21* International Conference in Central Europe
on
Computer Graphics, Visualization and Computer Vision

in co-operation with

EUROGRAPHICS Association

WSCG 2013

Communication Papers Proceedings

Edited by

Vaclav Skala, University of West Bohemia, Czech Republic






21* International Conference in Central Europe
on
Computer Graphics, Visualization and Computer Vision

in co-operation with

EUROGRAPHICS Association

WSCG 2013

Communication Papers Proceedings

Edited by

Vaclav Skala, University of West Bohemia, Czech Republic

Vaclav Skala - Union Agency



WSCG 2013 - Communication Papers Proceedings

Editor: Vaclav Skala

¢/o University of West Bohemia, Univerzitni 8
CZ 306 14 Plzen

Czech Republic

skala@kiv.zcu.cz http://www.VaclavSkala.eu

Managing Editor: Vaclav Skala

Published and printed by:

Vaclav Skala - Union Agency

Na Mazinach 9

CZ 322 00 Plzen

Czech Republic http://www.UnionAgency.eu

Hardcopy: ISBN 978-80-86943-75-6


mailto:skala@kiv.zcu.cz
http://www.vaclavskala.eu/
http://www.unionagency.eu/

WSCG 2013

International Program Committee

Benes, Bedrich (United States)
Benger, Werner (United States)
Bengtsson, Ewert (Sweden)
Bilbao, Javier,]. (Spain)

Biri, Venceslas (France)

Bittner, Jiri (Czech Republic)
Buehler, Katja (Austria)
Coquillart, Sabine (France)
Daniel, Marc (France)

de Geus, Klaus (Brazil)

de Oliveira Neto, Manuel Menezes (Brazil)
Debelov, Victor (Russia)

Feito, Francisco (Spain)
Ferguson, Stuart (United Kingdom)
Gain, James (South Africa)
Gudukbay, Ugur (Turkey)

Guthe, Michael (Germany)
Herout, Adam (Czech Republic)
Choi, Sunghee (Korea)

Chover, Miguel (Spain)
Chrysanthou, Yiorgos (Cyprus)
Juan, M.-Carmen (Spain)

Kim, HyungSeok (Korea)
Klosowski, James (United States)
Max, Nelson (United States)
Molla, Ramon (Spain)

Muller, Heinrich (Germany)
Murtagh, Fionn (United Kingdom)

Pan, Rongjiang (China)
Paquette, Eric (Canada)

Patow, Gustavo (Spain)

Pedrini, Helio (Brazil)

Platis, Nikos (Greece)

Reshetov, Alexander (United States)
Richardson, John (United States)
Rojas-Sola, Jose Ignhacio (Spain)
Santos, Luis Paulo (Portugal)
Savchenko, Vladimir (Japan)
Skala, Vaclav (Czech Republic)
Slavik, Pavel (Czech Republic)
Sochor, Jiri (Czech Republic)
Sourin, Alexei (Singapore)
Sousa, A.Augusto (Portugal)
Sramek, Milos (Austria)

Stroud, Ian (Switzerland)
Szecsi, Laszlo (Hungary)
Teschner, Matthias (Germany)
Theussl, Thomas (Saudi Arabia)
Tokuta, Alade (United States)
Vitulano, Domenico (Italy)

Wu, Shin-Ting (Brazil)
Wuensche, Burkhard,C. (New Zealand)
Wuethrich, Charles (Germany)
Zara, Jiri (Czech Republic)
Zemcik, Pavel (Czech Republic)
Zitova, Barbara (Czech Republic)






Agathos, Alexander
Assarsson, UIf
Ayala, Dolors
Backfrieder, Werner
Barbosa, Joao
Barthe, Loic
Battiato, Sebastiano
Benes, Bedrich
Benger, Werner
Bilbao, Javier,J.

Biri, Venceslas
Birra, Fernando
Bittner, Jiri

Bosch, Carles
Bourdin, Jean-Jacques
Brun, Anders

Bruni, Vittoria
Buehler, Katja

Bulo, Samuel Rota
Cakmak, Hueseyin
Camabhort, Emilio
Casciola, Giulio
Cline, David
Coquillart, Sabine
Cosker, Darren
Daniel, Marc
Daniels, Karen

de Geus, Klaus

de Oliveira Neto, Manuel

Menezes

Debelov, Victor
Drechsler, Klaus
Durikovic, Roman
Eisemann, Martin
Erbacher, Robert
Feito, Francisco
Ferguson, Stuart
Fernandes, Antonio

WSCG 2013

Fuenfzig, Christoph
Gain, James

Galo, Mauricio
Gobron, Stephane
Grau, Sergi
Gudukbay, Ugur
Guthe, Michael
Hansford, Dianne
Haro, Antonio
Hasler, Nils

Hast, Anders
Hernandez, Benjamin

Hernandez, Ruben Jesus Garcia

Herout, Adam
Herrera, Tomas Lay
Hicks, Yulia
Hildenbrand, Dietmar
Hinkenjann, Andre
Chaine, Raphaelle
Choi, Sunghee
Chover, Miguel
Chrysanthou, Yiorgos
Chuang, Yung-Yu
Iglesias, Jose,A.
lhrke, Ivo

Iwasaki, Kei

Jato, Oliver
Jeschke, Stefan
Jones, Mark

Juan, M.-Carmen
Kampe, Viktor
Kanai, Takashi
Kellomaki, Timo
Kim, H.

Klosowski, James
Kolcun, Alexej
Krivanek, Jaroslav
Kurillo, Gregorij

Board of Reviewers

Kurt, Murat

Kyratzi, Sofia
Larboulette, Caroline
Lee, Jong Kwan Jake
Liu, Damon Shing-Min
Lopes, Adriano
Loscos, Celine
Lutteroth, Christof
Maciel, Anderson
Mandl, Thomas
Manzke, Michael
Marras, Stefano
Masia, Belen
Masood, Syed Zain
Max, Nelson
Melendez, Francho
Meng, Weiliang
Mestre, Daniel,R.

Metodiev, Nikolay Metodiev

Meyer, Alexandre

Molina Masso, Jose Pascual

Molla, Ramon

Montrucchio, Bartolomeo

Morigi, Serena

Muller, Heinrich
Munoz, Adolfo
Murtagh, Fionn
Okabe, Makoto
Oyarzun, Cristina Laura
Pan, Rongjiang
Papaioannou, Georgios
Paquette, Eric

Pasko, Galina

Patane, Giuseppe
Patow, Gustavo
Pedrini, Helio

Pereira, Joao Madeiras
Peters, Jorg



Pina, Jose Luis
Platis, Nikos

Post, Frits,H.

Puig, Anna

Rafferty, Karen
Renaud, Christophe
Reshetouski, Ilya
Reshetov, Alexander
Ribardiere, Mickael
Ribeiro, Roberto
Richardson, John
Rojas-Sola, Jose Ignacio
Rokita, Przemyslaw
Rudomin, Isaac
Sacco, Marco
Salvetti, Ovidio
Sanna, Andrea
Santos, Luis Paulo
Sapidis, Nickolas,S.
Savchenko, Vladimir
Seipel, Stefan
Sellent, Anita

Shesh, Amit
Sik-Lanyi, Cecilia
Sintorn, Erik

Skala, Vaclav
Slavik, Pavel
Sochor, Jiri

Sourin, Alexei
Sousa, A.Augusto
Sramek, Milos
Stroud, lan

Subsol, Gerard
Sundstedt, Veronica
Szecsi, Laszlo
Teschner, Matthias
Theussl, Thomas
Tian, Feng

Tokuta, Alade
Torrens, Francisco
Trapp, Matthias
Tytkowski, Krzysztof
Umlauf, Georg
Vasa, Libor

Vergeest, Joris
Vitulano, Domenico
Vosinakis, Spyros
Walczak, Krzysztof
WAN, Liang

Wu, Shin-Ting
Wuensche, Burkhard,C.
Wouethrich, Charles
Xin, Shi-Qing

Xu, Dongrong
Yoshizawa, Shin
Yue, Yonghao
Zalik, Borut

Zara, liri

Zemcik, Pavel
Zhang, Xinyu

Zhao, Qiang

Zheng, Youyi
Zitova, Barbara
Zwettler, Gerald



WSCG 2013
Communications Papers Proceedings

Contents

Page

Rios-Soria,D., Schaeffer,S., Garza-Villarreal,S.: Hand-gesture recognition using 1
computer-vision techniques

Al Hamad,H.A.: Neural-Based Segmentation Technique for Arabic Handwriting Scripts 9

Gdawiec,K.: Polynomiography and various convergence tests 15

Schiffner,D., Ritter,M., Benger,W.: Fast Normal Approximation of Point Clouds in 21
Screen Space

Van Dyk,B., Lutteroth,C., Weber,G., Wuensche,B.: Using OpenGL State and History 29
for Graphics Debugging

Peek,E., Wuensche,B., Lutteroth,C.: Virtual Reality Capabilities of Graphics Engines 39

Sena,D., Pereira,l]., Costa,V.: Physics-based Water Interaction and Shading: the 49
SiViFlow Algorithm

Nguyen,V.-S, Bac,A., Daniel,M.: Simplification of 3D Point Clouds sampled from 60

Elevation Surfaces

Seib,V., Giesen,]., Grintjens,D., Paulus,D.: Enhancing Human-Robot Interaction by a 70
Robot Face with Facial Expressions and Synchronized Lip Movements

Ilgner, Kuhlmann, Eirund, Hering-Bertram: Interacting in 3D Virtual Worlds with 78
Brain Computer Interfaces

Raulet,]., Boyer,V.: Comics reading: An automatic script generation 88

Murru,G., Fratarcangeli,M., Empler,T.: Practical Augmented Visualization on Handheld 97
Devices for Cultural Heritage

Li,B., Mukundan,R.: Comparative Analysis of Spatial Partitioning Methods for Large- 104
Scale, Real-time Crowd Simulation

Vergeest,].S.M.: High-velocity optical flow 112

Kanzok,Th., SuUB,F., Linsen,L., Rosenthal,P.: Efficient Removal of Inconsistencies in 120
Large Multi-Scan Point Clouds

Liang,M., Zheng,G., Huang,X., Milledge,G., Tokuta,A.: Identification of abnormal 130

cervical regions from colposcopy image sequences

Akagi,Y., Furukawa,R., Sagawa,R., Ogawara,K., Kawasaki,H.: A facial motion 137
tracking and transfer method based on a key point detection



Kolcun,A.: (Semi) regular tetrahedral tilings

Saini,V., Gade,S., Prasad,M., Chatterjee,S.: The 3-Point Method: A Fast, Accurate
and Robust Solution to Vanishing Point Estimation

Lacheheb,H., Aouat,S., Hamouchene,I.: MCM-CBIR: Multi Clustering Method for
Content Based Image Retrieval

Cocias,T.T., Grigorescu,S.M., Moldoveanu,F.: Generic Fitted Primitives (GFP):
Towards Full Object Volumetric Reconstruction for Service Robotics

Sugihara,K.: Straight Skeleton for Automatic Generation of 3-D Building Models with
General Shaped Roofs

Alves,R.M., Sousa,L.S.R., Rodrigues,]J.M.F.: PoolLiveAid: Augmented reality pool table
to assist inexperienced players

Popov,E.V., Rotkov,S.I.: The Retrieval of NURBS-surface by Genetic Algorithm on the
Basis of Point Cloud

Dechvijankit,A., Nagahashi,H., Aoki,K.: An Optimization of Square Parameterization
Borges,D., Ferreira,A.: Part-based Construction of digitized 3D objects

Kansal,R., Kumar,S.: A framework for detection of linear gradient filled regions and
their reconstruction for vector graphics

Arora,N., Kumar,H., Dhaliwal,].S., Kalra,P., Chaudhuri,P.: Improved Interactive
Reshaping of Humans in Images

Quoc-Viet,D., Sandrine,M., Géraldine,M.: Similarity Detection for Free-Form
Parametric Models

Diaz,R.G., Dreux,M., Coelho,L.C.G.: Generation of Parameterized Models for Vessels
Design

Karpavicius,V., Krasauskas,R.: Real-time Visualization of Moebius Transformations in
Space using Quaternionic-Bezier Approach

145

151

159

166

175

184

194

203

210

220

230

239

249

259



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Hand-gesture recognition using computer-vision techniques

. . . E. Schaeffer ra E. rza-Villarreal
David J. Rios-Soria S‘atu‘ Sc ’ae € Sa a ‘Ga a’ arrea
. . , Universidad Auténoma de Universidad Auténoma de
Universidad Auténoma de Nuevo ., ,
., Nuevo Leén (UANL) Nuevo Le6n (UANL)

Le6n (UANL) L L

L . San Nicolas de los Garza, NL, San Nicolas de los Garza, NL,
San Nicolas de los Garza, NL, Mexico . .
david.j.rios@gmail.com Mexico Mexico
J g elisa.schaeffer@gmail.com saraelena@gmail.com

ABSTRACT

We use our hands constantly to interact with things: pickitlg, move them, transform their shape, or activate
them in some way. In the same unconscious way, we gestidalatemmunicating fundamental ideas: ‘stop’,
‘come closer’, ‘over there’, ‘no’, ‘agreed’, and so on. QGesfs are thus a natural and intuitive form of both
interaction and communication. Gestures and gesture ntmgare terms increasingly encountered in discussions
of human-computer interaction. We present a tool createldufman-computer interaction based on hand gestures.
The underlying algorithm utilizes only computer-visioghaiques. The tool is able to recognize in real time six
different hand gestures, captured using a webcam. Expeténcenducted to evaluate the system performance are
reported.

Keywords: Hand-gesture recognition, computer vision, human conmpoiteraction.

1 Introduction gesture detection algorithm works in real time, using
basic computer-vision techniques such as filters, bor-
There are situations in which it is necessary to interagfer detection, and convex-hull detection; in addition, it
with a system without touching it. The reasons includenly requires a standard webcam, does not need special
dirty hands (when repairing a motor, for example), hymarkers on the hand, can detect the hand regardless of
giene (to indicate the desired water temperature Whefs position (upside down, backwards, leaned to the left
washing hands in a public bathroom), and focus of abr right), and is easily extended for detecting two hands
tention (not wishing to redirect the sight towards theyt the same time.
controls when operating delicate equipment or interact- To test this approach, user experiments were carried
ing with an augmented-reality scenario). The use afut and two applications that use our gesture-detection
voice commands as an alternative to touch-based cogystem were developed. In the first application, the de-
trols, such as keyboards, buttons, and touch screens, tected gestures are used as commands for interaction
quires a quiet environment and natural language prqvith a GPS device; in the second one, the detected ges-
cessing; voice commands are, additionally, languag@ires control the movements of a robot.
specific and sensitive to dialects and to speech imped-This document is organized as follows: Section 2 dis-
iments. Another alternative is remote control througltusses background for this work and Section 3 reviews
gesture recognitioralso known as remote control “with related work; Section 4 presents the details of our al-
the wave of a hand". Common applications for this kindyorithm for hand-gesture recognition, which is able to
of control involve medical systems —provide the usefecognize six different gestures in real time. Section 5
sterility to avoid the spread of infections—, entertaindiscusses our prototype implementation and user exper-
ment, and human-robot interaction [WKSE11]. iments, and Section 7 offers conclusions and discusses
The option explored in this workomputer vision for  fyture directions.
gesture recognitionhas advantages over touch-based
controls and voice commands. Our proposed hand-

2 Background

The use of the hand as an input device is a method that

Permission to make digital or hard copies of all or part ofthi provides natural human-computer interaction. Among

work for personal or classroom use is granted without feeiged| the challenges of human-computer interaction is the
that copies are not made or distributed for profit or comnaéfci creation of user-friendly interfaces that use natural com-
advantage and that copies bear this notice and the fuliazitan the I . L. .

first page. To copy otherwise, or republish, to post on sergeto| Munication. Sophisticated applications such as virtual
redistribute to lists, requires prior specific permissiad/ar a fee. environments or augmented-reality systems should pro-

Communication papers proceedings 1 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

vide effective human-computer interaction for applicamovements as commands. The system is a combination
tions involving complex tasks. In these applicationsof a pointer position and non-chorded keystroke input
users should be supplied with sophisticated interfacekevice to track finger position [AM06a].

allowing them to navigate within the system, select ob- An interactive screen developed by The Alternative
jects, and manipulate them. Agencytin UK is located in a department store window

The use of computer vision for human-computer in{Figure 1). TheOrange screerallows interaction just
teraction is a natural, non-intrusive, non-contact solusy moving the hands in front of the window without the
tion. Computer vision can be used for gesture detectiameed to touch it.
and classification, and various approaches have been
proposed to support simple applications. To recognize
hand gestures using computer vision, it is first needed
to detect the hand on an image or video stream. Hand
detection and pose estimation involve extracting the po-
sition and orientation on the hand, fingertip locations,
and finger orientation from the images. Skin-color fil-
tering is a common method for locating the hand beFigure 1: The world’s first touchless interactive shop
cause of its fast implementation. Skin-color filters relyvindow
on the assumption that the hand is the only skin-colored
object. Gesture classification is a research field involv- | enman et al. [LBT02] use gesture detection to inter-
ing many machine-learning techniques such as neurgtt with electronic-home devices such as televisons and
networks and hidden Markov models [SP09]. DVD players.

However, hand-pose estimation is still a challenge in MacLean et al. [MHP01] use hand-gesture recog-
computer vision. Several open problems remain to bgition for real-time teleconferencing applications. The
solved in order to obtain robustness, accuracy, and higfestures are used for controling horizontal and verti-
processing speed. The need of an inexpensive but higfal movement as well as zooming functions. Schlémer
speed system is rather evident.Development of thegg al. [SPHBO08] use hand-gesture recognition for inter-
systems involves a challenge in the research of effectivgtion with navigation applications such viewing pho-
input/output techniques, interaction styles, and evalugographs on a television, whereas Roomi et al. [RPJ10]

tion methods [EBNO7]. propose a hand-gesture detection system for interac-
tion with slideshow presentations in PowerPoint. The
esture-detection system presented in Argyros et al.
3 Related work 0 yerm P N

[ALO6] allows to control remotely the computer mouse.

There are several areas where the detection of hand geS_SlxthsenseﬁMMCOQ] Is a system that converts any

NI . : Urface into an interactive surface. In order to interact
tures can be used, such as device interaction, virtual- L
o . . o ith the system, hand gesture recognition is used. In the
objectinteraction, sign-language recognition, and robqt. ) ,
ixthsenssystem, color markers are used in the fingers
control. Wachs et al. [WKSE11] present some exam-
o : . 0 detect the gestures.
ples of applications such as medical assistance systems,
crisis management, and human-robot interaction. In ) ] ] )
the following subsection we present some examples &2  Virtual object interaction

gesture-based interaction systems. Gesture detection can be used for interaction with vir-

o ) tual objects; there are several works that show applica-
3.1 Device interaction tions for this scenario.

There are works related to electronic device interacfb Hirobe et al. [HNW*09] have created an interface

tion; for example, Stergiopoulou et al. [SP09] use self: r mobile quICe.S using image tracking. The sy;tem
. : tracks the finger image and allows to type on an in-air
growing and self-organized neural networks for hané

gesture recognition. Another exampleHsiger count- eyboard and draw 3D pictures.

ing [CBO3] a simple human-computer interface. Usin HandVu[Kol10] is a hand-gesture vision-based recog-
9 ' SIMp omp - USINGikion system that allows interaction with virtual objects
a webcam, it interprets specific hand gestures as inp

. . igure 2)HandVudetects the hand in a standard pos-
to a computer system in real time.

. . . . re, then tracks it and r nizes k r Il'in
TheUbiHand[AMOG6b] is an input device that uses atu e, t en trac S t and recognizes key postures, a .
o . ) .~ " real-time and without the need for camera or user cali-

miniature wrist-worn camera to track finger position,

providing a natural and compact interface. A hané)ranon. Although easy to understand, the used gestures

. . are not natural.
model is used to generate a 3D representation of the

hand, and a gesture recognition system interprets fin
Thttp://ww. t heal ternative. co. uk/

Communication papers proceedings 2 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

his or her field of vision, include either comparing the
subsequent frames in a video (to detect movement —
sensitive to motion in the background as well as shaking
of the hand itself—) or using skin-color filter(to clas-
sify the pixels of the image into two classes, “hand” or
“background”, depending on their color values). In this
work, we employ the latter approach, which is some-
what sensible to high variations of skin color (the prob-
i lematic cases being very pale and very dark-skinned
Figure 2: The gestures used in thiandvu system ysers). This can be done on a single frame, that is, a
[Kol10Q] are not natural gestures. still photograph, but can often be improved by averag-
ing over a few adjacent video frames; in our work we
use the average over ten frames.

Wobbrock et al. [WMWO09] propose a series of ges- The skin-color filtering in such does not yet necessar-
tures in order to make easier the use of interactive sujly produce a picture of the hand only, as some pixels
faces. Wachs et al. [WSB6] use real-time hand ges- pelonging to the background may pass through the fil-
tures for object and window manipulation in a medicater whereas parts of the hand that are either shadowed or

data visualization environment. reflect light are excluded. Hence we need to apply sev-
eral processing steps; first to extract the hand and then
3.3 S|gn |anguage recognition to identify the gesture that the user is currently making.

Zahedi et al. [ZM11] create a system for sign languag . S
recognition based on computer vision. Wang et ag'z Skin-color filtering

[WPO9] present a work where hand gesture detectiogkin color has proven to be a useful and robust cue
is used in three aplications: animated character intefor face detection, localization, and tracking [Mah08,
action, virtual object manipulation, and sign language/SA03, KMBO07]. Contentfiltering, content-aware video

recognition. compression, and color-balancing applications can also
benefit from automatic detection of skin in images. The
3.4 Robot-control goal of skin-color detection is to construct a decision

. rule to discriminate between skin and non-skin pixels.
Malima et al. [CMOO6] use hand-gesture detection fofrhjs s usually accomplished by introducing a metric,
remote robot-control. They have noted that imageghich measures the distance of the color of a given
taken under insufficient light (especially using the wepixe| to a defined value representing skin tone. The
bcam) have led to incorrect results. In these cases tgecific distance metric employed depends on the skin-
failure mainly stems from the erroneous segmentatiogp|or modeling method. An obvious advantage of such

of some background portions as the hand region.  methods is the simplicity of the skin-detection rules
that enables the implementation of a very fast classifier
VSAO3].

4 Theory [ ]

Colorimetry, computer graphics, and video-signal trans-
ission standards have given birth to manjor spaces

Our proposed algorithm performs hand-gesture recoé?ith different properties. A wide variety of them has

nition by utilizing computer-vision techniques and is sen anolied to the oroblem of skin-celor modelin
able to recognize six different gestures in real-time. ThEr PP p g.

processing steps included in the algorithm are explainedﬂIe red-blue-green (RGB) is a color space that origi-
in detail in the following subsections. nated from cathode-ray tube display applications, where

it was convenient to describe each color as a combina-
o tion of three colored rays: red, green, and blue. This
4.1 Hand recognition remains one of the most widely-used color spaces for

Hand-recognition systems are based on the processiHEﬁcescsm.g ar}d st.(l)rin? ofldigital image dgta. f
of an incoming digital image, preferably in real time. GeCr is a family of color spaces used as a part o

The first task is to separate the image of a hand fror[Ji1e coIor-irr?age pimagle [:r)]ipleline in video and digital
the background. This can be achieved in several way: otography sys'_[emS’. Is theluma componemlsome—

and depends on whether the image includes only a ha gres _called luminance, that represent_s the brightness
against a background or the entire person. Options fgp an image. Cs andCg are the blue-difference and

detecting the hand against a background, which is tHg9-difference chroma components; chroma is the sig-

typical case for the augmented-reality setting, where th'%al used in video systems to convey the color informa-

user wears a headset with a camera pointing toward8" of the picture

Communication papers proceedings 3 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

In contrast to RGB, th& GsCg color space is luma-
independent, resulting in a better performant€sCr
is not an absolute color space; rather, it is a way of en-
coding RGB information. The actual color displayed
depends on the actual RGB primaries used to display

the signal. 7 ,

The hand-gesture detection algorithm uses Skin'ml?—rigure 3: On the left, an original image On the right,

detection. The skin-color fil_ter used_in our work cany - resulting binary imag® after applying the skin-
also be used for face detection, localization, and tracks, . filter defined by Equations 1-2

ing of persons in videos.

Denote byl be the entire input image, and by, Ic,
andlc, the !uma, blue, and reo_l compon_ents_ of Fhe im21_3 Edge detection
age, rspectibly We denote the image height in pixels by
h and the image width in pixels by. The pixel in posi- Using the binary image corresponding to the presumed
tion (i, j) is denoted byp; ; and its three components by skin pixels, we need to determine which of these form
p?fj, p.CJB andpij. For all component€ € {Y,Cg,Cr}, the hand, meaning that we need to identify the edge of
we assume thépicj € [0, 255, corresponding to eight the hand sh_ap_e in the imagEQge detectioms an es-
bits per color channel, yielding 24 bits per pixel. ThisS€ntial tool in image processing and computer vision,
gives image size di x w x 24 bits. part|cu!arly in the areas pf feature detection and feature

We use a pixel-based skin detection method [KPSo&traction. Aredgeis defined as the boundary between
that classifies each pixel as skin or non-skin individu@" object and the background, although it may also in-
ally. More complex methods that take decisions basedicate the boundary between overlapping objects.
not only on a pixelp j, but also on its direct neighbor- _ The process of edge detection is generally based on
hood {Pi_1j, Pis1j Pij-1,Pij+1} (and possibly also |dent|f_y|ng thosfe_ pixels at which the image b_rlghtness
the diagonal neighborhoqe_ 1, pi+1.j-1, Pt j+1, has d|sconF|nU|t|_§s. When t_he ed_ge_s in an image are
Pi_1j+1) can be formulated, but are computationall;ﬁccur.ately identified, the objects. in it can _be located,
heavier. Our aim is to operate the system in real timé/lowing the computation of basic properties of each
for which we seek the simplest and fastest possibf@Pi€ct; such as the area, perimeter, and shape [Par96].
method for each step. There are two main methods used f_or edg_e detection;

A pixel pij in | is classified —heuristically, based "amely thelemplate matchingnd thedifferential gra-
on existing literature— as skin if all of the following di€ntmethods. In both of these methods, the goal is to
conditions simultaneously apply: |Qent|fy Ipcatlons in which the magnitude of_the inten-

sity gradient (that is, the change that occurs in the inten-
1. Thelumacomponentexceeds its corresponding threisheof pixel color when moving across adjacent pixels)
old value: is above a threshold, as to indicate in a reliable fashion
p?fj > 80. (1) the edge of an object. The principal difference between
' the two methods is the way in which they perform lo-
2. The blue and red components are within their correza| estimation of the intensity gradiemtalthough both
sponding ranges: techniques employ convolution masks.
Ca The template matching operates by taking the max-
85 < pj < 135 2) imum over a set of component masks (such as the
135 < p,cf < 180 Roberts, Sobel, and Prewitt operators) that represent
possible edge configurations. This yields an approxi-
mation forg at the pixel in which the templates are cen-
We write S(pi,j) = T if the pixel pj ; passes the filter, tered. The differential gradient method instead com-
andS(p;,j) = L if it does not fulfill the above condi- putes the pixel magnitudes vectorially with a nonlinear
tions. transformation. After computing for each pixel —

We then create a new binary imageof the same jith either of these methods— thresholding is carried
dimensionw x h (cf. Figure 3 for an example) where gyt to obtain a set ofontour pointgthat is, those that
the color of the pixeb; j is either white (denoted by 1) were classified as being part of an edge). The orienta-
if the position corresponds to skin or black (denoted byion of the edges can be deduced from the direction of

0) if the position did not pass the skin filter: the highest gradient (the edge being perpendicular to it
. at that pixel).
bi.j = { 1, i S(p'1> - T, 3) At this point, we have the set of contour pixels and
0, if S(pij)=L. need to determine the connected components of the

contour, meaning that we must compute the connected

Communication papers proceedings 4 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

sets of edge points. To create a connected set we selectVe identify the peaks of the fingers in the image by
one contour pixel as a seed and recursively add to tlemputing theconvex hullof the hand edge. The con-
set pixels that are also contour pixels and are adjacewx hull is a descriptor of shape, is the smallest con-
to at least one pixel in the set, until there are no moreex set that contains the edge; intuitively explained —
adjacent contour pixels. If there are contour pixels leftin two dimensions— as the form taken by a rubber band
then we select another contour pixel as a seed to createn placed around the object in question; an example
a new connected set; we repeat iteratively until all thés given in Figure 5). It is used in computer vision to
contour pixels are in a connected component. simplify complex shapes, particularly to provide a rapid
In our case, we assume the hand to be in the image foriedication of the extent of an object.

ground, making it likely that the largest connected con- We now copy the binary imag® to a new image
tour component will correspond to the hand, whereaS. We will then iteratively seek and eliminat®n-
any smaller components of the contour set, if presentaveregions. Intuitively, this can be done by examining
correspond to some objects on the background. the values of the pixels in an arbitrary straight segment
We denote the set of contour pixels of the largest corwith both endpoints residing in white pixels. If any of
nected component y. We construct a new binary im- the pixels along the segment are black, they are col-
ageO by copyingB and then setting to zero (black) all ored white, together with any black pixels beneath the
those pixels that correspond to the smaller connectestgment. This repeated “filling” will continue until no
components of the contour and their insides, leavingnore segments with white end points and intermediate
only E and the pixels inside it at one (white). This canblack pixels exist. An algorithm for achieving this is
be done by a standard bucket-fill algorithm. given in the text book of Davies [Dav04].

The resulting white zone i€ is nowconvexand the
edge of that zone —all those white pixels that have at
least one black neighbor— form the convex hull of the
At this point, we have identified the edge of the hand ithand-shape i&. We denote this edge by.
the image. We now proceed to determining which hand

—
e

4.4 Convex hull and convexity defects

gesture is being made in the image. The way in which

this is done depends on the the type of hand gestures
supported by the system —no single design is adequate
for all possible hand positions—. The gestures that we

wish to detect are shown in Figure 4.

4 3

i

(a) Edge and hull. (b) Vertices and defects.

Figure 5: On the left, the background (in black), the
hand-shape regio® (in white), the hand edgg& (in
blue), and the convex hull (in green). On the right,

~ zero | one | two |three| Tour | five we add the vertices of the convex hull (in red) and the
Figure 4: The gestures used in our proposed system thagnyexity defects (in yellow).

correspond to the numbers from zero to five. Note that
the separation of the individual fingers is relevant to the

detection of these gestures. We now proceed to comparirig to E to detect the

defects points in which the two differ greatly. First,
from H, we compute theverticesof the convex hull,

As our gestures correspond to distinct numbers of finhat is, the points in which it changes direction. Then,
gers elevated, our detection method is based on CouRja examine the segments®between pairs of consec-
ing the elevated fingers in the image. It will not be reltive vertices oH and find that pixel in each segment
evant which finger is elevated, only the number of finthat maximizes the distance frath This maximal dis-
gers (cf. [CBO3, CMOOG]). This gives us the advantag@anced is called thedepthof the defect. The points
of the system not being sensitive to which hand is bahemselves are callembnvexity defectsFigure 5 shows
ing used, left or right. Additionally we gain not having gn example.
to control the position of the hand: we can look at the From the defect depths, useful characteristics of the
palm or the back and have the person hold his or h¢jand shape can be derived, such as the depth average
arm at nearly any angle with respect to the camera. Aﬂd. We use the defect depths, together with the depth
we require is that either the palm or the back of the hangerage and the total hand length, to count the number
faces the camera and that the fingers are separated. T§fslevated fingers. An above-average depth indicates
second requirement can be relaxed in future work; wg gap between fingers, whereas a clearly below-average
discuss later in this paper how we expect to achieve thigepth is not a finger separation. Using the number of
defects we can estimate the number of elevated fingers

Communication papers proceedings 5 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

on the hand: an open hand showing five fingers has four
convexity defects, whereas a hand showing four fingers
has three convexity defects, and so forth.

5 Material and methods

We used OpenC¥under Pythofto implement a pro-
totype of the proposed hand-gesture detection system.
As we wanted the system to be able to run on mod-
est hardware, we performed all our experiments on Bigure 7: The experimental setting: our arrangement
netbook with a 16 GHz processor and 1 GB of RAM for controlled background, fixed camera position, and
memory, using a webcam with a resolution of 64480 constant illumination.

pixels. The prototype operates in real time and indicates

on the screen the detected gesture; Figure 6 shows a

screen capture.

our Zero one | three ve Wo
Figure 8: An example of a random gesture sequence
assigned to a user.

6 Results of user experiments

We evaluated the prototype with ten users; each per-
Figure 6: A screen capture of the implemented protoformed five sequences of gestures with both hands (each
type for the hand-gesture detection tool. sequence was composed of six gestures from zero to
five, in random order). Therefore, each user performed

. 60 gestures, giving us a total of 600 gesture-detection

5.1 Experimental setup attempts. Table 6 shows the percent of gestures cor-

We carried out experiments with users to evaluate tHECUY detected, grouped by the gesture made and the

functionality of the proposed gesture-detection algohand used.

rithm. We requested the users to carry out a series Gesture detecied

T
gestures in front of the webcam and measured whetheftand used 0 T 2 3 q 5 Total

the detection was successful. An observer recordédRight hand || 100% | 72% | 96% | 94% | 98% | 100% | 93.33%

whether the output produced by the algorithm corrg-Lefthand || 100% | 76% | 94% | 96% | 98% | 94% | 93.00%

4 Total 100% | 74% | 95% | 95% | 98% | 97% | 93.17%

sponded to the actual gesture being made. The light ST - v o
ing, camera position, and image background were con-Table 1: Percentage of correctly identified gestures.

trolled, as illustrated in Figure 7. We hope to relax these
requirements in future work, as the proposed method is
designed to accommodate a less restricted use setting
The user was shown a gesture sequence —on a col
puter screen (see Figure 8 for an example)—. Each ge

Percentage of detected signs

100 Detected mmmmm

90 Not detected m—m

ture sequence contains a randomly permuted sequen e
of hand gestures to perform. The sequence was ava 20
able on the screen while the user performed the gestur o ¢,
one at a time. We instructed the users to a take thret £ s,
second pause between gestures. Each sequence \ § 40
performed once with the right hand and then again witt 30
the left hand. When the user finished to perform the las 20
gesture in the sequence, a new random sequence w 10
show. Each user carried out five different sequences. 0

Signs

2 http://opencv. wil | ongar age. cont

S http: // waw. pyt hon. or g/ Figure 9: Correctly detected gestures.

Communication papers proceedings 6 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

In total, 93.1% of the gestures were correctly depresent) divided by one fifth of the base width, rounded
tected, improving the results for a previous work [RSS1d@wn to the preceding integer value.
the gestures for numbers three, four, and five have Another aspect that needs to be addressed in future
the highest accuracy and present low variation betweework is the sensibility of the system to lighting condi-
hands. The gestures for number one, however, has ttiens, as this affects the skin-color filtering, particlyar
lowest detection percentage. Also, gestures for zerwiith reflections and shadows. We expect these addi-
one, and two show variability according to the handions to improve the accuracy of the detection system,
used. The gesture-detection algorithm works correctlgs well as ease the cognitive burden of the end user as it
a majority of the time, under the conditions used in ouwill no longer be necessary to keep the fingers separate
experiments. User observation helped us notice that thesomething that one easily forgets—.
primary cause for incorrect gesture detection was the
particular form in which each user performs the gesture;
sometimes, for example, the fingers were very close 18 References
each other. Some examples are shown in Figure 10. We

discuss a possible work-around to this problem as paREFERENCES

of future work in the next section.

[ALO6] Antonis Argyros and Manolis Lourakis. Vision-
based interpretation of hand gestures for re-
mote control of a computer mouse. In Thomas
Huang, Nicu Sebe, Michael Lew, Vladimir
Pavlovic, Mathias Kélsch, Aphrodite Galata,
and Branislav Kisacanin, editor€omputer Vi-
sion in Human-Computer Interactiorvolume
3979 of Lecture Notes in Computer Science
pages 40-51. Springer, Berlin/ Heidelberg, Ger-
many, 2006.

1

Figure 10: Some examples of correct and incorrect de—[AMOGa] Faroog Ahmad and Petr Musilek. A keystroke
9 ’ P and pointer control input interface for wearable

tection from the user experiments. Above, a correctly computers. INEEE International Conference

detected gesture, and below, an incorrect detection of on Pervasive Computing and Communications
that same gesture. The gestures requested were, from pages 2-11, Los Alamitos, CA, USA, 2006.
left to right, one, three, and five. IEEE Computer Society.

[AM06b] Farooq Ahmad and Petr Musilek. Ubihand: a
wearable input device for 3D interaction. In

7 COﬂClUSIOﬂS and fUture WOfk ACM Internacional Conference and Exhibition

on Computer Graphics and Interactive Tech-
We have presented a method for detecting hand gestures niques page 159, New York, NY, USA, 2006.
based on computer-vision techniques, together with an ACM.

implementation that works in real time on a ordinary
webcam. The method combines skin-color filtering,
edge detection, convex-hull computation, and a rule-

[CB0O3] Stephen C. Crampton and Margrit Betke. Count-
ing fingers in real time: A webcam-based
human-computer interface game applications.

based reasoning with the depths of the convexity de- In Proceedings of the Conference on Universal
fects. We had reported as well user experiments on the Access in Human-Computer Interactigpages
detection accuracy of the developed prototype, detect- 1357-1361, Crete, Greece, June 2003. HCI In-
ing correctly nine in ten hand gestures made on either ternational.

hand, in a controlled environment.

As future work, we plan to add in the gesture detec
tion phase an eStime.lte of the width qf eaCh. finge.r. This hand gesture recognition for robot control. In
allows us to dete.rr_nlne whether a smglle fm_ger is ele- Proceedings of the IEEE Conference on Signal
vated at that position or whether multiple fingers are Processing and Communications Applications
elevated but held together. The finger width can be pages 1-4, NJ, USA, 2006. |EEE.
calibrated for each person by measuring the width of
the hand base itself and assuming that anything that hatPav04]  E. Roy Davies.Machine Vision: Theory, Algo-
the width between one sixth and one fourth of the base rithms, Practicaliies Morgan Kaurimann Pub-
width is a single finger. The number of fingers in a lishers Inc., San Francisco, CA, USA, 2004.
wider block can be estimated as the width of the blocKEBN*07] Ali Erol, George Bebis, Mircea Nicolescu,
(computable from the points used for finger counting at Richard D. Boyle, and Xander Twombly.

[CMO06] Mudjat Getin, Asanterabi Kighoma Malima, and
Erol Ozgir. A fast algorithm for vision-based

Communication papers proceedings 7 ISBN 978-80-86943-75-6



[HNW+09]

[KMBO7]

[Kol10]

[KPS03]

[LBTO2]

[Maho8]

[MHP*01]

[MMCO09]

[Par96]

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Vision-based hand pose estimation: A review. [RPJ10]
Computer Vision and Image Understanding
108:52-73, 2007.

Yuki Hirobe, Takehiro Niikura, Yoshihiro
Watanabe, Takashi Komuro, and Masatoshi
Ishikawa. Vision-based input interface for mo-
bile devices with high-speed fingertip tracking.
In 22nd ACM Symposium on User Interface
Software and Technologgages 7—8, New York,

[RSS12]

NY, USA, 2009. ACM. [SPO9]
P. Kakumanu, S. Makrogiannis, and N. Bour-

bakis. A survey of skin-color modeling

and detection methods.Pattern Recognition [SPHBOS]

40(3):1106-1122, 2007.

Kolsch. Handvu.ww. novesi nstitute. org/
\textasciitildekol sch/ HandVu/ HandVu.
htm , 2010.

J. Kovac, P. Peer, and F. Solina. Human skin[vSA03]
colour clustering for face detection. Interna-

cional conference on Computer as a Toabl-

ume 2, pages 144-147, NJ, USA, 2003. IEEE.

S. Lenman, L. Bretzner, and B. Thuresson.
Computer vision based hand gesture interfaces

for human-computer interaction. Technical re-[WKSE11]
port, CID, Centre for User Oriented IT Design.
Royal Institute of Technology Sweden, Stock-
hom, Sweden, June 2002.

Tarek M. Mahmoud. A new fast skin color [WMWO09)]
detection technique. World Academy of Sci-

ence, Engineering and Technolog:501-505,

2008.

J. MacLean, R. Herpers, C. Pantofaru, L. Wood,

K. Derpanis, D. Topalovic, and J. Tsotsos. Fast [WP09]
hand gesture recognition for real-time telecon-
ferencing applications. IfProceedings of the

IEEE ICCV Workshop on Recognition, Analy-

sis, and Tracking of Faces and Gestures in Real{WSE*06]
Time Systempages 133-140, Washington, DC,

USA, 2001. IEEE Computer Society.

Pranav Mistry, Pattie Maes, and Liyan Chang.
WUW - wear ur world: a wearable gestural in-
terface. InProceedings of the 27th international
conference extended abstracts on Human factors
in computing systemgages 4111-4116, New
York, NY, USA, 2009. ACM.
[zM11]
J. R. ParkerAlgorithms for Image Processing
and Computer VisionJohn Wiley & Sons, Inc.,
New York, NY, USA, 1 edition, 1996.

Communication papers proceedings 8

S.M.M. Roomi, R.J. Priya, and H. Jayalak-
shmi. Hand gesture recognition for human-
computer interactionJournal of Computer Sci-
ence 6(9):1002-1007, 2010.

David J. Rios Soria and Satu E. Schaeffer. A tool
for hand-sign recognition. 14th Mexican Con-
ference on Pattern Recognitiomolume 7329 of
Lecture Notes in Computer Scienpages 137—
146. Springer, Berlin / Heidelberg, 2012.

E. Stergiopoulou and N. Papamarkos. Hand ges-
ture recognition using a neural network shape
fitting technique. Engineering Applications of
Artificial Intelligence 22(8):1141-1158, 2009.

Thomas Schlémer, Benjamin Poppinga, Niels
Henze, and Susanne Boll. Gesture recognition
with a Wii controller. In Proceedings of the
2nd international conference on Tangible and
embedded interactigrpages 11-14, New York,
NY, USA, 2008. ACM.

Vladimir Vezhnevets, Vassili Sazonov, and Alla
Andreeva. A survey on pixel-based skin color
detection techniques. IRroceedings of inter-
national conference on computer graphics and
vision pages 85-92, Moscow, Russia, 2003.
Moscow State University.

Juan Pablo Wachs, Mathias Kélsch, Helman
Stern, and Yael Edan. Vision-based hand-
gesture applications. Communications ACM
54:60-71, feb 2011.

Jacob O. Wobbrock, Meredith Ringel Morris,
and Andrew D. Wilson. User-defined gestures
for surface computing. IProceedings of the
27th international conference on Human factors
in computing systemgages 1083-1092, New
York, NY, USA, 2009. ACM.

Robert Y. Wang and Jovan PopoviReal-time
hand-tracking with a color gloveACM Trans-
actions on Graphics28:63:1-63:8, jul 2009.

Juan Wachs, Helman Stern, Yael Edan, Michael
Gillam, Craig Feied, Mark Smith, and Jon Han-
dler. A real-time hand gesture interface for
medical visualization applications. In Ashutosh
Tiwari, Rajkumar Roy, Joshua Knowles, Erel
Avineri, and Keshav Dahal, editor@\pplica-
tions of Soft Computingolume 36 ofAdvances

in Soft Computing pages 153-162. Springer,
Berlin / Heidelberg, 2006.

Morteza Zahedi and Ali Reza Manashty. Ro-
bust sign language recognition system using ToF
depth cameradnformation Technology Journal
1(3):50-56, 2011.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Neural-Based Segmentation Technique for Arabic
Handwriting Scripts

Husam A. Al Hamad

College of Computer
Qassim University
Saudi Arabia

hushamad@yahoo.com, hhamad@qu.edu.sa

ABSTRACT
In some algorithms, segmentation of the word image considers the first step of the recognition processes; the
main aim of this paper is proposed new fusion equations for improving the segmentation of word image. The
technique that has used is divided into two phases; at the beginning, applying the Arabic Heuristic Segmenter
(AHS), AHS uses the shape features of the word image, it employs three features, remove the punctuation marks
(dots), ligature detection, and finally average character width, the goal of this technique is placed the Prospective
Segmentation Points (PSP) in the whole parts of the word image. As a result, the second phase apply the neural-
based segmentation technique, the goal of neural technique is check and examine all PSPs in the word image in
order to report which one is valid or invalid, this will increase the accuracy of the segmentation; to do that, the
network obtains a fused value from three neural confidences values: 1) Segmentation Point Validation (SPV), 2)
Right Character Validation (RCV), and 3) Central Character Validation (CCV) which will assess each PSP
separately. The input vectors of the neural network are calculated based on Direction Feature (DF), DF considers
much more suitable for Arabic Scripts. AHS and neural-based segmentation techniques have been implemented

and tested by local benchmark database.

Keywords:

Avrabic handwriting recognition, neural networks, Arabic heuristic segmenter.

1. INTRODUCTION

The concept of handwriting recognition can be
divided according to [Pla0la] into two main areas,
these areas are on-line and off-line. An off-line
Arabic handwriting segmentation and recognition is
one of the most challenging researches because there
are different variations in handwriting [NawQ1a], it is
an approach that interprets characters, words and
scripts that have been written at common surface (i.e.
paper). On the other hand, on-line handwriting
recognition refers to automatically recognizing the
handwritten characters using real-time information
such as pressure and the order of strokes made by a
writer usually employing a stylus and pressure
sensitive tablet [Cas01a, Lor01a].

The segmentation [BalOla, ManOla] of Arabic
handwritten characters have been an area of great
interest in the past few years [BluO0a]. One typical

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

Communication papers proceedings

approach in the literature is “over-segmentation”
which is known as dissecting the word image based
on shape features of the image into a sufficient
number of components; so that no merged characters
remain [Yan0Ola, Xia0la]. One of the major problems
following over-segmentation is correctly discard the
invalid segmentation points and remained the valid
points, to determine the valid segmentations, many of
researches are studied by merging segments of the
image and invoking a classifier to score the
combinations, the most techniques employ the
optimization algorithms that making use some sort of
lexicon-driven and dynamic programming technique
[BluOOa]. The best way to evaluate the over-
segmentation is use the neural networks [Fan01a], the
most common family of neural networks for pattern
classification recognition is Feed-Forward Back-
Propagation network (FFBP) which is very simple
and effective to implement, it has been applied
successfully to different applications domains, such
as pattern recognition, controlling, prediction, system
identification, etc. [Bil0la], the weight inputs
transmits to the neurons in the first layer and the
neurons transmits their outputs to the neurons in to
the next layer, etc., the network not contain any
cycles or loop as an advantage [AbdO1a].

ISBN 978-80-86943-75-6


mailto:hhamad@qu.edu.sa

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

2. LITERATURE REVIEW

Earlier art showed segmentation of both machine-
print and handwriting. In 1980, Nouh et al. suggested
a standard Arabic character set to facilitate computer
processing [NouOla]. Sami EIl-Dabi et al. used
segmented characters based on invariant moments
only after they were recognized. Recognition was
attempted on regions of increasing width until a
match was found [DabOla]. Yamin and Aoki
presented a two-step segmentation system which
used wvertical projection onto a horizontal line
followed by feature extraction and measurements of
character width [YmiOla]. Al-Badr and Haralick
presented a holistic recognition system based on
shape primitives that were detected with
mathematical morphology operations [Bad0la].
Hamami and Berkani developed a structural
approach to handle many fonts, and it included rules
to prevent over-segmentation [Ham00e]. Al-Qahtani
and Khorsheed presented a system based on the
portable Hidden Markov Model Toolkit [Qah0la].
Srihari and Ball, applied heuristic techniques for
image processing representation of the binary image
counter and removal of noise and dots [Sri0la]
Hamad and Zitar [HamOOc] applied new fusion
equations in order to enhance the segmentations
processes. Hamad [HamO0O0d] developed a technique
that aim to assign the prospective segmentation
points which is obtained based on the shape features
of word image. On the other hand, many researches
are using the feed-forward back-propagation neural
network, the origin of this type is used by Rumelhart
[Rum0la] in 1986, the application area network of
back-propagation algorithm are gained recognition
and utilized multiple layers of weight-sum units of
the type f = g(w'x + b). Training was done by a form
of stochastic gradient descent.

3. PROBLEMS OF ARABIC SCRIPTS
Many researches have been published in the area of

handwritten Arabic scripts recognition [HamOOa,
HamOOb], so far, the researches haven’t been reached
to good result because it is considerably harder due to
a number of reasons: 1) Arabic is written cursively,
i.e, more than one character can be written
connected to each other. 2) Arabic uses many types
of external objects, such as dots, “Hamza”, “Madda”,
and diacritic objects. These make the task of line
separation and segmentation scripts more difficult.
3) Arabic characters can have more than one shape
according to their position: initial, middle, final, or
stand alone. 4) Characters that do not touch each
other but occupy a shared horizontal space that
increases the difficulty of segmentation, 5) Arabic
uses many ligatures, especially in handwritten text,
this makes the segmentation of Arabic scripts even
more difficult [Ham0Oc].

4. SEGMENTATION TECHNIQUE

Arabic Heuristic Segmenter (AHS) or over-
segmentation technique aims to assign correct PSP
points in the word image [NicOla]. Following this, a
neural confidence-based module has been used to
validate these points by obtaining a fused value from
three neural confidence values based on Segment
Point (SP), Right Character (RC), and Central
Character (CC) [Che0O0a]. Segmentation technique
has two advantages; first, reducing the number of
missed or bad points, and second, increasing the
accuracy of the recognition rate. Since number of
segmentation points is optimized by using this
technique, the overall accuracy will increase and
processing time will reduce [Che00b]. Missed points
occur when no segmentation point is determined
between two successive characters; besides, bad
points refer to the points that could not be used to
extract the characters precisely. AHS which was
proposed by Hamad [HamO1c, Ham00d] removed the
punctuation marks (dots) that hinder identify the
correct segment points, this technique helps to detect

Stepl: Over-Segmenation

Step2: Neural Confidance Value

Step3: Fusion Confidance Value

: Binary format i v 1 : 45—1/ i
1 - ' 1 " i i
i y ' g | Right Centre |lsegmentation| 1 1 - E
' ' o 1| character character ' 1 Correct and incorrect '
' | ' Area (SA) | ' - . |
H ! 2 ! RC) ) extraction | | ' segmentation points |
| . ! = !'| extraction || extraction Xtracti ! i 1
' - Pre-processing - U ] | ! ! [(CSP), (ISP)] H
i - Remove dots Are;blc Hel:rlsnc H E H [ ] ! ! [newequations] H
. . menter < ]
| - Ligature detection egA'jS € N ! ! ! \L i
i - Additional technique ( ) H H EFeatur_e ' ' :
' S I ' xtraction ! ! f(confidence) = !
H After filtering i ! ! I H
' ' ' MDF ' '
| and thinning and | -1 1| | |, J I (MDF) ' | max [(CSP), (ISP)] E
H assign the PSP [\ /| =14 ! i RC, CC SA ' !
I

Neural Network

Neural Network

iz

Take decision based on confidence values

o

' RC, CC

E Confidance of

.................................

Confidance
of SA

Figure 1. Overview of the segmentation technique

Communication papers proceedings

10

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

the ligatures that connect between two successive
characters to obtain the correct segmentation points.
Additional techniques such as average character
width are applied as well to enhance the results. One
of the major problems following over-segmentation
is correctly discard the invalid segmentation points
and retained the valid one by using neural network,
the input vector of the network is extracted based on
Modified Direction Feature (MDF) [BluOOb]. Figure
1 illustrates an overview of the entire neural-based
segmentation technique.

4.1. Over-Segmentation

Over-Segmentation or AHS employs three
techniques: 1) Pre-processing, filtering the word
image, and removing the punctuation marks or any
redundant components. 2) Ligature detection, a
ligature is a small point (stroke) that is used to
connect between two characters; the aim of ligature
detection is locate these strokes within the “middle
region” of handwritten words. 3) Calculates the
average character width, the technique aims to add
any missing segment points and remove the bad one,
an addition technique is detect the close and open
holes which is aims to remove any bad points across
these holes that considered complete characters. The
results of these techniques are word image contains a
sufficient number of PSPs; these points will be
evaluated by the neural networks later.

4.2. Modified Direction Features (MDF)
Arabic handwritten has a special characteristics such
as rotations, curves, and circuits shapes; so, the
suitable features input in the vectors of neural
network is direction features, MDF extracts the
direction information (feature) from structure of the
character contours that determined in each character
image, the technique categorizes into four parts: 1)
Vertical lines, 2) Horizontal lines, 3) Right diagonal,
and finally 4) Left diagonal. This principle is
extended so that integrates the direction feature with
the technique for calculate the transition features
between background pixels (white pixels) and
foreground pixels (black pixels). In MDF, Location
of Transitions (LTs), and Direction Transition (DT)
are calculated at a particular location, therefore, for
each transition, a pair of values such as [LT, DT] are
stored; this work demonstrated the superiority of
MDF for describing the Arabic patterns according to
their contour or boundary. More details have been
described in [BIu00a, Ham0Oc].

4.3. Neural-based Validation

As a result of above and after completing the over-
segmentation, the post-processing is employed to
exclude the bad segment point and remain the
correct. The classifier chosen for the validation is a
feed-forward neural network trained with the back-
propagation algorithm. For experimental purposes,

Communication papers proceedings

11

the architectures were modified varying the number
of inputs, outputs and hidden units. Three vectors are
extracted from the word image to validate each PSP
and determine whether correct or note, where the
classifier will calculate and output the confidence
value for each point, the values represent each of the
segmentation area (SA), right character (RC), and
center character (CC) and validate all of them based
on maximum of confidence value. Therefore, it is
possible to validate prospective segmentation points,
rather than giving a binary result (valid or invalid)
decision whether a segmentation point should be set
in a particular region, confidence values are assigned
to each segmentation points that are located through
feature detection. The confidence value of any
segment area should be in the range of 0 and 1.

4.4. Fusion Confidence Values

Fusion confidence value is a set of equations take the
final decision (valid or invalid), where are calculated
on the basis of the output confidence value of the
neural network. New fusion equations are proposed,
the extracted areas of these equations are analyzed
and described as: Rule 1: Following RC extraction
and neural verification, the area is analyzed into two
options: 1) If the area is identified by the neural
expert as one of 62 possible characters, then the
segmentation point is more likely to be a correct
segmentation point. 2) If the area is identified as a
non-character (rejected), then the segmentation point
is more likely to be an incorrect segmentation point.
Rule 2: Following CC extraction and neural
verification, the area is analyzed into two options: 1)
If the area is identified by the neural expert as one of
62 possible characters, then the segmentation point is
more likely to be an incorrect segmentation point. 2)
If the area is identified as a non-character then the
segmentation point is more likely to be a correct
segmentation point. Rule 3: Following SA extraction,
the area is analyzed into two options: 1) If the neural
expert provides a confidence >=0.5, then the
segmentation point is more likely to be a correct
segmentation point. 2) If the neural expert provides a
confidence <0.5, then the segmentation point is more
likely to be an incorrect segmentation point

Two possibilities for each fusion are applied, first,
calculate Correct Segmentation Point (CSP) where
Segmentation Point Validation (SPV) >=0.5 as
shown in equation 1; second, calculate Incorrect
Segmentation Point (ISP) where SPV<0.5 as shown
in equation 2; finally, calculate outcome of the fusion
decision based on maximum value between the CSP
and ISP as shown in equation 3. If the CSP
confidence is greater, then the SP will be set as being
correct. Conversely, if the ISP confidence prevails as
being larger, the SP will be discarded and no longer
used in further processing.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

1) Correct Segmentation Point (CSP):

if fsp\/_ver(ftl) >= 0.5 AND fRCC_Ve,(ftZ) is a hlgh

character confidence AND fccc ver(ft3) is a high non-

character confidence, then:

fesp(ftl, ft2, ft3) = fspy ver(ftl) +
free ver(ft2) + (1-fece ver(f3))

2) Incorrect Segmentation Point (ISP):

if fsp\/_ver(ftl) < 0.5 AND fRCC_ver(ftZ) is a hlgh non-

character confidence AND fecc wer(ft3) is a high

character confidence, then

fisp(ftl, ft2, ft3) = fspy ver(ft1) +
(I-frec ver(ft2)) + focc_ver(ft3)

@

O]

3) Finally, the outcome of the fusion is decided by
the following equation:

‘ f(confidence) = max [(CSP), (ISP)]

3 |

Where, fspy e(features) is confidence value of
Segmentation Point Validation, frcc ver(features) is a
confidence value for right character, and
feec ver(features) is confidence value for center
character (reject neuron output).

Original Word
=\ )

2 | E2H

Over-segmentation Segmentation

Vs
L~Pt)

b/{)a E/ B %J’-L‘I“
Ges (el | KSHelely
a,.a btz | Fbldab
cas L crprtte—t | Mol b

Sy - g*\ Sy
A o o = L) -]

e N
Gty b
L )5
P
=] >

(b) unsuccessful segmentation

Jdis 5

Figure 2. Segmented sample of word images

5. EXPERIMENTAL RESULTS

The experiments here used the neural confidence-
based module for validating the PSPs which are
obtained from AHS (over-segmentation).
Segmentation performance is measured based on
three types of segmentation errors: “over-
segmentation”, “missed” and “bad” metrics. Over-
segmentation refers to a character that has been
divided into more than three components. A
“missed” error occurs when no segmentation point is
found between two successive characters. The “bad”
error refers to a segmentation point that could not be
used to extract a character precisely.

5.1. Handwriting Database

The training and testing patterns samples were
obtained and extracted from twenty different persons,
all words are selected randomly. They were asked to
write down two paragraphs contains all status of
Arabic characters. These paragraphs scanned at 200
pixels per inch. The size of training set was 620
characters (10 writers x 62 characters), and size of
testing set was 425 words, more details about the
database see www.acdar.org.

5.2. AHS Segmentation Performance
The total numbers of segmentation points in the 425
testing word samples are 3080. Table 1 shows the

b
shelf
Ly

o~ | EEHD
P
doe)

Communication papers proceedings

12

s m' Plttiahan segmentation performance of the AHS technique, see
— [HamO0O0d] for more details about this results.
Ao Ly MM |w“ Segmentation Error Rates
ful . Result - Bad/
(a) successful segmentation Over Seg.| Missed | Bad | gyeriap
Original Word Over-segmentation | Segmentation Totals 29 18 552 26
% 0.94% | 0.58% | 17.92% | 0.84%
U CO | bbb With | Total 599
. p overlap % 19.45%
(yle) OFTERT | (DU Without | Total 573
overlap % 18.60%

Table 1. AHS segmentation error

5.3. Neural-based Performance

Results of the neural-based segmentation technique
were calculated based on the number of correct and
incorrect identified of segment point in word
samples.  Neural network verifies  whether

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

segmentation points are valid or invalid based on
neural confidence-based module. If the network
output a height confidence value this indicated that a
point is a valid segmentation point; a low confidence
value indicated that a point should be ignored, Table
2 illustrates the overall results of the technique.

Correctly .
Identified Incorrectly Identified
Result valid
Valid |Invalid| Valid |Invalid |pueei2o
Totals 2011 | 729 192 148 40
% 65.29%23.67%| 6.23% | 4.81% | 1.30%
With Total 2740 340
overlap % 88.96% 11.04%
Without | Total 2780 300
overlap | % 90.26% 9.74%
Table 2. Results of neural-based segmentation
technique

The above results describe the recognition rate for
the neural networks. To enhance these rates, the
number in the testing set must be increased at least
two or three-fold, that will help improving overall
segmentation accuracy, Figure 3 illustrates the
characters recognition rates of the neural-based
segmentation technique.

Recognition rates of the neural-based
segmentation technique

80%
70%
60%
50%
40%
30%
20% -
10% -+
0%

23.67%

Classification rates [%]

6.23%
4.81%

Correctly Incorrectly

Identified

H Valid Invalid

Figure 3. Recognition rates for all different neural
networks.

Table 3 shows the summary of the literature results

and the comparisons with the paper’s results.

Reference | Accuracy Language / Databases

Blumenstein, | 75.28% | e Cursive English

Myer handwriting

[Blu0Oc] e CEDAR database

Hamid, Alaa | 69.72% | e Arabic handwriting

[HamOOa] e Local database: 360
addresses, 4000 images

Cheng, Chun | 85.74% | e Cursive English

Ki handwriting

[Che01a] e CEDAR database: test
1031 from 1718 SP

Khateeb, 85.00% | e Arabic handwriting

Jawad e Local database: 200

[KhaOla] images, sub-words SP

Communication papers proceedings

13

Hamad, 82.98% | e Arabic handwriting
Husam Al ¢ Local database: 500
[Ham00d] images
This paper 88.96% | e Arabic handwriting
e Local database: 425
images

Table 3. Compare the results with the literature

6. CONCLUSIONS

This paper investigates collection of techniques aims
to segmenting the Arabic handwritten scripts, new
fusion equations, and heuristic technique are
developed, the technique splits the word image into a
sufficient number of components, in order to separate
the word image into its characters, the technique
called “over-segmentation” or Arabic heuristic
segmenter (AHS). Modified Direction Features
(MDF) is also employed which is considered a
promised technique for Arabic scripts, MDF extracts
the input vector feature of the neural network, the
AHS provides better inputs to the subsequent neural
validation process. Promised results were obtained in
this study may increase the performance of a
segmentation-based handwriting recognition systems.
In the future, a larger size of training set will
investigated in order to improve the results of the
classifiers as well as reduce the errors.

7. REFERENCES

[Abd0la] Abdalla, O.A., and Zakaria, M.N., and
Sulaiman, S., and Ahmad, and W.FW.: A
comparison of feed-forward back-propagation
and radial basis artificial neural networks: A
Monte Carlo study, Information Technology
(ITSim), vol. 2, pp.994-998, 2010.

[Bad0la] Al-Badr, B., Haralick, R.: A Segmentation-
Free Approach to Text Recognition with
Application to Arabic Text, International Journal
on Document Analysis and Recognition, vol. 1,
pp. 147-166, 1998.

[BalOla] Ball, G., Srihari, S., Srinivasan, H.:
Segmentation-Based and  Segmentation-Free
Methods for Spotting Handwritten Arabic Words,
In: IWFHR, 2006.

[BilOola] Bilski, J.: The Ud RIs Algorithm for
Training Feedforward Neural Networks, Int. 1.
Appl. Math. Comput. Sci., pp. 115-123, 2005.

[Blu00a] Blumenstein M., Liu X.Y., Verma, B.: An
investigation of the modified direction feature for
cursive character recognition. Pattern
Recognition. vol. 40(2), pp. 376-388, 2007.

[BIuOOb] Blumenstein, M., Liu, X.Y., Verma, B.: A
Modified Direction Feature for Cursive Character
Recognition. International Joint Conference on
Neural Networks. Budapest, Hungary, pp. 2983-
2987, 2004.

[Blu0Oc] Blumenstein, Myer. Intelligent Techniques
for Handwriting Recognition, School of

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

PhD  Dissertation,
Coast  Campus,

Information  Technology,
Griffith  University-Gold
Australia, 2000.

[CasOla] Casey, R., Lecolinet, E.: A survey of
methods and strategies in character segmentation.
IEEE Trans. Pattern Analysis and Mach. vol. 18,
pp. 690-706, 1996.

[Che00a] Cheng, C.K., Blumenstein, M.: The
Neural-based Segmentation of Cursive Words
using Enhanced Heuristics. In: Eighth
International Conference on Document Analysis
and Recognition, pp. 650-654, 2005.

[Che00b] Cheng, C.K., Liu, X.Y., Blumenstein, M.,
Muthukkumarasamy, V.. Enhancing Neural
Confidence-Based Segmentation for Cursive
Handwriting Recognition. In: 5th International
Conference on Simulated Evolution and Learning
Busan, Korea, SWA-8, CD-ROM Proceedings,
2004,

[Dab01a] El-Dabi, S., Ramsis, R., Kamel, A.: Arabic
Character Recognition System: A Statistical
Approach for Recognizing Cursive Typewritten
Text, Pattern Recognition, vol. 23, pp. 485-495,
1990.

[FanOla] Fan, X., Verma, B.: Segmentation vs. Non-
Segmentation Based Neural Techniques for
Cursive Word Recognition. An Experimental
Analysis. International Journal of Computational
Intelligence and App. vol. 2(4), p.p. 377-384,
2002.

[Ham0Oa] Hamid, A., Haraty, R.: A Neuro-Heuristic
Approach for Segmenting Handwritten Arabic
Text, In: ACS/IEEE International Conference on
Computer Systems and Applications, p.p. 0110,
2001.

[HamOOb] Hamid, A., Haraty, R.: Segmenting
Handwritten Arabic Text. ACIS International
Journal of Computer and Information Science,
vol. 3 (4), 2002.

[Ham00c] Hamad, H.A., Zitar, R.: Development of
an efficient neural-based segmentation technique
for Arabic handwriting recognition. Pattern
Recognition Journal. ELSEVIER. vol. 43, Issue
8, p-p. 2773-2798, 2010.

[HamO00d] Hamad, Husam A. Al: Over-segmentation
of handwriting Arabic scripts using an efficient
heuristic technique, In: Wavelet Analysis and
Pattern Recognition (ICWAPR), IEEE, pp.180-
185, 2012.

[Ham00e] Hamami, L., Berkani, D.: Recognition
System for Printed Multi-font and Multisize
Arabic Characters, the Arabian Journal for
Science and Engineering, vol. 27, pp. 57-72,
2002.

[KhaOla] Jawad H AlKhateeb, and Jianmin Jiang,
and Jinchang Ren, and Stan S Ipson. Component-
based Segmentation of Words from Handwritten

Communication papers proceedings

14

Arabic Text, Proceedings of World Academy of
Science, Engineering and Technology, ISSN, vol.
31, pp. 1307-6884, 2008.

[LorOla] Lorigo, L., Govindaraju, V.. Off-line
Arabic Handwriting Recognition: A Survey,
IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28 (5), p.p. 712-724,
2006.

[ManOla] Mansour, M., Benkhadda, M.: Optimized
segmentation techniques for Arabic handwritten
numeral character recognition. In: SITIS, p.p. 96-
101, 2005.

[Naw01la] Nawaz, S.N., Sarfraz, M., Zidouri, A.; Al-
Khatib, W.G.: An approach to offline Arabic
character recognition using neural networks.
Electronics, Circuits and Systems, 2003. ICECS
2003. Proceedings of the 2003 10th IEEE
International Conference on, vol. 3, p.p. 1328-
1331, 2003.

[Nic0O1a] Nicchiotti, G., Scagliola, C.: A Simple and
Effective Cursive Word Segmentation Method.
Proceedings of the Seventh International
Workshop on  Frontiers in Handwriting
Recognition, Amsterdam, pp. 499-504, 2000.

[NouhOla] Nouh, A., Sultan, A., and Tolba, R.: An
Approach for Arabic Characters Recognition,
J.Eng. Sci., Univ. Riyadh, vol. 6, pp. 185-191,
1980.

[Pla0la] Plamondon, R., Srihari, S.N.: On-Line and
Off-Line Handwriting Recognition. A
Comprehensive Survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol.
22, p.p. 6384, 2000.

[Qah0Ola] Al-Qahtani, S., Khorsheed, M., A HTK-
Based System to Recognise Arabic Script, in
Proc. 4th IASTED International Conference on
Visualization, Imaging, and Image Processing.
Marbella, Spain: ACTA Press, 2004.

[RumOla] Rumelhart, David, E., Hinton, Geoffrey,
E.: Williams,  Ronald ], “Learning
representations by back-propagating errors”,
Nature, vol. 323(6088), pp. 533-536, 1986.

[Sri0la] Srihari, S., Ball, G.: An Assessment of
Arabic Handwriting Recognition Technology, in
IWFHR, CEDAR Technical Report TR-03-07,
2007.

[Xia0la] Xiao, X., Leedham, G.: Knowledge-based
Cursive Script Segmentation. Pattern Recognition
Letters, vol. 21, pp. 945-954, 2000.

[YanOla]  Yanikoglu, B., Sandon, P.A.
Segmentation of Off-Line Cursive Handwriting
using Linear Programming. Pattern Recognition,
vol. 31, pp. 1825-1833, 1998.

[YmiOla] Ymin, A., Aoki, Y., On the Segmentation
of Multi-font Printed Uygur Scripts, in Proc. 13th
International Conference on Pattern Recognition,
vol. 3, pp. 215-219, 1996.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Polynomiography and various convergence tests

Krzysztof Gdawiec

Institute of Computer Science
University of Silesia
Bedzinska 39
41-200, Sosnowiec, Poland

kgdawiec@ux2.math.us.edu.pl

ABSTRACT

The aim of this paper is to present a modification of the visualization process of finding the roots of a given
complex polynomial which is called polynomiography. The name polynomiography was introduced by Kalantari.
The polynomiographs are very interesting both from educational and artistic points of view. In this paper we are
interested in the artistic values of the polynomiography. The proposed modification is based on the change of the
usual convergence test used in the polynomiography, i.e. using the modulus of a difference between two successive
elements obtained in an iteration process, with the tests based on distance and non-distance conditions. Presented
examples show that using various convergence tests we are able to obtain very interesting and diverse patterns. We

believe that the results of this paper can enrich the functionality of the existing polynomiography software.

Keywords

polynomiography, convergence, Basic Family, computer art

1 INTRODUCTION

One of the most elusive goals in computer aided design
is artistic design and pattern generation. Pattern gener-
ation involves diverse aspects: analysis, creativity, de-
velopment. A designer have to deal with all of these
aspects in order to obtain an interesting pattern which
later could be used in jewellery design, carpet design,
as a texture etc. Therefore, it is highly motivating and
useful to develop new methods of obtaining very di-
verse and interesting patterns. One place where we can
search for this kind of methods is mathematics [PicO1].

Polynomials are one of the mathematical objects which
can generate very diverse and beautiful patterns. The
patterns from polynomials are often generated through
polynomiography. It visualizes the process of finding
roots of a complex polynomial using the numerical
methods. In this paper we are not interested in the
improvement of the numerical methods convergence,
but in the artistic aspect of the polynomiography. This
aspect includes: creating paintings, carpet design,
tapestry design, animations etc. [Kal0O5b]. So we are
interested in obtaining new and interesting patterns
basing on the theory of polynomiography.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Communication papers proceedings

The paper is organized as follows. In section 2 we in-
troduce the basics of polynomiography. At first we de-
fine the Basic Family and give an efficient algorithm
for computation of a value for a given element of this
family and an algorithm for computation of polynomio-
graph. The section ends with some examples of poly-
nomiographs. Next, in section 3 we introduce different
kinds of convergence test which can be used in the al-
gorithm of polynomiograph computation. In section 4
we show some examples of polynomiographs obtained
using the proposed convergence tests. Finally, in sec-
tion 5 we give concluding remarks and plans for the
future work.

2 POLYNOMIOGRAPHY

Polynomiography was introduced by Kalantari about
2000. It is "the art and science of visualization in ap-
proximation of the zeros of complex polynomials, via
fractal and non-fractal images created using the mathe-
matical convergence properties of iteration functions"
[KalO4]. Single image created using the mentioned
methods is called polynomiograph. In 2005 Kalantari
obtained an U.S. patent on the use of polynomiography
in the generation of aesthetic patterns [KalO5a].

In mathematics polynomials are fundamental objects
with very diverse applications, e.g. in error correcting
codes, interpolation, engineering etc. From the Funda-
mental Theorem of Algebra we know that a polynomial
of degree n with complex coefficients has n roots which
may or may not be distinct. The problem of finding the
roots of a given polynomial was known since the Sume-
rians, i.e. 3000 BC. Since then many different methods

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

of finding the roots approximation were proposed, e.g.
Newton’s method [Var02], Harmonic Mean Newton’s
method [Ard11], Whittaker’s method [Var02], Halley’s
method [Ard11], Chebyshev’s method [Var(02], Traub-
Ostrowski’s method [Var(02] etc.

Let us consider a polynomial p € C[Z] and degp > 2 of
the form:

p(2) =and" +ap 1"+ aizta. (1)

Now we define a sequence of functions D,, : C — C for
all z € C [Kal09]:

DO (Z) = 17
1 (m—1) (m)
P'(2) pz('z> p(m—l)(!Z) £ m!<Z)
) P) R
Dy (z) = det .
p(z)
. ) P/;(‘Z)
0 0 pz) P
2)
form>1.

Using the D,, sequence we define a Basic Family
{Bm}_,, where B,, : C — C, in a following way
[Kal09]:

Dmf2 (Z)

Viec Bwm(z) =z—p(2) Do 1()

3

The Basic Family is a fundamental part of polynomiog-
raphy. Let us see how the first three elements of the
Basic Family look like:

By(z) =z— ppl((zz)) , )
2P ()r()
SRR TIE e rE) ®
Ba(2) =2 6p'(2)*p(z) —3p" (2)p(2)*
! P"(2)p(2)* +6p/'(2)* —6p"(2)P'(2)p(2)

(6)

As we look at those formulas we see that B, is formula
used in Newton’s root finding method, and B3 is for-
mula used in Halley’s method. Moreover, we see that
when m increases the formula for B,,, becomes more and
more complex. So we need an efficient algorithm for its
computation. In [Kall0] Kalantari introduced such al-
gorithm (Algorithm 1). To derive this algorithm he used
the theory of symmetric functions.

Algorithm 2 presents a method of determining poly-
nomiograph [Kal09]. In the algorithm for each point
in the considered area A C C we iterate given element
of the Basic Family (defined by p € C[Z] and m > 2). If

Communication papers proceedings

Algorithm 1: B,,(z) computation

Input: p € C[Z], degp > 2 — polynomial, m > 2 —
number for B,,, zg € C — point for which we
make the computations.

Output: B,,(z0).

1 h[0] =1

2 fori=0tom—1do

3| elil = p(20)/(i!p(20))

4 fori=1tom—1do

s | Al =Yi_4(=1)""Te[i— r]A[r]
6 Bu(z0) =20 —h[m—2]/h[m—1]

the modulus of the difference between two successive
points in the iteration process is smaller than the given
accuracy € > 0 we assume that the generated sequence
converge to a root of p and we stop iterating. If we
reach the maximum number of iterations k we assume
that the generated sequence do not converge to any root
of p. Atthe end we give a colour to the considered point
using the given colourmap and the iteration number at
which we have left the while loop.

Algorithm 2: Polynomiograph computation
Input: p € C[Z], degp > 2 — polynomial, A C C -
area, k — number of iterations, € — accuracy,
m > 2 — number for B,,, colours[0..k] —
colourmap.
Output: Polynomiograph for the area A.

1 for zp € Ado

2 i=0

3 while i < k do

4 Zip1 = Bm(zi)

5 if |zi+1 —z| < € then

6 L break

7 i=i+1

8 | Print zo with colours(i] colour

Examples of polynomiographs generated using Algo-
rithm 2 for:

@ plz)=22—1,A=[-3,3]%, k=20, =0.001,m =
27

®)pz) = 20 +2+2-22-1, A =
[1,2] x [~0.5,0.5], k = 20, £ = 0.001, m = 3,

©) p(z)=z*+72—1,A=[-3,3]%, k=20, & =0.001,
m=4,

) p(z) =2>—3z+3,A=[-3,3)% k=10, & =0.001,
m=2

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

(b)

(d)
Figure 1: Examples of polynomiographs.

are presented in Fig. 1.

In Algorithm 2 to colour the points we use the iteration
number for which we have left the iteration process, we
call this method the iteration colouring. We can use
different methods of colouring, e.g. basins of attraction
(each polynomial root has its own colour, for each point
in A we iterate it and when the condition in line 5 of
Algorithm 2 is meet the considered point gets the colour
of the nearest root), mixed method (we mix the iteration
colouring and the basins of attraction) etc. [Kal09].

3 DIFFERENT CONVERGENCE
TESTS

In line 5 of Algorithm 2 we see a standard test for con-
vergence of an iteration process in the numerical root
finding methods. In the test we take two elements: the
one computed in the current iteration and the element
from the previous iteration, and we calculate the modu-
lus of their difference. Then we check if the calculated
value is smaller than the given accuracy. The modulus
calculation in the test is equivalent to the computation
of the distance between these two points of the com-
plex plane. So we may change the way in which we
calculate the distance with a different metric.

We know that the complex plane C is isometric with
R?, where the isometry ¢ : C — R? is defined as follows
[Sea07]:

¢(z) = (R(2),3(2) ©)
for every z € C, and where R(z), 3(z) denote the real
and imaginary part of z (respectively). Using the isome-
try we can define metric d : C x C — [0, 4-o0) using met-
ric p : R? x R? — [0, +o0) in a following way [Sea07]:

d(z1,22) = p(#(21),9(22)), (®)

where z1,20 € C.

Communication papers proceedings

On R? we have many different metrics which we may
use [Sea07], e.g.

e taxicab metric
p((x,y1), (x2,32)) = [t —=x2[ +yi—=y2, 9
e supremum metric
p((x1,y1), (x2,32)) = max{|x; —xa[, [y1 —y2[}, (10)

e [, metric

1
p((x1,31); (x2,32)) = [|x1 = x2|” + [y1 = y2|"] 7,
(IT)
where 1 < p < 4o,

When we have some metric space (X,p) we can define
new metrics using following facts [Sea07]:

e if f:X — X is injective, then

n(x,y) =p(fx),f() (12)
is a metric on X,
e if f:X — Ris a function, then
n(xy) =p,y) +[f(x) =)l (13)

is a metric on X.

From the examples presented in the next section we
will see that changing the metric produces only a small
change in the shape of polynomiograph. As we are in-
terested in generation of interesting patterns using the
polynomiography and not in the best convergence of the
numerical method we can relax the assumption about
the metric. For this purpose we can take p € (0,1) in
the [, metric obtaining the so-called fractional distance
which is used for instance in models for forecasting pol-
lution concentrations [DW12].

We also can omit the assumption about the injectivity
of f in (12). For instance when we take C with the
modulus metric and f(z) = |z|?, which is not injective,
we obtain:

n(z1,22) = |lz1]* — |22 ]- (14)

The 1 function from (14) was used instead the modu-
lus test by Pickover in Halley’s method in [Pic88]. In
this way Pickover obtained very diverse shapes of the
polynomiographs.

Another way to modify the tests is to add some weights
in the metric functions. When we use (12) we can add
two weights &, B € R in a following way:

n(x,y) = p(af(x),Bf(y))- (15)

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

In this way we loose the metric property of 7, e.g. it
is not symmetric for o # 3, but as we will see in sec-
tion 4 we obtain very diverse polynomiographs using
this function.

Till now the proposed tests were based on metrics, but
there is no obstacle in using tests which are based on
functions that are not metric, quasimetrics etc. at all.
For instance we can use following tests:

lexp(aziy1 — Bzi)| <&, (16)
|oR(ziy1 —zi)| <eVIBS(ziv1 —z)| <&, (A7)
|aR(zir1 —2) P <eABS(zi1—z) <&, (18)

where o, f € R. In the tests which consist of several
terms joined with logical operators, e.g. (17), (18), in-
stead of one € we can use separate value for each term.

The last group of tests which we propose is based on
the idea taken from the escape time algorithm which is
used in the Julia set drawing. Similar like in the escape
time algorithm we can check if a value of some iterated
function escapes, i.e. is greater than the given radius
R > 0. Examples of this kind of tests are:

|ziv1 —zi| + |arg(zit1) —arg(z)| > R, (19)

1 2 2
— — — |+ ||Z —1zi|*| > R, 20
B Izt 1] — |zl (20)
a|R(zig1 —z)| > RABIS(ziv1 —2z)| >R, (21)

where arg(z) is an argument of complex number z, and
a,feR.

4 EXAMPLES

In this section we show some examples of using the dif-
ferent tests proposed in section 3. We start our exam-
ples with changing the standard metric (modulus) used
in the polynomiography with the supremum metric. In
the example we use: p(z) =z° —3z+3, A = [-2,2]?,
k=15,€£=0.001, m=2. Figure 2(a) presents the result
for the modulus metric and Fig. 2(c) presents the result
for the supremum metric. From the figures we see that
in both cases the result is very similar and the differ-
ence is small. To see the difference more precisely in
Figs. 2(b), 2(d) magnification of the marked areas from
Figs. 2(a), 2(c) are presented. In the case of modulus
metric we have smooth boundaries between the regions
and for the supremum metric the boundaries are frayed
and the regions are lighter. When we use a different
metric instead of the supremum metric the effect will
be very similar, so the obtained results are not interest-
ing from the artistic point of view.

In the next example we use the test used by Pickover
(14) and its weighted modification. The common pa-
rameters used in the example: p(z) =z* 4+ — 1, A =
[-3,3]%, k=15, € =0.001, m = 2. Figure 3(a) presents

Communication papers proceedings

2 0

o 2 7 1
1
o o
e
2 2
o 06 o
g J
s
5 5
02
n n
o 02 [ 08 08 1

Figure 2: Examples of polynomiographs: (a) with mod-
ulus metric, (b) with supremum metric, (c) magnifica-
tion of the marked area from (a), (d) magnification of
the marked area from (c).

(d)

Figure 3: Examples of polynomiographs: (a) original,
(b) using the Pickover test, (c), (d) using the weighted
version of Pickover test.

the result for the original test, Fig. 3(b) for the Pick-
over test and Figs. 3(c), 3(d) the results for weighted
version of (14), i.e. |o|z1|> — B|z2|*|, where & = 1.05,
B = 1.049 for (c) and o = 0.049, B = 0.05 for (d).

The Pickover test changes the regions of polynomio-
graph where the convergence using the original test was
fast. In this way we obtain some swirls in the smooth
areas. Using the test with weights we obtain even more
changes in the areas of the fast convergence and more-
over small changes in the areas of the slow conver-
gence. The polynomiographs obtained with the non-
standard test look very interesting and the patterns are
more complex comparing to the original one.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Figure 4: Examples of polynomiographs with different
tests based on metrics and weights.

In the previous example we used only the Pickover test
and now we show examples of more tests which are
based on metrics and weights. The common parame-
ters used in the example: p(z) =z° — 1, A = [-3,3]%,
k=15, €=0.001, m = 2. Figure 4(a) presents the orig-
inal polynomiograph and Figs. 4(b)-(f) present poly-
nomiographs obtained with the help of different met-
rics and weights. The tests used in the example were
following:

@) |ziy1 —zi| <&,
(b) 0.01(zip1 —2i)| +1]0.029|z;1 1 > — 0.03|z;]?| < €,

(©) 10.05sin(R(zi+1)) —  0.049sin(R(z))| +
|0.055sin(3(zi41) —0.049sin(3(z;))| < €,

(d) 10.01z/%, —0.008z/°| < €,

0.045

005
@) ||Z[+1|2 Jzi[? | <e
(f) | 0.045 _m| <e.

lzi1l? [zl

From the presented polynomiographs we see that using
the different metrics and weights we are able to obtain
very diverse and interesting patterns comparing to the
original test. In the Fig. 4(b) we can observe a pattern
which looks like a knot and in Fig. 4(e) pattern which
reminds a flower. From Fig. 4(e) and Fig. 4(f) we see

Communication papers proceedings

IR
e R
10 S
2
o e -
b g
o
o - -
3
a8 i
1 3
I3 T 5 % s a5

(d)

Figure 5: Examples of polynomiographs: (a) original,
(b)-(d) based on the non-metric tests.

that the patterns look quite different, but the tests used
for their creation differ only in order of the weights
(they are interchanged).

Next example presents the use of the tests which are
based on the non-metric conditions. The common pa-
rameters used in the example: p(z) =z° —3z+3,A =
[-3, 3]2, k=15, =0.001, m = 2. Figure 5(a) presents
the original polynomiograph and Figs. 5(b)-(d) present
polynomiographs obtained with the help of following
tests:

(b) 10.04R(zi+1 —zi)| < €V ]0.053(zi1 — zi) | €,
©) [04R(zir1 —z))? <en|S(zi1 —z)* <&,
(d) |exp(10zi41 —9zi)| < €.

Also in this case we see that when we change the mod-
ulus test to the tests based on the non-metric condi-
tions we obtain very interesting patterns. For instance
in Fig. 5(b) we see a very complicated net of swirls and
in Fig. 5(d) a pattern which looks like a necklace.

In the last example we show some polynomiographs
obtained with the tests basing on the escape criteria.
The common parameters used in the example: p(z) =
24+ 2+ 221, A=[1,2] x [-0.5,0.5], k =
15, m = 2. Figure 6 presents the original polynomio-
graph for € = 0.001 and Figs. 6(b)-(d) present poly-
nomiographs obtained with the help of following tests:
(b) R = 6 and condition (19), (¢) R = 8 and condition
(20), (d) R = 6 and condition (21) forc =8 and B = 11.
The patterns obtained with the escape criteria also dif-
fer from the original one. But obtaining a very interest-
ing pattern using those criteria is difficult. This is be-
cause the patterns arise in the regions where the original
method converges very slowly or reaches the maximum
number of iterations.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

() (b)

© (d

Figure 6: Examples of polynomiographs: (a) original,
(b)-(d) based on the escape criteria.

S CONCLUSIONS

In this paper we presented modifications of the poly-
nomiography algorithm. The modifications were based
on the change of the usual convergence test with the
tests based on distance and non-distance conditions.
Presented examples show that using the proposed tests
we are able to obtain very interesting patterns. We be-
lieve that the results of this paper can enrich the func-
tionality of the existing polynomiography software.

When we search for an interesting pattern using the
polynomiography we must make the right choice of a
polynomial, the iteration function etc. and using the
trial and error we must find an interesting area [Kal09].
Adding our tests to the list of polynomiography param-
eters we make the search even more difficult, so there
is a need for automatic method which finds interest-
ing patterns. The notion of an interesting pattern is
very difficult to define and usually is based on a sub-
jective feeling, but there are some attempts to estimate
the notion. Ashlock and Jamieson in [AJO8] introduced
a method of exploring the Mandelbrot and Julia sets for
interesting patterns. They used evolutionary algorithms
with different fitness functions. In our further research
we will try to develop a method which searches for in-
teresting patterns in the polyniomography using similar
methodology like that presented by Ashlock.

Polynomiography is based on the complex polynomi-
als. In [Lev94] we can find examples of using q-
systems numbers instead of complex numbers for ob-
taining diverse patterns, and in [WS13] we find bicom-
plex numbers used in the Mandelbrot and Julia sets. Us-
ing the g-system and bicomplex numbers in the poly-

Communication papers proceedings

nomiography can probably further enrich the patterns

obtained with the polynomiography.
6 REFERENCES

[Ard11] Ardelean, G.: A Comparison Between Itera-
tive Methods by Using the Basins of Attraction.
Applied Mathematics and Computation 218(1),
88-95, (2011)

[AJO8] Ashlock, D., Jamieson, B.: Evolutionary Ex-
ploration of Complex Fractals. In: P.F.Hingston,
L.C.Barone, Z.Michalewicz (eds.) Design by
Evolution. Springer, Berlin, pp. 121-143, (2008)

[DW12] Domanska, D., Wojtylak, M.: Application of
Fuzzy Time Series Models for Forecasting Pollu-

tion Concentrations. Expert Systems with Appli-
cations 39(9), 7693-7679, (2012)

[Kal04] Kalantari, B.: Polynomiography and Applica-
tions in Art, Education and Science. Computers
& Graphics 28(3), 417-430, (2004)

[KalO5a] Kalantari, B.: Method of Creating Graph-
ical Works Based on Polynomials. U.S. Patent
6,894,705, issued May 17, 2005

[Kal0O5b] Kalantari, B.: Two and Three-dimensional
Art Inspired by Polynomiography. Proceedings of
Bridges, Banff, Canada, pp. 321-328, (2005)

[Kal09] Kalantari, B.: Polynomial Root-Finding and
Polynomiography. World Scientific, Singapore
(2009)

[Kal10] Kalantari, B.: A Combinatorial Construction
of High Order Algorithms for Finding Polyno-
mial Roots of Known Multiplicity. Proceedings
of the American Mathematical Society 138(6),
1897-1906, (2010)

[Lev94] Levin, M.: Discontinuous and Alternate Q-
System Fractals. Computer & Graphics 18(6),
873-884, (1994)

[Pic88] Pickover, C.A.: A Note on Chaos and Halley’s
Method. Communications of the ACM 31(11),
1326-1329, (1988)

[PicO1] Pickover, C.A.: Computers, Pattern, Chaos,
and Beauty: Graphics from an Unseen World.
Dover Publications, Mineola, (2001)

[Sea07] Searcéid, M.O: Metric Spaces. Springer, Lon-
don, (2007)

[Var02] Varona, J.L.: Graphics and Numerical Com-
parison Between Iterative Methods. The Mathe-
matical Intelligencer 24(1), 37-46, (2002)

[WS13] Wang, X.-Y., Song, W.-J.: The Generalized
M-J Sets for Bicomplex Numbers. Nonlinear Dy-
namics 72(1-2), 17-26, (2013)

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Fast Normal Approximation of Point Clouds in Screen

Space
Daniel Schiffner Marcel Ritter c V\f/erréer Benge.r
Goethe Universitét University of Innsbruck & enter % Ch%rgr:)utatlon and
Robert-Mayer-Strasse 10 Airborne Hydromapping OG Louisiana State QL]J):;iversit
D-60054 Frankfurt Technikerstr. 13a & 21 216 Johnston Hall Y
dschiffner@gdv.cs.uni- A-6020, Innsbruck, Austria LA 70803, Baton Rouge, USA
frankfurt.de marcel.ritter@uibk.ac.at werner@cct.Isu.edu
ABSTRACT

Displaying large point clouds of mainly planar point distributions yet comes with large restrictions regarding
the surface normal and surface reconstruction. Point data needs to be clustered or traversed to extract a local
neighborhood which is necessary to retrieve surface information. We propose using the rendering pipeline to
circumvent a pre-computation of the neighborhood in world space to perform a fast approximation of the surface
in screen space. We present and compare three different methods for surface reconstruction within a post-process.
These methods range from simple approximations to the definition of a tensor surface. All these methods are
designed to run at interactive frame-rates. We also present a correction method to increase reconstruction quality,
while preserving interactive frame-rates. Our results indicate, that the on-the-fly computation of surface normals
is not a limiting factor on modern GPUs. As the surface information is generated during the post-process, only the
target display size is the limiting factor. The performance is independent of the point cloud’s size.

Keywords

Normal Reconstruction, Tensor Information, GPU, Point Clouds

1 INTRODUCTION dFdx and dFdy functions. The second method calcu-
lates the surface normal by computing the cross product
in a local neighborhood, which is available through the
pixel neighborhood. The third applies a moving-least-
squares approach to acquire tensor information. The re-
sulting co-variance matrix is then used to compute the
eigenvalues and eigenvectors.

Huge data sets are nowadays generated by simulations
or by observational methods. Point clouds are e.g. the
result of particle based simulation codes or laser scans,
such as airborne light detection and ranging (LIDAR)
scanning. Surface related information, such as the sur-
face normal, can be used to enhance the visualization
of point clouds, e.g. for illumination. Traditional meth- [0 the next section, we list similar methods to our ap-
ods for reconstruction surface information require an ~ Proach. Then, we present our methods and solutions
expensive spatial sort operation. Therefore, these are  © encountered issues. These methods are compared to
executed during a pre-process. Our method aims at im- each other and some examples are presented. Finally,
proving the exploration of LIDAR data sets, before ap- W€ conclude with a summary of our findings and an
plying more expensive approaches. outlook regarding future work.

In our work, we use the large data throughput of modern

GPUs to generate a fast estimation of the surface prop- 2 RELATED WORK

erties within screen space. Therefore, we apply three  Geperic visualization frameworks, such as openWal-
possible approaches and compare the individual results. ;¢ [Walnut] or the visualization shell (VISH) are uti-
The first approach uses the fragment shader specific  1i;ed for data exploration and processing of a large data
sets. More expensive approaches to compute visual en-
hancements of points distributed on surfaces and lines,

Permission to make digital or hard copies of all or part of |  and geometrical reconstructions of lines have been done
this work for personal or classroom use is granted without | jp [Bou212], [Rit12b] or [Rit12a].

fee provided that copies are not made or distributed for profit . .
or commercial advantage and that copies bear this notice and| 1he calculation of a surface normal is strongly
the full citation on the first page. To copy otherwise, or re- connected to any surface reconstruction method.
publish, to post on servers or to redistribute to lists, requires | Especially for point based representations, methods
prior specific permission and/or a fee. using co-variance techniques [Ber94][Bjo05] are well

Communication papers proceedings 21 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

suited, because no exact neighborhood is available
and some noise is to be expected. Alexa defined
the so-called point-set surfaces and presented some
projection specific calculations [Ale04]. The co-
variance matrix allows to assess the quality of the point
cloud data set using direct tensor field visualization
methods, such as displaying tensor splats [Ben04]. To
compute the eigenvalues and eigenvectors from a given
co-variance matrix, the analytical approach presented
by Hasan [HasO1] or one of the methods presented by
Kopp [Kop06] can be applied.

Yet, these methods rely on the identification of an ac-
curate neighborhood. To acquire this information, the
input data set needs to be sorted. Neighbors are ei-
ther found by a brute force approach — which is not
suitable at all —, by a tree search or by a Morton or-
dering [Conl0]. A tree as well as a Morton order are
highly suited for parallelization.

Instead of creating a kd-tree or a Morton order in
world space, a neighborhood can also be computed in
screen space. Thus, the computation is only performed
on the currently visible part of the data set. This
is commonly done by splatting the data points and
extracting the properties from the frame buffer. Similar
to the approach presented by [Schll] or [Yan06],
we use only screen space information for th selection
of the neighborhood. The splats are projected using
either a fixed or adapted point size, as proposed by
Rusinkiewicz [Rus00]. Once the surface information is
available, also high quality splatting techniques [Bot05]
could be applied.

3 APPROACH

We use the information available in screen space to
reconstruct a surface and its corresponding normals.
We designed an approach consisting of three individual
steps, as illustrated in figure 1.

Figure 1: The outline of our screen space normal recon-
struction. The first pass consists of splatting the depth
values which are used in the consecutive passes. The
second pass approximates the surface normal, while the
optional third pass smooths the resulting values.

The first pass is a simple splatting of the input data
and provides the depth information required by recon-
struction. Each pixel is hereby surrounded by neighbor
candidates. The second pass uses these depth values
and computes surface properties. The candidates are
inspected and rejected if the distance is too large, i.e.
their interpolation weight is too small. The last pass is

Communication papers proceedings

optional and allows a further enhancement of the qual-
ity of the reconstructed properties.

Splatting the Point Cloud

We draw the point cloud, which will be reconstructed,
using either a fixed or an approximate point size. Our
approach only requires a depth buffer for computation
of the surface information. As the depth-buffer is gen-
erated, in general, by all rendering approaches, this
method can be applied to all scenarios.

To increase the accuracy, we encourage using a multi-
sample depth-buffer. This allows the retrieval of mul-
tiple depth values per individual sample. Using a sam-
pling count of 8 means that we are able to capture —
at most — 8 individual splat depth values at once. It
is, of course, possible that the unprojected world space
coordinates are identical or invalid, i.e. the depth value
was not set. Still it increases the stability of the follow-
ing normal calculations. Multi-sampling is only applied
within the first post process.

Normal Definition

We calculate the wold space coordinates of the current
pixel by un-projecting it based on the multi-sampled
depth-buffer. The reconstruction of the surface normal
can then be performed in three ways. The first method
uses the local derivatives directly available in the frag-
ment shader. The second and third method approximate
the surface using a generic neighborhood description.

This neighborhood is defined by fixed sampling pat-
terns. The most simple version takes 5 samples within
a 3x3 neighborhood, while the most complex version
selects 25 samples in a 7x7 neighborhood, see figure 4.
The samples are focused on the diagonals, which in-
crease the overall area captured during reconstruction.
Note, that we use ascending indices for the opposite
sample positions. This enables a simple definition of
diagonals within a shader.

In our test, we did not observe any differences between
the 5 and 9 sample schemes. This indicates, that the re-
duced representation is already able to capture the sur-
face properties. The extended schemes, i.e. 17 and 25
samples, further increase stability of the results and are
more comparable to off-line methods.

We orient all normals by inverting those, where the z-
component is negative. All selected splat samples are
visible and, thus, require a normal which is facing to-
wards the camera.

To assure correct identification of possible neighbor
candidates, a maximal distance is introduced. Neigh-
boring pixels may not be true neighbors within world
space due to the projection. Therefore, we reject ev-
ery sample that is not within this configurable distance.
This is comparable with the maximal distance in the
MLS [Ale04] or tensor computations [Rit12a].

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

] B oo
[ B o &
(a) 5 Samples (b) 9 Samples
|
@ B 0O 0 @3 24 g B [0 @O 03 23
B @ B 6 @ @

(c) 17 Samples (d) 25 Samples

Figure 2: The used sampling schemes for defining the
local neighborhood of a fragment. The center point O is
optional.

Local Derivatives

Shaders support the calculation of local derivatives
within the fragment shader since GLSL version 1.10.
For reconstruction of the surface normal, the functions
dFdx and dFdy are used. These internally extract
neighbor positions from concurrent thread blocks
and are only available in the fragment stage. This
means that the surface is completely splatted and the
individual samples may have overlapped. With c, the
current position in clip-coordinates, the surface normal
7i is computed:

ii(c) =dFdy(c) x dFdx(c)

This method is very sensitive to noise or irregularities
in the depth buffer and in many cases produces normals
not representing a good reconstructed surface. How-
ever, if the surface is continuous and the splat size is
carefully chosen, this method will suffice.

Plane Approximation

Similar to the computation of mesh surface properties,
we approximate face normals within this approach. The
normals are accumulated and the resulting vector is nor-
malized. Finally, we impose an orientation and align
the vector.

To obtain the needed vectors, we use one of the pro-
posed sampling schemes. Each direction vector is built
up either by diagonal or counter-clock-wise (ccw) sam-
ples. The diagonals generate smoother results and do
not require the center point at sample 0. This is sim-
ilar to the anti-alias algorithms used in the rendering
pipeline. The ccw approach accounts more for local
changes and takes the center point into account. In the
diagonal case, we obtain the surface normal by using
the following formula:

Communication papers proceedings

=

1 L3l

TN

-

ii(c) dyi X dyi 12

g

0

i

With d_; =s; —Si+1. We optimize the sampling schemes
for a diagonal pattern, since we intend to create smooth
surface normals with minimal noise.

Tensor Information

Using tensor information instead of flat patches leads
to a smoother reconstruction. To derive this informa-
tion, the computation of eigenvalues and eigenvectors
is mandatory. We compute the point distribution tensor
by deriving the co-variance matrix for the current posi-
tion c, as presented by [Rit12a] and similar to [Bj605]:

1 N
CM(c) = N Z wir(dix @ d})
k=1

where dy, = ¢ — S, dii is the transpose, N is the number
of samples around center point c, Sy the sample and w;;
is a weighting function. Here, we apply a weighting of

Wik = ——>5.
i = Tdu |7

The tensor product ® is built by the direction vectors
pointing from the current fragment’s world coordinate
to its points in the neighborhood. The weighted sum of
these vectors result in the final point distribution tensor.

We compute the eigenvalues with the “Cordano”
method presented by [Kop06]. This approach results
in more stable vectors than the method proposed by
Hasan et al. [HasO1]. Similar findings were made by
the developers of openWalnut [Walnut]. The eigenvec-
tor related to the minor eigenvalue hereby represents
the surface normal. The vector is easily oriented, since
the calculation is performed in clip-coordinates and the
normal vectors have to face the camera.

Smoothing Normals

In a second, optional, screen space pass we correct the
computed normals. We extract and scale adjacent nor-
mals within a local neighborhood, where the center nor-
mal is being favored. The surface normal is yield by
accumulation of the weighted vectors.

Different weights and neighborhood sizes can increase
the accuracy of the result. However, this does not apply
to all situations. Especially, when using the plane ap-
proximation method, quality decreases, when the nor-
mals contain lots of noise.

4 RESULTS

We implemented a prototype, which has been tested on
a i5 670 system with 8 GB RAM and a GeForce 680
running on Windows 7.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

20 -
No Correction
With Correction

0
LD PD PC Tl

Method

Time [ms]
S

Figure 3: Timing results achieved using a screen size
of 1024x768 with 8 multi-samples and the 9 samples
scheme. LD denotes the local derivatives, PD the plane
approximation using diagonals, PC the plane approx-
imation using counter-clock-wise pattern, and TI the
tensor information.

Timings

On all systems, we observed interactive frame rates
with all methods. The fasted method is the local deriva-
tives (LD) approximation, while the tensor information
(TD) is the most expensive variant. The plane approx-
imation with diagonals (PD) is slightly faster than the
tensor variant. The ccw plane approximation (PC) is
worse in terms of performance compared to the PD, due
to the definition of the sampling scheme.

In figure 3, the average processing times are shown, in-
cluding the generation of the depth values. We used
a fixed multi-sampling count of 8 in all presented tim-
ing results. Thus, the real number of samples taken per
pixel needs to be multiplied by 8. For better readability,
we continue to use the introduced sampling count.

The splatting of the point cloud requires a significant
amount of time. In our tests, it varied in the range of
30% to 50% mainly depend on the used screen and splat
sizes.

The used sampling scheme size has a large influence
on the performance and quality of the reconstruction,
as seen in figure 4. The performance scales linearly
with the number of used samples. However, the quality
of the reconstruction is not necessarily improved when
using a very high sampling count. This is due to the
fact that the surface is smoothed and local information
is suppressed.

We also measured the contribution of the individual
steps performed by our approach. Interestingly, the
splatting itself consumes a large amount of the overall
processing time, while the correction requires only very
little processing time. The larger the number of used
samples, the higher the reconstruction times. Table 1
lists the detailed timings of the involved steps: “Splat”
represents the splatting of the depth values, “Normal”

Communication papers proceedings

5 Samples
9 Samples ==
17 Samples ==
80 25 Samples —1

60

Time [ms]

40

20

LD PD PC TI
Method

Figure 4: Influence of changing sampling scheme size
for the reconstruction methods. Results taken with a
screen resolution of 1600x1200. All methods use a 8
times multi-sampled depth-buffer.

9 Samples Scheme / 8 Multi-samples

Operation | Min [ms] | Max [ms] | Avg [ms]
Splat 8.963 9.030 9.000
Normal 17.521 18.435 17.968
Correction 0.468 0.717 0.493
17 Samples Scheme / 8 Multi-samples
Operation | Min [ms] | Max [ms] | Avg [ms]
Splat 8.801 10.654 8.980
Normal 34.278 35.711 34.890
Correction 0.466 5.740 0.702

Table 1: Distribution of the processing times among the
individual operations of the proposed method. Results
taken with a screen resolution of 1600x1200 using the
tensor method.

the reconstruction and “Correction” the final smooth-
ing.

Visual Results

All methods are able to reconstruct both noisy and
smooth surfaces. We use several splatted object point
clouds as test cases. All point clouds consist of at least
250k points to assure a high sampling density.

The results of the described reconstruction methods are
shown in figure 5. These indicate that the TI method
provides a stable and accurate reconstruction. The PD
approach provides excellent results in smooth data sets.
The LD approach always generates large noise. Despite
not being suitable for a high quality surface approxima-
tion, it is the fasted approach.

To simulate noisy data, we alter the vertex positions
within the splat shader. A light source is positioned
below the object. The illuminated scene is shown in
figure 6. The TI method generates the smoothest result,
while the PD method yields more normals that differ
widely from the original ones. The LD method pro-
vides the worst reconstruction. All methods generate

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

(a) Original

(c) Plane approximation (diag-
onals)

(e) Local derivatives

(d) Plane approximation (ccw)

Figure 5: Reconstruction of the surface normal used
for illumination. (a) shows the original object with pre-
computed normals. (b) to (e) depict the proposed re-
construction methods.

more invalid normals in the low sampled region on the
top.

Figure 7 illustrates the influence of the optional correc-
tion pass. The corrected normals are smoother and the
number of correctly oriented surface normals is higher.
The vectors are visualized via colors showing the x-, y-,
and z-coordinates as red, green, and blue values.

(a) Original

(b) Tensor (c) Plane approxi- (d) Local derivatives

mation

Figure 6: Reconstructed normals used for illumination
in a test scenario with two planes. Noise is added to the
input data. Even normals at the edge are well recon-
structed, but tend to be smoothed.

Communication papers proceedings

(a) Uncorrected (b) Corrected

(c) Difference Image

Figure 7: The influence of the correction pass applied
to an ellipsoidal surface. The surface xyz-normal is il-
lustrated as a rgb-color. The corrected version (b) con-
tains more valid normals. The difference is visualized
in (c).

Since the correction pass is very fast and increases the
stability of the reconstruction, we always enable this
pass in the following tests.

Application to a LIDAR Data Set

A point could stemming from an airborne laser-scan is
used for further investigation of the technique and vali-
dation of the technique by a real-world application. We
chose a small section of a bathymetric scan of the river
Loisach in Bavaria (Germany), acquired with the hy-
drographic laser scanner Riegl VQ-820G [Ste10]. The
scan contains different kinds of structures: fields, trees,
lower vegetation, a river, a street with cars, power ca-
bles and a steep slope partially covered with vegetation.
Figure 8 shows a side and a top view of the scan.

The two million points are colored by the minor
eigenvector of the point distribution tensor computed
in world-space.

The point distribution tensor was computed by using a
neighborhood radius of 0.5, 1.0 and 2.0 meters. Two
different weighting functions have been tested: con-
stant weight and W weight. Using a kd-tree for find-
ing neighbors and 6 OpenMP parallel threads on an In-
tel Xeon X560@2.67GHz the according computation
times are 41, 85, and 218 seconds for the three radii.
This computation of the tensor is a demanding com-
putational tasks. However, it has been shown, that the
tensor can be used for feature extraction, object recog-
nition, and to improve the segmentation of point clouds
[Rit12a][Rit12b][Bj605]. When just looking at the mi-
nor eigenvector via color, the fields, the river, the street,
the slope and the vegetation can be well distinguished

from each other, visually.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

(a) Side view

(b) Top view

Figure 8: LIDAR laser-scan of a section of the Bavar-
ian river Loisach in Germany. Laser echoes are illus-
trated as colored points. Color shows the minor eigen-
vector of the point distribution tensor. Vegetation can
be visually distinguished from the ground and the river.

Next, we compare this expensive, fine grain computa-
tion in world space with our screen space technique.
The results indicate that the approach is able to recon-
struct the normals with rather high quality. The nor-
mals widely match with the normals calculated in world
space, as shown in figure 9. However, differences in the
forest areas of the scan are visible.

Also, where the sampling density near the camera po-
sition is not high enough to ensure high quality recon-
struction in this region.

To compare the results of the different methods, we
recorded a series of images from the Loisach data set.
The TI method produces the most reliable results, while
requiring a high sampling count. The PD method is able
to create very smooth normals regardless of small sur-
face changes, e.g. the missing power line in the upper
region 10. The PC method includes it, but is more un-
stable. The LD method is the most efficient approach
while yielding the worst quality in comparison to the
other methods.

Communication papers proceedings

The correction pass increases the quality and the sta-
bility of the results by reducing the number of invalid
surface normals. Figure 10c illustrates the enabled cor-
rection pass and figure 10d .

S CONCLUSION

Our results show that a fast approximation of the sur-
face normal can be achieved in real-time. Here, the sur-
face is solely reconstructed from the depth-buffer and
projection parameters. With our approach a preprocess-
ing of surface information may be delayed until a re-
gion of interest has been selected. The results indicate
that especially the tensor-based approach to determine
the surface normal of a point cloud is a well-working
method.

In comparison to the off-line world space method, we
are able to create similar results at interactive frame
rates. The loss of quality is negligible and is only vis-
ible in under-sampled regions. However, this method
can only provide an approximation of the real point-
cloud’s surface information. The tests show that an in-
crease of the neighborhood size decreases the perfor-
mance linearly. A good quality is already achieved with
small neighborhood sizes. The focus on the diagonals
in the sampling schemes reduce the number of required
samples.

6 FUTURE WORK

We plan to combine this technique with level of de-
tail rendering to provide good visual representations of
large airborne LIDAR scans. The surface normals pro-
vide important information to control such a level of
detail algorithm.

The splatting technique could be enhanced by utilizing
more information represented in the point distribution
tensor. Extracting some features of the tensor will im-
prove the readability of point clouds without expensive
pre-computations.

Additionally, we plan to enhance the reconstruction
method by providing more weighting functions besides
1

the Tl weight for the computation of the co-variance

matrix.

To avoid expensive re-calculations, we plan to employ
a caching strategy. A re-computation of the surface nor-
mals would only be required when camera location or
point coordinates are changed, further increasing the
overall performance of the approach.

7 ACKNOWLEDGEMENTS

Special thanks to Frank Steinbacher for providing the
LIDAR data set of the river Loisach. This work was
supported by the Austrian Science Foundation FWF
DK+ project Computational Interdisciplinary Modeling

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

(a) Loisach screen space normals, tensor, 9 samples

(b) Loisach screen space normals, tensor, 9 samples, illuminated

(c) Loisach world space normals, 1m, squared

(d) Loisach world space normals, 1m, squared, illuminated

Figure 9: The reconstruction of the minor eigenvector using the fast screen space approach.

(W1227), and grant P19300. This research employed
resources of the Center for Computation and Technol-
ogy at Louisiana State University, which is supported
by funding from the Louisiana legislatures Information
Technology Initiative. This work was supported by the
Austrian Ministry of Science BMWF as part of the Uni-
Infrastrukturprogramm of the Forschungsplattform Sci-
entific Computing at LFU Innsbruck.

8 REFERENCES

[Con10] Connor, M., and Kumar, P.: Fast Construction
of k-Nearest Neighbor Graphs for Point Clouds.
IEEE TVCG 16, No.4. pp.599-608, 2010.

[Yan06] Yang, R., Guinnip, D., Wang, L.: View-
dependent textured splatting. The Visual Com-
puter 22, pp.456-467, 2006.

[HasO1] Hasan, K.M., Basser, PJ., Parker, D.L.,
Alexander, A.L.: Analytical computation of
the eigenvalues and eigenvectors in DT-MRI. J.
Magn. Reson. 152, pp.41-47, 2001.

[Ale04] Alexa, M., Rusinkiewicz, S., and Adamson,
A.: On normals and projection operators for sur-
faces defined by point sets. Eurographics Symp.
PBG., pp. 149-155, 2004.

[Bou212] Boulch, A., and Marlet, R.: Fast and Ro-
bust Normal Estimation for Point Clouds with

Sharp Features. Comp. Graph. Forum 31, No.5,
pp-1765-1774, 2012.

[Walnut] Open Walnut. http://openwalnut.
org.

[Ben07] Benger, W., Ritter, G., Heinzl, R.: The Con-
cepts of VISH. 4th High-End Vis. Workshop,
pp-26-39, 2007.

[Ben04] Benger, W., Hege, H.-C.: Tensor splats. Conf.
on Vis. and Data Analysis, Vol.5295, pp.151-162,
2004.

[Ber94] Berkmann, J., and Caelli, T.: Computation
of surface geometry and segmentation using co-

Communication papers proceedings

27

variance techniques. IEEE TPAMI 16, No.11,
pp.1114-1116, 1994.

[Rit12a] Ritter, M., Benger, W., Cosenza, B., Pullman,
K., Moritsch, H., Leimer, W.: Visual Data Min-
ing Using the Point Distribution Tensor. IARIS
Workshop on Computer Vision and Computer
Graphics, VisGra, 2012.

[Rit12b] Ritter, M., Benger, W.: Reconstruction Power
Cables From LIDAR Data Using Eigenvector
Streamlines of the Point Distribution Tensor Field.
WSCQG, pp.223-230 ,2012.

[Bjo05] Johansson, B., and Moe, A.: Object Recogni-
tion in 3D Laser Radar Data using Plane triplets,
technical report LiTH-ISY-R-2708, Dept. EE,
Linkoping University, 2005.

[Rus00] Rusinkiewicz, S., Levoy, M.: QSplat: A Mul-
tiresolution Point Rendering System for Large
Meshes, SIGGRAPH ’00, pp.343-352, 2000.

[Bot05] Botsch, M., and Hornung, A., and Zwicker,
M., and Kobbelt, L.: High-quality surface splat-
ting on today’s GPUs. Eurographics VGTC Sym-
posium on PBG, pp.17-24, 2005.

[Sch11] Schiffner, D., Kromker, D.: Three Dimen-
sional Saliency Calculation Using Splatting, 6th
ICIG, pp.835-840, 2011.

[Shi09] Shirley, P., and Marschner, S.: Fundamentals
of Computer Graphics, 3rd Edition, A.K. Peters
Ltd, 2009.

[Kop06] Kopp, J.: Efficient numerical di-
agonalization of hermitian 3x3 matrices,
arXiv:physics/0610206v1, 2006.

[Ste10] Steinbacher, F., Pfennigbauer, M., Ulrich, A.,
and Aufleger, M.: Vermessung der Gewissersohle
- aus der Luft - durch das Wasser, in Wasser-
bau in Bewegung ... von der Statik zur Dynamik.
Beitrige zum 15. Gemeinschaftssymposium der
Wasserbau Institute TU Miinchen, TU Graz und
ETH Ziirich, 2010.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

(a) World space, 1m squared (b) Local derivatives

(c) Tensor, 25 samples (d) Tensor, 25 samples, no correction

(e) Plane approximation, diagonals, 25 samples (f) Plane approximation, ccw, 25 samples

Figure 10: Comparison of the different reconstruction methods used on the Loisach LIDAR data set.

Communication papers proceedings 28 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Using OpenGL State History for Graphics Debugging

Bryce van Dyk, Christof Lutteroth, Gerald Weber, Burkhard Wiinsche

Department of Computer Science
University of Auckland
Private Bag 92019, Auckland 1142
New Zealand
bvan036@auckland.ac.nz, {christof, gerald, burkhard}@cs.auckland.ac.nz

ABSTRACT

To fulfill the unique debugging requirements of graphics programming, specialized tools are needed to aid in the
debugging process. Modern graphics debuggers allow developers to inspect the current graphics state of a running
application, and influence their control flow. However, they do not make maximum use of information about
previous graphics states, despite the possible utility of this information in debugging. We propose GLDebug, an
OpenGL debugger with novel features for using historical information to assist with graphics debugging. GLDebug
provides the ability to capture and recall OpenGL state and function call information. Developers can retrace
the graphics state history of OpenGL applications and compare different recorded states, which may come from
different applications. State differences are made clearly visible, so that the source of state-based errors can
be tracked down more easily. GLDebug was evaluated in a user study, with promising results: the participants
found the tool helped them when working on four different OpenGL debugging tasks. All participants commented
favorably on the support for tracking and analyzing state history. The results indicate that historical information is
useful for graphics debugging, and that debuggers supporting such information can improve debugging efficacy.

Keywords
debugging, state history, function call history

1 INTRODUCTION

Computer graphics is applied in a vast number of fields
such as entertainment, medicine, and computer-aided
design. With so many applications for computer graph-
ics, there is a demand for tools that assist program-
mers with the analysis and debugging of graphics code.
However, general purpose debuggers do not cater to the
specific needs of graphics programmers.

The need for dedicated tools stems from the unique
paradigms used in graphics programming, as well as
limitations due to the graphics hardware. For example,
when programming with OpenGL, programmers must
manage the state of OpenGL, treating OpenGL as a
state machine. General purpose debuggers do not of-
fer the ability to monitor this state — a useful feature
that graphics debuggers should offer. Similarly, general
purpose debuggers cannot help inspect the internal state
of the graphics hardware — not in the same way they do
for programs running on the CPU. There are also im-
portant differences in the types of data being dealt with:
graphics debuggers must consider objects such as tex-
tures and matrices, which are of particular importance
in graphics programming.

Various graphics debuggers have been introduced over
the last decade by commercial vendors, open-source de-
velopers and researchers. These debuggers address the
problems of inspecting the internals of graphics hard-

Communication papers proceedings

ware, controlling the execution flow of graphics code,
and profiling it. However, their focus is on giving de-
velopers access to the current state of the graphics hard-
ware only.

In this paper, we explore the idea of using historical
information to assist with graphics debugging. We
present a novel debugger, GLDebug, which provides
the novel ability to capture and recall past OpenGL state
and function call information. GLDebug allows de-
velopers to accumulate this historical information over
time from multiple OpenGL applications, and compare
itin a user interface that is similar to other history view-
ers. Users of GLDebug can retrace the graphics state
history of OpenGL applications and compare different
recorded states, making state changes clearly visible.
This makes it easier, for example, to find defects in er-
roneous code when comparing it with working code.
In particular, we are addressing the following research
questions:

R1 How can graphics state history be supported in a
debugger and presented to the user?

R2 In how far does the use of graphics state history
facilitate debugging?

The ability to record and inspect graphics API states
has been discussed in prior work [3} 5], so we only give
a brief overview of this. In particular, we point out the

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

various challenges and techniques involved in capturing
the internals of graphics hardware. Then, we discuss in
more detail how graphics state history can be stored,
managed and presented to the user.

Previous works have not fully utilized and investigated
historical information about OpenGL applications. We
discuss how a graphics debugger can make this infor-
mation easily available to assist in the OpenGL debug-
ging process, addressing R1. In particular, we show
how the use of historical information can be supported
in a debugger’s user interface, and motivate the features
of GLDebug with specific use cases.

After completion of the GLDebug proof-of-concept
prototype, a user study was conducted to evaluate the
usefulness of the tool and address R2. This evaluation
was fairly small in scale and scope, but seems to
be the first of its kind: there is little or no research
that attempts to evaluate the effectiveness of graphics
debuggers.

Note that the results about the use of state history
for debugging presented here are not only applicable
to OpenGL. Our implementation is based solely on
OpenGL, but other low-level graphics APIs such as Di-
rectX are conceptually very similar. As a consequence,
the contributions of this research can also be applied to
other graphics APIs.

Section 2 summarizes the requirements of graphics de-
bugging in general, and for using state history specif-
ically. Section [3] gives an overview of related work.
Section [] introduces GLDebug and elaborates its de-
sign, including the user interface for making OpenGL
state history easily accessible to developers. Section [3]
details key areas of GLDebug’s implementation. Sec-
tion [6] explains some of the debugging use cases that
can be addressed with GLDebug. Section [/] presents
the results of the user study. Section [§] concludes the
paper and points out some future work.

2 REQUIREMENTS

Common features of graphics debuggers include state
tracking, logging of graphics commands, and the in-
spection of buffers. These features are widely used in
modern graphics debuggers. In this project, we are also
looking at novel features regarding the use of graph-
ics state history, such as logging of graphics states and
comparison of graphics states. In the following sec-
tions, we will describe all these features as require-
ments of graphics debuggers.

2.1 General Requirements of Graphics
Debugging
State tracking is a functionality allowing a user to

track, view, and potentially alter the state of the under-
lying graphics system. OpenGL is generally known to

Communication papers proceedings

be a state machine. How this machine is configured
controls many aspects of how a command to the ma-
chine is processed. Bugs can easily be introduced by
having the machine configured incorrectly [9]].

As an example, consider a situation where a program-
mer is using a third-party library that makes changes to
OpenGL state. Unfortunately, the programmer is not
aware of these changes and thus subsequent OpenGL
calls made by the program are not behaving as ex-
pected. But even if the programmer suspects this to be
the cause, they still have to track down which part of
the state is being altered.

In the above example, being able to inspect state is very
helpful. The simple act of seeing what the state is and
comparing that against what is expected saves the pro-
grammer from having to recompile code with debug in-
structions inserted to inspect state, or worse yet, from
having to expend time learning that the bug is even re-
lated to OpenGL state. There are also instances of com-
plex state interaction, where it is useful to be able to
inspect several state variables at once. Presenting state
information in a clear and easily navigable way facili-
tates this.

Command logging or call logging refers to a debugger
logging commands being issued to the graphics API,
and making the log visible to the user. This feature
is useful as a reference, in a similar way to viewing
OpenGL state: it helps verify that the actual behavior
of the program is the same as the desired behavior. For
example, this helps to make sure that a certain function
is indeed being called, or that a certain argument to a
function is correct.

Another useful, though rarer, aspect of this feature is
being able to replay the commands that are logged. By
doing this one can recreate a scene step by step, seeing
the effect that each command has (visually and/or in
the graphics state information). However, implement-
ing this functionality is technically much more difficult
than just logging calls.

Inspection of buffers is the ability of a debugger to
query OpenGL for information contained in buffers be-
longing to the program being debugged, and then to ex-
pose this information in various ways to a user. Buffers
can be used to store a variety of things, but the com-
mon inspection case is buffers storing texture (image)
data. That said, support for inspecting other types of
buffers exists in some debuggers, e.g. for buffers con-
taining shader input data such as vertices. The way data
is exposed can be visual or numeric, with different rep-
resentations being appropriate depending on the buffer
contents.

For example, a debugger could retrieve and allow in-
spection of the depth buffer, which helps determine if
an object is being culled by the Z-test. Another use

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

case is the inspection of an off-screen texture that is be-
ing rendered to, a common technique in deferred shad-
ing/rendering [[11]]. Being able to visually inspect such
a texture may be invaluable in seeing that the rendered
image is as intended.

Shader debugging is functionality helping with shader
bugs, which is becoming more and more important with
the prevalence of shaders in modern graphics program-
ming. Special support for shader debugging is neces-
sary because of the shader pipeline being opaque: while
input and output can be observed, what happens inside
the pipeline is difficult or impossible to observe, mak-
ing bugs that occur in the pipeline very difficult to diag-
nose and resolve. One of the popular shader debugging
techniques is to instrument shaders so that additional in-
formation is output [14], allowing a programmer to read
back the values of variables during shader execution
— information that is normally inaccessible. Another
technique is that of emulating the shader pipeline in
software [13]], allowing for much greater visibility and
enabling identified requirements such as step-through
debugging of shaders.

2.2 Requirements for Using State History

Our work here seeks to extend upon the ability of track-
ing the current state of an OpenGL program, by track-
ing the state over the life of such a program. This
is similar to state tracking, with the additional require-
ment that captured information is persistent and is al-
ways available for recall. This contrasts with systems
that only allow for viewing of the current state of a
program, where previously captured information is not
stored. Such concepts have been explored in the context
of general purpose debuggers [10} [12]], but have only
been vaguely suggested for graphics debuggers [3]].

In addition to tracking OpenGL state over the program
execution, we also look at providing a means by which
users can compare the captured information in a way
that assists with debugging. It is important to report
captured information to the users in a fashion that en-
ables quick comparison of different states in order to
facilitate the debugging process.

As an example of the above two requirements, a user
should be able to record states from an OpenGL appli-
cation that is running smoothly. When a bug is encoun-
tered, the user should be able to recall the state from
when the program was running correctly, and compare
that to the current, buggy state. The GUI should allow
for a comparison such that the user is able to identify
problematic states (if any).

Communication papers proceedings

3 RELATED WORK

3.1 Enabling Technology for Graphics
Debugging

There are several technologies that enable and support
graphics debugging, although they are not debuggers
themselves. For example, there are systems available
that aid in the capture of calls made to OpenGL, or that
allow for querying of the state of OpenGL. A number
of debuggers, including GLDebug, are built upon such
systems.

Chromium [8]] is a system for the manipulation of
OpenGL command streams. Chromium uses a client-
server model, with streams of commands being dis-
patched by clients to one or more servers from which
the streams may be passed onto other servers. Each
server can inspect and, if needed, modify the stream
sent to it. Chromium can also be leveraged to manip-
ulate the command streams, thus it is possible to alter
the behavior of a program. These features are immedi-
ately useful in that they allow for both state tracking and
command logging. However, Chromium is no longer
being developed, leading to compatibility issues with
recent versions of OpenGL.

BuGL is a toolkit designed to aid in the debugging of
OpenGL applications. BuGLe makes use of filters that
are used to intercept some or all OpenGL calls. Once
a call is intercepted, it can be inspected, and modifica-
tions can also be made before the call is passed on to
OpenGL. In contrast to Chromium, BuGLe is still be-
ing developed, so it has much better compatibility with
more recent versions of OpenGL.

3.2 Graphics Debugging

The most actively developed graphics debuggers at
present are commercial products, such as PIXE] and
Nsighﬂ There are also several academic projects in
this area [7, [13], of which two major contributions
are described below. However, little active research
appears to be occurring in this area at the moment.

gDEBuggelﬁﬂ was one of the first commercial graph-
ics debuggers to become widely available in 2004. It
demonstrated many of the features seen in modern
graphics debuggers, such as all of the general features
discussed in Section 2} Furthermore, all these features
were accessible through a GUI. The contribution of
gDEBugger is in its pioneering of graphics debuggers
in the commercial space, as well as offering many

! http://sourceforge.net/projects/bugle/
2 http://msdn.microsoft.com/en-

us/library/ee663275%28v=vs.85%29.aspx

3 http://www.nvidia.com/object/nsight.html
4 http://developer.amd.com/tools/gDEBugger/Pages/default.aspx
3 http://www.gremedy.com/

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

features incorporated with a GUIL. gDEBugger devel-
opment has been discontinued as it became part of
another debugger, CodeXL, which is discussed below.

Microsoft PIX is a commercial graphics debugger for
use with DirectX on Windows as part of the Xbox 360
development kit, which is actively maintained by Mi-
crosoft. It is one of the few tools available for DirectX
debugging. A notable feature of PIX is its ability to
capture all of the commands used to create an image (a
frame), and then replay these commands step by step
on demand.

nVidia Nsight and AMD CodeXIE] are further exam-
ples of modern commercial debuggers. These tools pro-
vide many of the features mentioned in Section [2] in-
cluding newer features for shader debugging, similar to
those seen in GLSLDevil (see below). While they are
available free of charge, their usage is limited to their
developer’s respective hardware.

There are tools that log calls made to graphics APIs
such as OpenGL, e.g. glintercepl[] and apitraceﬂ
These tools log the API function calls made by an
application to a file, and allow users to inspect this log,
e.g. for profiling. Some of these tools (e.g. apitrace)
also allow users to replay the log files and inspect
the current graphics state during replay, similar to a
graphics debugger.

GLSLDeViﬂ [14]] is a tool specifically aimed at de-
bugging the shader pipeline of OpenGL applications.
GLSLDevil provides novel features in that it automat-
ically instruments OpenGL shader code. The instru-
mented code then outputs extra information that can be
used for debugging. GLSLDevil uses a GUI to present
this information to users, showing the values of the vari-
ables used in a shader. It also supports some visualiza-
tions of those values, e.g. as images.

Apart from command logging and playback, histori-
cal information is not supported in any of the currently
available debugging tools. A possible reason for this is
that the storage and computation requirements make it
non-trivial [[10, [12]]. Furthermore, the current research
on graphics debugging exhibits a lack of evaluations
of graphics debugging tools and their use in practice,
which may make it an uncertain area to prioritize for
development.

3.3 Debugging using History

The concept of recording the state of a program
throughout its execution has been proposed for

OpenGL Application

¢

Debugger Probe

¢

Debugger Controller

¢

Data Store

Intercepting
commands and
querying state

Managing recorded
commands, states
and metadata

Figure 1: Architectural overview of GLDebug.

general-purpose debugging [10} [12]]. The research in
this area speculates that the ability to step back through
a programs trace aids the user in certain debugging
tasks. For example, such debuggers can help when a
bug is found that is tied to a variable with an incorrect
value. In this scenario, the debugger can be used to step
backwards in time and find at what point the value devi-
ated from appropriate values. Graphics debugging has
some similarities to such general-purpose debugging
scenarios: bugs often originate from some unintended
state change [9], which is identified by inspecting the
execution flow. However, the state machine aspect of
graphics debugging is typically much stronger, with
a reliance of outputs on a complex state and different
types of potential bugs. Also, the technology involved
in graphics debugging is different.

GQL (graphics query language) was created along with
a debugging system by Duca et al. [5]. Similar to
GLDebug, it enables tracking and logging the state and
calls made by an OpenGL program over the course of
execution. However, the historical information is only
made available through an SQL-like language (GQL)
that users have to learn, and there is no direct support
for comparing states and highlighting of state differ-
ences. It is known that efficient use of a query language
such as SQL depends strongly on individual ability and
the user interface [4]], hence it is questionable whether a
textual query language such GQL can adequately sup-
port day-to-day graphics debugging tasks. GQL was
not evaluated empirically to see if users find this ap-
proach effective or user friendly.

4 DESIGN

6 http://developer.amd.com/tools/heterogeneous-
computing/codexl/

7 http://code.google.com/p/glintercept/

8 http://apitrace.github.io/

9 http://cumbia.informatik.uni-stuttgart.de/glsldevil/

GLDebug is designed based on several high-level com-
ponents, as shown in the architecture diagram in Fig-
ure [} The OpenGL application is the program being
debugged. It is executed on top of the debugger probe,

Communication papers proceedings 32 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

which is a library that intercepts the OpenGL calls made
by the application. Intercepting these calls makes it
possible to capture information about the calls them-
selves as well as other data that can be inspected while
the intercepting library has control.

The probe feeds the information it gathers into the de-
bugger controller, which provides the GUI for control-
ling the debugging process. Through the probe, the
controller can request graphics state information and
influence the control flow of the application being de-
bugged. The controller is also used to present informa-
tion about the application to the user, and in particular
let the user access the graphics state history in a conve-
nient way. To support state history, the controller stores
graphics states, OpenGL commands and related infor-
mation in a data store. The data store is queried when-
ever historical information is needed. In the following
paragraphs, the components of GLDebug are described
in more detail.

4.1 Probe

The probe is the component responsible for capturing
data from the program being debugged, and feeding
that data to the controller. It is a shared library that
provides the same interface as OpenGL. When a pro-
gram is run, the probe is linked instead of the default
OpenGL library. This means that all calls that would
normally be made to the OpenGL library are passed to
the probe instead. The probe allows for arbitrary code
to be executed once a call is intercepted, hence taking
over program control and allowing for both inspection
and modification of OpenGL calls. It can process com-
mands sent to it from the controller, such as for pausing
the application, and send data to the controller, such as
graphics state data that is queried by executing addi-
tional OpenGL commands.

There are several benefits of having the probe as a sepa-
rate component of the system. For example, GLDebug
can run on a computer separate from the computer run-
ning the OpenGL application. This provides benefits in
terms of being able to run the probe and debug OpenGL
applications on systems with less power and/or storage,
such as mobile devices. Also, the probe can be de-
veloped independently of the other components. The
downside is that there is additional work involved in
developing a communication protocol for the probe and
the controller.

The probe is lightweight, does not perform much pro-
cessing and does not impede the OpenGL application.
It is important that the probe does not alter the behav-
ior of the OpenGL application. Similar designs can be
found in other debuggers, such as the GQL debugger
mentioned in Section [3] which has a separate process
that processes the data captured from an application.

Communication papers proceedings

4.2 Controller

The controller is responsible for controlling the running
OpenGL application and retrieving information about it
through the probe. It is also responsible for storing the
information in the data store, and making it accessible
to the user through a GUI. Because of the distributed
architecture of GLDebug, the controller and data store
can be hosted on a more powerful system.

Figure [2] shows the controller GUL The buttons at the
top allow users to connect to a running probe and influ-
ence the control flow of the application being debugged,
i.e. start, pause, stop and step through it. Furthermore,
they allow users to set breakpoints on specific OpenGL
functions, and request the graphics state from the ap-
plication. The GUI also presents captured information
back to the user. Graphics state information is presented
in the right section of the window, below the top row of
buttons. The table lists all OpenGL states variables with
their values, and there is space at the bottom to show
the value of a selected variable in more detail, i.e. in
the case of longer state variables such as shader source
code.

Note that the table on the right shows two graphics
states, one in the left column and one in the right col-
umn. Differences in these two states are highlighted
using color coding: unchanged variables are shown in
black, variables with different values are highlighted in
red, and if the values are the same but there has been a
recorded state between the first and second state where
the variables are not the same, then they are shown
in purple. This allows users to quickly compare two
graphics states. The states to compare are selected in
the list on the left, which shows, among other informa-
tion, the sequence of recorded states. The two columns
of radio buttons are used to select the two states that
are shown in the table on the right. The drop down list
at the top lets users select different application sessions
to view data from. So a user can select a state snap-
shot from one execution of a program, and compare it
to another, or even compare state snapshots from two
different programs.

Finally, the controller can show users a list of function
calls that were captured by the probe. As shown in the
radio button group near the top-left, the user may select
to see only states, only function calls, or both together.
This allows the user to explore the history of all cap-
tured states and function calls over the lifetime of the
application.

Originally, the GUI had a multi-tab design where sepa-
rate tabs were used to control the probe, and to view and
compare captured information. However, this design
was discarded in favor of the current single-window de-
sign after initial user feedback. Users found a multi-tab
window to be too cumbersome as it required a lot of
switching between tabs.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

) GLDebug

% ] | &
A > |1l M P 3 o u
Terminate
Session:
Debug-TestCase1-OriginalProgram.sh 15/06... | «
Filcer by type:

State GL Calls @ AlL
gbdiakeContextCurrent(0x96131a0, 0x04400002,  ~
glClearColor(o, 0, 0, 0)
glClear(GL_COLOR_BUFFER_BIT)
glUseProgram(3)
qlBindBUFFer(GL ARRAY BUFFER, 1)
glEnableVertexAttribArray(0)
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, ¢
glDrawarrays(CL_TRIANGLES, 0, 3)
glDisableVertexAttribArray(0)
glUseProgram(0)
glFlush()

GL_PQINT_SMOOTH_HINT

GL_PROGRAM_POINT_SIZE
GL_VERTEX_PROGRAM_TWO_SIDE
¥ Program[3]
position

GL_ACTIVE_ATTRIBUTES

GL_VALIDATE_STATUS
GL_LINK_STATUS
GL_ACTIVE_UNIFORMS

4

glxXSwapBuffers(0x96131a0, 0x04400002) (12}
gliMakeContextCurrent(0x96131a0, 0x04400002, e

2012-06-1503:13:32.0-State ) @
glxXMakeContextCurrent(0x96131a0, 0x04400002, |

GLDebug Started | Debugger Mot Connected

Address: {10.0.2.15

GL_PERSPECTIVE_CORRECTION_HINT

GL_ACTIVE_ATTRIBUTE_MAX_LENGTH

GL_ACTIVE_UNIFORM_MAX_LENGTH

|
Connect

GL_DONT_CARE GL_DONT_CAR

GL_NICEST GL_DONT_CAR

GL_FALSE CL_FALSE

GL_FALSE GL_FALSE

<Empty> <Empty>

a 0

9 9

1 1

{2} i

] 0

GL_FALSE GL_FALSE

GL_TRUE GL_TRUE

a 0

Figure 2: The GLDebug interface comparing two sets of captured state.

4.3 Data Store

The data store archives the OpenGL state information
that is captured by the probe. This information con-
sists mainly of state variables with names and values,
with each graphics state containing hundreds of such
variable-value pairs. Some variables are nested, i.e.
they have child variables with values.

The data store also archives the function calls made by
the OpenGL application that were logged by the probe.
This includes the function name, parameter names and
values, as well as the call order. Finally, the data store
stores metadata about the logged information. This in-
cludes identifying information about the application be-
ing debugged and the debugging sessions, as well as
timestamps for debugging sessions, states and function
calls.

Our design makes use of a temporal database that per-
forms delta encoding on stored information automati-
cally. That is, when storing state information, it stores
only the values of states that have actually changed.
This means different states can be stored and recalled
with minimal overhead, and comparison between the
different states is somewhat simplified.

S IMPLEMENTATION

GLDebug’s probe was implemented using BuGLe (see
Section [3.I) as a basis. The complexity and time re-
quirements of implementing a debugger from scratch
are significant. Using BuGLe as a basis greatly de-
creased the time required to develop the probe and im-
plement the ability to capture OpenGL commands and
state. However, BuGLe still had to be extended to
meet the needs of GLDebug, e.g. with functionality for
logging and sending information about OpenGL com-
mands.

All communication between the probe and the con-
troller is done through a single TCP connection. This

Communication papers proceedings

allows the probe to run on the same system as the con-
troller or on another system, as required. The commu-
nication is primarily initiated by the controller, issuing
requests to the probe, such as those for state, or those
to start or stop the execution of the OpenGL applica-
tion. When the probe receives a command, it attempts
to carry out that command and reply to the controller as
necessary. There are some cases where the communica-
tion is initiated by the probe, e.g. the sending of logged
function calls.

The data store was implemented using a temporal triple
store called PDStore, which was developed in our
working group in a separate project. PDStore’s ability
to recall previous database states makes it possible to
access any of the previously stored OpenGL states. Per
default, the controller uses PDStore as an embedded
database, so both run in the same process. As with
many database systems, it is also possible to connect
the controller to a remote PDStore database.

The controller was implemented using Java, while the
probe had to be coded in a lower-level language (in this
case C) in order to be compiled into a shared library.
This separation was helped by the fact that both com-
ponents communicate over a remote interface based on
TCP, as explained earlier.

The implementation of the probe was fairly demand-
ing, even when considering the use of BuGLe as a ba-
sis. It required extending BuGLe for capturing extra
information and sending extra data, which required a
detailed understanding of BuGLe’s internals. Further-
more, a deeper understanding of linking was required
in order to make sure that BuGLe was linked instead
of OpenGL. For a more in-depth view of GLDebug’s
implementation see [[16].

6 USE CASES

In the following we describe important use cases for the
use of state history during graphics debugging. We de-

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

scribe what kind of bug is involved in a use case, its sig-
nificance in real-world graphics applications, and how
state history can help to find the bug more easily.

6.1 Incorrect Graphics State

GLDebug is useful in cases where bugs are caused
by incorrect OpenGL state, and particularly in cases
where the state shifts from intended to unintended val-
ues (so-called ”snake in the grass” style bugs [10[]). In
cases where OpenGL is configured incorrectly, GLDe-
bug makes it easier to view the values of state variables
and thus find problems. However, GLDebug is of par-
ticular usefulness in the case where the state was con-
figured correctly, and then shifts to an incorrect config-
uration. In such cases, being able to compare states can
reveal not only the incorrect variable, but also shows
in which state snapshot and at what time the problem
occurred.

An example is a program that is rendering correctly,
but then, through programming error, switches to an
incorrect shader that results in a blank screen. In this
scenario a comparison of the state captured when the
program was performing correctly and incorrectly, re-
spectively, would show that the shader source code is
different. The user could then examine the source code
from each of the different captured states, revealing that
the incorrect code is being used in the error case.

Many bugs in OpenGL are caused by incorrect state [9],
and being able to easily view OpenGL state is useful in
diagnosing such bugs. These kinds of bugs can differ
significantly in their severity depending on which and
how many state variables are incorrectly set.

6.2 State Leakage

State leakage is a specific kind of incorrect configura-
tion of state, where some code configures the state that
then affects code elsewhere in a program. There are
two major issues with this: first, the source of the issue
is removed from the code where the problem occurs,
making the bug hard to find. Secondly, the code caus-
ing the problem may not be available to the developer;
for example, it may be part of a linked library. In addi-
tion to the above, while it may be apparent that a leak
is happening, it is not always apparent which state vari-
able(s) are being leaked and causing problems.

An example of this kind of bug is usage of an external
library to draw a model using OpenGL. However, the
library used has a bug in that it alters and does not reset
the model-view matrix before returning control to the
calling code. In this scenario, through no fault of the
programmer using the library, bugs are introduced.

The use of external libraries is very common in graphics
programming. There are numerous graphics libraries
that build on OpenGL and other grahics APIs, and with

Communication papers proceedings

the continuing developments in processing power and
computer graphics techniques, many of these libraries
are subject to continuous change. Particularly for larger
projects, it is rare that a single developer knows all the
code in which graphics state is changed. As a result,
state leakage problems can happen fairly easily.

GLDebug aids in these circumstances by making state
information from different points in the application
readily accessible, allowing users to find where and
which state variables are being leaked. Being able to
capture a state snapshot before and after the state leak
allows users to use the state comparison features of
GLDebug to identify the variables that have changed,
and locate problematic state changes.

6.3 Missing Error Handling

OpenGL produces its own kind of errors, which require
their own kind of error handling code. Without this er-
ror handling code, many errors would pass silently. An
example is a compilation failure of a shader — some-
thing that would silently fail without error checking
code, and simply lead to an incorrect output.

Programs often lack sufficient error handling code [17],
and sometimes such code is omitted altogether. This
can be particularly dangerous if errors happen silently
and can lead to later problems, which is often the case
with OpenGL. When these errors go undiagnosed, only
to lead to problems later, finding the place where the er-
ror actually occurs can be particularly time consuming.

GLDebug simplifies catching of errors raised by
OpenGL, meaning that such errors can be discovered
even if a programmer has omitted error handling code.
GLDebug can pause the execution of the program
when OpenGL raises an error, and display information
about the error to the user. By being able to catch such
errors when they occur, GLDebug reduces their impact.

7 EVALUATION

A user study was performed to evaluate GLDebug and
investigate in how far the use of graphics state history
actually facilitates debugging. Interestingly, there do
not seem to be any published studies on the usability
of graphics debuggers at the moment. Our user study
provides some insight into graphics debugging in gen-
eral, and assesses the efficacy of the support for state
history in GLDebug. It also serves as a building block
for future studies in that area.

7.1 Methodology

In this evaluation participants were asked to complete
graphics debugging tasks with and without GLDebug.
By letting them use GLDebug for some tasks but not for
others, all participants got an impression of how useful
GLDebug can be. A mixed-methods approach was used
to collect data during this study:

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

e Think-aloud protocol: While working on the
debugging tasks, participants were encouraged to
speak out their thoughts aloud and make comments
at any point.

e Observations: Participants were observed through-
out the tasks, and significant observations were
recorded.

e System Usability Scale (SUS): After performing
the debugging tasks, participants were asked to fill
in the System Usability Scale [2]] (a common usabil-
ity questionnaire based on Likert-scales).

o Likert-scale questions: Five custom Likert-scale
questions were used for evaluating specific features
of GLDebug.

e Open questions: Open questions were used to ask
what users liked and disliked about GLDebug, about
improvements they could think of, and any other
comments they may have.

Initially, also task completion times were recorded.
However, this revealed one of the challenges when
evaluating domain-specific tools for complex tasks,
such as graphics debuggers: the performance of
individual participants varied strongly, depending on
how much graphics programming experience and pro-
gramming skills they had, and other personal factors.
This did not only introduce a lot of noise into the
measurements, but also meant that some participants
took an excessive amount of time to complete the tasks.
Therefore, measurement of task completion times was
abandoned after a few participants, and a maximum
time of 15 minutes was allocated for each task. If a
participant did not complete a task in the allocated
time, the solution was presented and the participant
could comment on it. To get meaningful results from
quantitative measures such as task completion time,
a lot of training would have to be incorporated into a
study, or participants would have to be selected more
carefully with regard to their graphics programming
skills, to create a more homogeneous sample.

Each participant performed four debugging tasks: two
with and two without GLDebug (i.e. using only text ed-
itor and compiler). Each task was performed by about
half the participants with and the other half without
GLDebug. The tasks were performed in the order pre-
sented below. The tasks were designed to each incorpo-
rate a single and unique bug. This helped us cast light
on the utility of GLDebug for different kinds of bugs,
and reduced any learning effects between the tasks that
may have made tasks easier than usual. The tasks were
modeled on real-world problems, but smaller in scale
to allow for them to be solved in an appropriate time-
frame. The four bugs involved were:

Communication papers proceedings

1. Incorrect graphics state: An incorrectly configured
Z-buffer, resulting in an output with a polygon that
has clipping issues.

2. State leakage: A call to an external library (for
which the source code is not available) leaves tex-
turing enabled, resulting textures being applied to
polygons not intended to be textured.

3. Missing error handling: A shader is not compati-
ble with the shader model of the VM being used
for the test, so that the shader is not being compiled
and used, and the resulting polygon not colored cor-
rectly.

4. Incorrect graphics state: An incorrectly configured
model-view matrix that causes the output to be
drawn progressively further and further away from
the camera, instead of remaining static as desired.

Before undertaking the tasks, participants were given
general training on the use of GLDebug, as well as
a briefing on each task, in the form of instructional
videos. Participants were encouraged to give verbal
feedback during the tasks, and following completion of
a task. Following completion of all the tasks, partici-
pants were given the questionnaire to complete.

7.2 Results and Discussion

There were 7 participants, all of whom were male Com-
puter Science postgraduate students. All but one had
completed at least one course on Computer Graphics
and had some experience in using OpenGL. Some had
more extensive OpenGL project experience (more than
a year of OpenGL development). The participants var-
ied widely in both their general programming experi-
ence and their OpenGL programming experience. As
discussed previously, this variation prevented us from
using performance measures to assess the utility of
GLDebug, but did provide us with the perspectives of
users with different skill levels.

The results of the study were generally positive, indi-
cating that participants found GLDebug useful for the
tasks. Participants indicated that they found GLDebug
especially useful when there were conspicuous state
differences, or when they had a clear idea of what state
variables to inspect. The less experienced users in par-
ticular were sometimes not sure which state variables
were related to an issue, so they found it difficult to
identify the relevant state changes. Users indicated
in both the Likert-scale and open-ended questions that
they liked the ability to compose a view of state over the
course of program execution. However, users indicated
they would like more flexibility and automation in how
state was captured. In summary, people found GLDe-
bug useful when it was clear how they could leverage

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

I feel the instructional videos prepared me for usage of GLDebug. | [
I think GLDebug presented information I used in debugging in an easily accessible manner.
I feel using GLDebug aided me in locating bugs. | [

I found it useful to compare historical state information while debugging. | [

Strongly Disagree M Disagree HENeutral [ Agree [ Strongly Agree

Figure 3: Participant responses to additional Likert-scale questions about the experience with GLDebug.

state information to debug a problem. Our results in-
dicate that graphics state history can aid in debugging
when users find information within that state that is
clearly applicable to the problem at hand.

The average system usability scale score for GLDebug
was 68.2, which is around average [1l], and indicates
that no serious usability issues are present. The par-
ticipants suggested various improvements (see below),
which helps to explain why the system got only an av-
erage score. For a research project such as GLDebug it
is to be expected that it is not as polished and exhaus-
tive in its functionality as a commercial product. The
main point for this study was that debugging with state
history was sufficiently supported.

Figure [3|shows the results of the additional Likert-scale
questions. Q1 indicates that the instructional videos
shown as training were perceived as sufficient. Q2 is
in line with the results of the SUS, indicating no seri-
ous issue, but also indicating room for improvement in
the presentation of information, which is discussed be-
low. Q3 indicates that all users found GLDebug useful
for debugging, which is a promising result for the proto-
type. Furthermore, Q4 shows that most users found the
ability to compare captured state information useful.

The improvements suggested by the participants ranged
from improvements to the GUI to thoughts on extra data
that could be logged by the probe. Much of the feed-
back differed between the participants; for example, a
common suggestion was making the GUI behave like
an IDE the participant was familiar with. However, a
strong majority of participants stated in the open ques-
tion section that they wanted greater control over the
ability to filter the information presented. Another de-
sired feature mentioned in the open questions was the
ability to automatically capture states based on certain
conditions, such as each frame, or when a certain func-
tion call occurs. Filtering and conditional state capture
would help to reduce the amount of information to that
which is relevant for a specific bug. Participants also
indicated a desire for functionality to show the original
source code (if available) where an OpenGL call oc-
curred, indicating the importance of putting the infor-
mation provided by the debugger into proper context.

Our study has some limitations: a small sample size,
a lack of professional graphics developers among the

Communication papers proceedings

sampled participants, and possible order effects. Small
sample sizes are generally acceptable for qualitative us-
ability studies, as experience shows that most usabil-
ity problems can be identified even with few partici-
pants [6]]. Furthermore, there is evidence that senior
Computer Science postgraduate students as participants
are a reasonable approximation of performing an ex-
periment with software professionals [15]. Each task
dealt with a different kind of bug to reduce learning be-
tween tasks, and training was given before undertaking
the tasks to reduce the impact of learning. However,
as all participants performed the tasks in the same or-
der, it is possible that later tasks became easier. As
the study was mostly qualitative, we do not consider
this a severe problem. In conclusion, this study does
provide evidence for the benefits of state history, but
it should be validated with a larger sample taken from
professional graphics programmers, or at least people
with more extensive training and experience in graph-
ics programming.

8 CONCLUSION

In this paper we investigated history-based graphics de-
bugging — a practice that has remained largely unex-
plored in previous work. We illustrated how state his-
tory can be supported in a graphics debugger, and pro-
vided some empirical evidence for its utility. In sum-
mary, we have made the following contributions:

o The design and implementation of GLDebug, a
graphics debugger with features for working with
graphics state history.

e A discussion of use cases for history-based graphics
debugging, and how they are supported by GLDe-
bug.

e An evaluation of GLDebug, indicating that features
for comparing historical states are useful.

Overall, historic state and call information seems to be
useful for graphics debugging, and the evidence indi-
cates that it would be a good idea to extend mainstream
graphics debuggers with features similar to those of
GLDebug. Our study also indicates that state history
would be even more useful when combined with fea-
tures for filtering it, to narrow down the flood of data

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

to relevant states. Another potential way to improve the
use of state history is a better visualization of histor-
ical information. Filtering functionality and visualiza-
tion of information are known to play a role for general-
purpose debugging, so it would be interesting to inves-
tigate how they can further improve the use of graphics
state history. Another area of interest is expanding the
ability to specify when to capture states, such as captur-
ing after particular OpenGL functions, or after drawing
a particular entity.

9 ACKNOWLEDGMENTS

We would like to acknowledge the following people
for their contributions to the GLDebug project: Bruce
Merry, Meng-Da Lin, Osama Sagar, Heinrich Strauss,
and Chen Xiliang.

REFERENCES

[1] A. Bangor, P.T. Kortum, and J.T. Miller. An em-
pirical evaluation of the system usability scale.
Intl. Journal of Human—Computer Interaction,
24(6):574-594, 2008.

[2] J. Brooke. SUS-a quick and dirty usability scale.
Usability evaluation in industry, 189:194, 1996.

[3] I. Buck, G. Humphreys, and P. Hanrahan.
Tracking graphics state for networked ren-
dering. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graph-
ics hardware, pages 87-95. ACM, 2000.

[4] Steven S Curl, Lorne Olfman, and John W
Satzinger. An investigation of the roles of indi-
vidual differences and user interface on database
usability. ACM SIGMIS Database, 29(1):50-65,
1997.

[5] N. Duca, K. Niski, J. Bilodeau, M. Bolitho,
Y. Chen, and J. Cohen. A relational debugging
engine for the graphics pipeline. In ACM Transac-
tions on Graphics (TOG), volume 24, pages 453—
463. ACM, 2005.

[6] Laura Faulkner. Beyond the five-user assump-
tion: Benefits of increased sample sizes in usabil-
ity testing. Behavior Research Methods, Instru-
ments, & Computers, 35(3):379-383, 2003.

[71 Q. Hou, K. Zhou, and B. Guo. Debugging
gpu stream programs through automatic dataflow
recording and visualization. In ACM Transactions
on Graphics (TOG), volume 28, page 153. ACM,
2009.

[8] G. Humphreys, M. Houston, R. Ng, R. Frank,
S. Ahern, P. Kirchner, and J. Klosowski.
Chromium: a stream-processing framework for

Communication papers proceedings

[9]

(10]

(11]

(12]

[13]

(14]

(15]

[16]

(17]

interactive rendering on clusters. ACM Transac-
tions on Graphics, 21(3):693-702, 2002.

Mark J Kilgard. Avoiding 19 common opengl pit-
falls. In Game Developer’s Conference, Proceed-
ings, 2000.

Bil Lewis. Debugging backwards in time. CoRR,
¢s.SE/0310016, 2003.

T. Moller, E. Haines, and N. Hoffman. Real-time
rendering. AK Peters Ltd, 2008.

Guillaume Pothier, Eric Tanter, and José Piquer.
Scalable omniscient debugging. In ACM SIG-
PLAN Notices, volume 42, pages 535-552. ACM,
2007.

Ahmad Sharif and Hsien-Hsin S Lee. Total recall:
a debugging framework for gpus. In Proceedings
of the 23rd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware, pages 13-20.
Eurographics Association, 2008.

M. Strengert, T. Klein, and T. Ertl. A
hardware-aware debugger for the OpenGL shad-
ing language. In Proceedings of the 22nd
ACM SIGGRAPH/EUROGRAPHICS symposium
on Graphics hardware, pages 81-88. Eurograph-
ics Association, 2007.

Mikael Svahnberg, Aybiike Aurum, and Claes
Wohlin. Using students as subjects - an empirical
evaluation. In Proceedings of the Second ACM-
IEEE international symposium on Empirical soft-
ware engineering and measurement, ESEM 08,
pages 288-290. ACM, 2008.

Bryce Van Dyk. Using opengl state history for
graphics debugging. Master’s thesis, The Univer-
sity of Auckland, New Zealand, 2012.

Westley Weimer and George C Necula. Find-
ing and preventing run-time error handling mis-
takes. In ACM SIGPLAN Notices, volume 39,
pages 419—431. ACM, 2004.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Virtual Reality Capabilities of Graphics Engines

Edward Peek
University of Auckland, NZ
epee004@aucklanduni.ac.nz

Burkhard Wiinsche
University of Auckland, NZ
burkhard@cs.auckland.ac.nz

Christof Lutteroth
University of Auckland, NZ
lutteroth@cs.auckland.ac.nz

ABSTRACT

Desktop virtual reality has traditionally been the dominant display technology for consumer-level 3D computer graphics. Re-
cently more sophisticated technologies such as stereoscopy and head-mounted displays have become more widely available.
However, most 3D software is still only designed to support desktop VR, and must be modified to both technically support these
displays and also to follow the best practises for their use. In this paper we evaluate modern 3D game/graphics engines and
identify the degree to which they accommodate output to different types of affordable VR displays. We show that stereoscopy
is widely supported, either natively or through existing adaptions. Other VR technologies such as head-mounted displays,
head-coupled perspective (and consequentially fish-tank VR) are rarely natively supported. However, we identify and describe

some methods, such as re-engineering, by which support for these display technologies can be added.

Keywords:
1 INTRODUCTION

A wide range of computer applications employ virtual
reality (VR) concepts, including the general consumer
applications that involve some sort of 3D virtual envi-
ronment. Common examples of such applications are
3D modelling, computer aided design (CAD), video
games, data visualisation, television and movies.

Recent commercial advances in consumer-level VR
have lead to certain types of VR technology becoming
cheap and of high enough quality to begin displacing
the entrenched traditional technologies. Some exam-
ples of new devices that employ these novel VR tech-
nologies include haptic input methods such as Nintendo
Wii Remote, Microsoft Kinect and Leap Motion Con-
troller; head-mounted displays such as the Sony Per-
sonal 3D Viewer and Oculus Rift; and stereoscopic tele-
vision sets, computer displays and projectors of which
there are too many to name.

While attention and interest towards these tech-
nologies is slowly growing, support for them by VR
applications is still limited. In the case of haptic
inputs this is understandable since implementing
natural user interfaces is a substantial departure from
mouse/keyboard/controller based input systems. On
the other hand, support for new VR display technolo-
gies is much less invasive and in some instances can
even be achieved with no modification to the original
software [10].

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG’2013, June 24-27, 2013
Plzen, Czech Republic.
Copyright UNION Agency — Science Press

Communication papers proceedings

virtual reality, graphics engine, head-coupled perspective, head-mounted display, stereoscopy

This work presents an investigation into modern soft-
ware applications with the objective of determining
what types of new VR display (not input) technolo-
gies are supported by these applications. We specifi-
cally look at graphics engines: reusable software com-
ponents which handle output to VR displays and are
shared by many applications. This allows a large num-
ber of applications to be covered with only the need to
evaluate a few specific graphics engines. The following
research questions embodies the objective of this study.

How far do modern graphics engines support
consumer-level VR display technologies? How easily
can support be added where they do not?

In answering these questions, we also make the fol-
lowing contributions.

e To provide a resource useful for determining which
graphics engines are suitable for future application
development and research in virtual reality.

e To identify common practises, shortcuts and inter-
action methods in engine design that makes them, in
their current state, unsuitable for VR.

e To determine a general sense of how much attention
is being paid to VR issues in consumer graphics en-
gines.

In this paper we first give some background informa-
tion about graphics engines and VR display technolo-
gies in Section 2, and describe some related work in
Section 3. We then describe our methodology to evalu-
ating the graphics engines in Section 4 and discuss our
results in Section 5.

2 BACKGROUND

Graphics and Game Engines

A graphics engine is a reusable software component
designed to render a 3D virtual environment. Graph-

ISBN 978-80-86943-75-6


Skala
Obdélník


21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

ics engines can be distributed as standalone pieces of
software or as part of larger systems, notably, but not
limited to, game engines. This involves taking the cur-
rent state of the simulated environment as input and
rendering an image based on the lighting and shading
model of the simulation. Real-time graphics engines
are those that are capable of performing this process
quickly enough to appear seamless to a user (typically
around 30-60 rendered frames per second). real-time
engines allow the simulation to be interactive and re-
act to inputs from human users; a requirement of VR
systems. In order to achieve real-time speeds, graphics
engines normally delegate rendering to dedicated hard-
ware and use algorithms and models that favour fast
computation over physical accuracy.

VR Display Technologies

Virtual reality display technologies (also known as 3D
displays) are the VR technologies that specifically deal
with visually presenting a virtual environment to its
user. These are used in addition to other VR technolo-
gies such as input systems and audio output, as well
as the software that simulates the virtual environment.
Within the context of this research, we do not consider
the graphical rendering algorithms (such as raserising
polygons, lighting, shading and post-processing) to be
part of a VR display technology, but rather part of the
simulation logic. In this sense a VR display technology
is only the hardware and software that requests graphi-
cal views from the environment simulation and presents
them to the user.

Over time many different display technologies have
been developed to satisfy this role. Nearly all of these
operate on some variant of a camera metaphor; i.e. a
virtual pinhole camera exists in the environment and
regularly takes 2D snapshots which are then displayed
on a physical display surface (such as a computer moni-
tor). The components that make up such a display tech-
nology are the software that models the virtual camera,
the hardware that displays images taken by the virtual
camera, and the software interface that passes these im-
ages in the correct format to the display hardware.

There are several systems [4, 11] for classifying dif-
ferent VR display technologies based on different prop-
erties and generalisations. We utilise an alternative sys-
tem that is based on software implementation require-
ments. In this paper we focus on consumer-level VR
display technologies; specifically desktop VR, stere-
oscopy, head-coupled perspective and head-mounted
displays.

The display properties most important to this study
are how they are interfaced with from software, and
how the rendering pipeline must be adapted to correctly
reflect their perception model. What follows is a brief
description of each of these display technologies, the

Communication papers proceedings

Image appears on
surface of display

)

User

Virtual
camera

(a) Desktop VR

Image appears at
multiple depths

Virtual

cameras

s 3

et
Left Q

User
(b) Stereoscopy
Image appears at multiple

depths and past display
edges if head moved

Virtual
window

(c) Head-coupled perspective

‘It(

Image fills users vision,
appears at multiple depths
and behind past edges
if head moved

Virtual
cameras

(d) Head-mounted display
Figure 1: Depictions of differences between the VR dis-
play technologies in their simulation models and user’s
perception.

intent of which is to define the specific implementation
requirements we use for this study.

Desktop VR has been the dominant form of present-
ing 3D virtual environments to their users since the ad-
vent of computer graphics. Desktop VR operates on
a pinhole camera model, with a virtual camera con-
trolled entirely by the simulation and a display capable
of showing only a single image from this camera at a
time. As the simplest form of VR it avoids many is-
sues such as eye strain, increased computation cost and
poor image quality that have hampered the use of more
sophisticated technologies.

Because desktop VR is ubiquitously supported as the
default output mode of virtually every graphics engine
available today, we don’t discuss it any further in this

paper.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Stereoscopy is an extension of the desktop VR
paradigm adapted for binocular vision. Stereoscopy
achieves this by rendering the scene twice, once for
each eye, then encoding and filtering the images in such
a way that each image is seen by only one of the users’
eyes. This filtering is most easily achieved through
special eye glasses, the lenses of which are designed
to selectively pass one of the two encodings produced
by the matching display. Current methods of encoding
are by colour spectrum, polarisation, temporally or
spatially. These encoding methods are frequently
categorised as passive, active or autostereoscopic. The
difference between passive and active encoding is de-
termined by whether or not the glasses are electrically
actively or not: passive encoding systems are therefore
colour and polarisation while the only active encoding
is temporal. Autostereoscopic displays are those that
do not require glasses because they encode spatially,
meaning that the physical distance between the eyes is
sufficient to filter the images.

Consumer stereoscopic displays interface with comput-
ers in the same way as desktop VR displays (via video
interfaces such as VGA or DVI). Since most of these in-
terfaces do not have special modes for stereoscopy, the
two stereo images are packed into a single image in a
format recognised by the display hardware. Such frame
packing formats include interlaced, above-below, side-
by-side, 2D+depth and interleaved.

Because these standarised interfaces are how the soft-
ware passes rendered images to the display hardware,
software applications are not required to know or adapt
to the encoding system of the display hardware. In-
stead, all that is required for stereoscopy to be sup-
ported by a graphics engine is that it is able to render
two images of the same simulation state from different
virtual camera positions and combine them in a frame
packing format supported by the display.

Head-coupled perspective (HCP) operates on
a slightly different principle than desktop VR and
stereoscopy. A virtual window is defined instead of
a virtual camera, with the boundary of the virtual
window mapped to the edges of the user’s display.
Thus, the image on the display depends on the relative
position of the user’s head, as objects from the virtual
environment are projected onto the display in the di-
rection of the user’s eyes. This projection can be done
using a off-axis version of the projection mathematics
used in desktop VR.

In order to do this, the position of the users head relative
to the display must be tracked accurately in real-time.
Tracking systems that have been used for this purpose
include armatures [19], electromagnetic/ultrasound
trackers [18] and image-based tracking [12]. A limita-
tion of HCP is that since the displayed image depends
on the position of a user, any other users looking at the

Communication papers proceedings

same display will perceive a distorted image since they
will not be viewing from the correct position.

Head-mounted displays are another type of single-
user VR technology. HMDs combine the enhancements
of stereoscopy with a large field-of-view and head-
coupling similar to HCP. The perceptual model behind
HMDs is to completely override the visual input to the
users eyes and replace it with an encompassing view
of the virtual environment. This is accomplished by
mounting one or two small displays very close in front
of the user’s eyes with a lens system to allow for more
natural focus. Since the displays are so close to the
user’s eyes, any part a display is only visible to one eye,
making the system autostereoscopic.

An orientation tracker is also embedded in the head-
gear, allowing for rotation of the user’s head to be
tracked. This allows the user to look around the vir-
tual environment using natural head motion by binding
the orientation of the virtual camera to the orientation
of the user’s head. This differs from HCP where it is
the position, not orientation, that is tracked.

The software requirements to support HMDs are the
same as stereoscopy, with the additional requirements
that the orientation of the HMD must be considered by
the graphics engine, as well as any distortion caused by
the lens system to be corrected for.

In addition to these four technologies, there are nu-
merous other types of VR displays that we do not
adderess in this study. Fish-tank VR is not discussed
because it is simply a combination of head-coupled
perspective and stereoscopy. Furthermore, we do not
consider more sophisticated VR technologies such as
multi-view displays, gaze-dependent depth of field, vol-
umetric displays, and cave automatic virtual environ-
ments (CAVEs) as they do not match our image of
consumer-level. This is largely due to them being sig-
nificantly more expensive (upwards of $1000 USD),
difficult to construct from off-the-shelf components or
impractical to set up in many environments (CAVEs are
an example of this).

3 RELATED WORK

General purpose graphics/game engines and virtual re-
ality research are intrinsically linked, sharing several
common goals. Both are highly dependent on realistic
real-time 3D graphics and simulations, and both aim to
generate a high degree of immersion and engagement.
Because of this game engines provide many features
that make them useful tools in scientific VR research.
Correspondingly, advances in VR research often end
up in graphics engines when they prove to be useful
enhancements.

Lewis and Jacobson [8] explore the use of game en-
gines for scientific simulation. The networking, graph-

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

ical and 3D scene management capabilities of the en-
gines are noted as factors that make them useful for the
variety of sample research applications they have been
used for. Two of the engines mentioned in this article —
the id Tech engine and the Unreal Engine — are investi-
gated in our research, albeit using more recent versions.
The authors do note however that for applications that
require more sophisticated forms of VR, the base capa-
bilities of the engines in question are not sufficient.

A more recent report by Trenholme and Smith [16]
specifically evaluated common game engines for first-
person virtual environments, building upon the work
of Lewis and Jacobson. This work provides generic
descriptions of the advantages and disadvantages of 6
reasonably modern (1-2 major versions behind what is
current now) game engines for use in simulating virtual
environments. However, this comparison does not con-
sider the engines from a VR standpoint, so it misses out
on recent trends. In addition to this, the capabilities of
game engines advance at an extremely rapid pace and
comparisons between previous generation technologies
are not accurate for the current state of the art.

Where the capabilities of an engine are not suffi-
cient for it to be used as-is for VR applications, but
close enough to make it desirable, adaptions can be
made to the engine to allow for its use. Lugrin et
al. [9] describe how the Unreal Engine 3 (again in-
cluded in our research) can be adapted to support ren-
dering in a CAVE system and accept input from a 3D
tracked wand held by the user. This adaption was im-
plemented as C++ plug-ins to incorporate the different
forms of head and wand tracking, split across 6 net-
worked clients to render the different sides of the CAVE
with NVIDIA 3D vision to provide stereoscopy. Sim-
ilar adaptions have been make to other engines to sup-
port more sophisticated VR such as with the Unity En-
gine and CryENGINE.

As well as game engines contributing to VR research,
benefits also flow in the opposite direction, L.E. some
VR technologies originally used for research have now
become available in game engines. Litwiller and LaVi-
ola [6] discuss the implications of one such technol-
ogy (stereoscopy) for gaming. They find that while
there is no actual or perceived performance difference
of the users’ game scores when using stereoscopic 3D,
the users did express a preference towards using stere-
oscopy over desktop VR. Sko and Gardner [14] inves-
tigate different technologies through implementing var-
ious uses of head tracking in games, while Andersen
et al. [1] combine stereoscopy and head-coupled per-
spective (called fish-tank VR) in a first-person shooter
game.

Despite the wealth of research into implementing VR
with game engines, there is little general information on
how well game engines support VR. This may be a re-
sult of the very specialised nature of many VR research

Communication papers proceedings

projects, and the tendency to focus on a single graphics
engine or VR technology. By contrast, we discuss how
far several current graphics engines can go to support
various VR display technologies.

4 METHODOLOGY

Given enough time and effort, any graphics engine can
be made to support almost any VR display technology.
Different methods are available to do this, with a differ-
ent amount of intrusiveness needed depending on how
the software is designed and constructed.

Because measuring the amount of effort required to
implement VR in a graphics engine is a difficult and
inexact task, we have instead determined the level of
suport each graphics engine has for each of the VR
display technologies. Additionally, quality factors are
considered where applicable, as well as several generic
properties of the engines that influence the implemen-
tation of these technologies.

Level of Support

With the flexibility of modern graphics engines it is
not particularly meaningful to note features (particu-
larly VR support) as supported or not-supported, since
almost any feature can be made supported with rea-
sonable effort. The addition of such non-native fea-
tures is either facilitated through extension mechanisms
built into the engine itself, built into the platform the
engine runs on, or by re-engineering either of these
two components. Some of the most common exten-
sion mechanisms built into graphics engines are node
graphs, scripting, plug-ins and source modification.

In addition to these built-in extension mechanisms, it
is also possible to add or modify functionality via re-
engineering. This is required when the built-in exten-
sion points do not provide enough flexibility to imple-
ment the desired functionality. Re-engineering involves
modifying the behaviour of a program by overriding
portions of a program’s original code or by replacing
linked code libraries with modified variants. This will
be described in detail along with the other extension
mechanisms at the end of this section.

Level of support is measured by determining which
extension mechanisms can be used to implement a de-
sired VR display technology. Extension mechanisms
with negligible differences have been combined (such
as scripting and plug-ins), with two additional levels in-
troduced for no extension needed (native support) and
no in-engine support possible (re-engineering). Exten-
sion mechanisms are ordered by the proportion of en-
gine code relative to non-engine code that implements

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

the VR support. The resulting levels of support and
their ordering follows.

5. Natively supported

4. Via in-engine graphical customisation (including
node graphs)

3. Via in-engine coding (scripting or plug-ins)
2. Via engine source code modification
1. Viare-engineering

This helps to answer our major research question and
gives a sense of engine support and engine flexibility
where high values indicate good VR support or flexi-
bility, and low levels indicate poor VR support and low
flexibility. It is important to note that this ordering is
not a measure of the effort required to implement VR,
but rather a measure of how well the engine assists this
task.

We only report the highest level of support attained,
as subsequently lower levels are practically always sup-
ported as well. In addition to presenting the highest
level of support for each VR technology, we also in-
dicate where third parties have demonstrated working
implementations of the technology.

A brief description of each level of support follows.

Native In engines that natively support a VR tech-
nology, the developers of the engine have intentionally
written the rendering pipeline in such a way that mini-
mal effort is required by the user to enable VR render-
ing. All that is required is to check an option in the de-
veloper tools or set a variable in the engine’s scripting
environment. In addition to easily enabling the tech-
nology, the engines are also designed to avoid common
optimisations and shortcuts that are not noticeable with
desktop VR displays, but become noticeable with more
sophisticated technologies. A common example of this
is rendering objects with correct occlusion but at an in-
correct depth [5], which causes depth cue conflicts un-
der stereoscopy.

Graphical customisation Some engines are de-
signed in such a way that the rendering process can
be altered using custom tools with a graphical inter-
face. One approach to this is via node graphs, where
different components of the rendering pipeline can
be rearranged, modified and reconnected in multiple
configurations. Depending on what types of nodes are
supported, it is sometimes possible to configure the
nodes in such a way as to produce the effect of certain
VR technologies. An example is shown in Figure 2,
which depicts the Unreal Engine’s material editing
interface configured to render red-cyan anaglyph stereo
as a post-processing effect.

Communication papers proceedings

Engine coding Practically every engine can be ex-
tended with custom code, using well-defined, but re-
stricted, extension points. The two common forms of
this are scripting, where the engine runs small pro-
grams/scripts in a restricted environment, and plug-ins,
where the engine loads and runs externally compiled
code. Both forms have access to a subset of engine
features; however, plug-ins also have access to exter-
nal APIs while scripts do not. Since this is the mech-
anism through which application-specific functionality
is normally implemented, the engine features available
to the custom code may be targeted more towards ar-
tificial intelligence, game logic and event sequencing,
rather than controlling the exact rendering process.

Engine source code modification In addition to
free open-source engines, some commercial engines
make their complete source code available to users
with the appropriate licence agreement. With access
to the full source code any VR technology can be
implemented, although the amount of modification
required could be significant.

Re-engineering For engines that do not provide
any of the above entry points for customisation,
some amount of change is still possible through
re-engineering. Re-engineering is a form of reverse-
engineering where in addition to learning some of the
workings of the program, some of its functionality is
modified as well. The effort needed to fully reverse-
engineer a rendering pipeline can be significant, so
more minimally invasive forms of re-engineering
are preferable. One of these approaches is function
hooking, which is where the invocation of an internal
or library function is intercepted and replaced with cus-
tom behaviour. Since a very large fraction of real-time
graphics engines use the OpenGL or Direct3D libraries
for hardware graphics acceleration, these libraries make
reliable entry points for implementing visual-only VR
technologies through function hooking. This approach
has proved to be effective for adding stereoscopy to
3D games [10, 17]. We have also shown that it is also
possible to implement head-coupled perspective in this
manner [? ], by hooking the OpenGL functions that
load projection matrices (glFrustum and glLoadMatrix)
and replacing the fixed-perspective matrices provided
by the original program with head-coupled matrices.

Display Technology Support Criteria

For an engine to be labelled as supporting a specific
VR display technology group, it must be able to satisfy
the technical requirements of at least one actual display
technology in that group (e.g. support for anaglyph
stereoscopy indicates general stereoscopy support).
Support can be achieved at any of the levels described
previously, in which case all the technical requirements
of the display technology must be implemented at that

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

" Unreal Material Editor: MyPackage. Anaglypi

Windew
COE Q%o TIEEEE)
yph X

=R

Preview: MyPackage. Anagh

[2)@| @) F

P

EmplEREmEmeterZDL)

Figure 2: Configuration of the Unreal Engine to support red-cyan anaglyph stereoscopy, using the Material Editor.
Adapted from [3]. Other stereo encodings can be supported in this manner, E.G. by interlacing the images for

polarised stereo displays.

level or higher. The technical requirements of each
display technology are the same as those outlined in
Section 2.

VR Quality Factors

In addition to the technical challenge of implement-
ing the VR display technologies just discussed, there
are many secondary quality factors that affect a user’s
perceived quality of the VR experience. These factors
arise because the implementations of the display tech-
nologies can not perfectly replicate the physical phe-
nomenon they model. Since the differences are usually
subtle, the user is frequently not consciously aware of
them, but may instead experience some amount of eye
strain, headaches or nausea. There can also be many
different ways to implement any particular display tech-
nology, each of which balances different quality factors
with other factors such as implementation cost. A prime
example of this is stereoscopy, where at least ten differ-
ent mechanisms to split images between the eyes have
been used recently.

While quality factors are most inherently linked to
the display hardware, appropriate software design can
mitigate these issues, while careless design can intro-
duce new issues. Because this study deals with the soft-
ware implementation of VR display technologies, these
software issue are of interest to us.

Examples of hardware quality factors that can be
mitigated through software are crosstalk (stereoscopy),
A/C breakdown (stereoscopy) and tracking latency

Communication papers proceedings

(HCP and HMDs). Since these factors are well estab-
lished for their respective display technologies, there
are well-known techniques to minimise issues they
cause. The solutions are respectively reducing scene
contrast, reducing parallax and minimising rendering
delays. In most cases the engines this paper evaluates
have non-native support for the display technologies
associated with these quality factors, and subsequently
do not follow these practices.

Incorrect software implementations can also influ-
ence the quality of the VR effect, which can occur due
to carelessness, or as a result of optimisation for desk-
top VR. An example of this is special layers (such as the
sky, shadows and first person player’s body) at arbitrary
depths in different passes. While this produces correct
occlusion in desktop VR, the addition of the binocu-
lar parallax cue under stereoscopy reveals the incorrect
depth, and creates a conflict between these two depth
cues. This is not an uncommon issue due to the dom-
inant nature of desktop VR, and serves as another ex-
ample of where a naive third party implementation may
not be as good as native VR support.

From these points it should be noted that while non-
native VR implementations might meet the necessary
technical requirements, other factors must be taken into
account as well. Where possible we have pointed out
these quality issues, but due to their dependence on a
specific implementation and application it is difficult to
make generalisations for a single graphics engine.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

General Engine Properties

In addition to VR capabilities, this paper also outlines
several general properties of graphics engines. These
properties are chosen to assist researchers and develop-
ers in the selection of engines, to help identify trends of
VR support and to classify the engines. What follows
is a list of the general properties we considered useful.
We do not elaborate on these properties as, being so
general, they are largely self-descriptive.

e Developer interface

e Licences

Programming languages

Target platforms

e Version evaluated

Graphics Engines

The graphics engines of interest to us are those that are
currently being used to render real-time 3D environ-
ments for research, commercial and other applications,
and will likely continue to be used in the near future.
We selected a representative sample of the most popular
engines for this evaluation. The total number of graph-
ics engines is greatly inflated by the number of graph-
ics engines that are custom built for a select few ap-
plications. A secondary limiting factor is access to en-
gines, as many are not made available to 3rd-party de-
velopers, only made available to established companies,
or have prohibitively high licencing costs (in the or-
der of $100k+ USD). This has effectively restricted our
investigation to graphics engines that are open-source
or have free versions available with restricted access.
Fortunately many normally expensive engines provide
such versions, and so we are still able to cover a good
range.

In addition to these restrictions, investigation of spe-
cific engines that are available to us have been priori-
tised according to the following factors.

e Engines should be in active development.

e An engine should have good community support,
and be used in several applications.

e An engine should additionally have been considered
in previous VR research.

e Engines designed for gaming should also have been
used in non-gaming applications.

e Engines should focus on realistic and immersive
graphics, and cutting edge technology.

Communication papers proceedings

The engines we evaluated can be put into 4 groups
based on their licencing model, which also serves as a
reasonably good overview of the general types of en-
gine available.

Premium commercial engines (CryENGINE and
Unreal Engine) are the most expensive and have the
most comprehensive set of features. These are targeted
towards large development studios that can afford the
very high licencing costs to use the engine. These
engines provide graphical tools to allow artists and
game designers to use, while also allowing modifi-
cation and extension of their source to implement
application-specific behaviour. A recent trend has been
for free versions of these engines to be released with
specific restrictions, notably no source-code access and
for non-commercial use only.

Commercial engines (Unity) are similar to pre-
mium engines but at significantly lower costs. They
typically have slightly smaller feature sets or be
intentionally simple and lightweight. Their main
target audience is smaller (particularly indie) studios,
individuals and hobbyists. Like premium engines, they
typically provide graphical development interfaces to
allow non-technical users to use them.

Previously commercial engines (Torque3D)  are
commercial engines that have at some point been made
open-source. Reasons for this might be because newer
versions of the same engine are now sold commercially,
alternative revenue sources are being followed, because
the engine is no longer competitive or to attract a larger
user-base.

Open-source (OGRE and Irrlicht) are engines that
are available for free under open-source licencing.
They are frequently community developed, but some-
times also have backing by a commercial organisation.
The quality and feature-sets of these engines varies
dramatically, but usually falls short of commercial
engines. These engines are typically fully code based,
and do not provide graphical tools for development.

In addition to the engine categories included in this
study, another major one is proprietary engines. These
are those engines developed in-house for a specific ap-
plication. None of these engines are included in this
evaluation because they, by very nature, are not made
available to third parties for development.

5 RESULTS AND DISCUSSION

The results of our evaluation can be found in Tables 1
and 2 with a discussion to follow.

The most obvious result from this evaluation is that
almost none of the graphics engines evaluated support

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

VR technology

Stereoscopy

Head-coupled perspective

Head-mounted display

CryENGINE

5: Native [10]
Support for both dual render-
ing and retargeting. Supports
both manual and GPU driver
frame packing.

3: Coding

Access to camera matrices
through C++ interface. C++
sufficient to access any head
tracking method.

3: Coding [2]

Stereoscopy supported na-
tively, orientation tracking
can be accessed via C++
plug-in.

OGRE 3: Coding [7, 10] 3: Coding 3: Coding [13]
OGRE rendering can be fully controlled and customised via the C++ interface, allowing
implementation of all three display technologies.

UDK 4: Graphical customisation 1: Re-engineering* 3: Coding
[3, 10]
Dual camera rig can be cre- No access to custom cam- Stereoscopy through custom
ated using Unreal Kismet eraprojection fromengineso implementation, head orien-
and outputs packed using the re-engineering is needed if tation can be obtained via a
material editor. your licence does not include  custom DLL and bound to

source code access. camera via script.

Unity 3: Coding [15] 3: Coding 3: Coding
Dual cameras can be created Scripting supports custom Stereoscopy through custom
and control via script, im- camera projection matrices. implementation, head orien-
ages can be packed as post- Tracked head position can be tation can be obtained via
processing filter. obtained via C++ plug-in. C++ plug-in.

Irrlicht 3: Coding [10] 3: Coding 3: Coding
Irrlicht rendering can be fully controlled and customised via the C++ interface, allowing
implementation of all three display technologies.

Torque3D 3: Coding [10] 2: Source modification 3: Coding [20]

Multiple passes of rendering
are supported. This can be
used to create the dual views
and pack them in a compati-
ble format.

Scripting interface to cam-
era does not support off-axis
projections, camera projec-
tion generation must be mod-
ified in code.

Head orientation can be
accessed from an external
tracker over TCP. Camera
orientation can be updated
based on this via script.

Table 1: Graphics engines’ levels of support for various VR display technologies. *depends on licence

Name and Version Interface Licence Code language  Platforms
Free for non-commercial use,
CryENGINE 344 OU1 Licence required for commercial =1 be
Framework Lua Games console
use or source code access
OGRE 1.8.1 Librar Open-source (MIT) Cot PC
h y P Material scripts ~ Smartphone
Free for non-commercial use, Cirt PC
UDK 2013/02b GUI Licence required for commercial . Games console
UnrealScript
use or source code access Smartphone
Free limited version
Flat fee pro version C# PC
Unity 4.0.112 GUI P . . . Games console
Source code access via special JavaScript
. Smartphone
licence
Irrlicht 1.8 Library Open-source (zlib) C++ PC
Torque3D 2.0 GUL Open-source (MIT) TorqueScript,  p
orque ' Framework P C++

Table 2: General properties of graphics engines

Communication papers proceedings

46

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

a non-traditional VR display technology. The only en-
gine that does is the CryENGINE, which natively sup-
ports stereoscopy in most of the formats used by mod-
ern stereoscopic displays. There are two explanations
for this deficit. Firstly, that the developers of the en-
gines do not believe these display technologies war-
rant the extra effort needed to support them. Or sec-
ondly, that they believe that the 3rd party support is
good enough that native support is not necessary. It
is our belief that the second point is the more likely,
since all engines support stereoscopy through several
3rd party programs including NVIDIA 3D Vision.

In terms of how well the engines are designed to ac-
commodate 3rd party VR support, most rate very highly
with all but two instances having levels of support at
level 3: coding or better. The two instances of lower
support occurred when the scripting system did not pro-
vide enough control over the camera parameters. It is
unknown whether the lack of access is intentional be-
cause the underlying rendering systems do not support
arbitrary camera properties, or whether they were seen
as unnecessary, not useful or just not thought consid-
ered.

In some cases the engine extension mechanisms do
not have enough functionality to host the entire VR
technology, but do provide communication functional-
ity so that part of the technology can be offloaded to a
separate process. This occurs when the scripting inter-
face can’t access the HMD or HCP head tracking val-
ues directly, but can indirectly over local TCP or UDP.
Native code (e.g. C and C++) is normally needed to
access the head tracking hardware. An example of this
is Torque3D which does not provide any access to na-
tive code at levels of support above level 2: source code
modification.

Of the three display technologies considered, HCP
is the only for which we could not find any examples
of 3rd-party implementations. Potential explanations
might be that this is a less well-known technique, that
it is a predominantly software technique and so is less
easily commercialised, or more likely because it does
not provide as good an effect as the other VR technolo-
gies.

The core point to take away from this work is that
while the majority of graphics engines do not support
most VR display technologies natively, they almost al-
ways provide enough flexibility such that support can
be manually added.

6 CONCLUSIONS

We have described the mechanisms by which modern
graphics and game engines may be extended to support
non-traditional display technologies, particularly stere-
oscopy, head-coupled perspective and head-mounted
displays. Where these engines do not have built-in ex-
tension mechanisms, or the ones that are provided are

Communication papers proceedings

too limited, these display technologies can always be
implemented through re-engineering the engine.

Most of the engines evaluated do not provide na-
tive support for any non-traditional display technolo-
gies, and stereoscopy is the only technology that has
any amount of native support in current versions of
these engines. However several engines have support
for head-mounted displays planned for future versions.

In the many instances where an engine does not pro-
vide native support for a display technology, support
can usually be attained by developing a script or plug-in
to produce the effect. Often this has been proved pos-
sible by other researchers or developers, and in many
cases the source for the implementation is publicly
available.

7 FUTURE WORK

As previously discussed, we believe the reason that
most engines do not support most of the VR technolo-
gies evaluated is that there are still too few commercial
displays that use them. As more exemplar displays be-
come available this should start to change, and this can
already be seen with several game engine developers
(Torque3D, UDK and Unity) announcing support for
HMDs (specifically the Oculus Rift) in future versions.
It will be interesting to see whether support for specific
technologies such as this will bleed through to other
technologies as VR sophistication becomes a more im-
portant feature.

We have also considered a very small subset of
the available classes of VR display technologies.
Extending this evaluation to other technologies such
as CAVEs, volumetric displays, multi-view displays
and gaze-dependent field of view will increase the
number of applications that benefit and also expose
how engines can be adapted to cope with technologies
substantially different from desktop VR.

In a similar vein, we have only evaluated 6 graph-
ics engines which represents a tiny fraction of the en-
tire population. Our preference towards selecting high
speed real-time engines that have already been used for
VR applications also means we did not consider any
graphics engines used for applications such as CAD or
scientific visualisation, which often have pseudo-real-
time engines (in the sense that they react reasonably
quickly to input, but not seamlessly).

We have also only considered the display side of VR,
and ignored input technologies. While in many cases
this can be done with little consequence, dependencies
between the two have been known to cause problems.
For instance mouse pointing depends on the virtual
cameras projection properties which breaks down when
there are multiple projections, as with stereoscopy, or
the projection changes continuously, as with the track-
ing from HCP and HMDs. More work is needed to
determine ways in which such input systems can be

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

accommodated for when using these display technolo-
gies.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

A.S. Andersen, J. Holst, and S.E. Vestergaard. The implemen-
tation of fish tank virtual reality in games.

Nathan Andrews. Crysis vr - head and gun tracking mod for the
oculus rift, February 2013. URL http://www.youtube.
com/watch?v=TJIx21yuCi7E.

Christopher Berry. How to make a stereoscopic camera rig for
udk, July 2011. URL http://www.thebeardedberry.
com/How%20To%20Make%20A%20Stereoscopic%
20Camera%$20Rig%20for%20UDK. pdf.

Barry Blundell. On exemplar 3d display technologies.
Technical report, Auckland University of Technology, 02
2012. URL http://www.barrygblundell.com/
upload/BBlundellWhitePaper.pdf.

Slava Gostrenko. 3d stereoscopic game development - how to
make your game look like beowulf 3d. In NVIDIA Presen-
tations at Game Developers Conference 2008, San Francisco,
USA, February 2008. URL http://www.nvidia.com/
object/gdc-2008.html.

Joseph J. LaViola, Jr. and Tad Litwiller. Evaluating the bene-
fits of 3d stereo in modern video games. In Proceedings of the
2011 annual conference on Human factors in computing sys-
tems, CHI ’11, pages 2345-2354, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0228-9.

Mathieu Le Ber. Stereoscopy manager for ogre, January 2012.
URL  http://sourceforge.net/p/ogreaddons/
code/2986/tree/trunk/stereoscopy/.

Michael Lewis and Jeffrey Jacobson. Game engines. Commu-
nications of the ACM, 45(1):27, 2002.

Jean-Luc Lugrin, Fred Charles, Marc Cavazza, Marc Le Re-
nard, Jonathan Freeman, and Jane Lessiter. Caveudk: a vr
game engine middleware. In Proceedings of the 18th ACM sym-
posium on Virtual reality software and technology, VRST 12,
pages 137-144, New York, NY, USA, 2012. ACM. ISBN 978-
1-4503-1469-5.

NVIDIA  Corporation. Nvidia 3d vision, March
2013. URL http://www.nvidia.com/object/
3d-vision-main.html.

Waldir Pimenta and Luis Paulo Santos. A comprehensive tax-
onomy for three-dimensional displays. In WSCG 2012 — 20th
International Conference on Computer Graphics, Visualization
and Computer Vision, pages 139—146. Union Agency, 2012.

J. Rekimoto. A vision-based head tracker for fish tank virtual
reality-vr without head gear. In Virtual Reality Annual Inter-
national Symposium, 1995. Proceedings., pages 94 —100, mar
1995. doi: 10.1109/VRAIS.1995.512484.

Brian Ries, Victoria Interrante, Michael Kaeding, and Lee An-
derson. The effect of self-embodiment on distance perception
in immersive virtual environments. In Proceedings of the 2008
ACM symposium on Virtual reality software and technology,
VRST ’08, pages 167-170, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-951-7.

T. Sko and H. Gardner. Head tracking in first-person games: In-
teraction using a web-camera. Human-Computer Interaction—
INTERACT 2009, pages 342-355, 2009.

Communication papers proceedings

[15]

[16]

[17]

[18]

(19]

[20]

Stereoskopix.  Stereoskopix fov2go, January 2013. URL
https://www.assetstore.unity3d.com/#/

content/2927.

David Trenholme and ShamusP. Smith. Computer game en-
gines for developing first-person virtual environments. Vir-
tual Reality, 12:181-187, 2008. ISSN 1359-4338. doi:
10.1007/s10055-008-0092-z. URL http://dx.doi.org/
10.1007/s10055-008-0092~2z.

TriDef.  Tridef 3d, March 2013.
tridef.com/products/pc.

URL http://www.

Colin Ware and Glenn Franck. Evaluating stereo and mo-
tion cues for visualizing information nets in three dimensions.
ACM Trans. Graph., 15:121-140, April 1996. ISSN 0730-
0301. doi: http://doi.acm.org/10.1145/234972.234975. URL
http://doi.acm.org/10.1145/234972.234975.

Colin Ware, Kevin Arthur, and Kellogg S. Booth. Fish tank
virtual reality. In Proceedings of the INTERACT ’93 and CHI
’93 conference on Human factors in computing systems, CHI
’93, pages 37-42, New York, NY, USA, 1993. ACM. ISBN
0-89791-575-5.

David Wyand. Torque 3d and oculus rift, March 2013.

URL http://www.garagegames.com/community/
blogs/view/22225.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Physics-based Water Interaction and Shading:
The SiViFlow Algorithm

Joao Pereira

INESC-ID
Rua Alves Redol 9,
1000-029 Lisboa

jap@inesc-id.pt

Vasco Costa

INESC-ID
Rua Alves Redol 9,
1000-029 Lisboa

vasco.costa@ist.utl.pt

David Sena

INESC-ID
Rua Alves Redol 9,
1000-029 Lisboa

davidsena@ist.utl.pt

ABSTRACT

Current real-time applications feature rivers that are pre-calculated off-line and present static animations and be-
haviours. These pre-calculated approaches have several limitations when used in real-time applications such as
video games as they usually do not react to changes performed by the user. Due to the continuous pursue for better
realism, the techniques used to simulate rivers have not only to improve the appearance of rivers but also allow
them to adapt to dynamic changes performed in real-time. The approach presented in this work allows the dynamic
generation of the river given any riverbed. The algorithm is also flexible enough to adapt the river flow in real-time.
This approach not only accelerates the creation of realistic rivers but also increases the realism as the river is able

to react to dynamic objects that come in contact with the flow, by properly adjusting its course.

Keywords

Water, Real-Time, River Animation, Flow Simulation.

1 INTRODUCTION

With the introduction of faster hardware and increasing
demand for more realistic nature effects, researchers
have been trying to create feasible nature models that
are computationally viable and meet the constraints im-
posed by real-time applications. Nowadays applica-
tions such as video games try to simulate fully featured
worlds with weather effects, large rivers and oceans, re-
alistic animation systems among many other traits com-
mon in the real world. Due to the tight restrictions of
real-time applications, an approach to simulate this type
of phenomena would have to contain only the minimum
amount of physical features necessary to make a river
behave correctly and still leave enough computational
resources available to draw a convincing visual repre-
sentation of the fluid being simulated. The objective of
the presented work is to create a new approach that sim-
ulates watercourses with any width, that flow correctly
and are dynamic enough to be able to adapt to the fea-
tures of their surroundings. A visually appealing rep-
resentation of the flow being simulated is also included
in order to be able to recreate with fidelity the water-
courses from a visual standpoint. Our focus will reside
mainly on the architecture description of the algorithm
and less on implementation details or specific optimiza-
tion issues. In order to focus the objectives of our work
inside a broad subject such as fluid dynamics and as this
work will be used in the context of video games, we
decided to use real-time rendering techniques that al-
low the use of this approach in highly complex scenes.
The final result had to be easily configurable both in

Communication papers proceedings

terms of visual appearance and physical parameters in
order to allow this approach to be used in any setting.
This would allow not only to change the visual features
but also the behaviour of the river according to its sur-
rounding, making it more flexible to adapt to different
surroundings (e.g. it should be flexible enough to able
portray both a tropical or a sea like environments). Re-
garding the dynamic flow simulation two main contri-
butions were done in our work. First the automatic gen-
eration of a velocity vector field given an arbitrary river
surface mesh. Given the mesh as input, the algorithm
analyses and generates enough data to be able to cre-
ate a vector field that describes not only the direction of
the flow but also its velocity at any point. Second once
we’ve calculated the vector field, we’ll generate a re-
alistic and adaptive flow behaviour which allows us to
portray any amount of turns in a given river network and
even take into account changes performed to the river
channel such as dynamic objects altering the flow. This
contribution takes into account the fact that the river
surface mesh might have any width, have a complex
river shape and that all the flow information drawn on
screen is updated accordingly.

2 RELATED WORK

2.1 Navier-Stokes equations

The basis of most fluid simulation models both in Com-
putational Fluid Dynamics and Computer Graphics are
the Navier-Stokes equations. These equations allow us
to represent a fluid by its velocity field and a pressure

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

field, varying both in time. If both fields are known at
the initial time then we can describe the state of the fluid
over time using:

du 1 5
a—t——(u-V)u—EVp—&—vV u+f (D)
Vou=0 )

where - denotes a dot product between vectors, V is the
vector of spatial derivatives, u and p are the velocity and
pressure fields of the fluid, p is the density and v is the
kinematic viscosity. f is a vector representing external
forces. Equation 2 is called the continuity equation and
means that fluids conserve mass[Sta99]. The right-hand
side of the equation 1 consists of four parts:

e Advection : —(u-V)u which represents the process
by which a fluid’s velocity transports itself and other
quantities in the fluid. In most simulations this rep-
resents the force that the surrounding fluid particles
exert on a particle and causes it to transport itself
along the velocity field.

e Pressure : —LVp causes regions with a higher pres-
sure to accelerate the molecules away from that area.

e Diffusion : vV2u represents the force caused by the
viscosity of the fluid.

e External forces : f represents forces that act on the
fluid like gravity.

2.2 Approaches to Fluids Simulation

Physically-based water simulation has been an active
research field for the last 30 years. Several different
approaches have been proposed but usually they can be
grouped into smaller distinct categories. In Figure 1
a schematic[GHO6] is shown where the main types of
water simulation are depicted.

Water Simulation

[ 1

Particles
Smooth Particle Hydrodynamics

Procedural
Non-Physical using functions

Grid based

|

[ 1

Heightfield

2.5D grid 3D grid

Figure 1: Water modeling techniques

The widest classification that can be made is a di-
vision between surface-based and volume-based tech-
niques. The latter apply the Navier-Stokes equations to

Communication papers proceedings

model the liquid’s physical flow properties. Amongst
the volume-based techniques, we can find many differ-
ent approaches. One of those categories is the Eule-
rian approach. This approach looks at fixed points in
space, discretizing the domain in regular grids, either in
2D [Sta99][Fos96][WLLO04] or 3D [Ngu07][CTG10].
Each grid cell stores both scalar quantities (such as
pressure and temperature) and vector quantities such as
velocity. In this approach the computational elements
are fixed in space throughout the simulation and a fi-
nite difference method is used to solve the equations
numerically. The major advantage of this method is the
possibility to allow adaptive time steps and the inher-
ent smooth liquid surface that it allows. On the other
hand, this method suffers from a lengthy computational
time and grid resolution limitations allied with alias-
ing in the boundary discretization. It also suffers from
poor scalability in terms of computational power and
memory consumption. Another approach is the La-
grangian, where the fluid is approximated by several
discrete particles and their respective properties. Each
point in the fluid is considered as a single particle, with
a position x and a velocity u. In order to solve sev-
eral problems regarding the discretization of the con-
tinuum using the Navier-Stokes equations, the method
most commonly used are Smoothed Particles Hydro-
dynamics (SPH)[CBL'09][HKK07][DG96]. The ap-
proach taken by SPH is to define a smoothing kernel
to interpolate physical properties (velocities, densities,
etc) at an arbitrary position from the neighbouring par-
ticles, instead of defining each particle and their physi-
cal properties individually. This approach has two ma-
jor drawbacks. First the smoothing kernel should be
designed carefully because the stability, accuracy and
speed of the SPH method largely depends on the choice
of those kernels. Second there is quite a complex step
in the Lagrangian method that is constructing a smooth
surface for rendering. Many research works have pre-
sented possible solutions [vdL.GS09] but up till now, the
quality of liquid surfaces constructed from the whole
bunch of particles is not as compelling as its Eulerian
counterpart.

Among surface-based techniques, there are procedural
methods which despite the fact that they don’t model
the whole fluid domain or some fluid quantities (e.g.
pressure), usually represent the fluid in terms of veloc-
ity fields. These approaches don’t start from the equa-
tions but pick a way to describe the state of the system
(usually through a velocity field of the fluid), evaluat-
ing and updating it anywhere in space and time. Even
nowadays this kind of approach is preferable because
it provides an extremely simple approach to efficiently
generate a fluid-like behaviour in a body. It also allows
to control the animation of a body of water, something
that is not as easy to obtain when using volume-based
methods as in those approaches we would have to deal

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

with the discretization of partial differential equations,
grids and solving systems of equations. Additionally
most of previous methods rely on data that was com-
puted with a fixed resolution, something that doesn’t
take into account a freedom of movement present inside
most real-time applications and not present in movies or
non-interactive demonstrations. One last advantage is
the possibility to control several visual features of the
fluid without having to recalculate the whole system,
set the initial values and make sure that all the bound-
ary conditions are well defined.

Method Advantages Disadvantages
Eulerian Smooth Surface | Memory usage
Adaptive time Scalability
step Grid Resolution
limitation
Lagrangian | More intuitive Smoothing Kernel
Irregular Surface
boundary reconstruction
Procedural | Easy integration | Difficult to model
Extensible some fluid values

Table 1: Water modelling techniques comparison

In Table 1 we show a summary of all the advantages
and disadvantages of each technique.

For this work we chose the procedural approach be-
cause of the advantages described above and also due
to the fact that it suits better the requirements of real-
time applications.

2.3 Water Rendering

Fluids rendering is one of the most active fields
inside Computer Graphics. As most of the physical
behaviour of water couldn’t be modelled at interactive
frame rates inside real-time applications, developers
and researchers focused most of their attention in
getting as much visual fidelity as possible when
rendering water. Reflection and refraction are ele-
ments that have been widely used in the simulation
of water since the beginning of Computer Graphics
[EMFO2][GHO6][PF05][Tes99]. Their use allows the
user to see through the water and at the same time see
the environment reflected on the water surface. This
apparently trivial contribution fools the eye so much
that most commercial products that include water
algorithms sometimes only have these elements plus
a wave generator. The most common way to describe
reflection and refraction phenomena are the Fresnel
equations[SJ09]. These equations allow us to describe
the behaviour of light when moving between media
with different refractive indices.

2.4 River Simulation and Rendering

A situation where fluid simulation is commonly applied
to is when water flows between two or more bound-

Communication papers proceedings

aries, moving from a source into a sink. An exam-
ple of that can be a river flowing where we have at
least two river boundaries and the water flows to the
river mouth or estuary. A river simulation can be de-
composed in two main components: a simulation com-
ponent where the physical behaviour is simulated and
a visual component where the looks of the fluid are
created. The work "Scalable Real-Time Animation of
Rivers"[YNOS][YNBHO09] was able to simulate large
scale rivers with realistic flow, yielding very appealing
results. This work depicted a very realistic flow be-
haviour thanks to their new texture advection method,
allowed real-time editing of the river channel with the
respective flow adaptation to the new river boundaries
and best of all it didn’t depend on the scene complexity.
Despite all these advantages there were still a couple
of drawbacks. First the computational cost of the algo-
rithm was linearly dependent with the projected river
surface being rendered. Second the amount of data
transferred between the Central Processing Unit (CPU)
to the Graphics Processing Unit (GPU) is directly re-
lated with the Poisson-disk radius which increases lin-
early and quickly becomes prohibitive even with recent
hardware. A final disadvantage was the need for the
advection step to run on the CPU and the fact that this
work assumed completely flat world profiles, excluding
potential effects related with slopes of the terrain.

On the visual component there’s a very visually ap-
pealing algorithm called Tiled Directional Flow[vH11].
This new algorithm offered several advantages over
other flow simulation algorithms, was very cheap in
terms of resources and yielded visually appealing re-
sults. They achieve a very realistic flow animation
through the decomposition of the river surface in tiles,
generating overlapping tiles all over the river channel
(like a chess board on top of the river surface). Each
tile has its own flow, local speed, direction and size of
waves. By combining several normal maps together, the
final result doesn’t resemble sliding normal maps any-
more and portrays a very pleasant appearance and ani-
mation. Even though the results of this algorithm were
very satisfactory the fact that the authors have relied on
the use of static flow maps limited the usage of this al-
gorithm for big sized domains as it would require to
either load a very large flow map or have some kind of
spatial division algorithm to load the flow maps on the
fly. Another disadvantage related with the use of static
flow maps is that they can’t take into account the in-
fluence of dynamic objects interacting with the river in
real-time, which was something that had already been
solved [YNOS8].

3 SIVIFLOW

SiViFlow is composed by two main elements: the Sim-
ulation Engine and the Visualization Engine. Figure 2

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

illustrates the block architecture of the SiViFlow algo-
rithm. The Simulation Engine is where all the calcu-
lations related to physics of the river take place. This
engine is divided in three main modules: the River Sur-
face Generator, the River Particle Generator and the
Flow Texture Mapper. From the programming point of
view, the River Particle Generator and the Flow Tex-
ture Mapper make up a larger block called the River
Particle Processor which will be described later in de-
tail. The Visualization Engine is responsible for receiv-
ing the simulation data from the Simulation Engine and
to output a graphical representation. This engine is di-
vided in two main modules: the Flow Renderer and the
Reflection.

CPU GPU

Simulation Engine

River Surface
Generator

I
I
I
T
I
|
|
|
|
I
|
|
|
1
1
1
River Particle Processor :
1
1
1
1
I
I
|
T
|
|
I
I
I
I
I
I
I
I
|

Visualization Engine

Flow Renderer

Figure 2: Block Architecture of SiViFlow

River Particle
Generator

Loop

Flow Texture
Mapper

3.1 River Surface Generator

At this stage a river surface mesh needs to be created,
which can either be done using an external modelling
application or by generating it in real-time. At the be-
ginning we don’t know how many vertices go from one
shore to the other in one single section of the river, so
we start by calculating the river width and flag which
vertices can be considered shore vertices. A river sec-
tion is a set of vertices that are placed between two
shore vertices and form a line that is perpendicular with
both river shores as shown in Figure 3. In order to find
out which vertices are shore vertices, we start by iden-
tifying the first vertex from the river mesh and calculate
differences in distance between this vertex and all the
other vertices that follow. When we reach the end of
the river section we’re processing, the difference stops
increasing and it means we’ve reached the vertex which
is on the same shore as our first vertex (the shore vertex
right next to the one we’re processing), thus the last ver-
tex we processed belongs to the opposite shore. With
that we calculate the river width (see Algorithm 1).

Algorithm 1 sums up all the steps taken during this pre-
processing phase. The only input information required
are the river mesh vertices. The algorithm starts looping
from the first vertex which we know it’s a shore vertex
as it’s located in a corner of the river mesh. We compare

Communication papers proceedings

for all vertices do
if vertex is a shore vertex then
Flag vertex
RiverWidth(vertices)
DistanceToMargins(vertices)
CalculateFlow(vertices)

Algorithm 1: River surface generation algorithm

the width between this first vertex and the following
vertices, making sure to always store a new width if the
value is larger than what was previously stored. When
the section of the river ends and we’re processing the
shore vertex which is on the same shore and right next
to the first one, the distance between both vertices will
be smaller than the full width of the river. We store the
current width value and the amount of vertices that go
from one shore to the other. At this stage we know the
river width at each section as we have looped through
all the river sections that compose the river surface. We
also know the amount of vertices that go from one shore
to another, allowing us to flag the vertices that belong to
the river shore. These vertices need to be handled dif-
ferently because they’ll be used for calculating the flow.
Now for each vertex in the river mesh, we store its dis-
tances to each of the river shore vertices at their river
section. This information will later be used to calculate
the flow velocity. Lastly we calculate the river flow at
each river section, storing the information in every ver-
tex. Both the flow velocity and flow generation will be
described in more detail in the following sections.

3.1.1 Flow Generation

In order to calculate the flow we pick two shore vertices
in the same river section, then we calculate their mid-
point and translate in the positive up axis, as shown in
Figure 3 where the up vector used is aligned with the y
axis.

Figure 3: Flow vector created from a plane defined by
two shore vertices and their midpoint translated in the
+y axis

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

With these three points we generate a plane that will al-
low us to create a vector that is perpendicular with the
river section being processed. As the flow is constant
for each river section and is parallel to the margins, the
normal vector of the plane describes correctly the flow
direction of that section as shown in Figure 3. Since
the generated plane has two possible normal vectors,
the normal generation procedure must take into account
this direction and return the correct normal vector. In
the end we have a flow field that is as detailed as the
mesh of the river surface and where each vertex con-
tains its own flow vector stored.

One advantage of generating the flow this way regards
its flexibility to dynamically recalculate the flow when
an object interacts with the river. In case a dynamic
object alters the course of the flow, the boundaries of
the object will be used to recalculate the new flow and
will substitute the shore vertices that were previously
used.

As the values are tied to the river mesh and the collision
vertices are known, SiViFlow is able to recompute the
flow of the river and immediately reflect the changes.

3.1.2  Flow Velocity

In order to obtain the flow velocity we calculate a
stream function field(¥) for the river channel flow using
an existent interpolation scheme [YNOS][YNBHO9].
At this stage we have all the information required to
calculate the following equations. We run for each
vertex all the Equations 3, 4 and 5 [YNOS][YNBHO09]
and store their values.

Yiw(d)¥i
W(P) ="~ (3)
( Yiw(d;)
with P being the position of each river surface vertex,
d; the distance from point P to the each of the bound-
aries, W; the stream function value of a margin and the
weighting factor w is:

(@)= dP-f(1—-4),if 0<d<s,
e = 0, if s<d,

where s is the radius used to search for boundaries, p is
a positive real number and f is defined as:

“

f(t) =6 —15:* +108 5)

3.2 River Particle Processor

River particles are a concept we created in order to sam-
ple information from our domain and retrieve its values.
As we want to be able to handle large watercourses, it’s
not feasible to rely on loading all the river surface in-
formation to Video RAM (VRAM) every frame. In our

Communication papers proceedings

case we're interested in getting only the visible river
mesh values so we can retrieve and send them to be
rendered on the GPU. One of the main features of the
river particles is that they’re created in screen space in
order to guarantee a uniform distribution of the parti-
cles over the visible domain at each frame. The rea-
son for generating these points in screen space is that
as each particle contains a defined radius to make sure
no two particles are too close to each other, analysing
this problem in screen space guarantees that these ra-
dius disks maintain a uniform radius. In world space
these disks would be ellipses which would make the de-
tection of overlapping particles harder. Another advan-
tage of this scheme is that we only process visible infor-
mation as we eliminate all non-visible particles which
minimizes the waste of resources. There are some sim-
ilar approaches to ours such as texture sprites [Ney03]
and wave sprites [YNOS][YNBHO9].

3.2.1 River Particle Generator

We start by generating several randomly distributed
points, generating a Poisson-disk pattern using a mod-
ified boundary sampling algorithm [Bri07][DHO6].
We’ve adapted this algorithm to start from a fixed set of
points instead of a random point. An advantage of this
algorithm is that it guarantees that all points are equally
distributed over the given domain, which in this case
as we’re aiming to generate particles in screen space,
means they’re all equally distributed over the screen.

In the end of running this algorithm, we end up with
a set of points that we’ll convert to river particles.
In order to generate a 3D world position for each of
these points (after being generated we only have their
2D coordinates) we proceed as Figure 4 shows. A
ray is cast for each particle and we store the collision
point between the ray and the 3D world. Using this
method we can compute at each frame, for each
point, its 3D world position. Besides calculating the
world position we also calculate other features such
as global identifiers to be able to identify each of the
particles, velocity and flow. Unlike other algorithms
[YNOS][YNBH09], we don’t advect our particles
during our CPU update loop. The reason for this is due
to the fact that our particles aren’t concerned with the
fluid’s motion, they’re simply a way to sample the nec-
essary information in screen space and send it from the
CPU to the GPU. An inherent advantage of not having
to advect particles during the update loop is that it
allows us to offload the work from the CPU to the GPU.

All of this information will allow us to find out in the
next stage what’s the nearest flow data to load into the
flow texture. We just search inside a radius r for the
closest vertex and assign that flow information to the

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

1
on S9%°

5or@
pLbe

ce
=
wor"

ac®

g O
N\app\ﬂg
Figure 4: Ray cast performed from camera position and
mapped into world space to obtain each particle’s world
position

river particle. The value of the radius r used for each
situation was obtained through trial and error, although
more sophisticated approaches can be used. This step
differs from [YNOS][YNBHO9] as they first render the
river surface to a buffer inside the GPU, find out which
particles are inside the river surface and then query each
individual pixel to find out which particle sits inside.
Our approach despite being a bit more computationally
intensive, doesn’t have the inherent problems that might
arise from relying in performing constant transfers be-
tween the CPU and GPU.

3.2.2 Flow Texture Mapper

In order to feed the GPU with the information required
to render the flow, we used a flow texture and an auxil-
iary texture. Similar ideas have been explored by other
authors [YNOS][YNBHO09][PFO05] to achieve other ob-
jectives. In our approach we store all the information
we need inside each color channel and read it back
when it reaches the GPU. In Figure 5 we can see the
distribution of each of the components in both the flow
texture and auxiliary texture.

RS G8 B8 A8
Particle Index Flow Flow Flow Flow
Number Vector x Vector y Vector z Texture
. Auxiliary
Velocity Depth Slope - Texture

Figure 5: How each component is stored inside each of
the 8 bit size texture channels

These textures will store the river particles previously
generated using each of the color channels of the tex-
ture.

In the flow texture we will store for every entry data
such as the global identifier of the river particle and its
respective flow. The identifier in this texture will be
used as a way to look-up the remaining data from the
auxiliary texture. For each entry of the flow texture, we

Communication papers proceedings

Aucxiliary Texture

Screen

Flow Texture

Figure 6: Storage scheme used in the flow and auxiliary
textures

while true do
for all particles do
if Particle is outside of frustum then
Delete Particle
if Particle violates the minimum distance cri-
terion in Screen Space then
Delete Particle
Insert new particles to keep the Poisson-disk
for all new particles do
Convert to river particles
Write new data to the flow texture
Write new data to the auxiliary texture
Render

Algorithm 2: Application loop

store the flow information that covers that pixel. For
performance reasons we used a flow texture that had a
lower resolution than the screen resolution being used.
The auxiliary texture will have other parameters such
as velocity, river bed slope and river depth. In Figure 6
we can see how each river particle is stored in a smaller
sized version of the flow texture and how the global
identifier for each particle will be used to address the
auxiliary texture.

In Algorithm 2 we can see that the whole update
process is performed at every frame update. First we
start by having to delete the particles that are not visible
as they are wasting resources and won’t affect the final
result. Then we need to delete the particles that are too
close to one another violating the initial Poisson-disk
requirement that all particles must be no closer to each
other more than a specified radius distance. In order to
keep a reasonable number of particles in screen, after
deleting all the unnecessary particles we generate new
ones using the previously mentioned algorithm. After
this, for all new particles, we have to convert them to
river particles by calculating all their features. To end
the algorithm we fill the flow and auxiliary textures
with the current data from that frame and get them
ready to be sent to the GPU.

3.3 Visualization Engine

The Visualization Engine is the last stage of SiViFlow
and consists of mapping a material to the river surface

ISBN 978-80-86943-75-6

[ 1]



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Access flow texture to find covering sprite index and
flow information
Access auxiliary texture to find velocity and depth
Use flow information for Tiled Directional Flow al-
gorithm
Use new normal vector for reflection
Blend all the elements
Algorithm 3: Fragment Shader of the Visualization En-
gine

mesh. This stage is divided in two main elements: the
Flow Renderer and the Reflection algorithm which are
implemented in a fragment shader. We start by access-
ing the flow texture and consult the river particle iden-
tifier of this pixel. In order to optimize the texture look-
up, the flow information is also saved during this op-
eration. Now we can use the river particle identifier to
look-up the rest of the parameters contained inside the
auxiliary texture.

We also use the flow information to generate the nor-
mal which will be used to compute the scene’s reflec-
tion. All the steps of the algorithm are summed up in
Algorithm 3.

3.3.1 Flow Renderer

Our flow algorithm is based in the "Tiled Directional
Flow" described in[vH11]. In our approach one of the
main differences is that all the flow information being
fed to the algorithm is not based on a fixed flow map
but comes from our flow and auxiliary textures. This
allows us to work with a much smaller amount of in-
formation at each render cycle because our flow tex-
ture only contains information that’s visible during that
frame. The fact that our flow texture is updated every
frame, means that we can change the flow if any dy-
namic object changes river flow.

Figure 7: Example of the tiling division performed on
top of the river surface for the flow algorithm

The way this approach works is by dividing a river
channel in tiles, similar to a chess board. We show this
division in Figure 7. Each tile is independent from its

Communication papers proceedings

peers and its composed by several normal maps. In or-
der to get a more convincing look, we used for each
tile four normal maps that are combined and blended
together. First the regular normal map is loaded for the
tile being processed. Then we sample a normal map
with half a tile shift in the x direction and we rotate it
in order to have independent features from the previous
normal map. These two tiles are blended together using
a blending factor. The next two normal maps follow
the same idea, the first one is sampled with a shift in
the y direction and the second is shifted in the x and y
direction. Both normal maps are rotated and combined
together using the same blending factor. To get the fi-
nal normal value, both normal maps are blended once
more by using the same blending factor. To conclude
this final blending step of normal maps a scaling opera-
tion has to be performed. This scaling operation avoids
the problem of having a resulting normal closer to the
actual average normal, which is common when several
normal vectors are added together.

3.3.2  Reflection

In order to simulate dynamic reflections of objects on
our river surface we used the well-known planar reflec-
tions algorithm [AMHHO8][Eng03][PF05].

This approach has been widely used since the introduc-
tion of the programmable pipelines because of its ease
of use and how inexpensive it is in terms of resources.
An example of this technique can be seen in Figure 8
where it is visible the reflection of the house near the
shore. This technique is based on the use of a texture
called a reflection map, which is an inverted version of
what it is visible above the water level and that we want
to reflect. To obtain a reflection map, we start by defin-
ing a clipping plane, which has to be about the same
height as the river surface.

Figure 8: Example of the final scene appearance using
planar reflections

This clipping plane will be useful to cut all the geom-
etry below the river surface that we’re not interested
in rendering. If we didn’t clip the contents below the
river surface, we would reflect also the contents of the
river which would break all illusion of reflection. Af-
ter that we save an inverted copy of this clipped scene

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Figure 9: Example of a reflection map created clipping
all the geometry below the river surface and reflecting
the remaining contents

to a texture as in Figure 9 where we can see the con-
tents of Figure 8 inverted and the whole river surface
clipped. As the inverted copy is saved into a texture,
we can send it to the GPU in order to be read inside
our material. When we render our river material, we
sample the correspondent pixel and blend the reflected
information with the color we’ll be outputting from the
fragment shader.

4 RESULTS

This section provides the results and corresponding
analysis for both the Simulation Engine and Visual-
ization Engine. For the Simulation Engine we con-
sider all the stages that deal with the creation, update
and destruction of river particles and have to pack the
required information in order to make it readable by
the GPU. For the Visualization Engine we consider the
Flow Renderer and Reflection stages which are com-
prised within the river material. We implemented our
approach on top of the open-source game engine Ogre'
version 1.7.3.(Cthuga). The algorithm was coded in
C++ using the DirectX 9 API renderer provided by
Ogre and the shaders were coded in HLSL. The plat-
form used for testing is a computer with an Intel Core i7
running at 3 GHz with 8GB of RAM, a Nvidia GeForce
GTX 480 with 1536 MB of VRAM and Microsoft Win-
dows 7 x64 as the operating system. In order to measure
the timings that each stage of our algorithm takes, we
used Intel’s VTune Amplifier for the code that runs in
the CPU and Intel’s Graphics Performance Analyzer’
to profile the timings in the GPU.

4.1 Simulation Engine

The Simulation Engine is composed of the River Sur-
face Generator, the River Particle Generator and the
Flow Texture Mapper. As the River Surface Gener-
ator only runs once to create the river surface mesh

! http://www.ogre3d.org/

and it is not part of the application loop, all the mea-
surements performed focused on the remaining compo-
nents. This means that the application update loop can
be divided in two main phases: the River Particle Gen-
erator and the Flow Texture Mapper. In Table 2 we can
see how many particles were used in average to sample
the whole screen.

Screen Resolution | Average Number | Frames per
of River Particles | second
800x600 336 32
1280x800 369 30
1440x900 407 29
1680x1050 384 28

Table 2: Average amount of river particles existent for
different screen resolutions and average frames per sec-
ond obtained throughout the tests.

We didn’t use a fixed number of particles across all
tests due to the nature of the sampling method we used.
As the Poisson disk method randomly samples points
across the domain, in order to minimize possible holes,
some distributions might require more points than oth-
ers. As shown when the screen resolution increases, the
average frames per second decreases. This is due to the
fact that as screen resolution increases, more particles
are used and more pixels need to be processed in the
CPU in order to map the best particle into the flow tex-
ture.

4.1.1 River Particle Generator

As mentioned in Section 3.2, the River Particle Genera-
tor is responsible for deleting river particles that are not
visible, delete river particles that are too close to one
another and generate new particles making sure they’re
converted to river particles.

2,5

1,5
1
0,5
0

800x600 1280x800 1440 x 900 1680x1050
Resolution (px)

N

Time (ms)

Figure 10: Time taken in milliseconds to update the
river particles

In Figure 10 we can see that the time taken to update
the river particles varies slightly across different res-
olutions. It’s possible to see a slight increase in time
taken to update the particles as the resolutions increase

but the difference is less than 0.4 millisecond from the
smaller resolution to the largest one.

2 http://software.intel.com/en-us/intel-vtune-amplifier-xe
3 http://software.intel.com/en-us/vesource/tools/intel-gpa

Communication papers proceedings 56 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

4.1.2  Flow Texture Mapper

The loading of new data into the flow and auxiliary
textures is a step that must run at every frame and is
performed in the Flow Texture Mapper. We’ll start by
analysing the time taken by the flow texture and af-
ter we’ll analyse the auxiliary texture. As soon as we
started profiling the application, we saw that the loading
of data into the flow texture was the step in the whole
algorithm that consumed more time. We used for all
tests a flow texture with 64 by 64 pixels, meaning we
had to map the screen resolution being used to the size
of the flow texture and find the best particle that cover
that section of the screen.

1111

800x600 1280x800 1440 x 900 1680x1050
Resolution (px)

Time (ms)
PO

~

o

Figure 11: Time taken in milliseconds to load all the
data into the Flow texture

We can see in Figure 11 that all the values tend to stay
relatively close to one another. This is due to the fact
that this step is not only our application’s bottleneck
but it’s not directly influenced by the screen resolution
as we always load a flow texture with the same dimen-
sions. Upon closer look we noticed that the operations
that were taking most of the time were finding the par-
ticle that better covers the largest amount of the pix-
els that are being processed and making sure that there
were no sections of the texture without river particles.
As the flow texture has a smaller size than our screen
resolution, we map an amount of screen pixels that cor-
respond to a single entry in the flow texture and process
it. We retrieve all the river particles that cover this sec-
tion and choose the one that covers the largest amount
of the area being processed. The second costly opera-
tion is the second pass that we must perform in the flow
texture to make sure that when one section without river
particles is found, a suitable value is retrieved.

On the other hand, we have the auxiliary texture that
contrary to the flow texture, is only affected by the
amount of particles used as we load all the particles data
into it.

As the number of particles doesn’t change abruptly
across screen resolutions, we can see in Figure 12 that
the difference in values is no bigger than 0.05 millisec-
onds. As the auxiliary texture only needs to go over all
river particles and load their respective values in the tex-
ture, this operation can be seen as a linear copy of data

Communication papers proceedings

Time (ms)

800x600

1280x800 1440 x 900 1680x1050

Resolution {px)

Figure 12: Time taken in milliseconds to load all the
data into the auxiliary texture

from the river particles array into the texture, which can
be performed quite fast.

4.2 Visualization Engine

As we’ve previously mentioned the components that
make up the Visualization Engine are implemented as
two distinct elements: the vertex shader and the frag-
ment shader. Both the Flow Renderer and the Reflec-
tion make use of information existent in both of these
elements.

Figure 13: Camera far away from the river surface
where little detail can be seen

Figure 14: River surface sharing almost the same per-
centage of screen as all the other elements where sev-
eral visual details are visible

A L e

Figure 15: River occupies almost the entire screen
where details can be clearly seen

All the tests were performed with the same river mesh
and the camera placed in the positions seen in Figures
13, 14 and 15. This way we can not only understand

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

how the cost evolves across different resolutions but
also how it varies according to different percentages of
river mesh present on screen.

0,07

o o
o o
[N

o
=)
=

M Far

Time (ms)
o
o
b

B Medium

Tl E

800x600 1280x800 1440 x 900 1680x1050
Resolution (px)

o
=}
R

o
=}
=

o

Figure 16: Time taken in milliseconds by the vertex
shader to run at different resolutions and different cam-
eras distances

T 05 W Far
B Medium

E L
03 -
02 | Near
0

800x600 1280x800 1440 x 900 1680x1050
Resolution {px)

Figure 17: Time taken in milliseconds by the fragment
shader to run at different resolutions and different cam-
era distances

4.2.1 Vertex Shader

We have in Figure 16 the results of several mea-
surements performed at different class distances
(near, medium and far) and with different resolutions.
As most of our computations are performed in the
fragment shader, the vertex shader performs only
very simple calculations such as transforming vertex
positions from one space to another, calculate the cam-
era direction and pass the vertex normal and texture
mapping coordinates to the pixel shader. This means
that all values are very small and despite the apparent
increase in the near distance values when compared
with the medium and far values, we see it never reaches
differences higher than 0.05 milliseconds.

4.2.2  Fragment Shader

In Figure 17 we can see the time in milliseconds taken
by the river fragment shader to complete.

As the resolution increases, the cost of performing the
fragment shader increases along with the number of
pixels to color. We can also see that the cost increases
as we get closer to the river. As the far and medium
distances have a smaller amount of river covering the

Communication papers proceedings

screen, their costs are much smaller than the near dis-
tance which covers almost the entire screen. Despite
doing several reads from textures, the cost of running
the fragment shader even in the highest resolution is
quite small. This is due to the fact that most of the oper-
ations we perform are based on reading the information
provided by the textures created in the CPU and as far
as new calculations go, we perform only the flow algo-
rithm and the reflections which are not very expensive.

4.3 Conclusions and Future Work

We presented a new approach called SiViFlow which
simulates realistic rivers in real-time. SiViFlow has two
main components: the Simulation Engine and the Vi-
sualization Engine. Thanks to the Simulation Engine,
SiViFlow is able to adapt to an arbitrary shaped river
bed with any number of turns and dynamically calcu-
late the necessary data based on the river surface mesh
alone. It also utilizes a concept called river particles to
retrieve flow information from the river surface mesh
and send it to be drawn in the GPU. The Visualization
Engine renders the river flow and is flexible enough to
be combined with any visual technique used to simu-
lated water, not being bounded only to the techniques
presented in this work. SiViFlow also allows for dy-
namic objects to alter the course of the flow and change
in real-time its behaviour through access to the flow in-
formation stored at the river surface mesh.While this
approach fulfilled all of the objectives initially defined,
there’s still room for improvement. With all the ad-
vances in the computing capabilities of the new GPU’s
and respective API’s that allow them to perform gen-
eral computations, a future improvement would be to
move the particle update, creation and destruction to the
GPU, performing the whole update loop there. As the
loading of new data to the flow texture does not have
interdependencies among entries, this means that in the
limit the whole process of filling the flow texture can
be performed completely in parallel. As the approach
presented does not have any limitation when it comes to
the shading of the water, all visual techniques are com-
patible with the algorithm and are easily implementable
within the Visualization Engine.

4.4 Acknowledgements

This work was supported by national funds through
FCT - Fundacao para a Ciencia e a Tecnologia, under
project PEst-OE/EEI/LA0021/2013.

S REFERENCES

[AMHHO8] Tomas Akenine-Moller, Eric Haines, and
Natty Hoffman, Real-time rendering 3rd
edition, ch. Reflections, pp. 386-391, A.
K. Peters, Ltd., Natick, MA, USA, 2008.

ISBN 978-80-86943-75-6



[Bri07]

[CBL109]

[CTG10]

[DGY6]

[DHO6]

[EMF02]

[Eng03]

[Fos96]

[GHO6]

[HKKO7]

[Ney03]

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Robert Bridson, Fast poisson disk sam-
pling in arbitrary dimensions, ACM SIG-
GRAPH 2007 sketches (New York, USA),
SIGGRAPH °07, ACM, 2007.

Yuanzhang Chang, Kai Bao, Youquan Liu,
Jian Zhu, and Enhua Wu, Particle impor-
tance based fluid simulation, Proceedings
of the 2009 Sixth International Confer-
ence on Computer Graphics, Imaging and
Visualization (Washington, DC, USA),
CGIV ’09, IEEE Computer Society, 2009,
pp. 38-43.

Jonathan M. Cohen, Sarah Tariq, and Si-
mon Green, Interactive fluid-particle sim-
ulation using translating eulerian grids.,

SI3D, ACM, 2010, pp. 15-22.

Mathieu Desbrun and Marie-Paule Gas-
cuel, Smoothed particles: a new paradigm
for animating highly deformable bodies,
Proceedings of the Eurographics work-
shop on Computer animation and simu-
lation 96 (New York, USA), Springer-
Verlag New York, Inc., 1996, pp. 61-76.
Daniel Dunbar and Greg Humphreys, A
spatial data structure for fast poisson-disk

sample generation, ACM Transactions on
Graphics 25 (2006), no. 3, 503-508.

Douglas Enright, Stephen Marschner, and
Ronald Fedkiw, Animation and render-
ing of complex water surfaces, Proceed-
ings of the 29th annual conference on
Computer graphics and interactive tech-
niques (New York, USA), SIGGRAPH
’02, ACM, 2002, pp. 736-744.

Wolfgang Engel, Shaderx shader pro-
gramming tips and tricks with directx
9, ch. Rippling Reflective and Refractive
Water, pp. 357-362, Wordware Publish-
ing, 2003.

Nick Foster, Realistic animation of lig-
uids, Graphical Models and Image Pro-
cessing 58 (1996), no. 5, 471-483.

Jostein Gustavsen and Dan Lewi
Harkestad, Visualization of water surface
using GPU, Master’s thesis, Norwegian
University of Science and Technology,
2006.

Takahiro Harada, Seiichi Koshizuka, and
Yoichiro Kawaguchi, Smoothed Particle
Hydrodynamics on GPUs, Proceedings of
Computer Graphics International, 2007,
pp- 63-70.

Fabrice Neyret, Advected textures,
Proceedings of the 2003 ACM SIG-

Communication papers proceedings

59

[Ngu07]

[PFO5]

[SJ09]

[Sta99]

[Tes99]

[vdLGS09]

[vH11]

[WLLO04]

[YNO8]

[YNBHO09]

GRAPH/Eurographics symposium on
Computer animation (Aire-la-Ville,
Switzerland, Switzerland), SCA ’03, Eu-
rographics Association, 2003, pp. 147—
153.

Hubert Nguyen, Gpu gems 3, ch. Real-
Time Simulation and Rendering of 3D
Fluids, pp. 633-675, Addison-Wesley

Professional, 2007.

Matt Pharr and Randima Fernando, Gpu
gems 2 - programming techniques for
high-performance graphics and general-
purpose computation, ch. Octree Textures
on the GPU, pp. 595-613, Addison Wes-
ley, 2005.

Raymon Serway and John Jewett, Physics
for scientists and engineers Sth edition,
ch. The Nature of Light and the Principles
of Ray Optics, pp. 1010-1025, Brooks
Cole, 2009.

Jos Stam, Stable fluids, Proceedings of
the 26th annual conference on Computer
graphics and interactive techniques (New
York, NY, USA), SIGGRAPH ’99, ACM
Press/Addison-Wesley Publishing Co.,
1999, pp. 121-128.

Jerry Tessendorf, Simulating ocean wa-
ter, SIGGRAPH’99 Course Notes, vol. 2,
ACM, 1999.

Wladimir J. van der Laan, Simon Green,
and Miguel Sainz, Screen space fluid ren-
dering with curvature flow, Proceedings
of the 2009 symposium on Interactive
3D graphics and games (New York, NY,
USA), I3D ’09, ACM, 2009, pp. 91-98.

Frans van Hoesel, Tiled directional flow,
ACM SIGGRAPH 2011 Posters (New
York, USA), SIGGRAPH ’11, ACM,
2011, pp. 19:1-19:1.

Enhua Wu, Youquan Liu, and Xuehui Liu,
An improved study of real-time fluid sim-
ulation on gpu: Research articles, Com-
puter Animation and Virtual Worlds 15
(2004), no. 3-4, 139-146.

Qizhi Yu and Fabrice Neyret, Models of
animated rivers for the interactive explo-
ration of landscapes, Ph.D. thesis, Insti-
tut National Polytechnique de Grenoble,
November 2008.

Qizhi Yu, Fabrice Neyret, Eric Brune-

ton, and Nicolas Holzschuch, Scalable

real-time animation of rivers, Computer
Graphics Forum (Proceedings of Euro-

graphics), vol. 28 (2), March 2009.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Simplification of 3D Point Clouds
sampled from Elevation Surfaces

Van-Sinh NGUYEN

Aix-Marseille University
CNRS, Laboratory LSIS
UMR 7296, Marseille, France
Tel: 33.4.91.82.85.28
van-sinh.nguyen@univ-amu.fr

Alexandra BAC

Aix-Marseille University
CNRS, Laboratory LSIS
UMR 7296, Marseille, France
Tel: 33.4.91.82.85.32
alexandra.bac@univ-amu.fr

Marc DANIEL

Aix-Marseille University
CNRS, Laboratory LSIS
UMR 7296, Marseille, France
Tel: 33.4.91.82.85.25
marc.daniel@univ-amu.fr

ABSTRACT

This paper introduces a new technique to simplify a 3D point cloud sampled from an elevation surface and or-
ganized in voxels. The method consists of three steps: in a first step, the boundary of the surface is extracted
and simplified; in a second optional step, we roughly simplify the surface inside its boundary; in a third step, we
present an elaborate method for simplification while keeping its boundary. Our method preserves the distribution
of points, the initial geometry and characteristics of the surface, even with high simplification rates.

Keywords

Boundary Extraction, Boundary Simplification, Surface Simplification, Principal Component Analysis (PCA).

1 INTRODUCTION

Simplification of a 3D point cloud belonging to a
surface is an important steps in geometric modeling
and surface processing. The purpose of surface
simplification of a 3D point cloud is to reduce the
number of points, save the memory, improve the effect
of computation and optimize the processing of the
geometric model. During simplification, the original
shape of the surface must be kept, without shrinking or
deformations.

Nowadays, the modern 3D acquisition and modeling
technology allow producing a large amount of point
samples from real-world objects. Different existing
researches (and especially for meshes) are available for
processing of the continuous surfaces, but the case of
3D point clouds simplification remains a challenging
issue.

Our problem originates in the questions of processing
large 3D point clouds issued from a seismic data
(themselves extracted from a 3D sparse volume
[Philippe09]). The seismic acquisition does not permit
to measure all the points in the 3D volume, explaining
the fact that the 3D volume is sparse. The 3D points
are actually stored in a voxel structure in this volume

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Communication papers proceedings

(each voxel is considered as a 3D point, and has three
real coordinates xyz), hence implicitly the 3D volume
contains neighboring information even in a sparse
context.

Most existing approaches have a common drawback:
in the case of open surfaces (that is surfaces with
boundaries), simplification induces a shrinking of the
surface. Hence, in order to preserve the initial shape,
our approach starts by an extraction and simplification
step of the boundary. In a previous work, we have
proposed a method for extracting and simplifying
the boundary of a surface [Sinhl12]. The present
paper continues this work and introduces a method
to simplify the inside of this surface. To handle
potentially huge clouds, our method consists of two
steps: an optional initial rough simplification (basically
designed to adjust the sampling rate) followed by a
more elaborated simplification step. As the point cloud
is sampled from elevation surfaces, points are first
projected onto a 2D grid in Xy plane to process with the
first step, while the second step is directly processed in
the 3D grid.

The remainder of this paper is organized as follows: in
section 2, we present work related to surface simplifi-
cation of a 3D point cloud. We present our method in
detail, which includes problem analysis, building the
criteria and implementing the algorithms in sections 3.
The results and evaluation of our method are presented
in sections 4 and 5. The last section is our conclusion.

2 RELATED WORKS

Different existing methods which have been stud-
ied and developed are not only applied to sim-

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

plify the surface of 3D point clouds, but also
applied to simplify the surface of triangular mesh
[Garland99, Pauly02, Van06, HaoSong(09, Zhe(O7].
Among them, PCA (Principle Components Analysis)
is a popular tool, a well known method that can
be used to simplify the surface of 3D point clouds
[Mederos04, Yu06, AlexandraO7, David08].

Garland et al (1999) [Garland99] developed an algo-
rithm to simplify the surface of a polygonal model
based on the iterative contraction of vertex pairs.
Starting from the initial model M1, an edge ey ,»
will be contracted to a new position ¥ if the distance
|[vi —v2|| < threshold. The process is repeated until
the simplification goals are satisfying. The last model
M2 approximates M1. In order to preserve the shape of
the surface and optimize the placement of vertices after
contraction, the authors used the quadric error matrices
to track the approximate error of the model. This
method is time and memory demanding, but it avoids
distortion of the original shape. However, evaluation of
the quadratic error metric is closely related to the mesh
structure (and to the face neighborhoods). Hence, it
cannot easily be adapted in our setting.

Pauly et al (2002) [Pauly02] introduced, analyzed,
compared and implemented a number of methods to
simplify the surface of 3D point clouds. One of these
methods is called “Clustering”". The surface of 3D
point clouds is clustered by splitting it into a subset of
points; then, replace all points in each cluster by one
representative point. This region-growing is terminated
when the size of the cluster reaches the maximum
bound. This method leads to simplifying the surface
effectively. However, each cluster is a sphere with a
radius o on the surface. Therefore, the points outside
these clusters are not simplified completely after the
iterative processing.

Boris et al (2004) [Mederos04] proposed a method
to reconstruct and smooth a surface from noisy point
clouds. At first, he smoothed the original point clouds
to reduce the noisy points by using a robust projection
procedure, while keeping the shape of the surface. The
next step, data of 3D point clouds are clustered by
partitioning into a subset of clusters. Then, he applied
PCA to analyze, reduce the size of the original points,
and determine a representative point for each cluster.
In the next step, a triangular surface is obtained from
the representative points of each cluster to obtain a
rough surface which approximates the original surface.
The last step, this rough surface is refined to get an
optimal one. This is a complete method for surface
reconstruction of a point cloud. However, the comput-
ing is complex during projecting, clustering, reducing,
meshing and refining the point clouds, leading to a
computation heavy and costly.

Normally, to simplify the surface of 3D point clouds,
the existing approaches aim to cluster a subset of

Communication papers proceedings

points, and then grow on the surface to simplify.
The problem is how to determine the neighboring
points in a local region of the surface. Y.J Zhang et
al (2010) [ZhanglO] proposed a way to define the
nearest neighbouring points by using a cylinder. The
points are dropped into a bounding cylinder based on
the specified threshold (the radius of the cylinder);
then, they are projected on the line as its center axis
to simplify the points inside. The same as method
[Pauly02], for each iterative step, the outside points are
not simplified completely.

Frey et al (2007) [Frey0O7] presented a method (the
“affinity propagation") to cluster by passing messages
between data points. This method measures the simi-
larity of each point-pair of the input data points. Each
point in a point set is assigned as a node of a network,
the real-valued messages are exchanged between data
points (nodes) along the edge of the network until
a high-quality set of exemplars corresponds to the
cluster which gradually emerge. However, the cost
of computing is expensive because the transmission
process between the points is computed recursively.
Jae-Young et al (2005) [Jae05] and Tamal et al (2011)
[Tamalll] introduced a method by using an octree
partitioning to divide the point clouds into a small
subset, then process on each subset as a node of an
octree on 3D space and quadtree on the 2D grid. At
first, a root node of a point cloud is divided into four in
2D or eight in 3D. Then, the child nodes are recursively
divided until satisfying the condition of the threshold.
After that, each node can be considered as a point
during the simplification.

Morales et al (2010) [Morales10] suggested a method
to smooth and decimate the points from an unstruc-
tured point cloud based on the radial based function
(RBF). The points are computed based on the kd-tree
nearest neighbors. Starting from a seed point p;, the
neighboring points (p,) are calculated by an Euclidean
distance ||p; — py|| to determine the radius r. All points
within r are mapped from a 3D point set to the 2D
space; the point set components are mapped into each
axis plane on each square matrix MxMx3 in domain
Nix,N;y,N;;. The next step is using a convolution

Gaussian Kernels function C = M ® G (/,L, Gd<k)) for

each axis N;; to smooth and estimate the new center
point in each component pj(%z. Finally, the 3D point
sets are smoothed and simplified according to the local
surface features.

As we have described and analyzed, the above methods
are suitable for dispersive data or unorganized point
clouds but lead to an expensive computation. In our
work, we take advantage on the structure of voxels and
their neighborhood information. We can adapt these
methods to simplify the surface efficiently; preserve
the shape and point distribution of the surface.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

3 OURMETHOD

Our method consists of three steps (see figure 1). The
first step (boundary extraction and simplification), we
have presented in the previous work [Sinh12]. In this
paper, we present the second and the third step for sim-
plifying the surface inside its boundary.

Boundary extraction and
simplification [Sinh12]

Fough simplification
&

Elaborate simplification

Figure 1: A method for simplifying the surface.

It is interesting to summarize the main idea of the
method we applied first to extract and simplify the bor-
der of a surface [Sinh12]. We define a method to ex-
tract the boundary based on k_square neighborhood of
each point up to a fixed integer distance k. Our algo-
rithm starts from an initial boundary point of the sur-
face; then, an exterior boundary is built point by point
by iteratively computing the next point via growth func-
tions. After that, we build an algorithm to simplify this
boundary by first study the alignment of points and sec-
ond study the variation of elevation. In our method,
the complexity of algorithms is proved more efficient
than existing methods. Moreover the initial shapes of
the surface are also preserved for the simplification step
since the boundaries are kept.

3.1 Rough simplification
3.1.1 Overview

Rough simplification is a preliminary step designed to
handle large point clouds: points are imported in a fine
regular grid and each non empty voxel is replaced by
a single representative vertex. Hence, the goal of this
step is merely to adjust sampling density. In this algo-
rithm, 3D point clouds (organized in a sparse 3D regu-
lar grid) are first projected onto the 2D grid in the x,y
plane. This 2D point cloud (set of non empty voxels) is
subdivided according to a regular grid of size s (this size
is defined by the user according to the desired final sam-
pling rate) (see figure 2a). Then, each non-empty cell is
replaced by a single representative point: the barycen-
ter of contained points. This step, even if rough, can be

Communication papers proceedings

justified in terms of resolution: it is merely a resolution
adaptation (in case the resolution of the data is too high
compared to the expected results). The important point
in this step is that we will not simplify boundary points
(as they have already been handled in the previous work
[Sinh12]); and this step should be applied using a small
size of cells in order to avoid distorting the surface.

ZFe s
&
P @ (@
@
(a) (b

Figure 2: a) The size of a cell. b) The barycenter of the
points (red color) in the cell.

3.1.2 Notation

In the sequel, we use the following notations:

- G: the 2D initial regular grid,

- C: the regular grid of size s built over G,

- S: the subset of cells in C which are non empty,
- S4: acell on the 2D grid belonging to S,

- pg: barycenter of the points included in S,,.

3.1.3 Algorithm

As the size of the cells is small and as we want to
preserve boundary points, if a cell contains boundary
points, no further representative vertex will be inserted,
only included boundary points are kept. Otherwise, if a
cell does not contain boundary points, we compute the
barycenter of the points in this cell. Based on the above
description, we propose a very simple algorithm (Algo-
rithm 1) with a linear complexity to roughly simplify
the surface.

Algorithm 1 roughSimplification(s)
1:  foreachcell S, € S do

2 if S, contains boundary points then
3: keep only boundary points;

4: else
5

6

7

replace all points by p,;
end if
end for

3.2 Elaborate simplification
3.2.1 Overview

In this step, we focus on two main points to process the
surface: curvature of the surface and point density. We

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

process the surface directly in the 3D grid. As previ-
ously, the sparse 3D grid (equivalent to the point cloud)
is divided according to a regular 3D grid C. The initial
size of the cells of C is large (defined by the user) and
elaborate simplification will further subdivide cells of C
according to density and curvature criteria. If cells con-
tains boundary points, they are processed based on the
combination between boundary density and local cur-
vature in these cells. Otherwise, subdivision is based
on local curvature within each cell and adapted to the
size of neighboring cells. After simplification, the dis-
tribution of points has to vary continuously; it must be
constrained regularly from the exterior boundary to the
inside of the surface. This constraint is introduced to
avoid creating bad triangles (in the sense of Delaunay
triangulation) in a further meshing step.

3.2.2  Analysis

Obviously, our rough preliminary simplification is too
basic to reach high simplification rates. It is useful only
to adjust the resolution or as a first decimation for huge
point clouds (for which a more elaborate simplification
cannot be applied directly because of time and space
complexity issues). Hence, this preliminary step is op-
tional.

In the case of complex surfaces with a high curvature,
simplification must be based both on density and curva-
ture criteria. For this reason, we develop an advanced
algorithm to simplify the surface more elaborately. This
algorithm is based on an octree subdivision of the sur-
face adapted to its curvature, point density and to the
border density. We will combine two subdivision cri-
teria to simplify the surface: subdivision according to
the boundary density and subdivision according to the
curvature.

3.2.3  Subdivision according to the boundary
density

An important issue is that point density should vary
“smoothly" (in order to preserve the shape of triangles
in a further meshing step). It must be constrained con-
tinuously on the surface and propagate regularly from
the boundary to the inside of the surface. Therefore, in
this paper we propose a method to simplify the surface
inside its boundary. In order to subdivide cells accord-
ing to the boundary density, we have to build a sub-
division criterion. At first, we analyze the density of
boundary points (number of boundary points in a cell)
and their distribution. Our criterion is based on the size
of a cell, the number of boundary points and the dis-
tance between them.

a) Notation and formula construction

We will use the following notations:

Communication papers proceedings

- C4: acell (size s) in the 3D grid,
- Nbp: the number of boundary points in C,,

- dpgx: the maximum distance between two boundary
points in Cg,

- Lg: the level of subdivision of a cell (see figure 3),

- s’ the size of the smaller cells after each subdivision
of Cg: 5" = ﬁ

- pi, pj: point i, point j™* of C,.

Subdivizion: level

Subdivision: level 1
Subdivizion: lavel 2

Subdivision: lewvel 3
Figure 3: The level of subdivision in a cell.

In our context, data points are organized based on a 3D
grid structure, each point in a cell has xyz coordinates
and in the sequel, we will use the Euclidean distance
to compute the distance between points. Hence the
maximum distance between boundary points in a cell
is given by:

dyax = max

i, je(1.Nbp)ij

(1P = pill) (M

b) Boundary density criteria

Subdivision according to boundary density is per-
formed from cells containing boundary points (called
first ring) towards the surface interior (ring by ring,
starting from the boundary). In the sequel, we will
denote by r; the i"" ring of cells based on the 8-
connectivity (hence, r; is the set of boundary cells).
There is a relationship between the density of points
and the distance between them in a cell. Obviously,
as the density of boundary points in a cell increase,
the distance between them will decrease. The formula:
D(density) = Np(numberof points)/V (volume) can
be applied to compute the density of points on a
volume. In our case, we focused on the number of
boundary points Nbp in a cell and its size s to calculate
point density PD of that cell (PD = Nbp/s). Hence our
criterion is based on PD and d,,,:

(PD > thresholdpd) and (dyayx > thresholdy)  (2)

In order to preserve the shape of the surface for a fur-
ther triangular meshing step, the size of cells must vary
smoothly. Therefore, for boundary cells (also called

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

first ring cells), we state a specific subdivision criterion:
if a cell C; (containing boundary points) satisfies the
first condition (2), then we check the size of C,. If the
size is less than or equal than a threshold, we keep only
boundary points; else, we keep boundary points and the
barycenter of inner points in that cell. Otherwise, C, is
subdivided (as an octree).

Starting from the second ring (which contains inner
points of the surface), we subdivide cells both accord-
ing to the local curvature and previous ring cell sizes.
Cells are processed ring by ring from the outside to the
inside of the surface. The cell size in ring r; is sub-
divided according to the sizes of neighboring cells of
ring r;—1 (the outside adjacent ring of r;). It means
that, if an inner cell satisfies the curvature criterion,
we subdivide it according to the average subdivision
level of all nearest neighboring cells. Let C,; € r; and
let {C"',...,Ci-1} be the set of neighboring cells in
ri—1, the subdivision level of C, is computed as:

size(C,) = % Y size(C7) (3)
j=1

In the end, the cell size varies smoothly; and if the cur-
vature inside a cell is low, all points in this cell are re-
placed by one representative point. In next section, we
build a flatness criteria in order to subdivide cells ac-
cording to their curvature.

3.2.4 Subdivision according to the curvature

Our goal is to preserve the shape of the surface after
simplification. In this part we process the cells contain-
ing inner points, from the second ring to the inside of
surface. For each cell we apply a principal component
analysis (PCA) to estimate the average local curvature
of the surface. We thus define a flatness criterion and
subdivide cells accordingly.

a) PCA flatness criteria

PCA can be used as a useful statistical method to an-
alyze data. This is a technique that can be applied to
simplify a surface of 3D point clouds (see [Pauly02,
Mederos04, Alexandra07, Zhe07, MZhangl1]). In or-
der to estimate the curvature/flatness of a cell, we com-
pute the PCA of the vertices of the cell. The eigenval-
ues of the corresponding covariance matrix provide a
curvature information and we define accordingly a flat-
ness criterion. Cells that do not meet this flatness crite-
rion are subdivided until either their size is lesser than
a threshold or they satisfy the criterion.

We use the formula below to compute the covariance
matrix for each cell:

1
=¥

14

=

C (pi—p)(pi—p)'; “4)

Where:

Communication papers proceedings

- N:aset of points in each C,,
barycenter of points in C,

p:
- A;, vi: the i'* eigenvalue and ' eigenvector of C.

The eigenvectors of C provide information about the
principal directions of a point set. More precisely,
the eigenvectors provide main axes of the cloud,
while eigenvalues provide its stretching along the
corresponding axes. Hence, the eigenvector associated
to the smallest eigenvalue provides an average normal
vector while both other eigenvalues are related to
principal curvatures.

Following the above analysis and applying the
ideas introduced in [Pauly02, Mederos04, DavidOS,
MZhangl1], let us sort eigenvalues: A9 < A; < 4.
If the value of Ay is very small or even equal 0, that
means all the points in a cell are approximately on a
plane (it satisfied the flatness criteria). In such a case,
the average normal vector on a local surface within
a cell can be determined based on the direction of
vo. The flatness criterion “0" below is considered as
a condition to further subdivide cells (and hence to
control the simplification of the surface):

Jd= L - )
o+ M+ 2
For each point on the local surface, if their normal vec-
tors are distributed isotropically, these points will lie
on the same plane. This solution is given by Hugues
Hoppe [Hoppe92] to compute the orientation of the
tangent plane: for each data point p;, a tangent plane
is computed by least-squares approximation based on
PCA of the k nearest neighbor of p;.
In our case, we use the flatness criteria(5) to estimate
the local curvature in a cell. The minimum value of J
equal 0, while its maximum value equal 1/3, and our
flatness criteria is based on the range of these values.
(see figure 4)

(a)

Figure 4: Estimation of the curvature in a cell: (a) The
points are approximately on a plane within a cell (4 is
very small, 1] and A, are large); (b) Ay is large or (Ap =~
A~ Ay~ 1) or (d ~ 1/3) = this cell is subdivided.

The curvature in a cell is first determined by computing
d. Then, d is compared with a threshold value from the
user. If d < threshold,, we replace all points in this
cell by one representative point. This way can simplify

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

the surface efficiently and the ratio of simplification is
very high (if the points in that cell are approximately
on a plane). However, the density of points could vary
irregularly after a large number of points have been re-
moved. For this reason, we have to combine with the
computation of point density and size of cells to con-
strain the distribution of points on the surface to be as
regular as possible.

3.2.5 Algorithm

According to the previous analysis, we now define our
simplification algorithm. Our algorithm covers cells
ring by ring (starting from boundary cells), each ring
is processed clockwise (see figure 5).

We start from the first ring, blue color (i.e. the ring of
boundary points). In this ring, we begin with the left-
most cell (1) and follow the clockwise direction to com-
pute, subdivide and simplify each cell. From the second
ring (yellow color), we also begin with the left-most
cell (2) and so forth for following rings (third - green,
fourth - pink, etc). The algorithms below are used to
simplify the surface: algorithm 2 is used to process the
cells containing boundary points in the first ring.

Algorithm 2 SimplifyBoundaryCells(s)
1. Nbp =0, Ly =0; //start from the left-most cell, fol-
low the clockwise direcrion.

2:  for each boundary cell C,(size s) € S do

3 compute Nbp, dyax;

4 if C, satisfy the density criteria(2) then

5: if size s < threshold; then

6 keep only boundary points;

7 else

8 replace all points by boundary points
and the barycenter of inner points;

9: end if

10: else //subdivide C, by L.

11: Ly=L;+1;

12: s'=s/(pow(2,Ls));

13: for each Cy(s") € C,(s) do

14: if C,(s') contains boundary points then

15: SimplifyBoundaryCells(s’);

16: else

17: SimplifyInnerCells(s’);

18: end if

19: end for

20: end if

21: end for

Communication papers proceedings

m (3 B
RIS A

Figure 5: Illustration of the elaborate algorithm.

Algorithm 3 is used to process the cells containing inner
points from the second ring to the inside of surface.

Algorithm 3 SimplifyInnerCells(s)
1: Lg = 0; //start from the left-most cell, follow the
clockwise direcrion.

2:  for each inner cell C, (size 5) € S do

3 compute the covariance matrix of points in C,;
4: if C, satisfy the flatness criteria(5) then
5
6

subdivide C, based on (3);
replace all points by the barycenter in each

sub-cell;
7: else //subdivide C, by L.
8: Li=Li+1,
9: s'=s/(pow(2,Ls));
10: SimplifyInnerCells(s");
11 end if
12: end for

For each inner cell, we compute the curvature criterion
(5). If it satisfies the threshold, we first subdivide this
cell based on (3); then, replace all points in each sub-
cell by their barycenter. Otherwise, we subdivide this
cell and repeat the process until all conditions of the
criterion are satisfied.

In this step, our computing experiences have seen that
the processing time mostly depends on values of d; be-
fore and after combining with step one (rough simpli-
fication) (see table 2), and less depends on s (size of a
cell). Normally, the number of points in a cluster (using
PCA) is around from 30 points [Carsten04, RenFang08,
Morales10]. In our case, the curvature within a cell of
a geologic surface is low and the 3D points are sparse.
Therefore, we choose s < 10 (that is initial cells con-
taining at most 100 voxels) and many values of d to
implement. As a result, the time is affected if the num-
ber of points in a cell greater than 36 or d close to 0 and
before combining with step one. We keep the bound-
ary and combine two steps (rough and elaborate) to
simplify a surface; thus, the surface is simplified com-

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

pletely, the initial shapes of the surface are preserved,
and the time is controlled.

4 RESULTS

In this section, we present some of our results. For
the step one (rough simplification), the computation are
very fast. The algorithm has been tested on many sur-
faces with different number of points to compare the
running time and simplification rate with an existing
method (cluster vertices) [Pauly02]. The results are
presented in table 1, the running time of our method
is faster than the clustering method, while the simpli-
fication rate is slightly lower (depending on the initial
shapes of input surface) because we kept the boundary
points.

Input Our method Cluster method
points Output time Output time

points/s.rate | (ms) | points/s.rate | (ms)
32402 1881/94% 36 1075/96% 303
68956 3695/95% 53 2432/96% 544
148317 6368/96% 98 4675/97% | 1149
346796 13030/96% 206 | 11068/97% | 2766
664582 | 22388/96.6% | 377 | 19872/97% | 5739
1006712 | 67360/93% 651 | 28850/97% | 8501

Table 1: The comparison between our method (rough
simplification) and clustering method. We use the same
size of a neighboring distance between the points, and
run on the same computer (s.rate: simplification rate;
ms: milisecond).

In this step, the simplification rate is controlled by the
cell size. In our method, although boundary points are
kept to preserve a part of the shape of surface, this ap-
proach does not take into account the curvature of the
surface and hence is too rough to be applied with high
simplification rates. If we use a larger size of cells to
simplify, the received results are not accurate (see figure
7). Therefore, this step can only be applied to simplify
a simple surface of 3D points or to adjust the resolution
of a 3D point cloud by using a small size of cell. In the
clustering method, all points of the surface (boundary
points and inner points) are simplified; the shape of the
output surface is not well preserved (see figure 8).

In step two (elaborate simplification), we have tested
our approach on different surfaces with different num-
bers of 3D points and different values for d. The results
are detailed in table 2. We provide the values of d in
order to show that: if the value of @ is close to 0, the
obtained surface is smooth, close to the initial surface
(small simplification rate) and the processing time is
low; otherwise, if the value of d is close to 1/3, the ob-
tained surface is far from the original one (higher sim-
plification rate) and the running time is higher. How-
ever, we have maintained boundary points, and con-
strained the point distribution from the boundary to the

Communication papers proceedings

inside of the surface. Therefore, we have obtained the
output surfaces preserving the initial geometry of the
surface (see figure 10). Figure 9 shows the result of
the point distribution constrained from the boundary to
the inside of the surface. As a result, a good triangular
surface can be obtained in a further meshing step.

P.input Values Timel Time2 P.output
(kb) of d (ms) (ms) (s.rate)
60511 | 9 <0.03 5271 3231 9879/84%
(976) d<0.12 5026 2958 9377/84.5%

d<0.20 3776 2910 6786/89%
148317 | d <0.03 | 22106 14194 21122/86%
(2461) | 0<0.12 | 21167 13825 20820/86%
d <020 | 15896 12079 18916/87%
346796 | d <0.03 | 114795 | 111362 | 56448/84%
(5727) | 9 <0.12 | 111289 | 107309 | 52187/85%
d <020 | 110623 | 101544 | 50112/86%
866639 | d <0.03 | 832865 | 191153 | 147328/83%
(14500) | @ <0.12 | 786980 | 185491 | 138622/84%
d<0.20 | 581159 | 166116 | 112633/86%

Table 2: The running time of step two before (Timel)
and after (Time2) combining with step one; the simpli-
fication rate (s.rate) after using the same size of cells;
different values of d (kb: kilobyte; ms: millisecond).

S EVALUATION

Our method has two advantages compared to existing
methods. First, we use a cell to gather and compute
the points in a local neighborhood to simplify the sur-
face. By using a cell, there are no outside points be-
tween the cells; only one loop is used to consider all
points of the surface. On the contrary, the other meth-
ods [Pauly02, Zhang10, Morales10] use a sphere or a
cylinder (both are the same) to compute the neighboring
points within a threshold value of a radius r (see figure
6). Therefore, after each iterative operation, they have
to process the points outside of these sphere/cylinder.
The second advantage is that searching to compute a
neighboring point within a cell is faster than within a
sphere [Matthew96]. Our approach also takes advan-
tage of the fact that our data are already organized in
a sparse numeric volume, and hence we don’t need to
lose time and memory space to build accelerating data
structure for k_neighbors computation (such as kd-trees
or octrees).

- SZEs e o o
* . 1" L .
., - L )
..i'_:.r- . . .-.-:/; R s
() Neighboring () Neighboring
points in a cube points in a sphers

Figure 6: Determining of a neighboring point.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

6 CONCLUSION

In this paper, we have presented a method to simplify
an elevation surface defined by a 3D point cloud. It is a
part of our research in the field of geometric modeling
of oil reservoir. The input data are a mass of 3D point
clouds, and the number of points can reach millions of
points. Therefore, our first approach focuses on data
processing and surface simplification. Successively, we
succeed in boundary extraction and simplification of
the surface, while preserving the original shape of the
surface as expected [Sinh12]. The surface simplifica-
tion of 3D point clouds using PCA can normally yield
an expensive computation. In our case, the input data
are stored in the 3D grid volume, implicitely containing
the neighborhood information for each point. We have
taken this advantage; combined two steps for rough and
elaborate simplification; and two ways of subdivision
by using a cell to grow and simplify the surface. The
output surface preserves the initial shape of the input
surface, the point density and the point distribution are
kept regularly, constrained from the boundary to the in-
side of surface. This good distribution of points is an
advantage to obtain a good triangulation of the point
clouds. Obtaining this triangulation by a fast method
corresponds to our forthcoming work.

7 ACKNOWLEDGMENTS

The work reported in this article is a part of a PhD the-
sis, in which the finance is supported by the cooperation
between Vietnam’s government (MOET) and France’s
government (Campus France). We would like to thank
all their valuable helps. We would also thank the re-
viewers for their valuable comments.

8 REFERENCES

[Sinh12] Van-Sinh NGUYEN, Alexandra BAC, Marc
DANIEL, “Boundary Extraction and Simplifica-
tion of a Surface Defined by a Sparse 3D Volume",
Proceeding of the third international symposium
on information and communication technology
SoICT 2012, Pages. 115-124, ACM-ISBN: 978-1-
4503-1232-5, August 23-24, Vietnam, 2012.

[Van06] Nam-Van TRAN, “Traitement de surfaces tri-
angulées pour la construction des modeles ge-
ologique structuraux", PhD Thesis, Université de
la Méditerranée, 2008.

[Garland99] Michael Garland, “Quadric-Based Polyg-
onal Surface Simplification", PhD Thesis,
Carnegie Mellon University, 1999.

[Philippe09] Philippe Verney, “Interprétation
géologique de données sismiques par une méth-
ode supervisée basée sur la vision cognitive", PhD
Thesis, Ecole Nationale Supérieure des Mines de
Paris, 2009.

Communication papers proceedings

[Carsten04] Carsten Moenning, Neil A. Dodgson, “In-
trinsic point cloud simplification", International
Conference Graphicon ’14, Moscow, Russia,
2004.

[RenFang08] Ren-fang WANG, Wen-zhi CHEN,
San-yuan ZHANG, Yin ZHANG, Xiu-zi YE,
“Similarity-based denoising of point-sampled sur-
faces", Journal of Zhejiang University SCIENCE
A, Volume. 9, Number. 6, Pages. 807-815, 2008.

[AlexandraO7] A.Bac, V.Tran Nam, M.Daniel, “A
hybrid simplification algorithm for trianglar
mesh", Graphic Conference 2007, Pages. 17-24,
Moscow.

[Alexa01] M.Alexa, J.Behr, D.Cohen-Or,
S.Fleishman, D.Levin, C.T.Silva, “Point Set Sur-
faces", Proceedings of the conference on Visual-
ization 01, San Diego, CA, USA - October 2001.

[Cignoni98] P.Cignoni, C.Rocchini, R.Scopigno,
“Metro: Measuring error on simplified surfaces",
The Eurographics Association 1998, Volume. 17,
Number. 2, June 1998.

[Matthew96] Matthew T. Dickerson, David Eppstein,
“Algorithms for proximity problems in higher
dimensions", Journal Computational Geometry,
Theory and ApplicationsPages, Volume. 5, Pages.
277-291, 1996.

[Pauly02] M.Pauly, M.Gross, L.P.Kobbelt, “Efficient
Simplification of Point-Sampled Surfaces", Visu-
alization, 2002. VIS IEEE, ISBN: 0-7803-7498-3,
Pages. 163 - 170, Boston, MA, USA, 2002.

[Moenning03] Carsten Moenning and Neil A. Dodg-
son, “A New Point Cloud Simplification Algo-
rithm", In Proceedings 3rd IASTED Conference
on Visualization, Imaging and Image Processing,
Pages. 1027-1033, Spain, 8-10 Sep 2003.

[Mederos04] B.Mederos, L.Velho, L.H.Figueiredo,
“Smooth Surface Reconstruction from Noisy
Clouds"Journal of the Brazilian Computer So-
ciety, Volume. 9, Number. 3, Pages. 52-66, ISSN:
0104-6500, Campinas Brasil, Apr. 2004.

[Zhang10] Y.J.Zhang, L.L.Ge, “A Robust and Efficient
Method for Direct Projection on Point-sampled
Surface", International Journal of Precision Engi-
neering and Manufacturing, Volume. 11, Number.
1, Pages. 145-155, DOI: 10.1007/s12541-010-
0018-z, 2010.

[Morales10] R.Morales, Y.Wang, Z.Zhang, “Unstruc-
tured Point Cloud Surface Denoising and Deci-
mation Using Distance RBF K-rearest Neighbor
Kernel", Proceedings of the Advances in multime-
dia information processing, ISBN: 3-642-15695-9
978-3-642-15695-3, China, 2010.

[HaoSong09] Hao Song, Hsi-Yung Feng, “A progres-
sive point cloud simplification algorithm with

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

a) Initial surface b) After simplifying with cell-size = 3 c) After simplifving with cell-size = 6

Figure 7: Rough simplification: the shape of the initial surface is not preserved and received results are not accurate
using a large cell-size (c).

i

a) original surface b) after simplifying with the rough etho-d c) after simplifying with the cluster method

Figure 8: Shape comparison (computing the approximate error) by using the rough simplification method (Max:
0.014235, Mean: 0.000486) and the cluster method (Max: 0.029596, Mean: 0.000994), with the same size of
neighboring distance.

Figure 9: a) An elevation surface of 3D data points (66049 points); b) After simplifying by using the elaborate
method (cell-size=8, d < 0.09, remaining points: 1840), the point distribution are constrained from the boundary
to the inside of the surface; ¢) A good triangular surface can be obtained in a further meshing step (the approximate
error between (a) and (c) is Max: 0.061598; Mean: 0.035884)

Communication papers proceedings 68 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

a) An input surface of 3D point clouds  b) Simplify by using elaborate method

c) Simplify by using clustering method

Figure 10: Comparison the shape of the surface between two methods by using the same size of neighboring
distance. (a) An input surface of 23559 points; (b) After using elaborate simplification method (time: 858 msec,
remaining points: 2305), the curvature (sharp lines: yellow arrows) of the surface is maintained; (c) After using
clustering method (time: 255 msec, remaining points: 801), the curvature of the surface is not preserved.

preserved sharp edge data", Technology - INT J
ADV MANUF TECHNOL, Volume. 45, Number.
5, Pages. 583-592,, 2009.

[Hoppe92] Hugues Hoppe, Tony DeRose, Tom
Duchampy, John McDonaldz, Werner Stuet-
zlez, “Surface reconstruction from unorganized
points", Proceeding SIGGRAPH ’92 Proceed-
ings of the 19th annual conference on Computer
graphics and interactive techniques, Pages, 71-
78, Volume 26 Issue 2, USA, 1992.

[Yoo09] D.J.Yoo, H.H.Kwon, “Shape Reconstruction,
Shape Manipulation, and Direct Generation of
Input Data from Point Clouds for Rapid Proto-
typing", International journal of precision engi-
neering and manufacturing, ISSN: 2005-4602,
Volume. 10, Number. 1, Pages. 103-113, 2009.

[FreyO7] B.J. Frey, D.Dueck, “Clustering by Passing
Messages Between Data Points", Volume. 315,
Number. 5814, Pages. 972-976, 2007.

[Mario09] Mario Richtsfeld, Markus Vincze, ‘“Point
Cloud Segmentation Based on Radial Reflec-
tion", CAIP ’09 Proceedings of the 13th Inter-
national Conference on Computer Analysis of
Images and Patterns, ISBN: 978-3-642-03766-5,
Volume. 5702, Pages. 955-962, Berlin, 2009.

[Mederos03] B.Mederos, L.Velho, L.H.Figueiredo,
“Robust Smoothing of Noisy Point Clouds", Con-
ference on Geometric Design and Computing,
ACM Trans on Graphics 22, Pages. 4-32, 2003.

[MZhangl1] M.Zhang, N.Anwer, L.Mathieu,
H.B.Zhao, “A Discrete Geometry Framework for
Geometrical Product Specifications", CIRP De-
sign Conference, Pages. 142-148, South Korea,
March 2011.

[FrancO1] M.Franc, V.Skala, “Triangular Mesh Deci-
mation in Parallel Environment", EUROGRAPH-
ICS Workshop on Computer Graphics and Visu-
alization, Pages. 39-52, ISBN: 84-8458-025-3,
Girona, Spain, 2001.

Communication papers proceedings

[Zhe07] Ying-Zhe Lue, Yi-Hsing Tseng, “Surface Re-
construction from LiDAR Point Cloud Data with a
Surface Growing Algorithm", Proceedings of the
28" Asia Conference on Remote Sensing, Kuala
Lumpur, Malaysia, 2007.

[Tamalll] Tamal.K.D, Ramsay.D, L.Wang, “Local-
ized Cocone surface reconstruction", Computers
Graphics, Volume. 35, Issue. 3, Pages. 483-491,
Shape Modeling International (SMI), 2011.

[Jae05] Jae-Young.S, Sang-Uk.L, Chang-Su.K, “Con-
struction of Regular 3D Point Clouds Using Oc-
tree Partitioning and Resampling", Circuits and
Systems. ISCAS 2005. IEEE International Sympo-
sium, Volume. 2, Pages. 956 - 959, 2005.

[Xiaohui07] Xiaohui Du, Baocai Yin, Dehui Kong,
“Adaptive out-of-core simplification of large point
clouds", Multimedia and Expo, 2007 IEEE Inter-
national Conference, Pages. 1439-1442, Print
ISBN: 1-4244-1016-9, Beijing July 2007.

[David08] David Belton, “Improving and Extending
The Information on Principal Component Analy-
sis for Local Neighborhoods in 3D Point Clouds",
The International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sci-
ences, Volume. XXXVII, Part. B5: 477 [f, Beijing
2008.

[YuO6] Zhiwen Yu, Hau-san Wong, “An efficient lo-
cal clustering approach for simplification of 3D
point-based computer graphics models", IEEE In-
ternational Conference on Multimedia and Expo,
ISBN: 1-4244-0366-7, Toronto, Canada 2006.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Enhancing Human-Robot Interaction by a Robot Face with
Facial Expressions and Synchronized Lip Movements

Viktor Seib, Julian Giesen, Dominik Grintjens, Dietrich Paulus
Active Vision Group, AGAS
Institute for Computational Visualistics
University of Koblenz and Landau, Germany
{vsei b, jgiesen, dom nik.gruentjens, paul us}@ni-kobl enz. de
http://robots. uni-kobl enz. de

ABSTRACT

With service robots becoming increasingly elaborate fghhbr level tasks, human-robot interaction is moving
into the focus of robotic research. In this paper we preseraramated robot face as a convenient way of in-
teracting with robots. Our robot face can show 7 differeridbexpression, thus providing a robot with the
ability to express emotions. This capability is crucial fobots to be accepted as everyday companions in do-
mestic environments. Aiming towards a more realistic @xtéon experience our robot face moves its lips syn-
chronously to the synthesized speech. In a broad user stitdyl@0 subjects we test the emotions conveyed
by the robot face. The results indicate that our robot fadearoes human robot interaction by providing the
robot with the ability to express emotions. The presentdatace is highly customizable. It is available for
ROS and can be used with any robot that integrates ROS indksétecture. Further information is available at
http://ros.org/w ki/agas-ros- pkg.

Keywords
Robot Face, Talking Head, Animated Dialogue System, HuRabet Interaction, ROS

1 INTRODUCTION These new application areas require for novel means of
communication between man and machine. While it is
In recent years robots have found their ways into mangufficient to interact with a cleaning robot by pushing
homes around the world. As for now, most of thesguttons on the robot itself or an a remote control, robots
robots are household appliances that were designeddgongly integrated in a person’s daily routine are ex-
perform one specific task: they are able to vacuum qjected to understand gestures, speech, and even facial
wipe the floor or to mow the lawn. Nevertheless, theexpressions. Likewise, the robot itself has to communi-
popularity of these, single task specific, robots showsate in a human-like manner using the same means of
that people are willing to accept robots in their everydagxpressing itself. Since humans focus on faces when
lives. communicating with one another, a face also increases

Therefore, current research focuses on further impro$’€ chance of a robot to be accepted as an equal com-
ing the autonomy and generality of robots. One ofunication partner by a human. A recent psychologi-
the goals in mind are general purpose service robof&@! Study shows that robots exhibiting human-like fea-
for domestic tasks. The benefits of having such ela}rés are even ascribed more intelligence than robots
orate helpers at home are manifold. Not only wouldVith 1€ss human-likeness [Kra08].

they take over annoying and tedious household chores,

but they could also assist disabled or elderly people i this paper we present an abstract, cartoon-like, an-
helping them with their daily needs. Especially the |lastimated robot face for human-robot interaction. While

mentioned aspect is becoming more important in oupur robot face system possesses only the most impor-
aging society. tant facial features it is able to show 7 essential face ex-

pressions that are crucial for human-robot interaction.
Additionally, a text-to-speech system is used to syn-

thesize speech by passing arbitrary input strings. The
this work for personal or classroom use is granted withou hOUth mq:j/es according to the S)I/-nc.hr.onlzed ;peech and
fee provided that copies are not made or distributed for rofitnuUS Provi es, an (.-:‘ven more realistic |nteractlpn experi-
or commercial advantage and that copies bear this notice afd'ce- All animations are generated dynamically dur-

the full citation on the first page. To copy otherwise, or|re-iNg runtime by interpolating between previously de-
publish, to post on servers or to redistribute to lists, i fined shape keys. Our animated robot face is available

prior specific permission and/or a fee. as a package for the widely spread robotics middleware

Permission to make digital or hard copies of all or part of

Communication papers proceedings 70 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

4 - 9‘

| @ @ I - vt.
A=/ | R
(b) (© (d)

Figure 1. Robot heads designed in hardware: (a) Robot he&in#{”, Breazeal et al. [Bre99, Bre03], (b)

Emotional-display “EDDIE”, Sosnowski et al. [Sos06], (caon-like robot head “Flobi”, Litkebohle et al.
[LOt10], (d) Head of general-purpose social robot “Bend&uiz-del-Solar et al. [Rui09].

ROS [Qui09]. It can be downloadéand easily used ing these heads. Also, the costs of the different com-
on any robot equipped with a display and running gonents needed might be an issue. A strong advantage,
ROS-capable architecture. As it is completely designeldowever, is the possibility to place cameras inside the
in software, the obot _f ace is easily customizable. head’s eyes. This allows for intuitive interaction in a

It is even possible to replace the whole face model bway that a person can show an object to the robot by
a different one without loosing any of the features deholding it in front of the robot's head.

scribed in this paper. To our knowledge this is the ﬁrs}klthough this is not possible with a face completely de-
easy to use animated robot face that every one can adapjned in software, we chose this approach to create our
and integrate into an existing robot. animated robot face. In our opinion the high number
The next Section describes related work and designf advantages of an animated head outweighs its draw-
concepts in some specific aspects that distinguish obecks. There is no specific hardware that needs to be
animated robot face. The actual implementation is prexdded to the robot. Thus, there are no additional ex-
sented in Section 3. Section 4 describes the evaluatipenses arising from using our robot face. Moreover, it is
procedure of our robot face, followed by a discussiomighly customizable and can be adjusted to everyone’s
of the results in Section 5. Finally, Section 6 concludemdividual needs. Finally, the ROS interface allows for
with a summary and an outlook to future work. comfortable and easy integration in existing systems.

2 RELATED WORK AND DESIGN 2.1 Cartoon-like Appearance and Ab-
CONCEPTS straction

Different talking heads were developed in the last yeard/hen focusing on animated faces two main approaches
for research in the field of human-robot interactioncan be distinguished. Human-like or even photorealis-
Kismet, a robot head demonstrating facial expressiori faces are employed to convey realism and authentic-
is presented in [Bre99, Bre03]. It expresses emotiority to the interacting person. On the other hand the pur-
by moving its facial features like eyes, mouth and eargose of stylized cartoon faces is to invoke empathy and
A more recent approach, the emotional-display EDDIEmotions. Often this is achieved by exaggerated facial
[Sos06], uses the facial action coding system (FACS)xpressions or unrealistic proportions of eyes, mouth or
[Ekm77] to depict emotions. By definiragtion units, ~ other facial features.
i.e. smallest movable units, FACS describes the mov&ince our robot (like most of robots participating at
ments of most facial muscles and their effect on the fagge RoboCup@Home) lacks humanoid features and
expression. In contrast to these two approaches, Flodfature, a realistic human face is not appropriate to
[LUt10] was designed as a cartoon-like robot head withhteract with it. Instead, we modeled an abstract
humanoid features. Its design completely hides the irtartoon face exhibiting only the most important facial
terior mechanics. Another recent approach is Bendegatures to express emotions: eyes, eyebrows, and a
[Rui09], which is also able to show emotions. Ruiz-mouth. A second reason for the choice of a cartoon face
del-Solar et al. conducted a study to evaluate the €fs to avoid the risk of falling into theincanny valley.
fect of Bender’'s emotion on humans interacting with it According to [Mor70], the familiarity of a robot (or a
We compare the results of this study with the results afoll, etc.) increases with human likeness. However,
our own study in Chapter 4. The here mentioned roba{hen reaching a certain point of high similarity even
heads are presented in Figure 1. slight differences from natural appearance cause an
The robot heads of these systems are constructed tncomfortable effect in the observer. Moving entities
hardware, posing a challenge in designing and builceugment the similarity with humans, but also the
uncomfortable effect. We therefore aimed at creating

1package robot face on http://ros.org/wiki/ an animated face that is able to convey familiar face
agas- r os- pkg expressions and emotions, but at the same time is not

Communication papers proceedings 71 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Figure 2: Animated text-to-speech systems: (a) Augustdgia¢ System, Gustafson et al. [Gus99], (b) Facial
Animation System, Albrecht et al. [Alb02], (c) Text-to-daaevisual Speech, Niswar et al. [Nis09].

tion by mapping visemes to phonemes of the synthe-
sized text. Visemes are visually distinguishable shapes

— = e — =
0 o~ ) o~ 0 o~ of the mouth and lips that are necessary to produce cer-
tain sounds. Phonemes are groups of similar, but not
[ ) — _— identical sounds that feel alike for the speaker. There
are phonemes that produce the same viseme and some
@ (b) (©) that do not alter the shape of the mouth at all. There-

fore, only a few visemes are sufficient to achieve a re-
alistic animation of the lips (Figures 3a through 3f).

—~ —~ —~ =
V) o Vo) o ) o Several animated robot heads were developed in the re-
cent years that possess this skill. Some examples from
. S P [Gus99, Alb02, Nis09] and are shown in Figure 2. In
. contrastto our approach, these animated heads were de-
(d) (e) 0] signed with the goal of modeling a realistic and human-

like appearance. To our knowledge non of them was
used to interact with a robot.

2.3 Expressing Emotions

Moving the mouth and lips is not enough to allow for
comfortable interaction. The movements have to affect

. @ o M O the whole face in order to make it appear vivid. A face
Figure 3: Visemes of our robot face ((a) through ()capable of expressing emotions is crucial for a robot

and different shapes of the eyebrows ((g) through (1)). 1o pe accepted as an equivalent communication partner.

The face expressions of our robot face are depicted in
realistic, i.e. human-like, enough to create an uncanrfyigures 5a and 5b.

effect. Animated movies and video games often use anima-

) . tions created manually since the spoken text is known a
22 Lip Movement and Speech Synthesis priori. However, for our purpose only dynamically gen-
A key feature of a robot face designed for interactiorerated animations came into consideration, as we want
is the ability to speak. We use a text-to-speech sy4o animate arbitrary text with the desired face expres-
tem Festival® for speech synthesis. Festival synthesizesion. Apart from visemes we defined shape keys con-
speech by applying phonetic and linguistic rules to théaining several different configurations for the eyes and
input character sequence. To provide an effect of agyebrows (Figure 3g through 3i).
thenticity to the interacting person the lip movements

have to be synchronized and animated accordingto tt®8  ANIMATED ROBOT FACE

spoken words of the robot’s face. The FACS [Ekm??lNe have developed a talking head application for

is not well suited for this purpose since it does not inhuman-robot inte?action name?d)bot f apcpe The

clude the lower face part. We achieve this synchroniza- . = '
talking head performs synchronized lip movements

with spoken language and shows 6 different emotions

Zhttp:// ww. cstr. ed. ac. uk/ proj ects/ and a neutral face expression. Our goal was to create

festival/ an application easy to use with robots and to have

Communication papers proceedings 72 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

the possibility to customize the face. As an example
for customization we provide two faces with different
genders. In addition, the voice’s gender, face color, iris
color, and outline colors of the face can be adjusted
to the needs of the individual user. With some restri
tions, a completely different face can be designed wit
Blender and used with our application. Please refer to
the r obot _f ace wiki on the project’s website for
more information.

TalkingHead
displayed text

FestivalSynthesizer synthesized speech

Figure 4: Components and interaction of the robot face.

input string

To accomplish this application, we used Ogréd
graphics engine for visualisation, €Qas window man-

ager, and Blend&rfor creating the Meshes. As MeN-yisual counterparts. Thus, we combined the indistin-

tioned before, Festival is used for speech synthesis ardf‘élishable phonemes into one appropriate viseme

ROS has been chosen to allow for easy integration OB ide th , h desianed oth h
our robot face with any robot using ROS. eside those visemes we have designed other mout

shape keys for emotional representation. We used 6

3.1 FaceModelingand Animation different emotions namely happy, sad, angry, surprised,
scared, disgusted, and also a neutral expression. These

We designed two similar, cartoon-like faces (a male,stions are shown in Figures 5a and 5b. Addition-
and a female qne) for.the presen_ted rqbot face. Botzg"y, we added shape keys for eyebrows (up, middle up,
faces were designed with Blender including a mouth folrniddle down). These are shown in Figure 3. To achieve

speaking, eyes for blinking, and eyebrows to intenSif¥novement, the shape keys are interpolated in our devel-

e_mo_tions. The difference between both face_s are diﬁ'ped application with the use of Ogre3D.
tinctive eyelashes on the female face and thicker eye-

brows on the male face, as well as a different eye coloB.2  Structure of r obot _f ace

Since we modelled our faces with Blender we use®urr obot _f ace application consists of two ROS-
polygon models and adapted them with subdivision surodes. TheTal ki ngHead node manages both the
face methods. According to [Par02] subdivision surmesh and the animation. To get even better feed-
faces are a good modelling type for cartoon-like facesack on what the robot says it also displays the spo-
We used the modelling method introduced by Jason O&en text under the robot face. Furthermore, emoticons
ipa [Osi03], where the model is created by hand anthat are used to specify the robot’s face expression are
which is an excellent way to model a cartoonish facecemoved from the displayed text. The creation of pho-
According to this method, the mouth and eye areas argetic features including speech and voice is handled by
modelled separately and are connected afterwards. fise Fest i val Synt hesi zer node. An overview is

we need a mouth for automatically generated animagiven in Figure 4.

tions, we modelled it slightly different than describedye se the messaging system of ROS to communicate
by Osipa. Focus was put on animation during the modyith r ohot _f ace. In order to do this, a string needs
elling process. Thus, we created shape keys for all dify, he puplished on a specific ROS topic. It is directly
ferent face movements and emotions. An overview iggjivered to the application where it gets synthesized,
given in Figure 3. animated, as well as displayed. In detail, if a given
For mouth movements we limited the number to theext is sent via the message systenr tihot f ace

four most important visemes namely mouth openit arrives at the two ROS-node3al ki ngHead
closed, wide, and narrow. With those four visemes, itiand Fest i val Synt hesi zer. The TalkingHead
possible to create two clearly separated speech cyclesplays the text for the duration of the animation. It is
open and close movements together with wide analso capable of displaying additional information (i.e.
narrow movements. Itis not necessary that both speechbot state, recognized speech) published as string to a
cycles are executed at the same time nor do they hadédferent topic.

to blend from one extreme into the other [Osi03].  FestivalSynthesizer synthesizes the speech. It gener-
Open and close movements occur by almost any souates phonemes and speech corresponding to the pro-
as opposed to wide and narrow movements which axded text using Festival. We use PulseAddis sound
associated with the art of sound. There are about 38 gystem for audio output. Apart from the phonemes cor-
45 phonemes in the English language, but only a fewesponding timestamps are generated by the Festival-
Synthesizer node. This information is used by the node

Shttp:// ww. ogre3d. or g/ TalkingHead for animation.
4http://qt.nokia. cont -
Shttp:// ww. bl ender . or g/ 6http:// www. pul seaudi o. or g/

Communication papers proceedings 73 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

- = = S~ G- BT " -
° ¢ | e o o o 0 o 9 o 9o o 9o o

(a) Female robot faces

(o] (o] o o o o o] (o] o o (o] o o (o]

(b) Male robot faces

(d) Male human faces
Figure 5: Face expressions that can be displayed by our fab@tnd the corresponding face expressions of our
human models for evaluation (from left to right): angry,glisted, happy, neutral, sad, frightened, and surprised.

In the TalkingHead node the face mesh is animated byhe evaluation was performed as an online question-
Ogre3D. The main structure of TalkingHead is organaire. The test was divided into two parts, each hav-
nized into the creation of the scene, creation of animang 14 questions. In the first part the test persons were
tion, and play-back of animation. presented all 7 face expression of our robot face (Fig-
The submeshes of the loaded mesh are counted a#é€ 5a) and a photo of a human face expressing one of
the same number of animations is created. These alftese emotions (one of the photos in Figure 5c). The
imations need to get filled with keyframes to represerﬂrObandS had to select the robot face that best matched
movement. By default, incidental blinking and wigglethe face expression of the human. Although the pre-
animations are active. Keyframes are generated wifgnted human face always was intended to show one of
the phonemes and timestamps mentioned before. e displayed robot faces, the test subjects also had the
build a predefined phoneme_viseme_map to associa@@SSibi"ty to selectinknown and thus Sklp the question
phonemes with visemes. A keyframe is generated fdf they could not decide. This test was performed once
every viseme and emotion using the timestamps. THer each of the 7 face expression in Figure 5c, each time
keyframes are then connected to a whole animation. A%ith a different photo. Subsequently, all 7 questions
soon as the animation starts the spoken text is display@re repeated in a different order with a robot face de-

below the robot’s face. picting a male face (Figure 5b) and photos of a male
human (one of the photos in Figure 5d). In this part of
4 EVALUATION the test no adjectives describing or naming any of the

Similar to the evaluation presented in [Rui09], we evalface expressions were involved.

uated the presented robot face to determine how the

intended face expressions are perceived by people ahdthe second part the probands were presented one of
whether the intended emotions could be conveyed. Futhe robot faces and had to select from a list with 14
ther, we tested how comfortable people were wheadjectives which described the displayed face best. The
looking at the developed robot face. The results of both4 adjectives contained the 7 available expressions, 6
evaluations are compared and discussed in Section 5expressions that were not depicted by the robot face,

Communication papers proceedings 74 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Table 1: Results of the first part of the evaluation. Eachi@presents a photo of a human face with the indicated
expression. The numbers show which robot faces were mataltlee displayed photo (in percent). Matches above
10% are printed in bold, the maximum of each line is markeg.gra

\g{& S N S /R S

/S S LS E S ESE
& SV & S I8
angry 85 8 0 0.5 0.5 1 0 5
disgusted 6.5 | 345 |0 1 75 | 265 |2 22
happy 05 |0 765 | 19 0 1 0 3
neutral 45 |3 05 [875 |25 |0 0.5 15
sad 1 75 05 |15 |21 05 |0 0.5
frightened 05 |55 |0 0 35 | 76 125 || 2
surprised 0 2 0.5 5 15 12 77 2

Table 2: Results of the second part of the evaluation splitvim halfs. The upper half contains presented face
expressions, while the lower part contains face expresdivet were not shown to the test subjects. Each line
represents the robot face with the indicated expressiore ritimbers show which expression was matched to
the displayed robot face (in percent). Matches above 10 %rameed in bold, the maximum of each expression

assigned is marked gray.

> & N S &
ROV A N
angry 815 | 0.5 0 0 8 0 0.5
disgusted 2 15 0 0 195 |1 0
happy 0 0 94 25 |0 0 0.5
neutral 0 0 3.5 885 |1 0 0.5
sad 05 |0 0 0 875 |05 |0
frightened 3 8 05 |0 0 705 | 6
surprised 0 0 0 0 0 4.5 90.5
@/ N & &
& , «\*\00 o e &S @§
&/ ? AN N Qo*\
angry 0 0 0.5 15 1 6 0.5
disgusted 395 |1 12 1 0.5 195 || 2.5
happy 0 0 0 0 0 0 3
neutral 0.5 1 0.5 2 0 0 25
sad 2 2 15 15 |0 4.5 0
frightened 7 0.5 0.5 0 0.5 1 25
surprised 0.5 0 0 0 0 4 0.5

and the optiomone of these. Again, this was tested for with the robot. The remaining 13 persons knew the face
each of the 7 robot face expressions, first with femaland also had interacted with the robot.
then with male robot faces.

A total of 100 persons (62 male, 38 female) aged be5— RESULTS AND DISCUSSION

tween 19 and 58 years (average 26.2 years) participatedch part of the evaluation was performed with male

in our evaluation. To 53 persons the face of our robaind female faces (either human or robot). The results
was unknown before the evaluation. 34 people stated tf both genders were averaged for each part of the eval-
have seen the face before, but to have never interactadtion and are presented in Table 1 for the first part and

Communication papers proceedings 75 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013
Table 3: Comfort of the test subjects when looking at the tédes presented in the evaluation.

very uncomfortabld uncomfortable| undecided| comfortable| very comfortable
2% T 5% | 38% | 46% | 9%

in Table 2 for the second part. Each line in Table IThe expressionslisgusted and sad have bad match-
represents a photo of a human face showing the fa@eg results in the first part of the evaluation. When
expression indicated in the first column. Accordinglypresented on its own, thgad robot face has excel-
every line in Table 2 stands for a robot face with thdent classification results (Table 2). However, tael
given expression. The numbers are percentage valuesman photo was mostly matched with the robot face
and indicate which robot faces were matched to the dishat shows alisgusted face. Thus, while thead robot
played photo (Table 1) or the expression the robot fadace is indeed perceived as sad tihegusted robot face
was identified as (Table 2). Every case above 10% Bseems to resemble better the features of sad human
printed in bold, the maximum of each line is markedaces. On the other hand, thiésgusted photo was
gray. Ideally, the diagonal would show 100 % at eacimatched to the correct robot face in only 34.5%. Over
position in Table 1 and in the first half of Table 2. one fourth of all test subjects matched it with fhight-

Most of the elements in the diagonal of Table 1 hav&ned robot face. Further, the high number of probands
high values: 5 have values of over 75% and 2 of therfjlat sélectedinknown indicate that non of our robot
have 85% or more. Only 2 of 7 photos were noface expressions qan_res:emble the feqtures of disgusted
matched well with the provided robot face expressiondiiman faces. This findings are confirmed by the re-
This is a strong indication for the fact that the key faciafu!ts in Table 2 where aimost no correct identifications
features of our robot face are able to recreate the fad@" the disgusted face are present (only 1.5%). The
expressions of humans correctly. The misclassificatiorfiSjusted robot face was mostly classified asxious

in the first part can also result from misclassification 0f39.5 %)_ sad (19'5,’ %),hurt (19.5 %,) ,O'bf_iSthI (12_ %).

the presented human face. Thus, in the second part i€ various maxima in the classification of this robot
the evaluation no human faces were presented to tf@C€ show that it is difficult to identify and to be as-
probands. The diagonal of Table 2 has 6 elements wifIned a feeling to. However, considering that sad and

more than 70 %. 3 of these have more than 80%. afifrt are similar expressions, it can be stated that the
the other 2 even over 90 % identification rates. WheHiSgusted robot face resembles an anxious or a sad face

the robot faces are evaluated on their own without beingXPression.

compared to human faces, only 1 of 7 does not match

the intended expression. In contrast to Bender [Rui09], who can show 4 differ-

. ent face expressions, our robot face can show 7. Com-
In Table 1 the expressiommgry andneutral have the red to the results of the evaluation of Bender, our
best matches and were not falsely related to other robBE: ; : - '
faces (i.e. no other columns with 10 % or above). Ta[Ob(.)t face achlgves hlgher recognition rates by the test
ble 2 confirms this findings. Thus, these two face ex§UbJeCtS' The highest difference occurs with appy

. . ) face expression, where our application was recognized
pressions can be classified well on their own and even

ass the comparison with a human photodranh correctly in 94 % of cases (compared to 51 % of Ben-
P P P grapn. der). The other 3 face expressions compare as fol-

The happy photo was matched correctly with the cor-jow (results for Bender given in brackets): surprised
responding robot face in 76.5% of cases. However, ag0.5 % (76.5 %), sad 87.5 % (78.4 %), and angry 81.5 %
most every fifth proband assigned the neutral robot faqg 6.5 %). One needs to take into account that Bender is
to this photo. Comparing this result to Table 2 shows 0@ hardware robot head and looks more technically com-
the other hand that thieappy robot face has the high- pared to our cartoonish animated robot face. It is obvi-
est correct classification result of 94 %. Thus, the higBus that designing a robot head in hardware with several

misclassification rate when directly compared to a hugacial expressions is more challenging than in software.
man photo stems from the human face expression and

not from the robot face. Apart from the classification of the presented face ex-

A look at the expressionfrightened and surprised  pressions the test subjects were asked to rate their com-
shows a duality in Table 1. Both have very similarfort when looking at the robot's faces. The results are
correct matches, but were at the same time misclasshown in Table 3. While only 7 % of the probands expe-
fied with one another - again with very similar ratesrience discomfort, 55 % feel comfortable when looking
Table 2 shows again that this error must result fronat the presented robot face. Although, the number of
the human face expression on the photo since the robatdecided test subjects is high the results indicate that
faces were misclassified with a significantly lower rateour robot face does not fall into thecanny valley.

Communication papers proceedings 76 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

6 CONCLUSION AND FUTURE [Bre99] Breazeal, C. and Scassellati, B.; How to build
WORK robots that make friends and influence people. In

We presented an animated robot face that is able to Intelligent Robots and Systems, 1399. IROS'99.

: : : Proceedings. 1999 IEEE/RSJ International Con-
show 7 different face expressions and whose lips are
synchronized to the synthesized speech. This robot face ference on, volume 2, pages 858-863. IEEE, 1999.

is highly customizable and can be used with any robdEkm77] Ekman, P. and Friesen, W.V.; Facial action
running ROS. coding system. 1977.

An evaluation with 100 test subjects shows that 5 of ¥8US99] Gustafson, J., Lundeberg, M., and Liljen-
robot faces were correctly assigned to a presented hu-  €rants, J.; Experiences from the development of
man face in 80% (average) of all cases. Also, 6 of 7~ August-a multi-modal spoken dialogue system.
robot face expressions are classified correctly in 85% N ESCA Workshop on Interactive Dialogue in
on average. This is a strong indication that our robot ~ Multi-Modal Systems (IDS-99), 1999.

face enhances human robot interaction by providing thra08] Krach, S., Hegel, F., Wrede, B., Sagerer, G.,
robot with the ability to express emotions. Compared  Binkofski, F., and Kircher, T.; Can Machines
to a similar evaluation of a state-of-the-art robot face ~ Think? Interaction and Perspective Taking with
in hardware, the presented approach performs signifi-  Robots Investigated via fMRI. PLoS ONE, 3(7),
cantly better in a user study. 2008.

The only face expression not classified correctly bylut10] Litkebohle, I., Hegel, F., Schulz, S., Hackel,
most users was the face expression that we intended M., Wrede, B., Wachsmuth, S., and Sagerer,

to show disgust. According to the results of the user ~ G.; The Bielefeld Anthropomorphic Robot Head
study this expression conveys a mixture of anxiety and  Flobi. In 2010 IEEE International Conference on
sadness and thus should be used accordingly. Robotics and Automation, Anchorage, Alaska, 5

The evaluation also shows that most probands (55 %) 2010. IEEE, IEEE.

feel comfortable when looking at the robot face, whildMor70] Mori, M.; Bukimi no tani [The uncanny val-
38% are undecided. This and the reason that it is a  ley]. 1970.

cartoon face leads to the assumption that it does not f4dNis09] Niswar, A. and Ong, E.P. and Nguyen, H.T.
into the uncanny valley, although more investigation in and Huang, Z.; Real-time 3D talking head from
this area is desirable. a synthetic viseme dataset. In Proceedings of the

Our future work will concentrate on improving the abil- 8th International Conference on Virtual Reality
ity of our robot face to express emotions. For instance, Continuum and its Applications in Industry, pages
the appearance of the robot’s eyes can be changed de- 29-33. ACM, 20089.

pending on the presented emotion. Also, a new fad®si03] Osipa, J.; Stop Staring - Facial Modeling and
expression for disgust needs to be found as the current  Animation Done Righ{M. Sybex, 2003.

one will be used as anxiety and sadness in the futurgpar02] Parent R.; Computer Animation - Algorithm
Further, with the fact in mind that our robot face can and Techniques. The Morgan Kaufmann Series
express emotions as is shown by the presented evalua- in Computer Graphics and Geometric Modeling.
tion, we want to evaluate whether it can invoke empathy  Academic Press, 2002.

in humans interacting with a robot that is equipped Wm[Quiog] Quigley, M., Gerkey, B., Conley, K., Faust,

the presented robot face. J., Foote, T., Leibs, J., Berger, E., Wheeler, R.

and Ng, A.; Ros: an open- source robot operat-
7 ACKNOWLEDGEMENTS ing system. In ICRA Workshop on Open Source

The authors would like to thank Alruna Veith and Lu- Software, 2009.

bosz Sarnecki for posing as face models for the evalu?RuiOg] Ruiz-del-Solar, J., Mascar6, M., Correa, M.,

tion photos. Bernuy, F., Riquelme, R., and Verschae, R.; An-

alyzing the human-robot interaction abilities of a

8 REFERENCES general-purpose social robot in different natural-

[AIb02] Albrecht, I., Haber, J., Kahler, K., Schroder, istic environments. In Lecture Notes in Computer
M., and Seidel, H.P.; May | talk to you?:-)-facial Science (RoboCup Symposium 2009), volume
animation from text. In Computer Graphics and 5949 of LNCS, 2009.

Applications, 2002. Proceedings. 10th Pacific [S0s06] Sosnowski, S., Bittermann, A., Kuhnlenz, K.

Conference on, pages 77-86. IEEE, 2002. and Buss, M.; Design and evaluation of emotion-
[Bre03] Breazeal, C.; Toward sociable robots. display eddie. In Intelligent Robots and Systems,

Robotics and Autonomous Systems, 42(3):167- 2006 IEEE/RSJ Int. Conf. on, 2006.

175, 2003.

Communication papers proceedings 77 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Interacting in 3D Virtual Worlds with
Brain Computer Interfaces

Janek ligner  Robin Kuhlmann Helmut Eirund  Martin Hering-Bertram

Hochschule Bremen University of Applied Sciences
Flughafenallee 10
D-28199 Bremen

www.hs-bremen.de

ABSTRACT
Interaction with 3D virtual worlds found in firstepson action games is mainly based on keyboardt iapu
pointing devices. Console games add new input dsvitke motion capturing or voice control. Though
immersion is a key issue, most games do not relplayer's emotions. To take this important commaitidn
factor into account, we propose a method captutiegplayer's emotions of anxiety and shock in a gamnd
use this data to control player's and non-playaratter's actions. We present a game setup tepesfically
designed to evaluate the use of emotional intemadiased on a small user study. A simple EEG bBseih
Computer Interface (BCI) is used to translate atugés of alpha (stress) and beta (shock) rhythms to
corresponding commands in the game engine. The gmset in a horror scenario in which the playezdseto
control his emotions as they may adversely infleettee difficulty of the gaming tasks. The game @&ptc
implements an immersive atmosphere to bind thegplagnotionally and evoke signals captured by thé Bie
game engine passes these emotional inputs to actibryame entities (visuals and opponent’s reasfion
Finally, the impact of emotional interaction is kxated by a small group of test players projectheneeds for
future approaches and enhancements.

Keywords

Brain Computer Interfaces, BCI, EEG, game desigmt®ns, immersion, multimodality, evaluation

1. INTRODUCTION the game and the player, however, is limited to one
direction since the game does not have the means to
capture emotional reactions to the situations it
creates.

With the release of Nintendos Wii and its gesture
recognition technique to control movements, a fot o
new input modalities have been developed. No one
would doubt that these new modalities took a major Bidirectional communication, however, would
role in the success of these systems. Most of thesenhance not only the gaming experience, but also
modalities, however, focus on gesture or voice alleviate human-computer-interaction. In human-to-
recognition. Very little attention is put to usitige ~ human interaction the emotional level plays a very
player's emotion as additional gameplay element.  important role to decipher the meaning of the
information conveyed. An emotional input modality
would close this gap in human-computer
communication. For interactive games this would

A well designed, immersive, game can evoke
emotions for the user. This communication between

possibly result in a higher immersion, since the

Permission to make digital or hard copies of alpart of communication with the game would feel more
this work for personal or classroom use is gramtitdout natural and the additional modality would draw the
fee provided that copies are not made or distribioe players focus even more to the virtual world.

profit or commercial advantage and that copies tigiar

notice and the full citation on the first page. Topy To approach the issue of emotional feedback, we
otherwise, or republish, to post on servers or [to have created an immersive computer game, located
redistribute to lists, requires prior specific p&sion in the horror genre, based on an EEG based Brain-
and/or a fee. Computer-Interface (BCI) to capture the emotions of

Communication papers proceedings 78 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

shock and anxiety/stress and translate them torecti
and events in the game.

increasingly concentrated on medical and, more
recently, on entertainment uses.

Usually the emotions have a negative effect for the Today, there is a rising interest in BCI research,
player, hindering his process, so he needs to monit mainly due to more powerful and affordable
his emotions constantly and thereby is focusedisn h hardware, but also because of a rising public éster

emotional reactions to the events in the game. and acceptance of BCI use to aid disabled people an
) ) ) successful studies in this field. The number oivact
Since a game can only evoke emotions if the playeresearch groups on BCI related topics went up from

is immersed in it, we analyzed and implemented gy tq eight 10 years ago to currently over a haddr
several factors creating immersion and supportieg t [Nic12a].

emotional binding of the player in the game.

Many gamers are early adopters and open to new
technologies. They are also used to invest time to
learn and master a game. Competition is also a big

) ~ part of gaming and new communication or movement
Our brain-computer-based game development and itsmodalities could be a benefit. That makes games

Contributions

evaluation is directed at the following goals

we propose multiple interaction patterns where
the wuser's emotions directly influence his
perception and the action of his opponents

implementation issues are provided

possibilities and limitations of brain-computer
interaction in games

Though our work is highly experimental and our user

interesting for BCI research and even researcluers f
medical applications have looked at games to find
training solutions for patients. [Nij09a]

Brain-Computer-Interfaces are usually divided i tw

a game concept using these patterns and their keyglasses: Dependent and independent [Wol02a]. While

an independent BCl completely ignores common

based on a small user study, we assess theoutput pathways of the brain and offers new

communication channels to the user, a dependent
BCI still relies on them to some extent (e.g. a BCI
may depend on electrical potential differences
generated by visual evoked potentials).

study is far from being representative, we are &ble
provide a proof of concept showing the full benefit
emotional sensing, anticipating its future advarioes
game development.

Electroencephalography (EEG)

Most modern Brain-Computer-Interfaces depend on
EEG for signal acquisition. EEG based BCls offer a
relatively easy to set up and risk free way of
recording brain activity.

Overview

The remainder of our work contains an overview of
EEG-based Human-Computer Interaction (HCI) in Signals are acquired by placing electrodes on the
section 2. Section 3 introduces our game design and!sers scalp that measure electrical activity geedra
shows how the emotional user input can be processedy ionic currents flowing within and across neurons
to enhance immersion. Sections 4 and 5 containsee figure 1. Although the latency is quite smiadl t
implementation issues and the results we obtaim fro signal quality is often poor and the system islgasi
our experimental user study, respectively. distorted by background noises either in the brain
itself or from external sources [Nic12a].

Due to the difficulties with EEG-based BClIs, users
need to invest time to learn how to make the ddsire
inputs. However, during a study executed in 2004 at
the Fraunhofer Institute they managed to minimize
the training time through the use of neural network
Parts of the learning process were now transfeoed
the computer and successful results were possible i
about 30 minutes of training. [Car06a].

2. BACKGROUND

Human-Computer Interaction

A Brain-Computer-Interface is a communication

system that allows the user to communicate to a
machine or the surroundings, without relying on
signals from peripheral nerves or muscles [Nic12a]

Since the beginnings of BCl development in the
1970s for military purposes, the focus of research

Communication papers proceedings 79 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Figure 1: EEG-based sensindpttp://www.emg.tu-
bs.de/bilder/forschung/eegekg/eeg_w.jpg

Nonetheless, certain signal patterns recorded &y EE
seem to be connected to specific mental activities.
Basically the acquired signals can be divided io tw

visual effort and is used in the game to keep ti@ck
the players stress level. When the player is atlm,c
relaxed state the alpha rhythm does not desyctepniz
while at a stressful situation this changes with
increasing mental activity or rapid eye movement.

The second rhythm used is the beta rhythm which
can be linked to motor activity or tactile stimudait

of the BCI user, even if it is just mentally imagth
motor activity [Nie99a]. This is used to catch the
shock emotion of the player. If the player is shextk

he will most probably shudder or wince thereby
using his muscles which then serves as an indicator
for the system to trigger related actions in thega

EEG-based BCI devices have been used for games
before. Besides the NIA Game Controller, described
in Section 4, there are devices like the “Mindset”
(NeuroSky Inc. 2009) and the “Epoc” (Emotiv Inc.
2009) that control a variety of applications.
“NeuroBoy” for example is a game in which the
player has to focus or relax to achieve certainggoa
while in “Stonehenge” motor movements are used to
reassemble fallen pieces of the Stonehenge [Tan10a]

classes, evoked or event related potentials and EEG

rhythms. Evoked potentials are potential difference
recorded on a limited area of the brain. They otfle
physical (evoked potentials) or mental (event eslat

potentials) stimuli.

If the mental activity of a BCI user is recorded @n
large scale with EEG, certain rhythmic patterns
emerge that can be classified into different EEG
rhythms. These rhythms can be linked to certain
brain functions, since they desynchronize with
specific mental tasks or activities carried ouhisT
behavior is called event-related desynchronization
(ERD) and can help to interpret signals recorded in
the EEG [Pfu99al].

Name Frequency Description

Alpha (@) 8-13 Hz Mental or visual
effort

Beta @) 13-30 Hz Motor activity

Table 1: Frequency range of alpha and beta signals.

Engagement Engrossment | Total

Immersion
- Become - Emotions are - Cut off from
focused directly affected reality / Game is
- Lose track of - Wants to keep &/l that matters
time playing - Feels attached

to a main
character or
team

- Game become
most important
part of attention

- Less aware of
surrounding /
less self aware

For the emotion aware game that has been developeﬂ Effect on player -
two of these rhythms, listed in table 1, were

particularly interesting. One of them is the alpha
rhythm. The alpha rhythm is continuously developing
over the first ten years of a human. At the ageenof

the mean alpha frequency of adulthood is reached. |

attenuates or suppresses at a degree of higheLm

alertness [Nie99a] and can be linked to mental or

Communication papers proceedings 80

Table2: Levels of Immersion [BroO4a]

mersion in Computer Games
or a game processing shock emotions, it is
important to create a virtual world in which the

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

players can immerse. When players are immersed,The Dark Descent by Frictional Games). The test
their emotions are directly affected by the game included three different camera views: The game
[BroO4a] and emotional reactions happen more itself, the parameters of the NIA BCI and the fafe
frequently. Brown and Cairns divided Immersion into the subject.

three levels and described which barriers must beBy doing this, a correlation between the muscular

lowered to get to them, see table 2. face movements and the beta rhythms of the EEG

One part of the game construction is storytelling. could be observed. Also the anxiety seemed to
Mateas [Mat00a] integrated the concept of agency instrongly correlate to the stress the subject was
Aristotle's theory of drama. Agency is a feeling of experiencing.

control and empowerment that players can get whentg oy a)yate the possibility to connect the NIA aitp

their actions in the game world relate to their ; yhe game engine the NIA user interface was found
intentions. The players will experience agency when o pa aple to output key presses as actions when

the material for action is balanced with the copain amplitude thresholds were met. So the UDK
affordances of the game world. For example, if the 51y had to take these inputs and translate them to
game suggests that the player can pick up an ObJeCEorresponding actions.

but it's not possible to do so, the sense of player

agency will decrease.
Game Concept

To create an atmosphere evoking mental stress and
exposing the user to shock moments, the game takes

Roth et al. [Rot09a]. described experiential
dimensions that can motivate players:

+ Curiosity (“What will happen next?”), place in a dark forest inhabited by strange creatur

» suspense (“Will they survive?”), plants and objects. The players have to walk across
» aesthetic pleasantness (“Beautiful!”), this forest after they crash with a hang glidetha

« self-enhancement (“We are great!”) and mountains. The players have no weapons thereby the

« optimal task engagement (“Don't disturb me!”) only option during most of the enemy confrontations
is to flee. The BCI captures mental stress andkshoc
reactions of the players. The game gets more diffic

3. GAMING CONCEPT when they are stressed or shocked. For example,
enemy tendrils in the forest grow and spikes shoot
Goal through the ground when the players can't keep.calm

The goal of our work is to create a game
implementing a Brain Computer Interface as an
additional modality to identify and process emasgion
of the players. The game is set in the horror genre
because it is suitable for creating mental strext a
shock moments which can then be captured by EE
To create such situations, methods facilitating To lower the access barrier the game's controls are
immersion had to be adopted. similar to the controls of a first-person shoofehis
assures that everyone who played an first-person
shooter before is familiar with the control scheme.

Creating Immersion

To create an immersive game world the barriers had
to be lowered so the players can get to the lefel o
G total immersion.

Preparation _ _
Before implementing the game the required TO lower the investment barrier the players have to
components had to be analyzed and evaluated. Thidnvest time effort and attention. To give them a
includes a Brain-Computer Interface that is capable Motivation to do so the game starts with an

of analyzing the relevant parameters and carryirtg o introduction in which they learn something about th
Corresponding CO”ﬁgurab'e actions. initial situation of the StOI‘y. This is to make the

layers curious and motivate them to find out véhat'

On the other hand, a game engine is needed that i oing on.

able to interpret the actions coming from the BCI. ) _
Also, this engine needs to be technically able to The most complex barrier that has to be lowered is

create an immersive feature-rich atmosphere. the game construction because it consists of many
game features like visuals, sound, plot and

For fulfilling these requirements we decided to use challenges.

the NIA Brain Computer Interface by OCZ
Technologies and the Unreal Development Kit for The research showed that most of the games players
the Unreal Engine 3 by Epic Games Inc. felt immersed in were played in first-person
To test the functionality of the BCI with sensing perspective. This also reduces the risk that aeplay

- : . cannot identify with a predetermined character.
emotions in horror games some tests were carried ou
with a test subject playing a horror game (Amnesia:

Communication papers proceedings 81 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Figure 2: Gate is blocked by tendrils Figure 3: Dark atmosphere

The game's story is told by the game world and its Furthermore, the speed of the track has to colktbor
creatures and objects. To keep players motivated th with the situation in the game. Therefore the game
creatures and objects are introduced one aftehanot has slow ambient music with emphasis on bass when
following an arc of suspense that lead to a climax the players explore the forest and hectic musib wit
which is a boss battle. Constructions and altars fast drum beat when they get chased by enemies.

suggest the presence of an ancient, friendly armospheric sounds describe the surroundings and
civilization and the tendrils and enemies standaior  5tions of the players. For example, in the fotlesy

evil infestation of the forest, as illustrated igures 2 can hear the rustle of the wind in the trees, ahima
and 3. calls and the sounds of their own footsteps. Some
To create the feeling of agency the game tries tosounds are related to certain objects like altaus a
avoid situations in which the player's actions hage = enemies. There are also special hint sounds playing
meaning for the plot. The number of possibilities f  when events occur in the presence of the player.
interaction is always at a manageable level andyeve Obviously, the visuals have a great influence @ th
object for interaction must be used to proceed with yame To create an atmosphere that supports mental
the game. For example, there is a situation in Wlic  gyress and allows shock moments the forest consists
gate is blocked by tendrils. Beneath the gate is anqf ¢josely spaced trees from which the playersrofte
altar with small, gray mushrooms on it. Nearby this 4.t see more than the silhouettes. Because afka d
gate players can find a blue mushroom which is thetwilight and dense fog the surroundings are
only object to interact with. When the mushroom is ncovered little by little and the paths are boeder
put on the altar, a cutscene shows how the mushroorrby tendrils that are moving slowly. This is to gives

is growing and the tendrils are moving back and pjayers the feeling that something lurks arounthen
unblock the gate. This scene teaches the playets th ¢5 act that can savage them at any time.

the mushrooms and altars are helpful while the ) L
tendrils hinder them to move forward. We hereby S°metimes the dark atmosphere is intercepted by

also address the experiential dimensions deschiged Pgaceful places which are brighter and more cdlorfu

Roth et al: to avoid that the players get used to the dark and
o . thereby lose their anxiety. This is also a way to
*  Curiosity: “What are these tendrils? arouse their curiosity. Furthermore the changes of

« Aesthetic Pleasantness: “The way the mood are important to make the effect of the BCI
mushroom grows and the tendrils move appreciable.
back looks very nice.” To lower the barrier atmosphere, the objects in the
« Self-Enhancement: “My idea with the game (see figure 4) need to be relevant for thgepla
mushroom worked right away. | am clever!” To ensure this, all the objects have a meaningt®la

. o with red berries help to navigate through the fgres
Music and sound effects have a big impact on theblue mushrooms wlzj)rk as agsource 0? energy, and

atmosphere of a game. To create music that fits A jtars give hints. Tendrils (figure 5) block theynta

mysterlous and eerie forest, the soundtrack usesplaces were the players are not supposed to gorbr h

minor chords and deep bassy sounds. them. The different tendrils have a similar
appearance and at the end the boss can be idéntifie
as their origin.

Communication papers proceedings 82 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Figure 4: Objects in Mori: Altar, Plant with re
berries, mushroom

Figure 5: Different tendrils

Enhancement of the gamexperience due

to player's emotions

To enhance the player experience through the u
his emotions meaningfulthe game implemen
multiple components that react to them. The plan
the game are introduced early to the playel
emotionally sensitive They hinder his process t
more he shows fear and shock. Is the player clm
a tendril it begins to glow red, grow and becot
more aggressive thus making it harder for the pl
to pass. Also thorns can appear almost everywime
the game world, hich hurt the player on conts

Of course, the player is dragged deliberately
stressful and terrifying situations, especially w|
near an area of tendrils. There is, for exampl
situation where he is being followed by enemiesp:
want to attack tl player. He then has to run throt
a passage covered in tendrils to escape these &s

Also, the final enemy, whis presented as the root
all tendrils,is aware to the shocked state of the pl:
and starts his attacks when he senses this er. To
shock the player, there are thorns conste
emerging from the ground if he is near th

The second analyzed emotion is the stress levéle
player. A higher stress level results in a manitaa
view for the player. The field of view broaden:d a
material is overlayed resulting in a tunnel viewat!
makes it more difficult more the player to navig
through the world. When he stays calm for sc
moments, the view returns to normal so he hasyt
to stay calm especially in stressful situas to be
able to pass through them more ea

After the player gets used to the emotic
interaction, she actively has to control this iatgion

Communication papers proceedings

83

method in both directionshere is also a situatic
where the player has to deliberatefake his
emotionsto proceed. It consists of a trap wher
tendril attacks an area on top of a bride as s®oih
senses shock. The player needs to cross that
two times. While the first time he has to stay cadr
prevent himself from being hurt, the second t
there is an enemy on the bridge, blocking the
To get rid of this enemy, the player needs to fiike
shock emotion so that the enemy gets attackedén
tendril.

This experience makes it possible for the playe
get an insight of the way the Br-Computer-
Interface worksso that he is able to estim the
reactions of game objects to his emotions. By liei
is able, for example, to fake his emotions in tigétf
against the final enemy, timing the attacks of
enemy so that he can get passfely.

4. IMPLEMENTATION

NIA Game Controller

The NIA (Neural Impulse Actuat, figure 6) is an

EEG-based BCI capabl® capture alpha and be

rhythms. It comes with an eeto-use user interface
for configuring input triggering behavior whi

certain thresholds in the amplitudes are rea

Figure 6: The NIA BCI

the future is

eural Impulse Actuator® 4.01

Biometric
Scan

UL
i
T

Profile
Selection -~

Tutorials

Back

Figure 7: Brainfingers, the software to visualize
BCI parameters

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

eural Impulse A ctuator® 4.01 the future is

il

Biometric ‘

Scan

Profile |
Selection -~ |

| il

Tutorials

Alphal

Back

Figure 8: onfiguration of parameter thresholds

When the amplitude reaches a defined threshold
defined in the NIA software interface (figures 7an
8), external input controls are addressed, e.glimgl
down or pushing a button on the keyboard. This can
be used to forward EEG input to other applications
like the game created.

EEEEEEEERERRERERERE|

UL
< TIm

Using the NIA Game Controller to

capture the shock and stress/anxiety
emotion

To capture the shock or stress emotion, certain
thresholds for the corresponding EEG rhythms must
be defined in the NIA interface.

: MmN

: T

>

When the player is in a completely relaxed state,
alpha and beta amplitudes are quite low and should
not trigger any actions.

As the stress emotion can be linked to the alpha
rhythm, as described formerly, there are two trigge
defined: One covering the upper section of the
effective range and one at the very lowest. So the
alpha amplitude strength rises if the mental stdite

the player is active and/or a lot of visual pro@esss  Figure 9 Player Alpha/Beta amplitudes in relaxed

taking place (for example by rapid eye movement). state( top), in anxious state (middle) , and inchteal
When the alpha amplitude reaches high levels, astate (bottom)

trigger is activated that presses (and holds doavn)
predefined key later used in the game to notify the
game engine that the stress level is rising. The stress emotion alters a material overlay fer th

The same is done with the stress lowering trigger a Players HUD (Heads Up Display), which results in a
the shock emotion for the beta rhythm (except this tunnel view and a blurred sight according to thesle
only triggers a single key, since the shock emotson  Of stress the player currently experiences, as
a one-at-a-time event). illustrated in figure 10.

The game engine on the other hand takes this keyThe shock emotion triggers various effects in the
input and translates it to certain actions that 92me. One of them are the tendrils that become more
manipulate game objects or the user view. A tendril @dgressive, glow red and grow in size, thus himggri
or thorns, that suddenly appear may shock the playe the players passage through them. The final
so he will shudder or wince, which will consequgntl OPPonent's attacks are also linked to this emotion,
make the beta amplitude rise and activate theSince they are only carried out when the player is
corresponding actions. Alpha and beta signals for sShocked. There also exists a trap in the game,hwhic

different states are depicted in figure 9. the player has to trigger deliberately to get rican
enemy standing on top of the trap.

£ mmnnnnnnmm
¢ IANANAANNARNANARNAn | NAAAARAR
¢ INVANRRAANRnm
¢ INVANRRNAANRNAm
¢ INNARRRNAANRnm

Communication papers proceedings 84 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

woofer. The sensors of the NIA headband on the
foreheads of the participants had direct contath wi
the skin. In front of them they had a keyboard and
mouse. To ground the NIA, they had to lay their arm

on the NIA device. Before the game was started we
adjusted the amplitudes of the brainfingers in the
NIA Software to a balanced level so they were on a
low level when the participants were relaxed and
reached maximum values when the patrticipants did
strong movements or were shocked. To test this we
scared them all of a sudden from behind.

Figure 10: Visual effect for anxiety parameter All the participants stated that they like to play

computer games and that they are familiar with

games played in first-person perspective. Five

participants had heard of BCls before and two of

TG them had tried them but none of them believed that
- it's possible to make controlled inputs via BCI.

All of the participants got scared during the game
through audio visual effects (only this combination
works significantly). This happened in a situations
were a skull appears (figure 12) with a loud sound
and when spikes come out of the ground and where a
tree that works as a bridge over a canyon fallsrdow
All of these situations are happening all of a srdd
and address more than one stimulus modality of the

player.

Figure 11: Kismet, UDK's graphical script editor

Unreal Development Kit (UDK)

The Unreal Development Kit (UDK) is a C++ based
game development suite for Epic Games' Unreal
Engine 3. Since the release of the first Unrealgam
has continually been enhanced to meet the current
technical state of the art. It offers the developer
several tools and editor for almost every aspeda of
game (see figure 11) while also implementing its
own programming language named UnrealScript.
The full version of the UDK is free to use for non
commercial projects.

With the scripting framework and the graphical gtri
editor Kismet it was possible for us to create own
entities in the game that react to the inputs given
from the NIA BCI.

Figure 12: Shock sequence

All of the participants got immersed in the game.
That was observable during shock moments and
exclamations like “Ouch!” when they were attacked,

“This is beautiful.” during exploration, “I think |
5. RESULTS need a counterbalance here.” while solving a puzzle
Evaluation of the game and “Hal” after an enemy was defeated. The

To evaluate our concepts and their implementationsParticipants stated that they were immersed thet mos
in the game we created a test scenario and let eighwhen they were challenged to get through tenduls,
participants play through the entire game. We SOlve puzzles, to get used to a new situation and
observed them while they were playing and askedWhen the world reacted to their actions.

them questions after they finished the game. There also were situations which decreased the
To support the immersion the participants had &aypl immersion. That is when something in the game
in a dark room with a 27 inch monitor in front of World seems implausible. For example, the strange
them. To have an adequate presentation of bass an@PPearance of the enemy creatures and the partial

other sounds we used a sound system with a sutfxaggerated tunnel vision effect that reminded one
participant more of icicles than a visual

Communication papers proceedings 85 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

representation of mental stress. Other situatioeiew provides the players’ challenge of using and
when the participants didn't know what to do next, reflecting about their emotions in a systematic way
when they had to think about a puzzle for too long

and when they died. Outlook
The participants described the atmosphere as darksince the appearance of cheap BCls for the mass
eerie, mystic, mysterious, disturbing, thrillingreeal  market, scientific studies and development costs fo

and dense. As reasons for that they identified thenew applications and approaches for brain contiolle
dark presentation, field of view and blur effects, systems have greatly dropped. This results in a
music and sound. They also mentioned the interplayrajsing interest of the industry, especially thenga
between places and moods and the tendrils thatndustry, since here new innovations are adaptegl ve
reacted to the BCI. early to stand out from the huge count of compuito

The participants liked the fact that there are no on this market.

weapons in the game and that artifacts like ahas  Qur evaluation concluded that all participants \eew
gates stir their imagination. Their motivation tiayp the BCI as an improvement to the game experience
through the game was their curiosity and the will t  and immersion of the players. This hints that ferth
find a way back to civilization. Although the game development should be considered, especially by

never explains what it is all about, most of the enhancing the methods to correctly decipher player
participants drew the conclusion that they were emotions.

knocked out after the crash with the hang glidet an

that it was all a dream. One approach of enhancing these methods are the use

o of machine learning and neural systems. Murugappan
Asked about the effects of the BCI, the particisant et al. already conducted a promising study on these
answers were skeptical. Five participants statedl th methods [Murl0a] that would make the process of

it worked partial while three participants coulde' correctly interpret user emotions much more precise
that the BCI had any effect on the game. Maybe the

reasons for that are that the NIA Game Controller
doesn't work precisely and we weren't able to
calibrate it exactly to fit with every participanthe
NIA can't recognize which emotion or action caused
a change of alpha or beta rhythms so the gamesreact
not only to mental stress or a shock moment buat als
to laughter, a cough and other things. Furthermore
the players aren't able to associate every actiah t Apart from the use as a game input method, emotion
the BCI triggers with a brain activity that theyear aware applications for Brain-Computer-Interfaces
unconscious of. For example, one participant though could theoretically fill one of the most important
that the tunnel vision is a scripted event thatagisy ~ gaps in human-computer communication: The
triggers with a shock sequence although it wouldn’t emotional level of communication. Emotions are a
be triggered at all without the BCI. natural factor in human-to-human communication
and make up a big part of the information transférr

) to the other. In communication between humans
Concluding Remarks through a computer this problem is usually courntere
Despite of the technical limitations of low-cospurt with the use of emoticoncs or smileys to give the
devices, we were able to provide a proof of conceptother a help on how to interpret a message. A
for emotion-based human computer interaction working emotion aware system could possibly solve
patterns and their use in a tailored game enviranme this issue better and more precise. In a pure human
Emotional inputs may be evoked on demand, but it is computer interaction the computer would have the
by far more difficult to suppress them. Since the Mmeans to understand the users intentions better and
users in our experiments were aware of their actaccordingly.
emotional tracking, most of them recognized the
impacts of their emotional input on the game g ACKNOWLEDGMENTS

progress, particularly regarding the opponents’ , ) )
actions. It should be noted that not being aware of 1he authors would like to thank the University of

these impacts does not necessarily indicate tieseth APplied Science Bremen for the mentoring of this
do not exist, as in real life also many cues assed. work, which is based on a bachelor thesis and the

. : : helpful community of the official epic forums for
All in all, we conclude that emotional sensing has pints and tips regarding the UDK.

great potential for future game design, since it

Since the precision of control with a Brain-
Computer-Interface as the only method is still very
low, the use of a BCI as the only input modality
would probably not cope (at least in the near &ijtur
with the complex control mechanisms of a modern
computer game. Future BCI controlled games would
probably implement a BCI as an additional modality.

Communication papers proceedings 86 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

7. REFERENCES [Nijor?a] Nijholt, A., Bos, E.,”Reuderink, B.: Tummg
: shortcomings into challenges: Brain—computer
[BroO4a] Brown, E., Cairns, P. A Grounded interfaces  for . ;
Co . } games, in: Entertainment
Investigation of Game Immersion. CHI EA '04, Computing 1, pp. 85-94, 2009

New York, NY, ACM Press pp.1297-1300, 2004. )
[Pfu99a] Pfurtscheller, G. and Lopes da Silva, F.

[Car06a] Carpi, F., De Rossi, D., Non invasive brai Event-related EEG/MEG synchronization and
machine interfaces, European Space Agency, the  gesynchronization: basic principles, in Clinical
Advanced Concepts Team, Ariadna Final Report Neurophysiology, No 110, pp. 18421857 1999

(05-6402), pp. 4, 2006 ] ) [Rot09a] Roth, C., Vorderer, P., Klimmt, C. The
[Mat00a] Mateas, M. A neo-Aristotelian theory of ~  potivational Appeal of Interactive Storytelling in
interactive drama. Proceedings of the AAAI l. lurgel u.a. (ed.) Second Joint International
Spring Symposium on Artificial Intelligence and Conference on Interactive Digital Storytelling,
Interactive Entertainment, Palo Alto, CA, 2000. Berlin et al., Springer pp. 38-42, 2009.

[Murtlo?]ll\/:curqgappfaﬂ, M., Rgon,t.M.,ll\lggt;atrajan,.R. [Tan10a] Tan, S. D., Nijholt, A. (Eds.). Brain-
etal. nterring of Human Emotional states using Computer Interfaces. Applying our Minds to

Multichannel EEG, in: European Journal of ) : -

Scientific Research, 48:2 (2010), S.281-29 g;rgaGn 2((:)01r(r)1puter Interaction, London, Springer,

[Nlcclc?ri] Nt'gflﬁlstfr‘]lgggg' ;"Rinqeeor'?,ezs-g:go?;aﬂo [Wol02a] Wolpaw, J., Birbaumer, N., McFarland, D.,

12 pu1211 1279 2(’)12 VIEW, 1 ’ et al Brain—-computer  interfaces  for

» PP- ) ' communication and control, in: Clinical
[Nie99a] Niedermeyer, E., Da Silva, L. Neurophysiology, No. 113, pp. 767-791, 2002

Electroencephalography, Basic Principles,
Clinical Applications And Related Fields, The
Normal EEG of the Waking Adult, Baltimore,
Lippincott Williams & Wilkins, 1999

Communication papers proceedings 87 ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Comics reading: An automatic script generation

Raulet Jéremy

LIASD
2, rue de la Liberté
93200, Saint-Denis,
France

jraulet@ai.univ-paris8.fr

Boyer Vincent

LIASD
2, rue de la Liberté
93200, Saint-Denis,
France

boyer@ai.univ-paris8.fr

ABSTRACT

With the advent of portable devices, reading comic ebooks is a popular activity. However, a simple scan of a comic
page is not well adapted for portable device screens and a panel to panel reading without animations and adapted
transitions is quite uncomfortable and not suitable. Moreover, applying manually transitions between each panel
to script a complete comic book is a tricky task and seems impossible for a complete collection of comics. We
present a model able to automatically script comics reading by using panel lines of force. Our results demonstrate

that this model proposes a coherent solution for 87.2% of panels in an interactive time.

Keywords

Comics Script Generation, Comp.Vision & Image Processing, Mobile & WEB Graphics

1 INTRODUCTION

Nowadays, the number of comics novelty per year is in
constant increase and reading them on a portable device
is a common activity. These comic ebooks can be very
different kinds, from a simple scan of a comic book to
an electronic comic completely dedicated to the device
screen and even a cartoon-like video.

Even if a comic especially created for a specific
portable device seems to be the best solution, there
is no appropriate solution to distribute them in an
ebook format: other existing comics are scripted by a
scriptwriter to produce input and output animations for
each panel and exported to different portable devices.
This work is performed in very different ways: by
creating panel by panel transitions and animations
using a dedicated tool [Raull]; by creating a path in
a comic page and displaying the entire page on the
screen [Wanll]; or in the worst case, by creating a
video of the comic.

We think that the first solution (i.e. creating transitions
and animations panel by panel) is the best one to im-
prove the reading experience without altering the con-
tent. However this solution is the most expensive and
one can imagine how tricky the task is if the purpose is
to process a comics library. Thus its automation is an

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Communication papers proceedings

interesting challenge both for researchers and commer-
cial comics publishers.

In this paper, we consider panels reading and panels
transitions. The panel extraction is realized as a pre-
liminary step with for example Yamada et al. [ YamO4],
Tanaka et al. [Tan07] or Raulet et al. [Raul 1] methods.
For each panel, we aim at proposing an input and output
animation based on its reading direction.

First, we present the terminology and the specificities
of comics which are used to identify possible solutions.
Then we present the related work on image retrieval
and interest point detection considering the specific top-
ics (i.e. panels transitions and reading). Then we pro-
pose our model based on image processing techniques.
Results are provided comparing related work and our
model. Finally, we conclude and propose future work.

2 TERMINOLOGY

In this section, we present the terminology used
throughout this paper. Hereafter we precise the context
and give our definitions but we do not attempt to
provide an exhaustive study on comics. The interested
reader should refer to [McC93] and [McCO00] and as
there is not a unique and unambiguous definition for all
of these terms, one can find a part of this vocabulary
on the website [Comi09]. From global to detail and
according to our definitions, we also describe the
noteworthy variations in comics to illustrate the wide
range of possibilities.

Usually, a comic is described by a succession of pages
composed by a set of image strips. These images,
named panels, are colored or black and white and

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

are often separated by gutters. Remark that since
Rodolphe Topffer in 1830, considered to be the mod-
ern comics creator, this page composition has been con-
strained to the artist by the publishing world.

Like Scott McCloud [McC93], we consider that a comic
is a succession of panels. Each of them have their own
size and form and are often surrounded by a black bor-
der. Open panel depicts panel without any borders.
In case of overlapping between two or more panels the
overlapped panel term is used. A panel frequently
contains speech balloons and/or captions describing
respectively the dialogue and the scene.

Even if this terminology covers american comics,
manga, franco-belgian comics, graphic novels and all
other styles, it is not enough to create a taxonomy of
the domain. Many differences exist between these
styles (see figure 1) depending on many factors: the
technique used (brush, pencil...), the authors (two
comics of the same author can be radically different). . .
Even for a given comic the visual representation of
characters, scenes, places, that must be unique, may
vary. Due to these variations, admissible for any comic
readers, and the number of characters, it is not possible
to build a comic database representing the collection of
characters and uses it to describe the movement.

5 M
] i,
= UE geé% -
— HMM 7, =
/; TIENﬁ’/ f

Al

Maintenant,
ilyaun

vampire dans
ce village dont
nous devons
nous occuper.

envoyer...

’ i

...deviendront
probablement un
rafraichissement
pour le vampire.

QUELG

UES PAS
PLUS TARD,

panel of Hellsing, Bottom: panel of X-men. These
panels represent respectively franco-belgian comics,
manga and american comics with different styles, levels
of details and colors.

If a comics classification is not possible, one can fo-
cus on the different transitions between two successive
panels and try to determine their graphics impacts.

Scott McCloud, in [McC93], has defined six forms of
transition:

1. moment-to-moment: The second panel represents
the scene a little time after the previous one, like if
two photographs have been taken with a second of
interval;

Communication papers proceedings

2. action-to-action: The next panel represents the next
action, like a selection of key moments describing a
story (see figure 2);

3. subject-to-subject: The same idea is illustrated in
the two panels but no direct visual relation exists
like in action-to-action. A common example is a
phone discussion between two characters in which
each panel represents a character in its own environ-
ment;

4. scene-to-scene: Time or distance is clearly visible
between the two panels. A landscape in summer and
the same in winter is an example of scene-to-scene
transition;

5. aspect-to-aspect: The two panels describe the dif-
ferent aspect of the same idea or place at the same
time: a beach and a character in swimsuit;

6. non-sequitur: No logical relation exist: suppose
that figure 1 is a comic page composed by these
three panels.

All of these transitions may be found in the same comic,
even if the sixth is uncommon. The moment-to-moment
transition is the one where panels are the most similar.
But even in this case, the artist may redraw the entire
panel and change, voluntary or not, a large part of it
(see figure 2). It is possible that a reader does not take
care about those differences but they exist. One of the
most visible is the position and size of speech balloons
which obscure the background.

THAT CERTAINLY CAN'T
BE AS MUCH FIN AS

VM SO ASHAMED/
WHATEVER CAME

Figure 2: Page 20 of Asterix and the Secret Weapon
panel 2 and 3 of the first strip. Excepted characters,
there are many changes between these two panels. The
main change is the house behind Asterix in the left
panel, that disappears in the second one.

In a page, the reading direction is left top to right bot-
tom, excepted in a manga. It influences the reading di-
rection of a single panel and the eye movement should
begin at the top left corner and follow a Z pattern in
most cases.

This expected movement is disturbed by all panel
elements. For example, as explained by Omori et
al. [Omo04], a reader frequently skips a panel without
any speech balloon. In the component hierarchical
theorist, Almasy [Alm75] has explained the impor-
tance of living subjects for the reading direction. This
means that the reader does not just follow a Z pattern
but search important elements into the panel, like a

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

character. Artists have several other ways to direct
the reader’s eyes: color contrasts, object size, level of
details, closeup... In fact, comic creators determine
the reading direction while generating each panel.

With the widespread of comics during the last century,
artists have become accustomed to use these techniques
to give the wish of pull up the reader’s eyes on the sec-
ond page of a double page in a comic book. They also
use them to encourage the reader in turning the page
after the last panel of the double page. But nowadays,
panels are not necessarily arranged in a page. For ex-
ample, on a mobile phone, the reader can watch each
panel one by one and can have eye movement into a
panel but not between two of them. Thus we need to
find new techniques to direct the reader’s eyes and let
him concentrate on the story and not on transitions be-
tween panels.

3 RELATED WORK

To produce animation for panel transition it is necessary
to detect similar contents and transformations between
two consecutive panels. We have identified two main
approaches:

1. Image retrieval, to detect and follow objects in a
panel sequence;

2. Interest point detection and comparisons of their po-
sition to interpolate movements between panels.

Hereafter, we focus related work on these two
approaches giving their advantages and drawbacks.

3.1 Content-Based Image Retrieval
(CBIR)

In [Tor06], Torres et al. have explained the CBIR the-
ory which, in particular, allows to index images with a
distance function and to distinguish objects with their
shape descriptors. In all CBIR methods, the main idea
consists in the similarity and difference evaluation be-
tween two images.

Landré et al. [Lan07] have proposed a CBIR method
using a Hamming distance and a query-by-visual-
example method to compare shapes. In order to have a
better perception of distances between colors, images
are represented in the Lab colorspace. Then, three
binary signatures per image for color, texture and
shape (with a laplacian edge detector) are computed.
Finally, similarities between images for each signature
with a Hamming distance (a XOR binary operator)
are searched. This method is well adapted to find
images with the same theme (a red flower for example)
and works well in general, but it is imprecise and
cannot, for example, distinguish two human characters.
Remark that it is possible that this method works well

Communication papers proceedings

for a moment-to-moment transition or maybe action-
to-action but it is impossible for subject-to-subject
transition. Moreover, this method uses colors and some
comics are “just” black and white.

The approach proposed by Fekir et al. [Fek09] is based
on a Region Of Interest (ROI). This ROl is selected with
a circle snake on the first image of the sequence. Then,
on each image of the sequence, energies (curve con-
sistency, gradient...) are minimized and the snake is
moved. Finally, this new snake is treated like an au-
tomatic initialization on the next image and the sec-
ond step (i.e. energy minimizations and snake move-
ment) is repeated. This approach is used to follow cells
in a sequence of echocardiographic images. Unfor-
tunately, except for the moment-to-moment transition,
differences between two panels are too important to im-
plement this kind of method.

Cheung [Che07] has developed an application named
MAIRE to recognize a human-like character face that
helps the reader to find a particular scene in a large col-
lection of comics. First, he has proposed the use of two
CBIR methods for face detection and recommended the
Adaboost one. Then, he has implemented four face
recognition methods and proposed to use the EBGM
(Elastic Bunch Graph Matching). These two steps en-
able to sort panels depending on present characters and
allow the user to perform a query to find a particular
scene into a large database of comics. Unfortunately,
this approach requires a database of characters and as
explained in section 2, it is impossible to be exhaustive.
Moreover, even if it is not carefully mentioned in the
paper, the detection seems to work only on full-frontal
faces.

3.2 Interest Point Detection

In [Sch00], Schmid et al. have introduced two criteria
for the evaluation of interest point detectors: first, the
repeatability, allowing to compare the position of in-
terest points in two images of a scene; second, the in-
formation content, allowing to measure if an interest
point is really distinct one from another. They have
concluded that Harris detector is the best solution for
these two criteria. This method seems suitable to our
problem of detecting interest points in a panel and like
SIFT, SURF and ORB are posterior to [Sch00]. We
present hereafter these four methods.

Gabriel et al. [Gab05] have proposed a method based
on an improved implementation of Harris detector to
follow an object in an image sequence. First, for each
object to be tracked, a ROI is defined. Then, each ROI
is described by interest points obtained from the col-
ored version of Harris detector. Finally, the object is
found in the next image with a comparison of the rela-
tive positions of interest points. The problem is that this
method works with images without significant change

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

and for any forms of transitions excepted a moment-to-
moment transition we cannot initialize the ROI on each
panel.

Bauer et al. [Bau07], have compared SIFT and SURF
detectors. They have evaluated the invariance against
rotation, scale, noise, change in lighting condition and
change of view point on images of natural outdoor
scenes. They have concluded that SIFT has the best
performance in term of repeatability but followed very
closely by SURF. They have also concluded that SURF
produces fewer points and the comparison is faster.
This comparison is done on photorealistic images only.
We think that these methods have a bad repeatability in
our case due to the precision of drawings and the differ-
ence between two similar panels. Even if our model is
not based on this kind of method, we have implemented
it and present benchmarks in section 5.1 to confirm our
hypothesis.

Rublee et al. [Rubll], have recently presented an
efficient alternative to SIFT or SURF named ORB
(Oriented FAST and Rotated BRIEF). FAST is used to
detect key-points and BRIEF to describe it. It seems
more efficient and faster than SIFT and SURF but
like [BauO7], only photorealistic images have been
tested to provide benchmarks. Like SIFT and SURF,
ORB is shown efficient for their experiments but has
not been tested on expressive images. Our model is not
based on this method but we have implemented it and
present benchmarks in section 5.1.

We have presented several approaches to extrapolate a
movement between two panels and no one is adequate
for all transition forms. The two main problems of these
approaches are:

- Methods are dedicated to follow objects in a se-
quence with little modification between two images;

- Methods have been evaluated only on photorealistic
images.

We propose our model that enables to extrapolate a
reading direction for a given comic panel.

4 MODEL

We present our model dedicated to decide both panel
reading direction and panel transition. As detailed in
previous work, approaches that may provide panel tran-
sitions do not exist and photorealistic approaches can-
not be adapted to this kind of problem. Thus rather than
a top-bottom approach providing first panel transitions
to deduce the reading direction, we prefer a bottom-top
approach providing first panel reading direction to de-
duce panels transitions. Since a comic panel is the re-
sult of an artistic process, our solution consists of deter-
mining artistic elements providing a reading direction
for each panel. For that reason, our approach is based

Communication papers proceedings

on the image processing techniques being able to col-
lect information available in each panel. Our process is
realized in 3 main steps:

1.(a) To provide a solution for any panels of any
comics (i.e. colored and/or black and white), we
perform an edge detection on the panel and use
this information only (i.e. no color information
are used hereafter);

(b) Based on this edge detection, we extract lines of
force providing a large set of possible reading in-
formation;

2. We improve our lines of force research by focusing
only on dynamically defined ROI panel by panel.
Thus, we keep only the most interesting part of
them,;

3. A classification system is finally used to determine
the panel reading direction. Possible reading direc-
tions are horizontal (from left to right), vertical (top
to bottom) and the two diagonals (from left to right).

Finally, according to reading directions of two consec-
utive panels and rules given by the scriptwriter, we
provide automatically panel transitions. In practice,
rules are associations between the directions and the
panel transitions. These are realized independently by
the scriptwriter and can be reused or changed for any
comics.

4.1 Edges and Lines of Force

As a first step, we extract edges and lines of force in
each panel. Lines of force is a graphical technic used
since the renaissance period and are intended to convey
the directional tendencies of object through space. We
combine two image processing techniques to provide
lines of force: an edge detection and a feature extraction
technique.

As the most common edge detectors (Sobel, Prewitt,
Canny) are almost interactive, we prefer the Canny de-
tector for its detection performance [Sha02]. A Sobel
kernel filter is used in the Canny detector and experi-
ments show that a 3x3 kernel filter is the most appro-
priate kernel size. Other kernel sizes (i.e. 5x5 and 7x7)
give a too detailed result. We follow the Canny’s rec-
ommendation for the upper and lower thresholds and
apply a ratio of 2:1.

Then, we use the Hough transform, as a feature extrac-
tion technique, to search the longest straight lines. We
search a limited number of lines to avoid false positive
with only a few lines and unfeasible results containing
too many lines. This interval has been determined by
a simulated annealing algorithm [Kir83] and must be
in [30, 50]. These lines represent image lines of force
which suggest the scene orientation. Depending on the
comic style and the scene, straight lines may have dif-
ferent lengths.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

In our algorithm (see algorithm 1), initial Canny
thresholds values are used and dynamically modified
according to the Hough transformation result; the
Hough transform threshold is dynamically changed
until the result converges to the attempted values in
term of number of lines as follow: while we have not
enough lines we decrease the minimal size of a straight
line (Hough threshold). If the Hough threshold is too
small, we decrease the Canny thresholds and repeat the
Hough transform. While we have too many lines, we
increase slowly the Canny thresholds. This produces
a set of lines representing the panel lines of force (see
figure 3).

Data: panel

Func: image Canny (imageSrc, lowerThreshold,
upperThreshold, SobelFilterSize) ;

Func: setOfLines Hough ( imageSrc, threshold) ;
Result: LINES (lines of force set)

thresholdCanny < 401;
minNbLine < 30;
maxNbLine < 50;

maxThresholdHough < % panelDiagonal;
MIN (panelWidth,panelHeight)
10

s

minThresholdHough <
repeat
dst <— Canny (panel, thresholdCanny,
thresholdCanny x 2, 3) ;
thresholdHough < maxThresholdHough;
repeat
LINES < Hough ( dst, thresholdHough) ;
thresholdHough < thresholdHough-1;
if thresholdHough < minThresholdHough
then
thresholdCanny < thresholdCanny-100;
break;
end
until nbLine < minNbLine;
if thresholdCanny < 0 then
break;
end
thresholdCanny < thresholdCanny+5;
until nbLine > maxNbLine OR nbLine < minNbLine;
Algorithm 1: Lines of force detection.

Howeyver, the detected lines of force are, in most cases,
disturbed by the border and speech balloons, so we pro-
pose a method to improve this result.

4.2 ROI

In figure 3, one can note that panel borders and speech
balloons also produce lines of force. Since both are
generally composed by straight lines, their impact on
the line of force detection is very important. To avoid
the noise generated by borders, the region on which our

Communication papers proceedings

c. d.
Figure 3: a) A panel of Le donjon de Naheulbeuk. b)
Canny edges detector on (a). c) Lines of force with
Hough transformation on (b). d) Latter lines on (a).

algorithm is applied is reduced by 10% on left, right and
bottom of the panel. This value guarantees that borders
will be removed and does not affect line of force detec-
tion as shown in our experimentation.

Comic artists follow some rules when creating speech
balloons: they are often close to speaking character
faces which are frequently located in the center of the
panel; they are located where they do not hide a sig-
nificant part of the drawing: for example it is uncom-
mon that a speech balloon mask a part of a character’s
face; comic artists use the rule of third to place im-
portant elements in the panel and speech balloons are
commonly located at the periphery. According to these
principles, speech balloons are frequently placed on the
top of the panel, in the sky or the scenery. In the case
where speech balloons are in a particular layer, we do
not consider them for the line of force detection. In any
other cases we remove the upper part of the image ac-
cording to the rule of third.

Figure 4 presents the line of force detection on a re-
duced ROI. As one can see, borders and speech bal-
loons are not considered any more and the result is more
relevant.

Now, these lines can be classified to extrapolate the
reading direction.

4.3 Classification and Interpretation

We propose a classification and an interpretation system
for the lines of force previously detected. We consider

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Figure 4: Figure 3 with a reduced ROI.

that the reading direction depends on the most repre-
sentative direction of the lines of force.

First, we calculate the non-oriented gradient for each
line. Then, lines of force are classified into 5 groups
depending on their gradients: horizontal, vertical, the
two diagonals and others. We fix a precision of + /16
radian compared to horizontal and vertical axis and an
angle of + 7/4 radian for the diagonals. Others lines
which are not classified in one of these four groups con-
stitute the group named “other”. Figure 5 presents these
groups. Remark that the surfaces of the four groups are
equivalent and sum to the surface of the group named
other (i.e. half of the circle surface). The figure 6 illus-
trates this classification on the example used throughout
the article.

n/a/‘

vertical (m/2)

/4

/16

horizontal (0)

-m/16

/4

Figure 5: Lines of force classification. Each group
is represented by a color and has an angular distance
equals to /8. The group named other is in white.

To select the panel reading direction, we sort all of these
groups (except group other) according to the number of
lines they contain. Finally, we compare the larger group
to the total number of lines in two steps: first, if the
group contains more than 33% of the lines, this group

Communication papers proceedings

Figure 6: Each line color represents a group, the group
other is in red.

is chosen to become the reading direction; otherwise, if
this group contains more than 25% it is retained. Note
that if the second larger group contains also more lines
than the percentage that permits the choice of reading
direction, it is chosen as a direction applicable if the
panel is too large to be displayed in full screen (see al-
gorithm 2 for more details).

Data: setoflines
Result: readingDirection optionalDirection

N « |setoflines|;

foreach Line in seto flines do
find gradient of line;
classify Line according to its gradient;
/* 5 groups: horizontal,

vertical, two diagonals, other «/
end
threshold < N/3;
/+» In all following conditions, we
do not test the group other */

sorting groups in decreasing order;
if Ifirst group| > threshold then
‘ readingDirection <— group orientation;
else
threshold < N/4;
if |first group| > threshold then
‘ readingDirection < group orientation;
else
| return unclassified;
end

end

if Isecond group| > threshold then
optionalDirection <— group orientation;

return readingDirection and optionalDirection;

else
return readingDirection;
end
Algorithm 2: Lines of force interpretation.

Even if our system provides a classification for the most
of the panels, some of them remain unclassified (see
section 5.2). These cases occur when lines of force are
mainly classified in the group other or when groups are
balanced. Since we decide to provide one of the attempt

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

reading directions (horizontal, vertical and the two di-
agonals), for these cases, the reading direction is finally
given by a scriptwriter.

Note that rules can be added or changed in our system
implementation to interpret the reading direction. As
an example, one might want to add a flicker animation
if the two diagonal groups are the majority.

S RESULTS

In this section, as mentioned in section 3.2, we focus
first on results using SIFT, SURF and ORB. Then we
present results provided by our model.

5.1 SIFT, SURF and ORB

As described above, these methods are well adapted for
photorealistic image retrieval and have their own advan-
tages and drawbacks. One can easily imagine to adapt
these techniques to the comic panel transitions by find-
ing corresponding points in successive panels. As we
have evaluated carefully these methods on comic pan-
els and have remarked that they are not dedicated to
this kind of images, we provide hereafter salient results
on panel transitions. However, for clarity purposes, we
only focus on a single couple of representative panels
where the transition is the most favorable (i.e. moment-
to-moment transition).

Note that, as an implementation detail, we use OpenCV
library for SIFT, SURF and ORB and we test the feature
matching with flann, fern and brute force.

Figure 7 presents results of interest points matching on
a panel. As one can remark, speech balloons and ono-
matopoeia produce noise during the interest points de-
tection. Figure 8 illustrates the same algorithms using
the ROI defined in section 4.2.

As concluded by Bauer et al. [Bau07], SIFT produce
too many points to be easily readable. On top of figure
8 there are numerous good detections and matchings
but also numerous false positives.

By opposition, SURF gives a very poor repeatability
of detection and it is impossible to provide a confident
panel transition (see middle of figure 8).

As mentioned by Rublee et al. [Rub11], ORB is a good
compromise between SIFT and SURF. ORB (see bot-
tom of figure 8) has a better repeatability than SURF
but also fewer points compared to SIFT. However, here
also, matching is still shoddy like for SURF and SIFT.

As mentioned in section 2 difference between two suc-
cessive panels are often more important than between
two photographs of the same scene (like in [BauO7]
and [Rubl1]). Also, since a large part to the repeata-
bility is distorted by many changes between two panels
(i.e. shapes, colors...), this kind of methods cannot be
applied to comic images.

Communication papers proceedings

Figure 7: Up to down: SIFT, SURF and ORB detectors
on two panels of comic Le Donjon de Naheulbeuk.

5.2 Results of Our Model

We experiment our model on a large collection of dif-
ferent type of comics: comic books (X-men and Star
Wars), Franco-Belgian comics (Gaston Lagaffe, As-
terix, Tintin and Le Donjon de Naheulbeuk) and mangas
(Naruto, One Piece and Hellsing). They constitute a
set of 2,000 panels. Our system has classified the panel
set in 16 minutes with a Intel Core 2 Duo processor
(2.26GHz) and 2Go RAM.

87.2% of the panels have been classified into one of
horizontal, vertical or the two diagonals groups. 12.8%
of panels are classified in the group other. This classifi-
cation is presented in table 1; the horizontal reading di-
rection is a majority with a distribution of 54.5%. This
can be explained by the horizontal reading direction and
the page format where panels are more frequently hor-
izontal than vertical. The vertical reading direction is
not well represented, which can be explained by the fact
that few panels are vertically extended. Remark that our
system has proposed the same reading direction (verti-
cal) for the two panels used on figure 9.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

reading direction optional direction Horizontal | Vertical | Diagonal w/4 | Diagonal —m/4
Horizontal 54.5% N/A 0.9% 0.9% 1.4%
Vertical 8.5% 0.6% N/A 0.8% 0.7%
Diagonal 7 /4 14.2% 1% 0.7% N/A 0.6%
Diagonal —m/4 10% 0.5% 0.3 0.6% N/A
Other 12.8% N/A N/A N/A N/A

Table 1: Summary of the interpretation of reading direction on 2,000 panels. Column 2 is a total for a given
direction. Columns 3 to 6 correspond to the optional direction, applicable if the panel is too large to be display in

full screen.

Figure 8: Up to down: SIFT, SURF and ORB detectors
on ROI of two panels of comic Le Donjon de Naheul-
beuk.

)

b

Figure 9: Lines of force of two successive panels of
comic Le Donjon de Naheulbeuk. On these two panels,
our system has proposed a vertical reading direction.

Note that only 10% of the panels (excepted panels in
the group other) have an optional direction. That means
that the difference between the first and the second ori-
entation of a panel is generally large enough.

As our test protocol consists of a comparison between
results provided by our model and by a panel of hu-

Communication papers proceedings

95

mans testers, we have selected randomly 100 panels
in our set. Note that testers are comic readers (27%),
game designers (13%), graphic designers (20%) and
other (40%). We asked them to select only one group
for each comic panel and we retain only the majority
group. As one can see in table 2, reading directions pro-
posed by testers and our system are very similar. The
first column represents results with our tool for these
100 panels. Our results and human choice are concor-
dant in 78% of the cases (91% for horizontal, 100% for
vertical, 56% for m/4 diagonal, 46% for —n /4 diag-
onal and 41% for others). Remark that for horizontal
and vertical, the results are identical in more than 93%
of the cases. Note that, even if it does not appear in this
table, the answers provided by testers for each comic
panel, are generally distributed uniformly with a domi-
nant group.

6 CONCLUSION

We have proposed a model allowing to script a comic
ebook reading by adding panel reading direction and
inputs/outputs animations. Our method has classified
87.2% of panels in the same way a human would do in
78% of cases. The purpose of this work does not con-
sist of replacing scriptwriter but to suggest animations
to them and to reduce the time of a comic script genera-
tion. Our comics reading system is integrated to a very
complete sketch-based interface to script comics read-
ing. In future work, we plan to use curved lines as lines
of force and we aim at integrated perspective to propose
more complex animations.

7 ACKNOWLEDGEMENT

This work was supported by TEKNEO (producer of en-
tertaining applications (video games), as well as serious
applications (Serious games)). Jérémy Raulet was a re-
cipient of a CIFRE fellowship.

8 REFERENCES

[Alm75] P. Almasy. La Photographie, moyen

d’information. Tema-éditions, 1975.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

human choice Horizontal | Vertical | Diagonal /4 | Diagonal —x/4 | other
our tool
Horizontal 48 44 3 1 0 0
Vertical 12 0 12 0 0 0
Diagonal /4 16 2.33 4.33 9 0 0.33
Diagonal —x /4 12 0 3 0 8 1
Other 12 2 1.5 0.5 3 5
total of human choice 48.33 23.83 10.5 11 6.33

Table 2: Summary of the interpretation of reading direction on 100 panels. Column 2 is a total for a given direction
for our tool. Columns 3 to 7 show testers majority direction choices compared to results with our tool.

[BauO7]

[Che07]

[Comi09]

[Fek09]

[Gab05]

[Kir83]

[Lan07]

[McCO00]

[McC93]

[Omo04]

[Raull]

J. Bauer, N. Siinderhauf, and P. Protzel.
“Comparing several implementations of two
recently published feature detectors”. Proc.
of the International Conference on Intelli-
gent and Autonomous Systems, Vol. 6, No. pt
1, pp. 143148, 2007.

S. C. S. Cheung. “Face Detection and Face
Recognition of Human-like Characters in
Comics”. Tech. Rep., City University of
Hong Kong, Department of Computer Sci-
ence, 2007.

“Comicbook Dictionary”. Oct 2009.
http://comicbooks.wikidot.com/comicbook-
dictionary.

A. Fekir, N. Benamrane, and A. Taleb-
Ahmed. “Détection et suivi d’objets dans

une séquence d’images par contours actifs”.
Proc. CIIA, Vol. 547, 2009.

P. Gabriel, J.-B. Hayet, J. Piater, and J. Verly.
“Object tracking using color interest points”.
In: Advanced Video and Signal Based
Surveillance, 2005. AVSS 2005. IEEE Con-
ference on, pp. 159-164, IEEE, 2005.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vec-
chi. Optimization by simulated annealing.
Vol. 220, Washington, 1983.

J. Landré and F. Truchetet. Image retrieval
with binary hamming distance. Citeseer,
2007.

S. McCloud. Reinventing Comics: How
Imagination and Technology Are Revolu-
tionizing an Art Form. HarperCollins, 2000.
S. McCloud. Understanding Comics: The
Invisible Art. Tundra Publishing, 1993.

T. Omori, T. Igaki, T. Ishii, K. Kurata, and
N. Masuda. “Eye catchers in comics: Con-
trolling eye movements in reading picto-
rial and textual media.”. 28th International
Congress of Psychology, pp. 211-219, 2004.
J. Raulet and V. Boyer. “A Sketch-based
Interface to Script Comics Reading”. SIG-

Communication papers proceedings

[Rubl1]

[Sch00]

[Sha02]

[Tan07]

[Tor06]

[Wanl1]

[YamO4]

GRAPH Asia 2011 Sketches, p. 3, Dec 2011.

E. Rublee, V. Rabaud, K. Konolige, and

G. Bradski. “ORB: an efficient alternative
to SIFT or SURF”. International Confer-
ence on Computer Vision, pp. 2564-2571,
Nov 2011.

C. Schmid, R. Mohr, and C. Bauckhage.
Evaluation of Interest Point Detectors.
Vol. 37, Springer, 2000.

M. Sharifi, M. Fathy, and M. T. Mahmoudi.
“A Classified and Comparative Study of
Edge Detection Algorithms”. Informa-
tion Technology: Coding and Computing,
pp. 117-120, 2002.

T. Tanaka, K. Shoji, F. Toyama, and

J. Miyamichi. “Layout Analysis of Tree-
Structured Scene Frames in Comic Images”.
In: Proceedings of the 20th international
Jjoint conference on Artifical intelligence,
pp- 2885-2890, Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2007.

R. d. S. Torres and A. X. Falcdo. “Jour-
nal of Theoretical and Applied Informatics
(RITA)”. RITA, Vol. XIII, No. 2, pp. 165-
189, 2006.

A. D. Wandani, G. Wee, and W. S. Moses.
“Designing Interactive Mobile Comics for
Multi-Touch Screen Phones”. International
Conference on Future Information Technol-
ogy IPCSIT, Vol. 13, pp. 332-336, 2011.
M. Yamada, R. Budiarto, M. Endo, and
S. Miyazaki. “Comic Image Decomposition
for Reading Comics on Cellular Phones”.
IEICE Transactions, Vol. 87-D, No. 6,
pp- 1370-1376, 2004.

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Practical Augmented Visualization on Handheld Devices
for Cultural Heritage
Giovanni Murru

Sapienza Univ. of Rome
giovanni.murru@gmail.com

Tommaso Empler
Sapienza Univ. of Rome
tommaso.empler@uniroma..it

Marco Fratarcangeli
Sapienza Univ. of Rome
frat@dis.uniroma.it

ABSTRACT

In this paper, we present a framework for the interactive 3D visualization of archaeological sites on handheld
devices using fast augmented reality techniques. The user interface allows for the ubiquitous, personalized and
context-aware browsing of complex digital contents, such like 3D models and videos. The framework is very
general and entirely devised and built by the means of free, cross-platform components. We demonstrate the
flexibility of our system in a real case scenario, namely the augmented visualization of a historically reliable

model of the Ancient Forum of Nerva located in Rome, Italy.

Keywords

Virtual and augmented reality, personalized heritage visits, mobile guides, location-aware.

1 INTRODUCTION

Augmented reality (AR) is an emerging computer tech-
nology where the perception of the user is enhanced by
the seamless blending between real environment and
computer-generated virtual objects coexisting in the
same space. The resulting mixed image supplements
reality, rather than replacing it [7].

In the context of cultural heritage, augmented reality is
used to blend visual representations of historical mon-
uments, artifacts, buildings, etc., into the real environ-
ment visited by the audience (e.g., tourists, students, re-
searchers). For example, in virtual Pompeii [15], virtual
characters representing ancient Romans are blended
into the real environment; the user is able to perceive
them by means of an ad-hoc mobile AR system. Such
applications create simulations of ancient cultures by
integrating them in the actual real environment. In this
way, the user can learn about the culture by directly in-
teracting with it on site.

Augmented reality systems are rather complex and in-
volve technologies from different areas such as com-
puter vision, computer graphics and human-computer
interaction, in order to synthesize and deliver the vir-
tual information onto the images of reality. Generally,
the system must 1) track and locate the real images,
2) display the virtual information and 3) align and su-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Communication papers proceedings

perimpose the virtual data onto the real image. The
main challenge in the design of these systems lies in
the seamless integration of computationally-expensive
software modules and energy consuming hardware in a
framework that must run at interactive rate and, at the
same time, be portable by the user. Traditionally, the
mobile systems [19, 15] require the user to wear a set
of hardware devices such as cameras, electronic com-
passes, small laptops, which makes the whole system
not comfortable and limits de-facto the massive spread-
ing of mobile AR systems in the context of cultural her-
itage.

The recent increase of the computational capabilities,
the sensor equipment and the advancement of 3D accel-
erated graphics technologies for handheld devices, of-
fer the potential to make the AR heritage systems more
comfortable to carry and wear, facilitating the spread of
this kind of AR systems to the mass market.

1.1 Contributions

In this paper, we present a novel mobile framework
for augmented reality in the context of cultural her-
itage, running on modern handheld devices. The frame-
work implements context-aware tracking, 3D alignment
and visualization of graphical models at interactive rate.
Using this framework, the user is free to roam around
archaeological sites using non-invasive and already in
use devices such as modern smartphones and tablets.
The framework is composed by free, cross-platform
software modules, making it easier to reproduce.

The applicability of the framework is tested by provid-
ing an augmented view of the Ancient Forum of Nerva,
which was one of the Imperial Fora during the Roman
Empire age. The 3D model has been designed accord-

ISBN 978-80-86943-75-6



21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Figure 1: Left. 3D reconstruction of the Ancient Forum of Nerva in Rome, Italy. Middle. Augmented view of the
archeological artifact on-site. Right. A screenshot of the framework running on a handheld device.

ing to the information acquired from previous archaeo-
logical studies [18].

2 RELATED WORK

Augmented Reality is a technology allowing for ex-
tending the vision of real world with superimposition
of digital information, e.g. 3D virtual objects, 2D im-
ages and icons, labels, etc. Augmented reality is not
intended for replacing the reality like traditional virtual
reality, but it rather enhances it with digital data, mak-
ing virtual and real objects coexist in the same space. In
general, an augmented reality system must be equipped
with display, tracker, graphics capabilities and appro-
priate software [6, 7, 9].

Head-Mounted Displays [13] are one of the most pop-
ular approaches for delivering mobile augmented real-
ity in the context of cultural heritage. The Archeogu-
ide project is among the pioneer systems for the on-
site exploration of outdoor sites [11, 19]. Such a sys-
tem is able to track position and orientation of the user
employing a camera and an electronic compass, both
mounted with the display unit. This allows for inferring
the field of view and displaying 2D virtual images and
information of the scene observed by the user. How-
ever, the weight and dimension of the required hard-
ware devices makes the whole system uncomfortable to
wear.

Modern handheld devices, such like smartphones and
tablets, have a complete set of high quality sensors
such as 3-axis gyroscope, ambient light sensor, ac-
celerometers, magnetometer, proximity sensor, and as-
sisted GPS; hence they are well suited for the develop-
ment of augmented reality systems in a scenario similar
to Archeoguide. Recent research efforts have provided
several mobile solutions [8, 12, 20, 10] but are still not
able to visualize context-aware, outdoor 3D models in
a general manner.

Existing comm