
 

 

ISSN 1213-6972  Volume 22, Number 1, 2014 

 

 

 

 

 

 

 

Journal of  

WSCG 
 

 

 

 

An international journal of algorithms, data structures and techniques for 

computer graphics and visualization, surface meshing and modeling, global 

illumination, computer vision, image processing and pattern recognition, 

computational geometry, visual human interaction and virtual reality, 

animation, multimedia systems and applications in parallel, distributed and 

mobile environment.  

 

 

 

 

 

EDITOR – IN – CHIEF  

Václav Skala 
 

 

 

 

 
 

 

 
Vaclav Skala – Union Agency 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Journal of WSCG 

 
Editor-in-Chief: Vaclav Skala 

   c/o University of West Bohemia 

Faculty of Applied Sciences 

Univerzitni 8 

   CZ 306 14 Plzen 

   Czech Republic 

   http://www.VaclavSkala.eu  
 

Managing Editor:  Vaclav Skala 

 

Printed and Published by: 

  Vaclav Skala - Union Agency  

   Na Mazinach 9 

   CZ 322 00 Plzen 

   Czech Republic 

 

Hardcopy:  ISSN 1213 – 6972 

CD ROM:  ISSN 1213 – 6980 

On-line:  ISSN 1213 – 6964 

 

   

http://www.vaclavskala.eu/


 

Journal of WSCG 

 
 

 

Editor-in-Chief 
 

Vaclav Skala 
 

c/o University of West Bohemia 

Faculty of Applied Sciences 

Department of Computer Science and Engineering 

Univerzitni 8 

CZ 306 14 Plzen 

Czech Republic 

 

http://www.VaclavSkala.eu  

Journal of WSCG URLs: http://www.wscg.eu  or   http://wscg.zcu.cz/jwscg 

 

 

 

Editorial Advisory Board 

MEMBERS 
 

Baranoski,G. (Canada) 

Benes,B. (United States) 

Biri,V. (France) 

Bouatouch,K. (France) 

Coquillart,S. (France) 

Csebfalvi,B. (Hungary) 

Cunningham,S. (United States) 

Davis,L. (United States) 

Debelov,V. (Russia) 

Deussen,O. (Germany) 

Ferguson,S. (United Kingdom) 

Goebel,M. (Germany) 

Groeller,E. (Austria) 

Chen,M. (United Kingdom) 

Chrysanthou,Y. (Cyprus) 

Jansen,F. (The Netherlands) 

Jorge,J. (Portugal) 

Klosowski,J. (United States) 

Lee,T. (Taiwan) 

Magnor,M. (Germany) 

Myszkowski,K. (Germany) 

Oliveira,Manuel M. (Brazil) 

Pasko,A. (United Kingdom) 

Peroche,B. (France) 

Puppo,E. (Italy) 

Purgathofer,W. (Austria) 

Rokita,P. (Poland) 

Rosenhahn,B. (Germany) 

Rossignac,J. (United States) 

Rudomin,I. (Mexico) 

Sbert,M. (Spain) 

Shamir,A. (Israel) 

Schumann,H. (Germany) 

Teschner,M. (Germany) 

Theoharis,T. (Greece) 

Triantafyllidis,G. (Greece) 

Veltkamp,R. (Netherlands) 

Weiskopf,D. (Germany) 

Weiss,G. (Germany) 

Wu,S. (Brazil) 

Zara,J. (Czech Republic) 

Zemcik,P. (Czech Republic) 

 

http://www.vaclavskala.eu/
http://www.wscg.eu/
http://wscg.zcu.cz/jwscg


 



WSCG 2014 

Board of Reviewers 

 

 

Abad,Francisco 

Adzhiev,Valery 

Agathos,Alexander 

Alvarado,Adriana 

Assarsson,Ulf 

Ayala,Dolors 

Backfrieder,Werner 

Balcisoy,Selim 

Barbosa,Joao 

Barthe,Loic 

Battiato,Sebastiano 

Benes,Bedrich 

Benger,Werner 

Bilbao,Javier,J. 

Billeter,Markus 

Biri,Venceslas 

Birra,Fernando 

Bittner,Jiri 

Bosch,Carles 

Bourdin,Jean-Jacques 

Brun,Anders 

Bruni,Vittoria 

Buehler,Katja 

Bulo,Samuel Rota 

Cakmak,Hueseyin Kemal 

Camahort,Emilio 

Casciola,Giulio 

Cline,David 

Coquillart,Sabine 

Cosker,Darren 

Daniel,Marc 

Daniels,Karen 

Debelov,Victor 

Drechsler,Klaus 

Durikovic,Roman 

Eisemann,Martin 

Erbacher,Robert 

Feito,Francisco 

Ferguson,Stuart 

Fernandes,Antonio 

Flaquer,Juan 

Fuenfzig,Christoph 

Gain,James 

Galo,Mauricio 

Garcia Hernandez,Ruben Jesus 

Garcia-Alonso,Alejandro 

Gavrilova,M. 

Geus,Klaus de 

Giannini,Franca 

Gobron,Stephane 

Gobron,Stephane 

Gois,Joao Paulo 

Grau,Sergi 

Gudukbay,Ugur 

Guthe,Michael 

Haberdar,Hakan 

Hansford,Dianne 

Haro,Antonio 

Hasler,Nils 

Hast,Anders 

Hernandez,Benjamin 

Herout,Adam 

Herrera,Tomas Lay 

Hicks,Yulia 

Hildenbrand,Dietmar 

Hinkenjann,Andre 

Horain,Patrick 

Chaine,Raphaelle 

Choi,Sunghee 

Chover,Miguel 

Chrysanthou,Yiorgos 

Chuang,Yung-Yu 

Iglesias,Jose A. 

Ihrke,Ivo 

Iwasaki,Kei 

Jato,Oliver 

Jeschke,Stefan 

Joan-Arinyo,Robert 

Jones,Mark 

Juan,M.-Carmen 

Kalra,Prem K. 

Kämpe,Viktor 

Kanai,Takashi 

Kellomaki,Timo 

Kim,HyungSeok 

Klosowski,James 

Kolcun,Alexej 

Krivanek,Jaroslav 

Kurillo,Gregorij 

Kurt,Murat 

Kyratzi,Sofia 

Larboulette,Caroline 

Lee,Jong Kwan 

Liu,Damon Shing-Min 

Lopes,Adriano 

Loscos,Celine 

Lutteroth,Christof 

Maciel,Anderson 

Mandl,Thomas 

Manzke,Michael 

Marras,Stefano 

Masia,Belen 

Masood,Syed Zain 

Masso,Jose Pascual Molina 

Matey,Luis 

Max,Nelson 

Melendez,Francho 

Meng,Weiliang 

Mestre,Daniel,R. 

Meyer,Alexandre 

Molla,Ramon 

Montrucchio,Bartolomeo 

Morigi,Serena 

Mukai,Tomohiko 



Muller,Heinrich 

Munoz,Adolfo 

Murtagh,Fionn 

Okabe,Makoto 

Oliveira,Joao 

Oliveira,Manuel M. 

Oyarzun,Cristina Laura 

Pan,Rongjiang 

Papaioannou,Georgios 

Paquette,Eric 

Pasko,Galina 

Patane,Giuseppe 

Patow,Gustavo 

Pedrini,Helio 

Pereira,Joao Madeiras 

Peters,Jorg 

Pina,Jose Luis 

Platis,Nikos 

Post,Frits,H. 

Puig,Anna 

Puppo,Enrico 

Puppo,Enrico 

Rafferty,Karen 

Raffin,Romain 

Renaud,Christophe 

Reshetouski,Ilya 

Reshetov,Alexander 

Ribardiere,Mickael 

Ribeiro,Roberto 

Richardson,John 

Ritter,Marcel 

Rojas-Sola,Jose Ignacio 

Rokita,Przemyslaw 

Rudomin,Isaac 

Sacco,Marco 

Sadlo,Filip 

Salvetti,Ovidio 

Sanna,Andrea 

Santos,Luis Paulo 

Sapidis,Nickolas,S. 

Savchenko,Vladimir 

Segura,Rafael 

Seipel,Stefan 

Sellent,Anita 

Semwal,Sudhanshu 

Sheng,Bin 

Sheng,Yu 

Shesh,Amit 

Schmidt,Johanna 

Sik-Lanyi,Cecilia 

Sintorn,Erik 

Sirakov,Nikolay Metodiev 

Sourin,Alexei 

Sousa,A.Augusto 

Sramek,Milos 

Stroud,Ian 

Subsol,Gerard 

Sundstedt,Veronica 

Svoboda,Tomas 

Szecsi,Laszlo 

Tang,Min 

Teschner,Matthias 

Theussl,Thomas 

Tian,Feng 

Tokuta,Alade 

Torrens,Francisco 

Trapp,Matthias 

Tytkowski,Krzysztof 

Umlauf,Georg 

Vergeest,Joris 

Vitulano,Domenico 

Vosinakis,Spyros 

Walczak,Krzysztof 

Wan,Liang 

Wu,Shin-Ting 

Wuensche,Burkhard,C. 

Wuethrich,Charles 

Xin,Shi-Qing 

Xu,Fei Dai Dongrong 

Yoshizawa,Shin 

Yue,Yonghao 

Yue,Yonghao 

Zalik,Borut 

Zemcik,Pavel 

Zhang,Xinyu 

Zhao,Qiang 

Zheng,Youyi 

Zitova,Barbara 

Zwettler,Gerald 

 



  

 

 

Journal of WSCG Vol. 22, 2014  

 

No.1 

 

Contents 

 Page 

Gain,J., Marais,P., Neeser,R.: City Sketching 1 

Vaaraniemi,M., Görlich,M., in der Au,A.: Intelligent Prioritization and Filtering of 

Labels in Navigation Maps 

11 

Khan,S.D., Vizzari,G., Bandini,S., Basalamah,S.: Detecting Dominant Motion 

Flows and People Counting in High Density Crowds 

21 

Kenwood,J., Gain,J., Marais,P.: Efficient Procedural Generation of Forests 31 

Reich,W., Kasten,J., Scheuermann,G.: Detecting Topologically Relevant 

Structures in Flows by Surface Integrals 

39 

  

  



 



City Sketching

James Gain
University of Cape Town

jgain@cs.uct.ac.za

Patrick Marais
University of Cape Town

patrick@cs.uct.ac.za

Rudolph Neeser
University of Cape Town
rudy.neeser@gmail.com

ABSTRACT
Procedural methods offer an automated means of generating complex cityscapes, incorporating the placement
of park areas and the layout of roads, plots and buildings. Unfortunately, existing interfaces to procedural city
systems tend to either focus on a single aspect of city layout (such as the road network) ignoring interaction with
other elements (such as building dimensions) or expect numeric input with little visual feedback, short of the
completed city, which may take up to several minutes to generate.
In this paper we present an interface to procedural city generation, which, through a combination of sketching and
gestural input, enables users to specify different land usage (parkland, commercial, residential and industrial), and
control the geometric attributes of roads, plots and buildings. Importantly, the inter-relationship of these elements
is pre-visualized so that their impact on the final city layout can be predicted. Once generated, further editing, for
instance shaping the city skyline or redrawing individual roads, is supported. In general, City Sketching provides
a powerful and intuitive interface for designing complex urban layouts.

Keywords
sketching interfaces, procedural modeling

1 INTRODUCTION
Procedural methods for simulating terrain, buildings,
plants and cities have been used effectively in computer
games, visual effects and virtual environments for train-
ing and simulation. This loose family of computational
methods includes L-systems [1], noise functions [2],
shape grammars [3] and other algorithms characterised
by recursive self-affine behaviour. Their benefit is that
with little manual effort, complex and realistic content
can be generated. In the most extreme instance an entire
virtual world can burgeon from a single pseudo-random
seed.

However, there is a tension between the productivity
that arises from extensive automation and the control
provided by user involvement. Ideally, users should be
able to dictate key aspects of a scene with as fine a gran-
ularity as desired, and the attendant procedural method
should follow these specifications. There are several
strategies for achieving this, some more successful than
others.

The most prosaic procedural interface is a set of nu-
meric control parameters. Unfortunately, this type of
interface tends to expose the internals of the procedu-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ral method and fails to foster any geometric intuition
on the part of the user. More effective are image maps,
where regions of a landscape are painted with different
properties, such as landforms with particular frequen-
cies [4], the distribution and density of plants or cate-
gories of land usage in cities [5]. Here there is a direct
visual mapping to the domain but the context of use is
somewhat limited. Another option is a textual approach
in which adjectives are used to describe a scene and
then mapped via machine learning to procedural param-
eters. This approach is generally preferred to parameter
specification by inexperienced users [6] but it does re-
quire an extensive training phase. Recently, procedural
techniques have begun to borrow from real-world data
using example-based synthesis. As long as such real-
world data-sets are readily available, as is the case for
city [7] data, and the intended results do not diverge
significantly from the exemplars, this can lead to un-
precedented realism.

Recent work has resulted in some early direct manip-
ulation of procedural models for buildings and trees,
which has been extended to the direct manipulation of
road networks [8].

Another alternative is to develop a sketching interface.
Inspired by pencil-and-paper illustration, these inter-
faces are accessible to non-experts and enable rapid it-
erative design, particularly where absolute precision is
not required. They have been applied with success to
the procedural modeling of terrain, trees, flowers and
clothing.
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[A] [B] [C]

[D] [E] [F]

Figure 1: Generating urban layouts by City Sketching: [A] Given an existing landscape; [B] the user sketches road
pattern and land usage zones, and [C] a gesture interface is used to interpret the type of zone and its statistics; [D]
a corresponding city is generated; further iterative editing of roads [E] and buildings [F] is supported.

Turning to the particular case of procedural cities, the
purpose here is to create an urban layout composed
of a road network, plot subdivisions and building en-
velopes. This may extend to procedurally modeling the
facades of individual buildings, but, of late, this has de-
volved to a separate subfield [3]. While seminal work
[5] uses broad proxy parameters (road pattern type and
population density) coupled to image map inputs, the
field has since adopted both example-based methods [7]
and simulation [10] in the interest of increased variety
and realism. With some exceptions (as noted in Sec-
tion 2) interfaces have not kept pace with the increas-
ing sophistication of city simulation and are generally
still limited to direct parameter specification and image
maps.

Motivated by the failings of existing procedural city in-
terfaces and the ease-of-use, familiarity and speed of
sketching, we have developed City Sketching. The fun-
damental operation in our system is marking out re-
gions on a landscape (see Figure 1[A, B]) to represent
road patterns and land usage zones. There are two im-
portant considerations here: firstly, a full set of statistics
is automatically calculated for each region (for exam-
ple, land usage will not only have a type — commer-
cial, industrial, residential or parklands — but also a
mean, minimum and maximum for plot size, building
base and height, or appropriate equivalents), and, sec-
ondly, the final city is determined by the interaction be-
tween the different regions (roads conform to the land-
scape, plot sizes determine separation between roads,
building heights influence road widths). We provide vi-
sual feedback of these interrelationships using proce-
dural textures projected onto the landscape. Further to

the high-level control provided by such region drawing,
users are also able to directly sketch individual roads at
a low-level.
Once a user is satisfied with their initial layout, the re-
gion statistics and explicit road constraints are passed
to a procedural system that creates road networks, plot
subdivisions and individual building placements (Fig-
ure 1[D]). After the city has been created it can be it-
eratively modified by sketching new roads and regions
(Figure 1[E]), followed by a localized procedural up-
date. Furthermore, the characteristic skyline of the city
can be shaped by raising and lowering buildings to fit
a side-view sketch (Figure 1[F]), or more directly by
interactively manipulating building heights in a region.
To summarize, the key contribution of this work is a
holistic approach to procedural city generation that al-
lows users to specify and visualize not only road net-
works, but also categories of land usage, dimensions of
plots and buildings and their interrelationships.
The system has a number of novel components: (a)
A gesture-based component that extracts both zone in-
formation and statistics for roads and buildings from
sketched exemplars. (b) Interactive pre-visualization,
which shows the interrelationship between road pat-
terns and region usage and their effect on the final city.
(c) A procedural engine that grows the entire city and
supports interaction between all elements, and the in-
clusion of user specified roads as constraints.
The remainder of the paper is structured as follows:
Section 2 provides more detailed coverage of previous
interfaces to procedural city systems; Sections 3 and 4
address the interface design and associated procedural
engine; Section 5 examines the system’s performance
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in terms of usability and versatility; and, finally, Sec-
tion 6 provides a summary and recommendations for
future work.

2 RELATED WORK
As previously mentioned, most procedural city systems
employ a combination of numeric parameter input and
image maps [5, 12, 10]. These image maps are of-
ten generated using a raster paint application and sup-
plied as separate input files, making it difficult for a
user to create an integrated mental map of the final lay-
out. Some systems do support the drawing of simple
road constraints [10] but, in any event, rarely go far
enough in allowing interactive specification and pre-
visualization of city layout. This is less problematic for
fast system, where the generated city serves as its own
visualization, but can cause frustrating design cycles for
simulation-heavy methods, which typically take several
minutes to execute.

It is also worth considering other procedural domains,
such as plant and terrain modelling, be they painting
[4] or sketching [9] interfaces. The key issue is how
regions are specified in these interfaces. Sketching in-
terfaces generally allow the user to draw a closed loop,
which works well for large contiguous regions without
holes. In contrast, painting interfaces require longer to
demarcate a region but allow complex topology. While
these interfaces are a source of inspiration, our system
goes beyond marking out regions and visualizes how
regions overlap and interact, the specification of con-
strained linear features such as rivers and roads, and the
sketch-based input of geometric region parameters for
roads and buildings.

There are two recent techniques that counter this trend.
Aliaga et al. [7] develop an example-based approach
that allows a city to be assembled from fragments con-
sisting of vector data (attributed point sets represent-
ing the junctions of road) and aligned images (georef-
erenced aerial photography of city blocks). From an in-
terface perspective, fragments can be copied and pasted
and then synthesized into a coherent urban layout via
join, blend or expand operations depending on their
spatial arrangement. Although the technique focuses on
mimicking aerial imagery, there is no reason, in princi-
pal, that it could not be extended to create a fully geo-
metric realization of a virtual city. The only weakness
with this kind of structural synthesis is the reliance on
existing annotated and registered data.

We were also inspired by the road network design of
Chen et al. [13]. In their system a 2D tensor field is
shaped by boundary, pattern, heightfield and density
constraints, and edited with smoothing, noise, rotation
and brush operations. Finally, roads are traced along the
streamlines of the major and minor eigenvector fields.

These results are passed to a separate engine for split-
ting into block, plots and buildings, which precludes
any real feedback between building data and the road
network, as is achieved by our system.

Lipp et al. [8] show how road networks can be edited
using direct manipulation, including copy and paste
functionality. These operations preserve road network
validity (such as preventing unwanted intersections),
and persist even after the road network is regenerated.

Galin et al. [11] address road networks between cities
using a hierarchical approach, starting from highways
and progressing to secondary roads, with graph opti-
mization that respects terrain and water features. Their
interface relies on the now familiar image map painting.

For a more complete overview of approaches to the
modelling and simulation of urban environments, see
Vanegas et al. [14].

3 INTERFACE
There are two aspects of city design that receive sepa-
rate consideration in our sketching interface: (a) closed
region strokes are drawn onto the landscape to repre-
sent usage zones and road patterns with a gestural in-
terface for capturing various region statistics; and (b),
once an initial city has been generated, further editing is
supported, such as drawing in extra roads, constraining
skylines from separate viewpoints using sketched poly-
lines, and altering building heights. Distinct forms of
sketching are appropriate in each case. Care is taken
in the interface to provide support for iterative refine-
ment. For instance, users are able to refine a particu-
lar portion of a curve or loop by oversketching or di-
rect manipulation, with the option of shifting to a more
favorable viewpoint during the process. Furthermore,
users can “undo” previously committed sketches using
a scratch gesture. In our system, city and landscape fea-
tures are generally sketched from an aerial viewpoint
with strokes and points in the 2D image plane projected
onto the 3D terrain. The resulting features are then var-
iously interpreted as usage zones, road patterns or road
constraints, depending on the selected interface tool.

3.1 Usage Zones and Road Patterns
City Sketching, in common with other procedural city
systems, controls city attributes, such as zoning and
road arrangement, through the shaping and placement
of contiguous regions. However, we diverge from pre-
vious approaches in several respects. First, our system
exposes a broad spectrum of detailed geometric param-
eters for roads, buildings and plots. We favor a geo-
metric approach because it promotes visual depiction
and thus has greater predictability than abstract quan-
tities such as population density and wealth. Second,
these parameters are controlled through a combination
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Figure 2: Sketching of zones and roads: inside a pre-
viously sketched commercial usage zone (blue-green)
the user draws a closed region stroke onto the terrain;
this can be modified by oversketching; the road pat-
tern (a grid) and statistics (orientation of major and mi-
nor gridlines) are inferred from gestures; the zones and
their interactions are visualized using procedural tex-
tures; roads (such as a highway) can also be sketched
directly.

of sketching (to specify the outlines of regions) and ges-
tures (to capture specific region information) — Fig-
ure 2.

City Sketching users mark out two types of regions on
the landscape. Usage Zones represent typical urban
zoning classifications (commercial, industrial, residen-
tial or parklands) and also capture the size and density
of buildings (or trees in the case of parklands); specif-
ically the minimum, maximum and mean for building
height, building length and plot length. Road Patterns,
on the other hand, represent the dominant layout of
roads in a region (grid, radial or random) and also en-
code various style parameters, such as the angular sep-
aration between radiating avenues in the case of the ra-
dial style, or the aspect ratio of blocks in the grid style.

The final city layout is determined by the interaction of
usage zones and road patterns. Thus, inter-road spacing
is determined by plot size, road widths by building vol-
ume and density (approximating traffic intensity), and
the incidence at road junctions by the road pattern. This
enables nuanced control over an urban layout. For ex-
ample, a rich residential suburb with relatively narrow
roads and large single-story buildings on larger plots
can be specified with our system — a level of control
difficult to achieve using less detailed parameters such
as population density.

However, two challenges arise: the need for a visual
depiction of the interaction between regions, and for

a simple, fast and effective means of entering region
statistics. The problem of visualization is overcome
by creating procedural textures that are stencilled ap-
propriately to the intersection of a usage zone and road
pattern region and mapped onto the landscape. While
these textures cannot capture the full complexity of a
procedural system, as presented in Section 4.2, they are
sufficient to convey the directionality, distribution and
style of the final road layout. We use gestures to address
the problem of capturing region information. While the
field of gestural input is broad and encompasses aspects
such as communication through hand motion and body
language, one commonality is the compact encoding of
symbolic information. In our context a set of sketched
symbols is used to indicate the type of each region (see
Figure 3). If that was the limit of our gesture func-
tionality then a simple button or menu interface would
suffice. However, our gestures also serve as exemplars
from which region statistics are derived.

Residential

Zone
Usage

Road
Patterns

Parkland Commercial Industrial

Grid Radial Random

Figure 3: Gestures: simple gestures are used to indicate
zone usage (park, residential, commercial, or industrial)
or road pattern (grid, radial, or random). Variation in
the gestures, such as spacing and aspect ratio are also
used to capture zone statistics.

w = 15m1

h = 10m1

p = 15m1
1
2

h = 250m2

h = 35m3

w = 80m2

w = 55m3

p = 130m2 p = 40m3
1
2

Figure 4: Extracting statistics from gestures: three ex-
emplars are drawn for each land usage zone (in this
case commercial) and their aspect ratio and relative sep-
aration are used to derive statistics (minimum, maxi-
mum and mean) for building height (h1,h2,h3), build-
ing width (w1,w2,w3) and plot width (p1, p2, p3). Scal-
ing in the vertical dimension is piecewise linear in order
to allow both skyscrapers and single-story buildings on
the same gesture canvas.
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For usage zones we expect users to draw three gestures
of the same type. As shown in Figure 4, the dimensions
of the bounding boxes around each gestures and their
relative separation are then used to derive statistics for
building length, height and plot length. Specifically, the
values for a particular parameter (e.g., plot length) are
sorted from smallest to largest and then mapped to the
minimum, mean and maximum, respectively. One com-
plication is that the full range of building heights (from
5m to 400m) cannot reasonably be drawn to a linear
scale on a single canvas. Instead, we utilize a piece-
wise linear mapping with a relatively small gradient up
to 20m and a steeper slope thereafter. The key on the
left of Figure 4 serves users as a visual indicator of this
scale.

Road pattern layout statistics are derived as follows: for
grids, the direction of major/minor axes and the aspect
ratio of city blocks; for radial, the angular distribution
of the radial spokes and their center; for random, the
range of angles between intersecting roads. Of course,
the exemplars could be followed more explicitly, but
this would require a more deliberate and less natural
style of interaction.

Finally, while road pattern gestures provide the tem-
plate for an entire region, sometimes users wish to pre-
cisely control the placement of roads. For this purpose,
City Sketching provides the capability to draw primary,
secondary or tertiary roads directly onto the terrain, as
demonstrated in Figure 2. When the procedural city is
generated road constraints, corresponding to the user-
drawn roads, are stitched into the prevailing road pat-
tern.

3.2 Building Editing

Figure 5: Sketching skylines: from an orthographic
side-on view the user selects a subset of buildings on
an inset mini-map; then draws a characteristic sky-
line, which is automatically converted into a piecewise
representation; finally, building heights are adjusted to
conform to the skyline.

Roads can be drawn directly onto the terrain and then
passed as explicit constraints to the procedural engine,
and it is desirable to have analogous control over
buildings. This is provided in two ways: in skyline
mode where the characteristic skyline of the city can
be sketched from a side-on orthographic view, with
building heights conforming to the resulting constraint
envelope (see Figure 5), and in elevation mode, by
demarcating collections of buildings from an aerial
perspective and then directly raising or lowering them.

In skyline mode, users first select a group of buildings
to edit by drawing an enclosing loop on an inset con-
textual map; they can then draw and refine a silhouette,
which is automatically converted into a step-wise rep-
resentation (effectively, a piecewise constant function).
Once committed, building heights are adjusted to the
minimal extent necessary to meet the skyline constraint,
while taking cognizance of the region statistics (as dis-
cussed further in section 4.3). Note that building foot-
prints remain unaltered, because to do otherwise would
require re-organising the street layout.

From a rendering perspective we chose flat-shading, so
that users would focus predominantly on building sil-
houettes, and a fog effect to provide some depth con-
text. We found an orthographic projection to be essen-
tial in preserving the relative scale of buildings.

While this approach works well for moderate changes
in terrain altitude, it fails for cities built on or around
hills and mountains (such as San Francisco). In ex-
treme cases buildings might be entirely culled, since
their foundations lie above the sketched skyline. We
considered a number of alternatives — projecting build-
ings onto a plane for the purposes of Skyline editing or
allowing users to select buildings in bands of altitude
— but ultimately we opted to simply filter out build-
ings with a base situated above a user-defined thresh-
old. Skyline mode is primarily intended for shaping the
city vista from a particular view direction and this is
damaged by alternative implementations where there is
only an indirect correspondence between the sketched
skyline and the final results.

In elevation mode, the user selects a set of buildings ei-
ther by radial distance from a pick point or by drawing
a region loop (using the same process as land usages
and road patterns). The selected buildings can then be
raised or lowered by a constant amount, with a smooth
tailing away of elevation change towards the edges of
the selection, so that the alterations blend with the sur-
rounding city (see Figure 1[E]). Any building whose
new height falls outside the bounds specified by the re-
gion statistics is highlighted.
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4 IMPLEMENTATION

4.1 Gesture Recognition
The gesture recognition subsystem is responsible for
categorizing one or more user-sketched input strokes
and extracting appropriate parameters. For our pur-
poses, each stroke is a sequence of point samples drawn
in one continuous motion. Gesture classification is usu-
ally based on a set of extracted features, with machine
learning applied to deal with inevitable variability. Ex-
tensive training on example gestures is usually required
and, although the recognition rates are generally high
(95% or greater), these systems can also produce non-
negligible false positive rates [15].

However, since our interface need only differentiate be-
tween a limited set of 4 zone usage gestures, methods
based on machine learning were deemed an unneces-
sary overhead. Instead, we have developed a simple and
robust ad-hoc approach with satisfactory performance
(see Section 5). Specifically, we assume that gesture
strokes are piecewise linear curves defined on the unit
square, and that the interface designer will supply a set
of gesture exemplars for each zone usage type. To de-
termine if a set of point-sampled strokes matches a valid
usage exemplar, we proceed as follows: First, we filter
the point set to remove drawing jitter. We then apply
a simple line aggregation algorithm to collapse multi-
ple consecutive line segments, which results in either
a single larger line segment or a poly-line, depending
on the curvature of the stroke. Finally, we compute a
simple feature vector: a list of angles between adjacent
line segments. A similar vector is also computed for
each exemplar during initialization. Classification en-
tails first matching the number of segments (since each
usage zone gesture is unique in this respect) and then
testing the absolute difference between components of
the feature vector to see if the gesture falls within the
broad range of permitted angular variation. If a gesture
is not recognized as a usage zone we test it against the
set of road patterns.

A road pattern template also consists of a series of
strokes arranged in specific geometric relationships.
For example, a Manhattan grid has two sets of roughly
parallel lines, which are approximately orthogonal,
while a Paris-style radial road network has concentric
ring-roads with spoke-avenues radiating from a central
area.

In order to classify a road pattern, each input stroke is
first categorised as a line, polyline or (approximate) cir-
cle. We then compare the set of input strokes against
each road pattern template in turn, until a match is
found. If no match is found, the collection of strokes
is flagged as unclassifiable. The tests required for a
match depend on the template under consideration. So,
for the radial pattern, the stroke set must contain both

lines and at least one circle, but no polylines. If mul-
tiple circles are present, the circles are tested to see if
they are roughly concentric. Finally, lines are examined
to see if they start within the innermost circle and cross
outwards. At least two lines are required to estimate
angular separation. If all these tests are passed, the set
of strokes is matched and the appropriate parameters
extracted. Otherwise we attempt to match against the
next pattern template.

4.2 Procedural City Generation
Our goal is to create a simple and efficient means of
generating road networks, parcel allotments and build-
ing envelopes, based on the statistical information pro-
vided by a city sketch. The system outlined here is just
one of several possible procedural back-ends that could
be fed by our sketching front-end. Our approach is in-
spired by the principles of L-system road generation
[5], including context awareness and non-determinism.
However, in practice, we found L-systems to be very
slow for large cities, because they require production
matching over the entire string, which grows exponen-
tially. Instead, we use growth seeds to represent po-
tential road segments. These are placed initially at the
centroids of each unique combination of road pattern
and usage zone. Should the centroid not lie inside the
corresponding region, we use the center of the largest
inset square instead. A growth seed derives its direc-
tion, length and road width from the underlying region
statistics. For example, road length within a grid pat-
tern depends on average plot width, block aspect ratio,
and alignment with the major or minor axis. As a fur-
ther example, road width varies according to the aver-
age building volume normalized by plot area as a proxy
for population density. Road growth also adapts to the
terrain, either avoiding or conforming to slope contours
depending on the severity of the incline. To lessen the
impact of high frequency fluctuations we first smooth
the terrain before calculating slope. In regions with a
slope greater than 2.86 degrees from horizontal, roads
are aligned with the terrain contours (the so-called San
Francisco pattern [5]) and we prevent road placement
altogether where the slope is greater than 5.7 degrees,
corresponding to a 10% grade limit used in interna-
tional road codes.
Growth seeds are reoriented as they approach exist-
ing roads, using the heuristics outlined by Parish and
Müller [5], in order to connect at junctions and avoid
malformed blocks. As a seed lays down roads it may,
depending on the needs of the road network, spawn fur-
ther growth seeds at junctions.
There are two issues with this approach: handling user-
drawn road constraints and merging road networks at
region boundaries. It is important that individual roads
sketched by users do not unduly distort the underly-
ing road pattern. Unfortunately, the obvious strategy
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of growing patterns outwards from seeds placed along
a sketched road is foiled by any form of curvature in the
sketch. Instead, we stitch in user-drawn roads by first
growing the road network to completion, then deleting
existing roads within an offset distance of the user con-
straint, followed by laying a new road along the con-
straint curve, and finally initiating growth seeds at the
newly formed deadends in the existing network, with
parameters copied from incident deleted roads. A mem-
ory of the prior road pattern is thus retained, so that it
is not unduly disrupted during regrowth. In this way
the network regrows with a similar pattern that adapts
where necessary by snapping to the road constraint. A
similar process is used for filling new regions in an ex-
isting city.

The second challenge lies in correctly switching be-
tween road patterns at region boundaries. It is not suf-
ficient to reorient seeds as they transition between re-
gions because, even if their directions align with ex-
isting roads in the current region, this does nothing to
match road position and spacing. Rather, we delay
growth seeds as they cross region boundaries. In this
way existing growth within a region can continue undis-
torted and the approaching fronts of two road patterns
will meet correctly at the boundary. We also place dif-
ferent categories of road into separate queues and pro-
cess each to completion in priority order (highways, ar-
terials, then streets), ensuring that higher priority roads
can extend to completion without being blocked by
those with lower priority.

Once the road network is in place, we extract blocks
by a simple winding process. We then generate build-
ings by first subdividing an input block into parcels and
the placing a building bounding box within each parcel.
The bounding box is a cuboid which can be replaced
with the appropriate building geometry.

The parcel splitting procedure must run quickly and
produce sub-plots which span the range of plot sizes
specified by the usage zone sketches (see Figure 4).
This provides a single axis for building width and spac-
ing (and thus, implicitly, plot size), from which infer a
range of values for plot size that constrain the allowable
size of bounding boxes generated by parcel splitting.
No explicit provision is made to produce or control
irregular sub-plots; they arise naturally along curved
boundaries. The plot parameters do not obey a specific
distribution: they are merely bounds which constrain
how large or small a plot should be. Since we employ a
recursive splitting procedure, explained below, and this
will tend to split plots as much as possible, we allow a
random chance (50%) of terminating splitting early, as
long as the current plot under scrutiny is not bigger than
the largest specified plot size.

Our parcel generation phase is a modification of the
method used by Parish and Müller [5]. First, we build

an oriented bounding box for the input polygon. We
then split the input polygon in the direction of the
longest axis of the bounding box, allowing a small ran-
dom perturbation in the range (0.4,0.6) for the origin
of the split line along the shortest box axis. The split-
ting process continues recursively: each new polygon
is split orthogonally to an edge of the polygon which
maximizes our splitting criterion. This criterion gives
high weight to long edges as well as edges which have
immediately adjacent edges which are near orthogonal
to the edge under consideration. The origin of the split-
ting line is jittered to ensure that we do not always split
from the centre of an edge. We effectively ignore con-
cavity by taking the first two line intersection points
with the polygon loop. This is guaranteed to yield two
polygons, regardless of boundary complexity. This al-
lows concave plots if the initial polygons is concave, but
since these occur in reality this is not an issue. We dis-
allow splits which would generate new polygons with
oriented bounding boxes that fall below our minimum
parcel size requirement. A new parcel must be large
enough to accommodate the smallest building as well
as a prescribed margin around each building. We also
disallow splits which would generate parcels with no
street access.

For each we estimate the largest interior box, using a
sampling approach: we look inwards from each poly-
gon edge and try to find the largest contained box us-
ing a number of ray intersections centred on each edge.
While this is a rather crude approximation, it is reason-
ably cheap (for small numbers of rays) and yield boxes
oriented along edges, promoting street access. We then
shrink the box to fit the constraints supplied by the
sketch system. We do this by generating a random plot
margin for each box axis and determining whether the
resulting (reduced) box obeys the constraints on build-
ing size. If it does, we accept the reduced envelope as
the building base; otherwise we try with the minimal
margin constraint. If this fails, we flag that parcel as
being too small to contain a valid building. Once we
have generated a suitable building, we impose a global
aspect ratio check to shrink plots which have exploited
the maximal plot size to aggressively. Currently we do
not allow buildings with an aspect ratio above 3. Fi-
nally, we generate a uniform random height between
the height constraints supplied for that input block.

4.3 Building Editing
The skyline subsystem takes a sketched skyline curve
and must then ensure that the final orthogonal projec-
tions of all selected buildings conform to the implied
envelope. Our solution obeys the following princi-
ples: (a) the fewest possible buildings are altered, (b)
heights after modification remain in the min/max range
attached to buildings, (c) buildings above the skyline
constraint are lowered, while those lying below are only
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raised as necessary to cover the skyline, and (d) the pro-
cedure executes at interactive rates.

To enforce the skyline constraint, we decompose the
piece-wise constant skyline envelope into a sequence
of zones on the projection plane. Each zone is simply a
disjoint rectangular region in the plane with a constant
height constraint that impacts all buildings projecting
into that zone. Of course, buildings often project across
adjacent zones. In keeping with principle 3, such a
building is lowered, if necessary, to the minimum height
of the zones it spans.

In order to satisfy principle 1, we develop the idea of
zone coverage. This refers to the proportion of a zone’s
width that is covered by the union of the bases of build-
ings whose heights have been fitted to that zone’s sky-
line. Thus the potential coverage of a building is the
intersection of its projected extent with the zone’s ex-
tent, but this coverage is only realized if its height is
altered to fit the zone. To keep building edits to a min-
imum, we first raise those buildings which contribute a
large proportion of unique coverage to any given zone.
To do this we order the height edits for each zone by
potential coverage. We then select legal edits for each
zone until either we have no edits remaining or some
prescribed coverage fraction has been attained. In prac-
tice the piece-wise constant height constraint can lead
to skylines that are too sharply defined to be natural. We
address this by allowing a certain “fuzziness” in asso-
ciating buildings with zones. More precisely, we shrink
the building extent by an ε in either direction for the
purpose of computing zone associations. The result-
ing skyline has a rougher, more approximate appear-
ance while, in essence, still conforming to the sketched
constraint. To further enhance variation, we add a small
random offset to building height edits, which allows
them some variation below the zone height threshold.

By default, the skyline is enforced on all buildings in
the selected region. Sometimes, however, a user may
wish to edit only those buildings in the front-line clos-
est to the view. We find these buildings using a 1D z-
buffer. The base extent of each building (in the XZ-
plane) is rasterized into a 1D depth buffer such that the
identity of the closest buildings along the base line can
be retrieved.

For elevation mode we need to ensure that height
changes fall off smoothly towards the boundary of the
selection. To achieve this the change in height is scaled
by a weighting factor:

w =


1 if r > r1

f (1− r
r1
) if 0≤ r ≤ r1

0 if r < 0
(1)

where f (x) = (x2−1)2, x ∈ [0,1]; r is the shortest dis-
tance to the boundary of the selection (with points in-

side having positive distance and those outside nega-
tive), and r1 is the distance after which a constant height
change is applied.

5 EXPERIMENTS AND RESULTS
Since the primary focus of this work is the development
of a sketching and gestural interface, we concentrate in
this section on the utility and ease-of-use of the final
system. In this regard, we administered a number of
usability experiments:

Comparing Sketching and Input Maps: We tested
an early version of our sketching interface against the
dominant alternative of image map input created with a
paint program. In the painting interface each layer (us-
age, road pattern, parkland) is displayed separately and
created using a typical image painting toolset with vari-
able width paintbrushes, erasers and bucket fill. This
represents a common paradigm in procedural city mod-
elling.

The experiment consisted of a between-groups study
with 20 subjects. Users were asked to reproduce 2 pre-
viously created cities (drawn randomly from a sample
of 5) and were assessed on the basis of speed, accuracy
and a post-test usability questionnaire. While sketching
was faster than image maps, this was not significant
(p = 0.15 on a t-test). We attribute this to the disparity
in experience with comparable interfaces (users scored
a mean of 3.2 for painting and 1.4 for sketching on
a 5-point Liekert scale of self-reported experience).
With training we expect sketching to be significantly
faster. Accuracy was assessed using a scoring scheme
which considered the approximate shape of region
boundaries, placement of road constraints and the
heights of buildings. The sketching interface was found
to be significantly more accurate (p = 0.008). Finally,
users scored the usability of sketching more highly
than image maps, with a mean score of 4.35 against
2.10 on a simple 5-point Liekert scale. In summary,
we found that sketching wins in general over image
maps with respect to accuracy and usability, with a
non-significant trend towards improved speed.

Gesture Calibration: In order to deal with the wide
range in building scales (from 5m high single-story
homes to 400m tall skyscrapers) and the limited size of
the gesture canvas, we originally intended employing
an exponential scale. After running an exploratory
experiment with 10 subjects, however, we discovered
that most users found this to be confusing and counter-
intuitive. Given drawings of various building gestures
along with a scaling key (as shown on the left of
Figure 4) and the task of attaching heights and widths,
the majority of users (8 out of 10) used a piecewise
linear scale for the vertical, with a change in slope at
about the 3−4 story level, and a width dictated by the
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aspect ratio of the building. These findings motivated
our final approach.

Gesture Recognition: We undertook an experiment to
test the robustness of our simple gesture recognition
scheme, since it can be frustrating for a user to have
to undo false positives or redo false negatives. Our ex-
periment was something of an acid test: the 12 subjects
were given no training except a briefing sheet, received
no feedback as to the success or failure of gestures
(since we wanted to minimize learning effects) and they
used a mouse, which, although ubiquitous, is rather de-
ficient as a drawing device. Subjects were presented
with 3 examples of each gesture, in a randomized or-
der. The results were encouraging, with a mean recog-
nition rate of 84.1% (s = 7.4%) on the first attempt.
There were no misclassified gestures (false positives)
and the mean unclassified gesture rate (false negatives)
was thus 15.9%. The gesture that failed most often was
the simple Manhattan road pattern: two sets of near or-
thogonal lines that cross each other. Users sometimes
drew overly long lines with high curvature, which were
incorrectly classified as polylines, an issue that is easily
corrected with remedial training. Overall, this experi-
mental setup represents worst-case performance, since,
in practice, users are given feedback, are allowed to
practise, and are not restricted to using a mouse, leading
to substantially higher first-attempt recognition rates.

[A] [B]

Figure 6: Results: comparison of real and virtual Man-
hattan - [A] real street map ( c©OpenStreetMap contrib-
utors), [B] virtual recreation. City Sketching is able to
reproduce the alignment and spacing of road networks
and the placement of features, such as Central Park,
Broadway and Brooklyn Bridge but is not suited to ex-
actly reproducing local road layouts.

We have also undertaken some informal validation tests
to see whether an existing cityscape can be roughly
reproduced by an experienced designer within a fixed
time limit (45 minutes). A procedural version of Man-
hattan (New York City) with 7660 buildings and 3006
roads is shown in Figure 7 and alongside a road net-
work from the corresponding real city in Figure 6. Also
shown is a hypothetical city on the edge of the Grand
Canyon (11794 buildings and 5605 roads). The proce-
dural city generation completed in under 30 seconds for
both examples on a 2.4 GHz Intel Core 2 Duo with 2 Gb
RAM.

We have found that sketched gestures are an effective
input mechanism when absolute precision is not re-
quired and parameters have a direct geometric interpre-
tation. In such circumstances they can be both mean-
ingful and compact. For instance, our usage zone ges-
ture captures a selection and 9 float values in a single
sketch. However, gestures are less useful for indirect
parameter specification. For example, our system as-
sumes usage zones with a dominant type, but in many
cases a mixture is more realistic. Using a gesture to
encode the exact proportion of industrial, residential
and commercial buildings within a zone would likely
be clumsy in the extreme. In cases like this, traditional
GUI elements, such as slider bars, are more appropriate.

6 CONCLUSION
This paper presented City Sketching, a procedural sys-
tem that employs a hybrid sketch and gesture inter-
face, enabling users to control, in detail, the genera-
tion of a virtual city, including the layout and interac-
tion between road networks, categories of land usage,
and the dimensions of plots and buildings. Our sys-
tem can be applied to improve scene modelling for vi-
sual effects, computer games and simulation. Our re-
sults show that it is possible to have a single procedural
framework, controlled through sketch-based interaction
alone, which draws together all the necessary compo-
nents for high-level city design. Furthermore, our ap-
proach is both more usable and more accurate when
compared to conventional image map or numeric con-
straint specification.

There are a number of directions in which the system
could usefully be extended. First, it would be interest-
ing to connect our interface to a separate simulation-
oriented city generator that is capable of exploiting the
statistics and constraints that we produce. Second, there
is scope to extend detailed editing of the city. For in-
stance, the placement of individual “hero” buildings
with specific dimensions is possible but not currently
supported. Finally, the example-based aspect of our
system could be extended by substituting real-world
road map images for road pattern gestures. However,
deriving statistics or even explicit road constraints in
this case would require extensive image processing.

ACKNOWLEDGEMENTS
This research was supported by an NRF/THRIP grant
and the Centre for High Performance Computing.

7 REFERENCES
[1] Prusinkiewicz, P., and Lindenmayer, A. The algo-

rithmic beauty of plants. Springer-Verlag, 1996.
[2] Ebert, D., Musgrave, F., Peachey, D., Perlin, K.,

and Worley, S. Texturing and Modeling: A Proce-
dural Approach. Morgan Kaufmann; 3 ed., 2003.

Journal of WSCG

Volume 22, 2914 9 ISSN 1213-6972



Figure 7: Results: two procedural city sketches. By row from top to bottom - Manhattan, Manhattan in close up,
A hypothetical city on the edge of the Grand Canyon and its close up. By column from left to right - sketch, road
network, procedural city. Both examples were designed in under 45 minutes by an experienced user.

[3] Müller, P., Wonka, P., Haegler, S., Ulmer, A., and
Van Gool, L. Procedural modeling of buildings.
ACM Trans Graph, 25(3): p. 614-23, 2006.

[4] Perlin, K., and Velho, L. Live paint: painting with
procedural multiscale textures. In: SIGGRAPH
’95, p. 153-60, 1995.

[5] Parish, Y., and Müller, P. Procedural modeling of
cities. In: SIGGRAPH ’01, p. 301-8, 2001.

[6] Hultquist, C., Gain, J., and Cairns, D. An adjec-
tival interface for procedural content generation.
In: Intelligent Computer Graphics 2009; v. 240,
p. 143-65, 2009.

[7] Aliaga, D., Vanegas, C., and Benes, B. Interac-
tive example-based urban layout synthesis. In:
SIGGRAPH Asia ’08, p. 1-10, 2008.

[8] Lipp, M., Scherzer, D., Wonka, P., and Wim-
mer, M. Interactive modeling of city layouts using
layers of procedural content. Computer Graphics
Forum, 30(2), p. 345-54, 2011.

[9] Gain, J., Marais, P., and Strasser, W. Terrain
sketching. In: I3D ’09, p. 31-8, 2009.

[10] Vanegas, C., Aliaga, D., Benes, B., and Wad-

dell, P. Interactive design of urban spaces using
geometrical and behavioral modeling. In: SIG-
GRAPH Asia ’09, p. 1-10, 2009.

[11] Galin, E., Peytavie, A., Guerin, E., and Benes, B.
Authoring hierarchical road networks. Computer
Graphics Forum, 30(7), p. 2021-2030, 2011.

[12] da Silveira, L., and Musse, S.. Real-time genera-
tion of populated virtual cities. In: VRST ’06, p.
155-64, 2006.

[13] Chen, G., Esch, G., Wonka, P., Müller, P., and
Zhang, E. Interactive procedural street modeling.
In: SIGGRAPH ’08, p. 1-10, 2008.

[14] Vanegas, C., Aliaga, D., Wonka, P., Müller, P.,
Waddell, P., and Watson, B. Modelling the ap-
pearance and behaviour of urban spaces. Com-
puter Graphics Forum, 29(1), p. 25-42, 2010.

[15] Dadgostar, F., Sarrafzadeh, A., Fan, C., Silva, L.,
and Messom, C. Modeling and recognition of ges-
ture signals in 2d space: A comparison of nn and
svm approaches. IEEE Conference on Tools with
Artificial Intelligence, p. 701-4, 2006.

Journal of WSCG

Volume 22, 2914 10 ISSN 1213-6972



Intelligent Prioritization and Filtering of
Labels in Navigation Maps

Mikael Vaaraniemi
BMW Forschung und Technik

GmbH
München, Germany

mikael.vaaraniemi@bmw.de

Markus Goerlich
BMW Forschung und Technik

GmbH
München, Germany

markusgoerlich@mac.com

Aick in der Au
TEXTURE-EDITOR GbR

München, Germany
aick@texture-editor.com

Figure 1: Filtering of labels in a 3D navigation map: (left) without filter (right) with filter.

ABSTRACT
The description of objects in navigation maps by textual annotations provides a powerful means for orientation
and visual data exploration. However, displaying labels for all features leads to a cluttered map with unreadable
labels and occluded information. Therefore, the overall goal is to display the most important and filter out the
less important labels. In this paper, we present a general approach for filtering labels. We use the navigation in
automotive maps as an application to test our approach. This involves the creation of a priority metric for ranking
labels in maps. Our flexible system allows runtime configuration of the priority. Moreover, we keep the temporal
coherency of label filtering; hence, jittering of labels does not occur. The system is predictable, modular, and can
easily be adapted to new applications. On medium-class hardware, our real-time system is capable of filtering on
average 1000 labels within 12 ms. A concluding expert study validates our approach for navigation purposes. All
candidates approve the resulting clear labeling layout.

Keywords
Annotation, Labeling, Ranking, Filtering, Navigation, 3D maps, GIS.

1. INTRODUCTION

The description of objects by textual annotations pro-
vides a powerful means for visual data exploration.
Compared to images, they have to be actively read, but
can precisely describe objects with selected informa-
tion. In Geographic information systems (GIS) labels
are used to describe geospatial data, such as road net-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

works and demographic data. In these systems, labels
are important for the user’s orientation and understand-
ing of map elements. Unfortunately, the finite screen-
space of desktop PCs limits the maximum amount of
labels that can be displayed at the same time. This
becomes even more problematic when we have a high
amount of information on a small spatial area, e.g. when
displaying road names of dense cities like Tokyo. The
3D view of a map accentuates this problem; Tilting
the view condenses the projected spatial area onto the
screen. Hence, the main problem when annotating all
map features is a cluttered map with unreadable labels.
Fig. 2 displays the problem, that occurs when showing
all available labels of Munich in Germany at the same
time.
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Figure 2: Display of all labels in Munich, Germany.

Therefore, to create a usable annotated map we have to
prioritize all existing labels to select and display only
the most important ones. Of course, removing labels is
only feasible in non-critical applications.

The filtering system should follow some prerequisites.
We limit the number to approximately 4 to 8 labels to
stay consistent with the findings of Alvarez [AF07] and
the Miller’s law [Mil56]. Alvarez states in his first
experiment, that a user can track between 4 fast ob-
jects and 8 slow objects on average. Additionally, more
and more GIS applications have to cope with dynamic
content, requiring runtime prioritization of labels with-
out prior knowledge, e.g. when loading KML files into
Google Earth. Finally, we follow the labeling rules
set by Vaaraniemi et al. [VTW12]. They state that la-
bels should behave in a temporally coherent way: they
should not flicker or jump around the map.

Advantages of a label filtering approach are at hand.
First, because we render less labels, we lower the over-
all performance impact, e.g. for placement, collision
detection and rendering [VTW12]. Second, less colli-
sion between labels occur, which results in an enhanced
readability. Third, the recognition and tracking of in-
dividual labels becomes easier. Fourth, the graphical
association of a label with its map feature is enhanced.
This is consistent with Imhof’s statement [Imh75], who
names legibility and the graphical association of a label
with its feature as characteristics of good lettering.

1.1. Goals and Contributions
Based on the aforementioned requirements and our in-
tended application area, we defined the goals of such
a system as follows: We want to (a) display most im-
portant and filter out less important labels, (b) select
approximately 4 to 8 labels, (c) create a flexible filter-
ing system, that is configurable at runtime, (d) create
a predictable, reproducible and understandable system,
and (e) maintain temporal coherency where jittering of
labels does not occur.

Prioritization and selection of labels is a very applica-
tion specific topic. In this paper, we use navigation in
3D maps as an application to test our approach. Our
proposed approach depicted in Fig. 1 has the following
contributions:

• General approach for filtering a set of labels
• Priority metric for labels in navigation maps
• Temporal coherency of label filtering

In Section 2 we will present related work and survey
filtering in existing commercial navigation systems. In
Section 3, we will propose a system composed of 3
stages: configuration, ranking of labels and a rule-based
selection. The implementation details are stated in Sec-
tion 6. In Section 7, we evaluate the performance of
our approach and present the findings of a conducted
expert study. Finally, we conclude this paper with fu-
ture research areas.

2. RELATED WORK

To assess the current state-of-the art, we first evaluated
existing filtering and prioritization schemes for labels.

Simple Label Prioritization. Tatemura [Tat00] intro-
duces fisheye maps, an approach for information explo-
ration based on features with priorities. In his appli-
cation, he uses a priority metric based on image sim-
ilarities. Been [BDY06] presents an approach to la-
bel 2D maps in real-time. However, filtering is only
slightly addressed: labels are selected on the basis of
a geographic region and / or scale. For instance, he
drops local road names when zoomed out. Bertini
et al. [BRL09] introduce an excentric labeling where
lenses focusses information. However, manual input for
filtering labels is required: the user selects with check-
boxes which labels should be displayed.

Assumed Prioritization. In most cases, the approaches
describing placement and collision detection of labels
are based on a ranked list [BF00, AHS05, MD06],
[VTW12, VFW12]. They usually assume that the prior-
itization was already done in a preprocessing step. For
instance, Luboschik et al. [LSC08] mention a ranking
for GIS based on the feature type. Mote [Mot07] men-
tions a ranking based on the population of cities or the
Google page ranking when displaying web searches.
Moreover, Stein and Décoret [SD08] present a GPU-
based real-time approach for labeling a 3D scenery.
However, to compensate the drawbacks of their greedy
approach, an Appolonius diagram defines the label place-
ment order.

Conclusion. Most research on interactive labeling sys-
tems is based on the optimal placement and collision
detection of labels (see Fig. 3, (violet)). However, there
is almost no literature about the prioritization schemes
used in existing systems. In most approaches, the rank-
ing is defined by the importance of the map feature or
set with simple characteristics, e.g. the distance to the
camera. Hence, to better grasp related filtering systems,
we decided to survey commercial navigation systems.

Journal of WSCG

Volume 22, 2914 12 ISSN 1213-6972



2.1. Survey: Filtering of Labels in
Commercial Navigation Systems

Filtering of labels is an essential component of current
navigation systems. However, in most cases it is un-
known how the filtering of labels works and which algo-
rithms are internally used. Hence, we conducted a sur-
vey with several navigation devices, namely, the Tom-
Tom Go 940 Live, Garmin nüvi 765T, Falk F10, Becker
Z108 and the Navigon Select App for iOS.

2.1.1. Quality: Readability

In our first test, we evaluated the quality of the label-
ing. For every device, we counted in two different
cities at eight locations all labels displayed in the map.
We counted the labels at different zoom levels: the de-
fault zoom while driving and the maximum zoom level.
Then, for each label, we checked it’s readability. This
survey can be see in Table 1.

Readability of Labels. As can be seen in Table 1, only
the TomTom device achieved a readable labeling at ev-
ery zoom level. All the other devices rendered labels,
which collided or became clipped by the outer edges of
the screen.

Navigation System Default zoom level Maximum zoom level

Total # Readable # Total # Readable #

TomTom Go 940 9 9 4 4
Garmin nüvi 765T 9 5 2 2
Falk F10 12 7 5 4
Becker Z108 11 7 6 4
Navigon select 14 10 6 3

Table 1: Results of our survey of the readability of la-
bels at different zoom levels in commercial navigation
systems. This table shows the total number of labels
and the number thereof of readable labels. The num-
bers are averaged over eight different locations.

2.1.2. Filtering Criterias

In the following tests, we tried to comprehend which
criteria are used in the filtering of labels. This was done
by following the same navigation route in the city of
Munich in Germany with each device.

Repetitions of Road Labels. Not a single device re-
peats the road names, even if there would be enough
screen-space.

Filtering: Horizontal Roads. All devices seem to pri-
oritize roads which are rendered horizontally in screen-
space. Garmin tries to show only intersecting roads.

Current Road Label. TomTom and Falk always show
the current road on the map. The other devices display
the current road as a separate layer at the bottom of the
screen.

Filtering: Route vicinity. Only TomTom and Garmin
use sometimes the route as a filtering criteria. On the
other hand, Falk, Becker and Navigon try to squeeze as
many labels as possible on the screen.

Filtering: Distance to user. Only Garmin and Becker
prioritize labels near to the current user’s position.

2.1.3. Conclusion

Every system uses it’s own combination of filtering cri-
teria. However, not a single one uses all criteria to cre-
ate a good labeling layout with all important labels.

3. 3-STAGE FILTERING SYSTEM
The key idea of our approach is to create a ranking of all
labels by computing a score for each label. This score
depends on the label’s type and the spatial relationship
to the map environment. Using this priority list, we can
intelligently select and filter the displayed labels. The
result can be seen in Fig. 1 and Fig. 4.

Our filtering system depicted in Fig. 3 is composed of
3 stages:

1. Configuration – The first stage configures the filter-
ing system depending on the current situation. For
example, we can configure the system to output the
four most important road labels if we drive along a
route. Moreover, when we are searching the map for
restaurants, we could restrict the labels to restaurant
POIs and the surrounding roads.

2. Label Ranking – The second stage creates a ranking
of all existing labels using a scoring system. It is
computed using scoring modules called evaluators.
The following Section 4 describes all types of mod-
ules with their score computation.

3. Rule-Based Selection – The last stage is a rule-based
system which uses the ranking from last stage and
predefined rules to select the labels to display. This
stage enforces rules to ensure a specific behavior,
e.g. limiting the maximum amount of labels.

Our approach distinguishes the following categories:

• City Labels, point features.
• Point Of Interest (POI), point features.
• Road Labels, line features.

City and POI labels describe a point feature and have
a fixed 2D position on the map. Road labels describe
a line feature stored as a 2D polyline [VTW11]. The
road’s label can be placed along the entire polyline
composed of linear street segments.
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Figure 3: Overview of the entire labeling pipeline: Af-
ter loading the labels from the map database (orange),
the 3-stage filtering system (blue) presented in this pa-
per filters the labels. Then, the selected labels are sent
for placement onto the screen (violet). At runtime, we
compute if any collision between labels occurs to fi-
nally render them to the display (green).

4. LABEL RANKING: EVALUATORS
We evaluate the score of a single label with a ranking
system composed of evaluator modules. Each label is
sent to each evaluator to compute an arbitrary score.
Finally, the scores of a label i are summed up to create
a final score score(i).

4.1. Evaluators
We define evaluators based on the following criteria:

• Category Evaluator: score is based on the label’s
road or city or POI class

• Placement Evaluator: score is based on the past la-
bel’s visibility to the user

• Distance Evaluator: score is based on the distance
between the label and the user’s position

• Route Evaluator: score is based on the vicinity of
the label to the route

• Driving Direction Evaluator: score relates to the
driving direction

• Road Angle Evaluator: score is based on the rela-
tionship between the driving direction and road di-
rection

• Road Length Evaluator: score is based on the ratio
between the road segment and the label’s length

Furthermore, each evaluator specifies separately if higher
or lower scores are better.

The presented evaluators were created mainly to rank
labels of a 3D navigation map. Transferring our sys-
tem to other application areas should be easily possible
but would require a re-evaluation of each evaluator and
possibly requires adding new ones.

4.1.1. Category Evaluator

This basic evaluator scores labels based on the cate-
gory of their corresponding map element, i.e. the road

class or the city’s importance. These categories are pre-
compiled into the map database and fetched at runtime.
Hence, the resulting score is:

score(i)cat = score(i)db (1)

Usually, highways have the highest score, followed by
federal roads and main roads. Streets of lower impor-
tance, such as ordinary urban roads or walking paths,
receive a lower score. The larger a city is, the more
likely it is probable that it is known to the driver and
thus contributes to a better orientation. Therefore, cap-
itals and major cities return high scores. The less im-
portant a city is, e.g. in terms of population number, the
lower the score gets.

4.1.2. Placement Evaluator

The placement evaluator is the key element to achieve
a temporally coherent label filtering. The idea of this
evaluator is, that already displayed labels are boosted
through a higher score. Such a scoring prevents jitter-
ing, e.g. when labels become visible for a brief moment
and disappear when another label achieves a slightly
higher score.

score(i)place =

{
1 if label i visible
0 else

(2)

4.1.3. Distance Evaluator

The distance evaluator prioritizes labels around the user’s
location, e.g. the current car position (CCP). Therefore,
the score is given by the distance between the label and
the user’s current position.

For the user’s position pccp and the label i with position
pi the score is computed as follows:

score(i)dist = ‖pi− pccp‖ (3)

4.1.4. Route Evaluator

This evaluator is used when an active route guides the
user to his destination. The goal is to achieve a greater
focus on labels positioned closer to the route. There-
fore, for each candidate position pi of a label i, the
shortest distance d to the route is calculated. This dis-
tance does not map linearly to a score, since a label that
is twice as far away of the route is not necessarily half
as important. Instead we use a logarithmic function to
create a focus tube around the route.

For label i with position pi and the shortest distance d
of label i to the route we get the following score:

d = ‖pi− route‖ (4)

score(i)route = logd ∗
√

d (5)
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4.1.5. Driving Direction Evaluator

The driving direction evaluator focuses on the labels
ahead of the user. This is achieved by computing the de-
viation of a label’s position from the direction of travel.

The driving direction is given by a 2D angle αccp.
Moreover, we compute the vector between the user’s
position pccp and the label’s position pi. This is trans-
formed to an angle αlabeli . We compute the differential
angle spanned between the driving direction and the la-
bel’s position.

With the normalized deviation p̂ and the corresponding
angle αlabeli we get:

p̂ = (pccp− pi)/‖pccp− pi‖ (6)
αlabeli = atan2(py, px) (7)

score(i)direction = ‖αccp−αlabeli‖ (8)

We define the angle to be 0° when the label is in front
of the user, 90° states that it’s on either side and 180° if
it’s directly opposite to the direction of travel.

4.1.6. Road Angle Evaluator

The goal of this evaluator is to increase the score of
labels from roads stretching vertically to the driving
direction. Such roads mainly include crossroads and
intersections that are especially relevant for navigation
maneuvers. Even if this is a coarse simplification, we
assume that most of these roads can be reached directly
from the current route. In contrast, parallel roads can
usually not be reached without entering another road
first.

To compute the score, the direction of travel αccp is de-
termined. Then, for each label candidate position pi,
the angle αroad of the corresponding road segment is
computed. The smallest differential angle αangle is used
to create the score score(i)angle as follows:

αangle = ‖αroad−αccp‖ (9)

score(i)angle =

{
cos(αangle) if αangle ≤ 90°
0 if αangle > 90°

(10)

The advantage of this approach is that we do not need
a complex graph-based structure of the road network
to find intersecting roads. However, this evaluator still
needs the road’s geometry, i.e. a polyline. This means
that neither POIs or city labels can be scored.

4.1.7. Road Length Evaluator

The road length evaluator prevents the placement of la-
bels which names are longer than their corresponding

road in screen-space. If the label would still be shown,
it would hide the road, suggest a longer road and even
encompass on neighboring roads.

The score score(i)length is based on the screen-space
ratio between the length of the name compared to the
projected road’s length. First, we project the road’s
polyline into screen-space and compute the length lroad .
Second, we compute the screen-space length of the ren-
dered label’s name llabel . If the label is shorter than the
projected road segment, it receives a perfect score of 1.
If the name is longer, the score is given by the ratio of
the road’s length and the label length.

score(i)length =

{
1 if llabel ≤ lroad

lroad/llabel else
(11)

Again, this evaluator works only for roads and no other
label categories can be considered.

4.2. Final Score
We have computed for every label i and each evaluator
k the score(i)k. This score is normalized to score(i)′k
as described in Section 6.2. Moreover, we introduce
weights wk to configure the influence of each evaluator
k. Each normalized score score(i)′k is factored with his
weight wk and summed up to a final score for label i:

score(i)′k =
score(i)k

max
1≤ j≤n

(score( j)k)
(n: #labels) (12)

score(i)global = ∑
k

score(i)′k ∗wk (k ∈ evaluator) (13)

Computing this for every label results in a global rank-
ing needed for the intelligent selection described in the
following Section.

5. CONFIGURATION & RULE-
BASED SELECTION

Selecting labels solely based on the ranking can not
ensure a desired result. We solve this problem by in-
troducing two methods: Based on the current context
and the desired result we (a) configure the evaluators’
weights and (b) instate predefined rules to select labels.

5.1. Configuration: Weights
It is necessary to change the effect of the individual fil-
ters in specific situations. Using weights, the influence
of a filter on the overall score can be changed. In differ-
ent modes, different weights are needed. For instance,
it makes no sense to use the route evaluator when there
is no route. Analogously, when the user is exploring the
map, the distance and direction evaluators become irrel-
evant. In the following Table 2, a configuration example
of the weights wk for the evaluators k can be found.
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(a) No filtering. (b) Category Evaluator: Filtering based on the label’s type.

(c) Distance Evaluator: Filtering based on the distance to the user. (d) Route Evaluator: Filtering based on the route’s vicinity.

(e) Driving Direction Evaluator: Filtering based on driving direction. (f) Road Angle Evaluator: Filtering based on driving vs. road direction.

(g) Road Length Evaluator: Filtering based on name vs. road length. (h) All: Filtering based on all evaluators.

Figure 4: Our approach is based on evaluators ranking the labels with the help of map and user properties. This
ranking is then used to filter the set of labels. In this figure, the current user’s position is marked with the blue
arrow and the user’s navigation route is colored in orange. To display the impact of every evaluator, we limit the
label number to eight and let a single evaluator process all labels.

5.2. Rule-Based Selection
The last stage of our system is a rule-based selection of
labels based on the overall configuration and the rank-
ing generated by the evaluators. These rules can over-
rule the ranking and ensure a specific behavior. We in-
state the following rules:

Repetition of Labels. At predefined zoom thresholds,
we allow the repetition of labels for longer line features,
e.g. motorways, rivers and country borders.

Maximum Number of Labels. We limit the maximum
number of labels to be displayed.

Zoom-dependent Rule. Depending on the current map
zoom level we hide or display certain label categories.
Generally speaking, we remove predefined road or city
classes when zooming out. For instance, when zooming
out, we stop showing road names. In contrast, when
zooming closely into the map, we stop showing country
names.

Special Labels. We also instate a special rule to ensure
the display of special labels. In a navigation system,
some labels should always be shown, e.g. the start, the
destination, and the current road.
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Evaluator Information Mode
Weight

Route Mode
Weight

Category 0.8 0.5
Placement 0.6 0.7
Distance 0.0 1.0
Route 0.0 1.0
Driving Dir. 0.0 0.5
Road Angle 0.7 0.5
Road Length 0.9 0.8

Table 2: Two configuration examples of the evaluator’s
weights. In the route mode, we have an active route
and a current user’s position. Hence, all labels around
the user, the route and intersecting roads are important.
In the information mode, we do not have a route and
the exploration of the map with all it’s labels becomes
the most important task. Setting weights to 0.0 disables
irrelevant evaluators.

6. THE LABEL SCORING SYSTEM

Until now, we assumed that labels have a single posi-
tion. However, line features like roads are composed of
several line segments. Their annotation can be placed
at any position along these segments.

6.1. Road Labels: Candidate Scores

As can be seen from the given examples, most evalua-
tors require a fixed position for a label, e.g. to determine
if a label is near the route. For point features like city
and POI labels, each evaluator returns a single score be-
cause they are stored with a single position in the map
database. However, road labels could be placed at any
position along the road’s geometry. We simplify this to
achieve real-time computation: for each road label we
store all its linear road segments. Such road segments
have a limited resolution and do not always match the
curvature of the road as illustrated in Fig. 5. We al-
low the placement of road labels at every mid-point of
a road segment.

90%	  95%	  

81%	  81%	  

90%	   90%	  

Figure 5: Road segments as candidates for the place-
ment of a roundabout’s label. Possible placement posi-
tions for road labels exists only at segment mid-points.

Candidate Scores. For each road label, we store one
total score that determines the priority of the entire road
and a second set of candidate scores, one for each seg-
ment, that determines the best placement position. Both
score types are independent and cannot be compared
with each other. The total score for road labels is cal-
culated by taking the maximum score of all it’s candi-
dates.

As a result, the label placement system needs to check
for a given label if it can be placed at a candidate po-
sition. It checks all candidate positions in descending
sequence of its candidate scores. With both score types
the label filtering system can be kept independent from
other parts of the label placement system. Information
about label collisions are not needed and all labels can
be processed independently from each other.

Hence, for road labels and if the evaluator requires a
position, we need to compute multiple candidate scores
– one for each segment’s mid-point. Evaluators which
are unrelated to the label’s position, i.e. the placement
evaluator, just distribute their score to all segments.

Example. Consider the case depicted in Fig. 6 where
labels for Street 1 and Street 2 need to be placed: La-
bel Street 1 (belonging to the left road) has the highest
priority with a score of 95%. Therefore, it’s the first
label to be placed at C1 (green) into the screen. Label
Street 2 with a score of 93% has three possible candi-
date positions (blue): The left segment with the highest
candidate score (C1) of 99%, C2 with 50% and C3 with
0%. We would like to place the label Street 2 at C1 but it
fails due to collision with the label Street 1. Therefore,
because C2 (blue) represents the second best score, the
label Street 2 places itself onto C2.

CAND
IDATE

(3(
CANDIDATE(2(

STREET(2(
93%(

STREET(1(
95%(

(0%(50%(

Figure 6: Road labels store their overall score (bottom,
right) and additional candidate scores to determine the
best possible placement along a road.

6.2. Score Normalization and Weighting
In a second step, we normalize all scores. The total
score for each label is calculated by taking the weighted
sum of all resulting scores as shown in Table 3(a). Nor-
malization is done by dividing by the maximum score
over all labels of each evaluator. For road labels con-
sisting of multiple segments, we take the score from
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the best segment, i.e. depending on the evaluator either
the minimum or maximum (see Sec. 4.1). Candidate
scores for road labels are evaluated in a very similar
fashion: Normalization is done by dividing by the max-
imum candidate score over all segments for each evalu-
ator (see Table 3(b)).

7. RESULTS
The implementation of this filtering system was pro-
grammed with C++ and OpenGL 3.2 and runs on Win-
dows 7 (x86). In this section we analyze the runtime
behavior of the system followed by the results from the
conducted expert study.

7.1. Performance
In our application, the number of labels n the system is
processing varies between≈ 500 in sparely and≈ 9000
in densely populated areas. This high variation of n is
caused by several properties: (a) level-of-detail of the
map, (b) zoom level, and (c) the map database vendor.
On average, we observed a range of ≈ 1000 to ≈ 4000
labels to be filtered.

The Route Evaluator is the most demanding evaluator
of our approach because it requires nearest neighbor
queries to the route. These queries can be computed
in O(logm) time [AMN+98] with m being the number
of positions of the route’s polyline. In our implemen-
tation reasonable m with m < 10.000 do not impact the
performance. Overall, the filtering system’s complexity
is O(n logm).

The performance results may vary depending on the
activated evaluators, configuration settings and applied
rules. The timing in ms for two different configurations
can be seen in Fig. 7. Assuming a medium-class hard-
ware Intel Core 2 Quad CPU clocked at 2.66 GHz, our
system is capable of filtering 1000 labels within 12 ms
on average. In our implementation, this is computed in
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Figure 7: Performance measurements: We measured
the computation time of the labeling pipeline in two
different configuration: (stippled) driving mode with all
evaluators enabled and (solid) information mode where
the route and distance evaluator are disabled.

the rendering thread. In extreme scenarios (> 2000 la-
bels), this could impact the overall rendering framerate.

Therefore, for an enhanced performance, this system
could be executed in a separate thread. This is possible
because our approach is completely decoupled from the
loading, placement, collision and rendering parts (see
Fig. 3, violet steps).

7.2. Expert Study
We conducted an expert study at a research facility to
evaluate the resulting filtering layout.

Candidates. We selected five candidates aged between
30 and 40 years with a strong background in automo-
tive navigation: three male engineers, one person with
a design and user experience background, and a psy-
chologist specialized in user experience. Everyone had
experience with commercial 3D navigation systems.

Study Design. As an introduction, we showed movies
with a camera following a preset navigation route and
our active label filtering. We requested the candidates
to think about the shown selection of labels.

The first part of the study was designed to evaluate and
compare different configurations of the filtering system.
We showed four printed maps with the results of our
system. Each time, the configuration of the filtering
system was changed. Then, the candidates had to score
the labeling quality depicted in each map on a scale
1..10 (10=best). In the second part of the study, they
had to write labels manually on a printed map depicting
a road network with a navigation route and a current
car position icon (CCP). In the last part, we asked them
which map and user criteria should influence the label
filtering of a navigation map.

7.2.1. Results

Part 1 – Scoring the Filtering. On average, our filter-
ing approach depicted in the printed maps was scored
6.62 (all scores: 6.67, 6.83, 7.33, 7.0, 5.25). The first
map with 8 labels in route mode had an average score
of 7.2. The second map with 14 labels in information
mode scored 5.8. When comparing the route and the
information mode filtering, the route mode always re-
ceived higher averaged scores (first map 6.8 to 6.4, sec-
ond map 7.75 to 6.5).

We deduce that our filtering approach was well received
and that maps with less labels are preferable.

Part 2 – Writing Labels. Fig. 8 depicts the results of
the manual placement of labels by our experts. We en-
coded the number of votes to different colors: At least
three of the candidates voted for green labels, one of
five voted for the white labels, and red labels did not
receive any votes.

We deduce that the experts prefer labels around the
user’s position and on crossing roads.
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Table 3: Normalization of the label’s scores computed by the evaluators.

(a) Scores for k evaluators and n labels.

Evaluator Label 1 · · · Label n

1 : Category score(1)1 · · · score(n)1

...
k : Length score(1)k score(n)k

score(i)global
k
∑
j=1

(
score(1)k

max
1≤ j≤n

(score( j)k)
wk

)
· · ·

k
∑
j=1

(
score(n)k

max
1≤ j≤n

(score( j)k)
wk

)

(b) Candidate scores for a road label for k evaluators over m segments.

Evaluator Segment 1 · · · Segment m

1 : Category score(1)1 · · · score(m)1

...
k : Length score(1)k score(m)k

score(i)seg
k
∑
j=1

(
score(1)k

max
1≤ j≤m

(score( j)k)
wk

)
· · ·

k
∑
j=1

(
score(n)k

max
1≤ j≤m

(score( j)k)
wk

)

Figure 8: Printed map area we showed to our candi-
dates. The current navigation route is displayed in or-
ange. Each expert had to place labels on an empty map
(without labels). The most voted labels are green.

Part 3 – Questions. First, we asked how many labels
should be placed in a map. All experts agreed on a very
low number of labels, (1 of 5) to display the current
road only, and (1 of 5) to display at most 6 road labels.

Then we asked, which criteria are important for a good
label placement. All experts defined the vicinity of the
route as important and (4 of 5) the next crossroads. (2
of 5) mentioned the driving direction, (1 of 5) the road
class, and (1 of 5) the road’s length. Then, (2 of 5)
mentioned landmarks and (1 of 5) well-known roads to
help orientation. Districts (1 of 5), the current road (1
of 5), distance to destination area (1 of 5) were also
mentioned.

Moreover, we asked how important are road labels be-
hind the current user’s position. The majority of experts
(3 of 5) stated they are not important.

Finally, we asked if repetitions of road labels would
be useful at higher zoom levels. Only (2 of 5) experts
stated they are useful if the road branches or the course
becomes unclear.

Conclusion. The results of this study shows the impor-
tance of the distance to the driving route and the current
user’s position on the label selection strategy. More-
over, roads crossing the current road are an important
factor. All statements indicate a preference to display a
minimum amount of labels. On top, the filtering system
should be modular to satisfy even more criteria.

Finally, even if our filtering system was well received,
we increased the weights of the route and distance eval-
uators to better fit the new findings. The resulting
weights can be seen in Table 2.

8. CONCLUSION
In this paper, we presented an approach to filter labels in
navigation maps. We introduced a 3-stage label filtering
pipeline. First, it computes a score using multiple eval-
uators based on user’s and map properties. This creates
a ranking for all existing labels. Then, based on these
results, predefined rules selects which labels should be
displayed. With this system, we can achieve all our
goals set in Section 1: The ranking creates a metric
for the importance of labels in navigation maps. Then,
we can limit the number of labels to a fixed amount
depending on the current navigation context using the
rules from Section 5. Temporal coherency is achieved
with a placement evaluator (see Section 3). Moreover,
our system is highly flexible as we can change the prior-
itization metric at runtime. Finally, the filtering system
can easily be adapted to new applications.

On an Intel Core 2 Quad CPU at 2.66 GHz, our sys-
tem is capable of filtering on average 1000 labels within
12 ms. Finally, the candidates of our expert study
approved the clear labeling layout created by our ap-
proach.

In further research, we would like to find heuristics to
detect unclear road courses where label repetions would
be useful. Then, we plan to evaluate our approach while
driving in a real world scenario. This should give more
insights on the quality of the priority metric. Further-
more, we would like to include the user’s preferences
as an additional evaluator module.
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ABSTRACT
Urbanisation is growingly generating crowding situations which generate potential issues for planning and public
safety. This paper proposes new techniques of crowd analysis and precisely crowd flow segmentation and crowd
counting framework for estimating the number of people in each flow segment. We use two foreground masks, one
generated by Horn-Schunck optical flow, used by crowd flow segmentation, and another by Gaussian background
subtraction, used by crowd counting framework. For crowd flow segmentation, we adopt K-means clustering
algorithm which segments the crowd in different flows. After clustering, some small blobs can appear which are
removed by blob absorption method. After blob absorption, crowd flow is segmented into different dominant flows.
Finally, we estimate the number of people in each flow segment by using blob analysis and blob size optimization
methods. Our experimental results demonstrate the effectiveness of the proposed method comparing to other state-
of-the-art approaches and our proposed crowd counting framework estimates the number of people with about 90%
accuracy.

Keywords
Crowd analysis, clustering, crowd counting, crowd flow segmentation, crowd counting

1 INTRODUCTION

As the population of world is increasing and ever more
located in urban areas, public safety is becoming a
problem in most crowded areas of the big cities. Mass
events like those related to sports, festivals, concerts,
and carnivals attract thousands of people in constrained
environments, therefore adequate safety measures must
be adopted. Despite all safety measures, crowd disas-
ters still occur frequently. The reasons of these disas-
ters is mostly the presence of different and conflicting
motion patterns that influence the crowd. A crowd is
composed of small groups of people, for instance due
to social relationships (families or friends) or a com-
mon goals, like reaching a certain point of the environ-
ment. The latter groups can be called short term coher-
ent groups because they discontinue their cohesion after
completing the goals (e.g. reaching an exit, completing
a movement). Detecting the second kind of group, es-
sentially associated to a certain flow of pedestrians in

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

the environment, can be important to be able to prevent
conflict situations.

Due to the complex dynamics of the crowd, crowd man-
agement is becoming a daunting job where huge effort
from the security staff is required to manage the po-
tentially problematic situations. In such high density
crowded areas, surveillance cameras are generally in-
stalled in different locations that can even cover the
whole scene. Detecting specific activities in real-time
videos is the task of analysts sitting in surveillance
room and watching over multiple Tv screens. Such
manual analysis of high density crowds is a tedious job
and usually prone to errors. Therefore we need auto-
matic analysis of the crowd which can reliably estimate
the density and detect specific activities. Creating such
kind of virtual analyst has become the focus of many re-
searchers. This research has a wide range of application
domain in crowd management, public space design, un-
derwater fishes analysis (and animal behavior studies in
general), and cell population analysis. In video surveil-
lance, “detection and tracking” are the core technolo-
gies but these technologies are likely to fail in high
density crowded scenarios. In this paper, we propose
a framework that tackles problems of crowd flow seg-
mentation, crowd counting and consists of three parts:
foreground extraction, crowd flow segmentation, and
crowd counting. The paper is organized as follows: the
following section will briefly introduce related works.
In Sect. 3 we shall describe propose framework. In
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Sect. 4 we shall discuss experimental results. Conclu-
sions and future development will end the paper.

2 RELATED WORKS
For more than 40 years researchers have been study-
ing pedestrian dynamics with the aim of supporting the
design of pedestrian facilities. Since the population of
the world is increasing and concentrating in urban ar-
eas, and due to the growing relevance of mass events
(like sports contests, concerts and festivals periodically
arranged and attracting growing number of people from
different parts of the world), adequate safety measures
are becoming ever more important. More recently, re-
searchers are focusing on studying crowd dynamics in
order to improve the evacuation strategies in emergency
situations.

2.1 Motion Flow Segmentation
An important contribution that automated analysis tools
can give to pedestrians and crowd safety is the detection
of conflicting large pedestrian flows: this kind of move-
ment pattern, in fact, may lead to dangerous situations
and potential threats to pedestrians’ safety. Therefore,
segmenting typical flow patterns of crowd and estimat-
ing the number of people in crowd are important steps
to understand overall crowd dynamics. Crowd flow
segmentation has multiple benefits: (1) enables clutter
free visualization of moving groups; (2) it is indepen-
dent from “detection and tracking”; (3) provides input
for the pedestrian simulation models (in terms of data
for simulation initialization or validation). Automatic
analysis of the crowd has become the center of focus
for most of researchers in computer vision. Detecting
pedestrians and tracking are traditional ways of crowd
analysis. Most algorithms developed for object detec-
tion and tracking work well with pedestrians in low
density crowds where the number of people is generally
less than twenty individuals in a single frame, but with
higher densities (where the number of people in a frame
can be in the order of hundreds), detection and tracking
of individuals are almost impossible due to multiple oc-
clusions.

Therefore, the research has focused on gathering global
motion information at higher scale. Global analysis of
dense group of moving people is often based on optical
flow analysis. [AS07] proposed particle dynamic seg-
mentation of crowd flows by detecting the lagrangian
coherent structures over the phase space. But their pro-
posed method is computationally expensive because of
the calculation of FTLE and also could not detect small
flows. [OYA10] used SIFT features to detect domi-
nant motion flows. Flow vectors of SIFT features are
calculated and then motion flow map is divided into
small regions of equal size. In each region, dominant
motion flows are estimated by clustering flow vectors.

[EB08] proposed spectral clustering method for crowd
flow segmentation by computing sparse optical flow
field. Crowd flow is estimated using multiple visual
features reported by [SND11] where flow is estimated
by the number of persons passing through a virtual trip
wire and accumulate the total number of foreground
pixels. Min-cut/max flow algorithm is used by Ullah et
al. [UC12] for crowd flow segmentation. In all of above
four methods, we can not find clear boundaries among
different flows. Crowd flow segmentation by using his-
togram curves is reported by [LRZ12] where angle ma-
trix of foreground pixels is segmented instead of opti-
cal flow foreground. The derivative curve of histogram
is used to segment the flow. Since this method only
looks to the peaks of histogram curve, therefore it loses
information about the crowd flow. Our proposed ap-
proach for detecting dominant flows is similar to spec-
tral clustering in [EB08]. The difference is that we
carry out segmentation by employing K-means cluster-
ing on dense optical flow field. After K-means cluster-
ing, small blobs can appear especially at the boundaries
of conflicting flows, generated by the optical flow com-
putation but not really associated to actual pedestrian
movements; these small blobs are removed by our blob
absorption method. Comparing to other approaches,
our approach can detect large as well as small flows,
and by employing blob absorption method, we gener-
ate clearer boundaries between different flow segments.
We show the effectiveness of our proposed motion seg-
mentation approach by comparing with state-of-the-art
approaches in Sect. 4.

2.2 Crowd Counting
Most of the literature in field of crowd density estima-
tion has focused on segmentation of people or head
counts. Some of the work focused on texture anal-
ysis or wavelet descriptor for estimating crowd den-
sity. Bayesian based segmentation proposed by [ZN03]
to segment and count the people but this method fails
in high density scenarios as because of severe occlu-
sions. [YST10] extract blob features of moving ob-
jects and neural network is trained to estimate number
of pedestrians in each blob. [XLH06] classified crowd
density into four classes by using wavelet descriptors.
[MHL08] used texture descriptors to estimate crowd
density. [TYOY99] count the number of people as
they cross some virtual line. [HMY+97] used infra-red
imaging to count the number of people in crowd. Sim-
ple background subtraction from static images to esti-
mate the crowd density was proposed by [RP07]. Back-
ground removal concept is used to estimate the crowd
area by [VYD+93, VYD+94]. [RMAS04] used a for-
ward facing camera mounted on the car to detect crowd
of pedestrians. Trained support vector machines using
HAAR transform is used by [LCC01] to identify heads
of people. Median background computing technique
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Figure 1: Overview of proposed framework

is used by [RP07] to extract foreground pixels. Sup-
port vector machine, K-nearest neighbor, PNN, BPNN
are used to classify images in two categories (zero per-
sons, one or more persons). As the sensor are becom-
ing cheap, therefore, recently many researchers count
the people using infra-red sensors. [TS07] proposed
lightweight camera sensor nodes to count the people
in the indoor environment based on motion histogram.
Recently many infra-red sensors specifically designed
for people counting are available in the market1. Our
approach starts from the results of motion segmenta-
tion to perform people counting, estimating the num-
ber of pedestrians in each dominant flow by blob anal-
ysis and blob size optimization methods. This allows
having a more selective and informative information on
where the counted pedestrians are headed. Moreover,
compared to the above methods, our approach is aimed
at supporting people estimation even in high density
crowds. As we will show in Sect. 4 we achieve satis-
factory performance on people counting in experiments
performed adopting different videos.

3 PROPOSED FRAMEWORK
Our proposed framework is composed of four pro-
cessing blocks, Foreground extraction, segmentation,
counting and blob size optimization block, but this
block only executes in the beginning for few initial
frames. In this section, we will discuss each processing
block in detail. For sake of description of the proposed
approach we will employ videos taken from a crowd
related data set from UCF [AS07].

1 See e.g. http://www.sensourceinc.com/
thermal-video-imaging-people-counters.
htm or http://www.irisys.co.uk/
people-counting/our-products/.

3.1 Foreground Extraction
Foreground extraction is the most important pre-
processing step for detecting the moving objects from
the video and therefore forms the basis of our frame-
work. Foreground extraction is useful for detection,
tracking and understanding the behavior of the object.
A survey on motion detection techniques can be
found in [MG01]. Traditionally, in video surveillance
with a fixed camera, researchers use background
subtraction method, where foreground objects are
extracted from video if the pixels in the current frame
deviate significantly from the background. In this
paper, we use two foreground masks as in [LWMZ10],
one generated by optical flow, fhs(x,y,t) and will be
used by crowd flow segmentation framework and
other is Gaussian background subtraction, fg(x,y,t) used
by counting framework as shown in Figure 1. Two
consecutive frames f(x,y,t) and f(x,y,t+1) are applied to
foreground extraction block. First, we compute Horn
and Schunk (HS from now on) optical flow between
adjacent frames, then Median filter and Gaussian filter
are used to remove noises. We then set a threshold
to get foreground mask fhs(x,y,t). In the same way,
Gaussian Background Subtraction (GBS from now on)
is used to get another foreground mask fg(x,y,t), after
applying scale filter. Usually crowded objects move
in wide areas, and for crowd flow segmentation, we
need to detect change in every pixel, so optical flow
methods reported in literature to compute sparse optical
flow using the interest points (Lucas-Kanade optical
flow) [LK+81] or dense optical flow for all pixels (HS
optical flow) [HS81] in each frame can be used. Since,
we want to detect change in every pixel, we compute
dense optical flow. Since the optical flow vector of
each pixel has the magnitude and direction values,
we use magnitude information to extract foreground,
all the pixels which have higher magnitude than Tth
will be classified as foreground. Direction information
of optical flow vectors can be used in crowd flow
segmentation by clustering all optical flow vectors
having similar orientations. Such methods are usually
prone to errors due to unpredictable behavior of the
pixels which change due to fast/slow moving objects
and illumination. A small change in illumination can
be detected as foreground objects even in the static
background. Such methods can be useful in extracting
region of interest (ROI) in the scene but can not be used
in separating individuals in high density scenarios. As
shown in Figure 2, fhs(x,y,t) can not provide information
about the group of foreground pixels (blobs) related
to the people in the crowd. Therefore, for counting
framework, we generate another foreground mask
fg(x,y,t) by Gaussian background subtraction method.
GBS is a kind of background subtraction method
[SG99] and is very good in separating objects from the
background. GBS method is effective in suppressing
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Figure 2: Foreground extraction framework

noise and robust to change in illumination. fg(x,y,t) is
also a binary image, where blobs represents the objects
of different sizes. Small blobs are related to parts of
object, medium blobs related to objects and large blobs
represent group of objects, appeared due to occlusions.
Optimal foreground mask fout(x,y,t) is obtained by
logical product of fg(x,y,t) and fhs(x,y,t). Later on, we
apply morphological processes like morphological
opening and closing on the binary image fout(x,y,t). The
morphological open operation is erosion followed by
dilation, eliminates smooth contours and protrusions.
While morphological close is dilation followed by
erosion, smooths the section of contours, eliminates
small holes and fills gaps in contours. These operations
are dual to each other. Segmentation block segments
the crowd flows into different clusters, C′j(x,y,t), by
employing K-means clustering followed by blob
absorption method. To estimate the number of people
in each flow segment, we take logical product of each
cluster C′j(x,y,t) and foreground mask fout(x,y,t) and count
the number of people by blob analysis and blob size
optimization methods.

3.2 Motion Flow Field Computation
After foreground extraction, the objects in the fore-
ground move in different directions as shown in first
row of Figure 3. It can be seen that in each video,
foreground objects have multiple flows. Since we use
dense HS optical flow that computes movement of ev-
ery pixel, we call it motion flow field. The motion flow
field is a set of independent flow vectors in each frame
and each flow vector is associated with its respective
spatial location. This instantaneous motion field of the
video contains temporal information and can be used
for the learning motion pattern of the video. Consider a
feature point i in Ft , its flow vector Zi includes its loca-
tion Xi = (xi,yi) and its velocity vector Vi = (vxi ,vyi), i.
e. Zi = (Xi,Vi) where θi is the angle or direction of Vi,
where 0◦ ≤ θ ≤ 360◦.Then {Z1,Z2, . . . ,Zk} is the mo-
tion flow field of all the foreground points of an image.

Figure 3: First Row: sample frames from videos of the
Hajj, a marathon, pedestrian crossing, and road section;
second row: corresponding optical flow; third row: cor-
responding direction map

3.2.1 Motion Flow Field Segmentation
The motion flow field {Z1,Z2, . . . ,Zn} is a n x 4 matrix
where each row represents flow vector i and columns
represents its spatial location Xi and velocity vector Vi.
n represents total number of flow vectors (foreground
points). Each flow vector represents motion in specific
direction as shown in Figure 3, third row. Figure 3,
(third row) does not show dominant motion patterns,
so we can not infer any meaningful information about
flows. Therefore, we need a method that automatically
analyses the similarity among the flow vectors and clus-
ter them in multiple groups. We use K-means clustering
algorithm(widely used in data analysis and image seg-
mentation) to segment motion flow field into different
groups. This process of grouping vectors that represent
specific motion pattern is called segmentation. After
segmentation process, motion field is divided into mul-
tiple segments. We denote K as the initial number of
cluster centroids. Commonly used initialization meth-
ods are Forgy and Random Partition [HE02]. We ini-
tialize cluster centroids as (K− 1) x 360◦/K. let C =
{1,2, .. j} is the set of initial cluster centroids. ε = 360◦

/2K and δ = 360◦/K.

Step 1 Clustering with initial K-centroids
for 1 ≤ i ≤ n do

for 1 ≤ j ≤ K do
if ‖ θi - c j ‖ ≤ ε then,where c j ∈C

zi(xi,vi)→ c j
n j ← n j + 1

end if
end for

end for

Step 2 New centroids calculation
for 1 ≤ j ≤ K do

c′j = ∑
n j
i=1 θi/n j, Update C with new centroids c′j

end for

Step 3 Clustering of similar clusters
if ‖ c′l - c′m ‖ ≤ δ then
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Figure 4: Results of 4-means clustering in a Hajj video
frame

c′l = ∑
nl+nm
i=1 θi/nl +nm

c′m ← c′l
end if

Step 4 Return to step 1

This approach can be applied to the images where the
objects moves in every direction. For such kind of com-
plex movements in images, we assign larger value of K
while we assign lower value to the images where ob-
jects move in regular directions. In this paper, we assign
lower value of K = 4 because in our benchmark videos,
objects move in regular directions. Figure 4, shows that
the objects in sample frame are clustered into different
groups by applying 4-means clustering. We use differ-
ent colors to differentiate clusters. Let C = {1,2, ...,K}
is the set of clusters found in sample frame.

3.2.2 Blob Absorption
We noticed that after K-means clustering, some small
blobs appear: these small blobs represent small clus-
ters as shown in Figure 4 and resulted due to following
reasons. First, if the objects move slowly, the inside
and outside flow vectors of the objects are not same and
as a result are classified into two different flows. Sec-
ond, if the two opposite optical flow intersect, the op-
tical flow at the boundaries is ambiguous. Third, small
blobs represents small groups of people and are not the
part of dominant motion flows and they are not relevant
to the aims of our analysis. Therefore, we adopt blob
absorption approach (mimicking a “big fish eats small
fish” process), where these blobs are either absorbed by
dominant cluster or by the background. The algorithm
is as follows:

1. Compute weights for all clusters, i.e. Cw j = ∑
K
j=1

n j / T . where n j is number of features points z(x,v)
in cluster C j and T is total number of foreground
points.

2. Select cluster C j and perform blob analysis and find
area of each blob in C j.

3. Use threshold area L and find blobs whose area A
≤ L. Let B = {b1,b2, ...bn} set of blobs represents
small clusters and needs to be absorbed.

4. Select blob bi from set B, find its edges points by
using canny edge detector [Can86].

Figure 5: Results of the Blob Absorption method ap-
plied to a frame of the Hajj video

5. For each edge point, look at its neighborhood points,
find neighborhood cluster ids and store ids of neigh-
borhood points in array S. Remove those points
from S that have same cluster id j, because bi can
not be absorbed by itself.

6. From remaining points in S, compute blob weight
bwi = ∑

N
j=1 n j / Ts. where N is the total number of

cluster ids found in S. n j is total number of points
with cluster id j and Ts is total number of points in
S.

7. Compute wt= cwi + bwi and cluster id j with maxi-
mum weight wt is selected and id j is assigned to all
points of blob b j.Hence blob is absorbed.

8. Repeat steps 4 to 7 until B is empty.

9. Repeat step 2. Here background is also considered
as cluster with id and cluster weight cw = 0.

After blob absorption, as shown in Figure 5, small clus-
ters (C3 and C4) are removed leaving behind large clus-
ters (C1 and C2) representing dominant flows with clear
boundaries, by setting up threshold area L = 500. Let
C′={1,2, .. j} is set of large clusters.

3.3 Counting People in High Density
Crowds

This section describes the methodology for counting
people in high density crowds. In this step, we count
the number of people in each cluster C′j. In low density
crowds, due to clear visibility of individual with little
occlusions, we can detect, track and count the number
of individuals in crowd, but in high density crowds, it
is hard to extract and count the individuals due to (i)
with increasing density, the number of pixels/individual
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decreases (ii) severe occlusions result in the loss of ob-
servation of the target individual (iii) discerning indi-
viduals from one another is caused by constant inter-
action among individuals in a crowd. Therefore, as a
solution, we perform blob analysis and blob size opti-
mization techniques on foreground image and estimate
the number of people in high density crowds.

3.3.1 Blob Analysis and Blob Size Optimization
For extracting foreground, belonging to each dominant
flow (or cluster C′j), we take logical conjunction of each
cluster C′j and foreground mask fg(x,y,t), generated by
Gaussian background subtraction and shown in Fig-
ure 7. First row of Figure 7, shows that sample frame of
marathon video is segmented into three dominant flows
while second row shows foreground elements belong-
ing to each of three segments. After foreground extrac-
tion, small blobs appear which represent moving ob-
jects. Blobs are the connected regions of variables “ar-
eas” in the binary image. Since there are many blobs of
different areas representing different moving objects we
need to find an optimal area that will serve as a thresh-
old. The blob with areas above this threshold will not be
taken into account (for instance, when counting pedes-
trians in road videos, these large blobs might be related
to cars). For computing threshold area we devised blob
size optimization algorithm discussed below.

1. Select the blob’s size randomly.lets blob’s size is A.

2. ci = blobAnalysis(A); will return count of blobs
whose size ≤ A for frame i.

3. error j = ‖ ci - gthi ‖. where gthi is the ground truth
count for frame i.

4. Vary the blob size A by some constant k and repeat
step 2 to 4 for N iterations.

5. Select blob’s size A for which error j is minimum.

Note that for finding optimum blob size, we used only
four or five initial frames whose ground truth is avail-
able. These frames are selected randomly. For each
initial frame we compute optimum blob size by using
the method discussed above. We take the mean A′ of
all four or five optimum sizes computed for each initial
frame and use A′ for counting people in rest of frames.
Average and standard deviation of the error between
people count using the blob area and the actual number
of people (Ground Truth) is plotted in Figure 6 versus
blob area. In Figure 6, mean and standard deviation of
the counting error is plotted for a road video. It can be
seen from the figure that the error is minimum for the
blob area 17, resulting therefore context dependent. It
must be stressed that the optimal blob size depends on
the video, especially on the point of vantage determin-
ing the size in pixels of people to be counted (in other

Figure 6: Blob size optimization for Road video: no-
tice that the optimal blob size for error minimization is
different for different videos.

Figure 7: People Counting Framework highlighting re-
sults of intermediate steps in one frame of the marathon
video

videos analysed in Sect. 4 the optimal blob size is as
small as 2 pixels). Through experiments, we observed
that for small blob areas, the count of people will be
higher as the noise will also be counted as people. For
large blob areas, instead, some people might be missed
in the count. Hence selection of optimal blob size is
very important to minimize the error in people count.

4 EXPERIMENTAL RESULTS
This section presents the quantitative analysis of the re-
sults obtained from experiments. We carried out our
experiments on a PC of 2.6 GHz (Core i5) with 4.0 GB
memory and data set from UCF [AS07]. The data set
covers two types of crowded scenarios: the first sce-
nario consists of videos involving high density crowds
i.e. videos from Hajj and a marathon, where the num-
ber of people is higher than 150 in a single frame. The
second scenario covers low density crowds where the
number of people in a frame is lower than 70, i.e. road
crossing video, where people are moving over zebra
crossing in different directions, and road video, where
vehicles and people are moving in different directions
on road. Since our framework consists of two major
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Figure 8: First column: sample frames; Second Col-
umn: K-means clustering results; Third Column: Blob
absorption results

Figure 9: Comparing Results

parts,crowd flow segmentation and crowd counting, our
experiments are carried out in two steps.

4.1 Segmentation Results
We selected 65 frames from each video. After com-
puting optical flow, we apply K-means clustering al-
gorithm that cluster all the similar flow vectors.In this
paper, we use K = 4 for all the videos,so after segmen-
tation, we detect four different flows in video frame
as shown in second column of Figure 8. We then ap-
ply blob absorption method to remove small clusters as
shown in third coumn of Figure 8. For blob absorp-
tion we use different threshold L values. Small clusters
can not be aborbed completely by using smaller values
of L while we lost some portions of dominant cluster
by using larger values of L. Therefore, we determined
value of L experimentally and is different for different
videos. After blob absorption, image of cross video is
segmented into three flows, red(west),green(east) and
cyan(south). While image of road video is segmented
into two flows, red and green as shown in third column
of Figure 8.

We compared our approach in Figure 9 with multi-
label optimization [UC12], histogram curve [LRZ12],
dynamic segmentation [AS07] and spectral clustering
[EB08]. In the first row of Figure 9, we compare our

Table 1: Hajj Video people counting in sequence of
frames

F.n. G.T.(E) G.T(W) Cnt.(E) Cnt.(W) Err(E) Err(W)
12 151 159 170 154 12,58% 3,14%
20 153 161 167 154 9,15% 4,35%
29 185 185 195 194 5,41% 4,86%
37 176 187 192 201 9,09% 7,49%
45 187 186 200 191 6,95% 2,69%
55 187 187 195 188 4,28% 0,53%
63 189 185 194 194 2,65% 4,86%

Average Error 7,16% 3,99%

Table 2: Crossing video people counting in sequence of
frames

F.n. G.T.(E) G.T.(W) Cnt.(E) Cnt.(W) Err(E) Err(W)
10 30 30 30 29 0,00% 3,33%
16 34 35 30 39 11,76% 11,43%
22 37 36 25 38 32,43% 5,56%
28 35 33 29 32 17,14% 3,03%
30 38 35 37 43 2,63% 22,86%
35 38 34 35 41 7,89% 20,59%
40 37 36 36 39 2,70% 8,33%
47 35 36 35 30 0,00% 16,67%
55 37 38 38 34 2,70% 10,53%
64 37 40 31 28 16,22% 30,00%

Average Error 9,35% 13,23%

Table 3: Road Video people counting in sequence of
frames

F.n. G.T.(E) G.T.(W) Cnt.(E) Cnt.(W) Err(E) Err(W)
11 45 67 33 44 26,67% 34,33%
20 38 65 45 58 18,42% 10,77%
30 42 62 46 69 9,52% 11,29%
35 41 61 40 62 2,44% 1,64%
43 39 64 36 53 7,69% 17,19%
50 40 65 48 67 20,00% 3,08%
55 40 65 36 55 10,00% 15,38%
62 39 63 39 67 0,00% 6,35%

Average Error 11,84% 12,50%

method with multi-label optimization method. We see
that crowd flow segmentation using multi-label opti-
mization could not segment the crowd into dominant
flows. Moreover, it could not find clear boundary due to
small blobs appeared after segmentation. In the second
row of Figure 9, we compare our results with histogram
curve method. Segmentation by using histogram curve
is fastest than existing methods but it lost much infor-
mation about the crowd flows, since this method only
looks to the peaks of histogram curves. In the third
row of Figure 9, we compare our results with dynamic
segmentation and spectral clustering approach. Dy-
namic segmentation is not able to detect small flows
in the crowd, while spectral clustering carries out seg-
mentation on sparse optical flow and give the approxi-
mate segmentation where we can not find clear bound-
aries between flows. All the above shortcomings are
resloved by our proposed approach. Our proposed ap-
proach not only detects dominant flows but can also de-
tects small flows without the loss of crowd flow infor-
mation. Moreover, our proposed approach finds clear
boundaries among different flows.

4.2 Crowd Counting Results
After crowd flow segmentation, we count the number
of people in each flow segment. Each video consists
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Table 4: Marathon Video people counting in sequence of frames
F.n. G.T.(E) G.T.(N) G.T.(S) Cnt.(E) Cnt.(N) Cnt.(S) Err(E) Err(N) Err(S)
11 145 192 187 134 176 199 7,59% 8,33% 6,42%
15 150 186 193 138 187 216 8,00% 0,54% 11,92%
20 148 193 200 126 178 190 14,86% 7,77% 5,00%
27 155 200 211 151 244 225 2,58% 22,00% 6,64%
33 150 195 220 145 223 219 3,33% 14,36% 0,45%
39 160 205 210 151 199 222 5,63% 2,93% 5,71%
45 158 210 205 145 215 210 8,23% 2,38% 2,44%
49 156 207 210 145 189 197 7,05% 8,70% 6,19%
55 162 215 215 164 210 196 1,23% 2,33% 8,84%
59 158 220 220 162 210 202 2,53% 4,55% 8,18%
62 167 225 224 158 185 198 5,39% 17,78% 11,61%

Average Error 6,04% 8,33% 6,67

of sequence of 65 frames and our proposed method au-
tomatically counts the number of people in each frame
as shown in Tables 1, 2, 3, 4. Tables show counting re-
sults of random frames taken from each analysed video,
where F.n. represents frame number of the analysed
sequence. The rise and fall in people count in differ-
ent frames represents the fact that people are entering
or leaving the scene affecting people count at differ-
ent time. To check the counting accuracy of the pro-
posed framework, ground truth (G.T) for each direction
(East(E), West(W), North(N), South(S)) is found for the
frames after random intervals and count error (Err) is
computed by comparing results with the ground truth
data. Count error is shown in details in tables 1, 4, 2, 3
for all analyzed video sequences. The first column of
each table shows the frame number, G.T. shows grouth
truth found for each direction and Cnt. is counting re-
sults of our proposed approach. Average error is less
than 12% for all analyzed video sequences. For some
frames, however, count error is higher due to the fact
that some people in that frame are missed in count or
noise (resulted after motion segmentation) is counted as
people. As obvious from tables, our proposed frame-
work works better in high density scenarios like Hajj
and marathon. It is matter of the fact, that in high den-
sity scenarios, people covers much of the scene’s area in
comparison to low density scenarios. After motion seg-
mentation, foreground extracted in high density scenar-
ios contains less background noise (foreground noise
generally moves with people and it is not causing sig-
nificant errors) in comparison to foreground extracted
in low density scenarios. From the experimental results,
it is clear that our proposed approach count the people
in each video sequence with 90% accuracy.

To study the time complexity of our proposed frame-
work, we utilize 65 frames of each of four analysed
videos and time is recorded as average frame process-
ing time and recorded in Table 5. The latter shows
time complexity of crowd flow segmentation and crowd
counting frameworks. Rows of table shows the anal-
ysed videos and column represents time complexity of
each of processing block. It is obvious that clustering
takes much time as compare to blob absorption method
and crowd counting framwork. It is matter of the fact

that K means clustering is computationally expensive
and can be very slow to converge in worst case sce-
narios, i.e. high resolution videos, and high ratio of
foreground to background pixels. In this paper, we use
videos of the same resolution, 360x480. Although the
resolution of all analysed videos is same, yet time com-
plexity is different. The ratio of foreground to back-
ground pixels of different videos is different and usually
the ratio is higher if the large part of the scene is cov-
ered by foreground pixels. It is also obvious from ta-
ble that Hajj video takes more computational time than
other videos. It is matter of the fact that most of scene
of a Hajj video frame is covered by foreground pixels
than background pixels. The computational time can
be reduced and proposed framework can be employed
in real time, if implemented in openCV. The current im-
plementation is in Matlab.

5 CONCLUSIONS
In this paper, we have considered both high and low
density crowds and proposed a framework that auto-
matically detects dominant motion flows and counts the
number of people in each flow. Such kind of analysis
provides a useful input to pedestrian simulation models.
A first employment of the our analysis is related to the
actual initial configuration of the simulation scenario.
Second way to exploit data resulting from automated
video analysis is represented by pedestrian counting
and density estimation: the indication of the average
number of pedestrians present in the simulated portion
of the environment is important in configuring the start
areas. Finally, we can use the above analysis in the val-
idation of simulation results. Our approach is appli-
cable in many different situations and it is independent
of local conditions and camera viewpoints. Our method
does not require detection and tracking of people, hence
preserving the privacy of the people. Future works are
aimed at improving the precision, especially in low den-
sity situations, but also aim at using these techniques to
more comprehensively characterize the movement pat-
terns in the analyzed frame by identifying and quantita-
tively describe points of entrance of pedestrians, points
of interest and exits, essentially to derive a so called
origin-destination matrix.
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Table 5: Time Complexity of our proposed framework in (seconds)
Videos Crowd Flow Segmentation Crowd Counting

Clustering Blob Absorption Seg # 1 Seg # 2 Seg # 3
Marathon 6 2.77 0.006 0.007 0.005

Hajj 9.88 2.93 0.009 0.008 NIL
Road 7.02 1.67 0.005 0.004 NIL

Crossing 5.12 1.03 0.003 0.005 NIL
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ABSTRACT
Forested landscapes are an important component of many large virtual environments in games and film. In order
to reduce modelling time, procedural methods are often used. Unfortunately, procedural tree generation tends to
be slow and resource-intensive for large forests.
The main contribution of this paper is the development of an efficient procedural generation system for the creation
of large forests. Our system uses L-systems, a grammar-based procedural technique, to generate each tree. We
algorithmically modify L-system tree grammars to intelligently use an instance cache for tree branches. Our
instancing approach not only makes efficient use of memory but also reduces the visual repetition artifacts which
can arise due to the granularity of the instances. Instances can represent a range of structures, from a single branch
to multiple branches or even an entire tree.
Our system improves the speed and memory requirements for forest generation by 3–4 orders of magnitude over
naïve methods: we generate over 1,000,000 trees in 4.5 seconds, while using only 350MB of memory.

Keywords
procedural tree generation, L-systems, instancing

1 INTRODUCTION

When large forests are used in CGI they are often cre-
ated using procedural methods, due to their inherent
geometric complexity. Unfortunately, the memory re-
quirements of a procedural approach can be prohibitive.
For example, some tree generation methods require as
much as 10MB per tree [1]. Using such schemes, even
a relatively small forest of 1,000 trees would require
much more memory than most commodity computer
systems support. In addition to large memory require-
ments, procedurally creating a large forest from scratch
could take minutes or even hours. Forests are thus usu-
ally created in an off-line process, which limits their use
in games and interactive media.

We explore the problem of procedurally generating
complete forests, focussing on algorithms and optimi-
sations that facilitate the creation of very large forests,
in the range of 10,000 trees or more, in a few seconds.

We propose a new system for generating large numbers
of trees with a fixed memory budget. We use L-systems
to generate trees and introduce an optimisation to the L-
system grammar that enables efficient caching of tree

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

sub-branches. This allows the creation of subsequent
trees to be accelerated, whilst also saving memory.
The focus of our work is not on the rendering of real-
istic trees, but rather on the often expensive procedu-
ral methods that underpin such systems. Consequently
we illustrate our optimizations on basic branching tree
structures and make no use of billboards, complex tex-
turing and so on.
Our optimisations allow the generation of very large
forests in a few seconds and with low memory over-
head. This work is applicable to a broad range of L-
systems and can thus supplement systems which cur-
rently make use of such a procedural approach.
The remainder of this paper is laid out as follows. Sec-
tion 2 presents relevant background. Basic L-system
formalism is introduced in Section 3. The optimisa-
tions that we have developed are presented in Section 4
and Section 5. The creation of tree geometry is dis-
cussed in Section 6. Section 7 presents our results and
discusses the performance of the system. Finally, Sec-
tion 8 summarises our findings and contributions and
provides suggestions for future work.

2 RELATED WORK
EcoSys [1] represents one of the earliest and best-
known procedural tree generation systems. EcoSys
is able to generate realistic looking forests, including
plants and other foliage, from a relatively small amount
of input, such as a heightmap of the landscape. The
system allows for interactive editing of the parameters
with built-in editors. Each individual plant is procedu-
rally created using an L-system. L-systems provide a
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set of match-replace rules that specify the appearance
of the tree. These rules control everything from the tex-
ture and colour of the tree and its leaves to how the tree
branches and how branches lengthen. L-systems allow
modellers to present a set of rules that describe a partic-
ular species of tree.

Unfortunately, the amount of data generated for a single
tree in EcoSys can be as much as 10MB. A small forest
of 1,000 trees results in a total of 10GB of data which
cannot be rendered efficiently using current technology.

In order to reduce the amount of memory required the
system uses instancing to generate a single tree that can
be used in multiple places, which saves memory but can
reduce realism. EcoSys only uses instances in cases
where the resulting trees are likely to be similar.

EcoSys is able to render forests interactively using
points and lines, but cannot achieve high enough visual
quality and frame rates for games, even when executed
on modern hardware [2].

The trees that are presented in modern games are usu-
ally made with a third-party library called SpeedTree1.
SpeedTree, however, is proprietary software and com-
panies have to pay a license fee to use it. SpeedTree
generates trees using an offline process: either proce-
dural generation or manual generation by an artist.

As with EcoSys, large forests are accommodated with
instancing. The trees in the forest originate from a con-
siderably smaller ‘hero’ tree set. Unfortunately, since
the library of trees that an artist works with can be
small, the same tree could be repeated in an unrealis-
tic fashion, particularly when the game is intended for
a very resource-limited platform. Recently, however,
SpeedTree has added a WorldBuilder module which is
able to export tree positions that exhibit fewer jarring
repetition artifacts.

In this paper, we explore an alternative method for cre-
ating large forests. Similarly to EcoSys and SpeedTree,
we use procedural methods to generate the individual
trees in the forest. Unlike EcoSys and SpeedTree, we
aim to use instancing to reduce the size of the forest
without resorting to instancing entire trees. Our pri-
mary aim is to decrease the memory requirements for
trees in forests without sacrificing visual quality.

3 L-SYSTEMS
Lindenmayer Systems, or L-systems, are used exten-
sively in Procedural Graphics [5]. The rules for these
systems are capable of describing complex structures
such as plants [6] and buildings yet are simple enough
to be created by modellers [4]. The simplest type of
L-system — deterministic context-free L-systems (also
called DOL-systems [7]) are simple match-replace

1 http://www.speedtree.com

rules that occur over a string of symbols. Each symbol
has a specific meaning used later in the tree creation
process. For instance, the symbol ‘F’ means to draw
a cylinder at the current position, while a ‘+’ symbol
changes the orientation of the next cylinder.

O︸︷︷︸
Strict predecessor

→ F F F F F F︸ ︷︷ ︸
Derivation

The strict predecessor is a single symbol that should be
transformed into a (possibly empty) sequence of sym-
bols called the derivation. All rules in the L-system are
applied simultaneously to the entire string of symbols.
The number of times the rules are applied is called the
generation of the string, corresponding to the required
age of the output tree. The initial string of symbols, also
called the axiom, is denoted by generation 0.

The symbols from the final string are used as drawing
instructions for a turtle-like graphics module called the
interpreter. Symbols with no meaning are simply dis-
carded.

There are several drawbacks to DOL-systems in the
context of tree creation. Most importantly, the output
for a given generation of an L-system is always the
same. This means that the only way to add variation
is to create scaled copies of each tree type. This limita-
tion can be addressed by using stochastic L-systems [3],
which allow multiple derivations with associated prob-
abilities that indicate the likelihood of selection.

A second drawback to DOL-systems is the difficulty
of growing branches of a desired length: each tree is
made of individual cylinders of equal length. This can
be solved by introducing parameters: each symbol in
the string can have additional parameters, which can
exactly model the desired length, width, and other at-
tributes.

Researchers have also found it useful to modify the
DOL-system to add two symbols, [ and ], to assist in
creating trees efficiently by controlling a stack of saved
turtles; pushing and popping onto the stack, respec-
tively.

Before moving on, we need to introduce the concept of
a module. A module is a special symbol in the L-system
that can used to achieve higher order functionality: it ef-
fectively represents a callout to a ‘subroutine’. Modules
can be distinguished from regular L-system symbols by
the inclusion of parentheses, which surround 0 or more
parameters. Our modifications make extensive use of
modules.

4 BRANCH OPTIMISATION
Branching in trees is a crucial aspect of realistic growth.
Unfortunately, L-system branches generate a signifi-
cant amount of geometry. This problem is exacerbated
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when creating large numbers of trees. Our system, like
EcoSys and SpeedTree, attempts to solve this problem
through the application of instancing. However, un-
like these methods, we choose to perform instancing at
the granularity of branches. Such fine-grained instanc-
ing allows branches to be shared across multiple trees,
whilst saving memory and keeping some degree of vi-
sual differentiation.

L-System String 
Creation 

Forest Input L-System 
Input 

Branch 
Optimisation 

Tree 
Rendering 

Tree Generation 

Forest  
Files 

L-System  
Files 

L-System Optimisation 

Forest I/O 
 

Forest Data 

L-Systems 

Drawing Commands 

Instance Cache 

Rendered Forests 

Renderer Geometry Creation 

Instances, 
Transformations 

Figure 1: System structure - input L-systems are taken
in together with forest generation parameters. The L-
systems are then optimised to make use of instancing
and geometry is generated to represent the various in-
stanced structures. This information is then passed off
to the renderer, along with positioning.

In the context of tree L-systems, branches represent ad-
ditional recursive work that must be performed. With
the help of instancing, we essentially memoise the re-
sult of this work so it can be re-used later. The basic
architecture of our system is presented in Figure 1.

We use the stochastic nature of L-systems to decide
which branches should be instanced and which created.
A fixed instancing probability, P, is used to control in-
stancing. This is a percentage represented by an inte-
gral number between 0 and 100, where 0 indicates no
instancing and 100 indicates full instancing. We modify
the L-system rules to reflect this probability. However,
rules that are responsible for branching must first be de-
tected.

4.1 Rule Detection
Each rule is examined to determine if it contributes
branches to the tree. It is difficult to determine ex-
actly which rules branch, so a heuristic is used instead.
The bracket symbols, [ and ], are a common indicator
of branching because they isolate state changes. The
left bracket saves state information, such as position

and orientation, which is restored at the right bracket.
While this behaviour is useful in branching it is also
applied to create leaves, as indicated in Table 1, as well
as other non-branching phenomena.

L 7→ [ ˆ ˆ − f + f + f − | − f + f + f ]

Table 1: A rule from an L-system used to draw a leaf.
Brackets are employed but no branching occurs.

The heuristic uses brackets as an indicator of branch-
ing, but to filter out erroneous cases a further restriction
is applied: the brackets must contain at least one non-
terminal symbol. Non-terminals are the strict predeces-
sors on the left-hand side of each rule. While this may
still incorrectly identify rules as branching, it is signifi-
cantly more accurate than using brackets alone.

X 7→ [ L ]

L 7→ ˆ ˆ − f + f + f − | − f + f + f

Table 2: A modified version of the L-system in Table 1.
The second rule is incorrectly identified as a branching
rule by our heuristic.

Segments of the rule symbols are identified as start and
end points for the branch. The brackets and the symbols
between them are tagged with an identifier. Branches
represented by identical symbols share an identifier,
the assumption being that the resultant geometry is the
same. The identifiers are global in that they may be
shared across different rules; they are used later to ac-
cess one of several instance caches.

Algorithm 1 shows the detection process. In the pseu-
docode, seenBranch and branchGUID return in-
formation about the branch currently being examined.
seenBranch returns true if it is identical to a previ-
ously seen branch. branchGUID returns the unique
identifier of a previously seen branch. The function
addBranch adds a branch to the global list of previ-
ously seen branches and returns its new unique identi-
fier. createBranch creates a structure that packages
the unique identifier and the branch symbol information
for later use in the program.

4.2 Rule Modification
The rule modification process is complicated by the ex-
istence of stochastic rules.

We begin by looking at the simpler case of modification
for deterministic L-systems. For such systems, each
rule’s right-hand side is replaced by several right-hand
sides (meaning that the resulting rule becomes stochas-
tic) depending on the number of branches that occur. If
B branches are present on the right-hand side, then 2B
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detectBranching(rhs, nonTerminals)
output = []
for s = 1→ length(rhs)

if rhs[s] = [ then
t = s+1
for t→ length(rhs)

if rhs[t] = ] then break
if t = length(rhs) then continue
for u = s+1→ t

if rhs[u] in nonTerminals then
continue s

guid = -1
if seenBranch(s, t) then

guid = branchGUID(s, t)
else seenBranch(s, t) then

guid = addBranch(s, t)
output += [createBranch(guid, s, t)]

return output

Algorithm 1: Branching RHS Detection.

7→F A

A 7→
Branch 1︷ ︸︸ ︷

[ & F L ! A ] / / / / /

Branch 2︷ ︸︸ ︷
[ ˆ F L ! A ] / / / / / / /

Branch 1︷ ︸︸ ︷
[ & F L ! A ]

F 7→F F

L 7→[ˆ ˆ { − f + f + f − | −
f + f + f } ]

Table 3: A leafy tree L-system [5]. The A-rule has
been annotated with information that marks the seg-
ments that branch. Each branch is tagged with a number
that identifies the branch segment. Note that the third
branch has the same identifier as the first branch due to
having identical symbols.

new right-hand sides are created, representing the pos-
sibility of either instancing each branch or not.

If a branch is to be instanced, the relevant symbols are
replaced by a getInstance module. Otherwise, other
control modules, startInstance and stopInstance are in-
serted instead. These two modules demarcate segments
of a string that correspond to branch information. Each
takes two parameters: an identifier and an age. The
identifier is the same as the one associated with the
branch in the rule detection phase. The age is deter-
mined from the getGeneration function, which returns
the generation at which the module was created.

Each right-hand side is given a probability, p, based on
the instancing probability and the number of branches
being instanced, calculated as follows:

p(I) = PI× (1−P)B−I

where P is the probability of replacing a branch with
an instance, B is the total number of branches and I is
an index variable. For each right-hand side, the index
variable is the number of times that the decision is made
to instance a particular branch.

A simple binary number counting algorithm is used to
enumerate these rules that is both efficient and easy to
implement. It is only suitable if the number of branches
in a rule is less than the bit-length of a machine’s word
size. In practice this constraint is not at all problem-
atic. The disadvantages of this optimisation are evident
from inspecting the output: the number of right-hand
sides has greatly increased and each is significantly less
humanly readable.

Stochastic L-systems add complexity in that the several
right-hand sides may create branches. The above algo-
rithm is performed on each original right-hand that con-
tains branching segments. The relative probabilities of
each group of newly created right-hand sides must re-
flect the original distribution. To enforce this, the equa-
tion for p is modified:

p(I) = Poriginal×PI× (1−P)B−I

where Poriginal is the probability of the originating rule.
Multiplying by the original probability ensures that the
probabilities have the correct distribution.

The time required to apply this optimisation to a set of
rules depends on the number of branches, Bi, and the
length, Li, of each right-hand side. The total computa-
tion and memory cost is bounded by O(∑2BiLi). The
main source of the inefficiency of this algorithm is the
number of right-hand sides that are created. In our in-
vestigations, Bi is rarely larger than three and is thus
not problematic. It may also be possible to achieve the
same effects using fewer right-hand sides. This is, how-
ever, left as future work.

The effectiveness of the branching optimisation de-
pends on the instancing probability. If this is set too
high, repetition will become evident. Conversely, set-
ting it too low results in the memory required for a for-
est becoming too large. We use an instancing probabil-
ity that varies as more trees are created to support in-
stancing that becomes more aggressive as memory be-
comes scarcer.

The getInstance, startInstance and stopInstance sym-
bols are used during interpretation to communicate with
the higher levels of the system. getInstance indicates
that the system should record the current position and
orientation where an instance should be used to com-
plete the tree. startInstance notifies the system that
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all the geometry created until the corresponding stopIn-
stance symbol forms a coherent instance usable as part
of other trees. The instance cache is the device used to
store and retrieve instances and is introduced next.

5 INSTANCE CACHE
The end result of the interpretation phase is geometry in
the form of vertex and index buffers, required for ren-
dering. Using the symbols introduced for the L-system
rule modification process, we annotate the index buffers
as they are created. In this way, we can determine which
ranges of the index buffers correspond to branches with
different sizes and properties. Multiple instances can
exist within the same index buffer. For example, a tree
branch could have an annotated sub-branch. For this
reason, in addition to pointers to the vertex and index
buffers, two integers are stored to denote the range in
the buffers that correspond to the current instance.

Each index buffer range also stores metadata about the
range. The age, species type and branch identification
information are stored in hash tables to allow for easy
and efficient access. The hash table data contains arrays
of pointers to these ranges, which allows for efficient
random selection. The Instance Cache can thus retrieve
a random index buffer range based on any set of age and
species criteria.

In addition to storing the buffer range, the transforma-
tion of geometry is retained. Each transformation is a
matrix that represents the spatial orientation of the ge-
ometry in the index buffer. This information is neces-
sary to correctly place the branch on a renderable tree.
Finally, the orientation and positions of any getInstance
modules that occurred in the branch string are recorded.
These getInstance modules are used to indicate exit
points for the instance which must be filled with other
instances in order to generate a complete tree.

6 TREES FROM INSTANCES
Trees are created in the system in two distinct phases:
Hero Creation and Tree Placement. Hero Creation
runs the L-systems in order to fill up the various in-
stance caches that exist. We use one instance cache
per unique identifier generated in the rule modification
phase. These heroes serve as the template geometry for
tree and branch instances. Although each hero created
is a correctly derived tree, they are not used directly for
rendering purposes: the creation of trees for rendering
is left to the Tree Placement phase.

The cumulative size of all geometry buffers is limited in
our system depending on the available memory. For ex-
ample, if one were creating a virtual environment where
forests are not important, the maximum size could be
very low, perhaps as little as 16MB. On the other hand,
for environments where forests are a prominent fea-
ture, one can devote upwards of 256MB to the required

buffer. The ability to define a range of cache sizes al-
lows developers to tightly control the resources used to
generate a forest.

As more hero trees are created, the memory space that
can be devoted to geometry decreases. In order to al-
low for the continued creation of new geometry, we in-
crease the instancing probability for each hero tree that
is created. A higher instancing probability means that
more getInstance symbols will occur in the L-system
strings. In other words, fewer new branches are created
and more instances are used.

The final stage in forest creation is Tree Placement.
Tree Placement creates new trees by cutting and join-
ing parts of the hero trees together and calculating the
necessary transformations to place the trees on the ter-
rain.

A renderable tree is represented by a collection of point-
ers to geometry buffer ranges that are stored in the In-
stance Cache. Creating a tree from the instance cache is
done recursively. The algorithm takes the species of the
desired tree, its generation and a transformation matrix
describing the desired position and orientation, as input.
Given this information, an instance is selected from the
instance cache to serve as the base of the tree.

An instance is not limited to representing a single gen-
eration. Instead, it can represent the entire tree, a single
generation or, more likely, several generations with exit
points that need to be filled with sub-branches. The exit
points describe not only the desired position and orien-
tation relative to the start of the instance but also the de-
sired age and branch identification of the instance that
should fill the gap.

The algorithm recurses for each exit point required by
the current instance. The age and branch information
parameters are used to constrain the subsequent search
of the instance cache. The instances are re-oriented by
computing a placement transformation matrix. Given
the desired orientation matrix, D, and the orientation
matrix of the instance within its hero tree, M, we calcu-
late the transformation to reorient an instance, T , as:

T = D×M−1

The initial desired orientation is passed as a parameter
to the recursive function so it must be updated before
it is passed into the next function call. To update the
orientation we use the following formula:

Dnew = Dold×E

where Dnew is the new orientation, Dold is D from
above, and E is the orientation of the next exit point
in relation to its hero tree.

Algorithm 2 shows the tree creation process described
above. The recursive function, CREATE, takes several
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create(output, direction, age, cache)
instance = cache.getInstance(age)
T = direction × instance.direction.inverse
output.addTreeInstance(instance.buffers, T)
for i = 1→ length(instance.exitPoints)

newAge = instance.exitPoints[i].exitAge
exit = instance.exitPoints[i].direction
newDirection = direction × exit
create(output, newDirection, newAge, cache)

Algorithm 2: Renderable tree building process.

input arguments that describe the instance we wish to
find. In the algorithm listed above, we only search the
instance cache by generation; in practice we use other
criteria as well. The desired orientation, direction,
is used to compute the transformation, T , needed to cor-
rectly draw the geometry buffer. The output contains
a list of geometry buffers that we should draw and their
correcting transformations. The addTreeInstance
method simply appends the buffers and transformations
to this list. The recursive function terminates when all
exit points have been filled. Although this function is
recursive, it remains significantly faster than regular L-
system creation as no geometry is created. Only geom-
etry in the instance caches are used.

Rather than applying the transformations to the geom-
etry data immediately, the transformation is stored so
that the renderer can perform the transformation on the
fly. This allows the geometry data to be efficiently re-
used across multiple trees and branches. The index
buffer range and the required transformation are saved
to the tree object for use with the renderer. The end
result of this process is a collection of pointers to in-
dex buffer ranges and the transformations necessary to
correctly render the tree at a particular position.

7 RESULTS
Testing was done on an Intel Core i5 2.80GHz quad-
core machine with 8GB of RAM and an NVidia
580GTX graphics card. To avoid interfering memory
requests from other applications or processes, we
limited the system to using 4GB of RAM.

We split our tests into two groups. For the first group,
we kept the forest size constant, while testing the
run-time of different cache schemes. The forest size
was kept at 10,000 trees and the following cache sizes
were tested: 16MB, 32MB, 64MB, 128MB, 256MB,
and 512MB. The second group of tests kept the cache
size at a constant 128MB and created forests of up to
1,000,000 trees, and measured both the memory and
run-time of the forest creation process.

Figure 2 shows the results of creating forests with vary-
ing cache sizes. In most cases, the majority of the time
is spent creating hero trees to fill the various caches.

0 2,000 4,000 6,000 8,000

16MB
32MB
64MB

128MB
256MB
512MB

Total Hero Creation Tree Placement

Figure 2: Time (in milliseconds) required to create
10,000 trees, as a function of cache size. Hero tree cre-
ation accounts for the largest proportion of processing
time for larger cache sizes.

From our results, hero creation time grows roughly lin-
early with increasing cache size. The 16MB cache
takes approxmately one second to fill, while the 512MB
cache takes up to eight seconds. The hero creation pro-
cess requires, on average, 25 milliseconds per MB of
cache.

By comparison, tree placement generally requires much
less computation time, although it does scale with the
number of trees being created. However, for smaller
cache sizes, tree placement requires a larger proportion
of total running time for a fixed number of trees. There
are two reasons for this. First, a smaller cache can
be filled significantly faster than a large cache. Sec-
ond, each additional hero tree depletes the percentage
of cache space available much more rapidly for small
cache sizes. This has a knock-on effect on the instanc-
ing probability used to generate new hero tree. A hero
tree created with a high instancing probability is likely
to contain many instance exit points (getInstance sym-
bols in the L-system string). Consequently, Algorithm 2
will require many more recursive calls on average and,
thus, take longer to run. This phenomenon is not seen
in the large cache sizes since the instancing probability
increases much more slowly.

As the cache size increases, the time required for tree
placement reduces from one second, for the 32MB
cache, to 130 milliseconds for the 512MB cache. This
equates to a placement time of 0.1 milliseconds per tree
and 0.013 milliseconds per tree, respectively. The to-
tal time to create and place 10,000 trees ranges from
1.3 seconds for the 16 MB cache to 8.4 seconds for the
512MB cache. The cache size is an important choice
that must be made by the user of the system. If the de-
sired output is a small forest, a small cache size should
be chosen and vice versa. The disadvantage to choosing
larger cache sizes, however, is the significantly longer
time that users must wait in order for the cache to fill.

To determine the general utility of our instancing ap-
proach, we also evaluated the running time for forest
creation without using any instancing. Unfortunately,
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Figure 3: Time (in milliseconds) required to create
forests for a cache size of 128MB. Hero tree creation
accounts for most of the time, and is almost constant.
Tree creation, which includes tree placement, increases
linearly with the number of trees, but very slowly: cre-
ation of 1,000,000 trees requires only 1.5 seconds.

the system ran out of memory when attempting to cre-
ate all 10,000 trees. The largest size that we were able
to create was approximately 2,000 trees over sixty sec-
onds. Based on our testing, we estimate that creating
10,000 trees would require at least 300 seconds to com-
plete. It is clear that our caching system is markedly
faster than the uninstanced approach.

Our next set of tests show the running time and memory
consumption of our method as the forest size increases.

As can be seen in Figure 3, the time required to add new
renderable trees grows very slowly. Although this graph
only shows results for a 128MB cache, the other cache
sizes exhibit similar behaviour. Even for a million trees,
the majority of time, about 3 seconds, is taken up with
hero creation. A million trees only requires 1.5 sec-
onds to create, which is equivalent to approximately
650 trees per millisecond. The time required to place
trees — a component of the creation time — grows
linearly with the desired number of trees. As noted
above, our system performs better than the uninstanced
approach: we can create a million trees in the time that
the uninstanced method is only able to create three hun-
dred trees.

Figure 4 shows the memory requirements for each ad-
ditional tree in the forest. Memory usage grows ap-
proximately linearly. The memory usage metric is the
sum of the instance cache size, the size of all render-
able trees and the size of all textures in the trees. The
graph shows that, even up to a million trees, the mem-
ory requirements are dominated by the cache size. The
memory requirements grow very slowly with the num-
ber of trees in the forest, which highlights an important
advantage over the uninstanced approach. Without in-
stancing, each additional tree consumes a large amount
of graphics memory, which can be severely limiting on
all but the most recent hardware. In our approach, how-
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Figure 4: Memory (in megabytes) required to create a
forest for a cache size of 128MB.The instance cache ac-
counts for most of the memory usage. Each individual
tree typically requires an average of only 100 bytes.

ever, each additional tree consumes less than 100 bytes,
on average.

The effect of instancing changes with cache size: for a
small cache far more instancing takes place. Figure 5
shows a forest with 100,000 trees and a cache size of
32MB (left) and 128MB (right). The shade of red in-
dicates the extent to which branch instances occurred
in the forest, with grey indicating that branch/part of
the tree was not instanced at all. Note that the shading
does not indicate spatial proximity or branch indices,
but simply the degree of instancing. It is readily appar-
ent that the larger cache size dramatically reduces the
amount of instancing. For the 128MB cache, no more
than 4 instances of any branch were used, while for the
32 MB cache, no more than 27 instances of any branch
structure were re-used throughout the forest.

In the next section, we will discuss some of the disad-
vantages of our approach, in particular, the visual arti-
facts that can occur when using random instancing.

7.1 Limitations
Using instancing for procedural forest generation is not
without its drawbacks. An important criticism is the
possible reduction in visual quality due to excessive re-
use of tree geometry. We attempt to reduce the effect
on appearance by letting the non-deterministic nature
of the L-systems decided where instances should be
placed. This can still lead to problems: the L-system
could randomly decide two trees that are near to each
other should use the same instances, or, even worse, be
constructed entirely from the same instance.

Although identical trees are unavoidable due to the ran-
dom nature of L-systems, certain steps can be taken to
mitigate this effect. The first is to use L-systems which
are markedly non-deterministic, in that they are able to
produce a large number of varied trees. The second ap-
proach is to detect when we are about to place an of-
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Figure 5: The effect of instancing for a forest of 100,000 trees. The shade of red indicates how frequently that
branch structure was re-used in the forest. For the small cache (32MB, left) much more instancing is evident, as
one would expect. However, no more than 27 instances were used for any branch structure. For the large cache
(128MB, right) the number was only 4, as shown by the much lighter shading of red.

fending instance, one which is too close to another in-
stance of the same type, and replace it with another in-
stance. This second approach is made more difficult by
the random nature of L-systems. The L-system could,
for example, decide to add multiple instances to the
cache which all represent the same geometry. In this
case we would not even be aware that we are using the
same geometry when using different instances.

Fortunately, the visual artifacts arising from instancing
are not necessarily a problem. Informal user tests (a
user-guided fly-through of the forest) revealed that most
users do not notice that instances existed. Indeed, iden-
tical trees that are nearby often go unnoticed if oriented
at a random angle and branches that are identical can
appear at different levels of the tree which further masks
their similarities.

8 CONCLUSIONS
We present a new scheme which significantly acceler-
ates L-system tree creation and reduces memory over-
heads. By dynamically modifying the tree L-systems
and making careful use of instancing, we can create
large and varied forests quickly whilst using a bounded
amount of memory. This is accomplished by filling a
special fixed-size instance cache with sub-branch ge-
ometry derived from a much smaller set of ‘hero’ tree
templates. Rendering is accomplished by looking up
the appropriate geometry buffers in the instance cache
and issuing draw calls using the associated transforma-
tion and texture metadata. Each new tree requires less
than a 100 bytes of storage on average and takes less
than 0.1 milliseconds to create. During our tests, we
were able to create a forest of one million trees us-
ing approximately 350MB of memory in under 4.5 sec-
onds. By contrast, the naïve algorithm was only able to
generate 300 trees in the same amount of time.

There are several avenues for future work. Instanc-
ing improves memory requirements but may give rise
to visually jarring repetition. In order to correct this
behaviour we would need to scan the instance cache
to detect when duplicate geometry is added so that

we could ignore it. This is not an easy task since it
requires complicated matching on the geometry and
would likely slow the system down significantly. Al-
ternatively, one could make the simplifying assumption
that the same substring (the part of the string that repre-
sents the branch) represents the same geometry. Com-
paring strings instead of geometry is significantly easier
(and more efficient).
Finally, while we have demonstrated our technique at
work with L-systems, it is possible that other procedu-
ral tree generation algorithms could also benefit from
our instance cache scheme.
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ABSTRACT
Gauss’ theorem, which relates the flow through a surface to the vector field inside the surface, is an important tool in
Flow Visualization. We are exploit the fact that the theorem can be further refined on polygonal cells and construct
a process that encodes the particle movement through the boundary facets of these cells using transition matrices.
By pure power iteration of transition matrices, various topological features, such as separation and invariant sets,
can be extracted without having to rely on the classical techniques, e.g., interpolation, differentiation and numerical
streamline integration. We will apply our method to steady vector fields with a focus on three dimensions.
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1 INTRODUCTION

Vector field topology reveals the basic features of a
flow field, i.e., critical points, separatrices, separation
surfaces and other invariant manifolds. For instance,
it became a widely used tool for the feature-based
analysis of stationary flow fields. For time-dependent
flow fields, the finite-time Lyapunov exponent (FTLE)
is often used to extract time-dependent counterparts of
the structures known from vector field topology. Nev-
ertheless, methods to extract vector field topology are
based on interpolation, differentiation and numerical
streamline integration.
Instead of relying on streamlines, one can use transition
matrices. The entries of a transition matrix represent
the probability that particles contained in one cell will
enter another cell after some advection time. This leads
to the theory of time-discrete Markov processes, which
are a widely studied object of probabilistic theory.
Here, the question is, if powers of the transition matrix
will converge to a limit state. This corresponds to
particles reaching a limit set, e.g., a critical point.
The generation of the transition matrices is a hard
task. In [22], Reich and Scheuermann have used a
combinatorial flow map, that was introduced by Chen
et al. [3] to compute the outer approximation of an
integration image of a cell after some advection time.
Then, they were able to compute probabilities of
particles leaving one cell and entering another cell. To
compute the outer approximation, all edges of a cell
have to be integrated adaptively.

In this paper, we present a novel algorithm to compute
the transition matrices. The idea is to look at the
outflow region of every cell. For two adjacent cells in
2D, the probability of the transition can be computed
by relating the outflow at the edge to the outflow of the
whole cell. This approach can be naturally extended to
3 dimensions by integrating the outflow along the cell
surface instead of the edges.
While the approach using the method of Chen might
result in transitions between cells that are not neigh-
bored, our novel approach guarantees transitions only
between neighbored cells. We therefore sample the
transitions at the finest scale possible in this discrete
setting. The speed of convergence of the transition
matrices depends linearly on this scaling, because
the computationally most costly stage is multiplying
sparse matrices with vectors, which rises linearly in the
number of cells, resulting in fast computations of the
attracting and repelling limit sets. However, computing
separation is still a computationally costly technique,
because much more vectors will have to be iterated.
Our method is evaluated using data sets of different
levels of complexity. Due to the extension to 3 dimen-
sions of the existing work, we are now able to analyze
more real world data with our novel approach.
The remainder of this paper is structured as follows: In
section 2, we present approaches that are related to our
method. The basics of surface integrals and transition
matrices are explained in section 3. Afterwards, we
present our method in section 4. The results are pre-
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sented and discussed in section 5. The paper concludes
with section 6.

2 RELATED WORK
Vector field topology has been introduced to by Hel-
man and Hesselink [11] more than 20 years ago to the
visualization community. Since then a lot of research
has been devoted to the extraction of topological invari-
ants. Initially, Helman and Hesselink extracted critical
points and classified the points by linearizing the flow
in the vicinity. Afterwards, the flow is segmented into
basins of similar flow behavior using the separatrices
that emanate from the saddle points. This method was
then extended by several researchers. Scheuermann
et al. [25] analyzed the boundary of the domain to
extract a finer topology. Weinkauf et al. [32] extended
this approach to three dimensions. Theisel et al.[29]
introduced the concept of saddle connectors, which are
the intersection of the separation surfaces emanating
from the saddles points. Wischgoll et al. [34] extracted
attracting and repelling periodic orbits in planar flows
by searching for cell cycles.
Tricoche [31] studied the connection between the
Poincaré index and vector field topology. Polthier et
al. [20] use a discrete hodge decomposition to extract
vector field singularities. Bhathia et al. [1] use edge
maps as an alternative to streamlines.
The aforementioned methods analyze the vector field
as a continuously given data set. This approach does
not incorporate the grid and makes interpolation
necessary. In contrast, discrete methods do not rely on
interpolations but analyze the raw data. In particular,
the work of Reininghaus [23] covers the extraction of
topological structures in combinatorial vector fields.
Here, the grid is represented as a graph and the vector
field as an matching on this graph. Their method is
based on the work of Forman [6]. Another combinato-
rial approach was presented by Chen et al. [3]. They
use the images of triangular cells under advection to
encode the flow field into a graph. Conley index theory
is used to classify the strongly connected components
as features. The work of Boczko et al. [5] can be seen
as a special case of a Morse decomposition. Szymczak
presented Morse decompositions of piecewise constant
vector fields [28].
An approach to compute vector field topology in a
discrete setting was presented by Reich et al. [22].
They use the theory of Markov processes [27] to extract
vector field invariants.
In the last two decades, the extraction of topological
structures in uncertain vector fields had come to
attention in the flow visualization community, e.g.,
see Pang et al. [18]. Otto et al. [17] formulated
convergence criteria for gaussian distributed density
functions by Euler integration. Their method also uses

the uncertain Poincaré index to distinguish between
critical distributions. Petz et al. [19] presented an
approach to analyze the probability of a critical point
to be contained in a cell for uncertain vector fields.
Schneider et al.[26] uses principal component analysis
to detect separation in uncertain flows.
The list of the aforementioned publications related to
vector field topology is naturally not complete. For a
good overview that also cover topics of flow visual-
ization, we refer to Weiskopf and Erlebacher [33], and
Post et al. [21].
For time-dependent flow fields, vector field topology is
not sensible to extract anymore. Here, a lot of analysis
approaches search for Lagrangian coherent structures.
An important approach to find these features was in-
troduced by Haller [10] by introducing the Finite-time
Lyapunov exponent (FTLE). Within the visualization
community a lot of computational improvements or
alternative computation methods have been proposed,
see [2, 7, 13]. There is also some research done to
compare vector field topology to structures extracted
from the FTLE, e.g., see [24].
The stochastic processes in our work are also an
important tool for image segmentation and pattern
analysis [8].

3 MATHEMATICAL PRELIMINARIES
3.1 Surface Integrals
Surface integrals can be described as an observable
quantity that measures the amount of leaving (entering)
flow through a bounded surface in one time step. A fa-
mous theorem related to surface integrals is from C.F.
Gauss. It states, that the flow f through a piecewise dif-
ferentiable boundary of an area Ω is equal to divergence
integral over the enclosed Ω:∫

∂Ω

< f ,n > dA =
∫

Ω

div f dV , (1)

where n denotes the outer unit normal to ∂Ω and < ., . >
the inner product. The left side is a surface integral,
while the right side is a integration over a volume.
The theorem has many applications in other sciences,
e.g., in electrodynamics it implicates that there can be
no electric field inside a hollow object. In one dimen-
sion, it is equivalent to the fundamental theorem of cal-
culus.
In this chapter, we are going to introduce surface inte-
grals in the Euclidean spaces R2 and R3. We will show
that for triangular and tetrahedral cells in a piecewise
linear (or piecewise constant) flow, the surface integrals
reduce to (relatively) simple formulas. For interpola-
tion schemes of higher order, there is no guarantee that
there exists a closed formula, but the flow integral can
still be calculated by using numerical integration tech-
niques, like the Gaussian quadrature.
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3.1.1 The 2D-Case
Since the boundary of a triangular cell in two dimen-
sions is a closed path, the surface integral reduces to a
line integral.
Lemma:
Let f (x) : R2→ R2 be an affine linear field, i.e., it is of
the form A(x)+b, with a matrix A and a constant vector
b. Let p1 and p2 be two positions that bound an edge e
of a triangle in R2. Then the surface integral of the flow
f through e is∫

e
< f ,n > dx = ||p1− p2||2·<

f (p1)+ f (p2)

2
,n >,

(2)
where ||p1 − p2||2 is the length of edge e and n the
outer unit normal of the edge.

3.1.2 The 3D-Case
Lemma:
Let f (x) : R3→ R3 be an affine linear field again. Let
T be a triangle in space, e. g. the face of a tetrahedron,
with vertices positions p1, p2 and p3. Then the surface
integral of the flow f through T is∫

T
< f ,n > dσ =A (T )·< f (p1)+ f (p2)+ f (p3)

3
,n>,

(3)
where A (T ) is the area 1

2 · ||(p1− p3)× (p2− p3)||2
spanned by the triangle T .

For the following sections, in particular 4.1, we rely on
our gained, ready to implement formulas. Readers in-
terested in the theory of multidimensional integration
might also have a look in any vector calculus book, e.g.,
[16].

3.2 Transition Matrices
3.2.1 What are transition matrices?
In this section, we are going to give an insight in the
basics of transition matrices, also called time-discrete
Markov chains.
These matrices are linear operators that map a distri-
bution vector v1 to another distribution vector v2 of the
same dimension, preserving that every entry in the vec-
tor is greater or equal to zero and the sum of all entries
is 1. In particular, a row-stochastic transition matrix M
has the property, that all entries are greater or equal to
zero and the sum of all entries in each row is 1, i.e.,

∑
j

mi j = 1.

The entry mi j describes the probability of the system
from going from state i to state j.
Transition matrices are a stochastic processes with only

a finite number of states which coincide with the size of
matrix. The image of a distribution vector after k dis-
crete time-steps is generated by multiplying the trans-
posed distribution vector from the left n times. We have

vT
k+1 = vT

k ·M. (4)

As a sidenote, if we want to have a multiplication of
the vector from the right, then our matrix M has to be
column-stochastic instead. We have chosen the row-
stochastic form, because it seems more intuitive when
we move from state i to j than from j to i.
As one can see easily, the operator M is memoryless,
i.e., the next state of the system only depends the cur-
rent state, not on those before. The spectrum of M and
the long term behavior of multiplication operations are
of particular interest in probability theory [27].
Transition matrices may have many stationary states,
these are vectors that do not change by multiplication
formula (4). As a consequence, they have to be (left-)
eigenvectors to the eigenvalue of 1:

vT
k ·1 = vT

k ·M

The existence of at least one eigenvalue 1 is guaranteed
for every M.
Though M and all distribution vectors vk will always
be bound in their norm by 1, not all multiplications
involving transition matrices converge to a stationary
state by power iteration. We will present a solution for
this issue in section 4.
One of the most important theorems related to tran-
sition matrices is by Perron and Frobenius [27]. It
states that if every entry in the matrix M is greater
than zero, then there exists a unique eigenvector to the
eigenvalue λ = 1 and every power iteration algorithm
will converge to that eigenvector, which is the only
stationary state.
Google [14] makes use of the Perron-Frobenius-
Theorem to construct transition matrices that are
guaranteed to converge. The states in the Google
matrix are websites and the transition probabilities are
determined by hyperlinks, that guide the user from
one site to another. Further, there exists a very small
chance, that the user chooses a completely random
website, so the Google-Matrix will be densely popu-
lated. As a consequence, the unique stationary state of
the Google matrix can be calculated by power iteration
and delivers the page rank of each site, a measure for
its importance, that can be used to order the results of
search requests by the user.
For the case of interpretation difficulties of transition
matrices, it often helps to sketch a probabilistic graph
that describes the movement, e.g., like in Figure 1.

3.2.2 Relation to Vector Field Topology
Transition matrices have been used before to extract
topological features of a flow induced by a vector field.
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(a) (b)

Figure 1: One example that expresses the duality be-
tween a (row-stochastic) transition matrix (a) and a
probabilistic graph (b). The probability mi j describes
the likelihood to move from node i to node j.

The main idea of the preceding approaches was to en-
code particle movement from numerical streamline in-
tegration to a transition probability from cell to cell.
Two important publications in that context are [4] and
[22].
There is a duality between both dynamical systems. For
a flow φ(t,x) associated with a vector field we have

φ(0,x) = x

and
φ(t1,φ(t2,x)) = φ(t1 + t2,x).

For a (row-stochastic) transition matrix

vT ·M0 = vT

and
(vT ·Mn1) ·Mn2 = vT ·Mn1+n2

holds. Further, the product of any(!) transition matrices
M1 and M2 of the same dimension is a transition matrix
again.
The conversion of a continuous system to a a discrete
system poses several challenges:
While the flow φ(x, t) is invertible in the range of its
existence, i.e., we are able to go back to our original
position by an integration using the same time with a
negative sign, transition matrices do not need to be in-
vertible. A possible solution is to construct two tran-
sition matrices, one describing the forward movement
(M+) and one for the backward movement (M−). How-
ever, it is still not guaranteed that the equation

M+ ·M− = Id

is fulfilled here; so it is natural to ask why we con-
vert the flow to that discrete system. The reason is
not only the gained robustness and uniform treatment
of invariant sets. Transition matrices allow us to ana-
lyze the sensitivity of the initial value problem at infi-
nite times, which is not possible with purely particle-
distance-based algorithms like FTLE. In publication
[22], Reich et al. make use of that fact and extract sep-
arating features of planar flows.

4 THE ALGORITHM
Now we are going to combine the surface integrals with
transition matrices, i.e., we move from local feature ex-
traction to a global topology by describing the interac-
tion between the cells and the flow through their com-
mon facettes.
Unlike the preceding work, our algorithm will be com-
pletely independent from numerical streamline inte-
gration and works in any dimension. However, our
presented results will primarily contain 3-dimensional
flows, while, for the sake of simplicity sub-steps of the
method are illustrated in 2D.

4.1 Encoding Particle Movement
Recall the Gauss Theorem (1). If we look at the right
side, we have a volume integral over the divergence of
a region Ω, say, a cell of a piecewise linear vector field.
While the integral can be zero, e.g., the cell contains a
purely rotational stationary point, there are still particle
movements between the cell and its neighbor cells. So
the right side is of no use when we want to create transi-
tion matrices. Let us have a look at the surface integral
instead: ∫

∂Ω

< f ,n > dA.

This can be further refined to

∑
i

∫
(∂Ω)i

< f ,n > dA,

where (∂Ω)i is a boundary segment of our cell, i.e. an
edge i of a triangle, or a face i of a tetrahedron. Further,
we can refine the formula by distinguishing between in-
and outflow:

∑
i

∫
(∂Ω+)i

< f ,n > dA + ∑
i

∫
(∂Ω−)i

< f ,n > dA,

where (∂Ω+)i is the region where < f ,n > ≥ 0 holds
(outflow), and (∂Ω−)i the region where < f ,n > is
smaller than 0 (inflow).
It follows immediately from our formulas, that if we
have a piecewise linear flow that is divergence-free,
then

∑
i

∫
(∂Ω+)i

< f ,n > dA =−∑
i

∫
(∂Ω−)i

< f ,n > dA

must hold for every cell.
By assuming a linear field, the flow relative to each
boundary edge/facette can change its behavior just
once, at a tangential point in 2D, or a tangential line in
3D. The tangential point, respectively the endpoints of
the tangential line can computed by seeking a solution
λ in [0..1] satisfying

λ =
< n, f (p2)>

< n, f (p2)− f (p1)>
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Figure 2: An example of encoding particle movement.
All three edges of the cell C4 have a non-trivial exit set.
We compute the integrals of < f ,n > by our formu-
las from section 3 using the vertices and the tangential
points as integration range (red lines). The transition
probability from cell C4 to C1 is determined by the value
of the surface integral on (∂Ω+)1 divided by the value
on ∑i (∂Ω+)i.

on an edge spanned by p1 and p2. Afterwards, the tan-
gential point t can be computed by λ · p1 +(1−λ ) · p2.
The vector at a tangential point or a point on a tangen-
tial line is never needed to be evaluated, because it has
no component in direction of the normal, so it can be
assumed as zero in our integration formulas. We do not
need interpolation at any sub-step of the algorithm.
As an example, the surface integral for a edge with tan-
gential point t in 2D splits up into∫

e
< f ,n > dx =

∫
e+

< f ,n > dx+
∫

e−
< f ,n > dx

= ||p1− t||2·<
f (p1)+0

2
,n >

+ ||t− p2||2·<
0+ f (p2)

2
,n >,

where it still has to be checked which term is the posi-
tive part.
In case of a face of a tetrahedron, a tangential line de-
composes a boundary face into a triangle and a quad.
The latter one can again be decomposed into two tri-
angles, so it is necessary to evaluate the 3D-surface in-
tegral three times per face. If the flow is transverse at
a boundary edge/face, which is the common case, in
particular for flows with weak rotation, we can com-
pute the surface integral directly in one step. For a 2D-
illustration of a evaluation also see Figure 2.

The following is the key aspect of the whole paper.
We are going to put the outflow through a boundary
edge/face in relation to the outflow of the whole cell.
Which yields the quotient “outflow through a face i that
connects cell a with cell b” divided by “outflow through
the whole cell a”, or

mab =

∫
(∂Ω+)i

< f ,n > dA

∑i
∫
(∂Ω+)i

< f ,n > dA
, (5)

where ∂Ω is the boundary of cell a and face i is con-
necting a with b. The values of mab fill our transition
matrix M+. We can state a analogous formula for M−
by just substituting ∂Ω+ with ∂Ω−.
If we sum up all mab from a cell a and all of its neigh-
bors b, the result will always be 1.0, so M+ and M−
will be transition matrices, that describe the weighted
outflow/inflow of a linear flow through a cell.
To avoid division by zero, we must intercept the cases,
where there is no outflow/inflow at all. These cases are
cells containing nodal stationary points, so we just set
maa to 1.0 and all mab are 0.0 for a 6= b.

4.2 Transition Matrix Processing
From now on, the rest of the algorithm will be pure
matrix-vector-iterations with our constructed transition
matrices M+ and M−.
Since the amount of cell neighbors is always limited
to 3 (in 2D) or 4 (in 3D), our transition matrix will be
sparse of the compressed size (N×3) or (N×4), where
N is the number of cells in our dataset. There are pro-
grams with proper data structures [9] who are designed
for the procession of sparse matrices. Alternatively, one
could also use an own implementation, e.g., using the
construct vector < map < unsigned int, f loat >> in
C++, which also has been used to process the transition
matrices generated from the datasets in this paper. We
did not experience any significant computational time
changes when switching from our classes to [9]. The
complexity of a matrix-vector-multiplication is reduced
from O(N2) to O(N), when the matrix is not densely
populated.
The power iteration is a task always to be executed the
same way:
Given an equivalence precision ε > 0 and an initial vec-
tor v0 we compute

vT
k+1 = vT

k ·M,

until ||vk+1− vk||< ε .
A small ε will lead to accurate results but can increase
the computational time significantly. A summary on
multiple power iteration methods for matrices can be
found in [30].
We are going to use three types of useful initial distri-
butions:

• The uniform distribution v0 = u, where all entries of
u are 1

N with N being the number of cells.

• The impulse distribution v0 = ei, where the i-th po-
sition of the vector contains a 1.0 and all others are
0.0. This distribution is localized in cell i only.

• The neighborhood distribution v0 = ni, where for
all neighbors j of a cell i, who share common
edges/faces, have the value 1

3 (in 2D) or 1
4 (in 3D).
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(a) (b) (c)

Figure 3: All three distributions that were used by us
for power iterations: (a) a uniform distribution, n is the
number of cells, (b) an impulse distribution, which is
only located in the yellow cell, (c) a neighborhood dis-
tribution, located around the yellow cell, for a tetrahe-
dron, the values have to be 1

4 .

This distribution is localized in the neighborhood of
cell i in triangular or tetrahedral mesh.

An illustration of all distributions can be found in Fig-
ure 3. We do not consider cells as ’proper’ neighbors if
they share just a common vertex, because the resulting
flow integrals will be trivial on a set with measure 0.

4.2.1 Invariant Sets
Since we are no longer moving in the conventional dy-
namical system φ(x, t), which is induced by a vector
field, we must redefine the invariant sets:
An invariant set is an eigenvector of either M+ or M−
to the eigenvalue of 1. An invariant set is attracting, if
the matrix is M+, else it is repelling.
As a remark, these are indeed invariants, because if we
see the eigenvector as a collection of cells, then the set
of these cells, that are represented by non-zero entries,
does not change by any new multiplication with the
transition matrix. The set of all cells in an invariant set
is always connected, because the movement between
those cells always takes place between their common
edges/faces.
To extract all attracting stationary states, we just need
to iterate with M+ and the initial vector u, which rep-
resents a distribution over the whole domain. For the
repelling ones we take M−. We experienced that purely
rotational stationary points can be extracted, together
with their neighborhood, by both methods.
Using u as an initial vector also has the side effect, that
sinks and sources are also weighted with the size of
their α/ω-basin. Some invariants might attract or re-
pel “more” particles than others.

4.2.2 Separation
Separation manifolds cannot be automatically derived
from the spectrum of our transition matrices. However,
we still are able to do a power iteration with the initial
vectors ei and ni and compare the resulting stationary
states by the l1-metric and eventually measure the de-
pendence of the iteration process from the initial vector.
We obtain forward separation by using M+ and back-
ward separation by using M−. That method has by far

(a) (b)

Figure 4: A possible case that could, without using
equation (6), lead to a divergent transition matrix : (a)
there is clearly a singularity in one of those cells, but if
the flow leaves cell C1, it will be towards C2 with prob-
ability 1.0 and vice versa. The resulting matrix (b) will
be divergent, except one chooses the initial distribution
(0.5,0.5).

the highest complexity, which can be estimated by the
computational time of extracting all invariants times the
number of cells in the dataset. Separation features ex-
tracted by transition matrices have to be seen in a global
context by describing particles that tend to have differ-
ent limit sets. Every finite-time expansion of flow, as
well as particle distances, will not influence our result.

4.2.3 Boundary Topology

We process the boundary similar to the method by
Mahrous et al. [15]. First, we extract all connected
boundary segments, where the flow leaves the domain.
These segments will be treated like additional cells and
have mapping of probability 1.0 to themselves. Finally
all cells adjacent to them, will be mapped to these arti-
ficial invariants by the probability that is, as in the or-
dinary case, determined by the outflow integral. The
size of the matrix will grow by the number of so-
called exit sets of the domain, which are in general of
much smaller cardinality than the number of cells in our
dataset.

4.3 How to prevent divergent transition
matrices

Transition matrices that are generated from surface
integrals may be divergent, i.e., not every stationary
state may be reached by power-iteration only. Most of
these cases are clusters of cells that are ordered in a
cycle, where the transition probability from one cell to
its successor is 1.0. If one puts an impulse distribution
in one of these cells, the power-iteration will just move
that distribution around the cycle without reaching a
stationary state. A special case is given in Figure 4,
where a critical point near the common edge of two
cells leads to a divergent 2-cycle.
However, we are able to perform one simple operation,
so that a new matrix Mnew will have the same stationary
states, but will be convergent by potentiation. We set

Mnew =
M2

old +Mold

2
(6)
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(a) (b)

(c) (d)

Figure 5: A CFD-dataset simulating a fluid entering at
the left bottom: (a) 4 center points (yellow) and 2 sad-
dles (red) with their separatrices, the left ones form two
homoclinic orbits, the background is a LIC, (b) separa-
tion computed with a streamline-based method from the
preceding work ([22]), (c) separation computed with
surface integrals by iterating all distributions ei and ni,
(d) iteration with uniform distribution u reveals the cen-
ter points.

and obtain a process with the same stationary states.
It can be easily shown that the only remaining eigen-
value in Mnew, that has magnitude 1, is 1 itself. There
are no other eigenvalues on the unit circle of the com-
plex plane present, which could cause divergent be-
haviour. Our new transition matrix will always con-
verge by power iteration. In the special case of Figure
4, the resulting new matrix block has only the entries
0.5 and both cells belong to the same stationary state
which is associated with the critical point of the vector
field.
It is not necessary to compute the explicit second power
in practice, the propagated iteration scheme just needs
to be extended by another step with an additional aver-
aging of two distribution vectors. As a side effect, vec-
tor fields containing highly rotational flows and many
closed streamlines are also faster processed, because
distributions get blurred immediately along the prob-
abilistic streamline.
The discrepancy to the former streamline-based method
in [22] is, that transition matrices that have been gen-
erated by flow maps are practically never divergent, be-

cause a flow map never maps one cell with a probability
of exactly 1 to another cell.
Google [14] uses a similar method when computing the
page rank of websites. Their so-called matrix damping
formula is

M̃google = (1−α) ·M+α ·G, (7)

where G = { 1
N }, N being the size of G.

The convergence is ensured by the Perron-Frobenius-
Theorem [27] there. If we would have wanted to ap-
ply such a convex linear combination to our problems,
the consequences would be devastating. Not only that
the resulting dense matrices make efficient computa-
tions with large datasets extremely costly. The result-
ing matrix from (7) has an unique stationary state and
all power iterations will converge to that eigenvector.
Measuring separation will be impossible. Finally, our
formula is superior in the feature extraction of flows,
because it preserves the low population of entries in
the sparse matrices and the multidimensionality of the
Eigenspace of eigenvalue 1.
Another interesting aspect is a geometric interpretation
of M∞

new, which is now well-defined. We already know
that the norm of transition matrices is bounded by 1,
implicating the same for all (possibly complex) eigen-
values . If we consider

Mn
new · v = λ

n · v

for n→ ∞, all λ obeying |λ | < 1 will be set to zero.
From the existence of M∞

new it can be excluded that, with
the exception of 1, there are any other eigenvalues of
magnitude 1. Eventually 1 and 0 are the only “surviv-
ing” eigenvalues in M∞

new, which can now be considered
as a projection operator. We project an initial distri-
bution into the Eigenspace of eigenvalue 1, which is
spanned by all stationary distributions. In fact, all of
our used power iterations are projections.

5 RESULTS AND DISCUSSION
All iteration methods result in scalar data which is ei-
ther visualized by a color map (2D) or volume render-
ing and isosurfaces (3D).

5.1 Artificial Data
5.1.1 The Lorenz Attractor
The Lorenz-Attractor was discovered when E.N.
Lorenz attempted to set up a system of differential
equations that would explain some of the unpredictable
behavior of the weather. It is one of the most popular
chaotic systems featuring a dense collection of unstable
streamlines. The attractor in our example obeys the
ODE-system

x′ = 10(y− x)

y′ = x(28− z)− y

z′ = xy− 8
3

z,
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(a) (b)

Figure 6: The Lorenz-Attractor: (a) The uniform distri-
bution u is iterated by a transition matrix that was gen-
erated by surface integrals, (b) illuminated streamlines
were planted in the detected region.

(a) (b)

Figure 7: The Invariant Sphere: (a) ei and ni were cell-
wise iterated by a transition matrix generated by sur-
face integrals, (b) streamlines were planted in various
positions, the violett colored ones were outside of the
domain |r| = 1 and diverge while the red colored ones
were inside and remain in the sphere for all integration
times.

and can be seen in Figure 6. We had chosen the uniform
distribution and used power iteration with M+.

5.1.2 The Invariant Sphere
The invariant sphere can be produced by using the
ODE-system

x′ = −y+ x · (1− r)

y′ = x+ y · (1− r)

z′ = z · (1− r),

where r =
√

x2 + y2 + z2. It consists of an infinite num-
ber of dense closed streamlines for r = 1, every stream-
line seeded in the neighborhood of the sphere will con-
verge to one of these closed orbits. Low-precision in-
tegrators tend to produce unstable solutions here. We
computed the backward separation with M− and suc-
cessfully extracted the whole sphere, which is visible
in Figure 7.

5.2 CFD-Simulations
5.2.1 Swirling Jet
Figure 5 will be our only example of a 2D-dataset. In
contrast to the preceding work, our focus will be on
3 dimensions. We computed forward and backward

separation with M+ and M− and extracted the topo-
logical skeleton of the fluid simulation quite accurate.
Moreover, the surface integral method seems to extract
boundary related features better than the streamline-
based approach in [22].

5.2.2 Gas Furnace Chamber (Velocity)
In Figure 8 we analyzed the backward separation field
of the gas furnace chamber. The gas furnace chamber
is a divergence-free vector field on a grid that contains
approximately 2 · 105 cells. The forward separation
field is of minor interest, because all particles will end
in the same exit set. High separation values around
the injectors were detected and their influence to the
topology of the field is also revealed.
The global separation is hard to interpret by seeding
stream surfaces in the stable and unstable manifold of
saddle points, because there are simply too many of
them inside the vector field.

6 CONCLUSION AND FUTURE
WORK

We presented a novel approach to the topology of
steady 3D vector fields by exploiting that surface inte-
grals can be expressed as simple formulas on piecewise
linear vector fields. We constructed transition matrices
by the information of these integrals, which allow an
infinite-time evaluation of separation and are able to
extract many topological features of 3D flows without
having to rely on numerical integration schemes, e.g.,
a forth-order Runge-Kutta. The latter advantage devel-
ops into great robustness towards classical problems,
like critical points located near the boundary of cell,
boundary slip conditions, and stiffness problems of
ordinary differential equations. Transition matrices are
much easier constructed with surface integrals in any
dimension than with the streamline based approach,
which is still a not completely solved task for a
tetrahedral mesh ([3], [22]). While the surface integral
based method produces smoother separating structures
in locations near the boundary of the domain, both
methods do not differ much in their high computational
times, which can be several hours or even days for
large data.
Further, we neither need a differential operator, nor
evaluation (interpolation) of values outside of our
vertices in our grid. The algorithm also includes the
boundary of our domain into its calculations.
Regarding computational costs, the topology of the
vector field is much more influential than the number
of cells. Distributions in gradient fields converge very
quickly to a stationary state. Highly rotational fields
take much longer.
The prospects on the following work can be subdivided
into three branches:

Journal of WSCG

Volume 22, 2914 46 ISSN 1213-6972



1. Reduction of the Computational Costs To make
significant progress in reducing the computational
time, a GPU-implementation will be necessary.
To the best of our knowledge, prevalent GPU-
based linear algebra software parallelizes row-
and column-operations of matrix-vector-products.
However, what we need is a parallelization in
a much more extensive context, i. e., allowing
multiple vectors being operated on by the same
matrix.
Further, one might think about a better initial
distribution seeding, e. g., similar to a divide and
conquer approach, so that we do not have to iterate
each single cell by an impulse distribution.

2. Uncertainty Because transition matrices are a spe-
cial type of stochastic processes, it would make them
a very useful tool to explore uncertainty in dynam-
ics, which has been stated as one of the most im-
portant branches in the future of visualization [12].
We do not need to change our method at any stage
for that. We can manipulate initial distributions, or
even our matrix, in any way we want and study the
changes that they create.

3. Time-Dependent Flows The fact that we are able to
process steady 3D vector fields automatically opens
the gates to a method, which can create transition
matrices of a time-dependent 2D vector field by
joining all time slices in their order. Unfortunately,
the concept of stationary states of distributions
works only, if the time-dependent field is periodic.
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