that neighboring points in flat
regions should have a higher influence than in convex
or edge regions. As described in line 5, oi can be eas-
ily estimated using the dot product. The last influence
factor is the color difference ci between a vertex qi and

(a)

(b)

(c)

Figure 2: Joint Bilateral Mesh Denoising (JBMD) ap-
plied to vertex v: (a) Denoising step (v → v′). (b)
Shrinking correction step (v′→ v′′). (c) Final result.

vertex v, which is estimated in line 6. To map the in-
fluence factors di, oi and ci to weights wd

i , wo
i and wc

i ,
we use the Gaussians of lines 7-9. The final shift x′ of
vertex v is the normalized weighted sum of offsets oi of
neighboring vertices qi.

In the second step of our algorithm (line 15-22) we cor-
rect the position of a vertex v′ due to possible shrink-
ing effects. As already mentioned before, we observed
that the weighted mean signed shift x′′ of vertices in the
neighborhood, which were estimated by the denoising
in the first step, is a good local measure for a shrinkage
correction. For the estimation of the weights for x′′ we
use the distance d′i between a vertex q′i and v′ together
with a mapping function (line 16-17) similar to the first
step of the algorithm. The weighted mean signed shift
x′′ is calculated by summing up the weighted signed
sifts x′i (line 18) and normalizing afterwards (line 21).
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Figure 3: Mean errors of the fandisk mesh for different numbers of iterations. Quantitative comparison of different
features of our new JBMD algorithm and comparison against BMD.
Dark blue: BMD [FDCO03]. Red: BMD without volume preservation. Green: Our new JBMD. Purple: JBMD
without increasing smoothing sensitivity. Light blue: JBMD without local anti-shrinking. Orange: JBMD without
increasing smoothing sensitivity and without local anti-shrinking.

The described JBMD algorithm is applied locally for
each vertex of the mesh. However, vertices at a bound-
ary of a mesh do not have a well defined neighborhood
(line 1). In our algorithm we define the size of the
neighborhood as a fixed number k. The neighborhood
of a vertex v is then defined by the k closest vertices
qi. Obviously, the shape of our neighborhood changes
from vertex to vertex, but since the distance di between
vertices v and qi is an influencing parameter, this arti-
fact has negligible influence.
Our JBMD algorithm is - like many other [FDCO03,
ZFAT11] - an iterative approach. In the first iteration
major noise is eliminated, whereas with higher number
of iterations the overall level of noise decreases. Thus,
we consider this aspect by an increasing smoothing sen-
sitivity. In our JBMD algorithm the noise influences the
result via the offset oi, whereas the corresponding map-
ping function depends on σo. Therefore, we decrease
the parameter σo by a constant factor λ with each iter-
ation; leading to constantly low error.

4 EVALUATION
In this section we benchmark our JBMD algorithm by
comparing it to competing algorithms, namely Lapla-
cian Denoising and Bilateral Mesh Denoising (BMD).
These algorithms are described in more detail in Sec-
tion 2. All methods - including ours - depend on some
parameters. For our JBMD algorithm these are σd , σo
σc and λ . Thus, we run each algorithm with a huge
number of possible parameter combinations to detect
the optimal setting. All results (Figures, diagrams, etc.)
shown in this paper are generated with optimal parame-
ter settings and numbers of iterations. For our JBMD
algorithm we used the parameter settings of Table 1
for the given datasets. Note, these parameters depend
highly on the mean vertex distance (MVD) of the given
mesh. According to our experiments MV D ≈ 2σd ≈
4σo can be used as a rough guideline for setting the pa-
rameters.

Unfortunately, a groundtruth comparison on real world
data is very difficult, since no datasets are available,
which provide both real noisy data and real denoised
data. Thus, in the recent literature it is common to use
precise models of an object and generate the noise on
it synthetically. For this paper we decided to use three
categories of testdata in our evaluation.

The first category are colored synthetic meshes with
sharp edges together with an artificially noisy version of
this mesh. We use here the well-known fandisk mesh,
where each part of the surface has another color. Fur-
thermore, we add a Gaussian noise, where the stan-
dard deviation is roughly half of the vertex distance.
The second category of testdata are highly precise re-
constructions of real objects acquired by a camera-
projector-system [KNRS13]. We also added here a
Gaussian noise with a standard deviation of approxi-
mately half vertex distance. The meshes used in this pa-
per are the lion and allegorie reconstructions. The third
category of testdata are reconstructed meshes, which
are generated by standard cameras and Agisoft Pho-
toScan [Agi]. We use in this paper the heads of two
persons: person 1 and person 2. These reconstructions
include partially strong noise due to the lack of char-
acteristic features. Obviously, for these reconstructions
no ground truth is available, but they are a real world
scenario, where the application of a mesh denoising al-
gorithm is required.

MVD σd σo σc λ

fandisk 0.1897 0.1 0.05 30 0.8
lion 0.4401 1.0 0.5 30 0.6

allegorie 0.0003 0.0008 0.0004 35 0.7
person 1 0.0030 0.01 0.005 20 0.7
person 2 0.0041 0.01 0.005 20 0.7

Table 1: Parameter settings in the evaluation of our new
JBMD algorithm for the given datasets with specified
mean vertex distance (MVD).
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(a) Input (b) BMD (c) Laplacian (d) Our JBMD

Figure 4: Comparison of different mesh denoising algorithms for the lion mesh. Top row: meshes. Bottom row:
color-coded error distribution.

Figure 5: Mean errors of the lion mesh for different numbers of iterations. Quantitative comparison of different
features of our new JBMD algorithm and comparison against BMD.

As a quality measure for denoising we use the mean
error (ME), which is defined for a denoised mesh X and
a ground truth mesh G by

ME(X ,G) =
1
n

n

∑
i=1
‖xi−gp‖ (3)

xi ∈ X ; gp ∈ G; ∀i p = arg
p

min‖xi−gp‖,

where n is the number of vertices in the mesh X . More
intuitive, it is defined by the mean distance of each ver-
tex in the mesh X to the respective closest vertex in the
ground truth mesh G.
First of all we evaluate our algorithm with the fandisk
mesh in Figure 1, which has ideal preconditions for
our JBMD, since all sharp edges coincide with color
changes. From a visual point of view, all three mesh de-
noising algorithms provide smooth results without vis-
ible noise. However, they differ strongly in their pre-
cision, as visible in the color-coded error distribution
in the bottom row. The blue color indicates low er-
rors, whereas red represents high errors. Both BMD
and Laplacian denoising have imprecise vertices at the

edges of the mesh, whereas our JBMD has only some
minor inaccuracy. Figure 3 depicts the mean error of
the fandisk mesh depending on the number of iterations.
Our JBMD has the lowest error and converges in partic-
ular on this low error level. If our JBMD is used without
the increasing smoothing sensitivity, the mean error in-
creases again from the fourth iteration on. If we switch
off our shrinking correction, we achieve better results
for a small number of iterations. This is caused by the
inhibiting effect of the shrinking correction, since it re-
verts the denoising to some extent. However, for larger
numbers of iterations superior results can be achieved
with our new local anti-shrinking. Looking at the ef-
fects of using the color information as an additional
parameter, we see that our JBMD has - even without
increasing smoothing sensitivity and without local anti-
shrinking (orange line) - always a lower mean error than
the BMD.

The lion and allegorie meshes, which correspond to
the testdata category of real reconstructions with syn-
thetic noise, are depicted in Figure 4 and 7 respectively.
Again, from a visual point of view all three mesh de-
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(a) Input (b) BMD (c) Laplacian (d) Our JBMD

Figure 6: Comparison of different mesh denoising algorithms for the person 1 mesh. Top row: meshes. Bottom
row: color-coded comparison against the input mesh.

noising algorithms deliver smooth results. However, for
both datasets at the edges of the mesh BMD and Lapla-
cian denoising are less precise than our JBMD. Figure 5
and Figure 8 depict the respective mean error of the lion
and allegorie meshes depending on the number of iter-
ations. Again, our JBMD outperforms the competing
algorithms and converges at the lowest error level.

The person 1 and person 2 meshes correspond to the
testdata category of reconstructions with real world
noise. Since no groundtruth data is available for these
datasets, we compare the denoised meshes against the
original mesh in Figure 6 and 9 respectively. The BMD
algorithms results in the biggest differences to the orig-
inal mesh. Especially the nose, but also the eyebrows
and mouth, have a huge deviation and are not precise.
The Laplacian smoothing shows less deviation, but is
by far not as close to the original mesh as our JBMD. Of
course, smaller deviations to the original do not manda-
tory result in a better quality, but from a visual point of
view all results are similarly smooth. Thus, also for this
category of testdata our JBMD outperforms the com-
peting algorithms.

Summarizing the evaluation results, we found out
that our JBMD algorithm outperforms competing
algorithms for all tested datasets in terms of precision
while creating smooth results. Notably is in particular
that our JBMD converges on the lowest error level for
higher numbers of iterations. This is the achievement
of all three main contributions of our paper: Using
color information as additional constraint, correcting

shrinking effects locally and increasing the smoothing
sensitivity with each iteration. Like illustrated in Figure
3, 5 and 8 this is only possible with the combination
of all these three contributions. As long as at least one
of them is not activated, the mean error is not minimal
and does not converge. With the local anti-shrinking it
is possible to denoise especially edges very precisely.
Furthermore, we verified with our convincing result
that the coherence assumption of coinciding geometry
and color changes holds also for meshes.

5 CONCLUSION
In this paper we proposed the new Joint Bilateral Mesh
Denoising (JBMD), which is an anisotropic filter for
highly precise and smooth mesh denoising. Under the
assumption of coinciding geometry and color changes
it uses color information as an additional constraint for
denoising. This assumption is adapted from the Joint
Bilateral Filter (JBF) of the recent image processing
research and we showed in this paper that this coher-
ence assumption also holds for meshes. Furthermore,
we proposed a precise local anti-shrinking, which leads
to precision improvements especially at the edges of the
mesh. Our third contribution increases the smoothing
sensitivity for higher numbers of iterations. In our eval-
uation we compared our new JBMD algorithm against
competing algorithm based on three categories of test
data. We showed that our contributions lead to high pre-
cision results with lowest errors. In addition our algo-
rithm converges to the minimum error level for higher
numbers of iterations.
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(a) Input (b) BMD (c) Laplacian (d) Our JBMD

Figure 7: Comparison of different mesh denoising algorithms for the allegorie mesh. Top row: meshes. Bottom
row: color-coded error distribution.

Figure 8: Mean errors of the allegorie mesh for different numbers of iterations. Quantitative comparison of
different features of our new JBMD algorithm and comparison against BMD.

(a) Input (b) BMD (c) Laplacian (d) Our JBMD

Figure 9: Comparison of different mesh denoising algorithms for the person 2 mesh. Top row: meshes. Bottom
row: color-coded comparison against the input mesh.
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ABSTRACT
We propose a Slow Feature Analysis (SFA) based classification of hand-poses and demonstrate that the property
of mutual independence of the slow feature functions improves the classification performance. SFA extracts func-
tions that describe trends in a time series data and is capable of isolating noise from information while conserving
high-frequency components of the data which are consistently present over time or in the set of data points. SFA is
a useful knowledge extraction method that can be modified to identify functions which are well suited for distin-
guishing classes. We show that by using the orthogonality property of SFA our information about classes can be
increased. This is demonstrated by classification results on the well known MNIST dataset for hand written digit
detection.
Furthermore, we use a hand-pose dataset with five possible classes to show the performance of SFA. It consistently
achieves a detection rate of over 96% for each class. We compare the classification results on shape descrip-
tive physical features, on the Principal Component Analysis (PCA) and the non-linear dimensionality reduction
(NLDR) for manifold learning. We show that a simple variance based decision algorithm for SFA gives higher
recognition rates than K-Nearest Neighbour (KNN), on physical features, PCA and non-linear low dimensional
representation. Finally, we examine Convolutional Neural Networks (CNN) in relation with SFA.

Keywords
Slow Feature Analysis, Hand-Pose Identification, Knowledge extraction, Feature Learning

1 INTRODUCTION AND BACK-
GROUND

The hand is probably the most effective tool for indi-
cating and gesticulating. Estimating the hand-pose in
frames of a sequence to detect a gesture is a common
step used in various gesture recognition approaches.
Hand gesture recognition is steadily gaining popular-
ity in tasks like navigation, selection and manipulation
in Human Computer Interactions [BVBC04]. While
complex applications like surgical simulation and train-
ing systems require dynamic hand gesture recognition
[LTCK03], simpler command and control interfaces of-
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ten employ hand-poses.
The hand-pose at each frame is treated as a feature in
some approaches [CGP07], while some methods use
this information to describe the states of a state ma-
chine [GMR+02]. A sensor free, vision based detec-
tion of pose is a challenging task because of the large
degree of freedom in the movement of hand parts and
self occlusion that might occur, moreover the calcula-
tion of local edge or corner based features is prone to
noise [CGP08]. Some methods use physical features of
the hand like the gravitational center of the palm region
and the finger location [RYZ11]. Other features include
convexity that describes the curvature of the palm hull.
The works of [PKK09, CLEL12] describe the use of
geometrical descriptors for posture detection. We ar-
gue that because of occlusion and the high degree of
freedom, high level features learnt from hand-pose data
can help in improving the classification. In [LCP12]
a method of manifold embedding for articulated hand
configuration detection is proposed. This method learns
one of the global description of data by identifying the
manifold on which the data resides.
The SFA allows unsupervised learning of invariant or
slowly varying features. It can learn translation, scale
and rotational invariances [WS02]. The SFA technique
has been modified to achieve supervised learning to
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achieve classification [Ber05]. It provides mutually or-
thogonal features thus the prominent features carry in-
dependent information about the data even though they
remain invariant to size, rotation and translation. An-
other important property of the SFA is the guaranteed
optimisation to the slowest changing function which al-
lows for easy extension when learning a new class. We
propose to learn several slow feature functions for each
class to improve classification further. To achieve this
we employ the property of mutual orthogonality of fea-
tures learnt from a class. The mutual orthogonality of
SFA features result in aggregation of information thus
it increases the effective information that a classifier re-
ceives.
Section 2.1 describes the basic ideas behind SFA, fur-
ther we discuss its use as a classifier in section 2.2. In
section 2.3 we explain the use of orthogonality to in-
crease information and describe its effect on the classi-
fication task on the MNIST dataset in section 3.1. Fi-
nally in section 3.2 we apply the technique on hand-
pose classification.
We ascertain the applicability of SFA as an informa-
tion extraction method, by demonstrating better clas-
sification rates as compared to the standard PCA and
manifold learning methods. The manifolds representa-
tion of data compensates for non-linearities. The better
performance of SFA over manifold learning proves its
strong capability of identifying the consistent proper-
ties of signals in a dataset. Apart from the compari-
son with PCA and manifold learning methods we also
make comparisons to classification performed by us-
ing shape descriptors and geometrical features calcu-
lated from the hand-pose images. We report a substan-
tial improvement over the classification done with these
features. The improvement over physical features in-
dicates that SFA is capable of information extraction
while the improved classification compared to mani-
fold embedding establishes the ability to handle non-
linearities in a dataset.
The broad contributions made through this work are:

• The applicability of SFA for hand-pose classifica-
tion using data obtained from a time of flight cam-
era.

• SFA classification based on several slow feature
functions and not just the principal slow feature.

• A comparison of classification based on physical
features and SFA features that indicates the superior
information extraction capability of SFA.

• The demonstration of improved classification per-
formance on the MNIST hand written digit dataset
and the hand-pose dataset using a modified SFA.

2 SLOW FEATURE ANALYSIS
2.1 Slow Feature Analysis as a Learning

Problem
Low level features are short duration features and are
often misleading. High level features of the data carry
information that extends beyond small neighbourhoods.
SFA learns functions that represent such high level fea-
tures. These high level representation can better explain
the property of the data space. A feature that does not
vary rapidly, yet has a slow consistent change promises
to describe the behaviour of a function in better detail
[Föl91]. The slow features thus provide a consistent
trend in the data. The SFA is originally designed for
detection of trends in temporal data [WS02]. It has
been modified to provide consistent trends within ele-
ments belonging to a static dataset [Ber05]. We first
discuss the SFA procedure for temporal data and shall
later explain the modifications for classification in static
datasets.
If a vectorial input X(t) ∈ Rd is a time series, one of
the slow features is the function g(·), such that y(t) =
g(X(t)), varies as slowly as possible while avoiding
trivial responses.
The problem is formally described by [Wis03] as min-
imising the absolute differential

∆(y j) := 〈ẏ j
2〉. (1)

Here y j is the jth component of y(t) and ẏ j is the deriva-
tive of y j with respect to time t and 〈·〉 denotes average
over time. The absolute differential is minimised under
the following conditions:

〈y j〉= 0 (2)

〈y2
j〉= 1 (3)

〈yiy j〉= 0 i 6= j. (4)

While the minimisation selects invariant features, (3)
forces some variance and removes the possibility of
obsolete solutions like a constant function and (4)
forces independence among the calculated slow fea-
tures. These constraints are forced by sphering the data
[LZ98].
Sphering of X ∈ Rd means we transform X such that
the covariance matrix of the transformed random vari-
able X∗(t) is an identity matrix. X = (x1,x2...,xn), rep-
resents a data matrix and x1,x2,x3, ...,xn are n vectors
belonging to it. If (X− µ) and Σ are respectively the
centered data matrix and the covariance matrix, then the
sphered data is expressed as:

X∗(t) = Bn(X−µ), with BT
n Bn = Σ−1. (5)

The sphered data X∗(t) is projected into a
quadratic space, resulting in data Z. The deriva-
tive Z(t +1)−Z(t), is represented by Ż. Let W be the
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eigenvectors of the covariance matrix of the derivative
matrix Ż,

〈ŻŻT〉W = λW. (6)

The eigenvectors corresponding to the smallest eigen-
values are the direction of the slowest change in differ-
ential of the data. These eigenvectors compose the slow
feature functions. These functions are the weighted lin-
ear sums over the components of the expanded signal,
where weights are the components of eigenvectors w,

g j(x) = w j
T .Z(t). (7)

Where w j is the jth column of the matrix W. The m
smallest eigenvalues correspond to the m primary slow
feature functions: g1, g2, g3 ...gm.

2.2 Slow Feature Analysis for Classifica-
tion

The slow features describe intrinsic features of a long
time series. It is the property of slow features to
conserve variations over time, this property can be
exploited for classification. The data for classification
is not temporal and thus the absolute differential
described in (1) is modified to perform a supervised
classification. To perform a supervised classification,
functions resulting in minimum inter-element differ-
ence within each class are identified. As in case of
time series SFA, the conditions of zero mean, constant
variance and linear independence are imposed. Once
again these conditions are satisfied by sphering the
data. Furthermore, the optimisation process tries to
increase the variance outside a class, to identify the
slow feature functions.
For the dataset X, we define a matrix Z, such that Z
is the quadratic expansion of the sphered transform of
X. Accordingly, the differential term for a vector zel

belonging to the expanded dataset Z is represented as:

∇el :=
N

∑
C=1

√√√√ NC

∑
n=1

(zn
C− zel)2. (8)

Thus average differential for the data Z can be re-
represented as:

∇ := 〈∇el〉. (9)

Where, zel is the vector corresponding to the element
for which the differential is calculated. zn

C is the nth

element of a class C, N is the number of classes and
NC is the number of datapoints in the class C. We
now minimise the value of ∇. This minimisation condi-
tion returns functions that forces slow variance within
classes. Each of the slow features correspond to one
of the classes, to further improve the extracted feature
functions, (9) is extended to maximise the variance

between classes while minimising it within the class
[ZT12].
To achieve this we subtract the average of the absolute
difference of the in-class element with elements outside
the class (∇o

el) from the average differential within the
class (∇el), that yields

∇
o
el :=

N

∑
C=1

√√√√ N

∑
{c=1,c6=C}

Nc

∑
n=1

(zn
c− zel)2. (10)

The calculation of the slow feature function is modified
to minimising the cost function O, where O is defined
as:

O = 〈∇el〉−〈∇o
el〉. (11)

2.3 Using Orthogonality to Increase In-
formation

The classification process described above returns
(N=number of classes) functions. These functions are
learnt from the entire dataset using the optimisation
function of (11). This procedure results in a set of
functions which provide low variance response. The
constraint of decorrelation between different slow fea-
tures creates the possibility of learning many functions
corresponding to one class.
The ready availability of features after doing an SFA
procedure, and there mutual independence motivates us
to find more features within a class. Thus we calculate
multiple slow features corresponding to each class.
Rather than learning slow features over the entire
dataset we learn a set of function for every class. Slow
features are learnt by restricting the dataset to elements
of one class, this is repeated for all classes.
As each function is orthogonal, we have more than
one function representing intrinsic properties of the
specific class. These linear functions are decorrelated
on the expanded space. Learning slow features in every
class requires a larger training dataset, meanwhile it
also results in adding information for classification.
The optimisation function (11) is further modified to
minimise variance within a class, while maximising
out-of-class variation using all other classes (13). This
modification extends (10) as follows:

∇elC :=

√√√√ NC

∑
n=1

(zn
C− zelC)2, (12)

∇
o
elC :=

√√√√ N

∑
{c=1,c 6=C}

Nc

∑
n=1

(zn
c− zelC)2, (13)

∇o
elC

in (13) is the sum of out-of-class variances calcu-
lated over the training dataset.
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OC = 〈∇elC〉−〈∇
o
elC〉. (14)

elC represents that the calculation for the differential is
done for elements belonging to the class C. The opti-
misation for class C is achieved by minimising OC.
The functions are collected as matrix WC where C is
the class for which these functions are learnt. wλCj

is

the vector corresponding to the jth eigenvalue λC j of
class matrix WC. For a test input vector P the functional
G returns an output vector G(W,P). The functional G
has m linear functions in the space corresponding to the
dimension of vector expanded in data space,

G(WC,P) = P ·W̄c
T
. (15)

The variance for the output of the function is calculated
as,

VarC = ∑
j
(P · w̄λCj

)2 = ∑G(WC,P)2. (16)

The final classification is performed as follows:

class = argmin
C

(VarC). (17)

While doing an N class classification using m functions
for each class, we have Nm functions. Some of these
functions are very similar even though they belong to
separate classes. This does not affect the minimum vari-
ance choice, because of aggregation.
The value of functions corresponding to a class when
applied to an element from the same class is centred
around a constant value. When a function is applied on
a mismatched class, the result is random. This random-
ness likely results in a wrong identification.
In the case of multiple centred functions, corresponding
to a class, the resulting output for a matching sample
has all the function outputs centred around zero. Some
functions from non-matching classes may return cen-
tred responses close to zero but, the aggregated variance
for a mismatch element is higher, resulting in clearer
distinction from the matching class.

3 EXPERIMENTS
3.1 Effect of Increased Information on

MNIST Dataset
MNIST dataset [LC12] is one of the most popular
dataset for evaluating classification problems. The Le-
cun network [LJB+95] has achieved an error rate of
less than 0.3% on the MNIST dataset. [Ber05] also
describes the original classification technique on the
MNIST Hand written digit dataset. We further tested
and compared both methods of using SFA for classifi-
cation described earlier on the same dataset. Each data-
point in the MNIST dataset is a 28x28 pixel image. We

reduce it to a 35 dimensional vector by employing PCA
and then project it into a quadratic space. The quadratic
expansion of the 35 dimensional PCA vector results in a
vector of size 630. We calculate 10 slow features func-
tions for the full dataset. Also, we calculate 10 slow
feature functions for each class. It was observed that
the identification performance for every class improved
when we used the property of orthogonality to calcu-
late slow feature functions. The comparative results are
listed in Table 1.

class 0 1 2 3 4 5 6 7 8 9
Full Dataset 81 93 79 83 77 72 77 80 73 84

Class Separation 91 96 82 85 79 81 89 91 83 84

Table 1: Classification accuracy in % for each digit
mentioned on the top row. The second row values are
accuracy percentages when slow feature functions are
learnt from the entire dataset, the third row shows the
accuracy percentages when several functions are learnt
independently for each class

Figure 1 and Figure 2 show the difference between the
two methods for classification. Figure 1 is based on
identification of feature function from the entire data
while Figure 2 is based on the classification approach
where multiple corresponding functions are learnt from
each class. The Y axis represents the distance of the
response from the mean response calculated during the
training stage, the X axis marks the index of input ele-
ment on the dataset. The input elements are stacked in
order of the classes that they belong to.
Figure 1 shows the centred response of the first three
classes to the function corresponding to class with digit
0. The deviation of elements of class ’0’ from the ori-
gin are smaller as compared to other classes. This fits
our hypothesis that SFA looks for feature functions that
minimise the in-class variance. The Figure 2 shows the
response of each data point to three functions learnt for
class 0. The response of the data points of each class is
shown in the same figure, with dark blue (the first clus-
ter) representing class 0. The lower variance of function
value to the matching class is clearly visible in these
figures, the aggregation of function 1, 2 and 3 results
in a deviation which is smaller for the matching class,
but higher for mismatch. Averaging over these function
values reduces the likely possibility of error in the first
method because of randomness of non matching func-
tion response.

3.2 Hand-pose Experiments
3.2.1 Hand-Pose Data Collection
A 3D Time-of-light, PMD-Nano camera has been
used to collect a dataset of hand-poses. The camera
is fixed vertically above the palm. The output of the
PMD-Nano time of flight camera is an 120x165x2 im-
age. The two channels of the image are the amplitude
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(a) class:0 (b) class:1 (c) class:2

Figure 1: Response of class 0, 1 and 2 to function learnt from class 0.

(a) function:1 (b) function:2 (c) function:3

Figure 2: Response of all classes to the first 3 functions learnt from class 0.

value and the depth map image data. We cover the arm
region with absorbent clothing and use the reflectance
of skin to identify the palm. The reflectance constraint
does not entirely remove the background and thus the
closest contour greater than a threshold area is chosen
as the palm region. The segmented palm region is then
converted into a binary image which is further used for
hand-pose identification.
We then learn slow feature functions for five hand-pose
classes labelled as "Fist", "Flat", "Index", "Open" and
"Grab", see Figure 3. Slow features or invariances
are learnt from a dataset of 3,000 frames of each
class from 3 subjects. 1000 frames in each class are
randomly selected and rotated in either direction, by
an angle between 10◦ and 20 ◦. These rotated frames
are added to the training dataset along with the original
frames. Note that, this spreads the poses such that they
cover the whole rotational axis, it also increases the
dataset and generates samples which train the SFA for
rotational invariances.
Three hundred frames are selected for each class
through random partitioning of the original dataset.
These samples are used as test dataset, while the
remaining original dataset is used for training. The
preprocessing follows the same procedure as described
for the training dataset.

3.2.2 Hand-pose Identification
Before learning slow features from the dataset of seg-
mented hands, the image is scaled down to one-third
of its original size. This is followed by a PCA which
reduces each image to a 35 dimension vector that is

projected to its quadratic space to allow the learning of
non-linear invariances in the principal components of
the training data.
During the SFA learning process the covariance matrix

(a) Fist (b) Flat (c) index (d) Open (e) Grab

Figure 3: The hand-pose samples.

of the differential data as well as the eigenvectors cor-
responding to the largest eigenvalues are recorded. The
eigenvectors corresponding to the ten largest eigenval-
ues correspond to the linear functions used for classifi-
cation. Each function is centred around the mean values
learnt during the training process. It is observed that the
samples of matching classes are tightly spread around
the mean values of the classes. The class which cor-
responds to the function has much smaller variance as
compared to other classes. Figure 4 shows the response
of the test dataset on the most prominent function of the
"Fist" class. The data points for each class are repre-
sented by a unique color. The "Fist" class which is rep-
resented by blue in the figure has relatively tight pack-
ing of the data-points as compared to any other class.
Like in the previous figures the X axis of the plot repre-
sents the data points which are arranged by their labels,
and the Y axis represents the centered value of the learnt
function.
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Figure 4: Slow function response for class ’Fist’.

This pattern is visible over the entire set of Nm func-
tions, 5x10=50 in the present case. Table 2 shows the
response of each data-point to the first five of the 10
learnt functions of each class. Each rows represents a
set of functions corresponding to the class.
It can be observed that the functions learnt for one class
have lower variance in the same class, while higher
variance in other classes. This observation is used to
differentiate classes. Thus we calculate the variance of
the function response over all the functions calculated
for a class.
The three hundred frames of each class in the dataset

are used for evaluations. While learning models that are
saved include, PCA mapping for each class, the spher-
ing matrix, m eigenvectors and the covariance matrices
for each class.

4 RESULTS AND COMPARISONS
We compare the results of the classification using slow
feature analysis with results from KNN on physical
features extracted from each frame. The physical
features include coordinates of the tip of the finger
(or the tip of the palm), the coordinates of the palm
centroid, the convex ratio and the concave depth of the
image and the polar and azimuth angle of the finger
[RYZ11, PKK09, CLEL12] . We also compare the
results to KNN applied on the PCA of the data and
the low dimension manifold of the raw binary image
[LCP12].
The KNN models for the physical features are gen-
erated using 1500 samples from each class and are
modelled by simple euclidean distances. The Manifold
is learned by Isomap algorithm [TDSL00] and the
learning is done by the same training data as used for
slow feature analysis.
Slow Feature Analysis based classification works
better than the physical feature based classification
evaluated in the KNN model. It also outperforms the
KNN evaluation done with 35-dimensional (35-D)
PCA and 9-dimensional (9-D) manifold representation
of the dataset. We chose 35-D PCA because it is
used as the basis for SFA calculation and 9-D isomap
because the classification by KNN performs best for it.
Table 3 shows the confusion matrix for the SFA based

classification, Table 4 shows the confusion matrix
for classification on KNN model trained on the hand
crafted physical features. Table 5 is the confusion
matrix for classification results from KNN model
trained on the 35-D PCA representation of the image
data. While classifying on the 9-D element vector
received from the isomap done on the palm region as
described earlier, the results are improved as compared
to KNN on physical features and PCA based KNN.
Table 6.
The results from the SFA are considerably better than
the results from the physical features. These features
are carefully selected for hand-pose estimation. This
underlines the ability of the method to search for
relevant features in a class. This improvement also
suggests that SFA is capable of reducing the effect of
local noise and distortion.
We compare SFA with KNN on the lower dimension
representation of the data computed by PCA. The
confusion matrices of Tables 3 and 5 clearly demon-
strate that SFA performs far better. Thus the process of
calculating the slow feature functions after doing PCA
on the data further refines the knowledge that we are
able to extract from the dataset.
SFA classification also performs better than a KNN
model trained on manifold representation of the dataset.
While the identification of the "Flat" hand-pose is bet-
ter than the SFA in case of the isomap representation,
the overall performance of SFA is superior. It is notable
that KNN is a far more complex model as compared
to simpler variance based classification of SFA. This
result suggests that SFA is capable of managing non-
linearities in the data, this can be attributed to the step
in which the PCA data is projected onto a quadratic
space.
The improvement from PCA to isomap modelling is a
result of better handling of non-linearities in the data.
The KNN model based on euclidean distances suffers
from the inability to compensate for non-linearities,
this is overcome when we use the isomap projection.
It is also important to note that while the KNN model
is learnt over the isomap projection, SFA classification
provides better results by simple variance calculations.
It is worth mentioning that the performance improve-
ment in the quality of classification was minimal when
we scaled the palm region by distances. This observa-
tion can be attributed to the characteristic of SFA that,
it explores multidimensional linear functions which
encompasses the invariances over the data points.

Discussion
The SFA, as demonstrated in the last section, performs
well for the classification task. Even though the total la-
belled data available to us was small, we compared the
performance of SFA classification for hand-pose with
CNN. The CNNs have resulted in exceptional classi-
fication results. As mentioned earlier Lecun network
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Func 1 Func 2 Func 3 Func 4 Func 5

FIST

FLAT

INDEX

OPEN

GRAB

Table 2: Scatter map showing the value for 5 SFA functions for every class on the test dataset, different colors
represent different classes.

based on CNN has achieved an error rate of less than
0.3% on the MNIST dataset, this compares favourably
with human accuracy. We tested our hand-pose dataset
for training a CNN with two convolution layers and
two Max pooling layers. Using 15000 data-points after
rescaling. The accuracy of classification reached over
98% after 30,000 iteration with a batch size of 50 im-
ages. Although, it was observed that because of the
relatively small amount of data the CNN model starts
over-fitting. The use of easily available, less specific
hand-pose datasets for pre-training the CNN is one of
the possible methods of overcoming the problem of
over-fitting with the present data. SFA also requires
a large dataset but lesser than CNN, we demonstrate
that it is capable of learning functions for each class
of hand-poses with 3000 data points. It can be argued
that the SFA learning process results in learning of in-
formation that defines the class of the dataset, but the
convolutional features learnt by a CNN using the clas-
sification based method contain information that distin-
guishes different classes. SFA results in lesser classifi-
cation accuracy than CNN on a large dataset, but SFA
gives interpretation about the nature of the class inde-

pendent, which seems to be harder to identify in a CNN
model.

5 CONCLUSION
In this paper we used SFA for classification on two
datasets. SFA was tested on MNIST dataset and a
hand-pose dataset. We approached the classification by
training SFA separately for each class and demonstrated
that, the property of orthogonality of SFA helps in ex-
tracting more information about the class. We showed
that SFA outperforms hand picked physical features
for hand-pose classification. This confirms the recent
trend of preferring global features which are learnt from
the data over extracting features by intuition. Training
and test data has considerable variances of rotation and
scale, in our experiments SFA remains robust to such
variances.
The use of slow feature analysis also reduces the on line
processing required on the test sample. SFA based clas-
sification requires a relatively large dataset for training,
additionally it employs an expensive batch learning al-
gorithm which requires large computer memory to run.
Yet, it displays a remarkable ability to extract informa-
tion and identify trends in a dataset. Usually calculating
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% FIST FLAT INDEX OPEN GRAB

FIST 97.0 1.0 0.0 1.7 0.3
FLAT 0.0 96.7 2.3 1.0 0.0
INDEX 0.0 0.0 98.7 1.3 0.0
OPEN 1.0 0.0 1.3 97.6 0.0
GRAB 0.7 2.3 0 0.3 96.7

Table 3: Confusion matrix for SFA classification. Bold
values are accuracy values for the class corresponding to
the respective row.

% FIST FLAT INDEX OPEN GRAB

FIST 97.0 0.7 1.3 0 1.0
FLAT 0.7 95.7 3.0 0 0.7
INDEX 2.7 5.7 91.7 0.3 0.0
OPEN 3.0 2.3 0 94.3 0.3
GRAB 0.7 4.7 0 0.3 94.3

Table 4: Confusion Matrix for KNN classification based
on physical features. Bold values are accuracy values for
class corresponding to the respective row.

% FIST FLAT INDEX OPEN GRAB

FIST 78.3 12.2 2.9 3.8 2.9
FLAT 1.3 80.7 6.3 6.6 5.0
INDEX 0.0 3.3 81.7 2.0 14.0
OPEN 0.0 7.7 4.7 85.3 2.3
GRAB 0.3 3.3 7.7 3.0 85.7

Table 5: Confusion Matrix for KNN classification results
on 35-D PCA. Bold values are accuracy values for the
class corresponding to the respective row.

% FIST FLAT INDEX OPEN GRAB

FIST 97.0 0.3 2.0 0.7 0
FLAT 0.3 98.3 1.3 0 0.3
INDEX 3.7 0.3 96.0 0 0
OPEN 1.7 0.0 1.0 96.3 1.0
GRAB 2.7 0.3 0.3 0.7 96.0

Table 6: Confusion Matrix for KNN classification on
9-D isomap on raw images. Bold values are accuracy
values for the class corresponding to the respective row.

features at run time is a hard task, it consumes consider-
able computing and development effort. Whereas, SFA
requires few linear operations to calculate the slow fea-
tures. Thus, it does not only improve the robustness to-
wards the data but also improves the performance of the
machine when compared with processes that use phys-
ical features.
We showed the performance on global SFA features in
this work and compared it to physical (local) features.
Note that when we tested the SFA for classification of
fixed length time series sequences, local features like
peaks and inflexion, when combined with slow features,
improved the classification performance. Classification
was made using a logistic regression classifier. How-
ever, this fusion requires online feature calculation and

a more complex classifier model.
It will be interesting to further study and quantify the
effect of noise and poor segmentation on these features.
Also further experiments with various data sources and
the influence of an increasing number of classes on the
orthogonality property of SFA will be of interest. We
plan to extend the present approach of pose detection
to gesture recognition. The batch learning approach is
not suitable for the gesture classification and recently
developed incremental SFA [KLS11] is a promising so-
lution to the problem.
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ABSTRACT
This paper presents a new approach for video completion of high-resolution video sequences. Current state-of-
the-art exemplar-based methods that use non-parametric patch sampling work well and provide good results for
low-resolution video sequences. Unfortunately, because of memory consumption problems and long computation
times, these methods handle only relatively low-resolution video sequences. This paper presents a video comple-
tion method that can handle much higher resolutions than previous ones. First, to address the problem of long
computation times, a dual inpainting-sampling filling-order completion method is proposed. The quality of our re-
sults is then significantly improved by a second innovation introducing a coherence-based matches refinement that
conducts intelligent and localized searches without relying on approximate searches or compressed data. Finally,
with respect to the computation times and memory problems that prevent high-resolution video completion, the
third innovation is a new localized search completion approach, which also uses uncompressed data and an exact
search. Combined together, these three innovations make it possible to complete high-resolution video sequences,
thus leading to a significant increase in resolution as compared to previous works.

Keywords
Video completion, high-resolution, object removal, patches coherence, localized search, multi-resolution

1 INTRODUCTION
Both image and video completion are important tasks
in many multimedia applications. Their goal is to au-
tomatically fill missing regions of an image/video in a
visually plausible manner. Two key factors differenti-
ate video completion from image completion. Firstly,
for video completion, it is important to maintain tem-
poral consistency since human vision is more sensitive
to temporal artifacts than to spatial artifacts. Using an
image completion technique individually on each frame
produces undesired temporal artifacts. Secondly, it is
more important for video completion to be time- and
memory-efficient since video contains much more data
than image.

In the past years, many new solutions have been
proposed for video completion. It has been shown
that exemplar-based methods, that use non-parametric
patch sampling, work well and provide good re-
sults. Unfortunately, they work only on relatively
low-resolution videos because larger ones require too

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

much memory. Few methods [8, 12] present results for
640×480 or 540×432 resolutions, with most [6, 7, 9–
11, 15, 17, 20, 21] presenting results of 320× 240 or
lower resolutions. Since High Definition (HD) videos
with 1920× 1080 or higher resolutions are now com-
monplace, most of these methods cannot be applied di-
rectly or they require too long computation times.

To understand the proposed method, we must first
look at the non-parametric patch sampling approaches.
Those methods are based on an iteration through each
of the patches in the missing regions and a search in all
of the patches of the existing regions to find the most
similar patch. Without optimization, this search can be
excessively time consuming: O(m3M2F) with M repre-
senting the video width and height; m the patch width,
height and depth; and F the number of frames. Even
with optimization methods, the search time of the non-
parametric patch sampling approaches still remains ex-
cessive. Furthermore, the structures needed for theses
optimization methods require too much memory, mak-
ing them inappropriate for HD videos.

Rather than focusing on the acceleration of the near-
est neighbors search, the proposed method narrows the
search space at finer (higher) resolutions using infor-
mation obtained at coarser (lower) resolutions. First,
let us consider two patches at coarser resolutions:
patch w l

p from the missing region and its most simi-
lar patch w l

p′ from the existing region. The most sim-
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Coarser resolution video sequence

Finer resolution video sequence

Frame 4

Frame 4

Frame 17

Frame 17

h
p

wh
p'

w l
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w l
p'

Corresponding patch

at high resolution

Figure 1: First row: coarser resolution video. Patch
(w l

p) in the missing region and its most similar patch
(w l

p′ ) in the existing region. Second row: finer resolu-
tion video. The corresponding patch (wh

p) of w l
p and its

most similar patch (wh
p′ ) in the existing region.

ilar patch of the corresponding patch wh
p at finer res-

olutions is likely to be found near wh
p′ , as illustrated

in Figure 1. The proposed approach begins by com-
pleting the video at coarser resolutions using a dual
inpainting-sampling filling-order completion approach
based on Wexler et al. [20]. Since efficient but approx-
imate search approaches are used to find the most simi-
lar patches, errors are introduced and several matches
are sub-optimal patches. To solve this problem, a
coherence-based matches refinement process is used to
search for better matches. The technique then stores
the space-time location of the most similar patch found
for each patch of the missing region in a matches list
ML. This ML is then used by a localized search com-
pletion approach to narrow the search space in higher
resolution, thus enabling the completion of HD video
sequences.

The contributions of the proposed method include a
dual inpainting-sampling filling-order completion ap-
proach based on Wexler et al. [20]; a new coherence-
based matches refinement process that improves the
quality of the matches when approximate search ap-
proaches are used; and a new localized search comple-
tion approach based on an exact search using uncom-
pressed data but restricted to a localized region. We
show that the proposed methods enable the completion
of HD video sequences and that they produce visually
plausible results within reasonable timeframes. More-

over, the approach requires very little memory at the
finest resolution except for the input video storage.

2 PREVIOUS WORKS
In past years, many methods have been proposed to
replace missing regions of an image. Image inpaint-
ing techniques propose to fill the missing region by ex-
tending the surrounding existing region until the hole
vanishes. These techniques generally work only on
small and thin holes. Image completion techniques use
non-parametric patch sampling and are able to fill even
larger missing regions of an image. While video com-
pletion methods are based on image completion and
inpainting methods, video completion poses the addi-
tional challenge of maintaining spatio-temporal consis-
tency. Using image completion or image inpainting
methods on each frame independently produces tempo-
ral artifacts that are easily noticed by the viewer [3].

2.1 Video completion
Extending the image completion methods based on
Markov Random Fields (MRF) and non-parametric
patch sampling, Wexler et al. [19, 20] address the prob-
lem of video completion as a global optimization, and
thus obtain good results on relatively large missing re-
gions. Shiratori et al. [17] proposed a similar approach,
but find patches based on motion fields instead of color
values. Xiao et al. [21] extend these works by formu-
lating video completion as a new global optimization
problem defined over a 3D graph defined in the space-
time volume of the video. Liu et al. [10] later have
proposed an algorithm with two stages: motion fields
completion and color completion via global optimiza-
tion. The major drawback of all these approaches is
the amount of information that must be processed when
considering HD video sequences. While some meth-
ods use per-pixel searches [19–21], other approaches
use larger primitives instead of pixels: Shih et al. [16]
use fragments, while Cheung et al. [4] use “epitomes”.
Approaches using fragments or epitomes can reduce the
search time and improve overall coherence, but per-
pixel searches are more likely to correctly restore the
fine and subtle details found in HD video sequences.
Many methods segment the video sequence into fore-
ground and background parts [6–8, 11, 14] or into lay-
ers [22]. These methods create a static background mo-
saic of the entire sequence, and as a result, these tech-
niques are limited to video sequences with a static back-
ground using a fixed camera. Patwardhan et al. [12]
later proposed a framework for dealing with videos con-
taining simple camera motions, such as small parallax
and hand-held camera motions. The major drawback
with all these techniques is that the pixels replaced are
static across the video sequence, thus removing details
such as video noise, film grain, or slightly moving ob-
jects, such as tree leaves, from the background. At an
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HD resolution, this lack of detail is quickly noticed by
the viewer.

2.2 Coherence techniques
When Ashikhmin [2] introduced the concept of coher-
ence, he observed that the results of synthesis algo-
rithms often contain large contiguous regions of the
input texture/image when using non-parametric patch
sampling. Consequently, the independent search for
every patch in the input texture/image can be acceler-
ated by using information from previously computed
searches. Thus it limits the search space of a given
patch to the locations of the most similar patches of
its neighbors. We based our coherence-based matches
refinement on the same coherence observation and de-
veloped an novel approach that is efficient with respect
to both computation time and memory consumption.
Tong et al. [18] also proposed a coherence technique
called k-coherence. While this technique improved the
search time, the pre-processing time and the memory
consumption are major drawbacks for high-resolution
video completion methods.

This paper presents an approach for the completion of
video sequences that requires very low memory us-
age and reasonable computation time, making it us-
able for HD video sequences. Further, it presents a
new coherence-based match refinement approach that
increases the overall quality of the results by eliminat-
ing many noticeable artifacts. Unlike most of the pre-
vious works, this paper presents results on video se-
quences with non-stationary camera movements.

3 HIGH DEFINITION VIDEO COM-
PLETION

In this section, we present a new video completion
approach that is able to automatically fill missing re-
gions of HD video sequences. Section 3.1 presents
the approach overview, Section 3.2 explains the dual
inpainting-sampling filling-order completion approach,
Section 3.3 describes the coherence-based matches re-
finement process, and Section 3.4 details the new local-
ized search completion method.

3.1 Approach overview
Starting with an input video sequence V containing a
missing region or hole H (H ⊂ V ), our approach fills
H in a visually plausible manner by copying similar
patches found in the existing region E (E = V \ H ),
thus creating a completed video sequence V*. This pro-
cess is shown in Figure 2. In order to maintain spatio-
temporal consistency, we consider the input video as a
space-time volume, and thus a pixel located at (x, y)
in frame t can be represented by the space-time point
p = (x, y, t). Consenquently, a patch wp can be seen as

V - input video H - binary mask

Dual inpainting-sampling 

filling-order completion 

Matches list creation

Coherence-based matches refinement

Localized search completion

V* - (output video)

Stage 1 

Stage 2 

Stage 3 

+

Figure 2: Schematic overview of the proposed approach

V original video sequence
H missing region or hole of V, H ⊂ V
E existing region of V, E = V \ H
H* completed region
V* completed video sequence
pl point located at (x, y, t) at coarser resolution
w l

p patch centered at pl at coarser resolution
w l

p′ patch centered at p′l , most similar to patch w l
p

ph point located at (x, y, t) at finer resolution
wh

p patch centered at ph at finer resolution
wh

p′ patch centered at p′h, most similar to patch wh
p

ML matches list
c RGB color
S search region centered at p′h

Table 1: Symbols definitions

a spatio-temporal cube of pixels centered at p. Table 1
summarizes the symbols used in this paper.

The missing region H is indicated to the system by a
binary video sequence in which identified pixels are in
H. The binary video sequence can be constructed us-
ing object tracking in the video sequence. Many digi-
tal motion graphics and compositing softwares already
provide accurate and rapid tools to create such binary
video sequences. In our experimentations, we relied on
such tools to define H.

Figure 2 shows a schematic overview of our approach
while Figure 3 presents the detailed steps. First, the
input video is downsampled and completed by a dual
inpainting-sampling filling-order completion based on
the works of Wexler et al. [19, 20] using global opti-
mization and non-parametric patch sampling (see Sec-
tion 3.2). Completing the video at low-resolution with
the proposed approach is efficient and provides good re-
sults. When the dual inpainting-sampling filling-order
completion is finished, each patch w l

p (centered at pl ∈
H ) is associated with its best matching patch w l

p′ (cen-
tered at p′l ∈ E ) by creating a matches list containing
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space-time pairs pl-p′l for every pl ∈H. To complete the
search in a reasonable amount of time, the best match-
ing patches w l

p′ must be selected using approximate
search and data compression methods. Thus, the w l

p′
found might not be the best match. The second stage of
the proposed method consists of an iterative coherence-
based matches refinement process that improves the
search results for the worst matching patches w l

p′ (see
Section 3.3). This stage is efficient, and provides signif-
icant quality improvement. Finally, the matches list is
used by the localized search completion method to nar-
row the search space, thus enabling the completion of
HD video sequences (see Section 3.4). This final stage
of the method is also efficient, and it provides good re-
sults at HD resolution.

3.2 Dual inpainting-sampling filling-
order completion

A visually plausible completion of a video sequence re-
places the missing region H by a completed region H*
where pixels of H* fit well within the whole video V*.
To achieve this, a video completion approach must sat-
isfy two criteria: first, every local space-time patch of
the completed region H* must be similar to an existing
patch of E, and secondly, all patches that fill H* must
be coherent with each other. Consequently, we seek a
completed video V* that minimizes the objective func-
tion stated in Equation 1:

Coherence(H*|E) = ∏
pl ∈ H

min
p′l ∈ E

D(w l
p,w

l
p′), (1)

where D(w l
p, w l

p′) is a similarity metric between two
patches. The similarity value of two patches is eval-
uated with the Sum of Squared Differences (SSD) of
color information (in the RGB color space) for every
pair of space-time points contained in these patches.
Wexler et al. [20] added the spatial and temporal
derivatives to the RGB components to obtain a five-
dimensional representation for each space-time point.
In experimentations, RGB alone produced good results
for most videos. Problems occured when trying to re-
construct a hidden moving object. While the technique
of Wexler et al. [20] can solve these problems, it is how-
ever limited to objects with cyclic motion (i.e. like a
walking person). Moreover, it requires more memory
and computation time. For these reasons, we limited
our problem domain to videos without occluded mov-
ing objects and chosen to use only RGB components.

The first step of the dual inpainting-sampling filling-
order completion approach is to downsample V to a
coarse resolution (see Figure 3, Stage 1.1). Then, be-
fore starting the completion, the values of each space-
time point of H need to be initialized. Unlike Wexler
et al. [20] who used random values, the proposed ap-
proach fills H using an image inpainting technique [3]

1920 x 1080 x 100

480 x 270 x 100

270 x 135 x 100

Stage 1.2

Individual frame inpainting

Stage 1.3

Low resolution

filling-order

iterative

completion

Stage 2 

Matches list creation

and coherence-based

refinement

Stage 3 

Localized 

search 

completion

}

Stage 1.1

Down-

sampling

Figure 3: Steps of the proposed video completion ap-
proach

(see Figure 3, Stage 1.2). Our aim is to speed up the
convergence by using the existing information around
H. This initialization is done only once, prior to the
first iteration of the low resolution filling-order iterative
completion approach.

After the initialization, the approach performs an itera-
tive process, improving the overall coherence of H (see
Figure 3, Stage 1.3). During each iteration, the ap-
proach seeks a replacement color value for every space-
time point in H in order to minimize Equation 1. Un-
like previous methods, which used scan-line ordering,
our approach fills H using a 3D hole-filling approach,
thus ensuring that each patch w l

p contains information
that is more reliable (space-time points in E or space-
time points already processed during the current itera-
tion). Consequently, it speeds-up the convergence and
reduces discontinuities near the boundaries of H. The
patches can have different sizes in the spatial and tem-
poral dimensions. Generally, we used 5×5×5 patches
or 7×7×5 patches and we based our choice on the el-
ement structure size that needs to be completed within
the video sequence.

To seek a replacement color c for a space-time point p,
the approach uses a single best-matching patch w l

p′ that
minimizes D(w l

p, w l
p′). When w l

p′ is found, the color
c ′ is copied from space-time point p′l to pl . Compared
to other methods that blend together several matches,
using the single best-matching patch does not result
in blurring artifacts and preserves film grain and noise
from the original video. For these reasons, our ap-
proach uses the single best-matching patch.

To enforce spatio-temporal consistency, this iterative
process is done on multiple scales using spatial pyra-
mids (see Figure 3, Stage 1.3). Each pyramid level con-
tains 1/2× 1/2 of the spatial resolution while maintain-
ing the temporal resolution. The iterative process starts
with the coarsest pyramid level and propagates its re-
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(a) 

(b) 

(c) 

58th frame  70th frame  

Figure 4: Comparison of the results obtained with the
low-resolution video completion approach: (a) Original
frames; (b) results from Wexler et al. [20]; (c) results
from the proposed method

sults to finer levels. Because it involves long computa-
tion times and a lot of memory for the search structure,
this iterative process is impractical at finer pyramid lev-
els for HD videos. Therefore, the proposed approach
stops the iterative process when it reaches a fixed reso-
lution (typically 480×270).

The proposed dual inpainting-sampling filling-order
completion approach produces results with a quality
equivalent to the results of Wexler et al. [20], but within
much less time. Figure 4 shows the completion results
of the “Jogging lady” sequence of Wexler et al. [20] and
ours. Wexler’s approach took one hour per iteration at
the finest resolution level while our approach took less
than four minutes per iteration.

3.3 Coherence-based matches refinement
When Stage 1 is over, each patch w l

p ∈ H* has a corre-
sponding patch w l

p′ . Each space-time point pl is asso-
ciated with its corresponding p′l and the pairs are stored
in a matches list ML. During the high-resolution com-
pletion iterative process, ML enables the approach to
narrow the search space to only sub-regions of E. As
a reminder, our key observation is that, for a patch w l

p

at coarser resolution with its most similar patch w l
p′ ,

the most similar patch of the corresponding patch wh
p at

finer resolution is likely to be found near p′h (see Fig-
ure 1).

For efficiency reasons, optimization methods such as
principal component analysis (PCA) and approximate
nearest neighbors search (ANN) [1] are used in Stage
1. While these methods are essential to achieving ac-
ceptable search times, they often provide matches w l

p′
that do not minimize Equation 1. Consequently, ML
needs to be refined during Stage 2 (see Figure 3, Stage
2) to have better matching patches w l

p′ .

 

(b) Completed HD

frame without 

ML refinement 

(c) Completed HD 

frame with 

ML refinement  

(a) Original 

frame

Figure 5: Impact of the ML refinement iterative process
on high-resolution video completion results: (a) Orig-
inal frame; (b) completed frame without ML refine-
ment; (c) completed frame with ML refinement. The
frames were cropped to better show the missing and
completed regions
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Figure 6: Coherence-based matches refinement process

The information contained in ML must be reliable in
order for visually plausible results to be possible with
the localized search completion iterative process. The
patches w l

p and w l
p′ must be highly similar for every

pair pl-p′l of ML, otherwise, the approach will narrow
the search space to a region where it is less likely to find
the best matching wh

p′ . Figure 5 (a, b) shows an example
where the information contained in ML is not reliable.
As can be seen, there are many visible artefacts such as
the centered window and the left building edge.

To find better matching patches w l
p′ , we take advantage

of the concept of coherence. First, the approach cal-
culates the distance (L2 norm of uncompressed data)
of patches w l

p and w l
p′ for each pair pl-p′l from ML.

Then an iterative process refines pairs with distances
higher than a given threshold. During the first iteration,
this threshold is set such that 15% of the pairs are re-
fined. After each iteration, this threshold is reduced by
20% of its initial value. For each pair pl-p′l above the
threshold, the approach seeks for a replacement p′l that
decreases D(w l

p, w l
p′). Instead of using a brute force

approach that searches the entire video sequence, the
search is restricted around the best matching patches of
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pl neighbors. An example is shown in Figure 6. The
four neighbors of pl are considered: top, right, bottom,
and left; respectively p1, p2, p3, and p4. For the top
neighbor (p1) the approach considers its previously cal-
culated best matching point p′1, then from p′1, its bottom
neighbor p′′1 is considered. The L2 norm is computed
between patches pl and p′′1 , and if the norm is lower
than the current value, p′l is replaced by p′′1 and the color
from p′′1 is copied to pl . This process is repeated for p2,
p3, and p4. If there is no good replacement, the pair
pl-p′l is left unchanged, and is considered in the next
iteration.

When considering the top neighbor p1, instead of
searching anywhere around its best matching point p′1,
only its bottom neighbor (p′′1) is considered. The ratio-
nale behind this is that several successful approaches
use large primitives such as fragments or epitomes.
When considering larger primitives, the bottom neigh-
bor (p′′1) is the one that would be copied on top of pl .
This effectively reduces the search to only four points
(p′′1 to p′′4). To even further reduce the number of points
to test, each neighbor p1 to p4 is considered only if the
L2 norm of a pair, for example, p1-p′1, is below the cur-
rent threshold. This is a very rapid test since the value is
already computed and stored in the ML. Since there is
a maximum of only four potential points to consider as
opposed to the millions from the whole video sequence,
this process is extremely fast. Figure 7 shows an ex-
ample of the ML coherence-based matches refinement
process that minimizes the distance of wp and wp′ for
each pair pl-p′l in ML. The ML refinement provides a
significant quality improvement (as shown in Figure 5)
within a few seconds.

3.4 Localized search completion
This section presents the proposed approach for com-
pleting missing regions of video sequences at HD reso-
lutions. As stated earlier, current exemplar-based meth-
ods are unpratical to complete HD video sequences be-
cause best match searches require excessive amount of
memory and computation time. Many attempts have
been made to accelerate this search with optimization
methods such as ANN and dimensionality reduction
methods such as PCA, but the structures needed for
these optimization methods require too much memory
for HD video sequences. Instead of accelerating the
best match search, the proposed method narrows the
search space at HD resolution using information from
coarser resolutions.

Before the localized search completion process starts,
the information contained in ML must to be scaled up
to the finer resolution (see Figure 8). For each space-
time point ph ∈ H at a finer resolution, its correspond-
ing low-resolution pl is found as well as the space-time
location p′l associated with it. The space-time location

(a) (b) 

(d) (c) 

Avgerage distance: 305 

Maximum distance: 1842 

After 2 iterations

Time needed: 2 s.

Average distance: 276 

Maximum distance: 856 

After 5 iterations

Time needed: 3.5 s.

Average distance: 189 

Maximum distance: 755 

Original frame Without ML refinement 

Figure 7: Impact of the ML coherence-based matches
refinement process: (a) original frame; (b) distance of
wp and wp′ for each pair pl-p′l after ML creation; (c)
distances after two iterations of the ML refinement pro-
cess; (d) distances after four iterations of the ML refine-
ment process. The frames were cropped to better show
the missing and completed regions

p′l is then scaled up to a finer resolution resulting in p′h.
The pair ph-p′h is then added in a new matches list MLH
which will be used by the localized search completion
process to narrow the search space.

The main steps of the localized search completion pro-
cess are similar to those of the low-resolution process:
using a 3D hole-filling approach, the method seeks a

pl (238, 118, 20) 

p’l

(260, 32, 36)

ph

(950, 470, 20)

S

(b) Space-time 

location p’l of

the most similar

patch based in ML

(a) Corresponding low resolution

space-time location of ph 

p’h

(1040, 128, 36)

(c) Corresponding high 

resolution space-time

location of p’l
(d) The pair ph-p’h is added to MLH 

Figure 8: Creation of MLH based on ML
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p’h

p’’h

p’’’h

Region S during iteration 1

Region S during iteration 2

Region S during iteration 3

Figure 9: Locations and sizes of search regions S for
the first three iterations of the localized search comple-
tion process

replacement color c′ for every ph ∈ H using a single
best-matching patch wh

p′ . However, instead of search-
ing through the entire video sequence using a brute
force algorithm or expensive search structures, the ap-
proach only searches in a small sub-region S, based on
the information from MLH. For each space-time point
ph ∈ H, the approach first looks in MLH and seeks for
its associated p′h. Then, a small region S centered at p′h
is selected. Next, the approach searches only in S for
the best-matching patch wh

p′′ (located at p′′h ∈ S ) and
the color ch is replaced by c′′h . If p′h and p′′h are dif-
ferent, the pair ph-p′h from MLH is replaced with the
pair ph-p′′h . In the next iteration of the localized search
completion process, the sub-region S will be recentered
around this updated space-time location. During the
first iteration of the localized search completion pro-
cess, the window size of sub-region S is 17×17 pixels.
This window size is then decreased after each iteration
(13× 13, 9× 9, 5× 5). Figure 9 shows an example of
the location changes and size decreases of a search re-
gion S for three iterations.

Obviously, the search time is dramatically reduced
when using MLH to narrow the search space, as com-
pared to using methods such as ANN and PCA. When
using the proposed MLH technique, less than a thou-
sand patches are searched for each ph compared to the
tens of millions of patches from the whole video. More-
over, the computation time for the creation and the re-
finement of ML and MLH is shorter than the time
needed for the creation of the structures used by ANN
and PCA. Another important advantage of the proposed
method is that MLH requires much less memory than
typical search structures, such as ANN. Finally, the pro-
posed MLH search does not rely on compressed data,
and thus can provide better matches.

4 RESULTS AND DISCUSSION
Figure 10 shows the completion of the “Station” se-
quence and Figure 11 shows the completion of the

“Race to Mars” sequence. The main challenge of these
sequences is the constant motion of the camera. The
“Station” sequence contains a constant zooming motion
while the “Race to Mars” sequence contains complex
rotating and panning motions. Video sequences with
such motions cannot be handled by video completion
techniques using a static background mosaic because
the size and orientation of the objects contained in the
background are not constant during the entire video se-
quence.

It can be seen in Figure 10 that the proposed method
works well with large missing regions. Figures 10
and 11 demonstrate that the proposed methods produce
good results for missing regions containing stochastic
texture as well as salient structure. Since state of
the art papers introduced in Section 2 show results with
resolutions ranging from 320× 240 to 640× 480, it is
not possible to compare the quality of our results with
other techniques. Therefore, we used a structural simi-
larity method (SSIM) [13], a full reference metric, to
measure the quality of our results at high-resolution.
Even though SSIM is generally used to evaluate video
compression methods, it can also be used to measure
the similarity between a reference sequence and a com-
pleted sequence. Figure 12 shows the completion of the
“Old town cross” sequence. Considering only the pix-
els in the missing region instead of all the pixels from
the full frames of the sequence, the average SSIM in-
dex is 90.63. Since the completed region does not need
to be exactly like the reference region, as long as the
region is completed in a visually plausible manner, this
SSIM index is good.

Table 2 shows a comparison of the proposed approach
with earlier works based on different criteria (some
were taken from Shih et al. [15]):

• Missing region specification: how the user inter-
acts with the method to specify the missing region;

• Exemplar-based approach: what type of comple-
tion method is used;

• Camera motion: video sequences with stationary
or nonstationary camera;

• Maximum resolution: the highest resolution of the
video sequences presented in the paper.

All completion methods use an exemplar-based tech-
nique with different variations. Most of the comple-
tion methods only use video sequences taken with a
stationary camera to test their algorithm. Patwardhan
et al. [12] present results with a non-static camera, but
the camera motion is always parallel to the projection
plane. Thus, Patwardhan et al. [12] do not deal with
changes in size, perspective, nor zooming. Only Shih
et al. [15] and the proposed method present results with
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Camera 

motion:

zooming

Resolution:

1920 x 1080

Missing 

region:

avg.: 17,624 

pixels / frame

Time:

~ 3 min. 

/ frame

(a)

(b)

(c)

Figure 10: Results for the “Station” sequence : (a) Original frames; (b) missing regions; and (c) completed frames.
Frames from https://cs-nsl-wiki.cs.surrey.sfu.ca/wiki/Video_Library_and_Tools

Camera 

motion:

rotating, 

panning

Resolution:

1920 x 1080

Missing 

region:

avg.: 9,546

pixels / frame

Time:

~ 1.5 min. 

/ frame

(a)

(b)

(c)

Figure 11: Results for the “Race to Mars” sequence (frames were cropped to better see the regions): (a) Original
frames (with unwanted wires highlighted in red); (b) missing regions; and (c) completed frames. Frames from
“Race to Mars”, a courtesy of Galafilm and Discovery Channel Canada

different camera motions such as zooming, rotating,
and panning. Finally, the main advantage of the pro-
posed method over previous works is the maximum res-
olution it can handle. The proposed method handles HD
video sequences while the highest resolution of all pre-
vious works from Section 2 is only 640×480, which is
more than a six-fold improvement over state-of-the-art
exemplar-based methods.

5 CONCLUSION

We have presented a video completion method that
can handle much higher resolutions than previous
work. The proposed method is based on three new ap-
proaches: a dual inpainting-sampling filling-order com-
pletion, a new coherence-based matches refinement,
and a new localized search completion approach. To-
gether, these three approaches solve the memory con-
sumption and computation time problems for the com-
pletion of HD video sequences. Furthermore, the qual-
ity of the results generated by our method compares fa-
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Camera 

motion:

zooming

Resolution:

1920 x 1080

Missing 

region:

avg.: 8 456 

pixels / frame

Time:

~ 1.25 min. 

per frame

R-SSIM:

avg. 90.46

G-SSIM:

avg. 90.88

B-SSIM:

avg. 90.54

(a)

(b)

(c)

Figure 12: Results for the “Old town cross” sequence (frames were cropped to better see the regions): (a) Frames
with a synthetic object; (b) completed frames; and (c) clean frames. Frames from https://cs-nsl-wiki.
cs.surrey.sfu.ca/wiki/Video_Library_and_Tools

Criteria
Related works Missing region(s)

specification
Exemplar-based approach Camera

motions
Maximum
resolution

Kamel et al. [7] User provided mask Standard Static 80×110
Shih et al. [15] Bounding box given

by user, missing
region is tracked

Improved patch-matching Static, non-static 320×240

Liu et al. [10] User provided mask Motion fields and colors Static 320×240
Xiao et al. [21] User provided mask Motion similarity and colors Static 384×192
Shiratori et al. [17] User provided mask Motion fields Static 352×240
Wexler et al. [20] User provided mask Motion similarity and colors Static 360×288
Koochari and Soryani [8] User provided mask Standard Static 540×432
Patwardhan et al. [12] User provided mask Motion inpainting and

priority based texture
synthesis

Static, non-static 640×480

Herling and Broll [5] Rough selection by
user, missing region

is tracked

Combined pixel-based
approach

Static, non-static 640×480

The proposed approach User provided mask dual inpainting-sampling
filling-order completion,

coherent and localized search

Static, non-static 1920×1080

Table 2: Comparison of the proposed method with previous works

vorably to previous works and allows for a significant
increase of the resolutions that can be completed.

The proposed coherence-based match refinement is
promising as it could be applied at various steps of sev-
eral video completion approachs. Future work will in-
volve an investigation of when the coherence approach
provides the best improvements: between each iter-
ations; between each resolution levels; at coarser or
finer resolutions; etc. As they are used in the proposed
method, the coherence-based matches refinement and

localized search completion consider a fairly limited
number of patches. Therefore, the search could stop
in a local minimum while there are better matches else-
where in the video. Future work should look at appro-
priate techniques to expand the search to other locations
that are likely to contain good matches.
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ABSTRACT
The context of this work is predictive rendering; our objective is to previsualize materials based on physical mod-
els within computer graphics simulations. In this work we focus on paints constituted of metallic flakes within
a dielectric binder. We want to validate a "virtual material workshop" approach, where a user could change the
composition and the microstructure of a virtual material, visualize its predicted appearance, and be able to com-
pare it to an actual sample. To do so, our methodology is to start from Scanning Electron Microscopy (SEM)
imaging measures on an actual sample that allowed us to characterize two metrics: flake size and flake density.
A statistical model based on those measures was then integrated in our spectral rendering engine using raytracing
and photon mapping, with an off axis-frustum method to generate stereoscopic images for binocular visualization.
Our objective is twofold: 1) perceptually validate our physical model, we evaluate if the virtual metric perceptu-
ally corresponds to the real metric of the real samples; 2) evaluate the contribution of virtual reality techniques in
the visualization of materials. To do so, we designed a user study comparing photographs of car paint samples
and their virtual counterpart based on a design of experiments. The observers evaluated the visual correspon-
dence of different virtual materials generated from microstructures with varying metric values. The results show
a perceptual correspondence between real and virtual metrics. This result has a strong impact: it means that for a
desired appearance the proposed models correctly predict the microstructure. The second result is that stereoscopy
improves the metric correspondence, and the overall appearance score.

Keywords
virtual-reality, predictive rendering, visual perception, complex materials, metallic paints, microstructure, statisti-
cal model

1 INTRODUCTION

The study of visualization quality is a crucial step to
accurately represent digital prototypes. Manufactur-
ing departments understand this problematic, since they
rely on digital representations of the end product to
make critical choices about its final appearance. Fur-
thermore, it gives them the freedom to comprehensively
explore (simulate) a large variety of materials without

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

the need to manufacture the actual object. However, a
correct representation of real materials still remains a
challenging task. To this end, researchers focused on
developing Predictive Rendering (PR) techniques to re-
duce de gap between the observations of a physical ob-
ject and its virtual replica.

According to Wilkie et al. [1] PR, as opposed to believ-
able rendering, is a field of research that aims at cre-
ating physically correct computer images [2, 3]. The
objective is to predict the true visual appearance from
a virtual reflectance model, which takes into consider-
ation the physical parameters of the actual material. If
such a tool was to be mastered, it would allow to de-
sign a virtual material and simulate its visual appear-
ance iteratively. Then, when the desired appearance is
obtained for the digital prototype, the actual equivalent
object could be produced with the same set of param-
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eters that were used as input for the virtual reflectance
model. This process is meant to lead to better design de-
cisions at a lower cost. Predictive rendering has a very
strong potential in various application domains, rang-
ing from manufacturing industries (automotive, aero-
nautics), cosmetics to architecture (material design).
On the other hand, complex materials such as automo-
tive paints are very challenging to simulate, due to their
spatially varying reflectance. To this end, we argue that
VR tools are indispensable to fully explore the visual
aspect of such materials. Virtual Reality is used in the
industry for product design or industrial process vali-
dations. Through the use of stereoscopic displays, user
motion capture, motion parallax, VR allows for a user
to feel immersed in a 1:1 scale virtual environment, and
to observe objects and interact with them. In particular,
binocular vision and motion parallax are necessary to
provide the human visual system with valuable depth
and shape cues. These are key characteristics of VR
that are necessary to ensure “human in the loop” simu-
lations. In order to combine the physical and visual va-
lidity of Predictive Rendering and perception cues pro-
vided by Virtual Reality, the need for stereoscopy and
motion parallax for predictive rendering simulations is
being expressed by the industry.
Predictive rendering approaches require perceptual val-
idations that take into account the human visual system
in order to be valid. The field of research for such val-
idations is large and we are only starting to draw the
boundaries within which virtual material samples are
representative of real material samples. Indeed, image
quality perception can depend on a lot of parameters
that appear at several stages of the process. One should,
at least, consider the following: the human user (visual
acuity, individual color perception, visual fatigue), the
technical setup (display calibration, display resolution,
luminance), the sensory motor inputs and outputs (use
of stereoscopy, motion parallax, user’s ability to ma-
nipulate the virtual material sample), and the rendering
engine itself (light-matter interaction models, material
models). In this context, this work is part of an iterative
validation process in a research project of a predictive
rendering engine in which the objective is to link mi-
crostructure and appearance. In this work, our objective
is twofold: 1) evaluate the pertinence of a "virtual ma-
terial workshop" approach where a user could change
the composition and the microstructure of a virtual ma-
terial, visualize its predicted appearance, and be able to
compare it to an actual sample. To do so, we propose
to use a microstructure model [4] based on measures
of actual material samples presented in section 2.2; 2)
evaluate the role of stereoscopy on perception of ma-
terials that depict binocular differences such as auto-
motive paints with metallic flakes. For this purpose,
our methodology evaluates, through a user study, the
visual agreement between the observation of the com-

puter generated object and the actual object. We in-
troduce a novel approach in Computer Graphics (CG)
domain to render virtual materials by using the mi-
crostructure formulation of the real material, see figure
2.

We begin the paper with a survey of related work in
section 1.1. In section 2 we describe the simulation of
virtual automotive paints using a microstructure model.
Then, in section 3 we describe the experimental setup
of the virtual scene, and section 4 the design of exper-
iment to evaluate the response of the observers. In the
section 5 we present the results of the measured data.
The experimental results are analyzed in the section 6.
Finally, in section 7 we present our conclusions, and we
address some aspects for future work to complement
our findings.

1.1 Related Work
In this section, we first propose an overview of the ex-
isting CG (Computer Graphics) methods for computer
generated images of materials with nano/macro inclu-
sions such as car paints with flakes. We then explore
the existing literature on the role of stereoscopy on the
perception of surface aspect.

In the CG domain, several researches have proposed
different methods to simulate car paint models. These
models are based on Bidirectional Reflectance Distribu-
tion Function [5], which represents how the surface re-
flects the incident light at different angles. The distribu-
tion of the reflectance of the light can be captured by op-
tical measurement devices [6]. Then, the obtained data
is used to derive reflectance models that represent the
appearance of the physical material [7]. In addition, we
can also consider the Bidirectional surface scattering
distribution function (BSSRDF) models [8] that takes
into account the scattering of the incident beam of light
in the interior of the material.

Generally speaking, we can distinguish two groups: an-
alytical, and data-driven models. In the first, the user
tweaks several parameters until he achieves a visual as-
pect that is similar to the real paint. Durikovic et al.
[9] model the geometry of the flakes inside the paint
film. Their system is capable of generating stereo-
scopic images, and it allows to define the parameters
for the random distribution of the position of flakes and
their orientation. The approach of Ershov et al. [10] is
based on reverse engineering, the appearance attributes
such gloss are added to the physical model by adjust-
ing parameters. The inconvenient of these models is
the amount of parameters that are necessary to repre-
sent the car paint appearance.

In the second approach, Günther et al. [11] developed
an image based acquisition setup to measure the Bidi-
rectional Reflectance Distribution Function (BRDF) of
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a car paint. To this BRDF they add the sparkle simu-
lation. The distribution of the the flakes is stored as a
texture. Rump et al. [12] used a similar approach as the
previous one. The difference is that, instead of using a
sparkle simulation with the BRDF, they capture the spa-
tially varying appearance (sparkle effect) using Bidirec-
tional Texture Function (BTF) measurements. In addi-
tion, they store and simulate directional visual effects.
Sung et al. [13] determine individual flake orientations
in the car paint by using confocal laser scanning micro-
scope. They capture the angular dependent reflectance
using a goniometer. Then, they use these measurements
to build a reflectance model. In the context of this work,
we need to evaluate the perception limits in a VR envi-
ronment, when the observer perceives the aspect of the
reflectance models using binocular vision. A human
observer perceives the binocular summation of the left
and right image. In the combination of the two images,
we can identify two cases binocular fusion and rivalry.
In the first case, if two retinal points are sufficiently
similar, a binocular combination occurs. In contrast,
when two retinal points are very distinct, the observer
perceives a fluctuation between the left and right im-
ages, that is, a failed fusion occurs. This phenomenon
is known as binocular rivalry [14].

Most of the work was done on the role of stereoscopy
for the perception of gloss. In the literature the gloss
is defined to be a global property of the surface aspect
[15, 16]. Glossy surfaces reflect the incident light to
a particular outgoing direction, characterized by a spe-
cific angular interval. The perception of specular reflec-
tions is an important cue to evaluate the glossiness of
the materials. In addition, there is an influence of binoc-
ular cues such as highlight disparities on the percep-
tion of gloss [17]. The experimental results of Wendt
et al. [18] show an improvement of gloss perception
when highlights cues disparities are taken into account.
The experimental results of the work of G. Obein et
al. [19] suggest also that the binocular vision helps for
judgment of high gloss samples. They found that with
binocular vision the sensitivity to gloss is higher than
the monocular vision, for high gloss levels. Sakano et
al. [20] examined the effects of the combination of self-
motion and contingent retinal-image motion (motion
parallax) on perceived glossiness. When the observer
was able to move his head, a stronger glossiness was
perceived than when both the observer and the stimu-
lus were static. From their experimental results, they
found that the glossiness under the monoscopic condi-
tion was underestimated compared to stereoscopic con-
dition. The glossiness under static (head not moving)
condition was underestimated compared to dynamic
condition. Knill et al. [21] study the combination of
different cues for slant perception. At low slants, ob-
servers use more the binocular cues than the texture. At
slants of 50 and 70, the subjects do better slant judg-

ments using the texture information of the image. As
the slant increases the observers give more attention to
texture information.

2 MATERIAL SIMULATION
2.1 Physical Plate
This study focus on grey automotive paints with metal-
lic flakes up to 30µm. Figure1(a) shows a cross sec-
tion of the studied actual sample of a car paint. Typi-
cally an automotive paint is made of four layers: clear
coat, base coat, primer surface, and electrocoat. The
metallic flakes are made of aluminum, and are dis-
tributed with different orientations on the primer sur-
face of the plate at different depths, and the clear coat
is transparent. The amount, distribution, and the ori-
entation of the flakes are controlled by a milling ma-
chine. Due to their size, and orientation, these metallic
pigments convey distinctive visual appearances to the
object such as sparkle, and directional visual effects.
At the macroscopic scale of visualization, the appear-
ance of these nonuniform paints depend on the lighting
conditions (directional/diffuse), distance and angle of
observation, orientation, diameter, and density of the
flakes [22, 23, 24]. The nanoscopic effects such as the
chemical composition, rugosity and clustering effects
of the flakes can also influence the visual appearance.
In this work we only consider the macroscopic effects
for which we use geometric optics models.

2.2 Stack Model
As for the models of the microstructure, we can dis-
tinguish two cases: a quasistatic, where the particles
are smaller than the wavelength, consequently the hu-
man eye cannot perceive each particle. We can obtain
the macroscopic visual aspect of the microstructure,
which is visible by the human eye, by using homoge-
nization methods on agglomerations of nanoscopic par-
ticles. In this work, we are interested in the second
case, geometric optics, where the particle size is larger
than electromagnetic visible wavelength, which is suit-
able to be directly used in our render engine. In this
case the microstructure simulates the distribution of mi-
croscopic particles, such as metallic flakes, according
to the analyses of the actual object. Morphology and
statistical analysis of Scanning Electron Microscopy
(SEM) images of real objects is used to create virtual
microstructures that geometrically corresponds to the
one of the real material. These microstructures are then
used to simulate the optical behavior between the dif-
ferent particles. Secondly, it allows the user to modify
the microstructure in order to tune the visual appear-
ance keeping the physical feasibility, and therefore the
manufacture of the virtual material, see figure 2. The
stack model [4] used in our render engine distributes
the metallic flakes on the surface. Though the complex
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(a) (b)

Figure 1: On the left of the image (a), an example of a real car paint plate with a diagram of a typical coating
paint. The flakes have typically the shape of a disk with a diameter of 5µm to 50µm, in the case of a car paint.
The surface can contain rugosity and an interference film. The flakes are imbedded in the base coat with different
orientations and at different depths. The figure (b) depicts two microstructures generated by the stack model. On
the left a microstructure with metallic flakes of size 15µm, and on the right with metallic flakes of size 30µm.

geometry of a real metallic flake, the virtual metallic
flakes were modelized with a flat cylinder shapes whose
height and radius is parameterized, see figure 1(b). The
statistical variation of dispersion, size, orientation is
measured on the SEM images of the real plate us-
ing different morphological analyses. Then, the model
simulates the clusters of flakes by using a 2D Pois-
son point process. Due to the large number of flakes
on the surface. The stack model generates continuous
microstructures of size 450µm × 450µm × 20.24µm.
The generation of plates with different flake densities
and radius sizes is controlled by two parameters of the
stack model. For each microstructure we have infor-
mation about the radius size, the orientation, position,
and amount of flakes. To generate a virtual plate with
15cm×10cm, a set of 332×240 microstructures is nec-
essary to fill the surface of the virtual plate. To avoid the
large amount of geometry in our simulations, we could
consider the usage of a set of textures encoding differ-
ent types of information about the flakes, for instance
the normal vector, and depth.

2.3 Rendering of the Virtual Model
For the optical simulation of the virtual object we used
our spectral render engine raytracing with photon map-
ping. The scene was rendered within the visible spec-
trum interval [380nm−780nm] with a wavelength step
of 5nm. This interval corresponds to the range of wave-
lengths that the human eye is sensitive. Then, we used
a virtual scene with the same light conditions that were
used in the real room. We associate for each plate the
optical constants n and k of aluminium. In the virtual
scene we used the spectrum of SOLUX 4700K light.
The index of absorption was found in a prior experience
with paired comparison. The observers were asked to
evaluate which of the two virtual images was the clos-
est to the photograph. The found absorption coefficient
is k = 6. Furthermore, we noticed that the thickness
and the absorption coefficient have an important role

in the brightness of the metallic flakes. We used a vir-
tual plate with three layers. The base layer is a black
surface to minimize the back-surface reflection. The
second layer, the binder, contains the microstructure of
the metallic flakes, which was generated by the stack
model. Finally, the clear coat layer imparts a glossy ap-
pearance to the plate. The virtual samples were defined
thanks to a design of experiments. We have two factors
the flake size and the flake density. A surface response
design was chosen in order to evaluate the influence of
the main effects but also the potential non linear effects
and the interaction between factors. 13 virtual samples
were built following a central composite design with
replicated centered points.

3 SETUP
In this section we describe the configuration of the vir-
tual scene. Figure 3(a) represents the virtual scene used
in the experiments. We used a directional isotropic
light, which is emitted from the top. The virtual cam-
eras are placed at a distance of 77cm from the plate. The
stereo cameras have an interocular distance of 6.5cm
and the cyclopean camera is placed in the middle of
the left and right cameras. Figure 3(b) shows the dis-
tance of observation, and the display area to visual-
ize the virtual plates. The field of view, f ov, of the
camera was calculated using the observation distance,
a, and the width of the area of projection, b, f ov =

2× arctan
(

2a/
b
)

.

4 USER STUDY
We designed a user study with 26 subjects using exper-
imental design theory to optimize the number of trials
run in order to obtain valid results using a minimum
parameters variation of flake density and flake radius,
see figure 5 (c). During the experiment, the subjects sat
in a dark room, facing a stereoscopic screen. They ob-
served two series of plates (stereoscopic/monoscopic),
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Figure 2: Through morphological and statistical analysis of SEM images, a set of microstructures are generated in
order to fill the surface of the virtual plate. Then, the render engine computes the appearance of the virtual plate
using the information of the microstructures, and the colorimetric calibration matrices of the photographic camera
and the screen display used during the experiment.

(a) (b)

Figure 3: The image (a) is a schematic diagram used for the virtual scene. (b)The physical observation conditions
to visualize the virtual plates.

Factor Low Level High Level Physical Value
Flake Density 3.5 9.5 1.0
Metallic Flake Radius 15µm 45µm 30µm

Table 1: Based on the morphological and statistical analysis of the actual automotive paint, the flake radius is
30µm, and flake density is 1.0 (this value is unitless). The minimum and maximum range for flake density, and
flake radius were found empirically. Within each interval, 13 values were chosen through Central Composite
Design.

each one with different flake density and flake radius,
see table 1. Subjects evaluated the similarity of the vir-
tual plate to the photograph of the actual plate by using
a scale from 0 (equal to the reference plate) to 10 (dif-
ferent from the reference plate). After an answer was
given, the subject changed to the next plate with differ-
ent radius and density of metallic flakes. For each trial,
the presentation order of the stimuli follows a Williams
Latin Square Design. The main experiment was pre-
ceded by a practice trial of two stimuli to gain familiar-
ity with the experience.

The subjects used stereoscopic active shutter glasses
during both monoscopic and stereoscopic conditions.
For each trial, the subjects observed two sequences
of 13 stereoscopic images. The first sequence cor-
responds to the monoscopic-condition, while the sec-
ond corresponds to the stereoscopic case. In all ex-
periments, the subjects used stereoscopic active shutter
glasses NVIDIA 3D Vision 2 during both monoscopic
and stereoscopic conditions. For the monoscopic condi-
tions the same image was displayed for both eyes. The
images were displayed using an active stereo ASUS
VG248QE display. The stimulus was displayed with
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Figure 4: The stimulus displayed to the subjects. The "Reference" material (left plate) is static through the ex-
periment, while the material of the plate "Sample" (right plate) changes according to 13 different values of flake
densities, and flake radius size.

a resolution of 1920×1080 pixels at 72Hz. The stimu-
lus consisted of two plates designated as reference, and
variable plate, see figure 4. The reference is the photog-
raphy of the actual automotive paint plate, which was
taken with a camera NikonD800. The initial high dy-
namic range (HDR) image was made by taking 6 im-
ages with film sensitivity ISO 100, and the following
shutter speeds: 1.3, 1.6, 2.0, 2.5, 3.0, and 4.0 seconds.
Then, the HDR image image was converted to the RGB
colour space using the calibration matrices of the pho-
tographic camera, and the screen display. The plates
dimensions are 10cm× 15cm. The samples are placed
inside of a dark room with one source of light SOLUX
4700K with known spectrum. The virtual stereo and
cyclopean cameras are located at 77cm from the plate,
which is the same distance of observation that was used
to take the photography of the real plate.

5 RESULTS
5.1 Data Exploration
From the box plots, we noticed that there are some ex-
treme outliers and extreme values. This is due to the
fact that there is an important agreement within the pop-
ulation to give the same evaluation to a given plate.This
is translated into a positive Kurtosis. A principal com-
ponent analysis (PCA) was applied in order to verify if
the observers generally agree in their evaluations. The
first axis represents more than 80% in the two studies
that is to say that there is an extraordinary agreement
between the subjects. Thanks to these preliminary anal-
yses, the average of the panel represents well the raw
data so this indicator can be used in Data Modeling.

5.2 Data Modeling
The experimental design allows to evaluate the interac-
tion between the two parameters, non linear effects, and
to find the optimum values for each parameter. As we

said in the previous section, we can consider that the
average of response is representative of the population.
Therefore, we can model the response according to the
parameters of the experimental design: linear and non
linear effects of density and radius size, and their inter-
action. The surface of response depicted in figures 5 (a)
and (b) have a bell shape surface. Hence, there is no
interaction between the two factors: flake density and
flake radius size. For the stereoscopic case we obtain a
better R2 pred (based on cross validation) and a smaller
PRESS (Predicted Residual Sum of Squares), see ta-
ble 3, therefore the stereoscopic model is more robust.
The average degree of proximity to the photography of
the actual sample is 5.1, and 4.6, for monoscopic and
stereoscopic. The analysis of the quadratic effects show
that for low or high density of flakes, the virtual plate is
not considered similar to the real plate. The same result
was found for small and large flakes radius. Finally, the
Least Square Difference Test (LSD) show that with the
stereoscopic condition the observers were able to dis-
criminate better the plates.

6 DISCUSSION
There is a difference between the the monoscopic and
stereoscopic observations of the plate. In average, the
stereoscopic images of the virtual plate were better
evaluated. The ANOVA repeated measure analysis on
the global response indicates that the stereoscopic vi-
sualization of the virtual plate is closer to the actual
plate. In other words, there is a better visual agreement
to the photography of the physical plate with stereo-
scopic vision. Furthermore, the second ANOVA analy-
sis on stereoscopic and monoscopic condition, confirms
that the stereoscopic vision allows a better differentia-
tion of the virtual plates. With monoscopic vision it
is more perceptible the individual white reflections of
the metallic flakes, and also the visual patterns resulted
from the clustering of metallic flakes. While with the
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Coefficient Signif. %
Monoscopic Stereoscopic Monoscopic Stereoscopic

b0 2.723 2.423 < 0.01∗∗∗ < 0.01∗∗∗

Radius Size b1 -0.590 -0.730 < 0.0927∗∗∗ < 0.0857∗∗∗

Radius Size b1−1 6.003 5.323 < 0.001∗∗∗ < 0.001∗∗∗

Flake Density b2 -0.794 -0.516 < 0.0294∗∗∗ 0.318∗∗

Flake Density b2−2 1.810 1.822 < 0.001∗∗∗ 0.0123∗∗∗

Table 2: The table of coefficients.

(a) (b) (c)

Figure 5: The graphs (a) and (b) depict the response surface of the experiment. (c) is the composite design used
in the experiment that shows how many different plates to use and the variation of density and size of the metallic
flakes. The values depicted in the graph of surface of responses are reduced and centered to the interval -1 to 1 so
the influence of the factors can be compared. In this way, we can represent the domain of each factor in the same
reference.

Monoscopic Stereoscopic
R2 0.961 0.976
R2 pred 0.726 0.838
PRESS 19.494 9.116

Table 3: The adequacy measures for the model.

stereoscopic vision it is more difficult to identify these
patterns effects due to the binocular rivalry. Instead we
can observe a glittering effect, which according to the
comments of the observers, make the virtual plates to
look more realistic.
In our experiments, we found that the radius of the flake
has a great impact in the judgment of similarity. In fig-
ures 5 (a) and (b), the ellipsoidal shape of the isometric
curve is oriented in the x2 axis. This particular orienta-
tion shows that the quadratic effects are stronger in the
x1 axis, i.e., the flakes radius size axis. This dissymme-
try is an indicator that the similarity evaluation note is
more sensible to the radius size than to the flake density
factor. In addition, according to the table of coefficients
2, the flake radius, b1−1, is three times more important
than the flake density, b2−2. In the stereoscopic case,
the shape of the isometric curve is tilted to the right.
However, the radius size factor remains more sensible
or influent than the flake density parameter.
From the obtained results, there are not particular tu-
ples of factors that makes the subject to judge that the

virtual plate is similar to the photography, for instance
a tuple with a large flake radius, and a strong flake den-
sity. For the monoscopic condition, the optimum values
calculated from the surface response, show that in order
the virtual plate to be considered similar to the photog-
raphy, the plate must contain flakes with smaller radius
size and to have a higher flake density. While in the
stereoscopic condition, the optimum values show the
inverse, higher flake radius size with lower flake den-
sity.

7 CONCLUSIONS
In this work, we evaluated the pertinence of a "virtual
material workshop" approach, and the role of stere-
oscopy on perception of materials that depict binocu-
lar differences such as automotive paints with metal-
lic flakes. For this purpose, we developed a user study
based on a design of experiments, to evaluate the visual
agreement between the observation of a computer gen-
erated object and the actual object. The results show
that there is a match between the real and virtual met-
rics. This means that for a desired appearance our
methodology can predict the microstructure. Secondly,
the stereoscopic vision improves the visual representa-
tion of the virtual plates with metallic flakes. Finally,
the size of flake radius has a great influence in the judg-
ment of the observers.
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We are currently working on the visualisation of virtual
materials with a High Dynamic Range display, to study
the influence of the high dynamic luminance on the per-
ception of materials such as car paints. The next step for
evaluating VR is to assess the pertinence of using head
tracking to generate correct dynamic perspectives.
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ABSTRACT
Importance sampling of virtual point lights (VPLs) is an efficient method for computing global illumination. The
key to importance sampling is to construct the probability function, which is used to sample the VPLs, such that it
is proportional to the distribution of contributions from all the VPLs. Importance caching records the contributions
of all the VPLs at sparsely distributed cache points on the surfaces and the probability function is calculated by
interpolating the cached data. Importance caching, however, distributes cache points randomly, which makes it
difficult to obtain probability functions proportional to the contributions of VPLs where the variation in the VPL
contribution at nearby cache points is large. This paper proposes an adaptive cache insertion method for VPL
sampling. Our method exploits the spatial and directional correlations of shading points and surface normals to
enhance the proportionality. The method detects cache points that have large variations in their contribution from
VPLs and inserts additional cache points with a small overhead. In equal-time comparisons including cache point
generation and rendering, we demonstrate that the images rendered with our method are less noisy compared to
importance caching.

Keywords
Global Illumination, Many-Light Rendering, Importance Sampling, Importance Caching

1 INTRODUCTION
Photorealistic rendering has, for many years, been an
interesting and challenging topic in the field of com-
puter graphics. It has been widely used in many ap-
plications such as movies, games, architectural design,
and so on. Indirect illumination plays an important role
in enhancing realism. However, efficient rendering with
indirect illumination is still a challenging problem due
to the high computational cost.
To compute indirect illumination efficiently, Keller
introduced an instant radiosity, which approxi-
mates the indirect illumination with virtual point
lights (VPLs) [KELLER97]. Many-light render-
ing [DACHSBACHER14], which extends the instant

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

radiosity, has been extensively researched. Many-light
rendering approximates both the direct and indirect
illumination incident onto each point to be shaded (re-
ferred to as shading points) with VPLs. Increasing the
number of VPLs increases the accuracy of many-light
rendering, but at the cost of computational time.

To handle a large number of VPLs efficiently, impor-
tance sampling methods [WANG09, GEORGIEV12,
WU13] for VPLs that estimate the outgoing radiance
of shading points have been proposed. The key compo-
nent for the importance sampling method is to construct
a probability function that is as proportional as possible
to the distribution of contributions from all the VPLs.
However, constructing a probability function perfectly
proportional to the distribution at each shading point
is computationally expensive since it requires a large
number of visibility tests between the shading point
and all VPLs. Importance caching [GEORGIEV12]
constructs a probability function by sparsely distribut-
ing the cache points on the surfaces of the scene, and
recording the contributions of all VPLs. The probabil-
ity function at each shading point is calculated by in-
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terpolating those at nearby cache points. This method,
however, distributes cache points randomly and does
not consider the variation in contributions from each
VPL. This makes it difficult to construct a probability
function that is proportional to the distribution of the
VPL contributions, leading to an increase in variance.

To address this problem, we propose an adaptive
cache insertion method for a many-light rendering
framework. Our method detects regions where the
distribution of the VPL contributions varies drastically
due to the spatial variations of the shading points, the
directional variations of the normals to the shading
points, and due to the occlusions between the VPLs and
the shading points. Additional cache points are inserted
into such regions. In addition, while importance
caching calculates the interpolated probability function
by simple averaging, our method takes into account the
spatial correlation between the shading points and the
cache points, and the directional correlation between
the normals to the shading points and cache points,
and uses these to weight the interpolation. Our results
demonstrate that, in an equal time comparison, our
method provides better performance (i.e. less variance)
than importance caching.

2 PREVIOUS WORK
Many-light rendering, which is based on the instant ra-
diosity as proposed by Keller [KELLER97], distributes
a large number of VPLs in the scene and approximates
the incident radiance from the direct and indirect illumi-
nation from the VPLs. Increasing the number of VPLs
increases the rendering accuracy at the cost of computa-
tional time. Since several thousand VPLs are required
to obtain plausible results, several methods have been
proposed that can handle many VPLs efficiently.

To handle a large number of VPLs efficiently, sev-
eral methods that cluster VPLs have been proposed.
Walter et al. proposed a hierarchical representation
of the VPLs called Lightcuts [WALTER05]. Hasan et
al. proposed the matrix row-column sampling (MRCS)
method that samples a small number of VPLs that give
a good approximation to the contributions from all the
VPLs [HASAN07]. Ou et al. proposed the Lightslice
method, which extends the MRCS method by cluster-
ing the shading points and applying the MRCS method
to each cluster to improve the accuracy [OU11]. Al-
though these clustering methods can efficiently render
realistic images by approximating the contributions of
the VPLs in each cluster by a representative VPL from
each cluster, the rendered images suffer from errors due
to VPL clustering.

Importance sampling methods for VPLs have also been
proposed. The contribution of a VPL is the product of
the incident radiance, the bidirectional reflectance dis-
tribution function (BRDF), a geometry term, and the

visibility function. By constructing probability func-
tions proportional to the contribution from VPLs and
sampling the VPL according to this probability func-
tion, the outgoing radiance can be estimated with high
accuracy and small variance. Wang and Akerlund pro-
posed a bidirectional importance sampling method for
many-light rendering [WANG09]. This method, how-
ever, does not take into account the visibility func-
tion, resulting in high variance where the incident light
is occluded. Wu et al. proposed the VisibilityClus-
ter algorithm, which clusters shading points and the
VPLs [WU13]. The visibility function is approximated
by the average values of the estimated visibilities be-
tween the clusters of shading points and the VPLs. Al-
though this method can render realistic images effi-
ciently, it can fail to sample VPLs with large contri-
butions since estimates of the average values of the vis-
ibilities are done by random sampling.

Cache-based methods that exploit correlation to
increase the rendering efficiency have been pro-
posed. Ward et al. proposed irradiance caching,
which accelerates the indirect illumination calculation
by interpolating the incident illumination stored at
cache points [WARD88]. Radiance caching meth-
ods [KRIVANEK05, KRIVANEK06] store radiance
instead of irradiance to efficiently render glossy
materials. Visibility caching stores visibility infor-
mation to accelerate the direct illumination computa-
tion [CLARBERG08] . The work that is most relevant
to our method is importance caching [GEORGIEV12].
This method randomly distributes cache points, called
importance records, in the scene and records the
contributions of all the VPLs as shown in Fig. 1(a).
Then a probability function perfectly proportional to
the contributions of the VPLs at each cache points
is calculated. At each shading point, the probability
function is calculated by interpolating the contributions
stored at nearby cache points, and a small number of
VPLs are sampled to estimate the outgoing radiance.
Although it can render plausible images efficiently, this
method has several drawbacks. Firstly, cache points are
distributed randomly. If the VPL contributions stored
at the cache points vary drastically, the interpolated
probability function may not be proportional to the
contributions of the VPLs. Secondly, the interpolated
probability function is simply an average of those
recorded at nearby cache points, which does not
account for the correlation between the shading and
cache points. To address this problem, we propose
an adaptive cache insertion method for many-light
rendering. Our method distributes cache points taking
into account variations in the VPL contributions. In
addition, our method interpolates the probability func-
tion by weighted averages of the probability functions
stored at nearby cache points taking into account the
correlations between the shading and cache points.
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Figure 1: Importance caching (a) records contributions of all VPLs at cache points c j. Tables under cache points
represent VPL contributions. (b) Probability function p at shading point is calculated by averaging those at nearby
cache points. Each graph shows the probability function, and the probability functions at cache points are calcu-
lated by normalizing VPL contributions. (c) Inefficient cases of importance caching, lack of nearby cache points
and lack of cache points with similar normals. (d) Contributions of VPLs at nearby cache points differ due to
occlusions.

3 IMPORTANCE CACHING
Importance caching [GEORGIEV12] samples VPLs
based on a probability function calculated by inter-
polation between those stored at cache points. The
outgoing radiance Lo(x,xv) at shading point x towards
the viewpoint xv is estimated by the following equation:

Lo(x,xv)=
1
N

N

∑
n=1

L(yn,x) fr(yn,x,xv)G(x,yn)V (x,yn)

p(yn)
,

(1)
where N is the number of sampled VPLs, yn is the
n-th VPL, and L, fr, G, and V are the radiance, BRDF,
the geometry, and the visibility terms, respectively
(please refer to the many-light rendering survey
paper [DACHSBACHER14] for more details). The
contribution of the VPL is the product of L, fr, G,
and V . The probability function p for sampling the
VPLs is expected to be proportional to the distributions
of the VPL contributions. However, constructing a
probability function perfectly proportional to the dis-
tribution of the VPL contributions is computationally
expensive since it requires evaluation of all the VPL
contributions.
To address this problem, importance caching randomly
distributes a small number of cache points in the scene.
At each cache point, the contributions from all the
VPLs are calculated. The probability function that is
perfectly proportional to the distribution of the VPL
contributions is calculated by normalizing the distribu-
tion. The contribution from the VPLs to the shading
point seems to be correlated with those stored at nearby
cache points. By exploiting the correlation of the con-
tributions, the probability function p at each shading
point is obtained by interpolating those at nearby cache
points. However, when geometrical information (e.g.
the normal) or the VPL contribution between a shading
point and a cache point has a small correlation as shown
in Figs. 1(c)(d), the proportionality of the interpolated
probability function decreases.

4 PROPOSED METHOD
Instead of random sampling, our method distributes
cache points taking into account the geometrical infor-
mation of the shading points and the distribution of the
VPL contributions. Fig. 2 shows an overview of our
method.

4.1 Generating Initial Cache Points
The contributions from a VPL to two shading points
xi,x j have large correlation when the positions xi,x j
and the normals ni,n j to the shading points are similar.
By exploiting this, our method first clusters the shading
points based on the positions and the normals, employ-
ing the clustering method described in [OU11]. The
shading points are represented by 6-dimensional points
consisting of the positions and the normals. Firstly,
the positions of the shading points are normalized into
[−1,1]3, which is equal to the range of the normals.
The bounding box of the 6-dimensional points is cal-
culated, and then recursively subdivided until the num-
ber of 6-dimensional points or the size of bounding box
is smaller than the thresholds. The bounding box is
split along its longest axis. After the subdivision is ter-
minated, one shading point is randomly sampled from
each cluster and is used as the cache point. At each
cache point, the contributions from all the VPLs are
calculated and a cumulative distribution function is con-
structed.

4.2 Adaptive Insertion of Cache Points
The initial cache points are distributed according to the
similarity of the shading points, but not considering
the contributions of VPLs. For example, as shown in
Fig. 1(d), the contributions of VPLs can differ at nearby
cache points due to occlusions, leading to the interpo-
lated probability function having reduced proportional-
ity and increased variance.
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Figure 2: Overview of our method. (a) Clustering shading points based on their positions and normals. (b)
Calculate contributions of VPLs at each cache point c j. (c) Calculate sum of differences of p at c2 and interpolated
probability function using c1 and c3. (d) Insert new cache point c8 from cluster C2.

To address this problem, our method exploits the fact
that each cache point records the contributions of all
VPLs and therefore, an ideal probability function per-
fectly proportional to the contributions of all the VPLs
is easily obtained. Our method detects those nearby
cache points whose recorded contributions differ due to
occlusions, and inserts additional cache points for such
regions. If the VPL contributions recorded at cache
points near to c j differ drastically from those at c j due
to occlusions, the interpolated probability function dif-
fers from the probability function of c j. Therefore, our
method calculates the sum of the differences between
the probability function recorded at c j and interpolated
probability function from nearby cache points of c j. If
the sum of differences exceeds the threshold δ , an ad-
ditional cache point is inserted. The threshold δ is set
experimentally in the current implementation.

The VPL contributions at the additional cache point
need to have large correlation with those recorded at c j.
To correlate VPL contributions between the additional
cache point and c j, small variations in the geometrical
information and the occlusions are required. However,
computing the visibilities between all VPLs and a cache
point is computationally expensive, it is difficult to de-
tect the variations in the occlusions with a small over-
head. Our method calculates the positions of the ad-
ditional cache points using the geometrical information
of c j. Since the shading points in the cluster C j corre-
sponding to c j have similar geometry information, our
method samples one shading point randomly from C j.
The insertion process for all the cache points is repeated
until the number of inserted cache points is smaller than
a threshold. The cache points are stored in a kd-tree for
fast search of cache points near to each shading point.

Fig. 3 shows the initial cache points (left) and the adap-
tively inserted cache points (right) of a Cornell box
scene. The initial cache points are distributed uniformly
on the surfaces of the scene, while the inserted cache
points are distributed near the boundaries of shadows,
where the visibilities between the VPLs and the cache
points change.

4.3 Rendering
The outgoing radiance Lo(x,xv) at shading point
x is calculated by sampling VPLs according to
the probability function p interpolated from those
recorded at a number, M, of nearby cache points.
In contrast to the simple average as in importance
caching [GEORGIEV12], our method calculates
the probability function p using a weighted average
that considers the spatial and directional correlations
between the shading and cache points. The probability
function p is calculated by the following equation:

p(yn) =
M

∑
k=1

wk pk(yn), (2)

where M is the number of cache points. M = 3 works
well for our method as proposed in [GEORGIEV12].
wk and pk are the weight and probability function
for the k-th nearest cache point, respectively. The
weight wk is calculated using the formula proposed in
[CLARBERG08].

wk =
√

1−|n ·v| · ŵ(d,θ), (3)

where n is the normal to shading point x, and v is the
normalized vector from x to the k-th nearest cache point
ck. d is the distance between the shading point and the
cache point, and θ is the angle between the normals to
the shading and cache points. The weight function ŵ is
calculated from the unnormalized weight function w:

w(d,θ) =
(

1− θ

π

)(
1− d′

1+λd′

)
, (4)

where d′ = d/dmax, dmax is the maximum search
range, and λ is a parameter. The weight function ŵ is
calculated from ŵ = (w(d,θ)− w(dmax,θmax))/(1 −
w(dmax,θmax)), where θmax is the maximum angle
between the normals. θmax = π/6 and λ = 5 are used
as proposed in [CLARBERG08].

5 RESULTS
Figs. 4, 5, and 6 show equal-time comparisons between
our method and importance caching [GEORGIEV12].
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Figure 3: Example of cache points (red points) in the
Cornell box scene. Left: initial cache points generated
by sampling each cluster of shading points. Right: in-
serted cache points generated by considering VPL con-
tributions.

The computational times are measured on a desktop
PC with an Intel Xeon CPU E3 1270 3.4GHz. All the
computations were performed in parallel using multi-
threading. The image resolutions are 1024× 768. All
the computations used in our method, except for cache
generation, adaptive insertion, and weight calculation,
are the same as those used in importance caching.
Cache points are generated randomly in importance
caching, and the same numbers of cache points are
used in our method as in importance caching. As
described in [GEORGIEV12], four sampling strategies
are used. Bilateral multiple importance sampling using
the α-max heuristic is performed for both methods.
Our method distributes VPLs in the same way as
described in [DACHSBACHER14]. The reference
images are rendered by accumulating the contributions
from all the VPLs. Table 1 shows the statistics of our
results.

Fig. 4 shows an equal-time comparison of a Sibenik
scene. The computational times (cache genera-
tion/rendering) for our method and importance caching
were 36.6s (17.8s for cache generation/18.8s for ren-
dering) and 33.7s (15.2s/18.5s), respectively. Fig. 4(a)
shows the result rendered using our method. Figs. 4(b),
(c), and (d) show close-ups of the area outlined in red
in Fig. 4(a) for the reference image, and the results
rendered by our method, and importance caching,
respectively. Figs. 4(e), (f), and (g) show close-ups
of the area outlined in blue in Fig. 4(a). As shown in
these images, our method can render images with less
noise compared to importance caching. Importance
caching [GEORGIEV12] tends to distribute cache
points near the viewpoint. Therefore regions far from
the viewpoint (e.g. the windows in Fig. 4(d)) have less
cache points, resulting in noisy images. In addition,
since importance caching does not take into account
occlusions in distributing cache points, the regions
where occlusions vary drastically (e.g. Fig. 4(g)) suffer
from noise, whereas our method can distribute cache

Table 1: Statistics of results. NT , N, and Nc are the
number of triangles, VPLs, and cache points, respec-
tively.

Scene NT N Nc
Sibenik (Fig. 4) 75,284 7,785 2,950
Sponza (Fig, 5) 66,450 6,479 1,728

Conference (Fig. 6) 331,179 5,133 2,478

points for such regions, resulting in less noise as shown
in Fig. 4(f).

Fig. 5 shows an equal-time comparison of a Sponza
scene. As shown in Figs. 5(b) to (g), our method
can render less noisy images especially for regions
(e.g. arches and pillars) where the visibilities between
the VPLs and the shading points change. The com-
putational times (cache generation/rendering) for our
method and importance caching were 24.7s (7.5s/17.2s)
and 23.3s (5.9s/17.3s), respectively.

Fig. 6 shows an equal-time comparison of a Confer-
ence scene. Figs. 6(b)(d), (c)(f), and (d)(g) show close-
ups of the reference image, the results rendered by
our method, and importance caching, respectively. In
Fig. 6(d), a large variance due to the occlusion due
to the table appears in the chair, whereas our method
(Fig. 6(c)) renders an image comparable to the refer-
ence image shown in Fig. 6(b). The computational
times for our method and importance caching were
18.7s (6.5s/12.2s) and 18.2s (6.4s/11.9s), respectively.

Figs. 7, 8, and 9 show visualizations of the root-mean-
square-error (RMSE) between each method and refer-
ence images rendered by summing all the VPL contri-
butions. The color bar shows the false color. For the
Sibenik scene, the RMSE for our method is 0.0486773
while that for importance caching is 0.0662813. As
shown in Fig. 7, our method can render less noisy im-
ages especially near windows and pillars. In the Sponza
scene, the RMSE for our method is 0.146164 while that
of importance caching is 0.207015. Since it is diffi-
cult for importance caching to distribute cache points
inside the scene, large variance can appear as shown in
Fig. 8(b), while our method can lessen this as shown in
Fig. 8(a). In the Conference scene (Fig. 9), the RMSE
for our method and importance caching are 0.0294903
and 0.032524, respectively. As shown in Fig. 9, by in-
serting additional cache points, our method reduces the
variance near chairs occluded by the table.

Since, with our method, new cache points are added
in regions where the variations in the VPL contribu-
tions are large, for the same number of cache points,
the cache points are distributed more sparsely in other
regions compared to importance caching, resulting in a
slightly increased variance (e.g. near the floor in Fig. 8).
However, our method can reduce the RMSE for the
overall scene as shown in Figs. 7, 8, and 9.
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Figure 4: Sibenik scene. (a) rendering result of our
method. (b)(c)(d) close-up images of reference, our
method, and importance caching, respectively. (e)(f)(g)
close-up images of reference, our method, and impor-
tance caching. Our method can render less noisy im-
age in equal time rendering compared to importance
caching.

To inspect the effectiveness of the adaptive insertion of
cache points and the weighting function that considers
the spatial and directional correlations, our method ren-
ders the Sibenik scene using adaptively inserted cache
points and uniform weights used in [GEORGIEV12].
The RMSE in this case is 0.0516844, while that
with random cache points and uniform weights is
0.0662813. As shown in this experiment, adaptive
cache insertion contributes to the improvements most.

6 CONCLUSIONS AND FUTURE
WORK

We have proposed an adaptive cache insertion method
for importance caching. Our method clusters the shad-
ing points and selects cache points from clusters and
exploits the spatial and directional correlations between
shading points and cache points. Our method detects
cache points whose VPL contributions differ from those
of nearby cache points and inserts further cache points,
resulting in reduced variance compared to that obtained

(a)

(b) (c) (d)

(e) (f) (g)

Figure 5: Sponza scene. (a) rendering result of our
method. (b)(c)(d) close-up images of reference, our
method, and importance caching, respectively. (e)(f)(g)
close-up images of reference, our method, and impor-
tance caching. Our method can render less noisy im-
ages, especially near arches and pillars in equal time
rendering.

in equal-time rendering using the original importance
caching method.
For future work, we plan to accelerate our method us-
ing VPL clustering. Moreover, we propose to distribute
cache points taking into account the scene saliency.
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ABSTRACT

One challenge in applying standard marching isosurfacing methods to sparse rectilinear grid data is addressed. This

challenge, the problem of finding approximating gradients adjacent to locations with data dropouts, is addressed

here by a new approach that utilizes a tetrahedral spline fitting-based strategy for gradient approximation. The

new approach offers improved robustness in certain scenarios (compared to the current state-of-the-art approach

for sparse grid isosurfacing). Comparative studies of the new approach’s accuracy and computational performance

are also presented.

Keywords
Orientation Estimation, Volume Visualization, Isosurfaces

1 INTRODUCTION

One common means for visualizing scalar volumetric

data is isosurfacing, which involves finding the set of

locations in space where the phenomenon recorded in

the dataset achieves a particular value, called the iso-

value, denoted herein as α . Isosurface visualization is a

powerful approach for observing and studying the be-

havior of volumetric data. Isosurfacing can promote

discovery in disparate applications areas, such as medi-

cal diagnosis, fluid flow studies, etc.

Well-known isosurfacing methods exist for volumetric

data organized on a number of grid types [10]. Fo-

cus here is on scalar data organized on rectilinear grids,

which is very common, and on isosurfacing methods

applied to such grids that produce triangle meshes ap-

proximating the isosurface and assume data values are

available at each grid point. However, in some applica-

tions, the data is sparse; there is not a data value avail-

able at every grid point. (Here, we will use the term

sparse grid to mean a 3D rectilinear grid dataset with

some missing values.) For example, data collected from

sensor arrays may have missing data values when data

cannot be collected at every grid point due to physi-

cal limitations. Popular isosurfacing methods for recti-

linear grid data, such as the standard, marching meth-

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

ods of Marching Cubes and Marching Tetrahedra, re-

quire determination of a local gradient at each mesh

vertex to estimate the isosurface orientation, and then

use that in rendering to produce a shading that is har-

monious with local data trends. When data is sparse,

the schemes these methods use for estimating orienta-

tion can fail at certain locations. Thus, sparseness can

make well-known isosurfacing rendering methods un-

able to be applied. Here, we introduce a new solution

to the challenge of isosurfacing on sparse grids.

Sparse grids may be produced from a variety of sensing

modalities and volume data generation methods. Data

from sensor arrays, particularly ones that measure phys-

ical phenomena, has the potential to have missing data

values due to sensor faults. For example, wireless 3D

sensor arrays, such as those used to capture data un-

derground [1] and underwater [17], operate under harsh

conditions and can be particularly vulnerable to sensor

faults. Low batteries, bad calibration, high noise, or en-

vironmental hazards can all contribute to faults in sen-

sor arrays [11]. Conversion of 3D mesh geometry to

volume data via voxelization algorithms [16] can pro-

duce datasets with data values only at grid points neces-

sary to reproduce the original mesh. Additionally, vol-

ume data derived from point clouds or signed distance

functions may not contain sufficient data to estimate

data gradients at all isosurface locations, in particular

the mesh vertices [12].

One prior work has proposed a work-around to the gra-

dient (orientation) determination challenge in Marching

Cubes on sparse grids. The new approach we describe

here offers improved results in certain scenarios.

The paper is organized as follows. Section 2 discusses

background material and related work. Section 3 de-
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scribes the new approach for estimating isosurface ori-

entation on sparse grid datasets. Section 4 provides

details on rendering isosurfaces extracted from sparse

grids. Section 5 provides results from experiments and

comparisons to prior orientation (or normal) estimation

approaches. Section 6 contains the paper’s conclusion.

2 BACKGROUND AND RELATED WORK

The most common method [10] for isosurfacing on

scalar data on rectilinear grids is the Marching Cubes

(MC) algorithm. MC has been adapted by Nielson et

al. [12] to allow application to rectilinear grids with

missing data values (i.e., sparse grids). We describe

that adaptation in Section 3.2. First, though, we de-

scribe the basic steps of MC and illustrate its failings

for sparse grids.

Marching Cubes isosurfacing produces a triangle mesh

representation of the isosurface by advancing cell-by-

cell through the volume. In each cell, it follows three

major steps. In the first step, the general topological

arrangement of the isosurface mesh in the cell is deter-

mined. (Each general topological arrangement is called

a “case” in this paper, reflecting the typical nomencla-

ture of the MC literature.) Second, for topologies con-

taining isosurface mesh facets, the mesh vertex loca-

tions in the cell are found. Third, the triangle mesh

is formed by connecting vertex locations into the de-

termined topology. An orientation vector is also deter-

mined for each vertex location.

In MC, mesh vertices are located on grid lines, with

positions there found via linear interpolation. At each

vertex, an orientation vector is ultimately used in ren-

dering the produced mesh. These vectors are deter-

mined by linearly interpolating the gradients of the grid

point locations bounding the grid segment containing

each mesh vertex. These gradients are computed using

central differencing; for grid point (xi,yi,zi), MC finds

the gradient ∇ f as:

∇ f (xi,yi,zi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (xi+1,yi,zi)− f (xi−1,yi,zi)

2
f (xi,yi+1,zi)− f (xi,yi−1,zi)

2
f (xi,yi,zi+1)− f (xi,yi,zi−1)

2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

(1)

where f (xi,yi,zi) is the scalar value at (xi,yi,zi).

Since the central-difference gradient uses the values of

adjacent grid points, if there is a missing data value pre-

ceding or following a grid point in any axial direction,

central-differencing will be undefined. As a result, MC

is unable to estimate the orientation vector for any mesh

vertex on a grid segment whose endpoint has an unde-

fined gradient value. Data sets with missing or unde-

fined data thus require an alternative orientation esti-

mator. One option could be use of ad-hoc alternatives

for those grid points where central differencing is un-

defined. For example, a mix of methods could be used

(e.g., forward-differencing and reverse-differencing, as

suitable) at a cost of consistency.

Other works have considered the issue of estimating

orientation in volume data without relying on differenc-

ing techniques. For example, Möller et al. [15] have

used a two-step approach for shading raytraced isosur-

face renderings. Hossain et al. [8] have proposed re-

construction filters for gradient estimation derived from

methods using Taylor series and Hilbert spaces. They

evaluated the accuracy of their filters on both Carte-

sian and Body-Centered Cubic lattices. Correa et al.

[4] have studied averaging-based and regression-based

orientation estimation approaches for use in volume

raycasting on unstructured grids. Their study recom-

mended the use of a hybrid approach that selects the

gradient estimator to use based on local properties of

the unstructured grid. Neumann et al. [9] have es-

timated orientation by fitting a hyperplane on points

nearby to a grid point and then taking a linear regression

result on data points on the hyperplane. However, while

these orientation estimation approaches do not rely on

differencing, they assume that data is available at all

grid points and thus cannot be used with sparse grids.

Other methods for producing visualizations of sparse

grid volume data have also been described. For exam-

ple, Djurcilov and Pang [6] have described some tech-

niques for visualizing weather data when sample points

are missing due to sensor failures. Their techniques re-

quire resampling data to produce a fully populated grid

prior to isosurface extraction.

2.1 Quadratic and Quintic Splines

Rössl et al. [14] have proposed a technique for volume

reconstruction by fitting a spline model to regular, rec-

tilinear volumetric data. Their technique first partitions

the volume’s grid into uniform tetrahedra and then fits

super splines on each partition. Super splines are a class

of splines in which smoothness is preserved on vertices

between adjacent tetrahedra. Each fitting uses Bézier

splines with constants drawn from the values at the ver-

tices of each tetrahedron, ensuring that the super spline

condition is not violated. Details of their process are

described later, in Section 3. Awanou and Lai [2] have

presented an approach using quintic splines to interpo-

late a volume. Their approach is similar to that of Rössl

et al., but it does not require a regular grid and uses a

higher order spline to model the volume data.
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(a) Marching Cubes output (b) LSN virtual local mesh

Figure 1: LSN perp vector estimation

2.2 Locally Supported Normals (LSN)

One methodology for determining isosurface orienta-

tion in sparse rectilinear grid data is the Locally Sup-

ported Normal (LSN) approach described by Nielson et

al. [12]. It considers isosurfacing in a Marching Cubes

context, resolving the undefined orientation problem

by an estimation process that uses a virtual mesh con-

structed on the vertices of the MC isosurface. Orien-

tation vectors computed in this manner tend to exhibit

sharper shading color transitions at triangle edges than

if central-differencing could be used, resulting in a sur-

face with a more faceted appearance. However, central-

differencing cannot be applied where grid values are

missing or undefined.

The estimation used in LSN is integrated into MC-style

isosurfacing; it produces orientation estimates as vertex

locations are calculated. The LSN approach relies on

a temporary virtual local mesh that it defines about the

point for which an orientation vector is needed. This

virtual mesh is not the Marching Cubes output mesh;

Figure 1 demonstrates the difference between a mesh

produced by MC and the virtual mesh used by LSN for

a point V . The LSN approach first computes perpen-

dicular (perp) vectors for each face in the virtual mesh;

these vertex perp operations are done independent of

the MC topology determination. Each perp vector is

found as the cross-product of edge vectors of the vir-

tual mesh face. For each of the MC internal vertices

shared by multiple triangles, all perp vectors of faces

incident to it are averaged to form a master perp vec-

tor at the vertex. The master perp vector becomes the

LSN’s estimate of the isosurface orientation at that ver-

tex. Figure 1(b) shows the LSN’s estimation of the ori-

entation for a location V in a volume. Four perp vectors,
�N1,�N2,�N3, and �N4, are shown. The average of these is

the master perp vector �N ; here, �N is 1
4 ∑4

i=1
�Ni.

The LSN’s estimation can produce erroneous results

when certain data characteristics are encountered. The

first, and most pronounced, of these errors occurs when

degenerate triangles are encountered during orientation

estimation. A degenerate triangle with two or more co-

incident vertices will yield a cross-product of zero, re-

sulting in a zero vector (because the triangle does not lie

on a unique plane in space). MC produces degenerate

triangles when the isovalue is identical to a grid point

value [13]. If a vertex is associated with only degen-

erate triangles, the orientation vector computed using

(a) Non-degenerate

mesh

(b) Degenerate mesh

used by LSN

Figure 2: LSN summed average estimation

LSN at that vertex has length zero. The rendered iso-

surface can contain artifacts at pixel locations affected

by the zero length orientation vector.

In Figure 2(a), a mesh containing no degenerate trian-

gles is shown. In contrast, Figure 2(b) displays an LSN

mesh corresponding to the same topology, but with ver-

tex V located at a cube corner, resulting in four degen-

erate triangles (one triangle degenerating to a point and

three to a line). The result from LSN is a zero length

orientation vector.

Additionally, the LSN approach makes assumptions

about what have been called ambiguous faces [10] of

cells. These assumptions can lead to inaccurate orien-

tation vectors. One example cube where this incorrect

assumption is a problem is shown in Figure 3. The cube

has the Case 13 base topology of the MC [12], shown in

Figure 3(a). However, the LSN estimation uses the vir-

tual mesh shown in Figure 3(b) to compute orientation

vectors in corners of the cube opposite to those defined

by MC. We refer to triangles used in the LSN virtual

mesh that do not appear in the MC mesh as illusory

triangles. The normals (i.e., perp vectors) associated

with these triangles may differ greatly from the orien-

tation vectors that would result if the actual MC iso-

surface facets had been used. In particular, each vector

found using an illusory triangle will contribute errors to

the orientation vector estimation at vertices of illusory

triangles. For such situations, the orientations can be

estimated incorrectly and yield incorrectly shaded ren-

derings.

The illusory triangle problem in LSN is not just lim-

ited to cubes with ambiguous faces. For example, in

Marching Cubes Case 5 LSN uses an illusory triangle

to compute a perp vector. The topology used by MC

for the Case 5 topology is shown at the top of Figure 4

(labeled “C5”). The five virtual mesh triangles used by

LSN are shown in the rest of the figure. While most

of the virtual mesh triangles should produce reasonable

results, the one used for V4 is illusory and its orienta-

tion is not consistent with the actual mesh properties

at V4. Other MC cases also exhibit illusory triangles

yielding orientations that differ markedly from that of

the MC isosurface mesh. An example of the incorrect

orientation from illusory triangles is provided later in

this work.
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(a) Topology of

cell as defined by

Marching Cubes

(b) Topology

of cell assumed

by the LSN

approach

Figure 3: Comparison of cell topologies used by MC

and LSN

��

Figure 4: Case 5 MC and LSN topologies

3 NEW GRADIENT ESTIMATION AP-

PROACH FOR SPARSE GRIDS

Next, we describe our new approach for determining

orientation vectors in MC for sparse grids. The ap-

proach is guaranteed to produce orientation vectors at

any location for which it is possible to find a Marching

Cubes isosurface vertex. That is, the scheme introduced

here can handle any rectilinear sparse grid configuration

satisfying the condition that the isosurface vertices can

be computed. (I.e., like LSN, our approach assumes

there is local support for the isosurface.) For some sce-

narios, it also offers improved performance over prior

approaches for computing MC isosurface orientation

vectors on sparse grids.

3.1 Using Quadratic Splines

Our work is motivated by Rössl et al.’s modeling of vol-

umetric data variation using quadratic Bézier-Bernstein

super splines (2BBSS) in tetrahedral regions. A tetra-

hedron allows for the use of an interpolating volumet-

ric spline using a barycentric coordinate system given

a sufficient number of data points on the tetrahedron.

Specifically, given four points v0,v1,v2,v3 defining the

four vertices of a tetrahedron, a quadratic trivariate

spline p is composed in the Bézier-Bernstein form:

p(λ) = ∑
i+ j+k+l=2

ai jklBi jkl(λ ), (2)

where the parameter λ is the location within the spline

(in barycentric coordinates with λ = (λ0,λ1,λ2,λ3)),
the coefficients ai jkl are the control points of the spline,

Figure 5: Spline control points

and the Bi jkl’s are Bernstein polynomials. The control

points are calculated as linear combinations of the ver-

tices of the tetrahedron:

ai jkl =
i

2
v0 +

j

2
v1 +

k

2
v2 +

l

2
v3, (3)

as depicted in Figure 5. The Bernstein polynomials

Bi jkl are defined as

Bi jkl(λ ) =
2!

i! j!k!l!
λ i

0λ
j

1 λ k
2 λ l

3, i+ j+ k+ l = 2, (4)

where each λ = (λ0,λ1,λ2,λ3) is a barycentric coordi-

nate with respect to the tetrahedron.

Numerous schemes exist for partitioning rectilinear grids

into collections of tetrahedra. We employ one such

scheme here to enable the use of tetrahedral splines in

the estimation of orientation vectors. Tetrahedral parti-

tions also alleviate the problem of missing data because

only 4 grid values are needed to model isosurface be-

havior within a tetrahedral partition, as opposed to the

6 necessary for a central differencing. By partitioning

rectilinear dataset cells into tetrahedra, we can calculate

an orientation in any cell intersected by the isosurface.

In the 2BBSS model, each tetrahedron must have as-

sociated data values at each tetrahedral vertex. Given

such, a spline is formulated that approximates the sur-

face within the tetrahedron.

Our approach finds the approximating spline in cells in-

tersected by the isosurface by partitioning the cell into

tetrahedra and then evaluating the spline constructed on

those tetrahedra to determine orientation vectors (i.e.,

spline normals) at any barycentric coordinate (λ0,λ1,λ2,λ3)
within each tetrahedron of interest. For each of them,

our approach uses de Casteljau’s algorithm [3] [5] to

determine the spline’s partial derivative [14] by apply-

ing the algorithm in the direction of tetrahedron edges.

The usage of de Casteljau’s algorithm to compute the

derivative of a curve is well understood [7].

For any point on a spline, the formulation of de Castel-

jau’s algorithm enables finding the directional deriva-

tives at q as follows. First, given a spline with con-

trol points of the form a0
i jkl , for a point q having the
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Figure 6: Tetrahedral partitions

barycentric coordinate λq =(λ0q ,λ1q ,λ2q ,λ3q), new con-

trol points denoted by a1
i jkl are computed as:

a1
i jkl = λ0qa0

i+1, j,k,l +λ1qa0
i, j+1,k,l+ (5)

λ2qa0
i, j,k+1,l +λ3qa0

i, j,k,l+1,

which define a subdivision of the original spline. (An-

other application of the formula would produce the

value at q, however we need just the control points

a1
i jkl of the spline subdivision because they define par-

tial derivatives for the spline.) Since the normal at any

point on a surface s(x,y,z) can be defined as

∇s(x,y,z) = (
∂ s

∂x
,

∂ s

∂y
,

∂ s

∂ z
), (6)

we compute the orientation by finding the partial deriva-

tives in the directions parallel to the coordinate system

axes. The formulation of this partial derivative is given

in Section 4.

4 ISOSURFACE RENDERING WITH

SPARSE GRIDS

Our approach defines 2BBSS splines for tetrahedral

subregions of each active cell. We consider eight can-

didate tetrahedral partitions of each cell (shown in Fig-

ure 6) and choose from these the one that enables the

most accurate estimate of the orientation vector. The

choice is described shortly. This orientation estima-

tion is based on a 2BBSS approximation of the vol-

ume within that tetrahedron. The eight tetrahedra were

chosen because they share the property that three tetre-

hdron faces are coplanar with faces of the cell which

helped simplify the construction of the spline.

For each isosurface mesh vertex, there are two candi-

date tetrahedra from which the orientation at that vertex

could be computed. Next, how our approach decides

on the one to use is described. An example situation

is shown in Figure 7. In it, the vertex shown in red is

located on the rear edge of the cell. One candidate tetra-

hedron is shown in Figure 7(a) and the other is shown

in Figure 7(b). For the case where the vertex lies on

an isosurface mesh triangle completely located within a

(a) Tetrahedral parti-

tion 1

(b) Tetrahedral par-

tition 2

Figure 7: Two choices of tetrahedral partition of the cell

tetrahedron, that tetrahedron is chosen. However, a tri-

angle’s surface may span both possible choices of tetra-

hedra. For such cases, tetrahedron selection is done

instead by considering the total number of isosurface

mesh triangle edges; we select the tetrahedron contain-

ing the greatest number of triangle edges. We have

found that selection using this criterion provides more

accurate orientation vectors than using a static tetrahe-

dral partition that is ignorant of the triangles’s location

in the cell. Our approach uses an adaptation of the MC

topological case lookup table to record the tetrahedral

selections, allowing fast determination of the tetrahe-

dron as well as supporting orientation vector determi-

nation coincident with mesh determination (i.e., within

an extended MC context).

Next, we describe the orientation determination proce-

dure. The partial derivative of the spline p(λ ) in the

direction ξφ of a tetrahedron edge vφ − v is given by

∂ p

∂ξφ
= 2 ∑

i+ j+k+l=1

(ai, j+b,k+c,l+d −ai+1, j,k,l)λ
i
0λ j

1 λ k
2 λ l

3,

(7)

where (λ0,λ1,λ2,λ3) are the barycentric coordinate vari-

ables of the spline equation and (b,c,d) is used to de-

fine an offset to a tetrahedral vertex in direction ξφ .

Figure 8 illustrates the vector calculations when finding

the partial derivative in the x direction. The arrows on

tetrahedron edges indicate a forward difference calcu-

lation using the tetrahedron vertices of that edge. The

partial derivative is a linear combination of the differ-

ences, with weights for each component dependent on

the particular tetrahedral partition being used within the

cell. Similar vectors are computed for partial deriva-

tives in the y and z directions.

h0

h1 h2
h3

h4
h5

v0 v1

v2

v3

Figure 8: Computing the orientation from sample

points
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Since cell vertices are located on grid edges, each mesh

vertex is guaranteed to have at least two zero-valued

components of its barycentric coordinate. By determin-

ing which edge type the vertex is located on, we can

choose the most appropriate equation to minimize the

number of calculations required. For instance, for the

tetrahedron shown in Figure 8, the gradient for a vertex

on any edge parallel to the base is given by:

∇F =

⎧⎨
⎩

γ0 ∑i+ j=1(ai, j+1,0,0 − ai+1, j,0,0)λ
i
0λ

j
1 ,

γ1 ∑i+k=1(ai,0,k+1,0− ai+1,0,k,0)λ
i
0λ k

2 ,

γ2 ∑i+l=1(ai,0,0,l+1 − ai+1,0,0,l)λ
i
0λ l

3

⎫⎬
⎭ ,

(8)

where γν , ν = 0,1,2,γ =±1, is an orienting coefficient.

For the example in Figure 8, formulation of the spline

assumes a tetrahedron oriented as in Figure 8, how-

ever the tetrahedral partition used may be a reflection

or rotation (or combination of both) of this orientation.

The γ coefficient, which corrects for reflected or rotated

instances, allows correcting the directions the compo-

nents of the orientation vector.

For each tetrahedron the mesh vertex is located in, a

gradient vector is produced by evaluating Equation 9.

Vertices will be shared among up to four tetrahedra, re-

sulting in as many as four separate vectors per vertex.

The orientation vector ultimately assigned to the vertex

is the mean of these four gradient vectors.

5 RESULTS

In this section we present results of experiments to eval-

uate our approach versus LSN. These experiments con-

sider accuracy of orientation vectors and the run times

to compute them. We also report a qualitative evalua-

tion of rendered images to determine the impact of de-

generate triangles on each approach.

Accuracy was tested by comparing orientation vectors

computed using our spline-derived orientations against

the orientations using the LSN approach, then compar-

ing these against orientations computed using central-

differencing. Eight well-known real (sensed) volume

datasets and five mathematically-defined datasets were

used in testing. Additionally, we performed visual com-

parisons of the rendered images to determine if there

was a difference between renderings made using the

two orientation estimation approaches.

The datasets were converted to sparse grid representa-

tions by removing all grid values that were not required

by MC to extract the isosurface with marker values.

Specifically, grid points that were not on grid edges

containing a mesh vertex were set to marker values.

By removing all data points that do not contribute to

the isosurface extraction, we could operate on volumes

with the least possible number of defined values and

thus the least favorable datasets for the classic central

difference orientation estimation approach used in MC.

(a) Our approach

(b) LSN approach

Figure 9: Renderings performed using both orientation

estimation approaches.

5.1 Measurement of Orientation Estima-

tion Accuracy

Isosurfaces were extracted using Marching Cubes for

ranges of isovalues on the eight sensed datasets. The

range was made large so that results would not be bi-

ased against a particular sub-range of isovalues. A root

mean square (RMS) error for each isosurface was calcu-

lated by comparing the angular difference (in radians)

of all orientation vectors produced by both estimation

approaches against the central-difference estimate. The

central-difference is the baseline in this error compari-

son because it is equivalent to computing the gradient

of a second-order data fitting at each grid point. The

mean RMS error of each dataset at all tested isovalues is

shown in Table 1. Inspection of individual isovalues on

some datasets showed that LSN was sometimes more

accurate than our approach, but on average ours appears

to be the superior approach. The spline orientation es-

timation produced more accurate orientation estimates

(on average) than the LSN approach in all datasets ex-

cept for the Engine dataset.

Table 2 shows the RMS errors for 9 isosurfaces ex-

tracted on the sensed datasets. LSN does occasionally

produce more accurate results, however our orientation
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Dataset Ours LSN

Foot 0.531 0.547

Frog 0.569 0.589

Lobster 0.369 0.375

MRA 0.639 0.653

Piggy bank 0.876 0.898

Backpack 0.561 0.568

Sheep heart 0.313 0.315

Engine 0.204 0.187

Table 1: Average RMS error of approaches vs. central-

difference

Dataset Isovalue Ours LSN

MRA 65 0.740 0.764

75 0.684 0.714

80 0.775 0.783

Foot 80 0.555 0.572

90 0.502 0.518

100 0.472 0.322

Frog 40 0.512 0.524

45 0.513 0.523

80 0.545 0.640

Lobster 50 0.318 0.316

65 0.329 0.332

80 0.336 0.338

Table 2: RMS error of approaches vs. central-

difference

estimation produces more accurate results in the major-

ity of cases we tested. Figure 10 shows MRA and Foot

isosurfaces (for α = 65 and 90, respectively). The mag-

nified callouts show subtle differences in the two ren-

derings, but both are very similar to the baseline images

produced using central-difference gradient estimates.

5.2 Accuracy using Mathematically De-

fined Data

Experiments were also performed to measure the ac-

curacy of the orientation estimation approaches ver-

sus exact orientation vector values. These experiments

tested scalar fields generated using five mathematically

defined fields. The isosurfaces were generated corre-

sponding to level sets (i.e., implicit surfaces) of these

fields. Orientation vectors were estimated using our

spline-based estimation, the LSN estimation, and the

standard MC central-difference approaches. Orienta-

tion vectors at each location were compared against the

exact orientation vector values computed at the isosur-

face intersection locations. Table 3 reports the RMS er-

ror with respect to the exact orientation vectors for iso-

surfaces of the zero level set. Excepting the Marschner-

Lobb dataset, the central-difference estimates are supe-

rior to both LSN and our orientation estimations. But

LSN estimates are sometimes better than ours. Thus,

empirical evidence suggests that, for mathematically

(a) Foot Ours (b) Foot LSN

(c) MRA Ours (d) MRA LSN

Figure 10: Zoomed comparison of isosurface images

Figure 11: MC lookup table base topologies

defined, noise-free data, LSN estimation may be quite

suitable; LSN estimation may provide more accurate

normal estimation than our approach for many mathe-

matically defined scalar fields.

5.3 Individual MC Topologies

Since results for the mathematically defined datasets

were incongruous with those observed for sensed data

(where our approach appears to be better than LSN),

we performed an analysis of occurrences of MC base

topologies defined in the MC lookup table [12] to deter-

mine if one estimation approach produced more accu-

rate orientation vectors for particular base topologies.
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Dataset Ours LSN
Central

Diff
Mar-
Lobb 0.0545 0.0616 0.0718

Six Peaks 0.0139 0.0534 0.0179

Genus_3 0.00622 0.00506 0.000265

Flower 0.0261 0.0261 0.0183

Peaks 0.0372 0.0235 0.0218

Table 3: RMS error calculated versus exact orientations

The base topologies are shown in Figure 11 with la-

bels Ci (Ci means “Case i”, as used throughout this sec-

tion). The isosurfaces extracted from mathematically

defined datasets showed no occurrences of the Case 4,

7, 12, and 15 topologies. Additionally, very low oc-

curences were observed for Cases 6, 10, 11, 12, 14, 15,

18 and 19. Many of these topologies consist of discon-

nected triangles within a cell. Due to the nature of the

level sets MC produced for these datasets it is not un-

expected that occurrences of these topologies would be

rare. The sensed data contained far more examples of

these topologies. While for some isovalues, there were

no instances of a few topological cases, such situations

were observed less frequently than for the synthesized

datasets. For one dataset (MRA), some isovalues did

not give rise to any cells of the type Case 15 or 18. For

one dataset (the Engine dataset), the majority of iso-

values did not give rise to any of Case 4, 7, 13, or 15

cells. This may be a result of the engine structure in

the dataset being manufactured from a CAD model that

had a limited number of basic surface types.

To determine the effect that particular base topologies

had on orientation estimation accuracy, we considered

RMS error of orientation vectors on a topological basis

for sensed data isosurfaces. The Case 7, 10 12, 13, 15,

and 19 topologies demonstrated much lower RMS er-

rors for our estimation than for LSN estimation. LSN

estimation produced consistently more accurate orien-

tation vectors for the Case 8 topology. These results

suggest that LSN estimation be considered for isosur-

faces likely having low occurrences of topologies bene-

ficial to our approach; mathematically defined datasets

similar to ones tested here may be good for LSN.

The LSN’s orientation vectors can differ substantially

from true orientation vectors and from orientation vec-

tors calculated using central-differencing, as demon-

strated in Figure 3. We also analyzed the degree each

case should be considered “at-risk” of exhibiting errors

due to the incorrect topology assumption, focusing on

error-prone vertices. Our criterion for this analysis was

if angular divergence in the vector was 90 degrees or

more from the central-difference orientation vector. We

considered only vertices at the midpoint of cell edges.

The analysis showed that 146 of the 256 possible MC

cases were potentially problematic. One to five ver-

tices demonstrated angular divergence greater than 90

Dataset Ours LSN

MRA 0.639 0.651

Foot 0.922 0.933

Frog 0.652 0.689

Lobster 0.479 0.478

Table 4: RMS error for problematic cases

Dataset Isoval. # undef. Total %

Foot 40 12204 278894 4.36

Frog 40 1263 101841 1.24

Lobster 40 2946 149250 1.97

Engine 40 4704 637854 0.74

Mar-Lobb 0 0 603343 0

Six Peaks 0 8 2004650 0

Table 5: Undefined orientations using LSN approach

Dataset Ours (secs) LSN (secs)

Flower 1.077 2.873

Six Peaks 0.926 2.428

Mar-Lobb 2.959 8.018

Table 6: Orientation estimation times

degrees in these cases. Error comparisons of orienta-

tion vectors for just the problematic cases are reported

in Table 4 over an average of 100 isovalues for each

dataset. Our approach produces orientations that are

closer to the central-difference than LSN when these

cases are encountered. Figure 9 shows isosurface ren-

derings for the Lobster dataset using both approaches.

However, the incidence of orientations that meet the an-

gular divergence criterion in sensed and simulation data

is likely much smaller since the triangle vertex locations

in the analysis were chosen to highlight the problematic

cases and the severity in angular difference is lessened

when vertices are located closer to grid point locations.

Rendering artifacts at degenerate triangles in the isosur-

face mesh can be observed in Figure 9(b). They mani-

fest here as dark spots and are a result of using a vector

cross product to compute orientation vectors on degen-

erate triangles in the virtual mesh. (MC produces a tri-

angle with three coincident vertices when a grid value

is identical to the isovalue.) Here, the orientation vec-

tor computed for this triangle has length equal to zero.

The zero-length vector leads to a zero vector for the

Phong illumination diffuse and specular components .

Our method does not exhibit this phenomenon, as is il-

lustrated in Figure 9(a), since our orientation vector re-

lies on the result of a fitting to four data values within

the cell rather than on any mesh triangles.

In Table 5, we show the number of undefined orienta-

tion vectors recorded using the LSN estimation. Vol-

umes with 8 bit integers had more undefined orienta-

tions than did those with floating point values. Far

fewer undefined orientations were present in the syn-
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thetic datasets, which all used 32 bit floating point num-

bers to store the volume’s sample values. The number

of undefined orientation vectors using LSN estimation

appeared to correspond to the data type used to store the

volume’s data values.

Finally, in Table 6 execution times for calculating ori-

entations for three of the larger datasets are shown. The

LSN estimation requires over twice the computation of

our approach. The LSN approach is not as fast as ours.

6 CONCLUSION

We have presented a new approach for estimating iso-

surface orientation vectors on sparse grid datasets. The

typical approach for orientation estimations, central-

differencing, cannot be used universally in sparse grids

due to undefined data at some grid locations. Our ap-

proach can produce isosurface orientations anywhere

that MC can produce triangles. Further, the approach

is not affected by the presence of degenerate trian-

gles, which produce shading errors in other approaches

as a result of undefined orientations. Thus, the new

approach has certain advantages even over MC’s ori-

entation estimation. Our approach has, on average,

a smaller RMS error than a competing approach (us-

ing the baseline of central-difference estimations) on

real world data. For synthetic data, advantages were

less clear. Computation times for our approach were

markedly faster. Further, the new approach guarantees

orientation vectors to be defined at all vertex locations,

making it applicable to a wider variety of data.

An area for further investigation is using spline fit-

tings that observe the continuity properties of super

splines in producing more accurate orientation estima-

tions. Also, other isosurfacing algorithms could be in-

vestigated with our approach to estimate orientations

to determine what increases in accuracy and error tol-

erance occur. Another area of further investigation is

removing random data grid values to simulate random

sensor failures. Lastly, we will evaluate the impact of

increasing noise levels on the new approach’s accuracy.
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ABSTRACT
We present a system that combines voxel and polygonal representations into a single octree acceleration structure
that can be used for ray tracing. Voxels are well-suited to create good level-of-detail for high-frequency models
where polygonal simplifications usually fail due to the complex structure of the model. However, polygonal
descriptions provide the higher visual fidelity. In addition, voxel representations often oversample the geometric
domain especially for large triangles, whereas a few polygons can be tested for intersection more quickly.
We show how to combine the advantages of both into a unified acceleration structure allowing for blending be-
tween the different representations. A combination of both representations results in an acceleration structure that
compares well in performance in construction and traversal to current state-of-the art acceleration structures. The
voxelization and octree construction are performed entirely on the GPU. Since a single or two non-isolated tri-
angles do not generate severe aliasing in the geometric domain when they are projected to a single pixel, we can
stop constructing the octree early for nodes that contain a maximum of two triangles, further saving construction
time and storage. In addition, intersecting two triangles is cheaper than traversing the octree deeper. We present
three different use-cases for our acceleration structure, from LoD for complex models to a view-direction based
approach in front of a large display wall.

Keywords
Visualization, Computer Graphics, Ray Tracing, Level-of-Detail, Voxelization, Octree, SVO

1 INTRODUCTION

In contrast to polygonal model descriptions, volumetric
descriptions are less sensitive to the scene’s complexity
and enable a progressive refinement – using e.g. oc-
trees, necessary for out-of-core rendering and Level-of-
Detail (LoD). However, if these Sparse Voxel Octrees

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

(SVOs) [LK11] are to have a visual quality that com-
pares to a polygonal description, they need a high reso-
lution and require much memory space. When arbitrary
scenes are voxelized, many voxels need to be created
for single triangles, possibly oversampling the geomet-
ric domain even though the polygonal representation is
more compact and provides the higher visual fidelity. In
addition, it is often cheaper to intersect a couple of tri-
angles compared to traversing an octree deeper. In this
paper a hybrid approach is introduced where a SVO is
extended with triangle references in the leaf nodes. The
voxelization and construction of the structure is entirely
performed on the GPU.

Having voxel and polygonal data in one acceleration
structure is beneficial because it minimizes manage-
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ment and storage cost compared to having two separate
structures. In addition, having triangle information in
the leaf nodes can reduce the size of the octree. The
construction is stopped for those nodes that contain a
maximum of two triangles. Two triangles building up
a leaf node are often cheaper to intersect than travers-
ing the structure deeper. In addition, they are common
for non-isolated triangles, i.e. the ones sharing an edge.
Non-isolated triangles form a solid surface and are not
crucial to direct geometric aliasing problems. However,
the polygonal information provides the higher visual fi-
delity.

Another benefit of the unified octree structure is that it
allows for a convenient smooth intra-level interpolation
and color blending between layers in the hierarchy and
faster image generation for parts of the scene for which
a coarse representation is sufficient.

We contribute by presenting a system to construct and
render triangles and voxels in a hybrid acceleration
structure. We show how to extend the voxelization
method proposed [CG12] and how to perform an in-
teractive construction of unified SVOs on the GPU. In
addition, we present a compact data layout allowing for
a fast traversal. Finally, we present three applications,
where having pre-filtered voxels along with the polyg-
onal information is beneficial and give benchmarks on
the construction and traversal times and memory sav-
ings by embedding triangle data.

2 RELATED WORK
Several methods have been introduced to create a vol-
umetric description out of a polygonal model, how to
construct octrees or multi-level grids and how to tra-
verse these structures.

One important step to generating unified triangle-voxel
data is the transformation of the parametric or polygo-
nal description of a model into a volumetric description
(voxelization). Early systems such as the Cube system
[KS87] try to rebuild a classical hardware-supported
rasterization pipeline in software. They use a 3D Bre-
senham line drawing algorithm to draw the polygonal
outline and perform a 3D polygonal filling step. These
systems are slow and difficult to implement, as rebuild-
ing an efficient hardware pipeline in software can be
challenging.

As dedicated graphics hardware became available to
the masses, systems for 3D rasterization using the
GPU hardware were proposed. Systems like Voxelpipe
[Pan11] and the one proposed by Schwarz and Seidel
[SS10] perform voxelization using an optimized
triangle/box overlap test on the GPU. The Voxelpipe
system allows an A-buffer voxelization where each
voxel stores a list of triangles intersecting it. However,
using only a triangle/box overlap test creates a binary
voxelization of the data, only specifying whether a

voxel is on or off. This representation is not sufficient
for a LoD representation of textured models. Another
example is the system proposed by [ED06] that gener-
ates a binary voxelization. However, to use a voxel as a
general rendering primitive, more information such as
colors and normals are necessary.

Other approaches for performing a surface voxelization
on the GPU using a GPU accelerated render pipeline
are [DCB+04] and [ZCEP07]. Both approaches render
the scene from three sides, combining multiple slices
through the model into a final voxel representation.
However, rendering a scene multiple times has a neg-
ative impact on performance. OpenGL allows to write
to a 3D texture or linear video memory directly from
the fragment shader. In [CG12], this feature is used to
create a boundary voxelization of the model. In this ap-
proach, the model has to be rendered only once. More-
over, using the fragment shader means that colors and
normals for each voxel are instantly available.

Several methods have been introduced for fast octree
and multi-level grid construction. We focus on GPU
in-core methods. Each voxel’s position in a grid can be
represented by a Morton code, that can be used for a fast
bottom-up construction of the tree, e.g. in [ZGHG11]
[SS10]. A way to create a two level grid is presented in
[KBS11]. The algorithm starts by computing pairs of
triangle-cell overlaps, sorts these pairs and then fills in
the pairs in the grid cells. However, this method must
sort the input data first and must be extended to more
then two levels.

Another approach is presented by [CG12]. By running
multiple shader threads, each voxel is written unsorted
top-down to a set of leaf nodes. If a leaf node is touched
by a fragment generated in the fragment shader, the
node is subdivided further level-by-level. We use a
similar approach, and extend it to get an A-Buffer vox-
elization as well as to construct our hybrid acceleration
structure out of it.

A few approaches combine voxel and point based mod-
els with polygonal data – one is FarVoxel [GM05].
There, a voxel-based approximation of the scene is gen-
erated using a visibility-aware ray-based sampling of
the scene represented by a BSP tree. FarVoxels can be
used for out-of-core rendering of very large but static
models only – the construction of the tree is an offline
process. Another approach that combines rasterization
and sample-based ray casting is [RCBW12]. In this ap-
proach, all the polygonal data is subdivided into cubical
bricks, essentially performing a voxelization. However,
it is mainly used to speed up rasterization using ray
casting methods and not as a general rendering struc-
ture.

Sparse Voxel DAGs [KSA13] are an effective way to
compact voxel data since they encode identical struc-
tures of the SVO in a DAG. However, this method lacks
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Figure 1: Overview of the GPU-based construction
pipeline for the unified structure.

colors and normals for each voxel. If they were to be
included, most of the compactness would be gone since
colors and normals are unique for most parts of the
scene and cannot be easily compacted in a DAG.

3 TRIANGLE/VOXEL STRUCTURE
CONSTRUCTION

Our voxelization and octree construction process uses
an approach similar to [CG12] using programmable
shaders with GLSL. This approach is extended to gen-
erate the information on which primitives are touching
each non-empty voxel. We show how to use this infor-
mation to construct the unified acceleration structure on
the GPU. Fig. 1 shows the GPU construction pipeline.

MORTON CODE 8B
RGBA 4B

NORMAL 12B
PRIMITIVE ID 4B

Table 1: Structure of an extended fragment entry gen-
erated during voxelization, including each element’s
memory size in byte

Voxelization: The voxelization is performed using
OpenGL. The view port’s resolution is set to match the
voxelized model’s target voxel resolution. The view
frustum is set up to match the greatest extent of the
scene’s bounding box. After disabling depth writes and
backface culling, each triangle within the view frustum
creates a set of fragments accessible in the fragment
shader. To extend the projected area of the triangle with
respect to the view plane, the triangle is projected to
the view plane as if it had been rendered from another
side of the bounding box.
Since OpenGL samples each rectangular pixel during
the rasterization within the pixel’s center, the triangles
need to be extended slightly in the geometry shader
to ensure that each triangle intersecting a rectangular
pixel area covers the pixel’s center. This is performed
by applying conservative rasterization [HAMO05]. Us-
ing the OpenGL Shading Language GLSL and atomic
counters, each fragment is written from the fragment
shader to a chunk of linear video memory.
Each of these extended fragments stores a position en-
coded in a Morton code. This enables us to perform

a fast per-fragment traversal using bit shifts and a fast
comparison of fragments generated at the same spatial
position. In addition, the extended fragments store a
color, a normal and a triangle index, i.e. the fragment
index it originates from. To determine this index, we
use the built-in variable gl_PrimitiveID. Tab. 1
gives an overview on the memory layout of each ex-
tended fragments.

Figure 2: Overview of the unified data structure stor-
ing triangles and voxels. Inner nodes (orange), empty
nodes (grey), leaf nodes containing a single triangle
(light blue), leaf nodes containing two triangles (pur-
ple), and leaf nodes containing more than two triangles
(green).

Data Structure: Fig. 2 shows the data structure. If a
leaf node contains only a single triangle or two trian-
gles, the tree does not need to be constructed for deeper
levels for these nodes. If it contains more than two tri-
angles, the node needs to be split. A single node can
store the reference to a single triangle alongside with
the voxel information. However, if it needs to encode
two or more triangles, they are stored in a triangle index
array.

Figure 3: Structure of a single node in the octree.

Each node of the data structure is encoded in two 32
bit fields (see fig. 3). A single bit is used to encode
whether the node is a leaf or not, another bit is used to
mark a node during construction if it needs to be split
further. The next 30 bits either encode the index of the
first child node, the id of the triangle if it is the only one
represented in the voxel or the index into the triangle in-
dex array. The other 32 bits payload hold a reference
to a voxel array storing the voxel’s color, its normal and
possibly user-defined fields e.g. material parameters.

Journal of WSCG http://www.wscg.eu

Vol.23, No.1-2 85 ISBN 978-80-86943-64-0

Cumulative Edition



Construction: The main idea during construction to
decide whether a node contains a single, two or more
than two triangles is to cache and compare triangle in-
dices in the 64 bit nodes.
The construction is a splatting process in which sev-
eral vertex shaders are executed repetitively spanning
an arbitrary number of threads using indirect draw calls.
First the tree is traversed per-fragment in parallel and
construction is done level-by-level. Afterwards the val-
ues from the inner nodes of the voxel structure and the
color information are written back to the tree nodes
bottom-up.
In the first top-down construction phase of the structure,
we store the individual triangle IDs from each fragment
in the node’s two 32 bit fields using atomic comp-and-
swap operations. If more than two triangles have to be
stored in a node, this node needs to be marked for fur-
ther splitting. In the next shader step new nodes and
voxel payloads for deeper levels are created and the tri-
angle IDs of those nodes that contain only two triangles
are written to the triangle index array. Now the first
stage is executed again.
Eventually, when the tree is created for the highest res-
olution, the number of triangles that fell into the leaf
nodes are counted using an atomic add operation in the
payload field. In this stage, each leaf node that has
not been already finalized in a earlier shader stage, since
it contained only up to two triangles, contains more than
two. Afterwards, the triangle counts stored in each leaf
node are written to a temporary triangle index count ar-
ray.
In the next step the prefix sum of the triangle index
count array is computed. Finally, the tree is traversed
once more and the primitive IDs in the fragment are
written to the final array locations in the triangle in-
dex array using the triangle index count array and the
nodes are relinked accordingly. In this phase we can
keep track of the individual primitive id locations in the
triangle index array by decrementing the values in the
triangle index count array using atomic add operations.
To decide whether a leaf node contains a single, two or
more triangles offsets are added to the indices, we store
in each leaf node’s next field. If a node stores an index
to a single triangle it encodes the triangle id directly. If
it holds an index to a node containing more than two
triangles it stores the maximal triangle id plus the index
in the triangle index array storing two triangle indices
consecutively. If it contains more than two triangles we
add the maximal triangle id, the length of the triangle
index array storing two triangles and the index. (See
fig. 2)
The bottom-up phase continues by filling in the voxel
colors, normals and primitive IDs for each node of the
tree. Therefore, the tree is traversed per fragment in
parallel. Once a shader thread reaches leaf node, the

fragment’s color and normal must be averaged. This
is performed in a similar fashion as in [CG12]. Using
an atomic compare-and-swap operation in a loop, each
thread checks whether it can write its new summed and
averaged value into the voxel’s color field. For the nor-
mals a simple atomic add on the float components is
used. If normals sum up to a zero length normal, e.g.
for two opposing faces, the last valid normal is stored.

Finally the tree is processed bottom-up and level by
level. Inner nodes are filled by averaging colors and
normals and by normalizing the normals of all the child
nodes, since the latter resulted only in adding up the
normals in the step before.

4 TRIANGLE/VOXEL STRUCTURE
TRAVERSAL & INTERSECTION

Rendering of the data structure is performed using a
prototypical ray tracer using OpenCL. After the con-
struction, each OpenGL buffer is mapped to OpenCL.
These are the buffers containing the nodes, the voxels
and the triangle index array and all triangle data, as well
as the material information of the model.

Traversal: We decided to implement a traversal using
a small stack on the GPU. We set the active parametric
t-span of each ray that hits the scene’s bounding box
to the extent of this bounding box. The algorithm has
three phases:

1. If the current first hit voxel within the active t-span
is not empty, we traverse the tree deeper and push
the parent node with the current tmax onto a stack.
We set tmax to point to the end of the active voxel.

2. If the voxel is empty, we either need to process the
next sibling node of the active parent by setting tmin
to the beginning of the next node within the t-span
or,

3. if the node is not a sibling node of the active parent,
we need to pop nodes from our stack, reset tmax to
the position stored on the stack until we can hit the
first possible neighboring voxel, and traverse the tree
deeper again.

If the traversal reaches a leaf, its triangles can be inter-
sected - either one, two or more. Therefore, the algo-
rithm looks at the index stored in the leaf’s next field.
Since the index is encoded using offsets, it can be de-
cided directly if the node references a single, two or
more triangles. The traversal code now determines the
closest hit point of the ray and all triangles lying within
that leaf node. If the closest triangle is hit and the in-
tersection is within the boundaries described by the leaf
node, the traversal returns a structure representing the
hit point. Otherwise the traversal is continued with the
next sibling node.
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Full Octree Resolution
Scene Nodes Triangles Triangle Index Array Voxel Overall

Sponza 42.29 27.66 14.14 46.06 130.15
Urban Sprawl 18.32 75.19 19.31 20.38 133.21
Happy Buddha 11.42 103.07 21.94 11.95 148.38
Forest Scene 30.41 156.25 34.58 33.29 254.53

Our Method
Scene Nodes Triangles Triangle Index Array Voxel Overall Saved

Sponza 10.89 27.66 12.51 13.97 65.03 50.03%
Urban Sprawl 12.37 75.19 18.47 14.77 120.81 9.31%
Happy Buddha 10.97 103.07 21.92 11.81 147.77 0.41%
Forest Scene 21.27 156.25 34.00 27.2 238.72 6.21%

Table 2: Size of the acceleration structure (MB). The upper part of the table shows the acceleration structure size
of the test scenes for a tree build for all octree levels. The lower part of the table shows our method, where the tree
is built only for nodes containing more than two triangles.

Inter-level blending: For the LoD selection and to en-
able a smoother blending between different levels of the
hierarchy we use Ray Differentials [Ige99]. Each ray is
represented by its origin and a unit vector describing
its direction. In addition, we store its’ differentials de-
scribing the pixel offset on the image plane in x and y
direction.

By using ray differentials, we can compute an estimated
pixel’s footprint in world space on the voxels. This
footprint can be compared with the size of an individ-
ual voxel at level l. If the pixel’s footprint is roughly
equal or smaller than the voxel, we can stop traversing
deeper.

In addition, we compute a value describing the under-
estimation i(l, f ) of the size of the pixel’s footprint and
the actual size of nodes at level l and l−1 by computing

i(l, f ) =
2 · vw(l)− f

vw(l)

with vw(l) being the length of a side of a voxel in world
space and f being the estimated length of the pixel’s
footprint at the ray’s hit point. This value can be used
as interpolation factor between the two subsequent lev-
els in the SVO. Since we traverse the tree using a small
stack, we can keep track of the voxel at level l − 1 di-
rectly and use the interpolation factor during shading
and lighting computations.

5 BENCHMARKS
The benchmarks of our system were performed using a
Nvidia GeForce GTX Titan with 6GB video memory on
an Intel Core i7 system with 16GB RAM. Fig. 4 shows
the construction times of four different test scenes. The
forest test scene shows 13 highly detailed plant mod-
els on a small plane. As expected, increasing triangle
counts increase the run time of the construction. How-
ever, the pure triangle count is not the only parame-
ter when it comes to measuring construction times as
highly detailed textures and shaders extend the time it
takes to voxelize the model.
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Figure 4: Run times for each phase of the construction
as well as the overall construction time. Each scene was
voxelized with a resolution of 5123.

Scene Voxel
only

Triangle
only

Hybrid
Structure

Sponza 57.3 fps 18.2 fps 20.6 fps
Urban Sprawl 40.3 fps 13.3 fps 23.7 fps
Happy Buddha 63.1 fps 10.1 fps 16.7 fps
Forest Scene 64.2 fps 2.4 fps 12.9 fps

Table 3: Avg. fps of four different scenes rendered with
a resolution of 1024×1024 using only primary rays and
phong lighting with simple shadows and a single point
light source. Each scene was voxelized with a resolu-
tion of 5123.

Table 2 shows the advantage of our method in com-
parison to a full build of the octree without stopping
the construction early in terms of size of the accelera-
tion structure. Both versions store the triangles in their
leaf nodes as a reference to the triangle index
array. We have included the size needed to store
the triangles themselves, which largely depends on the
scene. The triangle count in the Sponza scene is very
low. If one only considers the size of the nodes and the
voxel data, the overall saved space amounts to a larger
percentage for most scenes. The Happy Buddha scene
has many, but very small triangles. For this scene con-
struction can’t be stopped for most inner nodes result-
ing in only a small memory saving.
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We have rendered all scenes with a resolution of 1024×
1024 using a typical fly through for about 700 frames
and averaged the run times. The results in tab. 3 show
the rendering times from the OpenCL renderer shooting
primary rays with phong lighting, a single point light
source and no texture filtering. Rendering only voxels
is fast but lacking visual quality. Traversing our struc-
ture displaying triangles only provides the highest vi-
sual quality but is slow an offers no LoD - aliasing can
occur. he hybrid structure provides a good trade-off in
speed and offers LoD.

However, measuring the frame rates for the hybrid
approach is non trivial since they increase drastically if
parts of the scene show the voxel data only. For scenes
like Sponza showing an atrium where a camera is
mostly "inside" the model, only a few camera positions
can make use of the voxel data, resulting in only a
small speed up. In the Forest- or the Urban Sprawl
scene parts of the model are in the distance more often.
Thus the voxel data is used more frequently resulting
in larger speed ups.

6 APPLICATIONS
Our hybrid structure is well-suited for applications that
need a general LoD scheme, since the regular voxel
description allows to create a representation for arbi-
trary input meshes. In principle the hybrid structure
can be seen as a multi level grid, omitting the fact that
this structure contains a color and a normal for each
grid cell. However, this additional information, is well
suited to some scenarios to reduce aliasing and speed
up rendering. We present three different applications:
a visualization of large outdoor scenes, urban environ-
ments and a view-direction based rendering approach
in front of a large tiled display wall.

The first application (cf. fig. 6a) uses the hybrid accel-
eration structure to render highly complex vegetated ar-
eas with LoD. Here far distant models project to only a
few pixels on screen creating aliasing artifacts. We use
an approach similar to [DMS06] [WHDS13]. On the
highest level a nested hierarchy of kd-trees over wang
tiles with Poisson Disc Distributions is used to repre-
sent plant locations resulting in instanced, but aperi-
odic repetitions. Each scene contains millions of highly
complex plant models reused throughout the scene.

The advantage of our hybrid representation over a
polygonal simplification is that, within a regular octree
structure, an approximation of high-frequency input
models such as trees with different LoDs can be gener-
ated. Polygonal simplification of such models usually
fails due to the complex foliage and branching structure
of the trees. Sample caching strategies in object space
that provide LoD are limited to single instances, e.g.
samples can’t be cached in the accelerations structure
of a single tree since it is reused. Therefore, it is

beneficial to have pre-filtered voxel data at hand to
limit aliasing artifacts or to reduce the oversampling
needed to create smooth animations and crisp images.
In addition, this speeds up rendering. We can render
a scene with trillions instantiated triangles consisting
of 40Mio. trees at a resolution of 720p with about
5-7fps including direct shadows using our prototypical
OpenCL ray caster.

Another example where this LoD structure is benefi-
cial are urban scenes as shown in fig. 5a and fig. 5b.
Even though a polygonal simplification of such struc-
tures is not as challenging as for tree models, renderings
of such scenes from far away have to cope with high-
frequency aliasing. If this urban scene is viewed from a
distance, the highly varying z-depth of the scene gener-
ate geometric aliasing which can be reduced by having
a pre-filtered voxel structure. Moreover, voxel are inde-
pendent from the scenes local complexity. In addition,
possibly large triangles in such a scene further reduce
the size of the octree. Furthermore, the hybrid structure
allows for smoother transitions and color blending be-
tween different layers of the hierarchy (cf. fig. 5b) and
faster render times for highly detailed parts in the scene
that are viewed from the distance.

A further application is shown in fig. 6b. There the
structure is used for a view dependent rendering on a
large tiled display wall. Since coarse voxel representa-
tions can be renderer faster than highly complex polyg-
onal models, the voxel representation is mainly used to
speed up rendering.

The user’s central field of view is tracked and ren-
dered in high quality using the polygonal representa-
tion, whereas the surrounding is rendered using our
LoD approach. Therefore, we compute an intersection
of the tracked user’s view frustum with a virtual display
wall. Using the intersections an ellipsoid is generated.
Points within this ellipsoid are rendered with maximal
resolution using polygonal data. For points outside of
the ellipsoid the distance from the ellipsoid to the cur-
rent pixel is computed. This distance is use to decide
whether a deeper traversal of the hierarchy is necessary
or if traversal can be stopped early. The transitions be-
tween the layers of the hierarchy are blurred using a
post-processing step in image space.

7 DISCUSSION
We presented an approach to building a hybrid acceler-
ation structure storing voxels for inner nodes, stopping
construction of deeper levels if the number of primitives
within that node are not larger than two and storing the
full triangle list for each leaf node that represents the
finest voxelized level. This way, we generate a LoD de-
scription of the input geometry. The advantage of this
representation over a polygonal simplification is that,
within a regular octree structure, we generate a good
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(a) (b)
Figure 5: Rendering of an urban environment (5a) using our unified octree structure with voxel data in the back-
ground. Fig. (5b) shows a color coding. The red areas were rendered using polygonal data and the green regions
were rendered using voxels.

(a) (b)
Figure 6: Rendering of instantiated tree models (6a) and a focus and context based rendering in front of a large
display wall (6b) using our unified acceleration structure.

approximation of high-frequency input models such as
trees. In addition, this speeds up rendering by provid-
ing a coarse representation for areas that are of minor
interest in a visualization or are not visible/noticeable
to the user. Since the construction on the GPU is per-
formed in-core, the resolution of the voxelization is lim-
ited. However, the system is fast enough to construct an
octree of a scene in real time doing a complete rebuild.
One problem targeted by further research is that an oc-
tree is not truly adaptive with respect to the scene’s
input geometry. If one has highly complex geometry
inside a single leaf voxel, traversing these parts of the
scene can have a huge impact on performance. Simply
building a tree deeper by a regular subdivision of these
parts, is often not sufficient to divide the model’s in-
put geometry. It would be better to either identify these
high resolution parts beforehand and voxelize them sep-
arately or automatically use truly adaptive acceleration
structures such as BVHs or kD-Trees for these parts of
the scene. However, since a coarser voxel representa-
tion is available, the renderer can decide to stop travers-

ing these parts and display the coarse voxel representa-
tion to stay within a constant frame rate. In addition,
due to the regularity of the octree’s structure, more ad-
vanced optimizations such as e.g., a beam optimization
[LK11] could be applied. Moreover, for improved GPU
utilization, it might be beneficial to postpone the trian-
gle intersection from inside the octree traversal to sub-
sequent rendering passes.
Another aspect crucial to performance is memory man-
agement. Since the number of fragments generated by
the voxelizer, the size of the octree and the triangle in-
dex list are not known in advance, buffers must either be
preallocated with a maximal size, be used in a caching
scheme (e.g. [CNLE09]), or more advanced memory
management must be applied – though determining the
size needed for buffers, is a problem most grid construc-
tion algorithms have in common. However, once we
have generated the voxel’s extended fragment list, our
approach can stop the octree construction early when
too much memory is needed to construct deeper levels.
The system has been extended to perform an out-of-
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core voxelization and construction for parts of the scene
that have to be voxelized with a higher resolution.
Voxel structures have disadvantages which should be
targeted by further research. It is merely possible to
average different material informations inside a singe
voxel cell. Furthermore, due to their grid like struc-
ture, shadows are hard to implement because neighbor-
ing voxels tend to cast shadows on themselves. These
shadows create a high-frequency noise in the image
which is disadvantageous if one wants to use voxels to
reduce aliasing. Another issue is the size of the struc-
ture. However, we have shown that our structure is
compact enough to represent several dozens of mod-
els, voxelized with a high-resolution, in GPU memory
at once.
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ABSTRACT
Compressed sensing(CS) has shown great potential in speeding up magnetic resonance imaging(MRI) without
degrading images quality. In CS MRI, sparsity (compressibility) is a crucial premise to reconstruct high-quality
images from non-uniformly undersampled k-space measurements. In this paper, a novel multi-scale geometric
analysis method (uniform discrete curvelet transform) is introduced as sparse prior to sparsify magnetic resonance
images. The generated CS MRI reconstruction formulation is solved via variable splitting and alternating direction
method of multipliers, involving revising sparse coefficients via optimizing penalty term and measurements via
constraining k-space data fidelity term. The reconstructed result is the weighted average of the two terms. Simulat-
ed results on in vivo data are evaluated by objective indices and visual perception, which indicate that the proposed
method outperforms earlier methods and can obtain lower reconstruction error.

Keywords
Compressed sensing, magnetic resonance imaging, uniform discrete curvelet transform, variable splitting, alter-
nating direction method of multipliers.

1 INTRODUCTION
Traditional scanning methods of magnetic resonance
imaging(MRI) spent plenty of time on data acquisition.
This brought negative influences for clinical diagnosis.
K-space undersampling provides one method to speed
up the imaging at the expense of introducing aliasing
for violating the Nyquist (Shannon) sampling theorem.

Compressed sensing(CS) [baraniuk2007compressive,
1614066] points out, sparse or compressible signal
can be reconstructed precisely from less number
of sampled data than those constrained by Nyquist
sampling theorem. Hence, CS provides theoreti-
cal feasibility for highly undersampled MR images
reconstruction. The emerging approach is termed
CS MRI [lustig2007sparse, 4472246]. The main
principles of CS MRI are that the images to be
reconstructed can be sparsely represented; mea-
surement matrix is irrelevant to sparse transform

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

basis; the reconstruction optimization problem can
be solved by using nonlinear method. In CS MRI,
incoherent random, radial and spiral sampling tra-
jectories are applied to obtain k-space measurements
[lustig2007sparse, chen2010novel, santos2006single].
The generally employed sparsifying methods in-
clude spatial finite-difference [lustig2007sparse,
huang2011efficient, huang2012compressed], dis-
crete wavelet transform(DWT) [lustig2007sparse,
huang2011efficient, huang2012compressed], multi-
scale geometric analysis(MGA) methods (contourlet
transform [1532309], nonsubsampled contourlet
transform [da2006nonsubsampled], sharp frequen-
cy localization contourlet(SFLCT) [lu2006new],
discrete curvelet transform using fast algorith-
m(FDCT) [candes2006fast] and discrete shearlet
transform(DST) [lim2010discrete]), dictionary learnt
from intermediate reconstruction or fully sampled im-
ages [ning2013magnetic, qu2012undersampled],
temporal sparsity along temporal axis for dy-
namic cardiac imaging [bilen2012high] and
the combination of some of these transform-
s [lustig2007sparse, huang2011efficient]. The main
thoughts of reconstruction approaches are nonlinearly
reconstructing original signal accurately from a small
number of measurements. The generally used are
greedy pursuit class (matching pursuit, orthogonal

Journal of WSCG http://www.wscg.eu

Vol.23, No.1-2 91 ISBN 978-80-86943-64-0

Cumulative Edition



matching pursuit) for solving sparse coefficients l0
regularization, provided that the sparsity of image is al-
ready known; linear programming (gradient projection,
basis pursuit) handling sparse coefficients l1 regular-
ization at the cost of high computational complexity;
minimizing non-convex lp (0 < p < 1) quasi-norm such
as the recent one in [candes2008enhancing], which
doesn’t always give global minima and is also slow.
The widely used methods are based on augmented
Lagrangian for solving convex, non-smooth regular-
ization (total variation and l1) optimization. These
methods include YALL1 [yang2011alternating], FC-
SA [huang2011efficient], split augmented Lagrangian
shrinkage algorithm(SALSA) [afonso2010fast] and
constrained split augmented Lagrangian shrinkage
algorithm(C-SALSA) [5570998], etc.
In this paper, a novel MGA method termed uniform
discrete curvelet transform(UDCT) (refer to [5443489]
for details) is adopted to sparsify MR images. In terms
of the alias free subsampling in frequency domain
they both employed, UDCT has similar properties as
wrapping-based FDCT, such as tight frame property,
highly directional sensitivity and anisotropy. Besides,
UDCT is superior than FDCT for its lower redundancy
of 4 and clear coefficients parent-children relationship.
Reconstruction model is proposed involving UDCT co-
efficients regularization term and k-space data fidelity
term. To solve the corresponding reconstruction model,
C-SALSA, i.e., variable splitting(VS) and alternating
direction method of multipliers(ADMM-2) [5570998]
is used. The proposed CS MRI method is termed
UDCSMRI.
The paper is organized as follows. Section 2 describes
the existing CS MRI work, and then introduces UDC-
SMRI in detail including UDCT sparse prior and corre-
sponding reconstruction model handling the ill-posed
linear inverse problems. In section 3 UDCSMRI is
compared with current CS MRI methods in reconstruc-
tion performance. Then its ability of handling noise and
convergence performance is analyzed. Conclusions and
future work involving extending this work to dynamic
parallel MRI are explicit in section 4.

2 MATERIALS AND METHODS
CS MRI
Define x ∈ Cn is vector-version of 2D image to be
reconstructed. y = Fux denotes undersampling in k-
space, where Fu ∈ Cm×n means undersampled Fourier
Encoding matrix and y ∈ Cm represents k-space mea-
surements. ΨΨΨ∈Ct×n represents analytical sparse trans-
form matrix or the inverse of a set of learnt signals. CS
reconstructs the underlying MR image x from measure-
ments y via solving the constrained linear inverse prob-
lem, denoted as Eq. (1)

min
x
‖ΨΨΨx‖1 s.t. ‖Fux−y‖2

2 ≤ εεε (1)

where εεε ∈Cm controls the allowed noise level in recon-
structed image, l1 enforces sparsity, l2 constrains the
data fidelity. Finite-difference (total variation) is gen-
erally added to the objective to suppress the noise and
preserve images details simultaneously, then the prob-
lem is

min
x
‖ΨΨΨx‖1 +βTV (x) s.t. ‖Fux−y‖2

2 ≤ εεε (2)

where β > 0 denotes weight of total variation(TV).
Rather than Eq. (1), most current methods handling lin-
ear inverse problems with convex, non-smooth regular-
ization (l1 and TV) consider the unconstrained problem

min
x

β1 ‖ΨΨΨx‖1 +β2TV (x)+
1
2
‖Fux−y‖2

2 (3)

in which β1(2) > 0 is regularization parameter. The
commonly used techniques dealing with Eq. (3) are
VS and methods upon augmented Lagrangian, such as
TVCMRI [ma2008efficient], RecPF, FCSA, SALSA,
etc. However, Eq. (3) is not efficient for ignoring εεε ,
which has a clear meaning (proportional to the noise
deviation) and is easier to set than parameter β1(2).
Additionally, numerous different reconstruction models
have been explored, such as NLTV-MRI incorporating
with nonlocal TV [huang2012compressed], reconstruc-
tion upon wavelet tree structured sparsity(WaTMRI)
studied in [NIPS20124630], reconstruction by using
dictionary learning(DL) [qu2012undersampled, n-
ing2013magnetic] and patch-based nonlocal operator
combined with VS and quadratic penalty reconstruc-
tion technique named PANO [qu2014magnetic], etc.
Besides, 3D dynamic parallel imaging has also been
proposed and is of great significance for practical MRI
applications. It is established on either sparsity along
temporal axis [bilen2012high] or structured low-rank
matrix completion [shin2013calibrationless],.

Proposed Method based on UDCT
In this paper, MR images are sparsified by MGA
method named UDCT. Efficient C-SALSA is intro-
duced to solve the generated CS MRI reconstruction
formulation under UDCT sparse prior. MR image x to
be reconstructed is initialized to one zero-filling image.
This zero-filling image is obtained from the result of
direct inverse Fourier transform to zero filled k-space
measurements, represented as x0 = FH

u y. Zero-filling
image serves as the original intermediate image. The
real and imaginary part of x0 are decomposed into
J levels by using UDCT separately, 2κ j directional
sub-bands for each level. CS MRI reconstruction prob-
lem comes down to solving the optimization problem
constrained by image transform sparsity and k-space
measurements fidelity (in an iterative process). The
solving process requires the definition of the Moreau
proximal maps of regularization term and fidelity term.
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Reconstruction result is the trade-off between the two
terms and then serves as the intermediate image for the
next iteration. This procedure is executed iteratively
until some stop criterion is satisfied. Framework
of UDCSMRI in Fig.1 demonstrates clearly the
implementation process.

Uniform Discrete Curvelet Transform
As is known, discrete wavelet basis only represents the
location and features of singular point with limited di-
rections. The generally used contourlet transform lack-
s shift-invariance and brings pseudo-Gibbs phenomena
around singular points. NSCT owns too high redundan-
cy and SFLCT cannot capture clear directional features
in spite of flexible redundancy. The needle-shaped el-
ements of FDCT allow very high directional sensitivi-
ty and anisotropy and are thus very efficient in repre-
senting line-like edges. But FDCT possesses too high
redundancy, which makes it sub-optimal in sparse rep-
resentation, either. UDCT has been proposed as an in-
novative implementation of discrete curvelet transform
for real-valued signals. Utilizing the ideas of FFT-based
discrete curvelet transform and filter-bank based con-
tourlet transform, UDCT is designed as a perfect multi-
resolution reconstruction filter bank(FB) but executed
by FFT algorithm. The number of UDCT coefficients
are fixed at each scale and sizes of directional sub-bands
are the same for each scale, which provides simple cal-
culation. UDCT can provide a flexible instead of fixed
number of clear directions at each scale to capture var-
ious directional geometrical structures accurately. Be-
sides, the forward and inverse transform form a tight
and self-dual frame with an acceptable redundancy of
4 to allow the input real-valued signal to be perfect-
ly reconstructed. UDCT has asymptotic approximation
properties: for image x with C2 (C is a constant) sin-
gularities, the best N-term approximation xN (N is the
number of most important transform coefficients allow-
ing reconstruction) in the curvelet expansion is [can-
des2000curvelets]

‖x−xN‖2
2 ≤CN−2 (logN)3 N −→ ∞ (4)

This property is known as the optimal sparsity. There-
fore, UDCT is considered as the preeminent MGA
method for CS MRI application.

Constrained Split Augmented Lagrangian Shrink-
age Algorithm
Define Φ as regularization function, ΨΨΨ the UDCT ana-
lytical operator, the sparse representation is defined as
ααα = ΨΨΨx. The reconstruction model can thus be denoted
as

min
ααα,x

Φ(ααα) =

{
‖ααα‖1 if Φ = l1
TV
(

ΨΨΨ
−1

ααα

)
if Φ = TV

s.t. ‖Fux−y‖2
2 ≤ εεε

(5)

Eq. (5) is solved by C-SALSA. Different from the pre-
vious augmented Lagrangian based methods to solve E-
q. (3), C-SALSA has been proposed as a new augment-
ed Lagrangian based method, which directly solves the
original constrained inverse problem optimization ef-
ficiently. C-SALSA first translates the constrained E-
q. (5) into an unconstrained one via adding the in-
dicator function of the feasible set, the ellipsoid {x :
‖Fux−y‖2

2 ≤ εεε}, to the objective in Eq. (5). Then the
unconstrained problem can be denoted as

min
ααα,x

λ1Φ(ααα)+λ2LE(εεε,I,y) (Fux) (6)

In Eq. (6), parameters λ1 and λ2 measure the weight
of the regularization term and error constraint term, re-
spectively. The values linearly increase along with the
increase of iteration number (λ1(2) ←− ρλ1(2), ρ > 1
means linear growth factor). Eq. (6) is translated into
another constrained problem via VS, denoted as

min
ααα∈Ct ,x∈Cn,ννν∈Cm

λ1Φ(ααα)+λ2LE(εεε,I,y) (ννν) s.t. ννν = Fux

(7)
Finally, ADMM-2 solves the two sub-problems con-
cerning ααα and ννν . The reconstruction result is obtained
in this way. In terms of sub-problem concerning the
regularization Φ, the Moreau proximal mapping func-
tion can be defined as

ΘΘΘΦ

(
α̂αα
)
= argmin

ααα

1
2

∥∥ααα− α̂αα
∥∥2

2 +Φ(ααα) (8)

where α̂αα is the result of mapping to ααα according to the
mapping relation Ct −→Ct . If Φ(·)≡‖·‖1, ΘΘΘΦ is simply
a soft threshold. If Φ is TV norm, Chambolle’s algorith-
m [chambolle2004algorithm] is available to compute
the involving problem. E(εεε,I,y) represents a closed εεε-
radius Euclidean ball centered at y. The Moreau prox-
imal map of LE(εεε,I,y) can be simply denoted as the or-
thogonal projection of ννν on the closed εεε-radius ball
centered at y

ΘΘΘLE(εεε,I,y) (ννν) =

{
y+ εεε

ννν−y
‖ννν−y‖2

if ‖ννν−y‖2
2 > εεε

ννν if ‖ννν−y‖2
2 ≤ εεε

(9)

The resulting algorithm is summarized in Algorithm C-
SALSA-2 [5570998].

3 EXPERIMENTAL RESULTS AND
ANALYSIS

Experimental Setup
The reconstruction performance of UDCSMRI for
various MR raw data, is analyzed from four aspect-
s. Experimental raw data include complex-valued
T2-weighted brain image (MR T2wBrain_slice27
of 256 × 256), water phantom [ning2013magnetic],
real-valued MBA_T2_slice006, randomly selected
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Figure 1. Framework of UDCT based CS MRI

AIDS dementia (slice 0-16), Brain Tumor (slice
0-23) and Normal aging (slice 0-53) (Courtesy of
http://www.med.harvard.edu/AANLIB/home.html).
Partial raw images and sampling schemes are shown
in Fig.2. Computations are performed on a 64-
bit Windows 7 operating system with an Intel
Xeon E5 CPU at 2.80 GHz and 8 GB memory,
MATLAB R2011b. Numerical metrics of quality
assessment for reconstructed images are peak signal-
to-noise ratio(PSNR) (in dB) and relative l2 norm
error(RLNE) [qu2012undersampled].

Comparison with Earlier Methods
The performance of UDCSMRI for images in Fig.2(a)-
(c) is compared with that of TVCMRI, FCSA and
WaTMRI. UDCT decomposition of J = 1, 12 di-
rectional sub-bands for each scale is adopted by
Fig.2(a)-(b). For Fig.2(c), UDCT decomposition of
J = 3, 12 directional sub-bands for each scale is used.
The preset maximum iteration number for ADMM-2 is
K = 70.

MR T2wBrain_slice27 reconstruction under 40%
Cartesian sampling scheme is exhibited in Fig.3. Fig.3
indicates that reconstructed images under wavelet
basis sparse regularization show severe pseudo-Gibbs
phenomena, edge blur and aliasing. Whereas UDC-
SMRI with Φ = l1 (UDCSMRI(l1)), UDCSMRI with
Φ = TV (UDCSMRI(TV)) reconstructed images show
clear edge details, the least aliasing and the lowest
reconstructed error. Besides, UDCSMRI(TV) recon-
structed image obtains the highest PSNR (39.10dB)
and lowest RLNE(0.0684). These demonstrate that
UDCSMRI performs preeminently in reconstructing
T2wBrain_slice27.

For MBA_T2_slice006 reconstruction under Cartesian
sampling scheme at 0.40 sampling rate, the recon-
structed images PSNRs of TVCMRI, FCSA, WaTMRI,
UDCSMRI(l1) and UDCSMRI(TV) are 30.15dB,
31.08dB, 30.48dB, 36.01dB and 38.95dB, respectively.
RLNEs are 0.1263, 0.1135, 0.1224, 0.0644 and 0.0459
separately. These indicate that UDCSMRI obtains the
least reconstruction error.

Water phantom reconstructed results under 30.20%
pseudo radial sampling scheme in Fig.4 indicate that
TVCMRI, FCSA and WaTMRI can not reduce aliasing
efficiently. While UDCSMRI(l1) and UDCSMRI(TV)
reconstructed images obtain clear edge structures.
It is worth mentioning that reconstructed result in
Fig.4(d) has better rhombic texture features and more
clear directions than that in Fig.4(e). It means that
UDCSMRI(l1) performs better than UDCSMRI(TV) in
reconstructing water phantom.

AIDS dementia (slice0-16), Brain Tumor (slice0-23)
and Normal aging (slice0-53) reconstruction using
Cartesian sampling at 0.40 sampling rate are imple-
mented to further test the performance of UDCSMRI.
PSNR and RLNE curves versus slices of UDCSMRI
reconstruction, for AIDS dementia, Brain Tumor,
Normal aging separately, are compared with those of
TVCMRI, FCSA, WaTMRI. The comparison curves
are exhibited in Fig.5. The statistical results in Fig.5
show that UDCSMRI can reconstruct original MR
images from highly undersampled k-space with high
probability among all the compared methods.

Sampled Data with Noise
The ability of UDCSMRI for handling noise is tested
in this subsection. After random gaussian white
noise with standard deviation of 10.2 is added to
fully sampled k-space data, PSNRs for fully sampled
reconstructed T2wBrain_slice27, MBA_T2_slice006
and water phantom are 29.87dB 28.94dB and 30.76dB
separately. RLNEs are 0.1980, 0.1451 and 0.0609
separately. Table 1 shows numerical metrics for re-
constructed T2wBrain_slice27 and MBA_T2_slice006
using sampling scheme in Fig.2(d) at 0.40 sampling
rate, and reconstructed water phantom using sampling
scheme in Fig.2(e) at 0.3020 sampling rate, respec-
tively. In Table 1, UDCSMRI reconstructed results
obtain the highest PSNR and lowest RLNE, indicating
that UDCSMRI can eliminate noise efficiently. TV
regularization constrained UDCSMRI performs better
that l1 regularization constrained UDCSMRI in elimi-
nating noise in reconstructing images in Fig.2(a)-(b).
While for reconstructing image in Fig.2(c) under
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(d) (e)(b)(a) (c)

Figure 2. (a) MR T2wBrain_slice27, (b) MBA_T2_slice006, (c) Water phantom, (d) Cartesian sampling
scheme and (e) Pseudo radial sampling scheme.

(d) (e)(a) (b) (c) (f)

(i) (j) (k) (l) (m)

Figure 3. T2wBrain_slice27 reconstruction with Cartesian sampling at 0.40 sampling rate. (a)-(f) Amplified
local regions of reconstructed images from TVCMRI, FCSA, WaTMRI, UDCSMRI(l1), UDCSMRI(TV)
and fully sampled k-space data separately, (g)-(k) Difference image between fully sampled MR image and
TVCMRI, FCSA, WaTMRI, UDCSMRI(l1), UDCSMRI(TV) reconstructed images with gray scale of [0,
0.20], respectively. PSNRs of TVCMRI, FCSA, WaTMRI, UDCSMRI(l1), UDCSMRI(TV) reconstructed
images are 30.74dB, 31.29dB, 30.87dB, 36.41dB and 39.10dB and RLNEs of them are 0.1790, 0.1681, 0.1764,
0.0932 and 0.0684 separately.

(d) (e)(a) (b) (c) (f)

Figure 4. Pseudo radial sampling at 0.3020 sampling rate. (a)-(f) Enlarged local regions of reconstructed
water phantom from TVCMRI, FCSA, WaTMRI, UDCSMRI(l1), UDCSMRI(TV) and fully sampled k-
space data separately.

noise, UDCSMRI(l1) performs slightly better than
UDCSMRI(TV).

Influences of Various Sparse Priors
Influences of various sparse priors to C-SALSA recon-
struction performance without noise are discussed in
this subsection, for reconstructing T2wBrain_slice27
and MBA_T2_slice006 under Cartesian sampling
scheme at 0.40 sampling rate and water phantom under
30.20% pseudo radial sampling scheme. C-SALSA
based on Daubechies wavelet basis, less redundant
SFLCT(LRSFLCT) based C-SALSA, more redundant
SFLCT(MRSFLCT) based C-SALSA, FDCT based
C-SALSA and UDCSMRI reconstruction methods are
compared in our work. In simulation, regularization pa-
rameters of compared methods are manually optimized

for maximum PSNRs and minimum RLNEs. Table
2 and Table 3 exhibit reconstructed numerical indices
using C-SALSA with Φ = l1 and Φ = TV separately.
Table 2 exhibits clearly that reconstruction based
on conventional sparse methods cannot efficiently
eliminate artifacts and aliasing caused by Cartesian un-
dersampling, particularly for wavelet and FDCT based
C-SALSA. MRSFLCT based C-SALSA reconstructed
images obtain slightly higher PSNRs and lower RLNEs
separately than LRSFLCT based C-SALSA recon-
structed images, indicating that increasing redundancy
properly can improve the reconstruction quality to
some extent. While UDCSMRI reconstructed images
possess highest PSNRs and lowest RLNEs, indicating
that UDCT performs best in sparsifying MR images
and thus can lead to lower undersampling rate while
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(d) (e) (f)

(a) (b) (c)

Figure 5. Cartesian sampling at 0.40 sampling rate. (a)-(c) PSNR versus slices for AIDS dementia, Brain
Tumor and Normal aging, respectively. (d)-(f) RLNE versus slices for AIDS dementia, Brain Tumor and
Normal aging, respectively.

Images & Sampling schemes Indices
Methods

TVCMRI FCSA WaTMRI UDCSMRI(l1) UDCSMRI(TV)

T2wBrain_slice27 & Cartesian
PSNR(dB) 28.79 28.67 28.38 31.84 32.24

RLNE 0.2241 0.2272 0.2349 0.1577 0.1507

MBA_T2_slice006 & Cartesian
PSNR(dB) 29.63 29.57 29.32 31.36 31.76

RLNE 0.1341 0.1351 0.1390 0.1099 0.1049

water phantom & pseudo
PSNR(dB) 12.62 9.43 9.38 33.03 32.80

RLNE 0.4917 0.7102 0.7140 0.0469 0.0482
Table 1. Reconstructed images quality indices for sampled data with noise

Images & Sampling schemes Indices
Sparse priors

Daubechies wavelet LRSFLCT MRSFLCT FDCT UDCT

T2wBrain_slice27 & Cartesian
PSNR(dB) 32.91 33.79 34.73 33.34 36.41

RLNE 0.1395 0.1260 0.1131 0.1327 0.0932

MBA_T2_slice006 & Cartesian
PSNR(dB) 31.49 31.15 32.19 30.28 36.01

RLNE 0.1083 0.1125 0.0998 0.1245 0.0644

water phantom & pseudo
PSNR(dB) 33.86 35.01 35.28 33.88 35.74

RLNE 0.0426 0.0374 0.0362 0.0425 0.0343
Table 2. Various sparse priors with l1 regularization

obtaining high-quality reconstruction. Table 3 shows
similar reconstruction results in general. What worth
mentioning is that MRSFLCT and LRSFLCT based
C-SALSA (Φ = TV ) obtain the same numerical
indices. Comparing Table 2 with Table 3, it can be
concluded that l1 regularization performs better than
TV regularization for sparse transforms except UDCT.

Convergence Analysis
Convergence of UDCSMRI reconstruction is an-
alyzed in this subsection. MSE versus ADMM-2
iteration number for reconstructing Fig.3(d) and (e),
MBA_T2_slice006 under the same conditions and

Fig.4(d) and (e) are exhibited in Fig.6. When iteration
number reaches 25, MSE has already fell into minimal
values. Conclusions are made that UDCSMRI(l1) and
UDCSMRI(TV) can obtain rapid convergence with
very small MSEs.

4 CONCLUSIONS AND FUTURE
WORK

A simple and efficient uniform discrete curvelet trans-
form sparsity based CS MRI framework has been pro-
posed in this paper. In this framework, UDCT ob-
tains optimal structural sparsity, laying the foundation
of high quality reconstruction from ill-posed linear in-
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Images & Sampling schemes Indices
Sparse priors

Daubechies wavelet LRSFLCT MRSFLCT FDCT UDCT

T2wBrain_slice27 & Cartesian
PSNR(dB) 28.45 31.40 31.41 30.82 39.10

RLNE 0.2331 0.1659 0.1658 0.1774 0.0684

MBA_T2_slice006 & Cartesian
PSNR(dB) 26.80 30.44 30.44 30.08 38.95

RLNE 0.1857 0.1221 0.1221 0.1274 0.0459

water phantom & pseudo
PSNR(dB) 31.11 33.01 33.01 33.01 34.42

RLNE 0.0585 0.0470 0.0470 0.0470 0.0400
Table 3. Various sparse priors with TV regularization

(a) (b) (c)

Figure 6. MSEs decline versus iteration. (a) Fig.3(d) and (e) reconstruction. (b) MBA_T2_slice006 recon-
struction under the same conditions. (c) Fig.4(d) and (e) reconstruction.

verse problems. C-SALSA enforces optimized images
transform sparsity and data fidelity at fast convergence
speed. Experiments on various MR images illustrate
the proposed method can achieve low reconstruction
error among current CS MRI methods. The proposed
method obtains preeminent reconstruction performance
at the cost of doubling the amount of calculation due to
handling the real part and imaginary part of complex-
valued MR images separately, though. Thus, further
improvements on the proposed method are subjects of
ongoing research and can be made from the following
three aspects: (1) Test and optimize the method on more
datasets. (2) Expand the method to 3D dynamic M-
RI by adding sparsity regularization defined along the
temporal axis. (3) Use partially parallel imaging(PPI)
to accelerate imaging.
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ABSTRACT
Pictures and videos taken with smartphone cameras often suffer from motion blur due to handshake during the
exposure time. Recovering a sharp frame from a blurry one is an ill-posed problem but in smartphone applications
additional cues can aid the solution. We propose a blur removal algorithm that exploits information from subse-
quent camera frames and the built-in inertial sensors of an unmodified smartphone. We extend the fast non-blind
uniform blur removal algorithm of Krishnan and Fergus to non-uniform blur and to multiple input frames. We esti-
mate piecewise uniform blur kernels from the gyroscope measurements of the smartphone and we adaptively steer
our multiframe deconvolution framework towards the sharpest input patches. We show in qualitative experiments
that our algorithm can remove synthetic and real blur from individual frames of a degraded image sequence within
a few seconds.

Keywords
multiframe blur removal, deblurring, smartphone, camera, gyroscope, motion blur, image restoration

1 INTRODUCTION

Casually taking photographs or videos with smart-
phones has become both easy and widespread. There
are, however, two important effects that degrade the
quality of smartphone images. First, handshake during
the exposure is almost unavoidable with lightweight
cameras and often results in motion-blurred images.
Second, the rolling shutter in CMOS image sensors int-
roduces a small time delay in capturing different rows
of the image that causes image distortions. Retaking
the pictures is often not possible, hence there is need
for post-shoot solutions that can recover a sharp image
of the scene from the degraded one(s). In this paper, we
address the problem of blur removal and rolling shutter
rectification for unmodified smartphones, i.e., without
external hardware and without access to low-level
camera controls.

In the recent years, a large number of algorithms have
been proposed for restoring blurred images. As blur
(in the simplest case) is modeled by a convolution
of a sharp image with a blur kernel, blur removal is
also termed deconvolution in the literature. We distin-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

guish between non-blind deconvolution, where the blur
kernel is known in advance, and blind deconvolution,
where the blur kernel is unknown and needs to be es-
timated first. The blur kernel can be estimated for in-
stance from salient edges in the image [Jos08, Cho09,
Sun13, Xu13], from the frequency domain [Gol12],
from an auxiliary camera [Tai10], or from motion sen-
sors [Jos10]. Kernel estimation from the image con-
tent alone often involves iterative optimization schemes
that are computationally too complex to perform on a
smartphone within acceptable time. Auxiliary hard-
ware might be expensive and difficult to mount, so ker-
nel estimation from built-in motion sensors seems the
most appealing for smartphone applications.

Unfortunately, even known blur is difficult to invert be-
cause deconvolution is mathematically ill-posed which
means many false images can also satisfy the equa-
tions. Deconvolution algorithms usually constrain the
solution space to images that follow certain properties
of natural images [Kri09]. Another common assump-
tion is uniform blur over the image which simplifies
the mathematical models and allows for faster restora-
tion algorithms. However, this is usually violated in
real scenarios which can lead the restoration to fail, of-
ten even lowering the quality of the processed image
[Lev09]. Handling different blur at each pixel of the im-
age is computationally demanding, so for smartphone
applications a semi-non-uniform approach might be the
best that divides the image to smaller overlapping re-
gions, where uniform blur can be assumed, and restores
those regions independently.
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Figure 1: Illustration of our gyroscope-aided multiframe blur removal algorithm. (a) First, piecewise uniform blur
kernels Kij along rows i and columns j of the image are estimated from the gyroscope measurements. (b) Next,
a blurriness map W is generated by measuring the spatial extent of the respective kernels. (c) Then, individual
patches are restored from multiple blurry input patches of Bi using natural image priors. (d) Finally, the sharp
output I is assembled from the deblurred patches.

We build our blur removal algorithm on the following
three observations: 1) The blurry image of a point light
source in the scene (such as distant street lights at night)
gives the motion blur kernel at that point of the image.
2) Smartphones today also provide a variety of sensors
such as gyroscopes and accelerometers that allow re-
constructing the full camera motion during camera ex-
posure thereby giving information about the blur pro-
cess. 3) Information from multiple degraded images of
the same scene allows restoring a sharper image with
more visible details.

Contributions

Based on the above observations we propose a new fast
blur removal algorithm for unmodified smartphones
by using subsequent frames from the camera preview
stream combined with the built-in inertial sensors (see
Figure 1). We assume a static scene and that blur is
mainly caused by rotational motion of the camera. The
motion of the camera during the shot is reconstructed
from the gyroscope measurements, which requires time
synchronization of the camera and the inertial sensors.
The information from multiple subsequent frames with
different blur is exploited to reconstruct a sharp im-
age of the scene. To the best of our knowledge, this
is the first application that combines blur kernel esti-
mation from inertial sensors, patch-based non-uniform
deblurring, multiframe deconvolution with natural im-
age priors, and correction of rolling shutter deformation
for unmodified smartphones. The runtime of our algo-
rithm is in the order of a few seconds for typical preview
frame size of 720×480 pixels.

2 RELATED WORK
The use of multiple blurry/noisy images for restoring a
single sharp frame (without utilizing sensor data) has
been proposed by Rav-Acha and Peleg [Rav05], applied
for sharp panorama generation by Lie et al. [Li10], and

recently for HDR and low-light photography by Ito
et al [Ito14]. Combining camera frames and inertial
measurement units (IMU) has been successfully used
for video stabilization [For10, Han11, Kar11, Bel14],
for denoising [Ito14, Rin14] and also for blur re-
moval [Jos10, Par14, Sin14b].

Joshi et al. [Jos10] presented the first IMU-based de-
blurring algorithm with a DSLR camera and exter-
nal gyroscope and accelerometer. In their approach,
the camera and the sensors are precisely synchronized
through the flash trigger. The DSLR camera has a
global shutter which makes the problem easier to han-
dle than the case of smartphones. They assume a con-
stant uniform scene depth, which they find together
with the sharp image by solving a complex optimiza-
tion problem. Bae et al. [Bae13] extend this method to
depth-dependent blur by attaching a depth sensor to the
camera. Ringaby and Forssen [Rin14] develop a virtual
tripod for smartphones by taking a series of noisy pho-
tographs, aligning them using gyroscope data, and av-
eraging them to get a clear image, but not targeting blur
removal. Köhler [Koh12] and Whyte [Why12] show
in their single-frame deblurring experiments that three
rotations are enough to model real camera shakes well.

Karpenko [Kar11], Ringaby [For10], and Bell [Bel14]
developed methods for video stabilization and rolling
shutter correction specifically for smartphones. An im-
portant issue in smartphone video stabilization is the
synchronization of the camera and the IMU data be-
cause the mobile operating systems do not provide pre-
cise timestamps. Existing methods estimate the un-
known parameters (time delay, frame rate, rolling shut-
ter fill time, gyroscope drift) from a sequence of im-
ages off-line via optimization. We have found that
the camera parameters might even change over time,
for example the smartphones automatically adjust the
frame rate depending on whether we capture a bright
or a dark scene. This is an important issue because
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it means we require an online calibration method. Jia
and Evans [Jia14] proposed such an online camera-
gyroscope calibration method for smartphones based on
an extended Kalman filter (EKF). The method tracks
point features over a sequence of frames and estimates
the time delay, the rolling shutter fill rate, the gyroscope
drift, the physical sensor offset, and even the camera in-
trinsics. However, it requires clean frames for feature
tracking.

Recently, Park and Levoy [Par14] compared the effec-
tiveness of jointly deconvolving multiple images de-
graded by small blur versus deconvolving a single im-
age degraded by large blur, and versus averaging a set
of blur-free but noisy images. They record a series
of images together with gyroscope measurements on
a modified tablet with advanced camera controls (e.g.,
exposure control, RAW data access) through the FCam
API [Par11], and attach an external 750Hz gyroscope
to the tablet. They estimate the rotation axis, the gy-
roscope drift, and the time delay between the frames
and the gyroscope measurements in a non-linear opti-
mization scheme over multiple image segments. Their
optimization scheme is based on the fact that applying
two different kernels to an image patch is commutative.
This means in the case of true parameters, applying the
generated kernels in different order results in the same
blurry patch. The rolling shutter parameter is calculated
off-line with the method of Karpenko [Kar11]. They
report the runtime of the algorithm to be 24.5 seconds
using the Wiener filter and 20 minutes using a sparsity
prior for deconvolution, not mentioning whether on the
tablet or on a PC.

Closest to our system is the series of work by Sindelar
et al. [Sin13, Sin14a, Sin14b] who also reconstruct the
blur kernels from the sensor readings of an unmodified
smartphone in order to make the deconvolution non-
blind. The first approach [Sin13] considers only x and
y rotations and generates a single kernel as weighted
line segments using Bresenham’s line drawing algo-
rithm. Unfortunately, their time calibration method is
not portable to different phones. They find the exact be-
ginning of the exposure by inspecting the logging out-
put of the camera driver, which might be different for
each smartphone model. They read the exposure time
from the EXIF tag of the captured photo, however, this
information is not available for the preview frames we
intend to use for a live deblurring system. Extending
this work in [Sin14b] the authors generate piecewise
uniform blur kernels and deblur overlapping patches of
the image using the Wiener filter. They also account
for rolling shutter by shifting the time window of gyro-
scope measurements when generating blur kernels for
different rows of the image. The main difference in our
approach is the use of multiple subsequent images and
non-blind deblurring with natural image priors.

3 BLUR MODEL
The traditional convolution model for uniform blur is
written in matrix-vector form as

~B = A~I+~N (1)

where ~B,~I,~N denote the vectorized blurry image, sharp
image, and noise term, respectively, and A is the sparse
blur matrix. Camera shake causes non-uniform blur
over the image, i.e., different parts of the image are
blurred differently. We assume piecewise uniform blur
and use different uniform kernels for each image region
which is a good compromise between model accuracy
and model complexity.

The blur kernels across the image can be found by re-
constructing the camera movement, which is a path in
the six-dimensional space of 3 rotations and 3 transla-
tions. A point in this space corresponds to a particular
camera pose, and a trajectory in this space corresponds
to the camera movement during the exposure. From the
motion of the camera and the depth of the scene, the
blur kernel at any image point can be derived. In this
paper, we target unmodified smartphones without depth
sensors so we need to make further assumptions about
the scene and the motion.

Similar to Joshi et al. [Jos10], we assume the scene to be
planar (or sufficiently far away from the camera) so that
the blurred image can be modeled as a sum of transfor-
mations of a sharp image. The transformations of a pla-
nar scene due to camera movements can be described
by a time-dependent homography matrix Ht ∈ R3×3.
We apply the pinhole camera model with square pixels
and zero skew for which the intrinsics matrix K con-
tains the focal length f and the principal point [cx,cy]

T

of the camera.

Given the rotation matrix Rt and the translation vector
Tt of the camera at a given time t, the homography ma-
trix is defined as

Ht(d) = K(Rt +
1
d

Tt~nT )K−1 (2)

where ~n is the normal vector of the latent image plane
and d is the distance of the image plane from the cam-
era center. The homography Ht(d) maps homogenous
pixel coordinates from the latent image I0 to the trans-
formed image It at time t:

It
(
(ut ,vt ,1)T )= I0

(
Ht(d)(u0,v0,1)T ) (3)

The transformed coordinates in general are not integer
valued, so the pixel value has to be calculated via bilin-
ear interpolation, which can also be rewritten as a ma-
trix multiplication of a sparse sampling matrix At(d)
with the latent sharp image~I0 as~It = At(d)~I0 in vector
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form. Then, we can describe the blurry image as the in-
tegration of all transformed images during the exposure
time plus noise:

~B =

tclose∫
topen

At ·~Idt +~N = A ·~I+~N (4)

Note how this expression resembles the form of
(1). While for this formula the depth of the scene
is required, a common simplification is to assume
zero translation [Kar11, Han11, For10] because
rotation has a significantly larger impact on shake
blur [Koh12, Why12, Bel14]. With only rotational
motion, equation 2 is no longer dependent on the depth:

Ht = KRtK−1 (5)

There are also other reasons why we consider only rota-
tional motion in our application. The smartphone’s ac-
celerometer measurements include gravity and are con-
taminated by noise. The acceleration values need to be
integrated twice to get the translation of the camera and
so the amplified noise may lead to large errors in kernel
estimation.

Handling pixel-wise spatially varying blur is computa-
tionally too complex to perform on a smartphone, so
we adopt a semi-non-uniform approach. We split the
images into R×C overlapping regions (R and C are
chosen so that we have regions of size 30× 30 pix-
els) where we assume uniform blur and handle these
regions separately. We reconstruct the motion of the
camera during the exposure time from the gyroscope
measurements and from the motion we reconstruct the
blur kernels for each image region by transforming the
image of a point light source with the above formulas.
Once we have the blur kernels, fast uniform deblurring
algorithms can be applied in each region, and the final
result can be reassembled from the deblurred regions
(possibly originating from different input frames). An
overview of our whole pipeline is illustrated in Figure 2.

CRF 
Inversion

Color
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Camera-IMU
Calibration

Rolling Shutter
Correction

Single-frame
Deconvolution

Alignment

Output
Image

Patch Kernel 
Generation

Patch
Decomposition

Multi-frame
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Patch
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Camera Input

IMU Input

Figure 2: Overview of our blur removal pipeline

3.1 Camera-IMU calibration
Reconstructing the motion of the mobile phone dur-
ing camera exposure of a given frame i with timestamp

ti requires the exact time window of sensor measure-
ments during that frame. This is challenging to find on
unmodified smartphones given that current smartphone
APIs allow rather limited hardware control. We denote
with td the delay between the recorded timestamps of
sensor measurements and camera frames which we es-
timate prior to deblurring.

In rolling shutter (RS) cameras, the pixel values are read
out row-wise from top to bottom which means ’top’
pixels in an image will be transformed with ’earlier’
motion than ’bottom’ pixels, which has to be taken into
account in our model. For an image pixel u = [ux,uy]

T

in frame i the start of the exposure is modeled as

t([ux,uy]
T , i) = ti + td + tr

uy

h
(6)

where tr is the readout time for one frame and h is the
total number of rows in one frame. The gyro-camera
delay td is estimated for the first row of the frame, and
the other rows are shifted in time within the range [0, tr].
We set the time of each image region to the time of the
center pixel in the region.

To find the unknown constants of our model, we
apply once the Extended Kalman Filter (EKF)-based
online gyro-camera calibration method of Jia and
Evans [Jia13, Jia14]. This method estimates the rolling
shutter parameter tr, the camera intrinsics f , cx, cy,
the relative orientation of the camera and IMU, the
gyroscope bias, and even the time delay td . The
intrinsics do not change in our application, and the
relative orientation is not important because we are
only interested in rotation changes which are the same
in both coordinate systems. The gyroscope bias is
a small and varying additive term on the measured
rotational velocities which slightly influences the
kernel estimation when integrated over time. However,
for kernel estimation we consider only rotation changes
during single camera frames, and in such short time
intervals the effect of the bias can be neglected. For
example, in case of a 30 Hz camera and a 200 Hz
gyroscope we integrate only 200/30 ≈ 6 values during
a single frame. We perform the online calibration
once at the beginning of our image sequences and we
assume the above parameters to be constant for the
time of capturing the frames we intend to deblur. The
EKF is initialized with the intrinsic values given by the
camera calibration method in OpenCV.

The time delay td was found to slightly vary over longer
sequences, so after an initial guess from the EKF, we
continuously re-estimate td in a background thread. We
continuously calculate the mean pixel shift induced by
the movement measured by the gyroscope, and we also
observe the mean pixel shifts in the images. The current
td is found by correlating the curves in a sliding time
window.
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The last parameter, the exposure time te = tclose− topen
of a frame can be read from the EXIF tag of JPEG im-
ages like in [Sin13], but an EXIF tag is not available
for live video frames. Therefore, we lock the camera
settings at the beginning and capture the first frame as a
single image.

3.2 Kernel estimation from gyroscope
measurements

We generate a synthetic blur kernel at a given point in
the image by replaying the camera motion with a virtual
camera that is looking at a virtual point light source.
For any pixel u = [ux,uy] in the image, we place the
point light source to U = [(ux− cx)

d
f ,(uy− cy)

d
f ,d] in

3D space. Note that the value of d is irrelevant if we
consider rotations only.
First, we need to rotate all sensor samples into a com-
mon coordinate system because the raw values are mea-
sured relative to the current camera pose. The chosen
reference pose is the pose at the shutter opening. Next,
the measured angular velocities need to be integrated to
get rotations. As described in section 3.1, we neglect
the effects of gyroscope bias within the short time of
the exposure. In order to get a continuous rendered ker-
nel, we super-resolve the time between discrete camera
poses where measurements exist, using spherical lin-
ear interpolation (SLERP). The transformed images of
the point light source are blended together with bilin-
ear interpolation and the resulting kernel is normalized
to sum to 1. Finally, we crop the kernel to its bounding
square in order to reduce the computational effort in the
later deblurring step.

3.3 Camera response function
The non-linear camera response function (CRF) that
converts the scene irradiance to pixel intensities has
a significant impact on deblurring algorithms [Tai13].
The reason why manufacturers apply a non-linear func-
tion is to compensate the non-linearities of the human
eye and to enhance the look of the image. The CRF is
different for each camera model and even for different
capture modes of the same camera [Xio12]. Some man-
ufacturers disclose their CRFs but for the wide variety
of smartphones only few data is available. The CRF of
digital cameras can be calibrated for example using ex-
posure bracketing [Deb97] but the current widespread
smartphone APIs do not allow exposure control. The
iOS 6, the upcoming Android 5.0, and custom APIs
such as the FCam [Par11] expose more control over the
camera but are only available for a very limited set of
devices. To overcome this limitation, we follow the ap-
proach of [Li10] and assume the CRF to be a simple
gamma curve with exponent 2.2. While this indeed im-
proves the quality of our deblurred images, an online
photometric calibration algorithm that tracks the auto-
matic capture settings remains an open question.

4 SINGLE-FRAME BLUR REMOVAL
Given the piecewise uniform blur kernels, we apply the
fast non-blind uniform deconvolution method of Krish-
nan and Fergus [Kri09] on each individual input patch
to produce sharper estimates (see Figure 3). The al-
gorithm enforces a hyper-Laplacian distribution on the
gradients in the sharp image, which has been shown to
be a good natural image prior [Lev09]. Assuming the
image has N pixels in total, the algorithm solves for the
image I that minimizes the following energy function:

argmin
I

N

∑
i=1

λ

2
(I∗k−B)2

i + |(I∗ fx)i|α + |(I∗ fy)i|α (7)

where k is the kernel, and fx = [1 −1] and fy = [1 −1]T

denote differential operators in horizontal and vertical
direction, respectively. λ is a balance factor between
the data and the prior terms. The notation Fd

i I :=
(I ∗ fd)i and KiI := (I ∗ k)i will be used in the follow-
ing for brevity. Introducing auxiliary variables wx

i and
wy

i (together denoted as w) at each pixel i allows mov-
ing the Fd

i I terms outside the | · |α expression, thereby
separating the problem into two sub-problems.

argmin
I,w

N

∑
i=1

λ

2
(KiI−Bi)

2 +
β

2
‖Fx

i I−wx
i ‖2

2 +

+
β

2
‖Fy

i I−w2
y‖2

2 + |wx
i |α + |wy

i |
α

(8)

The β parameter enforces the solution of eq. 8 to con-
verge to the solution of eq. 7, and its value is increased
in every iteration. Minimizing eq. 8 for a fixed β can be
done by alternating between solving for I with fixed w
and solving for w with fixed I. The first sub-problem is
quadratic, which makes it simple to solve in the Fourier
domain. The second sub-problem is pixel-wise sepa-
rable, which is trivial to parallelize. Additionally, for
certain values of α an analytical solution of the w-
subproblem can be found, especially for α = 1

2 ,
2
3 , 1,

and for other values a Newton-Raphson root finder can
be applied. We experimentally found that α = 1

2 gives
the best results. For further details of the algorithm
please refer to [Kri09]. For smoothing discontinuities
that may produce ringing artifacts, we perform edge ta-
pering on the overlapping regions before deblurring.

5 MULTI-FRAME BLUR REMOVAL
One of the main novelties of our method is to aid the
restoration of a single frame B with information from
preceding and/or subsequent degraded frames B j,1 ≤
j ≤ M from the camera stream. We first undistort
each input frame using the RS-rectification method of
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Figure 3: Illustration of our piecewise uniform deblur-
ring method with R = 2 rows and C = 3 columns. The
regions are deblurred independently with the respective
kernels and afterwards reassembled in the final image.

Karpenko et al. [Kar11] which is a simple texture warp-
ing step on the GPU. We initialize the warping with the
same gyroscope data that is used for kernel estimation.
Next, we perform single-frame deblurring on every B j
as well as B to get sharper estimates Ĩ j and Ĩ, respec-
tively.

After deblurring the single frames, we align all sharp-
ened estimates with Ĩ. For each Ĩ j, we calculate the pla-
nar homography H j that maps Ĩ j to Ĩ. To find the ho-
mographies, we perform basic SURF [Bay08] feature
matching between each estimate Ĩ j and Ĩ in a RANSAC
loop. Each homography is calculated from the inlier
matches such that the reprojection error is minimized.
We found that this method is robust even in the case of
poorly restored estimates (e.g., in case of large blurs);
however, the homography matching can fail if there are
many similar features in the recorded scene. Frames
that fail the alignment step are discarded.

Finally, we patch-wise apply the warped estimates I j as
additional constraints on I in our modified deblurring
algorithm. We add a new penalty term γmulti to equa-
tion 7 which describes the deviation of the latent image
I from the M other estimates:

γmulti =
µ

2∑
M
j=1 µ j

M

∑
j=1

µ j||I− I j||22 (9)

The weights µ j are chosen inversely proportional to the
’blurriness’ of the corresponding patch in image B j.
The blurriness is defined as the standard deviation (spa-
tial extent) of the blur kernel in the patch. Note that
the weights are recalculated for every patch in our non-
uniform deblurring approach. The benefit of calculat-
ing the weights for each patch independently from the
rest of the image is that we can both spatially and tem-
porally give more weight to sharper patches in the in-
put stack of images. This is advantageous if the same
part of the scene got blurred differently in subsequent
images. An example colormap of the weights (W ) is
visualized in Figure 1 where each input image is repre-

sented as a distinct color and W shows how much the
different input patches influence an output tile.

Analog to the single-frame case, we proceed with the
half-quadratic penalty method to separate the problem
into I and w sub-problems. In the extended algorithm,
we only need to calculate one additional Fourier trans-
form in each iteration which keeps our multi-frame
method fast. The step-by-step derivation of the solution
can be found in the supplemental material.

6 EXPERIMENTS
We have implemented the proposed algorithm in
OpenCV1 and the warping in OpenGL ES 2.02 which
makes it portable between a PC and a smartphone.
We recorded grayscale camera preview sequences of
resolution 720×480 at 30 Hz together with gyroscope
data at 200 Hz on a Google Nexus 4 smartphone and
we performed the following experiments on a PC. The
gyro-camera calibration is performed on the first few
hundred frames with Jia’s implementation [Jia14] in
Matlab.

6.1 Kernel generation
To test the accuracy of kernel generation, we recorded
a sequence in front of a point light grid, and also gen-
erated the kernels from the corresponding gyroscope
data. Ideally, the recorded image and the generated im-
age should look identical, and after (single-frame) de-
blurring using the generated kernels the resulting image
should show a point light grid again. Figure 4 illustrates
that our kernel estimates are close to the true kernels,
however, the bottom part is not matching perfectly be-
cause of residual errors in the online calibration.

Figure 4: Kernel generation example. Left: blurry
photo of a point grid. Middle: kernels estimated from
gyroscope data. Right: the deblurred image is close to
a point grid again. (Please zoom in for viewing)

6.2 Removing synthetic blur
Starting from a sharp image and previously recorded
gyroscope measurements of deliberate handshake, we
generated a set of 5 blurry images as input. In our
restoration algorithm, we split the 720× 480 input im-
ages to a grid of R×C = 24× 16 regions and for each

1 http://www.opencv.org/
2 https://www.khronos.org/opengles/
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Figure 5: Removing synthetic blur. B is the main input
image and 4 neighboring images aid the blur removal,
I is our result. Bottom: 3 corresponding patches from
the 5 input images, and from the result.

region we individually generate the blur kernel from the
gyroscope data. Our multi-frame deconvolution result
is shown in Figure 5. The runtime of our algorithm on 5
input images is 18 seconds on a laptop with a 2.40 GHz
Core i7-4700MQ CPU (without calibration time).

Next, we test different deconvolution algorithms in our
piecewise uniform blur removal for restoring a single
frame. We test the Wiener filter, the Richardson-Lucy
algorithm, and Krishnan’s algorithm as our deconvo-
lution step. For comparison, we also show the results
of Photoshop’s ShakeReduction feature which is a uni-
form blind deconvolution method (i.e., can not make
use of our gyro-generated kernels). The quality metrics
PSNR (peak signal to noise ratio) and SSIM (structure
similarity index [Wan04]) of the images are listed in
Table 1. The Wiener filter (W) is the fastest method for

B W RL KS KM PS
PSNR 22.374 20.613 23.207 22.999 24.215 21.914
SSIM 0.616 0.534 0.657 0.621 0.673 0.603

Table 1: Quantitative comparison of various deconvo-
lution steps in our framework. Blurry input image (B),
Wiener filter (W), Richardson-Lucy (RL), single-frame
Krishnan (KS), multi-frame Krishnan (KM) (3 frames),
Photoshop ShakeReduction (PS) (blind uniform decon-
volution)

patch-wise single-frame deblurring but produces ring-
ing artifacts that even lower the quality metrics. The
output of the Richardson-Lucy algorithm (RL) achieved
higher score but surprisingly remained blurry, while Kr-
ishnan’s algorithm (KS) tends to smooth the image too
much. We think this might stem from the fact that
the small 30×30 regions do not contain enough image
gradients to steer the algorithm to the correct solution.
However, Krishnan’s algorithm with our extension to
multiple input regions (KM) performs the best. Pho-
toshop’s ShakeReduction algorithm assumes uniform
blur [Cho09] so while it restored the bottom part of the

image correctly, the people in the middle of the image
remained blurry. The images in higher resolution can
be found in the supplement.

Figure 6: Restoring B with the help of B1,2,4,5, all de-
graded with real motion blur. We also added four mar-
ble balls to the scene that act as point light sources and
show the true blur kernels at their locations.

6.3 Removing real blur
Figure 6 shows the results of a real example with a static
planar scene close to the camera. We used 5 input im-
ages degraded by real motion blur. Selected patches il-
lustrate how our algorithm restores different parts of the
image by locally steering the deconvolution towards the
sharper input tiles. Note, however, that in the second se-
lected patch some details are missing that were present
in the sharpest of the input patches. This is because
our algorithm does not directly copy that patch from
B1 but applies it within the deconvolution of the corre-
sponding patch in B. A slight misalignment of the five
input tiles leads to smoother edges in the multi-frame
deconvolution result. The misalignment may stem from
the homography estimation which is prone to errors if
the single-frame deconvolution is imperfect or from the
rolling shutter rectification which is only an approxi-
mation of the true image distortion. Figure 7 shows
another example of restoring a sharp image from three
blurry ones.
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Figure 7: Restoring B with the help of B1,3, all degraded
with real motion blur. The original misalignment is kept
and the rectified result is left uncropped for visualiza-
tion. (High-resolution images are in the supplement)

6.4 Discussion and limitations
As shown in the experiments, the proposed algorithm
is able to restore non-uniformly blurred images. How-
ever, there are limitations and assumptions we need to
keep in mind. Our non-blind deconvolution step as-
sumes a perfect kernel estimate so a good calibration
is crucial for success. The selected gyro-camera cali-
bration method is sensitive to the initialization values
which are not trivial to find for different smartphone
models. We need to assume that a short sequence with
detectable feature tracks for calibration before deblur-
ring exists. However, the calibration does not need to
be done every time but only when the camera settings
change. We expect that future camera and sensor APIs
like StreamInput3 will provide better synchronization
capabilities that allow precise calibration.

Our blur model can generate rotational motion blur ker-
nels at any point of the image, but the model is incor-
rect if the camera undergoes significant translation or
if objects are moving in the scene during the exposure
time. In multiframe deblurring, the image alignment
based on feature matching might fail if the initial de-
blurring results are wrong. As we also know the camera
motion between the frames, image alignment could be
done with the aid of sensor data instead of pure feature
matching but then the gyroscope bias needs to be com-
pensated. The restriction to planar scenes and rotational
motion overcomes the necessity of estimating the depth
of the scene at each pixel.

Our algorithm was formulated for grayscale images.
Extending it to color images would be possible by solv-

3 https://www.khronos.org/streaminput/

ing the grayscale problem for the RGB color chan-
nels separately, however, the color optimizations of the
smartphone driver may introduce different non-linear
CRFs for each channel, which needs to be handled care-
fully. The calibration of the per-channel CRFs using
standard methods will become possible with the up-
coming smartphone APIs that allow low-level exposure
control.

The runtime of the algorithm depends mainly on the
size of the input images. In fact, we perform R×C×M
non-blind deconvolutions on patches but as the patches
are overlapping, we process somewhat more pixels than
the image contains. Our tests were conducted off-
line on a PC but each component of our algorithm is
portable to a smartphone with little modifications.

7 CONCLUSION
We proposed a new algorithm for unmodified off-the-
shelf smartphones for the removal of handshake blur
from photographs of planar surfaces such as posters,
advertisements, or price tags. We re-formulated the fast
non-blind uniform blur removal algorithm of Krishnan
and Fergus [Kri09] to multiple input frames and to non-
uniform blur. We rendered piecewise uniform blur ker-
nels from the gyroscope measurements and we adap-
tively weighted the input patches in a multiframe de-
convolution framework based on their blurriness. The
distortion effects of the rolling shutter of the smart-
phone camera were compensated prior to deblurring.
We applied existing off-line and on-line methods for
gyroscope and camera calibration, however, a robust
on-line calibration method is still an open question. We
have shown the effectiveness of our method in qualita-
tive experiments on images degraded by synthetic and
real blur. Our future work will focus on fast blind de-
blurring that is initialized with our rendered motion blur
kernels so that less iterations are required in the tradi-
tional multiscale kernel estimation.

ACKNOWLEDGEMENTS
We thank Fabrizio Pece and Tobias Nägeli for the pro-
ductive discussions and the anonymous reviewers for
their comments and suggestions.

8 REFERENCES
[Bae13] H. Bae, C. C. Fowlkes, and P. H. Chou. Accurate

motion deblurring using camera motion tracking and
scene depth. In IEEE Workshop on Applications of
Computer Vision (WACV), 2013.

[Bay08] H. Bay, T. Tuytelaars, and L. van Gool. SURF:
Speeded Up Robust Features. In European Conference
on Computer Vision (ECCV), 2006.

[Bel14] S. Bell, A. Troccoli, and K. Pulli. A non-linear filter
for gyroscope-based video stabilization. In European
Conference on Computer Vision (ECCV), 2014.

Journal of WSCG http://www.wscg.eu

Vol.23, No.1-2 108 ISBN 978-80-86943-64-0

Cumulative Edition



[Cho09] S. Cho and S. Lee. Fast motion deblurring. In ACM
SIGGRAPH Asia, 2009.

[Deb97] P. E. Debevec and J. Malik. Recovering high dy-
namic range radiance maps from photographs. In ACM
SIGGRAPH, 1997.

[For10] P.-E. Forssen and E. Ringaby. Rectifying rolling
shutter video from hand-held devices. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2010.

[Gol12] A. Goldstein and R. Fattal. Blur-kernel estimation
from spectral irregularities. In European Conference
on Computer Vision (ECCV), 2012.

[Han11] G. Hanning, N. Forslow, P.-E. Forssen, E. Ringaby,
D. Tornqvist, and J. Callmer. Stabilizing cell phone
video using inertial measurement sensors. In IEEE In-
ternational Conference on Computer Vision Workshops
(ICCVW), 2011.

[Ito14] A. Ito, A. C. Sankaranarayanan, A. Veeraraghavan,
and R. G. Baraniuk. BlurBurst: Removing blur due to
camera shake using multiple images. In ACM Transac-
tions on Graphics, 2014.

[Jia13] C. Jia and B. Evans. Online calibration and syn-
chronization of cellphone camera and gyroscope. In
IEEE Global Conference on Signal and Information
Processing (GlobalSIP), 2013.

[Jia14] C. Jia and B. Evans. Online camera-gyroscope au-
tocalibration for cell phones. In IEEE Transactions on
Image Processing, 23(12), 2014.

[Jos10] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski.
Image deblurring using inertial measurement sensors.
In ACM SIGGRAPH, 2010.

[Jos08] N. Joshi, R. Szeliski, and D. Kriegman. Psf estima-
tion using sharp edge prediction. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2008.

[Kar11] A. Karpenko, D. Jacobs, J. Baek, and M. Levoy.
Digital video stabilization and rolling shutter correc-
tion using gyroscopes. Technical report, Stanford Uni-
versity, 2011.

[Koh12] R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf,
and S. Harmeling. Recording and playback of camera
shake: Benchmarking blind deconvolution with a real-
world database. In European Conference on Computer
Vision (ECCV), 2012.

[Kri09] D. Krishnan and R. Fergus. Fast image deconvo-
lution using hyper-Laplacian priors. In Advances in
Neural Information Processing Systems (NIPS). 2009.

[Lev09] A. Levin, Y. Weiss, F. Durand, and W. Freeman.
Understanding and evaluating blind deconvolution al-
gorithms. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2009.

[Li10] Y. Li, S. B. Kang, N. Joshi, S. Seitz, and D. Hut-
tenlocher. Generating sharp panoramas from motion-
blurred videos. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2010.

[Par14] S. Park and M. Levoy. Gyro-based multi-image de-
convolution for removing handshake blur. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2014.

[Par11] S. H. Park, A. Adams, and E.-V. Talvala. The FCam
API for programmable cameras. In ACM International
Conference on Multimedia (MM), 2011.

[Rav05] A. Rav-Acha and S. Peleg. Two motion-blurred im-
ages are better than one. Pattern Recognition Letters,
26(3), 2005.

[Rin14] E. Ringaby and P.-E. Forssen. A virtual tripod for
hand-held video stacking on smartphones. In IEEE In-
ternational Conference on Computational Photography
(ICCP), 2014.

[Sin13] O. Sindelar and F. Sroubek. Image deblurring in
smartphone devices using built-in inertial measurement
sensors. In Journal of Electronic Imaging, 22(1), 2013.

[Sin14a] O. Sindelar, F. Sroubek, and P. Milanfar. A smart-
phone application for removing handshake blur and
compensating rolling shutter. In IEEE Conference on
Image Processing (ICIP), 2014.

[Sin14b] O. Sindelar, F. Sroubek, and P. Milanfar. Space-
variant image deblurring on smartphones using inertial
sensors. In IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2014.

[Sun13] L. Sun, S. Cho, J. Wang, and J. Hays. Edge-based
blur kernel estimation using patch priors. In IEEE In-
ternational Conference on Computational Photography
(ICCP), 2013.

[Tai13] Y.-W. Tai, X. Chen, S. Kim, S. J. Kim, F. Li, J. Yang,
J. Yu, Y. Matsushita, and M. Brown. Nonlinear camera
response functions and image deblurring: Theoretical
analysis and practice. In IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(10), 2013.

[Tai10] Y.-W. Tai, H. Du, M. Brown, and S. Lin. Correction
of spatially varying image and video motion blur us-
ing a hybrid camera. In IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(6), 2010.

[Wan04] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Si-
moncelli. Image quality assessment: From error visi-
bility to structural similarity. In IEEE Transactions on
Image Processing, 13(4), 2004.

[Why12] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce.
Non-uniform deblurring for shaken images. In Interna-
tional Journal of Computer Vision, 98(2), 2012.

[Xio12] Y. Xiong, K. Saenko, T. Darrell, and T. Zick-
ler. From pixels to physics: Probabilistic color de-
rendering. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2012.

[Xu13] L. Xu, S. Zheng, and J. Jia. Unnatural L0 sparse
representation for natural image deblurring. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2013.

Journal of WSCG http://www.wscg.eu

Vol.23, No.1-2 109 ISBN 978-80-86943-64-0

Cumulative Edition



 

Journal of WSCG http://www.wscg.eu

Vol.23, No.1-2 110 ISBN 978-80-86943-64-0

Cumulative Edition



Multiscopic HDR Image sequence generation

Raissel Ramirez Orozco
Group of Geometry and

Graphics
Universitat de Girona

(UdG), Spain
rramirez@ima.udg.edu

Céline Loscos
CReSTIC-SIC

Université de Reims
Champagne-Ardenne

(URCA), France

Ignacio Martin
Group of Geometry and

Graphics
Universitat de Girona

(UdG), Spain

Alessandro Artusi
Graphics & Imaging

Laboratory
Universitat de Girona

(UdG), Spain

ABSTRACT
Creating High Dynamic Range (HDR) images of static scenes by combining several Low Dynamic Range (LDR)
images is a common procedure nowadays. However, 3D HDR video acquisition hardware barely exist. Limitations
in acquisition, processing, and display make it an active, unsolved research topic. This work analyzes the latest
advances in 3D HDR imaging and proposes a method to build multiscopic HDR images from LDR multi-exposure
images. Our method is based on a patch match algorithm which has been adapted and improved to take advantage
of epipolar geometry constraints of stereo images. Up to our knowledge, it is the first time that an approach different
than traditional stereo matching is used to obtain accurate matching between the stereo images. Experimental
results show accurate registration and HDR generation for each LDR view.

Keywords
High Dynamic Range, Stereoscopic HDR, Stereo Matching, Image Deghosting

1 INTRODUCTION
High Dynamic Range (HDR) imaging is an increasing
area of interest at academic and industrial level, and one
of its crucial aspects is the reliable and easy content cre-
ation with existing digital camera hardware.
Digital cameras with the ability to capture extended dy-
namic range, are appearing into the consumer market.
They either use a sensor capable of capturing an inten-
sity range larger than the one captured by traditional
8-10 bit sensors, or integrate hardware and software
improvements to largely increase the acquired intensity
range. However, due to their high costs, their use is very
limited [BADC11].
Traditional low dynamic range (LDR) camera sensors
provide an auto-exposure feature that can be used to
increase the dynamic range of light captured from the
scene. The main idea is to capture the same scene at
different exposure levels, and then to combine them to
reconstruct the full dynamic range.
To achieve this, different approaches have been pre-
sented [MP95, DM97, RBS99, MN99, RBS03], but
they are not exempt of drawbacks. Ghosting effects
may appear in the reconstructed HDR image, when the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

pixels in the source images are not perfectly aligned
[TA+14]. This is due to two main reasons: either cam-
era movement or objects movement in the scene. Sev-
eral solutions for general image alignment exist [ZF03].
However, it is not straightforward to consider such
methods because exposures in the image sequence are
different, making alignment a difficult problem.

High Dynamic Range content creation is lately mov-
ing from the 2D to 3D imaging domain introducing a
series of open problems that need to be solved. 3D im-
ages are displayed in two main different ways: either
from two views for monoscopic displays with glasses
or from multiple views for auto-stereoscopic displays.
Most of current auto-stereoscopic displays accept from
five to nine different views [LLR13]. To our knowl-
edge, HDR auto-stereoscopic displays do not exist yet.
We can feed LDR auto-stereoscopic displays with tone-
mapped HDR, but we will need at least five different
views.

Some of the techniques used for 2D applications
have been recently extended for multiscopic images
[TKS06, LC09, SMW10, BRR11, BLV+12, OMLA13,
OMLA14, BRG+14, SDBRC14]. However, most of
these solutions suffer from a common limitation: they
need to rely on accurate dense stereo matching between
images which may fail in case of different brightness
between exposures [BVNL14]. Thus, more robust
and faster solutions for matching different exposure
images that allow an easy and reliable acquisition of
multiscopic HDR content are highly needed.
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(a) Non aligned (b) Bätz et al. [BRG+14] (c) Our Result
Figure 1: Set of LDR multiview images from the IIS Jumble data-set, courtesy of Bätz [BRG+14]. The top row shows five
multiview exposure images, one exposure per view. The bottom row shows HDR images obtained without alignment (a), using
Bätz’s method (b) and using our proposed patch-match method (c).

In response to this need, we propose in this paper a so-
lution to combine sets of multiscopic LDR images into
HDR content using image correspondences based on
the Patch Match algorithm [BSFG09]. This algorithm
has been used recently by Sen et al. [SKY+12] to build
HDR images that are free of ghosting effects. The need
of improving the coherence of neighbour patches was
already presented in [FP10].The results were promis-
ing for multi-exposure sequences where the reference
image is moderately under exposed or saturated but it
fails when the reference image has large under exposed
or saturated areas.

We propose to adapt this approach for multiscopic im-
age sequences (Figure 1), that answer to a simplified
epipolar geometry obtained by parallel optical axes (im-
ages not originally taken with this geometric configu-
ration can be later rectified). In particular, we reduce
the search space in the matching process and improv-
ing the incoherence problem of the patch-match. Each
image in the set of multi-exposed images is used as a
reference; we look for matches in all the remaining im-
ages. These accurate matches allow to synthesize im-
ages corresponding to each view which are merged into
one HDR image per view.

Our contributions into the field can be summarized as
follows:

• We provide an efficient solution to multiscopic HDR
image generation.

• Traditional stereo matching produce several artifacts
when directly applied on images with different ex-
posures. We introduce the use of an improved ver-
sion of patch-match to solve these drawbacks.

• Patch-match algorithm was adapted to take advan-
tage of the epipolar geometry reducing its computa-
tional costs while improves its matching coherence
drawbacks.

2 RELATED WORK
Two main areas were considered in this work. The
following section presents the main state of the art re-
lated to stereo HDR acquisition and multi-exposed im-
age alignment for HDR generation.

2.1 Stereo HDR Acquisition
Some prototypes have been proposed to acquire stereo
HDR content from multi-exposure views. Most ap-
proaches [TKS06, LC09, SMW10, Ruf11, BRG+14,
AKCG14] are based on a rig of two cameras placed like
a conventional stereo configuration that captures differ-
ently exposed images. Troccoli et al. [TKS06] propose
to use cross correlation stereo matching to get a primary
disparity match. The correspondences are used to cal-
culate the camera response function (CRF) to convert
pixel values to radiance space. Stereo matching is ex-
ecuted again but now in radiance space to extract the
depth maps.

Lin and Chang [LC09] use SIFT descriptors to find cor-
respondences. The best correspondences are selected
using epipolar constrains and used to calculate the CRF.
The stereo matching algorithm is based on belief prop-
agation to derive the disparity map. A ghost removal
technique is used to avoid artifacts due to noise or stereo
mismatches. Even though, disparity maps are not accu-
rate in large areas that are under exposed or saturated.

Rüfenacht[Ruf11] compares two different approaches
to obtain stereoscopic HDR video content: a temporal
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approach, where exposures are captured by temporally
changing the exposure time of two synchronized cam-
eras to get two frames of the same exposure per shot,
and a spatial approach, where cameras have different
exposure times for all shots so that two frames of the
same shot are exposed differently.
Bonnard et al. [BLV+12] propose a methodology
to create content that combines depth (3D) and HDR
video for auto-stereoscopic displays. They use recon-
structed depth information from epipolar geometry to
drive the pixel match procedure. The matching method
lacks of robustness especially on under exposed or sat-
urated areas. Akhavan et al. [AYG13, AKCG14] offer
a useful comparison of the difference between dispar-
ity maps obtained from HDR, LDR and tone-mapped
images.
Selmanovic et al. [SDBRC14] propose to generate
Stereo HDR video from a pair HDR-LDR, using an
HDR camera and a traditional digital camera. In this
case, one HDR view needs to be reconstructed. Three
methods are proposed to generate an HDR image: (1)
to warp the existing one using a disparity map, (2) to
increase the range of the LDR view using an expansion
operator and (3) an hybrid of the two methods which
provides the best results.
Bätz et al. [BRG+14] present a framework with two
LDR cameras, the input images are rectified before the
disparity estimation. Their stereo matcher is exposure
invariant and use Zero-Mean Normalized Cross Cor-
relation (ZNCC) as a matching cost. The matching is
performed on the gray-scale radiance space image fol-
lowed by local optimization and disparities refinement.
Some artifacts may persist in the saturated areas.

2.2 Multi-exposed Image Alignment
In the HDR context, most of methods on image
alignment focus on movement between images caused
by hand-held capture, small movement of tripods
or matching moving pixels from dynamic objects
in the scene. One of the main drawbacks for HDR
video acquisition is the lack of robust algorithms for
deghosting. Hadziabdic et al. [HTM13], Srikantha et
al. [SS12] and Tursun et al. [TA+14] provide good
reviews and comparisons between recent methods.
Kang et al. [KUWS03] proposed to capture video se-
quences alternating long and short exposure times. Ad-
jacent frames are warped and registered to finally gen-
erate an HDR frame. Sand and Teller [ST04] combine
feature matching and optical flow for spatio-temporal
alignment of different exposed videos. They search for
frames that best match with the reference frame using
locally weighted regression to interpolate and extrapo-
late image correspondences. This method is robust to
changes in exposure and lighting, but it is slow and ar-
tifacts may appear if there are objects moving at high
speed.

Mangiat and Gibson [MG10] propose to use a method
of block-based motion estimation and refine the mo-
tion vectors in saturated regions using color similarity
in the adjacent frames of an alternating multi-exposed
sequence.

Sun et al. [SMW10] assume that the disparity map be-
tween two rectified images can be modeled as a Markov
random field. The matching problem is then posed as a
Bayesian labeling problem in which the optimal values
are obtained minimizing an energy function. The en-
ergy function is composed of a pixel dissimilarity term
(using NCC as similarity measure) and a smoothness
term which corresponds respectively to the MRF likeli-
hood and the MRF prior.

Sen et al. [SKY+12] present a method based on a
patch-based energy-minimization formulation that in-
tegrates alignment and reconstruction in a joint opti-
mization. This allows to produce an HDR result that
is aligned to one of the exposures and contains infor-
mation from all the rest. Artifacts may appear when
there are large under exposed or saturated areas in the
reference image.

2.3 Discussion
Stereo matching is a mature research field; very accu-
rate algorithms are available for images taken under the
same lighting conditions and exposure. However, most
of such algorithms are not accurate for images with im-
portant lighting variations. We propose a novel frame-
work inspired by Barnes et al. [BSFG09] and Sen et
al. [SKY+12]. We adapt the matching process to the
multiscopic context resulting in a more robust solution.

3 PATCH-BASED MULTISCOPIC HDR
GENERATION

Our method takes as input a sequence of LDR images
(RAW or not). We transform the input images to ra-
diance space, all the rest of steps are performed using
radiance space values instead of RGB pixels. For 8-
bits LDR images a CRF per camera needs to be esti-
mated. An overview of our framework is shown in the
diagram of the Figure 2. The first step is to recover the
correspondences between the n images of the set. We
propose to use a nearest neighbor search algorithm (see
section 3.1) instead of a full stereo matching approach.
Each image acts like a reference for the matching pro-
cess. The output of this step is n-1 warped images for
each exposure. Which then are combined into an out-
put HDR image for each view through a second step
(see section 3.2).

3.1 Nearest Neighbor Search
For a pair of images Ir and Is, we compute a Near-
est Neighbor Field (NNF) from Ir to Is using an im-
proved version of the method presented by Barnes et
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Figure 2: Proposed framework for multiscopic HDR Generation. It is composed by three main steps: (1) radiance space
conversion, (2) patch match correspondences search and (3) HDR generation

al. [BSFG09]. NNF is defined over patches around ev-
ery pixel coordinate in image Ir for a cost function D
between two patches of images Ir and Is. Given a patch
coordinate r∈ Ir and its corresponding nearest neighbor
s ∈ Is, NNF(r) = s. The values of NNF for all coordi-
nates are stored in an array with the same dimensions
as Ir.

We start initializing the NNFs using random transfor-
mation values within a maximal disparity range on
the same epipolar line. Consequently the NNF is im-
proved by minimizing D until convergence or a max-
imum number of iterations is reached. Two candi-
date sets are used in the search phase as suggested by
[BSFG09]: .

(1) Propagation uses the known adjacent nearest neigh-
bor patches to improve NNF. It converges fast but it may
fall in a local minima.

(2) Random search introduces a second set of random
candidates that are used to avoid local minima. For each
patch centered in pixel v0, the candidates ui are sampled
at an exponentially decreasing distance from vi:

ui = v0 +wα
iRi (1)

where Ri is a uniform random value ∈ [-1,1], w is the
maximum value for disparity search and α is a fixed
ratio (1/2 is suggested).

Taking advantage of the epipolar geometry both
search accuracy and computational performances are
improved. Geometrically calibrated images allow to
reduce the search space from 2D to 1D domain, conse-
quently reducing the search domain. As an example,
using random search we only look for matches in the
range of maximal disparity in the same epipolar line
(1D domain), avoiding to search in 2D space. This
reduces significantly the number of samples to find a
valid match.

Typical drawback of the original NNFs approach
[BSFG09], used in the patch match algorithm, is the
non geometrically coherency of its search results. This
problem is illustrated in Figures 3 and 4. Two static
neighbor pixels, in the reference image, match two
separated pixels in the source image (Figure 3).

Figure 3: Patches from the reference image (Up) look for
their NN in the source image (Down). Even when destination
patches are similar in terms of color, matches may be wrong
because of geometric coherency problems.

To overcome this drawback we propose a new distance
cost function D by incorporating a coherence term to
penalize matches that are not coherent with the transfor-
mation of their neighbors. Both Barnes et al. [BSFG09]
and Sen et al. [SKY+12] use the Sum of Squared Dif-
ferences (SSD), described in equation 3 where T repre-
sents the transformation between patches of N pixels in
images Ir and Is. We propose to penalize matches with
transformations that differ significantly form it neigh-
bors by adding the coherence term C defined in equa-
tion 4. The variable dc represents the Euclidean dis-
tance to the closest neighbor’s match and Maxdisp is
the maximum disparity value. This new cost function
forces pixels to preserve coherent transformations with
their neighbors.

D = SSD(r,s)/C(r,s) (2)
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SSD =
N

∑
n=1

(Ir−T (Is))
2 (3)

C(r,s) = 1−dc(r,s)/Maxdisp (4)

(a) Src Image (b) Ref Image

(c) PM NNF (d) Ours NNF

(e) PM synthesized (f) Ours synthesized

(g) Details in (e) (h) Details in (f)

Figure 4: Matching results using original Patch Match
[BSFG09] (Left) and our implementation (right) for two iter-
ations using 7x7 patches. Images in the ’Art’ dataset courtesy
of [vis06]

Figures 4c and 4e show the influence of the coherence
problems described in Figure 3 in the matching results.
Figures 4d and 4f correspond to the results including
the improvements presented in this section. Figures 4c
and 4d show a color representation of the NNFs us-
ing HSV color space, magnitude of the transformation
vector is visualized in the saturation channel and the
angle in the hue channel. Areas represented with the

same color in the NNF color representation mean simi-
lar transformation. Objects in the same depth may have
similar transformation. Notice that the original Patch
Match [BSFG09] finds very different transformations
for neighbor pixels of the same objects and produces
artifacts in the synthesized image.

3.2 Warping Images and HDR Genera-
tion

The warping images are generated as an average of the
patches that contribute to a certain pixel. Direct warp-
ing from the NNFs is possible, but it may generate vis-
ible artifacts as shown in Figure 5. This is due mainly
to incoherent matches between the Ir and Is images.
To solve this problems we use Bidirectional Similarity
Measure (BDSM) (Equation 5), proposed by Simakov
et al. [SCSI08] and used by Barnes et al. [BSFG09],
which measure similarity between pairs of images. It is
defined for every patch Q ⊂ Ir and P ⊂ Is, and a num-
ber N of patches in each image respectively. It consists
of two terms: coherence that ensures that the output
is geometrically coherent with the reference and com-
pleteness that ensures that the output image maximizes
the amount of information from the source image:

d(Ir, Is) =

dcompleteness︷ ︸︸ ︷
1

NIr
∑

Q⊂Ir

min
P⊂Is

D(Q,P)+

dcoherence︷ ︸︸ ︷
1

NIs
∑

P⊂Is

min
Q⊂Ir

D(P,Q)

(5)

(a) Direct warping (b) Using BDSM

(c) Details in (c) (d) Details in (d)

Figure 5: Images 5a and 5b are both synthesized from the
pair in Figure 4. Image 5a was directly warped using val-
ues only from the NNF of Figure 4c, which corresponds to
matching 4a to 4b. Image 5b was warped using the BDSM of
Equation 5 which implies both NNFs of Figures 4c and 4d.

This allows to improve both coherence and consistency
by using bidirectional NNFs (from Ir to Is and back-
ward). It is more accurate to generate images using
three iterations in each direction than only six from Ir to
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Is. Using BDSM also prevents artifacts in the occluded
areas.

Since the matching is totally independent for pairs of
images, it was implemented in parallel. Each image
matches all other views. This produces n-1 NNFs for
each view. The NNFs are in fact the two components of
the BDSM of equation 5. The new image is the result of
accumulating pixel colors of each overlapping neighbor
patch and averaging them.

The final HDR image per view is generated using a
weighted average [MP95, DM97, MN99] as defined in
Equation 6 and the weighting function of Equation 7
proposed by Khan et al. [KAR06]:

E(i, j) =
∑

N
n=1 w(In(i, j))( f−1(In(i, j))

∆tn
)

∑
N
n=1 w(In(i, j))

(6)

w(In) = 1− (2
In

255
−1)12 (7)

where In represents each image in the sequence, w cor-
responds to the weight, f is the CRF, ∆tn is the exposure
time for the Ith image of the sequence.

4 EXPERIMENTAL RESULTS
Five data-sets were selected in order to demonstrate the
robustness of our results. For the set ’Octo-cam’ all
the objectives capture the scene at the same time and
synchronized shutter speed. For the rest of data-sets the
scenes are static. This avoids the ghosting problem due
to dynamic objects in the scene. In all figures of this
paper we use the different LDR exposures for display
purposes only, the actual matching is done in radiance
space.

The ’Octo-cam’ data-set are eight RAW images with
10-bit of color depth per channel. They were acquired
simultaneously using the Octo-cam [PCPD+10] with a
resolution of 748x422 pixels. The Octo-cam is a multi-
view camera prototype composed by eight objectives
horizontally disposed. All images are taken at the same
shutter speed (40 ms) but we use three pairs of neutral
density filters that reduce the exposure dividing by 2,
4 and 8 respectively. The exposure times for the input
sequence are equivalent to 5, 10, 20 and 40 ms respec-
tively [BLV+12]. The objectives are synchronized so
all images corresponds to the same time instant.

The sets ’Aloe’, ’Art’ and ’Dwarves’ are from the
Middlebury web site [vis06]. We selected images
that were acquired under fixed illumination conditions
with shutter speed values of 125, 500 and 2000 ms for
’Aloe’and ’Art’ and values of 250, 1000 and 4000 ms
for ’Dwarves’. They have a resolution of 1390 x 1110
pixels and were taken from three different views. Even
if we have only 3 different exposures we can use the
seven available views by alternating the exposures like
shown in Figure 9.

The last two data-sets were acquired from two of the
state of the art papers. Bätz et al. [BRG+14] shared
their image data set (IIS Jumble) at a resolution of
2560x1920 pixels. We selected five different views
from their images. They where acquired at shutter
speeds of 5, 30, 61, 122 and 280 ms respectively. Pairs
of HDR images like the one in Figure 6, both acquired
from a scene and synthetic examples come from Sel-
manovic et al. [SDBRC14]. For 8-bit LDR data sets,
the CRF is recovered using a set of multiple exposure
of a static scene. All LDR images are also transformed
to radiance space for fair comparison with other algo-
rithms.

4.1 Results and discussion

(a) Src Image (b) Ref Image

(c) PM NNF (d) Ours NNF

(e) PM synthesized (f) Ours synthesized

(g) Details in (e) (h) Details in (f)

Figure 6: Comparison between original Patch Match and
our implementation for two iterations using 7x7 patches. Im-
ages 6c and 6d show the improvement on the coherence of the
NNF using our method. Images cortesy of [SDBRC14]

Figure 6 shows a pair of images linearized from HDR
images courtesy of Selmanovic et al. [SDBRC14] and
the comparison between the original PM from Barnes et
al. [BSFG09] and our method including the coherence
term and epipolar constrains. The images in Figures
6c and 6d represent the NNF. They are codified into an
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(a) Reference

(b) Source

(c) 1 iteration ours

(d) 1 iteration PM

(e) 2 iteration ours

(f) 2 iteration PM

(g) 10 iteration ours

(h) 10 iteration PM
Figure 7: Two images from the ’Dwarves’ set of LDR multi-view images form Middlebury [vis06]. Our method
with only two iterations achieve very accurate matches. Notice that the original patch match requires more itera-
tions to achieve good results in fine details of the image.

image in HSV color space. Magnitude of the transfor-
mation vector is visualized in the saturation channel and
the angle in the hue channel. Notice that our result rep-
resent more homogeneous transformations, represented
in gray color. Images in Figure 6e and 6f are synthe-
sized result images for the Ref image obtained using
pixels only from the Src image. The results correspond
to the same number of iterations (2 in this case). Our
implementation converges faster producing accurate re-
sults in less iterations than the original method.

All the matching and synthesizing process are per-
formed in radiance space. They were converted to
LDR using the corresponding exposure times and the
CRF for display purposes only. The use of an image
synthesis method like the BDSM instead of traditional
stereo matching allows us to synthesize values for
occluded areas too.

Figure 7 shows the NNFs and the images synthesized
for different iterations of both our method and the orig-
inal patch match. Our method converges faster and pro-
duce more coherent results than [BSFG09]. In occluded
areas the matches may not be accurate in terms of ge-
ometry due to the lack of information. Even in such
cases, the result is accurate in terms of color. After

several tests, only two iterations of our method were
enough to get good results while five iterations were
recommended for previous approaches.

Figure 8 shows one example of the generated HDR cor-
responding to the lowest exposure LDR view in the IIS
Jumble data-set. It is the result of merging all syn-
thesized images obtained with the first view as refer-
ence. The darker image is also the one that contains
more noisy and under-exposed areas. HDR values were
recovered even for such areas and no visible artifacts
appears. On the contrary, the problem of recovering
HDR values for saturated areas in the reference im-
age remains unsolved. When the dynamic range dif-
ferences are extreme the algorithm does not provide
accurate results. Future work must provide new tech-
niques because the lack of information inside saturated
areas does not allow patches to find good matches. The
CRFs for the LDR images were calculated in a set of
aligned multi-exposed images using the software RAS-
CAL, provided by Mitsunaga and Nayar [MN99]. Fig-
ure 9 shows the result of our method for a whole set of
LDR multi-view and differently exposed images. All
obtained images are accurate in terms of contours, no
visible artifacts comparing to the LDR were obtained.
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(a) IIS Jumble data-set

(b) Lower exposure LDR (c) Tone-mapped HDR

(d) Details in (b) (e) Details in (c)
Figure 8: Details of the generated HDR image correspond-
ing to a dark exposure. Notice that under-exposed areas, tra-
ditionally difficult to recover, are successfully generated with-
out visible noise or misaligned artifacts.

Figures 10 show the result of the proposed method in
a scene with important lighting variances. The pres-
ence of the light spot introduce extreme lighting differ-
ences between the different exposures. For bigger ex-
posures the light glows from the spot and saturate pix-
els not only inside the spot but also around it. There
is not information in saturated areas and the matching
algorithm does not find good correspondences. The dy-
namic range is then compromised in such areas and they
remain saturated. Our method is not only accurate but
faster than previous solutions. [SKY+12] mention that
their method takes less than 3 minutes for a sequence of
7 images of 1350x900 pixels. The combination of a re-
duced search space and the coherence term effectively
implies a reduction of the processing time. In a Intel
Core i7-2620M 2,70 GHz with 8 GB of memory, our
method takes less than 2 minutes (103 ± 10 seconds)
for the Aloe data set with a resolution of 1282x1110
pixels.

5 CONCLUSIONS
This paper presented a framework for auto-stereoscopic
3D HDR content creation that combines sets of mul-
tiscopic LDR images into HDR content using image
dense correspondences. Methods that, when used for

2D domain cannot be used for 3D HDR content cre-
ation without introducing visible artifacts. Our novel
approach is extending the well known Patch Match al-
gorithm, introducing an improved random search func-
tion that takes advantage of the epipolar geometry. Also
a coherence term is used for improving the matching
process. These modifications allow to extend the orig-
inal approach to work for HDR stereo matching, while
improving its computational performances. We have
presented a series of experimental results showing the
robustness of our approach, in the matching process,
when compared with the original approach and its qual-
itative results.
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ABSTRACT 
Person recognition using ear biometric has received significant interest in recent years due to its highly 

discriminative nature, permanence over time, non-intrusiveness, and easy acquisition process. However, in a real-

world scenario, ear image is often partially or fully occluded by hair, earrings, headphones, scarf, and other objects. 

Moreover, such occlusions may occur during identification process resulting in a dramatic decline of the 

recognition performance. Therefore, a reliable ear recognition system should be equipped with an automated 

detection of the presence of occlusions in order to avoid miss-classifications. In this paper, we proposed an efficient 

ear recognition approach, which is capable of detecting the presence of occlusions and recognizing partial ear 

samples by adaptively selecting appropriate features indices. The proposed method has been evaluated on a large 

publicly available database containing wide variations of real occlusions. The experimental results confirm that 

the prior detection of occlusion and the novel selection procedure for feature indices significantly improve the 

biometric system recognition accuracy. 

Keywords 
Biometric images, occlusion detection, ear recognition, partial occlusion, classifier selection, adaptive feature 

selection. 

1. INTRODUCTION 
Biometric authentication offers advantage over 

traditional PIN (Personal Identification Number) or 

password-based security since it is harder to forge, 

steal, transfer, or lose biometric data. At present, 

biometric based person recognition has enormous 

demand in government services as well as commercial 

sectors due to availability of biometric data, enhanced 

recognition accuracy and non-invasive nature of 

authentication. Over the last few years, ear biometric 

has received growing attention and proven to be useful 

for an automated person recognition [Cha03a], 

[Che07a]. Unlike face biometrics, ear has no 

sensitivity to facial expression changes [Kum12a] and 

it remains almost unchanged throughout the lifetime 

of a person [Yua12a]. Ear biometric is not only a 

powerful feature to identify individuals, but also to 

recognize identical twins [Nej12a]. Moreover, ear has 

high user acceptance because of its nonintrusive 

nature and a passive acquisition process [Jai99a]. 

Similar to other passive biometrics, the recognition 

performance of ear biometrics may deteriorate 

significantly due to natural constraints such as 

occlusion, lightning, pose difference etc. [Bus10a]. 

Among all natural constraints, occlusion happens to be 

the most common scenario, since ear is often partially 

or fully occluded by hair, earrings, headphones, scarfs 

etc. Information loss due to occlusion is irrevocable. 

Unlike lightning or pose variations, where some image 

enhancement techniques can be applied to retrieve 

partially lost information, the occlusion information 

loss results in a complete disappearance of a portion 

of ear. Moreover, distortions of important global 

features of ear biometrics such as shape and 

appearance occur, which further undermine the overall 

system recognition performance. For those reasons, 

occlusion is one of the most detrimental degrading 

factors of ear recognition. It has been reported that 

consideration of un-occluded regions during matching 

increases recognition accuracy [Yua12a], [Yua12b]. 

In order to determine the un-occluded portion of ear it 

is necessary to detect occluded regions. However, 

detection of occlusions in ear biometrics remained 

understudied at present.  Detection of real occlusions 

is a very challenging problem since occurrence, 

locations, proportion, and reasons of occlusion are 

uncertain. For instance, different regions of an ear may 

be occluded by different objects such as hair or 

earrings at the same time. Also, during identification 

stage, an ear sample may be occluded partially or 

fully, or may not be occluded at all. In addition, 

determining the proportion of occlusion is important 

to make a decision whether the sample is sufficient for 

recognition process or needs to be reacquired. Last but 

Journal of WSCG http://www.wscg.eu

Vol.23, No.1-2 121 ISBN 978-80-86943-64-0

Cumulative Edition



not the least, not every method performs equally on 

different proportions and different regions of 

occlusions. For example, global features such as 

shape-based descriptor may perform well in cases of 

partial occlusion by earrings, while local or block-

based features may work better on distorted shapes 

due to occlusions by hair. Thus, prior detection of the 

location and proportion of occlusion could help in 

selecting the appropriate features as well as feature 

extraction methods. For these reasons, it is important 

to develop an ear recognition method that is capable 

of prior detection of occlusion and can select 

appropriate features for classification at identification 

stage. In a recent review paper, Pflug and Busch 

[Pfl12a] pointed out the lack of studies on real-world 

ear occlusions. This paper fills this niche and provides 

a solution to this problem by investigating how real 

occlusion factors such as hair, accessories etc. affects 

the recognition performance. The novel contributions 

of this paper are three fold:  

1. We propose a novel method for ear occlusion 

detection and estimation of occlusion degree 

using skin-color model.  

2. We analyze the impact of real ear occlusions (hair 

and accessories) on recognition performance. 

3. We propose a novel index-based partial ear 

recognition method that utilizes occlusion 

information adaptively to obtain consistent 

recognition rate. 

The rest of the paper is organized as follows. Section 

2 summarizes some existing researches on ear 

recognitions. The proposed methodology for 

occlusion detection and ear recognition is described in 

Section 3. Section 4 demonstrates experimental results 

of the performance and effectiveness of the proposed 

method. Finally, concluding remarks and future works 

are presented in Section 5. 

2. RELEVANT WORK 
Person identification using ear biometric has drawn 

significant attention of many researchers over the last 

decade. Ear biometric has the advantage of a non-

intrusive acquisition in a less controlled environment. 

However, there has always been a tradeoff between 

the non-invasiveness of image acquisition and its 

impact on its quality. Restricting the acquisition 

environment of ear biometric compromises its 

noninvasive nature and wide acceptance of users. 

Moreover, noninvasive biometrics are mostly 

acquired by surveillance cameras, where environment 

cannot be controlled. Therefore, instead of imposing 

tight controls on the acquisition environment, the 

recent research is focused on developing robust 

biometric systems that can obtain high recognition 

rates under less than ideal conditions. Occlusion has 

been studied for face biometrics to some extent 

[Lin07a], [Taj13a]. However, occlusion conditions, 

type, area, proportion etc. of ear are very different than 

face. There is a lack of study on real occlusions of ear 

biometrics during identification stage. In this section, 

we will discuss some contemporary ear recognition 

methods. 

In 2010, Bustard and Nixon [Bus10a] proposed a 

robust method for ear recognition using homographies 

calculated from the Scale Invariant Feature Transform 

(SIFT) points. Authors also showed that performance 

of this method degraded with an increasing proportion 

of occlusions. However, the method did not include an 

automated occlusion detection as well as proportion 

calculation.  Experimentation was conducted on 

simulated occluded conditions and the effect of real-

world occlusions remained uninvestigated. Efficient 

feature extraction of an ear biometric has been 

investigated in many recent works. For instance, 

Huang et al. [Hua11a] proposed Uncorrelated Local 

Fisher Discriminant Analysis (ULFDA) method for 

ear recognition, which obtained better performance 

than benchmark Principle Component Analysis (PCA) 

and Linear Discriminant Analysis (LDA) [Mar01a]. In 

2012, Kumar and Wu [Kum12a] proposed an ear 

recognition method based on gray-level shape features 

which outperformed Gabor and log-Gabor based 

methods.  Sparse representation of local texture has 

been proposed by Kumar and Chan [Kum13a] in 2013, 

which obtained high recognition rates on different 

databases. However, none of the aforementioned three 

methods was evaluated under occluded conditions.  

Occlusion has been considered by Yuan and Mu 

[Yua12a], where a local information fusion method 

was proposed to obtain robustness under partial 

occlusion. In this work, experimentation was 

conducted in the simulated occluded condition, i.e. a 

specific amount of occlusion has been applied 

artificially to a certain location of the ear images. 

However, results showed that the recognition 

performance of this method varied according to the 

location as well as amount of occlusion. In another 

work, Yuan et al. [Yua12b] proposed a sparse based 

method to recognize partially occluded ears. 

Experimentation was conducted by adding synthetic 

occluded regions to the original unoccluded images. 

Results showed that this method obtained 70% 

recognition rate for 30% occluded regions, whereas 

performance dropped below 15% with the increase of 

the occluded portion up to 50%. In another recent 

work, Morales et al. [Mor13a] showed that 

performance of SIFT and Dense-SIFT based feature 

extraction methods also degraded significantly due to 

the presence of real-world occlusions. In their work, 

recognition error rate of SIFT and Dense-SIFT 

features were 2.78% and 2.03%, respectively on IITD 

Database.  However, the corresponding error rates 

increased to 20.52% and 25.76% under real-world 

occlusions on West Pomeranian University of 

Technology Ear Database [WPUTED]. The above 
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discussion demonstrates that existing ear recognition 

methods lack the following: 

1. Detection of occlusion remained uninvestigated, 

although recognition rate highly depends on the 

presence of occlusion. 

2. Recognition rate varies with location and 

proportion of occlusion. There is a lack of study 

on automated localization and proportion 

calculation of occlusion. 

3. Existing methods are mostly experimented on 

simulated or synthetically occluded ear samples 

in predefined locations. The robustness of ear 

recognition methods need to be evaluated under 

real occlusions since type, location, and 

proportion of real-world occlusions might be very 

different than the simulated cases. 

The above points indicate that there is a gap 

between real-world occlusion detection and occluded 

ear recognition methods. In this paper, our main goal 

is to bridge the gap between occlusion detection and 

occluded ear recognition by proposing a novel ear 

recognition method that can detect real occlusions and 

utilize occlusion information adaptively during 

recognition stage. 

3. PROPOSED METHOD 
In this paper, we presented an automated approach of 

occlusion detection, estimation, and un-occluded 

region extraction. We also proposed a novel index-

based ear recognition method, which can efficiently 

utilize the extracted un-occluded portion of ear. In the 

real scenarios, enrolled or template images are mostly 

obtained under human supervision. Therefore, if 

occlusion occurs, human supervisor can direct the 

person to reacquire the sample. On the other hand, 

identification stage is mostly unsupervised and the 

system process occluded image in case of the absence 

of automated detection mechanism, which may 

eventually lead to a false match.  This is why we were 

interested in measuring occlusion during 

identification stage. A basic flow diagram of the 

proposed system is shown in Fig. 1. During enrollment 

index-based features are extracted and stored in 

feature database along with corresponding indices. 

During test, occluded and un-occluded portion of the 

ear are detected automatically. Next, index-based 

features are extracted from un-occluded portion of test 

ear sample and similarity is measured with the 

corresponding features of enrolled images. The final 

decision has been obtained from the maximum 

similarity matching score of the test and enrolled 

samples. Detailed explanation of the proposed method 

can be found in the following subsections.  

3.1 Types of Occlusion 
Occlusion in ear images may occur anytime during 

identification stage due to the presence of hair, 

scarf/hat, earring, headphones, dust, and so on. Both 

shape and appearance of ear vary in a very different 

way based on the type, location, and proportion of 

occlusions. 

 

Figure 1. Flow diagram of the proposed ear 

recognition system. 

One reason for the lack of investigation on real 

occlusions is the unavailability of public database. 

Researchers [Fre10a] of West Pomeranian University 

of Technology have created an ear database containing 

ear samples with different types of real occlusions to 

facilitate proper validation of ear recognition 

algorithms. Fig. 2 shows different occluded conditions 

of ear samples from West Pomeranian University of 

Technology Ear Database. From Fig. 2, one can see 

that location, type, and proportion of occlusion are 

very uncertain and cannot be predefined. Therefore, 

proper detection of occlusion is indispensable to 

extract un-occluded features from ear.  

 

Figure 2. Different types of ear occlusions; a) 

occlusions by hair; b) occlusions by earrings, 

scarf, hat, headphones, etc. [WPUTED] 

3.2 Ear Enrollment 
In this paper, occlusion is considered during test phase 

to resemble the identification stage. Generally, 

enrollment is accomplished under human supervision. 

If occlusion occurs during enrollment human 

supervisor can reject the biometric sample and 

reacquire it. Therefore, in this paper, we considered 

the case that enrolled images are not occluded. 

Initially, all enrolled images are preprocessed using 

histogram equalization method and downsampled to 

100×80 pixels. Each enrolled image is then partitioned 

into 10×10 blocks, total 80 blocks. Fig. 3 shows a 

visual representation of partitioning an ear image into 

blocks. Next, we applied two-dimensional (2D) Haar 
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Discrete Wavelet Transform (DWT) to extract local 

texture features [Sul14a] from each block. Haar 

wavelet transform decomposes an input block into 

four sub-bands, one low frequency component (LL) 

and three detail components (LH, HL, HH). 

Decomposition to low frequency subband (LL) 

smoothens image thus reduces noise. Decimated DWT 

is a popular mathematical tool for image compression 

since it efficiently reduces image dimensionality at 

different levels, whereas ensuring seamless 

reconstructions [DeV92a]. Thus, DWT preserves 

important information of image while discarding 

dimensionality.  Moreover, DWT is computationally 

efficient and less sensitive to illumination changes 

[Sul14a]. The low frequency subband (LL) of DWT 

contains most of the information of an image. In this 

work, we applied 1st level Haar DWT to all blocks and 

considered the low frequency subband of each block 

as local features. The features of each block are then 

stored along with its index in feature database.  

 

Figure 3. An example of partitioning enrolled ear 

into indexed-blocks. 

3.3 Ear Occlusion Detection 
Real-world occlusion detection is a very challenging 

task because it is uncertain that when and what type of 

occlusion would arise. There is also no certainty in 

which portion and what proportion the occlusion 

would occur. In this section, we propose a novel 

method of ear occlusion detection and estimation 

using skin color model. The process in outlined in 

Algorithm 1. 

In our method, the skin color regression model 

[Pau10a] has been applied for occlusion detection.  

We utilized skin color model for ear occlusion 

detection because occlusion obscures skin color 

information and detection of skin color will allow us 

to separate occluded and un-occluded regions in ear. 

The proposed occlusion detection method has four 

steps: 1) conversion to chromatic color space r and g, 

2) detection of skin regions in r and g color spaces 

using skin color likelihood (eq. 5), 3) fusion of r and g 

color space images and fill skin regions using 

morphological operation, and 4) masking un-occluded 

skin portion from original occluded image. A flow 

diagram of the steps is depicted in Fig. 5. 

 

Algorithm 1: Occlusion detection and estimation. 

Input: Test ear image Y of size 𝑀 × 𝑁. 

Output: (BIj, Ij), un-occluded blocks in Y and 

corresponding indices. 

Step 1: Preprocess Y using histogram 

equalization method and downsample  𝑀 × 𝑁 to 

100×80.  

Step 2: Transform image from RGB color space 

to chromatic color space. Find the value of r and 

g as follows [Pau10a]: 

 𝑟 =
𝑅

𝑅+𝐺+𝐵
     (1) 

 𝑔 =
𝐺

𝑅+𝐺+𝐵
     (2) 

Step 3: Find skin color distribution by 2-D 

Gaussian model with the following mean vector A 

and covariance matrix C [Pau10a]:  

 𝐴 = 𝐺{𝑥}[𝑥 = (𝑟𝑔)𝑇]    (3) 

 𝐶 =  [
𝜎𝑟𝑟 𝜎𝑟𝑔

𝜎𝑔𝑟 𝜎𝑔𝑔
]     (4) 

Step 4: Estimate likelihood (L) of skin color using 

the following equation [Pau10a]: 

𝐿 = 𝑃(𝑟, 𝑔) = exp [−0.5 (𝑥 − 𝐴)𝑇 𝐶−1(𝑥 − 𝐴) ] 
        (5) 

where,  𝑥 = (𝑟, 𝑔)𝑇. 

Step 5: Find the skin color regions of Y in 

chromatic color r and g, denoted as P(r) and P(g). 

Step 6:  Fuse P(r) and P(g) to obtain resultant 

binary image, Z = P(r) AND P(g) 

Step 7:  Perform morphological operation using 

disk shape structuring element of radius 10 to fill 

the skin regions in Z. 

Step 8:  Apply Z as a mask on Y to obtain image 

X containing un-occluded skin portions. 

Step 9:  Partition X into 10×8 blocks each having 

10×10 pixels and construct a block vector {Bi| i= 

1, 2, …, 80}. 

Step 10:  Construct an index vector {Ij| i= 1, 2, …., 

m}, where BIj contains skin regions (un-occluded) 

and m is the total number of un-occluded blocks. 

Step 11: Estimate total proportion of 

occlusion, 𝐸 =
∑ 𝐵𝐼𝑗

𝑚
𝑗=1

∑ 𝐵𝑖
80
𝑖=1

× 100     (6) 

Step 12: If E>60%, discard Y and reacquire test 

image. 

 

Fig. 6 presents some outcomes of occlusion detection 

of four ear samples from WPUT Ear Database. Fig. 6 

(a) shows four original ear samples containing 

different types of occlusions due to earring, 
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headphones, and hair. The corresponding ear samples 

after chromatic color space conversion are shown in 

Fig. 6 (b). Fig. 6 (c) presents the resultant skin-regions 

separated from occlusions. After separating occluded 

and un-occluded regions, the ear image is partitioned 

into 80 blocks, each containing 10×10 pixels. The 

estimated occlusion has been calculated as the ratio of 

the number of un-occluded blocks over total number 

of blocks (eq. 6). The estimation of occlusion 

facilitates auto-rejection of unreliable test images, 

where most of the information is distorted due to 

occlusion. In the proposed method, if the estimated 

occlusion is below 60%, the test image will be used 

for recognition, otherwise it has to be reacquired. In 

this way, the proposed ear recognition system can 

reduce false matches by discarding unreliable test 

samples, automatically. 

 

Figure 5. Flow diagram of the four steps of 

occlusion detection using skin color model. 

 

 
Figure 6. Examples of ear occlusion detection: a) 

original occluded ears, b) conversion to chromatic 

color space, c) detected unoccluded skin-regions. 

3.4 Partial Feature Extraction and 

Matching  
In the proposed method, partial features are extracted 

from the detected un-occluded blocks of the test 

image. 1st level of Haar DWT is applied to all un-

occluded blocks (BIj), and four subbands images (LL, 

LH, HL, HH) are obtained. The low frequency 

subband (LL) of each block is considered as the local 

features of corresponding block and converted to a 

feature vector.   

Finally, similarities between the partial features of test 

ear and corresponding features of enrolled ears are 

measured for recognition. Fig. 7 shows an example of 

the corresponding blocks of a test ear and an enrolled 

ear. The left image in Fig. 7 shows the blocks of skin 

regions in test image and the right image shows 

corresponding blocks in enrolled image. Unlike 

existing methods, we matched the un-occluded blocks 

of the detected skin regions to the corresponding 

blocks of enrolled ears. The index vector (Ij) is used to 

fetch the corresponding blocks of enrolled ears from 

feature database. A visual representation of the partial 

feature extraction and similarity matching process is 

shown in Fig. 8.  

 
Figure 7. Block indexing, a) unoccluded blocks of 

test ear, b) corresponding blocks of enrolled ear. 

The similarities of the test and enrolled ears are 

computed using Euclidean distance. Euclidean 

distance of the indexed features of test ear (V) and 

enrolled ear (U) can be calculated using the following 

equation: 

𝐷 = √∑ ∑ (𝑢𝑗𝑘 − 𝑣𝑗𝑘)
2𝑛

𝑘=1
𝑚
𝑗=1                 (7) 

where 𝑢𝑗𝑘 and 𝑣𝑗𝑘  are the kth feature of jth block of U 

and V, respectively, and m is the total number of un-

occluded blocks in V. However, a problem may arise 

during the index-based matching if the indexed blocks 

of the test ear do not overlap with the indexed blocks 

of enrolled ear (in other words, if the test ear is shifted 

to any direction). There are eight possible directions 

of shift, which is shown in Fig. 9. We propose to solve 

this problem by using a matching window in all 

possible eight directions: B1, B2, B3, B4, B5, B6, B7, B8.      
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Figure 8. Feature extraction and index-based partial feature matching of test and enrolled ears. 

The set of all un-occluded blocks of the test ear is 

considered as one region. Let us consider Ti,j as the un-

occluded region of test image and Ri,j as the 

corresponding region in the enrolled sample. The nine 

similarity score are then calculated using eq. 8 to eq. 

16.  

 𝑆0 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖,𝑗)            (8) 

𝑆1 = 1 − 𝐷(𝑇, 𝑅𝑖,𝑗+1)             (9) 

𝑆2 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖+1,𝑗+1)           (10) 

𝑆3 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖+1,𝑗)           (11) 

𝑆4 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖+1,𝑗−1)           (12) 

𝑆5 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖,𝑗−1)           (13) 

𝑆6 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖−1,𝑗−1)           (14) 

𝑆7 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖−1,𝑗)           (15) 

𝑆8 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖−1,𝑗+1)            (16) 

The first similarity (S0) score between the test and 

enrolled sample is calculated by matching the blocks 

of test region Ti,j and corresponding enrolled region 

Ri,j. Next, we calculated the similarity score S1 along 

B1 direction between the test region Tij and training 

region Ri,j+1. Then similarity score, S2 is calculated 

along B2 direction between Ti,j and Ri+1,j+1. Similarly, 

similarity scores S3 to S8 are calculated along 

directions B3 to B8 using eq. 11 to eq. 16. The reason 

for calculating nine similarity scores is that if the test 

sample is shifted to any of the possible directions, 

matching score along that direction will be the highest. 

Thus, calculating similarity scores in all possible 

directions allow us to find the best matching indices 

even under shifted condition. Fig. 10 shows pictorial 

representation of the calculation of nine similarity 

matching scores from S0 to S8. In Fig. 10, S0 (in 

middle) represents an example of the corresponding 

blocks of an enrolled image. The shifted blocks in 

eights possible directions are represented by S1 to S8 

in Fig. 10. The shifted blocks were calculated by 

shifting the whole region (all blocks) towards the eight 

possible directions as shown in Fig. 9. 

 

Figure 9. Possible eight directions of image shift. 

 

 

Figure 10. Nine similarity scores (S0- S8) 

calculation by shifting the indexed region of 

enrolled ear along different directions. 

The best matching score is calculated in two ways. 

First, the highest value among the nine scores is 

considered as the overall maximum score, Sm (eq. 17). 

Secondly, we calculated the block-wise maximum 

score (SB) among the nine similarity vectors. 

Calculation of SB can be shown as eq. 18: 
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𝑆𝑚 =  max
0≤𝑖≤8

𝑆𝑖           (17) 

𝑆𝐵 =  max
0≤𝑖≤8,1≤𝑗≤𝑚,

𝑆𝑖𝑗           (18) 

where Sij is the similarity score of jth block of ith 

similarity vector, m is the maximum number of un-

occluded blocks in test image. 

4. EXPERIMENTAL RESULTS 
Three sets of experiments were conducted to evaluate 

the performance of the proposed ear occlusion and ear 

recognition method. All experiments were carried out 

on Windows 7 operating system, 2.7 GHz Quad-Core 

Intel Core i7 processor with 16GB RAM. Matlab 

version R2013a was used for implementation and 

experimentation of the proposed method. We 

evaluated our method on WPUT Ear Database 

[WPUTED] since this is the largest publicly available 

database containing ear images with wide variations 

of real occlusions. A brief description of the database 

is as follows: 

WPUT Ear Database [Fre10a]: This database contains 

2071 ear images of 254 women and 247 men, total 501 

individuals of different ages. There are at least two 

images per ear of each subject. 15.6% of the images 

were taken outside and some of them were taken in the 

dark. 80% of the images are recorded as deformed due 

to the presence of real occlusions. Ear images of 166 

subjects are covered by hair and the presence of 

earrings are recorded for 147 subjects. The other forms 

of real-world occlusion in this database are glasses, 

headdresses, noticeable dirt, dust, birth-marks, ear-

pads etc. Many of the samples are simultaneously 

occluded by different types of occlusion in different 

proportions.  

For our experimentation, the whole database is 

partition into training and test sets. The training 

database is created using comparatively un-occluded 

ear samples. We have single training sample per 

subject. The occluded images are randomly selected 

for testing. Each experiment is performed five times 

and the average recognition accuracy is considered as 

the recognition performance of the proposed method. 

Identification rate of the proposed method is analyzed 

by plotting Cumulative Match Characteristics (CMC) 

curve. CMC curve is the cumulative probability of 

obtaining the correct match in the top r positions 

(ranks). The final matching scores of the test and 

enrolled images can be obtained in different ways such 

as block-wise maximum score, overall maximum 

score, block-wise average score, and overall average 

score. Therefore, in the first experiment, we compared 

the performance of the proposed method using 

different similarity scores to obtain the best 

performing method of calculating the final similarity 

score. Fig. 11 shows the CMC curves of the proposed 

method using block-wise maximum similarity, overall 

highest similarity, block-wise average score, and 

overall average similarity scores. From Fig. 11, we can 

see that the highest performance of the proposed 

method was obtained by using block-wise maximum 

similarity score. Consideration of the highest score 

among the nine scores obtained the 2nd highest 

performance. Fig. 11 also shows that block-wise 

average scores performed better than overall average 

score. However, consideration of the maximum scores 

are more discriminative than consideration of average 

scores. The reason for this that not all the similarity 

scores will find the best match among the test and 

training blocks and averaging all scores may fade 

away the best match. Fig. 11 shows that correct 

matching probabilities of the block-wise maximum 

similarity, overall maximum similarity, block-wise 

average similarity, and overall average similarity at 

rank 1 are 73%, 65%, 57%, and 51%, respectively.  

Therefore,   from the first set of experiments, we found 

that block-wise maximum score obtained the best 

results for the proposed method. 

 

Figure 11. CMC curves of the proposed method 

using different similarity scores. 

In second set of experiments, we compared the 

performance of the proposed method with a baseline 

Haar discrete wavelet transform-based method. For 

the baseline method, ear features were extracted using 

Haar discrete wavelet transform from test sample 

without applying any occlusion detection mechanism 

and the features were matched with the enrolled 

samples regardless of indices.  The CMC curves for 

the proposed method and the baseline methods are 

plotted in Fig. 12. From Fig. 12, we can see that the 

rank 1 recognition rate for the proposed method is 

73%, whereas for the baseline method obtained 60% 

recognition accuracy. Also, 91% recognition rate was 

obtained by the proposed method within rank 10. The 

CMC curves in Fig. 12 demonstrate the effectiveness 

of prior occlusion detection and index-based matching 

of occluded features.  
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Figure 12. Recognition performance improvement 

by the proposed method on WPUT database. 

 

In the final set of experiment, we evaluated 

performance of the proposed method on different 

amount of occlusions. Amount of occlusion is 

estimated as the ratio of the occluded blocks over total 

number of blocks in an ear sample. Fig. 13 shows how 

the performance of the proposed method varied with 

different proportion of occlusion. From Fig. 13, we 

can see that the proposed method can obtain 

recognition rate as high as 85% with 10% estimated 

occlusion.  Also, the recognition performance 

remained nearly 80% under 30% occlusion, which is 

a better result than reported by previous studies. The 

performance of the proposed method was at 67% even 

with the 50% of ear image occluded! However, there 

is simply not enough features for high precision of ear 

recognition when over 60% of an ear is occluded and 

in this case ear sample needs to be reacquired.   

 

Figure 13. Performance of the proposed method 

with different degrees of occlusions. 

From the above experiments, we can summarize the 

performance improvement of the proposed method as 

follows. First of all, automated occlusion detection 

and estimation allowed us to decide upon whether an 

ear sample is good enough to be recognized or it is 

needed to be reacquired. In this way, the proposed 

method can improve recognition rate by reducing false 

matches of overly occluded images. Secondly, unlike 

existing methods where occluded regions were 

predefined, localization of unoccluded portion in our 

method is automated. Therefore, the system can 

adaptively decide upon which portion of the image is 

unoccluded and good for feature extraction. Thirdly, 

during recognition, features are extracted from only 

unoccluded portion of the ear image and matched with 

corresponding portion of the enrolled samples, which 

reduces the probability of unreliable matching of the 

occluded portion. Finally, the problem of shifted 

indices is solved by using the best block-wise 

matching scores in eight different scores. For these 

reasons, the proposed method is capable of obtaining 

a reliable recognition performance under real 

occlusions of ears during identification stage.  

5. CONCLUSION 
A completely automated approach to ear occlusion 

detection and estimation using skin color model has 

been proposed in this paper. We also proposed a novel 

index-based ear recognition method to recognize 

partially occluded ears effectively. The most 

important advantage of the proposed method is it can 

estimate occlusion on ear samples during 

identification stage and adaptively use this 

information to select proper indices of the features for 

recognition purpose. There is a scarcity of occluded 

ear samples in biometric community and only few 

publicly available databases contain occluded ear 

samples.  However, the adaptive decision making 

process of the proposed method doesn’t depend on any 

learning or training of occlusions and thus can be 

applied to any database. The proposed method of 

handling ear occlusion was proved to be a very 

effective in the real world scenarios. Our experiments 

on real occluded ear images validated the 

effectiveness of occlusion detection and index-based 

feature matching for partial ear recognition. Future 

research will look into incorporating weights into an 

occlusion estimation process to improve the 

recognition even further. 
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ABSTRACT
Convolution-based techniques for volume rendering are among the fastest in the on-the-fly volumetric illumination
category. Such methods, however, are still considerably slower than conventional local illumination techniques.
In this paper we describe how to adapt two commonly used strategies for reducing aliasing artifacts, namely
pre-integration and supersampling, to such techniques. These strategies can help reduce the sampling rate of the
lighting information (thus the number of convolutions), bringing considerable performance benefits. We present a
comparative analysis of their effectiveness in offering performance improvements. We also analyze the (negligible)
differences they introduce when comparing their output to the reference method.
These strategies can be highly beneficial in setups where direct volume rendering of continuously streaming data is
desired and continuous recomputation of full lighting information is too expensive, or where memory constraints
make it preferable not to keep additional precomputed volumetric data in memory. In such situations these strate-
gies make single pass, convolution-based volumetric illumination models viable for a broader range of applications,
and this paper provides practical guidelines for using and tuning such strategies to specific use cases.

Keywords
Volume Rendering, Global Illumination, Scientific Visualization, Medical Visualization

1 INTRODUCTION

In recent years different medical imaging technologies,
such as computed tomography, ultrasonography and
microscopy [5], became capable of generating real-time
streams of volumetric data at high frame rates. To vi-
sualize such data, volume raycasting [2, 10], capable of
displaying surfaces from volumetric data without pre-
processing, is often used. This happens in particular in
situations where inspection of the acquired data is use-
ful already during the acquisition, such as in 4D Echog-
raphy where volume rendering of real-time data is em-
ployed even for guiding interventions. In these cases
conventional direct volume rendering techniques that
employ local illumination models are generally used,
as they are efficient enough to keep up with the incom-
ing data rate when executed on modern GPU hardware,
even when not high end. However, just like in polygo-
nal rendering, rendering volume data using an illumina-
tion model that approximates global illumination bet-
ter than simple local shading models is important for
numerous reasons, as recent user studies have demon-
strated [11, 17]. Researchers have therefore been very
active in the last years in proposing efficient and realis-
tic approximations of global illumination, comprehen-
sively covered in a recent survey by Jonsson et al. [7].
Despite the advances in this field, volumetric illumina-
tion methods that offer the best performance rely on ex-
pensive preprocessing steps to speed up the rendering

by reusing precomputed information. Such preprocess-
ing is not applicable in a number of situations, like, for
example, when the volume data to be rendered change
continuously, but also when memory constraints (e.g.,
in the case of portable devices or large datasets) make
it preferable not to store an additional precomputed il-
lumination volume.

There is, however, a category of techniques that ap-
proximate volumetric lighting (single and sometimes
multiple scattering) in the same pass used to gener-
ate the image, without the need for preprocessing or
storing the whole illumination volume. Nonetheless
even the fastest methods in this category are on av-
erage six to eight times slower [18, 13] than conven-
tional GPU-based direct volume rendering methods us-
ing ray-casting and local illumination models such as
Phong shading. This performance penalty can be a se-
rious issue where there are constraints on the compu-
tational capacity of the system, or when the rendering
pipeline includes additional computationally expensive
stages such as volume denoising.

In this paper we focus on convolution-based volumetric
illumination models [8, 9, 15, 16, 13], a subcategory of
single pass volumetric illumination methods built upon
slice-based rendering, that operate by iteratively diffus-
ing the lighting information slice after slice using con-
volutions. Since the geometry setup using ping-pong
buffers is a costly operation and, moreover, the convo-
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Figure 1: Volume rendering of the carp dataset. (a) Raycasting using Phong shading. (b) Instant convolution
shadows (ICS) with sampling distance of 0.33 voxels (reference). (c) ICS with sampling distance of 1 voxel.
(d) Supersampled convolution shadow (SCS) with a slice distance of 1.3 voxel and 4 tissue subsamples. (e)
SCS with a slice distance of 1.5 voxels and 5 subsamples (tissue sampling distance of 0.25voxel). (f) A closeup
highlighting how 1.5 voxels slice distance introduces aliasing artifact despite the dense tissue supersampling. The
SCS method, however, allows to increase the inter-slice distance considerably, with an almost linear performance
increase. Computation times from left to right: 43ms, 202ms, 88ms, 84ms, 79ms .

lution is performed for every pixel of the view-aligned
slices, the sampling distance (and thus the number of
slices used for the rendering) and the time necessary
for rendering every frame are linearly dependent.
In this paper we analyze the impact of the sampling dis-
tance on the performance of this approach in generating
aliasing-free images, and incorporate and evaluate the
effect of two commonly used strategies to lower this
distance: pre-integration [3] and supersampling. The
contribution of this paper is therefore twofold. First,
we introduce two methods to adapt pre-integration and
volume supersampling to convolution-based volumet-
ric illumination techniques, which allow decoupling the
sampling rates of the lighting information from the one
of the volume. Then we provide a quantitative eval-
uation of the effects that these strategies have on the
performance and practical guidelines for choosing al-
gorithm parameters in order to achieve the best perfor-
mance without compromising the image quality. We
demonstrate that using such strategies can lead to con-
siderable speedups (over 170% in the average case)
compared to the standard convolution-based illumina-
tion, and, in certain cases, can achieve performance
comparable to conventional local illumination methods
(see Figure 1 for an example). These performance gains
can be instrumental in bringing advanced illumination
to volume rendering of streaming data, especially on
computationally limited devices, or where the compute
unit is used for other computationally expensive steps
which are required for the rendering. These strategies
can also be beneficial in presence of static data but
when, for example, the amount of graphics memory is
limited, and precomputing volumetric light information
is not preferrable.

2 RELATED WORK
In the area of interactive volume rendering different
lighting models to approximate global illumination
have been proposed. A thorough overview of such
techniques has been provided by Jonsson et al. [7]. In

their survey, the authors classify the various techniques
in five categories: local-region-based, slice-based,
light-space-based, lattice-based and basis-function-
based. Each of these categories describe the underlying
paradigm used for calculating volumetric lighting
information. The authors also provide a comprehensive
analysis of the individual methods, their memory
requirements, and their computational costs. The
computational costs have been further subdivided
into the cost for rendering an image, and the cost for
updating the data, the transfer function or the light
direction.
For scenarios in which the data is continuously varying
we are mostly interested in whether the total time nec-
essary to render the data for the first time exceeds the
data rate or not. We therefore adopt a simpler classi-
fication here, depending on whether a method requires
substantial pre-computation or whether it can produce
the final image at interactive frame rates calculating the
illumination information on-the-fly. We refer to Jons-
son et al. with respect to methods that fit the first of
these two classes. In the second class we have splatting-
based methods, slice-based methods, and image-plane-
sweep-based methods. Splatting was extended to sup-
port volumetric lighting by Nulkar and Mueller with
the shadow splatting method [12]. This method require
an additional pass and the storage of the shadow vol-
ume, so it is not an on-the-fly method. However, Zhang
and Crawfis [19, 20] later extended the method relaxing
these constraints. Still, splatting remains more suitable
for sparse or unstructured grids than for dense cartesian
grids.
Most of the work in on-the-fly volume illumination can
be found in the slice-based category, since synchroniza-
tion is one of the main issues in calculating the light
propagation, and performing slice-based volume ren-
dering implicitly synchronizes the ray front, simplify-
ing the problem. The first method introducing volu-
metric lighting using this rendering paradigm was half-
angle slicing, presented by Kniss et al. [8, 9]. The key
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Figure 2: Illustration of our modified schemes for pre-integration (left) and supersampling (right). Correct pre-
integration should include in the lookup table also the entry and exit light value. We propose to approximate
it performing only tissue pre-integration and sampling the light at S1 position. We also propose to use linearly
interpolated light values from the two previous light buffers to calculate the illumination for supersampled tissue
samples.

concepts of this method were the implementation of a
backward-peaked phase function by iterative convolu-
tion and the selection of the slicing direction half-way
(hence the name) between viewing and light direction.
Schott et al. [15] later presented the directional occlu-
sion shading method, constrained to headlight setups
to use view-aligned slices, and the same technique to
implement the backward-peaked phase function via it-
erative convolution. However, unlike half-angle slicing,
directional occlusion shading does not need two render-
ing passes per slice. This method was later extended by
Šoltészová et al. [16], to allow variable light directions
while keeping view-aligned slices. The authors called it
multidirectional occlusion shading, and also illustrated
the advantages of using view-aligned slices in terms of
image quality as opposed to half-angle slicing. This
method was further improved by Patel et al. [13] with
their instant convolution shadows method, by using an
optimized convolution kernel and allowing the integra-
tion of polygonal geometry, making it suitable for vol-
umetric detail mapping to geometrical models.

In the last category, the first and currently only method
presented was by Sunden et al. [18], with the image
plane sweep volume illumination technique. In this
method ray-casting is chosen over slice-based render-
ing, and the rays are not traversed simultaneously, but
serialized in a sweep over the image plane. The sweep
direction is dependent on the light direction so that the
ray direction is orthogonal to the light and subsequent
rays can make use of light contributions from previous
rays. In their paper the authors show that the perfor-
mance of their method is similar to half-angle slicing.
In this work we focus on slice-based iterative convolu-
tion methods.

The last aspect to discuss is how to analyze the results
of volume rendering techniques. One of the goals that
we have in this work is to improve performance while
maintaining the generated images free of aliasing. We

identify the optimal parameter setting for the different
sampling distances (that is, the most efficient setting
that yield aliasing-free images) in a qualitative man-
ner. However, quantitative theoretical models to evalu-
ate the amount of error in volume rendering due to dis-
cretization also exist, like the one proposed by Etiene et
al. [4], or the method to determine proper sampling fre-
quency of function compositions proposed by Bergner
et al. [1]. Performance-wise it has been a common prac-
tice to compare different methods on the same viewport
size, sampling distance and transfer function, averag-
ing the rendering times over several frames from differ-
ent viewing direction [14, 18]. In this work we adopt
the same strategy. Timings are averaged over several
frames and the viewport size is always fixed to 512x512
pixels.

3 METHOD
To explain how to adapt supersampling and pre-
integration for a convolution-based volumetric
illumination model, we can use the Instant Convolution
Shadow (ICS) method [13] as the reference model.
The basic idea of ICS is that each volume sample
on a slice acts as light occluder but also as shadow
receiver. This means that every sample which, after
classification, maps to a non-fully transparent color,
will cast shadows onto the next slice. To compute the
amount of light that is transmitted from slice n to a
position on slice n+1, the incoming light on slice n is
first attenuated by the opacity of the samples on slice n,
and then this outgoing light is convolved with a kernel
k(x). This operation is iterated for every pixel on every
slice, and the iterative process propagates the lighting
information to the end of the scene.

3.1 Pre-integrated ICS
Pre-integration [3] works by assuming linear variation
between two consecutive volume samples. It is then
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Figure 3: Assessment of the largest sampling distance to produce aliasing-free images for one scene. The transi-
tions where noticeable aliasing appeared are shown in red. Using pre-integration produced identical images and,
as expected, allowed to significantly increase the sampling distance while still preventing aliasing.

possible to precompute the volume rendering integral
between all possible combination of data values, and
store it in a 2D lookup table. During rendering, a sim-
ple 2D texture lookup is used. In practice, this approach
enables to use of much higher sample distances with-
out noticeable artifacts [3]. However, the basic pre-
integration method does not consider illumination, as
the resulting increase in dimensionality of the lookup
table would make the approach impractical. Previous
work [6] showed how to combine local gradient shad-
ing with pre-integration by combining two 2D look-up
tables. In case of non-local volumetric lighting this is
not possible, as the light information depends on the
neighborhood of a fragment (see Figure 2).

For this reason we suggest to use standard pre-
integration and ignore lighting in the pre-computation.
This requires only the conventional 2D lookup table. In
this approximation the light propagation proceeds as in
the conventional ICS, but the opacity used to attenuate
the light comes from the pre-integrated value. We
analyze the effect that this approximation has on the
image quality, and to what extent it allows us to reduce
the inter-slice distance in Section 5.

3.2 Supersampled ICS
The second strategy to increase the distance between
slices (and hence, the number of convolutions per-
formed), while still sampling the volumetric function at
a sufficiently high rate is to acquire additional volume
samples between consecutive slices. The rationale
behind this approach is that the color and opacity
contributions between consecutive slices are still
taken into account, but the illumination propagation is
performed at a lower frequency. Such a strategy has
pros and cons as compared to pre-integration, where
the color is calculated using a finer integration step, but
on approximated scalar field values, varying linearly

between the front and the back sample. However,
these two strategies can also be combined. In order
to adapt supersampling to a slice-based renderer with
convolution-based lighting, it is necessary to define
what light contribution these additional samples col-
lected in between two subsequent slices should receive.
The correct solution is illustrated in In Figure 2 on the
right (blue convolution). Since this convolution is not
possible to calculate due to missing data, we propose
an approximation scheme for the light contribution
on the additional samples by using their position α

in between the slices (see Figure). We then linearly
interpolate the light contribution of the current and
previous light using this position as the weight.

4 TECHNICAL REALIZATION
Both of these strategies have been shown to be effec-
tive in reducing aliasing artifacts, indirectly allowing
larger sampling distances. In the specific case of volu-
metric lighting by convolution shadows, our proposed
adaptations blend in the algorithm and are compatible
with additional features such as variable light direction,
multiple light sources (which can greatly benefit from
lower sampling distances), non-white lights or chro-
matic shadows.

To quantify the benefits that pre-integration and super-
sampling can provide, we integrated them into a refer-
ence implementation of the ICS method. We chose this
method because it introduces a number of optimizations
over similar methods previously published [16, 15],
both from a performance and from an image quality
point of view, as discussed in Section 2. The ICS
method can be therefore considered one of the most
efficient convolution-based volumetric shadows tech-
niques available at the moment.

The necessary adaptations consists of two main ingre-
dients: a loop in the fragment shader to collect the ad-
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Figure 4: (a) Evaluation of the 2D parameter space for
supersampled ICS. On the x-axis the inter-slice distance
and on the y-axis the number of subsamples are shown.
Due to the integral number of possible subsamples, we
use x-increments of 0.2 voxels to keep the volume sam-
pling distance identical on the diagonal. Note how in-
creasing the number of substeps does not prevent alias-
ing anymore after exceeding a certain slice distance.
Note that the zoomed views have been desaturated and
auto-leveled to enhance the aliasing artifacts, making
them easier to see in print. (b) Rendering of the whole
dataset. (c) The transfer function used to geneate these
images (same as in Figure 3. (d) Absolute differences
between the bottom left and the bottom right view (mul-
tiplied by a factor of 10 for better visibility). Quantita-
tive measurements are given in Table 1.

ditional samples and an additional color attachment to
carry ahead the value of 2 light buffers. However, it
should be noted that, if we discard refraction effects that
change the color of the light when it propagates in the
media, the additional color attachment is not necessary
as the light attenuation, even for non-white light, could
be approximately described by a single scalar value.

5 RESULTS
5.1 Analysis setup
We carried out a thorough analysis of the different ICS
compositing strategies in order to obtain quantitative
performance results. To analyze the speedup that these
strategies have, we used the average frame rendering
time over 100 frames from different view points for dif-
ferent illumination techniques. We compared conven-

# Samples 0 1 2 3Distance
0.2 569ms 572ms 575ms 578ms
0.4 311ms 312ms 314ms 315ms
0.6 225ms 225ms 226ms 227ms
0.8 180ms 181ms 181ms 182ms
0.2 0.0 0.0033 0.0041 0.0045
0.4 0.0060 0.0030 0.0034 0.0035
0.6 0.0118 0.0065 0.0055 0.0054
0.8 0.0187 0.0102 0.0089 0.0083

Table 1: Performance and error analysis for Fig.4. The
first table illustrates the necessary time to generate a
frame. The second table shows the average pixel differ-
ence between the image in the bottom left corner and
every other. Pixels have normalized values in the [0,1]
interval.

tional ICS, ICS with supersampling only for the vol-
ume, which from now on will be referred to as Super-
sampled Convolution Shadows (SCS), pre-integrated
ICS and pre-integrated SCS. As a baseline, we also in-
cluded a conventional volume ray caster with and with-
out local illumination (Phong shading) in the compar-
ison. We conducted our experiments using five differ-
ent dataset/transfer function combinations. These were
a CT dataset of a carp (see Figure 1), a CT dataset of
a human head, used with two different transfer func-
tions, one to reveal the skin and one to reveal the skele-
ton, a CT dataset of a human abdomen revealing the
skeleton and the vessels due to contrast agent, and fi-
nally a cardiac ultrasound dataset. The dimensions of
these volumes are given in Figure 5. The goal of this
analysis was to evaluate the performance of each of
these techniques in producing artifact-free images. We
ran the tests on a workstation equipped with an Intel
Core2Quad 2.5GHz CPU, 12GB of RAM and an nVidia
Quadro K5000 GPU with 4GB of VRAM. The size of
the viewport was fixed to 512x512 pixels.

5.2 Parameter Space
We designed the analysis as a two-stage process. In
the first analysis stage we estabilished the largest sam-
pling distance for the intensity volume that would still
produce aliasing-free pictures using the raycaster, the
ICS renderer and the pre-integrated ICS renderer, and
used this parameter later on as reference in the perfor-
mance measurements. This distance was not always
the same for the raycasting technique and the ICS tech-
nique (slice-based), as these two methods exhibit dif-
ferent aliasing patterns. In particular, and as expected,
pre-integrated ICS could consistently tolerate a larger
inter-slice distance, which provide an advantage over
standard ICS in terms of performance (see Figure 5).
This distance was also dependent on the dataset and
the transfer function used, so we defined it separately
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Figure 5: Performance comparison between different rendering methods for five different scenes, depicted on top
of each group. On the bottom the size of the volumes in voxels.

for each scene. Figure 3 exemplifies this step for one
of the five analyzed scene, in which we qualitatively
assessed the larger inter-slice distance that would pro-
vide aliasing-free results (for methods to quantitatively
assess the amount of aliasing in a rendered image see
Section 2).

After the baseline inter-slice distance was identified, we
generated the reference images for each of the scenes.
In the second step of the analysis we explored the 2D
parameter space for the SCS method, in which one
dimension is the the inter-slice distance (or the volu-
metric illumination sampling distance), and the other
is the volume sampling distance. However, since our
method for integrating supersampling into convolution-
based techniques is not able to freely decouple these
two parameters (we can only use an integer number of
equidistant subsamples between two consecutive sam-
pling slices), we decided to use the number of subsam-
ples as the second parameter in this space. The volume
sampling distance can be determined using the formula
SampleDistance = SliceDistance

n.o.Subsamples+1 . Figure 4 shows the
result of this exploration for one particular scene using
non-preintegrated SCS. This stage was meant to iden-
tify the setting of these two parameters that would en-
able the generation of images identical to the reference
most efficiently. After this second stage, optimal pa-
rameters for the raycaster, ICS, SCS, pre-integrated ICS
and pre-integrated SCS were available, and the perfor-
mance measurement described in Section 5.1 were con-
ducted using the determined values.

5.3 Analysis results
Figure 5 illustrates the performance that each technique
is able to achieve in producing aliasing-free images.
When comparing to standard ICS, these results show

Figure 6: Chart of the performance impact with increas-
ing number of subsamples. In our experiments the slice
distance did not play a role, but using pre-integration
caused the performance to drop much faster, while reg-
ular supersampling comes almost for free for up to 3-4
subsamples.

an average performance increase of 137% for SCS. The
worst case scenario for the SCS method has been the
CT abdominal scene, where it could offer only a 90%
speed increase. In other scenes, in particular in pres-
ence of sharper transfer functions such as with the carp
dataset or the cardiac ultrasound dataset, the perfor-
mance increase exceeded 200%.

When using pre-integration, the performance increase
over standard ICS is slightly lower despite the usage
of same inter-slice distance as SCS in most cases, and
even the gathering of only one additional sample as
compared to standard ICS (versus the two or three of
the SCS method). This behavior can be explained
by the fact that sampling a 2D pre-integration table is
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Figure 7: Effect of supersampling a cardiac ultrasound dataset. (a,d) ICS with different slice distances. (b,e,c)
SCS with 1.34 , 2 and 3 voxel slice distances. (f) Phong shading for comparison. Note how shadow details on
the surfaces progressively disappear with increased sampling distances while shadows casted far away remain the
same.

more costly, as the plot in Figure 6, which graphs the
penalty for each additional sample for both SCS and
pre-integrated SCS, also shows.
Finally, when using both pre-integration and supersam-
pling we could increase the inter-slice distance further
without causing aliasing or getting noticeable artifacts
in the shading. This combination almost always pro-
vided the best performance, except for the cardiac ul-
trasound dataset, where the inter-slice distance for pre-
integration could not be increased as much as in the
other scenes. From this analysis we could conclude
that, in the average case, the volumetric lighting sam-
pling frequency can be at least halved, when compared
to tissue sampling frequency. This possibly due to the
lower frequency of the illumination function compared
to the post-classified volumetric data. Furthermore we
also noticed that the ratio of shadow sampling distance
/ tissue sampling distance can be further increased in
presence of sharper transfer functions.

6 DISCUSSION AND CONCLUSION
Convolution shadow methods and other single pass vol-
umetric illumination techniques can be the only vi-
able option to enable volumetric illumination in a num-
ber of application scenarios like real-time 4D echog-
raphy. Such methods are however constrained on the
volume sampling rate by the distance between consecu-
tive slices, requiring a high number of slices for transfer

functions containing high frequencies, which consumes
a large amount of off-chip GPU memory bandwidth,
impacting negatively on the performance. In this work
we showed that, by decoupling the sampling rate of the
volume from the one of the illumination, we can ex-
ploit the fact that illumination is typically less sensitive
to lower sampling rates.

We adapted and analyzed two techniques, pre-
integration and supersampling, to lower the inter-slice
distance and, with some constraints, decouple the two
sampling rates. We showed how decoupling these two
sampling rates allows less frequent costly convolu-
tion operations, bringing a substantial performance
increase.

We also discovered that the performance increase us-
ing this strategy grows with steeper transfer functions.
Both of the strategies analyzed in this paper proved ef-
fective, and the most interesting aspect is that, except
for one case, they work better when combined. We
also experienced that, in certain situations (see Figure
7 for an example), lowering the inter-slice distace be-
yond what produces images identical to the reference
does not immediately introduce aliasing, but the qual-
ity of the shading decreases and differences become no-
ticeable. This could however be an acceptable compro-
mise in some situations, in exchange of an additional
performance gain.
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Abstract
The planning of human body movements is highly predictive. Within a sequence of actions, the anticipation of a
final task goal modulates the individual actions within the overall pattern of motion. An example is a sequence of
steps, which is coordinated with the grasping of an object at the end of the step sequence. Opposed to this property
of natural human movements, real-time animation systems in computer graphics often model complex activities by
a sequential concatenation of individual pre-stored movements, where only the movement before accomplishing
the goal is adapted. We present a learning-based technique that models the highly adaptive predictive movement
coordination in humans, illustrated for the example of the coordination of walking and reaching. The proposed
system for the real-time synthesis of human movements models complex activities by a sequential concatenation
of movements, which are approximated by the superposition of kinematic primitives that have been learned from
trajectory data by anechoic demixing, using a step-wise regression approach. The kinematic primitives are then
approximated by stable solutions of nonlinear dynamical systems (dynamic primitives) that can be embedded
in control architectures. We present a control architecture that generates highly adaptive predictive full-body
movements for reaching while walking with highly human-like appearance. We demonstrate that the generated
behavior is highly robust, even in presence of strong perturbations that require the insertion of additional steps
online in order to accomplish the desired task.

Keywords
computer animation, movement primitives, motor coordination, action sequences, prediction.

1 INTRODUCTION

A central problem in computer animation is the
online-synthesis of complex behaviors that consist of
sequences of individual actions, which have to adapt to
continuously changing environmental constraints. An
example is the online planning of coordinated walking
and reaching, when the position of the reaching goal is
dynamically changing.

A prominent approach for the solution of this
problem in computer graphics is the adaptive inter-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

polation between motion-captured example actions
[WP95, GSKJ03, AFO03]. Other approaches are
based on learned low-dimensional parameterizations of
whole body motion, which are embedded in mathemat-
ical frameworks for the online generation of motion
(e.g. [HPP05, SHP04, RCB98, WFH08, LWS02]).
Several methods have been proposed that segment
action streams into individual actions, where mod-
els for the individual actions are adapted online in
order to fulfill additional constraints, such obstacle
avoidance or the correct positioning of end-effectors
([KGP02, RGBC96, PSS02]). The dependencies
between constraints in such action sequences have
been recently exploited to generate more realistic
animations. In [FXS12] captured motion examples
are blended according to a prioritized "stack of con-
trollers". In [SMKB14] the instantaneous blending
weights of controllers are pre-specified differently for
different body parts involved in the current action and
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the priority of the different controllers is governed
by their sequential order. In [HK14] the synthesis
of locomotion plus arm pointing at the last step is
carried out by blending of captured actions determining
the weights by "inverse blending optimization". In
this study arm pointing was blended with the arm
swinging motion of the last step. The choice of the the
arm pointing primitives depended on the gait phase,
according to an empirical rule introduced by authors.

Physics-based animation is another approach for the on-
line generation of motion (e.g. [ST05, FP03]). Com-
plex action sequences are segmented into individual
actions, which are characterized by solutions of opti-
mization problems, derived from mechanics and ad-
ditional constraints (contact, friction, or specified via-
points) ([AMJ07, LHP05, MLPP09]). While these ap-
proaches generate highly adaptive behavior for indi-
vidual actions, the problem to generate natural-looking
transitions between the individual actions is non-trivial.
As consequence, artifacts (e.g. hesitation, jerky move-
ment) can emerge at transition points, (e.g. [WZ10]).

Opposed to these approaches skilled human motor be-
havior has been shown to be highly predictive. Within
complex activities, action goals and the associated con-
straints influence actions that appear already a long time
before the constraint within the behavioral stream, and
thus allows the generation of smooth and optimized be-
haviors over complex action sequences. This was in-
vestigated, for example, in a recent study on the co-
ordination of walking and reaching. Human subjects
had to walk towards a drawer and to grasp an object,
which was located at different positions in the drawer.
Humans optimized their behavior already significantly
before object contact, consistent with the hypothesis of
maximum end-state comfort during the reaching action
[WS10, Ros08], and steps prior to the reaching were
modulated in order to accomplish the goal.

Whole body movements of humans and animals are
organized in terms of muscle synergies or movement
primitives [Ber67, FH05]. Such primitives characterize
the coordinated involvement of subsets of the available
degrees of freedom in different actions. An example
is the coordination of periodic and non-periodic
components of the full-body movements during
reaching while walking, where behavioral studies
reveal a mutual coupling between these components
[CG13, CMCH96, Ros08, MB01]. The realism and
human-likeness of synthesized movements in robotics
and computer graphics can be improved by taking such
biological constraints into account [FMJ02].

We present a learning-based framework that makes
some of these properties applicable for realtime
animation in computer graphics. The underlying
architecture is simple and approximates complex full-
body movements by dynamic movement primitives

that are formulated in terms of nonlinear dynamical
systems [GMP+09, PMSG09]. These primitives
are constructed from kinematic primitives, that are
learned from trajectory sets by anechoic demixing
in an unsupervised manner. Similar to the related
approaches in robotics [GRIL08, BRI06], the method
generates complex movements by the combination
of a small number of learned dynamical movement
primitives [OG11, GMP+09]. We demonstrate this
approach by the highly adaptive online generation of
multi-step sequences with coordinated arm movements.

The paper is structured as follows: After the description
of the animation system in section 2, we present some
example results section 3, followed by a conclusion.

2 SYSTEM ARCHITECTURE
Our work is based on motion capture data from a sin-
gle human subject performing a drawer opening task. In
the following, this data set is described briefly. Then the
different key elements of the proposed algorithm are in-
troduced: movement generation by dynamic primitives,
modeling of coordination by step-wise regression, and
the algorithms for online blending and control.

2.1 Motion capture data
Our system was based on motion capture data from a
single human subject that executed a drawer opening
task, walking towards a drawer and then reaching for
an object in the drawer. The distance of the subject
from the drawer and the position of the object was var-
ied [LRSS13] (Fig. 1). These training sequences con-
sisted of three subsequent actions or movements: 1) a
normal walking step; 2) a shortened step with the left-
hand starting to reach towards the drawer. This step
showed a high degree of adaptability, and was typically
adjusted in order to create an optimum distance from
the drawer (maximum comfort) for the reaching move-
ment during the last action; 3) the drawer opening and
the reaching of the object while standing. The object
position in the drawer was indicated to the participants
at the beginning of each trial. (See [LRSS13] for further
details). (See video [Demo1].)

The analysis of the distances between the pelvis and
the drawer or the object in these action sequences re-
veals the predictive nature of human movement plan-
ning, as shown in Fig. 2 where the distances ordered
according to the initial walking distance to the drawer.
While the length of the first step and the distance from
the drawer in the last step are relatively constant, a
major distance adjustment is made in the second step.

1 www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v1.avi
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Figure 1: Illustration of the human behavior. The figure
illustrates important intermediate postures (normal walking
step, step with initiation of reaching, standing while drawer
opening, and object reaching).
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Figure 2: Predictive planning in real human trajectories. Dis-
tances from the pelvis to the front panel of the drawer (green,
yellow, red), and the distance between the front panel and the
object (blue) for different trials. Mainly the second action is
adjusted as function of the initial distance from the goal.

The length of the first step is not significantly cor-
related with the initial distance to the drawer (linear
regression: R2 = 0.08, p = 0.429), while the correla-
tions with the distance to the drawer after first step,
and the length of the second step are highly significant
(R2 = 0.95, p = 1.4 ·10−6).

2.2 Real-time synthesis of movements by
learned dynamic primitives

The modeling of the individual actions within the
sequence exploits a learning-based approach, which
we implemented successfully before for locomotion
as well as to other complex human body movements
[GMP+09]. The system architecture is illustrated in
Fig. 3.

Based on the motion capture data, we learned spatio-
temporal components of the three actions in an un-
supervised way, applying anechoic demixing [OG11,
CdEG13]). We have shown before that this method
leads to highly compact approximations of human tra-
jectories, reaching almost perfect approximations of of-
ten with less than five learned source functions. The
skeleton model of the animated characters had 17 joints.
The joint angle trajectories were represented by normal-
ized quaternions (exploiting an exponential map repre-
sentation, c.f. [Mai90], with 3 variables specifying each

Limit cycle attractors Periodic signals

time

Mixing model

Joint angles

3D positions

x(t) SVR

s (t)0

time
Non-periodic signal Kinematic model

x(t) = m + w s (t - t)Si i ij j ij
j

s (t - t) j ij

f ( M x(t) ) j tij 

timing control

Figure 3: Architecture for the online synthesis of body
movements using dynamic primitives.

quaternion). The angles were approximated by an ane-
choic mixture model of the form:

ξi(t)︸︷︷︸
angles

= mi +∑
j

wi j s j (t− τi j)︸ ︷︷ ︸
sources

(1)

The index i specifies the joint-angle component, and the
index j the source signals s j. The parameters wi j and
τi j specify the mixing weights and time delays of the
source decomposition model, which are estimated to-
gether with the other parameters by the demixing algo-
rithm. The parameters mi specify the means of the joint
trajectories.

In order to generate movements online, the source func-
tions are generated by mapping the solutions of a non-
linear dynamical system (canonical dynamics) onto the
source functions s j. For mathematical convenience, we
chose a limit cycle oscillator (Hopf oscillator) as canon-
ical dynamics. It can be characterized by the differ-
ential equation system (with ω defining the eigenfre-
quency), for the pair of state variables [x(t),y(t)]:

ẋ(t) = [1− (x2(t)+ y2(t))]x(t)−ωy(t)+ k(xp(t)− x(t))

ẏ(t) = [1− (x2(t)+ y2(t))]y(t)+ωx(t)+ k(yp(t)− y(t))

The last terms specify coupling terms to a pair of
input signals xp(t) and yp(t), and k is the coupling
strength. For k = 0 this equation produces a stable
limit cycle. The state space variables x and y are
mapped onto the source functions s j by nonlinear
mapping functions f j(x,y), which were learned by
support vector regression (using a radial basis function
kernel and the LIBSVM Matlabr library [CL01]). The
learned source functions s j(t) and corresponding states
[x(t),y(t)] from the attractor solution of the limit cycle
oscillator were used as training data.
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Figure 4: Comparison of approximation quality for different
methods for blind source separation as function of the number
of sources, using a step-wise regression approach (residuals
after subtraction of the contribution of the non-periodic source
signal). Solid lines: Approximation quality for trajectories
of all three actions as a function of the number of (periodic)
source functions for anechoic demixing (blue) and principle
component analysis (PCA) (green). The purple dotted line
shows the approximation quality for the first action, fixing the
delays across trials. The red dashed line shows approximation
quality when 2 additional sources (with fixed delays) were
included in order to model the remaining residuals. Circles
mark the chosen numbers of sources in our implementation.

The coupling term (for k > 0) allows the coupling of
different dynamic primitives, if they are specified by the
state variables of another oscillator. We have discussed
elsewhere that this form of coupling, with appropriate
constraints for the parameters, allows to guarantee the
stability of the solutions of networks of such primitives.
The relevant stability conditions can be derived using
Contraction theory [LS98, PMSG09].
In our architecture we used one leading oscillator, and
the other oscillators were coupled to this leading oscil-
lator in the described form (star topology of the cou-
pling graph, where couplings are unilateral from the
center to the leaves of the star). The stability proper-
ties of this form of coupling were studied in detail in
[PMSG09], and it can be shown that this dynamics has
only a single exponentially stable solution. The state of
the leading oscillator was also used for the control of
the non-periodic source functions.
From the source signals that were generated online, the
joint angles were computed using equation (1). Exploit-
ing the fact that the attractor solution of the Hopf oscil-
lator lies on a circle in state space, the delays can be
replaced by an appropriate rotations of the variables of
the state space (x,y). In this way, we obtained a dy-
namics without explicit time delays, avoiding difficul-
ties with the design of appropriate controllers. Different
motion styles were generated by blending of the mixing
weights wi j and the trajectory mean values mi.

2.3 Stepwise regression approach for the
modeling of the individual actions

In order to model the step sequences with coordinated
walking and reaching we approximated the training

data by the described anechoic mixtures, using a
step-wise regression approach that introduced different
types of source functions for the three different compo-
nent actions.

Reaching is a non-periodic movement and therefore
requires the introduction of a non-periodic source
function. In order to generate such a function online,
the phase of the leading Hopf oscillator was derived
from the state variables according to the relation-
ship φ(t) = mod2π(arctan(y(t)/x(t))), (ensuring
0 ≤ φ < 2π). The non-periodic source signal was
defined by s0(t) = cos(φ(t)/2), and the corresponding
delay was set to zero.
The three actions of the training sequences were
modeled as follows:

1st action: The weights of the non-periodic sources
were determined in order to account for the non-
periodic part of the training trajectory. Then this
component was subtracted from the trajectory data, and
the periodic source functions were determined by ane-
choic demixing, using an algorithm from [CdEG13],
which had been modified in order to constrain all time
delays belonging to the same source function to be
equal. This constraint simplifies the blending between
different motion styles, since then the delays of the
sources are identical over styles, so that they do not
have to be blended. Compared to the unconstrained
anechoic model, this constraint requires the intro-
duction of more sources for the same approximation
quality (see Fig. 4). The first step could be modeled
with sufficient accuracy using three periodic sources in
addition to the non-periodic one.

2nd action: In order to model the second highly
adaptive step, five periodic sources were required. The
first three periodic sources were identical with the ones
used for the approximation of the first action, and also
the corresponding delays. The weights were optimized
in order to minimize the remaining approximation
error. The contributions of these three periodic sources
(and of the non-periodic sources), then were subtracted
from the training data, and two additional periodic
sources were learned from the residuals (with constant
delays across trials).

3rd action: In order to approximate this action, we
used the same non-periodic and five periodic source
signals, with the same time delays, that were identified
for the modeling of the second action, while the
weights of these sources were re-estimated.

The estimated source functions are shown in Fig. 5.
The dotted curve illustrates the non-periodic source.
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Figure 5: The source signals extracted by anechoic de-
mixing algorithm. a): three periodic source signals extracted
from the first action and non-periodic source signal (dashed
line). b): two additional periodic source signals that were
used for the modeling of the second and the third actions.

The source functions illustrated in the upper panel were
used for the approximation of all three actions, and the
two in the lower panel only for actions two and three.
Fig. 4 shows the approximation quality as a function
of the number of source functions for the first and the
second action, comparing normal anechoic demixing
[OG11], our algorithm with constant delays over the
different conditions [CdEG13], and a reconstruction us-
ing PCA. The measure for approximation quality was
defined as Q = 1− (‖X − X̂‖2

F)/‖X‖2
F , where X is the

matrix with the samples of the original signal, and X̂ is
the reconstructed signal, ‖ ·‖2

F is the squared Frobenius
norm. Especially, the model without constraints for the
delays still achieves significantly better approximation
quality than PCA. The reconstruction error for the first
action (purple circle on Fig. 4) is 95.6%, while the one
with the two additional sources, used for actions 2 and
3, is 96.7% for the whole dataset (red circle).
The absolute values of the amplitudes of the weights
for a single trajectory are depicted at Fig. 6, separately
for the two source signals that carried the maximum
amount of variance. This is the non-periodic source
and the periodic source with the lowest frequency. The
figure shows that the primitives clearly contribute to the
different degrees of freedom of the human body. The
non-periodic source primarily contributes to the joint
angles of the arm, while the periodic source function
strongly influences the hip and the leg joints. This
clearly reflects the organization of human full body
movements in terms of movements primitives. The
figure also shows that the contribution of the sources
changes between the steps. In the first action the con-
tribution of the first periodic source is dominant, while
in the second and last action the non-periodic source
function makes a dominant contribution, reflecting the
non-periodic reaching movement.

2.4 Online blending of the mixing weights
As illustrated in Fig. 6, the mixing weights change be-
tween the different actions within the sequence. For
the modeling of a smooth transitions between the differ-
ent actions the mixing weights thus had to be smoothly
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The distribution of the amplitudes of sources weights 

1

0.8

0.6

0.4

0.2

0

Figure 6: Absolute values of the weights for an example
trajectory of the data set. The computed mixing weights are
shown from the different actions within the sequence for the
periodic source function with minimum frequency and for the
non-periodic source. The color code is the same for both pan-
els.

interpolated in an online fashion at the transitions be-
tween the individual actions.

For the weights associated with the periodic
sources, the corresponding weight matrices were
linearly blended according to the relationship
W (t) = (1 − α(t))Wprev + α(t)Wpost, where Wprev
is the weight matrix in the step prior to the transition
and Wpost the one after the transition. The mean values
for each of the angle trajectories were morphed accord-
ingly: m(t) = (1−α(t))mprev +α(t)mpost, where mprev
is the mean value in the step prior to the transition and
mpost is the one after the transition. The time-dependent
blending weight α(t) was constructed from the phase
variable φ(t) of the leading oscillator. Identifying the
transition point, where the weights switch between the
subsequent actions with the phase φ = 0, the blending
weight was given by the equation (here, regarding only
two adjunct actions, we use convention: φ ∈ [−2π;0[
for a previous action, and φ ∈ [0;2π[ for a next one):

α(t) =


0 φ <−β ,

(1+ sin(πφ(t)
2β

))/2 φ ∈ [−β ;β ],

1 φ > β

 (2)

The parameter β = π/5 determines the width of the
interpolation interval and was chosen to guarantee
natural-looking transitions. This value was derived
in previous work, optimizing transitions for other
scenarios [GMP+09].

The weights associated with the non-periodic source
had to be treated separately since they can have
different signs before and after the transition. Since
the timing of this source is completely determined by
the phase φ(t) of the leading oscillator, we constrained
the blending by allowing sign changes for these
weights only at the point where this phase crosses
zero (φ(t) = 0). The ramp-like non-periodic source is
normalized in a way so that s0(0) = 1 and s0(T ) = −1
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Figure 7: Learned nonlinear mappings between action length
and duration and the mixing weight of the 1st source for hip
flexion angle: a) 1st action, b) 2nd action.

(T being the duration of an oscillation of the leading os-
cillator in the attractor state). The following morphing
rule W (t) = sign(φ(t))[(α(t) − 1)Wprev + α(t)Wpost ]
ensures a smooth transition that make the
weights for this source converge at the bound-
aries between the actions against the value
ξtrans = (mprev +mpost)/2+(Wpost−Wprev)/2.

2.5 Learning of mappings between step
parameters and mixing weights

In order to make the generated behavior highly adap-
tive for conditions that were not in the training data
and for dynamic changes of the environment, we de-
vised an online control algorithm for the blending of
the weights W , separately for each action. For this
purpose, we learned nonlinear functions that map the
step lengths and the duration of the steps onto the mix-
ing weights. For the learning of this highly nonlin-
ear mapping we used locally weighted linear regression
(LWLR, [AMS97]). Fig. 7 shows some example for the
weights of the first periodic source.

The required step lengths are computed online from
the total distance to the drawer. The length of the step
of the second action was optimized in order to generate
an optimum (maximally comfortable) distance for the
third action, which was estimated from the human
data to be about 0.6m. The total distance between the
start position and the drawer D was then redistributed
between the first two actions using a linear weighting
scheme, specifying the relative contributions by the
weight parameter γ . The remaining distance D− 0.6m
was then distributed according to the relationships
D1 = (D−0.6m)γ and D2 = (D−0.6m)(1− γ), where
we fitted γ = 0.385 based on the human data. This
approach is motivated by the hypothesis that in humans
predictive planning optimizes end-state comfort, i.e.
the distance of the final reaching action [LRSS13].

We extended the algorithm in addition by a method
that introduces additional normal steps (corresponding
to action 1), in cases where the goal distance exceeds
the distance that can be modeled without artifacts by a
three-action sequence. If the distance between the goal

Figure 8: Two synthesized trajectories, illustrated in parallel
for two conditions with different initial distance of the charac-
ter from the drawer. Both animations look highly natural even
though these goal distances were not present in the training
data set.

and the agent was too short for the introduction of long
steps, instead a variable number of short steps as in ac-
tion 2 were introduced.

3 RESULTS
Two example sequences of concatenated actions gener-
ated by our algorithm, for distances to the goal object
that were not in the training set are shown in Fig. 8. An
example video can be downloaded from [Demo2].

A more systematic evaluation shows that the algorithms
can, without introducing additional steps, create nat-
ural looking coordinated sequences for goal distances
between 2.34 and 2.94 m [Demo3]. If the specified
goal distance exceeded this interval our system intro-
duced automatically additional gait steps, making the
system adaptive for goal distances beyond 3 meters.
This is illustrated in [Demo4] that presents two exam-
ples of generated sequences for goal distances 3.84 and
4.62 m. With 3 actions the largest achievable range of
goal distances without artifacts was about 60 cm, while
adding another step increases this range to about 78 cm.
Adding two or more normal gait steps our method is
able to simulate natural-looking actions even for goal
distances longer than 5 m. The next [Demo5] illustrates
the sequence of three actions of first type followed by
actions 2 and 3 for the goal distance 5.3 m.

Fig. 9 illustrates that, like in humans, the posture at the
transition between the second and third action depends

2 www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v2.avi
3 www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v3.avi
4 www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v4.avi
5 www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v5.avi
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Figure 9: Postures at the transition between actions 2 and 3
for different lengths of the second action (red: 0.53 m , green:
0.39 m). Even though the distances to the drawer are the same
in the last action the postures differ due to the predictive plan-
ning of the second action.

Figure 10: Online perturbation experiment. The goal
(drawer) jumps away during the approaching of the charac-
ter. The online planning algorithm introduces automatically
an action of type 2 (short step) to adjust for the large distance
to the goal.

on the previous step. In one case the step lengths for ac-
tion 2 were 0.53m and 0.39m, while the distance in the
last step was identical (0.6m). This illustrates that in
fact the posture for the reaching is modified in a predic-
tive manner over multiple steps, where the predictive
planning modifies the posture at the beginning of the
last action even if the distance to the goal object for this
action is identical. A planning scheme that is not pre-
dictive would predict here the same behaviors for the
last action since the relevant control variable (distance
from the object) is identical for both cases.

An even more extreme demonstration of this online
adaptivity is shown in movie [Demo6]. Here the drawer
jumps away during the approaching behavior by a large
distance so that it can no longer be reached with the
originally planned number of steps. (Fig. 10). The on-
line planning algorithm adapts to this situation by au-
tomatically introducing an additional step so that the
behavior is successfully accomplished. Again the be-
havior has a very natural appearance even though this
scenario was not part of the training data set.

6 www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v6.avi

4 CONCLUSIONS
We have presented a method for the online animation of
multi-step human movements that was inspired by con-
cepts derived from biological systems. The proposed
system realizes a predictive planning of multi-step
sequences, including periodic an non-periodic move-
ments that reproduce critical properties observed in
experiments on human motor planning. The planning
is predictive and optimizes the ’comfort’ during the
execution of the final action. The proposed system
exploits the concept of movement primitives in order
to implement a flexible and highly natural-looking
coordination of periodic and non-periodic behaviors
of the upper and lower limbs, and to realize smooth
transitions between subsequent actions within the
sequence. For the first time, our architecture is im-
plemented for generation of goal-directed movements.
Our approach differs from the whole-body motion
blending approach presented in [HK14], where, in
order to increase naturalness of the transitions, it was
necessary to introduce empirical rules that depend on
the gait phase. Future work will extend our approach
to other classes of movements, including, for instance,
adaptive arm reaching movements accomplished while
walking. In addition, we plan a systematic evaluation
of the realism of the generated motions, including
psychophysical studies.

ACKNOWLEDGEMENTS
The work supported by EC FP7 under grant agreements
FP7-248311 (AMARSi), FP7-611909 (Koroibot),
H2020 ICT-644727 (CogIMon), FP7-604102 (HBP),
PITN-GA-011-290011 (ABC), DFG GI 305/4-1,
DFG GZ: KA 1258/15-1, BMBF, FKZ: 01GQ1002A.
Authors thank Biwei Huang for help with data
segmentation and animation.

REFERENCES
[AFO03] O. Arikan, D.A. Forsyth, and J. F. O’Brien. Motion syn-

thesis from annotations. ACM Trans. on Graphics, SIG-
GRAPH ’03, 22(3):402–408, 2003.

[AMJ07] Y. Abe, Da Silva M., and Popović J. Multiob-
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ABSTRACT
This paper introduces a new 3D skeleton-based gait recognition method for motion captured by a low-cost con-
sumer level camera, namely the Kinect. We propose a new representation of human gait signature based on the
spatio-temporal changes in relative angles among different skeletal joints with respect to a reference point. A se-
quence of joint relative angles (JRA) between two skeletal joints, computed over a complete gait cycle, comprises
an intuitive representation of the relative motion patterns of the involved joints. JRA sequences originated from
different joint pairs are then evaluated to find the most relevant JRAs for gait description. We also introduce a
new dynamic time warping (DTW)-based kernel that takes the collection of the most relevant JRA sequences from
the train and test samples and computes a dissimilarity measure. The use of DTW in the proposed kernel makes
it robust in respect to variable walking speed and thus eliminates the need of resampling to obtain equal-length
feature vectors. The performance of the proposed method was evaluated using a Kinect skeletal gait database.
Experimental results show that the proposed method can more effectively represent and recognize human gait, as
compared against some other Kinect-based gait recognition methods.

Keywords
Gait recognition, Kinect v2, joint relative angle (JRA), DTW-kernel, motion analysis.

1 INTRODUCTION
Over the past ten years, biometric recognition and au-
thentication has attracted a significant attention due to
its potential applicability in social security, surveillance
systems, forensics, law enforcement, and access con-
trol [1, 2]. A biometric system can be defined as a
pattern-recognition system that can recognize individ-
uals based on the characteristics of their physiology or
behavior [3, 4]. Gait is one of the very few biometrics
that can be recognized at a distance without any direct
participation or cooperation of the user. Gait recogni-
tion involves identifying a person by analyzing his/her
walking pattern. Since human locomotion is a com-
plex and dynamic process that comprises movements of
different body limbs and their interactions with the en-
vironment [5], disguising one’s gait or imitating some
other person’s gait is quite difficult. As a result, gait
recognition is particularly useful in crime scenes where
other biometric traits (such as face or fingerprint) might

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

be obscured intentionally [6]. The non-invasive nature
and the ability to recognize individuals at a distance
makes gait an attractive biometric modality in security
and surveillance systems [7, 8]. In addition, gait analy-
sis has many applications in virtual and augmented re-
ality, 3D human body modeling and animation [9, 10],
motion and video retrieval [11], health care [12]), etc.

In this paper, we present a new Kinect-based gait recog-
nition method that exploits the relative motion patterns
of different skeletal joints to represent the gait features.
The proposed method encodes the relative motion be-
tween two joints by computing the joint relative angles
(JRA) over a complete gait cycle. Here, JRA is defined
as the angles formed by the corresponding two joints
with respect to a reference point in a 3D space. Rele-
vance of a particular joint pair in gait feature represen-
tation is then evaluated based on an intuitive statistical
analysis that reflects the level of engagement of a par-
ticular joint pair in human walking. Finally, we intro-
duce a new dynamic time warping (DTW)-based ker-
nel, which is used to compute the dissimilarity between
the collection of JRA sequences obtained from two gait
samples. The performance of the proposed method is
evaluated using a 20-person skeletal gait database cap-
tured using the Kinect v2 sensor. The experimental
analysis shows that the proposed method can represent
and recognize human gait in a more effective manner,
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as compared against some existing Kinect-based gait
recognition methods.

2 RELATED WORK
Different gait recognition methods found in literature
can be divided into two categories: i) model-based ap-
proaches and ii) model-free approaches [13]. In model-
based approaches, explicit models are used to represent
human body parts (legs, arms, etc.) [14]. Parameters
of these models are estimated in each frame and the
change of the parametric values over time is used to rep-
resent gait signature. However, the computational cost
involved with model construction, model fitting, and
estimating parameter values makes most of the model-
based approaches time-consuming and computationally
expensive [14]. As a result, they are unsuitable for a
wide range of real-world applications. One of the early
parametric gait recognition methods was proposed by
BenAbdelkader et al. [15], where they estimated two
spatiotemporal parameters of gait, namely stride length
and cadence as two distinctive biometric traits. Later,
Urtasun and Fua [16] proposed a gait analysis method
that relies on fitting 3-D temporal motion models to
synchronized video sequences. Recovered motion pa-
rameters from the models are then used to character-
ize individual gait signature. A similar approach pro-
posed by Yam et al. [17] models human leg structure
and motion in order to discriminate between gait signa-
tures obtained from walking and running. Although this
method presents an effective way to view and scale in-
dependent gait representation, it is computationally ex-
pensive and sensitive to the quality of the gait sequences
[18].

Instead of modeling individual body parts, the model-
free approaches utilize the silhouette as a whole in or-
der to construct a compact representation of walking
motion [14]. Gait energy image (GEI) [19] and mo-
tion energy image (MEI) [20] are two of the most well-
known model-free gait recognition methods. The ba-
sis of the MEI representation is a temporal vector im-
age. Here, each vector point holds a value, which is
a function of the motion properties at the correspond-
ing sequence image [20]. On the other hand, GEI ac-
cumulates all the silhouette motion sequences in a sin-
gle image, which preserves the temporal information as
well [19]. Many of the recent model-free gait recog-
nition methods extend GEI to a more robust represen-
tation. For example, Chen et al. [21] proposed frame
difference energy image (FDEI), which utilizes denois-
ing and clustering in order to suppress the influence
of silhouette incompleteness. Li and Chen [22] fused
foot energy image (FEI) and head energy image (HEI)
in order to construct a more informative energy im-
age representation. Although model-free approaches
are computationally inexpensive, they are sensitive to

view and scale changes and therefore, not suitable in
uncontrolled environments.

While biometric gait recognition has been studied for
the past twenty years, the recent popularization and low
cost of Kinect has contributed to the spike in the in-
terest in gait recognition using Kinect data. Kinect is
a low-cost consumer-level device made up of an ar-
ray of sensors, which includes i) a color camera, ii) a
depth sensor, and iii) a multi-array microphone setup.
Figure 1 shows different data streams that can be ob-
tained from the Kinect. In addition, Kinect sensor can
track and construct a 3D virtual skeleton from human
body in real-time [23] (as shown in Figure 2), which
renders the time consuming video processing steps un-
necessary. All these functionalities of Kinect have led
to its application in different real-world problems, such
as home monitoring [24], health care [25], surveil-
lance [26], etc. The low computation real-time skeleton
tracking feature has encouraged some recent gait recog-
nition methods that extract features from the tracked
skeleton model. One of the pioneer studies conducted
by Ball et al. [7] used Kinect for unsupervised clus-
tering of gait samples. Features were extracted only
from the lower body part. Preis et al. [27] presented
a Kinect skeleton-based gait recognition method based
on 13 biometric features: height, the length of legs,
torso, both lower legs, both thighs, both upper arms,
both forearms, step-length, and speed. However, these
features are mostly static and represent individual body
structure, while gait is considered to be a behavioral
biometric, which is more related to the movement pat-
terns of body parts during locomotion. Gabel et al. [28]
used the difference in position of these skeleton points
between consecutive frames as their feature. However,
the proposed method was only evaluated for gait param-
eter extraction rather than person identification.

In this paper, we investigate Kinect-based gait recog-
nition by the means of a new feature, namely the joint
relative angle (JRA). The motivation is to capture the
relative motion patterns of different joint pairs by ex-
amining how the corresponding relative angle between
them varies over time. We also introduce an extension
of the dynamic time warping (DTW) method, namely
the DTW-based kernel that evaluates a collection of
JRA sequences for the recognition task.

3 PROPOSED METHOD
The proposed new gait recognition method utilizes the
3D skeleton data obtained from the Kinect v2 sensor.
Robustness to view and pose changes are the main ad-
vantages offered by the proposed method. Released in
mid-July 2014, Kinect v2 offers a greater overall pre-
cision, responsiveness, and intuitive capabilities than
the previous version [29]. The v2 sensor has a higher
depth fidelity that enables it to see smaller objects more
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Infrared Gray-scale depth video Skeleton in a 3D space

Kinect v2 sensor

Figure 1: Different data streams obtained from the Kinect v2 sensor.

clearly, which results in a more accurate 3D object con-
struction [29]. It can track a total of six people and 25
skeletal joints per person simultaneously [29]. In ad-
dition, while the skeleton tracking range is broader, the
tracked joints are more accurate and stable than the pre-
vious version of the Kinect [29].

There are several steps involved in the proposed gait
recognition method. The first step is to detect a com-
plete gait cycle from the video sequence captured using
the Kinect sensor. Since gait is a cyclic motion, detec-
tion of a complete gait cycle facilitates consistent fea-
ture extraction. Next, joint relative angle (JRA) features
for different joint-pairs are computed over the complete
gait cycle. One of the main advantages of using angle-
based feature representation is that it is scale and view
invariant. As a result, recognition is not constrained by
a fixed distance from the camera or individuals walking
only towards a specific direction in front of the cam-
era. In order to assess the relevance of a particular
JRA feature in gait representation, we employ a statis-
tical analysis that evaluates the corresponding joint pair
based on their involvement in gait movement. Only the
most relevant joint pairs are considered in the proposed
JRA-based gait feature representation. Once the feature
representation is obtained, the proposed dynamic time
warping (DTW)-based kernel is used for the classifi-
cation task. The proposed kernel takes a collection of
the most relevant JRA sequences from both the training
and test samples as parameters and computes a dissim-
ilarity measure between them. One particular advan-
tage of the proposed kernel is that, it can match vari-
able length JRA sequences originated due to variable
walking speed in different videos of the same person,
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7. ElbowRight
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9. WristRight

10. ThumbLeft
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17. SpineBase
18. HipLeft
19. HipRight
20. KneeLeft

1. Head
2. Neck
3. SpineShoulder
4. ShoulderLeft
5. ShoulderRight

Figure 2: 3D skeleton joints tracked by the Kinect v2
sensor.

Journal of WSCG http://www.wscg.eu

Vol.23, No.1-2 149 ISBN 978-80-86943-64-0

Cumulative Edition



thus eliminating any need of pre-processing steps, such
as resampling. Figure 3 shows the overview of the pro-
posed gait recognition method.

3.1 Gait cycle detection
The first task of any gait recognition method is to iso-
late a complete gait cycle so that salient features can be
extracted from it. Regular human walking is considered
to be a cyclic motion, which repeats in a relatively sta-
ble frequency [14]. Therefore, features extracted from
a single gait cycle can represent the complete gait sig-
nature. A gait cycle is composed of a complete cycle
from rest (standing) position-to-right foot forward-to-
rest-to-left foot forward-to rest or vice versa (left food
forward followed by a right foot forward) [30]. In order
to identify gait cycles, the horizontal distance between
the AnkleLeft and AnkleRight joints was tracked over
time, as shown in Figure 4. A moving average filter was
used to smooth the distance vector. During the walking
motion, the distance between the two ankle joints will
be the maximum when the right and the left leg are far-
thest apart and will be the minimum when the legs are
in the rest (standing) position. Therefore, by detect-
ing three subsequent minima, it is possible to find the
three subsequent occurrences of the two legs in the rest
position, which corresponds to the beginning, middle,
and ending points of a complete gait cycle, respectively
[31].

3.2 Gait feature representation using
joint relative angle (JRA)

The skeleton constructed by the Kinect v2 sensor com-
prises a hierarchy of 25 skeletal joints, where a con-
nection between two joints forms a limb. Therefore,
the raw data provided by the Kinect for gait is time se-
ries of 3D positions of these joints. However, this data
lacks properties like invariance against view and scale
changes, which makes direct use of this data as features
infeasible. We present a new gait feature representation
that processes this raw data and extracts the joint rel-
ative angles (JRA) formed by different pairs of joints
with respect to a reference point. JRA between two
joints p1 and p2 can be defined as the angle formed by
p1 and p2 with respect to a reference point r. Given the
coordinates of 3 points p1, p2, and r in a 3-D space,
the angle Θp1,p2 formed by p1→ r→ p2 using the right
hand rule from r can be calculated as:

Θp1,p2 = cos−1
−→p1r.−→rp2

||−→p1r||||−→rp2||
(1)

Here, −→p1r = r− p1, −→rp2 = p2− r, the dot(.) represents
dot product between two vectors, and ||−→p1r|| and ||−→rp2||
represent the length of −→p1r and −→rp2, respectively. The
SPINE_BASE joint was selected as the reference point,
since it remains almost stationary during walking.

JRAs computed over time provide an intuitive represen-
tation of the relative movements of the joints involved.
The advantages of using joint relative angle features are
two-fold: firstly, the computed JRA features are view
and scale independent. This means that, the feature
values will not be affected by the variation of the dis-
tance of the subject from the camera or the direction
of the subject’s walking. Secondly, according to [7],
joint distance-based features proposed in recent works
[27], [28] are found to vary over time significantly. As
a result, consistent feature extraction is difficult in some
cases. On the other hand, although the distances of the
joints vary over time, angles formed by the joints re-
main unaffected.

In this study, we consider JRAs originated from a par-
ticular joint-pair as a small fragment of a person’s gait
signature, where the full gait signature is defined as a
collection of JRA sequences originated from different
joint-pair combinations over a complete gait cycle. For
the 25 skeletal joints, there is a total of 300 possible
joint-pair combinations, which is a high-dimensional
feature space. In addition, not all joint-pair is relevant
in gait feature representation. For example, JRAs be-
tween the SpineShoulder and the SpineMid joints does
not represent any information related to human gait,
since both these joints remain almost stationary when a
person walks. Therefore, identifying the skeletal joint-
pairs that are relevant to human gait motion is impera-
tive for the proposed gait recognition method.

3.3 Selection of the most relevant JRA
sequences

Since not all skeletal joints engage during human lo-
comotion, not all JRA features are relevant in gait rep-
resentation. Relevance of a JRA sequence originated
from a particular joint pair can be evaluated intuitively
by analyzing human walking. In this paper, we present
a statistics-based relevant joint pair selection approach,
that utilizes histogram of JRA features to evaluate the
level of engagement of the corresponding joint pair.

For joint pairs that has high relative motion during gait,
the joint relative angles computed over the full gait cy-
cle should have high temporal changes. On the other
hand, joint pairs that remains stationary or moves lit-
tle during gait should have little variation of JRA over
the full gait cycle. This can also be represented us-
ing histogram of JRA values. For a particular joint
pair that has high relative motion during gait, the his-
togram should have a wide distribution. On the other
hand, for joint pairs that has little relative movement,
the JRA values will occupy only a few number of
bins in the histogram. Figure 5 shows histogram of
JRA values computed for different joint pair combi-
nations for 4 different participants. It can be observed
that, for some joint pairs ({SpineShoulder, SpineMid},
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Figure 3: Overview of the proposed gait recognition method.
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{ShoulderLeft, ShoulderRight}, {HipLeft, HipRight}),
the temporal change of JRA values over the complete
gait cycle is really small and therefore, the distribu-
tion of JRA values in the histogram is really narrow
(occupying only 2 or 3 bins). On the other hand, for
joint pairs like {AnkleLeft, AnkleRight}, {Shoulder-
Left, AnkleLeft}, and {ShoulderRight, AnkleRight},
the JRA values occupy a large number of bins in the
histogram. Based on this observation, we argue that,
the number of bins occupied in a JRA histogram of a
particular joint pair is an important measure to quantify
the level of engagement of the corresponding joint pair
in human gait. This, in turn, quantizes the relevance of

the corresponding joint pair in the gait movement. In
this paper, we use the number of occupied bins in the
JRA histogram of a particular joint pair to represent the
relevance of that joint pair in gait feature representa-
tion. A high number of occupied bins represents a high
relevance, while a small number represents a low rele-
vance.

3.4 DTW-kernel for gait recognition
Joint relative angles (JRA) for different joint-pairs com-
puted over a full gait cycle essentially represent se-
quences of time-series data. Alignment of such tem-
poral gait data is a challenging task due to variation of
walking speed, which might result in variable length
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Figure 5: Histogram of JRA values for different joint pairs and persons. It can be observed that, some joint pairs
have a wide distribution of JRA values in the histogram, while some other joint pair JRA values occupy only a
small portion of the histogram bins.

JRA sequences for the same person. Therefore, ap-
plying traditional classifiers in this scenario requires
extra pre-processing steps, such as resampling to ob-
tain equal-length feature vectors. However, resampling
of time-sequence data involves deletion or adding new
data, which might affect the recognition performance.
On the other hand, non-linear time sequence alignment
techniques can effectively reduce the effect of variable
walking speed by warping the time axis. Dynamic time
warping (DTW) is a well-known non-linear sequence
alignment technique. Originally proposed for speech
signal alignment [32], recent DTW applications are
mostly verification-oriented, such as offline signature
verification [33]. In this paper, we propose to utilize
DTW to design a kernel for gait recognition that takes
a collection of JRA time series data originated from
different joint pairs as the parameter and outputs the
dissimilarity measure between two given gait samples.
Use of DTW allows the alignment of different length
JRA sequences, which enables to match gait samples
without any intermediate resampling stage.

Given the set of all joint relative angles JRA =
{θ1,θ2, ...,θq}, where each θi represents JRAs for two
particular joints with respect to the reference point
computed over a full gait cycle, we first obtain a subset
of the most relevant JRA sequences:

θ = {θi|i = 1,2, ...,M where θi ∈ JRA} (2)

Let, θtrain and θtest are two JRA sequences from the
same joint-pair computed over a complete gait cycle,
where the length of θtrain and θtest are represented as
|θtrain| and |θtest |, respectively.

θtrain = a1,a2,a3, ...,a|θtrain| (3)

θtest = b1,b2,b3, ...,b|θtest | (4)

Here, at and bt are the JRA values of θtrain and θtest
at time t, respectively. Given these two time series,
DTW constructs a warp path W = w1,w2,w3, ...,wL,
where max(|θtrain|, |θtest |)≤ L≤ |θtrain|+ |θtest |. Here,
L is the length of the warp path between the two JRA
sequences. Each element of the path can be repre-
sented as wl = (x,y), where x and y are two indices
from the θtrain and θtest , respectively. There are a num-
ber of constraints that DTW must satisfy. Firstly, the
warp path must start at w1 = (1,1) and end at wL =
(|θtrain|, |θtest |). This in turn ensures that, every index
from the both time series is used in path construction.
Secondly, if an index i from θtrain is matched with an in-
dex j from θtest , it is prohibited to match any index > i
with any index < j and vice-versa. This restricts the
path from going back in time. Given these restrictions,
the optimal warp path can be defined as the minimum
distance warp path distoptimal(W ):

distoptimal(W ) = min
L

∑
l=1
{dist(wli,wl j)} (5)

Here, wli and wl j are two indices from θtrain and θtest ,
respectively and dist(wli,wl j) is the Euclidean distance
between wli and wl j.
We extend this basic DTW formulation to a kernel in
order to compute the dissimilarity between a training
and a testing gait sample, each of which is a collec-
tion of JRA sequences of different joint-pairs. The pro-
posed DTW-kernel aligns the training and testing JRA
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sequences of the same joint-pair with each other and
computes a match score between them. Summation of
all the match scores obtained from the different joint-
pair JRA sequences from the training and testing sam-
ples is treated as the final dissimilarity measure. For-
mally, the proposed DTW kernel ∆ for JRA-based gait
representation can be defined as:

∆(θ ,θ ′) =
M

∑
m=1
{min

L

∑
l=1
{dist(wm,li,wm,l j)}} (6)

Here, θ = {θ1,θ2, ...θM} and θ ′ = {θ ′1,θ ′2, ...,θ ′M}
are collections of JRA sequences from M different
joint-pairs and min∑

L
l=1{dist(wm,li,wm,l j)} represents

the minimum warp path distance between the m-th
joint pair JRAs of θ and θ ′.

For the classification task, we first apply the DTW-
kernel to compute the dissimilarity score and rank the
candidates accordingly. We use this ranklist for a ma-
jority voting scheme where the top N+1 (N is the num-
ber of classes) candidates are considered. Figure 6 il-
lustrates the proposed method.

4 EXPERIMENTS AND RESULTS
4.1 Experimental setup and dataset de-

scription
The performance of the proposed method is evaluated
using a Kinect skeletal gait database, provided by
the SMART Technologies, Calgary, Canada. The
gait database comprises 20 participants (14 male, 6

female), from around 20 to 35 years old. For each
person, a series of 3 videos was recorded in a meeting
room environment. The position of the Kinect was
fixed throughout the recording session. Each of
the video scenes contains a participant entering the
meeting room, walking toward a chair, and then sitting
on the chair. Figure 7 shows a frame of a sample
video from the gait database. We conducted a 3-fold
cross-validation in order to evaluate the effectiveness of
the proposed method. In a 3-fold cross-validation, the
whole dataset is randomly divided into 3 subsets, where
each subset contains an equal number of samples from
each category. The classifier is trained on 2 subsets,
while the remaining one is used for testing. The
average classification rate is calculated after repeating
the above process for 3 times. Since the database
comprises 3 videos per person, in each fold, two videos
were used for the training and the remaining one was
used for testing.

4.2 Results and Discussions
The first step in our experimental analysis is to detect
the most relevant joint pairs in order to represent the
gait. For this purpose, we use the methodology pro-
posed in section 3.3. For the 25 skeletal joints tracked
by the Kinect v2 sensor, we construct a 25×25 matrix
for each video sequence, where each cell corresponds
to the number of bins occupied in the histogram of JRA
values for a particular joint pair. Since our database
comprises 20 participants and 3 videos per participant,
we obtain a total of 60 matrices. For further analysis,
we compute the average matrix from the 60 matrices.
A heat map of the obtained 25× 25 average matrix is
shown in Figure 8. The heat map is symmetric on the
both side of the diagonal, since the JRA values beween
joints {J1, J2} and {J2,J1} are same. This map pro-
vides a comprehensive representation of the relevance
of a particular joint pair in gait representation, where
high value corresponds to high relevance and low value
corresponds to a low relevance.

Based on this representation of joint pair relevance, we
select subsets of JRA sequences for different thresholds
and evaluate the recognition performance. For a thresh-
old value of t, only the joint pair combinations with at
least t bins occupied in the JRA histogram were se-
lected for feature representation. Figure 9 shows the
recognition performance of the proposed method for
different subsets of JRA sequences selected for differ-
ent threshold values. It can be observed that, increasing
the number of bins excludes some of the less relevant
joint pairs in the classification task, thus increasing the
recognition performance. The highest recognition rate
of 93.3% is obtained for JRA sequences that occupy
more than or equal to 20 bins in the corresponding JRA
histogram. Increasing the number of selected bins fur-
ther results in a sharp decrease in the recognition perfor-
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Figure 7: Sample video frame from the gait database captured using Kinect v2 sensor.
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Figure 8: Heat map of the 25× 25 average matrix ob-
tained for the average number of bins occupied for dif-
ferent JRA histograms for all participants. Here, each
point (i, j) represents the average number of occupied
bins in the JRA histogram obtained for joint pair {i, j}.

mance. For the number of occupied bins > 20, Figure
10 shows a heat map representation of the selected joint
pairs. Here, the dark points correspond to the excluded
joints, while points with high heat corresponds to a rel-
evant joint pair. This map is also symmetric. Therefore,

Figure 9: Performance of the most relevant JRA-based
gait recognition for different number of occupied bins.
The correct matching rate is obtained from 3-fold cross-
validation.

only considering upper left triangle or lower right trian-
gle formed by the diagonal (line from (1, 1) to (25, 25))
should be considered.

Finally, we compare the performance of the proposed
method against some recent Kinect skeleton-based gait
recognition methods. We have selected two studies and
tested their performance on our gait database. Details
of the selected two methods can be found in [7] and
[27]. Table 1 shows the recognition performance of
these methods. From the experimental results, it can
be said that, gait recognition based on the collection
of JRA sequences and DTW-kernel is more robust and
achieves higher recognition performance than some of
the existing gait recognition methods. The superiority
of the proposed method is due to the utilization of view
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Figure 10: Heat map for the most relevant joint pair
combinations found in our experiments. The dark re-
gion corresponds to the all joint pair combinations that
are excluded from the final feature representation.

and pose invariant relative angle features coupled with
a relevance evaluation and non-linear alignment of vari-
able length feature sequences using the DTW-kernel.

Method Recognition Rate
(%)

Collection of the most
relevant JRA sequence +
DTW-Kernel

93.3

Ball et al. [7] 66.7
Preis et al. [27] 84.2

Table 1: Recognition rates of different methods for 3-
fold cross-validation.

5 CONCLUSION
This paper presented a new Kinect-based gait recogni-
tion method that utilizes the 3D skeleton data in order
to compute a robust representation of gait. We intro-
duced a new feature, namely the joint relative angle that
encodes the relative motion patterns of different skele-
tal joint pairs by computing the relative angles between
them with respect to a reference point. To evaluate the
relevance of a particular JRA sequence in gait feature
representation, we constructed histograms of JRA fea-
tures that can effectively be used to quantize the level of
engagement of different joint pairs in human walking.
Finally, we propose a dynamic time warping (DTW)-
based kernel that takes the collection of the most rele-
vant JRA sequences from both the train and test sam-
ples as parameters and computes a dissimilarity mea-
sure. Here, the use of DTW makes the proposed kernel

robust against variable walking speed and thus elimi-
nates any need of extra pre-processing. Experiments
using a Kinect skeletal gait database showed excel-
lent recognition performance for the proposed method,
compared against some recent Kinect-based gait recog-
nition methods. In the future, we plan to extend the
proposed method for action recognition and motion re-
trieval.
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ABSTRACT
We present an efficient interactive tool for separating collectively segmented bones and bone fragments in 3D
computed tomography (CT) images. The tool, which is primarily intended for virtual cranio-maxillofacial (CMF)
surgery planning, combines direct volume rendering with an interactive 3D texture painting interface to enable
quick identification and marking of individual bone structures. The user can paint markers (seeds) directly on
the rendered bone surfaces as well as on individual CT slices. Separation of the marked bones is then achieved
through the random walks segmentation algorithm, which is applied on a graph constructed from the collective
bone segmentation. The segmentation runs on the GPU and can achieve close to real-time update rates for volumes
as large as 5123. Segmentation editing can be performed both in the random walks segmentation stage and in a
separate post-processing stage using a local 3D editing tool. In a preliminary evaluation of the tool, we demonstrate
that segmentation results comparable with manual segmentations can be obtained within a few minutes.

Keywords
Bone Segmentation, CT, Volume Rendering, 3D Painting, Random Walks, Segmentation Editing

1 INTRODUCTION
Cranio-maxillofacial (CMF) surgery to restore the fa-
cial skeleton after serious trauma or disease can be both
complex and time-consuming. There is, however, evi-
dence that careful virtual surgery planning can improve
the outcome and facilitate the restoration [27]. In addi-
tion, virtual surgery planning can lead to reduced time
in the operating room and thereby reduced costs.

Recently, a system for planning the restoration of skele-
tal anatomy in facial trauma patients (Figure 1) has been
developed within our research group [25]. As input, the
system requires segmented 3D computed tomography
(CT) data from the fractured regions, in which individ-
ual bone fragments are labeled. Although a collective
bone segmentation can be obtained relatively straight-
forward by, for instance, thresholding the CT image at
a Hounsfield unit (HU) value corresponding to bone
tissue, separation of individual bone structures is typ-
ically a more difficult and time-consuming task. Due to
bone tissue density variations and image imprecisions
such as noise and partial volume effects, adjacent bones

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Example of a patient who has suffered com-
plex fractures on the lower jaw and the cheekbone. The
individual bone fragments in the CT image have been
segmented with our interactive 3D texture painting tool
to enable virtual planning of reconstructive surgery.

and bone fragments in a CT image are typically con-
nected to each other after thresholding, and cannot be
separated by simple connected component analysis or
morphological operations. In the current procedure, the
bones are separated manually, slice by slice, using the
brush tool in the ITK-SNAP software [30]. This pro-
cess takes several hours to complete and is the major
bottleneck in the virtual surgery planning procedure.
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1.1 Contribution
Here, we present an efficient interactive tool for sep-
arating collectively segmented bones and bone frag-
ments in CT volumes. Direct volume rendering com-
bined with an interactive 3D texture painting interface
enable the user to quickly identify and mark individual
bone structures in the collective segmentation. The user
can paint markers (seeds) directly on the rendered bone
surfaces as well as on individual CT slices. Separation
of marked bones is then achieved through the random
walks segmentation algorithm [12]. A local 3D editing
tool can be used to refine the result. In a preliminary
evaluation of the bone separation tool, we demonstrate
that segmentation results comparable with manual seg-
mentations can be obtained within a few minutes.

1.2 Related Work
Model-based segmentation techniques have been used
for automatic segmentation of individual intact bones
such as the femur and tibia, but are not suitable for seg-
mentation of arbitrarily shaped bone fragments. Au-
tomatic bone segmentation methods without shape pri-
ors have been proposed [10][18][2] but are not general
enough for fracture segmentation.

Manual segmentation can produce accurate results and
is often used in surgery planning studies. However, it
is generally too tedious and time-consuming for routine
clinical usage, and suffers from low repeatability. An-
other problem with manual segmentation is that the user
only operates at a single slice at the time and thus may
not perceive the full 3D structure. This tends to produce
irregular object boundaries.

Semi-automatic or interactive segmentation methods
combine imprecise user input with exact algorithms
to achieve accurate and repeatable segmentation
results. This type of methods can be a viable option
if automatic segmentation fails and a limited amount
of user-interaction time can be tolerated to ensure
accurate results. An example of a general-purpose
interactive segmentation tool is [6]. Liu et al. [22]
used a graph cut-based [4] technique to separate
collectively segmented bones in the foot, achieving an
average segmentation time of 18 minutes compared
with 1.5–3 hours for manual segmentation. Fornaro
et al. [9] and Fürnstahl et al. [11] combined graph
cuts with a bone sheetness measure [7] to segment
fractured pelvic and humerus bones, respectively.
Mendoza et al. [23] adapted the method in [22] for
segmentation of cranial regions in craniosynostosis
patients. The TurtleMap 3D livewire algorithm [16]
produces a volumetric segmentation from a sparse set
of user-defined 2D livewire contours, and have been
applied for segmentation of individual bones in the
wrist. It is, however, not suitable for segmentation of
thin bone structures such as those in the facial skeleton.

Segmentation of individual wrist bones has also been
investigated in [15][24].

In all the semi-automatic methods listed above, the user
interacts with the segmentation via 2D slices. A prob-
lem with using slice-based interaction for bone segmen-
tation is that it can be difficult to identify, mark, and
inspect individual bone structures and contact surfaces,
particularly in complex fracture cases.

Texture painting tools [17][29] enable efficient and
intuitive painting of graphical models (3D meshes)
via standard 2D mouse interaction. Mouse strokes in
screen space are mapped to brush strokes in 3D object
space. Mesh segmentation methods [20] utilize similar
sketch-based interfaces for semi-automatic labeling
of individual parts in 3D meshes. Bürger et al. [5]
developed a direct volume editing tool that can be used
for manual labeling of bone surfaces in CT images.
Our proposed 3D texture painting interface extends this
concept to semi-automatic segmentation.

2 METHODS
Our bone separation tool combines and modifies several
image analysis and visualization methods, which are
described in the following sections. In brief, the main
steps are (1) collective bone segmentation, (2) marking
of individual bone structures, (3) random walks bone
separation, and (4) segmentation editing.

2.1 Collective Bone Segmentation
A collective bone segmentation is obtained by thresh-
olding the grayscale image at the intensity value tbone
(see Figure 2). The threshold is preset to 300 HU in
the system, but can be adjusted interactively, if needed,
to compensate for variations in bone density or image
quality. The preset value was determined empirically
and corresponds to the lower HU limit for trabecular
(spongy) bone. Noisy images can be smoothed with a
3× 3× 3 Gaussian filter (σ = 0.6) prior to threshold-
ing. The Gaussian filter takes voxel anisotropy into ac-
count and can be applied multiple times to increase the
amount of smoothing, although usually a single pass is
sufficient. Both the thresholding filter and the Gaussian
filter utilize multi-threading to enable rapid feedback.

2.2 Deferred Isosurface Shading
We use GPU-accelerated ray-casting [19] to render the
bones as shaded isosurfaces. The isovalue is set to tbone,
so that the visual representation of the bones matches
the thresholding segmentation. Similar to [14] and [13],
we use a deferred isosurface shading pipeline. A 323

min-max block volume is used for empty-space skip-
ping and rendering of the ray-start positions (Figure 3a).
We render the first-hit positions (Figure 3b) and surface
normals (Figure 3c) to a G-buffer via multiple render
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(a) (b)

Figure 2: Left: Coronal slice of a grayscale CT volume of the facial skeleton. Right: Collective bone segmentation
obtained by thresholding the CT volume at a Hounsfield unit (HU) value corresponding to trabecular bone.

targets (MRT), and calculate shadows and local illu-
mination in additional passes. Segmentation labels are
stored in a separate 3D texture and fetched with nearest-
neighbor sampling in the local illumination pass.

Local illumination (Figure 3e) is calculated using a nor-
malized version of the Blinn-Phong shading model [1].
To make it easier for the user to perceive depth and spa-
tial relationships between bones and bone fragments,
we combine the local illumination with shadow map-
ping to render cast shadows (Figure 3f). The shadow
map (Figure 3d) is derived from an additional first-hit
texture rendered from a single directional light source’s
point of view. The shadows are filtered with percentage
closer filtering (PCF) [26] and Poisson disc sampling
to simulate soft shadows. It is possible to disable the
shadows temporarily during the segmentation if they
obscure details of interest.

Ambient lighting is provided from pre-filtered irradi-
ance and radiance cube maps [1]. Unlike the traditional
single-color ambient lighting commonly used in medi-
cal visualization tools, the color and intensity variations
in the image-based ambient lighting allow the user to
see the shape and curvature of bone structures that are in
shadow. The image-based ambient lighting also enables
realistic rendering of metallic surfaces, e.g., metallic
implants that have been separated out from the bones
as part of the planning procedure. To enhance fracture
locations, we modulate the ambient lighting with a lo-
cal ambient occlusion [21] factor, which is computed
on-the-fly using Monte-Carlo integration.

2.3 3D Texture Painting Interface
As stated in Section 1.2, a problem with 2D slice-based
interaction is that it may be difficult to identify, mark,
and inspect individual bone structures. Even radiolo-
gists, who are highly skilled at deriving anatomical 3D

structures from stacks of 2D images, may find it dif-
ficult to locate and mark individual bone fragments in
complex fracture cases. To overcome this issue, we im-
plemented a 3D texture painting interface that enables
the user to draw seeds directly on the bone surfaces.

Our 3D brush (Figure 4a) is implemented as a spher-
ical billboard and uses the first-hit texture (Figure 3b)
for picking and seed projection. The brush proxy fol-
lows the bone surface and can only apply seeds on sur-
face regions that are visible and within the brush ra-
dius (in camera space). To prevent the brush from leak-
ing through small gaps in the surface of interest, we
compute a local ambient occlusion term from a depth
map derived from the first-hit texture, and discard brush
strokes in areas where the ambient occlusion value at
the brush center exceeds a certain threshold. The radius
of the ambient occlusion sampling kernel corresponds
to the radius of the brush.

Additional tools include a label picker, an eraser, a
floodfill tool, and a local editing tool (Section 2.6).
A 3D slice viewer enables the user to mark occluded
bones or place additional seeds inside the bones. The
latter can be useful when the boundaries between the
bones are weak or when the image is corrupted by
streak artifacts from metal implants. We also provide
interactive clipping tools that can be used to expose
bones and contact surfaces. Both the 3D slice viewer
and the clipping tools are useful during visual inspec-
tion and editing of the segmentation result.

2.4 Random Walks Bone Separation
Given the collective binary bone segmentation, the next
step is to separate the individual bones and bone frag-
ments. We considered two graph-based segmentation
algorithms, graph cuts [4] and random walks [12], for
this task. In the end, we selected the random walks
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(d) (e) (f)

Figure 3: Deferred isosurface shading pipeline: (a) ray-start positions; (b) first-hit texture; (c) surface normals; (d)
shadow map derived from an additional first-hit texture rendered from a directional light source’s point of view;
(e) local illumination; (f) local illumination with shadows.

algorithm since it is robust to noise and weak bound-
aries, extends easily to multi-label (K-way) segmenta-
tion, and does not suffer from the small-cut problem of
graph cuts. The main drawback and limitation of ran-
dom walks is its high computational and memory cost
(which, to be fair, is also a problem for graph cuts).
For interactive multi-label segmentation of volume im-
ages, this has traditionally limited the maximum vol-
ume size to around 2563, which is smaller than the CT
volumes normally encountered in CMF planning. Our
random walks implementation overcomes this limita-
tion by only operating on bone voxels.

We construct a weighted graph G= (V,E) from the col-
lective bone segmentation and use the random walks
algorithm to separate individual bones marked by the
user. Figure 4 illustrates the segmentation process. For
every bone voxel, the random walks algorithm calcu-
lates the probability that a random walker starting at the
voxel will reach a particular seed label. A crisp segmen-
tation is obtained by, for each bone voxel, selecting the

label with the highest probability value. The vertices
v ∈ V in the graph represent the bone voxels and the
edges e∈ E represent the connections between adjacent
bone voxels in a 6-connected neighborhood. The num-
ber of neighbors can vary from zero to six. Each edge
ei j between two neighbor vertices vi and v j is assigned
a gradient magnitude-based weight wi j [12] defined as

wi j = exp(−β (gi−g j)
2)+ ε, (1)

where gi and g j are the intensities of vi and v j in the
underlying grayscale image, and β is a parameter that
determines the influence of the gradient magnitude. We
add a small positive constant ε (set to 0.01 in our imple-
mentation) to ensure that vi and v j are connected, i.e.,
wi j > 0. Increasing the value of β makes the random
walkers less prone to traverse edges with high gradi-
ent magnitude. Empirically, we have found β = 3000
to work well for bone separation; however, the exact
choice of β is not critical and we have used values in
the range 2000-4000 with similar results.
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(a) (b) (c)

Figure 4: 3D texture painting interface for interactive random walks segmentation: (a) 3D brush used for painting
seeds directly on the bone surfaces; (b) marked bones; (c) bone separation obtained with random walks.

As proposed in [12], we represent the weighted graph
and the seed nodes as a sparse linear system and use
an iterative solver (see Section 2.5) to approximate the
solution for each label. By constructing the graph
from the bone voxels in the collective segmentation,
rather than from the full image, we simplify the ran-
dom walks segmentation task from separation of mul-
tiple tissue types to bone separation. Moreover, we re-
duce the memory and computational cost substantially
(by∼ 90% in our test cases). The head CT volumes en-
countered in CMF planning typically contain between
3 and 8 million bone voxels, which is a small fraction,
∼ 10%, of the total number of voxels. Combined with
fast iterative solvers, this enables rapid update of the
segmentation for volumes as large as 5123.

A problem with constructing graphs from collective
bone segmentations is that the sparse matrix A in the
linear system becomes singular if some of the bone vox-
els are isolated (which, due to noise, is often the case.)
This prevents the iterative solver from converging to a
stable solution. The problem does not occur for graphs
constructed from full images, where every voxel has at
least one neighbor. To remove the singularity, we sim-
ply add a small constant weight κ = 0.001 to the diag-
onal elements in A. The value of κ is set smaller than ε

to not interfere with the gradient weighting.

2.5 Iterative Solvers
We compute the random walks probability values itera-
tively using the Jacobi preconditioned conjugate gradi-
ent (CG) [28] method. The CG solver consists of dense
vector operations and a sparse matrix-vector multipli-
cation (SpMV), where SpMV is the most expensive op-
eration. Although the Jacobi preconditioner improves

the convergence rate, we found a single-threaded CPU
implementation to be too slow for our problem sizes.
Hence, to enable an interactive workflow, we followed
the suggestion in [12] and implemented multi-threaded
and GPU-accelerated versions of the solver. The multi-
threaded solver was implemented in OpenMP and uses
the compressed sparse row (CSR) matrix format for
SpMV. The GPU-accelerated solver was implemented
in OpenCL and supports two sparse matrix formats:
CSR and ELLPACK [3]. ELLPACK has a slightly
higher memory footprint than CSR, but enables coa-
lesced memory access when executing the SpMV ker-
nel on GPUs, which usually leads to better perfor-
mance [3]. Our OpenCL SpMV kernels are based on
the CUDA implementations in [3]. A benchmark of the
implemented solvers is presented in Section 3.

2.6 Segmentation Editing
The user can edit the initial random walks segmenta-
tion by painting additional seeds on the bone surfaces
or individual CT slices and running the iterative solver
again. To enable rapid update of the result, the previous
solution is used as starting guess [12]. Visual inspec-
tion is supported by volume clipping (Figure 5). The
editing process can be repeated until an acceptable seg-
mentation result has been obtained.

Further refinement of the segmentation can be achieved
with a dedicated 3D editing tool (Figure 6), which up-
dates a local region of the segmentation in real-time and
allows a selected label to grow and compete with other
labels. The tool is represented as a spherical brush and
affects only voxels within the brush radius r. A voxel pi
marked with the active label will transfer its label to an
adjacent voxel p j in a 26-neighborhood if the editing
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(a) (b) (c)

Figure 5: To support visual inspection and editing of bone fragments and contact surfaces, a segmented region
(a) can be hidden (b) or exposed (c) via volume clipping . The clipping is performed by temporarily setting the
grayscale value of the segmented region to tbone−1 and updating the grayscale 3D texture.

(a) (b) (c) (d)

Figure 6: Segmentation editing performed with the local 3D editing tool.

weight function Wi j exceeds a given threshold. Wi j is
defined as a weighted sum of the active label ratio, the
gradient, and the Euclidean distance to the brush center.

2.7 Implementation Details
We implemented the segmentation system in Python,
using OpenGL and GLSL for the rendering, PySide for
the graphical user interface, and Cython and PyOpenCL
for the image and graph processing.

3 CASE STUDY
To demonstrate the efficiency of our tool, we asked two
non-medical test users to perform interactive segmen-
tations of the facial skeleton in CT scans of three com-
plex CMF cases. The first user, who had prior experi-
ence of manual bone segmentation and virtual surgery
planning, was a novice on the system and received a
15 minutes training session before the segmentations
started, whereas the second user (the main author) was
an expert on the system. The CT scans were obtained
as anonymized DICOM files. Further details about the
datasets are provided in Table 1. Figures 7a–7c show
the collective bone segmentations obtained by thresh-
olding. Bone separation was carried out in three stages:

1. Initial random walks segmentation of marked bones.
2. Interactive coarse editing of the segmentation result

by running random walks multiple times with addi-
tional seed strokes as input.

3. Fine-scale editing with the local 3D editing tool.

We measured the computational time and the interac-
tion time required for each stage and asked the users
to save the segmentation result obtained in each stage.
Additionally, one of the users segmented case 1 manu-
ally in the ITK-SNAP [30] software to generate a refer-
ence segmentation for accuracy assessment. The man-
ual segmentation took ∼5 hours to perform and was in-
spected and validated by a CMF surgeon.
To assess segmentation accuracy and precision, we
computed the Dice similarity coefficient

DSC =
2|A∩B|
|A|+ |B|

. (2)

DSC measures the spatial overlap between two multi-
label segmentations A and B and has the range [0,1],
where 0 represents no overlap and 1 represents com-
plete overlap.
The interactive segmentations (Figures 7d–7f) took on
average 14 minutes to perform. As shown in Figure 8,
most of the time was spent in the local editing stage
(stage 3). DSC between the final interactive case 1 seg-
mentations and the manual reference segmentation was
0.97782 (User 1) and 0.97784 (User 2), indicating over-
all high spatial overlap. The inter-user precision (Ta-
ble 2) was also high and improved with editing.
Figure 9 shows a benchmark of the implemented CG
solvers. The bars show the execution times (in sec-
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Case Region Description #Labels Dimensions Threshold #Bone voxels
1 Head Multiple fractures 15 512×512×337 260 4426530
2 Head Multiple fractures 12 512×512×301 300 4769742
3 Head Tumor 6 230×512×512 300 2787469

Table 1: Details about the CT images used in the case study.

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 1 (e) Case 2 (f) Case 3

Figure 7: Top row: Collective bone segmentations. Bottom row: Separated bones.

onds) for computing an initial random walks solution
on a graph with 4.6M bone voxels and 15 labels. The
fastest GPU-based implementation had an average ex-
ecution time of 0.4 seconds per label, which is a 14×
speedup compared with the single-threaded CPU im-
plementation and a 7× speedup compared with the
multi-threaded CPU implementation.

4 DISCUSSION
Overall, we found the performance of the bone separa-
tion tool to be acceptable for surgery planning. Minor
differences between segmentations generated by differ-

ent users and between interactive and manual segmen-
tations were expected due to the complex boundaries of
the bone structures and the interactive editing.

Local editing (stage 3) is the most time-consuming part
of the segmentation. The editing tool is of great aid for
cleaning up the random walks segmentation and refin-
ing contact surfaces between separated bones or bone
fragments, but will sometimes grow the active label too
far or produce isolated voxels. Further modifications
of the weight function could prevent this. Using con-
nected component analysis for removing small isolated
components in the segmentation could also be useful.
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Figure 8: Interaction times (in minutes) for the two users.

Case DSC
Stage 1 Stage 2 Stage 3

1 0.9199 0.9955 0.9971
2 0.9533 0.9968 0.9971
3 0.9832 0.99 0.9915

Table 2: Inter-user precision for the interactive segmentations.

0 20 40 60 80 100
Execution time (s)

NVIDIA GTX 970 (GPU)
(OpenCL, ELL)

NVIDIA GTX 970 (GPU)
(OpenCL, CSR)

i5-4690K 3.5GHz (CPU)
(OpenMP, 4 threads, CSR)

i5-4690K 3.5GHz (CPU)
(single threaded, CSR)
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9.6

48.7

94.2

0.4

0.6

3.2

6.3

4.6M bone voxels, 15 labels

Total

Per label (average)

Figure 9: Benchmark of the CPU- and GPU-based Jacobi preconditioned CG solvers. The graph shows the timings
(in seconds) for computing the initial random walks solution on a graph with 4.6M bone voxels and 15 labels. The
number of iterations per label ranged from 45 to 136 (mean 83). Solver tolerance was set to 3 ·10−3.

A limitation of our current approach is that the initial
thresholding segmentation either tend to exclude thin
or low-density bone structures or include noise and soft
tissue. However, with minor modifications, the system
should be able to display and process collective bone
segmentations generated with other segmentation tech-
niques. Postprocessing could potentially fill in holes.

5 CONCLUSION AND FUTURE
WORK

In this paper, we have presented an efficient 3D tex-
ture painting tool for segmenting individual bone struc-
tures in 3D CT images. This type of segmentation is
crucial for virtual CMF surgery planning [25], and can
take several hours to perform with conventional manual
segmentation approaches. Our tool can produce an ac-
curate segmentation in a few minutes, thereby removing
a major bottleneck in the planning procedure. The re-
sulting segmentation can, as demonstrated in Figure 10,

be used as input for virtual assembly [25]. Our tool is
not limited to CMF planning, but can also be used for
orthopedic applications or fossil data (Figure 11).

Next, we will focus on improving the efficiency of the
local editing tool. We will also investigate if the ac-
curacy of the random walks segmentation can be im-
proved by combining the gradient-based weight func-
tion with other weight functions based on, for example,
bone sheetness measure [7] or local edge density [22].
Finally, we will apply our segmentation tool on a larger
set of CT images and perform a more extensive evalua-
tion of the precision, accuracy, and efficiency.
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(a) (b)

Figure 10: Haptic-assisted virtual assembly of one of the segmented cases, performed with the HASP [25] system.

Figure 11: Our tool is not limited to head and neck CT scans; it can be used for rapid segmentation of individual
bone structures in other regions such as the wrist, lower limbs, and pelvis. Another potential application (shown in
the right image) is segmentation of fossils in µCT scans. Total segmentation time for these four cases was < 1 h.

fibula scans are courtesy of the OsiriX DICOM repos-
itory (http://www.osirix-viewer.com/datasets/), and the
fossil µCT scan is courtesy of [8].
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