

21
st
 International Conference in Central Europe

on

Computer Graphics, Visualization and Computer Vision

in co-operation with

EUROGRAPHICS Association

WSCG 2013

Communication Papers Proceedings

Edited by

Vaclav Skala, University of West Bohemia, Czech Republic

21
st
 International Conference in Central Europe

on

Computer Graphics, Visualization and Computer Vision

in co-operation with

EUROGRAPHICS Association

WSCG 2013

Communication Papers Proceedings

Edited by

Vaclav Skala, University of West Bohemia, Czech Republic

Vaclav Skala – Union Agency

WSCG 2013 - Communication Papers Proceedings

Editor: Vaclav Skala

c/o University of West Bohemia, Univerzitni 8

CZ 306 14 Plzen

Czech Republic

skala@kiv.zcu.cz http://www.VaclavSkala.eu

Managing Editor: Vaclav Skala

Published and printed by:

Vaclav Skala – Union Agency

Na Mazinách 9

CZ 322 00 Plzen

Czech Republic http://www.UnionAgency.eu

Hardcopy: ISBN 978-80-86943-75-6

mailto:skala@kiv.zcu.cz
http://www.vaclavskala.eu/
http://www.unionagency.eu/

WSCG 2013

International Program Committee

Benes, Bedrich (United States)

Benger, Werner (United States)

Bengtsson, Ewert (Sweden)

Bilbao, Javier,J. (Spain)

Biri, Venceslas (France)

Bittner, Jiri (Czech Republic)

Buehler, Katja (Austria)

Coquillart, Sabine (France)

Daniel, Marc (France)

de Geus, Klaus (Brazil)

de Oliveira Neto, Manuel Menezes (Brazil)

Debelov, Victor (Russia)

Feito, Francisco (Spain)

Ferguson, Stuart (United Kingdom)

Gain, James (South Africa)

Gudukbay, Ugur (Turkey)

Guthe, Michael (Germany)

Herout, Adam (Czech Republic)

Choi, Sunghee (Korea)

Chover, Miguel (Spain)

Chrysanthou, Yiorgos (Cyprus)

Juan, M.-Carmen (Spain)

Kim, HyungSeok (Korea)

Klosowski, James (United States)

Max, Nelson (United States)

Molla, Ramon (Spain)

Muller, Heinrich (Germany)

Murtagh, Fionn (United Kingdom)

Pan, Rongjiang (China)

Paquette, Eric (Canada)

Patow, Gustavo (Spain)

Pedrini, Helio (Brazil)

Platis, Nikos (Greece)

Reshetov, Alexander (United States)

Richardson, John (United States)

Rojas-Sola, Jose Ignacio (Spain)

Santos, Luis Paulo (Portugal)

Savchenko, Vladimir (Japan)

Skala, Vaclav (Czech Republic)

Slavik, Pavel (Czech Republic)

Sochor, Jiri (Czech Republic)

Sourin, Alexei (Singapore)

Sousa, A.Augusto (Portugal)

Sramek, Milos (Austria)

Stroud, Ian (Switzerland)

Szecsi, Laszlo (Hungary)

Teschner, Matthias (Germany)

Theussl, Thomas (Saudi Arabia)

Tokuta, Alade (United States)

Vitulano, Domenico (Italy)

Wu, Shin-Ting (Brazil)

Wuensche, Burkhard,C. (New Zealand)

Wuethrich, Charles (Germany)

Zara, Jiri (Czech Republic)

Zemcik, Pavel (Czech Republic)

Zitova, Barbara (Czech Republic)

WSCG 2013

Board of Reviewers

Agathos, Alexander

Assarsson, Ulf

Ayala, Dolors

Backfrieder, Werner

Barbosa, Joao

Barthe, Loic

Battiato, Sebastiano

Benes, Bedrich

Benger, Werner

Bilbao, Javier,J.

Biri, Venceslas

Birra, Fernando

Bittner, Jiri

Bosch, Carles

Bourdin, Jean-Jacques

Brun, Anders

Bruni, Vittoria

Buehler, Katja

Bulo, Samuel Rota

Cakmak, Hueseyin

Camahort, Emilio

Casciola, Giulio

Cline, David

Coquillart, Sabine

Cosker, Darren

Daniel, Marc

Daniels, Karen

de Geus, Klaus
de Oliveira Neto, Manuel
Menezes

Debelov, Victor

Drechsler, Klaus

Durikovic, Roman

Eisemann, Martin

Erbacher, Robert

Feito, Francisco

Ferguson, Stuart

Fernandes, Antonio

Fuenfzig, Christoph

Gain, James

Galo, Mauricio

Gobron, Stephane

Grau, Sergi

Gudukbay, Ugur

Guthe, Michael

Hansford, Dianne

Haro, Antonio

Hasler, Nils

Hast, Anders

Hernandez, Benjamin

Hernandez, Ruben Jesus Garcia

Herout, Adam

Herrera, Tomas Lay

Hicks, Yulia

Hildenbrand, Dietmar

Hinkenjann, Andre

Chaine, Raphaelle

Choi, Sunghee

Chover, Miguel

Chrysanthou, Yiorgos

Chuang, Yung-Yu

Iglesias, Jose,A.

Ihrke, Ivo

Iwasaki, Kei

Jato, Oliver

Jeschke, Stefan

Jones, Mark

Juan, M.-Carmen

Kämpe, Viktor

Kanai, Takashi

Kellomaki, Timo

Kim, H.

Klosowski, James

Kolcun, Alexej

Krivanek, Jaroslav

Kurillo, Gregorij

Kurt, Murat

Kyratzi, Sofia

Larboulette, Caroline

Lee, Jong Kwan Jake

Liu, Damon Shing-Min

Lopes, Adriano

Loscos, Celine

Lutteroth, Christof

Maciel, Anderson

Mandl, Thomas

Manzke, Michael

Marras, Stefano

Masia, Belen

Masood, Syed Zain

Max, Nelson

Melendez, Francho

Meng, Weiliang

Mestre, Daniel,R.

Metodiev, Nikolay Metodiev

Meyer, Alexandre

Molina Masso, Jose Pascual

Molla, Ramon

Montrucchio, Bartolomeo

Morigi, Serena

Muller, Heinrich

Munoz, Adolfo

Murtagh, Fionn

Okabe, Makoto

Oyarzun, Cristina Laura

Pan, Rongjiang

Papaioannou, Georgios

Paquette, Eric

Pasko, Galina

Patane, Giuseppe

Patow, Gustavo

Pedrini, Helio

Pereira, Joao Madeiras

Peters, Jorg

Pina, Jose Luis

Platis, Nikos

Post, Frits,H.

Puig, Anna

Rafferty, Karen

Renaud, Christophe

Reshetouski, Ilya

Reshetov, Alexander

Ribardiere, Mickael

Ribeiro, Roberto

Richardson, John

Rojas-Sola, Jose Ignacio

Rokita, Przemyslaw

Rudomin, Isaac

Sacco, Marco

Salvetti, Ovidio

Sanna, Andrea

Santos, Luis Paulo

Sapidis, Nickolas,S.

Savchenko, Vladimir

Seipel, Stefan

Sellent, Anita

Shesh, Amit

Sik-Lanyi, Cecilia

Sintorn, Erik

Skala, Vaclav

Slavik, Pavel

Sochor, Jiri

Sourin, Alexei

Sousa, A.Augusto

Sramek, Milos

Stroud, Ian

Subsol, Gerard

Sundstedt, Veronica

Szecsi, Laszlo

Teschner, Matthias

Theussl, Thomas

Tian, Feng

Tokuta, Alade

Torrens, Francisco

Trapp, Matthias

Tytkowski, Krzysztof

Umlauf, Georg

Vasa, Libor

Vergeest, Joris

Vitulano, Domenico

Vosinakis, Spyros

Walczak, Krzysztof

WAN, Liang

Wu, Shin-Ting

Wuensche, Burkhard,C.

Wuethrich, Charles

Xin, Shi-Qing

Xu, Dongrong

Yoshizawa, Shin

Yue, Yonghao

Zalik, Borut

Zara, Jiri

Zemcik, Pavel

Zhang, Xinyu

Zhao, Qiang

Zheng, Youyi

Zitova, Barbara

Zwettler, Gerald

WSCG 2013

Communications Papers Proceedings

Contents

 Page

Rios-Soria,D., Schaeffer,S., Garza-Villarreal,S.: Hand-gesture recognition using

computer-vision techniques

1

Al Hamad,H.A.: Neural-Based Segmentation Technique for Arabic Handwriting Scripts 9

Gdawiec,K.: Polynomiography and various convergence tests 15

Schiffner,D., Ritter,M., Benger,W.: Fast Normal Approximation of Point Clouds in

Screen Space

21

Van Dyk,B., Lutteroth,C., Weber,G., Wuensche,B.: Using OpenGL State and History

for Graphics Debugging

29

Peek,E., Wuensche,B., Lutteroth,C.: Virtual Reality Capabilities of Graphics Engines 39

Sena,D., Pereira,J., Costa,V.: Physics-based Water Interaction and Shading: the

SiViFlow Algorithm

49

Nguyen,V.-S, Bac,A., Daniel,M.: Simplification of 3D Point Clouds sampled from

Elevation Surfaces

60

Seib,V., Giesen,J., Grüntjens,D., Paulus,D.: Enhancing Human-Robot Interaction by a

Robot Face with Facial Expressions and Synchronized Lip Movements

70

Ilgner, Kuhlmann, Eirund, Hering-Bertram: Interacting in 3D Virtual Worlds with

Brain Computer Interfaces

78

Raulet,J., Boyer,V.: Comics reading: An automatic script generation 88

Murru,G., Fratarcangeli,M., Empler,T.: Practical Augmented Visualization on Handheld

Devices for Cultural Heritage

97

Li,B., Mukundan,R.: Comparative Analysis of Spatial Partitioning Methods for Large-

Scale, Real-time Crowd Simulation

104

Vergeest,J.S.M.: High-velocity optical flow 112

Kanzok,Th., Süß,F., Linsen,L., Rosenthal,P.: Efficient Removal of Inconsistencies in

Large Multi-Scan Point Clouds

120

Liang,M., Zheng,G., Huang,X., Milledge,G., Tokuta,A.: Identification of abnormal

cervical regions from colposcopy image sequences

130

Akagi,Y., Furukawa,R., Sagawa,R., Ogawara,K., Kawasaki,H.: A facial motion

tracking and transfer method based on a key point detection

137

Kolcun,A.: (Semi) regular tetrahedral tilings 145

Saini,V., Gade,S., Prasad,M., Chatterjee,S.: The 3-Point Method: A Fast, Accurate

and Robust Solution to Vanishing Point Estimation

151

Lacheheb,H., Aouat,S., Hamouchene,I.: MCM-CBIR: Multi Clustering Method for

Content Based Image Retrieval

159

Cocias,T.T., Grigorescu,S.M., Moldoveanu,F.: Generic Fitted Primitives (GFP):

Towards Full Object Volumetric Reconstruction for Service Robotics

166

Sugihara,K.: Straight Skeleton for Automatic Generation of 3-D Building Models with

General Shaped Roofs

175

Alves,R.M., Sousa,L.S.R., Rodrigues,J.M.F.: PoolLiveAid: Augmented reality pool table

to assist inexperienced players

184

Popov,E.V., Rotkov,S.I.: The Retrieval of NURBS-surface by Genetic Algorithm on the

Basis of Point Cloud

194

Dechvijankit,A., Nagahashi,H., Aoki,K.: An Optimization of Square Parameterization 203

Borges,D., Ferreira,A.: Part-based Construction of digitized 3D objects 210

Kansal,R., Kumar,S.: A framework for detection of linear gradient filled regions and

their reconstruction for vector graphics

220

Arora,N., Kumar,H., Dhaliwal,J.S., Kalra,P., Chaudhuri,P.: Improved Interactive

Reshaping of Humans in Images

230

Quoc-Viet,D., Sandrine,M., Géraldine,M.: Similarity Detection for Free-Form

Parametric Models

239

Diaz,R.G., Dreux,M., Coelho,L.C.G.: Generation of Parameterized Models for Vessels

Design

249

Karpavičius,V., Krasauskas,R.: Real-time Visualization of Moebius Transformations in

Space using Quaternionic-Bezier Approach

259

Hand-gesture recognition using computer-vision techniques

David J. Rios-Soria
Universidad Autónoma de Nuevo

León (UANL)
San Nicolás de los Garza, NL, Mexico

david.j.rios@gmail.com

Satu E. Schaeffer
Universidad Autónoma de

Nuevo León (UANL)
San Nicolás de los Garza, NL,

Mexico
elisa.schaeffer@gmail.com

Sara E. Garza-Villarreal
Universidad Autónoma de

Nuevo León (UANL)
San Nicolás de los Garza, NL,

Mexico
saraelena@gmail.com

ABSTRACT

We use our hands constantly to interact with things: pick them up, move them, transform their shape, or activate
them in some way. In the same unconscious way, we gesticulatein communicating fundamental ideas: ‘stop’,
‘come closer’, ‘over there’, ‘no’, ‘agreed’, and so on. Gestures are thus a natural and intuitive form of both
interaction and communication. Gestures and gesture recognition are terms increasingly encountered in discussions
of human-computer interaction. We present a tool created for human-computer interaction based on hand gestures.
The underlying algorithm utilizes only computer-vision techniques. The tool is able to recognize in real time six
different hand gestures, captured using a webcam. Experiments conducted to evaluate the system performance are
reported.

Keywords: Hand-gesture recognition, computer vision, human computer interaction.

1 Introduction

There are situations in which it is necessary to interact
with a system without touching it. The reasons include
dirty hands (when repairing a motor, for example), hy-
giene (to indicate the desired water temperature when
washing hands in a public bathroom), and focus of at-
tention (not wishing to redirect the sight towards the
controls when operating delicate equipment or interact-
ing with an augmented-reality scenario). The use of
voice commands as an alternative to touch-based con-
trols, such as keyboards, buttons, and touch screens, re-
quires a quiet environment and natural language pro-
cessing; voice commands are, additionally, language-
specific and sensitive to dialects and to speech imped-
iments. Another alternative is remote control through
gesture recognition, also known as remote control “with
the wave of a hand". Common applications for this kind
of control involve medical systems —provide the user
sterility to avoid the spread of infections—, entertain-
ment, and human-robot interaction [WKSE11].

The option explored in this work,computer vision for
gesture recognition, has advantages over touch-based
controls and voice commands. Our proposed hand-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

gesture detection algorithm works in real time, using
basic computer-vision techniques such as filters, bor-
der detection, and convex-hull detection; in addition, it
only requires a standard webcam, does not need special
markers on the hand, can detect the hand regardless of
its position (upside down, backwards, leaned to the left
or right), and is easily extended for detecting two hands
at the same time.

To test this approach, user experiments were carried
out and two applications that use our gesture-detection
system were developed. In the first application, the de-
tected gestures are used as commands for interaction
with a GPS device; in the second one, the detected ges-
tures control the movements of a robot.

This document is organized as follows: Section 2 dis-
cusses background for this work and Section 3 reviews
related work; Section 4 presents the details of our al-
gorithm for hand-gesture recognition, which is able to
recognize six different gestures in real time. Section 5
discusses our prototype implementation and user exper-
iments, and Section 7 offers conclusions and discusses
future directions.

2 Background

The use of the hand as an input device is a method that
provides natural human-computer interaction. Among
the challenges of human-computer interaction is the
creation of user-friendly interfaces that use natural com-
munication. Sophisticated applications such as virtual
environments or augmented-reality systems should pro-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 1 ISBN 978-80-86943-75-6

vide effective human-computer interaction for applica-
tions involving complex tasks. In these applications,
users should be supplied with sophisticated interfaces
allowing them to navigate within the system, select ob-
jects, and manipulate them.

The use of computer vision for human-computer in-
teraction is a natural, non-intrusive, non-contact solu-
tion. Computer vision can be used for gesture detection
and classification, and various approaches have been
proposed to support simple applications. To recognize
hand gestures using computer vision, it is first needed
to detect the hand on an image or video stream. Hand
detection and pose estimation involve extracting the po-
sition and orientation on the hand, fingertip locations,
and finger orientation from the images. Skin-color fil-
tering is a common method for locating the hand be-
cause of its fast implementation. Skin-color filters rely
on the assumption that the hand is the only skin-colored
object. Gesture classification is a research field involv-
ing many machine-learning techniques such as neural
networks and hidden Markov models [SP09].

However, hand-pose estimation is still a challenge in
computer vision. Several open problems remain to be
solved in order to obtain robustness, accuracy, and high
processing speed. The need of an inexpensive but high-
speed system is rather evident.Development of these
systems involves a challenge in the research of effective
input/output techniques, interaction styles, and evalua-
tion methods [EBN+07].

3 Related work

There are several areas where the detection of hand ges-
tures can be used, such as device interaction, virtual-
object interaction, sign-language recognition, and robot
control. Wachs et al. [WKSE11] present some exam-
ples of applications such as medical assistance systems,
crisis management, and human-robot interaction. In
the following subsection we present some examples of
gesture-based interaction systems.

3.1 Device interaction

There are works related to electronic device interac-
tion; for example, Stergiopoulou et al. [SP09] use self-
growing and self-organized neural networks for hand
gesture recognition. Another example isFinger count-
ing [CB03] a simple human-computer interface. Using
a webcam, it interprets specific hand gestures as input
to a computer system in real time.

TheUbiHand[AM06b] is an input device that uses a
miniature wrist-worn camera to track finger position,
providing a natural and compact interface. A hand
model is used to generate a 3D representation of the
hand, and a gesture recognition system interprets finger

movements as commands. The system is a combination
of a pointer position and non-chorded keystroke input
device to track finger position [AM06a].

An interactive screen developed by The Alternative
Agency1 in UK is located in a department store window
(Figure 1). TheOrange screenallows interaction just
by moving the hands in front of the window without the
need to touch it.

Figure 1: The world’s first touchless interactive shop
window

Lenman et al. [LBT02] use gesture detection to inter-
act with electronic-home devices such as televisons and
DVD players.

MacLean et al. [MHP+01] use hand-gesture recog-
nition for real-time teleconferencing applications. The
gestures are used for controling horizontal and verti-
cal movement as well as zooming functions. Schlömer
et al. [SPHB08] use hand-gesture recognition for inter-
action with navigation applications such viewing pho-
tographs on a television, whereas Roomi et al. [RPJ10]
propose a hand-gesture detection system for interac-
tion with slideshow presentations in PowerPoint. The
gesture-detection system presented in Argyros et al.
[AL06] allows to control remotely the computer mouse.

Sixthsense[MMC09] is a system that converts any
surface into an interactive surface. In order to interact
with the system, hand gesture recognition is used. In the
Sixthsensesystem, color markers are used in the fingers
to detect the gestures.

3.2 Virtual object interaction

Gesture detection can be used for interaction with vir-
tual objects; there are several works that show applica-
tions for this scenario.

Hirobe et al. [HNW+09] have created an interface
for mobile devices using image tracking. The system
tracks the finger image and allows to type on an in-air
keyboard and draw 3D pictures.

HandVu[Kol10] is a hand-gesture vision-based recog-
nition system that allows interaction with virtual objects
(Figure 2)HandVudetects the hand in a standard pos-
ture, then tracks it and recognizes key postures, all in
real-time and without the need for camera or user cali-
bration. Although easy to understand, the used gestures
are not natural.

1 http://www.thealternative.co.uk/

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 2 ISBN 978-80-86943-75-6

Figure 2: The gestures used in theHandvu system
[Kol10] are not natural gestures.

Wobbrock et al. [WMW09] propose a series of ges-
tures in order to make easier the use of interactive sur-
faces. Wachs et al. [WSE+06] use real-time hand ges-
tures for object and window manipulation in a medical
data visualization environment.

3.3 Sign language recognition

Zahedi et al. [ZM11] create a system for sign language
recognition based on computer vision. Wang et al.
[WP09] present a work where hand gesture detection
is used in three aplications: animated character inter-
action, virtual object manipulation, and sign language
recognition.

3.4 Robot-control

Malima et al. [ÇMÖ06] use hand-gesture detection for
remote robot-control. They have noted that images
taken under insufficient light (especially using the we-
bcam) have led to incorrect results. In these cases the
failure mainly stems from the erroneous segmentation
of some background portions as the hand region.

4 Theory

Our proposed algorithm performs hand-gesture recog-
nition by utilizing computer-vision techniques and is
able to recognize six different gestures in real-time. The
processing steps included in the algorithm are explained
in detail in the following subsections.

4.1 Hand recognition

Hand-recognition systems are based on the processing
of an incoming digital image, preferably in real time.
The first task is to separate the image of a hand from
the background. This can be achieved in several ways
and depends on whether the image includes only a hand
against a background or the entire person. Options for
detecting the hand against a background, which is the
typical case for the augmented-reality setting, where the
user wears a headset with a camera pointing towards

his or her field of vision, include either comparing the
subsequent frames in a video (to detect movement —
sensitive to motion in the background as well as shaking
of the hand itself—) or using askin-color filter(to clas-
sify the pixels of the image into two classes, “hand” or
“background”, depending on their color values). In this
work, we employ the latter approach, which is some-
what sensible to high variations of skin color (the prob-
lematic cases being very pale and very dark-skinned
users). This can be done on a single frame, that is, a
still photograph, but can often be improved by averag-
ing over a few adjacent video frames; in our work we
use the average over ten frames.

The skin-color filtering in such does not yet necessar-
ily produce a picture of the hand only, as some pixels
belonging to the background may pass through the fil-
ter whereas parts of the hand that are either shadowed or
reflect light are excluded. Hence we need to apply sev-
eral processing steps; first to extract the hand and then
to identify the gesture that the user is currently making.

4.2 Skin-color filtering

Skin color has proven to be a useful and robust cue
for face detection, localization, and tracking [Mah08,
VSA03, KMB07]. Content filtering, content-aware video
compression, and color-balancing applications can also
benefit from automatic detection of skin in images. The
goal of skin-color detection is to construct a decision
rule to discriminate between skin and non-skin pixels.
This is usually accomplished by introducing a metric,
which measures the distance of the color of a given
pixel to a defined value representing skin tone. The
specific distance metric employed depends on the skin-
color modeling method. An obvious advantage of such
methods is the simplicity of the skin-detection rules
that enables the implementation of a very fast classifier
[VSA03].

Colorimetry, computer graphics, and video-signal trans-
mission standards have given birth to manycolor spaces
with different properties. A wide variety of them has
been applied to the problem of skin-color modeling.
The red-blue-green (RGB) is a color space that origi-
nated from cathode-ray tube display applications, where
it was convenient to describe each color as a combina-
tion of three colored rays: red, green, and blue. This
remains one of the most widely-used color spaces for
processing and storing of digital image data.

YCBCR is a family of color spaces used as a part of
the color-image pimage pipeline in video and digital
photography systems.Y is theluma component, some-
times called luminance, that represents the brightness
in an image. CB andCR are the blue-difference and
red-difference chroma components; chroma is the sig-
nal used in video systems to convey the color informa-
tion of the picture

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 3 ISBN 978-80-86943-75-6

In contrast to RGB, theYCBCR color space is luma-
independent, resulting in a better performance.YCBCR

is not an absolute color space; rather, it is a way of en-
coding RGB information. The actual color displayed
depends on the actual RGB primaries used to display
the signal.
The hand-gesture detection algorithm uses skin-color
detection. The skin-color filter used in our work can
also be used for face detection, localization, and track-
ing of persons in videos.

Denote byI be the entire input image, and byIY, ICB

andICR the luma, blue, and red components of the im-
age, rspectibly We denote the image height in pixels by
h and the image width in pixels byw. The pixel in posi-
tion (i, j) is denoted bypi, j and its three components by
pY

i, j , pCB
i, j , andpCR

i, j . For all componentsC∈ {Y,CB,CR},

we assume thatpC
i, j ∈ [0, 255], corresponding to eight

bits per color channel, yielding 24 bits per pixel. This
gives image size ofh×w×24 bits.

We use a pixel-based skin detection method [KPS03]
that classifies each pixel as skin or non-skin individu-
ally. More complex methods that take decisions based
not only on a pixelpi, j , but also on its direct neighbor-
hood {pi−1, j , pi+1, j , pi, j−1, pi, j+1} (and possibly also
the diagonal neighborhoodpi−1, j−1, pi+1, j−1, pi+1, j+1,

pi−1, j+1) can be formulated, but are computationally
heavier. Our aim is to operate the system in real time,
for which we seek the simplest and fastest possible
method for each step.

A pixel pi, j in I is classified —heuristically, based
on existing literature— as skin if all of the following
conditions simultaneously apply:

1. The luma component exceeds its corresponding thresh-
old value:

pY
i, j > 80. (1)

2. The blue and red components are within their corre-
sponding ranges:

85 < pCB
i, j < 135,

135 < pCR
i, j < 180.

(2)

We write S(pi, j) = ⊤ if the pixel pi, j passes the filter,
andS(pi, j) = ⊥ if it does not fulfill the above condi-
tions.

We then create a new binary imageB of the same
dimensionw× h (cf. Figure 3 for an example) where
the color of the pixelbi, j is either white (denoted by 1)
if the position corresponds to skin or black (denoted by
0) if the position did not pass the skin filter:

bi, j =

{

1, if S(pi, j) =⊤,

0, if S(pi, j) =⊥.
(3)

Figure 3: On the left, an original imageI . On the right,
the resulting binary imageB after applying the skin-
color filter defined by Equations 1-2.

4.3 Edge detection

Using the binary image corresponding to the presumed
skin pixels, we need to determine which of these form
the hand, meaning that we need to identify the edge of
the hand shape in the image.Edge detectionis an es-
sential tool in image processing and computer vision,
particularly in the areas of feature detection and feature
extraction. Anedgeis defined as the boundary between
an object and the background, although it may also in-
dicate the boundary between overlapping objects.

The process of edge detection is generally based on
identifying those pixels at which the image brightness
has discontinuities. When the edges in an image are
accurately identified, the objects in it can be located,
allowing the computation of basic properties of each
object, such as the area, perimeter, and shape [Par96].

There are two main methods used for edge detection;
namely thetemplate matchingand thedifferential gra-
dientmethods. In both of these methods, the goal is to
identify locations in which the magnitude of the inten-
sity gradient (that is, the change that occurs in the inten-
sity of pixel color when moving across adjacent pixels)
is above a threshold, as to indicate in a reliable fashion
the edge of an object. The principal difference between
the two methods is the way in which they perform lo-
cal estimation of the intensity gradientg, although both
techniques employ convolution masks.

The template matching operates by taking the max-
imum over a set of component masks (such as the
Roberts, Sobel, and Prewitt operators) that represent
possible edge configurations. This yields an approxi-
mation forg at the pixel in which the templates are cen-
tered. The differential gradient method instead com-
putes the pixel magnitudes vectorially with a nonlinear
transformation. After computingg for each pixel —
with either of these methods— thresholding is carried
out to obtain a set ofcontour points(that is, those that
were classified as being part of an edge). The orienta-
tion of the edges can be deduced from the direction of
the highest gradient (the edge being perpendicular to it
at that pixel).

At this point, we have the set of contour pixels and
need to determine the connected components of the
contour, meaning that we must compute the connected

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 4 ISBN 978-80-86943-75-6

sets of edge points. To create a connected set we select
one contour pixel as a seed and recursively add to the
set pixels that are also contour pixels and are adjacent
to at least one pixel in the set, until there are no more
adjacent contour pixels. If there are contour pixels left,
then we select another contour pixel as a seed to create
a new connected set; we repeat iteratively until all the
contour pixels are in a connected component.
In our case, we assume the hand to be in the image fore-
ground, making it likely that the largest connected con-
tour component will correspond to the hand, whereas
any smaller components of the contour set, if present,
correspond to some objects on the background.
We denote the set of contour pixels of the largest con-
nected component byE. We construct a new binary im-
ageO by copyingB and then setting to zero (black) all
those pixels that correspond to the smaller connected
components of the contour and their insides, leaving
only E and the pixels inside it at one (white). This can
be done by a standard bucket-fill algorithm.

4.4 Convex hull and convexity defects

At this point, we have identified the edge of the hand in
the image. We now proceed to determining which hand
gesture is being made in the image. The way in which
this is done depends on the the type of hand gestures
supported by the system —no single design is adequate
for all possible hand positions–. The gestures that we
wish to detect are shown in Figure 4.

Figure 4: The gestures used in our proposed system that
correspond to the numbers from zero to five. Note that
the separation of the individual fingers is relevant to the
detection of these gestures.

As our gestures correspond to distinct numbers of fin-
gers elevated, our detection method is based on count-
ing the elevated fingers in the image. It will not be rel-
evant which finger is elevated, only the number of fin-
gers (cf. [CB03, ÇMÖ06]). This gives us the advantage
of the system not being sensitive to which hand is be-
ing used, left or right. Additionally we gain not having
to control the position of the hand: we can look at the
palm or the back and have the person hold his or her
arm at nearly any angle with respect to the camera. All
we require is that either the palm or the back of the hand
faces the camera and that the fingers are separated. This
second requirement can be relaxed in future work; we
discuss later in this paper how we expect to achieve this.

We identify the peaks of the fingers in the image by
computing theconvex hullof the hand edge. The con-
vex hull is a descriptor of shape, is the smallest con-
vex set that contains the edge; intuitively explained —
in two dimensions— as the form taken by a rubber band
when placed around the object in question; an example
is given in Figure 5). It is used in computer vision to
simplify complex shapes, particularly to provide a rapid
indication of the extent of an object.

We now copy the binary imageO to a new image
C. We will then iteratively seek and eliminatecon-
caveregions. Intuitively, this can be done by examining
the values of the pixels in an arbitrary straight segment
with both endpoints residing in white pixels. If any of
the pixels along the segment are black, they are col-
ored white, together with any black pixels beneath the
segment. This repeated “filling” will continue until no
more segments with white end points and intermediate
black pixels exist. An algorithm for achieving this is
given in the text book of Davies [Dav04].

The resulting white zone inC is nowconvexand the
edge of that zone —all those white pixels that have at
least one black neighbor— form the convex hull of the
hand-shape inE. We denote this edge byH.

(a) Edge and hull. (b) Vertices and defects.

Figure 5: On the left, the background (in black), the
hand-shape regionO (in white), the hand edgeE (in
blue), and the convex hullH (in green). On the right,
we add the vertices of the convex hull (in red) and the
convexity defects (in yellow).

We now proceed to comparingH to E to detect the
defects, points in which the two differ greatly. First,
from H, we compute theverticesof the convex hull,
that is, the points in which it changes direction. Then,
we examine the segments ofE between pairs of consec-
utive vertices ofH and find that pixel in each segment
that maximizes the distance fromH. This maximal dis-
tancedi is called thedepthof the defecti. The points
themselves are calledconvexity defects. Figure 5 shows
an example.

From the defect depths, useful characteristics of the
hand shape can be derived, such as the depth average
µd. We use the defect depths, together with the depth
average and the total hand length, to count the number
of elevated fingers. An above-average depth indicates
a gap between fingers, whereas a clearly below-average
depth is not a finger separation. Using the number of
defects we can estimate the number of elevated fingers

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 5 ISBN 978-80-86943-75-6

on the hand: an open hand showing five fingers has four
convexity defects, whereas a hand showing four fingers
has three convexity defects, and so forth.

5 Material and methods

We used OpenCV2 under Python3 to implement a pro-
totype of the proposed hand-gesture detection system.
As we wanted the system to be able to run on mod-
est hardware, we performed all our experiments on a
netbook with a 1.6 GHz processor and 1 GB of RAM
memory, using a webcam with a resolution of 640×480
pixels. The prototype operates in real time and indicates
on the screen the detected gesture; Figure 6 shows a
screen capture.

Figure 6: A screen capture of the implemented proto-
type for the hand-gesture detection tool.

5.1 Experimental setup

We carried out experiments with users to evaluate the
functionality of the proposed gesture-detection algo-
rithm. We requested the users to carry out a series of
gestures in front of the webcam and measured whether
the detection was successful. An observer recorded
whether the output produced by the algorithm corre-
sponded to the actual gesture being made. The light-
ing, camera position, and image background were con-
trolled, as illustrated in Figure 7. We hope to relax these
requirements in future work, as the proposed method is
designed to accommodate a less restricted use setting.

The user was shown a gesture sequence —on a com-
puter screen (see Figure 8 for an example)—. Each ges-
ture sequence contains a randomly permuted sequence
of hand gestures to perform. The sequence was avail-
able on the screen while the user performed the gestures
one at a time. We instructed the users to a take three-
second pause between gestures. Each sequence was
performed once with the right hand and then again with
the left hand. When the user finished to perform the last
gesture in the sequence, a new random sequence was
show. Each user carried out five different sequences.

2 http://opencv.willowgarage.com/
3 http://www.python.org/

Figure 7: The experimental setting: our arrangement
for controlled background, fixed camera position, and
constant illumination.

Figure 8: An example of a random gesture sequence
assigned to a user.

6 Results of user experiments

We evaluated the prototype with ten users; each per-
formed five sequences of gestures with both hands (each
sequence was composed of six gestures from zero to
five, in random order). Therefore, each user performed
60 gestures, giving us a total of 600 gesture-detection
attempts. Table 6 shows the percent of gestures cor-
rectly detected, grouped by the gesture made and the
hand used.

Hand used
Gesture detected

0 1 2 3 4 5 Total
Right hand 100% 72% 96% 94% 98% 100% 93.33%
Left hand 100% 76% 94% 96% 98% 94% 93.00%
Total 100% 74% 95% 95% 98% 97% 93.17%

Table 1: Percentage of correctly identified gestures.

Figure 9: Correctly detected gestures.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 6 ISBN 978-80-86943-75-6

In total, 93.1% of the gestures were correctly de-
tected, improving the results for a previous work [RSS12];
the gestures for numbers three, four, and five have
the highest accuracy and present low variation between
hands. The gestures for number one, however, has the
lowest detection percentage. Also, gestures for zero,
one, and two show variability according to the hand
used. The gesture-detection algorithm works correctly
a majority of the time, under the conditions used in our
experiments. User observation helped us notice that the
primary cause for incorrect gesture detection was the
particular form in which each user performs the gesture:
sometimes, for example, the fingers were very close to
each other. Some examples are shown in Figure 10. We
discuss a possible work-around to this problem as part
of future work in the next section.

Figure 10: Some examples of correct and incorrect de-
tection from the user experiments. Above, a correctly
detected gesture, and below, an incorrect detection of
that same gesture. The gestures requested were, from
left to right, one, three, and five.

7 Conclusions and future work

We have presented a method for detecting hand gestures
based on computer-vision techniques, together with an
implementation that works in real time on a ordinary
webcam. The method combines skin-color filtering,
edge detection, convex-hull computation, and a rule-
based reasoning with the depths of the convexity de-
fects. We had reported as well user experiments on the
detection accuracy of the developed prototype, detect-
ing correctly nine in ten hand gestures made on either
hand, in a controlled environment.

As future work, we plan to add in the gesture detec-
tion phase an estimate of the width of each finger. This
allows us to determine whether a single finger is ele-
vated at that position or whether multiple fingers are
elevated but held together. The finger width can be
calibrated for each person by measuring the width of
the hand base itself and assuming that anything that has
the width between one sixth and one fourth of the base
width is a single finger. The number of fingers in a
wider block can be estimated as the width of the block
(computable from the points used for finger counting at

present) divided by one fifth of the base width, rounded
down to the preceding integer value.

Another aspect that needs to be addressed in future
work is the sensibility of the system to lighting condi-
tions, as this affects the skin-color filtering, particularly
with reflections and shadows. We expect these addi-
tions to improve the accuracy of the detection system,
as well as ease the cognitive burden of the end user as it
will no longer be necessary to keep the fingers separate
—something that one easily forgets—.

8 References

REFERENCES
[AL06] Antonis Argyros and Manolis Lourakis. Vision-

based interpretation of hand gestures for re-
mote control of a computer mouse. In Thomas
Huang, Nicu Sebe, Michael Lew, Vladimir
Pavlovic, Mathias Kölsch, Aphrodite Galata,
and Branislav Kisacanin, editors,Computer Vi-
sion in Human-Computer Interaction, volume
3979 of Lecture Notes in Computer Science,
pages 40–51. Springer, Berlin / Heidelberg, Ger-
many, 2006.

[AM06a] Farooq Ahmad and Petr Musilek. A keystroke
and pointer control input interface for wearable
computers. InIEEE International Conference
on Pervasive Computing and Communications,
pages 2–11, Los Alamitos, CA, USA, 2006.
IEEE Computer Society.

[AM06b] Farooq Ahmad and Petr Musilek. Ubihand: a
wearable input device for 3D interaction. In
ACM Internacional Conference and Exhibition
on Computer Graphics and Interactive Tech-
niques, page 159, New York, NY, USA, 2006.
ACM.

[CB03] Stephen C. Crampton and Margrit Betke. Count-
ing fingers in real time: A webcam-based
human-computer interface game applications.
In Proceedings of the Conference on Universal
Access in Human-Computer Interaction, pages
1357–1361, Crete, Greece, June 2003. HCI In-
ternational.

[ÇMÖ06] Müdjat Çetin, Asanterabi Kighoma Malima, and
Erol Özgür. A fast algorithm for vision-based
hand gesture recognition for robot control. In
Proceedings of the IEEE Conference on Signal
Processing and Communications Applications,
pages 1–4, NJ, USA, 2006. IEEE.

[Dav04] E. Roy Davies.Machine Vision: Theory, Algo-
rithms, Practicalities. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2004.

[EBN+07] Ali Erol, George Bebis, Mircea Nicolescu,
Richard D. Boyle, and Xander Twombly.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 7 ISBN 978-80-86943-75-6

Vision-based hand pose estimation: A review.
Computer Vision and Image Understanding,
108:52–73, 2007.

[HNW+09] Yuki Hirobe, Takehiro Niikura, Yoshihiro
Watanabe, Takashi Komuro, and Masatoshi
Ishikawa. Vision-based input interface for mo-
bile devices with high-speed fingertip tracking.
In 22nd ACM Symposium on User Interface
Software and Technology, pages 7–8, New York,
NY, USA, 2009. ACM.

[KMB07] P. Kakumanu, S. Makrogiannis, and N. Bour-
bakis. A survey of skin-color modeling
and detection methods.Pattern Recognition,
40(3):1106–1122, 2007.

[Kol10] Kolsch. Handvu.www.movesinstitute.org/
\textasciitildekolsch/HandVu/HandVu.
html, 2010.

[KPS03] J. Kovac, P. Peer, and F. Solina. Human skin
colour clustering for face detection. InInterna-
cional conference on Computer as a Tool, vol-
ume 2, pages 144–147, NJ, USA, 2003. IEEE.

[LBT02] S. Lenman, L. Bretzner, and B. Thuresson.
Computer vision based hand gesture interfaces
for human-computer interaction. Technical re-
port, CID, Centre for User Oriented IT Design.
Royal Institute of Technology Sweden, Stock-
hom, Sweden, June 2002.

[Mah08] Tarek M. Mahmoud. A new fast skin color
detection technique. World Academy of Sci-
ence, Engineering and Technology, 43:501–505,
2008.

[MHP+01] J. MacLean, R. Herpers, C. Pantofaru, L. Wood,
K. Derpanis, D. Topalovic, and J. Tsotsos. Fast
hand gesture recognition for real-time telecon-
ferencing applications. InProceedings of the
IEEE ICCV Workshop on Recognition, Analy-
sis, and Tracking of Faces and Gestures in Real-
Time Systems, pages 133–140, Washington, DC,
USA, 2001. IEEE Computer Society.

[MMC09] Pranav Mistry, Pattie Maes, and Liyan Chang.
WUW - wear ur world: a wearable gestural in-
terface. InProceedings of the 27th international
conference extended abstracts on Human factors
in computing systems, pages 4111–4116, New
York, NY, USA, 2009. ACM.

[Par96] J. R. Parker.Algorithms for Image Processing
and Computer Vision. John Wiley & Sons, Inc.,
New York, NY, USA, 1 edition, 1996.

[RPJ10] S.M.M. Roomi, R.J. Priya, and H. Jayalak-
shmi. Hand gesture recognition for human-
computer interaction.Journal of Computer Sci-
ence, 6(9):1002–1007, 2010.

[RSS12] David J. Rios Soria and Satu E. Schaeffer. A tool
for hand-sign recognition. In4th Mexican Con-
ference on Pattern Recognition, volume 7329 of
Lecture Notes in Computer Science, pages 137–
146. Springer, Berlin / Heidelberg, 2012.

[SP09] E. Stergiopoulou and N. Papamarkos. Hand ges-
ture recognition using a neural network shape
fitting technique. Engineering Applications of
Artificial Intelligence, 22(8):1141–1158, 2009.

[SPHB08] Thomas Schlömer, Benjamin Poppinga, Niels
Henze, and Susanne Boll. Gesture recognition
with a Wii controller. In Proceedings of the
2nd international conference on Tangible and
embedded interaction, pages 11–14, New York,
NY, USA, 2008. ACM.

[VSA03] Vladimir Vezhnevets, Vassili Sazonov, and Alla
Andreeva. A survey on pixel-based skin color
detection techniques. InProceedings of inter-
national conference on computer graphics and
vision, pages 85–92, Moscow, Russia, 2003.
Moscow State University.

[WKSE11] Juan Pablo Wachs, Mathias Kölsch, Helman
Stern, and Yael Edan. Vision-based hand-
gesture applications. Communications ACM,
54:60–71, feb 2011.

[WMW09] Jacob O. Wobbrock, Meredith Ringel Morris,
and Andrew D. Wilson. User-defined gestures
for surface computing. InProceedings of the
27th international conference on Human factors
in computing systems, pages 1083–1092, New
York, NY, USA, 2009. ACM.

[WP09] Robert Y. Wang and Jovan Popović. Real-time
hand-tracking with a color glove.ACM Trans-
actions on Graphics, 28:63:1–63:8, jul 2009.

[WSE+06] Juan Wachs, Helman Stern, Yael Edan, Michael
Gillam, Craig Feied, Mark Smith, and Jon Han-
dler. A real-time hand gesture interface for
medical visualization applications. In Ashutosh
Tiwari, Rajkumar Roy, Joshua Knowles, Erel
Avineri, and Keshav Dahal, editors,Applica-
tions of Soft Computing, volume 36 ofAdvances
in Soft Computing, pages 153–162. Springer,
Berlin / Heidelberg, 2006.

[ZM11] Morteza Zahedi and Ali Reza Manashty. Ro-
bust sign language recognition system using ToF
depth cameras.Information Technology Journal,
1(3):50–56, 2011.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 8 ISBN 978-80-86943-75-6

Neural-Based Segmentation Technique for Arabic
Handwriting Scripts

Husam A. Al Hamad

College of Computer
Qassim University

Saudi Arabia

hushamad@yahoo.com, hhamad@qu.edu.sa

ABSTRACT
In some algorithms, segmentation of the word image considers the first step of the recognition processes; the

main aim of this paper is proposed new fusion equations for improving the segmentation of word image. The

technique that has used is divided into two phases; at the beginning, applying the Arabic Heuristic Segmenter

(AHS), AHS uses the shape features of the word image, it employs three features, remove the punctuation marks

(dots), ligature detection, and finally average character width, the goal of this technique is placed the Prospective

Segmentation Points (PSP) in the whole parts of the word image. As a result, the second phase apply the neural-

based segmentation technique, the goal of neural technique is check and examine all PSPs in the word image in

order to report which one is valid or invalid, this will increase the accuracy of the segmentation; to do that, the

network obtains a fused value from three neural confidences values: 1) Segmentation Point Validation (SPV), 2)

Right Character Validation (RCV), and 3) Central Character Validation (CCV) which will assess each PSP

separately. The input vectors of the neural network are calculated based on Direction Feature (DF), DF considers

much more suitable for Arabic Scripts. AHS and neural-based segmentation techniques have been implemented

and tested by local benchmark database.

Keywords:
Arabic handwriting recognition, neural networks, Arabic heuristic segmenter.

1. INTRODUCTION
The concept of handwriting recognition can be

divided according to [Pla01a] into two main areas,

these areas are on-line and off-line. An off-line

Arabic handwriting segmentation and recognition is

one of the most challenging researches because there

are different variations in handwriting [Naw01a], it is

an approach that interprets characters, words and

scripts that have been written at common surface (i.e.

paper). On the other hand, on-line handwriting

recognition refers to automatically recognizing the

handwritten characters using real-time information

such as pressure and the order of strokes made by a

writer usually employing a stylus and pressure

sensitive tablet [Cas01a, Lor01a].

The segmentation [Bal01a, Man01a] of Arabic

handwritten characters have been an area of great

interest in the past few years [Blu00a]. One typical

approach in the literature is “over-segmentation”

which is known as dissecting the word image based

on shape features of the image into a sufficient

number of components; so that no merged characters

remain [Yan01a, Xia01a]. One of the major problems

following over-segmentation is correctly discard the

invalid segmentation points and remained the valid

points, to determine the valid segmentations, many of

researches are studied by merging segments of the

image and invoking a classifier to score the

combinations, the most techniques employ the

optimization algorithms that making use some sort of

lexicon-driven and dynamic programming technique

[Blu00a]. The best way to evaluate the over-

segmentation is use the neural networks [Fan01a], the

most common family of neural networks for pattern

classification recognition is Feed-Forward Back-

Propagation network (FFBP) which is very simple

and effective to implement, it has been applied

successfully to different applications domains, such

as pattern recognition, controlling, prediction, system

identification, etc. [Bil01a], the weight inputs

transmits to the neurons in the first layer and the

neurons transmits their outputs to the neurons in to

the next layer, etc., the network not contain any

cycles or loop as an advantage [Abd01a].

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 9 ISBN 978-80-86943-75-6

mailto:hhamad@qu.edu.sa

2. LITERATURE REVIEW
Earlier art showed segmentation of both machine-

print and handwriting. In 1980, Nouh et al. suggested

a standard Arabic character set to facilitate computer

processing [Nou01a]. Sami El-Dabi et al. used

segmented characters based on invariant moments

only after they were recognized. Recognition was

attempted on regions of increasing width until a

match was found [Dab01a]. Yamin and Aoki

presented a two-step segmentation system which

used vertical projection onto a horizontal line

followed by feature extraction and measurements of

character width [Ymi01a]. Al-Badr and Haralick

presented a holistic recognition system based on

shape primitives that were detected with

mathematical morphology operations [Bad01a].

Hamami and Berkani developed a structural

approach to handle many fonts, and it included rules

to prevent over-segmentation [Ham00e]. Al-Qahtani

and Khorsheed presented a system based on the

portable Hidden Markov Model Toolkit [Qah01a].

Srihari and Ball, applied heuristic techniques for

image processing representation of the binary image

counter and removal of noise and dots [Sri01a]

Hamad and Zitar [Ham00c] applied new fusion

equations in order to enhance the segmentations

processes. Hamad [Ham00d] developed a technique

that aim to assign the prospective segmentation

points which is obtained based on the shape features

of word image. On the other hand, many researches

are using the feed-forward back-propagation neural

network, the origin of this type is used by Rumelhart

[Rum01a] in 1986, the application area network of

back-propagation algorithm are gained recognition

and utilized multiple layers of weight-sum units of

the type f = g(w'x + b). Training was done by a form

of stochastic gradient descent.

3. PROBLEMS OF ARABIC SCRIPTS
Many researches have been published in the area of

handwritten Arabic scripts recognition [Ham00a,

Ham00b], so far, the researches haven’t been reached

to good result because it is considerably harder due to

a number of reasons: 1) Arabic is written cursively,

i.e., more than one character can be written

connected to each other. 2) Arabic uses many types

of external objects, such as dots, “Hamza”, “Madda”,

and diacritic objects. These make the task of line

separation and segmentation scripts more difficult.

3) Arabic characters can have more than one shape

according to their position: initial, middle, final, or

stand alone. 4) Characters that do not touch each

other but occupy a shared horizontal space that

increases the difficulty of segmentation, 5) Arabic

uses many ligatures, especially in handwritten text,

this makes the segmentation of Arabic scripts even

more difficult [Ham00c].

4. SEGMENTATION TECHNIQUE
Arabic Heuristic Segmenter (AHS) or over-

segmentation technique aims to assign correct PSP

points in the word image [Nic01a]. Following this, a

neural confidence-based module has been used to

validate these points by obtaining a fused value from

three neural confidence values based on Segment

Point (SP), Right Character (RC), and Central

Character (CC) [Che00a]. Segmentation technique

has two advantages; first, reducing the number of

missed or bad points, and second, increasing the

accuracy of the recognition rate. Since number of

segmentation points is optimized by using this

technique, the overall accuracy will increase and

processing time will reduce [Che00b]. Missed points

occur when no segmentation point is determined

between two successive characters; besides, bad

points refer to the points that could not be used to

extract the characters precisely. AHS which was

proposed by Hamad [Ham01c, Ham00d] removed the

punctuation marks (dots) that hinder identify the

correct segment points, this technique helps to detect

- Pre-processing

- Remove dots

- Ligature detection

- Additional technique

Step1: Over-Segmenation Step3: Fusion Confidance Value

Binary format

Arabic Heuristic

Segmenter

(AHS)

Right
character

(RC)
extraction

Centre
character

(CC)
extraction

Segmentation

Area (SA)

extraction

Feature

Extraction

(MDF)

Neural Network Neural Network

Correct and incorrect

segmentation points

[(CSP), (ISP)]

[new equations]

f(confidence) =

max [(CSP), (ISP)]

 SA RC, CC

Confidance of

RC, CC

Confidance

of SA

Step2: Neural Confidance Value

After filtering

and thinning and

assign the PSP

E
v
al

u
at

e
th

e
P

S
P

s

T
ak

e
d
ec

is
io

n
 b

as
ed

 o
n
 c

o
n
fi

d
en

ce
 v

al
u
es

Figure 1. Overview of the segmentation technique

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 10 ISBN 978-80-86943-75-6

the ligatures that connect between two successive

characters to obtain the correct segmentation points.

Additional techniques such as average character

width are applied as well to enhance the results. One

of the major problems following over-segmentation

is correctly discard the invalid segmentation points

and retained the valid one by using neural network,

the input vector of the network is extracted based on

Modified Direction Feature (MDF) [Blu00b]. Figure

1 illustrates an overview of the entire neural-based

segmentation technique.

4.1. Over-Segmentation
Over-Segmentation or AHS employs three

techniques: 1) Pre-processing, filtering the word

image, and removing the punctuation marks or any

redundant components. 2) Ligature detection, a

ligature is a small point (stroke) that is used to

connect between two characters; the aim of ligature

detection is locate these strokes within the “middle

region” of handwritten words. 3) Calculates the

average character width, the technique aims to add

any missing segment points and remove the bad one,

an addition technique is detect the close and open

holes which is aims to remove any bad points across

these holes that considered complete characters. The

results of these techniques are word image contains a

sufficient number of PSPs; these points will be

evaluated by the neural networks later.

4.2. Modified Direction Features (MDF)
Arabic handwritten has a special characteristics such

as rotations, curves, and circuits shapes; so, the

suitable features input in the vectors of neural

network is direction features, MDF extracts the

direction information (feature) from structure of the

character contours that determined in each character

image, the technique categorizes into four parts: 1)

Vertical lines, 2) Horizontal lines, 3) Right diagonal,

and finally 4) Left diagonal. This principle is

extended so that integrates the direction feature with

the technique for calculate the transition features

between background pixels (white pixels) and

foreground pixels (black pixels). In MDF, Location

of Transitions (LTs), and Direction Transition (DT)

are calculated at a particular location, therefore, for

each transition, a pair of values such as [LT, DT] are

stored; this work demonstrated the superiority of

MDF for describing the Arabic patterns according to

their contour or boundary. More details have been

described in [Blu00a, Ham00c].

4.3. Neural-based Validation
As a result of above and after completing the over-

segmentation, the post-processing is employed to

exclude the bad segment point and remain the

correct. The classifier chosen for the validation is a

feed-forward neural network trained with the back-

propagation algorithm. For experimental purposes,

the architectures were modified varying the number

of inputs, outputs and hidden units. Three vectors are

extracted from the word image to validate each PSP

and determine whether correct or note, where the

classifier will calculate and output the confidence

value for each point, the values represent each of the

segmentation area (SA), right character (RC), and

center character (CC) and validate all of them based

on maximum of confidence value. Therefore, it is

possible to validate prospective segmentation points,

rather than giving a binary result (valid or invalid)

decision whether a segmentation point should be set

in a particular region, confidence values are assigned

to each segmentation points that are located through

feature detection. The confidence value of any

segment area should be in the range of 0 and 1.

4.4. Fusion Confidence Values
Fusion confidence value is a set of equations take the

final decision (valid or invalid), where are calculated

on the basis of the output confidence value of the

neural network. New fusion equations are proposed,

the extracted areas of these equations are analyzed

and described as: Rule 1: Following RC extraction

and neural verification, the area is analyzed into two

options: 1) If the area is identified by the neural

expert as one of 62 possible characters, then the

segmentation point is more likely to be a correct

segmentation point. 2) If the area is identified as a

non-character (rejected), then the segmentation point

is more likely to be an incorrect segmentation point.

Rule 2: Following CC extraction and neural

verification, the area is analyzed into two options: 1)

If the area is identified by the neural expert as one of

62 possible characters, then the segmentation point is

more likely to be an incorrect segmentation point. 2)

If the area is identified as a non-character then the

segmentation point is more likely to be a correct

segmentation point. Rule 3: Following SA extraction,

the area is analyzed into two options: 1) If the neural

expert provides a confidence >=0.5, then the

segmentation point is more likely to be a correct

segmentation point. 2) If the neural expert provides a

confidence <0.5, then the segmentation point is more

likely to be an incorrect segmentation point

Two possibilities for each fusion are applied, first,

calculate Correct Segmentation Point (CSP) where

Segmentation Point Validation (SPV) >=0.5 as

shown in equation 1; second, calculate Incorrect

Segmentation Point (ISP) where SPV<0.5 as shown

in equation 2; finally, calculate outcome of the fusion

decision based on maximum value between the CSP

and ISP as shown in equation 3. If the CSP

confidence is greater, then the SP will be set as being

correct. Conversely, if the ISP confidence prevails as

being larger, the SP will be discarded and no longer

used in further processing.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 11 ISBN 978-80-86943-75-6

1) Correct Segmentation Point (CSP):

if fSPV_ver(ft1) >= 0.5 AND fRCC_ver(ft2) is a high

character confidence AND fCCC_ver(ft3) is a high non-

character confidence, then:

fCSP(ft1, ft2, ft3) = fSPV_ver(ft1) +

fRCC_ver(ft2) + (1-fCCC_ver(ft3))
(1)

2) Incorrect Segmentation Point (ISP):

if fSPV_ver(ft1) < 0.5 AND fRCC_ver(ft2) is a high non-

character confidence AND fCCC_ver(ft3) is a high

character confidence, then

fISP(ft1, ft2, ft3) = fSPV_ver(ft1) +

(1-fRCC_ver(ft2)) + fCCC_ver(ft3)
(2)

3) Finally, the outcome of the fusion is decided by

the following equation:

 f(confidence) = max [(CSP), (ISP)] (3)

Where, fSPV_ver(features) is confidence value of

Segmentation Point Validation, fRCC_ver(features) is a

confidence value for right character, and

fCCC_ver(features) is confidence value for center

character (reject neuron output).

Original Word Over-segmentation Segmentation

(a) successful segmentation

Original Word Over-segmentation Segmentation

(b) unsuccessful segmentation

Figure 2. Segmented sample of word images

5. EXPERIMENTAL RESULTS
The experiments here used the neural confidence-

based module for validating the PSPs which are

obtained from AHS (over-segmentation).

Segmentation performance is measured based on

three types of segmentation errors: “over-

segmentation”, “missed” and “bad” metrics. Over-

segmentation refers to a character that has been

divided into more than three components. A

“missed” error occurs when no segmentation point is

found between two successive characters. The “bad”

error refers to a segmentation point that could not be

used to extract a character precisely.

5.1. Handwriting Database
The training and testing patterns samples were

obtained and extracted from twenty different persons,

all words are selected randomly. They were asked to

write down two paragraphs contains all status of

Arabic characters. These paragraphs scanned at 200

pixels per inch. The size of training set was 620

characters (10 writers x 62 characters), and size of

testing set was 425 words, more details about the

database see www.acdar.org.

5.2. AHS Segmentation Performance
The total numbers of segmentation points in the 425

testing word samples are 3080. Table 1 shows the

segmentation performance of the AHS technique, see

[Ham00d] for more details about this results.

Result
Segmentation Error Rates

Over Seg. Missed Bad
Bad/

overlap

Totals 29 18 552 26

% 0.94% 0.58% 17.92% 0.84%

With

overlap

Total 599

% 19.45%

Without

overlap

Total 573

% 18.60%

Table 1. AHS segmentation error

5.3. Neural-based Performance
Results of the neural-based segmentation technique

were calculated based on the number of correct and

incorrect identified of segment point in word

samples. Neural network verifies whether

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 12 ISBN 978-80-86943-75-6

segmentation points are valid or invalid based on

neural confidence-based module. If the network

output a height confidence value this indicated that a

point is a valid segmentation point; a low confidence

value indicated that a point should be ignored, Table

2 illustrates the overall results of the technique.

Result

Correctly

Identified
Incorrectly Identified

Valid Invalid Valid Invalid
Invalid
overlap

Totals 2011 729 192 148 40

% 65.29% 23.67% 6.23% 4.81% 1.30%

With

overlap

Total 2740 340

% 88.96% 11.04%

Without

overlap

Total 2780 300

% 90.26% 9.74%

Table 2. Results of neural-based segmentation

technique

The above results describe the recognition rate for

the neural networks. To enhance these rates, the

number in the testing set must be increased at least

two or three-fold, that will help improving overall

segmentation accuracy, Figure 3 illustrates the

characters recognition rates of the neural-based

segmentation technique.

Figure 3. Recognition rates for all different neural

networks.

Table 3 shows the summary of the literature results

and the comparisons with the paper’s results.

Reference Accuracy Language / Databases

Blumenstein,

Myer

[Blu00c]

75.28% Cursive English
handwriting

 CEDAR database

Hamid, Alaa

[Ham00a]

69.72% Arabic handwriting
 Local database: 360

addresses, 4000 images

Cheng, Chun

Ki

[Che01a]

85.74%

 Cursive English
handwriting

 CEDAR database: test
1031 from 1718 SP

Khateeb,

Jawad

[Kha01a]

85.00%

 Arabic handwriting
 Local database: 200

images, sub-words SP

Hamad,

Husam Al

[Ham00d]

82.98% Arabic handwriting
 Local database: 500

images

This paper 88.96% Arabic handwriting
 Local database: 425

images

Table 3. Compare the results with the literature

6. CONCLUSIONS
This paper investigates collection of techniques aims

to segmenting the Arabic handwritten scripts, new

fusion equations, and heuristic technique are

developed, the technique splits the word image into a

sufficient number of components, in order to separate

the word image into its characters, the technique

called “over-segmentation” or Arabic heuristic

segmenter (AHS). Modified Direction Features

(MDF) is also employed which is considered a

promised technique for Arabic scripts, MDF extracts

the input vector feature of the neural network, the

AHS provides better inputs to the subsequent neural

validation process. Promised results were obtained in

this study may increase the performance of a

segmentation-based handwriting recognition systems.

In the future, a larger size of training set will

investigated in order to improve the results of the

classifiers as well as reduce the errors.

7. REFERENCES
[Abd01a] Abdalla, O.A., and Zakaria, M.N., and

Sulaiman, S., and Ahmad, and W.F.W.: A

comparison of feed-forward back-propagation

and radial basis artificial neural networks: A

Monte Carlo study, Information Technology

(ITSim), vol. 2, pp.994-998, 2010.

[Bad01a] Al-Badr, B., Haralick, R.: A Segmentation-

Free Approach to Text Recognition with

Application to Arabic Text, International Journal

on Document Analysis and Recognition, vol. 1,

pp. 147–166, 1998.

[Bal01a] Ball, G., Srihari, S., Srinivasan, H.:

Segmentation-Based and Segmentation-Free

Methods for Spotting Handwritten Arabic Words,

In: IWFHR, 2006.

[Bil01a] Bilski, J.: The Ud Rls Algorithm for

Training Feedforward Neural Networks, Int. 1.

Appl. Math. Comput. Sci., pp. 115-123, 2005.

[Blu00a] Blumenstein M., Liu X.Y., Verma, B.: An

investigation of the modified direction feature for

cursive character recognition. Pattern

Recognition. vol. 40(2), pp. 376-388, 2007.

[Blu00b] Blumenstein, M., Liu, X.Y., Verma, B.: A

Modified Direction Feature for Cursive Character

Recognition. International Joint Conference on

Neural Networks. Budapest, Hungary, pp. 2983-

2987, 2004.

[Blu00c] Blumenstein, Myer. Intelligent Techniques

for Handwriting Recognition, School of

65.29%

6.23%

23.67%

4.81%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Correctly Incorrectly

C
la

ss
if

ic
at

io
n

 r
at

es
 [

%
]

Identified

Recognition rates of the neural-based
segmentation technique

Valid Invalid

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 13 ISBN 978-80-86943-75-6

Information Technology, PhD Dissertation,

Griffith University-Gold Coast Campus,

Australia, 2000.

[Cas01a] Casey, R., Lecolinet, E.: A survey of

methods and strategies in character segmentation.

IEEE Trans. Pattern Analysis and Mach. vol. 18,

pp. 690-706, 1996.

[Che00a] Cheng, C.K., Blumenstein, M.: The

Neural-based Segmentation of Cursive Words

using Enhanced Heuristics. In: Eighth

International Conference on Document Analysis

and Recognition, pp. 650-654, 2005.

[Che00b] Cheng, C.K., Liu, X.Y., Blumenstein, M.,

Muthukkumarasamy, V.: Enhancing Neural

Confidence-Based Segmentation for Cursive

Handwriting Recognition. In: 5th International

Conference on Simulated Evolution and Learning

Busan, Korea, SWA-8, CD-ROM Proceedings,

2004.

[Dab01a] El-Dabi, S., Ramsis, R., Kamel, A.: Arabic

Character Recognition System: A Statistical

Approach for Recognizing Cursive Typewritten

Text, Pattern Recognition, vol. 23, pp. 485–495,

1990.

[Fan01a] Fan, X., Verma, B.: Segmentation vs. Non-

Segmentation Based Neural Techniques for

Cursive Word Recognition. An Experimental

Analysis. International Journal of Computational

Intelligence and App. vol. 2(4), p.p. 377-384,

2002.

[Ham00a] Hamid, A., Haraty, R.: A Neuro-Heuristic

Approach for Segmenting Handwritten Arabic

Text, In: ACS/IEEE International Conference on

Computer Systems and Applications, p.p. 0110,

2001.

[Ham00b] Hamid, A., Haraty, R.: Segmenting

Handwritten Arabic Text. ACIS International

Journal of Computer and Information Science,

vol. 3 (4), 2002.

[Ham00c] Hamad, H.A., Zitar, R.: Development of

an efficient neural-based segmentation technique

for Arabic handwriting recognition. Pattern

Recognition Journal. ELSEVIER. vol. 43, Issue

8, p.p. 2773-2798, 2010.

[Ham00d] Hamad, Husam A. Al: Over-segmentation

of handwriting Arabic scripts using an efficient

heuristic technique, In: Wavelet Analysis and

Pattern Recognition (ICWAPR), IEEE, pp.180-

185, 2012.

[Ham00e] Hamami, L., Berkani, D.: Recognition

System for Printed Multi-font and Multisize

Arabic Characters, the Arabian Journal for

Science and Engineering, vol. 27, pp. 57–72,

2002.

[Kha01a] Jawad H AlKhateeb, and Jianmin Jiang,

and Jinchang Ren, and Stan S Ipson. Component-

based Segmentation of Words from Handwritten

Arabic Text, Proceedings of World Academy of

Science, Engineering and Technology, ISSN, vol.

31, pp. 1307–6884, 2008.

[Lor01a] Lorigo, L., Govindaraju, V.: Off-line

Arabic Handwriting Recognition: A Survey,

IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 28 (5), p.p. 712–724,

2006.

[Man01a] Mansour, M., Benkhadda, M.: Optimized

segmentation techniques for Arabic handwritten

numeral character recognition. In: SITIS, p.p. 96-

101, 2005.

[Naw01a] Nawaz, S.N., Sarfraz, M., Zidouri, A.; Al-

Khatib, W.G.: An approach to offline Arabic

character recognition using neural networks.

Electronics, Circuits and Systems, 2003. ICECS

2003. Proceedings of the 2003 10th IEEE

International Conference on, vol. 3, p.p. 1328-

1331, 2003.

 [Nic01a] Nicchiotti, G., Scagliola, C.: A Simple and

Effective Cursive Word Segmentation Method.

Proceedings of the Seventh International

Workshop on Frontiers in Handwriting

Recognition, Amsterdam, pp. 499-504, 2000.

[Nouh01a] Nouh, A., Sultan, A., and Tolba, R.: An

Approach for Arabic Characters Recognition,

J.Eng. Sci., Univ. Riyadh, vol. 6, pp. 185–191,

1980.

[Pla01a] Plamondon, R., Srihari, S.N.: On-Line and

Off-Line Handwriting Recognition. A

Comprehensive Survey. IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol.

22, p.p. 6384, 2000.

[Qah01a] Al-Qahtani, S., Khorsheed, M., A HTK-

Based System to Recognise Arabic Script, in

Proc. 4th IASTED International Conference on

Visualization, Imaging, and Image Processing.

Marbella, Spain: ACTA Press, 2004.

[Rum01a] Rumelhart, David, E., Hinton, Geoffrey,

E.: Williams, Ronald J., “Learning

representations by back-propagating errors”,

Nature, vol. 323(6088), pp. 533–536, 1986.

[Sri01a] Srihari, S., Ball, G.: An Assessment of

Arabic Handwriting Recognition Technology, in

IWFHR, CEDAR Technical Report TR–03–07,

2007.

[Xia01a] Xiao, X., Leedham, G.: Knowledge-based

Cursive Script Segmentation. Pattern Recognition

Letters, vol. 21, pp. 945-954, 2000.

 [Yan01a] Yanikoglu, B., Sandon, P.A.:

Segmentation of Off-Line Cursive Handwriting

using Linear Programming. Pattern Recognition,

vol. 31, pp. 1825-1833, 1998.

[Ymi01a] Ymin, A., Aoki, Y., On the Segmentation

of Multi-font Printed Uygur Scripts, in Proc. 13th

International Conference on Pattern Recognition,

vol. 3, pp. 215–219, 1996.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 14 ISBN 978-80-86943-75-6

Polynomiography and various convergence tests

Krzysztof Gdawiec
Institute of Computer Science

University of Silesia
Bedzinska 39

41-200, Sosnowiec, Poland
kgdawiec@ux2.math.us.edu.pl

ABSTRACT
The aim of this paper is to present a modification of the visualization process of finding the roots of a given
complex polynomial which is called polynomiography. The name polynomiography was introduced by Kalantari.
The polynomiographs are very interesting both from educational and artistic points of view. In this paper we are
interested in the artistic values of the polynomiography. The proposed modification is based on the change of the
usual convergence test used in the polynomiography, i.e. using the modulus of a difference between two successive
elements obtained in an iteration process, with the tests based on distance and non-distance conditions. Presented
examples show that using various convergence tests we are able to obtain very interesting and diverse patterns. We
believe that the results of this paper can enrich the functionality of the existing polynomiography software.

Keywords
polynomiography, convergence, Basic Family, computer art

1 INTRODUCTION
One of the most elusive goals in computer aided design
is artistic design and pattern generation. Pattern gener-
ation involves diverse aspects: analysis, creativity, de-
velopment. A designer have to deal with all of these
aspects in order to obtain an interesting pattern which
later could be used in jewellery design, carpet design,
as a texture etc. Therefore, it is highly motivating and
useful to develop new methods of obtaining very di-
verse and interesting patterns. One place where we can
search for this kind of methods is mathematics [Pic01].

Polynomials are one of the mathematical objects which
can generate very diverse and beautiful patterns. The
patterns from polynomials are often generated through
polynomiography. It visualizes the process of finding
roots of a complex polynomial using the numerical
methods. In this paper we are not interested in the
improvement of the numerical methods convergence,
but in the artistic aspect of the polynomiography. This
aspect includes: creating paintings, carpet design,
tapestry design, animations etc. [Kal05b]. So we are
interested in obtaining new and interesting patterns
basing on the theory of polynomiography.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

The paper is organized as follows. In section 2 we in-
troduce the basics of polynomiography. At first we de-
fine the Basic Family and give an efficient algorithm
for computation of a value for a given element of this
family and an algorithm for computation of polynomio-
graph. The section ends with some examples of poly-
nomiographs. Next, in section 3 we introduce different
kinds of convergence test which can be used in the al-
gorithm of polynomiograph computation. In section 4
we show some examples of polynomiographs obtained
using the proposed convergence tests. Finally, in sec-
tion 5 we give concluding remarks and plans for the
future work.

2 POLYNOMIOGRAPHY
Polynomiography was introduced by Kalantari about
2000. It is "the art and science of visualization in ap-
proximation of the zeros of complex polynomials, via
fractal and non-fractal images created using the mathe-
matical convergence properties of iteration functions"
[Kal04]. Single image created using the mentioned
methods is called polynomiograph. In 2005 Kalantari
obtained an U.S. patent on the use of polynomiography
in the generation of aesthetic patterns [Kal05a].
In mathematics polynomials are fundamental objects
with very diverse applications, e.g. in error correcting
codes, interpolation, engineering etc. From the Funda-
mental Theorem of Algebra we know that a polynomial
of degree n with complex coefficients has n roots which
may or may not be distinct. The problem of finding the
roots of a given polynomial was known since the Sume-
rians, i.e. 3000 BC. Since then many different methods

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 15 ISBN 978-80-86943-75-6

of finding the roots approximation were proposed, e.g.
Newton’s method [Var02], Harmonic Mean Newton’s
method [Ard11], Whittaker’s method [Var02], Halley’s
method [Ard11], Chebyshev’s method [Var02], Traub-
Ostrowski’s method [Var02] etc.

Let us consider a polynomial p ∈C[Z] and deg p≥ 2 of
the form:

p(z) = anzn +an−1zn−1 + . . .+a1z+a0. (1)

Now we define a sequence of functions Dm : C→C for
all z ∈ C [Kal09]:

D0(z) = 1,

Dm(z) = det

p′(z) p′′(z)
2! . . . p(m−1)(z)

(m−1)!
p(m)(z)

m!

p(z) p′(z)
. p(m−1)(z)

(m−1)!

0 p(z)
.

...
...

...
. p′′(z)

2!
0 0 . . . p(z) p′(z)

(2)

for m≥ 1.

Using the Dm sequence we define a Basic Family
{Bm}∞

m=2, where Bm : C → C, in a following way
[Kal09]:

∀z∈C Bm(z) = z− p(z)
Dm−2(z)
Dm−1(z)

. (3)

The Basic Family is a fundamental part of polynomiog-
raphy. Let us see how the first three elements of the
Basic Family look like:

B2(z) = z− p(z)
p′(z)

, (4)

B3(z) = z− 2p′(z)p(z)
2p′(z)2− p′′(z)p(z)

, (5)

B4(z) = z− 6p′(z)2 p(z)−3p′′(z)p(z)2

p′′′(z)p(z)2 +6p′(z)3−6p′′(z)p′(z)p(z)
.

(6)

As we look at those formulas we see that B2 is formula
used in Newton’s root finding method, and B3 is for-
mula used in Halley’s method. Moreover, we see that
when m increases the formula for Bm becomes more and
more complex. So we need an efficient algorithm for its
computation. In [Kal10] Kalantari introduced such al-
gorithm (Algorithm 1). To derive this algorithm he used
the theory of symmetric functions.

Algorithm 2 presents a method of determining poly-
nomiograph [Kal09]. In the algorithm for each point
in the considered area A ⊂ C we iterate given element
of the Basic Family (defined by p∈C[Z] and m≥ 2). If

Algorithm 1: Bm(z) computation
Input: p ∈ C[Z], deg p≥ 2 – polynomial, m≥ 2 –

number for Bm, z0 ∈C – point for which we
make the computations.

Output: Bm(z0).

1 h[0] = 1
2 for i = 0 to m−1 do
3 e[i] = p(i)(z0)/(i!p(z0))

4 for i = 1 to m−1 do
5 h[i] = ∑

i−1
r=0(−1)i−r−1e[i− r]h[r]

6 Bm(z0) = z0−h[m−2]/h[m−1]

the modulus of the difference between two successive
points in the iteration process is smaller than the given
accuracy ε > 0 we assume that the generated sequence
converge to a root of p and we stop iterating. If we
reach the maximum number of iterations k we assume
that the generated sequence do not converge to any root
of p. At the end we give a colour to the considered point
using the given colourmap and the iteration number at
which we have left the while loop.

Algorithm 2: Polynomiograph computation
Input: p ∈ C[Z], deg p≥ 2 – polynomial, A⊂ C –

area, k – number of iterations, ε – accuracy,
m≥ 2 – number for Bm, colours[0..k] –
colourmap.

Output: Polynomiograph for the area A.

1 for z0 ∈ A do
2 i = 0
3 while i≤ k do
4 zi+1 = Bm(zi)
5 if |zi+1− zi|< ε then
6 break

7 i = i+1

8 Print z0 with colours[i] colour

Examples of polynomiographs generated using Algo-
rithm 2 for:

(a) p(z) = z3−1, A = [−3,3]2, k = 20, ε = 0.001, m =
2,

(b) p(z) = −2z4 + z3 + z2 − 2z − 1, A =
[1,2]× [−0.5,0.5], k = 20, ε = 0.001, m = 3,

(c) p(z) = z4 + z2−1, A = [−3,3]2, k = 20, ε = 0.001,
m = 4,

(d) p(z) = z3−3z+3, A = [−3,3]2, k = 10, ε = 0.001,
m = 2

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 16 ISBN 978-80-86943-75-6

(a) (b)

(c) (d)

Figure 1: Examples of polynomiographs.

are presented in Fig. 1.

In Algorithm 2 to colour the points we use the iteration
number for which we have left the iteration process, we
call this method the iteration colouring. We can use
different methods of colouring, e.g. basins of attraction
(each polynomial root has its own colour, for each point
in A we iterate it and when the condition in line 5 of
Algorithm 2 is meet the considered point gets the colour
of the nearest root), mixed method (we mix the iteration
colouring and the basins of attraction) etc. [Kal09].

3 DIFFERENT CONVERGENCE
TESTS

In line 5 of Algorithm 2 we see a standard test for con-
vergence of an iteration process in the numerical root
finding methods. In the test we take two elements: the
one computed in the current iteration and the element
from the previous iteration, and we calculate the modu-
lus of their difference. Then we check if the calculated
value is smaller than the given accuracy. The modulus
calculation in the test is equivalent to the computation
of the distance between these two points of the com-
plex plane. So we may change the way in which we
calculate the distance with a different metric.

We know that the complex plane C is isometric with
R2, where the isometry φ : C→R2 is defined as follows
[Sea07]:

φ(z) = (ℜ(z),ℑ(z)) (7)

for every z ∈ C, and where ℜ(z), ℑ(z) denote the real
and imaginary part of z (respectively). Using the isome-
try we can define metric d : C×C→ [0,+∞) using met-
ric ρ : R2×R2→ [0,+∞) in a following way [Sea07]:

d(z1,z2) = ρ(φ(z1),φ(z2)), (8)

where z1,z2 ∈ C.

On R2 we have many different metrics which we may
use [Sea07], e.g.

• taxicab metric

ρ((x1,y1),(x2,y2)) = |x1− x2|+ |y1− y2|, (9)

• supremum metric

ρ((x1,y1),(x2,y2)) = max{|x1− x2|, |y1− y2|}, (10)

• lp metric

ρ((x1,y1),(x2,y2)) = [|x1− x2|p + |y1− y2|p]
1
p ,
(11)

where 1≤ p≤+∞.

When we have some metric space (X ,ρ) we can define
new metrics using following facts [Sea07]:

• if f : X → X is injective, then

η(x,y) = ρ(f (x), f (y)) (12)

is a metric on X ,

• if f : X → R is a function, then

η(x,y) = ρ(x,y)+ | f (x)− f (y)| (13)

is a metric on X .

From the examples presented in the next section we
will see that changing the metric produces only a small
change in the shape of polynomiograph. As we are in-
terested in generation of interesting patterns using the
polynomiography and not in the best convergence of the
numerical method we can relax the assumption about
the metric. For this purpose we can take p ∈ (0,1) in
the lp metric obtaining the so-called fractional distance
which is used for instance in models for forecasting pol-
lution concentrations [DW12].

We also can omit the assumption about the injectivity
of f in (12). For instance when we take C with the
modulus metric and f (z) = |z|2, which is not injective,
we obtain:

η(z1,z2) = ||z1|2−|z2|2|. (14)

The η function from (14) was used instead the modu-
lus test by Pickover in Halley’s method in [Pic88]. In
this way Pickover obtained very diverse shapes of the
polynomiographs.

Another way to modify the tests is to add some weights
in the metric functions. When we use (12) we can add
two weights α,β ∈ R in a following way:

η(x,y) = ρ(α f (x),β f (y)). (15)

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 17 ISBN 978-80-86943-75-6

In this way we loose the metric property of η , e.g. it
is not symmetric for α 6= β , but as we will see in sec-
tion 4 we obtain very diverse polynomiographs using
this function.

Till now the proposed tests were based on metrics, but
there is no obstacle in using tests which are based on
functions that are not metric, quasimetrics etc. at all.
For instance we can use following tests:

|exp(αzi+1−β zi)|< ε, (16)
|αℜ(zi+1− zi)|< ε ∨|βℑ(zi+1− zi)|< ε, (17)

|αℜ(zi+1− zi)|2 < ε ∧|βℑ(zi+1− zi)|2 < ε, (18)

where α,β ∈ R. In the tests which consist of several
terms joined with logical operators, e.g. (17), (18), in-
stead of one ε we can use separate value for each term.

The last group of tests which we propose is based on
the idea taken from the escape time algorithm which is
used in the Julia set drawing. Similar like in the escape
time algorithm we can check if a value of some iterated
function escapes, i.e. is greater than the given radius
R > 0. Examples of this kind of tests are:

|zi+1− zi|+ |arg(zi+1)− arg(zi)|> R, (19)∣∣∣∣ 1
|zi+1|2

− 1
|zi|2

∣∣∣∣+ ||zi+1|2−|zi|2|> R, (20)

α|ℜ(zi+1− zi)|> R∧β |ℑ(zi+1− zi)|> R, (21)

where arg(z) is an argument of complex number z, and
α,β ∈ R.

4 EXAMPLES
In this section we show some examples of using the dif-
ferent tests proposed in section 3. We start our exam-
ples with changing the standard metric (modulus) used
in the polynomiography with the supremum metric. In
the example we use: p(z) = z3− 3z + 3, A = [−2,2]2,
k = 15, ε = 0.001, m = 2. Figure 2(a) presents the result
for the modulus metric and Fig. 2(c) presents the result
for the supremum metric. From the figures we see that
in both cases the result is very similar and the differ-
ence is small. To see the difference more precisely in
Figs. 2(b), 2(d) magnification of the marked areas from
Figs. 2(a), 2(c) are presented. In the case of modulus
metric we have smooth boundaries between the regions
and for the supremum metric the boundaries are frayed
and the regions are lighter. When we use a different
metric instead of the supremum metric the effect will
be very similar, so the obtained results are not interest-
ing from the artistic point of view.

In the next example we use the test used by Pickover
(14) and its weighted modification. The common pa-
rameters used in the example: p(z) = z4 + z2− 1, A =
[−3,3]2, k = 15, ε = 0.001, m = 2. Figure 3(a) presents

(a) (b)

(c) (d)

Figure 2: Examples of polynomiographs: (a) with mod-
ulus metric, (b) with supremum metric, (c) magnifica-
tion of the marked area from (a), (d) magnification of
the marked area from (c).

(a) (b)

(c) (d)

Figure 3: Examples of polynomiographs: (a) original,
(b) using the Pickover test, (c), (d) using the weighted
version of Pickover test.

the result for the original test, Fig. 3(b) for the Pick-
over test and Figs. 3(c), 3(d) the results for weighted
version of (14), i.e. |α|z1|2−β |z2|2|, where α = 1.05,
β = 1.049 for (c) and α = 0.049, β = 0.05 for (d).

The Pickover test changes the regions of polynomio-
graph where the convergence using the original test was
fast. In this way we obtain some swirls in the smooth
areas. Using the test with weights we obtain even more
changes in the areas of the fast convergence and more-
over small changes in the areas of the slow conver-
gence. The polynomiographs obtained with the non-
standard test look very interesting and the patterns are
more complex comparing to the original one.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 18 ISBN 978-80-86943-75-6

(a) (b)

(c) (d)

(e) (f)

Figure 4: Examples of polynomiographs with different
tests based on metrics and weights.

In the previous example we used only the Pickover test
and now we show examples of more tests which are
based on metrics and weights. The common parame-
ters used in the example: p(z) = z3− 1, A = [−3,3]2,
k = 15, ε = 0.001, m = 2. Figure 4(a) presents the orig-
inal polynomiograph and Figs. 4(b)-(f) present poly-
nomiographs obtained with the help of different met-
rics and weights. The tests used in the example were
following:

(a) |zi+1− zi|< ε ,

(b) |0.01(zi+1− zi)|+ |0.029|zi+1|2−0.03|zi|2|< ε ,

(c) |0.05sin(ℜ(zi+1)) − 0.049sin(ℜ(zi))| +
|0.05sin(ℑ(zi+1)−0.049sin(ℑ(zi))|< ε ,

(d) |0.01z10
i+1−0.008z10

i |< ε ,

(e) | 0.05
|zi+1|2

− 0.045
|zi|2
|< ε ,

(f) | 0.045
|zi+1|2

− 0.05
|zi|2
|< ε .

From the presented polynomiographs we see that using
the different metrics and weights we are able to obtain
very diverse and interesting patterns comparing to the
original test. In the Fig. 4(b) we can observe a pattern
which looks like a knot and in Fig. 4(e) pattern which
reminds a flower. From Fig. 4(e) and Fig. 4(f) we see

(a) (b)

(c) (d)

Figure 5: Examples of polynomiographs: (a) original,
(b)-(d) based on the non-metric tests.

that the patterns look quite different, but the tests used
for their creation differ only in order of the weights
(they are interchanged).
Next example presents the use of the tests which are
based on the non-metric conditions. The common pa-
rameters used in the example: p(z) = z3− 3z + 3, A =
[−3,3]2, k = 15, ε = 0.001, m = 2. Figure 5(a) presents
the original polynomiograph and Figs. 5(b)-(d) present
polynomiographs obtained with the help of following
tests:

(b) |0.04ℜ(zi+1− zi)|< ε ∨|0.05ℑ(zi+1− zi)|ε ,

(c) |0.4ℜ(zi+1− zi)|2 < ε ∧|ℑ(zi+1− zi)|2 < ε ,

(d) |exp(10zi+1−9zi)|< ε .

Also in this case we see that when we change the mod-
ulus test to the tests based on the non-metric condi-
tions we obtain very interesting patterns. For instance
in Fig. 5(b) we see a very complicated net of swirls and
in Fig. 5(d) a pattern which looks like a necklace.
In the last example we show some polynomiographs
obtained with the tests basing on the escape criteria.
The common parameters used in the example: p(z) =
−2z4 + z3 + z2 − 2z− 1, A = [1,2]× [−0.5,0.5], k =
15, m = 2. Figure 6 presents the original polynomio-
graph for ε = 0.001 and Figs. 6(b)-(d) present poly-
nomiographs obtained with the help of following tests:
(b) R = 6 and condition (19), (c) R = 8 and condition
(20), (d) R = 6 and condition (21) for α = 8 and β = 11.
The patterns obtained with the escape criteria also dif-
fer from the original one. But obtaining a very interest-
ing pattern using those criteria is difficult. This is be-
cause the patterns arise in the regions where the original
method converges very slowly or reaches the maximum
number of iterations.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 19 ISBN 978-80-86943-75-6

(a) (b)

(c) (d)

Figure 6: Examples of polynomiographs: (a) original,
(b)-(d) based on the escape criteria.

5 CONCLUSIONS
In this paper we presented modifications of the poly-
nomiography algorithm. The modifications were based
on the change of the usual convergence test with the
tests based on distance and non-distance conditions.
Presented examples show that using the proposed tests
we are able to obtain very interesting patterns. We be-
lieve that the results of this paper can enrich the func-
tionality of the existing polynomiography software.

When we search for an interesting pattern using the
polynomiography we must make the right choice of a
polynomial, the iteration function etc. and using the
trial and error we must find an interesting area [Kal09].
Adding our tests to the list of polynomiography param-
eters we make the search even more difficult, so there
is a need for automatic method which finds interest-
ing patterns. The notion of an interesting pattern is
very difficult to define and usually is based on a sub-
jective feeling, but there are some attempts to estimate
the notion. Ashlock and Jamieson in [AJ08] introduced
a method of exploring the Mandelbrot and Julia sets for
interesting patterns. They used evolutionary algorithms
with different fitness functions. In our further research
we will try to develop a method which searches for in-
teresting patterns in the polyniomography using similar
methodology like that presented by Ashlock.

Polynomiography is based on the complex polynomi-
als. In [Lev94] we can find examples of using q-
systems numbers instead of complex numbers for ob-
taining diverse patterns, and in [WS13] we find bicom-
plex numbers used in the Mandelbrot and Julia sets. Us-
ing the q-system and bicomplex numbers in the poly-

nomiography can probably further enrich the patterns
obtained with the polynomiography.
6 REFERENCES
[Ard11] Ardelean, G.: A Comparison Between Itera-

tive Methods by Using the Basins of Attraction.
Applied Mathematics and Computation 218(1),
88-95, (2011)

[AJ08] Ashlock, D., Jamieson, B.: Evolutionary Ex-
ploration of Complex Fractals. In: P.F.Hingston,
L.C.Barone, Z.Michalewicz (eds.) Design by
Evolution. Springer, Berlin, pp. 121-143, (2008)

[DW12] Domańska, D., Wojtylak, M.: Application of
Fuzzy Time Series Models for Forecasting Pollu-
tion Concentrations. Expert Systems with Appli-
cations 39(9), 7693-7679, (2012)

[Kal04] Kalantari, B.: Polynomiography and Applica-
tions in Art, Education and Science. Computers
& Graphics 28(3), 417-430, (2004)

[Kal05a] Kalantari, B.: Method of Creating Graph-
ical Works Based on Polynomials. U.S. Patent
6,894,705, issued May 17, 2005

[Kal05b] Kalantari, B.: Two and Three-dimensional
Art Inspired by Polynomiography. Proceedings of
Bridges, Banff, Canada, pp. 321-328, (2005)

[Kal09] Kalantari, B.: Polynomial Root-Finding and
Polynomiography. World Scientific, Singapore
(2009)

[Kal10] Kalantari, B.: A Combinatorial Construction
of High Order Algorithms for Finding Polyno-
mial Roots of Known Multiplicity. Proceedings
of the American Mathematical Society 138(6),
1897-1906, (2010)

[Lev94] Levin, M.: Discontinuous and Alternate Q-
System Fractals. Computer & Graphics 18(6),
873-884, (1994)

[Pic88] Pickover, C.A.: A Note on Chaos and Halley’s
Method. Communications of the ACM 31(11),
1326-1329, (1988)

[Pic01] Pickover, C.A.: Computers, Pattern, Chaos,
and Beauty: Graphics from an Unseen World.
Dover Publications, Mineola, (2001)

[Sea07] Searcóid, M.Ó: Metric Spaces. Springer, Lon-
don, (2007)

[Var02] Varona, J.L.: Graphics and Numerical Com-
parison Between Iterative Methods. The Mathe-
matical Intelligencer 24(1), 37-46, (2002)

[WS13] Wang, X.-Y., Song, W.-J.: The Generalized
M-J Sets for Bicomplex Numbers. Nonlinear Dy-
namics 72(1-2), 17-26, (2013)

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 20 ISBN 978-80-86943-75-6

Fast Normal Approximation of Point Clouds in Screen
Space

Daniel Schiffner
Goethe Universität

Robert-Mayer-Strasse 10
D-60054 Frankfurt

dschiffner@gdv.cs.uni-
frankfurt.de

Marcel Ritter
University of Innsbruck &

Airborne Hydromapping OG
Technikerstr. 13a & 21

A-6020, Innsbruck, Austria
marcel.ritter@uibk.ac.at

Werner Benger
Center for Computation and

Technology,
Louisiana State University

216 Johnston Hall
LA 70803, Baton Rouge, USA

werner@cct.lsu.edu

ABSTRACT
Displaying large point clouds of mainly planar point distributions yet comes with large restrictions regarding
the surface normal and surface reconstruction. Point data needs to be clustered or traversed to extract a local
neighborhood which is necessary to retrieve surface information. We propose using the rendering pipeline to
circumvent a pre-computation of the neighborhood in world space to perform a fast approximation of the surface
in screen space. We present and compare three different methods for surface reconstruction within a post-process.
These methods range from simple approximations to the definition of a tensor surface. All these methods are
designed to run at interactive frame-rates. We also present a correction method to increase reconstruction quality,
while preserving interactive frame-rates. Our results indicate, that the on-the-fly computation of surface normals
is not a limiting factor on modern GPUs. As the surface information is generated during the post-process, only the
target display size is the limiting factor. The performance is independent of the point cloud’s size.

Keywords
Normal Reconstruction, Tensor Information, GPU, Point Clouds

1 INTRODUCTION

Huge data sets are nowadays generated by simulations
or by observational methods. Point clouds are e.g. the
result of particle based simulation codes or laser scans,
such as airborne light detection and ranging (LIDAR)
scanning. Surface related information, such as the sur-
face normal, can be used to enhance the visualization
of point clouds, e.g. for illumination. Traditional meth-
ods for reconstruction surface information require an
expensive spatial sort operation. Therefore, these are
executed during a pre-process. Our method aims at im-
proving the exploration of LIDAR data sets, before ap-
plying more expensive approaches.

In our work, we use the large data throughput of modern
GPUs to generate a fast estimation of the surface prop-
erties within screen space. Therefore, we apply three
possible approaches and compare the individual results.
The first approach uses the fragment shader specific

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

dFdx and dFdy functions. The second method calcu-
lates the surface normal by computing the cross product
in a local neighborhood, which is available through the
pixel neighborhood. The third applies a moving-least-
squares approach to acquire tensor information. The re-
sulting co-variance matrix is then used to compute the
eigenvalues and eigenvectors.

In the next section, we list similar methods to our ap-
proach. Then, we present our methods and solutions
to encountered issues. These methods are compared to
each other and some examples are presented. Finally,
we conclude with a summary of our findings and an
outlook regarding future work.

2 RELATED WORK
Generic visualization frameworks, such as openWal-
nut [Walnut] or the visualization shell (VISH) are uti-
lized for data exploration and processing of a large data
sets. More expensive approaches to compute visual en-
hancements of points distributed on surfaces and lines,
and geometrical reconstructions of lines have been done
in [Bou212], [Rit12b] or [Rit12a].

The calculation of a surface normal is strongly
connected to any surface reconstruction method.
Especially for point based representations, methods
using co-variance techniques [Ber94][Bjö05] are well

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 21 ISBN 978-80-86943-75-6

suited, because no exact neighborhood is available
and some noise is to be expected. Alexa defined
the so-called point-set surfaces and presented some
projection specific calculations [Ale04]. The co-
variance matrix allows to assess the quality of the point
cloud data set using direct tensor field visualization
methods, such as displaying tensor splats [Ben04]. To
compute the eigenvalues and eigenvectors from a given
co-variance matrix, the analytical approach presented
by Hasan [Has01] or one of the methods presented by
Kopp [Kop06] can be applied.

Yet, these methods rely on the identification of an ac-
curate neighborhood. To acquire this information, the
input data set needs to be sorted. Neighbors are ei-
ther found by a brute force approach – which is not
suitable at all –, by a tree search or by a Morton or-
dering [Con10]. A tree as well as a Morton order are
highly suited for parallelization.

Instead of creating a kd-tree or a Morton order in
world space, a neighborhood can also be computed in
screen space. Thus, the computation is only performed
on the currently visible part of the data set. This
is commonly done by splatting the data points and
extracting the properties from the frame buffer. Similar
to the approach presented by [Sch11] or [Yan06],
we use only screen space information for th selection
of the neighborhood. The splats are projected using
either a fixed or adapted point size, as proposed by
Rusinkiewicz [Rus00]. Once the surface information is
available, also high quality splatting techniques [Bot05]
could be applied.

3 APPROACH
We use the information available in screen space to
reconstruct a surface and its corresponding normals.
We designed an approach consisting of three individual
steps, as illustrated in figure 1.

Object Space Screen Space

Splat Calculate Correct

Figure 1: The outline of our screen space normal recon-
struction. The first pass consists of splatting the depth
values which are used in the consecutive passes. The
second pass approximates the surface normal, while the
optional third pass smooths the resulting values.

The first pass is a simple splatting of the input data
and provides the depth information required by recon-
struction. Each pixel is hereby surrounded by neighbor
candidates. The second pass uses these depth values
and computes surface properties. The candidates are
inspected and rejected if the distance is too large, i.e.
their interpolation weight is too small. The last pass is

optional and allows a further enhancement of the qual-
ity of the reconstructed properties.

Splatting the Point Cloud
We draw the point cloud, which will be reconstructed,
using either a fixed or an approximate point size. Our
approach only requires a depth buffer for computation
of the surface information. As the depth-buffer is gen-
erated, in general, by all rendering approaches, this
method can be applied to all scenarios.
To increase the accuracy, we encourage using a multi-
sample depth-buffer. This allows the retrieval of mul-
tiple depth values per individual sample. Using a sam-
pling count of 8 means that we are able to capture –
at most – 8 individual splat depth values at once. It
is, of course, possible that the unprojected world space
coordinates are identical or invalid, i.e. the depth value
was not set. Still it increases the stability of the follow-
ing normal calculations. Multi-sampling is only applied
within the first post process.

Normal Definition
We calculate the wold space coordinates of the current
pixel by un-projecting it based on the multi-sampled
depth-buffer. The reconstruction of the surface normal
can then be performed in three ways. The first method
uses the local derivatives directly available in the frag-
ment shader. The second and third method approximate
the surface using a generic neighborhood description.
This neighborhood is defined by fixed sampling pat-
terns. The most simple version takes 5 samples within
a 3x3 neighborhood, while the most complex version
selects 25 samples in a 7x7 neighborhood, see figure 4.
The samples are focused on the diagonals, which in-
crease the overall area captured during reconstruction.
Note, that we use ascending indices for the opposite
sample positions. This enables a simple definition of
diagonals within a shader.
In our test, we did not observe any differences between
the 5 and 9 sample schemes. This indicates, that the re-
duced representation is already able to capture the sur-
face properties. The extended schemes, i.e. 17 and 25
samples, further increase stability of the results and are
more comparable to off-line methods.
We orient all normals by inverting those, where the z-
component is negative. All selected splat samples are
visible and, thus, require a normal which is facing to-
wards the camera.
To assure correct identification of possible neighbor
candidates, a maximal distance is introduced. Neigh-
boring pixels may not be true neighbors within world
space due to the projection. Therefore, we reject ev-
ery sample that is not within this configurable distance.
This is comparable with the maximal distance in the
MLS [Ale04] or tensor computations [Rit12a].

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 22 ISBN 978-80-86943-75-6

0

1

2 3

4

(a) 5 Samples

0

1

2

3

4

56

7

8

(b) 9 Samples

0 1

234

5

6 7 8

9

10

11

12

13

14

1516

(c) 17 Samples

0 1

234

5

6 7 8

9

10

11

12

13

14

1516

17

18

19

20

21

22

2324

(d) 25 Samples

Figure 2: The used sampling schemes for defining the
local neighborhood of a fragment. The center point 0 is
optional.

Local Derivatives
Shaders support the calculation of local derivatives
within the fragment shader since GLSL version 1.10.
For reconstruction of the surface normal, the functions
dFdx and dFdy are used. These internally extract
neighbor positions from concurrent thread blocks
and are only available in the fragment stage. This
means that the surface is completely splatted and the
individual samples may have overlapped. With c, the
current position in clip-coordinates, the surface normal
~n is computed:

~n(c) = dFdy(c)×dFdx(c)

This method is very sensitive to noise or irregularities
in the depth buffer and in many cases produces normals
not representing a good reconstructed surface. How-
ever, if the surface is continuous and the splat size is
carefully chosen, this method will suffice.

Plane Approximation
Similar to the computation of mesh surface properties,
we approximate face normals within this approach. The
normals are accumulated and the resulting vector is nor-
malized. Finally, we impose an orientation and align
the vector.

To obtain the needed vectors, we use one of the pro-
posed sampling schemes. Each direction vector is built
up either by diagonal or counter-clock-wise (ccw) sam-
ples. The diagonals generate smoother results and do
not require the center point at sample 0. This is sim-
ilar to the anti-alias algorithms used in the rendering
pipeline. The ccw approach accounts more for local
changes and takes the center point into account. In the
diagonal case, we obtain the surface normal by using
the following formula:

~n(c) =
1
N

bN
4 c

∑
i=0

~d4i× ~d4i+2

With ~di = si− si+1. We optimize the sampling schemes
for a diagonal pattern, since we intend to create smooth
surface normals with minimal noise.

Tensor Information
Using tensor information instead of flat patches leads
to a smoother reconstruction. To derive this informa-
tion, the computation of eigenvalues and eigenvectors
is mandatory. We compute the point distribution tensor
by deriving the co-variance matrix for the current posi-
tion c, as presented by [Rit12a] and similar to [Bjö05]:

CM(c) =
1
N

N

∑
k=1

wik(dik⊗dT
ik)

where dik = c−Sk, dT
ik is the transpose, N is the number

of samples around center point c, Sk the sample and wik
is a weighting function. Here, we apply a weighting of
wik =

1
‖dik‖2

.

The tensor product ⊗ is built by the direction vectors
pointing from the current fragment’s world coordinate
to its points in the neighborhood. The weighted sum of
these vectors result in the final point distribution tensor.

We compute the eigenvalues with the “Cordano"
method presented by [Kop06]. This approach results
in more stable vectors than the method proposed by
Hasan et al. [Has01]. Similar findings were made by
the developers of openWalnut [Walnut]. The eigenvec-
tor related to the minor eigenvalue hereby represents
the surface normal. The vector is easily oriented, since
the calculation is performed in clip-coordinates and the
normal vectors have to face the camera.

Smoothing Normals
In a second, optional, screen space pass we correct the
computed normals. We extract and scale adjacent nor-
mals within a local neighborhood, where the center nor-
mal is being favored. The surface normal is yield by
accumulation of the weighted vectors.

Different weights and neighborhood sizes can increase
the accuracy of the result. However, this does not apply
to all situations. Especially, when using the plane ap-
proximation method, quality decreases, when the nor-
mals contain lots of noise.

4 RESULTS
We implemented a prototype, which has been tested on
a i5 670 system with 8 GB RAM and a GeForce 680
running on Windows 7.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 23 ISBN 978-80-86943-75-6

 0

 5

 10

 15

 20

LD PD PC TI

T
im

e
 [

m
s
]

Method

No Correction
With Correction

Figure 3: Timing results achieved using a screen size
of 1024x768 with 8 multi-samples and the 9 samples
scheme. LD denotes the local derivatives, PD the plane
approximation using diagonals, PC the plane approx-
imation using counter-clock-wise pattern, and TI the
tensor information.

Timings
On all systems, we observed interactive frame rates
with all methods. The fasted method is the local deriva-
tives (LD) approximation, while the tensor information
(TI) is the most expensive variant. The plane approx-
imation with diagonals (PD) is slightly faster than the
tensor variant. The ccw plane approximation (PC) is
worse in terms of performance compared to the PD, due
to the definition of the sampling scheme.

In figure 3, the average processing times are shown, in-
cluding the generation of the depth values. We used
a fixed multi-sampling count of 8 in all presented tim-
ing results. Thus, the real number of samples taken per
pixel needs to be multiplied by 8. For better readability,
we continue to use the introduced sampling count.

The splatting of the point cloud requires a significant
amount of time. In our tests, it varied in the range of
30% to 50% mainly depend on the used screen and splat
sizes.

The used sampling scheme size has a large influence
on the performance and quality of the reconstruction,
as seen in figure 4. The performance scales linearly
with the number of used samples. However, the quality
of the reconstruction is not necessarily improved when
using a very high sampling count. This is due to the
fact that the surface is smoothed and local information
is suppressed.

We also measured the contribution of the individual
steps performed by our approach. Interestingly, the
splatting itself consumes a large amount of the overall
processing time, while the correction requires only very
little processing time. The larger the number of used
samples, the higher the reconstruction times. Table 1
lists the detailed timings of the involved steps: “Splat”
represents the splatting of the depth values, “Normal”

 0

 20

 40

 60

 80

 100

LD PD PC TI

T
im

e
 [

m
s
]

Method

5 Samples
9 Samples

17 Samples
25 Samples

Figure 4: Influence of changing sampling scheme size
for the reconstruction methods. Results taken with a
screen resolution of 1600x1200. All methods use a 8
times multi-sampled depth-buffer.

9 Samples Scheme / 8 Multi-samples
Operation Min [ms] Max [ms] Avg [ms]
Splat 8.963 9.030 9.000
Normal 17.521 18.435 17.968
Correction 0.468 0.717 0.493
17 Samples Scheme / 8 Multi-samples
Operation Min [ms] Max [ms] Avg [ms]
Splat 8.801 10.654 8.980
Normal 34.278 35.711 34.890
Correction 0.466 5.740 0.702

Table 1: Distribution of the processing times among the
individual operations of the proposed method. Results
taken with a screen resolution of 1600x1200 using the
tensor method.

the reconstruction and “Correction” the final smooth-
ing.

Visual Results
All methods are able to reconstruct both noisy and
smooth surfaces. We use several splatted object point
clouds as test cases. All point clouds consist of at least
250k points to assure a high sampling density.

The results of the described reconstruction methods are
shown in figure 5. These indicate that the TI method
provides a stable and accurate reconstruction. The PD
approach provides excellent results in smooth data sets.
The LD approach always generates large noise. Despite
not being suitable for a high quality surface approxima-
tion, it is the fasted approach.

To simulate noisy data, we alter the vertex positions
within the splat shader. A light source is positioned
below the object. The illuminated scene is shown in
figure 6. The TI method generates the smoothest result,
while the PD method yields more normals that differ
widely from the original ones. The LD method pro-
vides the worst reconstruction. All methods generate

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 24 ISBN 978-80-86943-75-6

(a) Original

(b) Tensor (c) Plane approximation (diag-
onals)

(d) Plane approximation (ccw) (e) Local derivatives

Figure 5: Reconstruction of the surface normal used
for illumination. (a) shows the original object with pre-
computed normals. (b) to (e) depict the proposed re-
construction methods.

more invalid normals in the low sampled region on the
top.

Figure 7 illustrates the influence of the optional correc-
tion pass. The corrected normals are smoother and the
number of correctly oriented surface normals is higher.
The vectors are visualized via colors showing the x-, y-,
and z-coordinates as red, green, and blue values.

(a) Original

(b) Tensor (c) Plane approxi-
mation

(d) Local derivatives

Figure 6: Reconstructed normals used for illumination
in a test scenario with two planes. Noise is added to the
input data. Even normals at the edge are well recon-
structed, but tend to be smoothed.

(a) Uncorrected (b) Corrected

(c) Difference Image

Figure 7: The influence of the correction pass applied
to an ellipsoidal surface. The surface xyz-normal is il-
lustrated as a rgb-color. The corrected version (b) con-
tains more valid normals. The difference is visualized
in (c).

Since the correction pass is very fast and increases the
stability of the reconstruction, we always enable this
pass in the following tests.

Application to a LIDAR Data Set
A point could stemming from an airborne laser-scan is
used for further investigation of the technique and vali-
dation of the technique by a real-world application. We
chose a small section of a bathymetric scan of the river
Loisach in Bavaria (Germany), acquired with the hy-
drographic laser scanner Riegl VQ-820G [Ste10]. The
scan contains different kinds of structures: fields, trees,
lower vegetation, a river, a street with cars, power ca-
bles and a steep slope partially covered with vegetation.
Figure 8 shows a side and a top view of the scan.

The two million points are colored by the minor
eigenvector of the point distribution tensor computed
in world-space.

The point distribution tensor was computed by using a
neighborhood radius of 0.5, 1.0 and 2.0 meters. Two
different weighting functions have been tested: con-
stant weight and 1

‖dik‖2
weight. Using a kd-tree for find-

ing neighbors and 6 OpenMP parallel threads on an In-
tel Xeon X560@2.67GHz the according computation
times are 41, 85, and 218 seconds for the three radii.
This computation of the tensor is a demanding com-
putational tasks. However, it has been shown, that the
tensor can be used for feature extraction, object recog-
nition, and to improve the segmentation of point clouds
[Rit12a][Rit12b][Bjö05]. When just looking at the mi-
nor eigenvector via color, the fields, the river, the street,
the slope and the vegetation can be well distinguished
from each other, visually.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 25 ISBN 978-80-86943-75-6

(a) Side view

(b) Top view

Figure 8: LIDAR laser-scan of a section of the Bavar-
ian river Loisach in Germany. Laser echoes are illus-
trated as colored points. Color shows the minor eigen-
vector of the point distribution tensor. Vegetation can
be visually distinguished from the ground and the river.

Next, we compare this expensive, fine grain computa-
tion in world space with our screen space technique.
The results indicate that the approach is able to recon-
struct the normals with rather high quality. The nor-
mals widely match with the normals calculated in world
space, as shown in figure 9. However, differences in the
forest areas of the scan are visible.

Also, where the sampling density near the camera po-
sition is not high enough to ensure high quality recon-
struction in this region.

To compare the results of the different methods, we
recorded a series of images from the Loisach data set.
The TI method produces the most reliable results, while
requiring a high sampling count. The PD method is able
to create very smooth normals regardless of small sur-
face changes, e.g. the missing power line in the upper
region 10. The PC method includes it, but is more un-
stable. The LD method is the most efficient approach
while yielding the worst quality in comparison to the
other methods.

The correction pass increases the quality and the sta-
bility of the results by reducing the number of invalid
surface normals. Figure 10c illustrates the enabled cor-
rection pass and figure 10d .

5 CONCLUSION
Our results show that a fast approximation of the sur-
face normal can be achieved in real-time. Here, the sur-
face is solely reconstructed from the depth-buffer and
projection parameters. With our approach a preprocess-
ing of surface information may be delayed until a re-
gion of interest has been selected. The results indicate
that especially the tensor-based approach to determine
the surface normal of a point cloud is a well-working
method.

In comparison to the off-line world space method, we
are able to create similar results at interactive frame
rates. The loss of quality is negligible and is only vis-
ible in under-sampled regions. However, this method
can only provide an approximation of the real point-
cloud’s surface information. The tests show that an in-
crease of the neighborhood size decreases the perfor-
mance linearly. A good quality is already achieved with
small neighborhood sizes. The focus on the diagonals
in the sampling schemes reduce the number of required
samples.

6 FUTURE WORK
We plan to combine this technique with level of de-
tail rendering to provide good visual representations of
large airborne LIDAR scans. The surface normals pro-
vide important information to control such a level of
detail algorithm.

The splatting technique could be enhanced by utilizing
more information represented in the point distribution
tensor. Extracting some features of the tensor will im-
prove the readability of point clouds without expensive
pre-computations.

Additionally, we plan to enhance the reconstruction
method by providing more weighting functions besides
the 1

‖dik‖2
weight for the computation of the co-variance

matrix.

To avoid expensive re-calculations, we plan to employ
a caching strategy. A re-computation of the surface nor-
mals would only be required when camera location or
point coordinates are changed, further increasing the
overall performance of the approach.

7 ACKNOWLEDGEMENTS
Special thanks to Frank Steinbacher for providing the
LIDAR data set of the river Loisach. This work was
supported by the Austrian Science Foundation FWF
DK+ project Computational Interdisciplinary Modeling

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 26 ISBN 978-80-86943-75-6

(a) Loisach screen space normals, tensor, 9 samples (b) Loisach screen space normals, tensor, 9 samples, illuminated

(c) Loisach world space normals, 1m, squared (d) Loisach world space normals, 1m, squared, illuminated

Figure 9: The reconstruction of the minor eigenvector using the fast screen space approach.

(W1227), and grant P19300. This research employed
resources of the Center for Computation and Technol-
ogy at Louisiana State University, which is supported
by funding from the Louisiana legislatures Information
Technology Initiative. This work was supported by the
Austrian Ministry of Science BMWF as part of the Uni-
Infrastrukturprogramm of the Forschungsplattform Sci-
entific Computing at LFU Innsbruck.

8 REFERENCES

[Con10] Connor, M., and Kumar, P.: Fast Construction
of k-Nearest Neighbor Graphs for Point Clouds.
IEEE TVCG 16, No.4. pp.599–608, 2010.

[Yan06] Yang, R., Guinnip, D., Wang, L.: View-
dependent textured splatting. The Visual Com-
puter 22, pp.456–467, 2006.

[Has01] Hasan, K.M., Basser, P.J., Parker, D.L.,
Alexander, A.L.: Analytical computation of
the eigenvalues and eigenvectors in DT-MRI. J.
Magn. Reson. 152, pp.41–47, 2001.

[Ale04] Alexa, M., Rusinkiewicz, S., and Adamson,
A.: On normals and projection operators for sur-
faces defined by point sets. Eurographics Symp.
PBG., pp. 149–155, 2004.

[Bou212] Boulch, A., and Marlet, R.: Fast and Ro-
bust Normal Estimation for Point Clouds with
Sharp Features. Comp. Graph. Forum 31, No.5,
pp.1765-1774, 2012.

[Walnut] Open Walnut. http://openwalnut.
org.

[Ben07] Benger, W., Ritter, G., Heinzl, R.: The Con-
cepts of VISH. 4th High-End Vis. Workshop,
pp.26–39, 2007.

[Ben04] Benger, W., Hege, H.-C.: Tensor splats. Conf.
on Vis. and Data Analysis, Vol.5295, pp.151–162,
2004.

[Ber94] Berkmann, J., and Caelli, T.: Computation
of surface geometry and segmentation using co-

variance techniques. IEEE TPAMI 16, No.11,
pp.1114–1116, 1994.

[Rit12a] Ritter, M., Benger, W., Cosenza, B., Pullman,
K., Moritsch, H., Leimer, W.: Visual Data Min-
ing Using the Point Distribution Tensor. IARIS
Workshop on Computer Vision and Computer
Graphics, VisGra, 2012.

[Rit12b] Ritter, M., Benger, W.: Reconstruction Power
Cables From LIDAR Data Using Eigenvector
Streamlines of the Point Distribution Tensor Field.
WSCG, pp.223–230 ,2012.

[Bjö05] Johansson, B., and Moe, A.: Object Recogni-
tion in 3D Laser Radar Data using Plane triplets,
technical report LiTH-ISY-R-2708, Dept. EE,
Linköping University, 2005.

[Rus00] Rusinkiewicz, S., Levoy, M.: QSplat: A Mul-
tiresolution Point Rendering System for Large
Meshes, SIGGRAPH ’00, pp.343–352, 2000.

[Bot05] Botsch, M., and Hornung, A., and Zwicker,
M., and Kobbelt, L.: High-quality surface splat-
ting on today’s GPUs. Eurographics VGTC Sym-
posium on PBG, pp.17–24, 2005.

[Sch11] Schiffner, D., Krömker, D.: Three Dimen-
sional Saliency Calculation Using Splatting, 6th
ICIG, pp.835–840, 2011.

[Shi09] Shirley, P., and Marschner, S.: Fundamentals
of Computer Graphics, 3rd Edition, A.K. Peters
Ltd, 2009.

[Kop06] Kopp, J.: Efficient numerical di-
agonalization of hermitian 3x3 matrices,
arXiv:physics/0610206v1, 2006.

[Ste10] Steinbacher, F., Pfennigbauer, M., Ulrich, A.,
and Aufleger, M.: Vermessung der Gewässersohle
- aus der Luft - durch das Wasser, in Wasser-
bau in Bewegung ... von der Statik zur Dynamik.
Beiträge zum 15. Gemeinschaftssymposium der
Wasserbau Institute TU München, TU Graz und
ETH Zürich, 2010.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 27 ISBN 978-80-86943-75-6

(a) World space, 1m squared (b) Local derivatives

(c) Tensor, 25 samples (d) Tensor, 25 samples, no correction

(e) Plane approximation, diagonals, 25 samples (f) Plane approximation, ccw, 25 samples

Figure 10: Comparison of the different reconstruction methods used on the Loisach LIDAR data set.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 28 ISBN 978-80-86943-75-6

Using OpenGL State History for Graphics Debugging
Bryce van Dyk, Christof Lutteroth, Gerald Weber, Burkhard Wünsche

Department of Computer Science
University of Auckland

Private Bag 92019, Auckland 1142
New Zealand

bvan036@auckland.ac.nz, {christof, gerald, burkhard}@cs.auckland.ac.nz

ABSTRACT
To fulfill the unique debugging requirements of graphics programming, specialized tools are needed to aid in the
debugging process. Modern graphics debuggers allow developers to inspect the current graphics state of a running
application, and influence their control flow. However, they do not make maximum use of information about
previous graphics states, despite the possible utility of this information in debugging. We propose GLDebug, an
OpenGL debugger with novel features for using historical information to assist with graphics debugging. GLDebug
provides the ability to capture and recall OpenGL state and function call information. Developers can retrace
the graphics state history of OpenGL applications and compare different recorded states, which may come from
different applications. State differences are made clearly visible, so that the source of state-based errors can
be tracked down more easily. GLDebug was evaluated in a user study, with promising results: the participants
found the tool helped them when working on four different OpenGL debugging tasks. All participants commented
favorably on the support for tracking and analyzing state history. The results indicate that historical information is
useful for graphics debugging, and that debuggers supporting such information can improve debugging efficacy.

Keywords
debugging, state history, function call history

1 INTRODUCTION

Computer graphics is applied in a vast number of fields
such as entertainment, medicine, and computer-aided
design. With so many applications for computer graph-
ics, there is a demand for tools that assist program-
mers with the analysis and debugging of graphics code.
However, general purpose debuggers do not cater to the
specific needs of graphics programmers.

The need for dedicated tools stems from the unique
paradigms used in graphics programming, as well as
limitations due to the graphics hardware. For example,
when programming with OpenGL, programmers must
manage the state of OpenGL, treating OpenGL as a
state machine. General purpose debuggers do not of-
fer the ability to monitor this state – a useful feature
that graphics debuggers should offer. Similarly, general
purpose debuggers cannot help inspect the internal state
of the graphics hardware – not in the same way they do
for programs running on the CPU. There are also im-
portant differences in the types of data being dealt with:
graphics debuggers must consider objects such as tex-
tures and matrices, which are of particular importance
in graphics programming.

Various graphics debuggers have been introduced over
the last decade by commercial vendors, open-source de-
velopers and researchers. These debuggers address the
problems of inspecting the internals of graphics hard-

ware, controlling the execution flow of graphics code,
and profiling it. However, their focus is on giving de-
velopers access to the current state of the graphics hard-
ware only.

In this paper, we explore the idea of using historical
information to assist with graphics debugging. We
present a novel debugger, GLDebug, which provides
the novel ability to capture and recall past OpenGL state
and function call information. GLDebug allows de-
velopers to accumulate this historical information over
time from multiple OpenGL applications, and compare
it in a user interface that is similar to other history view-
ers. Users of GLDebug can retrace the graphics state
history of OpenGL applications and compare different
recorded states, making state changes clearly visible.
This makes it easier, for example, to find defects in er-
roneous code when comparing it with working code.
In particular, we are addressing the following research
questions:

R1 How can graphics state history be supported in a
debugger and presented to the user?

R2 In how far does the use of graphics state history
facilitate debugging?

The ability to record and inspect graphics API states
has been discussed in prior work [3, 5], so we only give
a brief overview of this. In particular, we point out the

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 29 ISBN 978-80-86943-75-6

various challenges and techniques involved in capturing
the internals of graphics hardware. Then, we discuss in
more detail how graphics state history can be stored,
managed and presented to the user.

Previous works have not fully utilized and investigated
historical information about OpenGL applications. We
discuss how a graphics debugger can make this infor-
mation easily available to assist in the OpenGL debug-
ging process, addressing R1. In particular, we show
how the use of historical information can be supported
in a debugger’s user interface, and motivate the features
of GLDebug with specific use cases.

After completion of the GLDebug proof-of-concept
prototype, a user study was conducted to evaluate the
usefulness of the tool and address R2. This evaluation
was fairly small in scale and scope, but seems to
be the first of its kind: there is little or no research
that attempts to evaluate the effectiveness of graphics
debuggers.

Note that the results about the use of state history
for debugging presented here are not only applicable
to OpenGL. Our implementation is based solely on
OpenGL, but other low-level graphics APIs such as Di-
rectX are conceptually very similar. As a consequence,
the contributions of this research can also be applied to
other graphics APIs.

Section 2 summarizes the requirements of graphics de-
bugging in general, and for using state history specif-
ically. Section 3 gives an overview of related work.
Section 4 introduces GLDebug and elaborates its de-
sign, including the user interface for making OpenGL
state history easily accessible to developers. Section 5
details key areas of GLDebug’s implementation. Sec-
tion 6 explains some of the debugging use cases that
can be addressed with GLDebug. Section 7 presents
the results of the user study. Section 8 concludes the
paper and points out some future work.

2 REQUIREMENTS
Common features of graphics debuggers include state
tracking, logging of graphics commands, and the in-
spection of buffers. These features are widely used in
modern graphics debuggers. In this project, we are also
looking at novel features regarding the use of graph-
ics state history, such as logging of graphics states and
comparison of graphics states. In the following sec-
tions, we will describe all these features as require-
ments of graphics debuggers.

2.1 General Requirements of Graphics
Debugging

State tracking is a functionality allowing a user to
track, view, and potentially alter the state of the under-
lying graphics system. OpenGL is generally known to

be a state machine. How this machine is configured
controls many aspects of how a command to the ma-
chine is processed. Bugs can easily be introduced by
having the machine configured incorrectly [9].

As an example, consider a situation where a program-
mer is using a third-party library that makes changes to
OpenGL state. Unfortunately, the programmer is not
aware of these changes and thus subsequent OpenGL
calls made by the program are not behaving as ex-
pected. But even if the programmer suspects this to be
the cause, they still have to track down which part of
the state is being altered.

In the above example, being able to inspect state is very
helpful. The simple act of seeing what the state is and
comparing that against what is expected saves the pro-
grammer from having to recompile code with debug in-
structions inserted to inspect state, or worse yet, from
having to expend time learning that the bug is even re-
lated to OpenGL state. There are also instances of com-
plex state interaction, where it is useful to be able to
inspect several state variables at once. Presenting state
information in a clear and easily navigable way facili-
tates this.

Command logging or call logging refers to a debugger
logging commands being issued to the graphics API,
and making the log visible to the user. This feature
is useful as a reference, in a similar way to viewing
OpenGL state: it helps verify that the actual behavior
of the program is the same as the desired behavior. For
example, this helps to make sure that a certain function
is indeed being called, or that a certain argument to a
function is correct.

Another useful, though rarer, aspect of this feature is
being able to replay the commands that are logged. By
doing this one can recreate a scene step by step, seeing
the effect that each command has (visually and/or in
the graphics state information). However, implement-
ing this functionality is technically much more difficult
than just logging calls.

Inspection of buffers is the ability of a debugger to
query OpenGL for information contained in buffers be-
longing to the program being debugged, and then to ex-
pose this information in various ways to a user. Buffers
can be used to store a variety of things, but the com-
mon inspection case is buffers storing texture (image)
data. That said, support for inspecting other types of
buffers exists in some debuggers, e.g. for buffers con-
taining shader input data such as vertices. The way data
is exposed can be visual or numeric, with different rep-
resentations being appropriate depending on the buffer
contents.

For example, a debugger could retrieve and allow in-
spection of the depth buffer, which helps determine if
an object is being culled by the Z-test. Another use

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 30 ISBN 978-80-86943-75-6

case is the inspection of an off-screen texture that is be-
ing rendered to, a common technique in deferred shad-
ing/rendering [11]. Being able to visually inspect such
a texture may be invaluable in seeing that the rendered
image is as intended.

Shader debugging is functionality helping with shader
bugs, which is becoming more and more important with
the prevalence of shaders in modern graphics program-
ming. Special support for shader debugging is neces-
sary because of the shader pipeline being opaque: while
input and output can be observed, what happens inside
the pipeline is difficult or impossible to observe, mak-
ing bugs that occur in the pipeline very difficult to diag-
nose and resolve. One of the popular shader debugging
techniques is to instrument shaders so that additional in-
formation is output [14], allowing a programmer to read
back the values of variables during shader execution
– information that is normally inaccessible. Another
technique is that of emulating the shader pipeline in
software [13], allowing for much greater visibility and
enabling identified requirements such as step-through
debugging of shaders.

2.2 Requirements for Using State History

Our work here seeks to extend upon the ability of track-
ing the current state of an OpenGL program, by track-
ing the state over the life of such a program. This
is similar to state tracking, with the additional require-
ment that captured information is persistent and is al-
ways available for recall. This contrasts with systems
that only allow for viewing of the current state of a
program, where previously captured information is not
stored. Such concepts have been explored in the context
of general purpose debuggers [10, 12], but have only
been vaguely suggested for graphics debuggers [5].

In addition to tracking OpenGL state over the program
execution, we also look at providing a means by which
users can compare the captured information in a way
that assists with debugging. It is important to report
captured information to the users in a fashion that en-
ables quick comparison of different states in order to
facilitate the debugging process.

As an example of the above two requirements, a user
should be able to record states from an OpenGL appli-
cation that is running smoothly. When a bug is encoun-
tered, the user should be able to recall the state from
when the program was running correctly, and compare
that to the current, buggy state. The GUI should allow
for a comparison such that the user is able to identify
problematic states (if any).

3 RELATED WORK
3.1 Enabling Technology for Graphics

Debugging
There are several technologies that enable and support
graphics debugging, although they are not debuggers
themselves. For example, there are systems available
that aid in the capture of calls made to OpenGL, or that
allow for querying of the state of OpenGL. A number
of debuggers, including GLDebug, are built upon such
systems.

Chromium [8] is a system for the manipulation of
OpenGL command streams. Chromium uses a client-
server model, with streams of commands being dis-
patched by clients to one or more servers from which
the streams may be passed onto other servers. Each
server can inspect and, if needed, modify the stream
sent to it. Chromium can also be leveraged to manip-
ulate the command streams, thus it is possible to alter
the behavior of a program. These features are immedi-
ately useful in that they allow for both state tracking and
command logging. However, Chromium is no longer
being developed, leading to compatibility issues with
recent versions of OpenGL.

BuGLe1 is a toolkit designed to aid in the debugging of
OpenGL applications. BuGLe makes use of filters that
are used to intercept some or all OpenGL calls. Once
a call is intercepted, it can be inspected, and modifica-
tions can also be made before the call is passed on to
OpenGL. In contrast to Chromium, BuGLe is still be-
ing developed, so it has much better compatibility with
more recent versions of OpenGL.

3.2 Graphics Debugging
The most actively developed graphics debuggers at
present are commercial products, such as PIX2 and
Nsight3. There are also several academic projects in
this area [7, 13], of which two major contributions
are described below. However, little active research
appears to be occurring in this area at the moment.

gDEBugger45 was one of the first commercial graph-
ics debuggers to become widely available in 2004. It
demonstrated many of the features seen in modern
graphics debuggers, such as all of the general features
discussed in Section 2. Furthermore, all these features
were accessible through a GUI. The contribution of
gDEBugger is in its pioneering of graphics debuggers
in the commercial space, as well as offering many

1 http://sourceforge.net/projects/bugle/
2 http://msdn.microsoft.com/en-

us/library/ee663275%28v=vs.85%29.aspx
3 http://www.nvidia.com/object/nsight.html
4 http://developer.amd.com/tools/gDEBugger/Pages/default.aspx
5 http://www.gremedy.com/

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 31 ISBN 978-80-86943-75-6

features incorporated with a GUI. gDEBugger devel-
opment has been discontinued as it became part of
another debugger, CodeXL, which is discussed below.

Microsoft PIX is a commercial graphics debugger for
use with DirectX on Windows as part of the Xbox 360
development kit, which is actively maintained by Mi-
crosoft. It is one of the few tools available for DirectX
debugging. A notable feature of PIX is its ability to
capture all of the commands used to create an image (a
frame), and then replay these commands step by step
on demand.

nVidia Nsight and AMD CodeXL6 are further exam-
ples of modern commercial debuggers. These tools pro-
vide many of the features mentioned in Section 2, in-
cluding newer features for shader debugging, similar to
those seen in GLSLDevil (see below). While they are
available free of charge, their usage is limited to their
developer’s respective hardware.

There are tools that log calls made to graphics APIs
such as OpenGL, e.g. glintercept7 and apitrace8.
These tools log the API function calls made by an
application to a file, and allow users to inspect this log,
e.g. for profiling. Some of these tools (e.g. apitrace)
also allow users to replay the log files and inspect
the current graphics state during replay, similar to a
graphics debugger.

GLSLDevil9 [14] is a tool specifically aimed at de-
bugging the shader pipeline of OpenGL applications.
GLSLDevil provides novel features in that it automat-
ically instruments OpenGL shader code. The instru-
mented code then outputs extra information that can be
used for debugging. GLSLDevil uses a GUI to present
this information to users, showing the values of the vari-
ables used in a shader. It also supports some visualiza-
tions of those values, e.g. as images.

Apart from command logging and playback, histori-
cal information is not supported in any of the currently
available debugging tools. A possible reason for this is
that the storage and computation requirements make it
non-trivial [10, 12]. Furthermore, the current research
on graphics debugging exhibits a lack of evaluations
of graphics debugging tools and their use in practice,
which may make it an uncertain area to prioritize for
development.

3.3 Debugging using History
The concept of recording the state of a program
throughout its execution has been proposed for

6 http://developer.amd.com/tools/heterogeneous-
computing/codexl/

7 http://code.google.com/p/glintercept/
8 http://apitrace.github.io/
9 http://cumbia.informatik.uni-stuttgart.de/glsldevil/

OpenGL Application

Debugger Probe

Debugger Controller

Data Store

Intercepting
commands and
querying state

Managing recorded
commands, states
and metadata

Figure 1: Architectural overview of GLDebug.

general-purpose debugging [10, 12]. The research in
this area speculates that the ability to step back through
a programs trace aids the user in certain debugging
tasks. For example, such debuggers can help when a
bug is found that is tied to a variable with an incorrect
value. In this scenario, the debugger can be used to step
backwards in time and find at what point the value devi-
ated from appropriate values. Graphics debugging has
some similarities to such general-purpose debugging
scenarios: bugs often originate from some unintended
state change [9], which is identified by inspecting the
execution flow. However, the state machine aspect of
graphics debugging is typically much stronger, with
a reliance of outputs on a complex state and different
types of potential bugs. Also, the technology involved
in graphics debugging is different.

GQL (graphics query language) was created along with
a debugging system by Duca et al. [5]. Similar to
GLDebug, it enables tracking and logging the state and
calls made by an OpenGL program over the course of
execution. However, the historical information is only
made available through an SQL-like language (GQL)
that users have to learn, and there is no direct support
for comparing states and highlighting of state differ-
ences. It is known that efficient use of a query language
such as SQL depends strongly on individual ability and
the user interface [4], hence it is questionable whether a
textual query language such GQL can adequately sup-
port day-to-day graphics debugging tasks. GQL was
not evaluated empirically to see if users find this ap-
proach effective or user friendly.

4 DESIGN
GLDebug is designed based on several high-level com-
ponents, as shown in the architecture diagram in Fig-
ure 1. The OpenGL application is the program being
debugged. It is executed on top of the debugger probe,

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 32 ISBN 978-80-86943-75-6

which is a library that intercepts the OpenGL calls made
by the application. Intercepting these calls makes it
possible to capture information about the calls them-
selves as well as other data that can be inspected while
the intercepting library has control.

The probe feeds the information it gathers into the de-
bugger controller, which provides the GUI for control-
ling the debugging process. Through the probe, the
controller can request graphics state information and
influence the control flow of the application being de-
bugged. The controller is also used to present informa-
tion about the application to the user, and in particular
let the user access the graphics state history in a conve-
nient way. To support state history, the controller stores
graphics states, OpenGL commands and related infor-
mation in a data store. The data store is queried when-
ever historical information is needed. In the following
paragraphs, the components of GLDebug are described
in more detail.

4.1 Probe
The probe is the component responsible for capturing
data from the program being debugged, and feeding
that data to the controller. It is a shared library that
provides the same interface as OpenGL. When a pro-
gram is run, the probe is linked instead of the default
OpenGL library. This means that all calls that would
normally be made to the OpenGL library are passed to
the probe instead. The probe allows for arbitrary code
to be executed once a call is intercepted, hence taking
over program control and allowing for both inspection
and modification of OpenGL calls. It can process com-
mands sent to it from the controller, such as for pausing
the application, and send data to the controller, such as
graphics state data that is queried by executing addi-
tional OpenGL commands.

There are several benefits of having the probe as a sepa-
rate component of the system. For example, GLDebug
can run on a computer separate from the computer run-
ning the OpenGL application. This provides benefits in
terms of being able to run the probe and debug OpenGL
applications on systems with less power and/or storage,
such as mobile devices. Also, the probe can be de-
veloped independently of the other components. The
downside is that there is additional work involved in
developing a communication protocol for the probe and
the controller.

The probe is lightweight, does not perform much pro-
cessing and does not impede the OpenGL application.
It is important that the probe does not alter the behav-
ior of the OpenGL application. Similar designs can be
found in other debuggers, such as the GQL debugger
mentioned in Section 3, which has a separate process
that processes the data captured from an application.

4.2 Controller
The controller is responsible for controlling the running
OpenGL application and retrieving information about it
through the probe. It is also responsible for storing the
information in the data store, and making it accessible
to the user through a GUI. Because of the distributed
architecture of GLDebug, the controller and data store
can be hosted on a more powerful system.

Figure 2 shows the controller GUI. The buttons at the
top allow users to connect to a running probe and influ-
ence the control flow of the application being debugged,
i.e. start, pause, stop and step through it. Furthermore,
they allow users to set breakpoints on specific OpenGL
functions, and request the graphics state from the ap-
plication. The GUI also presents captured information
back to the user. Graphics state information is presented
in the right section of the window, below the top row of
buttons. The table lists all OpenGL states variables with
their values, and there is space at the bottom to show
the value of a selected variable in more detail, i.e. in
the case of longer state variables such as shader source
code.

Note that the table on the right shows two graphics
states, one in the left column and one in the right col-
umn. Differences in these two states are highlighted
using color coding: unchanged variables are shown in
black, variables with different values are highlighted in
red, and if the values are the same but there has been a
recorded state between the first and second state where
the variables are not the same, then they are shown
in purple. This allows users to quickly compare two
graphics states. The states to compare are selected in
the list on the left, which shows, among other informa-
tion, the sequence of recorded states. The two columns
of radio buttons are used to select the two states that
are shown in the table on the right. The drop down list
at the top lets users select different application sessions
to view data from. So a user can select a state snap-
shot from one execution of a program, and compare it
to another, or even compare state snapshots from two
different programs.

Finally, the controller can show users a list of function
calls that were captured by the probe. As shown in the
radio button group near the top-left, the user may select
to see only states, only function calls, or both together.
This allows the user to explore the history of all cap-
tured states and function calls over the lifetime of the
application.

Originally, the GUI had a multi-tab design where sepa-
rate tabs were used to control the probe, and to view and
compare captured information. However, this design
was discarded in favor of the current single-window de-
sign after initial user feedback. Users found a multi-tab
window to be too cumbersome as it required a lot of
switching between tabs.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 33 ISBN 978-80-86943-75-6

Figure 2: The GLDebug interface comparing two sets of captured state.

4.3 Data Store
The data store archives the OpenGL state information
that is captured by the probe. This information con-
sists mainly of state variables with names and values,
with each graphics state containing hundreds of such
variable-value pairs. Some variables are nested, i.e.
they have child variables with values.

The data store also archives the function calls made by
the OpenGL application that were logged by the probe.
This includes the function name, parameter names and
values, as well as the call order. Finally, the data store
stores metadata about the logged information. This in-
cludes identifying information about the application be-
ing debugged and the debugging sessions, as well as
timestamps for debugging sessions, states and function
calls.

Our design makes use of a temporal database that per-
forms delta encoding on stored information automati-
cally. That is, when storing state information, it stores
only the values of states that have actually changed.
This means different states can be stored and recalled
with minimal overhead, and comparison between the
different states is somewhat simplified.

5 IMPLEMENTATION
GLDebug’s probe was implemented using BuGLe (see
Section 3.1) as a basis. The complexity and time re-
quirements of implementing a debugger from scratch
are significant. Using BuGLe as a basis greatly de-
creased the time required to develop the probe and im-
plement the ability to capture OpenGL commands and
state. However, BuGLe still had to be extended to
meet the needs of GLDebug, e.g. with functionality for
logging and sending information about OpenGL com-
mands.

All communication between the probe and the con-
troller is done through a single TCP connection. This

allows the probe to run on the same system as the con-
troller or on another system, as required. The commu-
nication is primarily initiated by the controller, issuing
requests to the probe, such as those for state, or those
to start or stop the execution of the OpenGL applica-
tion. When the probe receives a command, it attempts
to carry out that command and reply to the controller as
necessary. There are some cases where the communica-
tion is initiated by the probe, e.g. the sending of logged
function calls.
The data store was implemented using a temporal triple
store called PDStore, which was developed in our
working group in a separate project. PDStore’s ability
to recall previous database states makes it possible to
access any of the previously stored OpenGL states. Per
default, the controller uses PDStore as an embedded
database, so both run in the same process. As with
many database systems, it is also possible to connect
the controller to a remote PDStore database.
The controller was implemented using Java, while the
probe had to be coded in a lower-level language (in this
case C) in order to be compiled into a shared library.
This separation was helped by the fact that both com-
ponents communicate over a remote interface based on
TCP, as explained earlier.
The implementation of the probe was fairly demand-
ing, even when considering the use of BuGLe as a ba-
sis. It required extending BuGLe for capturing extra
information and sending extra data, which required a
detailed understanding of BuGLe’s internals. Further-
more, a deeper understanding of linking was required
in order to make sure that BuGLe was linked instead
of OpenGL. For a more in-depth view of GLDebug’s
implementation see [16].

6 USE CASES
In the following we describe important use cases for the
use of state history during graphics debugging. We de-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 34 ISBN 978-80-86943-75-6

scribe what kind of bug is involved in a use case, its sig-
nificance in real-world graphics applications, and how
state history can help to find the bug more easily.

6.1 Incorrect Graphics State
GLDebug is useful in cases where bugs are caused
by incorrect OpenGL state, and particularly in cases
where the state shifts from intended to unintended val-
ues (so-called ”snake in the grass” style bugs [10]). In
cases where OpenGL is configured incorrectly, GLDe-
bug makes it easier to view the values of state variables
and thus find problems. However, GLDebug is of par-
ticular usefulness in the case where the state was con-
figured correctly, and then shifts to an incorrect config-
uration. In such cases, being able to compare states can
reveal not only the incorrect variable, but also shows
in which state snapshot and at what time the problem
occurred.

An example is a program that is rendering correctly,
but then, through programming error, switches to an
incorrect shader that results in a blank screen. In this
scenario a comparison of the state captured when the
program was performing correctly and incorrectly, re-
spectively, would show that the shader source code is
different. The user could then examine the source code
from each of the different captured states, revealing that
the incorrect code is being used in the error case.

Many bugs in OpenGL are caused by incorrect state [9],
and being able to easily view OpenGL state is useful in
diagnosing such bugs. These kinds of bugs can differ
significantly in their severity depending on which and
how many state variables are incorrectly set.

6.2 State Leakage
State leakage is a specific kind of incorrect configura-
tion of state, where some code configures the state that
then affects code elsewhere in a program. There are
two major issues with this: first, the source of the issue
is removed from the code where the problem occurs,
making the bug hard to find. Secondly, the code caus-
ing the problem may not be available to the developer;
for example, it may be part of a linked library. In addi-
tion to the above, while it may be apparent that a leak
is happening, it is not always apparent which state vari-
able(s) are being leaked and causing problems.

An example of this kind of bug is usage of an external
library to draw a model using OpenGL. However, the
library used has a bug in that it alters and does not reset
the model-view matrix before returning control to the
calling code. In this scenario, through no fault of the
programmer using the library, bugs are introduced.

The use of external libraries is very common in graphics
programming. There are numerous graphics libraries
that build on OpenGL and other grahics APIs, and with

the continuing developments in processing power and
computer graphics techniques, many of these libraries
are subject to continuous change. Particularly for larger
projects, it is rare that a single developer knows all the
code in which graphics state is changed. As a result,
state leakage problems can happen fairly easily.

GLDebug aids in these circumstances by making state
information from different points in the application
readily accessible, allowing users to find where and
which state variables are being leaked. Being able to
capture a state snapshot before and after the state leak
allows users to use the state comparison features of
GLDebug to identify the variables that have changed,
and locate problematic state changes.

6.3 Missing Error Handling
OpenGL produces its own kind of errors, which require
their own kind of error handling code. Without this er-
ror handling code, many errors would pass silently. An
example is a compilation failure of a shader – some-
thing that would silently fail without error checking
code, and simply lead to an incorrect output.

Programs often lack sufficient error handling code [17],
and sometimes such code is omitted altogether. This
can be particularly dangerous if errors happen silently
and can lead to later problems, which is often the case
with OpenGL. When these errors go undiagnosed, only
to lead to problems later, finding the place where the er-
ror actually occurs can be particularly time consuming.

GLDebug simplifies catching of errors raised by
OpenGL, meaning that such errors can be discovered
even if a programmer has omitted error handling code.
GLDebug can pause the execution of the program
when OpenGL raises an error, and display information
about the error to the user. By being able to catch such
errors when they occur, GLDebug reduces their impact.

7 EVALUATION
A user study was performed to evaluate GLDebug and
investigate in how far the use of graphics state history
actually facilitates debugging. Interestingly, there do
not seem to be any published studies on the usability
of graphics debuggers at the moment. Our user study
provides some insight into graphics debugging in gen-
eral, and assesses the efficacy of the support for state
history in GLDebug. It also serves as a building block
for future studies in that area.

7.1 Methodology
In this evaluation participants were asked to complete
graphics debugging tasks with and without GLDebug.
By letting them use GLDebug for some tasks but not for
others, all participants got an impression of how useful
GLDebug can be. A mixed-methods approach was used
to collect data during this study:

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 35 ISBN 978-80-86943-75-6

• Think-aloud protocol: While working on the
debugging tasks, participants were encouraged to
speak out their thoughts aloud and make comments
at any point.

• Observations: Participants were observed through-
out the tasks, and significant observations were
recorded.

• System Usability Scale (SUS): After performing
the debugging tasks, participants were asked to fill
in the System Usability Scale [2] (a common usabil-
ity questionnaire based on Likert-scales).

• Likert-scale questions: Five custom Likert-scale
questions were used for evaluating specific features
of GLDebug.

• Open questions: Open questions were used to ask
what users liked and disliked about GLDebug, about
improvements they could think of, and any other
comments they may have.

Initially, also task completion times were recorded.
However, this revealed one of the challenges when
evaluating domain-specific tools for complex tasks,
such as graphics debuggers: the performance of
individual participants varied strongly, depending on
how much graphics programming experience and pro-
gramming skills they had, and other personal factors.
This did not only introduce a lot of noise into the
measurements, but also meant that some participants
took an excessive amount of time to complete the tasks.
Therefore, measurement of task completion times was
abandoned after a few participants, and a maximum
time of 15 minutes was allocated for each task. If a
participant did not complete a task in the allocated
time, the solution was presented and the participant
could comment on it. To get meaningful results from
quantitative measures such as task completion time,
a lot of training would have to be incorporated into a
study, or participants would have to be selected more
carefully with regard to their graphics programming
skills, to create a more homogeneous sample.

Each participant performed four debugging tasks: two
with and two without GLDebug (i.e. using only text ed-
itor and compiler). Each task was performed by about
half the participants with and the other half without
GLDebug. The tasks were performed in the order pre-
sented below. The tasks were designed to each incorpo-
rate a single and unique bug. This helped us cast light
on the utility of GLDebug for different kinds of bugs,
and reduced any learning effects between the tasks that
may have made tasks easier than usual. The tasks were
modeled on real-world problems, but smaller in scale
to allow for them to be solved in an appropriate time-
frame. The four bugs involved were:

1. Incorrect graphics state: An incorrectly configured
Z-buffer, resulting in an output with a polygon that
has clipping issues.

2. State leakage: A call to an external library (for
which the source code is not available) leaves tex-
turing enabled, resulting textures being applied to
polygons not intended to be textured.

3. Missing error handling: A shader is not compati-
ble with the shader model of the VM being used
for the test, so that the shader is not being compiled
and used, and the resulting polygon not colored cor-
rectly.

4. Incorrect graphics state: An incorrectly configured
model-view matrix that causes the output to be
drawn progressively further and further away from
the camera, instead of remaining static as desired.

Before undertaking the tasks, participants were given
general training on the use of GLDebug, as well as
a briefing on each task, in the form of instructional
videos. Participants were encouraged to give verbal
feedback during the tasks, and following completion of
a task. Following completion of all the tasks, partici-
pants were given the questionnaire to complete.

7.2 Results and Discussion
There were 7 participants, all of whom were male Com-
puter Science postgraduate students. All but one had
completed at least one course on Computer Graphics
and had some experience in using OpenGL. Some had
more extensive OpenGL project experience (more than
a year of OpenGL development). The participants var-
ied widely in both their general programming experi-
ence and their OpenGL programming experience. As
discussed previously, this variation prevented us from
using performance measures to assess the utility of
GLDebug, but did provide us with the perspectives of
users with different skill levels.

The results of the study were generally positive, indi-
cating that participants found GLDebug useful for the
tasks. Participants indicated that they found GLDebug
especially useful when there were conspicuous state
differences, or when they had a clear idea of what state
variables to inspect. The less experienced users in par-
ticular were sometimes not sure which state variables
were related to an issue, so they found it difficult to
identify the relevant state changes. Users indicated
in both the Likert-scale and open-ended questions that
they liked the ability to compose a view of state over the
course of program execution. However, users indicated
they would like more flexibility and automation in how
state was captured. In summary, people found GLDe-
bug useful when it was clear how they could leverage

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 36 ISBN 978-80-86943-75-6

Sheet1

Page 1

I feel the instructional videos prepared me for usage of GLDebug.

I think GLDebug presented information I used in debugging in an easily accessible manner.

I feel using GLDebug aided me in locating bugs.

I found it useful to compare historical state information while debugging.

0 1 2 3 4 5 6 7

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 3: Participant responses to additional Likert-scale questions about the experience with GLDebug.

state information to debug a problem. Our results in-
dicate that graphics state history can aid in debugging
when users find information within that state that is
clearly applicable to the problem at hand.

The average system usability scale score for GLDebug
was 68.2, which is around average [1], and indicates
that no serious usability issues are present. The par-
ticipants suggested various improvements (see below),
which helps to explain why the system got only an av-
erage score. For a research project such as GLDebug it
is to be expected that it is not as polished and exhaus-
tive in its functionality as a commercial product. The
main point for this study was that debugging with state
history was sufficiently supported.

Figure 3 shows the results of the additional Likert-scale
questions. Q1 indicates that the instructional videos
shown as training were perceived as sufficient. Q2 is
in line with the results of the SUS, indicating no seri-
ous issue, but also indicating room for improvement in
the presentation of information, which is discussed be-
low. Q3 indicates that all users found GLDebug useful
for debugging, which is a promising result for the proto-
type. Furthermore, Q4 shows that most users found the
ability to compare captured state information useful.

The improvements suggested by the participants ranged
from improvements to the GUI to thoughts on extra data
that could be logged by the probe. Much of the feed-
back differed between the participants; for example, a
common suggestion was making the GUI behave like
an IDE the participant was familiar with. However, a
strong majority of participants stated in the open ques-
tion section that they wanted greater control over the
ability to filter the information presented. Another de-
sired feature mentioned in the open questions was the
ability to automatically capture states based on certain
conditions, such as each frame, or when a certain func-
tion call occurs. Filtering and conditional state capture
would help to reduce the amount of information to that
which is relevant for a specific bug. Participants also
indicated a desire for functionality to show the original
source code (if available) where an OpenGL call oc-
curred, indicating the importance of putting the infor-
mation provided by the debugger into proper context.

Our study has some limitations: a small sample size,
a lack of professional graphics developers among the

sampled participants, and possible order effects. Small
sample sizes are generally acceptable for qualitative us-
ability studies, as experience shows that most usabil-
ity problems can be identified even with few partici-
pants [6]. Furthermore, there is evidence that senior
Computer Science postgraduate students as participants
are a reasonable approximation of performing an ex-
periment with software professionals [15]. Each task
dealt with a different kind of bug to reduce learning be-
tween tasks, and training was given before undertaking
the tasks to reduce the impact of learning. However,
as all participants performed the tasks in the same or-
der, it is possible that later tasks became easier. As
the study was mostly qualitative, we do not consider
this a severe problem. In conclusion, this study does
provide evidence for the benefits of state history, but
it should be validated with a larger sample taken from
professional graphics programmers, or at least people
with more extensive training and experience in graph-
ics programming.

8 CONCLUSION
In this paper we investigated history-based graphics de-
bugging – a practice that has remained largely unex-
plored in previous work. We illustrated how state his-
tory can be supported in a graphics debugger, and pro-
vided some empirical evidence for its utility. In sum-
mary, we have made the following contributions:

• The design and implementation of GLDebug, a
graphics debugger with features for working with
graphics state history.

• A discussion of use cases for history-based graphics
debugging, and how they are supported by GLDe-
bug.

• An evaluation of GLDebug, indicating that features
for comparing historical states are useful.

Overall, historic state and call information seems to be
useful for graphics debugging, and the evidence indi-
cates that it would be a good idea to extend mainstream
graphics debuggers with features similar to those of
GLDebug. Our study also indicates that state history
would be even more useful when combined with fea-
tures for filtering it, to narrow down the flood of data

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 37 ISBN 978-80-86943-75-6

to relevant states. Another potential way to improve the
use of state history is a better visualization of histor-
ical information. Filtering functionality and visualiza-
tion of information are known to play a role for general-
purpose debugging, so it would be interesting to inves-
tigate how they can further improve the use of graphics
state history. Another area of interest is expanding the
ability to specify when to capture states, such as captur-
ing after particular OpenGL functions, or after drawing
a particular entity.

9 ACKNOWLEDGMENTS
We would like to acknowledge the following people
for their contributions to the GLDebug project: Bruce
Merry, Meng-Da Lin, Osama Sagar, Heinrich Strauss,
and Chen Xiliang.

REFERENCES
[1] A. Bangor, P.T. Kortum, and J.T. Miller. An em-

pirical evaluation of the system usability scale.
Intl. Journal of Human–Computer Interaction,
24(6):574–594, 2008.

[2] J. Brooke. SUS-a quick and dirty usability scale.
Usability evaluation in industry, 189:194, 1996.

[3] I. Buck, G. Humphreys, and P. Hanrahan.
Tracking graphics state for networked ren-
dering. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graph-
ics hardware, pages 87–95. ACM, 2000.

[4] Steven S Curl, Lorne Olfman, and John W
Satzinger. An investigation of the roles of indi-
vidual differences and user interface on database
usability. ACM SIGMIS Database, 29(1):50–65,
1997.

[5] N. Duca, K. Niski, J. Bilodeau, M. Bolitho,
Y. Chen, and J. Cohen. A relational debugging
engine for the graphics pipeline. In ACM Transac-
tions on Graphics (TOG), volume 24, pages 453–
463. ACM, 2005.

[6] Laura Faulkner. Beyond the five-user assump-
tion: Benefits of increased sample sizes in usabil-
ity testing. Behavior Research Methods, Instru-
ments, & Computers, 35(3):379–383, 2003.

[7] Q. Hou, K. Zhou, and B. Guo. Debugging
gpu stream programs through automatic dataflow
recording and visualization. In ACM Transactions
on Graphics (TOG), volume 28, page 153. ACM,
2009.

[8] G. Humphreys, M. Houston, R. Ng, R. Frank,
S. Ahern, P. Kirchner, and J. Klosowski.
Chromium: a stream-processing framework for

interactive rendering on clusters. ACM Transac-
tions on Graphics, 21(3):693–702, 2002.

[9] Mark J Kilgard. Avoiding 19 common opengl pit-
falls. In Game Developer’s Conference, Proceed-
ings, 2000.

[10] Bil Lewis. Debugging backwards in time. CoRR,
cs.SE/0310016, 2003.

[11] T. Möller, E. Haines, and N. Hoffman. Real-time
rendering. AK Peters Ltd, 2008.

[12] Guillaume Pothier, Éric Tanter, and José Piquer.
Scalable omniscient debugging. In ACM SIG-
PLAN Notices, volume 42, pages 535–552. ACM,
2007.

[13] Ahmad Sharif and Hsien-Hsin S Lee. Total recall:
a debugging framework for gpus. In Proceedings
of the 23rd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware, pages 13–20.
Eurographics Association, 2008.

[14] M. Strengert, T. Klein, and T. Ertl. A
hardware-aware debugger for the OpenGL shad-
ing language. In Proceedings of the 22nd
ACM SIGGRAPH/EUROGRAPHICS symposium
on Graphics hardware, pages 81–88. Eurograph-
ics Association, 2007.

[15] Mikael Svahnberg, Aybüke Aurum, and Claes
Wohlin. Using students as subjects - an empirical
evaluation. In Proceedings of the Second ACM-
IEEE international symposium on Empirical soft-
ware engineering and measurement, ESEM ’08,
pages 288–290. ACM, 2008.

[16] Bryce Van Dyk. Using opengl state history for
graphics debugging. Master’s thesis, The Univer-
sity of Auckland, New Zealand, 2012.

[17] Westley Weimer and George C Necula. Find-
ing and preventing run-time error handling mis-
takes. In ACM SIGPLAN Notices, volume 39,
pages 419–431. ACM, 2004.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 38 ISBN 978-80-86943-75-6

Virtual Reality Capabilities of Graphics Engines

Edward Peek
University of Auckland, NZ

epee004@aucklanduni.ac.nz

Burkhard Wünsche
University of Auckland, NZ

burkhard@cs.auckland.ac.nz

Christof Lutteroth
University of Auckland, NZ

lutteroth@cs.auckland.ac.nz

ABSTRACT

Desktop virtual reality has traditionally been the dominant display technology for consumer-level 3D computer graphics. Re-
cently more sophisticated technologies such as stereoscopy and head-mounted displays have become more widely available.
However, most 3D software is still only designed to support desktop VR, and must be modified to both technically support these
displays and also to follow the best practises for their use. In this paper we evaluate modern 3D game/graphics engines and
identify the degree to which they accommodate output to different types of affordable VR displays. We show that stereoscopy
is widely supported, either natively or through existing adaptions. Other VR technologies such as head-mounted displays,
head-coupled perspective (and consequentially fish-tank VR) are rarely natively supported. However, we identify and describe
some methods, such as re-engineering, by which support for these display technologies can be added.

Keywords: virtual reality, graphics engine, head-coupled perspective, head-mounted display, stereoscopy

1 INTRODUCTION

A wide range of computer applications employ virtual
reality (VR) concepts, including the general consumer
applications that involve some sort of 3D virtual envi-
ronment. Common examples of such applications are
3D modelling, computer aided design (CAD), video
games, data visualisation, television and movies.

Recent commercial advances in consumer-level VR
have lead to certain types of VR technology becoming
cheap and of high enough quality to begin displacing
the entrenched traditional technologies. Some exam-
ples of new devices that employ these novel VR tech-
nologies include haptic input methods such as Nintendo
Wii Remote, Microsoft Kinect and Leap Motion Con-
troller; head-mounted displays such as the Sony Per-
sonal 3D Viewer and Oculus Rift; and stereoscopic tele-
vision sets, computer displays and projectors of which
there are too many to name.

While attention and interest towards these tech-
nologies is slowly growing, support for them by VR
applications is still limited. In the case of haptic
inputs this is understandable since implementing
natural user interfaces is a substantial departure from
mouse/keyboard/controller based input systems. On
the other hand, support for new VR display technolo-
gies is much less invasive and in some instances can
even be achieved with no modification to the original
software [10].

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2013 conference proceedings, ISBN xx-xxxxxx-x-x
WSCG’2013, June 24–27, 2013
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

This work presents an investigation into modern soft-
ware applications with the objective of determining
what types of new VR display (not input) technolo-
gies are supported by these applications. We specifi-
cally look at graphics engines: reusable software com-
ponents which handle output to VR displays and are
shared by many applications. This allows a large num-
ber of applications to be covered with only the need to
evaluate a few specific graphics engines. The following
research questions embodies the objective of this study.

How far do modern graphics engines support
consumer-level VR display technologies? How easily
can support be added where they do not?

In answering these questions, we also make the fol-
lowing contributions.

• To provide a resource useful for determining which
graphics engines are suitable for future application
development and research in virtual reality.

• To identify common practises, shortcuts and inter-
action methods in engine design that makes them, in
their current state, unsuitable for VR.

• To determine a general sense of how much attention
is being paid to VR issues in consumer graphics en-
gines.

In this paper we first give some background informa-
tion about graphics engines and VR display technolo-
gies in Section 2, and describe some related work in
Section 3. We then describe our methodology to evalu-
ating the graphics engines in Section 4 and discuss our
results in Section 5.

2 BACKGROUND
Graphics and Game Engines
A graphics engine is a reusable software component
designed to render a 3D virtual environment. Graph-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 39 ISBN 978-80-86943-75-6

Skala
Obdélník

ics engines can be distributed as standalone pieces of
software or as part of larger systems, notably, but not
limited to, game engines. This involves taking the cur-
rent state of the simulated environment as input and
rendering an image based on the lighting and shading
model of the simulation. Real-time graphics engines
are those that are capable of performing this process
quickly enough to appear seamless to a user (typically
around 30–60 rendered frames per second). real-time
engines allow the simulation to be interactive and re-
act to inputs from human users; a requirement of VR
systems. In order to achieve real-time speeds, graphics
engines normally delegate rendering to dedicated hard-
ware and use algorithms and models that favour fast
computation over physical accuracy.

VR Display Technologies

Virtual reality display technologies (also known as 3D
displays) are the VR technologies that specifically deal
with visually presenting a virtual environment to its
user. These are used in addition to other VR technolo-
gies such as input systems and audio output, as well
as the software that simulates the virtual environment.
Within the context of this research, we do not consider
the graphical rendering algorithms (such as raserising
polygons, lighting, shading and post-processing) to be
part of a VR display technology, but rather part of the
simulation logic. In this sense a VR display technology
is only the hardware and software that requests graphi-
cal views from the environment simulation and presents
them to the user.

Over time many different display technologies have
been developed to satisfy this role. Nearly all of these
operate on some variant of a camera metaphor; i.e. a
virtual pinhole camera exists in the environment and
regularly takes 2D snapshots which are then displayed
on a physical display surface (such as a computer moni-
tor). The components that make up such a display tech-
nology are the software that models the virtual camera,
the hardware that displays images taken by the virtual
camera, and the software interface that passes these im-
ages in the correct format to the display hardware.

There are several systems [4, 11] for classifying dif-
ferent VR display technologies based on different prop-
erties and generalisations. We utilise an alternative sys-
tem that is based on software implementation require-
ments. In this paper we focus on consumer-level VR
display technologies; specifically desktop VR, stere-
oscopy, head-coupled perspective and head-mounted
displays.

The display properties most important to this study
are how they are interfaced with from software, and
how the rendering pipeline must be adapted to correctly
reflect their perception model. What follows is a brief
description of each of these display technologies, the

(a) Desktop VR

(b) Stereoscopy

(c) Head-coupled perspective

(d) Head-mounted display
Figure 1: Depictions of differences between the VR dis-
play technologies in their simulation models and user’s
perception.

intent of which is to define the specific implementation
requirements we use for this study.

Desktop VR has been the dominant form of present-
ing 3D virtual environments to their users since the ad-
vent of computer graphics. Desktop VR operates on
a pinhole camera model, with a virtual camera con-
trolled entirely by the simulation and a display capable
of showing only a single image from this camera at a
time. As the simplest form of VR it avoids many is-
sues such as eye strain, increased computation cost and
poor image quality that have hampered the use of more
sophisticated technologies.

Because desktop VR is ubiquitously supported as the
default output mode of virtually every graphics engine
available today, we don’t discuss it any further in this
paper.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 40 ISBN 978-80-86943-75-6

Stereoscopy is an extension of the desktop VR
paradigm adapted for binocular vision. Stereoscopy
achieves this by rendering the scene twice, once for
each eye, then encoding and filtering the images in such
a way that each image is seen by only one of the users’
eyes. This filtering is most easily achieved through
special eye glasses, the lenses of which are designed
to selectively pass one of the two encodings produced
by the matching display. Current methods of encoding
are by colour spectrum, polarisation, temporally or
spatially. These encoding methods are frequently
categorised as passive, active or autostereoscopic. The
difference between passive and active encoding is de-
termined by whether or not the glasses are electrically
actively or not: passive encoding systems are therefore
colour and polarisation while the only active encoding
is temporal. Autostereoscopic displays are those that
do not require glasses because they encode spatially,
meaning that the physical distance between the eyes is
sufficient to filter the images.

Consumer stereoscopic displays interface with comput-
ers in the same way as desktop VR displays (via video
interfaces such as VGA or DVI). Since most of these in-
terfaces do not have special modes for stereoscopy, the
two stereo images are packed into a single image in a
format recognised by the display hardware. Such frame
packing formats include interlaced, above-below, side-
by-side, 2D+depth and interleaved.

Because these standarised interfaces are how the soft-
ware passes rendered images to the display hardware,
software applications are not required to know or adapt
to the encoding system of the display hardware. In-
stead, all that is required for stereoscopy to be sup-
ported by a graphics engine is that it is able to render
two images of the same simulation state from different
virtual camera positions and combine them in a frame
packing format supported by the display.

Head-coupled perspective (HCP) operates on
a slightly different principle than desktop VR and
stereoscopy. A virtual window is defined instead of
a virtual camera, with the boundary of the virtual
window mapped to the edges of the user’s display.
Thus, the image on the display depends on the relative
position of the user’s head, as objects from the virtual
environment are projected onto the display in the di-
rection of the user’s eyes. This projection can be done
using a off-axis version of the projection mathematics
used in desktop VR.

In order to do this, the position of the users head relative
to the display must be tracked accurately in real-time.
Tracking systems that have been used for this purpose
include armatures [19], electromagnetic/ultrasound
trackers [18] and image-based tracking [12]. A limita-
tion of HCP is that since the displayed image depends
on the position of a user, any other users looking at the

same display will perceive a distorted image since they
will not be viewing from the correct position.

Head-mounted displays are another type of single-
user VR technology. HMDs combine the enhancements
of stereoscopy with a large field-of-view and head-
coupling similar to HCP. The perceptual model behind
HMDs is to completely override the visual input to the
users eyes and replace it with an encompassing view
of the virtual environment. This is accomplished by
mounting one or two small displays very close in front
of the user’s eyes with a lens system to allow for more
natural focus. Since the displays are so close to the
user’s eyes, any part a display is only visible to one eye,
making the system autostereoscopic.

An orientation tracker is also embedded in the head-
gear, allowing for rotation of the user’s head to be
tracked. This allows the user to look around the vir-
tual environment using natural head motion by binding
the orientation of the virtual camera to the orientation
of the user’s head. This differs from HCP where it is
the position, not orientation, that is tracked.

The software requirements to support HMDs are the
same as stereoscopy, with the additional requirements
that the orientation of the HMD must be considered by
the graphics engine, as well as any distortion caused by
the lens system to be corrected for.

In addition to these four technologies, there are nu-
merous other types of VR displays that we do not
adderess in this study. Fish-tank VR is not discussed
because it is simply a combination of head-coupled
perspective and stereoscopy. Furthermore, we do not
consider more sophisticated VR technologies such as
multi-view displays, gaze-dependent depth of field, vol-
umetric displays, and cave automatic virtual environ-
ments (CAVEs) as they do not match our image of
consumer-level. This is largely due to them being sig-
nificantly more expensive (upwards of $1000 USD),
difficult to construct from off-the-shelf components or
impractical to set up in many environments (CAVEs are
an example of this).

3 RELATED WORK
General purpose graphics/game engines and virtual re-
ality research are intrinsically linked, sharing several
common goals. Both are highly dependent on realistic
real-time 3D graphics and simulations, and both aim to
generate a high degree of immersion and engagement.
Because of this game engines provide many features
that make them useful tools in scientific VR research.
Correspondingly, advances in VR research often end
up in graphics engines when they prove to be useful
enhancements.

Lewis and Jacobson [8] explore the use of game en-
gines for scientific simulation. The networking, graph-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 41 ISBN 978-80-86943-75-6

ical and 3D scene management capabilities of the en-
gines are noted as factors that make them useful for the
variety of sample research applications they have been
used for. Two of the engines mentioned in this article —
the id Tech engine and the Unreal Engine — are investi-
gated in our research, albeit using more recent versions.
The authors do note however that for applications that
require more sophisticated forms of VR, the base capa-
bilities of the engines in question are not sufficient.

A more recent report by Trenholme and Smith [16]
specifically evaluated common game engines for first-
person virtual environments, building upon the work
of Lewis and Jacobson. This work provides generic
descriptions of the advantages and disadvantages of 6
reasonably modern (1–2 major versions behind what is
current now) game engines for use in simulating virtual
environments. However, this comparison does not con-
sider the engines from a VR standpoint, so it misses out
on recent trends. In addition to this, the capabilities of
game engines advance at an extremely rapid pace and
comparisons between previous generation technologies
are not accurate for the current state of the art.

Where the capabilities of an engine are not suffi-
cient for it to be used as-is for VR applications, but
close enough to make it desirable, adaptions can be
made to the engine to allow for its use. Lugrin et
al. [9] describe how the Unreal Engine 3 (again in-
cluded in our research) can be adapted to support ren-
dering in a CAVE system and accept input from a 3D
tracked wand held by the user. This adaption was im-
plemented as C++ plug-ins to incorporate the different
forms of head and wand tracking, split across 6 net-
worked clients to render the different sides of the CAVE
with NVIDIA 3D vision to provide stereoscopy. Sim-
ilar adaptions have been make to other engines to sup-
port more sophisticated VR such as with the Unity En-
gine and CryENGINE.

As well as game engines contributing to VR research,
benefits also flow in the opposite direction, I.E. some
VR technologies originally used for research have now
become available in game engines. Litwiller and LaVi-
ola [6] discuss the implications of one such technol-
ogy (stereoscopy) for gaming. They find that while
there is no actual or perceived performance difference
of the users’ game scores when using stereoscopic 3D,
the users did express a preference towards using stere-
oscopy over desktop VR. Sko and Gardner [14] inves-
tigate different technologies through implementing var-
ious uses of head tracking in games, while Andersen
et al. [1] combine stereoscopy and head-coupled per-
spective (called fish-tank VR) in a first-person shooter
game.

Despite the wealth of research into implementing VR
with game engines, there is little general information on
how well game engines support VR. This may be a re-
sult of the very specialised nature of many VR research

projects, and the tendency to focus on a single graphics
engine or VR technology. By contrast, we discuss how
far several current graphics engines can go to support
various VR display technologies.

4 METHODOLOGY

Given enough time and effort, any graphics engine can
be made to support almost any VR display technology.
Different methods are available to do this, with a differ-
ent amount of intrusiveness needed depending on how
the software is designed and constructed.

Because measuring the amount of effort required to
implement VR in a graphics engine is a difficult and
inexact task, we have instead determined the level of
suport each graphics engine has for each of the VR
display technologies. Additionally, quality factors are
considered where applicable, as well as several generic
properties of the engines that influence the implemen-
tation of these technologies.

Level of Support

With the flexibility of modern graphics engines it is
not particularly meaningful to note features (particu-
larly VR support) as supported or not-supported, since
almost any feature can be made supported with rea-
sonable effort. The addition of such non-native fea-
tures is either facilitated through extension mechanisms
built into the engine itself, built into the platform the
engine runs on, or by re-engineering either of these
two components. Some of the most common exten-
sion mechanisms built into graphics engines are node
graphs, scripting, plug-ins and source modification.

In addition to these built-in extension mechanisms, it
is also possible to add or modify functionality via re-
engineering. This is required when the built-in exten-
sion points do not provide enough flexibility to imple-
ment the desired functionality. Re-engineering involves
modifying the behaviour of a program by overriding
portions of a program’s original code or by replacing
linked code libraries with modified variants. This will
be described in detail along with the other extension
mechanisms at the end of this section.

Level of support is measured by determining which
extension mechanisms can be used to implement a de-
sired VR display technology. Extension mechanisms
with negligible differences have been combined (such
as scripting and plug-ins), with two additional levels in-
troduced for no extension needed (native support) and
no in-engine support possible (re-engineering). Exten-
sion mechanisms are ordered by the proportion of en-
gine code relative to non-engine code that implements

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 42 ISBN 978-80-86943-75-6

the VR support. The resulting levels of support and
their ordering follows.

5. Natively supported

4. Via in-engine graphical customisation (including
node graphs)

3. Via in-engine coding (scripting or plug-ins)

2. Via engine source code modification

1. Via re-engineering

This helps to answer our major research question and
gives a sense of engine support and engine flexibility
where high values indicate good VR support or flexi-
bility, and low levels indicate poor VR support and low
flexibility. It is important to note that this ordering is
not a measure of the effort required to implement VR,
but rather a measure of how well the engine assists this
task.

We only report the highest level of support attained,
as subsequently lower levels are practically always sup-
ported as well. In addition to presenting the highest
level of support for each VR technology, we also in-
dicate where third parties have demonstrated working
implementations of the technology.

A brief description of each level of support follows.

Native In engines that natively support a VR tech-
nology, the developers of the engine have intentionally
written the rendering pipeline in such a way that mini-
mal effort is required by the user to enable VR render-
ing. All that is required is to check an option in the de-
veloper tools or set a variable in the engine’s scripting
environment. In addition to easily enabling the tech-
nology, the engines are also designed to avoid common
optimisations and shortcuts that are not noticeable with
desktop VR displays, but become noticeable with more
sophisticated technologies. A common example of this
is rendering objects with correct occlusion but at an in-
correct depth [5], which causes depth cue conflicts un-
der stereoscopy.

Graphical customisation Some engines are de-
signed in such a way that the rendering process can
be altered using custom tools with a graphical inter-
face. One approach to this is via node graphs, where
different components of the rendering pipeline can
be rearranged, modified and reconnected in multiple
configurations. Depending on what types of nodes are
supported, it is sometimes possible to configure the
nodes in such a way as to produce the effect of certain
VR technologies. An example is shown in Figure 2,
which depicts the Unreal Engine’s material editing
interface configured to render red-cyan anaglyph stereo
as a post-processing effect.

Engine coding Practically every engine can be ex-
tended with custom code, using well-defined, but re-
stricted, extension points. The two common forms of
this are scripting, where the engine runs small pro-
grams/scripts in a restricted environment, and plug-ins,
where the engine loads and runs externally compiled
code. Both forms have access to a subset of engine
features; however, plug-ins also have access to exter-
nal APIs while scripts do not. Since this is the mech-
anism through which application-specific functionality
is normally implemented, the engine features available
to the custom code may be targeted more towards ar-
tificial intelligence, game logic and event sequencing,
rather than controlling the exact rendering process.

Engine source code modification In addition to
free open-source engines, some commercial engines
make their complete source code available to users
with the appropriate licence agreement. With access
to the full source code any VR technology can be
implemented, although the amount of modification
required could be significant.

Re-engineering For engines that do not provide
any of the above entry points for customisation,
some amount of change is still possible through
re-engineering. Re-engineering is a form of reverse-
engineering where in addition to learning some of the
workings of the program, some of its functionality is
modified as well. The effort needed to fully reverse-
engineer a rendering pipeline can be significant, so
more minimally invasive forms of re-engineering
are preferable. One of these approaches is function
hooking, which is where the invocation of an internal
or library function is intercepted and replaced with cus-
tom behaviour. Since a very large fraction of real-time
graphics engines use the OpenGL or Direct3D libraries
for hardware graphics acceleration, these libraries make
reliable entry points for implementing visual-only VR
technologies through function hooking. This approach
has proved to be effective for adding stereoscopy to
3D games [10, 17]. We have also shown that it is also
possible to implement head-coupled perspective in this
manner [?], by hooking the OpenGL functions that
load projection matrices (glFrustum and glLoadMatrix)
and replacing the fixed-perspective matrices provided
by the original program with head-coupled matrices.

Display Technology Support Criteria
For an engine to be labelled as supporting a specific
VR display technology group, it must be able to satisfy
the technical requirements of at least one actual display
technology in that group (e.g. support for anaglyph
stereoscopy indicates general stereoscopy support).
Support can be achieved at any of the levels described
previously, in which case all the technical requirements
of the display technology must be implemented at that

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 43 ISBN 978-80-86943-75-6

Figure 2: Configuration of the Unreal Engine to support red-cyan anaglyph stereoscopy, using the Material Editor.
Adapted from [3]. Other stereo encodings can be supported in this manner, E.G. by interlacing the images for
polarised stereo displays.

level or higher. The technical requirements of each
display technology are the same as those outlined in
Section 2.

VR Quality Factors
In addition to the technical challenge of implement-
ing the VR display technologies just discussed, there
are many secondary quality factors that affect a user’s
perceived quality of the VR experience. These factors
arise because the implementations of the display tech-
nologies can not perfectly replicate the physical phe-
nomenon they model. Since the differences are usually
subtle, the user is frequently not consciously aware of
them, but may instead experience some amount of eye
strain, headaches or nausea. There can also be many
different ways to implement any particular display tech-
nology, each of which balances different quality factors
with other factors such as implementation cost. A prime
example of this is stereoscopy, where at least ten differ-
ent mechanisms to split images between the eyes have
been used recently.

While quality factors are most inherently linked to
the display hardware, appropriate software design can
mitigate these issues, while careless design can intro-
duce new issues. Because this study deals with the soft-
ware implementation of VR display technologies, these
software issue are of interest to us.

Examples of hardware quality factors that can be
mitigated through software are crosstalk (stereoscopy),
A/C breakdown (stereoscopy) and tracking latency

(HCP and HMDs). Since these factors are well estab-
lished for their respective display technologies, there
are well-known techniques to minimise issues they
cause. The solutions are respectively reducing scene
contrast, reducing parallax and minimising rendering
delays. In most cases the engines this paper evaluates
have non-native support for the display technologies
associated with these quality factors, and subsequently
do not follow these practices.

Incorrect software implementations can also influ-
ence the quality of the VR effect, which can occur due
to carelessness, or as a result of optimisation for desk-
top VR. An example of this is special layers (such as the
sky, shadows and first person player’s body) at arbitrary
depths in different passes. While this produces correct
occlusion in desktop VR, the addition of the binocu-
lar parallax cue under stereoscopy reveals the incorrect
depth, and creates a conflict between these two depth
cues. This is not an uncommon issue due to the dom-
inant nature of desktop VR, and serves as another ex-
ample of where a naive third party implementation may
not be as good as native VR support.

From these points it should be noted that while non-
native VR implementations might meet the necessary
technical requirements, other factors must be taken into
account as well. Where possible we have pointed out
these quality issues, but due to their dependence on a
specific implementation and application it is difficult to
make generalisations for a single graphics engine.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 44 ISBN 978-80-86943-75-6

General Engine Properties
In addition to VR capabilities, this paper also outlines
several general properties of graphics engines. These
properties are chosen to assist researchers and develop-
ers in the selection of engines, to help identify trends of
VR support and to classify the engines. What follows
is a list of the general properties we considered useful.
We do not elaborate on these properties as, being so
general, they are largely self-descriptive.

• Developer interface

• Licences

• Programming languages

• Target platforms

• Version evaluated

Graphics Engines
The graphics engines of interest to us are those that are
currently being used to render real-time 3D environ-
ments for research, commercial and other applications,
and will likely continue to be used in the near future.
We selected a representative sample of the most popular
engines for this evaluation. The total number of graph-
ics engines is greatly inflated by the number of graph-
ics engines that are custom built for a select few ap-
plications. A secondary limiting factor is access to en-
gines, as many are not made available to 3rd-party de-
velopers, only made available to established companies,
or have prohibitively high licencing costs (in the or-
der of $100k+ USD). This has effectively restricted our
investigation to graphics engines that are open-source
or have free versions available with restricted access.
Fortunately many normally expensive engines provide
such versions, and so we are still able to cover a good
range.

In addition to these restrictions, investigation of spe-
cific engines that are available to us have been priori-
tised according to the following factors.

• Engines should be in active development.

• An engine should have good community support,
and be used in several applications.

• An engine should additionally have been considered
in previous VR research.

• Engines designed for gaming should also have been
used in non-gaming applications.

• Engines should focus on realistic and immersive
graphics, and cutting edge technology.

The engines we evaluated can be put into 4 groups
based on their licencing model, which also serves as a
reasonably good overview of the general types of en-
gine available.

Premium commercial engines (CryENGINE and
Unreal Engine) are the most expensive and have the
most comprehensive set of features. These are targeted
towards large development studios that can afford the
very high licencing costs to use the engine. These
engines provide graphical tools to allow artists and
game designers to use, while also allowing modifi-
cation and extension of their source to implement
application-specific behaviour. A recent trend has been
for free versions of these engines to be released with
specific restrictions, notably no source-code access and
for non-commercial use only.

Commercial engines (Unity) are similar to pre-
mium engines but at significantly lower costs. They
typically have slightly smaller feature sets or be
intentionally simple and lightweight. Their main
target audience is smaller (particularly indie) studios,
individuals and hobbyists. Like premium engines, they
typically provide graphical development interfaces to
allow non-technical users to use them.

Previously commercial engines (Torque3D) are
commercial engines that have at some point been made
open-source. Reasons for this might be because newer
versions of the same engine are now sold commercially,
alternative revenue sources are being followed, because
the engine is no longer competitive or to attract a larger
user-base.

Open-source (OGRE and Irrlicht) are engines that
are available for free under open-source licencing.
They are frequently community developed, but some-
times also have backing by a commercial organisation.
The quality and feature-sets of these engines varies
dramatically, but usually falls short of commercial
engines. These engines are typically fully code based,
and do not provide graphical tools for development.

In addition to the engine categories included in this
study, another major one is proprietary engines. These
are those engines developed in-house for a specific ap-
plication. None of these engines are included in this
evaluation because they, by very nature, are not made
available to third parties for development.

5 RESULTS AND DISCUSSION
The results of our evaluation can be found in Tables 1
and 2 with a discussion to follow.

The most obvious result from this evaluation is that
almost none of the graphics engines evaluated support

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 45 ISBN 978-80-86943-75-6

VR technology Stereoscopy Head-coupled perspective Head-mounted display

CryENGINE 5: Native [10] 3: Coding 3: Coding [2]
Support for both dual render-
ing and retargeting. Supports
both manual and GPU driver
frame packing.

Access to camera matrices
through C++ interface. C++
sufficient to access any head
tracking method.

Stereoscopy supported na-
tively, orientation tracking
can be accessed via C++
plug-in.

OGRE 3: Coding [7, 10] 3: Coding 3: Coding [13]
OGRE rendering can be fully controlled and customised via the C++ interface, allowing
implementation of all three display technologies.

UDK 4: Graphical customisation
[3, 10]

1: Re-engineering* 3: Coding

Dual camera rig can be cre-
ated using Unreal Kismet
and outputs packed using the
material editor.

No access to custom cam-
era projection from engine so
re-engineering is needed if
your licence does not include
source code access.

Stereoscopy through custom
implementation, head orien-
tation can be obtained via a
custom DLL and bound to
camera via script.

Unity 3: Coding [15] 3: Coding 3: Coding
Dual cameras can be created
and control via script, im-
ages can be packed as post-
processing filter.

Scripting supports custom
camera projection matrices.
Tracked head position can be
obtained via C++ plug-in.

Stereoscopy through custom
implementation, head orien-
tation can be obtained via
C++ plug-in.

Irrlicht 3: Coding [10] 3: Coding 3: Coding
Irrlicht rendering can be fully controlled and customised via the C++ interface, allowing
implementation of all three display technologies.

Torque3D 3: Coding [10] 2: Source modification 3: Coding [20]
Multiple passes of rendering
are supported. This can be
used to create the dual views
and pack them in a compati-
ble format.

Scripting interface to cam-
era does not support off-axis
projections, camera projec-
tion generation must be mod-
ified in code.

Head orientation can be
accessed from an external
tracker over TCP. Camera
orientation can be updated
based on this via script.

Table 1: Graphics engines’ levels of support for various VR display technologies. *depends on licence

Name and Version Interface Licence Code language Platforms

CryENGINE 3.4.4
GUI
Framework

Free for non-commercial use,
Licence required for commercial
use or source code access

C++
Lua

PC
Games console

OGRE 1.8.1 Library Open-source (MIT) C++
Material scripts

PC
Smartphone

UDK 2013/02b GUI
Free for non-commercial use,
Licence required for commercial
use or source code access

C++
UnrealScript

PC
Games console
Smartphone

Unity 4.0.1f2 GUI

Free limited version
Flat fee pro version
Source code access via special
licence

C#
JavaScript

PC
Games console
Smartphone

Irrlicht 1.8 Library Open-source (zlib) C++ PC

Torque3D 2.0
GUI,
Framework Open-source (MIT) TorqueScript,

C++ PC

Table 2: General properties of graphics engines

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 46 ISBN 978-80-86943-75-6

a non-traditional VR display technology. The only en-
gine that does is the CryENGINE, which natively sup-
ports stereoscopy in most of the formats used by mod-
ern stereoscopic displays. There are two explanations
for this deficit. Firstly, that the developers of the en-
gines do not believe these display technologies war-
rant the extra effort needed to support them. Or sec-
ondly, that they believe that the 3rd party support is
good enough that native support is not necessary. It
is our belief that the second point is the more likely,
since all engines support stereoscopy through several
3rd party programs including NVIDIA 3D Vision.

In terms of how well the engines are designed to ac-
commodate 3rd party VR support, most rate very highly
with all but two instances having levels of support at
level 3: coding or better. The two instances of lower
support occurred when the scripting system did not pro-
vide enough control over the camera parameters. It is
unknown whether the lack of access is intentional be-
cause the underlying rendering systems do not support
arbitrary camera properties, or whether they were seen
as unnecessary, not useful or just not thought consid-
ered.

In some cases the engine extension mechanisms do
not have enough functionality to host the entire VR
technology, but do provide communication functional-
ity so that part of the technology can be offloaded to a
separate process. This occurs when the scripting inter-
face can’t access the HMD or HCP head tracking val-
ues directly, but can indirectly over local TCP or UDP.
Native code (e.g. C and C++) is normally needed to
access the head tracking hardware. An example of this
is Torque3D which does not provide any access to na-
tive code at levels of support above level 2: source code
modification.

Of the three display technologies considered, HCP
is the only for which we could not find any examples
of 3rd-party implementations. Potential explanations
might be that this is a less well-known technique, that
it is a predominantly software technique and so is less
easily commercialised, or more likely because it does
not provide as good an effect as the other VR technolo-
gies.

The core point to take away from this work is that
while the majority of graphics engines do not support
most VR display technologies natively, they almost al-
ways provide enough flexibility such that support can
be manually added.

6 CONCLUSIONS
We have described the mechanisms by which modern
graphics and game engines may be extended to support
non-traditional display technologies, particularly stere-
oscopy, head-coupled perspective and head-mounted
displays. Where these engines do not have built-in ex-
tension mechanisms, or the ones that are provided are

too limited, these display technologies can always be
implemented through re-engineering the engine.

Most of the engines evaluated do not provide na-
tive support for any non-traditional display technolo-
gies, and stereoscopy is the only technology that has
any amount of native support in current versions of
these engines. However several engines have support
for head-mounted displays planned for future versions.

In the many instances where an engine does not pro-
vide native support for a display technology, support
can usually be attained by developing a script or plug-in
to produce the effect. Often this has been proved pos-
sible by other researchers or developers, and in many
cases the source for the implementation is publicly
available.

7 FUTURE WORK
As previously discussed, we believe the reason that
most engines do not support most of the VR technolo-
gies evaluated is that there are still too few commercial
displays that use them. As more exemplar displays be-
come available this should start to change, and this can
already be seen with several game engine developers
(Torque3D, UDK and Unity) announcing support for
HMDs (specifically the Oculus Rift) in future versions.
It will be interesting to see whether support for specific
technologies such as this will bleed through to other
technologies as VR sophistication becomes a more im-
portant feature.

We have also considered a very small subset of
the available classes of VR display technologies.
Extending this evaluation to other technologies such
as CAVEs, volumetric displays, multi-view displays
and gaze-dependent field of view will increase the
number of applications that benefit and also expose
how engines can be adapted to cope with technologies
substantially different from desktop VR.

In a similar vein, we have only evaluated 6 graph-
ics engines which represents a tiny fraction of the en-
tire population. Our preference towards selecting high
speed real-time engines that have already been used for
VR applications also means we did not consider any
graphics engines used for applications such as CAD or
scientific visualisation, which often have pseudo-real-
time engines (in the sense that they react reasonably
quickly to input, but not seamlessly).

We have also only considered the display side of VR,
and ignored input technologies. While in many cases
this can be done with little consequence, dependencies
between the two have been known to cause problems.
For instance mouse pointing depends on the virtual
cameras projection properties which breaks down when
there are multiple projections, as with stereoscopy, or
the projection changes continuously, as with the track-
ing from HCP and HMDs. More work is needed to
determine ways in which such input systems can be

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 47 ISBN 978-80-86943-75-6

accommodated for when using these display technolo-
gies.

REFERENCES
[1] A.S. Andersen, J. Holst, and S.E. Vestergaard. The implemen-

tation of fish tank virtual reality in games.

[2] Nathan Andrews. Crysis vr - head and gun tracking mod for the
oculus rift, February 2013. URL http://www.youtube.
com/watch?v=TJx21yuCi7E.

[3] Christopher Berry. How to make a stereoscopic camera rig for
udk, July 2011. URL http://www.thebeardedberry.
com/How%20To%20Make%20A%20Stereoscopic%
20Camera%20Rig%20for%20UDK.pdf.

[4] Barry Blundell. On exemplar 3d display technologies.
Technical report, Auckland University of Technology, 02
2012. URL http://www.barrygblundell.com/
upload/BBlundellWhitePaper.pdf.

[5] Slava Gostrenko. 3d stereoscopic game development - how to
make your game look like beowulf 3d. In NVIDIA Presen-
tations at Game Developers Conference 2008, San Francisco,
USA, February 2008. URL http://www.nvidia.com/
object/gdc-2008.html.

[6] Joseph J. LaViola, Jr. and Tad Litwiller. Evaluating the bene-
fits of 3d stereo in modern video games. In Proceedings of the
2011 annual conference on Human factors in computing sys-
tems, CHI ’11, pages 2345–2354, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0228-9.

[7] Mathieu Le Ber. Stereoscopy manager for ogre, January 2012.
URL http://sourceforge.net/p/ogreaddons/
code/2986/tree/trunk/stereoscopy/.

[8] Michael Lewis and Jeffrey Jacobson. Game engines. Commu-
nications of the ACM, 45(1):27, 2002.

[9] Jean-Luc Lugrin, Fred Charles, Marc Cavazza, Marc Le Re-
nard, Jonathan Freeman, and Jane Lessiter. Caveudk: a vr
game engine middleware. In Proceedings of the 18th ACM sym-
posium on Virtual reality software and technology, VRST ’12,
pages 137–144, New York, NY, USA, 2012. ACM. ISBN 978-
1-4503-1469-5.

[10] NVIDIA Corporation. Nvidia 3d vision, March
2013. URL http://www.nvidia.com/object/
3d-vision-main.html.

[11] Waldir Pimenta and Luís Paulo Santos. A comprehensive tax-
onomy for three-dimensional displays. In WSCG 2012 – 20th
International Conference on Computer Graphics, Visualization
and Computer Vision, pages 139–146. Union Agency, 2012.

[12] J. Rekimoto. A vision-based head tracker for fish tank virtual
reality-vr without head gear. In Virtual Reality Annual Inter-
national Symposium, 1995. Proceedings., pages 94 –100, mar
1995. doi: 10.1109/VRAIS.1995.512484.

[13] Brian Ries, Victoria Interrante, Michael Kaeding, and Lee An-
derson. The effect of self-embodiment on distance perception
in immersive virtual environments. In Proceedings of the 2008
ACM symposium on Virtual reality software and technology,
VRST ’08, pages 167–170, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-951-7.

[14] T. Sko and H. Gardner. Head tracking in first-person games: In-
teraction using a web-camera. Human-Computer Interaction–
INTERACT 2009, pages 342–355, 2009.

[15] Stereoskopix. Stereoskopix fov2go, January 2013. URL
https://www.assetstore.unity3d.com/#/
content/2927.

[16] David Trenholme and ShamusP. Smith. Computer game en-
gines for developing first-person virtual environments. Vir-
tual Reality, 12:181–187, 2008. ISSN 1359-4338. doi:
10.1007/s10055-008-0092-z. URL http://dx.doi.org/
10.1007/s10055-008-0092-z.

[17] TriDef. Tridef 3d, March 2013. URL http://www.
tridef.com/products/pc.

[18] Colin Ware and Glenn Franck. Evaluating stereo and mo-
tion cues for visualizing information nets in three dimensions.
ACM Trans. Graph., 15:121–140, April 1996. ISSN 0730-
0301. doi: http://doi.acm.org/10.1145/234972.234975. URL
http://doi.acm.org/10.1145/234972.234975.

[19] Colin Ware, Kevin Arthur, and Kellogg S. Booth. Fish tank
virtual reality. In Proceedings of the INTERACT ’93 and CHI
’93 conference on Human factors in computing systems, CHI
’93, pages 37–42, New York, NY, USA, 1993. ACM. ISBN
0-89791-575-5.

[20] David Wyand. Torque 3d and oculus rift, March 2013.
URL http://www.garagegames.com/community/
blogs/view/22225.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 48 ISBN 978-80-86943-75-6

Physics-based Water Interaction and Shading:
The SiViFlow Algorithm

David Sena
INESC-ID

Rua Alves Redol 9,
1000-029 Lisboa

davidsena@ist.utl.pt

Joao Pereira
INESC-ID

Rua Alves Redol 9,
1000-029 Lisboa
jap@inesc-id.pt

Vasco Costa
INESC-ID

Rua Alves Redol 9,
1000-029 Lisboa

vasco.costa@ist.utl.pt

ABSTRACT
Current real-time applications feature rivers that are pre-calculated off-line and present static animations and be-
haviours. These pre-calculated approaches have several limitations when used in real-time applications such as
video games as they usually do not react to changes performed by the user. Due to the continuous pursue for better
realism, the techniques used to simulate rivers have not only to improve the appearance of rivers but also allow
them to adapt to dynamic changes performed in real-time. The approach presented in this work allows the dynamic
generation of the river given any riverbed. The algorithm is also flexible enough to adapt the river flow in real-time.
This approach not only accelerates the creation of realistic rivers but also increases the realism as the river is able
to react to dynamic objects that come in contact with the flow, by properly adjusting its course.

Keywords
Water, Real-Time, River Animation, Flow Simulation.

1 INTRODUCTION
With the introduction of faster hardware and increasing
demand for more realistic nature effects, researchers
have been trying to create feasible nature models that
are computationally viable and meet the constraints im-
posed by real-time applications. Nowadays applica-
tions such as video games try to simulate fully featured
worlds with weather effects, large rivers and oceans, re-
alistic animation systems among many other traits com-
mon in the real world. Due to the tight restrictions of
real-time applications, an approach to simulate this type
of phenomena would have to contain only the minimum
amount of physical features necessary to make a river
behave correctly and still leave enough computational
resources available to draw a convincing visual repre-
sentation of the fluid being simulated. The objective of
the presented work is to create a new approach that sim-
ulates watercourses with any width, that flow correctly
and are dynamic enough to be able to adapt to the fea-
tures of their surroundings. A visually appealing rep-
resentation of the flow being simulated is also included
in order to be able to recreate with fidelity the water-
courses from a visual standpoint. Our focus will reside
mainly on the architecture description of the algorithm
and less on implementation details or specific optimiza-
tion issues. In order to focus the objectives of our work
inside a broad subject such as fluid dynamics and as this
work will be used in the context of video games, we
decided to use real-time rendering techniques that al-
low the use of this approach in highly complex scenes.
The final result had to be easily configurable both in

terms of visual appearance and physical parameters in
order to allow this approach to be used in any setting.
This would allow not only to change the visual features
but also the behaviour of the river according to its sur-
rounding, making it more flexible to adapt to different
surroundings (e.g. it should be flexible enough to able
portray both a tropical or a sea like environments). Re-
garding the dynamic flow simulation two main contri-
butions were done in our work. First the automatic gen-
eration of a velocity vector field given an arbitrary river
surface mesh. Given the mesh as input, the algorithm
analyses and generates enough data to be able to cre-
ate a vector field that describes not only the direction of
the flow but also its velocity at any point. Second once
we’ve calculated the vector field, we’ll generate a re-
alistic and adaptive flow behaviour which allows us to
portray any amount of turns in a given river network and
even take into account changes performed to the river
channel such as dynamic objects altering the flow. This
contribution takes into account the fact that the river
surface mesh might have any width, have a complex
river shape and that all the flow information drawn on
screen is updated accordingly.

2 RELATED WORK
2.1 Navier-Stokes equations
The basis of most fluid simulation models both in Com-
putational Fluid Dynamics and Computer Graphics are
the Navier-Stokes equations. These equations allow us
to represent a fluid by its velocity field and a pressure

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 49 ISBN 978-80-86943-75-6

field, varying both in time. If both fields are known at
the initial time then we can describe the state of the fluid
over time using:

∂u
∂ t

=−(u ·∇)u− 1
ρ

∇p+ v∇
2u+ f (1)

∇ ·u = 0 (2)

where · denotes a dot product between vectors, ∇ is the
vector of spatial derivatives, u and p are the velocity and
pressure fields of the fluid, ρ is the density and v is the
kinematic viscosity. f is a vector representing external
forces. Equation 2 is called the continuity equation and
means that fluids conserve mass[Sta99]. The right-hand
side of the equation 1 consists of four parts:

• Advection : −(u ·∇)u which represents the process
by which a fluid’s velocity transports itself and other
quantities in the fluid. In most simulations this rep-
resents the force that the surrounding fluid particles
exert on a particle and causes it to transport itself
along the velocity field.

• Pressure : − 1
ρ

∇p causes regions with a higher pres-
sure to accelerate the molecules away from that area.

• Diffusion : v∇2u represents the force caused by the
viscosity of the fluid.

• External forces : f represents forces that act on the
fluid like gravity.

2.2 Approaches to Fluids Simulation
Physically-based water simulation has been an active
research field for the last 30 years. Several different
approaches have been proposed but usually they can be
grouped into smaller distinct categories. In Figure 1
a schematic[GH06] is shown where the main types of
water simulation are depicted.

Figure 1: Water modeling techniques

The widest classification that can be made is a di-
vision between surface-based and volume-based tech-
niques. The latter apply the Navier-Stokes equations to

model the liquid’s physical flow properties. Amongst
the volume-based techniques, we can find many differ-
ent approaches. One of those categories is the Eule-
rian approach. This approach looks at fixed points in
space, discretizing the domain in regular grids, either in
2D [Sta99][Fos96][WLL04] or 3D [Ngu07][CTG10].
Each grid cell stores both scalar quantities (such as
pressure and temperature) and vector quantities such as
velocity. In this approach the computational elements
are fixed in space throughout the simulation and a fi-
nite difference method is used to solve the equations
numerically. The major advantage of this method is the
possibility to allow adaptive time steps and the inher-
ent smooth liquid surface that it allows. On the other
hand, this method suffers from a lengthy computational
time and grid resolution limitations allied with alias-
ing in the boundary discretization. It also suffers from
poor scalability in terms of computational power and
memory consumption. Another approach is the La-
grangian, where the fluid is approximated by several
discrete particles and their respective properties. Each
point in the fluid is considered as a single particle, with
a position x and a velocity u. In order to solve sev-
eral problems regarding the discretization of the con-
tinuum using the Navier-Stokes equations, the method
most commonly used are Smoothed Particles Hydro-
dynamics (SPH)[CBL+09][HKK07][DG96]. The ap-
proach taken by SPH is to define a smoothing kernel
to interpolate physical properties (velocities, densities,
etc) at an arbitrary position from the neighbouring par-
ticles, instead of defining each particle and their physi-
cal properties individually. This approach has two ma-
jor drawbacks. First the smoothing kernel should be
designed carefully because the stability, accuracy and
speed of the SPH method largely depends on the choice
of those kernels. Second there is quite a complex step
in the Lagrangian method that is constructing a smooth
surface for rendering. Many research works have pre-
sented possible solutions [vdLGS09] but up till now, the
quality of liquid surfaces constructed from the whole
bunch of particles is not as compelling as its Eulerian
counterpart.
Among surface-based techniques, there are procedural
methods which despite the fact that they don’t model
the whole fluid domain or some fluid quantities (e.g.
pressure), usually represent the fluid in terms of veloc-
ity fields. These approaches don’t start from the equa-
tions but pick a way to describe the state of the system
(usually through a velocity field of the fluid), evaluat-
ing and updating it anywhere in space and time. Even
nowadays this kind of approach is preferable because
it provides an extremely simple approach to efficiently
generate a fluid-like behaviour in a body. It also allows
to control the animation of a body of water, something
that is not as easy to obtain when using volume-based
methods as in those approaches we would have to deal

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 50 ISBN 978-80-86943-75-6

with the discretization of partial differential equations,
grids and solving systems of equations. Additionally
most of previous methods rely on data that was com-
puted with a fixed resolution, something that doesn’t
take into account a freedom of movement present inside
most real-time applications and not present in movies or
non-interactive demonstrations. One last advantage is
the possibility to control several visual features of the
fluid without having to recalculate the whole system,
set the initial values and make sure that all the bound-
ary conditions are well defined.

Method Advantages Disadvantages
Eulerian Smooth Surface Memory usage

Adaptive time Scalability
step Grid Resolution

limitation
Lagrangian More intuitive Smoothing Kernel

Irregular Surface
boundary reconstruction

Procedural Easy integration Difficult to model
Extensible some fluid values

Table 1: Water modelling techniques comparison

In Table 1 we show a summary of all the advantages
and disadvantages of each technique.
For this work we chose the procedural approach be-
cause of the advantages described above and also due
to the fact that it suits better the requirements of real-
time applications.

2.3 Water Rendering
Fluids rendering is one of the most active fields
inside Computer Graphics. As most of the physical
behaviour of water couldn’t be modelled at interactive
frame rates inside real-time applications, developers
and researchers focused most of their attention in
getting as much visual fidelity as possible when
rendering water. Reflection and refraction are ele-
ments that have been widely used in the simulation
of water since the beginning of Computer Graphics
[EMF02][GH06][PF05][Tes99]. Their use allows the
user to see through the water and at the same time see
the environment reflected on the water surface. This
apparently trivial contribution fools the eye so much
that most commercial products that include water
algorithms sometimes only have these elements plus
a wave generator. The most common way to describe
reflection and refraction phenomena are the Fresnel
equations[SJ09]. These equations allow us to describe
the behaviour of light when moving between media
with different refractive indices.

2.4 River Simulation and Rendering
A situation where fluid simulation is commonly applied
to is when water flows between two or more bound-

aries, moving from a source into a sink. An exam-
ple of that can be a river flowing where we have at
least two river boundaries and the water flows to the
river mouth or estuary. A river simulation can be de-
composed in two main components: a simulation com-
ponent where the physical behaviour is simulated and
a visual component where the looks of the fluid are
created. The work "Scalable Real-Time Animation of
Rivers"[YN08][YNBH09] was able to simulate large
scale rivers with realistic flow, yielding very appealing
results. This work depicted a very realistic flow be-
haviour thanks to their new texture advection method,
allowed real-time editing of the river channel with the
respective flow adaptation to the new river boundaries
and best of all it didn’t depend on the scene complexity.
Despite all these advantages there were still a couple
of drawbacks. First the computational cost of the algo-
rithm was linearly dependent with the projected river
surface being rendered. Second the amount of data
transferred between the Central Processing Unit (CPU)
to the Graphics Processing Unit (GPU) is directly re-
lated with the Poisson-disk radius which increases lin-
early and quickly becomes prohibitive even with recent
hardware. A final disadvantage was the need for the
advection step to run on the CPU and the fact that this
work assumed completely flat world profiles, excluding
potential effects related with slopes of the terrain.
On the visual component there’s a very visually ap-
pealing algorithm called Tiled Directional Flow[vH11].
This new algorithm offered several advantages over
other flow simulation algorithms, was very cheap in
terms of resources and yielded visually appealing re-
sults. They achieve a very realistic flow animation
through the decomposition of the river surface in tiles,
generating overlapping tiles all over the river channel
(like a chess board on top of the river surface). Each
tile has its own flow, local speed, direction and size of
waves. By combining several normal maps together, the
final result doesn’t resemble sliding normal maps any-
more and portrays a very pleasant appearance and ani-
mation. Even though the results of this algorithm were
very satisfactory the fact that the authors have relied on
the use of static flow maps limited the usage of this al-
gorithm for big sized domains as it would require to
either load a very large flow map or have some kind of
spatial division algorithm to load the flow maps on the
fly. Another disadvantage related with the use of static
flow maps is that they can’t take into account the in-
fluence of dynamic objects interacting with the river in
real-time, which was something that had already been
solved [YN08].

3 SIVIFLOW
SiViFlow is composed by two main elements: the Sim-
ulation Engine and the Visualization Engine. Figure 2

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 51 ISBN 978-80-86943-75-6

illustrates the block architecture of the SiViFlow algo-
rithm. The Simulation Engine is where all the calcu-
lations related to physics of the river take place. This
engine is divided in three main modules: the River Sur-
face Generator, the River Particle Generator and the
Flow Texture Mapper. From the programming point of
view, the River Particle Generator and the Flow Tex-
ture Mapper make up a larger block called the River
Particle Processor which will be described later in de-
tail. The Visualization Engine is responsible for receiv-
ing the simulation data from the Simulation Engine and
to output a graphical representation. This engine is di-
vided in two main modules: the Flow Renderer and the
Reflection.

Figure 2: Block Architecture of SiViFlow

3.1 River Surface Generator
At this stage a river surface mesh needs to be created,
which can either be done using an external modelling
application or by generating it in real-time. At the be-
ginning we don’t know how many vertices go from one
shore to the other in one single section of the river, so
we start by calculating the river width and flag which
vertices can be considered shore vertices. A river sec-
tion is a set of vertices that are placed between two
shore vertices and form a line that is perpendicular with
both river shores as shown in Figure 3. In order to find
out which vertices are shore vertices, we start by iden-
tifying the first vertex from the river mesh and calculate
differences in distance between this vertex and all the
other vertices that follow. When we reach the end of
the river section we’re processing, the difference stops
increasing and it means we’ve reached the vertex which
is on the same shore as our first vertex (the shore vertex
right next to the one we’re processing), thus the last ver-
tex we processed belongs to the opposite shore. With
that we calculate the river width (see Algorithm 1).

Algorithm 1 sums up all the steps taken during this pre-
processing phase. The only input information required
are the river mesh vertices. The algorithm starts looping
from the first vertex which we know it’s a shore vertex
as it’s located in a corner of the river mesh. We compare

for all vertices do
if vertex is a shore vertex then

Flag vertex
RiverWidth(vertices)
DistanceToMargins(vertices)
CalculateFlow(vertices)

Algorithm 1: River surface generation algorithm

the width between this first vertex and the following
vertices, making sure to always store a new width if the
value is larger than what was previously stored. When
the section of the river ends and we’re processing the
shore vertex which is on the same shore and right next
to the first one, the distance between both vertices will
be smaller than the full width of the river. We store the
current width value and the amount of vertices that go
from one shore to the other. At this stage we know the
river width at each section as we have looped through
all the river sections that compose the river surface. We
also know the amount of vertices that go from one shore
to another, allowing us to flag the vertices that belong to
the river shore. These vertices need to be handled dif-
ferently because they’ll be used for calculating the flow.
Now for each vertex in the river mesh, we store its dis-
tances to each of the river shore vertices at their river
section. This information will later be used to calculate
the flow velocity. Lastly we calculate the river flow at
each river section, storing the information in every ver-
tex. Both the flow velocity and flow generation will be
described in more detail in the following sections.

3.1.1 Flow Generation

In order to calculate the flow we pick two shore vertices
in the same river section, then we calculate their mid-
point and translate in the positive up axis, as shown in
Figure 3 where the up vector used is aligned with the y
axis.

Figure 3: Flow vector created from a plane defined by
two shore vertices and their midpoint translated in the
+y axis

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 52 ISBN 978-80-86943-75-6

With these three points we generate a plane that will al-
low us to create a vector that is perpendicular with the
river section being processed. As the flow is constant
for each river section and is parallel to the margins, the
normal vector of the plane describes correctly the flow
direction of that section as shown in Figure 3. Since
the generated plane has two possible normal vectors,
the normal generation procedure must take into account
this direction and return the correct normal vector. In
the end we have a flow field that is as detailed as the
mesh of the river surface and where each vertex con-
tains its own flow vector stored.

One advantage of generating the flow this way regards
its flexibility to dynamically recalculate the flow when
an object interacts with the river. In case a dynamic
object alters the course of the flow, the boundaries of
the object will be used to recalculate the new flow and
will substitute the shore vertices that were previously
used.

As the values are tied to the river mesh and the collision
vertices are known, SiViFlow is able to recompute the
flow of the river and immediately reflect the changes.

3.1.2 Flow Velocity
In order to obtain the flow velocity we calculate a
stream function field(Ψ) for the river channel flow using
an existent interpolation scheme [YN08][YNBH09].
At this stage we have all the information required to
calculate the following equations. We run for each
vertex all the Equations 3, 4 and 5 [YN08][YNBH09]
and store their values.

Ψ(P) =
∑i w(di)Ψi

∑i w(di)
(3)

with P being the position of each river surface vertex,
di the distance from point P to the each of the bound-
aries, Ψi the stream function value of a margin and the
weighting factor w is:

w(d) =

{
d−p · f (1− d

s), i f 0 < d ≤ s,
0, i f s < d,

(4)

where s is the radius used to search for boundaries, p is
a positive real number and f is defined as:

f (t) = 6t5 −15t4 +10t3 (5)

3.2 River Particle Processor
River particles are a concept we created in order to sam-
ple information from our domain and retrieve its values.
As we want to be able to handle large watercourses, it’s
not feasible to rely on loading all the river surface in-
formation to Video RAM (VRAM) every frame. In our

case we’re interested in getting only the visible river
mesh values so we can retrieve and send them to be
rendered on the GPU. One of the main features of the
river particles is that they’re created in screen space in
order to guarantee a uniform distribution of the parti-
cles over the visible domain at each frame. The rea-
son for generating these points in screen space is that
as each particle contains a defined radius to make sure
no two particles are too close to each other, analysing
this problem in screen space guarantees that these ra-
dius disks maintain a uniform radius. In world space
these disks would be ellipses which would make the de-
tection of overlapping particles harder. Another advan-
tage of this scheme is that we only process visible infor-
mation as we eliminate all non-visible particles which
minimizes the waste of resources. There are some sim-
ilar approaches to ours such as texture sprites [Ney03]
and wave sprites [YN08][YNBH09].

3.2.1 River Particle Generator

We start by generating several randomly distributed
points, generating a Poisson-disk pattern using a mod-
ified boundary sampling algorithm [Bri07][DH06].
We’ve adapted this algorithm to start from a fixed set of
points instead of a random point. An advantage of this
algorithm is that it guarantees that all points are equally
distributed over the given domain, which in this case
as we’re aiming to generate particles in screen space,
means they’re all equally distributed over the screen.

In the end of running this algorithm, we end up with
a set of points that we’ll convert to river particles.
In order to generate a 3D world position for each of
these points (after being generated we only have their
2D coordinates) we proceed as Figure 4 shows. A
ray is cast for each particle and we store the collision
point between the ray and the 3D world. Using this
method we can compute at each frame, for each
point, its 3D world position. Besides calculating the
world position we also calculate other features such
as global identifiers to be able to identify each of the
particles, velocity and flow. Unlike other algorithms
[YN08][YNBH09], we don’t advect our particles
during our CPU update loop. The reason for this is due
to the fact that our particles aren’t concerned with the
fluid’s motion, they’re simply a way to sample the nec-
essary information in screen space and send it from the
CPU to the GPU. An inherent advantage of not having
to advect particles during the update loop is that it
allows us to offload the work from the CPU to the GPU.

All of this information will allow us to find out in the
next stage what’s the nearest flow data to load into the
flow texture. We just search inside a radius r for the
closest vertex and assign that flow information to the

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 53 ISBN 978-80-86943-75-6

Figure 4: Ray cast performed from camera position and
mapped into world space to obtain each particle’s world
position

river particle. The value of the radius r used for each
situation was obtained through trial and error, although
more sophisticated approaches can be used. This step
differs from [YN08][YNBH09] as they first render the
river surface to a buffer inside the GPU, find out which
particles are inside the river surface and then query each
individual pixel to find out which particle sits inside.
Our approach despite being a bit more computationally
intensive, doesn’t have the inherent problems that might
arise from relying in performing constant transfers be-
tween the CPU and GPU.

3.2.2 Flow Texture Mapper
In order to feed the GPU with the information required
to render the flow, we used a flow texture and an auxil-
iary texture. Similar ideas have been explored by other
authors [YN08][YNBH09][PF05] to achieve other ob-
jectives. In our approach we store all the information
we need inside each color channel and read it back
when it reaches the GPU. In Figure 5 we can see the
distribution of each of the components in both the flow
texture and auxiliary texture.

Figure 5: How each component is stored inside each of
the 8 bit size texture channels

These textures will store the river particles previously
generated using each of the color channels of the tex-
ture.

In the flow texture we will store for every entry data
such as the global identifier of the river particle and its
respective flow. The identifier in this texture will be
used as a way to look-up the remaining data from the
auxiliary texture. For each entry of the flow texture, we

Figure 6: Storage scheme used in the flow and auxiliary
textures

while true do
for all particles do

if Particle is outside of frustum then
Delete Particle

if Particle violates the minimum distance cri-
terion in Screen Space then

Delete Particle
Insert new particles to keep the Poisson-disk
for all new particles do

Convert to river particles
Write new data to the flow texture
Write new data to the auxiliary texture

Render
Algorithm 2: Application loop

store the flow information that covers that pixel. For
performance reasons we used a flow texture that had a
lower resolution than the screen resolution being used.
The auxiliary texture will have other parameters such
as velocity, river bed slope and river depth. In Figure 6
we can see how each river particle is stored in a smaller
sized version of the flow texture and how the global
identifier for each particle will be used to address the
auxiliary texture.

In Algorithm 2 we can see that the whole update
process is performed at every frame update. First we
start by having to delete the particles that are not visible
as they are wasting resources and won’t affect the final
result. Then we need to delete the particles that are too
close to one another violating the initial Poisson-disk
requirement that all particles must be no closer to each
other more than a specified radius distance. In order to
keep a reasonable number of particles in screen, after
deleting all the unnecessary particles we generate new
ones using the previously mentioned algorithm. After
this, for all new particles, we have to convert them to
river particles by calculating all their features. To end
the algorithm we fill the flow and auxiliary textures
with the current data from that frame and get them
ready to be sent to the GPU.

3.3 Visualization Engine
The Visualization Engine is the last stage of SiViFlow
and consists of mapping a material to the river surface

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 54 ISBN 978-80-86943-75-6

Access flow texture to find covering sprite index and
flow information
Access auxiliary texture to find velocity and depth
Use flow information for Tiled Directional Flow al-
gorithm
Use new normal vector for reflection
Blend all the elements

Algorithm 3: Fragment Shader of the Visualization En-
gine

mesh. This stage is divided in two main elements: the
Flow Renderer and the Reflection algorithm which are
implemented in a fragment shader. We start by access-
ing the flow texture and consult the river particle iden-
tifier of this pixel. In order to optimize the texture look-
up, the flow information is also saved during this op-
eration. Now we can use the river particle identifier to
look-up the rest of the parameters contained inside the
auxiliary texture.

We also use the flow information to generate the nor-
mal which will be used to compute the scene’s reflec-
tion. All the steps of the algorithm are summed up in
Algorithm 3.

3.3.1 Flow Renderer

Our flow algorithm is based in the "Tiled Directional
Flow" described in[vH11]. In our approach one of the
main differences is that all the flow information being
fed to the algorithm is not based on a fixed flow map
but comes from our flow and auxiliary textures. This
allows us to work with a much smaller amount of in-
formation at each render cycle because our flow tex-
ture only contains information that’s visible during that
frame. The fact that our flow texture is updated every
frame, means that we can change the flow if any dy-
namic object changes river flow.

Figure 7: Example of the tiling division performed on
top of the river surface for the flow algorithm

The way this approach works is by dividing a river
channel in tiles, similar to a chess board. We show this
division in Figure 7. Each tile is independent from its

peers and its composed by several normal maps. In or-
der to get a more convincing look, we used for each
tile four normal maps that are combined and blended
together. First the regular normal map is loaded for the
tile being processed. Then we sample a normal map
with half a tile shift in the x direction and we rotate it
in order to have independent features from the previous
normal map. These two tiles are blended together using
a blending factor. The next two normal maps follow
the same idea, the first one is sampled with a shift in
the y direction and the second is shifted in the x and y
direction. Both normal maps are rotated and combined
together using the same blending factor. To get the fi-
nal normal value, both normal maps are blended once
more by using the same blending factor. To conclude
this final blending step of normal maps a scaling opera-
tion has to be performed. This scaling operation avoids
the problem of having a resulting normal closer to the
actual average normal, which is common when several
normal vectors are added together.

3.3.2 Reflection

In order to simulate dynamic reflections of objects on
our river surface we used the well-known planar reflec-
tions algorithm [AMHH08][Eng03][PF05].

This approach has been widely used since the introduc-
tion of the programmable pipelines because of its ease
of use and how inexpensive it is in terms of resources.
An example of this technique can be seen in Figure 8
where it is visible the reflection of the house near the
shore. This technique is based on the use of a texture
called a reflection map, which is an inverted version of
what it is visible above the water level and that we want
to reflect. To obtain a reflection map, we start by defin-
ing a clipping plane, which has to be about the same
height as the river surface.

Figure 8: Example of the final scene appearance using
planar reflections

This clipping plane will be useful to cut all the geom-
etry below the river surface that we’re not interested
in rendering. If we didn’t clip the contents below the
river surface, we would reflect also the contents of the
river which would break all illusion of reflection. Af-
ter that we save an inverted copy of this clipped scene

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 55 ISBN 978-80-86943-75-6

Figure 9: Example of a reflection map created clipping
all the geometry below the river surface and reflecting
the remaining contents

to a texture as in Figure 9 where we can see the con-
tents of Figure 8 inverted and the whole river surface
clipped. As the inverted copy is saved into a texture,
we can send it to the GPU in order to be read inside
our material. When we render our river material, we
sample the correspondent pixel and blend the reflected
information with the color we’ll be outputting from the
fragment shader.

4 RESULTS
This section provides the results and corresponding
analysis for both the Simulation Engine and Visual-
ization Engine. For the Simulation Engine we con-
sider all the stages that deal with the creation, update
and destruction of river particles and have to pack the
required information in order to make it readable by
the GPU. For the Visualization Engine we consider the
Flow Renderer and Reflection stages which are com-
prised within the river material. We implemented our
approach on top of the open-source game engine Ogre1

version 1.7.3.(Cthuga). The algorithm was coded in
C++ using the DirectX 9 API renderer provided by
Ogre and the shaders were coded in HLSL. The plat-
form used for testing is a computer with an Intel Core i7
running at 3 GHz with 8GB of RAM, a Nvidia GeForce
GTX 480 with 1536 MB of VRAM and Microsoft Win-
dows 7 x64 as the operating system. In order to measure
the timings that each stage of our algorithm takes, we
used Intel’s VTune Amplifier2 for the code that runs in
the CPU and Intel’s Graphics Performance Analyzer3

to profile the timings in the GPU.

4.1 Simulation Engine
The Simulation Engine is composed of the River Sur-
face Generator, the River Particle Generator and the
Flow Texture Mapper. As the River Surface Gener-
ator only runs once to create the river surface mesh

1 http://www.ogre3d.org/
2 http://software.intel.com/en-us/intel-vtune-amplifier-xe
3 http://software.intel.com/en-us/vcsource/tools/intel-gpa

and it is not part of the application loop, all the mea-
surements performed focused on the remaining compo-
nents. This means that the application update loop can
be divided in two main phases: the River Particle Gen-
erator and the Flow Texture Mapper. In Table 2 we can
see how many particles were used in average to sample
the whole screen.

Screen Resolution Average Number Frames per
of River Particles second

800x600 336 32
1280x800 369 30
1440x900 407 29
1680x1050 384 28

Table 2: Average amount of river particles existent for
different screen resolutions and average frames per sec-
ond obtained throughout the tests.

We didn’t use a fixed number of particles across all
tests due to the nature of the sampling method we used.
As the Poisson disk method randomly samples points
across the domain, in order to minimize possible holes,
some distributions might require more points than oth-
ers. As shown when the screen resolution increases, the
average frames per second decreases. This is due to the
fact that as screen resolution increases, more particles
are used and more pixels need to be processed in the
CPU in order to map the best particle into the flow tex-
ture.

4.1.1 River Particle Generator

As mentioned in Section 3.2, the River Particle Genera-
tor is responsible for deleting river particles that are not
visible, delete river particles that are too close to one
another and generate new particles making sure they’re
converted to river particles.

Figure 10: Time taken in milliseconds to update the
river particles

In Figure 10 we can see that the time taken to update
the river particles varies slightly across different res-
olutions. It’s possible to see a slight increase in time
taken to update the particles as the resolutions increase
but the difference is less than 0.4 millisecond from the
smaller resolution to the largest one.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 56 ISBN 978-80-86943-75-6

4.1.2 Flow Texture Mapper

The loading of new data into the flow and auxiliary
textures is a step that must run at every frame and is
performed in the Flow Texture Mapper. We’ll start by
analysing the time taken by the flow texture and af-
ter we’ll analyse the auxiliary texture. As soon as we
started profiling the application, we saw that the loading
of data into the flow texture was the step in the whole
algorithm that consumed more time. We used for all
tests a flow texture with 64 by 64 pixels, meaning we
had to map the screen resolution being used to the size
of the flow texture and find the best particle that cover
that section of the screen.

Figure 11: Time taken in milliseconds to load all the
data into the Flow texture

We can see in Figure 11 that all the values tend to stay
relatively close to one another. This is due to the fact
that this step is not only our application’s bottleneck
but it’s not directly influenced by the screen resolution
as we always load a flow texture with the same dimen-
sions. Upon closer look we noticed that the operations
that were taking most of the time were finding the par-
ticle that better covers the largest amount of the pix-
els that are being processed and making sure that there
were no sections of the texture without river particles.
As the flow texture has a smaller size than our screen
resolution, we map an amount of screen pixels that cor-
respond to a single entry in the flow texture and process
it. We retrieve all the river particles that cover this sec-
tion and choose the one that covers the largest amount
of the area being processed. The second costly opera-
tion is the second pass that we must perform in the flow
texture to make sure that when one section without river
particles is found, a suitable value is retrieved.
On the other hand, we have the auxiliary texture that
contrary to the flow texture, is only affected by the
amount of particles used as we load all the particles data
into it.

As the number of particles doesn’t change abruptly
across screen resolutions, we can see in Figure 12 that
the difference in values is no bigger than 0.05 millisec-
onds. As the auxiliary texture only needs to go over all
river particles and load their respective values in the tex-
ture, this operation can be seen as a linear copy of data

Figure 12: Time taken in milliseconds to load all the
data into the auxiliary texture

from the river particles array into the texture, which can
be performed quite fast.

4.2 Visualization Engine
As we’ve previously mentioned the components that
make up the Visualization Engine are implemented as
two distinct elements: the vertex shader and the frag-
ment shader. Both the Flow Renderer and the Reflec-
tion make use of information existent in both of these
elements.

Figure 13: Camera far away from the river surface
where little detail can be seen

Figure 14: River surface sharing almost the same per-
centage of screen as all the other elements where sev-
eral visual details are visible

Figure 15: River occupies almost the entire screen
where details can be clearly seen

All the tests were performed with the same river mesh
and the camera placed in the positions seen in Figures
13, 14 and 15. This way we can not only understand

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 57 ISBN 978-80-86943-75-6

how the cost evolves across different resolutions but
also how it varies according to different percentages of
river mesh present on screen.

Figure 16: Time taken in milliseconds by the vertex
shader to run at different resolutions and different cam-
eras distances

Figure 17: Time taken in milliseconds by the fragment
shader to run at different resolutions and different cam-
era distances

4.2.1 Vertex Shader
We have in Figure 16 the results of several mea-
surements performed at different class distances
(near, medium and far) and with different resolutions.
As most of our computations are performed in the
fragment shader, the vertex shader performs only
very simple calculations such as transforming vertex
positions from one space to another, calculate the cam-
era direction and pass the vertex normal and texture
mapping coordinates to the pixel shader. This means
that all values are very small and despite the apparent
increase in the near distance values when compared
with the medium and far values, we see it never reaches
differences higher than 0.05 milliseconds.

4.2.2 Fragment Shader
In Figure 17 we can see the time in milliseconds taken
by the river fragment shader to complete.

As the resolution increases, the cost of performing the
fragment shader increases along with the number of
pixels to color. We can also see that the cost increases
as we get closer to the river. As the far and medium
distances have a smaller amount of river covering the

screen, their costs are much smaller than the near dis-
tance which covers almost the entire screen. Despite
doing several reads from textures, the cost of running
the fragment shader even in the highest resolution is
quite small. This is due to the fact that most of the oper-
ations we perform are based on reading the information
provided by the textures created in the CPU and as far
as new calculations go, we perform only the flow algo-
rithm and the reflections which are not very expensive.

4.3 Conclusions and Future Work
We presented a new approach called SiViFlow which
simulates realistic rivers in real-time. SiViFlow has two
main components: the Simulation Engine and the Vi-
sualization Engine. Thanks to the Simulation Engine,
SiViFlow is able to adapt to an arbitrary shaped river
bed with any number of turns and dynamically calcu-
late the necessary data based on the river surface mesh
alone. It also utilizes a concept called river particles to
retrieve flow information from the river surface mesh
and send it to be drawn in the GPU. The Visualization
Engine renders the river flow and is flexible enough to
be combined with any visual technique used to simu-
lated water, not being bounded only to the techniques
presented in this work. SiViFlow also allows for dy-
namic objects to alter the course of the flow and change
in real-time its behaviour through access to the flow in-
formation stored at the river surface mesh.While this
approach fulfilled all of the objectives initially defined,
there’s still room for improvement. With all the ad-
vances in the computing capabilities of the new GPU’s
and respective API’s that allow them to perform gen-
eral computations, a future improvement would be to
move the particle update, creation and destruction to the
GPU, performing the whole update loop there. As the
loading of new data to the flow texture does not have
interdependencies among entries, this means that in the
limit the whole process of filling the flow texture can
be performed completely in parallel. As the approach
presented does not have any limitation when it comes to
the shading of the water, all visual techniques are com-
patible with the algorithm and are easily implementable
within the Visualization Engine.

4.4 Acknowledgements
This work was supported by national funds through
FCT - Fundacao para a Ciencia e a Tecnologia, under
project PEst-OE/EEI/LA0021/2013.

5 REFERENCES
[AMHH08] Tomas Akenine-Möller, Eric Haines, and

Natty Hoffman, Real-time rendering 3rd
edition, ch. Reflections, pp. 386–391, A.
K. Peters, Ltd., Natick, MA, USA, 2008.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 58 ISBN 978-80-86943-75-6

[Bri07] Robert Bridson, Fast poisson disk sam-
pling in arbitrary dimensions, ACM SIG-
GRAPH 2007 sketches (New York, USA),
SIGGRAPH ’07, ACM, 2007.

[CBL+09] Yuanzhang Chang, Kai Bao, Youquan Liu,
Jian Zhu, and Enhua Wu, Particle impor-
tance based fluid simulation, Proceedings
of the 2009 Sixth International Confer-
ence on Computer Graphics, Imaging and
Visualization (Washington, DC, USA),
CGIV ’09, IEEE Computer Society, 2009,
pp. 38–43.

[CTG10] Jonathan M. Cohen, Sarah Tariq, and Si-
mon Green, Interactive fluid-particle sim-
ulation using translating eulerian grids.,
SI3D, ACM, 2010, pp. 15–22.

[DG96] Mathieu Desbrun and Marie-Paule Gas-
cuel, Smoothed particles: a new paradigm
for animating highly deformable bodies,
Proceedings of the Eurographics work-
shop on Computer animation and simu-
lation ’96 (New York, USA), Springer-
Verlag New York, Inc., 1996, pp. 61–76.

[DH06] Daniel Dunbar and Greg Humphreys, A
spatial data structure for fast poisson-disk
sample generation, ACM Transactions on
Graphics 25 (2006), no. 3, 503–508.

[EMF02] Douglas Enright, Stephen Marschner, and
Ronald Fedkiw, Animation and render-
ing of complex water surfaces, Proceed-
ings of the 29th annual conference on
Computer graphics and interactive tech-
niques (New York, USA), SIGGRAPH
’02, ACM, 2002, pp. 736–744.

[Eng03] Wolfgang Engel, Shaderx shader pro-
gramming tips and tricks with directx
9, ch. Rippling Reflective and Refractive
Water, pp. 357–362, Wordware Publish-
ing, 2003.

[Fos96] Nick Foster, Realistic animation of liq-
uids, Graphical Models and Image Pro-
cessing 58 (1996), no. 5, 471–483.

[GH06] Jostein Gustavsen and Dan Lewi
Harkestad, Visualization of water surface
using GPU, Master’s thesis, Norwegian
University of Science and Technology,
2006.

[HKK07] Takahiro Harada, Seiichi Koshizuka, and
Yoichiro Kawaguchi, Smoothed Particle
Hydrodynamics on GPUs, Proceedings of
Computer Graphics International, 2007,
pp. 63–70.

[Ney03] Fabrice Neyret, Advected textures,
Proceedings of the 2003 ACM SIG-

GRAPH/Eurographics symposium on
Computer animation (Aire-la-Ville,
Switzerland, Switzerland), SCA ’03, Eu-
rographics Association, 2003, pp. 147–
153.

[Ngu07] Hubert Nguyen, Gpu gems 3, ch. Real-
Time Simulation and Rendering of 3D
Fluids, pp. 633–675, Addison-Wesley
Professional, 2007.

[PF05] Matt Pharr and Randima Fernando, Gpu
gems 2 - programming techniques for
high-performance graphics and general-
purpose computation, ch. Octree Textures
on the GPU, pp. 595–613, Addison Wes-
ley, 2005.

[SJ09] Raymon Serway and John Jewett, Physics
for scientists and engineers 8th edition,
ch. The Nature of Light and the Principles
of Ray Optics, pp. 1010–1025, Brooks
Cole, 2009.

[Sta99] Jos Stam, Stable fluids, Proceedings of
the 26th annual conference on Computer
graphics and interactive techniques (New
York, NY, USA), SIGGRAPH ’99, ACM
Press/Addison-Wesley Publishing Co.,
1999, pp. 121–128.

[Tes99] Jerry Tessendorf, Simulating ocean wa-
ter, SIGGRAPH’99 Course Notes, vol. 2,
ACM, 1999.

[vdLGS09] Wladimir J. van der Laan, Simon Green,
and Miguel Sainz, Screen space fluid ren-
dering with curvature flow, Proceedings
of the 2009 symposium on Interactive
3D graphics and games (New York, NY,
USA), I3D ’09, ACM, 2009, pp. 91–98.

[vH11] Frans van Hoesel, Tiled directional flow,
ACM SIGGRAPH 2011 Posters (New
York, USA), SIGGRAPH ’11, ACM,
2011, pp. 19:1–19:1.

[WLL04] Enhua Wu, Youquan Liu, and Xuehui Liu,
An improved study of real-time fluid sim-
ulation on gpu: Research articles, Com-
puter Animation and Virtual Worlds 15
(2004), no. 3-4, 139–146.

[YN08] Qizhi Yu and Fabrice Neyret, Models of
animated rivers for the interactive explo-
ration of landscapes, Ph.D. thesis, Insti-
tut National Polytechnique de Grenoble,
November 2008.

[YNBH09] Qizhi Yu, Fabrice Neyret, Eric Brune-
ton, and Nicolas Holzschuch, Scalable
real-time animation of rivers, Computer
Graphics Forum (Proceedings of Euro-
graphics), vol. 28 (2), March 2009.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 59 ISBN 978-80-86943-75-6

Simplification of 3D Point Clouds
sampled from Elevation Surfaces

Van-Sinh NGUYEN
Aix-Marseille University
CNRS, Laboratory LSIS

UMR 7296, Marseille, France
Tel: 33.4.91.82.85.28

van-sinh.nguyen@univ-amu.fr

Alexandra BAC
Aix-Marseille University
CNRS, Laboratory LSIS

UMR 7296, Marseille, France
Tel: 33.4.91.82.85.32

alexandra.bac@univ-amu.fr

Marc DANIEL
Aix-Marseille University
CNRS, Laboratory LSIS

UMR 7296, Marseille, France
Tel: 33.4.91.82.85.25

marc.daniel@univ-amu.fr

ABSTRACT
This paper introduces a new technique to simplify a 3D point cloud sampled from an elevation surface and or-
ganized in voxels. The method consists of three steps: in a first step, the boundary of the surface is extracted
and simplified; in a second optional step, we roughly simplify the surface inside its boundary; in a third step, we
present an elaborate method for simplification while keeping its boundary. Our method preserves the distribution
of points, the initial geometry and characteristics of the surface, even with high simplification rates.

Keywords
Boundary Extraction, Boundary Simplification, Surface Simplification, Principal Component Analysis (PCA).

1 INTRODUCTION

Simplification of a 3D point cloud belonging to a
surface is an important steps in geometric modeling
and surface processing. The purpose of surface
simplification of a 3D point cloud is to reduce the
number of points, save the memory, improve the effect
of computation and optimize the processing of the
geometric model. During simplification, the original
shape of the surface must be kept, without shrinking or
deformations.
Nowadays, the modern 3D acquisition and modeling
technology allow producing a large amount of point
samples from real-world objects. Different existing
researches (and especially for meshes) are available for
processing of the continuous surfaces, but the case of
3D point clouds simplification remains a challenging
issue.
Our problem originates in the questions of processing
large 3D point clouds issued from a seismic data
(themselves extracted from a 3D sparse volume
[Philippe09]). The seismic acquisition does not permit
to measure all the points in the 3D volume, explaining
the fact that the 3D volume is sparse. The 3D points
are actually stored in a voxel structure in this volume

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

(each voxel is considered as a 3D point, and has three
real coordinates xyz), hence implicitly the 3D volume
contains neighboring information even in a sparse
context.
Most existing approaches have a common drawback:
in the case of open surfaces (that is surfaces with
boundaries), simplification induces a shrinking of the
surface. Hence, in order to preserve the initial shape,
our approach starts by an extraction and simplification
step of the boundary. In a previous work, we have
proposed a method for extracting and simplifying
the boundary of a surface [Sinh12]. The present
paper continues this work and introduces a method
to simplify the inside of this surface. To handle
potentially huge clouds, our method consists of two
steps: an optional initial rough simplification (basically
designed to adjust the sampling rate) followed by a
more elaborated simplification step. As the point cloud
is sampled from elevation surfaces, points are first
projected onto a 2D grid in xy plane to process with the
first step, while the second step is directly processed in
the 3D grid.
The remainder of this paper is organized as follows: in
section 2, we present work related to surface simplifi-
cation of a 3D point cloud. We present our method in
detail, which includes problem analysis, building the
criteria and implementing the algorithms in sections 3.
The results and evaluation of our method are presented
in sections 4 and 5. The last section is our conclusion.

2 RELATED WORKS
Different existing methods which have been stud-
ied and developed are not only applied to sim-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 60 ISBN 978-80-86943-75-6

plify the surface of 3D point clouds, but also
applied to simplify the surface of triangular mesh
[Garland99, Pauly02, Van06, HaoSong09, Zhe07].
Among them, PCA (Principle Components Analysis)
is a popular tool, a well known method that can
be used to simplify the surface of 3D point clouds
[Mederos04, Yu06, Alexandra07, David08].
Garland et al (1999) [Garland99] developed an algo-
rithm to simplify the surface of a polygonal model
based on the iterative contraction of vertex pairs.
Starting from the initial model M1, an edge ev1,v2
will be contracted to a new position v̄ if the distance
‖v1− v2‖ < threshold. The process is repeated until
the simplification goals are satisfying. The last model
M2 approximates M1. In order to preserve the shape of
the surface and optimize the placement of vertices after
contraction, the authors used the quadric error matrices
to track the approximate error of the model. This
method is time and memory demanding, but it avoids
distortion of the original shape. However, evaluation of
the quadratic error metric is closely related to the mesh
structure (and to the face neighborhoods). Hence, it
cannot easily be adapted in our setting.
Pauly et al (2002) [Pauly02] introduced, analyzed,
compared and implemented a number of methods to
simplify the surface of 3D point clouds. One of these
methods is called “Clustering". The surface of 3D
point clouds is clustered by splitting it into a subset of
points; then, replace all points in each cluster by one
representative point. This region-growing is terminated
when the size of the cluster reaches the maximum
bound. This method leads to simplifying the surface
effectively. However, each cluster is a sphere with a
radius α on the surface. Therefore, the points outside
these clusters are not simplified completely after the
iterative processing.
Boris et al (2004) [Mederos04] proposed a method
to reconstruct and smooth a surface from noisy point
clouds. At first, he smoothed the original point clouds
to reduce the noisy points by using a robust projection
procedure, while keeping the shape of the surface. The
next step, data of 3D point clouds are clustered by
partitioning into a subset of clusters. Then, he applied
PCA to analyze, reduce the size of the original points,
and determine a representative point for each cluster.
In the next step, a triangular surface is obtained from
the representative points of each cluster to obtain a
rough surface which approximates the original surface.
The last step, this rough surface is refined to get an
optimal one. This is a complete method for surface
reconstruction of a point cloud. However, the comput-
ing is complex during projecting, clustering, reducing,
meshing and refining the point clouds, leading to a
computation heavy and costly.
Normally, to simplify the surface of 3D point clouds,
the existing approaches aim to cluster a subset of

points, and then grow on the surface to simplify.
The problem is how to determine the neighboring
points in a local region of the surface. Y.J Zhang et
al (2010) [Zhang10] proposed a way to define the
nearest neighbouring points by using a cylinder. The
points are dropped into a bounding cylinder based on
the specified threshold (the radius of the cylinder);
then, they are projected on the line as its center axis
to simplify the points inside. The same as method
[Pauly02], for each iterative step, the outside points are
not simplified completely.
Frey et al (2007) [Frey07] presented a method (the
“affinity propagation") to cluster by passing messages
between data points. This method measures the simi-
larity of each point-pair of the input data points. Each
point in a point set is assigned as a node of a network,
the real-valued messages are exchanged between data
points (nodes) along the edge of the network until
a high-quality set of exemplars corresponds to the
cluster which gradually emerge. However, the cost
of computing is expensive because the transmission
process between the points is computed recursively.
Jae-Young et al (2005) [Jae05] and Tamal et al (2011)
[Tamal11] introduced a method by using an octree
partitioning to divide the point clouds into a small
subset, then process on each subset as a node of an
octree on 3D space and quadtree on the 2D grid. At
first, a root node of a point cloud is divided into four in
2D or eight in 3D. Then, the child nodes are recursively
divided until satisfying the condition of the threshold.
After that, each node can be considered as a point
during the simplification.
Morales et al (2010) [Morales10] suggested a method
to smooth and decimate the points from an unstruc-
tured point cloud based on the radial based function
(RBF). The points are computed based on the kd-tree
nearest neighbors. Starting from a seed point pi, the
neighboring points (pn) are calculated by an Euclidean
distance ‖pi− pn‖ to determine the radius r. All points
within r are mapped from a 3D point set to the 2D
space; the point set components are mapped into each
axis plane on each square matrix MxMx3 in domain
Nix,Niy,Niz. The next step is using a convolution

Gaussian Kernels function C = M⊗G
(

µ,σd(k)
)

for
each axis Ni j to smooth and estimate the new center
point in each component p′x,y,z. Finally, the 3D point
sets are smoothed and simplified according to the local
surface features.
As we have described and analyzed, the above methods
are suitable for dispersive data or unorganized point
clouds but lead to an expensive computation. In our
work, we take advantage on the structure of voxels and
their neighborhood information. We can adapt these
methods to simplify the surface efficiently; preserve
the shape and point distribution of the surface.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 61 ISBN 978-80-86943-75-6

3 OUR METHOD
Our method consists of three steps (see figure 1). The
first step (boundary extraction and simplification), we
have presented in the previous work [Sinh12]. In this
paper, we present the second and the third step for sim-
plifying the surface inside its boundary.

Figure 1: A method for simplifying the surface.

It is interesting to summarize the main idea of the
method we applied first to extract and simplify the bor-
der of a surface [Sinh12]. We define a method to ex-
tract the boundary based on k_square neighborhood of
each point up to a fixed integer distance k. Our algo-
rithm starts from an initial boundary point of the sur-
face; then, an exterior boundary is built point by point
by iteratively computing the next point via growth func-
tions. After that, we build an algorithm to simplify this
boundary by first study the alignment of points and sec-
ond study the variation of elevation. In our method,
the complexity of algorithms is proved more efficient
than existing methods. Moreover the initial shapes of
the surface are also preserved for the simplification step
since the boundaries are kept.

3.1 Rough simplification
3.1.1 Overview
Rough simplification is a preliminary step designed to
handle large point clouds: points are imported in a fine
regular grid and each non empty voxel is replaced by
a single representative vertex. Hence, the goal of this
step is merely to adjust sampling density. In this algo-
rithm, 3D point clouds (organized in a sparse 3D regu-
lar grid) are first projected onto the 2D grid in the x,y
plane. This 2D point cloud (set of non empty voxels) is
subdivided according to a regular grid of size s (this size
is defined by the user according to the desired final sam-
pling rate) (see figure 2a). Then, each non-empty cell is
replaced by a single representative point: the barycen-
ter of contained points. This step, even if rough, can be

justified in terms of resolution: it is merely a resolution
adaptation (in case the resolution of the data is too high
compared to the expected results). The important point
in this step is that we will not simplify boundary points
(as they have already been handled in the previous work
[Sinh12]); and this step should be applied using a small
size of cells in order to avoid distorting the surface.

Figure 2: a) The size of a cell. b) The barycenter of the
points (red color) in the cell.

3.1.2 Notation
In the sequel, we use the following notations:

- G: the 2D initial regular grid,

- C: the regular grid of size s built over G,

- S: the subset of cells in C which are non empty,

- Sq: a cell on the 2D grid belonging to S,

- pq: barycenter of the points included in Sq.

3.1.3 Algorithm
As the size of the cells is small and as we want to
preserve boundary points, if a cell contains boundary
points, no further representative vertex will be inserted,
only included boundary points are kept. Otherwise, if a
cell does not contain boundary points, we compute the
barycenter of the points in this cell. Based on the above
description, we propose a very simple algorithm (Algo-
rithm 1) with a linear complexity to roughly simplify
the surface.

Algorithm 1 roughSimplification(s)
1: for each cell Sq ∈ S do
2: if Sq contains boundary points then
3: keep only boundary points;
4: else
5: replace all points by pq;
6: end if
7: end for

3.2 Elaborate simplification
3.2.1 Overview
In this step, we focus on two main points to process the
surface: curvature of the surface and point density. We

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 62 ISBN 978-80-86943-75-6

process the surface directly in the 3D grid. As previ-
ously, the sparse 3D grid (equivalent to the point cloud)
is divided according to a regular 3D grid C. The initial
size of the cells of C is large (defined by the user) and
elaborate simplification will further subdivide cells of C
according to density and curvature criteria. If cells con-
tains boundary points, they are processed based on the
combination between boundary density and local cur-
vature in these cells. Otherwise, subdivision is based
on local curvature within each cell and adapted to the
size of neighboring cells. After simplification, the dis-
tribution of points has to vary continuously; it must be
constrained regularly from the exterior boundary to the
inside of the surface. This constraint is introduced to
avoid creating bad triangles (in the sense of Delaunay
triangulation) in a further meshing step.

3.2.2 Analysis

Obviously, our rough preliminary simplification is too
basic to reach high simplification rates. It is useful only
to adjust the resolution or as a first decimation for huge
point clouds (for which a more elaborate simplification
cannot be applied directly because of time and space
complexity issues). Hence, this preliminary step is op-
tional.
In the case of complex surfaces with a high curvature,
simplification must be based both on density and curva-
ture criteria. For this reason, we develop an advanced
algorithm to simplify the surface more elaborately. This
algorithm is based on an octree subdivision of the sur-
face adapted to its curvature, point density and to the
border density. We will combine two subdivision cri-
teria to simplify the surface: subdivision according to
the boundary density and subdivision according to the
curvature.

3.2.3 Subdivision according to the boundary
density

An important issue is that point density should vary
“smoothly" (in order to preserve the shape of triangles
in a further meshing step). It must be constrained con-
tinuously on the surface and propagate regularly from
the boundary to the inside of the surface. Therefore, in
this paper we propose a method to simplify the surface
inside its boundary. In order to subdivide cells accord-
ing to the boundary density, we have to build a sub-
division criterion. At first, we analyze the density of
boundary points (number of boundary points in a cell)
and their distribution. Our criterion is based on the size
of a cell, the number of boundary points and the dis-
tance between them.

a) Notation and formula construction

We will use the following notations:

- Cq: a cell (size s) in the 3D grid,

- Nbp: the number of boundary points in Cq,

- dmax: the maximum distance between two boundary
points in Cq,

- Ls: the level of subdivision of a cell (see figure 3),

- s′: the size of the smaller cells after each subdivision
of Cq: s′ = s

2Ls .

- pi, p j: point ith, point jth of Cq.

Figure 3: The level of subdivision in a cell.

In our context, data points are organized based on a 3D
grid structure, each point in a cell has xyz coordinates
and in the sequel, we will use the Euclidean distance
to compute the distance between points. Hence the
maximum distance between boundary points in a cell
is given by:

dmax = max
i, j∈(1..Nbp); i6= j

(∥∥pi− p j
∥∥) (1)

b) Boundary density criteria

Subdivision according to boundary density is per-
formed from cells containing boundary points (called
first ring) towards the surface interior (ring by ring,
starting from the boundary). In the sequel, we will
denote by ri the ith ring of cells based on the 8-
connectivity (hence, r1 is the set of boundary cells).
There is a relationship between the density of points
and the distance between them in a cell. Obviously,
as the density of boundary points in a cell increase,
the distance between them will decrease. The formula:
D(density) = N p(number o f points)/V (volume) can
be applied to compute the density of points on a
volume. In our case, we focused on the number of
boundary points Nbp in a cell and its size s to calculate
point density PD of that cell (PD = Nbp/s). Hence our
criterion is based on PD and dmax:(

PD > thresholdpd
)

and (dmax > thresholdd) (2)

In order to preserve the shape of the surface for a fur-
ther triangular meshing step, the size of cells must vary
smoothly. Therefore, for boundary cells (also called

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 63 ISBN 978-80-86943-75-6

first ring cells), we state a specific subdivision criterion:
if a cell Cq (containing boundary points) satisfies the
first condition (2), then we check the size of Cq. If the
size is less than or equal than a threshold, we keep only
boundary points; else, we keep boundary points and the
barycenter of inner points in that cell. Otherwise, Cq is
subdivided (as an octree).
Starting from the second ring (which contains inner
points of the surface), we subdivide cells both accord-
ing to the local curvature and previous ring cell sizes.
Cells are processed ring by ring from the outside to the
inside of the surface. The cell size in ring ri is sub-
divided according to the sizes of neighboring cells of
ring ri−1 (the outside adjacent ring of ri). It means
that, if an inner cell satisfies the curvature criterion,
we subdivide it according to the average subdivision
level of all nearest neighboring cells. Let Cq ∈ ri and
let {Ci−1

1 , . . . ,Ci−1
m } be the set of neighboring cells in

ri−1, the subdivision level of Cq is computed as:

size(Cq) =
1
m

m

∑
j=1

size(Ci−1
j) (3)

In the end, the cell size varies smoothly; and if the cur-
vature inside a cell is low, all points in this cell are re-
placed by one representative point. In next section, we
build a flatness criteria in order to subdivide cells ac-
cording to their curvature.

3.2.4 Subdivision according to the curvature
Our goal is to preserve the shape of the surface after
simplification. In this part we process the cells contain-
ing inner points, from the second ring to the inside of
surface. For each cell we apply a principal component
analysis (PCA) to estimate the average local curvature
of the surface. We thus define a flatness criterion and
subdivide cells accordingly.

a) PCA flatness criteria

PCA can be used as a useful statistical method to an-
alyze data. This is a technique that can be applied to
simplify a surface of 3D point clouds (see [Pauly02,
Mederos04, Alexandra07, Zhe07, MZhang11]). In or-
der to estimate the curvature/flatness of a cell, we com-
pute the PCA of the vertices of the cell. The eigenval-
ues of the corresponding covariance matrix provide a
curvature information and we define accordingly a flat-
ness criterion. Cells that do not meet this flatness crite-
rion are subdivided until either their size is lesser than
a threshold or they satisfy the criterion.
We use the formula below to compute the covariance
matrix for each cell:

C =
1
N

N

∑
i=1

(pi− p̄)(pi− p̄)t ; (4)

Where:

- N: a set of points in each Cq,

- p̄: barycenter of points in Cq,

- λi, vi: the ith eigenvalue and ith eigenvector of C.

The eigenvectors of C provide information about the
principal directions of a point set. More precisely,
the eigenvectors provide main axes of the cloud,
while eigenvalues provide its stretching along the
corresponding axes. Hence, the eigenvector associated
to the smallest eigenvalue provides an average normal
vector while both other eigenvalues are related to
principal curvatures.
Following the above analysis and applying the
ideas introduced in [Pauly02, Mederos04, David08,
MZhang11], let us sort eigenvalues: λ0 ≤ λ1 ≤ λ2.
If the value of λ0 is very small or even equal 0, that
means all the points in a cell are approximately on a
plane (it satisfied the flatness criteria). In such a case,
the average normal vector on a local surface within
a cell can be determined based on the direction of
v0. The flatness criterion “∂ " below is considered as
a condition to further subdivide cells (and hence to
control the simplification of the surface):

∂ =
λ0

λ0 +λ1 +λ2
(5)

For each point on the local surface, if their normal vec-
tors are distributed isotropically, these points will lie
on the same plane. This solution is given by Hugues
Hoppe [Hoppe92] to compute the orientation of the
tangent plane: for each data point pi, a tangent plane
is computed by least-squares approximation based on
PCA of the k nearest neighbor of pi.
In our case, we use the flatness criteria(5) to estimate
the local curvature in a cell. The minimum value of ∂

equal 0, while its maximum value equal 1/3, and our
flatness criteria is based on the range of these values.
(see figure 4)

Figure 4: Estimation of the curvature in a cell: (a) The
points are approximately on a plane within a cell (λ0 is
very small, λ1 and λ2 are large); (b) λ0 is large or (λ0 '
λ1 ' λ2 ' 1) or (∂ ' 1/3)⇒ this cell is subdivided.

The curvature in a cell is first determined by computing
∂ . Then, ∂ is compared with a threshold value from the
user. If ∂ ≤ threshold∂ , we replace all points in this
cell by one representative point. This way can simplify

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 64 ISBN 978-80-86943-75-6

the surface efficiently and the ratio of simplification is
very high (if the points in that cell are approximately
on a plane). However, the density of points could vary
irregularly after a large number of points have been re-
moved. For this reason, we have to combine with the
computation of point density and size of cells to con-
strain the distribution of points on the surface to be as
regular as possible.

3.2.5 Algorithm

According to the previous analysis, we now define our
simplification algorithm. Our algorithm covers cells
ring by ring (starting from boundary cells), each ring
is processed clockwise (see figure 5).
We start from the first ring, blue color (i.e. the ring of
boundary points). In this ring, we begin with the left-
most cell (1) and follow the clockwise direction to com-
pute, subdivide and simplify each cell. From the second
ring (yellow color), we also begin with the left-most
cell (2) and so forth for following rings (third - green,
fourth - pink, etc). The algorithms below are used to
simplify the surface: algorithm 2 is used to process the
cells containing boundary points in the first ring.

Algorithm 2 SimplifyBoundaryCells(s)
1: Nbp = 0, Ls = 0; //start from the left-most cell, fol-

low the clockwise direcrion.
2: for each boundary cell Cq(size s) ∈ S do
3: compute Nbp, dmax;
4: if Cq satisfy the density criteria(2) then
5: if size s≤ thresholds then
6: keep only boundary points;
7: else
8: replace all points by boundary points

and the barycenter of inner points;
9: end if
10: else //subdivide Cq by Ls.
11: Ls = Ls + 1;
12: s′ = s/(pow(2,Ls));
13: for each Cq(s′) ∈Cq(s) do
14: if Cq(s′) contains boundary points then
15: SimplifyBoundaryCells(s′);
16: else
17: SimplifyInnerCells(s′);
18: end if
19: end for
20: end if
21: end for

Figure 5: Illustration of the elaborate algorithm.

Algorithm 3 is used to process the cells containing inner
points from the second ring to the inside of surface.

Algorithm 3 SimplifyInnerCells(s)
1: Ls = 0; //start from the left-most cell, follow the

clockwise direcrion.
2: for each inner cell Cq (size s) ∈ S do
3: compute the covariance matrix of points in Cq;
4: if Cq satisfy the flatness criteria(5) then
5: subdivide Cq based on (3);
6: replace all points by the barycenter in each

sub-cell;
7: else //subdivide Cq by Ls.
8: Ls = Ls + 1;
9: s′ = s/(pow(2,Ls));
10: SimplifyInnerCells(s′);
11: end if
12: end for

For each inner cell, we compute the curvature criterion
(5). If it satisfies the threshold, we first subdivide this
cell based on (3); then, replace all points in each sub-
cell by their barycenter. Otherwise, we subdivide this
cell and repeat the process until all conditions of the
criterion are satisfied.
In this step, our computing experiences have seen that
the processing time mostly depends on values of ∂ ; be-
fore and after combining with step one (rough simpli-
fication) (see table 2), and less depends on s (size of a
cell). Normally, the number of points in a cluster (using
PCA) is around from 30 points [Carsten04, RenFang08,
Morales10]. In our case, the curvature within a cell of
a geologic surface is low and the 3D points are sparse.
Therefore, we choose s ≤ 10 (that is initial cells con-
taining at most 100 voxels) and many values of ∂ to
implement. As a result, the time is affected if the num-
ber of points in a cell greater than 36 or ∂ close to 0 and
before combining with step one. We keep the bound-
ary and combine two steps (rough and elaborate) to
simplify a surface; thus, the surface is simplified com-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 65 ISBN 978-80-86943-75-6

pletely, the initial shapes of the surface are preserved,
and the time is controlled.

4 RESULTS
In this section, we present some of our results. For
the step one (rough simplification), the computation are
very fast. The algorithm has been tested on many sur-
faces with different number of points to compare the
running time and simplification rate with an existing
method (cluster vertices) [Pauly02]. The results are
presented in table 1, the running time of our method
is faster than the clustering method, while the simpli-
fication rate is slightly lower (depending on the initial
shapes of input surface) because we kept the boundary
points.

Input Our method Cluster method
points Output time Output time

points/s.rate (ms) points/s.rate (ms)
32402 1881/94% 36 1075/96% 303
68956 3695/95% 53 2432/96% 544
148317 6368/96% 98 4675/97% 1149
346796 13030/96% 206 11068/97% 2766
664582 22388/96.6% 377 19872/97% 5739

1006712 67360/93% 651 28850/97% 8501
Table 1: The comparison between our method (rough
simplification) and clustering method. We use the same
size of a neighboring distance between the points, and
run on the same computer (s.rate: simplification rate;
ms: milisecond).

In this step, the simplification rate is controlled by the
cell size. In our method, although boundary points are
kept to preserve a part of the shape of surface, this ap-
proach does not take into account the curvature of the
surface and hence is too rough to be applied with high
simplification rates. If we use a larger size of cells to
simplify, the received results are not accurate (see figure
7). Therefore, this step can only be applied to simplify
a simple surface of 3D points or to adjust the resolution
of a 3D point cloud by using a small size of cell. In the
clustering method, all points of the surface (boundary
points and inner points) are simplified; the shape of the
output surface is not well preserved (see figure 8).
In step two (elaborate simplification), we have tested
our approach on different surfaces with different num-
bers of 3D points and different values for ∂ . The results
are detailed in table 2. We provide the values of ∂ in
order to show that: if the value of ∂ is close to 0, the
obtained surface is smooth, close to the initial surface
(small simplification rate) and the processing time is
low; otherwise, if the value of ∂ is close to 1/3, the ob-
tained surface is far from the original one (higher sim-
plification rate) and the running time is higher. How-
ever, we have maintained boundary points, and con-
strained the point distribution from the boundary to the

inside of the surface. Therefore, we have obtained the
output surfaces preserving the initial geometry of the
surface (see figure 10). Figure 9 shows the result of
the point distribution constrained from the boundary to
the inside of the surface. As a result, a good triangular
surface can be obtained in a further meshing step.

P.input Values Time1 Time2 P.output
(kb) of∂ (ms) (ms) (s.rate)

60511 ∂ ≤ 0.03 5271 3231 9879/84%
(976) ∂ ≤ 0.12 5026 2958 9377/84.5%

∂ ≤ 0.20 3776 2910 6786/89%
148317 ∂ ≤ 0.03 22106 14194 21122/86%
(2461) ∂ ≤ 0.12 21167 13825 20820/86%

∂ ≤ 0.20 15896 12079 18916/87%
346796 ∂ ≤ 0.03 114795 111362 56448/84%
(5727) ∂ ≤ 0.12 111289 107309 52187/85%

∂ ≤ 0.20 110623 101544 50112/86%
866639 ∂ ≤ 0.03 832865 191153 147328/83%
(14500) ∂ ≤ 0.12 786980 185491 138622/84%

∂ ≤ 0.20 581159 166116 112633/86%
Table 2: The running time of step two before (Time1)
and after (Time2) combining with step one; the simpli-
fication rate (s.rate) after using the same size of cells;
different values of ∂ (kb: kilobyte; ms: millisecond).

5 EVALUATION
Our method has two advantages compared to existing
methods. First, we use a cell to gather and compute
the points in a local neighborhood to simplify the sur-
face. By using a cell, there are no outside points be-
tween the cells; only one loop is used to consider all
points of the surface. On the contrary, the other meth-
ods [Pauly02, Zhang10, Morales10] use a sphere or a
cylinder (both are the same) to compute the neighboring
points within a threshold value of a radius r (see figure
6). Therefore, after each iterative operation, they have
to process the points outside of these sphere/cylinder.
The second advantage is that searching to compute a
neighboring point within a cell is faster than within a
sphere [Matthew96]. Our approach also takes advan-
tage of the fact that our data are already organized in
a sparse numeric volume, and hence we don’t need to
lose time and memory space to build accelerating data
structure for k_neighbors computation (such as kd-trees
or octrees).

Figure 6: Determining of a neighboring point.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 66 ISBN 978-80-86943-75-6

6 CONCLUSION
In this paper, we have presented a method to simplify
an elevation surface defined by a 3D point cloud. It is a
part of our research in the field of geometric modeling
of oil reservoir. The input data are a mass of 3D point
clouds, and the number of points can reach millions of
points. Therefore, our first approach focuses on data
processing and surface simplification. Successively, we
succeed in boundary extraction and simplification of
the surface, while preserving the original shape of the
surface as expected [Sinh12]. The surface simplifica-
tion of 3D point clouds using PCA can normally yield
an expensive computation. In our case, the input data
are stored in the 3D grid volume, implicitely containing
the neighborhood information for each point. We have
taken this advantage; combined two steps for rough and
elaborate simplification; and two ways of subdivision
by using a cell to grow and simplify the surface. The
output surface preserves the initial shape of the input
surface, the point density and the point distribution are
kept regularly, constrained from the boundary to the in-
side of surface. This good distribution of points is an
advantage to obtain a good triangulation of the point
clouds. Obtaining this triangulation by a fast method
corresponds to our forthcoming work.

7 ACKNOWLEDGMENTS
The work reported in this article is a part of a PhD the-
sis, in which the finance is supported by the cooperation
between Vietnam’s government (MOET) and France’s
government (Campus France). We would like to thank
all their valuable helps. We would also thank the re-
viewers for their valuable comments.

8 REFERENCES
[Sinh12] Van-Sinh NGUYEN, Alexandra BAC, Marc

DANIEL, “Boundary Extraction and Simplifica-
tion of a Surface Defined by a Sparse 3D Volume",
Proceeding of the third international symposium
on information and communication technology
SoICT 2012, Pages. 115-124, ACM-ISBN: 978-1-
4503-1232-5, August 23-24, Vietnam, 2012.

[Van06] Nam-Van TRAN, “Traitement de surfaces tri-
angulées pour la construction des modèles ge-
ologique structuraux", PhD Thesis, Université de
la Méditerranée, 2008.

[Garland99] Michael Garland, “Quadric-Based Polyg-
onal Surface Simplification", PhD Thesis,
Carnegie Mellon University, 1999.

[Philippe09] Philippe Verney, “Interprétation
géologique de données sismiques par une méth-
ode supervisée basée sur la vision cognitive", PhD
Thesis, École Nationale Supérieure des Mines de
Paris, 2009.

[Carsten04] Carsten Moenning, Neil A. Dodgson, “In-
trinsic point cloud simplification", International
Conference Graphicon ’14, Moscow, Russia,
2004.

[RenFang08] Ren-fang WANG, Wen-zhi CHEN,
San-yuan ZHANG, Yin ZHANG, Xiu-zi YE,
“Similarity-based denoising of point-sampled sur-
faces", Journal of Zhejiang University SCIENCE
A, Volume. 9, Number. 6, Pages. 807-815, 2008.

[Alexandra07] A.Bac, V.Tran Nam, M.Daniel, “A
hybrid simplification algorithm for trianglar
mesh", Graphic Conference 2007, Pages. 17-24,
Moscow.

[Alexa01] M.Alexa, J.Behr, D.Cohen-Or,
S.Fleishman, D.Levin, C.T.Silva, “Point Set Sur-
faces", Proceedings of the conference on Visual-
ization ’01, San Diego, CA, USA - October 2001.

[Cignoni98] P.Cignoni, C.Rocchini, R.Scopigno,
“Metro: Measuring error on simplified surfaces",
The Eurographics Association 1998, Volume. 17,
Number. 2, June 1998.

[Matthew96] Matthew T. Dickerson, David Eppstein,
“Algorithms for proximity problems in higher
dimensions", Journal Computational Geometry,
Theory and ApplicationsPages, Volume. 5, Pages.
277-291, 1996.

[Pauly02] M.Pauly, M.Gross, L.P.Kobbelt, “Efficient
Simplification of Point-Sampled Surfaces", Visu-
alization, 2002. VIS IEEE, ISBN: 0-7803-7498-3,
Pages. 163 - 170, Boston, MA, USA, 2002.

[Moenning03] Carsten Moenning and Neil A. Dodg-
son, “A New Point Cloud Simplification Algo-
rithm", In Proceedings 3rd IASTED Conference
on Visualization, Imaging and Image Processing,
Pages. 1027-1033, Spain, 8-10 Sep 2003.

[Mederos04] B.Mederos, L.Velho, L.H.Figueiredo,
“Smooth Surface Reconstruction from Noisy
Clouds"Journal of the Brazilian Computer So-
ciety, Volume. 9, Number. 3, Pages. 52-66, ISSN:
0104-6500, Campinas Brasil, Apr. 2004.

[Zhang10] Y.J.Zhang, L.L.Ge, “A Robust and Efficient
Method for Direct Projection on Point-sampled
Surface", International Journal of Precision Engi-
neering and Manufacturing, Volume. 11, Number.
1, Pages. 145-155, DOI: 10.1007/s12541-010-
0018-z, 2010.

[Morales10] R.Morales, Y.Wang, Z.Zhang, “Unstruc-
tured Point Cloud Surface Denoising and Deci-
mation Using Distance RBF K-rearest Neighbor
Kernel", Proceedings of the Advances in multime-
dia information processing, ISBN: 3-642-15695-9
978-3-642-15695-3, China, 2010.

[HaoSong09] Hao Song, Hsi-Yung Feng, “A progres-
sive point cloud simplification algorithm with

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 67 ISBN 978-80-86943-75-6

Figure 7: Rough simplification: the shape of the initial surface is not preserved and received results are not accurate
using a large cell-size (c).

Figure 8: Shape comparison (computing the approximate error) by using the rough simplification method (Max:
0.014235, Mean: 0.000486) and the cluster method (Max: 0.029596, Mean: 0.000994), with the same size of
neighboring distance.

Figure 9: a) An elevation surface of 3D data points (66049 points); b) After simplifying by using the elaborate
method (cell-size=8, ∂ ≤ 0.09, remaining points: 1840), the point distribution are constrained from the boundary
to the inside of the surface; c) A good triangular surface can be obtained in a further meshing step (the approximate
error between (a) and (c) is Max: 0.061598; Mean: 0.035884)

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 68 ISBN 978-80-86943-75-6

Figure 10: Comparison the shape of the surface between two methods by using the same size of neighboring
distance. (a) An input surface of 23559 points; (b) After using elaborate simplification method (time: 858 msec,
remaining points: 2305), the curvature (sharp lines: yellow arrows) of the surface is maintained; (c) After using
clustering method (time: 255 msec, remaining points: 801), the curvature of the surface is not preserved.

preserved sharp edge data", Technology - INT J
ADV MANUF TECHNOL, Volume. 45, Number.
5, Pages. 583-592,, 2009.

[Hoppe92] Hugues Hoppe, Tony DeRose, Tom
Duchampy, John McDonaldz, Werner Stuet-
zlez, “Surface reconstruction from unorganized
points", Proceeding SIGGRAPH ’92 Proceed-
ings of the 19th annual conference on Computer
graphics and interactive techniques, Pages, 71-
78, Volume 26 Issue 2, USA, 1992.

[Yoo09] D.J.Yoo, H.H.Kwon, “Shape Reconstruction,
Shape Manipulation, and Direct Generation of
Input Data from Point Clouds for Rapid Proto-
typing", International journal of precision engi-
neering and manufacturing, ISSN: 2005-4602,
Volume. 10, Number. 1, Pages. 103-113, 2009.

[Frey07] B.J. Frey, D.Dueck, “Clustering by Passing
Messages Between Data Points", Volume. 315,
Number. 5814, Pages. 972-976, 2007.

[Mario09] Mario Richtsfeld, Markus Vincze, “Point
Cloud Segmentation Based on Radial Reflec-
tion", CAIP ’09 Proceedings of the 13th Inter-
national Conference on Computer Analysis of
Images and Patterns, ISBN: 978-3-642-03766-5,
Volume. 5702, Pages. 955-962, Berlin, 2009.

[Mederos03] B.Mederos, L.Velho, L.H.Figueiredo,
“Robust Smoothing of Noisy Point Clouds", Con-
ference on Geometric Design and Computing,
ACM Trans on Graphics 22, Pages. 4-32, 2003.

[MZhang11] M.Zhang, N.Anwer, L.Mathieu,
H.B.Zhao, “A Discrete Geometry Framework for
Geometrical Product Specifications", CIRP De-
sign Conference, Pages. 142-148, South Korea,
March 2011.

[Franc01] M.Franc, V.Skala, “Triangular Mesh Deci-
mation in Parallel Environment", EUROGRAPH-
ICS Workshop on Computer Graphics and Visu-
alization, Pages. 39-52, ISBN: 84-8458-025-3,
Girona, Spain, 2001.

[Zhe07] Ying-Zhe Lue, Yi-Hsing Tseng, “Surface Re-
construction from LiDAR Point Cloud Data with a
Surface Growing Algorithm", Proceedings of the
28th Asia Conference on Remote Sensing, Kuala
Lumpur, Malaysia, 2007.

[Tamal11] Tamal.K.D, Ramsay.D, L.Wang, “Local-
ized Cocone surface reconstruction", Computers
Graphics, Volume. 35, Issue. 3, Pages. 483-491,
Shape Modeling International (SMI), 2011.

[Jae05] Jae-Young.S, Sang-Uk.L, Chang-Su.K, “Con-
struction of Regular 3D Point Clouds Using Oc-
tree Partitioning and Resampling", Circuits and
Systems. ISCAS 2005. IEEE International Sympo-
sium, Volume. 2, Pages. 956 - 959, 2005.

[Xiaohui07] Xiaohui Du, Baocai Yin, Dehui Kong,
“Adaptive out-of-core simplification of large point
clouds", Multimedia and Expo, 2007 IEEE Inter-
national Conference, Pages. 1439-1442, Print
ISBN: 1-4244-1016-9, Beijing July 2007.

[David08] David Belton, “Improving and Extending
The Information on Principal Component Analy-
sis for Local Neighborhoods in 3D Point Clouds",
The International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sci-
ences, Volume. XXXVII, Part. B5: 477 ff, Beijing
2008.

[Yu06] Zhiwen Yu, Hau-san Wong, “An efficient lo-
cal clustering approach for simplification of 3D
point-based computer graphics models", IEEE In-
ternational Conference on Multimedia and Expo,
ISBN: 1-4244-0366-7, Toronto, Canada 2006.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 69 ISBN 978-80-86943-75-6

Enhancing Human-Robot Interaction by a Robot Face with
Facial Expressions and Synchronized Lip Movements

Viktor Seib, Julian Giesen, Dominik Grüntjens, Dietrich Paulus
Active Vision Group, AGAS

Institute for Computational Visualistics
University of Koblenz and Landau, Germany

{vseib, jgiesen, dominik.gruentjens, paulus}@uni-koblenz.de
http://robots.uni-koblenz.de

ABSTRACT
With service robots becoming increasingly elaborate for higher level tasks, human-robot interaction is moving
into the focus of robotic research. In this paper we present an animated robot face as a convenient way of in-
teracting with robots. Our robot face can show 7 different facial expression, thus providing a robot with the
ability to express emotions. This capability is crucial forrobots to be accepted as everyday companions in do-
mestic environments. Aiming towards a more realistic interaction experience our robot face moves its lips syn-
chronously to the synthesized speech. In a broad user study with 100 subjects we test the emotions conveyed
by the robot face. The results indicate that our robot face enhances human robot interaction by providing the
robot with the ability to express emotions. The presented robot face is highly customizable. It is available for
ROS and can be used with any robot that integrates ROS in its architecture. Further information is available at
http://ros.org/wiki/agas-ros-pkg.

Keywords
Robot Face, Talking Head, Animated Dialogue System, Human-Robot Interaction, ROS

1 INTRODUCTION

In recent years robots have found their ways into many
homes around the world. As for now, most of these
robots are household appliances that were designed to
perform one specific task: they are able to vacuum or
wipe the floor or to mow the lawn. Nevertheless, the
popularity of these, single task specific, robots shows
that people are willing to accept robots in their everyday
lives.

Therefore, current research focuses on further improv-
ing the autonomy and generality of robots. One of
the goals in mind are general purpose service robots
for domestic tasks. The benefits of having such elab-
orate helpers at home are manifold. Not only would
they take over annoying and tedious household chores,
but they could also assist disabled or elderly people in
helping them with their daily needs. Especially the last-
mentioned aspect is becoming more important in our
aging society.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

These new application areas require for novel means of
communication between man and machine. While it is
sufficient to interact with a cleaning robot by pushing
buttons on the robot itself or an a remote control, robots
strongly integrated in a person’s daily routine are ex-
pected to understand gestures, speech, and even facial
expressions. Likewise, the robot itself has to communi-
cate in a human-like manner using the same means of
expressing itself. Since humans focus on faces when
communicating with one another, a face also increases
the chance of a robot to be accepted as an equal com-
munication partner by a human. A recent psychologi-
cal study shows that robots exhibiting human-like fea-
tures are even ascribed more intelligence than robots
with less human-likeness [Kra08].

In this paper we present an abstract, cartoon-like, an-
imated robot face for human-robot interaction. While
our robot face system possesses only the most impor-
tant facial features it is able to show 7 essential face ex-
pressions that are crucial for human-robot interaction.
Additionally, a text-to-speech system is used to syn-
thesize speech by passing arbitrary input strings. The
mouth moves according to the synchronized speech and
thus provides an even more realistic interaction experi-
ence. All animations are generated dynamically dur-
ing runtime by interpolating between previously de-
fined shape keys. Our animated robot face is available
as a package for the widely spread robotics middleware

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 70 ISBN 978-80-86943-75-6

(a) (b) (c) (d)

Figure 1: Robot heads designed in hardware: (a) Robot head “Kismet”, Breazeal et al. [Bre99, Bre03], (b)
Emotional-display “EDDIE”, Sosnowski et al. [Sos06], (c) Cartoon-like robot head “Flobi”, Lütkebohle et al.
[Lüt10], (d) Head of general-purpose social robot “Bender”, Ruiz-del-Solar et al. [Rui09].

ROS [Qui09]. It can be downloaded1 and easily used
on any robot equipped with a display and running a
ROS-capable architecture. As it is completely designed
in software, therobot_face is easily customizable.
It is even possible to replace the whole face model by
a different one without loosing any of the features de-
scribed in this paper. To our knowledge this is the first
easy to use animated robot face that every one can adapt
and integrate into an existing robot.

The next Section describes related work and design
concepts in some specific aspects that distinguish our
animated robot face. The actual implementation is pre-
sented in Section 3. Section 4 describes the evaluation
procedure of our robot face, followed by a discussion
of the results in Section 5. Finally, Section 6 concludes
with a summary and an outlook to future work.

2 RELATED WORK AND DESIGN
CONCEPTS

Different talking heads were developed in the last years
for research in the field of human-robot interaction.
Kismet, a robot head demonstrating facial expressions
is presented in [Bre99, Bre03]. It expresses emotions
by moving its facial features like eyes, mouth and ears.
A more recent approach, the emotional-display EDDIE
[Sos06], uses the facial action coding system (FACS)
[Ekm77] to depict emotions. By definingaction units,
i.e. smallest movable units, FACS describes the move-
ments of most facial muscles and their effect on the face
expression. In contrast to these two approaches, Flobi
[Lüt10] was designed as a cartoon-like robot head with
humanoid features. Its design completely hides the in-
terior mechanics. Another recent approach is Bender
[Rui09], which is also able to show emotions. Ruiz-
del-Solar et al. conducted a study to evaluate the ef-
fect of Bender’s emotion on humans interacting with it.
We compare the results of this study with the results of
our own study in Chapter 4. The here mentioned robot
heads are presented in Figure 1.

The robot heads of these systems are constructed in
hardware, posing a challenge in designing and build-

1 Package robot_face on http://ros.org/wiki/
agas-ros-pkg

ing these heads. Also, the costs of the different com-
ponents needed might be an issue. A strong advantage,
however, is the possibility to place cameras inside the
head’s eyes. This allows for intuitive interaction in a
way that a person can show an object to the robot by
holding it in front of the robot’s head.

Although this is not possible with a face completely de-
signed in software, we chose this approach to create our
animated robot face. In our opinion the high number
of advantages of an animated head outweighs its draw-
backs. There is no specific hardware that needs to be
added to the robot. Thus, there are no additional ex-
penses arising from using our robot face. Moreover, it is
highly customizable and can be adjusted to everyone’s
individual needs. Finally, the ROS interface allows for
comfortable and easy integration in existing systems.

2.1 Cartoon-like Appearance and Ab-
straction

When focusing on animated faces two main approaches
can be distinguished. Human-like or even photorealis-
tic faces are employed to convey realism and authentic-
ity to the interacting person. On the other hand the pur-
pose of stylized cartoon faces is to invoke empathy and
emotions. Often this is achieved by exaggerated facial
expressions or unrealistic proportions of eyes, mouth or
other facial features.

Since our robot (like most of robots participating at
the RoboCup@Home) lacks humanoid features and
stature, a realistic human face is not appropriate to
interact with it. Instead, we modeled an abstract
cartoon face exhibiting only the most important facial
features to express emotions: eyes, eyebrows, and a
mouth. A second reason for the choice of a cartoon face
is to avoid the risk of falling into theuncanny valley.
According to [Mor70], the familiarity of a robot (or a
doll, etc.) increases with human likeness. However,
when reaching a certain point of high similarity even
slight differences from natural appearance cause an
uncomfortable effect in the observer. Moving entities
augment the similarity with humans, but also the
uncomfortable effect. We therefore aimed at creating
an animated face that is able to convey familiar face
expressions and emotions, but at the same time is not

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 71 ISBN 978-80-86943-75-6

(a) (b) (c)

Figure 2: Animated text-to-speech systems: (a) August Dialogue System, Gustafson et al. [Gus99], (b) Facial
Animation System, Albrecht et al. [Alb02], (c) Text-to-audio-visual Speech, Niswar et al. [Nis09].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Visemes of our robot face ((a) through (f))
and different shapes of the eyebrows ((g) through (i)).

realistic, i.e. human-like, enough to create an uncanny
effect.

2.2 Lip Movement and Speech Synthesis
A key feature of a robot face designed for interaction
is the ability to speak. We use a text-to-speech sys-
temFestival2 for speech synthesis. Festival synthesizes
speech by applying phonetic and linguistic rules to the
input character sequence. To provide an effect of au-
thenticity to the interacting person the lip movements
have to be synchronized and animated according to the
spoken words of the robot’s face. The FACS [Ekm77]
is not well suited for this purpose since it does not in-
clude the lower face part. We achieve this synchroniza-

2 http://www.cstr.ed.ac.uk/projects/
festival/

tion by mapping visemes to phonemes of the synthe-
sized text. Visemes are visually distinguishable shapes
of the mouth and lips that are necessary to produce cer-
tain sounds. Phonemes are groups of similar, but not
identical sounds that feel alike for the speaker. There
are phonemes that produce the same viseme and some
that do not alter the shape of the mouth at all. There-
fore, only a few visemes are sufficient to achieve a re-
alistic animation of the lips (Figures 3a through 3f).
Several animated robot heads were developed in the re-
cent years that possess this skill. Some examples from
[Gus99, Alb02, Nis09] and are shown in Figure 2. In
contrast to our approach, these animated heads were de-
signed with the goal of modeling a realistic and human-
like appearance. To our knowledge non of them was
used to interact with a robot.

2.3 Expressing Emotions
Moving the mouth and lips is not enough to allow for
comfortable interaction. The movements have to affect
the whole face in order to make it appear vivid. A face
capable of expressing emotions is crucial for a robot
to be accepted as an equivalent communication partner.
The face expressions of our robot face are depicted in
Figures 5a and 5b.

Animated movies and video games often use anima-
tions created manually since the spoken text is known a
priori. However, for our purpose only dynamically gen-
erated animations came into consideration, as we want
to animate arbitrary text with the desired face expres-
sion. Apart from visemes we defined shape keys con-
taining several different configurations for the eyes and
eyebrows (Figure 3g through 3i).

3 ANIMATED ROBOT FACE
We have developed a talking head application for
human-robot interaction namedrobot_face. The
talking head performs synchronized lip movements
with spoken language and shows 6 different emotions
and a neutral face expression. Our goal was to create
an application easy to use with robots and to have

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 72 ISBN 978-80-86943-75-6

the possibility to customize the face. As an example
for customization we provide two faces with different
genders. In addition, the voice’s gender, face color, iris
color, and outline colors of the face can be adjusted
to the needs of the individual user. With some restric-
tions, a completely different face can be designed with
Blender and used with our application. Please refer to
the robot_face wiki on the project’s website for
more information.

To accomplish this application, we used Ogre3d3 as
graphics engine for visualisation, Qt4 as window man-
ager, and Blender5 for creating the Meshes. As men-
tioned before, Festival is used for speech synthesis and
ROS has been chosen to allow for easy integration of
our robot face with any robot using ROS.

3.1 Face Modelling and Animation
We designed two similar, cartoon-like faces (a male
and a female one) for the presented robot face. Both
faces were designed with Blender including a mouth for
speaking, eyes for blinking, and eyebrows to intensify
emotions. The difference between both faces are dis-
tinctive eyelashes on the female face and thicker eye-
brows on the male face, as well as a different eye color.

Since we modelled our faces with Blender we used
polygon models and adapted them with subdivision sur-
face methods. According to [Par02] subdivision sur-
faces are a good modelling type for cartoon-like faces.
We used the modelling method introduced by Jason Os-
ipa [Osi03], where the model is created by hand and
which is an excellent way to model a cartoonish face.
According to this method, the mouth and eye areas are
modelled separately and are connected afterwards. As
we need a mouth for automatically generated anima-
tions, we modelled it slightly different than described
by Osipa. Focus was put on animation during the mod-
elling process. Thus, we created shape keys for all dif-
ferent face movements and emotions. An overview is
given in Figure 3.

For mouth movements we limited the number to the
four most important visemes namely mouth open,
closed, wide, and narrow. With those four visemes, it is
possible to create two clearly separated speech cycles:
open and close movements together with wide and
narrow movements. It is not necessary that both speech
cycles are executed at the same time nor do they have
to blend from one extreme into the other [Osi03].

Open and close movements occur by almost any sound
as opposed to wide and narrow movements which are
associated with the art of sound. There are about 38 to
45 phonemes in the English language, but only a few

3 http://www.ogre3d.org/
4 http://qt.nokia.com/
5 http://www.blender.org/

Figure 4: Components and interaction of the robot face.

visual counterparts. Thus, we combined the indistin-
guishable phonemes into one appropriate viseme.

Beside those visemes we have designed other mouth
shape keys for emotional representation. We used 6
different emotions namely happy, sad, angry, surprised,
scared, disgusted, and also a neutral expression. These
emotions are shown in Figures 5a and 5b. Addition-
ally, we added shape keys for eyebrows (up, middle up,
middle down). These are shown in Figure 3. To achieve
movement, the shape keys are interpolated in our devel-
oped application with the use of Ogre3D.

3.2 Structure of robot_face
Our robot_face application consists of two ROS-
nodes. TheTalkingHead node manages both the
mesh and the animation. To get even better feed-
back on what the robot says it also displays the spo-
ken text under the robot face. Furthermore, emoticons
that are used to specify the robot’s face expression are
removed from the displayed text. The creation of pho-
netic features including speech and voice is handled by
theFestivalSynthesizer node. An overview is
given in Figure 4.

We use the messaging system of ROS to communicate
with robot_face. In order to do this, a string needs
to be published on a specific ROS topic. It is directly
delivered to the application where it gets synthesized,
animated, as well as displayed. In detail, if a given
text is sent via the message system torobot_face
it arrives at the two ROS-nodesTalkingHead
and FestivalSynthesizer. The TalkingHead
displays the text for the duration of the animation. It is
also capable of displaying additional information (i.e.
robot state, recognized speech) published as string to a
different topic.

FestivalSynthesizer synthesizes the speech. It gener-
ates phonemes and speech corresponding to the pro-
vided text using Festival. We use PulseAudio6 as sound
system for audio output. Apart from the phonemes cor-
responding timestamps are generated by the Festival-
Synthesizer node. This information is used by the node
TalkingHead for animation.

6 http://www.pulseaudio.org/

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 73 ISBN 978-80-86943-75-6

(a) Female robot faces

(b) Male robot faces

(c) Female human faces

(d) Male human faces

Figure 5: Face expressions that can be displayed by our robotface and the corresponding face expressions of our
human models for evaluation (from left to right): angry, disgusted, happy, neutral, sad, frightened, and surprised.

In the TalkingHead node the face mesh is animated by
Ogre3D. The main structure of TalkingHead is orga-
nized into the creation of the scene, creation of anima-
tion, and play-back of animation.

The submeshes of the loaded mesh are counted and
the same number of animations is created. These an-
imations need to get filled with keyframes to represent
movement. By default, incidental blinking and wiggle
animations are active. Keyframes are generated with
the phonemes and timestamps mentioned before. We
build a predefined phoneme-viseme-map to associate
phonemes with visemes. A keyframe is generated for
every viseme and emotion using the timestamps. The
keyframes are then connected to a whole animation. As
soon as the animation starts the spoken text is displayed
below the robot’s face.

4 EVALUATION
Similar to the evaluation presented in [Rui09], we eval-
uated the presented robot face to determine how the
intended face expressions are perceived by people and
whether the intended emotions could be conveyed. Fur-
ther, we tested how comfortable people were when
looking at the developed robot face. The results of both
evaluations are compared and discussed in Section 5.

The evaluation was performed as an online question-
naire. The test was divided into two parts, each hav-
ing 14 questions. In the first part the test persons were
presented all 7 face expression of our robot face (Fig-
ure 5a) and a photo of a human face expressing one of
these emotions (one of the photos in Figure 5c). The
probands had to select the robot face that best matched
the face expression of the human. Although the pre-
sented human face always was intended to show one of
the displayed robot faces, the test subjects also had the
possibility to selectunknown and thus skip the question
if they could not decide. This test was performed once
for each of the 7 face expression in Figure 5c, each time
with a different photo. Subsequently, all 7 questions
were repeated in a different order with a robot face de-
picting a male face (Figure 5b) and photos of a male
human (one of the photos in Figure 5d). In this part of
the test no adjectives describing or naming any of the
face expressions were involved.

In the second part the probands were presented one of
the robot faces and had to select from a list with 14
adjectives which described the displayed face best. The
14 adjectives contained the 7 available expressions, 6
expressions that were not depicted by the robot face,

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 74 ISBN 978-80-86943-75-6

Table 1: Results of the first part of the evaluation. Each linerepresents a photo of a human face with the indicated
expression. The numbers show which robot faces were matchedto the displayed photo (in percent). Matches above
10 % are printed in bold, the maximum of each line is marked gray.

m
at

ch
ed

with
an

gr
y

di
sg

us
te

d
ha

pp
y

ne
ut

ra
l

sa
d

fri
gh

te
ne

d
su

rp
ris

ed
un

kn
ow

n

angry 85 8 0 0.5 0.5 1 0 5
disgusted 6.5 34.5 0 1 7.5 26.5 2 22
happy 0.5 0 76.5 19 0 1 0 3
neutral 4.5 3 0.5 87.5 2.5 0 0.5 1.5
sad 1 75 0.5 1.5 21 0.5 0 0.5
frightened 0.5 5.5 0 0 3.5 76 12.5 2
surprised 0 2 0.5 5 1.5 12 77 2

Table 2: Results of the second part of the evaluation split intwo halfs. The upper half contains presented face
expressions, while the lower part contains face expressions that were not shown to the test subjects. Each line
represents the robot face with the indicated expression. The numbers show which expression was matched to
the displayed robot face (in percent). Matches above 10 % areprinted in bold, the maximum of each expression
assigned is marked gray.

id
en

tifi
ed

as
an

gr
y

di
sg

us
te

d
ha

pp
y

ne
ut

ra
l

sa
d

fri
gh

te
ne

d
su

rp
ris

ed

angry 81.5 0.5 0 0 8 0 0.5
disgusted 2 1.5 0 0 19.5 1 0
happy 0 0 94 2.5 0 0 0.5
neutral 0 0 3.5 88.5 1 0 0.5
sad 0.5 0 0 0 87.5 0.5 0
frightened 3 8 0.5 0 0 70.5 6
surprised 0 0 0 0 0 4.5 90.5

id
en

tifi
ed

as
an

xio
us

tir
ed

ba
sh

fu
l

bo
re

d

ar
ro

ga
nt

hu
rt

no
ne

of
th

es
e

angry 0 0 0.5 1.5 1 6 0.5
disgusted 39.5 1 12 1 0.5 19.5 2.5
happy 0 0 0 0 0 0 3
neutral 0.5 1 0.5 2 0 0 2.5
sad 2 2 1.5 1.5 0 4.5 0
frightened 7 0.5 0.5 0 0.5 1 2.5
surprised 0.5 0 0 0 0 4 0.5

and the optionnone of these. Again, this was tested for
each of the 7 robot face expressions, first with female
then with male robot faces.

A total of 100 persons (62 male, 38 female) aged be-
tween 19 and 58 years (average 26.2 years) participated
in our evaluation. To 53 persons the face of our robot
was unknown before the evaluation. 34 people stated to
have seen the face before, but to have never interacted

with the robot. The remaining 13 persons knew the face
and also had interacted with the robot.

5 RESULTS AND DISCUSSION
Each part of the evaluation was performed with male
and female faces (either human or robot). The results
of both genders were averaged for each part of the eval-
uation and are presented in Table 1 for the first part and

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 75 ISBN 978-80-86943-75-6

Table 3: Comfort of the test subjects when looking at the robot faces presented in the evaluation.

very uncomfortable uncomfortable undecided comfortable very comfortable
2 % 5 % 38 % 46 % 9 %

in Table 2 for the second part. Each line in Table 1
represents a photo of a human face showing the face
expression indicated in the first column. Accordingly,
every line in Table 2 stands for a robot face with the
given expression. The numbers are percentage values
and indicate which robot faces were matched to the dis-
played photo (Table 1) or the expression the robot face
was identified as (Table 2). Every case above 10 % is
printed in bold, the maximum of each line is marked
gray. Ideally, the diagonal would show 100 % at each
position in Table 1 and in the first half of Table 2.

Most of the elements in the diagonal of Table 1 have
high values: 5 have values of over 75 % and 2 of them
have 85 % or more. Only 2 of 7 photos were not
matched well with the provided robot face expressions.
This is a strong indication for the fact that the key facial
features of our robot face are able to recreate the face
expressions of humans correctly. The misclassifications
in the first part can also result from misclassification of
the presented human face. Thus, in the second part of
the evaluation no human faces were presented to the
probands. The diagonal of Table 2 has 6 elements with
more than 70 %, 3 of these have more than 80 %, and
the other 2 even over 90 % identification rates. When
the robot faces are evaluated on their own without being
compared to human faces, only 1 of 7 does not match
the intended expression.

In Table 1 the expressionsangry andneutral have the
best matches and were not falsely related to other robot
faces (i.e. no other columns with 10 % or above). Ta-
ble 2 confirms this findings. Thus, these two face ex-
pressions can be classified well on their own and even
pass the comparison with a human photograph.

The happy photo was matched correctly with the cor-
responding robot face in 76.5 % of cases. However, al-
most every fifth proband assigned the neutral robot face
to this photo. Comparing this result to Table 2 shows on
the other hand that thehappy robot face has the high-
est correct classification result of 94 %. Thus, the high
misclassification rate when directly compared to a hu-
man photo stems from the human face expression and
not from the robot face.

A look at the expressionsfrightened and surprised
shows a duality in Table 1. Both have very similar
correct matches, but were at the same time misclassi-
fied with one another - again with very similar rates.
Table 2 shows again that this error must result from
the human face expression on the photo since the robot
faces were misclassified with a significantly lower rate.

The expressionsdisgusted and sad have bad match-
ing results in the first part of the evaluation. When
presented on its own, thesad robot face has excel-
lent classification results (Table 2). However, thesad
human photo was mostly matched with the robot face
that shows adisgusted face. Thus, while thesad robot
face is indeed perceived as sad thedisgusted robot face
seems to resemble better the features of sad human
faces. On the other hand, thedisgusted photo was
matched to the correct robot face in only 34.5 %. Over
one fourth of all test subjects matched it with thefright-
ened robot face. Further, the high number of probands
that selectedunknown indicate that non of our robot
face expressions can resemble the features of disgusted
human faces. This findings are confirmed by the re-
sults in Table 2 where almost no correct identifications
for the disgusted face are present (only 1.5 %). The
disgusted robot face was mostly classified asanxious
(39.5%),sad (19.5%),hurt (19.5%) orbashful (12 %).
The various maxima in the classification of this robot
face show that it is difficult to identify and to be as-
signed a feeling to. However, considering that sad and
hurt are similar expressions, it can be stated that the
disgusted robot face resembles an anxious or a sad face
expression.

In contrast to Bender [Rui09], who can show 4 differ-
ent face expressions, our robot face can show 7. Com-
pared to the results of the evaluation of Bender, our
robot face achieves higher recognition rates by the test
subjects. The highest difference occurs with thehappy
face expression, where our application was recognized
correctly in 94 % of cases (compared to 51 % of Ben-
der). The other 3 face expressions compare as fol-
low (results for Bender given in brackets): surprised
90.5 % (76.5 %), sad 87.5 % (78.4 %), and angry 81.5 %
(76.5%). One needs to take into account that Bender is
a hardware robot head and looks more technically com-
pared to our cartoonish animated robot face. It is obvi-
ous that designing a robot head in hardware with several
facial expressions is more challenging than in software.

Apart from the classification of the presented face ex-
pressions the test subjects were asked to rate their com-
fort when looking at the robot’s faces. The results are
shown in Table 3. While only 7 % of the probands expe-
rience discomfort, 55 % feel comfortable when looking
at the presented robot face. Although, the number of
undecided test subjects is high the results indicate that
our robot face does not fall into theuncanny valley.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 76 ISBN 978-80-86943-75-6

6 CONCLUSION AND FUTURE
WORK

We presented an animated robot face that is able to
show 7 different face expressions and whose lips are
synchronized to the synthesized speech. This robot face
is highly customizable and can be used with any robot
running ROS.

An evaluation with 100 test subjects shows that 5 of 7
robot faces were correctly assigned to a presented hu-
man face in 80 % (average) of all cases. Also, 6 of 7
robot face expressions are classified correctly in 85 %
on average. This is a strong indication that our robot
face enhances human robot interaction by providing the
robot with the ability to express emotions. Compared
to a similar evaluation of a state-of-the-art robot face
in hardware, the presented approach performs signifi-
cantly better in a user study.

The only face expression not classified correctly by
most users was the face expression that we intended
to show disgust. According to the results of the user
study this expression conveys a mixture of anxiety and
sadness and thus should be used accordingly.

The evaluation also shows that most probands (55 %)
feel comfortable when looking at the robot face, while
38 % are undecided. This and the reason that it is a
cartoon face leads to the assumption that it does not fall
into the uncanny valley, although more investigation in
this area is desirable.

Our future work will concentrate on improving the abil-
ity of our robot face to express emotions. For instance,
the appearance of the robot’s eyes can be changed de-
pending on the presented emotion. Also, a new face
expression for disgust needs to be found as the current
one will be used as anxiety and sadness in the future.
Further, with the fact in mind that our robot face can
express emotions as is shown by the presented evalua-
tion, we want to evaluate whether it can invoke empathy
in humans interacting with a robot that is equipped with
the presented robot face.

7 ACKNOWLEDGEMENTS
The authors would like to thank Alruna Veith and Lu-
bosz Sarnecki for posing as face models for the evalua-
tion photos.

8 REFERENCES
[Alb02] Albrecht, I., Haber, J., Kahler, K., Schroder,

M., and Seidel, H.P.; May I talk to you?:-)-facial
animation from text. In Computer Graphics and
Applications, 2002. Proceedings. 10th Pacific
Conference on, pages 77-86. IEEE, 2002.

[Bre03] Breazeal, C.; Toward sociable robots.
Robotics and Autonomous Systems, 42(3):167-
175, 2003.

[Bre99] Breazeal, C. and Scassellati, B.; How to build
robots that make friends and influence people. In
Intelligent Robots and Systems, 1999. IROS’99.
Proceedings. 1999 IEEE/RSJ International Con-
ference on, volume 2, pages 858-863. IEEE, 1999.

[Ekm77] Ekman, P. and Friesen, W.V.; Facial action
coding system. 1977.

[Gus99] Gustafson, J., Lundeberg, M., and Liljen-
crants, J.; Experiences from the development of
August - a multi-modal spoken dialogue system.
In ESCA Workshop on Interactive Dialogue in
Multi-Modal Systems (IDS-99), 1999.

[Kra08] Krach, S., Hegel, F., Wrede, B., Sagerer, G.,
Binkofski, F., and Kircher, T.; Can Machines
Think? Interaction and Perspective Taking with
Robots Investigated via fMRI. PLoS ONE, 3(7),
2008.

[Lüt10] Lütkebohle, I., Hegel, F., Schulz, S., Hackel,
M., Wrede, B., Wachsmuth, S., and Sagerer,
G.; The Bielefeld Anthropomorphic Robot Head
Flobi. In 2010 IEEE International Conference on
Robotics and Automation, Anchorage, Alaska, 5
2010. IEEE, IEEE.

[Mor70] Mori, M.; Bukimi no tani [The uncanny val-
ley]. 1970.

[Nis09] Niswar, A. and Ong, E.P. and Nguyen, H.T.
and Huang, Z.; Real-time 3D talking head from
a synthetic viseme dataset. In Proceedings of the
8th International Conference on Virtual Reality
Continuum and its Applications in Industry, pages
29-33. ACM, 2009.

[Osi03] Osipa, J.; Stop Staring - Facial Modeling and
Animation Done Right

TM
. Sybex, 2003.

[Par02] Parent R.; Computer Animation - Algorithm
and Techniques. The Morgan Kaufmann Series
in Computer Graphics and Geometric Modeling.
Academic Press, 2002.

[Qui09] Quigley, M., Gerkey, B., Conley, K., Faust,
J., Foote, T., Leibs, J., Berger, E., Wheeler, R.
and Ng, A.; Ros: an open- source robot operat-
ing system. In ICRA Workshop on Open Source
Software, 2009.

[Rui09] Ruiz-del-Solar, J., Mascaró, M., Correa, M.,
Bernuy, F., Riquelme, R., and Verschae, R.; An-
alyzing the human-robot interaction abilities of a
general-purpose social robot in different natural-
istic environments. In Lecture Notes in Computer
Science (RoboCup Symposium 2009), volume
5949 of LNCS, 2009.

[Sos06] Sosnowski, S., Bittermann, A., Kuhnlenz, K.
and Buss, M.; Design and evaluation of emotion-
display eddie. In Intelligent Robots and Systems,
2006 IEEE/RSJ Int. Conf. on, 2006.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 77 ISBN 978-80-86943-75-6

Interacting in 3D Virtual Worlds with

Brain Computer Interfaces

Janek Ilgner Robin Kuhlmann Helmut Eirund Martin Hering-Bertram

Hochschule Bremen University of Applied Sciences
Flughafenallee 10
D-28199 Bremen

www.hs-bremen.de

ABSTRACT
Interaction with 3D virtual worlds found in first-person action games is mainly based on keyboard input or
pointing devices. Console games add new input devices like motion capturing or voice control. Though
immersion is a key issue, most games do not rely on player's emotions. To take this important communication
factor into account, we propose a method capturing the player’s emotions of anxiety and shock in a game and
use this data to control player's and non-player-character's actions. We present a game setup that is specifically
designed to evaluate the use of emotional interaction based on a small user study. A simple EEG based Brain
Computer Interface (BCI) is used to translate amplitudes of alpha (stress) and beta (shock) rhythms to
corresponding commands in the game engine. The game is set in a horror scenario in which the player needs to
control his emotions as they may adversely influence the difficulty of the gaming tasks. The game concept
implements an immersive atmosphere to bind the player emotionally and evoke signals captured by the BCI. The
game engine passes these emotional inputs to actions of game entities (visuals and opponent’s reactions).
Finally, the impact of emotional interaction is evaluated by a small group of test players projecting the needs for
future approaches and enhancements.

Keywords
Brain Computer Interfaces, BCI, EEG, game design, emotions, immersion, multimodality, evaluation

1. INTRODUCTION

With the release of Nintendos Wii and its gesture
recognition technique to control movements, a lot of
new input modalities have been developed. No one
would doubt that these new modalities took a major
role in the success of these systems. Most of these
modalities, however, focus on gesture or voice
recognition. Very little attention is put to using the
player’s emotion as additional gameplay element.

A well designed, immersive, game can evoke
emotions for the user. This communication between

the game and the player, however, is limited to one
direction since the game does not have the means to
capture emotional reactions to the situations it
creates.

Bidirectional communication, however, would
enhance not only the gaming experience, but also
alleviate human-computer-interaction. In human-to-
human interaction the emotional level plays a very
important role to decipher the meaning of the
information conveyed. An emotional input modality
would close this gap in human-computer
communication. For interactive games this would
possibly result in a higher immersion, since the
communication with the game would feel more
natural and the additional modality would draw the
players focus even more to the virtual world.

To approach the issue of emotional feedback, we
have created an immersive computer game, located
in the horror genre, based on an EEG based Brain-
Computer-Interface (BCI) to capture the emotions of

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 78 ISBN 978-80-86943-75-6

shock and anxiety/stress and translate them to actions
and events in the game.

Usually the emotions have a negative effect for the
player, hindering his process, so he needs to monitor
his emotions constantly and thereby is focused on his
emotional reactions to the events in the game.

Since a game can only evoke emotions if the player
is immersed in it, we analyzed and implemented
several factors creating immersion and supporting the
emotional binding of the player in the game.

Contributions

Our brain-computer-based game development and its
evaluation is directed at the following goals

• we propose multiple interaction patterns where
the user’s emotions directly influence his
perception and the action of his opponents

• a game concept using these patterns and their key
implementation issues are provided

• based on a small user study, we assess the
possibilities and limitations of brain-computer
interaction in games

Though our work is highly experimental and our user
study is far from being representative, we are able to
provide a proof of concept showing the full benefit of
emotional sensing, anticipating its future advances in
game development.

Overview

The remainder of our work contains an overview of
EEG-based Human-Computer Interaction (HCI) in
section 2. Section 3 introduces our game design and
shows how the emotional user input can be processed
to enhance immersion. Sections 4 and 5 contain
implementation issues and the results we obtain from
our experimental user study, respectively.

2. BACKGROUND

Human-Computer Interaction
A Brain-Computer-Interface is a communication
system that allows the user to communicate to a
machine or the surroundings, without relying on
signals from peripheral nerves or muscles [Nic12a].

Since the beginnings of BCI development in the
1970s for military purposes, the focus of research

increasingly concentrated on medical and, more
recently, on entertainment uses.

Today, there is a rising interest in BCI research,
mainly due to more powerful and affordable
hardware, but also because of a rising public interest
and acceptance of BCI use to aid disabled people and
successful studies in this field. The number of active
research groups on BCI related topics went up from
six to eight 10 years ago to currently over a hundred
[Nic12a].

Many gamers are early adopters and open to new
technologies. They are also used to invest time to
learn and master a game. Competition is also a big
part of gaming and new communication or movement
modalities could be a benefit. That makes games
interesting for BCI research and even researchers for
medical applications have looked at games to find
training solutions for patients. [Nij09a]

Brain-Computer-Interfaces are usually divided in two
classes: Dependent and independent [Wol02a]. While
an independent BCI completely ignores common
output pathways of the brain and offers new
communication channels to the user, a dependent
BCI still relies on them to some extent (e.g. a BCI
may depend on electrical potential differences
generated by visual evoked potentials).

Electroencephalography (EEG)

Most modern Brain-Computer-Interfaces depend on
EEG for signal acquisition. EEG based BCIs offer a
relatively easy to set up and risk free way of
recording brain activity.

Signals are acquired by placing electrodes on the
users scalp that measure electrical activity generated
by ionic currents flowing within and across neurons,
see figure 1. Although the latency is quite small the
signal quality is often poor and the system is easily
distorted by background noises either in the brain
itself or from external sources [Nic12a].

Due to the difficulties with EEG-based BCIs, users
need to invest time to learn how to make the desired
inputs. However, during a study executed in 2004 at
the Fraunhofer Institute they managed to minimize
the training time through the use of neural networks.
Parts of the learning process were now transferred to
the computer and successful results were possible in
about 30 minutes of training. [Car06a].

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 79 ISBN 978-80-86943-75-6

Figure 1: EEG-based sensing, http://www.emg.tu-
bs.de/bilder/forschung/eegekg/eeg_w.jpg

Nonetheless, certain signal patterns recorded by EEG
seem to be connected to specific mental activities.
Basically the acquired signals can be divided in two
classes, evoked or event related potentials and EEG
rhythms. Evoked potentials are potential differences
recorded on a limited area of the brain. They reflect
physical (evoked potentials) or mental (event related
potentials) stimuli.

If the mental activity of a BCI user is recorded on a
large scale with EEG, certain rhythmic patterns
emerge that can be classified into different EEG
rhythms. These rhythms can be linked to certain
brain functions, since they desynchronize with
specific mental tasks or activities carried out. This
behavior is called event-related desynchronization
(ERD) and can help to interpret signals recorded in
the EEG [Pfu99a].

Name Frequency Description

Alpha (α) 8-13 Hz Mental or visual
effort

Beta (β) 13-30 Hz Motor activity

Table 1: Frequency range of alpha and beta signals.

For the emotion aware game that has been developed,
two of these rhythms, listed in table 1, were
particularly interesting. One of them is the alpha
rhythm. The alpha rhythm is continuously developing
over the first ten years of a human. At the age of ten
the mean alpha frequency of adulthood is reached. It
attenuates or suppresses at a degree of higher
alertness [Nie99a] and can be linked to mental or

visual effort and is used in the game to keep track of
the players stress level. When the player is at a calm,
relaxed state the alpha rhythm does not desychronize,
while at a stressful situation this changes with
increasing mental activity or rapid eye movement.

The second rhythm used is the beta rhythm which
can be linked to motor activity or tactile stimulation
of the BCI user, even if it is just mentally imagined
motor activity [Nie99a]. This is used to catch the
shock emotion of the player. If the player is shocked
he will most probably shudder or wince thereby
using his muscles which then serves as an indicator
for the system to trigger related actions in the game.

EEG-based BCI devices have been used for games
before. Besides the NIA Game Controller, described
in Section 4, there are devices like the “Mindset”
(NeuroSky Inc. 2009) and the “Epoc” (Emotiv Inc.
2009) that control a variety of applications.
“NeuroBoy” for example is a game in which the
player has to focus or relax to achieve certain goals
while in “Stonehenge” motor movements are used to
reassemble fallen pieces of the Stonehenge [Tan10a].

Engagement Engrossment Total
Immersion

- Become
focused

- Lose track of
time

- Emotions are
directly affected

- Wants to keep
playing

- Game becomes
most important
part of attention

- Less aware of
surrounding /
less self aware

- Cut off from
reality / Game is
all that matters

- Feels attached
to a main
character or
team

Access:

Player's
preferences,
game controls

Investment:

Time, effort,
attention

Game
construction:

Combination of
Game features

Empathy:

Growth of
attachment

Atmosphere:

Development of
game
construction

Effect on player Barriers

Table2: Levels of Immersion [Bro04a]

Immersion in Computer Games
For a game processing shock emotions, it is
important to create a virtual world in which the

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 80 ISBN 978-80-86943-75-6

players can immerse. When players are immersed,
their emotions are directly affected by the game
[Bro04a] and emotional reactions happen more
frequently. Brown and Cairns divided Immersion into
three levels and described which barriers must be
lowered to get to them, see table 2.

One part of the game construction is storytelling.
Mateas [Mat00a] integrated the concept of agency in
Aristotle's theory of drama. Agency is a feeling of
control and empowerment that players can get when
their actions in the game world relate to their
intentions. The players will experience agency when
the material for action is balanced with the
affordances of the game world. For example, if the
game suggests that the player can pick up an object
but it's not possible to do so, the sense of player
agency will decrease.

Roth et al. [Rot09a]. described experiential
dimensions that can motivate players:

• Curiosity (“What will happen next?”),
• suspense (“Will they survive?”),
• aesthetic pleasantness (“Beautiful!”),
• self-enhancement (“We are great!”) and
• optimal task engagement (“Don’t disturb me!”)

3. GAMING CONCEPT

Goal
The goal of our work is to create a game
implementing a Brain Computer Interface as an
additional modality to identify and process emotions
of the players. The game is set in the horror genre
because it is suitable for creating mental stress and
shock moments which can then be captured by EEG.
To create such situations, methods facilitating
immersion had to be adopted.

Preparation
Before implementing the game the required
components had to be analyzed and evaluated. This
includes a Brain-Computer Interface that is capable
of analyzing the relevant parameters and carrying out
corresponding configurable actions.

On the other hand, a game engine is needed that is
able to interpret the actions coming from the BCI.
Also, this engine needs to be technically able to
create an immersive feature-rich atmosphere.

For fulfilling these requirements we decided to use
the NIA Brain Computer Interface by OCZ
Technologies and the Unreal Development Kit for
the Unreal Engine 3 by Epic Games Inc.

To test the functionality of the BCI with sensing
emotions in horror games some tests were carried out
with a test subject playing a horror game (Amnesia:

The Dark Descent by Frictional Games). The test
included three different camera views: The game
itself, the parameters of the NIA BCI and the face of
the subject.

By doing this, a correlation between the muscular
face movements and the beta rhythms of the EEG
could be observed. Also the anxiety seemed to
strongly correlate to the stress the subject was
experiencing.

To evaluate the possibility to connect the NIA output
to the game engine the NIA user interface was found
to be able to output key presses as actions when
certain amplitude thresholds were met. So the UDK
only had to take these inputs and translate them to
corresponding actions.

Game Concept
To create an atmosphere evoking mental stress and
exposing the user to shock moments, the game takes
place in a dark forest inhabited by strange creatures,
plants and objects. The players have to walk across
this forest after they crash with a hang glider in the
mountains. The players have no weapons thereby the
only option during most of the enemy confrontations
is to flee. The BCI captures mental stress and shock
reactions of the players. The game gets more difficult
when they are stressed or shocked. For example,
enemy tendrils in the forest grow and spikes shoot
through the ground when the players can't keep calm.

Creating Immersion
To create an immersive game world the barriers had
to be lowered so the players can get to the level of
total immersion.

To lower the access barrier the game's controls are
similar to the controls of a first-person shooter. This
assures that everyone who played an first-person
shooter before is familiar with the control scheme.

To lower the investment barrier the players have to
invest time effort and attention. To give them a
motivation to do so the game starts with an
introduction in which they learn something about the
initial situation of the story. This is to make the
players curious and motivate them to find out what's
going on.

The most complex barrier that has to be lowered is
the game construction because it consists of many
game features like visuals, sound, plot and
challenges.

The research showed that most of the games players
felt immersed in were played in first-person
perspective. This also reduces the risk that a player
cannot identify with a predetermined character.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 81 ISBN 978-80-86943-75-6

Figure 2: Gate is blocked by tendrils

The game's story is told by the game world and its
creatures and objects. To keep players motivated the
creatures and objects are introduced one after another
following an arc of suspense that lead to a climax
which is a boss battle. Constructions and altars
suggest the presence of an ancient, friendly
civilization and the tendrils and enemies stand for an
evil infestation of the forest, as illustrated in figures 2
and 3.

To create the feeling of agency the game tries to
avoid situations in which the player's actions have no
meaning for the plot. The number of possibilities for
interaction is always at a manageable level and every
object for interaction must be used to proceed with
the game. For example, there is a situation in which a
gate is blocked by tendrils. Beneath the gate is an
altar with small, gray mushrooms on it. Nearby this
gate players can find a blue mushroom which is the
only object to interact with. When the mushroom is
put on the altar, a cutscene shows how the mushroom
is growing and the tendrils are moving back and
unblock the gate. This scene teaches the players that
the mushrooms and altars are helpful while the
tendrils hinder them to move forward. We hereby
also address the experiential dimensions described by
Roth et al:

• Curiosity: “What are these tendrils?”

• Aesthetic Pleasantness: “The way the
mushroom grows and the tendrils move
back looks very nice.”

• Self-Enhancement: “My idea with the
mushroom worked right away. I am clever!”

Music and sound effects have a big impact on the
atmosphere of a game. To create music that fits a
mysterious and eerie forest, the soundtrack uses
minor chords and deep bassy sounds.

Figure 3: Dark atmosphere

Furthermore, the speed of the track has to collaborate
with the situation in the game. Therefore the game
has slow ambient music with emphasis on bass when
the players explore the forest and hectic music with a
fast drum beat when they get chased by enemies.

Atmospheric sounds describe the surroundings and
actions of the players. For example, in the forest they
can hear the rustle of the wind in the trees, animal
calls and the sounds of their own footsteps. Some
sounds are related to certain objects like altars and
enemies. There are also special hint sounds playing
when events occur in the presence of the player.

Obviously, the visuals have a great influence on the
game. To create an atmosphere that supports mental
stress and allows shock moments the forest consists
of closely spaced trees from which the players often
can't see more than the silhouettes. Because of a dark
twilight and dense fog the surroundings are
uncovered little by little and the paths are bordered
by tendrils that are moving slowly. This is to give the
players the feeling that something lurks around in the
forest that can savage them at any time.

Sometimes the dark atmosphere is intercepted by
peaceful places which are brighter and more colorful
to avoid that the players get used to the dark and
thereby lose their anxiety. This is also a way to
arouse their curiosity. Furthermore the changes of
mood are important to make the effect of the BCI
appreciable.

To lower the barrier atmosphere, the objects in the
game (see figure 4) need to be relevant for the player.
To ensure this, all the objects have a meaning. Plants
with red berries help to navigate through the forest,
blue mushrooms work as a source of energy, and
altars give hints. Tendrils (figure 5) block the way to
places were the players are not supposed to go or hurt
them. The different tendrils have a similar
appearance and at the end the boss can be identified
as their origin.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 82 ISBN 978-80-86943-75-6

Figure 4: Objects in Mori: Altar, Plant with red
berries, mushroom

Figure 5: Different tendrils

Enhancement of the game experience due
to player's emotions
To enhance the player experience through the use of
his emotions meaningful, the game implements
multiple components that react to them. The plants in
the game are introduced early to the player as
emotionally sensitive. They hinder his process the
more he shows fear and shock. Is the player close to
a tendril it begins to glow red, grow and becomes
more aggressive thus making it harder for the player
to pass. Also thorns can appear almost everywhere in
the game world, which hurt the player on contact.

Of course, the player is dragged deliberately in
stressful and terrifying situations, especially when
near an area of tendrils. There is, for example, a
situation where he is being followed by enemies, who
want to attack the player. He then has to run through
a passage covered in tendrils to escape these enemies.

Also, the final enemy, who is presented as the root of
all tendrils, is aware to the shocked state of the player
and starts his attacks when he senses this emotion
shock the player, there are thorns constantly
emerging from the ground if he is near them.

The second analyzed emotion is the stress level of the
player. A higher stress level results in a manipulated
view for the player. The field of view broadens an
material is overlayed resulting in a tunnel view that
makes it more difficult more the player to navigate
through the world. When he stays calm for some
moments, the view returns to normal so he has to try
to stay calm especially in stressful situation
able to pass through them more easily.

After the player gets used to the emotional
interaction, she actively has to control this interaction

Figure 4: Objects in Mori: Altar, Plant with red

experience due

To enhance the player experience through the use of
the game implements

multiple components that react to them. The plants in
the game are introduced early to the player as

. They hinder his process the
more he shows fear and shock. Is the player close to
a tendril it begins to glow red, grow and becomes
more aggressive thus making it harder for the player
to pass. Also thorns can appear almost everywhere in

hich hurt the player on contact.

the player is dragged deliberately in
stressful and terrifying situations, especially when
near an area of tendrils. There is, for example, a
situation where he is being followed by enemies, who

e player. He then has to run through
a passage covered in tendrils to escape these enemies.

is presented as the root of
is aware to the shocked state of the player

and starts his attacks when he senses this emotion. To
shock the player, there are thorns constantly
emerging from the ground if he is near them.

The second analyzed emotion is the stress level of the
player. A higher stress level results in a manipulated
view for the player. The field of view broadens and a
material is overlayed resulting in a tunnel view that
makes it more difficult more the player to navigate
through the world. When he stays calm for some
moments, the view returns to normal so he has to try
to stay calm especially in stressful situations to be
able to pass through them more easily.

After the player gets used to the emotional
interaction, she actively has to control this interaction

method in both directions: there is also a situation
where the player has to deliberately
emotions to proceed. It consists of a trap where a
tendril attacks an area on top of a bride as soon as it
senses shock. The player needs to cross that bridge
two times. While the first time he has to stay calm to
prevent himself from being hurt, the second time
there is an enemy on the bridge, blocking the path.
To get rid of this enemy, the player needs to fake his
shock emotion so that the enemy gets attacked by the
tendril.

This experience makes it possible for the player to
get an insight of the way the Brain
Interface works so that he is able to estimate
reactions of game objects to his emotions. By this he
is able, for example, to fake his emotions in the fight
against the final enemy, timing the attacks of the
enemy so that he can get pass it sa

4. IMPLEMENTATION

NIA Game Controller
The NIA (Neural Impulse Actuator
EEG-based BCI capable to capture alpha and beta
rhythms. It comes with an easy
for configuring input triggering behavior when
certain thresholds in the amplitudes are reached.

Figure 6: The NIA BCI

Figure 7: Brainfingers, the software to visualize the
BCI parameters

here is also a situation
where the player has to deliberately fake his

to proceed. It consists of a trap where a
tendril attacks an area on top of a bride as soon as it
senses shock. The player needs to cross that bridge
two times. While the first time he has to stay calm to
prevent himself from being hurt, the second time
here is an enemy on the bridge, blocking the path.
To get rid of this enemy, the player needs to fake his
shock emotion so that the enemy gets attacked by the

This experience makes it possible for the player to
get an insight of the way the Brain-Computer-

so that he is able to estimate the
reactions of game objects to his emotions. By this he
is able, for example, to fake his emotions in the fight
against the final enemy, timing the attacks of the
enemy so that he can get pass it safely.

IMPLEMENTATION

The NIA (Neural Impulse Actuator, figure 6) is an
to capture alpha and beta

rhythms. It comes with an easy-to-use user interface
for configuring input triggering behavior when
certain thresholds in the amplitudes are reached.

Figure 7: Brainfingers, the software to visualize the

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 83 ISBN 978-80-86943-75-6

Figure 8: Configuration of parameter thresholds

When the amplitude reaches a defined threshold
defined in the NIA software interface (figures 7 and
8), external input controls are addressed, e.g. holding
down or pushing a button on the keyboard. This can
be used to forward EEG input to other applications,
like the game created.

Using the NIA Game Controller to
capture the shock and stress/anxiety
emotion
To capture the shock or stress emotion, certain
thresholds for the corresponding EEG rhythms must
be defined in the NIA interface.

When the player is in a completely relaxed state,
alpha and beta amplitudes are quite low and should
not trigger any actions.

As the stress emotion can be linked to the alpha
rhythm, as described formerly, there are two triggers
defined: One covering the upper section of the
effective range and one at the very lowest. So the
alpha amplitude strength rises if the mental state of
the player is active and/or a lot of visual processing is
taking place (for example by rapid eye movement).
When the alpha amplitude reaches high levels, a
trigger is activated that presses (and holds down) a
predefined key later used in the game to notify the
game engine that the stress level is rising.

The same is done with the stress lowering trigger and
the shock emotion for the beta rhythm (except this
only triggers a single key, since the shock emotion is
a one-at-a-time event).

The game engine on the other hand takes this key
input and translates it to certain actions that
manipulate game objects or the user view. A tendril,
or thorns, that suddenly appear may shock the player,
so he will shudder or wince, which will consequently
make the beta amplitude rise and activate the
corresponding actions. Alpha and beta signals for
different states are depicted in figure 9.

Figure 9 Player Alpha/Beta amplitudes in relaxed
state(top), in anxious state (middle) , and in shocked
state (bottom)

The stress emotion alters a material overlay for the
players HUD (Heads Up Display), which results in a
tunnel view and a blurred sight according to the level
of stress the player currently experiences, as
illustrated in figure 10.

The shock emotion triggers various effects in the
game. One of them are the tendrils that become more
aggressive, glow red and grow in size, thus hindering
the players passage through them. The final
opponent’s attacks are also linked to this emotion,
since they are only carried out when the player is
shocked. There also exists a trap in the game, which
the player has to trigger deliberately to get rid of an
enemy standing on top of the trap.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 84 ISBN 978-80-86943-75-6

Figure 10: Visual effect for anxiety parameter

Figure 11: Kismet, UDK's graphical script editor

Unreal Development Kit (UDK)
The Unreal Development Kit (UDK) is a C++ based
game development suite for Epic Games' Unreal
Engine 3. Since the release of the first Unreal game it
has continually been enhanced to meet the current
technical state of the art. It offers the developer
several tools and editor for almost every aspect of a
game (see figure 11) while also implementing its
own programming language named UnrealScript.
The full version of the UDK is free to use for non
commercial projects.

With the scripting framework and the graphical script
editor Kismet it was possible for us to create own
entities in the game that react to the inputs given
from the NIA BCI.

5. RESULTS

Evaluation of the game
To evaluate our concepts and their implementations
in the game we created a test scenario and let eight
participants play through the entire game. We
observed them while they were playing and asked
them questions after they finished the game.

To support the immersion the participants had to play
in a dark room with a 27 inch monitor in front of
them. To have an adequate presentation of bass and
other sounds we used a sound system with a sub

woofer. The sensors of the NIA headband on the
foreheads of the participants had direct contact with
the skin. In front of them they had a keyboard and a
mouse. To ground the NIA, they had to lay their arm

on the NIA device. Before the game was started we
adjusted the amplitudes of the brainfingers in the
NIA Software to a balanced level so they were on a
low level when the participants were relaxed and
reached maximum values when the participants did
strong movements or were shocked. To test this we
scared them all of a sudden from behind.

All the participants stated that they like to play
computer games and that they are familiar with
games played in first-person perspective. Five
participants had heard of BCIs before and two of
them had tried them but none of them believed that
it's possible to make controlled inputs via BCI.

All of the participants got scared during the game
through audio visual effects (only this combination
works significantly). This happened in a situations
were a skull appears (figure 12) with a loud sound
and when spikes come out of the ground and where a
tree that works as a bridge over a canyon falls down.
All of these situations are happening all of a sudden
and address more than one stimulus modality of the
player.

Figure 12: Shock sequence

All of the participants got immersed in the game.
That was observable during shock moments and
exclamations like “Ouch!” when they were attacked,
“This is beautiful.” during exploration, “I think I
need a counterbalance here.” while solving a puzzle
and “Ha!” after an enemy was defeated. The
participants stated that they were immersed the most
when they were challenged to get through tendrils, to
solve puzzles, to get used to a new situation and
when the world reacted to their actions.

There also were situations which decreased the
immersion. That is when something in the game
world seems implausible. For example, the strange
appearance of the enemy creatures and the partial
exaggerated tunnel vision effect that reminded one
participant more of icicles than a visual

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 85 ISBN 978-80-86943-75-6

representation of mental stress. Other situations were
when the participants didn't know what to do next,
when they had to think about a puzzle for too long
and when they died.

The participants described the atmosphere as dark,
eerie, mystic, mysterious, disturbing, thrilling, surreal
and dense. As reasons for that they identified the
dark presentation, field of view and blur effects,
music and sound. They also mentioned the interplay
between places and moods and the tendrils that
reacted to the BCI.

The participants liked the fact that there are no
weapons in the game and that artifacts like altars and
gates stir their imagination. Their motivation to play
through the game was their curiosity and the will to
find a way back to civilization. Although the game
never explains what it is all about, most of the
participants drew the conclusion that they were
knocked out after the crash with the hang glider and
that it was all a dream.

Asked about the effects of the BCI, the participants
answers were skeptical. Five participants stated that
it worked partial while three participants couldn't tell
that the BCI had any effect on the game. Maybe the
reasons for that are that the NIA Game Controller
doesn't work precisely and we weren't able to
calibrate it exactly to fit with every participant. The
NIA can't recognize which emotion or action caused
a change of alpha or beta rhythms so the game reacts
not only to mental stress or a shock moment but also
to laughter, a cough and other things. Furthermore
the players aren't able to associate every action that
the BCI triggers with a brain activity that they are
unconscious of. For example, one participant thought
that the tunnel vision is a scripted event that always
triggers with a shock sequence although it wouldn’t
be triggered at all without the BCI.

Concluding Remarks
Despite of the technical limitations of low-cost input
devices, we were able to provide a proof of concept
for emotion-based human computer interaction
patterns and their use in a tailored game environment.

Emotional inputs may be evoked on demand, but it is
by far more difficult to suppress them. Since the
users in our experiments were aware of their
emotional tracking, most of them recognized the
impacts of their emotional input on the game
progress, particularly regarding the opponents’
actions. It should be noted that not being aware of
these impacts does not necessarily indicate that these
do not exist, as in real life also many cues are missed.

All in all, we conclude that emotional sensing has
great potential for future game design, since it

provides the players’ challenge of using and
reflecting about their emotions in a systematic way.

Outlook
Since the appearance of cheap BCIs for the mass
market, scientific studies and development costs for
new applications and approaches for brain controlled
systems have greatly dropped. This results in a
raising interest of the industry, especially the game
industry, since here new innovations are adapted very
early to stand out from the huge count of competitors
on this market.

Our evaluation concluded that all participants viewed
the BCI as an improvement to the game experience
and immersion of the players. This hints that further
development should be considered, especially by
enhancing the methods to correctly decipher player
emotions.

One approach of enhancing these methods are the use
of machine learning and neural systems. Murugappan
et al. already conducted a promising study on these
methods [Mur10a] that would make the process of
correctly interpret user emotions much more precise.

Since the precision of control with a Brain-
Computer-Interface as the only method is still very
low, the use of a BCI as the only input modality
would probably not cope (at least in the near future)
with the complex control mechanisms of a modern
computer game. Future BCI controlled games would
probably implement a BCI as an additional modality.

Apart from the use as a game input method, emotion
aware applications for Brain-Computer-Interfaces
could theoretically fill one of the most important
gaps in human-computer communication: The
emotional level of communication. Emotions are a
natural factor in human-to-human communication
and make up a big part of the information transferred
to the other. In communication between humans
through a computer this problem is usually countered
with the use of emoticoncs or smileys to give the
other a help on how to interpret a message. A
working emotion aware system could possibly solve
this issue better and more precise. In a pure human to
computer interaction the computer would have the
means to understand the users intentions better and
act accordingly.

6. ACKNOWLEDGMENTS
The authors would like to thank the University of
Applied Science Bremen for the mentoring of this
work, which is based on a bachelor thesis and the
helpful community of the official epic forums for
hints and tips regarding the UDK.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 86 ISBN 978-80-86943-75-6

7. REFERENCES
[Bro04a] Brown, E., Cairns, P. A Grounded

Investigation of Game Immersion. CHI EA ’04,
New York, NY, ACM Press pp.1297-1300, 2004.

[Car06a] Carpi, F., De Rossi, D., Non invasive brain-
machine interfaces, European Space Agency, the
Advanced Concepts Team, Ariadna Final Report
(05-6402), pp. 4, 2006

[Mat00a] Mateas, M. A neo-Aristotelian theory of
interactive drama. Proceedings of the AAAI
Spring Symposium on Artificial Intelligence and
Interactive Entertainment, Palo Alto, CA, 2000.

[Mur10a] Murugappan, M., Rizon, M., Nagarajan, R.
et al. Inferring of Human Emotional States using
Multichannel EEG, in: European Journal of
Scientific Research, 48:2 (2010), S.281-29

[Nic12a] Nicolas-Alonso, L., and Gomez-Gil. Brain
Computer Interfaces, a Review, in Sensors, No
12, pp. 1211-1279, 2012

[Nie99a] Niedermeyer, E., Da Silva, L.:
Electroencephalography, Basic Principles,
Clinical Applications And Related Fields, The
Normal EEG of the Waking Adult, Baltimore,
Lippincott Williams & Wilkins, 1999

[Nij09a] Nijholt, A., Bos, D., Reuderink, B.: Turning
shortcomings into challenges: Brain–computer
interfaces for games, in: Entertainment
Computing 1, pp. 85–94, 2009

[Pfu99a] Pfurtscheller, G. and Lopes da Silva, F.
Event-related EEG/MEG synchronization and
desynchronization: basic principles, in Clinical
Neurophysiology, No 110, pp. 1842–1857 1999

[Rot09a] Roth, C., Vorderer, P., Klimmt, C. The
Motivational Appeal of Interactive Storytelling in
I. Iurgel u.a. (ed.) Second Joint International
Conference on Interactive Digital Storytelling,
Berlin et al., Springer pp. 38-42, 2009.

[Tan10a] Tan, S. D., Nijholt, A. (Eds.). Brain-
Computer Interfaces. Applying our Minds to
Human-Computer Interaction, London, Springer,
pp. 96, 2010

[Wol02a] Wolpaw, J., Birbaumer, N., McFarland, D.,
et al. Brain–computer interfaces for
communication and control, in: Clinical
Neurophysiology, No. 113, pp. 767–791, 2002

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 87 ISBN 978-80-86943-75-6

Comics reading: An automatic script generation

Raulet Jérémy
LIASD

2, rue de la Liberté
93200, Saint-Denis,

France
jraulet@ai.univ-paris8.fr

Boyer Vincent
LIASD

2, rue de la Liberté
93200, Saint-Denis,

France
boyer@ai.univ-paris8.fr

ABSTRACT
With the advent of portable devices, reading comic ebooks is a popular activity. However, a simple scan of a comic
page is not well adapted for portable device screens and a panel to panel reading without animations and adapted
transitions is quite uncomfortable and not suitable. Moreover, applying manually transitions between each panel
to script a complete comic book is a tricky task and seems impossible for a complete collection of comics. We
present a model able to automatically script comics reading by using panel lines of force. Our results demonstrate
that this model proposes a coherent solution for 87.2% of panels in an interactive time.

Keywords
Comics Script Generation, Comp.Vision & Image Processing, Mobile & WEB Graphics

1 INTRODUCTION
Nowadays, the number of comics novelty per year is in
constant increase and reading them on a portable device
is a common activity. These comic ebooks can be very
different kinds, from a simple scan of a comic book to
an electronic comic completely dedicated to the device
screen and even a cartoon-like video.
Even if a comic especially created for a specific
portable device seems to be the best solution, there
is no appropriate solution to distribute them in an
ebook format: other existing comics are scripted by a
scriptwriter to produce input and output animations for
each panel and exported to different portable devices.
This work is performed in very different ways: by
creating panel by panel transitions and animations
using a dedicated tool [Rau11]; by creating a path in
a comic page and displaying the entire page on the
screen [Wan11]; or in the worst case, by creating a
video of the comic.
We think that the first solution (i.e. creating transitions
and animations panel by panel) is the best one to im-
prove the reading experience without altering the con-
tent. However this solution is the most expensive and
one can imagine how tricky the task is if the purpose is
to process a comics library. Thus its automation is an

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

interesting challenge both for researchers and commer-
cial comics publishers.

In this paper, we consider panels reading and panels
transitions. The panel extraction is realized as a pre-
liminary step with for example Yamada et al. [Yam04],
Tanaka et al. [Tan07] or Raulet et al. [Rau11] methods.
For each panel, we aim at proposing an input and output
animation based on its reading direction.

First, we present the terminology and the specificities
of comics which are used to identify possible solutions.
Then we present the related work on image retrieval
and interest point detection considering the specific top-
ics (i.e. panels transitions and reading). Then we pro-
pose our model based on image processing techniques.
Results are provided comparing related work and our
model. Finally, we conclude and propose future work.

2 TERMINOLOGY
In this section, we present the terminology used
throughout this paper. Hereafter we precise the context
and give our definitions but we do not attempt to
provide an exhaustive study on comics. The interested
reader should refer to [McC93] and [McC00] and as
there is not a unique and unambiguous definition for all
of these terms, one can find a part of this vocabulary
on the website [Comi09]. From global to detail and
according to our definitions, we also describe the
noteworthy variations in comics to illustrate the wide
range of possibilities.

Usually, a comic is described by a succession of pages
composed by a set of image strips. These images,
named panels, are colored or black and white and

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 88 ISBN 978-80-86943-75-6

are often separated by gutters. Remark that since
Rodolphe Töpffer in 1830, considered to be the mod-
ern comics creator, this page composition has been con-
strained to the artist by the publishing world.

Like Scott McCloud [McC93], we consider that a comic
is a succession of panels. Each of them have their own
size and form and are often surrounded by a black bor-
der. Open panel depicts panel without any borders.
In case of overlapping between two or more panels the
overlapped panel term is used. A panel frequently
contains speech balloons and/or captions describing
respectively the dialogue and the scene.

Even if this terminology covers american comics,
manga, franco-belgian comics, graphic novels and all
other styles, it is not enough to create a taxonomy of
the domain. Many differences exist between these
styles (see figure 1) depending on many factors: the
technique used (brush, pencil. . .), the authors (two
comics of the same author can be radically different). . .
Even for a given comic the visual representation of
characters, scenes, places, that must be unique, may
vary. Due to these variations, admissible for any comic
readers, and the number of characters, it is not possible
to build a comic database representing the collection of
characters and uses it to describe the movement.

Figure 1: Top left: panel of Gaston Lagaffe, Top right:
panel of Hellsing, Bottom: panel of X-men. These
panels represent respectively franco-belgian comics,
manga and american comics with different styles, levels
of details and colors.

If a comics classification is not possible, one can fo-
cus on the different transitions between two successive
panels and try to determine their graphics impacts.

Scott McCloud, in [McC93], has defined six forms of
transition:

1. moment-to-moment: The second panel represents
the scene a little time after the previous one, like if
two photographs have been taken with a second of
interval;

2. action-to-action: The next panel represents the next
action, like a selection of key moments describing a
story (see figure 2);

3. subject-to-subject: The same idea is illustrated in
the two panels but no direct visual relation exists
like in action-to-action. A common example is a
phone discussion between two characters in which
each panel represents a character in its own environ-
ment;

4. scene-to-scene: Time or distance is clearly visible
between the two panels. A landscape in summer and
the same in winter is an example of scene-to-scene
transition;

5. aspect-to-aspect: The two panels describe the dif-
ferent aspect of the same idea or place at the same
time: a beach and a character in swimsuit;

6. non-sequitur: No logical relation exist: suppose
that figure 1 is a comic page composed by these
three panels.

All of these transitions may be found in the same comic,
even if the sixth is uncommon. The moment-to-moment
transition is the one where panels are the most similar.
But even in this case, the artist may redraw the entire
panel and change, voluntary or not, a large part of it
(see figure 2). It is possible that a reader does not take
care about those differences but they exist. One of the
most visible is the position and size of speech balloons
which obscure the background.

Figure 2: Page 20 of Asterix and the Secret Weapon
panel 2 and 3 of the first strip. Excepted characters,
there are many changes between these two panels. The
main change is the house behind Asterix in the left
panel, that disappears in the second one.

In a page, the reading direction is left top to right bot-
tom, excepted in a manga. It influences the reading di-
rection of a single panel and the eye movement should
begin at the top left corner and follow a Z pattern in
most cases.
This expected movement is disturbed by all panel
elements. For example, as explained by Omori et
al. [Omo04], a reader frequently skips a panel without
any speech balloon. In the component hierarchical
theorist, Almasy [Alm75] has explained the impor-
tance of living subjects for the reading direction. This
means that the reader does not just follow a Z pattern
but search important elements into the panel, like a

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 89 ISBN 978-80-86943-75-6

character. Artists have several other ways to direct
the reader’s eyes: color contrasts, object size, level of
details, closeup. . . In fact, comic creators determine
the reading direction while generating each panel.

With the widespread of comics during the last century,
artists have become accustomed to use these techniques
to give the wish of pull up the reader’s eyes on the sec-
ond page of a double page in a comic book. They also
use them to encourage the reader in turning the page
after the last panel of the double page. But nowadays,
panels are not necessarily arranged in a page. For ex-
ample, on a mobile phone, the reader can watch each
panel one by one and can have eye movement into a
panel but not between two of them. Thus we need to
find new techniques to direct the reader’s eyes and let
him concentrate on the story and not on transitions be-
tween panels.

3 RELATED WORK
To produce animation for panel transition it is necessary
to detect similar contents and transformations between
two consecutive panels. We have identified two main
approaches:

1. Image retrieval, to detect and follow objects in a
panel sequence;

2. Interest point detection and comparisons of their po-
sition to interpolate movements between panels.

Hereafter, we focus related work on these two
approaches giving their advantages and drawbacks.

3.1 Content-Based Image Retrieval
(CBIR)

In [Tor06], Torres et al. have explained the CBIR the-
ory which, in particular, allows to index images with a
distance function and to distinguish objects with their
shape descriptors. In all CBIR methods, the main idea
consists in the similarity and difference evaluation be-
tween two images.

Landré et al. [Lan07] have proposed a CBIR method
using a Hamming distance and a query-by-visual-
example method to compare shapes. In order to have a
better perception of distances between colors, images
are represented in the Lab colorspace. Then, three
binary signatures per image for color, texture and
shape (with a laplacian edge detector) are computed.
Finally, similarities between images for each signature
with a Hamming distance (a XOR binary operator)
are searched. This method is well adapted to find
images with the same theme (a red flower for example)
and works well in general, but it is imprecise and
cannot, for example, distinguish two human characters.
Remark that it is possible that this method works well

for a moment-to-moment transition or maybe action-
to-action but it is impossible for subject-to-subject
transition. Moreover, this method uses colors and some
comics are “just” black and white.

The approach proposed by Fekir et al. [Fek09] is based
on a Region Of Interest (ROI). This ROI is selected with
a circle snake on the first image of the sequence. Then,
on each image of the sequence, energies (curve con-
sistency, gradient. . .) are minimized and the snake is
moved. Finally, this new snake is treated like an au-
tomatic initialization on the next image and the sec-
ond step (i.e. energy minimizations and snake move-
ment) is repeated. This approach is used to follow cells
in a sequence of echocardiographic images. Unfor-
tunately, except for the moment-to-moment transition,
differences between two panels are too important to im-
plement this kind of method.

Cheung [Che07] has developed an application named
MAIRE to recognize a human-like character face that
helps the reader to find a particular scene in a large col-
lection of comics. First, he has proposed the use of two
CBIR methods for face detection and recommended the
Adaboost one. Then, he has implemented four face
recognition methods and proposed to use the EBGM
(Elastic Bunch Graph Matching). These two steps en-
able to sort panels depending on present characters and
allow the user to perform a query to find a particular
scene into a large database of comics. Unfortunately,
this approach requires a database of characters and as
explained in section 2, it is impossible to be exhaustive.
Moreover, even if it is not carefully mentioned in the
paper, the detection seems to work only on full-frontal
faces.

3.2 Interest Point Detection
In [Sch00], Schmid et al. have introduced two criteria
for the evaluation of interest point detectors: first, the
repeatability, allowing to compare the position of in-
terest points in two images of a scene; second, the in-
formation content, allowing to measure if an interest
point is really distinct one from another. They have
concluded that Harris detector is the best solution for
these two criteria. This method seems suitable to our
problem of detecting interest points in a panel and like
SIFT, SURF and ORB are posterior to [Sch00]. We
present hereafter these four methods.

Gabriel et al. [Gab05] have proposed a method based
on an improved implementation of Harris detector to
follow an object in an image sequence. First, for each
object to be tracked, a ROI is defined. Then, each ROI
is described by interest points obtained from the col-
ored version of Harris detector. Finally, the object is
found in the next image with a comparison of the rela-
tive positions of interest points. The problem is that this
method works with images without significant change

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 90 ISBN 978-80-86943-75-6

and for any forms of transitions excepted a moment-to-
moment transition we cannot initialize the ROI on each
panel.

Bauer et al. [Bau07], have compared SIFT and SURF
detectors. They have evaluated the invariance against
rotation, scale, noise, change in lighting condition and
change of view point on images of natural outdoor
scenes. They have concluded that SIFT has the best
performance in term of repeatability but followed very
closely by SURF. They have also concluded that SURF
produces fewer points and the comparison is faster.
This comparison is done on photorealistic images only.
We think that these methods have a bad repeatability in
our case due to the precision of drawings and the differ-
ence between two similar panels. Even if our model is
not based on this kind of method, we have implemented
it and present benchmarks in section 5.1 to confirm our
hypothesis.

Rublee et al. [Rub11], have recently presented an
efficient alternative to SIFT or SURF named ORB
(Oriented FAST and Rotated BRIEF). FAST is used to
detect key-points and BRIEF to describe it. It seems
more efficient and faster than SIFT and SURF but
like [Bau07], only photorealistic images have been
tested to provide benchmarks. Like SIFT and SURF,
ORB is shown efficient for their experiments but has
not been tested on expressive images. Our model is not
based on this method but we have implemented it and
present benchmarks in section 5.1.

We have presented several approaches to extrapolate a
movement between two panels and no one is adequate
for all transition forms. The two main problems of these
approaches are:

- Methods are dedicated to follow objects in a se-
quence with little modification between two images;

- Methods have been evaluated only on photorealistic
images.

We propose our model that enables to extrapolate a
reading direction for a given comic panel.

4 MODEL
We present our model dedicated to decide both panel
reading direction and panel transition. As detailed in
previous work, approaches that may provide panel tran-
sitions do not exist and photorealistic approaches can-
not be adapted to this kind of problem. Thus rather than
a top-bottom approach providing first panel transitions
to deduce the reading direction, we prefer a bottom-top
approach providing first panel reading direction to de-
duce panels transitions. Since a comic panel is the re-
sult of an artistic process, our solution consists of deter-
mining artistic elements providing a reading direction
for each panel. For that reason, our approach is based

on the image processing techniques being able to col-
lect information available in each panel. Our process is
realized in 3 main steps:

1. (a) To provide a solution for any panels of any
comics (i.e. colored and/or black and white), we
perform an edge detection on the panel and use
this information only (i.e. no color information
are used hereafter);

(b) Based on this edge detection, we extract lines of
force providing a large set of possible reading in-
formation;

2. We improve our lines of force research by focusing
only on dynamically defined ROI panel by panel.
Thus, we keep only the most interesting part of
them;

3. A classification system is finally used to determine
the panel reading direction. Possible reading direc-
tions are horizontal (from left to right), vertical (top
to bottom) and the two diagonals (from left to right).

Finally, according to reading directions of two consec-
utive panels and rules given by the scriptwriter, we
provide automatically panel transitions. In practice,
rules are associations between the directions and the
panel transitions. These are realized independently by
the scriptwriter and can be reused or changed for any
comics.

4.1 Edges and Lines of Force
As a first step, we extract edges and lines of force in
each panel. Lines of force is a graphical technic used
since the renaissance period and are intended to convey
the directional tendencies of object through space. We
combine two image processing techniques to provide
lines of force: an edge detection and a feature extraction
technique.

As the most common edge detectors (Sobel, Prewitt,
Canny) are almost interactive, we prefer the Canny de-
tector for its detection performance [Sha02]. A Sobel
kernel filter is used in the Canny detector and experi-
ments show that a 3×3 kernel filter is the most appro-
priate kernel size. Other kernel sizes (i.e. 5×5 and 7×7)
give a too detailed result. We follow the Canny’s rec-
ommendation for the upper and lower thresholds and
apply a ratio of 2:1.

Then, we use the Hough transform, as a feature extrac-
tion technique, to search the longest straight lines. We
search a limited number of lines to avoid false positive
with only a few lines and unfeasible results containing
too many lines. This interval has been determined by
a simulated annealing algorithm [Kir83] and must be
in [30, 50]. These lines represent image lines of force
which suggest the scene orientation. Depending on the
comic style and the scene, straight lines may have dif-
ferent lengths.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 91 ISBN 978-80-86943-75-6

In our algorithm (see algorithm 1), initial Canny
thresholds values are used and dynamically modified
according to the Hough transformation result; the
Hough transform threshold is dynamically changed
until the result converges to the attempted values in
term of number of lines as follow: while we have not
enough lines we decrease the minimal size of a straight
line (Hough threshold). If the Hough threshold is too
small, we decrease the Canny thresholds and repeat the
Hough transform. While we have too many lines, we
increase slowly the Canny thresholds. This produces
a set of lines representing the panel lines of force (see
figure 3).

Data: panel
Func: image Canny(imageSrc, lowerThreshold,
upperThreshold, SobelFilterSize);
Func: setOfLines Hough(imageSrc, threshold);
Result: LINES (lines of force set)

thresholdCanny← 401;
minNbLine← 30;
maxNbLine← 50;

maxThresholdHough← 3
4 panelDiagonal;

minThresholdHough←MIN(panelWidth,panelHeight)
10 ;

repeat
dst← Canny(panel, thresholdCanny,
thresholdCanny×2, 3);
thresholdHough← maxThresholdHough;
repeat

LINES← Hough(dst, thresholdHough);
thresholdHough← thresholdHough-1;
if thresholdHough ≤ minThresholdHough
then

thresholdCanny← thresholdCanny-100;
break;

end
until nbLine < minNbLine;
if thresholdCanny ≤ 0 then

break;
end
thresholdCanny← thresholdCanny+5;

until nbLine > maxNbLine OR nbLine < minNbLine;
Algorithm 1: Lines of force detection.

However, the detected lines of force are, in most cases,
disturbed by the border and speech balloons, so we pro-
pose a method to improve this result.

4.2 ROI
In figure 3, one can note that panel borders and speech
balloons also produce lines of force. Since both are
generally composed by straight lines, their impact on
the line of force detection is very important. To avoid
the noise generated by borders, the region on which our

a. b.

c. d.
Figure 3: a) A panel of Le donjon de Naheulbeuk. b)
Canny edges detector on (a). c) Lines of force with
Hough transformation on (b). d) Latter lines on (a).

algorithm is applied is reduced by 10% on left, right and
bottom of the panel. This value guarantees that borders
will be removed and does not affect line of force detec-
tion as shown in our experimentation.
Comic artists follow some rules when creating speech
balloons: they are often close to speaking character
faces which are frequently located in the center of the
panel; they are located where they do not hide a sig-
nificant part of the drawing: for example it is uncom-
mon that a speech balloon mask a part of a character’s
face; comic artists use the rule of third to place im-
portant elements in the panel and speech balloons are
commonly located at the periphery. According to these
principles, speech balloons are frequently placed on the
top of the panel, in the sky or the scenery. In the case
where speech balloons are in a particular layer, we do
not consider them for the line of force detection. In any
other cases we remove the upper part of the image ac-
cording to the rule of third.
Figure 4 presents the line of force detection on a re-
duced ROI. As one can see, borders and speech bal-
loons are not considered any more and the result is more
relevant.
Now, these lines can be classified to extrapolate the
reading direction.

4.3 Classification and Interpretation
We propose a classification and an interpretation system
for the lines of force previously detected. We consider

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 92 ISBN 978-80-86943-75-6

Figure 4: Figure 3 with a reduced ROI.

that the reading direction depends on the most repre-
sentative direction of the lines of force.

First, we calculate the non-oriented gradient for each
line. Then, lines of force are classified into 5 groups
depending on their gradients: horizontal, vertical, the
two diagonals and others. We fix a precision of± π/16
radian compared to horizontal and vertical axis and an
angle of ± π/4 radian for the diagonals. Others lines
which are not classified in one of these four groups con-
stitute the group named “other”. Figure 5 presents these
groups. Remark that the surfaces of the four groups are
equivalent and sum to the surface of the group named
other (i.e. half of the circle surface). The figure 6 illus-
trates this classification on the example used throughout
the article.

Figure 5: Lines of force classification. Each group
is represented by a color and has an angular distance
equals to π/8. The group named other is in white.

To select the panel reading direction, we sort all of these
groups (except group other) according to the number of
lines they contain. Finally, we compare the larger group
to the total number of lines in two steps: first, if the
group contains more than 33% of the lines, this group

Figure 6: Each line color represents a group, the group
other is in red.

is chosen to become the reading direction; otherwise, if
this group contains more than 25% it is retained. Note
that if the second larger group contains also more lines
than the percentage that permits the choice of reading
direction, it is chosen as a direction applicable if the
panel is too large to be displayed in full screen (see al-
gorithm 2 for more details).

Data: seto f lines
Result: readingDirection optionalDirection

N← |seto f lines|;
foreach Line in seto f lines do

find gradient of line;
classify Line according to its gradient;
/* 5 groups: horizontal,
vertical, two diagonals, other */

end
threshold← N/3;
/* In all following conditions, we
do not test the group other */
sorting groups in decreasing order;
if |first group| > threshold then

readingDirection← group orientation;
else

threshold← N/4;
if |first group| > threshold then

readingDirection← group orientation;
else

return unclassified;
end

end
if |second group| > threshold then

optionalDirection← group orientation;
return readingDirection and optionalDirection;

else
return readingDirection;

end
Algorithm 2: Lines of force interpretation.

Even if our system provides a classification for the most
of the panels, some of them remain unclassified (see
section 5.2). These cases occur when lines of force are
mainly classified in the group other or when groups are
balanced. Since we decide to provide one of the attempt

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 93 ISBN 978-80-86943-75-6

reading directions (horizontal, vertical and the two di-
agonals), for these cases, the reading direction is finally
given by a scriptwriter.

Note that rules can be added or changed in our system
implementation to interpret the reading direction. As
an example, one might want to add a flicker animation
if the two diagonal groups are the majority.

5 RESULTS
In this section, as mentioned in section 3.2, we focus
first on results using SIFT, SURF and ORB. Then we
present results provided by our model.

5.1 SIFT, SURF and ORB
As described above, these methods are well adapted for
photorealistic image retrieval and have their own advan-
tages and drawbacks. One can easily imagine to adapt
these techniques to the comic panel transitions by find-
ing corresponding points in successive panels. As we
have evaluated carefully these methods on comic pan-
els and have remarked that they are not dedicated to
this kind of images, we provide hereafter salient results
on panel transitions. However, for clarity purposes, we
only focus on a single couple of representative panels
where the transition is the most favorable (i.e. moment-
to-moment transition).

Note that, as an implementation detail, we use OpenCV
library for SIFT, SURF and ORB and we test the feature
matching with flann, fern and brute force.

Figure 7 presents results of interest points matching on
a panel. As one can remark, speech balloons and ono-
matopoeia produce noise during the interest points de-
tection. Figure 8 illustrates the same algorithms using
the ROI defined in section 4.2.

As concluded by Bauer et al. [Bau07], SIFT produce
too many points to be easily readable. On top of figure
8 there are numerous good detections and matchings
but also numerous false positives.

By opposition, SURF gives a very poor repeatability
of detection and it is impossible to provide a confident
panel transition (see middle of figure 8).

As mentioned by Rublee et al. [Rub11], ORB is a good
compromise between SIFT and SURF. ORB (see bot-
tom of figure 8) has a better repeatability than SURF
but also fewer points compared to SIFT. However, here
also, matching is still shoddy like for SURF and SIFT.

As mentioned in section 2 difference between two suc-
cessive panels are often more important than between
two photographs of the same scene (like in [Bau07]
and [Rub11]). Also, since a large part to the repeata-
bility is distorted by many changes between two panels
(i.e. shapes, colors. . .), this kind of methods cannot be
applied to comic images.

Figure 7: Up to down: SIFT, SURF and ORB detectors
on two panels of comic Le Donjon de Naheulbeuk.

5.2 Results of Our Model
We experiment our model on a large collection of dif-
ferent type of comics: comic books (X-men and Star
Wars), Franco-Belgian comics (Gaston Lagaffe, As-
terix, Tintin and Le Donjon de Naheulbeuk) and mangas
(Naruto, One Piece and Hellsing). They constitute a
set of 2,000 panels. Our system has classified the panel
set in 16 minutes with a Intel Core 2 Duo processor
(2.26GHz) and 2Go RAM.

87.2% of the panels have been classified into one of
horizontal, vertical or the two diagonals groups. 12.8%
of panels are classified in the group other. This classifi-
cation is presented in table 1; the horizontal reading di-
rection is a majority with a distribution of 54.5%. This
can be explained by the horizontal reading direction and
the page format where panels are more frequently hor-
izontal than vertical. The vertical reading direction is
not well represented, which can be explained by the fact
that few panels are vertically extended. Remark that our
system has proposed the same reading direction (verti-
cal) for the two panels used on figure 9.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 94 ISBN 978-80-86943-75-6

reading direction
optional direction

Horizontal Vertical Diagonal π/4 Diagonal −π/4

Horizontal 54.5% N/A 0.9% 0.9% 1.4%
Vertical 8.5% 0.6% N/A 0.8% 0.7%
Diagonal π/4 14.2% 1% 0.7% N/A 0.6%
Diagonal −π/4 10% 0.5% 0.3 0.6% N/A
Other 12.8% N/A N/A N/A N/A

Table 1: Summary of the interpretation of reading direction on 2,000 panels. Column 2 is a total for a given
direction. Columns 3 to 6 correspond to the optional direction, applicable if the panel is too large to be display in
full screen.

Figure 8: Up to down: SIFT, SURF and ORB detectors
on ROI of two panels of comic Le Donjon de Naheul-
beuk.

Figure 9: Lines of force of two successive panels of
comic Le Donjon de Naheulbeuk. On these two panels,
our system has proposed a vertical reading direction.

Note that only 10% of the panels (excepted panels in
the group other) have an optional direction. That means
that the difference between the first and the second ori-
entation of a panel is generally large enough.

As our test protocol consists of a comparison between
results provided by our model and by a panel of hu-

mans testers, we have selected randomly 100 panels
in our set. Note that testers are comic readers (27%),
game designers (13%), graphic designers (20%) and
other (40%). We asked them to select only one group
for each comic panel and we retain only the majority
group. As one can see in table 2, reading directions pro-
posed by testers and our system are very similar. The
first column represents results with our tool for these
100 panels. Our results and human choice are concor-
dant in 78% of the cases (91% for horizontal, 100% for
vertical, 56% for π/4 diagonal, 46% for −π/4 diag-
onal and 41% for others). Remark that for horizontal
and vertical, the results are identical in more than 93%
of the cases. Note that, even if it does not appear in this
table, the answers provided by testers for each comic
panel, are generally distributed uniformly with a domi-
nant group.

6 CONCLUSION
We have proposed a model allowing to script a comic
ebook reading by adding panel reading direction and
inputs/outputs animations. Our method has classified
87.2% of panels in the same way a human would do in
78% of cases. The purpose of this work does not con-
sist of replacing scriptwriter but to suggest animations
to them and to reduce the time of a comic script genera-
tion. Our comics reading system is integrated to a very
complete sketch-based interface to script comics read-
ing. In future work, we plan to use curved lines as lines
of force and we aim at integrated perspective to propose
more complex animations.

7 ACKNOWLEDGEMENT
This work was supported by TEKNEO (producer of en-
tertaining applications (video games), as well as serious
applications (Serious games)). Jérémy Raulet was a re-
cipient of a CIFRE fellowship.

8 REFERENCES
[Alm75] P. Almasy. La Photographie, moyen

d’information. Tema-éditions, 1975.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 95 ISBN 978-80-86943-75-6

our tool
human choice

Horizontal Vertical Diagonal π/4 Diagonal −π/4 other

Horizontal 48 44 3 1 0 0
Vertical 12 0 12 0 0 0
Diagonal π/4 16 2.33 4.33 9 0 0.33
Diagonal −π/4 12 0 3 0 8 1
Other 12 2 1.5 0.5 3 5

total of human choice 48.33 23.83 10.5 11 6.33
Table 2: Summary of the interpretation of reading direction on 100 panels. Column 2 is a total for a given direction
for our tool. Columns 3 to 7 show testers majority direction choices compared to results with our tool.

[Bau07] J. Bauer, N. Sünderhauf, and P. Protzel.
“Comparing several implementations of two
recently published feature detectors”. Proc.
of the International Conference on Intelli-
gent and Autonomous Systems, Vol. 6, No. pt
1, pp. 143–148, 2007.

[Che07] S. C. S. Cheung. “Face Detection and Face
Recognition of Human-like Characters in
Comics”. Tech. Rep., City University of
Hong Kong, Department of Computer Sci-
ence, 2007.

[Comi09] “Comicbook Dictionary”. Oct 2009.
http://comicbooks.wikidot.com/comicbook-
dictionary.

[Fek09] A. Fekir, N. Benamrane, and A. Taleb-
Ahmed. “Détection et suivi d’objets dans
une séquence d’images par contours actifs”.
Proc. CIIA, Vol. 547, 2009.

[Gab05] P. Gabriel, J.-B. Hayet, J. Piater, and J. Verly.
“Object tracking using color interest points”.
In: Advanced Video and Signal Based
Surveillance, 2005. AVSS 2005. IEEE Con-
ference on, pp. 159–164, IEEE, 2005.

[Kir83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vec-
chi. Optimization by simulated annealing.
Vol. 220, Washington, 1983.

[Lan07] J. Landré and F. Truchetet. Image retrieval
with binary hamming distance. Citeseer,
2007.

[McC00] S. McCloud. Reinventing Comics: How
Imagination and Technology Are Revolu-
tionizing an Art Form. HarperCollins, 2000.

[McC93] S. McCloud. Understanding Comics: The
Invisible Art. Tundra Publishing, 1993.

[Omo04] T. Omori, T. Igaki, T. Ishii, K. Kurata, and
N. Masuda. “Eye catchers in comics: Con-
trolling eye movements in reading picto-
rial and textual media.”. 28th International
Congress of Psychology, pp. 211–219, 2004.

[Rau11] J. Raulet and V. Boyer. “A Sketch-based
Interface to Script Comics Reading”. SIG-

GRAPH Asia 2011 Sketches, p. 3, Dec 2011.
[Rub11] E. Rublee, V. Rabaud, K. Konolige, and

G. Bradski. “ORB: an efficient alternative
to SIFT or SURF”. International Confer-
ence on Computer Vision, pp. 2564–2571,
Nov 2011.

[Sch00] C. Schmid, R. Mohr, and C. Bauckhage.
Evaluation of Interest Point Detectors.
Vol. 37, Springer, 2000.

[Sha02] M. Sharifi, M. Fathy, and M. T. Mahmoudi.
“A Classified and Comparative Study of
Edge Detection Algorithms”. Informa-
tion Technology: Coding and Computing,
pp. 117–120, 2002.

[Tan07] T. Tanaka, K. Shoji, F. Toyama, and
J. Miyamichi. “Layout Analysis of Tree-
Structured Scene Frames in Comic Images”.
In: Proceedings of the 20th international
joint conference on Artifical intelligence,
pp. 2885–2890, Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2007.

[Tor06] R. d. S. Torres and A. X. Falcão. “Jour-
nal of Theoretical and Applied Informatics
(RITA)”. RITA, Vol. XIII, No. 2, pp. 165–
189, 2006.

[Wan11] A. D. Wandani, G. Wee, and W. S. Moses.
“Designing Interactive Mobile Comics for
Multi-Touch Screen Phones”. International
Conference on Future Information Technol-
ogy IPCSIT, Vol. 13, pp. 332–336, 2011.

[Yam04] M. Yamada, R. Budiarto, M. Endo, and
S. Miyazaki. “Comic Image Decomposition
for Reading Comics on Cellular Phones”.
IEICE Transactions, Vol. 87-D, No. 6,
pp. 1370–1376, 2004.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 96 ISBN 978-80-86943-75-6

Practical Augmented Visualization on Handheld Devices
for Cultural Heritage

Giovanni Murru
Sapienza Univ. of Rome

giovanni.murru@gmail.com

Marco Fratarcangeli
Sapienza Univ. of Rome

frat@dis.uniroma1.it

Tommaso Empler
Sapienza Univ. of Rome

tommaso.empler@uniroma1.it

ABSTRACT
In this paper, we present a framework for the interactive 3D visualization of archaeological sites on handheld
devices using fast augmented reality techniques. The user interface allows for the ubiquitous, personalized and
context-aware browsing of complex digital contents, such like 3D models and videos. The framework is very
general and entirely devised and built by the means of free, cross-platform components. We demonstrate the
flexibility of our system in a real case scenario, namely the augmented visualization of a historically reliable
model of the Ancient Forum of Nerva located in Rome, Italy.

Keywords
Virtual and augmented reality, personalized heritage visits, mobile guides, location-aware.

1 INTRODUCTION
Augmented reality (AR) is an emerging computer tech-
nology where the perception of the user is enhanced by
the seamless blending between real environment and
computer-generated virtual objects coexisting in the
same space. The resulting mixed image supplements
reality, rather than replacing it [7].

In the context of cultural heritage, augmented reality is
used to blend visual representations of historical mon-
uments, artifacts, buildings, etc., into the real environ-
ment visited by the audience (e.g., tourists, students, re-
searchers). For example, in virtual Pompeii [15], virtual
characters representing ancient Romans are blended
into the real environment; the user is able to perceive
them by means of an ad-hoc mobile AR system. Such
applications create simulations of ancient cultures by
integrating them in the actual real environment. In this
way, the user can learn about the culture by directly in-
teracting with it on site.

Augmented reality systems are rather complex and in-
volve technologies from different areas such as com-
puter vision, computer graphics and human-computer
interaction, in order to synthesize and deliver the vir-
tual information onto the images of reality. Generally,
the system must 1) track and locate the real images,
2) display the virtual information and 3) align and su-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

perimpose the virtual data onto the real image. The
main challenge in the design of these systems lies in
the seamless integration of computationally-expensive
software modules and energy consuming hardware in a
framework that must run at interactive rate and, at the
same time, be portable by the user. Traditionally, the
mobile systems [19, 15] require the user to wear a set
of hardware devices such as cameras, electronic com-
passes, small laptops, which makes the whole system
not comfortable and limits de-facto the massive spread-
ing of mobile AR systems in the context of cultural her-
itage.

The recent increase of the computational capabilities,
the sensor equipment and the advancement of 3D accel-
erated graphics technologies for handheld devices, of-
fer the potential to make the AR heritage systems more
comfortable to carry and wear, facilitating the spread of
this kind of AR systems to the mass market.

1.1 Contributions
In this paper, we present a novel mobile framework
for augmented reality in the context of cultural her-
itage, running on modern handheld devices. The frame-
work implements context-aware tracking, 3D alignment
and visualization of graphical models at interactive rate.
Using this framework, the user is free to roam around
archaeological sites using non-invasive and already in
use devices such as modern smartphones and tablets.
The framework is composed by free, cross-platform
software modules, making it easier to reproduce.

The applicability of the framework is tested by provid-
ing an augmented view of the Ancient Forum of Nerva,
which was one of the Imperial Fora during the Roman
Empire age. The 3D model has been designed accord-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 97 ISBN 978-80-86943-75-6

Figure 1: Left. 3D reconstruction of the Ancient Forum of Nerva in Rome, Italy. Middle. Augmented view of the
archeological artifact on-site. Right. A screenshot of the framework running on a handheld device.

ing to the information acquired from previous archaeo-
logical studies [18].

2 RELATED WORK
Augmented Reality is a technology allowing for ex-
tending the vision of real world with superimposition
of digital information, e.g. 3D virtual objects, 2D im-
ages and icons, labels, etc. Augmented reality is not
intended for replacing the reality like traditional virtual
reality, but it rather enhances it with digital data, mak-
ing virtual and real objects coexist in the same space. In
general, an augmented reality system must be equipped
with display, tracker, graphics capabilities and appro-
priate software [6, 7, 9].
Head-Mounted Displays [13] are one of the most pop-
ular approaches for delivering mobile augmented real-
ity in the context of cultural heritage. The Archeogu-
ide project is among the pioneer systems for the on-
site exploration of outdoor sites [11, 19]. Such a sys-
tem is able to track position and orientation of the user
employing a camera and an electronic compass, both
mounted with the display unit. This allows for inferring
the field of view and displaying 2D virtual images and
information of the scene observed by the user. How-
ever, the weight and dimension of the required hard-
ware devices makes the whole system uncomfortable to
wear.
Modern handheld devices, such like smartphones and
tablets, have a complete set of high quality sensors
such as 3-axis gyroscope, ambient light sensor, ac-
celerometers, magnetometer, proximity sensor, and as-
sisted GPS; hence they are well suited for the develop-
ment of augmented reality systems in a scenario similar
to Archeoguide. Recent research efforts have provided
several mobile solutions [8, 12, 20, 10] but are still not
able to visualize context-aware, outdoor 3D models in
a general manner.
Existing commercial mobile applications in the context
of cultural heritage touring [3, 4, 1] lack of the capabil-
ity to interactively blend 3D content to the observed real

scene. In general, they completely replace the video
feed coming from the camera with a 3D scene, requir-
ing the user to stand in a known position and imple-
menting a simple alignment based on the compass of
the device, without an actual tracking and registration
of the video feed with the virtual objects as it happens
in augmented reality systems.

3 OVERALL DESIGN
In an augmented reality system, objects in real and vir-
tual worlds must be precisely aligned with respect to
each other, otherwise the illusion that the two worlds
coexist is compromised. An augmented reality system
lacking of accurate registration is not acceptable [6],
and this is a requisite for establishing a connection be-
tween the features of 2D images of reality and the 3D
virtual world frame [9]. Computer vision is extensively
used in AR systems mostly for two main tasks: image
tracking and reconstructing/recognizing. Tracking al-
gorithms interpret camera images and, in this context,
can be categorized in two classes: those relying only on
feature detection and those using a precomputed model
of the tracked object’s features.

The framework employs the markerless tracking capa-
bilities of the Vuforia SDK [5] to compute in real-time
the position and orientation (pose) of some predefined
image targets located in the real environment. Once the
pose is retrieved, a virtual scene is rendered, overlaid
and registered onto the video camera feed by using the
OpenSceneGraph module [21].

Hence, the proposed framework is based on the com-
munication between two main software components,
namely Vuforia and OpenSceneGraph, providing a
touch interface to the user (see Fig. 2). Vuforia is the
module responsible for tracking an image target and es-
timating its pose in 3D space, while OpenSceneGraph
is the one delegated to manage the rendering of the
models. The most important features of these packages,
and how they are employed within the framework, are
briefly depicted in the following sections.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 98 ISBN 978-80-86943-75-6

QCAR Vuforia
Module

Target Dataset

Camera

extract features
from image target
and
compute pose

Rendering Call

Open Scene Graph
Module

GLSL Shaders

Middleware

OpenGL ES 2.0

XML 3D Scene Representation

Ruins Reconstruction

Figure 2: Schematic view of the framework components.

3.1 Vuforia SDK
Vuforia by Qualcomm [5] is a mature platform aimed to
a wide range of handheld devices, supporting both iOS
and Android; it is released for free, even for commer-
cial purposes. Within our framework, Vuforia is used
for the markerless tracking of the camera images. Fea-
ture based representations of relative user-defined im-
age targets are created for each monument.
To create these targets, the developer should upload the
image that needs to be tracked on Qualcomm servers by
using a simple web interface, namely the Target Man-
agement System. Afterwards the developer can down-
load the relative target resources bundled in a dataset,
which can then be loaded at runtime through a simple
API call. Such a dataset contains an XML configuration
file allowing the developer to configure certain track-
ables’ attributes, and a binary file containing a repre-
sentation of the trackables.
The accuracy of the tracking is based on the number and
the quality of the relevant features extracted by the Tar-
get Management System. For achieving a good tracking
quality, input images must 1) be rich in detail, 2) have
optimal contrast and 3) avoid repetitive patterns like
grassy fields, the facade of modern house with identi-
cal windows, a checkerboard and other regular grids.
Once built, the datasets are loaded during the applica-
tion initialization. Only one dataset can be active at a
certain moment, however a dataset can contain multiple
targets.
Our framework handles the following core components
of Vuforia:
Camera. The camera component manages the capture
of each frame from the device camera, and transmits the

data to the tracker. The camera frame is automatically
delivered in a device dependent image format and size
suitable both for OpenGL ES rendering (see Sec. 3.2)
and for tracking.

Tracker. The tracker component implements algo-
rithms for detecting and tracking real world objects
from the camera video frames. The results are stored
in a state object that is used by the video background
renderer and can be accessed from the application code.
A single dataset can contain multiple targets. Although
the tracker can load multiple datasets, only one can be
active at a time. Our system is designed in such a way to
scan multiple datasets and perform an automatic dataset
switch detection.

Video Background Renderer. The video background
renderer component renders the camera image stored in
the state object. The performance of the background
video rendering is optimized for a wide range of hand-
held devices.

Our framework initializes the above components and
for each processed camera frame, the state object is up-
dated and the render method is called. The framework
queries the state object for newly detected targets and
updates its logic with the new input data, then it renders
the virtual graphics overlay.

As the image targets and the virtual contents (3d mod-
els, videos) are loaded in memory, the framework con-
tinuosly test for the presence of the image targets in the
camera field of view. The test is performed at the be-
ginning of each rendering cycle. When the targets are
detected and the pose estimated, proper affine transfor-
mations such as translation, rotation and scaling are per-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 99 ISBN 978-80-86943-75-6

formed in order to correctly render the 3D model and
align it to the real environment.

3.2 OpenSceneGraph
OpenSceneGraph [21] is a robust and mature open-
source, high-performance 3D graphics toolkit used for
developing interactive applications in many different
fields like visual simulation, games, virtual reality, sci-
entific visualization and modelling. It is cross-platform
and its functionalities are accessible through portable
standard C++ code.

OpenSceneGraph uses a scene graph to represent the
spatial and logical relationship of the graphical scene.
The scene graph is a hierarchical graph not containing
direct cycles and isolated nodes, starting from a root
node located at the top level. Each node can contain
any number of children; entities stored in a node (e.g.,
3D models), share common operations and data.

The actual 3D rendering is performed via the OpenGL
ES 2.0 API. Such an interface is cross-platform, open-
source and designed for embedded systems like hand-
held devices. Since OpenGL ES 2.0 relies on the use of
the programmable pipeline, all the effects, lights, mate-
rials and the rendering itself have been managed using
shaders.

Although all the rendering setup was realized using
OpenSceneGraph, the rendering update is called by
Vuforia (see Sec. 3.1), so that framerate is kept syn-
chronized with the speed of pose computation. When
the rendering does not involve augmenting reality (i.e.,
when a single model part is shown), the update function
is controlled through a timer object handled by the op-
erating system that allows the application for synchro-
nizing its drawing to the refresh rate of the display.

The OpenSceneGraph module is also responsible for
the loading of the 3D models. Usually, a model rep-
resenting a complex architectural monument is com-
posed by several meshes. These meshes are stored as
separate files; at loading time, each mesh is loaded and
assigned to a node of the scene graph. All the meshes
are loaded concurrently using a secondary thread. Most
of the meshes are loaded during the initialization phase
when the framework is launched, other ones are loaded
on-demand according to the user interaction.

3.3 Structure of the system
The framework is built according to the Model-View-
Controller (MVC) design pattern [14]. The manage-
ment of the application is delegated to a main view con-
troller that initializes all the subcomponents: the Com-
mands view controller, the AR view controller and the
OSG view controller.

The Commands view controller is the class devoted to
manage all the widgets available in the user interface,

from the buttons to the virtual object selection. This
controller captures every command issued by the user
and instantiates the execution of an appropriate action,
which is often delegated to the appropriate controller.
For example, in the case of virtual object picking the
computation of which object has been selected is del-
egated to the OSG view controller. The AR view con-
troller manages the lower part of the augmented real-
ity system. Its main function is to initialize and set up
the modules for augmented reality, load the appropriate
data set for the targets, and ultimately call the rendering
update function, which is then delegated to the OSG
view controller. The OSG view controller manages all
the rendering calls using the OpenSceneGraph libraries
and is responsible for setting up the shaders, loading the
3D object models in memory and managing 3D anima-
tions.

The tracking system relies on marker-less feature track-
ing and vision algorithms to estimate the pose of some
predefined image targets. The information regarding
such image targets is incorporated in a dataset. Once
the dataset is loaded in memory the application is au-
thorized to search for the corresponding targets in the
field of view of the camera. After the pose is extracted
the 3D models on the scene graph are enabled or dis-
abled based on the application status, then the shader
uniforms are updated with the computed model view
and projection matrices. For our application we created
a custom target image representing a plan of the Im-
perial Fora area. Such image is designed to be under-
standable even without the AR layer and to be printed in
information boards near the ruins of the Imperial Fora
or in AR cards.

4 USER INTERFACE

Given the manipulative interaction style of augmented
reality systems, the traditional WIMP (Windows, Icons,
Menu, Pointing) interface is not suited for this frame-
work [17]. Rather, the final user interacts with the aug-
mented view by touching the screen of the handheld
device. Whenever the framework detects a touch, a line
segment intersector is instantiated in order to precisely
pick the corresponding virtual object on the screen. The
scene graph tree currently rendered by the camera is
scanned for intersections. In particular an intersection
visitor is executed on the rendering camera, and if one
or more intersections are found, then nodes on the path
to the first intersection are visited until we find a node
labeled for interaction. The selected node is returned to
the commands controller which issues a proper action
according to the type of object that user touched. Using
this fast ray-casting technique, the framework guaran-
tees the interactivity of the user interface even for mod-
els composed by a large amount of meshes.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 100 ISBN 978-80-86943-75-6

Figure 3: A 3D model representing the Forum of Nerva. It is a set of low-polygonal meshes optimized for interac-
tive rendering and low memory usage.

Figure 4: Top view of the 3D representation of the Fo-
rum of Nerva.

4.1 3D Visualization
When the user points the camera of the device towards
a real area identified by an image target (Sec. 3.1), a 3D
virtual model is superimposed to the video feed, pro-
viding an alternative representation of the reality. Be-
sides their constant improvement, handheld platforms
are in general limited in computational performance
and main memory capacity when compared to desktop
solutions. Thus, the number of polygons and the related
graphics quality detail must be devised in order to be
smoothly visualized on a handheld device without sac-
rificing meaningful details. Fig. 3 and Fig. 4 show the
low-polygonal reconstruction of the Forum of Nerva,
suitable to be embedded in our system.

For each model, the framework supports the visualiza-
tion of different historical versions. For example, Fig. 5
shows two different versions of the Forum of Nerva in
two different ages, the Imperial Roman age and nowa-
days.

The 3D model is logically organized in several sensi-
ble areas, which can be magnified and interactively ma-
nipulated. In this case a new view is presented to the
user showing a high-quality rendering of the interested
area. The user can zoom in and out the model through
a pinch; 3DOFs rotation of the object (roll-pitch-yaw)
is performed using an arcball [16] and the scene can
be reset to default with a double tap. Fig. 6 shows an
example of separate views for details of the Forum of
Nerva.

4.2 Virtual Video Streaming
The framework provides the functionality for rendering
videos in virtual objects. This is used to create virtual
animated buttons and to present informative videos to
the user. The videos are visualized beside the 3D model
in augmented reality. User can interact with the virtual
video in a natural way by tapping for start, pause and
resume. Double tapping puts the video in full-screen
mode. This has been achieved by exploiting the render-
to-texture functionalities of OpenSceneGraph in con-
junction with the ffmpeg library, which provides sup-
port for many types of video containers and codecs.
Fig. 7 shows an example of virtual video applied at the
reconstruction of the Forum of Nerva.

5 RESULTS AND CONCLUSIONS
A prototype of the framework has been implemented on
top of the iOS operating system; thus it runs on devices
such as iPhone, iPad and iPod Touch, that are mainly
controlled through the touch interface and are capa-
ble of 3D graphics acceleration. However, given the
cross-platform nature of all the involved software com-
ponents, the same framework is easily implementable
on other platforms such like Android. The frame-
work achieves interactive rendering of models with over
11000 vertices at 30 frames per second (FPS) on current
generation devices mounting a dual core A5 chipset.
On previous generation devices (like the iPod Touch
4th generation, single core A4 chipset), the frame rate
drops to 5 FPS which can be still considered usable.
The framework allows for the interactive exploration of
cultural heritage sites, providing the final users with the
possibility to interact with the digital contents in a nat-
ural way by using common handheld devices. Through
augmented reality techniques, the system provides a so-
lution for the identification of archaeological artifacts
and the comparison with their different historical ver-
sions.
Our framework allows the visualization of different his-
torical versions of an ancient artifact directly where it

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 101 ISBN 978-80-86943-75-6

Figure 5: Representation of the Forum of Nerva in (a) the Imperial Roman age and (b) in the current days. Note
the red model, namely Colonnacce, which is the only remaining part of the forum.

Figure 6: Details of the 3D model can be magnified and
explored separately from the augmented view.

was placed originally. The user points the camera of the
device towards the on-site ruins’ relative target, while
the software tracks it and overlays an interactive virtual
3D model of the artifact on it. Some of the most mean-
ingful parts of the model can be selected and magnified
to be observed in detail. Special areas of the user inter-
face are devised as 3D video buttons embedded into the
model. The user can watch the related video together
with the 3D model, or in full-screen mode.

The applicability of the framework is tested by pro-
viding an augmented view of the Ancient Forum of
Nerva. The 3D model has been based and realized ac-
cording to the documentation provided by historians in
the field [18]. The augmented view is superimposed
to a sensible map located near the ruins of the ancient
forum of Nerva, so that the visitors can observe how

the forum appeared during different historical ages. By
tapping on meaningful parts of the model, like the so-
called Colonnacce, user has access to historical infor-
mation, audio guide, photo gallery and more about the
selected monumental artifacts.

After extracting the pose using an image target at a spe-
cific fixed position in the environment, it is possible to
project the object at the ground level or in a specific rel-
ative position with a simple geometric transformation.
However this situation constrains the user to observe
the virtual environment without loosing the target. In-
deed the target loss would cause a lack of information
necessary to adjust the relative pose. A possible idea for
a future research development may be to compensate
this loss of information by estimating camera motion
using the data coming from sensors such as GPS, com-
pass and accelerometers, that are usually integrated in
handheld devices. In this way user will no more be con-
strained to maintain the target inside the field of view of
the camera.

Plans for future development include further improve-
ment of the user interface and extensive tests on a wider
range of datasets (both image targets and 3D represen-
tations). Furthermore, we envision this framework to
be particularly suitable for the next generation of AR
peripherals like the Google Project Glass [2].

6 REFERENCES
[1] i-Mibac Voyager, March 2013.
[2] Project Glass, March 2013.
[3] Rome MVR, March 2013.
[4] Rome View, March 2013.
[5] Vuforia SDK, March 2013.
[6] Ronald Azuma. Tracking requirements for aug-

mented reality. Commun. ACM, 36(7):50–51, July
1993.

[7] Ronald Azuma. A survey of augmented reality.
Presence: Teleoperators and Virtual Environ-
ments, 6(4):355 – 385, August 1997.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 102 ISBN 978-80-86943-75-6

Figure 7: Videos embedded into the augmented view.

Figure 8: Conceptual rendering example of different camera views, simulating the user turning around inside the
Forum of Nerva.

[8] Erich Bruns, Benjamnin Brombach, Thomas Zei-
dler, and Oliver Bimber. Enabling mobile phones
to support large-scale museum guidance. IEEE
MultiMedia, 14(2):16–25, April 2007.

[9] Julie Carmigniani, Borko Furht, Marco Anisetti,
Paolo Ceravolo, Ernesto Damiani, and Misa
Ivkovic. Augmented reality technologies, sys-
tems and applications. Multimedia Tools Appl.,
51(1):341–377, January 2011.

[10] Omar Choudary, Vincent Charvillat, Romulus
Grigoras, and Pierre Gurdjos. March: mobile
augmented reality for cultural heritage. In Pro-
ceedings of the 17th ACM international confer-
ence on Multimedia, MM ’09, pages 1023–1024,
New York, NY, USA, 2009. ACM.

[11] P. Dähne and J. Karigiannis. Archeoguide: Sys-
tem architecture of a mobile outdoor augmented
reality system. Mixed and Augmented Reality,
IEEE / ACM International Symposium on, 0:263,
2002.

[12] Jiang Gao. Hybrid tracking and visual search. In
Proceedings of the 16th ACM international con-
ference on Multimedia, MM ’08, pages 909–912,
New York, NY, USA, 2008. ACM.

[13] Tim Gleue and Patrick Dähne. Design and im-
plementation of a mobile device for outdoor aug-
mented reality in the archeoguide project. In
Proceedings of the 2001 conference on Virtual
reality, archeology, and cultural heritage, VAST
’01, pages 161–168, New York, NY, USA, 2001.
ACM.

[14] Glenn E. Krasner and Stephen T. Pope. A cook-
book for using the model-view controller user
interface paradigm in smalltalk-80. J. Object Ori-
ented Program., 1(3):26–49, August 1988.

[15] George Papagiannakis, Sébastien Schertenleib,

Brian O’Kennedy, Marlene Arevalo-Poizat, Na-
dia Magnenat-Thalmann, Andrew Stoddart, and
Daniel Thalmann. Mixing virtual and real scenes
in the site of ancient pompeii: Research articles.
Comput. Animat. Virtual Worlds, 16(1):11–24,
February 2005.

[16] Ken Shoemake. Graphics gems iv. chapter Ar-
cball rotation control, pages 175–192. Academic
Press Professional, Inc., San Diego, CA, USA,
1994.

[17] Andries van Dam. Post-wimp user interfaces.
Commun. ACM, 40(2):63–67, February 1997.

[18] A. Viscogliosi. Il foro transitiorio. Divus Ves-
pasianus. Il bimillenario dei Flavi., pages 202–
208, 2010.

[19] Vassilios Vlahakis, Nikolaos Ioannidis, John Ka-
rigiannis, Manolis Tsotros, Michael Gounaris,
Didier Stricker, Tim Gleue, Patrick Daehne, and
Luís Almeida. Archeoguide: An augmented real-
ity guide for archaeological sites. IEEE Comput.
Graph. Appl., 22(5):52–60, September 2002.

[20] Daniel Wagner, Gerhard Reitmayr, Alessandro
Mulloni, Tom Drummond, and Dieter Schmal-
stieg. Pose tracking from natural features on mo-
bile phones. In Proceedings of the 7th IEEE/ACM
International Symposium on Mixed and Aug-
mented Reality, ISMAR ’08, pages 125–134,
Washington, DC, USA, 2008. IEEE Computer
Society.

[21] R. Wang and X. Qian. Openscenegraph 3.0: Be-
ginner’s Guide. Packt open source. PACKT PUB,
2010.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 103 ISBN 978-80-86943-75-6

A Comparative Analysis of Spatial Partitioning
Methods for Large-scale, Real-time Crowd

Simulation

Bo Li

University of Canterbury
Christchurch, New Zealand

bli62@uclive.ac.nz

Ramakrishnan Mukundan

University of Canterbury
Christchurch, New Zealand

mukundan@canterbury.ac.nz

ABSTRACT
Acceleration algorithms involving spatial partitioning methods are extensively used in crowd simulation for real-

time collision avoidance. Memory and update costs become increasingly important as the crowd size becomes

large. The paper presents a detailed analysis of the effectiveness of spatial subdivision data structures,

specifically for large-scale crowd simulation. The results demonstrate that a regular grid data structure combined

with an extended oriented bounding volume for crowd members can facilitate efficient updates necessary for

real-time performance.

Keywords
Crowd simulation, crowd animation, partitioning algorithms, collision detection, subdivision data structures,

bounding volumes.

1. INTRODUCTION
Crowd simulation and animation is an active area of

research that finds several applications in computer

graphics, analysis and design of urban environments

and the development of emergency evacuation

strategies [SOH11], [WXZ
+
11]. In recent years, real-

time crowd simulation applications have gained

importance in virtual training systems, such as

combat operations training [QC09]. Real-time

simulation of large-scale crowd movement requires

effective spatial partitioning methods that can

provide fast updates.

Space partitioning techniques [Sam06] are widely

used for broad phase collision detection between

objects and also for collision avoidance with

obstacles. The more general problem of crowd

detection however addresses various other aspects

such as narrow-phase collision detection using

intersection tests between pairs of geometrical

primitives, and collision response algorithms. Several

space partitioning data structures such as quadtrees

[KLZ08], k-d trees [GCL
+
10] and regular grids

[BQ10] are commonly used to reduce the number of

comparisons between objects. Bounding interval

hierarchies [WK06] are recently introduced data

structures that have been found useful in applications

such as ray-tracing. A detailed comparative analysis

of these data structures in terms of their effectiveness

and suitability for large-scale crowd simulation will

be useful for the development of real-time

applications. This paper presents some of the

important results obtained through our research. For

convenience, a single member of a crowd is referred

to as either a "character" or an "agent." The motion

of the crowd is assumed to be confined to a two-

dimensional "ground" plane. Thus, even though

characters in a crowd and obstacles may have three-

dimensional representations, we need consider only a

two-dimensional motion projected onto the ground

for analysing problems such as collision detection,

obstacle avoidance and path planning.

The paper is organised as follows. The next section

describes space partitioning data structures

considered in our research: Grid, Quadtree, k-d tree,

and Bounding Interval Hierarchy (BIH). Section 3

presents our crowd simulation model and discusses

the implementation aspects of the above four data

structures. Results of the comparative analysis are

reported in Section 4. Section 5 summarises the main

contributions of the paper and outlines future work.

2. SPATIAL PARTITIONING
In this section, four different data structures that are

suitable for crowd simulation are discussed, looking

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 104 ISBN 978-80-86943-75-6

at specific advantages and drawbacks of each. Three

of the data structures are widely used in broad-phase

collision detection and the fourth method [WK06] is

Figure 1. An example of a set of character models in

a grid-based partitioning, with a hash table storing

object’s indices.

used primarily in ray tracing applications. For the

purpose of comparison, the brute-force method which

compares every pair of character models/agents for

collision detection, is also considered in the

experimental analysis.

2.1 Regular Grid
A uniform grid [LD08] is a very effective space

subdivision scheme. It is fast for collision detection

and easy to implement. It partitions the simulation

space into small cubic cells with same size. The size

of cells is usually defined based on the character's

bounding box size, and the character itself is

associated with the cell that contains its centre. It is

also assumed here that all characters have the same

size. Since crowd simulation models will usually

consist of large scenes, a regular partitioning of the

space into small cells will yield a large number of

cells and correspondingly large memory requirement.

One straightforward solution is to have spatial hash

structures. A spatial hashing [THM
+
03] divides 2D or

3D space into uniform grids, and then uses a hash

function to convert them into 1D hashed table. For

example, a point with position p = (x, y, z) is hashed

into a hash table of size h by computing its cell index

c as follows:

 (1)

Where u, v, w are large prime numbers and d is the

cell size. If multiple points are hashed to the same

hash cell, chaining is employed to resolve these hash

collisions, i.e., the points are stored in a linked list

specific to this cell. An example is shown in Fig. 1.

An important advantage of the grid based partitioning

is that it is easy to build, and the data structure need

not be updated any time during the whole simulation.

Figure 2. An example of a set of crowd members

stored in a Quadtree, showing two storage methods.

In the first method, objects are stored only once

based on the location of their centroid, while in the

second method, an object is stored in all leaf nodes

that intersect the object’s bounding volume.

Figure 3. An example of a scene with spatial

partitioning using a k-d tree, with two storage

methods as in the case of a quadtree.

Further, an efficient hash map provides O(1) search

time for finding an object.

2.2 Quadtree
Quadtree is a tree-based partitioning method, and

was originally proposed in [FB74]. It was used for

processing images and two-dimensional range

queries at the early stages, and then found

applications in several other areas such as ray tracing

and collision detection. It is an axis-aligned

hierarchical partitioning of a two dimensional space.

Each internal node in the quadtree has exactly four

children, and each node also has a finite volume

associated with it. A two dimensional world

generally is fully enclosed in an axis-aligned

bounding square, and is subdivided into four smaller

squares at each recursive step (Fig. 2).

Quadtree [PPD07], [ST05] also is a popular

acceleration data structure in crowd simulation. It is

easily constructed by uniformly subdividing regions

containing at least one crowd member into four sub-

regions. Compared to the grid, a quadtree generally

uses much less memory when members of a crowd

are not uniformly distributed in a region. The main

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 105 ISBN 978-80-86943-75-6

drawback of the quadtree structure is that the tree

will need to be rebuilt almost every frame for a

highly dynamic scene. The search time for a quadtree

is also greater than that of a grid.

Figure 4. Nearest neighbour search using a k-d tree.

2.3 K-d Tree
A k-d tree is a binary tree, which divides a k-

dimensional space hierarchically using a set of axis-

aligned splitting planes. It uses a simple construction

by dividing a non-empty space and its subspaces

using median cut recursively, first using the x-

coordinate, then the y-coordinate, and then again

using the x-coordinate, and so on (Fig. 3). The depth

of the tree is determined such that either the leaf

nodes only contain a pre-specified maximum number

of objects or the depth of tree has reached a

maximum threshold. The algorithm for computing a

k-d tree can be optimized by sorting the objects first,

and then finding the median objects, and the

corresponding splitting planes.

The nearest neighbour search algorithm using a k-d

tree effectively finds an agent's neighbours. Given a

k-d tree with N nodes, at least O(log N) inspections

are needed on an average, because any nearest

neighbour search requires traversal to at least one

leaf of the tree. Generally, during a nearest neighbour

search, only a few leaf nodes need to be inspected.

Fig. 4 shows an example where only two nodes have

been visited, the agent with blue background colour

is the nearest neighbour for the purple agent.

2.4 Bounding Interval Hierarchy
Bounding interval hierarchies (BIHs) have been

recently introduced and used for real-time ray tracing

[WK06]. It is found to be faster than k-d trees and

easy to implement. BIH is similar to bounding

volume hierarchies and k-d trees, and has the

advantages of both approaches.

BIH provides very fast construction times and

efficient traversal. It uses two parallel partitioning

planes for each node. For a given node, the plane

perpendicular to and passing through the midpoint of

the longest axis of the node’s Axis Aligned Bounding

Box (AABB) is first chosen as the splitting plane.

Assume that this axis is in the x-direction, and the

position of the splitting plane is x0. The AABBs of

the objects within the node’s volume are then sorted

along this axis. The objects whose AABBs have all

Figure 5. Partitioning of objects into left and right

branches using two parallel partitioning planes.

x-coordinates less than or equal to x0 are assigned to

the left child. AABBs that are entirely on the right of

the splitting plane are assigned to the right child.

Objects whose AABBs intersect the splitting plane

are classified as belonging to the left or right child

depending on which side of the splitting plane the

AABBs have maximum overlap. The left partitioning

plane is then defined using the maximum value of the

x-coordinates of the AABBs belonging to the left

child, and the right plane is defined using the

minimum value of the x-coordinates of the AABBs

belonging to the right (Fig. 5). The process continues

by splitting each child node along the longest axis

and defining two partitioning planes along that axis.

A node containing only a single object is not

subdivided further.

The efficiency of the bounding interval hierarchy is

due to the advantages inherited from space

partitioning structures similar to a k-d tree. On the

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 106 ISBN 978-80-86943-75-6

other hand, bounding interval hierarchies have a

fixed pre-allocatable size depending on the number

of objects. Another advantage inherited from

bounding volume hierarchies is that the volume

elements can overlap and thus allow efficient update

of the structure for dynamic scenes.

Figure 6. Crowd simulation with 2000 agents, where

each agent is bounded by an EOBB of a dynamically

changing stride length.

Figure 7. Crowd simulation with 2000 agents, where

two groups move towards each other and converge in

the middle of the scene.

Figure 8: Crowd simulation with 2000 agents, where

the whole group moves towards a common

destination.

Figure 9. Crowd simulation with 10000 agents, with

two groups moving in opposite directions.

Figure 10. Crowd simulation with 10000 agents, with

two large groups merging together in the middle of

the scene.

Figure 11. Crowd simulation with 2000 agents with

three different obstacles located in middle of the

scene.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 107 ISBN 978-80-86943-75-6

Figure 12. Definition of the extended OBB. [ML12]

3 CROWD SIMULATION MODEL

AND IMPLEMENATION
For the purpose of experimental analysis, we

constructed a set of complex 3D scenes (such as Fig.

6-10), each with a large number of crowd members.

A typical scenario consisting of two large groups of

people moving in opposite directions are shown in

Figs. 6-8, with Fig. 6 showing the start configuration

of the simulation. The groups meet in the middle of

the scene later in the simulation (Fig. 7) and later

reach the destination (Fig. 8). In each figure, a small

region is enlarged to clearly show the crowd

members and their corresponding extended oriented

bounding boxes (EOBB) with different stride lengths.

We then increase the complexity of the simulation by

adding a few obstacles into the scene (Fig. 11). Such

a scene can have increasing levels of complexity

based on the behaviour models and path planning

algorithms used. Poorly designed algorithms can also

make inefficient memory requests. We implemented

all four data structures described earlier to evaluate

the performance of each case with respect to

increasing crowd size.

We also used a new data structure called the

extended oriented bounding box (EOBB) (Fig. 12)

[ML12] into our simulation system. EOBBs are

convenient data structures that can be used for both

bounding volume and instantaneous motion

representation. Using EOBBs, broad-phase collision

detection can be performed using OBB overlap tests.

The stride length s of an EOBB can be dynamically

updated based on the number and positions of

character models present in the immediate

neighbourhood of an object. EOBBs are also found to

be useful for obstacle avoidance and computing path

deviations [ML12]. EOBBs were used in all our

experiments with the four data structures outlined in

the previous section.

Figure 13. Spatial partitioning using a regular grid

where the grid size equals the maximum stride length.

First, we implemented a uniform grid data structure,

where the grid size is equal to a predefined maximum

stride length. A hash map is used for storing object

locations. In [EL07], the authors described a simple

and fast way to implement hash functions for

minimising the time taken for collision detection.

Based on their research, we used a XOR hash

function to generate the hash table using Eq. (1), with

the values of 73856093 for u and 19349663 for v.

While designing the hash table, we need to consider

the trade-off between number of cells and memory

usage. If we reduce the number of cells, the

probability of objects being assigned to the same cell

of the hash grid increases. Based on the analysis in

[EL07], our hash table has a size h equal to the

number of the objects in the crowd simulation.

After the hash spatial data structure is created, the

grid neighbour searching method is used for finding

all potential colliding agents. The position (xp, yp) of

a character can be directly used to compute the hash

table index as well as the indices of the neighbouring

grids. The direction (l, m) is used to select a

maximum of three neighbouring cells out of a total of

8 (Fig. 13). If the world coordinate extents of the

scene space are given by (xmin, ymin), (xmax, ymax), and

if the maximum stride length used for discretization

is s, then the function is given by:

 (2)

where M = (xmaxxmin)/s.

The neighbouring cells are selected based on the

signs of the components of the current direction

vector (l, m). For example, the cell vertically above

index k given by the index k+M is chosen if m ≥ 0.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 108 ISBN 978-80-86943-75-6

The cell diagonally above the current cell is given by

k+M+1 is selected if both l and m are positive. Only

 Figure 14. Updating time vs. number of agents

(Grid, k-d tree, quadtree, and BIH)

four identified cells (including the current cell) are

used for the broad-phase collision detection for each

agent.

Second, we implemented a quadtree shown in Fig. 2,

and the simulation scene is subdivided into four

smaller squares at each recursive step. A leaf node

contains only agents. Each agent is stored only once

in a leaf node. The centroid of each agent is used to

determine which side of the split plane the agent lies.

A leaf node size is always larger than the maximum

stride length of an agent. For the neighbour search,

we first traverse the tree and find the leaf node which

contains the agent, then we use OBB-AABB overlap

test to find if the agent is fully contained by leaf node.

If so, we add all agents in this leaf node to the agent's

neighbour. Otherwise, we check which boundary of

leaf node is intersected with EOBB of the agent, and

then traverse the tree to find the leaf nodes which

connect with those boundaries, finally add those

agents in the leaf nodes to the agent’s neighbours.

Third, a k-d tree is implemented into our system, as

shown in Fig. 3. In a highly dynamic scene, the k-d

tree will need to be updated almost every frame. By

choosing splitting planes properly using median

points we can always aim to get a nearly balanced

tree. We first choose the longest axis, and use the

quick sort algorithm to sort the object coordinates

along this axis, and the middle point is chosen as a

splitting plane. The goal of this approach is to create

subgroups which contain nearly the same amount of

objects. Then the recursive spatial partitioning is

continued until the depth of the tree has reached a

pre-specified number, or if the number of the objects

in the leaf nodes is less than a given threshold. A

point on the splitting plane is always stored in left

node of the tree. The nearest neighbour search

algorithm is used to minimise the number of

comparisons in the collision detection phase.

Figure 15. Updating time vs. cell size for the grid

structure.

Figure 16. Updating time vs. number of agents in leaf

node for a quadtree.

Figure 17. Updating time vs. number of agents in leaf

node for a k-d tree.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 109 ISBN 978-80-86943-75-6

Finally, we implemented a Bounding Interval

Hierarchy for partitioning a crowd scene. The AABB

is calculated for each object, the approximate sorting

[WK06] is used to sort the agents, and then we

determined the two paralleled splitting planes by

median-cut. The next section describes experimental

results obtained using the above partitioning methods.

Figure 18. Updating time vs. number of agents in leaf

node for a BIH.

4 RESULTS AND EVALUATION
Experimental results shown in this section are

generated by simulating different scenarios by

increasing crowd size and adding different types of

obstacles.

First, we compared the update time for each data

structure. The results are depicted in Fig. 14. The

graph shows that grid structure gives the best

performance. Other types of hierarchical structures

required frequent updates because their partitioning

algorithms depend on both the position and

distribution of crowd members in the constantly

changing scene. Even when the number of agents in

the scene is 10000, the time taken for updates using

the grid structure is less than 500ms. We also noticed

that there grid structure does not provide a significant

improvement over the brute-force method, when the

number of agents is less than 1000.

Cell size is an important parameter in the design of

the grid data structure. In our experiment, the size of

cell is set up to the maximum stride length of agent

first, and then we increased the size of cell, and

measured the updating time. The results are shown

on Fig. 15. The best performance is obtained when

the cell size just fits the maximum stride length of

agent.

In Figs. 16, 17, 18, we provide experimental results

using quadtree, k-d tree, and BIH to find the variation

in performance with the maximum number of objects

stored in each leaf node. The results show that when

the objects in leaf node is 1% of total number of

objects provide the best performance for both

quadtree and k-d tree. For the BIH, we can subdivide

the space until only one object is in the leaf node, and

we can still get a good performance, but when the

number of objects contained in leaf node is 10, we

got the best performance.

5 CONCLUSIONS AND FUTURE

WORK
In this paper, we presented a fairly extensive

comparative analysis of the performance of spatial

subdivision structures in large-scale crowd

simulation. The simulation results show that a grid

data structure with extended oriented bounding boxes

for character models gives the best performance

when the number of crowd members is very large.

Crowd simulation of 10000 agents in real-time can

only be achieved by using such spatial data

structures. The grid data structure has the advantage

that it doesn’t need to be updated, and an efficient

hash map implementation can provide fast look-up.

The extended oriented bounding box is also found to

be very efficient in representing both geometry and

instantaneous motion of a character in the crowd.

The paper has presented an overview of four

commonly used spatial subdivision methods, and

analysis using update time with respect to variations

in crowd size, grid cell size, and the maximum

number of objects in the leaf nodes of the tree

structures for quadtree, k-d tree and the bounding

interval hierarchy.

Future work in this area is directed towards

combining collision avoidance with path/motion

planning algorithms incorporating various types of

behaviour models. Effective mechanisms for

improving the performance of hash mapping for the

grid structure will also be explored. A direct

extension of the work presented in the paper would

be the performance analysis of acceleration

algorithms when crowd motion is not confined to a

two dimensional plane. Such methods would then

heavily rely on multi-dimensional data structures

[Sam06] for minimizing comparisons.

When the crowd size increases in scale from large to

massive, the performance of acceleration methods

becomes crucial. Several models for the simulation

and rendering of massive crowds have now been

attempted on the GPU [JPZ
+
09], [PJZ

+
08], [PJZ

+
10].

GPU implementations of spatial structures have been

successfully tried using just neighbours of agents.

Structures similar to the extended oriented bounding

boxes could also be explored further, and

implemented on parallel architectures.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 110 ISBN 978-80-86943-75-6

6 REFERENCES

[BQ10] F. Bu and C. Qin. Research on the mass

events based on grid-agent. Proc. of Youth

Conference on Information Computing and

Telecommunications, pp. 130–133, 2010.

[EL07] M. Eitz and G. Lixu. Hierarchical spatial

hashing for real-time collision detection. Proc. of

IEEE International Conference on Shape

Modeling and Applications, pp. 61–70, 2007.

[FB74] R. A. Finkel and J. L. Bentley. Quadtrees: a

data structure for retrieval on composite keys.

Journal of Acta Informatica, pp. 1–9, 1974.

[GCL
+
10] S. J. Guy, S. Curtis, M.C. Lin, D.

Manocha. PLEdestrians: a least-effort approach to

crowd simulation. Proc. of the 2010 ACM SIG-

GRAPH/Eurographics Symposium on Computer

Animation, pp. 119–128, 2010.

[JPZ
+
09] M. Joselli, E.B. Passos, M. Zamith et. al. A

neighbourhood grid data structure for massive 3D

crowd simulation on GPU, Games and Digital

Entertainment (SBGAMES), 2009 VIII Brazilian

Symposium on. IEEE, pp. 121-131, 2009.

 [KLZ08] W. L. Koh, L. Lin, and S. Zhou. Modelling

and simulation of pedestrian behaviours,. Proc. of

22
nd

 Workshop on Principles of Advanced and

Distributed Simulation, pp. 32–50, 2008.

[LD08] A. Lagae and P. Dutré. Compact, fast and

robust grids for ray tracing. Computer Graphics

Forum, Proc. of the 19
th

 Eurographics

Symposium on Rendering, pp. 1235–1244, 2008.

[ML12] R. Mukundan and B. Li. Crowd simulation:

Extended oriented bounding boxes for geometry

and motion representation. Proc. of the 27
th

Conference on Image and Vision Computing New

Zealand, pp. 121–125, 2012.

[PJZ
+
08] E.B. Passos, M. Joselli, M. Zamith, et. al.,

Supermassive crowd simulation on GPU based on

emergent behavior. Proc. of the VII Brazilian

Symposium on Computer Games and Digital

Entertainment, pp. 70-75, 2008.

[PJZ
+
10] E.B. Passos, M. Joselli, M. Zamith, et. al. A

bidimensional data structure and spatial

optimization for supermassive crowd simulation

on GPU, Computers in Entertainment, Vol. 7, No.

4, Article 60, pp. 1-15, 2009.

[PPD07] S. Paris, J. Pettré, and S. Donikian.

Pedestrian reactive navigation for crowd

simulation: a predictive approach. Proc. of

Computer Graphics Forum, pp. 665–674, 2007.

[QC09] H. Qiu and L. Chen. Real-time virtual

military simulation system. Proc. of 1
st

International Conference on Information Science

and Engineering, pp. 1391–1394, 2009.

 [Sam06] H. Samet, Foundations of

Multidimensional and Metric Data Structures,

Morgan Kaufmann Publishers, New York, 2006.

[SOH11] S. Sharma, S. Otunba, and J. Han. Crowd

simulation in emergency aircraft evacuation using

virtual reality. Proceedings of the 16
th

International Conference on Computer Games,

pp. 12–17, 2011.

[ST05] W. Shao and D. Terzopoulos. Autonomous

pedestrians. Proc. of the 2005 ACM

SIGGRAPH/Eurographics symposium on

Computer animation, pp. 19–28, 2005.

[THM
+
03] M. Teschner, B. Heidelberger, M. Muller,

D. Pomeranets, and M. Gross. Optimized spatial

hashing for collision detection of deformable

models. Proc. of the Vision, Modeling, and

Visualization Conference, pp. 19–21, 2003.

[WK06] C. Wächter and A. Keller. Instant ray

tracing: The bounding interval hierarchy. Proc. of

the 17
th

 Eurographics conference on Rendering

Techniques, pp. 139–149, 2006.

 [WXZ
+
11] X. Wei, M. Xiong, X. Zhang, and D.

Chen. A hybrid simulation of large crowd

evacuation. Proc. of 17
th

 International Conference

on Parallel and Distributed Systems, pp. 971–975,

2011.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 111 ISBN 978-80-86943-75-6

High-velocity optical flow

 Joris Vergeest

Delft University of Technology

Landbergstraat 15

Delft, The Netherlands

j.s.m.vergeest@tudelft.nl

ABSTRACT
Optical flow is widely used to estimate the velocity of objects relative to a digital camera. Most commonly, two

images taken with the same camera at small time difference are compared in order to detect the displacement of

structures in 2D image space. Such displacement could be a measure of displacement, or motion, of objects in the

scene relative to the camera. At high velocities, the displacement in image space is relatively large and the

correlation of image structures gets more difficult. The displacement can be reduced by reducing the time

difference, or increasing the number of frames taken per second. However, due to the reduced exposure time, the

quality of the individual images gets poorer. In some practical situations, it appears technically very difficult to

achieve reliable speed measurement at high velocities, even when using high-speed cameras. One example is the

measurement of self-speed from images of the road surface taken with a camera from a driving car. In view of

this purpose we explore the potential of the method and its limitations.

Keywords
Optical flow, high speed, noise, low resolution

1. INTRODUCTION
Optical flow is, both in biology and in technology, an

important phenomenon. It is the motion of structures

in a two-dimensional projection from a three-

dimensional scene. In biology, optical flow is

considered crucial for animal and human vision, the

detection of moving objects and the experience of

self-speed. In computer vision, optical flow is the

basic observable to quantify speed of objects relative

to other objects, or relative to the camera taking the

scene. The latter process is referred to as self-speed

estimation or measurement.

In this paper we research the feasibility of self-speed

measurement of a car driving on a highway based on

optical flow, under poor visibility conditions such as

low-contrast texture. In section 2 we describe the

motivation of the investigation and the requirements

of the method. Also the scope of this paper will be

precisely defined. In section 3 we present the

technical approach and in section 4 we define the

experimental conditions. In section 5 we present the

experiments and results. Conclusions about the

feasibility of the method and outlook are described in

Section 6.

2. MOTIVATION AND

REQUIREMENTS
The research aims at a method to extract and record

self-speed of a car and in addition visual scene

information, using an instrument which can be easily

mounted in a car. This paper deals with, and its scope

is limited to, the feasibility of such instrument. The

background of the research is the study on car

drivers’ behavior during highway traffic congestions

and on new approaches to influence the driving style

and to reduce traffic jams. Both the emergence of

congestions and their dissolution have got due

attention in research over decades. Based on traffic

flow models, simulation systems have been

developed to study all kind of phenomena of traffic

on micro and macro scales, under various conditions

in various scenarios. The behavior of individual car

drivers is central to most traffic flow models, in

particular when they categorize as car-following

models. These models assume that a car driver

controls his/her car mainly as a function of other cars,

in front (if any). The acceleration (positive or

negative) of the car is modeled as a function of own

speed and the speed of the car ahead and its distance.

Treiber (2003) proposed that car-following

characteristics not only differ among drivers, but may

also vary for one driver over time. He has modeled

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 112 ISBN 978-80-86943-75-6

memory effects in the response behavior of drivers to

the traffic situation, e.g. by presuming that after being

stuck in a jam, drivers tend to increase the time gap to

the preceding vehicle. When incorporating this

memory effect into the IDM (Intelligent driver

model), traffic flow simulations get increasingly

consistent with the measured data (Treiber 2003).

If cars tend to accelerate slowly after leaving a traffic

jam, it may cause a significant decrease of road

capacity and cause congestions to be over-persistent.

Numerical simulations have shown that the life time

and length of jams as well as delays of individual cars

increase significantly when the acceleration

parameters of the IDM are reduced [Vergeest 2012].

Although there are anecdotic indications that people

tend to leave traffic jams too slowly, we have not

found any objective reporting about this. It is the

main goal of our research to obtain statistical

information about drivers’ behavior just after having

been stuck in a jam. Without this information being

available, we can only speculate about ways to

influence and improve the driving style and thus to

avoid OPCs (over-persistent congestions).

We should point out here that the ACC (adaptive

cruise control) and similar systems could reduce the

problem of OPCs. However, although the penetration

rate of ACC is increasing, it is not yet evident that

they operate efficiently and safely during congestions

and other low-speed situations (Xiong 2012).

Therefore we will focus on fully human-controlled

cars.

One could reflect about obtaining statistics of human

driving behavior by using a car simulator. Suppose

that the car simulator were based on the IDM (or

similar) model. Then the virtual traffic provided by

the simulator accelerates according to the IDM. The

subject’s car is operated by a test person, allowing the

actual acceleration characteristics (and other

parameters) of the test person to be recorded. The

scenario provided by the simulator may contain

congestion conditions. In this way, using the data

from many test persons, the acceleration profile (as

function of distance and speed) could be statistically

obtained. There is, however, one basic assumption

undermining this approach. The virtual, surrounding

traffic generated by the simulator is based on the

IDM and not on the actual acceleration profile, which

is actually the unknown we are after. The difference

between the model’s profile and the real-life profile

could bias the profile exhibited by the test persons

driving the simulator.

In our aim to obtain the real-life acceleration

behavior of drivers we focus on three main

parameters: 1) time, 2) the speed of the own vehicle

and 3) the distance to the car ahead. From the latter

the speed of the car ahead (relative to the own car)

can be derived. Although useful, the location of the

own vehicle as a function of time is not needed to

detect the occurrence of OCPs. We limit our study to

cars in a single lane. Our interest is in situations were

cars leave a congestion, which represent, however,

only a small fraction of typical journeys.

One way to collect sufficient statistics is to record the

three aforementioned parameters of cars participating

in traffic over long periods of time. The situations of

interest should then be filtered out in subsequent data

analysis.

Once somebody volunteers to participate in the

research and, it should be made very easy to adapt

his/her own car. We formulate the requirements of

the data taking system:

1. It should be portable and easily and quickly

installable in any common passenger car. The car

driver him/herself should be able to install and

take out the system in less than 1 minute.

2. It should require no or very little effort or

attention to operate the system. A single on/off

switch should suffice. Automatic switch on/off is

also an option. It should not distract the attention

of the driver during driving.

3. The instrument(s) should not be expensive or

otherwise attract the attention from people

passing by.

4. The recording capacity should be sufficient for

about 50 to 100 hours of driving time.

We list no requirements about computer processing,

assuming that the data needs not be analyzed real-

time. The extraction of the three parameters from the

raw data will be done offline as will be the analysis.

Let us define the scope and purpose of this paper

more precisely. The main purpose of this paper is to

find out whether it is feasible to collect empirical data

subject to the 5 requirements listed above. (The

conclusion of the paper is that it is not, to our best

knowledge). In Section 3 we reason that a possible

approach could be based on a simply mountable

camera, inside the car, viewing into forward

direction. To actually detect optical flow from image

sequences can be done with a multitude of methods,

as e.g. reviewed by [Barron 1994]. Although the

performances of the various analysis techniques

differ, their effectiveness in view of our application is

outside the scope of our paper. The major factor that

limits the feasibility seems to be the image quality,

rather than analysis performance. Therefore, our main

focus is on requirements of image resolution at high

self-speed.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 113 ISBN 978-80-86943-75-6

3. TECHNICAL APPROACH
The most direct way of recording speed is to simply

readout the car’s own speedometer. In principle, the

speed (as many other data) can be obtained in digital

form via a cable connector provided by the car

manufacturer. However, the connection and the

interface are not standardized, which makes it

unpractical, considering requirement 1.

The recording of own speed as a function of time

could also be done using a GPS logging device.

However, deriving your speed from GPS coordinates

and time is sensitive to the accuracy of the GPS

coordinates, which is know to vary depending on the

quality of and the number of the satellite signals

received. Some GPS devices can measure speed

directly from the Doppler shift, which is more

accurate, but also dependent on the satellite reception

quality. In practice, measuring time and own speed

using GPS is a good option, and might meet all 4

requirements.

However, we also need a practical way to measure

the distance to the car ahead as a function of time. If

one would have access to the GPS data from own car

and from car ahead, the problem would be solved. In

a controlled field experiment, it proved possible to

collect data from 50 cars on a real highway, which

was reserved for the time of the experiment [Schakel

2010]. Each of the cars was equipped with a

cooperative ACC, where the ACCs could

communicate among each other. Theoretically, when

all cars on all motorways would measure and

communicate position, then the distance between any

two cars could be obtained, see e.g. [Herrara 2010].

In practice this is not yet feasible.

We are therefore looking for a way to measure the

distance to the vehicle ahead from our own car, as a

function of time. We consider two options. The first

is radar-based. This concept is central to ACC

systems and works reliably. It conflicts, however,

requirement 1 and, since it would measure distance

only, the recording of speed would involve one

additional device or instrument. The other option is

vision. As demonstrated in [Nieto 2010], the

detection of own speed and of the distance to cars

ahead can be retrieved from footage from a single

onboard video camera. The measurement of speed is

reliant on the detection of optical flow, or the

displacement of image features between two

subsequent frames from the video camera. Relatively

clear image features are white lane markings on a

dark surface road. However, at high velocity, the

displacement of lane markings may become as large

as the distance between the lane markings

themselves, which is complicating the computation of

speed [Vergeest 2012a]. Although lane markings are

typically present on highway road surfaces, speed

measurement should not depend on their occurrence.

In general, temporal aliasing effects deteriorate the

performance of optical flow methods [Marmarella

2012]. However, also poor light conditions, camera

noise and motion blur in the individual images pose a

problem to the derivation of speed from the images.

However, suppose that we could solve these

problems, then we have an instrument that would

fulfill all 4 requirements. The instrument is an

onboard camera providing images of the scene ahead,

at a certain frame rate. Even when the images do not

contain a time stamp, knowing the time difference

between subsequent images is sufficient for our

purpose. From the optical flow we can derive the

forward speed of the own car, not necessarily to be

determined from lane marks for in case these are

absent or too far apart, but in some other way, still to

be found. Furthermore, from the same images we can

detect the distance of the car ahead, based on Nieto’s

method or as in [Vergeest 2012a].

We remark that optical flow detection should not

necessarily depend on the availability of image

frames. If the photo sensors of the camera could be

read individually and instantly, the motion of image

features might be even better identified.

In conclusion, as a technical approach we consider an

onboard camera. However, as the most dominant

problem, we need to address self-speed estimation

from optical flow at high velocity and poor visibility

conditions in absence of clear features such as lane

markings.

4. EXPERIMENTAL CONDITIONS
In this section we study the feasibility of estimating

self-speed from optical flow. The main principle is to

determine the displacement of objects in two

subsequent images. We have discarded the rotational

component, which can be expected to be small

compared to the translational component, at high

velocity. Also possible bends or slopes of the road

surface are not taken into account, assuming that their

effects will be small.

As mentioned, when the scene contains clearly

detectable features which can be well correlated, the

displacement can be reliably determined, and the

speed of the object relative to the camera be

estimated [Souhila 2007]. In our application we focus

on the road surface. Assuming that (at least locally)

the road surface is consistent with a plane parallel to

the driving direction of the car, points in the surface

can be one-to-one mapped from 3D to points in the

image plane of a camera fixed onto the car. Although

the optical flow of objects such as trees or buildings

may be relatively easily determined in the image

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 114 ISBN 978-80-86943-75-6

plane, there would be no simple one-to-one mapping

to the 3D scene.

When the road surface does not contain obvious

features, such as lane markings, the visual structure or

texture of the road surface might be used to detect the

amount of shift as a function of time as a measure of

optical flow. When two images of the road surface

are available, taken from the same camera at a small

time difference, the matching criterion can be defined

as a difference function of the two images, which

should be minimized [Mammarella 2012]. At low

speed, when the amount of shift is small, it is

relatively easy to find matching regions in the two

images. At high speed, there are two problems of

finding matching image regions. The first is that the

expected shift will be large, and therefore a larger

range of potential shift needs to be considered. The

probability that nearly similar structures pop up will

increase, and so will the risk of false matches.

Second, due to the high speed the image quality will

degrade, either due to motion blur, to shorter shutter

times (and hence an increased camera noise level), or

both. When reducing the first problem (increasing the

frame rate) the second problem gets worse.

Figure 1. Perspective parameters of the camera setup. The optical center c is at height h above the road

surface. The driving direction is into the z-direction.

Let’s consider the simplified camera setup in Figure

1. The camera is mounted inside the car near the

front window, pointing into the driving direction,

taking images as in Figure 2. In the pixel plane of

the camera, which is assumed to be vertical, phorizon

is the index (counting from bottom up) of the pixel

line representing the horizon. plow is the lowest pixel

line showing road surface. That particular line in the

road surface has z-coordinate zlow as measured in

the coordinate frame with origin c. The height of

the optical center c has y-coordinate equal to h. A

point in the road surface at distance z from the

camera in forward direction will be mapped to a

pixel on scan line p, such that

horizon low

low

horizon

p p
z z

p p

. (1)

We define Δp as the amount of vertical shift

observed for a point on the surface between two

successive camera pictures. Δp depends on the

speed v of the car, the resolution and the frame rate

of the camera, and on the location of the point in the

perspective image. For points projected near the

bottom of the picture, the optical flow measured in

pixel shift is relatively large. For large Δp the image

matching process will be computationally more

involved and the risk of error will increase.

Therefore, Δp will be an important parameter for

the trade-off between image quality and maximum

speed.

Figure 2. Picture taken with an onboard camera.

The region of analysis is indicated by the white

box below the center of the image.

In the exploration of the feasibility of image

matching, we will set some further limitations to our

scope. Out of the various types of difference

functions we chose to use the sum of absolute

differences (SAD) among pixel brightness of the

image regions. Another assumption is that the

image regions are located near the plane x=0 of the

camera, as to simplify the compensation for

perspective distortion.

The focus of initial experimentation will be the

ability to determine Δp from two given images,

where we assume that 1) the images have been

taken by the same camera, 2) a predefined region in

the image is of interest, 3) the image in the region of

z

y

h

zlow

c phorizon

p

plow

optical centre

pixel plane

road surface

driving direction

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 115 ISBN 978-80-86943-75-6

interest is created according to the setup as in

Figure 1.

5. EXPERIMENTAL RESULTS
We collected images with an HD-HERO2 video

camera from GoPro [Gopro 2013]. This camera can

easily be installed as a dashboard camera. We

setup the camera at frame rate u =120 fps. The field

of view was 170° at a resolution of 848480 pixels.

The optic flow of the road surface was determined

from the pixel data in a small region of the images

near z = 4.2m, see Figure 2. In this particular case

the region is of size 18032 pixels. The SAD is

determined by moving a subwindow (smaller than

the region) from one image over the region of the

second image in steps of one pixel. In the current

algorithm we ignore the (small) perspective

distortion present in the regions. Suppose that we

choose the subwindow to have size 16012 pixels.

Then the maximum number of steps in the Y-

direction is 32-12=20, that is 9 pixels in each

direction, which is the maximum Δp that would be

detectable.

For the camera setup we have zlow = 4.0m, plow =

150 and phor = 320. The mapping factor f is the

distance on road surface corresponding to an

increment of one scan line,

2

()low hor low

z z
f

p z p p

, (2)

as can be derived from equation (1). At the bottom

of the image region, which is near z = zlow, a shift of

one pixel into the vertical direction corresponds

with approximately f = 4.0/(320-150) = 0.024m

distance on the road surface for our specific camera

setting. Since Δp = v / uf, we have Δp = 3.5 pixels

at v = 10m/s, or Δp = 11.6 pixels at 120km/h.

0

5

10

-10 0 10

Y-shift (pixels)

S
A

D
 /
 p

ix
e
l

Figure 3. SAD of two consecutive images as a

function of Y-shift. For each Y-shift 21 points are

shown for X-shift = -10, -9,, 9, 10 pixels.

Figure 3 shows, as an example for one pair of

images, the SAD (divided by the number of pixels

in the sub window) as a function of Y-shift. In this

case we observe a minimal SAD at Y-shift or Δp -

2, corresponding to v 6m/s or 21km/h. The lowest

point in the plot of Figure 3 corresponds to an X-

shift of 0 (not visible in the plot). The speed derived

from the plot is v = u f Δp, that is it is therefore

discrete in steps of u f = 2.9m/s or 10.4km/h. One

could attempt to fit a curve to the minimum SAD as

a function of Y-shift and thus estimate v; we have

not done that.

Figure 4. Δp as a function of time over a 30s time

interval.

The footage from the HERO2 allows the

measurement of v at its frame rate, provided that we

can determine Δp. An impression of the reliability

to determine Δp is given in Figure 4. The course of

Δp can be recognized, but there are some “noisy”

parts, which correspond to locations on the road

where the surface lacks visual contrast. Figure 5

provides more detail about this effect.

In Figure 5 we show the measured speed as a

function of time over a 1 second time interval. The

hosting car was driving at a constant speed of

approximately 30km/h. In the plot the speed is

presented in units of Δp. The SAD and the mean

AD (the absolute differences averaged over all

computed shifts) are included in the figure as well,

where AD SAD. For 10.4 < t < 11.1s Δp takes the

value -2, which is quite consistent with the actual

speed. Outside the interval, Δp seems scattered.

Where both AD and SAD are small, Δp cannot be

determined reliably; the image pairs do not exhibit

enough contrast. Figure 6 depicts the scene where

the change of road surface texture from rough to

smooth occurs, near t = 11.1s.

-4
-2
0
2
4
6
8

10

10.4 10.9 11.4

Δ
p

,
S

A
D

,
A

D

t (s)

Figure 5. Δp, SAD and mean AD as a function of

time, over a one second time interval.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 116 ISBN 978-80-86943-75-6

Figure 6. Road surface texture changes from

high to low contrast at t = 11.1s.

When a smooth road surface exhibits little contrast,

the SAD as function of Y-shift (Figure 7) is very

different from the profile obtained in Figure 3. In

Figure 7 we notice that both the SAD values

themselves as their variation due to shift are much

smaller.

0

5

10

-10 0 10

Y-shift (pixels)

S
A

D
 /
 p

ix
e
l

Figure 7. SAD for an image pair of low contrast

road surface. For convenience of comparison,

the plot scales are the same as for Figure 3.

Figure 8. Part of the low-contrast road surface

(also visible in Figure 6), taken at higher

resolution. The dimensions of the view are

approximately 40×45cm. The white box

represents the portion of the image which is used

for view matching.

Figure 9. SAD for an image pair of low contrast

surface, where images are taken at high

resolution.

As mentioned, there are several parameters that may

influence the SAD profile, such as the frame rate of

the camera, its resolution and shutter time, but also

parameters of the software including the choice and

size of image region and subwindow.

Concerning the image contrast itself, for now we

consider two criteria. First, the degree of contrast

that is required to achieve matching. Second, the

degradation of contrast due to the speed of optical

flow.

With a photo camera we took a detailed still picture

of the road surface in the low-contrast region, see

Figure 8. Another similar picture was taken after the

camera was manually repositioned a few centimeter

further in the positive z-direction. Whereas the

particular part of the surface road did not show

contrast in Figure 6, it does in Figure 8.

From two detailed images we could reliably find a

match near Δp = -15, see Figure 9. The Y-shift in

Figure 9 maps to a speed relative to the road surface

as by equation (2), where f differs from the mapping

factor we applied so far since Figure 9 has been

obtained with a different camera setup.

We thus found that the speed of the car could be

determined from detailed pictures as in Figure 8,

even when the image contrast is low. However, the

picture pair from which Figure 9 is derived would

not be reproducable with the video camera we

applied earlier, for two reasons. First, due to the

high resolution, the optic flow measured in pixels/s

would be very high (in the order of 3000 pixels/s)

and hence a very short shutter time would be

required to obtain a non-blurred image. Second, the

frame rate should be an order of magnitude larger,

to keep the Y-shift between the two images between

10 and 20 pixels. This latter requirement is of

course depending on the maximum speed we intend

to measure.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 117 ISBN 978-80-86943-75-6

6. CONCLUSIONS
If a road surface exhibits sufficient visual contrast,

the optical flow can be captured with simple

equipment at low cost. The collection of large

statistics data over long traveling times about the

driving speed of a car (and its distance to cars in

front) would then be feasible. We have

demonstrated that the footage from a simple video

camera is sufficient to measure the car’s speed

without being dependent on artificial features such

as white road markings.

When the surface road contrast gets low and/or the

car speed gets high, the method becomes unreliable.

However, even low-contrast asphalt exhibits texture

from which optical flow can be detected, provided

that high-quality images at small time intervals were

available. It would not be necessary to continuously

store images at a high frame rate. For our

experimental research it is sufficient to obtain (for

example) only one image pair per second, where the

time difference between the images is small

(perhaps in the order of 0.1ms or less). We have not

yet found a device which could perform like this.

A possible method could be to apply two photo

cameras. The cameras should be mounted closely

adjacent, aiming at the same point on the road,

probably highly zoomed. Shutter times should be

short. Then the cameras should be triggered to take

one picture every second, where one camera is

triggered 0.1ms later than the other one. If pictures

as in Figure 7 are obtained this way, the optical

flow and hence the speed of the car relative to the

ground can be recorded as a function of time.

There is another advantage of applying higher

resolution, and thus small f, considering the

definition of f in equation (2). The speed is derived

from the Y-shift, which is essentially a discrete

value, although the appearance of plots as in Figure

3 suggest that a curve can be fitted against the data,

from which a minimum could be derived. If the

discrete minimum is used, the speed v = u f Δp is

measured in steps of uf. Since the frame rate u

should be high, f should be as small as possible in

order to determine v accurately.

Another factor is the luminous intensity of the

scene. If high intensity spotlights are applied, a

small f can be reached. It would involve the

installing of extra high-power lights on a car, which

violates requirement 1.

As mentioned, the detection and quantification of

optic flow does not necessarily require image

frames. If individual pixels of the optical sensor

could be read-out at high speed, for example

10KHz, then even small and low-contrast features

might be traceable. Their speed in sensor space

would be a measure of the car’s speed. A similar

principle is applied in the optical mouse.

Another option could be the projection of a laser

beam onto the road surface during a predefined time

period x. A picture of the road surface taken with a

relatively long lens opening time (much longer than

x seconds) will show a line on the road surface

caused by the laser beam. The length of the line,

which can be reconstructed using equation (2) is

proportional to v. The advantage of this method is

that low-quality cameras could be applied.

However, the total setup of equipment gets more

complicated due to the inclusion of the laser device.

At present, the most feasible method (fulfilling the

4 requirements) seems to be based on optical flow

detection using a single camera or a synchronized

pair of cameras. It is still an open question whether

images with quality comparable to the one in Figure

8, can be obtained from a car driving at high speed

on a road with low-contrast surface texture.

Weather and light conditions play an important role

as well.

7. REFERENCES
[Barron 1009] J.L. Barron, D.J. Fleet, S.S.

Beauchemin, Performance of Optical Flow

Techniques. Int. Journal of Computer Vision,

12:1, pp 43-77.

[Gopro 2013] www.gorpo.com.

[Herrara 2010] D.B. Work, R. Herring, X. Ban, Q,

Jacobson, A.M. Bayen, Evaluation of traffic

data obtained via GPS-enabled mobile phones:

The Mobile Century field experiment.

Transportation Research Part C (2010), pp 568-

583.

[Mammarella 2012] M. Mammarella, G. Campa,

M.L. Fravolini, M.R. Napolitano, Comparing

optical flow algorithms using 6-DOF motion of

real-world rigid objects. IEEE Trans on

Systems, Man and Cybernetics – Part C, Vol.

42, No 6, pp 1752-1762.

[Nieto 2010] M. Nieto, J. Arróspide Laborda, L.

Salgado (2010), “Road environment modeling

using robust perspective analysis and recursive

Bayesian segmentation”. Machine Vision and

Applications, 7 August 2010.

[Schakel 2010] W.J. Schakel, B. van Arem, Effects

of cooperative adaptive cruise control on traffic

flow stability. Proc. 13
th

 Int. IEEE Annual

Conference on Intelligent Transportation

Systems, pp 759-764.

[Souhila 2007] K. Souhila and A. Karim, “Optical

Flow based robot obstacle avoidance,” Int. J.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 118 ISBN 978-80-86943-75-6

Adv. Robot. Syst., vol. 4, no. 1, pp. 13–16,

2007.

 [Treiber 2003] M. Treiber and D. Helbing,

Memory effects in microscopic traffic models

and wide scattering in flow-density data.

Physical Review Letters E 68, 046119 (2003),

pp 1-8.

[Vergeest 2012] J.S.M. Vergeest and B. van Arem,

The effect of vehicle acceleration near traffic

congestion fronts. In 2012 IEEE Intelligent

Verhicles Symposium IV'12, pp. 45-50.

[Vergeest 2012a] J.S.M. Vergeest, Self-speed and

headway measurement in highway traffic from

onboard video footage. In V. Skala et al. (Eds.)

Proc. of the WSCG 2012 Conference.

[Xiong 2012] H. Xiong and L. Ng Boyle, J.

Moeckli, B.R. Dow and T.L. Brown, Use

patterns among early adopters of adaptive cruise

control. Human Factors, Vol. 54, No. 5, October

2012, pp.722-733.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 119 ISBN 978-80-86943-75-6

Efficient Removal of Inconsistencies in Large Multi-Scan
Point Clouds

Thomas Kanzok1

thomas.kanzok
Falk Süß1 Lars Linsen2

l.linsen

Paul Rosenthal1

paul.rosenthal

1 Chemnitz University of Technology
Department of Computer Science

Visual Computing Laboratory
Straße der Nationen 62

09111 Chemnitz, Germany
[e.mail]@informatik.tu-chemnitz.de

2 Jacobs University
School of Engineering & Science

Visualization and Computer Graphics Laboratory
Campus Ring 1

28759 Bremen, Germany
[e.mail]@jacobs-university.de

ABSTRACT
When large scale structures are to be digitized using laser scanning, usually multiple scans have to be registered
and merged to cover the whole scene. During the scanning process movement in the scene and equipment standing
around – which is not always avoidable – may induce artifacts. Since the scans often overlap considerably another
scan of the same area might be artifact-free. In this paper we describe an approach to find these "temporal"
artifacts (so-called, because they only appear during one single scan) based on shadow mapping, which makes it
implementable as a shader program and therefore very fast. The effectiveness of the approach is demonstrated with
the help of large-scale real-world data.

Keywords
Outlier Removal, Point Cloud Processing, Laser Scanning

1 INTRODUCTION
3D-scanning has gained increasing popularity in
a wide range of applications, including content
creation for games and movies [ARL+10], re-
verse engineering [IM09] and acquisition of geo-
metric data for documentation of archaeological
sites [BGM+09, GSS08, LNCV10] and large-scale
structures [PV09, SZW09, WBB+08], where new
rendering approaches [KLR12, DRL10] have already
helped to reduce the postprocessing time for a dataset.
In these applications, usually several scans have to
be done and registered in order to capture a complete
site or building. During this process it is not always
possible to completely close the site – or street, in our
particular case – for traffic or visitors, or to ensure
that no people or equipment of the scanning team are
present in the scene.

This leads to ghost geometry that is only captured by
one or few scanners and is sometimes not even consis-
tently colored, since colors are acquired independently

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

from the geometry by different terrestrial laser scanning
systems in a second scanning pass. This means that
moving objects – which we call "temporary" for the re-
mainder of this paper, because they are not persistent in
the scene – introduce artifacts in the scan that compro-
mise the rendering quality considerably (see Figure 1).

A simple observation we made, was that the artifacts
induced by temporary geometry are in most cases only
present in one of the many merged scans. Since the
scans have to overlap significantly to allow robust regis-
tration, there is usually at least one scanner that can lit-
erally see through such artifacts. The question we have
to ask in order to decide whether a point can be con-
sidered an artifact is therefore: "Is this point invisible
for any other scanner that could potentially see it?" or
shorter "Can any other scanner see through this point?"

The second formulation is equivalent to the question
whether this point casts a shadow in all other scans
that cover it. This suggests applying some variation of
shadow mapping to the problem.

In this paper we present an implementation of a
shadow-mapping based algorithm for artifact removal
in preregistered point cloud datasets. Since all calcula-
tions can be done in a shader program on the GPU we
can show that the running time of the algorithm is only
bounded by the transfer speed of the storage device
that holds the data. To achieve this we have to sacrifice
some precision, because we can not hold all available

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 120 ISBN 978-80-86943-75-6

Figure 1: An example for typical temporal artifacts in a scene that was merged from multiple scans. The people
in the foreground and the car in the background were only present during one scan. Additionally, there are lots of
stripes induced by passing trucks. The scene was shaded to enhance geometry perception.

information on the GPU. This is only critical in the
vicinity of edges, however, and can in most cases be
treated by detecting these edges in the image.

2 RELATED WORK
Artifacts or outliers are a problem every automated
scanning system has to deal with. There are basically
two causes for them to occur: inaccuracies in the scan-
ning equipment itself and inconsistencies in the scene
that is scanned. Most published approaches do not dif-
ferentiate between the two sources, so every kind of ar-
tifact is treated in the same way and is often charac-
terized as diverging from a statistical distribution. This
way the local consistency of the data with a fitted model
can be evaluated to identify outliers.
Papadimitriou et al. [PKGF03] detect outliers by com-
paring the local sampling density of a point to the aver-
age local sampling density of its neighbors in a certain
radius. A similar approach is used by Sotoodeh [Sot06]
to define a local outlier factor that is based on the rel-
ative local size of the k-neighborhood of a point. An-
other algorithm based on local coherence was presented
by Weyrich et al. [WPK+04]. They define three criteria
for outlier classification: the divergence from a fitting
plane in the k-neighborhood, the distance of a point to
a ball fitted to its k-neighborhood (without the point it-
self), and the "nearest neighbor reciprocity", which rep-
resents the number of nearest neighbors of a point p that
do not have p as a nearest neighbor themselves.
Large scale architectural datasets are mostly comprised
of planar elements (walls, floors, etc.), outliers can

therefore be assumed to form lines or uncorrelated clus-
ters [WBB+08]. Artifacts can then be found by ana-
lyzing the eigenvalues of a point’s covariance matrix.
Schall et al. [SBS05] use a kernel density estimation
scheme to identify outliers in the data as those points,
that have a lower local density than the rest of the data,
according to an appropriately chosen threshold.

Directly on the scanned range image operates the
method of Rusinkiewicz et al. [RHHL02]. They
triangulate the range images acquired by the scanner,
reject triangles that have exceptionally long edges or
are facing away from the scanner and finally delete
single points that are not part of any triangle. Other
approaches do not remove outliers at all but try to
re-integrate them into the surface by some kind of
weighted smoothing scheme [MT09, PMG04].

However, these approaches do not take into account that
we actually have much more information than raw point
coordinates and possibly color. As already pointed out
by Köhler et al. [KNRS12] they therefore fail to rec-
ognize ghost geometry, because it is consistent with a
model – even though temporal – and tend to smooth
close outliers into the surface. Their alternative ap-
proach takes an additional camera in a structured-light
system for surface recognition and uses the light pro-
jector for correcting the measured positions.

In the following paper we show another property of real
world data that can be used to detect artifacts – the con-
sistency of valid geometry over multiple partial scans
of a large scene.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 121 ISBN 978-80-86943-75-6

3 GENERAL APPROACH
In this paper we make a clear distinction between "ar-
tifacts" and "outliers". While our definition of outliers
follows the conventional concept as being points that do
not belong to the model according to some local consis-
tency criterion, we denote as artifacts points or larger
groups of points that are not part of the global model,
although they can be perfectly consistent for one sin-
gle scan (meaning that they are not technically outliers
for this scan), since they may represent temporary ge-
ometry. Artifacts therefore include all outliers, but also
encompass all temporary geometry in the scene.
The property of merged point clouds we want to exploit
to identify these artifacts is illustrated in Figure 2. It is
based on the simple observation that "permanent" ob-
jects, i.e. objects that are not movable and should there-
fore appear at the same position in each scan, block the
laser beams from any scanner involved. This means,
if we compute a shadow map for each distinct scanner
using only its "own" points, permanent objects cast a
shadow in each of these maps. In contrast, "temporary"
objects, i.e. objects that moved during scans, only cast
a shadow in one or few scans. We can use this to decide
whether a point of the final scan is temporary by check-
ing it against each of the computed shadow maps. If
the point is shadowed in all shadow maps, it is likely to
be permanent, otherwise, if it is not shadowed in one or
more shadow maps, it is most likely temporary. In the
following we describe in detail how we come from the
raw scanner output to a classification of each point and
show results and timings we achieved with the method.

A B

p
q

Figure 2: A 2D illustration of the reasoning behind the
algorithm. The distance of p to B is larger or equal than
the respective depth buffer value stored for B, while the
distance of q (which was only seen by scanner A) to B is
smaller than the respective depth buffer value stored for
B. This means that q has not been seen when scanning
from B, while p has been seen (unless it is occluded
by a point that is even closer to B). Consequently, q
must have been a removable object, while p is a steady
object.

Large scale laser scanning systems typically use one
laser beam that is reflected by a movable mirror into a
spherical direction θ ,ϕ , with θ being the azimuthal and

ϕ being the polar angle. From the time it takes the laser
signal to be reflected back to the scanner the spherical
distance r can be calculated, which gives the spherical
coordinates ps = (r,θ ,ϕ) for the point. They then get
converted to Euclidean coordinates pe = (x,y,z), which
is the output of the scanner.

Different scans in one scene then have to be registered
into one global system using strategically placed mark-
ers and/or local optimization methods, e.g. multiple
variants of the well-known ICP algorithm [CM92]. For
this work we assume that this registration has already
been done as exact as possible and will not go into fur-
ther detail here.

In order to identify points that are transparent for at
least one scanner, we employ a map that facilitates oc-
clusion lookups. Analogous to the original shadow-
mapping algorithm we allocate a texture for each scan-
ner that stores the distances from the scanner to the sur-
rounding geometry. Note that this only conveys useful
information if we generate the shadow map for each
scanner only on the data that was actually acquired by
this scanner.

Usually, the numbers of discrete steps taken for θ and
ϕ are fixed and independent, leading to a uniform sam-
pling in θ and ϕ . To preserve this uniformity and to lose
as little information as possible to sampling errors, we
store all information for a scanner in one single texture
that is parameterized over θ and ϕ .

The scanner’s sampling rate of k steps in θ and l steps
in ϕ then gives us a very good estimate for the opti-
mal resolution of a spherical shadow map. Using a map
with domain [0,k]× [0, l] would ensure that on average
each pixel is hit by exactly one laser beam. In practice,
this would also mean that we would have to store one
third of the size of the entire dataset on the GPU (one
float for the spherical radius r instead of three floats for
(x,y,z)), which is normally not possible. Additionally,
if the sampling grid is not given for the dataset, we have
to reconstruct θ and ϕ from the Euclidean coordinates,
which introduces considerable jitter leading to holes in
the map. Due to these limitations, the maximum resolu-
tion for the shadow map on the GPU should not exceed
k
2 ×

l
2 to ensure closed surfaces and should probably be

even smaller (k
f ×

l
f ; f ≥ 2, where f is chosen such that

the maps of every scanner fit in GPU memory).

3.1 Removing Inconsistencies with
Shadow Mapping

If the sampling grid of the scanner is not given in ad-
vance, each point pe of a single scan in Euclidean coor-
dinates can be converted back to spherical coordinates
in a shader program and its r-component can be ren-
dered into a shadow texture image S of size k

f ×
l
f :

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 122 ISBN 978-80-86943-75-6

S(θ̂ , ϕ̂) = r with θ̂ =
kθ

2 f π
and ϕ̂ =

lϕ
f π

;

with r being the Euclidean distance of pe to the respec-
tive scanner origin and θ̂ , ϕ̂ being the mapping of polar
and azimuthal angle to texture coordinates of the render
target.

Figure 3: The color texture for the spherical surround-
ing area of one example scan. The shadow map created
from this scan can be seen in Figure 7a.

Having computed a shadow map for each of the n scan-
ners (see Figure 3 for an example of a scanned environ-
ment) the shadow maps are store in a layered 3D tex-
ture. Using this texture in connection with the original
scanner positions, the complete registered point cloud
is processed by a vertex shader program, that executes
Algorithm 1 and returns its result via transform feed-
back.

In practice we have to make several tweaks to the algo-
rithm in order to account for different problems which
we describe in detail in the following chapters.

3.2 Handling Anisotropy
The first problem is caused by the fact that we will al-
most never have a spherical scene around a scanner.
On the contrary, since scanners usually stand on level
ground the angle between scanner and surface declines
rapidly with increasing ϕ . The same is true for long
walls, where the angle is a function of θ . Looking up
points in shadow map pixels under a very small angle
introduces a considerable sampling error, as illustrated
in Figure 4a. This could be handled by increasing the
threshold ε . However, a higher threshold also increases
the rate of false negatives and is therefore to be avoided.

To overcome this problem, we reconstruct the surface
equation during texture lookup by fitting a plane to the
7×7-neighborhood of the respective shadow map texel.
The distance from a point to this plane then gives a
much better estimate for the visibility of said point (see
Figure 4b).

For a plane given by a normal n and a distance l from
the origin in the local coordinate frame of a scanner and

Data:
attribute:

• Euclidean point coordinates pe;

uniform:

• an array of n shadow maps S;

• the positions s of the n scanners

Result:

• a boolean flag c that indicates, whether the point is
an artifact;

c = false;
forall the shadow maps Si do

calculate (θ̂ , ϕ̂) from pe;
if distance(pe,si)+ ε < Si(θ̂ , ϕ̂) then

c = true;
end

end
Algorithm 1: Shader pseudocode for naive artifact re-
moval. The ε is a tolerance threshold that has to be
defined with respect to the data range. The result of this
approach can be seen in Figure 6a

a point p in the same coordinate frame we can compute
the deviation d of the point as follows:

d =< n,p >−l (1)

This solves the problems we experienced in areas with
a large but constant depth gradient, for example roads
or walls.

3.3 Missing Data
Although we used a smaller size for the shadow map
than the original spherical scanner resolution it can still
happen that pixel-sized holes remain in the shadow
map. Since we are approximating planes over the
neighborhood of each pixel this does not pose a serious
problem. To make sure that the map is mostly filled, we
use a point size of two pixels during rendering of the
shadow maps.

The larger problem is how to cope with missing data
in the texture. There are three principal reasons for
not having any range data from the scanner for a given
(θ ,ϕ):

1. The laser beam did not hit any geometry within the
maximum distance for the scanner. Consequently,
the beam is classified as background.

2. The beam did hit reflecting or scattering geometry,
seen at the bottom right of Figure 3, where the note-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 123 ISBN 978-80-86943-75-6

A B

(a)

d

A

(b)

Figure 4: Illustration of the anisotropy problem in
spherical shadow maps. (a) The distance from scan-
ner A in the region of densest sampling of scanner B
does not suffice to make a decision for the points of B
without increasing the threshold considerably. (b) Fit-
ting planes to the neighborhood allows the computation
of the exact divergence for a given point p. Here the
blue points have been reconstructed from the shadow
map information and a plane (dashed) was fitted to the
neighborhood of the pixel to which p was projected.
Calculating the distance d to this plane gives a much
better estimate of the actual distance than the average
distance to the shadow map values (dotted line), espe-
cially under acute angles.

book screen and the reflective bands of the cone are
missing.

3. The data has already been processed in some way,
which was the case with our dataset, where some
– but by no means most – erroneous geometry has
been removed by hand.

If it was only for the background being hit, we could
treat such shadow map pixels as infinitely far away and

A B

Figure 5: A 2D example for the sensibility of fitting
planes in the vicinity of edges. For every texel of the
shadow map of scanner A the best fitting plane to its
3-neighborhood is shown as a dashed line, indicated in
red are the areas that would have a positive distance to
their respective planes, putting them at risk to be classi-
fied as outlier.

discard any point in the final dataset that would corre-
spond to this pixel (since obviously at least one scan-
ner saw the background through this point). However,
since there are other possible causes for missing data
we chose to disregard such empty areas and to make no
assumptions on the visibility of any point that would be
mapped to there.

(a)

(b)

(c)

(d)

Figure 6: The different problems we encountered and
the solutions found by our algorithm: a) Actual dis-
tance minus map distance for a scan tested against its
own shadow map using Algorithm 1 and the same when
using fitting planes (b). Note that there are still mis-
classification at the corners, even though they are very
small. c) After applying the confidence map nearly all
misclassifications have been eliminated. d) The intro-
duction of a second scan facilitates recognition of first
artifacts (color coded from blue to red is the respective
confidence value).

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 124 ISBN 978-80-86943-75-6

3.4 Confidence Map
One problem that remains, occurs in areas with di-
verging gradients, mainly edges and corners, where
there are still issues caused by the shadow map reso-
lution. Usually the shadow map resolution is consider-
ably smaller than the resolution of the original dataset,
which introduces large errors in the computation of the
osculating planes, leading to misclassifications in the
vicinity of corners and edges (see Figure 5).

To facilitate more control over the classification we
abandon the binary classification of Algorithm 1 in fa-
vor of a real certainty value that indicates how likely a
given point is an artifact, with c = 1 meaning that the
point is an artifact for sure and c = 0 meaning that the
point surely belongs to the model. We can then sum up
the weighted distances over all shadow maps and apply
a threshold to the mean c to infer a binary classification.

The actual weighting of the classification is done us-
ing an additional confidence map for each shadow map,
which is 0 on edges between valid points and back-
ground and otherwise, in areas that are completely cov-
ered by the shadow map, is computed as 1− σ̃ :

σ̃u,v =

√√√√ 1
|N|

|N|

∑
i=1

(< n,pi >−l)2;

with pi being a reconstructed point from the neighbor-
hood N of a given texel at (u,v) and n, l being the pa-
rameters of the fitted plane, as in Equation 1. This is
nothing else than the root mean square error (RMSE) of
the fitted plane for a texel. The final confidence value e
for a texel is therefore:

eu,v = 1−
{

σ̃u,v ⇔ valid
1 ⇔ else (2)

A shadow map texel is considered valid, if the four 3×
3-corners of the pixel contain enough points to be able
to robustly fit a plane to them also (we only required the
corners to contain at least four points each themselves,
the planes are not actually reconstructed). Otherwise
we can assume that there is a large patch of background
in the neighborhood of the given texel and filter these
border areas out.

Since it can be computed together with the planes them-
selves, the confidence map does not have to be stored
explicitly. Here it is only it is given for convenient il-
lustration (see Figure 7).

After these optimizations we arrive at the refined Algo-
rithm 2.

Overall the algorithm needs none of the usual prepro-
cessing steps like constructing a space partitioning or
estimating normals. It simply works by streaming all
available data through the GPU twice, comparing the

Result:
• a confidence value c that indicates, how likely the

point is an artifact;

c = 0;
j = 0;
forall the shadow maps Si do

calculate (θ̂ , ϕ̂) from pe;
reconstruct set of Cartesian coordinates N over the
neighborhood of Si(θ̂ , ϕ̂);
fit a plane P to the points in N;
calculate d using (1);
calculate e using (2);
if d > 0 then

c = c+(e∗d);
j++;

end
end
c = c

j ;
Algorithm 2: Shader pseudocode for the refined clas-
sification algorithm. The input is the same as in Algo-
rithm 1.

points with each shadow map in the second run, which
yields a total runtime in the order of O(k ·n), with k� n
being the number of scans. However, the shadow maps
lie in fast GPU memory and the lookups therein are
done using specialized hardware units, so the dominant
factor is clearly n. The following section gives detailed
timings and classification results for a real world dataset
with 138 million points.

4 RESULTS AND DISCUSSION
We tested our approach on a notebook using an Intel
i7 Quad-core processor with 2,3 GHz, and an Nvidia
GeForce GTX 485m graphics card, running a 64bit
Linux. We deliberately chose mobile hardware since
we wanted the software to be used under field condi-
tions. The data stems from an architectural scan of a
bridge and consists of 138 million points distributed
over five scans.

The timings we achieved (see Table 1) were very sat-
isfying. In fact, the actual processing time carries little
weight compared to the I/O latency of the hard drive.
Although this could be alleviated to some extent by us-
ing for example an SSD it would still dominate the run-
ning time of the algorithm.

Classification quality depends highly on certain design
choices. We present a comparison of results with the
different optimization steps of Section 3 in Figure 6.
There the progression of the algorithm through Sec-
tions 3.1 to 3.4 is depicted on an example dataset (the
same dataset that was used to generate the example
shadow and confidence maps). One has to note that

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 125 ISBN 978-80-86943-75-6

Figure 7: The spherical shadow map produced from the scan seen in Figure 3 (top) and the respective confidence
map (bottom). One can see that values taken from texels that constitute edges are assigned a lower weight due to
the confidence map and therefore do not compromise the artifact classification.

the confidence value introduced in Equation 2 was cho-
sen for data on a centimeter-scale. That means that the
RMSE for different scales has to be adjusted to this,
since the deviations may have very small fractional val-
ues otherwise, making the confidence extremely high.
In our case the RMSE can be interpreted as deviation
from the plane in centimeters, implying that all planes
with a RMSE higher that 1 cm are rejected (confidence
0).

Another issue that is obvious is that knowing the exact
scanner position for each scanner is crucial to the per-
formance of the algorithm. If this information is lost
after registering the scans, one has to put some effort

into aligning the positions exactly. If a new scan is be-
ing produced, however, this information should be eas-
ily accessible and can be exported into the data. An
additional prerequisite is an as-exact-as-possible reg-
istration of the data. Otherwise large portions of the
dataset may receive a positive c that has to be thresh-
olded appropriately (see Figures 9a). Normally the rel-
ative scanning position for each scan is in the origin,
making the generation of the maps easy. The absolute
positions in the scene are then found during registra-
tion. This implies that in order to account for a max-
imum misregistration of x cm the minimum threshold
has to be at least x cm also.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 126 ISBN 978-80-86943-75-6

Figure 8: The same view as Figure 1 after applying our artifact removal procedure. The people and the car
have been completely removed. However they may leave a shadow, if the lighting in two merged scans differed
considerably. Additionally, nearly all of the stripes and parts of the cones were removed.

Scan # Points Load Init Classify
0 23.0m 5 699 ms 48 ms 1 852 ms
1 38.5m 9 482 ms 82 ms 3 265 ms
2 23.5m 6 414 ms 49 ms 1 943 ms
3 38.2m 9 279 ms 82 ms 3 099 ms
4 15.2m 3 766 ms 31 ms 1 318 ms

∑ 138.4m 34 659 292 11 477
Total Time 80 s (≈ 2 ·Load+ Init+Classify)

Table 1: Processing times for a 138 million point
dataset. The complete processing took approximately
80 seconds. In the table the times are divided in "Load",
i.e. the transfer of the data from the hard drive to the
GPU, "Init", i.e. the initialization and rendering of the
shadow-map and "Classify", i.e. the classification of
all points of the dataset according to the shadow-maps
of all scans using Algorithm 2. The classification has to
use all shadow maps, but since they are of equal size the
classification time per map equals to the total time di-
vided by the number of scans, i.e. classification time

5 in our
case. Note that in the total processing time the "Load"
component appears twice, since we streamed the data
from the hard drive again for classification.

A peculiar observation we made was that some of the
objects in the scene, in particular a traffic cone under
the bridge, have only been slightly moved in between
scans – probably by accident. This slight dislocation
allowed for a removal of one of the partial cones (Fig-
ure 9b). Knowing this, it might be beneficial to at least

slightly move equipment that can for some reason not
be removed completely from the scene in between the
scans.

5 CONCLUSION
We have presented an approach for artifact classifica-
tion in large point clouds comprised of multiple scans.
The algorithm can for the most part be implemented
on the GPU with linear asymptotic complexity. It re-
sults in a confidence value for each point that can eas-
ily be evaluated by the user using color coding. With
this information the user is able to choose a thresh-
old via a slider to remove the found points. Thanks
to the edge-sensitivity it works very conservative, al-
though that means that certain artifacts can remain in
the dataset, because no other scanner could confidently
reject them. However, since the classification can be
done within minutes, this can also be used to infer a
position for additional scans during a campaign. To im-
prove the robustness of the approach, slight dislocations
of light equipment between scans can already have a
huge effect.

6 ACKNOWLEDGMENTS
The authors would like to thank the enertec engineer-
ing AG (Winterthur, Switzerland) for providing us with
the data and for their close collaboration. This work
was partially funded by EUREKA Eurostars (Project
E!7001 "enercloud - Instantaneous Visual Inspection of
High-resolution Engineering Construction Scans").

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 127 ISBN 978-80-86943-75-6

7 REFERENCES
[ARL+10] O. Alexander, M. Rogers, W. Lambeth,

J. Chiang, W. Ma, C. Wang, and P. Debevec. The
Digital Emily Project: Achieving a Photorealis-
tic Digital Actor. IEEE Comput. Graph. Appl.,
30(4):20–31, July 2010.

[BGM+09] F. Bettio, E. Gobbetti, F. Marton, A. Tinti,
Emilio Merella, and Roberto Combet. A Point-
based System for Local and Remote Exploration
of Dense 3D Scanned Models. In Debattista et al.
[DPPS09], pages 25–32.

[CM92] Y. Chen and G. Medioni. Object modelling
by registration of multiple range images. Image and
Vision Computing, 10(3):145 – 155, 1992.

[DPPS09] Kurt Debattista, Cinzia Perlingieri, Denis
Pitzalis, and Sandro Spina, editors. VAST09: The
10th International Symposium on Virtual Reality,
Archaeology and Intelligent Cultural Heritage, St.
Julians, Malta, 2009. Eurographics Association.

[DRL10] P. Dobrev, P. Rosenthal, and L. Linsen. In-
teractive Image-space Point Cloud Rendering with
Transparency and Shadows. In Vaclav Skala editor,
Communication Papers Proceedings of WSCG, The
18th International Conference on Computer Graph-
ics, Visualization and Computer Vision, pages
101–108, Plzen, Czech Republic, 2 2010. UNION
Agency–Science Press.

[GPAR04] Markus Gross, Hanspeter Pfister, Marc
Alexa, and Szymon Rusinkiewicz, editors.
SPBG’04 Symposium on Point - Based Graphics,
Zürich, Switzerland, 2004. Eurographics Associa-
tion.

[GSS08] L. Grosman, O. Smikt, and U. Smilansky.
On the application of 3-D scanning technology for
the documentation and typology of lithic artifacts.
Journal of Archaeological Science, 35(12):3101–
3110, 2008.

[IM09] L. Iuliano and P. Minetola. Enhanc-
ing moulds manufacturing by means of reverse
engineering. The International Journal of Ad-
vanced Manufacturing Technology, 43(5–6):551–
562, 2009.

[KLR12] T. Kanzok, L. Linsen, and P. Rosenthal.
On-the-fly Luminance Correction for Rendering of
Inconsistently Lit Point Clouds. Journal of WSCG,
20(2):161 – 169, 2012.

[KNRS12] J. Köhler, T. Nöll, G. Reis, and D. Stricker.
Robust Outlier Removal from Point Clouds Ac-
quired with Structured Light. In Eurographics
2012-Short Papers, pages 21–24. The Eurographics
Association, 2012.

[LNCV10] J. L. Lerma, S. Navarro, M. Cabrelles, and
V. Villaverde. Terrestrial laser scanning and close
range photogrammetry for 3D archaeological doc-

umentation: the upper palaeolithic cave of parpalló
as a case study. Journal of Archaeological Science,
37(3):499–507, March 2010.

[MT09] H. Masuda and I. Tanaka. Extraction of
Surface Primitives from Noisy Large-Scale Point-
Clouds. Computer-Aided Design and Applications,
6(3):387–398, 2009.

[PKGF03] S. Papadimitriou, H. Kitagawa, P. B. Gib-
bons, and C. Faloutsos. Loci: Fast outlier detection
using the local correlation integral. In Data En-
gineering, 2003. Proceedings. 19th International
Conference on, pages 315–326, Los Alamitos, CA,
USA, 2003. IEEE Computer Society.

[PMG04] M. Pauly, N. J. Mitra, and L. J. Guibas.
Uncertainty and Variability in Point Cloud Surface
Data . In Gross et al. [GPAR04], pages 77–84.

[PV09] S. Pu and G. Vosselman. Knowledge based
reconstruction of building models from terrestrial
laser scanning data. ISPRS Journal of Photogram-
metry and Remote Sensing, 64(6):575–584, Novem-
ber 2009.

[RHHL02] S. Rusinkiewicz, O. Hall-Holt, and
M. Levoy. Real-time 3d model acquisition. In
Proceedings of the 29th annual conference on Com-
puter graphics and interactive techniques, SIG-
GRAPH ’02, pages 438–446, New York, NY, USA,
2002. ACM.

[SBS05] O. Schall, A. Belyaev, and H. Seidel. Ro-
bust filtering of noisy scattered point data. In Pro-
ceedings of the Second Eurographics / IEEE VGTC
conference on Point-Based Graphics, SPBG’05,
pages 71–77, Aire-la-Ville, Switzerland, Switzer-
land, 2005. Eurographics Association.

[Sot06] S. Sotoodeh. Outlier detection in laser
scanner point clouds. In International Archives of
Photogrammetry, Remote Sensing and Spatial In-
formation Sciences XXXVI-5, pages 297–302, 2006.

[SZW09] C. Scheiblauer, N. Zimmermann, and
M. Wimmer. Interactive Domitilla Catacomb Ex-
ploration. In Debattista et al. [DPPS09], pages
65–72.

[WBB+08] M. Wand, A. Berner, M. Bokeloh, P. Jenke,
A. Fleck, M. Hoffmann, B. Maier, D. Staneker,
A. Schilling, and H. Seidel. Processing and interac-
tive editing of huge point clouds from 3D scanners.
Computers & Graphics, 32(2):204–220, 2008.

[WPK+04] T. Weyrich, M. Pauly, R. Keiser, S. Hein-
zle, S. Scandella, and M. Gross. Post-processing
of Scanned 3D Surface Data. In Gross et al.
[GPAR04], pages 85–94.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 128 ISBN 978-80-86943-75-6

(a) (b)

(c) (d)

Figure 9: Some classifications inferred by our algorithm. For these images a threshold of 2 cm was used. The blue
area on the ceiling in (a) is due to inaccurate registration of the scans and has to be taken care of by choosing an
appropriate threshold. The cone in (b) was slightly displaced during scans, allowing at least the artifact from one
scan (left) to be completely recognized. c) The car was apparently completely removed for at least one scan, which
made it almost completely recognizable. Note the slight shadow of the tailgate, indicating that this car was slightly
displaced also present in a second scan. d) A group of people that was present at roughly the same place during
different scans. Note that parts of the group in the background could not be classified, since they were shadowed
by other people closer to the scanners (Shading was added to improve geometric structure perception).

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 129 ISBN 978-80-86943-75-6

Identification of Abnormal Cervical Regions from
Colposcopy Image Sequences

ABSTRACT
Cervical cancer is the third most common cancer in women worldwide and the leading cause of cancer death in

women of the developing countries. Cancer death rate can be greatly reduced by regular screening. One of the

steps during a screening program is the detection of the abnormal cells that could evolve into cancer. In this

paper, we propose an algorithm that automatically identifies the abnormal cervical regions from colposcopy

image sequence. Firstly, based on the segmentation of three different image regions, a set of low-level features is

extracted to model the temporal changes in the cervix before and after applying acetic acid. Second, a support

vector machine (SVM) classifier is trained and used to make predictions on new input feature vectors. As the

low-level features are very insensitive to accurate image registration, only a rough normalization step is needed

to sample image patches. Our preliminary results show that our algorithm is accurate and effective. Furthermore,

our algorithm only needs to sample patches from six image frames within a five-minute time period. Hence, the

proposed algorithm also could be applied to improve the accuracy of the mobile telemedicine for cervical cancer

screening in low-resource settings.

Keywords
Colposcopy Image Processing, Support Vector Machine, Feature Extraction, Cervical Cancer

1. INTRODUCTION

Cervical cancer is the commonest cause of cancer

death among women in developing countries

[QBP+12]. Cervical cancer is preceded by pre-

malignant cervical intraepithelial neoplasia (CIN). In

order to prevent cervical cancer, the accurate

diagnosis of cancer cells and abnormal regions

followed by appropriate therapy is necessary.

Colposcopy is a widely used diagnostic method to

detect CIN and cervical cancer. Once the abnormal

region is identified, the samples of cells are often

taken from the cervix for an abnormal cytological

screen (i.e., Papanicolaou smear). During the

colposcopic exam, application of 3-5% acetic acid to

the cervix can turn abnormal and metaplastic

epithelia to white, while normal cervical squamous

epithelia remain pink. It is believed that the amount

of whiteness is positively associated with the severity

of cervical intra-epithelial neoplasia (CIN) [GKL+11,

QGR+11]. Therefore, the whiteness is considered as

one of major characteristics to detect cancer and pre-

cancerous regions. Other features, such as

morphologic characteristics around precursor lesions

[Lan05] and vascular patterns, can also be used for

identification. However, they may not be salient

sometimes and thus may not be as effective as

whiteness of cervical epithelia.

In order to minimize subjective variability among

physicians and improve reliability and repeatability

of diagnosis, a sound computer aided image

processing algorithm that could combine all possible

features is highly desirable. Such a system can

enhance the power of existing colposcopes and

would make them immediately useful in low-

resource areas of the developing countries [SCN+09].

In this paper, we propose an image processing and

statistical learning procedure to identify abnormal

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

Mingpei Liang1, Gaopin Zheng2, Xinyu Huang1, Gaolin Milledge1, Alade Tokuta1

1North Carolina Central University 2Shenzhen Luohu Maternity and Infant Healthy Institute

 1801 Fayetteville Street 2013 Taibai Rd, Luohu

 Durham, NC 27707, USA Shenzhen, Guangdong 518999, P.R. China

 {mliang, huangx, gzheng, atokuta}@nccu.edu gaopinzheng@yahoo.com.cn

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 130 ISBN 978-80-86943-75-6

regions in colposcopy images. Firstly, we notice that

the cervical surface has limited and very similar

texture patterns. Some regions could also be very

smooth. Thus, many image registration techniques

that rely on detection of feature points could fail

since feature points often cannot be detected and

tracked over image frames consistently. Our

algorithm is particularly useful for the situation when

the accurate image registration cannot be achieved.

Second, a set of low-level features is extracted to

model color and thickness changes in the cervix. The

Support Vector Machine [CV95] is applied for the

classification. Based on our preliminary experiments,

accurate classification rate can be achieved by

sampling only six images within a five-minute time

interval. We believe that the proposed algorithm

could be adopted to improve the diagnostic

performance of the mobile telemedicine for cervical

cancer screening [QGR+11]. As number of current

training data is limited and more data is often needed

to improve robustness of classification performance,

we also plan to label and train on a large set of image

sequences in the future.

The remainder of this paper is organized as follows.

Section 2 describes related work. Our proposed

algorithm is given in section 3. Experiments in

section 4 show the success classification rates. The

conclusion is given in section 5.

2. RELATED WORKS

The research in this area is limited and current

methodologies [AK07, AKL11, SCN+09] follow the

standard pipeline of medical image processing.

The first step is the image registration. In [AK07],

feature points are detected using the Harris corner

detector. This detector can detect changes in the first

derivative of an image. Other similar feature points

detector, such as SIFT [Low04] and MSER [FL07],

also could be applied with similar detection

performance. Matched feature points in two

consecutive image frames are used to estimate a 2D

transformation between them. However, many

colposcopy images contain limited and very similar

texture patterns, thus, matching of feature points

often are not robust and accurate.

The registration algorithm based on a rigid

transformation including translation and in-plane

rotation is described in [AKL11]. Since a larger

image region is used for registration, the performance

could be better than the algorithms based on

detection of feature points. However, during the

colposcopic exam, other rigid transformations of the

camera are also very common, such as scaling and

out-of-plane rotation. Moreover, the cervix itself

could have nonlinear deformations. Hence, only

translation and in-plane rotation are unable to model

the transformations in all the image frames. If all the

transformations are considered, the process could be

time-consuming and often done offline. The speed of

the registration algorithm in [AKL11] is

approximately 10 minutes for two image frames.

In the feature extraction step, whiteness is measured

based on changes of saturation values in [AKL11].

Other features, such as morphologic features and

vascular patterns, are not modeled and measured in

most existing algorithms.

3. OUR ALGORITHM

According to [GZH04], the cervix area could be

divided into three regions, squamous epithelium that

remains pink after acetic acid application, columnar

epithelium that is a dark and irregular region between

endometrium and squamous epithelium, and the

acetowhite region that is the region turned into white

after acetic acid application. Figure 1 shows the

structure of cervix area. The region of specular

reflection is also large and keeps changing its

position due to movements of colposcopy and cervix.

Our algorithm can be divided into five modules: 1)

Specular reflection removal; 2) Segmentation of

different image regions; 3) Normalization; 4)

Extraction of low level features; 5) Classification

using Support Vector Machine. The normalization

step is mainly used to sample image patches for the

SVM prediction. For the training purpose, this step

could be skipped. Figure 2 gives an overview of the

Figure 1: Image before acetic acid application (Left). Image enlarged 9 times and taken 2 minutes 46 seconds

after acetic acid application (Right).

Squamous Epithelium

Columnar Epithelium

Acetowhite Region

Specular Reflection

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 131 ISBN 978-80-86943-75-6

algorithm.

3.1 Specular Reflection Removal

Specular reflections are random patterns that would

greatly affect the estimation of low level features.

Therefore, it is important to remove them before any

further processing. Specular reflections are the

brightest pixels in the image and the region

containing specular reflections usually is smooth.

We use a bi-linear interpolation method to fill the

reflections. First, we compute a binary reflection map

by a threshold (i.e., 250 in our algorithm). For each

reflection pixel , we then search four envelop

points that are outside the region of reflections,
 , along vertical and horizontal directions. The

reflection pixel is filled by

where are the pixel

coordinates of four envelop points.

3.2 Feature Extraction

Given an image patch, since the accurate registration

is not easy to obtain, we employ the use of low-level

features that are not sensitive to the accuracy of

registration. As mentioned in section 1, there are

mainly three characteristics used to determine

whether the patch contain abnormal cells and cancer

cells: whiteness changes of metaplastic epithelia,

morphologic changes around precursor lesions, and

changes of vascular regions. To model these

characteristics, we propose six low-level features

based on color, edge information, and texture

information.

3.2.1 SVM-based Region Segmentation

In order to measure the color changes correctly, we

need to separate the regions with bleeding tissues that

often become worse after acetic acid application.

Otherwise, these bleeding regions could skew the

actual whiteness changes. We sampled dozens of

pixels in bleeding regions, the dark region of

columnar epithelium, and other regions. Figure 3

shows the color distributions of three regions.

Firstly, we build a classifier to separate bleeding

regions and the dark region of columnar epithelium.

Given training set of colors

and corresponding labels (i.e., bleeding

region and other two regions), the SVM training

algorithm is used to find the best decision plane that

separates the largest subset of the training colors

correctly and maximizes the margin between sampled

colors. A new color sample is classified by the

decision plane, given by

 ∑

Figure 2: Outline of the algorithm.

Specular Reflection

Removal

SVM Training SVM Prediction

Normalization

Feature Extraction

SVM-based Region

Segmentation

Low-level Features

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 132 ISBN 978-80-86943-75-6

where denotes the Lagrange multipliers, is a bias

term, is the number of training colors, and

is the kernel function. and are estimated from

the SVM training stage and a linear kernel function is

used.

Similarly, another SVM classifier is built to separate

the dark region of columnar epithelium and the third

region.

Figure 3: Color distributions of three different

regions. (Red) samples from bleeding regions.

(Green) samples from dark region of columnar

epithelium. (Blue) samples from other regions.

3.2.2 Image Normalization for Prediction

In order to obtain six temporal image patches for the

SVM predication, which contain roughly same

cervical area, a normalization step is used. Unlike the

image registration, this normalization step only gives

a quite rough alignment among six image frames.

First, we use the SVM classifier learned in previous

section to estimate the dark regions of columnar

epithelium. The largest connected component in the

central area of the image is considered as the dark

region of columnar epithelium. The centroid of the

connected component is used to compute the

translation among image frames. The 1st principal

component from principal component analysis (PCA)

is used to compute the rotation and scaling

parameters. Therefore, these image frames are

roughly aligned together and we can easily extract

feature vectors from corresponding image patches for

predictions.

3.2.3 Low-level Features

After the separation between bleeding regions and

other two regions, 1st quartile, median, and 3rd

quartile of pixel colors are computed in both regions

respectively. These two vectors are used to

represent colors of two regions in the image patch of

each image frame.

The edges are a strong clue for the morphologic

changes around precursor lesions. A Canny edge

detector [Can86] is applied to the image patch and

the edge length, which is the number of edge pixels

in the image patch, is computed.

Texture feature could be used to measure thickness of

boundaries of precursor lesions since these

boundaries often become thick and obvious after

acetic acid application. We compute the mean value

of gradient magnitudes in the image patch,

∑ √

 where is the total number of

pixels in the patch and

 is the gradient for the

 th pixel. If the cervix surface is smooth, then the

mean magnitude is small in general.

Figure 4 shows the temporal distributions of median

color in the non-bleeding region, edge length, and the

texture feature. These distributions are the average

distributions of 20 sampled patches for each image

frame. From these distributions, we can find that

median of green channels of abnormal regions tends

to increase after acetic acid application. The

distribution of median of blue channels is also very

similar to Figure 4(a). The medians of red channels

tend to remain same for both regions as shown in

Figure 4(b). As a result, the color of the abnormal

region tends to turn into white. We also notice that

edge length and texture features also increase in the

abnormal regions as shown in Figure 4(c) and 4(d),

which indicates the morphologic changes. Since the

distribution for a single patch could vary, it is

necessary to concatenate all the features together to

form a more robust feature vector. Thus, there is an

 vector for each image patch and 6 image

patches; and thus, the size of the feature vector

is .

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 133 ISBN 978-80-86943-75-6

(a)

(b)

(c)

(d)

Figure 4: Temporal distributions of different features.

3.3 SVM Classification

In the training stage, we sample a set of image

patches that contain abnormal regions and normal

regions. The image patch size is consistent with the

actual size for the Papanicolaou smear. Due to the

irregular shape of the abnormal region and scaling

factor of each image frame, the resolution of the

image patches varies. We manually select and crop

the corresponding image patches in the six image

frames. Every set of six image patches contains the

same cervix tissues. As the accurate image

registration is not required, these patches often have

different image appearances with unknown in-plane

and out-of-plane rotations, translation, and scaling.

However, this would not affect the classification

performance since our low-level features are not

sensitive to these linear or nonlinear transformations.

Given training data
 and observations (i.e.,

abnormal region and normal region), the SVM

algorithm estimates the hyperplane to separate two

different results. Three different kernel functions,

linear kernel, radial basis function (RBF) kernel, and

polynomial kernel, are evaluated.

4. EXPERIEMNTS

4.1 Datasets

We manually cropped 48 sets of positive rectangular

patches from cervical lesion region from 12 patients

with various degrees of cervical dysplasia. We also

cropped approximately 40 sets of negative patches

from normal cervical regions from these patients.

Each set of positive or negative patches contains

patches cropped from six temporal image frames.

These data sets are used for the SVM training stage.

The patch resolution ranges from to

 , which is caused by different zooming

factor of the colposcopy and different distances

between cervix and the colposcopy. The patch size is

also selected so that the cells in this region can be

sampled for the subsequent Papanicolaou smear.

Figure 5 and Figure 6 show two sets of image

patches. We can find that the patch resolutions are

not exactly same. However, they cover roughly the

same cervical region. As the low-level features are

not sensitive to the accurate image registration, our

classification performance is not affected.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 134 ISBN 978-80-86943-75-6

To evaluate prediction performance, we further

sampled 30 sets of positive patches and 27 sets of

negative patches.

4.2 Classification Performance

Table 1, 2, and 3 show the success classification rates

when color features, edge features, and texture

features are used separately. The performances are

quite similar for three different kernels. Table 4

shows the success classification rate when all the

features are combined. The highest rate from the

testing dataset is 94.6% when the linear kernel is

used. These experiments demonstrate the

effectiveness of our proposed algorithm. Moreover,

the simple linear kernel gives the best performance.

Table 1: Classification performances when only the

features that model color changes are used.

Kernel Success Classification Rate

Linear 83.9%

RBF 85.7%

Polynomial 85.7%

Table 2: Classification performances when only the

edge features are used.

Kernel Success Classification Rate

Linear 81.9%

RBF 85.1%

Polynomial 71.4%

Table 3: Classification performances when only the

texture features are used.

Kernel Success Classification Rate

Linear 87.2%

RBF 89.3%

Polynomial 83.4%

Table 4: Classification performances all the features

are used.

Kernel Success Classification Rate

Linear 94.6%

RBF 85.7%

Polynomial 89.3%

5. CONCLUSION AND FUTURE

WORK

In this paper, we proposed a classification algorithm

that can detect the abnormal cells in the cervical

region. Our algorithm requires no accurate image

registration. The low-level features are extracted and

used as input in the SVM classification. The

experiments show that the success classification rate

could reach 94.6%. In the future, we would like to

continue labeling data and further evaluate our

algorithm using a large scale database. Since our

algorithm is efficient and can run in real time, it

would be promising to implement a real-time

interactive diagnose system.

Figure 5: Example of one set of image patches

with abnormal cells. They are arranged from left

to right and from top to bottom in ascending

order of time.

Figure 6: Example of one set of image patches

with normal cells. They are arranged from left to

right and from top to bottom in ascending order

of time.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 135 ISBN 978-80-86943-75-6

6. ACKNOWLEDGMENTS

The authors acknowledge support of the National

Science Foundation HRD 0833184. The training and

testing data sets are labeled by the physicians from

Shenzhen Luohu Maternity and Infant Healthy

Institute in Shenzhen, P. R. China.

7. REFERENCES

[AK07] Juan D. García Arteaga and Jan Kybic

“Automatic landmark detection for cervical image

registration validation”, Proc. SPIE 6514, Medical

Imaging 2007: Computer-Aided Diagnosis, 65142S

(March 31, 2007)

[AKL11] J. D. Garcia A-Arteaga, J. Kybic, and W.

Li, "Automatic colposcopy video tissue classification

using higher order entropy-based image registration,"

Comput. Biol. Med., vol. 41, pp. 960-970, 2011.

[Can86] J. Canny, “A computational approach to

edge detection”, IEEE Transaction on Pattern

Analysis and Machine Intelligence, Vol: 8, Issue 6,

pp 679-698, 1986

[CV95] Corinna Cortes and Vladimir Vapnik,

“Support-vecot networks”, Machine Learning, Vol

20, Issue 3, pp 273-297, Spetember 1995

[FL07] P.E. Forssen and D.G. Lowe, “Shape

descriptors for maximally stable extremal regions”,

IEEE International Conference on Computer Vision,

pp 1-8, 2007

[GZH04] S. Gordon, G. Zimmerman, and H.

Greenspan, “Image segmentation of uterine cervix

images for indexing in PACS”, Computer-Based

Medical Systems, 2004, CBMS 2004. Proceedings,

17th IEEE Symposium on, June 2004

[Lan05] H. Lange, "Automatic glare removal in

reflectance imagery of the uterine cervix," in Proc.

SPIE 5747, Medical Imaging, 2005, pp. 2183-2192.

[Low04] David G. Lowe, “Distinctive image features

from scale-invariant keypoints”, International Jounral

of Computer Vision, Vol 60, Issue 2, pp 91-110,

November 22004

[QGR+11] Kelly E Quinley, Rachel H Gormley,

Sarah J Ratcliffe, Ting Shih, Zsofia Szep, Ann

Steiner, Doreen Ramogola-Masire, and Carrie L

Kovarik, “Use of mobile telemedicine for cervical

cancer screening”, Journal of Telemedicine and

Telecare, 2011

[QBP+12] M. K. Quinn, T. C. Bubi, M. C. Pierce, M.

K. Kayembe, D. Ramogola-Masire, and R. Richards-

Kortum, "High-Resolution Microendoscopy for the

Detection of Cervical Neoplasia in Low-Resource

Settings," PLoS ONE, vol. 7, p. e44924, 2012

[SCN+09] Y. Srinivasan, E. Corona, B. Nutter, S.

Mitra, and S. Bhattacharya, "A Unified Model-Based

Image Analysis Framework for Automated Detection

of Precancerous Lesions in Digitized Uterine Cervix

Images," Selected Topics in Signal Processing, IEEE

Journal of, vol. 3, pp. 101-111, 2009.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 136 ISBN 978-80-86943-75-6

A facial motion tracking and transfer method based on a
key point detection

Yasuhiro AKAGI

Kagoshima University
Korimoto, 1-21-24

Kagoshima
890-8580, JAPAN

akagi@ibe.kagosima-u.ac.jp

Ryo FURUKAWA

Hiroshima City University
3-4-1, OzukaHigashi

AsaMinami-Ku, Hiroshima
731-3194, JAPAN

ryo-f@hiroshima-cu.ac.jp

Ryusuke SAGAWA

AIST
1-1-1 Higashi

Tsukuba, Ibaraki
305-8561 JAPAN

ryusuke.sagawa@aist.go.jp

Koichi OGAWARA

Wakayama University
Sakaedani 930
Wakayama-city

640-8510, JAPAN

ogawara@sys.wakayama-u.ac.jp

Hiroshi KAWASAKI

Kagoshima University
Korimoto 1-21-24

Kagoshima
890-8580, JAPAN.

kawasaki@ibe.kagosima-u.ac.jp

ABSTRACT
Facial animation is one of the most important contents in 3D CG animations. By the development of scanning and
tracking methods of a facial motion, a face model which consists of more than 100,000 points can be used for the
animations. To edit the facial animations, key point based approaches such as "face rigging" are still useful ways.
Even if a facial tracking method gives us all point-to-point correspondences, a detection method of a suitable set
of key points is needed for content creators. Then, we propose a method to detect the key points which efficiently
represent motions of a face. We optimize the key points for a Radial Basis Function (RBF) based 3D deformation
technique. The RBF based deformation is a common technique to represent a movement of 3D objects in CG
animations. Since the key point based approaches usually deform objects by interpolating movements of the key
points, these approaches cause errors between the deformed shapes and the original ones. To minimize the errors,
we propose a method which automatically inserts additional key points by detecting the area where the error is
larger than the surrounding area. Finally, by utilizing the suitable set of key points, the proposed method creates a
motion of a face which are transferred form another motion of a face.

Keywords
Facial Expression, Motion Transfer, Tracking, Non-rigid, Deformation
1 INTRODUCTION

A facial animation is one of the important topics in the
area of computer vision and graphics[18, 15, 20, 21]. It
is possible to obtain dense and accurate 3D points from
an object with the development of 3D scanning method.
In case of scanning a moving object, it is an impor-
tant topic that how to detect a movement of a point
from a frame to another frame. This kind of informa-
tion is required for recognizing a facial expression and
creating CG animations from the scanned point cloud.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Then, a number of methods have been proposed to de-
tect the correspondences between frames. The tech-
niques which track artificial markers on a target face are
the well-known approaches to capture the motion of a
face[3, 9]. In other cases, if it is difficult to place the ar-
tificial markers on a face, a method which detects a key
point of a face can be a solution. There are two types
of approaches to detect the key points: geometry based
approaches and image based approaches. One of the
solutions based on the geometry of a face is a non-rigid
registration algorithm. The advantage of this approach
is that it can deal with a deformable surface. If both
a 3D shape and an image can be captured at the same
time, the correspondence of points between frames can
be found by using the image processing techniques.
Moreover, by utilizing the key point of a face, methods
called "facial transfer"[8, 11, 13, 7, 12] are proposed.
These methods create a motion of an arbitrary face that
reflects (copied from) motion of another face. To trans-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 137 ISBN 978-80-86943-75-6

fer the facial motion, correspondences between a source
face to a target one are required. Thus, the methods
which can detect suitable pairs of key points between
two faces are required.

2 RELATED WORK
Since it is difficult to create the facial animations man-
ually, a number of methods are proposed to capture the
facial motion. Two approaches have been researched
to capture the facial motion: marker-based approaches
and marker-less approaches. The marker-based ap-
proaches are more robust to detect motions than the
marker-less approaches.

2.1 Marker-based approach of facial
tracking

Huanget al. [9] proposed the method to capture a mo-
tion with high-fidelity by using one hundred markers.
This method can capture dynamic wrinkles and fine-
scale facial details. Bickelet al. [3] directly paint
color point on a face to robustly detect the same points
beyond frames. The marker-based approaches have a
common problem that it is laborious to put the markers
and it is difficult to capture the natural texture with the
motion at the same time.

2.2 Marker-less approach of facial track-
ing

On the other hand, the marker-less approaches are pro-
posed. Valgaertset al. [18] proposed dense tracking
method of movements of a face. This method uses a
stereo-camera system and tracks the movement of each
pixel of the camera images by using an optical-flow de-
tection method. This method deforms a 3D face based
on the optical-flow. Bradleyet al. [4] proposed a facial
tracking method which tracks both the movement of a
texture and that of a geometry at the same time under
the constant light condition. They also detect a shape
of a mouth by using a facial parts recognition method.
Sibbinget al. [15] uses the feature tracker like the KLT
tracker to detect the motion of a face. Weiseet al. [20]
constructs the facial performance database of a person
to detect the motion of the face from 2D image and 3D
point set. Then, some approaches use the image pro-
cessing methods to find the key points of a face such as
a pupil of the eye, the outline of a lip, the tip of a nose
and etc. The accuracy of these kind of methods is over
95% in some recent researches[5, 2].

2.3 3D shape based approach of facial
tracking

The non-rigid registration algorithm is one of the use-
ful methods to detect the motion of the point sets[17].

Jianet al. [10] proposed this kind of approach by us-
ing the L2 distance between Gaussian mixtures repre-
senting two point sets. However, since the features of
the motion of a face vary in each facial part, it com-
plicates the registration problem. If we can find a fine
initial guess of the motion, the non-rigid registration al-
gorithm will be a useful way to solve the problem.

2.4 Facial transfer
To create a motion of "an artificial face" such as animal
characters, virtual humans and etc. in an animation, fa-
cial transfer(cloning) methods which copy the motion
from a person to another virtual face are proposed[8,
11, 13, 7, 12, 14]. Huanget al. [8]utilizes a key point
based deformation for a facial transfer. To represent
motions of a face, a set of key points called Active Ap-
pearance Models(AAMs) are used. This method mini-
mizes the deformations of AAMs to fit to a target face.
Vieira et al. [19] proposed the facial transfer method
which defines a zone of influence and a weight map for
interpolating the movement of key points. Coskeret al.
[6] generate a map for representing facial expressions
(movements of the key points) based on Downhill Sim-
plex Minimisation tracker. The map is calculate by ana-
lyzing training sets of the facial expressions with PCA.
To perform the facial transfer, this method normalizes
the movements of the key points and creates the weight
vector between a source face and a target one. In this
kind of the approaches, weighting values for key points
are an important factor to represent the movement of a
face. Moreover, since the targets of these methods are
sparse polygon models or 2D images, a fitness of the
shape in the area where there are no key points is not
evaluated. This point can be a problem if these meth-
ods apply to dense face models.

3 OVERVIEW OF THE PROPOSED
METHOD

We describe the overview of our study. The proposed
method in this study consists of the following three
steps.

1) Initialization of key points tracking In the paper,
we assume the scanning method which can capture
both 3D point clouds and 2D images at the same
time. Therefore, we utilize the method proposed by
Caoet al. [5] for finding facial landmarks from a
2D image of the face to detect key points in each
frame as the initial tracking result for the following
process.

2) Non-rigid shape deformation for dense motion
In our method, a dense motion of a facial ex-
pression from an initial frame to other frames is
represented by 3D non-rigid shape deformation. We
utilize a Radial Basis Function based deformation

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 138 ISBN 978-80-86943-75-6

Original Faces

Key

Point

tD tD
1

Tracked Faces Standard face

Deformations Inverse

deformations

Normalized

faces

Detecting

additional key

points

Figure 1: Overview of our approach for tracking a facial
motion.

method [16]. The method generates deformed
shapes from the shape of the initial frame to the
other frames by using a pair of key points: the key
points of the initial frame and those of the other
frames (Figure1).

3) Extra key points addition Since the number of key
points detected as the initial process is relatively
small compared to all the 3D points, there is nat-
urally a considerable amount of errors existing be-
tween scanned shapes and the deformed ones. To
solve this problem, our method automatically de-
tects additional key points to decrease the errors.
Our method searches an area where errors between
the scanned shapes and the deformed ones are larger
than other areas to find the additional key points. By
repeating the process, errors are minimized.

4 DEFORMATION METHOD OF A
FACE

We describe the details of a deformation method of a
facial motion. In the paper,F t denote a vector of 3D
points (pt

0, · · · , pt
n) of the face in thet-th frame. Then,

our purpose of the facial motion tracking is to find de-
formations fromF0 to F t . In the following section, we
describe a basic idea of the deformation method.

4.1 Shape deformation based on the Ra-
dial Basis Function

We introduce a deformation method of a 3D object
based on a key point interpolation. We utilize the de-
formation method based on RBF [16]. The 3D object is
created by adding all the shapes which are calculated by
multiplying each key point by RBF (Figure 2). There-
fore, let the pairs of key points to beK0 andKt where
Kt is a vectors of 3D points(kt

0, · · · ,kt
M)T of the faceF t

of t-th frame, then,Kt can be calculated by a sum of the

Target Key Point

Control Vector

Deformed
Surface

Radial Basis
Function Initial Surface Initial position of

Key Point
Initial position of

Key Point

Target Key Point

Figure 2: RBF based deformation

multiplication of allk0
i (i ∈ M) by RBF with the control

vectorCt = (ct
0, · · · ,ct

M)T as follows (Figure 2):

Kt = RBF(W(K0,K0))Ct (1)

where

W(K0,K0) =

||k0
0−k0

0|| · · · ||k0
0−k0

m||
...

. . .
...

||k0
m−k0

0|| · · · ||k0
m−k0

m||

 . (2)

The values of the matrixW are the parameters of
the RBF according with the distance from each
point in K0 to other points. If the inverse matrix of
RBF(W(K0,K0)) exists, we can solve the equation (1)
to find the value ofCt . By using the inverse matrix of
RBF(W(K0,K0)) and the vectorsCt , the key points
K0 are correctly transformed toKt . Finally, by using
the set of key pointsK0 and the control vectorsCt , an
arbitrary pointx is deformed by the following equation.

x′ = RBF(Ŵ(x,K0))Ct (3)

x′ is a deformed point to thet-th frame. By using this
deformation method, we can deform all the points of
frame 0 to any frame. In the following sections, we
represent this process of the deformation from the face
F0 to F t as the following equation.

F̂ t = D(F0 → F t) (4)

F̂ t is a face which is deformed fromF0 to fit to F t . And
by using the set of key pointsKt , we can also make
deformations form arbitrary frame number to another
frame.

4.1.1 Kernel function

The feature of the kernel function of the RBF is impor-
tant to deform a 3D object smoothly. In our study, we
define the kernel as the Gaussian function.

RBF(x) =
1√
2πσ

e−
x
σ (5)

The Gaussian function is positive and symmetric. Thus,
if the value of σ is the same in each key point, the
weighting matrixRBF(W) has an inverse matrix. By
the reason, we use the fixed value for theσ .

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 139 ISBN 978-80-86943-75-6

5 ADDITION OF EXTRA KEY POINTS
We detect and add extra key points to reduce the dif-
ference betweenF0 and Dt(F t → F0). To calculate
the difference betweenF0 and Dt(F t → F0), we use
et

i which is a distance between the pointp0
i in F0 and

its nearest point inDt(F t →F0). Since our deformation
method transforms the key points to target position and
multiply with RBF which decrease the weight accord-
ing to the distances from the key points, an error be-
comes large in the area where the key points are sparse
(Figure 2 and Equation (3)). To overcome this problem,
the area where the error is large is detected and a new
key point is added.

5.1 Initial key point in 2D space
Our method requires several numbers (10 - 30) of ini-
tial key points on a 2D image. Finally we detect a suit-
able set of key points automatically. However, since
our method evaluates the difference between a standard
face and normalized ones to detect the area lacking of
key points, the method requires an initial guess of a de-
formation.

There is a lot of method to detect features of 3D ob-
ject is proposed[1]. These methods are useful to track
rigid movements of the objects. However these meth-
ods cannot detect the same positions on a face between
two faces. And it is difficult to track the same position
of a face with topological transformations (e.g. open
a mouth or brink eyes) by using these methods. There-
fore we utilize the method proposed by Caoet al. [5] for
finding facial landmarks from a 2D image of the face.
This method can find the facial landmarks with the ac-
curacy over 95%. This accuracy is enough for the initial
set of key points for our method. Before the detection
process of extra key points, we apply this method to
initialize the set of key pointsKt .

5.2 Key point candidate selection
Since the shape deformation in our method is calculated
by a key point and its interpolation, the error near the
key point is naturally small. Therefore, it is a straight-
forward to find a new key point from the large error
area. In our method, we select the candidates for the
new key point which satisfies the following conditions:

1. The sum of the errors of neighboring points is larger
than the threshold.

2. An error of the key point is larger than neighboring
points.

Since the number of 3D points of a face is usually large,
comparing the criteria for all the point is impractical,
we randomly sample the candidates of key pointsKc0

k
from theF0. In our implementation, we sample 4,000
points.

Figure 3: Filtering of candidates of key points. (a)The
area where the correlation is high. (b)The area where
the correlation is low because of there are outliers.

5.3 Filtering the candidate using tempo-
ral consistency

Since selected candidates usually include many outliers
because of noise, occlusion and other reasons, filtering
is necessarily required. In our method, we check the
temporal consistency of neighboring points (Figure 3).
The detailed calculation process is as follows:

1. In terms of the candidates of key pointsKc0
k, find the

neighboring pointsnpj inside the sphere of radiusR.

2. The error values ofet
k andet

j(j ∈ R) are calculated.

et
k is the minimum distance formKc0

k to Dt(F t →
F0) andet

j is the distances is the minimum distance

form npj to Dt(F t → F0).

3. Time series ofet
k and et

j is calculated for all the
frames of the faceF t to make a sequence of errors
ek andej .

4. The correlation betweenek and ej are calculated.
The higher value of the correlation means that this
candidate of a key pointKc0

k is placed on the center
of a large movement of a face.

5. If the correlation is below the average of all the can-
didates, the pointKc0

k is rejected.

Through this process, we reduce the candidatesKc0
k un-

der 40.

5.4 Refinement of the new key points
Since the candidates of key points are selected from
the area where the errors are larger than other area, the
nearest point inDt(F t → F0) form Kc0

k is usually the
wrong point for deciding positions of the key points in
other framesKct

k. Therefore, we utilize the Non-Rigid
Registration method which uses the Gaussian Mixture
model for representing 3D points for registrations [10]
for a local search for the positions of the key pointsKct

k
(Figure 4). The detailed process is as follows:

1. By usingDt(F0 → F t) (with the current set of the
key points), we deform theF0 for creating "cur-
rently tracked" faces in each frame. Then, theKck is
also deformed toKct

k by the deformation.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 140 ISBN 978-80-86943-75-6

0F

tF

 tFFD 0

0

kKc

t

kKc

(1)

(2) (3)

(4)Non-Rigid

Registration

t

kKc

Figure 4: Refinement of key points

2. A surface ofDt(F0 →F t) inside the sphere of radius
R and the center of which is the key pointsKct

k is
selected. The selected surface represents a shape of
the current face which contains the errors.

3. Similarly, another surface ofF t inside the sphere of
radius 2Rand the center of which isKct

k is selected.
The second surface represents a shape of the original
faceF t around the key point.

4. By using the Non-Rigid Registration method, the
first surface fits into the second one. Then, the posi-
tions of the key pointsKct

k are also fitted to theF t .

Through the process, pairs of additional key pointsKc0
k

andKct
k are detected and added to the list of the key

pointsKt .

5.5 Iterative step for adding key points
We iterate the process of adding key points until the
ratio of error is decreased to less than 1% from the pre-
vious process. During the iteration process, we also re-
move the existing key points which have larger error
than newly added key points. Initial key points are also
removed in the actual process in our experiments.

6 FACIAL TRANSFER METHOD
BASED ON THE FACE DEFORMA-
TION

Facial expressions and motions on a face are important
presentation in animations. To utilize the captured mo-
tions efficiently, the methods transfer from the facial
motion of a person to other persons are proposed. The
transfer methods are used in the following examples:
(a) re-product facial animations of a person by using a
motion data of another person. (b) "Stuntman" of the

facial motion. (c) to create animations of virtual char-
acters.

These methods use pairs of key points to define the cor-
respondence between a transfer source shape and a tar-
get one. One of the important points of this kind of
methods is how to interpolate the difference of both
shapes. One of the proposed methods[19] defines a
zone of influence and a weight map for interpolating the
movement of key points. It is a time consuming process
to set the parameters of key points. To solve this prob-
lem, we utilize the face space deformation method to
transfer facial motions. This method deforms 3D space
around a face based on positions of key points. There-
fore, the method can be a solution to represent a conver-
sion from a movement of a face to that of other faces.
This method consists of following four steps.

(1) Creating deformations from a source motion of a
face to a target one.

(2) Key point sampling to define correspondences be-
tween the source and target faces.

(3) Detection of weighting values of key points for de-
formations.

(4) Creating deformations of the target face.

The details of these are explained in the following sec-
tions.

6.1 Deformation from a source motion of
a face to a target face

First, we deform a sequence of a facial motionF t

(source face) to fit into a shape of another faceT0 (tar-
get face). To define the deformation based on the face
space deformation, we use a set of key points described
in the section 5.1. Then, the deformations are given by
the equation 6.

ˆFT
t
= Dt(F t → T0) (6)

By using the deformationDt(F t → T0), each source
face F t is deformed to fit to the target faceT0. Al-
though the structures of̂FT

t
differ to T0, the shapes of

ˆFT
t

close toT0. Since theT0 is a static, the remaining
difference betweenT0 and ˆFT

t
means the movement of

the face in the space of the target face. Then, we define
a correspondences between̂FT

t
andT0.

6.2 Key point detection for a face transfer
Since the number of the points in theT0 and ˆFT

t
is

too large for defining deformations, our method defines
pairs of key points as follows:

(1) We define a set of key pointsKt i by random sam-
pling from the target faceT0.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 141 ISBN 978-80-86943-75-6

(2) Another set of key pointsK f t
i which are the nearest

points in ˆFT
t

from each point ofKt i are detected.

The relationships betweenKt i andK f t
i are the pairs of

key points.

6.3 Weighting values of key points
We define direction vectorsVi from the target face to
the source motion based on the pairs of key pointsKt i

andK f t
i as follows:

Vt
i =

K f t
i −Kt i

||K f t
i −Kt i ||

(7)

Since the difference betweenT0 and ˆFT
t
are caused by

the movement of the faceF t , these vectorsVt
i represent

directions of movement of the face in each key point.
However, since the positions of key pointsK f t

i are fit-
ted to the target face (F t is deformed in the space of
another faceT0), the features of the movement of the
source face are decreased by the deformations. Then,
we introduce weighting values of key points to improve
the feature of the movement ofF t . We consider the
initial position of the key pointK f 0

i to calculate the
weighting values. Then, the weighting valuesWi of key
pointsK f t

i are given by following equation 8.

Wt
i =

α
Nk

||K f 0
i −K f t

i || (8)

α: a parameter for controlling the strength of transfer
effect.
Nk: a number of the key pointK f 0

i

6.4 Deformations of the facial transfer
Finally, we construct deformations of the facial transfer
Dt

trns. By using the direction vectors of the key points
Vi and the weighting valuesWi , the deformationsDt

trns
are given by following equation.

Dt
trns(Kt i → (Wt

i Vt i+Kt i)) = T̂t (9)

T̂t represents the transfered face fromTt with the pair
of key pointsKt i andWt

i Vt i +Kt i . Thought these four
steps mentioned in the beginning of this chapter, the fa-
cial transfer method generates a motion of an arbitrary
face that reflects motion of another face.

7 RESULTS AND DISCUSSIONS
In this section, we show the results of a facial motion
transfer and the efficiency of a key point refinement
technique. First, we evaluate the accuracy of deforma-
tions by calculating errors between the original faces
to the deformed faces. Next, we discuss about the re-
sults of our facial transfer method. In our experiment,
we use three types of facial motions : "Slap", "Smile"
and "Stretch" (Fig. 5). These motions consist of about
100,000 to 200,000 points and 47 to 60 frames. We im-
plement the proposed method on PC with Xeon X5650
processor. It takes about 10 minutes for processing one
of the iteration described in section 5.5.

(a)

(b)

(c)

Error
3mm

(a)Original Motion (b)Results (c)Differences

Figure 5: The comparison of the original and captured
face.

Table 1: The errors between the original motion and
captured motion.

mean error (mm) RMSE (mm)
Name Initial Final Initial Final
Slap 1.49 1.00 1.89 1.41

Smile 0.64 0.44 0.87 0.66
Stretch 1.23 0.84 1.62 1.22

7.1 Accuracy of the motion capture

In this section we discuss about the error between the
original motion and a motion which is deformed from
the standard face by using the key points. Table 1 shows
the mean errors and RMSE tracked by using the pro-
posed method. The initial error is the mean distance
between the face which is deformed with the initial set
of key points and the original face. The final error is the
mean distance when the recursive process reaches to the
convergence condition. The proposed method enables
us to minimize the mean error less than 1.0mmon each
motion.

Table 2 shows the errors without the key point selection
mentioned in the section 5.3 and 5.4 for comparisons.
The table shows that the errors are larger than two times
those of the proposed method. This result shows that
the proposed key point selection method can select the
suitable set of key points.

Figure 5(b) and (c) show the deformed motions and the
distributions of the errors. This result (b) shows that
the proposed method smoothly keeps the continuity of
the texture in each frame. The distribution of the er-
ror shows that the errors are still remaining around the
area where the hand touches the face. Since our method
evaluates the motion of key points based on the standard
face, it is difficult to detect the motion of an additional
object such as a hand. Although there are some errors,
our method succeeded in detecting the correspondence
between the standard face and the other motions.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 142 ISBN 978-80-86943-75-6

Table 2: The errors based on randomly adding the key
points.

Name mean error (mm) RMSE (mm)
Slap 2.25 2.76

Smile 1.07 1.52
Pinch 1.67 2.09

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

slap smile stretch

Recursive count

M
ean

 erro
r b

etw
een

 d
efo

rm
ed

 faces

an
d

 o
rig

in
al o

n
es (m

m
).

Figure 6: The convergence of the mean error.

7.2 Results of the facial transfer
Figure 7 shows the results of the proposed facial trans-
fer method. (a) is the original motion (Slap). The left
image of (b) is the target shape of a face for apply-
ing the facial transfer. The results in (b) and (c) show
that the movement of the left cheek and the lip can be
transferred to the target face. In the right images of
(b) and (c), there are noises around the lip and lower
jaw. Since our transfer method randomly samples can-
didates of key points, key points are placed on the noisy
area of the source motion in sometimes. Although the
clustering method mentioned in section 5.4 chooses the
center of the candidates as a key point, this problem has
still happened in this case. To solve this problem, we
should apply a constraint function such as the Tevs’s
facial tracking method[17] for a deformation of a face.

8 CONCLUSIONS
We proposed the key point detection and refinement
method for a facial motion which is represented by
dense point cloud. We also proposed the facial trans-
fer method base on the key points. The contributions of
this paper are as follows:

(1) We propose the face space deformation which can
represent the movement of a face as the RBF based
deformations.

(2) By utilizing the face space deformation, the pro-
posed method can define the suitable pairs of key
points to minimize the errors.

(a)

(b)

(c)

(a)Original Motion (b)Transfer target(left) and
transferred shape of the face. (c)Transferred motion

with a texture.

Figure 7: The comparison of the original motion and
the transferred motion.

(3) In our results, we show that the mean errors be-
tween the original motions and tracked motions can
reduce less than 1.0mm in all three types of facial
motions.

(4) We also show our facial transfer method can trans-
fer the complex motion on a face to another face.

In the future work, a refinement technique of a surface
of a face is needed to generate smoother animations.

9 ACKNOWLEDGMENT
This work was supported in part by the Fund-
ing Program for Next Generation World-Leading
Researchers(NEXT Program) No.LR030 and Grant-
in-Aid for Young Scientists(B) No.25870570 in
Japan.

10 REFERENCES
[1] Bariya, P., Novatnack, J., Schwartz, G., Nishino,

K.: 3d geometric scale variability in range im-
ages: Features and descriptors. Int. J. Comput.
Vision 99(2), 232–255 (2012)

[2] Belhumeur, P., Jacobs, D., Kriegman, D., Kumar,
N.: Localizing parts of faces using a consensus

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 143 ISBN 978-80-86943-75-6

of exemplars. In: Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on,
pp. 545 –552 (2011)

[3] Bickel, B., Lang, M., Botsch, M., Otaduy, M.A.,
Gross, M.: Pose-space animation and transfer
of facial details. In: Proceedings of the 2008
ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’08, pp. 57–66. Euro-
graphics Association (2008)

[4] Bradley, D., Heidrich, W., Popa, T., Sheffer,
A.: High resolution passive facial performance
capture. ACM Trans. Graph.29(4), 41:1–41:10
(2010)

[5] Cao, X., Wei, Y., Wen, F., Sun, J.: Face align-
ment by explicit shape regression. In: CVPR, pp.
2887–2894. IEEE (2012)

[6] Cosker, D., Roy, S., Rosin, P.L., Marshall, D.:
Re-mapping animation parameters between mul-
tiple types of facial model. In: Proceedings of
the 3rd international conference on Computer vi-
sion/computer graphics collaboration techniques,
MIRAGE’07, pp. 365–376. Springer-Verlag,
Berlin, Heidelberg (2007)

[7] Fratarcangeli, M., Schaerf, M., Forchheimer, R.:
Facial motion cloning with radial basis functions
in mpeg-4 fba. Graph. Models69(2), 106–118
(2007)

[8] Huang, D., De La Torre, F.: Facial action transfer
with personalized bilinear regression. In: Pro-
ceedings of the 12th European conference on
Computer Vision - Volume Part II, ECCV’12,
pp. 144–158. Springer-Verlag, Berlin, Heidelberg
(2012)

[9] Huang, H., Chai, J., Tong, X., Wu, H.T.: Lever-
aging motion capture and 3d scanning for high-
fidelity facial performance acquisition. ACM
Trans. Graph.30(4), 74:1–74:10 (2011)

[10] Jian, B., Vemuri, B.C.: Robust point set regis-
tration using gaussian mixture models. IEEE
Trans. Pattern Anal. Mach. Intell.33(8), 1633–
1645 (2011)

[11] Moro, A., Mumolo, E., Nolich, M.: Automatic 3d
virtual cloning of a speaking human face. In: Pro-
ceedings of the 2010 ACM workshop on Surreal
media and virtual cloning, SMVC ’10, pp. 45–50.
ACM, New York, NY, USA (2010)

[12] Pyun, H., Kim, Y., Chae, W., Kang, H.W., Shin,
S.Y.: An example-based approach for facial ex-
pression cloning. In: ACM SIGGRAPH 2006
Courses, SIGGRAPH ’06. ACM, New York, NY,
USA (2006)

[13] Sattar, A., Stoiber, N., Seguier, R., Breton, G.:
Gamer’s facial cloning for online interactive
games. Int. J. Comput. Games Technol.2009,

9:1–9:16 (2009)

[14] Seol, Y., Lewis, J., Seo, J., Choi, B., Anjyo, K.,
Noh, J.: Spacetime expression cloning for blend-
shapes. ACM Trans. Graph.31(2), 14:1–14:12
(2012)

[15] Sibbing, D., Habbecke, M., Kobbelt, L.: Mark-
erless reconstruction and synthesis of dynamic
facial expressions. Comput. Vis. Image Underst.
115(5), 668–680 (2011)

[16] Sumner, R.W., Schmid, J., Pauly, M.: Embedded
deformation for shape manipulation. In: ACM
SIGGRAPH 2007 papers, SIGGRAPH ’07. ACM
(2007)

[17] Tevs, A., Berner, A., Wand, M., Ihrke, I., Bokeloh,
M., Kerber, J., Seidel, H.P.: Animation cartogra-
phy –intrinsic reconstruction of shape and motion.
ACM Trans. Graph.31(2), 12:1–12:15 (2012)

[18] Valgaerts, L., Wu, C., Bruhn, A., Seidel, H.P.,
Theobalt, C.: Lightweight binocular facial perfor-
mance capture under uncontrolled lighting. ACM
Trans. Graph.31(6), 187:1–187:11 (2012)

[19] Vieira, R.C.C., Vidal, C., Cavalcante-Neto, J.B.:
Expression cloning based on anthropometric pro-
portions and deformations by motion of spherical
influence zones. In: SBC Journal on 3D Interac-
tive Systems, pp. 14–22 (2011)

[20] Weise, T., Bouaziz, S., Li, H., Pauly, M.: Realtime
performance-based facial animation. In: ACM
SIGGRAPH 2011 papers, SIGGRAPH ’11, pp.
77:1–77:10. ACM, New York, NY, USA (2011)

[21] Zhang, W., Wang, Q., Tang, X.: Real time feature
based 3-d deformable face tracking. In: Proceed-
ings of the 10th European Conference on Com-
puter Vision: Part II, ECCV ’08, pp. 720–732.
Springer-Verlag, Berlin, Heidelberg (2008)

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 144 ISBN 978-80-86943-75-6

(Semi) regular tetrahedral tilings

Alexej Kolcun

Institute of Geonics, Czech Academy of Sciences
Studentská 1768

708 00 Ostrava, Czech Republic

alexej.kolcun@ugn.cas.cz

ABSTRACT

Triangulation 2D and 3D methods represent an important part of numerical modeling process (e.g. FEM). In
many applications it is suitable to use triangulations with a regular structure. Moreover, decomposition with a
limited number of different types of tetrahedra enables to reduce the storage and computational demands in the
whole modeling process. The submitted contribution presents an overview of possible 3D decompositions using
one tetrahedron (regular tilings). These decompositions are confronted with decompositions using six different
types of tetrahedra (orthogonal structured tilings). Considering the shape expressivity of particular methods, the
paper presents a structure of possible decompositions and comparison of storage demands of the used
decompositions.

Keywords
tetrahedron, regular tessellation, voxel grid, conform decomposition.

1. INTRODUCTION
The tasks connected with space decomposition have
been presented in various research areas for a long
time, and they are connected with Hilbert’s 18th
problem [H], [G 1980]. The whole raster graphic
concept can be seen from this point of view. A
different raster concept, based on regular hexagonal
mesh, is analyzed e.g. in [M 2005].

Within the numerical methods development, space
discretization has become an important tool of shape
expressivity. For example, in the finite element
modeling (FEM), the domain of interest is
decomposed to simple polyhedral elements. In the
simplest case, the triangles for 2D tasks and
tetrahedra for 3D tasks are used. Nowadays, there is a
wide range of generators used for decomposition
(meshes), e.g. [E 2001], [F 2000].

Surprisingly, we may expect that with HW
development the role of regular meshes for physically
based modeling will grow. For example, CT

technologies of 3D scanning give us information
about geometry in a regular rectangular grid. Thus,
the originally demanding preparation of the analyzed
domain geometry is possible to fully automatize in a
very simple way, [P 2003], [A 2007].

Advantages of this approach:

1. simplicity,
2. velocity,
3. relatively small storage demands (hereby

described geometry contains a huge amount of
grid vertices, but it is not necessary to keep their
coordinates – these can be simply calculated),

4. regular structure of the equations system which
must be solved.

The results of this approach significantly exceed its
disadvantages:

1. From the numerical model viewpoint, the
discretization error – aliasing – of boundaries of
particular domain areas has only a very local
character [A 2007].

2. Moreover, this error may be eliminated by the
pixel/voxel partitioning; either from the
geometry viewpoint – Fig. 1, [L 2013] or from
the numerical solution viewpoint – Fig. 2. Even
though this method is only partial, it is very
effective in many cases.

3. Using Marching Cubes and Marching
Tetrahedra methods (originally developed

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 145 ISBN 978-80-86943-75-6

directly for these rectangular grids), it is
possible to eliminate effectively this
discretization error, e.g. [P 2005].

a) b)

Figure 1 a) Raster representation and b) partitioned
raster representation [L2013].

Figure 2 Local character of the influence of the
domain boundary aliasing to the stress tensor.

Next approach of regular rasterization [L 2013] can
be based on equilateral triangles – Fig. 3a): regular
rectangular mesh (black lines) is deformed and
proper diagonals (gray lines) are added. In this case,
the major part of triangles (all except for the

boundary ones) is equilateral. Fig. 3b) gives the
example of such rasterization. While in the concept
of the partitioning from Fig. 1b) the choice of the
diagonals depends on material (color) distribution in
the raster grid, the partitioning in the concept from
Fig. 3a) is regular – ‘zig-zag’.

a) b)

Figure 3 a) Generalized rasterization based on a
‘deformed’ regular grid (black lines), supplemented
with diagonals (gray lines), b) example of rasterized

image [L2013].

The paper presents an overview of all known space
decomposition methods to identical tetrahedra
(regular tetrahedral tiling). This mechanism
influences the result of the Marching Cubes
(Tetrahedra) method.

While Sommerville decompositions (Section 2.1) are
relatively well known and widely used in the
computer modeling area, Goldberg decompositions
(Section 2.2) are considerably less known among the
computer graphic community. Mutual dependences of
these decompositions are mentioned.

The method of orthogonal structured tilings
(decomposition to several different tetrahedra) is also
described.

A comparison of the shape expressivity of mentioned
methods is presented.

2. REGULAR TETRAHEDRAL
TILINGS

At present, two approaches of regular tetrahedral
tilings are known [G 1978], [S 1981].

1. decompositions obtained by partitioning of a
regular rectangular grid using only one type of
tetrahedral element (Sommerville),

2. decompositions obtained by partitioning of a 3-
sided prism (Goldberg).

2.1 Regular rectangular grid partitioning

Let us consider a regular rectangular grid (voxel
grid). Its basic volume element is an orthogonal prism
(brick). There are five partitioning tetrahedra
obtained by its decomposition. The basic one is
tetrahedron I. (Fig. 4), where vertex D is the centre of
the cube, C is the centre of the right side.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 146 ISBN 978-80-86943-75-6

I. II. III.

Figure 4 Tiling tetrahedra, part 1.

The tetrahedron II (Fig. 4) is a union of two
tetrahedra of the type I with common face ACD. The
tetrahedron III is a union of the two tetrahedra of the
type I with common face ABC. Table 1 shows the
mutual rate of edges of the described tetrahedra.

I.
ABDC

AB
2

BD

3

AD

3

AC

2

BC

2

DC
1

II.
ABDE

AB
2

BD

3

AD

3

AE
2

BE

2 2

DE

3

III.
ABDF

AB
2

BD

3

AD

3

AF

3

BF

3

DF
2

IV.
ABDH

AB
2

BD

3

AD

3

AH

25

BH

25

DH
25

V.
ABJF

AB
2

BJ
211

AJ

23

AF

3

BF

3

JF
211

Table 1 Lengths of edges of the tiling tetrahedra for a
rectangular grid partitioning.

Note that the tetrahedron II is asymmetrical and in
this case, the decomposition has to contain mutually
symmetric pairs of tetrahedra. We say that such a
regular tiling is asymmetrical.

Next two types of partitioning tetrahedra are derived
from the type III:

Let us consider the node G – the centre of the edge
AB and the node C – the centre of the edge DF
(Fig. 4 III’.). We abbreviate H – the centre of the
segment CG. It is obvious that H is the centre of the
sphere circumscribed to the tetrahedron ABDF.
Because of the fact that the faces of ABDF – III
(Fig. 4, Tab. 1) are identical, using the vertex H we
can decompose this tetrahedron to four identical
tetrahedra ABDH, BAFH, DFAH, and FDBH. Thus
the ABDH tetrahedron generates a symmetrical tiling
(Fig. 5 IV.).

III‘. IV. V.

Figure 5 Tiling tetrahedra, part 2.

Let J be the centre of the edge AD. Then the
tetrahedra ABFJ and DFBJ are symmetrical, i.e.

tetrahedron ABFJ generates an asymmetrical tiling
(Fig. 5 V.).

2.2 Decompositions from 3-sided prism
Let us consider a right prism whose normal section is
an equilateral triangle of edge e. On the edges of the
prism we generate vertices by „gradual rolling
up“(red polyline) with given shift h (Fig. 6).

The tetrahedron ABCD – VI. obviously generates a
tiling: let us consider neighbor tetrahedra ABCD and
BCDB’. Each of them contains three edges of length
a – red, (AB,BC,CD, BC,CD,DB’ respectively), two
edges of length b – blue, (AC,BD, BD,CB’
respectively), one edge of length 3h – black AD, BB’
respectively). Moreover, both terahedra ABCD and
BCDB’ have the same orientation.

 Figure 6 Basic partition of 3-sided prism – VI .

Since the ratio h/e is arbitrary, there is a continuous
infinity of tiling tetrahedra of this type where

22 hea += , (1)

22 4heb += . (2)

Another two tiling tetrahedra – VII., VIII., (Fig. 7)
can be derived in the following way:

vertex E is the centre of the edge AD, and so the
triangle BCE is isosceles, i.e. BE=CE=c, where

2

4

2

222
2 heh

ec
+=

+= . (3)

Similarly the vertex F is the centre of the edge BC
and so the triangle ADF is isosceles, i.e. AF=DF=d.
Moreover, angle ∠ BFD is right one, so

2

153

4
4

2

2222
22

2
2 hehe

he
a

bd
+=+−+=

−= . (4)

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 147 ISBN 978-80-86943-75-6

VII. VIII.

Figure 7 Tiling tetrahedra for 3-sided prism.

Table 2 shows the lengths of edges of partitioning
tetrahedra for a 3-sided prism.

VI.
ABCD

AB
a

BC
a

AC
b

AD
3h

BD
b

CD
a

VII.
ABCE

AB
a

BC
a

AC
b

AE
1,5h

BE
c

CE
c

VIII.
ABFD

AB
a

BF
a

AF
d

AD
3h

BD
b

FD
d

Table 2 Lengths of edges of the tiling tetrahedra for a
3-sided prism partitioning.

Lemma 1. The below described relations between
tiling tetrahedra are valid:

a) tetrahedron III. is a special case of the trahedron
VI.,

b) tetrahedron II. is a special case of the tetrahedron
VII.,

c) tetrahedron V. is a special case of the tetrahedron
VII., VIII., respectively.

Proof: We shall prove relation a).

Let us consider tetrahedron VI. with
228 eh = .

According to (1), (2)

ha 3= , hb 32= , .

So, we have obtained tetrahedron III. – Tab. 1.

The rest of relations can be proved in similar way.
More detailed proof in [G 1978]. q.e.d.

So far, there are not known any other regular tilings;
on the other hand, their absence has not been proved
yet [G 1978].

2.3 Decomposition conformity
Within the context of numerical modeling, the
possibility of continuous interpolation is usually
required. This is the reason why we suppose
conformity of the used decomposition, i.e. the
neighbor elements share either just one vertex, or the
whole edge, or the whole face. This fact is
automatically guaranteed by the above-described
tilings, for the cases I. – V. excluding the
decompositions based on tetrahedra II. For
conformity of the tilings based on tetrahedron II, it is
required that the neighbor voxels must be partitioned
by the same diagonal (which is quite a natural
assumption).

In the case of tetrahedra VI. – VIII., the „gradual
rolling up“ in the neighbor 3-sided prism must be
realized in the way of the mirror symmetry.
Generally, if the tetrahedron VI. is asymmetric, the
corresponding tilings are asymmetric too.

3. ORTHOHONAL STRUCTURED
TILINGS

Let us show another way of decomposition. If we
extenuate the condition of the tiling, i.e. we consider
more than one type of tetrahedra (but the finite
number), it is required that the tetrahedra vertices be
the vertices created just from the original vertices
from the orthogonal grid (inscribed tetrahedra). This
decomposition is called orthogonal structured one.

The following relations are valid (the class of
elements, decompositions respectively, is the set of
elements, decompositions respectively, which differ
only by the angle of rotation).

Lemma 2. There are 5 tetrahedra classes creating an
orthogonal structured tiling (Fig. 8).

a) b) c) d) e)

Figure 8 Tetrahedra of an orthogonal structured
tiling.

The proof is simple; we obtain it by a detailed
analysis of all four-element subsets of the orthogonal
brick. q.e.d.

Corollary: there are 58 different tetrahedra inscribed
into the cube.

Lemma 3. There is one class of the conform
decomposition to 5 tetrahedra and 5 classes if the

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 148 ISBN 978-80-86943-75-6

conform decompositions to 6 tetrahedra (Fig. 8 – 9).
[A 2003], [K 1999].

The proof results from the following facts.

1. The analysis of the conformal 5-element
decompositions is trivial.

2. Conformal decomposition to 6-tetrahedra contains
exactly one body diagonal.

3. The decomposition classes are uniquely
determined by replacing the pair of tetrahedra
b)c) from Fig. 8 with the pair a)d) – see Fig. 9a)-
b). Similarly, we can replace other two pairs of
tetrahedra b)c). The last type of decomposition is
from Fig. 9e).

 q.e.d.

Figures 9a) and e) show the most important
decompositions often used within FEM modeling.
Their important feature is that in both cases all three
pairs of diagonals on opposite faces are mutually
parallel.

a) b) e)

Figure 9 Examples of orthogonal structured tilings.

Figure 10 shows dual representation of all possible
classes of conformal orthogonal structured tilings:
tetrahedron is represented as a node, nodes are
connected with the edge iff the tetrahedra are
neighbor. The colors of tetrahedra from Figure 8 and
nodes from Figure 10 mutually correspond. The
abbreviation of tetrahedra from Fig. 9 and dual
representations from Fig. 10 mutually correspond, i.e.
the decomposition in Fig.9e corresponds to the
representation in Fig. 10e).

a) b) c) d) e) f)

Figure 10 Dual representation of conform
decompositions.

Lemma 4. There are 72 decompositions to 6
tetrahedra and two decompositions to 5 tetrahedra
[K 1999].

The proof results from the analysis of rotating
symmetries of particular classes.

Polyhedra from Fig 11 represent examples of well
known Schönhardt’s polyhedra, for which there exists
no conformal decomposition (e.g. [R 2005]).

The diagonal configurations from Fig. 11 may be
characterized as follows: each vertex is incident to
the limit of two diagonals and

a) exactly two pairs of diagonals on the opposite
sides are skew,

b) all three pairs of diagonals on the opposite sides
are skew.

Lemma 5 and 6 give finer results than [R 2005].

Lemma 5. For configuration of the surface diagonals
from Figure 11a) there are nonconform decom-
positions only.

Lemma 6. For configuration of the surface diagonals
from Figure 11b) there are no decompositions.

The proof of Lemmas 5 and 6 [K 1999] results from
the fact, that the nonconform decomposition contains
exactly two body diagonals.

a) b)

Figure 11 The surface diagonals configuration in
which a) there are the nonconform decompositions
only b) there is no decomposition.

Importance of last two Lemmas consists in conform
decomposition algorithm:

1. Rectangular regular grid is generated.
2. Facial and space diagonals due to

prescribed geometry are added.
3. Rest of diagonals is added – avoiding

the configurations from the Fig. 11.

So far, there are not known any better algorithms for
conform decompositions generation for general
prescribed geometry.

Nonconformity decomposition can be solved
effectively when the orthogonality of the initial grid
is weakened [K 2002].

4. SHAPE EXPRESSIVITY OF THE
DECOMPOSITIONS

Let us consider a regular orthogonal grid with n
vertices in each direction.

Table 3 shows the dependences of the number of
vertices and the tetrahedra.

 Number of
vertices

Number of
tetrahedra

I. ()()23 114 −−+ nnn ()3124 −n

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 149 ISBN 978-80-86943-75-6

II. ()33 1−+ nn ()3112 −n

III. ()33 1−+ nn ()3112 −n

IV. ()33 113 −+ nn ()3148 −n

V. ()33 19 −+ nn ()3124 −n

Table 3: The vertices and tetrahedra in
the decomposed voxel grid with n3 vertices.

On the other hand, all the structured decompositions
to 6-tetrahedra keep their original number of vertices
n3. The number of elements is 6(n-1)3.

When editing the primary voxel grid, it is necessary
not to be limited by the selection of the surface
diagonals on the bricks. Obviously, each of the
mentioned decompositions I. – V. allows to select the
diagonals on the common face of bricks
independently. To be more exact, all the
decompositions, except for II, contain both diagonals
on each side. In the case of the decomposition II, it is
possible to select the face diagonals independently.
Here the decomposition is directly determined by the
surface diagonals selection.

From this point of view, it is meaningful to compare
the orthogonal structured tiling (from Section 3) with
the decomposition II only. Table 4 shows an
overview of the results.

Deco
mposit
ion

Number of
vertices

Number of
tetrahedra

Number of
decompositions

The surface
diagonals

limits

II. ≈ 2N ≈ 12N 64 No
Struct. N ≈ 6N 72 Yes

Table 4: Global characteristics of the orthogonal structured
tilings and tiling II.

5. CONCLUSIONS
The submitted paper describes various approaches to
generation of tetrahedral decompositions with a
fixedly determined structure. Apart from the
commonly used Sommerville decompositions based
on a regular orthogonal grid, there are also analyzed
Goldberg decompositions, which enable to use a
more general discretization grid. Moreover, for the
initial orthogonal grid there is also analyzed a more
general decomposition to six tetrahedra, using a
pentad of different tetrahedra. The basic properties of
these decompositions are formulated and it is shown
(Tab. 4) how extenuating the conditions may increase
the possibilities of expression of various shapes.

ACKNOWLEDGEMENTS
This work was supported by the projects
• RVO: 68145535,
• University of Ostrava, SP13/PRF/2013

REFERENCES
[A 2003] Apel, T., Duvelmeyer, N.: Transformation

of Hexahedral FE-Mesh into Tetrahedral Meshes
according to Quality Criteria, Computing 71
(2003), pp 293-304.

[A 2007] Arbenz, P., Flaig, C.: On Smoothing in
Voxel Based Finite Element Analysis of
Trabecular Bone. In: LSSC2007 proc. (Lirkov,I.,
Margenov,S., Wasniewski J. eds.), Lecture Notes
in Computer Science 4818, Springer 2008, pp.
69-77.

[E 2001] Edelsbrunner, H.: Geometry and Topology
for Mesh Generation, Cambridge University Press
2001.

[F 2000] Frey, P.J., George, P.L.: Mesh generation:
Application to Finite Elements, Hermes Science
2000.

 [G 1978] Goldberg M.: Three Infinite Families of
Tetrahedral Space/Fillers, Journal of
Combinatorial Theory (A) 16, 1978, pp.348-354.

[G 1980] Grunbaum, B., Shepard, G.C.: Tilings with
Congruent Tiles. Bulletin of American Math. Soc.
Vol. 3, No.3, November 1980. pp. 951-973.

 [H] Hilbert’s problems,
http://en.wikipedia.org/wiki/Hilbert%27s_problems

[K 1999] Kolcun, A.: The Quality of Meshes and
FEM Computations, In WSCG proc. 1999 (V.
Skala ed.), pp. 100-105.

[K 2002] Kolcun, A.: Non-Conformity Problem in
3D Grid Decomposition, Journal of WSCG, Vol
10, No.1,(2002), pp. 249-254.

[L 2013] Lubojacký, J.: Basic algorithms of
rasterization for generalized raster lattice (in
czech), Diploma Thesis, University of Ostrava,
2013.

[M 2005] Middleton, M., Sivaswamy, J.: Hexagonal
Image processing. Springer 2005.

[P 2003] Práger, M.: On a Construction of Fast
Direct Solvers, Applications of Mathematics, Vol.
48, No 3, 2003, pp. 225-236.

[P 2005] Patera, J., Skala, V.: Centered Cubic Lattice
Method Comparison. In. Proc of Algoritmy conf.
2005, pp. 1-10.

[R 2005] Rambau, J.: On a Generalization of
Schonhardt’s Polyhedron, Combinatorial and
Computational Geometry, Vol. 52(2005), pp.
501-516.

[S 1981] Senechal, M.: Which tetrahedra Fill
Space?, Mathematical Magazine, Vol. 54, No. 5,
1981, pp. 227-243.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 150 ISBN 978-80-86943-75-6

The 3-Point Method: A Fast, Accurate and Robust Solution
to Vanishing Point Estimation

Vinod Saini, Shripad Gade, Mritunjay Prasad, Saurabh Chatterjee
Department of Aerospace Engineering,
Indian Institute of Technology, Bombay,

Mumbai, India-400076
{saini.vinod, shripad.gade, mritunjay, saurabhsaurc}@iitb.ac.in

ABSTRACT
Vanishing points can provide information about the 3D world and hence are of great interest for machine vision
applications. In this paper, we present a single point perspectivity based method for robust and accurate estimation
of Vanishing Points (VPs). It utilizes location of 3 collinear points in image space and their distance ratio in the
world frame for VP estimation. We present an algebraic derivation for the proposed 3-Point (3-P) method. It
provides us a non-iterative, closed-form solution. The 3-P results are compared with ground truth of VP and it is
shown to be accurate. Its robustness to point selection and image noise is proved through extensive simulations.
Computational time requirement for 3-P method is shown to be much less than least squares based method. The
3-P method is extremely useful for accurate VP estimation in structured and well-defined environments.

Keywords
Vanishing Points, Point Perspectivity, Length Ratio, Camera Calibration, Cross Ratio

1 INTRODUCTION

A family of parallel lines projected on a plane un-
der the pin-hole camera model will ideally intersect in
a common point. This point is known as the Vanish-
ing Point. VP’s formed by families of coplanar parallel
lines are collinear and the line is known as the Vanish-
ing Line. VPs and Vanishing Lines for an image of a
cube are shown in Fig. 1.
Development of computational techniques and ever-
growing requirement of extracting information from
image have led to a spurt in the field of image analysis
in recent years. Vanishing points have myriad applica-
tions including camera calibration, robotic navigation,
3D reconstruction, pose estimation, augmented reality
etc. VP’s have been extensively used for camera cali-
bration. [7], [9], [10], [11] and [12] use VPs for cam-
era calibration. Image reconstruction probelm in [13]
and [14] use VP’s for extraction of 3D coordinates of
points. [15] uses parallel lines in the environment and
corresponding VP’s for steering a robot. [16] uses van-
ishing points and vanishing lines for pose estimation of
UAV’s in indoor flights.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Several methods have been proposed to estimate VP’s.
[3] uses J linkage based algorithm for vanishing point
estimation in man-made environments. [4] proposes a
new framework for line based geometric analysis and
VP estimation of Manhattan scenes. [5] uses accurately
localised edges that are obtained through edge pixels
and does not require fitting of lines. It uses fewer but
more accurate lines for estimating VPs. [8] relies line
extraction using Hough transform and then on voting
in the vanishing point space to estimate VP. All of the
above mentioned methods claim to be accurate for VP
estimation in architectural environments e.g. Manhat-
tan scenes.

Vanishing points are extremely important in computer
vision and the accuracy of VP estimation directly influ-
ences the performance of the said application. Addi-
tionally, since there may be a need to compute vanish-
ing points multiple times, a computationally efficient
method is the need of the day. Camera calibration ef-
forts require accurate VP estimates Calibration targets
are well defined structured objects and this information
about them can be exploited to suit our needs. Fig. 2
shows few calibration patterns used in different algo-
rithms. [1] proposes two length ratio based methods.
First requires evaluation of 1D projective transforma-
tion and the direction of lines to compute VP. Second
detects VP using geometric construction. Here we pro-
pose a length-ratio based fast and accurate VP estima-
tion method. We use three collinear points and their
distance ratio in world frame to compute VP location.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 151 ISBN 978-80-86943-75-6

Vanishing Lines

Finite Vanishing
Point

Figure 1: Vanishing Points and Vanishing Line Figure 2: Patterns used to get VPs

Section 2 discusses camera calibration preliminaries
and least squares vanishing point detection method.
Section 3 talks about the 3-P method and its formal
derivation. Simulation and experimental results are dis-
cussed in section 4.

2 PRELIMINARIES
2.1 Camera Model

Pin-hole model is based on the principle of collinear-
ity, where each point in the world space can be mapped
by a straight line to the image plane through the cam-
era center. This kind of central projective transform is
called “Perspective". Fig. 3 shows projection of a line
on image plane. A Pin-hole camera model has been
used here ([1], [2]). Any point P (coordinates given by
X) can be mapped to a point p (coordinates given by
x) in the image plane . The overall transform can be
expressed as,

x = PX (1)

The overall transformation matrix, P is obtained by
multiplying the extrinsic calibration matrix by intrinsic
calibration matrix. P can be expressed as,

x =K R[I | −C̃]X =KM X = P X (2)

Parameters that are solely dependent on camera are
called Intrinsic parameters. Principal point, skew, as-
pect ratio and focal length together form the intrinsic
camera calibration matrix (K). Extrinsic parameters of
a camera include the rotation and translation of camera
with respect to the world frame. Rotation matrix (R)
and translation vectors (C̃) together form the extrinsic
camera calibration matrix (M).

2.2 Least Squares VP estimation

Let us consider a set of n parallel lines in 3D. Ide-
ally their mappings in the image plane will intersect at
a point (the VP). Due to noise and other errors they will
intersect at different points. The maximum number of

intersections that can be found out are nC2. The aim is
to estimate a point that has least perpendicular distance
from the n lines. The methodology can be divided into
two sub-tasks,

1. Extracting Lines from the image.

2. Finding Least Squares solution.

Extracting Lines Lines can be extracted from the im-
age using various image processing techniques. In our
approach we extract control point locations from the
image (see Figure 8). A least squares fit straight line is
drawn to minimize perpendicular distance of m points
from the line. If (xi,yi) are the locations of the m points
that lie on a straight line, the slope (slope) and intercept
(c) of the line are given by,[

c
slope

]
=

[
m ∑

m
i=1 xi

∑
m
i=1 xi ∑

m
i=1 x2

i

]−1 [
∑

m
i=1 yi

∑
m
i=1 xiyi

]
(3)

Least Squares solution Once the line information is
extracted from the image, the only hurdle in estimating
the vanishing point using least-squares is finding the in-
tersection of lines. For any two points vi and v j, the line
passing through them can be expressed as,

Li j = vi× v j

If m lines given by Li (i=1,2,...,m) intersect in a point V ,
then the coordinates of V are given by,LT

1
..

LT
m

Vx
Vy
Vz

= 0 (4)

3 THE 3-POINT METHOD

Parallel lines appear to intersect at a point in perspec-
tive view. In an image this perspectivity is introduced
due the camera parameters and its orientation. Sev-
eral methods have been proposed in literature to mea-
sure perspectivity. In [1] this perspectivity is measured

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 152 ISBN 978-80-86943-75-6

Figure 3: Pin-hole camera model Figure 4: Length Ratio for 3-P method

through the evaluation of 1D projective transformation.
The main idea behind or method is that we can get
a sense of this camera perspectivity through the three
collinear points from the image and their length ratio in
the world frame.

Let us consider a family of parallel lines represented
by F . These lines are projected onto an image plane
through a pin-hole camera model. Let this set be called
as F. Now, if we select two points lying on any line
f (f ∈ F) ; we can write the equation of that line f
in image space. Equation of line f and the length ratio
(given by three collinear points) in the world frame will
provide information about perspectivity along f. This
will enable us to map any point on line f (f∈F) onto its
image f (f ∈ F). Any point on line f at infinite distance
when mapped under pin-hole camera model will map
onto VP.

The advantage of this method over the length ratio
method is that it does not require us to compute ho-
mography (projective transform) and perform intensive
computations. It provides us with a closed-form so-
lution and is computationally efficient. Line detection
and clustering is not required in this method. This re-
duces computational load significantly and altogether
eliminates line detection and clustering errors. Also this
method can be made to utilize information from a small
region in the image, thereby reducing errors due to de-
focusing of certain parts of image.

3.1 Derivation

Let us consider three collinear points A(x1,y1,z1),
B(x2,y2,z2) and C(x3,y3,z3). Let, the line that passes
through them be called L1 as shown in Fig. 3.
Distance Ratio: The distance ratio for three collinear
points is given by (see Fig. 4),

Γ =
dAC

dAB
=

√
(x1− x3)2 +(y1− y3)2 +(z1− z3)2√
(x1− x2)2 +(y1− y2)2 +(z1− z2)2

(5)

Camera Model: We use a pin-hole camera model with
projection matrix P. Let the images of A, B and C

be called A’(u1,v1,1), B’(u2,v2,1) and C’(u3,v3,1) re-
spectively.

A′ = PA, B′ = PB, and C′ = PC (6)

Line L1: Equation of line L1 (see Fig. 3) can be written
in the two point form (using points A and B) as follows,

x− x1

x2− x1
=

y− y1

y2− y1
=

z− z1

z2− z1
= λ (7)

or
x = x1 +λ (x2− x1)
y = y1 +λ (y2− y1)
z = z1 +λ (z2− z1)

(8)

Now, if we substitute coordinates of point C in Eq. (8)
and use the expression in Eq. (5) we can easily con-
clude that Γ and λ are equal.
Coordinates of C′, for a known distance ratio, can be
expressed as,

 w3u3
w3v3

w3

 = P

x1 + λ (x2 − x1)
y1 + λ (y2 − y1)
z1 + λ (z2 − z1)

1

= P

x1
y1
z1
1

+ λP

x2 − x1
y2 − y1
z2 − z1

0

=

 w1u1
w1v1
w1

+ λ

 w2u2 − w1u1
w2v2 − w1v1

w2 − w1

(9)

Simplifying the above equation we get C’ as,

(u3,v3) =
(

u1+λ (αu2−u1)
1+λ (α−1) , v1+λ (αv2−v1)

1+λ (α−1)

)
(10)

where, α is defined as w2
w1

.

For any point D(x,y,z) lying on line L1, and the image
D’(u,v,1) are related by D′ = PD. The coordinates of
D’ are obtained by Eq. 10, and expressed as,

(u,v) =
(

u1+λ ′(αu2−u1)
1+λ ′(α−1) , v1+λ ′(αv2−v1)

1+λ ′(α−1)

)
(11)

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 153 ISBN 978-80-86943-75-6

X1'

X2'

X3'

X4'

X1 X2 X3 X4

O

Image Plane

Figure 5: Cross Ratio

Optim
al L

ine

Optim
ized Points

Noisy Points

P1

P1’

P2

P2’

Pn’

Pn

Figure 6: Noisy image points and its projection on best
fit line

In homogenous coordinates, (wu,wv,w) and (u,v,1)
represent the same point. The factor w is merely a
scaling quantity. The parameter α is defined as the
ratio of scaling factors for two different points. It
thereby provides wisdom about perspectivity. α can be
evaluated from Eq. 10.

α =
w2

w1
=

(u3−u1)(λ −1)
(u3−u2)λ

(12)

The vanishing point is the image of a point lying at in-
finity on line L1. This point (let us say is D) in the
world frame will have a distance ratio, (λ ′ = dA,D

dA,B)
) of

∞. To get the VP, we substitute this value of λ ′ in Eq.
11. Through algebraic manipulation, we get,

(V Px,V Py) =
(

αu2−u1
α−1 , αv2−v1

α−1

)
(13)

An interesting phenomenon can be observed if we con-
sider an image with zero perspective. For such an image
α is equal to 1 since the scaling factors will be same for
both the points. VP for such an image will be located at
∞ (Eq. 13). This is to be expected, since VPs arise only
due to perspective in the image.

3.2 Proof by Invariance
Property: The cross ratio (χ) is invariant under projec-
tive transformation. χ is expressed as,

χ =
d13d24

d12d34
(14)

where di, j represents distance between points i, j as
shown in Fig. 5.

In our current formulation let us assume that a fourth
point V is lying on line L1 at an infinite distance along
with A, B and C. V’ projected on the image plane from
V, will represent the vanishing point. Using Eq. 5, cross
ratio in world frame is given by,

χ = lim
V→∞

dABdCV

dACdBV
=

1
λ

lim
V→∞

(1+
dCB

dBV
) =

1
λ

(15)

In the image frame, let the coordinates of V’ be given
by Eq. 13, We write the cross ratio as,

χ
′ =

√
(u1 − u2)2 + (v1 − v2)2√
(u1 − u3)2 + (v1 − v3)2

×

√
(u3−u3α−u1+u2α

1−α
)2 + (v3−v3α−v1+v2α

1−α
)2√

(u2−u1
1−α

)2 + (v2−v1
1−α

)2

(16)

Substituting the value of α from Eq. 12 and simplifying
algebraically, we get χ = χ ′. This shows that the cross
ratio of four points is invariant under projection and our
VP estimates are accurate.

3.3 Tackling Noise

In the presence of noise, the performance of image
processing techniques may get degraded. If the location
of those three collinear points is not known precisely,
errors will creep in to the VP estimates. To reduce this
sensitivity we incorporate a least squares based opti-
mization method. The idea behind this method is to
draw a least square fit line from the selected three points
to find the direction. Then orthogonally project these
points on this line. These new points are used in place
of earlier noisy data see Fig. 6.

4 RESULTS

Experiments were performed to validate the 3-Point
(3-PVP) method. Robustness of the method and its
computational efficiency are investigated through sim-
ulations. All simulations are performed in MATLAB R©
environment. Simulations were performed on a PC with
i5 processor (3.2 GHz, 64 bit) and 4 Gb RAM.

[4] and [3] focus on vp estimation in urban/man-made
environment where determining distance ratio will
be difficult and will have to be separately estimated.
Hence, we compare our results with LSVP method
described in Section 2.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 154 ISBN 978-80-86943-75-6

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

350

400

X Pixel

Y
 P

ix
e

l
Simulated Image with 10 × 10 Control Points

Figure 7: Simulated Pattern of 10×10 control points Figure 8: Metal fixture with 10×10 control points

4.1 Simulation

We here simulate perspectivity transform and gen-
erate synthetic images. A target pattern with 10× 10
evenly distributed points is simulated as shown in Fig.
7. Two sets of parallel lines can be drawn in X and
Y direction. This pattern is projected on the synthetic
image-plane using a simulated camera. Properties are
tabulated in Table 1.
Absolute ground truth can be found out for simulated
images and hence it can be a great tool to validate es-
timation method. Since, we are simulating perspective,
the camera matrix P is known to us and homogenous
coordinates (of infinity point along the line) are known
to be [1,0,0,0].
Synthetic images provide us with an unique opportunity
to add Gaussian noise and analyse robustness. Gaussian
noise N (0,0.1px) is added to each projected point on
the pattern. This new noisy image is given as input to
the VP estimation algorithm. Two vanishing points are
estimated in each image, represented by VP1 and VP2.
We perform 100 Monte-Carlo runs for both methods.

Accuracy and Robustness
We compare our results with least square approach. 3-
PVP provides accurate VP estimates. This is seen from
the fact that 3-PVP estimates are closer to the ground
truth. The mean error and standard deviation of error
are also lower for 3-PVP as compared to LSVP. The
mean errors are negligibly small as compared to VP es-
timate for both methods. Standard deviation of error is
approximately one third the value of LSVP. Results are
tabulated in Table 4.
Noise with std of 0.1 px was used to study robustness.
3-PVP method is shown to be robust to image noise.
Euclidean norm of error is much higher for LSVP as
compared to 3-PVP. Error norm for LSVP is approxi-
mately three times that of 3-PVP. Error values are tabu-
lated in Table 3

Parameter Value
Focal Length 50 mm

Principal Point (360,240) px
Skew Factor 0
Scale Factor 1

Orientation Vector [00 400 300]
Translation Vector [800,−1200,300] mm
Image Resolution 720 × 480

Table 1: Simulated camera parameters

Fig. 9 and Fig. 10 shows the ground truth location
of VP and the spread of estimated VPs using both
methods. The VPs estimated by LSVP have more
deviation from the true value. Fig. 11 represents the
error in x and y direction along with error norm for the
Monte-Caro runs. 3-PVP method shows lesser error as
compared to LSVP.

Computational Cost
Monte-Carlo runs also can indicate the computational
cost of the algorithm. The time taken by both meth-
ods are tabulated in Table 2 for 100, 1000 and 10000
runs. We can observe that the speed of 3-PVP is ap-
proximately ten times faster. LSVP method involves
firstly forming least square lines and secondly finding
their intersection. 3PVP on the contrary employs an al-
gebraic relation and is hence fast. These simulations
validate our method’s accuracy, robustness and speed.

Number of Runs 3-PVP (s) LSVP (s)
100 0.230184 1.27458

1000 1.5083 13.09765
10000 14.9408 132.65978

Table 2: Simulation Time

4.2 Experimental Results
The target used for validating the 3-P VP method is

shown in Fig. 8. The coordinates of the center of cir-
cles are known with high degree of accuracy. These

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 155 ISBN 978-80-86943-75-6

−1500 −1000 −500 0 500 1000 1500 2000 2500
−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

500

X (Px)

Y
 (

P
x
)

100 Monte Carlo Runs − (3−PVP)

Estimated VP1

Estimated VP2

True VP1

True VP2

Figure 9: VP estimate spread for 3-PVP

−1500 −1000 −500 0 500 1000 1500 2000 2500
−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

500

X (Px)

Y
 (

P
x
)

100 Monte Carlo Runs − (LSVP)

Estimated VP1

Estimated VP2

True VP1

True VP2

Figure 10: VP estimate spread for LSVP

10 20 30 40 50 60 70 80 90 100

−100

0

100

200

VP
1
 Error in X Direction

E
rr

o
r(

P
x
)

Number of Runs
10 20 30 40 50 60 70 80 90 100

−5

0

5

VP
1
 Error in Y Direction

E
rr

o
r(

P
x
)

Number of Runs

10 20 30 40 50 60 70 80 90 100

−100

0

100

VP
2
 Error in X Direction

E
rr

o
r(

P
x
)

Number of Runs
10 20 30 40 50 60 70 80 90 100

−400

−200

0

200

400

VP
2
 Error in Y Direction

E
rr

o
r(

P
x
)

Number of Runs

10 20 30 40 50 60 70 80 90 100

50

100

150

200

Error Norm of VP
1

E
rr

o
r

(P
x
)

Number of Runs
10 20 30 40 50 60 70 80 90 100

200

400

600

Error Norm of VP
2

E
rr

o
r

(P
x
)

Number of Runs

LSVP

3PVP

Figure 11: Error in VP Estimates (RMS, X & Y Direction) for 3-PVP v/s LSVP

points are planer in nature and form two sets of paral-
lel lines. The image is captured using a Cannon EOS
1100 D camera with fixed effective focal length of 50
mm. Median filter has been used to remove noise from
the image. A well-focused image of the target is pro-
cessed in MATLAB to obtain centroids of the circular
control points. Two vanishing points are obtained from
each image. The vanishing points obtained by the 3-p
strategy are compared with results from LSVP method.

3-PVP and LSVP are used on three images and their
VPs are estimated. The results show that both the meth-
ods work effectively with the current image. The dis-
tance between results from both methods is shown to
be of the order of 10−08 or lower. This also shows that
in the absense of noise both methods will converge to
the same estimate. VP estimates for those three images
are tabulated in Table 5.

The advantages of our method are,

• Tackling of radial distortion: Our algorithm gives
us the freedom to select the three points, which can
be selected such that they lie in the middle of the
image. Radial distortion effects are negligible near
the center.

• Handling defocused images: Partial defocusing in
images can lead to large erros in feature extraction.
We can select required three points in such a way
that you avoid defocused parts of the image.

• Independent of Parallel Lines: Errors also creep in
when the given set of lines is not perfectly paral-
lel. We do not need parallel lines and hence are not
prone to errors.

• Fast and Robust

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 156 ISBN 978-80-86943-75-6

VP True VP (px) 3-PVP Error Norm LSVP Error Norm
Mean (px) STD (px) Mean (px) STD (px)

VP1 (2310.1, 240) 15.59 11.81 50.36 38.09
VP2 (-1013.1, -3467.3) 52.37 37.75 166.2 146.8
Table 3: Comparison of mean and std of error norm in VP estimation using 3-PVP and LSVP

VP True VP (px) 3-PVP Error LSVP Error
Mean (px) STD (px) Mean (px) STD (px)

VP1,x 2310.1 15.5410 11.8248 50.3179 38.073
VP1,y 240 0.6822 0.5821 1.9273 1.4071
VP2,x -1013.1 16.8240 12.1201 52.6534 46.5807
VP2,y -3467.3 49.5547 35.8124 157.5836 139.2167

Table 4: Comparison of 3-PVP and LSVP estimates and error analysis

Image VP 3-PVP (px) LSVP (px) ‖ ε ‖(distance)

Image 1 VP1 (279.45, -1179.07) (279.45, -1179.07) 6 E -11
VP2 (-36027.08, 4453.91) (-36027.08, 4453.91) 1 E -08

Image 2 VP1 (2601.13, -1539.28) (2601.13, -1539.28) 2 E -10
VP2 (-1778.97, -859.70) (-1778.97, -859.70) 1 E -10

Image 3 VP1 (1301.67, -1121.90) (1301.67, -1121.90) 1 E -10
VP2 (-4198.81, -644.39) (-4198.81, -644.39) 1 E -10

Table 5: Vanishing Points of real images using 3-PVP and LSVP

5 CONCLUSION

The 3-PVP method is based on single point perspec-
tivity. Three collinear points and their distance ratio
in the world frame characterize perspectivity in the di-
rection of that line. It provides us with a non-iterative,
closed-form solution. It is proved to be accurate and
robust. VP estimation was performed on simulated
images with a gaussian noise N (0,0.1). It provides
VPs with approximately one third the error norm and
a smaller standard deviation as compared to LSVP. 3-
PVP method is shown to be computationally cheap. Ex-
perimental results show that in the absence of noise,
3-PVP method and LSVP converge to the same value
(accurate estimation) albeit with much lesser compu-
tational time. It has promising future in applications
which require high accuracy VP estimation.

ACKNOWLEDGMENT

We gratefully acknowledge the help and guidance
provided by Mr. R S Chandrasekhar, RCI.

6 REFERENCES
[1] Hartley, Richard and Zisserman, Andrew: Mul-

tipleView Geometry in computer vision, Cam-
bridge UniversityPress (2000)

[2] Forsyth, D.,Ponce A., Computer Vision: A Mod-
ern Approach, 2nd Edition: Prentice Hall, ch 16.1,
pp. 437-439 (2011)

[3] Tardif, J.P., Non-iterative Approach for Fast and
Accurate Vanishing Point Detection, 12th IEEE
International Conference on Computer Vision,
Kyoto, Japan, pp. 1250-1257 (2009)

[4] Barinova, O. et. al., Geometric Image Parsing in
Man Made Environments. 11th European Confer-
ence on Computer Vision, pp. 57-70 (2010)

[5] Denis, P., Elder, J. H., Estrada, F. J.: Efficient
Edge-based Methods for Estimating Manhattan
Frames in Urban Imagery. ECCV 2008, Part II,
LNCS 5303, pp. 197-210 (2008)

[6] Tsai, R.Y.: A versatile camera calibration tech-
nique forhigh accuracy 3D machine vision metrol-
ogy using offthe-shelf TV cameras and lenses.
IEEE J. Robotics Automat.,Vol. RA-3, No. 4, pp.
323-344(1987)

[7] Grammatikopoulos, L., Karras, G., Petsa, E.,
Camera calibration combining images with two
vanishing points. Int. Arch. of Photogramme-
try, Remote Sensing and Spatial Information Sci-
ences, 35 (Part 5), pp. 99-104 (2004)

[8] Li, B. et. al.: Simultaneous vanishing point de-
tectionand camera calibration from single images.
Proceedingsof the 6th international conference on
Advancesin visual computing, pp. 151-160, Vol-
ume Part II (2010)

[9] Caprile, B., Torre, V., Using vanishing points for
camera calibration. Int. Journal of Computer Vi-
sion, 4(2), pp. 127-140 (1990)

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 157 ISBN 978-80-86943-75-6

[10] Lee, D. H., Jang K. H., and Jung, S. K.: Intrin-
sic Camera Calibration Based On Radical Center
Estimation. The 2004 International Conference
on Imaging Science, Systems, and Technology,
USA, pp. 7-13, (2004)

[11] He. B.W., Li Y.F., Camera calibration from van-
ishing points in a vision system, Optics and Laser
Technology, Volume 40, pp. 555-561(2008)

[12] Orghidan, R. et al.: Camera calibration using
two or three vanishingpoints, Proceedings of the
Federated Conference onComputer Science and
Information Systems, pp. 123-130 (2012)

[13] Fong, C.K.: 3D object reconstruction from sin-
gle distortedline drawing image using vanishing
points. Proceedings of ISPACS 2005 pp. 53-56
(2005)

[14] Parodi, P. and Piccioli, G.: 3D shape reconstruc-
tionby using vanishing points. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
vol. 18,no. 2, pp. 211-217 (1996)

[15] Schuster, R., Ansari, N. and Bani-Hashemi,A.:
Steering a Robot with Vanishing Points. IEEE-
Transactions on Robotics and Automation,Vol. 9,
NO. 4, pp. 491-498 (1993)

[16] Wang, Y.: An efficient algorithm for UAV in-
doorpose estimation using vanishing geometry.
12th IAPRConference on Machine Vision Appli-
cations, Japan, pp. 361-364 (2011)

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 158 ISBN 978-80-86943-75-6

MCM-CBIR: Multi Clustering Method for Content
Based Image Retrieval

Hadjer LACHEHEB

LRIA Laboratory, Computer
Science Department, USTHB

Algiers, Algeria

hlacheheb@usthb.dz

Saliha AOUAT

LRIA Laboratory, Computer
Science Department, USTHB

Algiers, Algeria

saouat@usthb.dz

Izem HAMOUCHENE

LRIA Laboratory, Computer
Science Department, USTHB

Algiers, Algeria

ihamouchene@usthb.dz

ABSTRACT
Image retrieval systems are designed to provide the ability of searching and retrieving images in huge image

databases. A content based image retrieval system (CBIR) is used to offer such tasks based on the content of the

image. In this paper we propose a new method of CBIR system based on a learning technique. Our method uses

k-means clustering to reduce data and to improve the system performance. The specificity of our approach is the

use of each feature vector separately in the clustering process in order to obtain different clustering on the same

database, differently to other approaches that combine features vectors to cluster the database. For this reason we

call it multi-clustering approach. The advantage of this approach consists in keeping the performance of the

features and getting several views of the database due to the separation of features. The experimental results

show the efficiency of our approach.

Keywords
CBIR, visual features, color, texture, shape, k-means clustering.

1. INTRODUCTION
 The increasing number of digital images makes the

information management hardest. CBIR is the

process of retrieving images from a huge database on

the basis of visual features. These features are

automatically extracted, such as color, texture and

shape. The greater parts of CBIR systems are based

on a typical architecture shown (see Fig.1). This

architecture includes two phases. The first phase is

the offline phase or Data insertion [Tor]. This phase

consists of the extraction of features vectors or

descriptors of each image in the database. The second

phase is the online or Query processing [Tor]. In this

phase we extract the query feature vectors and

compare it to all feature vectors of the database. We

compare the query image to the other images in the

database with computing a similarity measure

between their feature vectors. Afterwards, the

obtained images will be ordered following a

decreasing order of similarity. The visual contents

or Features are the representation of any

distinguishable characteristic of an image [Sub02].

These features require three levels: low, middle and

high. Low level features are the visual content that

can be extracted from the information obtained in the

pixel level such as color, texture, and shape.

One of the attractive parts in an image is the color.

The color space is the identification of the color; it is

generally represented using three elements. For

instance, RGB (red, green, blue) color space, HSV

(hue, saturation, value), CIE L*a*b*[Col04].

Figure 1. Typical architecture of CBIR systems.

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted

without fee provided that copies are not made or

distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first

page. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific

permission and/or a fee.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 159 ISBN 978-80-86943-75-6

The texture is a powerful feature that is neglected

generally by a lot of CBIR systems. But, until now a

clear definition about texture does not exist.

However, we can define it as the repeated model that

has the proprieties of homogeneity, coarseness,

contrast, directionality, line-likeness, regularity,

roughness [Zha12]. The other important descriptor

or feature is a shape.

Shape is the characteristic surface represented by a

contour or an outline. Shape descriptors need a good

segmentation into regions or objects. Zhang and Lu

[Zha04] classify shapes feature methods for

boundary based and region based. All these

descriptors need similarity metrics for the purpose of

comparing the query image features vectors and

feature vectors of the images in the database. A

similarity measure determines the distance between

the feature vectors (low level features) representing

the images. Some of famous measurements are

Euclidean distance, Minkowski distance, Manhattan

distance, and histogram intersection [Swa91]. Many

researchers use other methodologies or tools of

artificial intelligence like machine learning. Arthur

Samuel [Sam59] defines the machine learning as a

field that gives computers the ability of learning

without being programmed. Two major categories

are introduced in machine learning which are

supervised and unsupervised learning. In supervised

learning a supervisor is going to teach the computer

on the other side in the unsupervised learning the

computer learns by itself. Clustering is a famous

technique of unsupervised learning. One of the

commonly used clustering techniques is K-means

clustering. K-means is used to find K different

clusters in a database of N objects, where similarities

between objects in the same cluster are minimized,

and between objects of the other clusters are

maximized [Tan05], [Jai11].

This paper is organized as follows:

Section 2 is an overview about related works dealing

with CBIR. The third section contains the details

about our proposed method. In section 4 we show the

experimental results and comments about their

efficiency after applying our proposed technique.

2. RELATED WORKS
Many general-purpose image retrieval systems have

been developed. A lot of famous systems like QBIC

[Fal94], Photobook [Pen96], Blobworld [Car02],

Virage [Gup97], VisualSEEK and WebSEEK

[Smi96]. An important part of new approaches start

to use key point features one of the well known

proposition on that are SIFT descriptors proposed by

Lowe in 2004 [Low04]. Another used approach is

visual words where an image is represented by a

histogram of visual words [Fei05],[Siv03]. Besides,

using clustering techniques is an efficient and an

important option added to CBIR systems since they

allow reducing the time of retrieval and increasing

the performance of research. K-means was early

proposed over 50 years ago it is still one of the most

widely used algorithms for clustering. The main

reasons for the success of these techniques are the

ease of implementation, the simplicity, the efficiency

and the empirical success. The most efficient k-

means algorithm is ElKAN’s algorithm [Jai11]. For

instance, SemQuery system [She02] organizes

images into different groups of clusters based on

their heterogeneous features. Vailaya et al. [Vai01]

create a hierarchical structure about vacation images.

At the top level, images are classified as indoor or

outdoor. Outdoor images are then classified as a city

or landscape that are further divided into the sunset,

forest, and mountain closes. The SIMPLIcity system

[Wan01] category images into a graph, textured

photograph, or non-textured photograph. In 2012,

Swapna Borde and Udhav Bohosle proposed novel

techniques for image retrieval using clustering

features extracted from images which are RMC,

CMC, RMDC and CMDC, RMWC and CMWC.

Other techniques use the advantages of transforms

(wavelet and DCT) [Rai12] . Other useful MPEG-7

for searching in multimedia systems are in

[Sal02,Bas10, Say05]. For instance, VITALAS

(Video & image Indexing and reTrievAl in the

LArge Scale) is an Industrial project started from

2007 the aim of this project is to produce a prototype

for industry to retrieve and index multimedia

information. This project has given an interesting

result. The goal of this project focus on: First, Cross-

media indexing and retrieving try to use automatic

annotation and getting semantic level. Second, using

techniques for large scale search. Finally, trying to

improve visualization and context adaptation[Vit07].

3. THE PROPOSED METHOD
Our approach uses k-means clustering on each

feature of the images separately. For each feature

vector we get a different clustering. For example, if

we extract color feature vector and texture feature

vector and shape feature vector we get color

clustering, texture clustering and shape clustering.

These differences clustering allow us to have

different views and levels of the retrieved images for

a query which is not possible with other approaches.

We call this method Multi-Clustering Content Based

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 160 ISBN 978-80-86943-75-6

Image Retrieval. The proposed approach takes four

steps:

The two first steps are in the offline phase of our

CBIR system and the two second steps are in the

online phase.

1. Feature extraction.

2. K-means multi-clustering.

3. Query image searching.

4. Organizing results.

3.1. Feature Extraction
The first step is to extract features from the images of

the database. Vi is a feature vector. We choose color

and texture features for our system. Images used are

in RGB color space. In addition, we propose to

represent color feature with three feature vector: red

histogram, green histogram and blue histogram. Also,

we use the gray level co-occurrence matrix GLCM to

represent texture feature.

3.1.1 Histogram

A color histogram [Swa91] is an important feature

we can extract gray level histogram as we can use

color histogram. For our system, we extract

histograms with 256 bins of each R, G, B colors. So,

as a result we get three feature vectors for color

descriptors.

3.1.2 Co-occurence Matrix (GLCM).
The Grey Level Co-occurrence Matrix, or called the

Grey Tone Spatial Dependency Matrix) is a table

representing a number of different combinations of

pixel brightness values (grey levels) that occur in an

image [Har73].

At the end of this step four feature vectors are

extracted

 V1: histogram of red color.

 V2:histogram of green color.

 V3:histogram of blue color.

 V4: co-occurrence matrix.

To clarify more this first step we illustrate an

example (see Fig.2). To simplify this example we

suppose that we have three feature vectors for each

image in the database

Figure 2. Illustration of the feature extraction for

one image.

3.2. K-Means Multi-Clustering
After the feature extraction, k-means clustering

algorithm is executed. K-means clustering is a

leaning machine algorithm. This algorithm needs

80% of images for the learning phase and 20% of

images for the evaluation phase.

The evaluation images are the images used to query

the system. Learning k-means clustering is to find K

different clusters in a database of N objects, where

similarity intra cluster distance is minimized, and the

distance inter clusters are maximized [Tan05],

[Jai11].

The learning machine is repeated until the centers of

the clusters are stable. Algorithm 1 shows the

operation of k-means clustering [Tan05].

Algorithm k_means_clustering

Begin

 Select K points as the initial

 centroid.

 Repeat

 Form K clusters by assigning all

 points to the

 closest centroid.

 Recompute the centroid of each

 cluster.

 Until the centroids don’t change.

End.

Algorithm 1: k-means clustering [Tan05]

At the end of this step we obtain k clusters with K

stable centers and each N element assigned to its

corresponding cluster. This learning is executed for

each previous vectors Vi, i=1. . 4. For our example

we have just V1, V2 and V3 (see Fig.3).

Feature vector 1

V1

Feature vector 2

V2

Feature vector 3

V3

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 161 ISBN 978-80-86943-75-6

Figure 3. Example of a multi-clustering data base (offline phase)

3.3. Query Image Searching
The two previous steps are in the offline phase. Next

two steps are in the online phase. First, we extract the

feature vectors of the query image using the same

process (see Fig.2). As a result we get four feature

vectors (VQ1 , VQ2 ,VQ3, VQ4).

For each feature vector, a searching process is

launched. Each query feature vector VQi is searched

in its corresponding clustering. For instance, VQ1 is

searched in V1 clustering. As a result we get the

relevant cluster of each feature vector VQi (see

Fig.4).

Figure 4. Query processing (online phase)

C11

C13

C12

I2

I4

I5
I6

I7

I8

I9

I10

I11 I12

I13

I14

I5 I1

I2
I4

I12
I7 I7 I8

I10

I11 I3

I6

I0

I0 I9

I13

I14
I8

I15

I15

I15

I0

I1

C22

C31

C23

C21

C33

C32

I1

I8 I9

I13

I4

I10

I5
I2

I3

I11

I14

I6

I12

I3

Retrieval based on feature vector
query VQ2 searched in the Clustering

based on feature vector V2 of the
images in database.

Retrieval based on feature vector

query VQ1 searched in the Clustering
based on feature vector V1 of the

images in database.

Query image I5

Retrieval based on feature vector
query VQ1 searched in the

Clustering based on feature vector
V1 of the images in database.

VQ2 VQ3 VQ1

Relevant clusters Ii: Image number i.

Cij: The cluster j of feature vector i.

Other clusters

C11

C13

C12

I2

I4

I5 I6

I7

I8

I9

I10

I11 I12

I13

I14

I5
I1

I2
I4

I12

I7 I7 I8

I10

I11 I3

I6

I0

I0 I9

I13
I14

I8

I15

I15
I15

I0

I1

C22

C31

C23

C21

C33

C32

I1

I8 I9

I13
I4

I10

I5

I2

I3

I11

I14
I6

I12

I3

K-means clustering based

on feature vector V1 of each
image.

K-means clustering based

on feature vector V2 of each

image

K-means clustering based

on feature vector V3 of each
image

Ii: Image number i.

Cij: The cluster j of feature vector i.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 162 ISBN 978-80-86943-75-6

3.4. Organizing Results
The last step is to organize the results from the most

to the less relevant. We propose two ways in this

step. First, organization by levels. Second,

organization by the clusters union. Let us carry on

the previous example, we take I5 as image query. As

a result we have three relevant clusters (C11, C22, C33)

(see Fig.4).

3.1.3 First Proposed Organization (By Levels).

In this organization we propose to separate the results

on three levels.In the first level we display the

intersection of all relevant clusters. In our case C11∩

C22 ∩C33 = {I5, I1, I7}. For the second level.The

intersection two by two of relevant clusters that do

not exist in the previous level. For our example:

((C11∩ C22)∪(C22∩ C33)∪(C11∩C33))-(C11∩C22∩C33)

= {I2,I4,I3}. Third level. The images that exist in just

one cluster and do not exist in the previous two

levels. For our example C11∪C22∪C33-((C11∩

C22)∪(C22∩ C33)∪(C11 ∩C33))- (C11∩ C22 ∩C33)-

C11∩ C22 ∩ C33 ={I12 ,I15, I6}.

After, for each level we compute the similarity

measure (Euclidian distance) and order the retrieved

images in a descending order.

3.1.4 Second Proposed Organization (By a

Clusters Union).
The second proposed organization is to group all

images in just one level and compute the similarity

measure and order the retrieved images in a

descending order. In our example, C11∪ C22 ∪C33 =

{I1, I2, I4, I7, I12, I15, I3, I6}.

4. RESULTS AND DISCUSSION
This section is a presentation of our experimental

results. In addition, we are going to compare our

results to other clustering CBIR system methods like

WaveQ [Geb07] and discuss these results. To

experiment our approach, we use the Corel database

[Wan01]. The database contains 1000 images dived

on 10 classes as follows: African people and villages,

Beach, Buildings, Buses, Dinosaurs, Elephants,

Flowers, Horses, Mountains and Glaciers, Food. We

choose to extract color and texture features. To

process our method we first divide our dataset into

two parts, where 80% of the images are used during

the training data set (offline phase) and 20% of the

images are used for the query phase (online phase).

During the offline phase, we pre-process the images,

extract their feature vectors and construct a new

database containing features vectors of each image.

After, we apply k-means clustering for each feature

vector. In the online phase, we calculate the distance

between the query image and the images in the

database. Finally, we sort these distances and return

all the found relevant images after using our two

organization methods presented in section 3.
Moreover, a presentation of the results without using

texture features (only color features) and then we add

other results using both features (color and texture).

We evaluate our system with computing recall and

precision[Per01].

Recall =
number of releveant images retrived

number of relevant images in collection
 (1) (1)

Precision =
number of relevant images retrival

total number of images retrieved
 (2) (2)

4.1.Without Texture Feature
We execute our system on several images without

using texture features. So we use just three feature

vectors (red, green, blue). The results are impressive

and in most case relevant 20 images are displayed on

the top of the retrieved images.

We test for (K= 5) or five clusters. From 69 tested

images average recall is above 0.77 and average

precision is over 0.33. In addition, we get 94% of

querying images having a precision above 0.50.

Also, we get 52% of images having more than 0.90

recall value. We notice that for five classes we get

better results.

4.2.With Texture Feature
In this part we add the co-occurrence matrix to the

three other features. The results are good and

promising. We test for (K=5) and we get the

following results the average of recall is above 0.918.

Comparing to the previous tests without texture,

texture features increase the recall. This means that

the number of retrieved relevant images increases.

4.3. Comparison With Other Systems
We will compare our system with WaveQ system.

WaveQ uses a clusering method for this database. An

execution is shown (see Fig.5) where we can notice

the efficiency of our system comparing to WaveQ.

WaveQ gives as results the image query at first and

then a dish in the second position. Also, the other

images are semantically the same buses. Our system

displays the image query as first image and the four

other images are buses. In addition, our results are

visually the same (red and white buses color) and

semantically the same (bus in the city).

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 163 ISBN 978-80-86943-75-6

Figure 5. An example comparing WaveQ system

and our system. Set of Images number 1 are

results of WaveQ system. Sets numbers two are

the five first retried images of our system without

texture. Sets numbers three are the five first

images results of our system with texture.

We can see another test of our system. First, A multi

level organization is displayed (see Fig.6). In

addition, we extract images intersection of the

relevant clusters images (see Fig.7).

Figure 6. An example of levels organization

results in our system. First five relevant images

are displayed for each level

Figure 7. An example of second proposed

organization method of our system. Twenty first

relevant image are displayed

5. CONCLUSION AND FUTURE

WORK
In this paper a new approach for content based image

retrieval is proposed. This method uses K-means

clustering separately for each feature vector of an

image. This is done in order to keep the efficiency of

each feature without combining them to get one

feature vector. Also, the proposed approach avoids

the computing of similarity measures for the entire

database, we just calculate those of the relevant

clusters. The results show the effectiveness of our

approach and give a good Recall and a promising

precision values in database of 1000 images. In

addition, our system gives very satisfactory retrieved

images (20 first images look alike the query).

Comparing to WaveQ our system gives visually

better results.

As future work, we will test this method with

different color space, color features and texture

features. In addition, using others similarity

measures.

References

[Bas10] Bastan, M. , Cam, H., Gudukbay, U. and

Ulusoy, O. BilVideo-7: An MPEG-7-

Compatible Video Indexing and Retrieval

System,” IEEE Multimedia, vol. 17, no. 3, pp.

62–73, 2010.

[Car02] Carson, C., Belongie, S., Greenspan, H.

and Malik, J. Blobworld: image segmentation

using expectation-maximization and its

application to image querying. Pattern Analysis

and Machine Intelligence, IEEE Transactions

on.Vol. 24, pp.1026-1038, 2002.

[Col04] The Color Guide and Glossary,

Communication, measurement and control for

Digital Imaging and Graphic Arts X-rite, 2004.

[Fal94] Faloutsos, C., Barber, R., Flickner, M.,

Hafner, J., Niblack, W., Petkovic, D. and Equitz,

W. Efficient and effective Querying by Image

Content. Journal of Intelligent Information

Systems.Vol. 3, pp.231–262 , 1994.

[Fei05] Fei-Fei, L. and Perona, P. A Bayesian

hierarchical model for learning natural scene

categories. Computer Vision and Pattern

Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on. Vol. 2, pp.

524 – 531, 2005.

[Geb07] Gebara, D. and Alhajj, R. WaveQ:

Combining Wavelet Analysis and Clustering for

Effective Image Retrieval. Advanced

Information Networking and Applications

Workshops, 2007, AINAW ’07. 21st

International Conference on. pp.289–294, 2007.

[Gup97] Gupta, A. and Jain, R. Visual information

retrieval. Commun. ACM. 40, 70–79, 1997.

Query image

Query image

Query image

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 164 ISBN 978-80-86943-75-6

[Har73] Haralick, R.M., Shanmugam and K.,

Dinstein, I.: Textural Features for Image

Classification. Systems, Man and Cybernetics,

IEEE Transactions on. SMC-3, pp.610–621,

1973.

[Jai11] Jain, M., Singh and S.K. A Survey On:

Content Based Image Retrieval Systems Using

Clustering Techniques for Large Data sets.

International Journal of Managing Information

Technology.Vol. 3, pp.23–39 , 2011.

[Low04] Lowe, D. Distinctive Image Features from

Scale-Invariant Keypoints. International Journal

of Computer Vision.Vol. 60, pp.91–110, 2004.

[Pen96] Pentland, A., Picard, R.W. and Sclaroff, S.

Photobook: Content-based manipulation of

image databases. International Journal of

Computer Vision.Vol. 18, pp.233–254, 1996.

[Per01] Müller, H. , Müller, W., Squire,S.

Marchand-Maillet, D. M. and Pun, T.

performance evaluation in content based image

Retrieval: overview and proposals, Pattern

Recognition Letters, vol. 22, no. 5,pp. 593–

601, April 2001 .].

[Rai12] Raikwar, A.K. and Jain, S.Article: Content

based Image Retrieval using Clustering.

International Journal of Computer Applications.

41, pp.29–33, 2012.

[Sal02] Salembier, P. and Sikora, T.

Introduction to MPEG-7: Multimedia Content

Description Interface. New York, NY, USA:

John Wiley & Sons, Inc., 2002.

[Sam59] Samuel, A.L. Some studies in machine

learning using the game of checkers. IBM J.

Res. Dev.Vol. 3, pp.210–229 , 1959.

[Say05] Saykol, E., Güdükbay, U. and Ulusoy, Ö.

A histogram-based approach for object-based

query-by-shape-and-color in image and video

databases, Image Vision Comput., vol. 23, no.

13, pp. 1170–1180, 2005.

[She02] Sheikholeslami, G., Chang, W., and

Zhang, A. SemQuery: semantic clustering and

querying on heterogeneous features for visual

data. Knowledge and Data Engineering, IEEE

Transactions on.Vol. 14, pp.988–1002, 2002.

[Siv03] Sivic, J. and Zisserman, A. Video Google: a

text retrieval approach to object matching in

videos. Computer Vision, 2003. Proceedings.

Ninth IEEE International Conference on. Vol.2,

pp. 1470 –1477 ,2003.

[Smi96] Smith, J.R. and Chang, S.-F. VisualSEEk:

a fully automated content-based image query

system. Proceedings of the fourth ACM

international conference on Multimedia. pp. 87–

98. ACM, New York, NY, USA , 1996.

[Sub02] Subramanya, S.R., Teng, J.-C. and Fu, Y.

Study of Relative Effectiveness of Features in

Content-Based Image Retrievals. Proceedings

of the First International Symposium on Cyber

Worlds (CW’02). IEEE Computer Society,

Washington, DC, USA , pp.0168-175, 2002.

[Swa91]Swain, M.J. and Ballard, D.H. Color

indexing. International Journal of Computer

Vision.Vol. 7, 11–32 ,1991.

[Tan05] Tan, P.-N., Steinbach, M. and Kumar, V.

Introduction to Data Mining, (First Edition).

Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA ,2005.

[Tor] Torres, R.D.S., Falcão, A.X. Content-Based

Image Retrieval: Theory and Applications.

Revista de Informática Teórica e Aplicada. Vol.

13, pp.161–185.

[Vit07] VITALAS (Video & image Indexing and

reTrievAl in the LArge Scale)

http://vitalas.ercim.eu/.

[Vai01] Vailaya, A., Figueiredo, M.A.T., Jain, A.K.

and Zhang, H.-J. Image classification for

content-based indexing. Image Processing,

IEEE Transactions on.Vol.10, pp. 117–130,

2001.

[Wan01] Wang, J.Z., Li, J. and Wiederhold, G.

SIMPLIcity: semantics-sensitive integrated

matching for picture libraries. Pattern Analysis

and Machine Intelligence, IEEE Transactions

on.vol. 23, pp.947–963, 2001.

[Zha04] Zhang, D. and Lu, G. Review of shape

representation and description techniques.

Pattern Recognition.Vol. 37, pp.1–19 ,2004.

[Zha12] Zhang, D., Islam, M.M. and Lu, G. A

review on automatic image annotation

techniques. Pattern Recognition. Vol. 45, pp.

346–362 ,2012.

Query image

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 165 ISBN 978-80-86943-75-6

Generic Fitted Primitives (GFP): Towards Full Object
Volumetric Reconstruction for Service Robotics
Tiberiu T. Cocias

Institute of Automation
Transilvania University of

Brasov
tiberiu.cocias@unitbv.ro

Florin Moldoveanu
Institute of Automation

Transilvania University of
Brasov

moldof@unitbv.ro

Sorin M. Grigorescu
Institute of Automation

Transilvania University of
Brasov

s.grigorescu@unitbv.ro

Abstract
Service robotics applications, such as mobile manipulation in domestic environments, require 3D representations
of the objects of interest to be grasped. Simple object recognition or segmentation cannot provide structural shape
information mandatory for obtaining reliable grasp configurations. In this paper, the Generic Fitted Primitives
(GFP) technique for volumetric reconstruction is introduced. The goal of the method is to build full 3D object
shapes from a single camera perspective. In order to obtain the shape of the 3D primitive, we propose an energy-
minimization algorithm based on the concept of Active Contours applied directly on 3D visual data. Our modeling
approach produces compact closed surfaces (volumes) describing the objects of interest which can be further used
for service robotics tasks, such as grasping or manipulation. The performance of the proposed technique has been
evaluated against two different methods, i.e. generalized active contours and superquadric approximations.

Keywords
Active contours, 3D segmentation, 3D reconstruction, Robot vision systems, RGB-D sensors.

1 INTRODUCTION
In the last years, the 3D object reconstruction challenge
gained a lot of attention in application fields such as ser-
vice and industrial robotics, or virtual reality. In service
robotics, 3D reconstruction is usually involved in pro-
viding information for path planning and object grasp-
ing in mobile manipulation [Dil09a]. In such cases, one
major inconvenience regarding a service robot is that it
can perceive the scene from only one camera perspec-
tive. This aspect produces large occluded areas alter-
ing the structure of the objects. Thus, an estimation
of the object’s 3D shape must be considered in order
to obtain a full volumetric representation. Some meth-
ods try to reconstruct directly the volume of the ob-
ject by discretizing the 3D space into a series of vox-
els [Bet00a]. Other approaches aim at defining im-
plicit surfaces depicting different volumes through im-
plicit functions [Bar02a]. In this paper, we propose
the Generic Fitted Primitives (GFP) technique for fully
approximating the particular volumetric information of
the objects. The calculated models are intended to be
used for improving the grasping capabilities of service

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

robots. The input visual information has been acquired
using structured light sensors, such as the MS Kinect R©,
and classical stereo cameras. An example of full 3D
reconstructed objects from a typical service robotics
scene is illustrated in Fig. 1.

In our GFP approach, the problem of 3D volumetric ap-
proximation has been divided into two phases. Firstly,
a coarse object detection method is used to extract an
initial object cluster for which its volume needs to be
estimated. In the second phase, the cluster is used for
fitting a GFP such that detected object will be fully re-
constructed. The main contributions of the paper may
be summarized as follows:

• the introduction of the GFP technique based on a
modified formulation of the Active Contours princi-
ple; the deformation of the primitive shape is per-
formed based on the normal direction of the so-
called control points of the GFP;

• the usage of a GFP as an initial contour within the
active contours framework; the modeling process
time is thus improved since the number of iterations
required to deform the initial shape is smaller;

• usage of the GFP approach for building full 3D vol-
umetric models of objects of interest in the context
of mobile manipulation.

3D object surface reconstruction is treated in a large
number of publications. Some of the paper found in lit-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 166 ISBN 978-80-86943-75-6

Figure 1: Full 3D volumetric reconstruction of multiple
objects in a mobile manipulation scenario.

erature are based on the implicit representation of mod-
els [Bae02a, Bar02a], whereas other exploit explicit a
priori surfaces (e.g. skeleton primitives) for augment-
ing the existing object structure [Gas01a]. One relevant
implicit approach makes use of generic 3D shapes (e.g.
such as spheres, cuboid, or ellipses) to roughly approx-
imate the global object volume [Bar81a]. These types
of methods are fast, do not need any a priori knowledge
about the reconstructed surface, but lack the accuracy
of the final approximated volume. A more refined vol-
ume can be obtain by partitioning the imaged surface in
more meaningful sub-regions which can be further indi-
vidually approximated using the same implicit principle
as in [Coc12a].

A different approach to 3D modeling is based on 3D
Object Retrieval (3DOR) search engines [Tan08a]. The
main drawback of this technique is that it needs a high
amount of computational power to find the optimal
match between a query representation (e.g. the imaged
object) and a set of targets (predefined models from a
database). In [Hua12a], the combination of RANSAC
and Procrustes analysis is used for recovering the joint
axes of objects. The algorithm does not make use of any
a priori object knowledge, but it requires a large number
of images depicting the object of interest. In [Mar09a],
the authors present a primitive based approach for ap-
proximating simple regulated objects like plates, boxes,
cans, etc. As opposed to our work, in [Mar09a], the
primitives are represented by simple geometric models,
such as cuboids, spheres, or cylinders, and not by prim-
itive shapes that can capture different particularities that
the objects might have. Krainin et al. [Kra11a, Kra11b],
applied the concept of object tracking during manipu-
lation for building online 3D models of objects using
range sensors and 3D data processing techniques. Nev-
ertheless, the model is represented by a Point Distribu-
tion Model (PDM) and not by a full 3D shape.

The rest of the paper is organised as follows. In Sec-
tion 2 the components of the primitive based model-
ing apparatus, along with the involved methodology, is

presented. Performance evaluation results are given in
Section 3, before the conclusions from Section 4.

2 METHODOLOGY
In mobile manipulation, activities of daily living sce-
narios typically involve a large numbers of objects. The
first step in the proposed framework is to segment the
different objects and obstacles in the scene. As a result
of segmentation, different 3D object clusters, or PDMs,
are obtained. Along with the clustering procedure, the
process also returns the object’s class. These PDMs are
used for modeling the GFP in such a way that it captures
the particularities of the object. The block diagram of
the GFP architecture is shown in Fig. 2.

Instead of using a large number of models as a pri-
ori information about a particular object, thus requiring
a large number of shapes to be stored, we propose a
more general approach through the use of GFPs. By
using only one primitive per object class (e.g. mug,
plate, bottle etc.), a considerably smaller sized primi-
tives database is obtained. At the same time, the com-
putation time is improved because the number of dis-
crete items that need to be searched is reduced.

2.1 Initialisation: Cluster Extraction
The extraction of the scene clusters is important for the
accuracy of the final primitive representation. Firstly,
the objects of interest need to be recognised in order
to select the correct GFP. We use a contextual object
recognition approach [Son11a] through a classification
process. Having obtained the object’s class, the cor-
responding 3D cluster of the same object is extracted.
The clusters are extracted as described in [Rus09a].
Namely, plane segmentation is used to divide an or-
ganized point cloud P into smaller meaningful clus-
ters C = [c0,c1, . . .cn] representing different entities. In
Fig. 3 an example of object recognition (labelling) and
object cluster extraction for a table-top scene is pre-
sented.

The output of the detection component is an isolated
PDM representation of the objects of interest. Further,
this representation is used to model the shape primitive
such that in the end it models the particularities of the
object as accurate as possible.

2.2 Generic Primitives
A generic primitive is considered to be an a priori
known shape describing a number of particular objects
from the same class. It is constructed in such a man-
ner that it resembles many similar objects. In this way,
an universal model for a certain class of objects is ob-
tained. For example, different types of bottles can be
roughly approximated by a joint pattern. The most im-
portant attribute of a shape is actually its global struc-
ture (frame) which, in a majority of cases, is similar to a

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 167 ISBN 978-80-86943-75-6

Visual Data

Acquisition

P

Cluster

Extraction

C

M

‹C, M›

Model

Registration

‹T,C, M›

GFP Modelling
Annotated

Model

Generic Primitives

+
+

Figure 2: Block diagram of the GFP 3D volumetric estimation approach.

large number objects of the same class. In this sense, in-
stead of finding the optimal object (from a considerably
large number of different shapes from the same class)
which best fits the PDM data, a modeling step applied
to a generic primitive M is addressed for estimating its
global object volume.

Depending on the geometric surface complexity, the
generic primitive can be defined by a high density of
3D points. This aspect directly influences the process-
ing time. A down-sampling filter used to reduce the
number of PDM points is not encouraged because the
global point cloud structure is altered. We approach
this issue from the GFP’s point of view. Namely, not
all feature points are relevant for modeling the cluster’s
structure. For example, many of them are used only
for the purpose of creating a volumetric surface. In this
sense, each point in the GFP will receive a special flag
or type. Hence, two point types are defined: control
and regular points. A point which has received the con-
trol flag is considered to be part of the frame and it is
positioned according to the 3D information in the point
cloud, whereas a regular point is used simply to smooth
the global structure of the shape, meaning it is moved
according to the positions of the control points.

(a) (b)

Figure 3: Object detection through cluster extraction.
(a) Scene labelling based on object recognition. (b) Eu-
clidean cluster extraction.

The classification of GFP points in different types can
be done either manually or automatically. The first pro-
cedure requires a human to manually select the point’s
type. Having in mind the required human interaction,
the manual labelling of points is time consuming. On
the other hand, the automatic type assignment has a
lower accuracy, but it is usually much more efficient
and does not suffer from subjectivity.

The automatic point selection is governed by a set
of rules used to established the point’s type [Cot95a].
Namely, control points are those obeying the following
statements:

• points describing sharp corners of a boundary, de-
tected as in [Web10];

• points marking the boundaries of M along the widest
axis;

• points located at equal distance around a boundary
between two control points obeying rule one;

• points marking a curvature extreme or the extreme
points of the object [Wat01].

An example GPF of a bottle is illustrated in Fig. 4.

In terms of the GFP definition, the primitive model is
a complex data structure composed of a vector M stor-
ing the 3D coordinates of all the features describing the
generic model, a vector A containing the point type at-
tributes of M, a vector W describing the mesh triangu-
lation indexes used for 3D surface representation and,
in the end, global characteristics such as height, length,
width, rotation R, translation T and the overall number
of features.

The objects are defined in a local coordinate system at-
tached to each considered model. Thus, a common co-
ordinate frame for both the GFP models and the cluster
of the object of interest, must be computed.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 168 ISBN 978-80-86943-75-6

Figure 4: Generic primitive of a bottle. Control points
are marked with red, while regular points are green.
Modelled points are shown in blue.

2.3 Model Registration
In order to correctly transfer the particularities of the
considered object to the GFP model, the involved
shapes must be aligned. For this purpose, the scene
model frame is considered to be the reference frame.
The primitive will be initialy aligned according using
a rigid body transformation. Therefore, the rotation
R, translation T and scale s of the GFP has to be
determined relative to the scene.
The scale factor s between the GFP and the segmented
cluster is determined by approximating each cluster us-
ing a circumscribed sphere. The ratio between the radii
of the shapes will act as a scale factor which will resize
the primitive to the size of the object.
By subtracting the center of mass mM(x,y,z) of the
primitive M from the center of mass mC(x,y,z) of the
object cluster ci, a relative translation T3x1 can be ob-
tained. Finally, the rotation R3x3 is determined by incre-
mentally rotating the primitive along all the three axes
and minimizing a sum of Euclidean distances between
the closest corresponding neighbor points of the two
forms. Further, a fine model fitting is obtained through
the Iterative Closest Point (ICP) algorithm [Zan94]. In
Fig. 5(a), 5(b) and 5(c) the registration of a mug primi-
tive is depicted.
Having computed all the prerequisite information
for the final modeling process, the primitive cloud is
aligned to the scene object using as:

Mnew(i) = s ·R(Mold(i)+T), i = 0 . . .size(M), (1)

where Mnew(i) are the new coordinates of the primitive
point and Mold(i) are the initial point coordinates.

2.4 Primitive modeling
The purpose of the modeling process is to release the
primitive model from his generality. Through this step,

the primitive will capture the local geometry informa-
tion directly from the scene. Since initially no reliable
information regarding the global structure can be iden-
tified, the modeling procedure occurs at a local level
around each primitive point. If a particular vicinity
lacks sensed information, the GFP will fill up the miss-
ing information with generic data, that is, the stored
volumetric information in its shape. To make the en-
tire process time efficient, the modeling process will oc-
cur only for control points while the regular points will
be repositioned relative to these control points using a
linear motion law. The basic principle underlying the
primitive modeling step is known as Active Contours or
Snakes [Kas1988]. In the initial formulation, a snake
is a 2D curve which moves through an image domain
driven by a set of energies computed based on particu-
lar image features. The behavior of a snake in the 3D
space can be approximated with the weaving of a tex-
tile material. A major drawback of a snake is his in-
flexibility to topological changes. To cope with this is-
sue, in [McI00], topological snakes (T-Snakes) are pre-
sented. Using an affine cell decomposition [All03], the
authors succeded to create in this sense a framework
that significantly extends the abilities of standard snake
model.

The initial snake representation is described by a small
circle in the 2D image domain [Kas1988], while its
analogous in 3D is a sphere. Instead of using a sphere
as the starting closed surface, we address the usage of
a generic primitive, which already stores a rough struc-
ture of the considered object [Coc12b]. In comparison
with [Coc12b], in this paper the movement of a contour
point is constrained to only two directions, given by the
normal direction. Thus, an important computations re-
duction is achieved.

In 3D, a snake structure is harder to control because of
the extra degrees of freedom introduced by the third di-
mension. While for the 2D case there are only 8 possi-
ble moving directions, for 3D the number of candidate
directions reaches 26 (given by the grid representation
of the space). The Active Contours method tries to min-
imize a functional of energies ε(c) in order to incremen-
tally sculpt the initial contour c to an optimal final form
as described in Eq. 2. Two types of energies are for-
mulated for this purpose. The first type, Eint , is used to
constrain the model deformation such that the structure
integrity of the shape is kept at any moment during the
modeling process, while the second one, Eext , drives the
considered modelled point to a its best candidate posi-
tion:

min

(
N

∑
0
(Eint +Eext)

)
, (2)

and

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 169 ISBN 978-80-86943-75-6

Eint = α(i) ·Econt(i)+β (i) ·Ecurv(i), (3)

where N is the number of modelled feature points,
α and β are the internal energy weight factors, Econt
represents the energy which ensures that the model
surface is continuous (such that during the modeling
process the newly rearranged points will not produce
large gaps) and Ecurv is the energy responsible for the
smoothness of the surface. The α and β parameters
are constrained by an empirical established threshold
value. Thus, if the respective energy has a value be-
low that particular threshold, then the respective weight
factor (α and β), will be set 0, otherwise it will be 1.

As in Eq. 3, the internal energy is composed of two en-
ergies: Econt and Ecurv. They are used exclusively to
constrain the movement of the points and at the same
time to keep the model as compact and intuitive as pos-
sible. The internal energies are computed based on the
first and second derivatives of the points which are to be
modelled. The computation of the derivative of a cer-
tain snake point implies a neighborhood knowledge of
the contour points. For example, in 2D the first deriva-
tive of a snake point is computed based on the previous
and current position of the considered point. Similar,
the second derivative is computed using the position of
the previous, current and next point in the snake con-
tour. In the 3D space, the previous respective the next
snake contour points are evaluated as the closest, re-
spective second closest nearest neighbor. Nevertheless,
this approach is not always correct. At sharp corners
this type of selection is erroneous. To avoid that, the
relations between the points of the countour should be
established using the mesh like representation. In this
approach, the points making up the 3D contour will be
the vertices of a mesh. Each face of the mesh describe
a relation between minimium 3 points, thus the correct
previous, respectively next countour points can be easly
established. Considering these aspects, the mathemat-
ical formulation of the internal energy computed in a
certain contour point pi, can be stated as follows:

Econt(i) = |
dc
ds
|2 + |dc

dr
|2

= ||pi(s)− pi−1(s)||2 + ||pi(r)− pi−1(r)||2,
(4)

respectively,

Ecurv(i) = |
d2c
ds2 |

2 + |d
2c

dr2 |
2 + | d2c

dsdr
|2

= ||pi−1(s)−2pi(s)+ pi+1(s)||2+
||pi−1(r)−2pi(r)+ pi+1(r)||2+
||pi−1(s,r)−2pi(s,r)+ pi+1(s,r)||2 (5)

where, s and r are the axis used to represent the 3D
contour (as an topological manifold)

The process of minimizing the functional of energy
ε(c) implies resolving the following Euler-Lagrange
ecuation:

Eext +α(s)|dc
ds
|2 +α(r)|dc

dr
|2−β (s)|d

2c
ds2 |

2−

β (r)|d
2c

dr2 |
2−β (s,v)| d2c

dsdr
|2 = 0. (6)

The equation is true when the energies used in the pro-
cess are in equilibrium. This also means that the con-
tour has touched a relevant characteristic from the space
(corner, edge, etc.).

The most important energy in our context, Eext , is rep-
resented, in the 2D domain by the intensity of the grey-
scale candidate pixel. Similarly, in 3D, the pixel’s
intensity is equivalent to the neighboring density of
points. The amount of neighbors lying in a given area
is determined using the kdtree principle [Ben75a]. To
avoid searching for the optimal candidate trough all 26
possible directions of a control point, given by the grid
based representation of the space, the normal direction
is used to reduce the search space to only 2 candidate
directions. Fig. 5(d) shows the computed normal of
a given generic primitive. Moving a control point ex-
clusively along his normal directions deforms the sur-
face in a natural and intuitively manner. By doing this,
the overall processing time is considerably improved.
Along the normal direction, the best position candidate
for the control point is determined using the next set of
rules:

• if the primitive candidate point mcd is already lying
in a dense region, move mcd along both normal di-
rections and find the first point with the number of
nearest neighbors nncp closest to 0: nncp ≥ 0;

• if mcd has nncp = 0, search along both normal direc-
tion for nncp > 0; if, after searching, nncp = 0, freeze
the control point in its initial position since no reli-
able surface information was found; if nncp 6= 0, set
the position of the control point in the candidate po-
sition (with nncp > 0) closest to mcd .

Based on this set of rules, the best candidate position of
a given modelled point can be determined. In Fig. 5(e),
the movement of a control point towards the local den-
sity information is illustrated. The final model of the
GFP is depicted in Fig. 5(f).

To help create a more smoother surface and reduce the
number of snake iterations, we propose an Euclidean
distance based linear constrained. When a point is

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 170 ISBN 978-80-86943-75-6

moved from an initial to a candidate position, all the
neighbors within a vicinity radius equal to the Eu-
clidean distance between the initial and the candidate
position, will be gradually affected by a linear factor
as:

Mnew(i) = Mold(i) ·
(

1+
dcurr

dmax

)
, i = 0 . . .size(M)

(7)

where Mnew(i) and Mold(i) are the new and old coor-
dinates of the points lying inside the affected area of
radius dmax. dcurr is the Euclidean distance between the
current affected point and the control point. dmax is the
Euclidean distance between the farthest point inside the
affected area. Figs. 4 and 5(e) show the behavior of
such Euclidean linear constraint principle, where a sin-
gle point is dragged along the normal direction to find
the correct surface location.

Inside the sphere described by the dmax radius, the
points are modified accordingly to a computed ratio
based on the distance between the neighboring and the
initial primitive points. In this sense, the deforma-
tion is gradually applied, having the greatest effect on
the neighbor points lying closer to the considered con-
trol point. Thus, the neighbor points at the margin of
the sphere are slightly deformed. The proposed algo-
rithm, not only is time efficient, but the movement of
the points occur in a more intuitively way.

3 EXPERIMENTAL RESULTS
3.1 Setup
For evaluation purposes, two types of sensors have
been used: a MS Kinectr RGB-D sensing device,
used mainly for indoor testing, and a Point Grey
Bumblebeer stereo camera for acquiring outdoor
scenes. Both sensors output dense 3D information
from the imaged scene. During tests, a constant
illumination was ensured.

As GFP models, we have used the benchmark database
in [Shi04a]. By using GFPs, the size of the database
has been reduced from 1814 objects to only 142 general
primitives. The GFPs were created as average shapes
of the initial database. The point type assignment of
all the primitives in the database was performed offline
using the automated process, which took, in average,
around 8 minutes for each model. During testing, all
objects were placed on flat surfaces for detection and
segmentation1.

1 The source code of the GFP approach is part of the ROVIS
machine vision system, available at the svn repository http:
//rovis.unitbv.ro/rovis/. Please ask the authors
permission for downloading.

3.2 Metrics
For evaluation purposes, an Euclidean based fitting
measurement has been considered. Because the main
goal of the modeling approach is to create a particular
representation of a GFP, the distance between these
two representations can be considered to be a similarity
measure. Thus, by summing the distances between
each point from the scene’s objects and the nearest
neighboring GFP point, the following fitting metric is
obtained:

f itdist(C,M) =
1
N

n

∑
i=0

1
1+ argmin

f itdist

||C(i)−nni(M)||2 · γ
,

(8)

where f itdist ∈ [0,1] is the fitting error and N the number
of points in the GFP. C and M are the PDMs of the
clustered object and of the modeled GFP, respectively.
C(i) is the closest scene point to a GFP point nni(M),
while γ represents a scale factor. The better the GFP
modeling is, the lower the value of f itdist is.

3.3 Case Study: modeling a Mug
From a total number of 410 primitive points describ-
ing a mug, only 203 (107 control points and 96 reg-
ular points) were moved during the modeling process.
The rest of the points were assessed as optimal positions
since they do not have any 3D data in their vicinity. The
modeling computation time is approx. 680ms. The final
mug model was obtained after only 21 modeling itera-
tions. At each step, the contour was pushed through the
scene with a 1mm offset further along the normal di-
rections. Concerning the original formulation with the
initial contour depicting a sphere, the number of itera-
tions needed to obtain a shape similar to the modelled
primitive is around 38 iterations. A comparative analy-
sis of the energy evolution is illustrated in Fig. 6. The
computation time, for the case of the sphere, reached
9sec.

For a different mug shape (e.g. highly deformed cup),
the automatic point type assignment will generate a
greater number of control points, directly influenc-
ing the computation time. Having a larger number
of points describing the structure, the computation
time increased from 0.6sec. to 0.9sec. for the GFP
modeling.

For objects describing complex surfaces, keeping the
primitive defined trough a low number of 3D points will
cause the binding of some irregularities on the object
surface. An up-sampling filter can be used to augment
the initial primitive representation [Bre05a] and to pro-
duce high accurate models. When using denser repre-
sentations, the fitting metric f itdist is lower than the one
obtained from sparse representations. Particular to the

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 171 ISBN 978-80-86943-75-6

(a) (b) (c) (d) (e) (f)

Figure 5: GFP modeling of a mug. (a) Initial overlapping between the object’s cluster and the GFP. (b) Euclidean
distance based rotation approximation. (c) Fine alignment using ICP. (d) Primitive points normals described by the
straight blue lines. (e) Searching along the normal directions. (f) Final annotated GFP.

Figure 6: Number of iterations required for modeling
using for different initial contours. A comparative anal-
ysis between the GFP approach and 3D active contours.

mug model, the overall volumetric error has been low-
ered to 5% by using the up-sampled representation of
the same shape.

3.4 GFP vs. Superquadrics
Among the existing object volumetric estimation
methods, superquadrics represent a real competitor
for the GFP principle presented in this paper. A su-
perquadric is a parametrized geometric shape obtained
by the spherical product between two curves modelled
through a series of parameters [Bar81a]. It resembles
many geometrical models starting from simple cubes or
cylinders and ending with complex ones such as toroid
or hyperboloid. Because of the roughness provided by
the generic shape, it is not desirable to use only one
superquadric to approximate an object. In this sense,
multiple joined superquadics produces a more precise
and fine object [Coc12a].

By constantly changing the 11 parameters which de-
fines a superquadric and by evaluating the newly ob-
tained shape through an in-out function, the optimal
model, given the point cloud representation of a particu-
lar object, can be obtained. This principle is considered
to be fast because only a few parameters, which actually

(a) (b)

Figure 7: Estimated object volume described as a red
point cloud. (a) GFP technique. (b) Multiple su-
perquadrics approach.

deform the output shape, are controlled. The complex
structure of a particular object can be approximated, in
some case, with a very large number of superquadrics.
Indeed, the global object volume will be more precise
if this value is large, while the computation time will
exponentially increased. On the other hand, by using
a small number of superquadric models, only a rough
volume will be obtained in the end. It can be stated that
for simple objects, the superquadric based method is
faster, whereas for complex models, the GFP technique
excels both on precision, as well as on time efficiency.

One major advantage of superquadrics, in contrast to
the GFP technique, is that it does not need pose normal-
ization or any a priori knowledge regarding the class
of the segmented object. This is the compromise that
the GFP method is paying for its precision. In Fig. 7
a shoe modeling example using both methods is pre-
sented. Comparative numerical results are given in Ta-
ble 1.

Method Processing Fitting
time [sec] accuracy [%]

Superquadrics 4.79 0.7689
GFP 1.53 0.9762

Table 1: Comparative results between Superquadric
based volume estimation and the GFP technique for the
case of a shoe.

By using a primitive as an initial contour, the volumet-
ric fit error of the GFP method is the smallest. Us-
ing superquadrics, the final volume is obtained as a re-
union of a series of superelipses which best approxi-
mate the segmented object. Since the superquadric ap-
proach doesn’t need pose normalization, the volumetric
fit error is the only comparison parameter used during

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 172 ISBN 978-80-86943-75-6

the comparative evaluation. From the grasping point
of view, both methods output reliable grasp models,
the difference being that the GFP technique, because
of its accuracy, provides more grasping configurations.
The grasping configurations were calculated using the
GraspIt [Mil01a] methodology. A grasping simulation
for a shoe object is depicted in Fig. 8.

Figure 8: Grasp candidate configuration for a shoe. The
world frame axes are coloured in yellow whereas the
pressure points intersecting the GFP are marked with
red.

4 CONCLUSIONS
In this paper, the GFP 3D object volumetric estimation
technique has been presented. The goal of the approach
is to estimate as accurately as possible the 3D structure
of objects found in robotic mobile manipulation sce-
narios. As future work the authors consider the time
computation enhancement of the proposed procedure
through parallel computational devices (e.g. Graphic
Processors), as well as the application of the method to
other computer vision related areas, such as 3D medical
imaging.

ACKNOWLEDGMENT
This paper is supported by the Sectoral Operational
Program Human Resources Development (SOP HRD),
financed from the European Social Fund and by
the Romanian Government under the projects POS-
DRU/107/1.5/S/76945 and POSDRU/89/1.5/S/59323.

5 REFERENCES
[All03] Allgower, E.L. and Georg, K. Introduction to

Numerical Continuation Methods, in Classics in
Applied Mathematics, Philadeplhia, USA: SIAM,
2003

[Bae02a] Baerentzen, J.A. and Christensen N.J. Vol-
ume sculpting using the level-set method, in Pro-
ceedings of the Shape Modeling, USA, 2002,
pp.175-182.

[Bar81a] Barr A.H. Superquadrics and angle-
preserving transformations, IEEE Computer
Graphics and Applications, 1, pp.11-23, 1981.

[Bar02a] Museth, K. and Breen, D.E. and Whitaker,
R.T. and Barr, A.H. Level set surface editing op-
erators, in ACM Transactions on Graphics, 2002,
pp.330-338.

[Ben75a] Bentley, J.L. Multidimensional binary search
trees used for associative searching, in Commun.
ACM, 18, No.9, pp.509-517, Sep. 1975.

[Bet00a] Betz, A. 3-D object reconstruction using spa-
tially extended voxels and multi-hypothesis voxel
coloring, in Proceedings of the Intern. Conf. on
Pattern Recognition, USA, 2000, pp.1774-1782.

[Bre05a] Breitkopf, P. and Naceur, H. and Rassineux,
A. and Villon, P. Moving least squares response
surface approximation: Formulation and metal
forming applications, in Computers and Amp
Structures, 83, No.18, pp.1411-1428, 2005.

[Coc12a] Cocias, T.T. and Grigorescu, S.M. and
Moldoveanu, F. Multiple-superquadrics based ob-
ject surface estimation for grasping in service
robotics, in 13th Intern. Conf. on Optimization
of Electrical and Electronic Equipment, 2012,
pp.1471-1477.

[Coc12b] Cocias, T.T. and Grigorescu, S.M. and
Moldoveanu, F. Object volumetric estimation
based on generic fitted primitives for service
robotics, in VISAPP (2), 2012, pp.191-197.

[Cot95a] Cootes, T.F. and Taylor, C.J. and Cooper, D.
and Graham, J. Active shape models-their train-
ing and application, in Comp. Vision and Image
Understanding, 61, No.1, pp.38-59, 1995.

[Dil09a] Huebner, K. and Welke, K. and Przybyl-
ski, M. and Vahrenkamp, N. and Asfour, T. and
Kragic, D. and Dillmann R. Grasping known ob-
jects with humanoid robots: A box-based ap-
proach, in Intern. Conf. on Advanced Robotics,
2009, pp.1-6.

[Gas01a] Ferley, E. and Cani, M.P. and Gascuel, J.D.
Resolution adaptive volume sculpting, in Graph.
Models, 63, No.6, pp.459-478, Nov. 2001.

[Hua12a] Huang, X. and Walker, I.D. and Birchfield,
S. Occlusion-aware reconstruction and manipula-
tion of 3D articulated objects, in Intern. Conf. on
Robotics and Automation, 2012, 1365-1371.

[Kas1988] Kass, M. and Witkin, A. and Terzopou-
los, D. Snakes: Active contour models, in Intern.
Journal on Computer Vision, 1, No.4, pp.321-331,
1988.

[Kra11a] Krainin, M. and Henry, P. and Ren, X. and
Fox, D. Manipulator and object tracking for in-
hand 3D object modeling, in Intern. Journal of
Robotic Research, 30, pp.1311-1327, Sep. 2011.

[Kra11b] Krainin, J. and Curless, B. and Fox, D. Au-
tonomous generation of complete 3D object mod-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 173 ISBN 978-80-86943-75-6

els using next best view manipulation planning, in
Proceedings of the IEEE Intern. Conf on Robotics
and Automation, Shanghai, China, May 2011.

[Mar09a] Marton, Z.C. and Goron, L.C. and Rusu,
R.B. and Beetz, M. Reconstruction and verifica-
tion of 3D object models for grasping, in Intern.
Symp. on Robotics Research, 2009, pp.315-328.

[McI00] McInerney, T. and Terzopoulos, D. T-Snakes:
Topology adaptive snakes, in Medical Image
Analysis, 4, no. 2, pp. 73-91, 2000.

[Mil01a] Miller A. GraspIt!: A Versatile simulator for
robotic grasping, Columbia University, 2001.

[Rus09a] Rusu, R.B. Semantic 3D object maps for
everyday manipulation in human living envi-
ronments, Ph.D. dissertation, Computer Science
department, Technische Universitaet Muenchen,
Germany, 2009.

[Shi04a] Shilane, P. and Min, P. and Kazhdan, M. and
T. Funkhouser, The princeton shape benchmark,
in Shape Modeling International, 2004.

[Son11a] Song, Z. and Chen, Q. and Huang, Z. and
Hua, Y. and Yan, S. Contextualizing object de-
tection and classification, in Proceedings of the
2011 IEEE Conf. on Computer Vision and Pattern
Recognition, USA, 2011, pp.1585-1592.

[Tan08a] Tangelder J.W. and Veltkamp R.C. A survey
of content based 3D shape retrieval methods, in
Multimedia Tools Appl., 39, No.3, pp.441-471,
Sep. 2008.

[Zan94] Zhang, Z. Iterative point matching for regis-
tration of free-form curves and surfaces, in Intern.
Journal on Computer Vision, 13, No.2, pp.119-
152, Oct. 1994.

[Web10] Weber, C. and Hahmann, S. and Hagen, H.
Sharp Feature detection in point clouds, in Pro-
ceedings of the 2010 Shape Modeling Interna-
tional Conference (SMI ’10). IEEE Computer
Society, Washington, DC, USA, 2010, pp. 175-
186.

[Wat01] Watanabe, K. and Belyaev, A. G. Detection
of salient curvature features on Polygonal Sur-
faces, in Computer Graphics Forum, 20, No.3, pp.
385-392, 2001.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 174 ISBN 978-80-86943-75-6

Straight Skeleton for Automatic Generation of 3-D
Building Models with General Shaped Roofs

Kenichi Sugihara

Gifu Keizai University

5-50 Kitagata-chou

Ogaki city, Gifu-Pref., 503-8550, Japan

sugihara@gifu-keizai.ac.jp

ABSTRACT
3D urban models are important in several fields, such as urban planning and gaming industries. However,

enormous time and labor has to be consumed to create these 3D models, using a 3D modeling software such as

3ds Max or SketchUp. In order to automate laborious steps, a GIS and CG integrated system is proposed for

automatically generating 3D building models, based on building polygons (building footprints) on digital maps.

Digital maps shows most building polygons' edges meet at right angles (orthogonal polygon). In the digital map,

however, not all building polygons are orthogonal. In either orthogonal or non-orthogonal polygons, the new

system is proposed for automatically generating 3D building models with general shaped roofs by straight

skeleton computation. In this paper, the algorithm for shrinking a polygon and forming a straight skeleton are

clarified and, the new methodology is proposed for constructing roof models by assuming ‘the third event’ and,

at the end of the shrinking process, the shrinking polygon is converged to ‘a line of convergence’.

Keywords
3D urban model, automatic generation, GIS (Geographic Information System), 3D building model, straight

skeleton.

1. INTRODUCTION
3D urban models, such as the one shown in Fig.1

right, are important in urban planning and gaming

industries. Urban planners may draw the maps for

sustainable development. 3D urban models based on

these maps are quite effective in understanding what

if this alternative plan is realized. However,

enormous time and labour has to be consumed to

create these 3D models, using 3D modeling software

such as 3ds Max or SketchUp. For example, when

manually modeling a house with roofs by

Constructive Solid Geometry (CSG), one must use

the following laborious steps:

 (1) Generation of primitives of appropriate size, such

as box, prism or polyhedron that will form parts of a

house (2) Boolean operations are applied to these

primitives to form the shapes of parts of a house such

as making holes in a building body for doors and

windows (3) Rotation of parts of a house (4)

Positioning of parts of a house (5) Texture mapping

onto these parts.

In order to automate these laborious steps, a GIS

(Geographic Information System) and CG integrated

system was proposed for automatically generating

3D building models, based on building polygons or

building footprints on a digital map shown in Fig. 1

left [Sug09]. A complicated orthogonal polygon can

be partitioned into a set of rectangles. The proposed

integrated system partitions orthogonal building

polygons into a set of rectangles and places

rectangular roofs and box-shaped building bodies on

these rectangles. In order to partition an orthogonal

polygon, a useful polygon expression (RL

expression: edges’ Right & Left turns expression)

and a partitioning scheme was proposed for deciding

from which vertex a dividing line (DL) is drawn

[Sug12].

In the digital map, however, not all building

polygons are orthogonal. In either orthogonal or non-

orthogonal polygons, the new system is proposed for

automatically generating 3D building models with

general shaped roofs by the straight skeleton defined

by a continuous shrinking process, which was

introduced and discussed by Aichholzer et al.[Aic95].

However, some roof models are not created by their

Permission to make digital or hard copies of all or part

of this work for personal or classroom use is granted

without fee provided that copies are not made or

distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first

page. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific

permission and/or a fee.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 175 ISBN 978-80-86943-75-6

proposed method. In this paper, the new

methodology is proposed for constructing roof

models by assuming ‘the third event’ and, at the end

of the shrinking process, the shrinking polygon is

converged to ‘a line of convergence’.

2. RELATED WORK
Since 3D urban models are important information

infrastructure that can be utilized in several fields, the

researches on creations of 3D urban models are in

full swing. Various types of technologies, ranging

from computer vision, computer graphics,

photogrammetry, and remote sensing, have been

proposed and developed for creating 3D urban

models.

Using photogrammetry, Gruen et al. [Gru98, Gru02]

introduced a semi-automated topology generator for

3D building models: CC-Modeler. Feature

identification and measurement with aerial stereo

images is implemented in manual mode. During

feature measurement, measured 3D points belonging

to a single object should be coded into two different

types according to their functionality and structure:

boundary points and interior points. After these

manual operations, the faces are defined and the

related points are determined. Then the CC-Modeler

fits the faces jointly to the given measurements in

order to form a 3D building model.

Suveg and Vosselman [Suv02] presented a

knowledge-based system for automatic 3D building

reconstruction from aerial images. The reconstruction

process starts with the partitioning of a building into

simple building parts based on the building polygon

provided by 2D GIS map. If the building polygon is

not a rectangle, then it can be divided into rectangles.

A polygon can have multiple partitioning schemes.

To avoid a blind search for optimal partitioning

schemes, the minimum description length principle is

used. This principle provides a means of giving

higher priority to the partitioning schemes with a

smaller number of rectangles. Among these schemes,

optimal partitioning is ‘manually’ selected. Then, the

building primitives of CSG representation are placed

on the rectangles partitioned.

These proposals and systems, using photogrammetry,

will provide us with a primitive 3D building model

with accurate height, length and width, but without

details such as windows, eaves or doors. The

research on 3D reconstruction is concentrated on

reconstructing the rough shape of the buildings,

neglecting details on the façades such as windows,

etc [Zla02].

On the other hand, there are some application areas

such as urban planning and game industries where

the immediate creation and modification of many

detailed building models is requested to present the

alternative 3D urban models. Procedural modeling is

an effective technique to create 3D models from sets

of rules such as L-systems, fractals, and generative

modeling language [Par01].

Müller et al. [Mül06] have created an archaeological

site of Pompeii and a suburbia model of Beverly

Hills by using a shape grammar that provides a

computational approach to the generation of designs.

They import data from a GIS database and try to

classify imported mass models as basic shapes in

their shape vocabulary. If this is not possible, they

use a general extruded footprint together with a

general roof obtained by the straight skeleton

computation defined by a continuous shrinking

process [Aic95]. However, there is no digital map

description and in-depth explanation about how the

skeleton is formed and applied to create roofs in their

paper.

More recently, image-based capturing and rendering

techniques, together with procedural modeling

approaches, have been developed that allow

GIS Application

(ArcGIS)

*Building Polygons on 2D

Digital Map

*Attributes (left below) such as

the number of stories linked to

a building polygon

 Figure 1. Pipeline of Automatic Generation for 3D Building Models

GIS Module
(Visual Basic &

MapObjects)

*Partitioning

orthogonal

polygons into

rectangles

*Contour

Generation

*Filtering out

noise edges,

unnecessary

vertices

CG Module

(MaxScript)

*Generating 3D

models &

Boolean

operation

*Rotating and

positioning 3D

models

*Automatic

texture mapping

onto 3D models

Automatically generated 3D urban model

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 176 ISBN 978-80-86943-75-6

buildings to be quickly generated and rendered

realistically at interactive rates. Bekins et al. [Dan05]

exploit building features taken from real-world

capture scenes. Their interactive system subdivides

and groups the features into feature regions that can

be rearranged to texture a new model in the style of

the original. The redundancy found in architecture is

used to derive procedural rules describing the

organization of the original building, which can then

be used to automate the subdivision and texturing of

a new building. This redundancy can also be used to

automatically fill occluded and poorly sampled areas

of the image set.

Aliaga et al. [Dan07] extend the technique to inverse

procedural modeling of buildings and they describe

how to use an extracted repertoire of building

grammars to facilitate the visualization and

modification of architectural structures. They present

an interactive system that enables both creating new

buildings in the style of others and modifying

existing buildings in a quick manner.

Vanega et al. [Car10] interactively reconstruct 3D

building models with the grammar for representing

changes in building geometry that approximately

follow the Manhattan-world (MW) assumption which

states there is a predominance of three mutually

orthogonal directions in the scene. They say

automatic approaches using laser-scans or LIDAR

data, combined with aerial imagery or ground-level

images, suffering from one or all of low-resolution

sampling, robustness, and missing surfaces. One way

to improve quality or automation is to incorporate

assumptions about the buildings such as MW

assumption. However, there are lots of buildings that

have cylindrical or general curved surfaces, based on

non-orthogonal building polygons.

By these interactive modeling, 3D building models

with plausible detailed façade can be achieved.

However, the limitation of these modeling is the

large amount of user interaction involved [Nia09].

When creating 3D urban models for urban planning

or facilitating public involvement, 3D urban models

should cover lots of citizens’ and stakeholders’

buildings involved. This means that it will take an

enormous time and labour to model a 3D urban

model with hundreds or thousands of building.

Thus, the GIS and CG integrated system that

automatically generates 3D urban models

immediately is proposed, and the generated 3D

building models that constitute 3D urban models are

approximate geometric 3D building models that

citizens and stakeholder can recognize as their future

residence or real-world buildings.

3. PIPELINE OF AUTOMATIC

GENERATION
As the pipeline of automatic generation is shown in

Fig.1, the source of a 3D urban model is a digital

residential map that contains building polygons. The

digital maps are stored and administrated by GIS

application (ArcGIS, ESRI Inc.). The maps are then

preprocessed at the GIS module, and the CG module

finally generates the 3D urban model.

To streamline the building generation process, the

knowledge-based system was proposed for

generating 3D model by linking the building

polygons to information from domain specific

knowledge in GIS maps: attributes data such as the

number of storey and the type of roof.

Preprocessing at the GIS module includes the

procedures as follows: (1) Filter out an unnecessary

vertex whose internal angle is almost 180 degrees.

(2) Partition or separate orthogonal building

polygons into sets of rectangles. (3) Generate inside

contours by straight skeleton computation for placing

doors, windows, fences and shop façades which are

setback from the original building polygon. (4) Form

the straight skeleton for the general shaped roof. (5)

Rectify the shape of the polygons so that there are no

gaps or overlaps between geometric primitives such

as rectangles. (6) Export the coordinates of polygons’

vertices, the length, width and height of the

partitioned rectangle, and attributes of buildings.

The attributes of buildings, shown in Fig.1 left below,

consist of the number of storeys, the image code of

roof, wall and the type of roof (flat, gable roof,

hipped roof, oblong gable roof, gambrel roof,

mansard roof, temple roof and so forth). The GIS

module has been developed using 2D GIS software

components (MapObjects, ESRI).

As shown in Fig.1, the CG module receives the pre-

processed data that the GIS module exports,

generating 3D building models. In GIS module, the

system measures the length and gradient of the edges

of the partitioned rectangle. The CG module

generates a box of the length and width, measured in

GIS module.

In case of modeling a building with roofs, the CG

module follows these steps: (1) Generate primitives

of appropriate size, such as boxes, prisms or

polyhedra that will form the various parts of the

house. (2) Boolean operations applied to these

primitives to form the shapes of parts of the house,

for examples, making holes in a building body for

doors and windows, making trapezoidal roof boards

for a hipped roof and a temple roof. (3) Rotate parts

of the house according to the gradient of the

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 177 ISBN 978-80-86943-75-6

partitioned rectangle. (4) Place parts of the house. (5)

Texture mapping onto these parts according to the

attribute received. (6) Copy the 2nd floor to form the

3rd floor or more in case of building higher than 3

stories.

CG module has been developed using Maxscript that

controls 3D CG software (3ds MAX, Autodesk Inc).

4. STRAIGHT SKELETON

COMPUTATION FOR ROOF

GENERATION
Aichholzer et al. [Aic95] introduced the straight

skeleton defined as the union of the pieces of angular

bisectors traced out by polygon vertices during a

continuous shrinking process in which edges of the

polygon move inward, parallel to themselves at a

constant speed. The straight skeleton is unexpectedly

applied to constructing general shaped roofs based on

any simple building polygon, regardless of their

being rectilinear or not.

As shrinking process shown in Fig.2, each vertex of

the polygon moves along the angular bisector of its

incident edges. This situation continues until the

boundary change topologically. According to

Aichholzer et al. [Aic95], there are two possible

types of changes:

(1) Edge event: An edge shrinks to zero, making its

neighboring edges adjacent now.

(2) Split event: An edge is split, i.e., a reflex vertex

runs into this edge, thus splitting the whole polygon.

New adjacencies occur between the split edge and

each of the two edges incident to the reflex vertex.

A reflex vertex is a vertex whose internal angle is

greater than 180 degrees.

All edge lengths of the polygon do not always

decrease during the shrinking process. Some edge

lengths of a concave polygon will increase. For

example, as shown by ‘ed1’ and ‘ed2’ in Fig.2(a), the

edges incident to a reflex vertex will grow in length.

If the sum of the internal angles of two vertices

incident to an edge is more than 360 degrees, then the

length of the edge increases, otherwise the edge will

be shrunk to a point (node).

Shrinking procedure is uniquely determined by the

distance dshri between the two edges of before & after

shrinking procedure. The distance e_dshri is the dshri

when an edge event happens in the shrinking process.

e_dshri for the edge (edi) is calculated as follows:

Figure 2. Shrinking process and a straight skeleton, a roof model automatically generated

ed2

ed1

(b) Split event happens and the

polygon is split into two

polygons.

(a) Shrinking polygon just

before a split event

(c) Split event happens again and

the polygon is split into two

triangles.

(e) The straight skeleton defined

as the union of the pieces of

angular bisectors traced out by

polygon vertices during the

shrinking process

(f) A roof model automatically

generated: each roof board is based

on an ‘interior monotone polygon’

partitioned by straight skeleton

(d) Polygons shrinking at a

constant interval: nodes by an

edge event: nodes by a split

event: nodes by a collapse of a

triangle to a point.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 178 ISBN 978-80-86943-75-6

e_𝐝shri =
Ｌ

i
 cot 0.5 ∗ θi + cot 0.5 ∗ θi+1

where Li is the length of edi, and θi & θi+1 are internal

angles of vertices incident to edi.

When 0.5*θi＋0.5*θi+1＜180 degrees, i.e., the sum

of the internal angles of two vertices incident to an

edge is less than 360 degrees, an edge event may

happen unless the edge is intersected by an angular

bisector from a reflex vertex and a split event

happens.

Fig.2 from (a) to (c) show a shrinking process for a

non-orthogonal concave polygon: the polygon just

before a split event: the polygon being split into two

polygons after a split event happens. Fig.2(d) shows

a set of polygons shrinking at the constant interval

and nodes by an edge event and a split event, and

nodes by a collapse of a triangle into a point.

Fig.2(e) shows the straight skeleton defined as the

pieces of angular bisectors traced out by polygon

vertices. Fig.2(f) shows the roof model automatically

generated. Since the straight skeleton partitions the

interior of a polygon with n vertices (n-gon) into n

monotone polygons, each roof board that constitutes

the roof model is formed based on these partitioned

‘interior monotone polygons’.

4.1. ALGORITHM for STRAIGHT

SKELETON
Fig.3 shows the overall outline pseudo-code for the

straight skeleton computation by split & edge event

and collapse of a triangle to a node. At first, one

simple polygon (P) is given such as shown in Fig.2.

If there is any reflex vertex in the P, then it can be

divided into two or more polygons.

At four lines from the top of the code, the system

calculates e_dshri for all edges and finds the shortest

of them. Then, the system checks if split event

occurs by increasing dshri by (e_dshri /n_step). In this

way, the shrinking process may proceed until dshri

reaches the shortest e_dshri found. In the process, a

split event may happen and the polygon will be

divided into some polygons: Ps. In the upper half of

the code (split event process), all divided polygons

are checked if they can be divided more. As long as

there is some Ps that can be divided, split event will

continue. After that, the system concentrates on the

edge event procedure.

In the split event process, during shrinking to the

shortest e_dshri, the system checks if a line segment

of an angular bisector from a reflex vertex intersects

another edge of the polygon or not. If an edge is

found intersected, the system calculates the node

position by the split event. However, one edge will

be intersected by several angular bisectors from

several reflex vertices. Among the several reflex

vertices, the reflex vertex that gives the shortest dshri

will be selected for calculating the position.

After any type of event happens and the polygon

changes topologically, there remains one or more

new split polygons which are shrunk recursively if

they have non-zero area. At that moment, the system

recalculates the length of each edge and internal

angles of each vertex in order to find the shortest dshri

for next events.

In the code, the P has members: ‘split event finish flag’

(sp_ev_fin_fl) and ‘edge event finish flag’ (ed_ev_fin_fl)

which indicate whether or not the P can be processed

by ‘split event’ or ‘edge event’ respectively, during

the shrinking process. If ‘sp_ev_fin_fl’ is set for the

P, then the P is finished with split event checking. If

‘sp_ev_fin_fl’ is reset, then the P will be checked

whether split event is happened or not.

In the upper half of the algorithm, if at least one

possibly divided P remains unchecked for ‘split

event’, then ‘SplitEventLoopFinish_flag’ will be

reset and the system cannot get out of the ‘while

loop’. After all Ps have been checked for ‘split event’,

then all Ps are checked only for ‘edge event’ and

then ‘triangle’ procedure for nodes generation as

shown in the lower half of the algorithm.

While (Event procedure is not finished for all split P) {

While (‘SplitEventLoopFinish_flag’ == reset) {

For all one or more split P: { If (P. sp_ev_fin_fl == reset) {

Find the shortest e_dshri of the P.

 Check if Split Event occurs by increasing dshri by (e_dshri

/n_step).

 If (Angular bisector from a reflex vertex intersects

another edge) {
 Calculate the node position by Split Event.

 }

}

 For all one or more split P:{ If (P. sp_ev_fin_fl == reset)

 Reset ‘SplitEventLoopFinish_flag’

 }

 } /* For “ While (‘SplitEventLoopFinish_flag’ == reset){“ */

For all one or more split P:{ If (P. ed_ev_fin_fl == reset) {
Find the shortest e_dshri of the P; Shrink P by e_dshri;

 Calculate the node position by Edge Event.}

 }

For all one or more split P: { If (P is a triangle) {

 Calculate the node position of the triangle.

 Associate the node with the original edge. }

 }

} /* For “While (Event procedure is not finished for all split P) { “ */

Figure 3. Algorithm for forming straight skeleton by

Split & Edge event and Collapse of a triangle to a node

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 179 ISBN 978-80-86943-75-6

The generated nodes will be associated with the

edges of original P (original edge: o-edge), since at

least three original edges sweep to form the node.

Therefore, at each event when the node is generated,

at least three o-edges will be linked to the node.

When a square or a regular hexagon collapses to a

node, four or six o-edges will sweep into a node. This

is the case of degeneration.

The third event as ‘the simultaneous one’ is

processed at ‘edge event’, since the other split

polygon disappears into a node in this event. After

detecting the split event and edge event have

occurred simultaneously, the system deals with the

event and links the generated node to three o-edges.

4.2. HOW MONOTONE POLYGONS

are FORMED
Fig.4(c) shows how these interior monotone

polygons are formed. When a shrinking process starts,

the edges of the polygon sweep inwards from their

original edge (o_edi). Nodes arise from the edge

event or the split event. For example, Node1, arisen

by the edge event, is the convergent point into which

consecutive three original edges (from o_ed3 to

o_ed5) sweep. On the other hand, Node2, arisen by

the split event, is the intersection point between the

angular bisector from the reflex vertex (between

o_ed2 & o_ed3) and the intersected edge (o_ed7).

Since at least three original edges (o_edi) sweep into

a node, the node keeps information about which

o_edi makes up the node itself. In order to form

monotone polygons, following the original edge one

by one, the system searches which node has the same

original edge number. For example, o_ed4 has an

only one node (Node1) that has the same original

edge number, whereas o_ed3 has four nodes that

have the same original edge number including such

as Node1, Node2. The nodes belonging to each o_edi

are sorted according to the coordinate value on the

axis parallel to each original edge (o_edi) vector.

These nodes are coplanar, and will form a roof board

for a 3D building model.

Fig.4(d) shows how a split event happens, and how

the position of the node arisen by the split event is

calculated. The position of the node is given by the

intersection of two angular bisectors: one from the

reflex vertex and the other bisector between the

intersected edge and one of two edges incident to the

reflex vertex.

For some polygons in Fig.5 showing a shrinking

process of an orthogonal polygon, the event different

from the two events mentioned will happen. In this

research, it is proposed to add the third event in

which a reflex vertex runs into the edge, but the other

split polygon is collapsed into a node since an edge

event happens in the split polygon at the same time.

This event happens at an orthogonal part of the

polygon as shown in Fig.5. In the process, as shown

in Fig.5(b) & (c), the system detects ‘the third event’

by checking if ptia (vertex) is on edib (edge) or ptib is

on edia where ptia & ptib are the vertices next to two

vertices coherent by the edge event, and edia & edib

are the edges adjacent to these two coherent vertices.

(a) Shrinking polygon just before

a split event

(b) Split event happens and the

polygon is split into two

(c) The straight skeleton formed as

the union of the pieces of angular

bisectors

(d) The position of the node is given by the intersection of

two angular bisectors: one from the reflex vertex and the

other between the intersected edge and one of two edges

incident to the reflex vertex.

Figure 4. How a split event happens, and how the position of the node is calculated

o_ed2

o_ed1

o_ed4

o_ed3

o_ed5

o_ed6
o_ed7

Node1

Node2

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 180 ISBN 978-80-86943-75-6

Aichholzer et al. [Aic95a] demonstrated three edge

events let a triangle collapse to a point in the last

stage of each split polygon as shown in Fig.2(d). In

this paper, it is proposed to add the case in which two

edge events let a rectangle collapse to a line segment

(‘a line of convergence’) in the last stage, a rectangle

whose opposite sides have the same and the shortest

e_dshri.

Since a line segment does not have area, it is not

shrunk anymore. The central area of an orthogonal

polygon in Fig.5(d) shows a line of convergence to

which the shrinking polygon (rectangle) is converged.

5. APPLICATION AND CONCLUSION
Here are the examples of 3D building models

automatically generated by the integrated system.

Fig.6 shows the examples of 3D building models

automatically generated by the straight skeleton

computation from non-orthogonal building polygons.

To ease the discussion, Aichholzer et al. [Aic95a]

exclude degeneracies caused by special shapes of

polygon, e.g., a regular polygon. In this paper, we

deal with the degenerate cases in which more than

three edges are shrunk to a point. Ideally,

simultaneous n edge events cause a regular n-gon to

collapse to a point but it is difficult to draw such a

perfect regular n-gon. Accordingly, the system

rectifies the shape of the regular n-gon so as to let n

edge events at the same time. Fig.6 center shows the

3D dodecagon building model automatically

generated based on the degeneracy of 12 edges being

shrunk to one node.

Fig.7 shows proposed digital map for the town and

an automatically generated 3D urban model: town

houses with doom roofs created by straight skeleton

computation in the middle of the image.

For everyone, a 3D urban model is quite effective in

understanding what if this alternative plan is realized,

what image of a sustainable city will be.

Traditionally, urban planners design the city layout

for the future by drawing building polygons on a

digital map. Depending on the building polygons, the

integrated system automatically generates a 3D urban

model so instantly that it meets the urgent demand to

realize another alternative urban planning for

sustainable development.

Figure 5. Shrinking process and a straight skeleton for third events

(e) The straight skeleton defined as

the union of the pieces of angular

bisectors traced out by polygon

vertices during the shrinking

process

(f) A roof model automatically

generated: each roof board is based on

an ‘interior monotone polygon’

partitioned by straight skeleton

(d) Polygons shrinking at a

constant interval: nodes by an edge

event & a third event: nodes by a

collapse of a rectangle to a line.

(b) A third event happens and the

polygon is split into one node and

one polygon.

(a) Shrinking polygon just

before a third event

(c) A third event happens again

and the polygon is split into one

node and one polygon

ptia

edib

ptib

edia

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 181 ISBN 978-80-86943-75-6

If given digital maps with attributes being inputted,

as shown in ‘Application’ section, the system

automatically generates two hundreds 3D building

models within less than 30 minutes.

In either orthogonal or non-orthogonal building

polygons, the new system is proposed for

automatically generating general shaped roof models

by the straight skeleton computation. In this paper,

the algorithm for ‘forming straight skeleton by split

& edge event’ is clarified and the new methodology

is proposed for constructing roof models by assuming

the third event in addition to two events and, at the

end of the shrinking process, some rectangles are

converged to a line of convergence. Thus, the

proposed integrated system succeeds in automatically

generating alternative city plans.

The limitation of the system is that automatic

generation is executed based only on ground plans or

top views. There are some complicated shapes of

buildings whose outlines are curved or even crooked.

To create these curved buildings, the system needs

side views and front views for curved outlines

information.

Future work will be directed towards the

development of methods for the automatic generation

algorithm to model curved buildings by using side

views and front views.

6. REFERENCES
[Aic95a] Aichholzer, O., Aurenhammer, F., Alberts,

D., and Gärtner, B.: ‘A novel type of skeleton for

polygons’, Journal of Universal Computer

Science, 1 (12): 752–761 (1995).

[Car10a] Carlos, V. A., Daniel, A. G., and Bedřich,

B.: ‘Building reconstruction using Manhattan-

world grammars’, Computer Vision and Pattern

Recognition (CVPR), 2010 IEEE Conference on:

358 – 365 (2010)

[Dan05a] Daniel, B. R., and Daniel, A. G.: ‘Build-

by-number: rearranging the real world to

visualize novel architectural spaces’,

Visualization, 2005. VIS 05. IEEE, 143 – 150

(2005)

[Dan07a] Daniel, A. G., Paul, R. A., and Daniel, B.

R.: ‘Style Grammars for interactive Visualization

of Architecture’, Visualization and Computer

Graphics, IEEE Transactions on Volume:13, 786

– 797 (2007)

[Gru98a] Gruen, A., Wang, X.: ‘CC-Modeler: A

topology generator for 3-D city models’, ISPRS

Journal of Photogrammetry & Remote Sensing,

Vol.53, No.5, pp.286-295 (1998).

[Gru02a] Gruen, A., and et al.: ‘Generation and

visualization of 3D-city and facility models using

CyberCity Modeler’, MapAsia, 8, CD-ROM

(2002)

[Mül06a] Müller, P., Wonka, P., Haegler, S., Ulmer,

A., and Van Gool, L.: ‘Procedural modeling of

buildings’, ACM Transactions on Graphics, 25, 3,

614–623 (2006)

[Nia09a] Nianjuan, J. P. T., and Loong-Fah, C.:

‘Symmetric architecture modeling with a single

image’, ACM Transactions on Graphics - TOG,

vol. 28, no. 5 (2009)

[Par01a] Parish, I. H. Y., and Müller, P.: ‘Procedural

modeling of cities’, Proceedings of ACM

SIGGRAPH 2001, ACM Press, E. Fiume, Ed.,

New York, 301–308 (2001)

Figure 6. Non-orthogonal building footprints and 3D building models automatically generated by straight

skeleton computation

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 182 ISBN 978-80-86943-75-6

[Sug09a] Kenichi SUGIHARA: “Automatic

Generation of 3D Building Models with Various

Shapes of Roofs”, ACM SIGGRAPH ASIA 2009,

Sketches DOI: 10.1145/1667146.1667181 (2009)

[Sug12a] Sugihara, K. and Kikata, J.: “Automatic

Generation of 3D Building Models from

Complicated Building Polygons”, Journal of

Computing in Civil Engineering, ASCE

(American Society of Civil Engineers), DOI:

10.1061/(ASCE)CP.1943-5487.0000192 (2012)

[Suv02a] Suveg, I., and Vosselman, G.: ‘Automatic

3D Building Reconstruction’, Proceedings of

SPIE, 4661, 59-69 (2002)

[Zla02a] Zlatanova, S., and Heuvel Van Den, F.A.:

‘Knowledge-based automatic 3D line extraction

from close range images’, International Archives

of Photogrammetry and Remote Sensing, 34, 233

– 238 (2002)

Figure 7. Proposed digital map for the town and an automatically generated 3D urban model: town
houses with doom roofs created by straight skeleton computation in the middle of the image

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 183 ISBN 978-80-86943-75-6

PoolLiveAid: Augmented reality pool table

to assist inexperienced players

Ricardo Alves

Institute of Engineering

University of the Algarve,

Campus da Penha

8005-139 Faro, Portugal

ricardo_alves_r16@hotmail.com

Luís Sousa

Institute of Engineering

University of the Algarve,

Campus da Penha

8005-139 Faro, Portugal

luiscarlosrsousa@outlook.com

J.M.F. Rodrigues

Institute of Engineering and

Vision Laboratory, LARSyS,

University of the Algarve,

8005-139 Faro, Portugal

jrodrig@ualg.pt

ABSTRACT
PoolLiveAid is an augmented reality tool designed to assist unskilled or amateur pool, or snooker or billiards

players in predicting trajectories. A camera placed above the table acquires and processes the game on-the-fly.

The system detects the table border, the ball’s position and the pool cue direction in order to compute the

predictable trajectory of the white ball, and the ball directly in its trajectory. The output result is then forwarded

to a projector, placed above the table, which then projects onto the snooker playable field. A skilled player can

also save a specific layout of a move and load it later in order to achieve the best shot and practising.

Keywords
Augmented reality, computer vision, pool game.

1. INTRODUCTION
A pool game can be very challenging and tricky. The

first contact with a game of pool can be very

frustrating for an unskilled player, requiring many

hours of practise to understand even the more basic

and classical mechanics that exists in this game.

In this paper we introduce a tool to assist mainly

amateur pool players to train themselves by showing

them on-the-fly in the pool table what will happen

when the white ball is hit, helping the player to make

the best decision, thus preventing him from playing

countless times before getting it right. On the other

hand, a skilled player can also save a specific layout

of a move (or a group of moves) and load it later,

project it directly onto the pool table in order to

achieve the best shot and for practise.

This tool was developed to use the pool table as the

interface. The system works with several varieties of

tables, regardless of the cloth and colour of the ball

(be it pool, snooker or billiard), with any camera that

has HD feature, and a projector placed above the

table. A camera is placed above the table for

capturing and processing the game. The system

detects the table border, the ball’s position and the

pool cue direction in order to compute the predictable

trajectory of the white ball, and the ball directly in its

trajectory. The output result is then forwarded to a

projector, which then projects onto the snooker

playable field.

There are several examples of tools connected, to

some extent, to the game of pool, snooker or billiard.

Denman et al. [DRK*03] presented three tools

applied to footage from snooker broadcasts. The

tools allow parsing a sequence based on geometry,

without the need for deriving 3D information. They

also allow events to be detected where an event is

characterised by an object leaving the scene at a

particular location. The last feature is a mechanism

for summarising motion in a shot for use in a content

based summary. Shen and Wu [SW10] also analyse

videos. They did an automatic segmentation method

of local peak edges to extract the table, and by using

several pre-processing, morphological processing,

clustering and HSV colour space they detect the ball

to produce a 3D reconstruction of the game. Also

related to video analysis for a 3D representation with

different goals we have [HM07, HGB*10, PLC*11,

LPC*11, LLX*12].

On a different level, Dussault et al. [DGM*09],

Archibald et al. [AAG*10] and Landry et al.

[LDM11] presented a computational system to create

a robot capable of selecting and executing shots on a

real table. Some of these authors, Leckie and

Greenspan [LG06] presented a paper on the physics

of the game of pool. One of these authors also has a

web page with a tool somewhat similar to ours:

ARPool is a projector-camera system that provides

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 184 ISBN 978-80-86943-75-6

real-time feedback to a pool player directly on the

surface of the table. However, to our knowledge,

there are no publications on this tool (only the web-

page). Also related to “robotic pool,” [NKH*11]

presented a robot capable of playing on a normal-

sized pool table using two arms. The robot can

accurately locate the pool table, the balls on the table

and the cue, and subsequently plans the next shot. In

this case they use a green pool cue an almost white

cloth (they also project trajectories on the table).

Both robotic systems were tested under laboratory

conditions (specific light conditions, etc.).

The main contributions of this paper are a system

that: (a) works in real club/pub environment and can

be mounted without the need for any changes in

terms of table position, lights, etc. Only two supports

are needed: one for the camera and one for the

projector. (b) Uses the table as the surface for

projection and interface with the user and (c) focuses

mainly on amateur real players, who are learning to

play, or players who want to see on-the-fly a mistake

made in a previous play.

In section 2 we present table, ball and cue detection.

In section 3 we compute the ball trajectories and

explain how to project them onto the table. In section

4 tests and results from the two previous sections are

presented. In section 5 we briefly show the main

menus of the tool and finally in section 6 we present

the conclusions and future work.

2. Table, ball and cue detection
As mentioned in the Introduction, the system was

developed based on real pool tables, balls and pool

cues. An HD camera was placed over the table, so as

to capture the whole table (preferentially in the centre

of the pool table). For the images and tests shown in

this paper we used a simple HD webcam (around 25

fps), attached to the lamp that was over the table.

The second component of the system is a quality

projector (the lighter the surroundings, the better the

projector has to be). This can be placed above the

table, on the ceiling, projecting over the table, or in a

hall near the table (near the ceiling), so the projector

can project onto the entire table. In most of our tests,

the last situation was the one used, due to the ceiling

being too low.

Figure 1, in the top, illustrates the system layout,

with the position of the camera and projector. The

bottom picture is an example of an image (frame)

acquired by the camera. As can be seen, we do not

need a perfect image of the table, only an image that

catch the entire table.

In the rest of this section we will explain in detail the

table boundaries, ball and cue detection.

Figure 1. In the top the system layout, camera and

projector position in relation to the pool table. In

the bottom, the one acquired image (frame).

2.1.1 Pre-processing: Noise-reduction
A pool player needs to think of his/her next move, so

he/she needs to have information on the next possible

shot as early as possible, in order to give him/her a

perception of what he/she is actually doing or aim to

do. Nevertheless, information on the trajectory of a

future shot is only needed when and every time

movement stops. Based on that, a pool game has two

distinct phases of information extraction: (a)

detection of any motion, including the pool cue and

(b) ball information when the game stops.

One of the main challenges while working with a real

pool/snooker room is the noise in the captured frames

due to different factors, e.g., the type of lightning.

Upon this, we used two different noise-reduction

algorithms, depending on which information was to

be extracted: (a) motion or (b) balls.

Let be the RGB frame acquired in instance t

and (x, y) the pixel coordinates within the frame. We

used a (a) Gaussian Filter (G) [Rus11], with ,

when needing to analyse images in real time

= G() and we did a (b) frame time average

[Rus11] when ball motion on the table was stopped

(for pool table detection and balls detection), i.e.,

∑

 ,

with N the number of frames to average (in present

results N = 5) and the average result for instance t.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 185 ISBN 978-80-86943-75-6

Figure 2 shows from top to bottom a section of a pool

table image. The resulting image after applying the

Gaussian filter (), as expected, a blur appeared, and

after applying average filter (), we can see the

improvement in table cloth.

All parameters used in the pre-processing stage

(and N) are calibrated only once in the setup stage,

for each environment, and can be slightly different

for each environment.

Figure 2. Top to bottom, a section of , the same

section after and

2.1.2 Extracting Tables Boundaries
Extracting table boundaries with precision is

extremely important. Trajectories of a ball are

directly connected to these boundaries, causing a

reflection on the trajectory which will be more

perfect the more accurate a boundary is detected. If a

boundary is just a few pixels wrong, the resultant

trajectory will propagate the error, making it worse as

distance to this boundary increases.

As long as a camera is fixed, boundaries never

change (the table position never changes during a

game). Based on this, they are only calculated once

in the initial setup of the system.

Starting with an empty table, and from the middle of

the image , which will or should be the

centre of the table, going through top, bottom, left

and right, these lines are extracted through edge

detection using the Canny edge detector [Can86]

(with , and) in being

∑

 (the average of the initial 10 images

acquired in the setup procedure) followed by the

Hough Transform [DH72].

The results of a Hough transform are a set of

candidate lines for the table’s boundaries shown in

Fig. 3 top. Every line detected this way is tested,

checking if its angle is near (), in case it is a

top or bottom table boundary, or if its angle is near

 (), in case it is a left or right table boundary,

with . If a line succeeds this test, it is

checked if there are other possible table boundaries

near it. Inclination test is applied to every line near

the first one detected, and if it succeeds, the average

line of all lines detected will be considered to be a

table boundary. After all this, with linear equations,

all 4 corners of the table are found, see Fig. 3 bottom.

If necessary, only if the automatic boundary

detection doesn’t work perfectly, we allow for the

possibility in the setup procedure for the boundaries

to be manually adjusted (slightly), using the setup

menu interface and computers mouse.

If the camera is not in the centre of the table, or if

necessary to detect the lines, or the final computed

line is bigger than , then a perspective transform

(e.g. [Rus11]) from the original image (video frame)

to a “model pool table” is required. This will

decrease the performance of the system very slightly,

once every operation (ball detection, trajectories,

etc.) has to be affected by the same transformation.

To simplify the explanation in the following sections

and for the rest of the paper we ignore this

transformation (i.e., we consider).

Figure 3. Top, detected lines and in the bottom

final automatic table boundaries extraction.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 186 ISBN 978-80-86943-75-6

2.1.3 Movement Detection
After the detection of the table boundaries,

movement detection is one of the more important

functions to be computed. As previous explained,

balls are only detected when movement on the table

stops, avoiding the program to make unnecessary

computations for the detection of the balls (see

Section 2.1.5).

Movement detection also has a second purpose: pool

cue detection (see Section 2.1.4). Obviously, the cue

detection is more reliable if there were no balls on

the table. As this is not possible, every time

movement stops, a frame is taken by the

camera, allowing it to be a reference for what it is in

the table at that moment, we remember that in a

pool/snooker game the player has a penalty if it

touches or moves any ball. The frame is then

going to be used as reference (“ground-truth”) for the

cue detection.

Movement detection is based on the subtracting the

actual frame with the previous frame,

 .

The output (), is converted to grayscale , and

a threshold with the goal of creating a binary image

is applied. All pixels with the level of gray above

are assigned to 0 otherwise to 255, returning .

The value of is automatically computed by

calculating the maximum value that the histogram of

E(x,y) during the setup stage changes more than

0.003% of the total of element in the playable field

(we use 25 in the examples presented).

After this all pixel inside the table playable field

(mark by the 4 red lines in Fig. 3 bottom) are

counted, , if there are less then 0.003% of pixels

with 255, it is considered that there is no more

movement on the table, and the counted pixels are

due to noise,

 ∑ ∑

with {

and W e H the weight and height of the playable

field.

In summary, if , there is no

movement in the table, turning a movement flag

OFF, otherwise turning it ON. Every time there is

movement on the table, like e.g., cue striking a ball

this flag is put to ON, but if set to OFF (by the above

process) then we can conclude that movement on the

table has stopped, a reference frame is taken and

triggering ball detection algorithm.

2.1.4 Cue Detection
The cue information is only needed when the cue is

relatively close to the white ball, as the cue is always

placed close to it when a player is preparing to strike

the white ball. As result, information extracted is

only considered if close, in a circular area, to the

white ball.

Figure 4. Top to bottom, frame with the RoIs

represented, image after subtraction with ,

the cue line detection and shot detection.

For the cue detection, the (a) current frame , Fig.

4-1st

row, is subtracted to the reference frame ,

Fig. 1-2nd row, enabling the balls not to interfere

with the cue detection. This difference is only done

in a (b) small square region of interest (RoI) (to save

CPU time) with dimension pixels, the

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 187 ISBN 978-80-86943-75-6

differences of the images are shown in Fig. 4-2nd

row. For the final cue validation, a player hand must

not be close to the white ball and for this reason we

consider (c) a 2nd circular RoI, radius of

pixels, being r the radius of the white ball (see

section 2.1.5 for r calculation). Following the same

principle and . In this

circular RoI usually no player put he’s hand, and if

he put his hand in this area it is considered not the

correct way to hold the cue (the system detect if there

is a hand in this area and alert the user).

Being | | and from the converted

grayscale of ∑ , it is applied a (d) threshold

(we used 50, this value was computed

empirically) to binarise the result, obtaining a white

shape Fig. 4-3rd row.

From this shape (e) we compute the middle line (the

line that splits this shape into two), red line in Fig. 4-

3
rd

 row. This line is considered to be the line of the

cue, where the tip of the cue is considered to be the

point of the line closer to the white ball.

When a player shoots the white ball, the program

needs to stop detecting the cue, in order to stop to

show trajectory lines (see section 3). This is

achieved, once again, by comparing the actual frame

 with the reference frame .

Every time a new frame is acquired, an absolute

subtraction is made (), in order to test what

happens in the circular ball area. If the white ball is

not stroke then the pixels value in the white ball area

are (near) 0, since those areas of the images are

equal, but if the white ball starts moving, then this

area starts getting values different from 0, see Fig. 4

bottom.

Since the cue, can also be placed in contact and

above the white ball, it’s important to choose number

of pixels that defines the white ball to be in

movement (),

∑ ∑ | |

 , being ()

the centre of the circular RoI. We use to

consider the ball in motion, see Fig. 4 bottom, once

again this can be configured in the setup procedure,

plus, depending of the camera used it is possible to

compute de velocity of the strike (not implemented

yet).

2.1.5 Detecting and Identifying the Ball
Every time movement stops, the ball’s detection

starts, consisting in comparing the actual average

frame with the initial average frame that

contains nothing but the empty table E(x,y) (Fig. 5,

1st and 2nd row respectively),

 | |,

after which a binarisation is applied. Again, as in

section 2.1.3, is converted to grayscale

 and every pixel with a value above 15 is

put to white, obtaining , see Fig. 5-3rd

row.

Using a contours finder [Rus11], we can know find

various blobs which may, or not, be balls.

Figure 5. Top to bottom, , the reference frame

 , the subtracted binary image from the above

images and the images with the detected

balls in red, plus the white.

Every blob detected is then considered to be a ball if

it meets the three following parameters: (a) Ratio

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 188 ISBN 978-80-86943-75-6

() between blob’s height (Hb) and width (Wb) is

approximately 1,

 .

(b) Relation between blob’s area and circle area, both

approximately equal, , with the area

of a circle, with () the circle centre and r

() the radius of the circle,

 ∑ ∑

with {

within

(c) Ratio () between a circle and square area,

,

the last condition compares if the blob area verifies

the circle and square areas relation. If these three

relations are true, then the blob detected is considered

to be a ball.

After detecting all the blobs, we must distinguish

which of the blobs is the white (BW). This is

achieved if both extracting contrast information (BC)

and a ratio (BR) occur:

(a) For the contrast we check all the blobs (i) which

is the one most differed from the background

BC [

∑ ∑

]

 .

(b) The ratio (BR) between bright area and blob’s

area detected,

 [

∑ ∑

]

with {

within ()

 ()

 The is the

 converted to grayscale, and the was

computed empirically. Once again this can be

changed in the setup procedure of the system, but for

all the tests done we always used .

The blob with the brightest area is the white ball,

 ⋂ . Blobs that are not white will have

few pixels in the bright area, while a white ball will

have more pixels in the bright area.

As result of this operation, we obtain all balls

detected with the white ball being distinguished from

all the other as shown on Fig. 5 bottom. If we want to

know which ball we are playing against, or make an

automatic table of scoring (in the case of snooker),

we can apply the above two principles (without

applying the max) creating two tables were the

colour are ordinates, this can also be complemented

using thresholds in HSV colour space.

3. Ball Trajectories
Ball trajectories shown in real time (see Fig. 7) can

be computed after the cue and the white ball centre

was detected, using simple and well known math

formulas. The cue stick is represented by two points,

and we can compute the correspondent line equation

(m x + b) and the white ball by its radius r and

centre point ().

The white ball is only going to be shot if the cue line

intercepts any point of the white ball contour, i.e., if

points = , with

 (√

)

and

 (√

)

the points that contacts the white ball circular surface

with the line of representing the cue. Thus, if any of

those points (are true, we can start calculating

what would be the predictable trajectory, assuming

the player will always try to hit its centre. It can be

easily calculated applying the cue vector to its centre.

All the different effects that a (semi-)professional

player can do it is not considered for the module of

the ball trajectories of the tool. This is a tool designer

for beginners and they “just want” to hit the white

ball to go in a specific direction.

3.1.1 Reflection of the Ball-table
Having detected contact between the cue and ball, the

table’s reflection can be determined by simple vector

maths. As shown in Fig. 6 top, ⃗ being incident

vector, we can obtain ⃗⃗⃗, which is vector normal to

incident plane,

 ⃗⃗⃗ ⃗

to achieve desired vector reflection it is used

 ⃗⃗ ⃗⃗⃗(⃗ ⃗⃗⃗) ⃗.

As the white ball centre never intercepts the table’s

boundaries, every reflection needs to be calculated

using an auxiliary boundary moved the ball radius to

the centre of the table, giving the result shown on

Fig. 6 top.

3.1.2 Balls Interactions
Balls collisions are calculated using vectors. A vector

containing the trajectory of a ball is applied to the

tangent points of that ball, giving line L3 and L4 of

Fig. 6 bottom. There are two interface points that we

need to calculate before we can know what will

happen to the intercepted ball.

First we need to know which of these lines, L3 and

L4, intercepts of other ball and its interception

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 189 ISBN 978-80-86943-75-6

point, given by point a of Fig. 6-bottom. The second

point is easily given by the trajectory’s normal

 ⃗⃗⃗ which is applied to the length of the

intercepted ball radius to its centre, given by point b

of Fig. 6-bottom.

The final trajectory, L2, is the normal of the vector

given by point a and point b applied to the centre C2.

The point d will make the contact with the point c.

Figure 6. Table’s reflection with vectors in the

top and collision between two balls in the bottom.

3.1.3 Projecting Ball and Trajectories to the

Table
Having all the balls detected and trajectories

computed, the next step is to project everything onto

the pool table. As mentioned before, we used a

projector (see Fig. 1 top), basically matching the

table dimensions in pixels (W, H) to the maximum

resolution of the projector used. In other words, it is

necessary to convert the computed trajectory and the

ball’s points to the table coordinates, applying a

transformation matrix.

After this we create a back image where we render

the balls positions; the white ball marked by a circle

and the different trajectories. This can be seen in the

computer in the background of Fig. 9 top.

Different options can be used, as for example using

different colour for different trajectories, a “red

colour” for the easiest ball to put in the hole, or

compute automatically here to put the cue if we want

to put ball x in the side pocket y, save a game, or

project onto the table the whole game (or part of the

game), project a single continuous image with the

ball position stored, to play again (and again) the

same move (this mainly for (semi-)professionals),

etc.

Figure 7. Some results of detected balls and

proposed ball trajectories.

Some of options available are shown in the

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 190 ISBN 978-80-86943-75-6

Augmented Reality Menus section (Section 5).

4. Tests and Results
Figures 7 and 9 show some examples of proposed

trajectories. To test the system we invited two very

inexperienced players (one male and one female) and

we computed around 10 continue minutes of playing,

at the same time doing the ground-truth of each play,

and we analysed 3 main topics: (a) table boundaries

detection, (b) detected balls and (c) expected

trajectories.

4.1.1 Table Boundaries Detection
In this first test, we used two different tables in two

different rooms, and we changed the lightning,

turning on and off all different lights existing in the

surroundings. As boundaries are usually the same

colour as the table, there is almost no contrast

between them, making it difficult to detect if the light

in the surroundings is poor.

In well-lit surroundings, by “well-lit” we mean all the

usual lights turned on, the table boundaries were

always automatically detected (100% of the times)

with less than 3 pixel error that can be corrected with

the computer mouse.

4.1.2 Ball Detection
Ball detection works very well when balls are not

close to each other, with tiny errors on some balls

that could not be measured. In a total of 194 balls

detection test we obtained 0 false positives and 186

balls successfully detected (96%), where the 8 balls

that were not detected were due to being too close to

each other (in contact). Also, in this test, all the white

balls were successfully detected with zero false

positive white balls.

4.1.3 Trajectories
Trajectories predicted are related to the distance a

ball can travel and how many bounces they have on a

table’s boundary. Direct balls were successfully

tested in 97% of the cases, where the 3% were due to

some imperfections on the cue detection and due to

the distance that the white ball would travel being

high.

Balls that would bounce on one table were

successfully tested in 77%, where the unsuccessful

trajectories were due to the distance travelled, cue

detection imperfections and spin gained or lost (due

to speed) in a table boundary.

Similarly, only 54% of the balls travelled the

predicted trajectory when bouncing twice on the table

boundaries, due to what we previously stated.

Interaction and reflection on other balls were 54%

successful due to the errors previously stated and,

possibly, to minimum errors on the ball positions.

5. Augmented Reality Menu
After setting up the system, done only once after

installing the system, the tool is ready to work.

The users can previously upload photos, or the

system can download them directly from Facebook

(given authorization by the user). The game starts by

projecting the photos over the table (Fig. 8-1st row)

when the two players put one hand over the photos

an augmented reality pop-up menu appears (Fig. 8-

2nd row). Balls can be placed on the table at any

moment.

Three main features are shown (from left to right):

(a) play with help, as shown in Fig. 7, (b) reload a

previous play and (c) save a game/play. Several other

menus are available or under construction. When we

put the hand over the icon more than 3 second the

option is activated, Fig. 8-3rd row, notice the arrow

over the hand.

A player can use in-game features that enable the

player to save a clip of his last move (option b), in

order to see what went right or wrong, and show it on

the table on-the-fly. A move can also be saved

(option c), in XML format for it to be loaded later,

allowing the player to practise that move later.

The hand detection is based on the same principle of

the ball detection. It is detected by comparing actual

frame with the table reference frame . If the

number of white pixels (PP) is higher than 95% of

the icon circular area, then it assumes the player has

selected the menu (this has to occur during 3

continuous seconds),

 ∑ ∑

with {

within the circular area (

)

 (

)

 and are the dimensions of each icon of

the menu,

 and () the centre

of each icon; .

The same process is used to disable the pop-up menu.

If all icon areas have a PP value above for more

than 10 second the menu is disabled. To pop-up the

menus again, we have to put both hands again in the

area where the faces are presented at the beginning.

Despite this menu being quite easy to use, especially

for people used to handling tablets, for instance, it

can, however, be difficult for people not used to ICT.

Taking this into account we are also studying the

integration of previous works [SRB09, SFT*13] in

hand and head gestures as interface to the tool.

6. Conclusion and Future work
In this paper, we presented a system that aids a

beginner player to play pool. Using a standard HD

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 191 ISBN 978-80-86943-75-6

webcam, it allows detecting table boundaries, balls

and cue stick. A projector, placed above the table,

can show, in real time, the computed trajectory line

in order to give a player a perception of what is going

to happen in that particular move.

The system has two stages: (a) The setup, this is done

only once, the first time that the system is mounted

(or if the table changes position). In this stage there is

a computer interface menu with all the parameters

that can be adjusted. If any parameter adjustment is

necessary, this is done only at this stage. After this

(b) the running stage, every interaction with the

system is done using the table as interface, i.e., using

the augmented reality menu. There are no parameters

to be adjusted at this stage.

The system works in real time, and all the tests and

results showed were very good. In term of

comparison with previous systems, it is quite

difficult, because as for the best of our knowledge

there isn’t any database or ranking to test this

algorithms, plus this is only system working in real

time in real conditions, systems like [DRK*03,

HM07, SW10, HGB*10, PLC*11, LPC*11,

LLX*12] work on video taken from championship of

pool or snooker, and [DGM*09, AAG*10, LDM11,

NKH*11] work in a more or less controlled

environment because of the robots.

We must also make a small note about the projector

calibration. This is easily done using the menu of the

projector itself, keeping only attention to the fact that

the projected area must cover all playable area of the

table. The projection in the table does not affect the

balls and cue detection, as there is no projection

when a move is made and only are projected again

when all balls stopped (or when the player requests

the menu, as referred in section 5). All frame

acquisitions are done during these intervals.

In the near future we plan to enhance the ball

detection, enabling it to detect balls when they are in

contact with each other. We hope to enhance the cue

detection, to develop a system to minimize the

angular error on a table boundary and to reduce the

error given by a player not shooting the ball in the

centre of it, taking the speed of the strike into

account. Also to improve the quality distortions in

the camera optics should be handled. A further future

goal is to finish (increase the number of options) and

improve the augmented reality menu.

7. ACKNOWLEDGMENTS
This work was partly supported by the Portuguese

Foundation for Science and Technology (FCT),

project PEst-OE/EEI/LA0009/2011. We also thank

Conceição Bravo for the English revising of the

paper and the Association Jovem Sambrasense for

providing the pool table for the system development.

Figure 8. Some examples of the Augmented.

Reality Menu.

8. REFERENCES
[AAG*10] Archibald, C., Altman, A. and Greenspan,

M. and Shoham, Y. Computational Pool: A New

Challenge for Game Theory Pragmatics.

Magazine article from AI Magazine, vol. 31, no.

4, pp. 33-41, 2010.

[Can86] Canny, J. A computational approach to edge

detection. IEEE Trans. Pattern Anal. Mach.

Intell., vol. 8, no. 6, pp. 679-698, 1986.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 192 ISBN 978-80-86943-75-6

[DRK*03] Denman, H., Rea, N., Kokaram, A.

Content-based analysis for video from snooker

broadcasts, Computer Vision and Image

Understanding, vol. 92, no. 2–3, pp. 176-195,

2003. doi:10.1016/j.cviu.2003.06.005.

[DH72] Duda, R., Hart, P.: Use of the Hough

transform to detect lines and curves in pictures.

Comm. ACM, vol. 15, pp. 11-15, 1972.

[DGM*09] Dussault, J., Greenspan, M., Landry, J.,

Leckie, W., Godard, M., Lam, J. Computational

and Robotic Pool. In Chap. XII of Digital Sport

for Performance Enhancement and Competitive

Evolution: Intelligent Gaming Technologies, IGI

Global, pp. 194-209, 2009. doi: 10.4018/978-1-

60566-406-4.ch012

[HM07] Hao, G., MacNamee, B. Using Computer

Vision to Create a 3D Representation of a

Snooker Table for Televised Competition

Broadcasting. In Proc. 18th Irish Conf. on

Artifical Intelligence & Cognitive Science, 2007.

[HGB*10] Höferlin, M., Grundy, E., Borgo, R.,

Weiskopf, D., Chen, M., Griffiths, I.W., Griffiths,

W. Video Visualization for Snooker Skill

Training. Comput. Graph. Forum, vol. 29, no. 3,

pp. 1053-1062, 2010.

[LDM11] Landry, J. and Dussault, J. and Mahey, P.

Billiards: an optimization challenge, In Proc. 4th

Int. Conf. on Computer Science and Software

Engineering, Montreal, Quebec, Canada, pp. 129-

132, 2011. doi: 10.1145/1992896.1992912

[LG06] Leckie, W. and Greenspan, M. An event-

based pool physics simulator. In Proc. 11th Int.

Conf. on Advances in Computer Games, Taipei,

Taiwan, Springer-Verlag LNCS 4250, pp. 247-

262, 2006. doi: 10.1007/11922155_19

[LPC*11] Legg, P.A., Parry, M.L., Chung, D.H.S.,

Jiang, R., Morris, A., Griffiths, I.W., Marshall,

D., Chen, M. Intelligent filtering by semantic

importance for single-view 3D reconstruction

from Snooker video. In Proc. 18th IEEE Int.

Conf. on Image Processing, pp. 2385-2388, 2011.

doi: 10.1109/ICIP.2011.6116122

[LLX*12] Ling, Y. Li. S., Xu, P. Zhou, B. The

detection of multi-objective billiards in snooker

game video. In Proc. 3rd Int. Conf. on Intelligent

Control and Information Processing, pp. 594-596,

2012.

[NKH*11] Nierhoff, T., Kourakos, O., Hirche, S.

Playing pool with a dual-armed robot," Robotics

and Automation (ICRA), Proc. IEEE Int. Conf.

on Robotics and Automation, pp.3445-3446,

2011. doi: 10.1109/ICRA.2011.5980204

[PLC*11] Parry, M.L., Legg, P.A., Chung, D.H.S.,

Griffiths, I.W., Chen, M. Hierarchical Event

Selection for Video Storyboards with a Case

Study on Snooker Video Visualization, IEEE Tr.

on Visualization and Computer Graphics, Vol.17,

no.12, pp. 1747-1756, 2011. doi:

10.1109/TVCG.2011.208

[SRB09] Saleiro, M., Rodrigues, J. and du Buf,

J.M.H. Automatic hand or head gesture interface

for individuals with motor impairments, senior

citizens and young children. In Proc. Int. Conf. on

Software Development for Enhancing

Accessibility and Fighting Info-exclusion, pp.

165-171, 2009.

[SFT*13] Saleiro, S., Farrajota, M., Terzic, K.,

Rodrigues, J.M.H, du Buf, J.M.H (2013) A

biological and realtime framework for hand

gestures and head poses, accepted for 15th Int.

Conf. on Human-Computer Interaction -

 Universal Access in Human-Computer

Interaction Conf., 2013.

[SW10] Shen, W., Wu, L. A method of billiard

objects detection based on Snooker game video.

In Proc. 2nd Int. Conf. on Future Computer and

Communication, vol. 2, pp. 251-255, 2010. doi:

10.1109/ICFCC.2010.5497393

[Rus11] Russ, J.C. The Image Processing Handbook,

6th Ed., CRC Press Inc., 2011.

Figure 9. More results with different layouts.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 193 ISBN 978-80-86943-75-6

The Retrieval of NURBS-surface by Genetic
Algorithm on the Basis of Point Cloud

Eugene Vladimirovich Popov
Professor of NNSACEU

Ilyinskaya Street 65
 603950, Nizhny Novgorod,

 Russia
popov@sandy.ru

Sergej Igorevich Rotkov
Professor of NNSACEU

Ilyinskaya Street 65
 603950, Nizhny Novgorod,

 Russia
rotkov@nngasu.r

ABSTRACT
The approach to the geometrical modeling problem solution is described in this report. The approach is dedicated

to the approximation of the cloud of points by a NURBS-curve or NURBS-surface and is based on the

inheritance mechanism or on the so-called Genetic Algorithm. Genetic Algorithm is the heuristic search and

optimization technique that mimics the process of natural evolution. The mechanisms of evolution seem well

suited for some of the most pressing scientific problems in many fields. Therefore, the concept of evolution can

be applied to solve different computational problems and NURBS-surface retrieval including. The efficiency of

the approach is demonstrated by the retrieval of a human face and ship hull surface.

Keywords
Genetic algorithm, NURBS-surface, ship hull design, point cloud retrieval

1. INTRODUCTION

The Genetic Algorithm (GA) is a modern adaptive

technique for the solution of functional optimization

problems that are frequently used nowadays. It is

based on the genetic pattern of biological organisms,

namely biological populations that evolve over

generations subjecting to the laws of natural selection

and the principle "the fittest survive" formulated by

Charles Darwin [1]. Similar to these processes the

genetic algorithm is able to "solve" real-world

problems, if they are properly coded [2]. For

example, the GA can be applied to the design of the

bridge to find the maximum strength/weight ratio or

to determine the most economical pattern when

cutting out the fabric cloth. Another example is

searching for a set of rules or equations that will

predict the ups and downs of a financial market, such

as that for foreign currency. Usually such search

problems can benefit from an effective use of

parallelism, in which many different possibilities are

explored simultaneously in an efficient way.

Genetic algorithm (GA) was invented by John

Holland [3] and it is still thoroughly investigated in

many studies. In contrast to the natural evolution of

living organisms the GA only simulates evolutionary

processes in populations that are essential for their

development. However, there is not any exact answer

to the question which biological processes are

essential for the development, and which are not [3].

In wilderness individuals are competing with each

other within the population for a set of resources such

as food or water. Besides, usually members of the

population of one species compete for a mate. Those

individuals who are best suited for the environment

will be relatively more successful to produce

offspring [1]. Poorly adapted individuals either will

not produce offspring or their offspring will be very

few [3]. It means that the genes of highly suited or

adapted species will be available in an increasing

number of children of each successive generation.

Therefore, a new species will become more and more

adaptable to the environment [4].

GA uses a direct analogy of such a mechanism. It

works with a group of "individuals" (or "genome")

i.e. with a population. Each individual represents a

possible problem solution and is assessed according

to its "fitness" to how "good" the corresponding

problem solution is [3]. In nature a "good solution"

means that an individual is capable of competing for

resources in the most efficient way [1]. The fittest

individuals have the opportunity to "reproduce" the

breed by "crossover" with other species of the

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 194 ISBN 978-80-86943-75-6

population. This leads to the appearance of new

species that combine some of the characteristics

inherited from their parents. The least adapted

individuals are less likely to be able to produce

offspring, which in its turn leads to the gradual

disappearance of their quality from the population in

the process of evolution [1], [3].

In this way the whole new population of feasible

solutions is reproduced by selecting the best

representatives of the previous generation, crossing

them and getting a new set of individuals. This new

generation has better characteristics than the good

members of the previous generation. Therefore, good

features are distributed throughout the population

from generation to generation. Hybridization of the

fittest individuals leads to the fact that the most

promising areas of the search are explored.

Eventually, the population converges to an optimal

solution [1].

2. THE SURFACE

RECONSTRUCTION AND GA

Many practical surface reconstruction techniques

based on measured data points require the solution of

optimization problems in fitting surface data. In

general, we need determining the necessary and

sufficient conditions for the possibility of GA

application to this problem solution.

Let us suppose there is a finite set of geometric

parameters ngggG ,...,, 21 . Let us also assume

that a given finite set of conditions

 kcccC ,....,, 21 exists. Then we will need to build

another finite set of geometric parameters

 mtttT ,...,, 21 that satisfies each element of the

set of conditions C . The algorithm of finding set T

is unknown. We should also find such finite set T
~

the elements of which are the set of geometrical

parameters iT
~

 that meet at least one condition of set

C . If they meet all the conditions of set C the

problem is solved. Therefore, set T
~

 should meet the

following requirements to solve the problem:

 a certain numerical value
iq must be assigned

to each element of set T
~

(iT
~

) that should

indicate the degree of satisfaction of this element

to the set of conditions C ,

 the mutation operation over any element of set

T
~

 must be defined (see [1], [4]). This operation

is aimed at mapping the required element to

another element from the same set T
~

,

 the crossover operation must be defined

between any two elements of set T
~

 [4] the

result of which is also an element of set T
~

.

The finitude of set T
~

 is a necessary condition, but

for the determination of each element of this set it is

sufficient to formulate an appropriate rule. The

crossover and mutation operations of GA are similar

to the original genetic operations. Therefore, the

product of the GA operations can be called

"descendant" or “child”.

Let us now find the optimal arbitrary problem

solution. Suppose there is a one-to-one

correspondence between a string of characters and

some of the desired solutions of the problem (it is a

binary string in GA). Any solution can be encoded as

a string and any string can be considered as a

solution. By analogy with wildlife these strings can

be called genes.

The next step is to assign a quality factor to each

gene. This means that there is a criterion for choosing

the most appropriate problem solution. Then the

process of evolution consisting of two major

operations on genes crossover and mutation begins.

The crossover of two genes is to produce a new gene

by gluing pieces of parental genes (see fig. 1)

Figure 1. Scheme of crossover between two genes

The "child" partly inherits the properties of parental

genes in terms of fitness both negative and positive

ones. The replacement of one or more characteristics

in a gene at random or by inverting the bit will be

called gene mutation (see Fig. 2). As a result of a

gene mutation an entirely new problem solution can

be obtained (either better or worse than the initial

one).

Figure 2. Scheme of gene mutation

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 195 ISBN 978-80-86943-75-6

After the crossover and mutation are carried out a

new generation is re-evaluated and then a new stage

of evolution starts. The optimal problem solution

here includes the following points:

1. Forming the initial population, i.e. filling a

random string array. The size of the initial

population is one of the parameters and can vary

depending on the problem.

2. Assigning some quality factor to each individual

of a given population.

3. Sorting the population in descending order of a

quality factor.

4. If the first gene of the population (the best

solution) satisfies the problem conditions the

evolution stops. Otherwise, crossing the first

quarter of population to the second quarter and

applying the mutation operator to the second half

of population is needed [5].

5. Obtaining a new generation of solutions that are

used when going to step two.

All stated above can be summarized in the following

aggregative algorithm:

Step 1. Select some random sample

 zkji TTTTP
~

,...,
~

,
~

,
~

0 from set T
~

. The size of the

sample is not fixed and for each specific problem it

can be set experimentally. This sample will be zero

population in the GA evolution and selected

elements of set T
~

 are individuals of zero population.

Make zero population as current population.

Step 2. Sort out all individuals of the current

population in descending order of individual

quality iq .

Step 3. If the best individual of the current

population satisfies all the conditions of set C this

individual is a problem solution and we quit.

Otherwise the next Step is executed.

Step 4. Allocate a certain percentage of the best

individuals and build the next generation in the

population according to the following rules: the next

generation consists of the best individuals, their

children and mutated bad individuals (mutants).

Step 5. Consider a new generation as a current

generation and go to Step 2.

Finally, the output will contain the solution that

satisfies all the conditions of set C.

NURBS is one of the most employed surface fitting

models, provided that it is a standard representation

of curves and surfaces and is widely supported by

modern standards like OpenGL and IGES, which are

used for graphics and geometric data exchange. In

addition, the NURBS surface model has stability,

flexibility, local modification properties and is robust

to noise.

The NURBS surface fitting problem is usually

considered as a non-linear optimization problem. In

order to find a good NURBS model from a large

number of data, generally the knots, control points

and weights are respected as variables [6]. In [7]

binary-coded Genetic Algorithm is used for control

point optimization and then knot values optimization

and the error minimization of parametric surfaces as

a global optimization problem is shown. In a similar

way using GA, in [8], [9], optimization of both the

knots and the weights corresponding to the control

points for curve and surface fitting is done. In this

study we consider a cubic NURBS surface dependent

on control points and corresponding weights.

When using GA for the surface reconstruction on the

basis of the point cloud by NUSBS it is necessary to

define the basic terms of GA: gene, quality criterion,

crossover and mutation. Let there be some surface

found by the array of control points and

corresponding weights. The explanation in this case

is acceptable without loss of generality on the basis

of NURBS-curve (see Fig.3).

Figure 3. An arbitrary NURBS-curve

Figure 4. The vector defining the genome curve

We assign the array of co-ordinates of control points

and weights to a surface on which each control point

and weight is a vector corresponding to the deviation

from the reference point at a fixed zero position (see

Fig. 4). This can help to establish a correspondence

between any of such surfaces and line vectors that can

be called a genome. In this study weights are set to

one to make NURBS uniform.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 196 ISBN 978-80-86943-75-6

Figure 5. The crossover operation

Figure 6. The mutation operation

Next, let us introduce the concept of the gene quality.

The criterion can be developed in such a way that the

surface reconstructed from the point cloud is as close

to a given point as possible. Therefore, the criterion

is the minimal total (sum) distance between the point

cloud and the NURBS. The smaller is the distance,

the better corresponding surface satisfies the problem

solution.

The gene of a descendant is formed on the parent

genes basis by adding deviation vectors of the

surface control points. This defines the crossover

operation (Fig. 5). The mutation operation is done in

the following way: any deviation vector in the

mutating gene is replaced by a random vector (see

Fig. 6).

The developed algorithm is tested for the fitting of

the NURBS curve to the set of points. The process of

fitting is shown in Table 1. The quality factor in Table 1

means the dimensionless sum distance between the

point cloud and the NURBS curve normalized by the

point cloud length at a horizontal axis. After 30

generations the evolutionary strategy reached the

minimum, i.e. the quality factor decreased 4895 times in

comparison with the non-optimized NURBS curve. The

quality factor reached the value at about 0.12% of

overall point cloud length that complies with

requirements.

The best NURBS

 Table 1

G
en

er
at

io
n

 #

Best NURBS
Quality

factor

0

1

5.8746

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 197 ISBN 978-80-86943-75-6

5

3.5214

15

1.2341

20

0.3294

25

0.1546

30

0.0012

3. THE RETRIVAL OF A HUMAN

FACE

In Fig. 7 the result of the retrieval process of

a human face surface is presented. It is based

on the points cloud obtained by 3D laser

scanning. The best representatives of some

generations are shown in Fig. 7 arranged in

triserial order. The criterion to choose the

representatives is the minimum of total

distance from all the points to the surface.

As we can see in Fig. 7 the quality of the

NURBS representation of a human face rises

from generation to generation. However, the

best representatives at 1500th generation

exhibit several artifacts (near the nose and

the eyes, and at the boundary of the face).

The artifacts at the boundary of the face can

be easily eliminated by a trimming option.

The artifacts inside the NURBS surface can

be also eliminated by further steps of

evolution. Generally the quality of the

resulting surfaces can be very high. Besides,

there are a lot of GA children in the

evolution but it is possible to select the most

appropriate for use depending on the goals.

Initial set of points:

0- generation

5th generation:

900th generation:

1500th generation:

Figure 7. The best human face representatives of

some generations arranged in triserial order

Thus, this approach allows us to model relatively

complex objects such as a whole human face only by

one NURBS-surface. A multivariate solution that is

especially important in design can be considered as a

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 198 ISBN 978-80-86943-75-6

positive result. The example described above plays

rather a testing role aimed at developing the

approach.

4. THE SURFACE OF THE SHIP HULL

The use of GA is also proposed as a method for

improving ship hull design through more effective

exploration of the design space. The problem of

creating fair ship hull surface is of major importance

in Computer Aided Ship Design environment. The

fairness of these surfaces is one of the most important

conditions for the ship structure accuracy. It results in

time saving and in improvement of the assembly and

hull welding quality. It also reduces the cost of the

structure significantly [10], [11], [12]. Currently

several methods to control ship surface quality are

used:

1. The Gaussian curvature visualization which

allows identifying the problematic areas of the

ship hull surface.

2. Visualization of the curvature radii of curves,

surfaces and sections.

3. Visualization of the inflection points and

inflection lines of sections and surfaces.

4. Dynamic change of the inflection lines and lines

of curvature by the manual surface editing.

5. Visualization of surfaces and sections in a

compressed form at one of the coordinate axes. It

is a very important feature for modeling surfaces

strongly elongated at one of the coordinate axes

(wings, ruder etc.).

6. Automatic control of the surface deviation from

the original data.

The described means of the surface quality control

allows us to abandon the paper drawings completely,

to reduce the simulation time sufficiently and to

increase the quality of the simulated surface.

When designing the ship hull surface by means of

shipbuilding CAD-systems the main purpose is to

reduce manual labor. The advantages of GA use in

this case are the following. First, genetic algorithm

(GA) is a highly effective tool for the exploration of

large-scale, nonlinear design spaces and, when

combined with gradient based search techniques,

may provide a more computationally efficient means

of identifying near optimal designs. Second, GA

method may provide a high utility tool that can

enhance the ship design process. Third, the current

design choice method of weighted objective

measures of effectiveness can mask potentially useful

areas of the design space. Therefore, the approach for

the NURBS-surfaces retrieval on the boundaries of

parametric quadrilateral defined by diametric buttock

has been developed. The approach is based on GA

and permits half of the hull surface to be designed

without subdividing it into separate patches. Besides,

the design can be based on the general hull curves as

well as on a point cloud that can be obtained by

different ways including 3D scanning.

NURBS-surface retrieval on points cloud obtained on

the basis of the main shipbuilding curves (buttocks,

frames and waterlines, see Fig. 8) is carried out by

means of the genetic algorithm with the scheme

described in Section 2. Usually the main shipbuilding

curves contain the information not only about the

surface form, but also the information about the

smoothness at key hull points and derivatives of any

order. When forming a set of points on the basis of

these curves all this information is lost. It means that

the locus of points remains in a space only through

which the surface should pass under design.

Figure 8. The theoretical drawing of seagoing

trawler hull

The smoothness of the final NURBS-surface is

determined by the degree of consistency of the

source of the original theoretical drawing and

smoothness of the main hull lines. An example of

such points set to build a final NURBS-surface is

presented in Fig.9.

Let us consider the process of the surface retrieval for

the seagoing trawler as an example. The theoretical

drawing of the trawler is shown in Fig.8. [13] The

initial data in the form of a point cloud formed on the

basis of hull curves are shown in Fig.9. Given that

the smoothness of the surface depends on the

smoothness of the source hull lines the latter have

been smoothed by the Gauss algorithm. This allows

obtaining the consistency with the main hull lines.

The Genetic Algorithm was used from the starting

point for the half portion of the ship hull design space

as described in Section 2. For the initial population

we choose a set of NURBS-surfaces with the size of

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 199 ISBN 978-80-86943-75-6

the box bounding set of points and random deviations

of nodes at the Y-axis. Default settings utilized

initially included floating point genes. Crossover

operations utilized simple procedure, i.e. genes were

added between parents. All crossover rates are

defined as the number of crossovers, regardless of the

total population. Mutation was performed on a

specified number of randomly selected individuals at

each step of evolution. The quality of each individual

surface was the sum distance from each point of

cloud to the surface. Thus, we can obtain a set of

populations at each step of evolution by standard GA

operations such as mutation and crossover. In other

words this set is a set of NURBS-surfaces that

already meet the requirements of smoothness since

they are based on the point cloud that is obtained in

turns from the main shipbuilding curves. Finally, the

GA allows us to get the surface closer and closer to

the initial point cloud that is actually an equivalent to

the "growing" of the required surface similar to a

living organism.

Figure 9. The initial point cloud to build NURBS-

surface

The best representatives of the hull surface in some

generations are shown in Table 2. The 6th method of

ship surface quality control mentioned above is used,

that is the automatic control of the surface deviation

from the original data. The time of obtaining of each

generation representative and the value of the sum

distance from the initial cloud to the surface are

presented in Table 3. This distance is used as a

criterion for the quality of the surface retrieval. The

improvement of the last individuals of subsequent

generations did not occur.

From Table 3 it is clear that to obtain a ship hull

surface represented by a single NURBS-surface with

acceptable quality about 3000 generations are

needed. This process takes approximately 1 minute

of CPU (AMD Phenom ™ II N930 Quad-Core

Processor 2.00 GHz).

The best representatives of some generations

 Table 2

g
en

er
at

io
n

 #

Best individual

100

500

1500

3000

In this case, the overall deviation of the final

NURBS-surfaces from the original point cloud does

not exceed 83 mm. This corresponds to the

shipbuilding accuracy of individual point deviation

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 200 ISBN 978-80-86943-75-6

from the surface up to 0.0001B, where B is the width

of the hull.

The quality factor

Table 3

generation

Quality of the best

individual (total

distance), mm

Compute

time,

s

100 17254.612 4.34

500 12703.928 20.53

1500 9870.289 32.92

3000 82.731 48.93

Thus, on the basis of the mathematical NURBS

approximation apparatus and the approach based on

genetic algorithm for the retrieval of smooth complex

ship hull surface is developed. The developed

approach can be successfully used for the retrieval of

this type of surfaces for which smoothness is a major

requirement.

The final NURBS-surface of the trawler hull without

plane part of the board is shown in Figure 10. The

whole final NURBS-surface of the trawler hull is

presented in Figure 11.

Figure 10. The final NURBS-surface of the hull

without plane part of the board

4. CONCLUSION

In conclusion it should be stated that the NURBS-

surface can be obtained by GA on the controlling

points which may be solved on the given scattered

point cloud. The genetic gene and evaluating

function are given and the controlling points and

their corresponding weight genes are computed. By

numerical simulation this approach is verified for the

validity of the simplified representation of the fitting

surface.

Figure 11. The whole final NURBS-surface

5. REFERENCES

[1] Tomassini M. A survey of genetic algorithms. In

D. Stauffer, editor, Annual Reviews of

Computational Physics, volume III, pages 87-118.

World Scientific, 1995.

[2] Kirkpatrick S., Toulouse G. Configuration space

analysis of traveling salesman problems. J. Phys.

(Paris) v46, 1985

[3] Holland J. H. Adaptation in natural and artificial

systems. Ann Arbor: University of Michigan

Press. 1975.

[4] Boyer, D. O., Martnez, C. H. & Pedrajas, N. G.

Crossover Operator for Evolutionary Algorithms

Based on Population Features, Applied Soft

Computing J., 39(3), 2007.

[5] Aggarwal C. C., Orlin J. B., Tai R. P. Optimized

crossover for maximum independent set. Oper.

Res. v45, 1997.

[6] E. Ulker, NURBS curve fitting using artificial

immune system, Int. J of Innovative Computing,

Information and Control, vol.8, no.4, April 2012.

[7] A. Limaiem, A. Nassef and H. A. Elmaghraby,

Data fitting using dual krigging and genetic

algorithms, CIRP Annals, vol.45, pp.129-134,

1996.

[8] F. Yoshimoto, M. Moriyama and T. Harada,

Automatic knot placement by a genetic algorithm

for data fitting with a spline, Proc. of the

International Conference on Shape Modeling and

Applications, pp.162-169, 1999.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 201 ISBN 978-80-86943-75-6

[9] M. Sarfraz, Representing shapes by fitting data

using an evolutionary approach, Int. J. of

Computer-Aided Design & Applications, vol.1,

no.1-4, pp.179-186, 2004.

[10] A. Swee Wen, S. M. H. Shamsuddin, Y.

Samian., Ship Hull Fairing Using Nurbs,

Proceedings of the Postgraduate Annual Research

Seminar, pp.225-228, 2005.

[11] A. Swee Wen, Optimization of ship hull NURBS

surface fitting using simulated annealing,

University of Malaysia, 2007.

[12] K.G. Pigounakis, P.D. Kaklis and A.D.

Papanikolaou: Ship Hull Fairing under Shape and

Integral Constraints, Proceedings of IMAM '95 /

5th Congress of the International Maritime

Association of Mediterranean, Dubrovnik, 1995.

[13] Popov, E. V., Rekshinsky, A. V. A ship hull

surface design using genetic algorithms, “Vestnik

IzhGTU”, Periodic scientific and theoretical J.,

Izhevsk, # 3, 2007.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 202 ISBN 978-80-86943-75-6

An Optimization of Square Parameterization
Anuwat Dechvijankit Hiroshi Nagahashi Kota Aoki

Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology.
4259 Nagatsuta-cho, Midori-ku, Yokohama-shi,

Kanagawa, Japan, 226-8503
dechvijankit.a.aa@m.titech.ac.jp longb@isl.titech.ac.jp aoki.k.af@m.titech.ac.jp

ABSTRACT
In order to parameterize a three-dimensional surface into a two-dimensional planar domain, we need to convert its
polygonal mesh into a disk topology surface. For quality of texturing or re-meshing that uses a parameterization
technique, it is more effective if the distortion of two-dimensional manifold planar domain map is as small as
possible. Since square planar domain is easily understandable to human or very simple as a computer image file,
it has been frequently used in real world applications. We introduce a series of experiments focusing on how
to deliver an optimized square parameterization with low-cost calculation and stable result. The result of these
experiments shows that our method is a suitable method for optimizing square parameterization.

Keywords
Mesh Parameterization, Optimization, Particle Swarm Optimization, Sampling

1 INTRODUCTION
Mesh parameterization is defined as a mapping between
a 3D manifold surface and a suitable target domain. In
general, the mesh parameterization is formulated as a
mapping from 3D triangulated surfaces to a certain 2D
planar domain. However, it requires the surfaces to be
topologically equivalent to a disk without any hole. Pa-
rameterization between two domains generally causes
distortion errors such as a stretch. Hence, low stretch-
ing is an important criterion for parameterization.

Unlike a circular boundary domain or a natural bound-
ary domain, the square boundary domain has a specific
characteristic that requires user-defined algorithms in
boundary-mapping assignment (constraint part). Dif-
ferent positions in square boundary mapping can gener-
ate different quality of parameterization result as shown
in figure 1.

The easiest way for delivering the lowest stretching
square parameterization is to check all possible bound-
ary mappings (brute-force) with a stretch-minimizing
parameterization method. It can guarantee the best re-
sult, however the main problem of this approach is ex-
tensively time-consuming.

We did a series of experiments getting the lowest
distortion square parameterization by avoiding the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

brute-force high-computation method. The main goal
of this paper is to devise an algorithm to deliver an
optimal square parameterization from any kind of
stretch-minimizing methods with fast and stable result.
Moreover, since GPU-Computing has been introduced
and widely been used nowadays, the devised algorithm
should support parallel-computing scheme as well.

(a) L2 stretch: 1.320295

(b) L2 stretch: 1.175196

Figure 1: Ustica model with check-board texture map-
ping using same stretch-minimizing square parameteri-
zation with different boundary mappings. (a) shows the
worst case that have largest L2 stretch. (b) shows the
best case that have smallest L2 stretch. We can notice
the different quality of textures around boundary area.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 203 ISBN 978-80-86943-75-6

2 RELATED WORKS
Since texture mapping was introduced into computer
graphics world by E. Catmull [Coo87a], it became a
trend that every graphics board or graphics API must
support it nowadays. Mapping a 2D texture onto a 3D
surface requires some kind of parameterization of the
surface. The parameterization result can be represented
by planar coordinates u and v, indicating a position in
2D domain related to a position (x,y,z) in 3D domain.

Many well-known parameterization methods have
been proposed. Tutte[Tut63a] used a barycentric
mapping theory and created a conformal mapping.
Floater[Flo97a] used relative angles as a weight in each
interior vertex to create barycentric mapping. Later
on, stretch-minimizing methods have been proposed to
achieve low stretch as possible. Sander et al. [San01a]
used geometric-stretch matrix as the sum of squared
singular values, and minimized it as a non-linear
system. Yoshizawa[Yos04a] proposed a fast method
of stretch-minimizing by recomputing the weight of
linear energy-minimizing equations by using previous
stretch value as a divisor.

Concerning the limitation of fixed-boundary pa-
rameterization, Least Squares Conformal Maps
(LSCM)[Lev02a] were presented as alternative ways to
optimize the boundary positions from fixed-boundary
into free-boundary. They used different harmonic
energy formulations found in harmonic map[Eck95a]
but still minimized angular distortion. Intrinsic
parameterizations[Des02a] used the same technique
found in LSCM to preserve angle distortion, and pre-
served area distortion. Both of them could significantly
improve the distortions. However, they aimed to opti-
mize by changing fixed-boundary into free-boundary
parameterization, not square-boundary one.

To guarantee the generation of a valid parameterization
without local or global fold overs and the control
of each mesh triangle distortion to not exceed a
certain threshold, Sorkine[Sor02a] proposed bounded-
distortion concept with simultaneously seam-cutting.
Lipman[Lip12a] also proposed bounded-distortion
mapping spaces which can control worst-case con-
formal distortion, orientation preserving and one-one
mapping in various existing mapping algorithms. How-
ever, they aimed to control mappings at unconstrained
part.

3 SQUARE BOUNDARY MAPPING
Generally, planar parameterization requires some con-
straint values in its solving system. For doing a fixed-
boundary parameterization, it requires a user-defined
boundary position mapping as constraint values before
solving interior coordination. Unlike circular parame-
terization that averages each boundary edge length and

circle angle, square parameterization needs some user-
defined algorithms in the assignment of boundary map-
ping. There are no specific algorithms for it. Users can
create their own algorithm based on the length or num-
bers of boundary edges and so on.

In our square boundary mapping algorithm, a mesh
M has n boundary vertices. Let boundary edges be
EB = ((vb1 ,vb2),(vb2 ,vb3), . . . ,(vbn ,vb1)), having total
length d. Let a list of all boundary vertices be VB =
(vb1 ,vb2 , ...,vbn) and it is sorted in the order of connec-
tion of EB. We call vb1 as a reference start point of VB
and EB. Let Pi, j be a corner position in square planar do-
main as shown in figure 2 and us be the length of each
side of square planar. We try to map some edges in EB
onto a side of square planar. In order to achieve low-
est stretch at boundary area, one side should be mapped
by a quarter of EB based on the total length of edges
(0.25d).

Let vb be a vertex in VB that we want to map onto P0,0.
Let the distance from vb to vb+m be l. We try to find
vb+m whose distance l is equal 0.25d. However, in most
cases it is not equal. Therefore, we find vb+m that has
l ≈ 0.25d. Then, we map (vb,vb+1, . . . ,vb+m) whose
total length is l onto the square side from P0,0 to P1,0
relatively on each edge length over us.

Figure 2: shows a mapping sequence on planar points
from P0,0 to P1,0.

As for other sides of the square, we can follow the same
process described above by locating vb+m to the corner
P1,0 and iterate the mapping process to P1,1, P0,1 and
finally back to P0,0.

4 OPTIMIZATION
Square parameterization has a unique characteristic that
requires a user-intervening boundary position mapping.
The different boundary positions in planar domain can
give moderate margin of stretch (see figure 1). The
problem is how we can obtain the optimal square pa-
rameterization.

Considering our problem of square boundary optimiza-
tion, we map the boundary vertices in mesh domain

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 204 ISBN 978-80-86943-75-6

onto the boundary in square domain with some condi-
tions. One important condition is the relationship be-
tween a side of square boundary and mapping bound-
ary edges. Our mapping method is trying to map a
quarter of total boundary edges in terms of length onto
one side of the square that we mentioned in section 3.
With this condition, a new complexity arises. That is,
each boundary mapping could have different number
of edges on each side of the square. It is impossible
to incorporate these boundary conditions into a linear
solving system.

The simplest way is a brute-force approach using a
stretch-minimizing parameterization. In our mapping
method, brute-force means that we let every vertex in
VB be mapped onto P0,0 then do stretch-minimizing
parameterization. Although it guarantees the best
answer, one time stretch-minimizing parameterization
on a fine mesh might consume not a few amount of
time. Although, we can speed up by applying parallel-
processing but doing brute-force and checking every
possible boundary mapping on the square boundary
might consume a lot of time.

25 percent of brute-force
Let the first boundary mapping be vb1 onto P0,0, vbσ

onto P1,0 and vbτ onto P1,1 (vb1 ,vbσ ,vbτ ∈ VB) that are
assigned by our boundary mapping algorithm. It means
the distance from vb1 to vbσ should be approximately
0.25d, also the same for distance from vbσ to vbτ .

By starting from vb1 , we sequentially assign a vertex
vb onto P0,0, and map the following vertices onto the
square domain [P0,0,P1,0]. After repeating the mapping
for interval of a quarter of boundary edges, then the ver-
tices vbσ and vbτ might be mapped onto P0,0 and P1,0 re-
spectively. It is the same as we rotate the first mapping
(vb1 onto P0,0) 90 degree as shown in figure 3.

(a) vb1 onto P0,0 (b) vbσ onto P0,0

Figure 3: shows a similarity of boundary mapping after
shifting for a quarter of total length of boundary edges.

From this property, we can reduce the number of test-
ing cases to around 25 percent because we can ro-
tate the parameterized planar from a boundary map-
ping (vb1 ,vb2 , . . . ,vbσ) to obtain the result of the rest

mapping (vbσ+1 ,vbσ+2 , . . .). However, doing brute-force
with around 25 percent of total testing cases still con-
sumes much of time. Our goal is finding the optimal
square parameterization while keeping the calculation
time less than 25 percent of brute-force.

4.1 Faster parameterization methods
We examined the time consuming issue of the
brute-force approach. We could notice that stretch-
minimizing parameterization is a main reason of the
problem. Since it is iterative process and it seeks
converging of the energy or stretch, its calculation time
is much more than the time of one parameterization
by means of linear solving system. If we can replace a
stretch-minimizing to a faster solving parameterization
in the optimization process, then it should reduce the
consuming time a lot. Here, we set our hypothesis
that every parameterization method should give a
same direction result; the best boundary mapping by
fast-solving method is same as the boundary mapping
by stretch-minimizing method. Now, the concept
"same direction" is defined as follow:

Same Direction
We assume that there are two square boundary map-
pings; Mn and Mn+1. In addition, we have two param-
eterization methods F and G. Let Rn and Rn+1 be pa-
rameterization results if we do F on both Mn and Mn+1.
Moreover, Sn and Sn+1 are parameterization results if
we do G on both Mn and Mn+1. If Rn is better than Rn+1
and Sn is better than Sn+1 then we say that F and G have
a same direction.

4.1.1 Experiment and Result
We setup the experiment to test the hypothesis. One
parameterization is fast solving but high potential
of stretch. The other is slow solving but stretch-
minimizing. We tried to use fast solving methods
to predict which boundary mapping is the best for
square parameterization. We did the experiment
to observe the stretch of unit square boundary by
various fast solving parameterization methods of
Shape-Preserving[Flo97a], Tutte[Tut63a] , mean-
value[Flo03a] and harmonic map[Eck95a]. We
compare L2 stretch[San01a] value from our candidate
methods with value from stretch-minimizing square
parameterization using [Yos04a].
As a result, we could not find any relationship among
them. When observing the lowest stretch of all meth-
ods with same boundary positions, they do not give the
lowest stretch in the same direction. Stretch observation
from the fast solving method does not enable to check
which mapping boundary points is optimal setting for
stretch-minimizing method as the hypothesis.
We concluded that optimizing square parameterization
needs to be done and analyzed directly from the stretch-
minimizing method.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 205 ISBN 978-80-86943-75-6

4.2 Heuristics
From previous experimental result, we cannot use a
fast solving parameterization. Instead, we need to use
stretch-minimizing one that requires a lot of calcula-
tion. For that reason, we set our approach reducing the
number of calculations. If we can pursue the optimiza-
tion by doing parameterization with few testing cases,
then it will surely be better than brute-force method.
We attempted to find a best optimization among the ex-
isting ones. There are many techniques and they are
divided into 3 categories[Wik13a]. Optimization algo-
rithms such as a Simplex algorithm are suit for linear or
quadratic programming solving. Iterative methods such
as Newton and Quasi-Newton methods suit for non-
linear programming solving. Heuristic algorithms such
as Genetic algorithms or Hill climbing suit for solving
the problems that cannot be solved or too slow by clas-
sic methods.
When we consider our mentioned problem, we con-
cluded that a heuristic algorithm may be the best one for
boundary optimization problem. The reason is that our
boundary optimization problem has the difficulty of two
sub-problems connected together. One sub-problem is
concerned with our main problem, i.e., finding best
mapping of boundary vertices and edges. The other is a
parameterization problem of finding planar location of
interior vertex. It is too difficult to combine the two sub-
problems into one problem solving system since it has
unique condition for the boundary mapping. In addi-
tion, we try to find global optimum of our problem, not
local ones. To find one local optimum does not show
or know it is globally optimal until all local optimums
are found. From these reasons, well-known algorithms
such as Simplex or Newton do not fit to our problem.
Hence we chose a heuristic method to solve our opti-
mization problem.

4.2.1 Particle Swarm Optimization
We choose "Particle Swarm Optimization" algorithm
(PSO) [Ken95a] for solving our optimization problem.
It is a new swarm intelligent technique, originally in-
spired by social behavior of animal flocking. PSO
has been used mainly to solve unconstrained, single-
objective optimization problems. The advantage of us-
ing PSO is that it does not use the gradient of the prob-
lem to be optimized, so the method can be readily em-
ployed for optimization problems. This is especially
useful when the gradient is too laborious or even im-
possible to derive. This versatility comes at a price, as
PSO does not always work well and may need tuning
of its behavioral parameters so as to perform well on
the problem at hand[Eri10a]. It requires 3 parameters
of effective factor from velocity, local-best position and
global-best position.
Next velocity of each particle is updated based on cur-
rent velocity, local-best and global-best positions of the

particle. Moreover, it is received effectively from these
3 parameters and random numbers. Then, each parti-
cle’s next position is calculated by using its new ve-
locity. Let i be the number of particles, k be iteration
times and r be a random number in searching scope.
Then, we assume that a, bl and bg are user-defined ef-
fective factor from current velocity, local-best position
and global-best position, related as follows respectively.
In equation forms, they are

vk+1
i = avk

i +blr1(plk
i − xk

i)+bgr2(pgk− xk
i) (1)

xk+1
i = xk

i + vk+1
i (2)

Algorithm 1 summarizes a standard PSO algorithm.

\\initialize particle...
for each particle xi do

xi← r
pli← unknown

\\starting main iteration...
repeat

for each particle xi do
yk

i = f (xk
i)

if yk
i better than f (plk

i) then
plk

i ← xi
pgk← best of all xk

i
for each particle xi do

vk+1
i ← avk

i +blr1(plk
i −xk

i)+bgr2(pgk−xk
i)

xk+1
i ← xk

i + vk+1
i

until k > maximum iterations or
pg unchanged many times

optimum← pg

Algorithm 1: Pseudo-code of PSO algorithm

4.2.2 Experiment and Result
We did experiments of applying one dimensional PSO
to our problem. Let a particle position xi be the dis-
tance from the reference start point vb1 . First, search
the nearest vbα in VB whose distance from vb1 is clos-
est to xi, and assign it to vb that is mapped at lower-left
corner P0,0. Then we follow the algorithm described
in section 3. At last, we do square stretch-minimizing
parameterization using [Yos04a] method to obtain in-
terior coordinates in 2D planar domain and then cal-
culate L2 stretch value for evaluation. On each mesh,
different number of particles and various changing fac-
tors of local and global best positions were examined
until the system gave optimal answer. We did 10 times
per one parameters-setting and get statistic results since
PSO algorithm is based on a random process as shown
in equation 1.

As a result, we could reduce the calculation time to
around 50 to 75 percent comparing to 25 percent of

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 206 ISBN 978-80-86943-75-6

brute-force approach. By changing user-defined param-
eters, we could improve calculation time in some mesh
models. However, we could not gain an expected result
from the turning of these user-defined parameters yet.

The number of particles plays important roles; more
particles secure the best answer (same as brute-force’s
answer) but calculation cost increases. The algorithm
itself is based on random process, and it may give un-
stable optimal answer if we use small number of parti-
cles. Increasing the number of particles will cost almost
the same calculation time as 25 percent of brute-force
approach. Moreover, PSO has a disadvantage point
on parallel-computing because it updates particle po-
sitions based on global-best position at each iteration
which prevents from doing large numbers of parallel-
processing simultaneously.

We concluded that PSO can improve the performance
when using an appropriate number of particles. Even,
the performance was still not as we expect but its algo-
rithm of checking few positions and focusing around
seems to be appropriate with our optimization prob-
lem. The main bottleneck of PSO in our problem is
a procedure of random search. Avoiding the random
search while checking few positions should generate
better performance stably.

4.3 Sampling
The PSO algorithm is based on a sampling approach.
Each particle acts as a sampling unit and every time a
particle moves to a new position, it will examine that
position. In our case, it means doing one parameteriza-
tion. If we observe a particle movement, we can notice
that the particle will move toward previous local-best
and global-best positions. Therefore, initial global-best
particle is important that affects to the performance and
stability. Each particle’s initialization can narrow down
searching scope a lot if a position is located at optimum
area because the global-best particle is one of local-best
particles. We adapted these concepts into a sampling
algorithm by narrowing down searching scope of the
initial sampling.

We started to analyze square parameterization by look-
ing at brute-force results. We noticed that most of our
test models’ stretches are changed gradually when we
change vb at P0,0 along VB (see figure 4). From this char-
acteristic, we can reduce the number of calculations by
focusing attention on the boundary-mappings that have
high potential to give an optimal result. In order to be
able to do such thing, we need to know where is ap-
propriate searching scope. If we plot stretch values, we
are searching for potential area having global optimum.
In other words, it is important to find a list of mapping
(vb−p, . . . ,vb, . . . ,vb+q) at P0,0 that generates an optimal
square parameterization.

(a) hand model

(b) Stanford bunny model

Figure 4: The graphs that show stretch values from
doing square stretch-minimizing parameterizations (25
percent of brute-force) on testing models.

The problem is how to determine the searching scope.
We use a sampling approach as a survey of stretch val-
ues same as PSO. Sampling is the reduction of a sig-
nal. A common example is the conversion of a sound
wave (a continuous signal) to a sequence of samples (a
discrete-time signal). In our problem terms, we reduce
the number of parameterizations to few cases so we can
determine our searching scope. We do not use complex
algorithms like pattern-search or random-search but we
do a static sampling.

4.3.1 Step-Sampling

We propose a simple algorithm named step-sampling.
It samples stretch values from selected boundary map-
pings. They will be selected as a step defined by user.
After sampling was completed, we will get a boundary
mapping that gives the lowest stretch as a center of op-
timal area. At last, we do deep-checking in that area.
We check its neighbors that are still be unchecked for
stretch values. The test case (boundary mapping) that
gives the lowest stretch is an optimal answer.

Algorithm 2 summarizes our step-sampling algorithm.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 207 ISBN 978-80-86943-75-6

Model Total Test step

Cases 2 3 4 5 6 7 8 9 10 11 12 13

Hand 18 61.11% 44.44% 44.44% 44.44% 44.44% 50.00% 55.56% 55.56% 61.11% 66.67% 72.22% 77.78%

Head 20 60.00% 55.00% 55.00% 60.00% 70.00% 70.00% 85.00% 95.00% 100.00% 100.00% 100.00% 100.00%

Bunny Holes 153 51.63% 35.95% 29.41% 25.49% 23.53% 22.22% 22.22% 21.57% 22.22% 22.22% 22.88% 23.53%

Bunny No hole 123 52.03% 36.59% 30.08% 23.58% 21.14% 19.51% 18.70% 17.89% 17.89% 17.89% 17.89% 17.89%

Max 112 51.79% 37.50% 30.36% 27.68% 25.89% 25.00% 25.00% 25.89% 26.79% 27.68% 28.57% 29.46%

Cow 240 50.83% 35.00% 27.50% 23.33%∗ 20.83% 19.58%∗ 18.33% 17.92%∗ 17.50%∗ 17.50% 17.50% 17.92%∗

Table 1: sampling method result: symbol ∗ indicates that optimal answer is not same as brute-force’s result. Bold
numbers mean the lowest percentage of calculation.

step← 2,3, . . . \\user defined step
m = number of vertices in first 0.25d of EB
stretch[]← ∞ \\array m size

\\initial step sampling
for i← 1 to m do

if i mod step = 1 then
stretch[i]← SquareParam(vbi as P0,0)

\\deep-checking
l← index of stretch[] that has best result
J[] =[. . . ,l-2,l-1,l+1,l+2,. . .] where

stretch[] = ∞ and close to l
for j← each J do

stretch[j]← SquareParam(vb j as P0,0)
optimum← index of stretch[] that has best result

Algorithm 2: Pseudo-code of step-sampling

4.3.2 Experiment and Result
We did experiments on various models with various
step values. Let the total test cases (boundary map-
pings) be m that can be calculated from the number of
vertices in the first 0.25d interval of EB starting from
vb1 . This number can be considered as a calculation
time of 25 percent of brute-force approach. In our
experiment, we count the numbers of doing stretch-
minimizing parameterization as calculation time, in-
cluding both initial step sampling and deep-searching
period. After all, we represent the number of calcula-
tion times as percentage of total test cases m. We also
check the optimal answer to be same as brute-force or
not. Table 1 shows our results.

The result shows that we could reduce percentage of the
calculation times to around 17 to 60 percent of total test
cases. The step value plays important roles; appropriate
step value can reduce more than half of total test cases
while keeping the best answer. As for a "cow" model,
which was converted from originally genus 4 to genus
0 (disk topology mesh), we could not obtain appropri-
ate disk topology mesh. That caused a strange fact that
stretches are changed extremely as shown in figure 5.

Considering about parallel-computing, our step-
sampling algorithm can perform well without depen-
dency on each boundary mapping.

Figure 5: A graph that shows stretch values from doing
square stretch-minimizing parameterization on a "cow"
model that was converted from genus 4 to genus 0.

4.3.3 Step Value

From the result of step-sampling, proper step value can
reduce calculation time a lot. However, too large step
can result spending more calculation time than smaller
one because larger step means larger searching scope.

We propose a formula for proper step value.

step≈
√

number of vertices× total test cases
number of faces

The step values from our proposed formula could re-
duce the calculation time to the lowest rate or nearly in
most cases. Table 2 shows the results on our test models
that be used same as table 1.

Model Vertices Faces Total Test Cases Step
Hand 1085 2006 18 3.12
Head 713 1357 20 3.24

Bunny Holes 36179 69463 153 8.93
Bunny No hole 35070 69644 123 7.87

Max 49342 98262 112 7.50
Cow 17135 33316 240 11.11

Table 2: Step value from our proposed formula on each
testing model.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 208 ISBN 978-80-86943-75-6

5 CONCLUSION
The easiest way for delivering the lowest stretching
square parameterization is to do brute-force approach
with a stretch-minimizing parameterization method.
However, it will consume a lot of calculation time.

We have presented a novel approach to optimize square
parameterization that enables to reduce calculation time
a lot. From our experiments, optimizing square param-
eterization could not be considered from faster parame-
terization method; instead, it should directly do stretch-
minimizing method to obtain optimal result. Also, we
tried to apply an existing optimization; particle swarm
optimization to our problem. It still could not reduce
calculation time as expectation. However, we analyzed
PSO algorithm itself then applied the concept of sam-
pling to create our approach.

We propose our "step-sampling" concept which reduces
much calculation time while maintaining a stable opti-
mal result. Although it is a simple algorithm, we can
have great performance that reduce more than half from
brute-force approach. We also propose a formula to
calculate suitable step number based on mesh’s infor-
mation that will minimize the calculation time.

We are still interested to improve the performance of
our "step-sampling" approach. There are many pro-
cedures that might able to be improved such as deep-
searching section or changing the way of doing static
stepping.

6 ACKNOWLEDGMENTS
We would like to gratefully thank all reviewers, Shin
Yoshizawa for C++ code of his stretch-minimizing pa-
rameterization [Yos04a], Hugues Hoppe for filled holes
bunny and hand model data.

The models are courtesy of the Stanford University
(bunny), the University of Washington (head), MPI für
Informatik (max) and AIM@SHAPE(cow and ustica).
This work was supported by JSPS KAKENHI Grant
Number 24300035.

7 REFERENCES
[Coo87a] Robert L. Cook, Loren Carpenter, and Edwin

Catmull. The Reyes image rendering architecture.
SIGGRAPH Comput. Graphics. 21, 4 (August
1987), 95-102.,1987.

[Des02a] M. Desbrun, M. Meyer, and P. Alliez. Intrin-
sic parameterizations of surface meshes. Comput.
Graphics Forum, 21(3):209-218, 2002.

[Eck95a] M. Eck, T. DeRose, T. Duchamp, H. Hoppe,
M. Lounsbery, and W. Stuetzle. Multiresolution
analysis of arbitrary meshes. In Proceedings of
the 22nd annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH’95,
pages 173-182, 1995.

[Eri10a] M. Erik and H. Pedersen. Good parameters
for particle swarm optimization. Hvass Laborato-
ries Technical Report, HL1001, 2010.

[Flo97a] Michael S. Floater. Parametrization and
smooth approximation of surface triangulations.
Computer Aided Geometric Design, 14:231-250,
April 1997.

[Flo03a] Michael S. Floater. Mean value coordinates.
Computer Aided Geometric Design, 20:19-27,
March 2003.

[Ken95a] J. Kennedy and R. Eberhart. Particle swarm
optimization. In Neural Networks, 1995. Proceed-
ings., IEEE International Conference on, volume
4, pages 1942-1948 vol.4, nov/dec 1995.

[Lev02a] B. Levy, S. Petitjean, N. Ray, and J. Maillo
t. Least squares conformal maps for automatic
texture atlas generation. In ACM, editor, ACM
SIGGRAPH conference proceedings, Jul 2002.

[Lip12a] Lipman Yaron. Bounded distortion mapping
spaces for triangular meshes. ACM Trans. Graph.
31, 4, pages 108:1–108:13, July 2012.

[San01a] P. V. Sander, J. Snyder, S. J. Gortler, and
H. Hoppe. Texture mapping progressive meshes.
In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques,
SIGGRAPH’01, pages 409-416, 2001.

[Sor02a] Olga Sorkine, Daniel Cohen-Or, Rony Gold-
enthal, and Dani Lischinski. Bounded-distortion
piecewise mesh parameterization. In Proceed-
ings of the conference on Visualization ’02. IEEE
Computer Society,pages 355-362, 2002.

[Tut63a] W. T. Tutte. How to draw a graph. Proceed-
ings of The London Mathematical Society, s3-
13:743-767, 1963.

[Wik13a] Wikipedia, Mathematical optimization,
http://en.wikipedia.org/wiki/Mathematical_opti
mization, 2013.

[Yos04a] S. Yoshizawa, A. Belyaev, and H.-P. Seidel.
A fast and simple stretch-minimizing mesh pa-
rameterization. In SMI’04: Proceedings of the
Shape Modeling International 2004, pages 200-
208, 2004.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 209 ISBN 978-80-86943-75-6

Part-based Construction of digitized 3D objects

Daniela Borges
INESC-ID/IST/Technical

University of Lisbon
R. Alves Redol, 9, 1000-029

Lisboa, Portugal
daniela.borges@ist.utl.pt

Alfredo Ferreira
INESC-ID/IST/Technical

University of Lisbon
R. Alves Redol, 9, 1000-029

Lisboa, Portugal
alfredo.ferreira@inesc-id.pt

ABSTRACT
Nowadays, a few 3D acquisition devices are available at low-cost. While 3D capture is a commonplace, decompose
the object into its components is not an easy task. Segmentation can help address this problem by suppling data
which may be used to identify object components. However, it might not give complete and accurate information
about components. In a context where a digital repository with every component that can belong to physical objects
is available, retrieval algorithms can be used to construct a composed 3D model.
We propose a four phase solution to construct 3D digitized objects. We use Microsoft Kinect® to acquire 3D
physical objects. A segmentation algorithm based on color information decomposes the object into a set of
sub-parts. The component repository is queried using a shape-based retrieval algorithm, in order to identify
which sub-part corresponds to each virtual component. Then, a 3D model of the physical object is constructed
by assembling the retrieved components.
The work presented in this paper has a wide application domain, ranging from entertainment to health or
mechanical industry. To validate our proposal, we implemented a toy-problem and evaluated its precision and
efficiency. We used LEGO® blocks, which can provide challenges similar to real-world applications. The
results were encouraging and we believe that our approach may even work better with greater object components,
geometrically less similar to each other.

Keywords
Reconstruction, Acquisition, Segmentation, Retrieval.

1 INTRODUCTION
Technological advancements allowed the storage of ob-
jects such as audio, image and video through personal
devices. These assets, previously considered tangible,
can now be transported everywhere and are named dig-
ital media. Nowadays, 3D scanners are more accessi-
ble for anyone and several approaches have emerged
to solve acquisition, analysis, classification, index and
retrieval problems [VMC96]. Naturally, this also led
to 3D model construction and new challenges have ap-
peared.

Reconstruction techniques allow the acquisition of
physical objects, in order to reach a digital model.
However, if the object is composed by several com-
ponents, it is impossible to identify every object
component with a simple reconstruction.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Object construction is not a trivial challenge, because
3D object acquisition does not performs matching be-
tween known models and acquired objects. Moreover,
the acquired objects could have several physical com-
ponents which are also not identifiable. These consid-
erations lead to an increase in the number of enthusi-
asts both from research and industry. Life of George1

and Autodesk 123D2 are examples of applications that
had shown, respectively in 2D and 3D, the construction
potential and why this is an interesting area. The estab-
lishment of new low-cost scanner devices increasingly
accessible to anyone is also a motivation for our work.

Our research tries to ascertain if is possible to use a
low-cost device to acquire a 3D object and perform a
segmented construction that uses color and shape infor-
mation. In other hand, we acquire, segment and retrieve
a 3D physical object an all its components, in order to
create a reliable 3D digital model.

To support our vision, we address two major chal-
lenges: (1) the segmentation of the acquired polygonal
mesh, using color information; and (2) the identifica-

1 http://george.lego.com/
2 http://www.123dapp.com/

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 210 ISBN 978-80-86943-75-6

tion of segmented physical components (sub-parts), that
allows the construction. To be able to perform the con-
struction, our work will assume two restrictions. The
former is that adjacent components must have different
colors and the latter is that every physical component
allowed to be acquired must be known, i.e., must have
a model (virtual component) in a repository. Therefore,
our proposal aims to reconstruct 3D physical objects in
real-time with an acceptable success rate. To accom-
plish these requirements, we selected algorithms that
meet a tolerable time-quality relationship.

Next section discusses related work, presenting several
approaches to solve construction problem through ac-
quisition, segmentation and retrieval phases. Section 3
describes our solution and compares it with other ap-
proaches referred in the related work. Section 4 men-
tions how to evaluate our algorithm performance, short-
comings analysis and present relevant results. Finally,
we present our conclusions and point out some future
work.

2 RELATED WORK
3D object acquisition is allowing the scanning of
a huge amount of objects mainly in the fields of
computer-aided design (CAD), computer-aided
manufacturing (CAM), cultural heritage, reverse
engineering, among others. Range scanners, presented
in [BR02], grant object acquisition and are divided in
several systems such as triangulation systems, time-
of-flight systems, among others. Although high range
scanners (such as Comet L3d3 or EXAscan4) have
huge accuracy and resolution, some low-cost scanners
that appeared recently are increasingly widespreading.
As a result, some applications have emerged primarily
in the area of video games.

Low-cost devices, such as Microsoft Kinect®5 or
Primesense sensor®6, are becoming increasingly avail-
able to anyone, regarding the low price in comparison
with other scanners. However, although these scanners
acquire real-time RGBD data and produce relevant
results through controlled scenarios, they do not have
high accuracy. That is a high disparity between scanner
prices is a reasonable reason for us to choose Microsoft
Kinect® to acquire our 3D models. Moreover, we also
consider the popularization around this scanner due to
its low price. Because of this, lots of users are now
using Kinect® for a wide variety of applications.

3 http://www.steinbichler.com/products/surface-scanning/3d-
digitizing/comet-l3d.html

4 http://www.creaform3d.com/en/metrology-
solutions/portable-3d-scanner-handyscan-3d

5 http://www.microsoft.com/en-us/kinectforwindows/
6 http://www.primesense.com/solutions/sensor/

Segmentation is useful for location, classification and
feature extraction of 3D shapes. Although segmenta-
tion is easily performed by humans, computers need
complex algorithms to achieve the same work. There
are several segmentation algorithms that receive a point
cloud, an object or an image as input. The goal is
to decompose the object into patches or regions what-
ever is the input received. Some clues may help to
reach segmentation such as normal calculation, curva-
tures or concavity around the boundaries. Up to now, in
the field of segmentation a large number of algorithms
have been proposed such as Region Growing [AB94],
K-means [STK02], Fitting Primitives [AFS06], among
others. We need to take into account that some algo-
rithms must be used offline whereas others are faster
and consequently better to interactive applications.

Although the referred algorithms are traditional, new
technologies bring depth and color information. More-
over, the combination of color and depth information to
segment shapes is becoming common use.

One approach to construct a 3D model is to retrieve
every component that belong to an object, identifying
them. First of all, we need to index every possible
component through the descriptor computation for ev-
ery model. Descriptors define models through a sig-
nature and provide a way to retrieve those models ef-
ficiently. Therefore, have appeared several descriptors,
namely Spherical Harmonics (SHA) [FMK+03], Light-
Field Descriptor (LFD) [CTSO03], and more recently
BOW-LSD [LSFG11] or PatchBOF [TDVC11]. Our
work requires almost real-time and, consequently, we
decided to use the most efficient descriptor. When all
models are indexed, preferably using an indexing mech-
anism, we are allowed to retrieve them. Models are re-
trieved using queries that represent those models. This
query is also the result of a descriptor computation. Af-
terwards, when the query is performed the most similar
results may be retrieved.

A pioneer work in construction area is The Digital
Michelangelo Project [LRG+00]. This project, which
major requirement is the construction of high resolution
digital models, uses specific software and hardware in
order to scan cultural heritage. A triangulation system
was used to acquire depth information, with the help of
one motorized gantry. Due to the hardware used the fi-
nal output contains billions of polygons (for instance,
in David statue) which is not possible to handle with
commercial applications. Our approach is different to
this work because we use low resolution models, that
have different requirements.

Recently, there are other projects [SW11, MMWG11]
in the field of cultural heritage. Schwartz et al. [SW11]
presented a work where 3D geometry is extremely re-
quired and optical properties of object surface are also
desired (such as reflexion). Using a Bidirectional Tex-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 211 ISBN 978-80-86943-75-6

Figure 1: Setup of Lattice-First project.

ture Functions (BTF) they can achieve geometrical ac-
curacy and provide a photo-realistic results. In order
to obtain these results, they used 151 cameras with 12
megapixels that acquire High Dynamic Range (HDR)
sequences. This configuration allows 151 simultaneous
pictures with high geometrical accuracy. However, it is
not possible to be used by everyone, hindering general-
ized use of the system.

The projects mentioned so far use acquisition hard-
ware which reach high quality and accuracy, justified
by dimension and quality required in cultural heritage
projects. Other approaches, that require less accuracy
in comparison with these projects, may take different
acquisition hardware, such as Microsoft Kinect®.

Software such as KinectFusion[IKH+11, ND11], Re-
constructMe7 or Skanect8 allow controlling of one Mi-
crosoft Kinect® (or other low-cost cameras) through a
scenario and, consequently, the acquisition of this sce-
nario through several viewpoints. Up to now, works
such as 3D Puppetry [RTHA12] used the combination
of software implementations and low-cost scanners to
acquire objects. This is also an example of toy-problem
project, which consider controlled scenarios and use
toys to create an abstraction that can be generalized to
other domains.

Nevertheless, other toy-problem works have appeared
recently. Miller at al. [MWC+12] presented a solution
(Lattice-First) that also uses Microsoft Kinect® in or-
der to obtain depth information of LEGO® blocks (Fig-
ure 1). Although this approach just acquires 3 degrees-
of-freedom (DOF) and assumes that the object could
not be moved out of a certain area, real-time informa-
tion is guaranteed (25 frames per second). As a re-
sult, user is able to manipulate and interact with the
physical object though this area. In order to achieve

7 http://reconstructme.net/
8 http://skanect.manctl.com/

these goals, pixels from user hands are segmented in
acquisition phase. Color information is added after-
wards, through rendering phase. This work has some
shortcomings, namely the limitation of using orthogo-
nal DUPLO® blocks due to Microsoft Kinect® low res-
olution and low dimensions of used blocks. Moreover,
regarding the limitation of 3DOF, latitude movements
are not allowed.

Other relevant work in this field is Duplo-
Track [GFCC12] which proposes an approach that
uses instructions, similar to LEGO® Digital Designer 9

virtual tool. This system also presents information
in real-time and is divided in two modes: Authoring
and Guidance. Authoring mode allows user to con-
struct a physical object which digital model is being
constructed and presented on the screen. On the other
hand, Guidance mode instruct user in order to construct
an existing object, by giving him several instructions.
The representation used is equal to Miller’s work, a
voxel grid, but this system is able to acquire 6-DOF.
User hands, depth and color information are used to
segment foreground from background and to apply
color to digital model. Although DuploTrack solve
problems that the previous system cannot deal with, it
still requires orthogonal DUPLO® blocks. The main
reason referred is also Microsoft Kinect® acquisition
limitations, such as noise through point clouds and low
accuracy. They explain that this system also requires
minimum of five blocks in order not to lose track.
Otherwise, blocks can be confounded as outliers.

Our proposal requires a controlled environment and
aims to identify orthogonal and non-orthogonal 3D
shapes, allowing the construction of simple and com-
plex objects. We also use a low-cost camera to acquire
physical objects, with the purpose of disseminate our
solution. We choose DUPLO® blocks because they are
easy to use, educational and accessible to everybody.
Moreover, we can easily access to LEGO® database
(LDraw10) in order to create a repository.

3 SYSTEM OVERVIEW
Our proposal aimed to construct 3D objects almost in
real-time, with an acceptable success rate considering
the number of components known. Our system is com-
posed by four phases: (1) acquisition of a 3D polygonal
mesh; (2) segmentation of acquired object; (3) retrieval
of segmented object components (sub-parts); and (4)
construction of a digital model, using retrieved LEGO®

blocks. As a result, we considered both efficient seg-
mentation and retrieval algorithms. In order to con-
struct the model, we used descriptors to retrieve every
physical component presented in the object.

9 http://ldd.lego.com/
10http://www.ldraw.org/

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 212 ISBN 978-80-86943-75-6

Figure 2: System overview, considering acquisition, segmentation, retrieval and construction phases.

Figure 2 describes an overview of our system, providing
a construction algorithm capable to identify blocks that
belong to an object. In particular, our approach aimed
at going further than Lattice-First or DuploTrack, en-
abling the construction of blocks that are not considered
in this projects (for example, curved blocks). Therefore,
we pretended also a significant increase in the number
of blocks that exist in the database (component reposi-
tory).

Our system starts by acquiring a polygonal mesh, us-
ing Skanect. This is accomplished by moving one Mi-
crosoft Kinect® around the physical object. Using both
depth and color information, we segment our object and
get several sub-parts. As a result, each physical compo-
nent is detached and we are ready to identify it. Sub-
sequently, each sub-part is compared with components
that exist in our repository and retrieval is performed.
This process identifies physical components and makes
the construction of LEGO® blocks possible.

3.1 Acquisition
We used a low-cost scanner, Microsoft Kinect®, in or-
der to acquire physical objects (composed by DUPLO®

components). The justification behind our choice, is
the fact that low-cost scanners are getting used by lots
of enthusiasts, and it is a recent technology that is being
more and more present at people homes.

Our application used Skanect software, that provides
depth and color information. The main reason behind
the use of this software is because it registers all views

Figure 3: System setup. The object is created and sub-
sequently positioned at the center of the table. After-
wards, it is acquired using one Microsoft Kinect® and
able to be processed.

acquired through Microsoft Kinect®, allowing us to de-
fine a bounding box that excludes some outliers (such
as walls or floor). Moreover, Skanect has the advan-
tage of acquire color (and depth) information easily,
in comparison with other approaches. However, it has
some limitations: (1) it is only able to export a com-
plete mesh (boundary representation); and (2) the re-
sulting mesh has a huge amount of outliers, regarding
the use of other objects which help Skanect not to lose
track. To overcome these limitations, we used Point
Cloud Library (PCL) [RC11] which is able to import
the resulting mesh and convert it into a point cloud (it

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 213 ISBN 978-80-86943-75-6

Figure 4: Example of segmentation for red color. The filtered point cloud from acquisition is used to identify the
red color, through HSI comparison. We then filter outliers and detect concave hull. In the end, a shape construction
is performed for every different color.

also speedup our filtering and segmentation processes).
For this reason we can remove outliers and store depth
and color information about our physical object.

Our setup is presented in Figure 3 where you can see
a Microsoft Kinect®, several DUPLO® blocks and a
turntable. Although a promising approach is to acquire
objects though several table rotations, more valuable
results were obtained by moving the scanner around
a bounding box. Moreover, Skanect also helped us to
configure our setup, providing real-time collaboration.
We used an aluminium foil and transparent boxes in or-
der to remove the maximum possible outliers and, con-
sequently, accelerate the acquisition process.

The filtering is a process that is used by several
algorithms to remove outliers from noise measures,
lack of calibration, and imprecision problems due to
registration. In our approach, we filter the acquired
polygonal mesh in order to remove the objects added to
help Skanect in registration. This process is performed
by converting the acquired polygonal mesh into a
point cloud. Using Principal Component analysis
(PCA) [MN95], our point cloud is represented by a
covariance matrix. As a result, we made a projection
of the point cloud, ensuring that it is aligned with axes.
The tabletop plane helped to perform this projection
correctly. Therefore, we removed outliers that are
behind length and width boundaries, an input of our
algorithm which depend on the size of the acquired
objects. Finally, we adjust the height boundary that
depends on the height of the physical object, that is
also an input of our algorithm. With this methodology,
we reduce our point cloud from ∼12 Mb to ∼600
Kb, increasing the speed of our algorithm. Note that
having the object aligned with the axes is determinant

to provide a successful construction, because position
and orientation of virtual components depend on this.

3.2 Segmentation
The acquired color and depth information from Skanect
led us to create a boundary representation and, subse-
quently, a point cloud. However, none of this represen-
tations allow the identification of each component that
belongs to the acquired object. In other words, it is not
possible to recognize what components form the point
cloud.

Therefore, our segmentation phase received the filtered
point cloud and aimed to divide it in several sub-parts.
We used color to segment each object component, as-
suming that adjacent components have different colors
(Figure 4).

We used algorithms available on PCL that helped to fil-
ter each component by color. Hue, Saturation and In-
tensity (HSI) comparison [RC11] allows the creation of
a set of filters that recognize each color. It also enables
the creation of a filter that removes noise produced by
registration failures, by removing points that have less
than a certain number of neighbors.

The output of this phase is one independent shape for
each sub-part, providing important information to re-
trieval phase. These shapes are constructed through
three steps: (1) outlier removal, through a Statistical
Outlier Removal filter [RMB+08]; (2) concave hull cre-
ation [RC11]; and (3) shape construction [RC11]. The
first step uses the segmented sub-part and removes out-
liers, i. e. points that have the approximately the same
color, but are distant neighbors. We performed Statis-
tical Outlier Removal filter that uses statistical analysis
techniques to remove these noisy measurements. This

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 214 ISBN 978-80-86943-75-6

Figure 5: Retrieval phase. Our algorithm performs one query for each sub-part and returns the most similar parts.

filter is useful because acquisition outputs may have
some points that are outliers due to tracking errors. We
then create a concave hull in order to remove points that
are not relevant for our solution. Take into account that
concave hull creation tries to fill empty space created
by non well acquired sub-parts, for example, due to oc-
clusions. Finally, the shape is constructed, using the
performed concave hull.
Adding to this output, there is also other information
that needs to be stored for every sub-part: the color, the
orientation and the centroid (one position in space). All
this information is collected through filtered point cloud
and required for construction phase.

3.3 Retrieval
When segmentation is concluded, we perform retrieval
for each sub-part, with the purpose of constructing our
model (Figure 5). Note that for every acquired physical
component must exist a correspondent virtual compo-
nent in our repository. First of all, one query is ini-
tiated for each sub-part. Afterwards, the descriptor is
calculated for each sub-part, building one vector per
part that represents that sub-part information in a more
efficient way. Subsequently, the query is executed in
our database, comparing the vector created with other
descriptors. These descriptors were created through in-
dexing phase and the process is similar: a descriptor
was created for every virtual component that exists in
our repository. The returned results of our algorithm are
presented in two ways: either by best match selection or
via k-nearest neighbors. The first best match selection
for every sub-part is used for construction phase. On
the other hand, k-nearest neighbors are used to disam-
biguate results, i.e, if the algorithm are not sure about
one block, it can ask user using information on this list.
There are several algorithms which perform index
and retrieval of 3D models. Our work required a

time-efficient algorithm in order to fulfill our require-
ments. As a result, we chose Spherical Harmonics
(SHA) [FMK+03] shape descriptor, that decomposes
a 3D model in a collection of functions defined by
concentric spheres. SHA is computed for every virtual
component that exists in our repository, during offline
indexing, and also for every sub-part that belongs to
physical object, when retrieving.

We used a NB-Tree [FJ03], which is a powerful multi-
dimensional structure, to index 70 models. This ap-
proach is efficient for high-dimensional data points,
mapping those points to a 1D line through Euclidean
norm. NB-Tree was relevant because it accelerates the
indexing and retrieval times of our algorithm.

3.4 Construction
The sequential phases considered so far are used to con-
struct our 3D model. In other words, we acquired a 3D
physical object and segmented this components consid-
ering depth and color. Afterwards, we identified ev-
ery sub-part through retrieval phase and construction is
performed using this retrieved virtual components (Fig-
ure 6).

Construction is accomplished using best match selec-
tion for every block identified, regarding the informa-
tion from retrieval. A 3D digital model is created tak-
ing into account centroid, orientation and color for ev-
ery block (this information was given at segmentation
phase). As a result, the relationships between physi-
cal components are kept. However, these relationships
have some errors due to noise, taking into account that
we do not deal with collisions.

3.5 Visualization and exploration
We aim to provide visual feedback of our constructed
3D model. Considering the domain of the toy-problem,

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 215 ISBN 978-80-86943-75-6

Figure 6: Construction phase.

Figure 7: LTouchIT prototype. Through this applica-
tion visualization and exploration of constructed mod-
els is possible.

LTouchIT [MF11] (Figure 7) application is going to be
used. This application allows the construction of a 3D
digital model using LEGO® blocks, through a multi-
touch table. The user interacts with the table and is able
to create several models, using blocks that exist in the
database.

LTouchIT will represent the output of our construction
algorithm, providing visual feedback and user input. It
will be used mainly for user testing, allowing visualiza-
tion and exploration of constructed models through sev-
eral views. As a result, it helps to analyze the quality of
the performed construction. However, LTouchIT appli-
cation has some shortcomings regarding our approach.
First, it uses a grid with lower dimensions due to the
use of LEGO® blocks in spite of DUPLO® blocks. Sec-
ond, the database used is incorrect, for the reasons men-
tioned above. Thus, some adaptation is needed in order
to fulfill the requirements of our solution.

4 RESULTS
This section corresponds to the evaluation phase and
obtained results of our algorithm. We divided this sec-
tion in different subsections in order to explain what is
evaluated and how this evaluation was performed.

4.1 Acquired models
As said before, we considered a toy-problem in order
to validate our algorithm. As a result, for this partic-

ular problem we classified DUPLO® blocks through
four different categories: standard blocks; additional
blocks; curved blocks; and complex blocks. The stan-
dard blocks are orthogonal blocks that are considered in
state-of-art projects ([MWC+12, GFCC12]). The addi-
tional blocks are orthogonal blocks that are not consid-
ered in standard blocks category. The curved blocks
are blocks that have at least one curve but are relatively
simple. Finally, the complex blocks are blocks that are
not considered in other categories.

The dimensions of the acquired blocks varied between
about 1.5 to 14.5 centimeters with respect to height, and
about 3 to 27 centimeters with respect to the length and
width. We took into consideration that we mainly have
small blocks to acquire. Moreover, Microsoft Kinect®

accuracy should also be considered in order to produce
relevant acquisition results.

In relation to our component repository, some of the
indexed models came from LDraw library, which is ac-
tualized by LEGO® enthusiasts. Because of this, we
needed to be careful regarding the use of those blocks.
As a result, we performed a correction of errors (such
as normals) in the used models. Nevertheless, in or-
der to have the 70 models, we also created some virtual
components according to LDraw format standards.

4.2 Evaluation methodology
Our approach was evaluated considering objective ap-
preciations. Objective measures aim to evaluate the al-
gorithm through precision and time. Precision is the
percentage of retrieved components that are relevant,
i.e, number of correct components regarding the total
number of components. Time is the sum of the time of
all phases and intend to evaluate algorithm efficiency.
Objective metrics gave us percentages and efficiency
measures to analyze our algorithm.

Using the categories mentioned in last subsection,
ten physical constructions were performed (Figure 8),
where DUPLO® blocks vary between two to five
blocks. There are two aspects that we took into
account: (1) the color of each block, ensuring that
two adjacent blocks could not have the same color;
(2) regarding Kinect® shortcomings, we excluded
transparent and bright blocks.

4.3 Discussion
For a faithful construction, it is necessary to have
retrieved virtual components that match the acquired
components of the physical object. However, the
results achieved do not precisely construct the physical
object.

The objective evaluation was performed through our ten
physical constructions, and the results are summarized
in Figure 9. We conclude that 22% of the time our al-
gorithm gave the correct answer at the first time (best

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 216 ISBN 978-80-86943-75-6

Figure 8: Acquired objects with multiple components (ten physical constructions were performed). Objects are
composed by two to five blocks.

Figure 9: Objective tests: precision results. The plot
represents precision obtained considering correct re-
trieved components within the first five results.

match selection). However, if we consider the first five
results from retrieval, the correct answer was 75% of
the time. This lead us to propose an application that
asks if the construction is well performed and suggests
the first five results if the construction is not correct at
first glance. This result need to be considered because
we also observed that most often plates were confused
with bricks, which have slightly higher height.

In relation to time measures, we measured the total in-
dexing time and the average time to construct an ob-
ject part. Although the indexing time is done offline,
the time spent to index all models in our database is
quite insignificant (less than two minutes). This result

is possible due to the use of SHA descriptor. The av-
erage time to construct a 3D object is defined by the
sum of all phases. We realized that average time to
retrieve sub-parts may become difficult to handle only
when we have several sub-parts in the acquired scene.
However, with the queries performed, it does not com-
promise our requirements (about 7 seconds to retrieve
three sub-parts). In relation to average time to construct
a 3D digital model, we evaluate this time by time spent
to acquire the scene and compute the mesh (thereabout
25 seconds) plus ∼16 seconds (average) to perform the
algorithm.

We conclude that the results achieved depend on the
database used. First of all, the number of models in
the component repository (our repository considers 70
models). Approaches referred in related work have
much less models (1∼3), which clearly help to retrieve
object sub-parts in a more effective way. Second, there
are a great amount of components in our repository that
are similar among themselves. As a result, the identifi-
cation of what virtual component correspond to an ac-
quired physical component is a non-trivial challenge. In
addiction to this problem, the use of blocks that fit one
another increase the difficulty because blocks that have
other blocks above that block are not well acquired. Al-
though we surpassed this problem by creating a concave
hull for every brick that fills the empty space, it is not
totally reliable.

We also confirm that it is possible to have an applica-
tion that represents models almost in real-time with this
approach. However, the correctness of the construction
performed depends strongly on the success of the ac-
quisition, on the accuracy and also on the repository
used.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 217 ISBN 978-80-86943-75-6

4.4 Limitations
For our problem setting, there are several limitations to
overcome: (1) scanner resolution; (2) block size; and
(3) Skanect acquisition results.

Low-cost scanners have some shortcomings, namely
poor resolution, poor accuracy and also produce more
noise. However, we hope that new advancements in
this field are going to generate new technologies that
decrease the problems mentioned.

The major limitation of our entire project is that the
use of small blocks, allied with low resolution scan-
ning, produces weak points clouds. Moreover, some
DUPLO® blocks can cover one another preventing
them from being totally captured. As a result, the
generated shapes are partially incorrect and retrieved
results are inaccurate.

The use of a software, such as Skanect or Recon-
structMe, allows the registration of several views
produced by scanner. Although the algorithms behind
this kind of application are tested and are extremely
efficient, they have some disadvantages, mainly for
small size objects. Thus, we need to add several objects
to our scene in order not to lose track. Afterwards, we
got greater files to process and filtering are not trivial.

5 FUTURE WORK
Microsoft® is now working on Kinect 2.0, which have
higher resolution when compared with the current ver-
sion. Moreover, the RGB camera is upgraded from
34-bit RGB to 16-bit YUV, and a new infrared sensor is
added. Therefore, we hope that using this configuration
is going to help to acquire objects more efficiently.

In relation to segmentation, our algorithm needs and up-
grade that allows to acquire at least two blocks with the
same color. In order to achieve this, we will need to use
a segmentation algorithm such as Region Growing. An
upgrade that segments more different colors can also be
added.

One part of our project consists on the integration of
LTouchIT, providing an application that allows manip-
ulation of acquired 3D objects. This is going to help
users to evaluate our algorithm through a Likert scale.
This evaluation is required because, although some re-
sults are not precisely correct, they may be close to what
would be expected. Moreover, this will lead to ask if
the presented result is correct and, if it is not correct the
application will suggest the first five results (from re-
trieval phase). This process can be an automated task
which is possible due to fine-tuning of our algorithm in
combination with other methodologies.

We also consider to let users evaluate our algorithm,
through subjective measures. On one hand, objective
metrics gave us percentages and efficiency measures.
On other hand, we want to know how acceptable could

be one result in terms of quality. This evaluation is rel-
evant because, although some results are not precisely
correct, they may be close to what would be expected.
Our solution uses a toy-problem, LEGO® blocks, to
demonstrate the construction algorithm. We would like
to propose several proof-of-concept applications that
include a similar approach, namely for health, mechan-
ical or electric industries. For example, in mechanical
industry, the identification of several physical compo-
nents that belong to the car, such as radiator and en-
gine. For all mentioned applications, the concept of
learning can be improved to 3D and many appliances
can be done. Imagine if I could scan a set of bones of
a leg and add them virtually to other structure, using a
construction algorithm to provide help.

6 CONCLUSION
This research is focused on identification of object com-
ponents in order to construct a digitized 3D model. Our
approach considers newly low-cost technologies, such
as Microsoft Kinect® and the increase in computing
power that allows storage and faster data availability.
As a result, some efficient retrieval algorithms have ap-
peared. Having in mind the recent technological boost,
our solution aims to identify all physical components
that belong to an object. The main contribution of this
work is an application that performs a segmented con-
struction of a 3D physical object acquired through a
low-cost device, using color and shape information.
In comparison with similar approaches, our solution has
the advantage of having a large number of components
allowed to be identifiable, from a repository. In particu-
lar, our repository guarantees that 70 different physical
components can be acquired through a low-cost device
and detectable with our algorithm. However, based on
the fact that blocks are covering each other, the preci-
sion achieved is reduced.
The experiments clearly indicate that small size blocks
are complex to analyze through Microsoft Kinect® ac-
quisition, taking into account its low accuracy. Sub-
sequently, the produced point cloud is insufficient to
identify physical components correctly. Therefore, the
obtained results are not yet enough to generalize our
approach. However, we consider that our solution may
be applicable to many other domains if those physical
components are larger in comparison with the size of
our acquired blocks. Moreover, if the components in
the repository were more different among themselves,
it would produce more accurate results.

7 ACKNOWLEDGMENTS
This work was partially supported by FCT through
the PIDDAC Program funds (INESC-ID multiannual
funding), reference PEst-OE/EEI/LA0021/2013, and
through the project 3DORuS, reference PTDC/EIA-
EIA/102930/2008.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 218 ISBN 978-80-86943-75-6

8 REFERENCES
[AB94] R. Adams and L. Bischof. Seeded region

growing. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 16(6):641–647,
1994.

[AFS06] Marco Attene, Bianca Falcidieno, and Michela
Spagnuolo. Hierarchical mesh segmentation
based on fitting primitives. The Visual Com-
puter, 2006.

[BR02] Fausto Bernardini and Holly Rushmeier. The
3D Model Acquisition Pipeline. Comput.
Graph. Forum, 21(2):149–172, 2002.

[CTSO03] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen,
and Ming Ouhyoung. On visual similarity
based 3D model retrieval. Computer Graphics
Forum, 22(3):223–232, 2003.

[FJ03] MJ Fonseca and JA Jorge. NB-Tree: An index-
ing structure for content-based retrieval in large
databases. Technical report, pages 1–25, 2003.

[FMK+03] Thomas Funkhouser, Patrick Min, Michael
Kazhdan, Joyce Chen, Alex Halderman, David
Dobkin, and David Jacobs. A search engine for
3D models. ACM Transactions on Graphics,
22(1):83–105, 2003.

[GFCC12] Ankit Gupta, Dieter Fox, Brian Curless, and
Michael Cohen. DuploTrack: a real-time sys-
tem for authoring and guiding duplo block as-
sembly. In Proceedings of 25th ACM Sympo-
sium on User Interface Software and Technol-
ogy (UIST), pages 389–401, 2012.

[IKH+11] Shahram Izadi, David Kim, Otmar Hilliges,
David Molyneaux, Richard A. Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges,
Dustin Freeman, Andrew J. Davison, and An-
drew W. Fitzgibbon. Kinectfusion: real-time
3d reconstruction and interaction using a mov-
ing depth camera. In Jeffrey S. Pierce, Ma-
neesh Agrawala, and Scott R. Klemmer, edi-
tors, UIST, pages 559–568. ACM, 2011.

[LRG+00] Marc Levoy, Szymon Rusinkiewicz, Matt
Ginzton, Jeremy Ginsberg, Kari Pulli, David
Koller, Sean Anderson, Jonathan Shade, Brian
Curless, Lucas Pereira, James Davis, and Du-
ane Fulk. The Digital Michelangelo Project:
3D Scanning of Large Statues. SIGGRAPH,
pages 131–144, 2000.

[LSFG11] H Laga, T Schreck, A Ferreira, and A Godil.
Bag of words and local spectral descriptor
for 3d partial shape retrieval. Proceedings
of the Eurographics Workshop on 3D Object
Retrieval (3DOR’11), pages 41–48, 2011.

[MF11] Daniel Mendes and Alfredo Ferreira. Virtual
LEGO Modelling on Multi-Touch Surfaces.
Visualization and Computer Vision (WSCG),
2011.

[MMWG11] Markus Mathias, Andelo Martinovic, Julien
Weissenberg, and Luc Van Gool. Procedu-
ral 3D Building Reconstruction Using Shape

Grammars and Detectors. International Con-
ference on 3D Imaging, Modeling, Processing,
Visualization and Transmission, pages 304–
311, 2011.

[MN95] Hiroshi Murase and Shree K. Nayar. Visual
learning and recognition of 3-d objects from
appearance. International Journal of Computer
Vision, 14(1):5–24, 1995.

[MWC+12] Andrew Miller, Brandyn White, Emiko Char-
bonneau, Zach Kanzler, and Joseph J LaViola.
Interactive 3D model acquisition and tracking
of building block structures. IEEE transac-
tions on visualization and computer graphics,
18(4):651–9, 2012.

[ND11] RA Newcombe and AJ Davison. KinectFusion:
Real-time dense surface mapping and tracking.
(ISMAR), pages 127–136, 2011.

[RC11] Radu Bogdan Rusu and Steve Cousins. 3D
is here: Point Cloud Library (PCL). IEEE
International Conference on Robotics and Au-
tomation, pages 1–4, 2011.

[RMB+08] Radu Bogdan Rusu, Zoltan Csaba Marton,
Nico Blodow, Mihai Dolha, and Michael Beetz.
Towards 3d point cloud based object maps for
household environments. Robotics and Au-
tonomous Systems, 2008.

[RTHA12] Brian Curless Robert T. Held, Ankit Gupta and
Maneesh Agrawala. 3d puppetry: A kinect-
based interface for 3d animation. Proceedings
of the 25th annual ACM symposium adjunct on
User interface software and technology, 2012.

[STK02] Shymon Shlafman, Ayellet Tal, and Sagi Katz.
Metamorphosis of Polyhedral Surfaces using
Decomposition. Computer Graphics Forum,
21(3):219–228, 2002.

[SW11] C Schwartz and M Weinmann. Integrated high-
quality acquisition of geometry and appearance
for cultural heritage. In proceedings of The
12th International Symposium on Virtual Real-
ity, Archeology and Cultural Heritage, 2011.

[TDVC11] Hedi Tabia, Mohamed Daoudi, Jean-Philippe
Vandeborre, and Olivier Colot. Deformable
shape retrieval using bag-of-feature techniques.
Proceedings of the 3D Image Processing
(3DIP’11), 2011.

[VMC96] T Varady, RR Martin, and Jordan Cox. Reverse
engineering of geometric models - an intro-
duction. Computer-Aided Design, pages 1–28,
1996.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 219 ISBN 978-80-86943-75-6

A framework for detection of linear gradient filled regions
and their reconstruction for vector graphics

Ruchin Kansal
Department of computer

science
IIT Delhi

India, New Delhi
rkansal@adobe.com

Prof. Subodh Kumar
Department of computer

science
IIT Delhi

India, New Delhi
subodh@cse.iitd.ac.in

ABSTRACT
Linear gradients are commonly applied in non-photographic art-work for shading and other artistic effects. It is
sometimes necessary to generate a vector graphics form of raster images comprising such art-work with the expec-
tation to obtain a simple output that is further editable, say, using any popular vector editing software. Further, this
vectorization process should be automatic with minimal user intervention. We present a simple image vectorization
algorithm that meets these requirements by detecting linear gradient filled regions and reconstructing the vector
definition using that information. It uses a novel interval gradient optimization scheme to derive large regions of
uniform gradient. We also demonstrate the technique on noisy images.

Keywords
Image vectorization Gradient reconstruction Region detection

(a) Original Image (b) Adobe Livetrace
output

(c) Inkscape output (d) Our output

Figure 1: Comparison of diferent outputs.

1 INTRODUCTION
The advent of new mobile and touch devices has mo-
tivated designers to create and publish their content in
vector format. Vector graphics represents 2D images in
terms of mathematical elements like curves, contours,
straight lines and other shapes, along with their at-
tributes such as fill, stroke, transparency and so on. This
is different from raster representation, which stores a
color sample at each pixel center. Vector graphics sup-
ports rasterization on the fly and therefore it can be
viewed at different scales and resolutions without any
artifacts.

With the increasing demand for vector content, the need
for converting raster images into vectors has also in-
creased. This process is called Vectorization. We set out
to obtain automatic vectorization with minimal human
intervention even on potentially noisy images. Later
re-rasterization of our vector representation should pro-
duce the appearance of the original image at various
scales. Further, for wide-spread usage, this vector rep-
resentation should be in a standard form and be ed-
itable. However, it is not easy for an algorithm to meet
all these conditions for every image. In fact, these may
be conflicting goals. For example, to match the vec-
tor appearance with the original image, an algorithm
might generate smaller patches due to which editing
becomes difficult. Further, application of color gradi-
ents for shading effects in a non-photographic image
poses additional challenges to vectorization. In this
case, the vectorization algorithm must derive the gradi-
ent definition and use it to approximate the color infor-
mation. Many algorithms, including commercial soft-
ware [27, 1, 13], are unable to appropriately reconstruct
such gradients. For example, they may approximate
the gradients with patches of constant fill regions. (See
Inkscape [13] and Adobe Illustrator [1] examples in fig-
ures 1c and 1b respectively).

A few others, including the one titled ARDECO
[17], focus on computing the gradient. For example,
ARDECO uses first and higher order gradients to
store the color information. However, these techniques
either generate too many vector patches or their

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 220 ISBN 978-80-86943-75-6

representations are so complex that their output cannot
be easily edited.

Vector graphics can be represented using an open vector
format such as EPS, PDF, or SVG[28] or it could be a
proprietary format (such as Adobe Illustrator or Corel).
Among open formats, SVG is possibly the most widely
used vector format for web and digital media, which we
have chosen as our output. Nonetheless, the definition
of linear gradient is largely the same in all vector stan-
dards modulo occasional minor differences. SVG spec-
ifies linear color gradient as continuous smooth color
transition along a 2D direction from one given color at
a known position to another. This direction is called the
Gradient Vector. The value of each pixel along the gra-
dient vector may be calculated by linearly interpolating
the two end colors. The gradient normal is orthogonal
to the gradient vector. The color of each pixel on the
gradient normal remains same. The SVG standard also
allows fixing of more than two colors along the gradient
vector, to form a smooth multi-color transition. These
specific points on the gradient vector with pre-defined
color values are called Gradient Stops (See figure 2).

Figure 2: Linear Gradient defined by four gradient
stops(C1, C2, C3 and C4). Notice the color along the
gradient vector is defined by linear interpolation from
one stop to another but the color of the pixels along the
gradient normal remains same.

We have developed an approach that can detect linear
gradient filled regions as well as the gradient values.
While the contributions of this paper are primarily in
effective recovery of regions with uniform gradient, for
completeness we do also produce boundary curves and
regions with uniform fill color where necessary. We do
not target vectorization of photographic quality images,
but rather art-design by artists. The distinguishing fea-
ture of such images is that they contain relatively large
areas of uniform fill and gradients but suffer from noise
and other smoothing and post-processing artifacts.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 3: The complete pipeline

2 PREVIOUS WORK
Vectorization generally involves some form of image
segmentation followed by a vector approximation for
each segment. Significant research in both vectoriza-
tion and, more generally, image segmentation exists.
The research in vectorization is done with various ob-
jectives such as fitting smooth curves [15, 24, 2, 9],
minimizing the number of colors used [29], preserv-
ing editability [4] and matching appearance with input
[17, 25, 16, 21]. Image segmentation prior to vector-
ization is commonly based on edge detection [6], color
quantization [8, 11, 5] or a global optimization function
[19, 18, 20] to reduce the overall energy.
Early work in this field focused on line drawings and bi-
tonal images [6, 9, 10]. These approaches are mainly
based on edge detection [6], thresholding [7, 14, 22,
23], thinning [26] and contour tracing [12]. The ex-
tracted line, image contour or region is represented by
vector graphics primitives, e.g., curves and paths. More
recent algorithms [17, 25, 16, 21, 29, 4, 15] deal with
full color images and their goal is to generate high fi-
delity output.
ARDECO[17], proposed by Lecot and Levy in 2006,
tries to decompose the input image into patches. Each
patch is approximated by a constant color, linear or
higher order gradient in order to minimize the overall
energy. The energy function in their approach is deter-
mined by a boundary length function and a curve fit-
ting term. The weighting of terms is controlled by user
input. Since the energy functional is quite generic, it
can handle images with fine details. At the same time
it often produces a large number of patches and conse-
quently it is not possible to edit the final vector graphics
easily for post-editing. Further, for large gradient fill re-
gions, it often fails to converge to any result. Also, due
to linear constraints the segment boundaries produced
by them is often not smooth. Finally, the user needs to
adjust several parameters by experimentation. Our al-
gorithm is simpler than ARDECO as it considers only
first order gradients. Further, our algorithm produces
fewer regions so that a user can edit the image easily.
Sun et al [25] introduced a vectorization approach us-
ing Gradient Meshes. There, a gradient mesh is de-
fined by a grid using topologically planar rectangular

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 221 ISBN 978-80-86943-75-6

Ferguson patches with mesh-lines. Control points of
the mesh have three attributes: position, derivative and
color. Their approach relies on user assistance for mesh
initialization and placement. Recently, Lai, Hu and
Martin, 2009 [16] improved that algorithm by gener-
ating the gradient mesh automatically. The output of
gradient mesh is quite impressive and it can even be
applied to photographic images. However, the size of
their representation is too unwieldy for further editing.
Moreover, Gradient Mesh is not a standard primitive
and are hence less portable. They cannot be rendered
or edited by standard tools.

Price and Barett [4] proposed an approach for inter-
active image editing using object based vectorization.
They allow the user to select an object and then graph
cut is used recursively to form a hierarchical object tree.
For each object they define a mesh by locating the cor-
ner points and doing recursive subdivision. The result-
ing mesh can be edited by various tools. However,
the approach is designed to be driven by user manu-
ally. Also, the algorithm does hot handle gradient re-
construction, it only provides a better means of object
construction.

Diffusion curves[21] is a different approach to represent
smooth shaded images. A diffusion curve partitions the
space through which it is drawn, defining different col-
ors on either side. These colors may vary smoothly
along the curve. In addition, the sharpness of the color
transition from one side of the curve to the other can be
controlled. Due to the limitations with Poisson equa-
tions, the color variations in all raster images may not
be represented by this system, especially when the im-
age has sparse features in some areas.

Xia et al [29] proposed a vector based representation in
which the image is decomposed into non-overlapping
triangular patches with curved boundaries. The color
variation over each triangular patch is approximated
with a thin-plate spline for every color channel. It
allows them to approximate raster images with both
smooth variations and curvilinear features. Although,
the representation is powerful and compact, again ed-
itability and portability is a concern.

A nice discussion of vector primitives related to color
gradients is provided by Pascal et al. [3]. They de-
scribe various available techniques for construction and
rendering of such vector primitives. They mention the
current methods of vector creation by hand as well as
through vectorization. Some practical challenges and
limitations of these approaches are also explained.

Adobe live trace [1] and Vector magic [27] are popular
commercial applications, which are used for vectoriza-
tion and produces standard vector graphics. Inkscape
[13] is an open source tool which is also used for vec-
torization and vector editing. However, none of these
packages recognizes linear color gradients in the image

and therefore such regions are approximated by rectan-
gular stripes (See figure 1).

3 OUR APPROACH
Figure 3 depicts our pipeline. We start with a raster
image. In our experiments all input images are 8-bit
per-channel RGB images but the technique is indepen-
dent of the color format. Like most vectorization ap-
proaches, we first segment a filtered version of the im-
age. Color discontinuity imposes segment boundaries.
Next, for each segmented region we determine if it can
be represented by a linear gradient function. This de-
cision is made by searching for a gradient value that is
supported by all pixels of the region. In particular, we
calculate the range of gradient values supported by each
pixel. A global optimization across pixels of the region
then determines the most plausible gradient for the re-
gion. Finally, using this optimized gradient direction,
we find the gradient stops within the region. In terms of
figure 3, the main contributions of our algorithm are in
stages 4, 5 and 7.

For regions that cannot be represented using a linear
gradient, we employ a color quantization approach to
minimize the number of vector elements. Each region is
then vectorized using the potrace engine [24] (although
any vectorization approach would suffice). Potrace is
designed to generate smooth contours of the features
which works well with our pipeline. Each stage of the
pipeline is described next.

3.1 Image Smoothing
To reduce the effect of noise in the image, we apply a
Gaussian blur of radius 3. It reduces the sharpness near
edges and produces a relatively smooth image.

3.2 Initial Segmentation
As a preprocessing step, we first perform image seg-
mentation using a standard scheme. We have used mean
shift segmentation followed by a flood fill, which gives
us good result. although a more specialized segmenta-
tion algorithm can also be employed.

3.3 Gradient Approximation
In order to determine the gradient direction m we re-
construct values from the given samples. However, we
must also consider that the input color values are im-
precise due to noise, smoothing and rasterization. Due
to imprecise color values at pixel centers, we resort to
an interval color scheme. In particular, if the color at
pixel p input to this stage is c, we allow that the actual
color is in the range [c− : c+], where c ∈ [c− : c+]. For
example, if c only has rounding error, c− = c−0.5 and
c+ = c+0.5.

If the gradient slope at pixel p is m, we expect the color
at the gradient normal p+k 1

m within a segment to be in

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 222 ISBN 978-80-86943-75-6

Algorithm 1 Find the slope range

1: procedure FINDRANGE(p,R). Calculate range of
slopes for pixel p over region R

2: p.range← /0 . Initialize the range of p as
empty

3: S← Boundary pixels of R . Initialize vector S
with boundary pixels of R in such an order that all
consecutive pixels in S are neighbors in R

4: i← 0
5: c← p.color
6: for i < S.size−1 do
7: p1← S[i]
8: p2← S[i+1] . Get two neighbor pixels

from S in p1 and p2
9: if [c− : c+]

⋂
[p1.color, p2.color] 6= /0 AND

p.region = p1.region = p2.region then
10: L1← line(p1, p) . Find line L1 passing

through p1 and p
11: L2← line(p2, p)
12: p′1← intersection(L1,R) . Find

intersection of L1 with R
13: p′2← intersection(L2,R)
14: if [c− : c+]⊆ [p′1.color, p′2.color] then
15: p.range← [slope(L1),slope(L2)]
16: break;
17: end if
18: end if
19: i← i+1
20: end for
21: end procedure

the interval [c− : c+] for all values of k within a range,
if the input color at p is c. However, due to the ras-
terization in the input image we may not have samples
available for any value of k.

We consider a contour around p and locate the normal
line passing through p on this contour. For example,
this contour can be a rectangle R. Our goal is to locate
the range [c− : c+] on R. Assuming color interpolation
along R, we find two samples p1 and p2 on R such that
the color c1 at p1 and color c2 at p2 span the range [c− :
c+], where p1 and p2 are the closest such pixels along
the contour. In other words, [c− : c+] ⊆ [c1 : c2]. We
conjecture that the normal line intersects the rectangle
between p1 and p2. As an aside, if one were to search
for the exact value c reconstructed from samples near p1
and p2, it would yield unreliable estimates for m that are
often inconsistent with the estimates of p’s neighbors.

If p is not on the boundary of its region, a pair (p1, p2)
implies the existence of another pair (p′1, p′2) on the op-
posite side of the rectangle. For pair (p1, p2), we form
straight lines by joining p1 and p, and similarly by join-
ing p2 and p (Figure 4 explains this construction, see
the blue and red lines passing through p). The intersec-

Figure 4: The setup: A rectangular grid of pixels around
p is considered. The color interval of pixel p, [c− : c+],
lies in the colors at pixels p1 and p2. This implies the
normal direction through p, passes between p1 and p2.
Consider lines joining p with p1 and p2 respectively.
These lines intersect at the opposite side of the grid on
p′1 and p′2. If [c− : c+] is spanned by the colors at p′1 and
p′2, the normal directions is assumed to lie between the
two solid lines. Additionally, the green dotted line is
formed by fitting a line among all pixels whose colors
are similar to that of pixel p. This estimated slope is
also stored for each pixel p.

tions of these lines with the opposite boundary of rect-
angle R provides the conjugate pair (p′1, p′2). Again, we
need not have samples available at p′1 and p′2, unless
R is symmetric about p. We reconstruct the color, re-
spectively, c′1 and c′2 at positions p′1 and p′2 from the
neighboring samples. If again [c− : c+] ⊆ [c′1 : c′2], it
is evidence of the normal line passing between p′1 and
p′2. If the slopes of lines p1 p′1 and p2 p′2 are 1

m1
and 1

m2
,

respectively, we say that pixel p favors a color gradi-
ent in the range [m1 : m2] subject to the condition that
pairs (p1, p2) and (p′1, p′2) lie in the same image region.
Please note that if the range [p′1 : p′2] is not tight and its
subset contains the color range [c− : c+], that subset is
used instead to provide a tighter gradient range. This
approach is presented in algorithm 1.

Not the entire range of gradients [m1 : m2] is equally fa-
vored by p. We also estimate the most favored gradient
m′ and weight a value m ∈ [m1 : m2] by its difference
from m′. To find m′, we compute the best fit line to the
color values nearest c within R. In particular, we form a
set of points S including every pixel within rectangle R
with color within [c− : c+]. The calculation of favored
slope is explained in algorithm 2.

If a pixel does not produce a gradient range, either it is
not a part of a gradient filled region, or it cannot provide
candidate gradients due to noise in the image. On the
other hand, it is possible for a pixel to provide multiple
gradient candidates due to noise. We include all ranges
in the optimization process described next.

Every pixel pi of a presumed gradient fill region simi-
larly produces its favored gradient m′i and slope range
(mi1 ,mi2). We choose a single gradient value for the
region that best satisfies all ranges.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 223 ISBN 978-80-86943-75-6

Algorithm 2 Find the favored gradient slope

1: procedure FINDGRADSLOPE(p,R) . Calculate
favored gradient slope of pixel p over region R

2: p.slope← nil
3: Q← all pixels of R . Initialize vector Q with

all pixels of R
4: i← 0
5: S← /0
6: for i 6= Q.size do . Loop on all pixels in Q
7: q← Q[i]
8: if p.color ∈ [q.color− : q.color+] AND

p.region = q.region then
9: S← S

⋃
{q}

10: end if
11: i← i+1
12: end for
13: if S 6= /0 then
14: L← FitStraightLine(S)
15: p.slope← slope(L)
16: end if
17: end procedure

Choice of this region R is important as it should be suf-
ficiently large to have enough samples to reproduce the
reliable gradient range and value. The size of region R
may also vary on each pixel depending on the noise in
the image. Therefore, we choose rectangles of dynam-
ically varying sizes whose dimensions are decided on
each pixel. We start with a size of 3x3, and keep on
increasing this region until the line fit error is below a
certain threshold ε . Because of this dynamically sized
region, our approach can handle different kinds of noisy
images sucessfully.

3.4 Gradient Optimization
After computing the favored gradients for each pixel pi,
m′i and the range [mi1 : mi2], the final gradient mr for the
region should ideally lie in this range and as close to
m′i as possible. We compute mr by optimizing across
all pixels of the region. This optimization can be easily
posed and solved using a simple geometrical construc-
tion.

We select a function which maximizes its potential if
the selected gradient mr = m′i. This potential monoton-
ically decreases as mr grows apart from m′i. One can
select a Gaussian or radial basis function as the weight,
but a cosine-linear weight function provides the best re-
sults. Given two line slopes m′ and m′′, the dot product
of the vectors in their respective directions gives a pro-
jection of a vector on another. By definition, the mag-
nitude of the dot product of two unit vectors decreases
as the angle between them grows. We define our ob-
jective function to maximize the sum of these dot prod-
ucts. To do so, the value of objective function f (x) is

Figure 5: Gradient Stops Estimation: The shaded area
is a gradient filled region while its bounding box is
marked as black rectangle.We draw lines from four
corners of the bounding box parallel to gradient axis
(shown in different colors), since the line passing from
top-left corner (marked in blue) overlaps the maximum
pixels of the region, it is used for gradient stops esti-
mation. Two stops are generated where line hits the
bounding box(C1 and C4) while two stops are gen-
erated where line intersects the regions (C2 and C3).
Also, note that value of C2 and C3 is determined by us-
ing the pixel color at the respective location of image
while value of C1 and C4 is computed by extrapolation
of C2 and C3 along the gradient axis.

computed by finding all pixels pi which have the range
[mi1 : mi2] containing x and performing a summation
over the dot products with their favoured slope m′i. i.e.
f (x) = ∑

n
i=0 |g(x, i)| where g(x, i) = x̂.m̂′i|mi1 ≤ x≤ mi2

and x̂ and m̂′i are two unit vectors in the direction of x
and m′i respectively.

The linear optimization can be performed using any
standard technique like the dynamic system based
global optimization [19].

3.5 Gradient Stops Estimation
We use a heuristic approach to find the gradient stops. If
we draw lines parallel to the computed gradient vector
mr from each corner of the bounding box of the region
as shown in Figure 5, the one with the largest overlap
with the region may be selected for stops estimation.
We generate four color stops on the gradient vector, two
on each end points on the bounding box and two on
each intersection of this line with the region (See Figure
5). If the points at C1 and C4 do not lie in the region,
their colors may be estimated using extrapolation from
C2 and C3 as shown.

3.6 Color Quantization
Segmentation for the remaining colored regions of the
image is performed using color quantization [11]. A
color palette of the given number of colors is first pre-
pared, and then each pixel is assigned the index of color
palette that it best matches. For our experiments we

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 224 ISBN 978-80-86943-75-6

have used an octree based color quantization approach
[8, 5].

3.7 Contour Tracing

Tracing is the process of fitting curves that bound each
image regions. After tracing, we obtain a set of curves
that represent the image geometry. We employ the po-
trace engine developed by Peter Schilinger [24] for this
outline tracing. The same engine is also used by open
source vector drawing package Inkscape [13].

3.8 Final Vector Output

Once we obtain the curves outlining each image seg-
ment, we apply fills to these curves and generate the
final vector representation (in the SVG format). The re-
gion color, as noted before, may be either a solid fill
color obtained through quantization or a linear gradient
produced by the optimization algorithm.

4 RESULTS AND VALIDATIONS

We analyzed the vector output of our algorithm from
various prespectives like appearance, editability, accu-
racy and error per pixel. Results are given below.

4.1 Appearance

We applied our approach to different non-photorealistic
raster images and the results are presented in Figure 6.

4.2 Comparison with ARDECO

The implementation of ARDECO is publicly available
on the authors webpage. In figure 9 ARDECO pro-
duced more than 1200 paths while our approach out-
puts 4 paths only. This is because we perform an early
segmentation and then apply gradient detection on the
various segments. We are also able to handle noisy im-
ages, as shown in figure 9 where the input image con-
tains random RGB noise.

4.3 Editability

The output SVG can be easily edited using any standard
vector graphics tool like Inkscape. Examples are shown
in figure 7.

4.4 Accuracy

To measure the accuracy, we applied our algorithm to
images whose gradient direction and magnitude was al-
ready known. The results are shown in figure 8.

Our Error Inkscape Error
Input Gradient Solid Gradient Solid

6e 7.7 16.25 17.49 24.40
6k 11.4 13.2 18.64 21.31
6c 11.63 18.67 14.76 26.55
6i 15.64 25.14 26.20 44.8
6a 25.51 34.26 46.92 37.40

Table 1: We calculated the per pixel error for gradient
and solid colored regions separately in our output and
then compared with the corresponding region error in
inkscape.

4.5 Per Pixel Error
To analyze the per pixel error in our output, we raster-
ized our vector output and then compared it with the
original image to compute root mean squared error per
pixel. Table 1 compares the error in our gradient and
solid colored regions with the corresponding regions
in Inkscape output. Both Inkscape’s and our approach
used a quantization palette size of 16 colors.

Table 1 shows that even the per pixel error for solid col-
ored regions is low with our approach as compared to
Inkscape. This is due to the fact that our approach ex-
cludes the gradient region while performing quantiza-
tion, therefore with the same size of color palette, more
accurate colors are represented.

The high per pixel error in output can be explained due
to the several factors:

1. Vector and raster spaces are not equivalent. The
pixel at location (x, y) in input image may not be
present at the same exact location in the vector
space.

2. Input image may contain small pixel level features,
which are merged in larger regions during vectoriza-
tion.

3. Vector output is optimized to be represented with
fewer colors using some method of color minimiza-
tion.

5 LIMITATIONS AND FUTURE WORK
We have proposed an algorithm to find gradient in im-
ages that optimizes the gradient values across noisy pix-
els. It mainly targets reconstruction of simple art draw-
ings that can then be further edited or stylized. The
proposed algorithm works well when the linear gradi-
ent in input image is specified by two color stops. Oth-
erwise the the gradient region may be split into multi-
ple smaller regions. This limitation can be easily han-
dled by modifying the gradient stops estimation step to
account for multiple color stops. Our approach may
also not produce good results when the linear gradient
is applied on small width regions, like linear gradient

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 225 ISBN 978-80-86943-75-6

on a single pixel wide curve, for it needs to find seg-
ments with a few neighbors around its pixels. We be-
lieve the algorithm can be easily adapted to handle non-
linear gradients – for example a radial gradient. Our
algorithm is designed to operate on each pixel indepen-
dently, therefore it can parallelize well. Future work
should also include deriving vector graphics for videos
and using the level of optimization in a feedback loop
to refine the segmentation potentially producing even
fewer patches.

6 REFERENCES
[1] Inc. Adobe Systems. Adobe illustrator cs5, 2010.
[2] Autotrace. An open-source program for convert-

ing bitmap to vector graphics, 2004.
[3] Pascal Barla and Adrien Bousseau. Gradient art:

Creation and vectorization. In Paul Rosin and
John Collomosse, editors, Image and Video-Based
Artistic Stylisation, volume 42 of Computational
Imaging and Vision, pages 149–166. Springer
London, 2013.

[4] William A. Barrett and Alan S. Cheney. Object-
based image editing. In Proceedings of the 29th
annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’02, pages
777–784, New York, NY, USA, 2002. ACM.

[5] Dan S Bloomberg. Color quantization using oc-
trees. 2008.

[6] J Canny. A computational approach to edge de-
tection. IEEE Trans. Pattern Anal. Mach. Intell.,
8(6):679–698, June 1986.

[7] Jung-Shiong Chang, Hong-Yuan Mark Liao,
Maw-Kae Hor, Jun-Wei Hsieh, and Ming-Yang
Chern. New automatic multi-level threshold-
ing technique for segmentation of thermal im-
ages. Image and Vision Computing, 15(1):23 –
34, 1997.

[8] D. Clark. Color quantization using octrees. Dr.
Dobb’s Journal, pages 54–57, Jan 1996.

[9] Dov Dori, Senior Member, and Wenyin Liu.
Sparse pixel vectorization: An algorithm and its
performance evaluation. IEEE Trans. Pattern
Analysis and Machine Intelligence, 21:202–215,
1999.

[10] Kuo-Chin Fan, Den-Fong Chen, and Ming-Gang
Wen. A new vectorization-based approach to
the skeletonization of binary images. In ICDAR,
pages 627–630. IEEE Computer Society, 1995.

[11] Michael Gervautz and Werner Purgathofer. A sim-
ple method for color quantization: Octree quan-
tization. In New Trends in Computer Graphics.
Springer Verlag, Berlin, 1988.

[12] O. Hori and S. Tanigawa. Raster-to-vector conver-
sion by line fitting based on contours and skele-

tons. In Document Analysis and Recognition,
1993., Proceedings of the Second International
Conference on, pages 353 –358, oct 1993.

[13] Inkscape. An open source linux/windows scalable
vector graphics editor, 2010.

[14] Ralf Kohler. A segmentation system based on
thresholding. Computer Graphics and Image Pro-
cessing, 15(4):319 – 338, 1981.

[15] Johannes Kopf and Dani Lischinski. Depixelizing
pixel art. In ACM SIGGRAPH 2011 papers, SIG-
GRAPH ’11, pages 99:1–99:8, New York, NY,
USA, 2011. ACM.

[16] Yu-Kun Lai, Shi-Min Hu, and Ralph R. Mar-
tin. Automatic and topology-preserving gradient
mesh generation for image vectorization. ACM
Trans. Graph., 28(3):85:1–85:8, July 2009.

[17] Gregory Lecot and Bruno Levy. Ardeco: Auto-
matic region detection and conversion. In Euro-
graphics Symposium on Rendering, 2006.

[18] Musa Mammadov, Alexander Rubinov, and John
Yearwood. Dynamical systems described by re-
lational elasticities with applications. Continuous
Optimization, pages 365–385, 2005.

[19] Musa A Mammadov. A new global optimization
algorithm based on dynamical systems approach.
In Proceedings of the 6th International Confer-
ence on Optimization: Techniques and Applica-
tions (ICOTA’ 04). Ballarat, Australia, 2004.

[20] University of Ballarat. Ganso library for opti-
mization functions.

[21] Alexandrina Orzan, Adrien Bousseau, Holger
Winnemöller, Pascal Barla, Joëlle Thollot, and
David Salesin. Diffusion curves: a vector rep-
resentation for smooth-shaded images. In ACM
SIGGRAPH 2008 papers, SIGGRAPH ’08, pages
92:1–92:8, New York, NY, USA, 2008. ACM.

[22] Arnulfo Perez and Rafael C. Gonzalez. An itera-
tive thresholding algorithm for image segmenta-
tion. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, PAMI-9(6):742 –751, nov.
1987.

[23] N. Ramesh, J.-H. Yoo, and I.K. Sethi. Threshold-
ing based on histogram approximation. Vision,
Image and Signal Processing, IEE Proceedings -,
142(5):271 –279, oct 1995.

[24] Peter Selinger. Potrace: a polygon-based tracing
algorithm, 2003.

[25] Jian Sun, Lin Liang, Fang Wen, and Heung-Yeung
Shum. Image vectorization using optimized gra-
dient meshes. In ACM SIGGRAPH 2007 papers,
SIGGRAPH ’07, New York, NY, USA, 2007.
ACM.

[26] H. Tamura. A comparison of line thinning al-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 226 ISBN 978-80-86943-75-6

gorithms from digital geometry viewpoint. In
Proceedings of the Fourth Int’l Joint Conf Pattern
Recognition. Kyoto, Japan, 1978.

[27] Inc. Vector Magic. Vector magic, 2010.
[28] SVG working group. Svg format for vector graph-

ics.
[29] Tian Xia, Binbin Liao, and Yizhou Yu. Patch-

based image vectorization with automatic curvi-
linear feature alignment. In ACM SIGGRAPH
Asia 2009 papers, SIGGRAPH Asia ’09, pages
115:1–115:10, New York, NY, USA, 2009. ACM.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 227 ISBN 978-80-86943-75-6

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

Figure 6: The results with our approach. Original image is on the left and the final vector image is shown on right.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 228 ISBN 978-80-86943-75-6

(a) Editing the output
vector: Scaled the body
parts.

(b) Editing the output
vector: Rotated the arm
levers.

(c) Editing the output
vector: Removed a path.

(d) Editing the output
vector: The original lin-
ear gradient color stops
(as shown in figure 6)
were towards red to
white. Using Inkscape,
we edited the output so
that the gradient stops
are changed to blue and
white.

Figure 7: Editing the final output.

(a) Original gradient di-
rection: 1.0, color vary-
ing from (255, 0, 0) to
(255, 255, 0).

(b) Computed gradient
direction: 1.2, color
varying from (255, 4, 0)
to (255, 248, 0).

(c) Original gradient
direction:1.75 , color
varying from (255, 0, 0)
to (255, 255, 0).

(d) Computed gradient
direction:1.85 , color
varying from (255, 8, 0)
to (255, 242, 0).

(e) Original gradient di-
rection: 0, color varying
from (255, 0, 0) to (255,
255, 0).

(f) Computed gradient
direction: 0, color vary-
ing from (255, 2, 0) to
(255, 252, 0).

(g) Original gradient di-
rection: ∞, color vary-
ing from (255, 0, 0) to
(255, 255, 0).

(h) Computed gradient
direction: ∞, color vary-
ing from (255, 2, 0) to
(255, 251, 0).

Figure 8: Comparison of computed gradient with original known gradient in image.

(a) Input noisy Image. (b) Ardeco output:1200 small
patches.

(c) Our output: Only four
patches.

Figure 9: Noisy images and comparison with ARDECO.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 229 ISBN 978-80-86943-75-6

Improved Interactive Reshaping of Humans in Images

Nidhi Arora
IIT Delhi

India
nidhi@cse.iitd.ac.in

Harsh Kumar
IIT Delhi

India
harsh23031989@gmail.com

Jagjeet S. Dhaliwal
IIT Delhi

India
cs5080212@cse.iitd.ac.in

Prem Kalra
IIT Delhi

India
pkalra@cse.iitd.ac.in

Parag Chaudhuri
IIT Bombay

India
paragc@cse.iitb.ac.in

ABSTRACT
In this paper, we present an interactive and flexible approach for realistic reshaping of human bodies in a single
image. For reshaping, a user specifies a set of semantic attributes like weight and height. Then we use a 3D-
morphable model based image retouching technique for global reshaping of the human bodies in the image such
that they satisfy the semantic constraints specified by the user. We address the problem of deformation of the
environment surrounding the human body being reshaped, which produces visible artifacts, especially noticeable
at regions with structural features, in prior work. We are able to separate the human figure from the background.
This allows us to reshape the figure, while preserving the background. Missing regions in the background are
inpainted in a manner that maintains structural details. We also provide a quantitative measure for distortion and
compare our results with the prior work.

Keywords
image retouching, image manipulation, warping, deformation, reshaping, inpainting.

1 INTRODUCTION

Professional image editing packages like Adobe Pho-
toshop often limit themselves to local modification of
the image whereas retouching tasks such as increas-
ing or decreasing the height or weight of the human
bodies in the images require global consistency to be
maintained across the human body. This requires pro-
fessional skills and novice users find it hard to achieve
such consistency. Hence, one comes across many such
images where the use of Photoshop is quite evident.

Zhou et al. [ZH10] propose an interactive approach
based on a 3D-morphable model to deform individual
parts of the body to achieve global editing consistency
and desired spatially-varying deformation within and
across individual body parts. The approach doesn’t rely
on 3D-reconstruction of the human body from the im-
age but applies a body-aware warping to the image for

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

reshaping human bodies in a single image. The method
comprises of the following steps:

• A morphable 3D-model is roughly matched to the
human body in the image by user interaction.

• The 3D-model is deformed by changing the seman-
tic attributes like height and weight.

• The image is then warped such that the human body
in the image reflects the changes in the matched 3D-
model by following the changes in the 2D-contours
of the body with respect to the pose of the human in
the image.

The above method is effective for human bodies with a
variety of poses, shapes and in presence of loose cloth-
ing. It, however, introduces artifacts in the background
of the image, noticeable especially in the structural fea-
tures like walls, floor and other features. Consider, for
example Figure 1, where the height of the person is de-
creased. We can observe that artifacts are introduced in
the horizontal structure and the shadow of the person
as highlighted in Figure 1(b). We address this problem
of deformation of the background of the image by sep-
arating the warping of the human body from the back-
ground of the image (refer Figure 1(c)). Our solution
relies on inpainting of the background image after de-
lineating the human shape that needs a change. We use

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 230 ISBN 978-80-86943-75-6

optical flow as a quantitative measure to obtain the dis-
tortion in the background and show that our approach
has a lower distortion. The separation of the image into
foreground with the human shape and background of-
fers us flexibility to even change the pose of the human
body in a limited way.

(a) (b) (c)

Figure 1: Structural artifacts introduced in the image
using [ZH10]; (a) Input image, (b) Resulting image
with decreased height and noticeable deformation of the
background, (c) Image obtained using our approach.

The paper is organized as follows. In Section 2, some
previous research carried out in this area and its allied
fields is discussed. Section 3 provides a brief overview
of the approach followed by Zhou et al. [ZH10] and
highlights its shortcomings. Section 4 describes our
proposed approach. Section 5 presents some of the re-
sults followed by Section 6 that concludes our work.

2 RELATED WORK
This work is related to a variety of fields. We briefly
describe the state-of-the-art techniques for the relevant
domains. Since our work is based on the method pro-
posed by Zhou et al. [ZH10], some of the related work
cited in that paper is revisited in this section. In addi-
tion, we also look at other relevant literature.

2.1 Image Retouching, Warping and Re-
sizing

Retouching images incorporates the use of several im-
age editing tools, for e.g., tone adjustment, recoloring,
image composition, image repairing, image denoising,
image warping etc. Most existing retouching tools op-
erate at the pixel level and are effective for low level
editing tasks [EP08]. However, they are not suitable
for high-level editing tasks because they involve user
interaction for maintaining the coherence of editing op-
erations [AC02]. Image warping and resizing methods
like Moving Least Squares (MLS) [SM06] and Radial
Basis Function (RBF) [AR95] propagate the changes
from the control handle to the rest of the image. Zhou
et al. [ZH10] propose a warping approach for paramet-
ric reshaping of humans in images to adhere the human

shape to the specified semantic attributes by resizing the
human body along and orthogonal to skeletal bones to
achieve a global consistency.

2.2 3D-Morphable Models with Pose Fit-
ting and Shape Selection

SCAPE [AS05] encodes the pose and shape of the hu-
man body separately. The pose is stored with the help
of an underlying skeleton while the shape of the person
is encoded using variational methods or envelope skin-
ning. The outcome of the two steps is combined for the
generation of new shapes. Hasler et al. [HS09] intro-
duce a model which encodes both the shape and pose
of the model using a translation and rotation invariant
encoding. Many automatic pose estimation methods
from a single image have been proposed (see [HW09]
and references therein). However, it requires a certain
amount of user assistance to obtain more reasonable
poses ([DA03], [HK07], [CT12], [TM11]). Richter et
al. [RV12] present a system for real-time deformation
of the shape and appearance of people who are standing
in front of a depth+RGB camera, such as the Microsoft
Kinect.

In the next section, we give a brief overview of the
method proposed by Zhou et al. [ZH10] and outline
the limitations of this method.

3 PARAMETRIC RESHAPING OF HU-
MAN BODIES

Changing the semantic attributes of the human body in
the image requires global consistency to be maintained
in and across the individual body parts to produce vi-
sually pleasing results. A morphable 3D-model of the
human body is used to guide the global reshaping of the
human body in the image.

The method (refer to Figure 2) requires matching a 3D-
morphable model, by adjusting its pose and shape pa-
rameters to the human body in the image. The pose and
shape parameters of the morphable model are taken as
user input for defining the pose and the semantic at-
tributes for the desired change of shape. After match-
ing the 3D-morphable model to the human body in the
image, the model is morphed to change the semantic
attributes according to the user input. The changes
in the fitted model with respect to its 3D-skeleton are
used to guide the image warping especially at the pro-
jected contours of the fitted model. A body-aware im-
age warping coherently resizes the body parts along the
direction parallel and perpendicular to the bone axes
of the 3D-skeleton to incorporate the length changes in
the corresponding directions. Thus, the human body is
parametrically reshaped with the help of user interac-
tion.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 231 ISBN 978-80-86943-75-6

(a) (b)

(c)

(d) (e)

Figure 2: Overview of the parametric reshaping using
3D-morphable model [ZH10]: (a) Original image, (b)
mesh rigged with skeleton, (c) pose and shape defor-
mation to roughly match the human body in the image
and the image contour, (d) image embedded into 2D-
triangular mesh using image subject contour, (e) model
is deformed to adhere to new semantic values, changes
in the 3D-morphable model are used to drive image
warping.

However, we observe that the above approach causes
artifacts to the surrounding environment of the human
body that is reshaped. For example, in Figure 1, defor-
mation of the background (especially the structural ar-
tifacts like stairs and the railings of the stadium and the
shadow of the human) is quite noticeable and hence, the
resultant image shows visible artifacts when the height
of the person is decreased.

Consider Figure 3, the height and weight of Muham-
mad Ali has been decreased in the resultant image.
The unnatural elongation of the hands and the feet of
Muhammad Ali as highlighted in the figure occurs be-

(a)

(b)

Figure 3: (a) Original image, (b) Unnatural elongation
of hands and feet of the person is visible in the output
image.

cause of the proximity of the hands and feet to the bor-
der of the image which remains unchanged.
In the next section, we address the above mentioned
shortcomings and improve this technique.

4 PROPOSED APPROACH
As discussed in the previous section, the above men-
tioned technique introduces artifacts in the resultant
image and hence, the results are not visually pleasing
under moderate to severe deformations even though
they achieve the required change in the semantic
attributes of the human. It is observed that pinning of
the image boundaries results in unnatural elongation
of the body parts close to the boundaries. Pinning
leads to artifacts due to the deformation of triangles
near the image boundaries when the human body
undergoes deformation according to the changes in the
3D-morphable model. One can pad the image while
keeping the vertices on the boundary of the padded
image fixed or pad the image and relax the constraints
at the boundary of the padded image. This, however,
gives only limited improvement.

We observe that the body-aware warping of the whole
image results in structural artifacts as the changes in the
human body are propagated to the background. These
structural artifacts can be removed by separating the
warping of the human body from the background of
the image by using the proposed technique consisting
of the following steps:

• The human bodies, to be warped, are segmented
from the image as foreground using GrabCut
[RK04].

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 232 ISBN 978-80-86943-75-6

• The hard segmentation, thus, obtained is used as in-
put for extracting the foreground color, background
color and alpha value for each pixel of the image.

• Body-aware image warping, based on the paramet-
ric deformation of the 3D-morphable model, is then
applied to the foreground image and the alpha matte.

• The hole generated in the background is inpainted
using a suitable technique.

• The resulting image is then, generated by combin-
ing the warped foreground image and the inpainted
background using the warped alpha values for each
pixel.

4.1 Segmentation of the Human Body

(a) (b) (c)

(d) (e)

Figure 4: Segmentation of the human body from the im-
age using GrabCut: (a) Input image, (b) Scribbles pro-
vided to drive the segmentation, (c) Regions formed by
GrabCut: red, blue, green and dark blue represent back-
ground, probable background, probable foreground and
foreground respectively, (d) Hard segmentation mask
obtained by combining foreground and probable fore-
ground regions, and (e) Human body segmented from
the image using hard segmentation mask.

The human body to be warped is segmented from the
image using GrabCut [RK04] where the user inter-
action is limited to drawing a rectangle to mark the
background and probable foreground area. GrabCut
[RK04] uses an iterative minimization graph-cut algo-
rithm using Gaussian Mixture Models to segment the

foreground and reduces the amount of the user inter-
action. If the results are not approximately correct,
more information is provided using scribbles, marking
the areas of the image as background and foreground
and running the iterative mechanism once again till the
segmentation of the human body from the image is ap-
proximately correct. The foreground scribbles and the
probable foreground are then used to form the hard seg-
mentation of the human body that is to be warped (refer
Figure 4). Many other methods exist for segmenting
the desired foreground from the image. Magic Wand
tool uses the user input to form color statistics from the
specified region and computes a connecting region of
pixels such that the selected pixels fall within some ad-
justable tolerance of the color statistics. We have found
GrabCut [RK04] suitable for our purpose.

4.2 Image Matting

(a) (b) (c)

Figure 5: (a) Input image, (b) Alpha matte, (c) Fore-
ground color image.

In our approach, hard segmentation obtained from seg-
menting the foreground object from the complex back-
ground is transformed into a trimap by using erosion
on the user input (scribbles) to drive the calculation
for the three components in a narrow strip around the
hard boundary (refer Figure 5). Thus, we separate the
foreground color, background color and alpha value
for each pixel of the image. There exist a number of
methods for matting [CS01], [SJ04], [LW06] , we have
adopted a simple approach and found it adequate for
our purpose.

4.3 Image Warping
To warp the image, we follow the same method as pro-
posed by Zhou et al. [ZH10] as described in the previ-
ous section. For pose matching, we have found that the
data of 3D-morphable models need axis alignment to
the coordinate system induced by the image. The mesh
needs to be transformed so that it is upright and facing
the user. To achieve the desired orientation of the mesh,
it is rotated to align the plane of symmetry to the global
YZ-plane. To compute the plane of symmetry of the
human mesh placed arbitrarily in the space, the original

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 233 ISBN 978-80-86943-75-6

mesh is registered to the triangular mesh obtained by
reflecting the original mesh (termed as mirrored mesh)
about any arbitrary plane in the space. The original
mesh and the mirrored mesh are roughly aligned to each
other by performing a coarse registration using the op-
timal set of Persistent Feature Histograms [AR95]. The
axes of the minimum area bounding box of the ver-
tices projected on the plane of symmetry are aligned
to the world coordinate axes. For fine alignment of the
mesh obtained so far, it is registered against the tem-
plate mesh using a corresponding point set registration.
Now, the mesh obtained from the database is upright
and facing the user.

Figure 6: Sample mesh generated from the database us-
ing given semantic attributes and the required orienta-
tion of the mesh.

4.4 Background Filling

(a) (b) (c)

Figure 7: (a) Input image, (b) Target region for inpaint-
ing, (c) Inpainted background image.

Background completion is performed by using an im-
age inpainting technique [CP04]. The target region is
specified by creating a mask using alpha values ob-
tained in the previous step. A threshold is chosen on
the alpha values such that all the pixels with alpha value
more than the threshold are taken to be foreground and
hence are removed from the image and form the target
region to be inpainted as shown in Figure 7(b). Arora
et al. [AK12] propose a method to improve exemplar
based inpainting [CP04] by tweaking the values of var-
ious parameters like patch size, shape and size of the
mask. They use the technique of inpainting for filling

in the cracks and restoring old paintings. We have used
their approach [AK12] for background completion.

4.5 Remaining Steps

(a) (b) (c)

(d) (e)

Figure 8: Combining the warped foreground color im-
age and the inpainted background to form the resultant
image; (a) Warped foreground color image, (b) Warped
alpha matte, (c) Inpainted background color image, (d)
Combining the above without any translation of fore-
ground with respect to the background, and (e) Com-
bining the above after translating the foreground image
for a more visually-pleasing result.

Thus, we obtain the alpha matte, the foreground image
and the inpainted background image by following the
above mentioned steps. The 3D-morphable model is
roughly matched with the human body in the blended
foreground image (foreground image combined with
the alpha matte). The padded blended foreground im-
age is embedded into a 2D-triangular mesh using the
image contour and the boundaries of the padded image
and the changes in the 3D-morhpable model (conform-
ing to the new semantic attribute values) are then used
to warp the 2D-triangular mesh to obtain the new 2D-
triangular mesh. The new 2D-triangular mesh is used to
warp the foreground image and the alpha matte of the
segmented human body. The foreground image and the
inpainted background image are then blended together
to form the resultant image using the alpha matte. The
foreground image and the alpha matte sometimes need
to be translated to produce more-visually pleasing ef-
fects. For example, in Figure 8 the foreground image

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 234 ISBN 978-80-86943-75-6

and the alpha matte need to be translated so that the
shadow and the human are in contact with each other
and hence, produce a more-visually pleasing and plau-
sible result.

5 RESULTS
Our proposed method is applied on a variety of images
of human subjects with various poses and shapes. The
human subjects in the image are morphed to reflect
the changes in the semantic attributes as desired by
the user. Figure 10, Figure 11 and Figure 12 shows
the comparison of the results from [ZH10] and our
approach. Artifacts are clearly visible in the regions
with structural features as highlighted in the images.
The environment surrounding the human body being
reshaped is noticeably deformed in Zhou et al.[ZH10]
results. Our results do not suffer from such problems
because of the use of inpainting in our pipeline. In
Figure 12, we have also elongated the shadow of the
girl along with increasing her height.

We also compare the results in terms of optical flow
field, a quantitative measure of distortion. Another
measure of distortion is Gradient Vector Flow (GVF)
[SB12] but we have used optical flow field for evalua-
tion. In Figure 9, we compare the optical flow field ob-
tained from Zhou et al. result and our result for Figure
1. Figure 9(a) and Figure 9(c) are the color coded out-
put for optical flow. Color coding represents the magni-
tude of flow field. The range of the colors is from yel-
low to violet where violet represents large magnitude of
the flow and yellow color means a lower value of flow
field. Figure 9(b) and Figure 9(d) are the corresponding
pictorial representation in the form of arrow diagrams.
Table 1 denotes the quantitative measure of the magni-
tude of optical flow for both the results. Total flow value
is the sum total of the magnitude of the optical flow of
all the pixels of the image, then we divide it by the total
number of pixels in the image to obtain the per-pixel
optical flow value. To calculate the flow values for the
background pixels in the image, mask is used to sepa-
rate foreground from background. Same mask is also
used to compute the background in Zhou result to have
uniformity of comparison. In our result, both the flow
value per pixel and the flow value for background is
lower than the Zhou et al. result which means that our
result has lower distortion and specifically, lower dis-
tortion of the background. Similarly, in Figure 10 and
Figure 11, comparison in terms of optical flow fields is
also shown. Table 2 represents the quantitative compar-
ison of the per-pixel flow values for Fig 10 and Fig 11.
Flow values for our results are much lower than Zhou
et al. results.

(a) (b)

(c) (d)

Figure 9: Optical flow field obtained for Fig 1: (a), (b)
Flow field obtained from Zhou et al. result and (c), (d)
Flow field obtained from our result.

Results Flow value per
pixel

Flow value for
background(per-
pixel)

Zhou et al. result 12.3911 12.8948

Our result 4.1860 0.7214

Table 1: Optical flow values for Fig 9 (Size: 600×331).

5.1 Human Subject with Loose Clothing
We have handled the case of loose clothing in the same
way as Zhou et al. [ZH10] have handled. We create a
larger mask covering the entire clothing of the person
for inpainting the background. Pose fitting and shape
selection are performed in the same way as explained
in our pipeline. In Figure 13, waist girth of the girl has
been decreased.

5.2 Multiple Human Subjects
We address another application in which an image com-
prise of multiple human subjects. Our objective is to
change the semantic attributes of both the subjects. This
is done in two passes. We create three masks, two for
the individual humans and a combined mask covering
both the subjects. We change the semantic attributes of

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 235 ISBN 978-80-86943-75-6

(a) (b) (c)

(d) (e)

(f) (g)

Figure 10: Comparison of results from Zhou et al.
[ZH10] and our approach: (a) Input image, (b) Result
using [ZH10] with height increased, (c) Result from our
approach, (d), (e) Optical flow field obtained from Zhou
et al. result and (f), (g) Optical flow field obtained from
our result.

both the subjects individually following the above men-
tioned pipeline. The mask covering both the humans
is used for inpainting the background. We then, paste
the reshaped subjects onto this inpainted background.
For instance, in Figure 14, height of both the subjects
is decreased and in Figure 15, weight is decreased and
height is increased of both the subjects.

5.3 Change of Background Setting
We can also change the semantic attributes of a person
and place it in a different setting altogether. According
to our approach, we segment out the foreground from
the background and parametrically reshape the fore-
ground, which basically contains the human body. We
then, composite this reshaped subject onto a different
background. In Figure 16, we change the height of the
character in Figure 16(a) and place her in a different

(a) (b) (c)

(d) (e)

(f) (g)

Figure 11: (a) Original image, (b) Result using [ZH10]
with increased height of the human subject and (c) Re-
sulting image with increased height from our approach,
(d), (e) Optical flow field obtained from Zhou et al. re-
sult and (f), (g) Optical flow field obtained from our
result.

background setting in Figure 16(b). Shadow is cast in
the resultant image assuming the position of the light
source and is then composited with the background.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 236 ISBN 978-80-86943-75-6

Figures Zhou et al. re-
sults(Flow value per
pixel)

Our results(Flow value
per pixel)

Fig.10(600×393) 7.6880 4.5066

Fig.11(726×307) 10.8101 3.8052

Table 2: Optical flow values for Zhou et al. results and
our results for Fig 10 and Fig 11.

(a) (b) (c)

Figure 12: (a) Original image, (b) Result using [ZH10]
with increased height of the human subject and (c) Re-
sulting image with increased height from our approach.

(a) (b)

Figure 13: (a) Original image and (b) Resulting image
with decreased waist girth of the human subject.

(a) (b)

Figure 14: (a) Original image and (b) Resulting image
with decreased height of both the human subjects.

(a) (b)

Figure 15: (a) Original image, (b) Resulting image with
decreased weight and increased height of both the hu-
man subjects.

Since the method proposed by Zhou et al. [ZH10] does
not separate the foreground and background, so, it can-
not be used to change the background setting of a hu-
man subject.

(a) (b)

Figure 16: (a) Original image, (b) Human subject
placed in a different background setting.

6 CONCLUSION AND FUTURE
WORK

This paper presents an interactive and flexible approach
for realistic reshaping of human bodies in an image. We
perform parametric reshaping using a 3D-morphable
model to achieve globally consistent manipulation ef-
fects. A user specifies a set of semantic attributes like
weight, height and others as proposed earlier in 3D-
morphable model based image retouching technique
[ZH10] for global reshaping of human bodies in an im-
age. We address the problem of deformation of the
background of the image because of the propagation of
the retouching effects to the background. We follow
the approach in which we separate the foreground and
background. Foreground is reshaped and background is
inpainted maintaining the necessary structural details.

The main contribution of this paper is to combine set of
techniques to obtain improved results. The improve-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 237 ISBN 978-80-86943-75-6

ment is shown both in terms of visual results and a
quantitative measure.

As a future work, we are interested in extending our
approach for reshaping subjects in videos.

7 ACKNOWLEDGEMENTS
We would like to thank Nils Hasler [HS09] for pro-
viding the database of scanned human meshes. We
would like to thank Shizhe Zhou [ZH10] and Ligang
Liu [ZH10] for the use of some of the images that we
use as input to test our methods. We have taken these
images from Zhou et al. [ZH10] paper and their supple-
mentary materials available online.

8 REFERENCES
[AC02] W. A. Barrett and A. S. Cheney, “Object-based

image editing,” ACM Transaction on Graphics, Pro-
ceedings of SIGGRAPH 2002, vol. 21, issue. 3, pp.
777-784, July 2002.

[AS05] D. Anguelov, P. Srinivasan, D. Koller, S.
Thrun, J. Rodgers and J. Davis, “SCAPE: shape
completion and animation of people,” ACM Trans-
actions on Graphics, Proceedings of SIGGRAPH
2005, vol. 24, issue. 3, pp. 408-416, July 2005.

[AR95] N. Arad and D. Reisfeld, “Image warping
using few anchor points and radial functions,” Com-
puter Graphics Forum, vol. 14, pp. 35-46, 1995.

[AK12] N. Arora, A. Kumar and P. Kalra, “Digital
restoration of old paintings,” WSCG International
Conference on Computer Graphics, Visualization
and Computer Vision 2012, pp. 347-356, June 2012.

[CT12] T. Chen, P. Tan, L. Q. Ma, M. M. Cheng, A.
Shamir and S. M. Hu, “Poseshop: Human image
database construction and personalized content syn-
thesis,” IEEE Transactions on Visualization and
Computer Graphics, vol. 19, issue. 5, pp. 824-837,
May 2013.

[CS01] Y. Chuang, B. Curless, D. Salesin, and R.
Szeliski, “A bayesian approach to digital matting,”
in proceedings of IEEE CVPR 2001, vol. 2, pp. 264-
271, Dec. 2001.

[CP04] A. Criminisi, P. Pérez and K. Toyama, “Region
filling and object removal by exemplar-based image
inpainting,” IEEE Transactions on Image Process-
ing, vol. 13, issue. 9, pp. 1200-1212, Sept. 2004.

[DA03] J. Davis, M. Agrawala, E. Chuang, Z. Popovic
and D. Salesin, “A sketching interface for articulated
figure animation,” SCA ’03, pp. 320-328, 2003.

[EP08] K. Eismann and W. Palmer, “Adobe photoshop
restoration and retouching,” New Riders Press, 3rd
edition.

[HS09] N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn
and H. P. Seidel, “A statistical model of human

pose and body shape,” Computer Graphics Forum
(Proceedings of Eurographics), vol. 28, issue. 2, pp.
337-346, March 2009.

[HK07] A. Hornung, E. Dekkers and L. Kobbelt,
“Character animation from 2D pictures and 3D mo-
tion data,” ACM Transactions on Graphics, vol. 26,
issue. 1, Jan. 2007.

[HW09] Z. Hu, G. Wang, X. Lin and H. Yan, “Recov-
ery of upper body poses in static images based on
joints detection,” Pattern Recognition Letters, vol.
30, issue. 5, pp. 503-512, Apr. 2009.

[LW06] A. Levin, D. Lischinski, and Y. Weiss, “A
closed form solution to natural image matting,”
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, CVPR ’06, vol. 1,
pp. 61-68, June 2006.

[RV12] M. Richter, K. Varanasi, N. Hasler and C.
Theobalt, “Real-time reshaping of humans,” In-
ternational Conference on 3D Imaging, Modeling,
Processing, Visualization and Transmission, pages
340-347, 2012.

[RK04] C. Rother, V. Kolmogorov and A. Blake,
“GrabCut: interactive foreground extraction using
iterated graph cuts,” ACM Transactions on Graph-
ics, Proceedings of SIGGRAPH 2004, vol. 23, issue.
3, pp. 309-314, Aug. 2004.

[SM06] S. Schaefer, T. McPhail and J. Warren, “Im-
age deformation using moving least squares,” ACM
Transactions on Graphics, Proceedings of SIG-
GRAPH 2006, vol. 25, issue. 3, pp. 533-540, July
2006.

[SJ04] J. Sun, J. Jia, C. K. Tang and H. Y. Shum,
“Poisson matting,” ACM Transaction on Graphics,
Proceedings of SIGGRAPH 2004, vol. 23, issue. 3,
pp. 315-321, Aug. 2004.

[TM11] M. T. Islam, K. M. Nahiduzzaman, Y. P. Why
and G. Ashraf, “Informed Character pose and pro-
portion design,” The Visual Computer: Interna-
tional Journal of Computer Graphics - Special Issue
on CYBERWORLDS 2010, vol. 27, issue. 4, pp. 251-
261, Apr. 2011.

[ZH10] S. Zhou, H. Fu, L. Liu, D. Cohen-Or and X.
Han, “Parametric reshaping of human bodies in im-
ages,” ACM Transactions on Graphics, Proceedings
of SIGGRAPH 2010, vol. 29, issue. 4, July 2010.

[SB12] S. Battiato, G. M. Farinella, G. Puglisi, D.
Raví, “Content-aware image resizing with seam
selection based on gradient vector flow,” in proceed-
ings of IEEE International Conference on Image
Processing ICIP 2012, pp. 2117-2120, Sept. 2012.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 238 ISBN 978-80-86943-75-6

Similarity Detection for Free-Form Parametric Models

Quoc-Viet Dang

University of Toulouse,

France

qdang2@n7.fr

Sandrine Mouysset

University of Toulouse,

France

sandrine.mouysset@irit.fr

Géraldine Morin

University of Toulouse,

France

morin@n7.fr

Abstract

In this article, we propose a framework for detecting local similarities in free-form parametric models, in particular

on B-Splines or NURBS based B-reps: patches similar up to an approximated isometry are identified. Many recent

articles have tackled similarity detection on 3D objects, in particular on 3D meshes. The parametric B-splines, or

NURBS models are standard in the CAD (Computer Aided Design) industry, and similarity detection opens the

door to interesting applications in this domain, such as model editing, objects comparison or efficient coding. Our

contributions are twofold: we adapt the current technique called votes transformation space for parametric surfaces

and we improve the identification of isometries. First, an orientation technique independent of the parameterization

permits to identify direct versus indirect transformations. Second, the validation step is generalized to extend to

the whole B-rep. Then, by classifying the isometries according to their fixed points, we simplify the clustering

step. We also apply an unsupervised spectral clustering method which improves the results but also automatically

estimates the number of clusters.

Keywords
similarity detection, parametric surfaces, isometry, spectral clustering

1 INTRODUCTION

Parametric surfaces, in particular Non-Uniform Ra-

tional B-Spline (NURBS), provide a powerful tool

in the hands of the academic and industrial com-

munities concerned with the design and analysis of

objects [Dim99a]. NURBS based B-reps (Bound-

ary representations) are industrial standards and are

widely used in different domains such as molecular

chemistry [Baj97a], 3D geographical information

systems [Cau03a] and mechanical components design

[Chu06a]. Additionally, similarity within a 3D shape is

a common phenomenon both in natural and in synthetic

objects. Many objects are composed by similar parts

up to a rotation, a translation or a reflection. Geometric

redundancy is an essential property that artists must

strive with in their works, that 3D designers must

provide in their conceptions so that the human vision

system perceives the object beauty. Similarity detection

within 3D models is then a first step towards numerous

interesting applications. In CAD, automatic search

of similarity between CAD models is used primarily

for model retrieval and indexing in large scale CAD

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

databases [Car06a, Chu06a, Che12a, Liu13a]. In

that context, end-users request automatic searches for

"similar enough" designs according to a given model or

sketch. Thus, the design reuse is encouraged by making

use of existing components. For 3D meshes, many

applications are studied such as pattern recognition,

form editing or data completion. For example, Mitra et

al. presented a symmetrization algorithm for geometric

objects that enhances approximate symmetries of a

model while minimally altering its shape [Mit07a].

Chaouch et al. [Cha08a] considered the reflection as

the main characteristic to align their 3D models. Li

et al. [Li11a] proposed a skull completion framework

based on symmetry and surface matching. With the

particular attractiveness of NURBS surfaces in 3D

design industry, the similarity detection would certainly

be useful. In fact, designers rarely start their works

from scratch, but rather adapt existing models to meet

new requirements. Statistically, it is shown that more

than 75% of design activity involves reusing existing

designs or starting from existing designs to address

new designs [Iye05a]. Besides, parametric NURBS

representations allow to easily and reliably access

differential informations over the surfaces. Their

representation by control points also gives the designer

intuitive control. Hence, local similarities detection

should be interesting for reverse engineering, allowing

in one hand the analysis of a given 3D model, and in

the other hand shape editing that is coherent with the

detected similarities. Data compression in order to

limit the storage size of a model can also benefit from

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 239 ISBN 978-80-86943-75-6

the redundancy identified in similar parts. As far as we

know, no research so far was dedicated to detecting the

local similarities on parametric models like B-Spline

or NURBS based B-reps. This article presents a

method allowing the identification of NURBS surface

patches that are similar to an approximated isometry.

Our contributions are as follow. First, to find the

best orientation of vectors of the characterized local

frame at a point on the surface, we propose a simple

method by analysing neighbourhood properties. We

thus distinguish between direct and indirect isometries

and propose to partition the isometries into five sub-

sets. This classification simplifies the clustering and

improves the identification of isometries. We further

improve the clustering step by applying a spectral

clustering algorithm. Unlike Mean Shift algorithm, our

approach is fully unsupervised, and as such, is able

to group automatically clusters without customizing

global parameters. The remainder of this article is

organized as follow. Section 2 reviews some previous

works and our approach in this work. Section 3

describes the proposed pipeline of our algorithm that

is detailed in the following sections. Section 8 shows

some results of similarity detection among numerous

experiments. Section 9 presents our conclusion and

future works.

2 PREVIOUS WORK

In recent years, many articles have been published on

similarity detection both in 2D image processing and

in 3D modeling. In a first approach, Zabrodsky et al.

[Zab95a] quantified existing symmetries within 2D and

3D objects, using a metric called the symmetry dis-

tance. The symmetry distance of a shape is defined

to be the minimum mean squared distance required to

move points of the original shape in order to obtain

a symmetrical shape. Sun et al. [Sun97a] converted

the symmetry detection problem into the correlation of

Gaussian images; rotational and bilateral symmetries

are identified by applying orientation histograms.

For 3D shape matching, two dominant techniques were

proposed. First, global feature-based techniques rep-

resents 3D objects as a set of global features, for ex-

ample, spherical-kernel moments [Cyb97a], or reduced

feature vectors [Car06a]. The other set of methods

uses graph-based techniques: the solid models are con-

verted into attributed graphs that represent the geomet-

rical and topological relationship between models en-

tities [Hil01a, Ma10a]. However, in both cases, these

techniques can neither identify similar parts within a

model nor compute the transformation between these

similar parts. Recently, many papers proposed to iden-

tify similarities within 3D meshes [Kaz04a, Pod06a,

Ber08a, Bok09a, Lip09a, Mit13a] with different ap-

proaches like planar-reflective symmetry, graph-based

Figure 1: Local Frames of two similar points pi et p j

according to right hand rule.

matching, or votes transformation space. Kazhdan et

al. [Kaz04a] introduced a reflective symmetry descrip-

tor that represents a measure of reflective symmetry for

an arbitrary 3D model for all planes through the model’s

center of mass. Podolak et al. [Pod06a] generalized this

approach to identify symmetries of 3D objects associ-

ated with an arbitrary plane. Graph-based approach re-

quires detecting local features on 3D shape from which

a neighborhood graph is build to describe the coarse

scale similarity structure of the object. Berner et al.

[Ber08a] perform subgraph matching in graphs of fea-

ture points while Bokeloh et al. [Bok09a] apply feature

lines.

Other recent works [Lip09a, Mit13a] applied new tech-

nique in symmetry detection that we call votes trans-

formation space. This technique bears some similar-

ity to the Hough transform: points on the model with

similar features are paired. A points pair corresponds

to the transformation between the two points and their

features; these transformations are cast to the transfor-

mation space and form a constellation of transforma-

tion votes. Clusters of these votes are candidates for

defining similar parts in the model. While Mitra et al.

[Mit13a] use Euclidean transformations as the feature

to extract similarity, Lipman et al. [Lip09a] adopt Mo-

bius transformations.

Among these approaches, the votes transformation

space attracts our interest since it allows to retrieve a

large class of potential transformations and it is able

to identify similar parts in existing 3D objects and

to characterize the transformation. In order to give a

general view of this scheme, we detail the algorithm

proposed in [Mit13a] that consists in the following four

steps:

1. Sampling and analysis: a set of points is sampled

over the surface of a 3D object. Since point posi-

tions are not sufficient to determine a general Eu-

clidean transformation, geometry features at each

sample are computed (the principal curvatures and

a local frame composed of the principal directions

and a normal vector). The signature is the couple of

principal curvatures; points on the surface are paired

if they have the same signature.

2. Pairing: each pair of points is associated a trans-

formation corresponding to a vote in transformation

space. Given two points pi and p j with their local

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 240 ISBN 978-80-86943-75-6

Figure 2: Proposed pipeline – (1) Sampling and signature computation, (2) Pairing and orientation, (3) Classifica-

tion of isometry, (4) Clustering, (5) Validation.

(orthonormal) frames consisting in two tangents and

a normal (figure 1), the transformation Ti j is com-

puted so that pi and its frame are mapped into p j

and p j’s frame. This transformation is then cast into

votes of transformation space Γ.

3. Clustering: in transformation space Γ, each point

Ti j represents a transformation between two similar

points. Hence, clusters of similar transformations

are identified since they may characterize two simi-

lar parts of the object.

4. Patching: ideally, a cluster of the previous step is a

set of point pairs which belong to a couple of surface

patches similar up to a transformation close to the

cluster. However, spatial coherence between point

pairs is lost in transformation space. Thus, this step

enforces spatial coherence of the point pairs by ap-

plying an incremental region growing algorithm.

Our proposed pipeline follows the same votes transfor-

mation space approach. Our contributions are as fol-

lows. First, to find the best vectors orientations of the

characterized local frame at a point on the surface, we

propose a simple method by analysing neighbourhood

properties. We thus distinguish between direct and in-

direct isometries and propose a partition the isometries

into five subsets. This classification simplifies the clus-

tering and improves the identification of isometries. We

further improve the clustering step by applying a spec-

tral clustering algorithm. Unlike Mean Shift algorithm,

our approach is fully unsupervised, and as such, is

able to group automatically clusters without customiz-

ing global parameters. In the following section, we

described our isometry detection relative to these four

steps.

3 PROPOSED PIPELINE FOR ISOME-

TRY DETECTION

Our work aims at identifying surface patches in a B-rep

model that are similar up to an approximated isometry

(we do not consider scaling). To identify the similar-

ities, we adapt the votes transformation space that are

used successfully in 3D meshes area [Lip09a, Mit13a].

Our pipeline consists in five consecutive steps. First,

points are sampled over all B-reps of a CAD model by

a sampling technique that adapts the parameterization

(section 4.3). When the signature at each point is com-

puted, vector directions are determined by parameteri-

zation, so it is not a geometric property of the surface.

For this reason, local frames are not coherent, in partic-

ular to identify indirect isometries. We propose then a

simple method to overcome this problem (section 4.4).

Isometries between pairs of points are computed and

partitioned into five types, based on orientation and on

their fixed points (section 5). Next, clustering is applied

in these five different spaces using a fully unsupervised

spectral clustering algorithm to extract the evidence of

existing similarity in the model (parameters are auto-

matically computed). The isometries classification has

two advantages: first it simplifies the clustering, but

it also maps the pairs in transformation spaces of re-

duced dimensions. In this pipeline, the computation

of the transformations is a major concern that affects

considerably the quality of the result. By parametriz-

ing the isometries differently, we improves the identi-

fication of isometries. Finally, similarities among lo-

cal patches are identified following an adaptive grow-

ing process adapted for multiple faces in B-rep models

(section 7).

4 COMPUTATION OF THE SIGNA-

TURES

In our setting, we work with B-rep models based on

trimmed free-form patches made of NURBS tensor

product surfaces. For the first three steps of the

similarity detection pipeline, it is sufficient to consider

the patches independently. Thus, in this section,

we focus on NURBS tensor product surfaces and in

particular in computing a set of sample points and their

characterizing signatures.

4.1 NURBS based models

Let S be a tensor product NURBS surface of bi-degree

(p,q) associated to two knots vectors u = {u0, . . . ,un}
and v = {v0, . . . ,vm} and a set of control points C =
{

Pi j | i ∈ [0,n− p] , j ∈ [0,m−q]
}

weighted by wi j ∈
R, defined by the following equation:

S(u,v) =
∑

n−p
i=0 ∑

m−q
j=0 Ni,p(u)N j,q(v)wi jPi j

∑
n−p
i=0 ∑

m−q
j=0 Ni,p(u)N j,q(v)wi j

. (1)

In a B-rep model, faces are not only represented by this

type of NURBS, but also by other types such as planes,

cylinders or spheres. However, one of the advantages

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 241 ISBN 978-80-86943-75-6

of NURBS is that we can represent free-form as well as

quadric surfaces [Cui11a].

4.2 Local differential properties: compu-

tation of the signature

Any point on the parametric surface, corresponding to a

parametric coordinates (u,v), is attached to a set of per-

sistent properties which is called the signature at that

point. In our work, the signature at each point is com-

posed of the two principal curvatures and an orthonor-

mal affine frame having origin at that point, the unit

vectors are the normal vector and the two principal di-

rections (i.e. tangent vectors associated to the consid-

ered principal curvatures). The signature computation

at a specific point on NURBS surface is based on local

differential properties that could be evaluated from the

first and the second fundamental form [Str61a, Far92a].

The first fundamental form that describes completely

the metric properties of a surface, is defined as the dis-

tance of two points on a curve of the surface:

ds2 = E du2 + 2F du dv + G dv2 (2)

where E = Su ·Su, F = Su ·Sv, G = Sv ·Sv, and ds is also

called the element of arc.

The first fundamental form states that, for a given point

p, partial derivatives Su and Sv generate a tangent plane

to the surface of origin p. Hence, the unitary normal

vector is:

n =
Su ∧Sv

∥

∥Su ∧Sv

∥

∥

=
1

√
EG−F2

(Su ∧Sv) (3)

It associates to non normalized vectors Su, Sv to form

an affine frame of origin p.

Next, the second fundamental form of a parametric sur-

face is defined by:

κ cosφds2 = Ldu2 +2Mdudv+Ndv2 (4)

where L = Suu ·n, M = Suv ·n, N = Svv ·n, and Suu, Suv,

Svv are second partial derivatives at p.

Equation (4) means that, for a given direction du/dv in

u,v plane and a given angle φ , the first and second fun-

damental forms allow us to compute the curvature κ of

a curve traced on the surface, also the tangent pointing

toward this direction.

For this reason, two symmetric matrices are introduced:

F1 =

(

E F

F G

)

and F2 =

(

L M

M N

)

(5)

Because Su and Sv are linearly independent, F1 is al-

ways invertible. The matrix F
−1
1 F2 is also symmet-

ric and so always has real eigenvalues and orthogonal

eigenvectors. As a result, the two eigenvalues κ1, κ2 are

the two principal curvatures and the two eigenvectors

t1 = (ξ1,η1)
T , t2 = (ξ2,η2)

T define the two principal

directions:
t1 = ξ1Su +η1Sv

t2 = ξ2Su +η2Sv
(6)

As for umbilical points (κ1 = κ2), principal directions

are not uniquely defined, thus we do not consider them.

For other points, the orientation of t1 and t2 depends on

the parameterization. Section 4.4 details the way we

orient the frame vectors.

Figure 3: On the left: the orientation of the frame vec-

tors follows the parameterization, so the two frames are

not symmetric. On the right: we propose to find a co-

herent orientation of the vector frames by analyzing the

points neighbors. Now, the two frames are symmetric,

as is the underlying surface.

4.3 Sampling

Every point on the surface that is associated to a sig-

nature characterized by its local differential properties,

might be potentially sampled for later computations.

By benefiting from the facilities offered by parametric

surfaces, a net of sample points on the surface is ob-

tained by sampling uniformly the two parameters u and

v (see equation 1). However, the parameterizations be-

tween surfaces in B-rep models vary. The uniform sam-

pling along u and v may lead to a sparse net of sample

points (figure 4a). To have a relatively uniform distance

between points among all surfaces, we propose an iter-

ator method to determine the two parameter gaps based

on the distance between two points on each surface (fig-

ure 4b). In addition, the sampling affects the following

steps of the algorithm in two ways. First, the denser

sampling is, the better result is. Second, the denser sam-

ples also worsen the performance. For this reason, we

evaluate a net of points uniformly on the surface but se-

lect randomly a limited number of samples following

a uniform law on this points net (figure 4c). Moreover,

the initial samples net is reserved for the validation step.

4.4 Robust surface orientation

Two sample points pi and p j are considered similar if

their principal curvature matches, that is, κ i
1 ∼ κ

j
1 and

κ i
2 ∼ κ

j
2 . Two similar points are paired to evaluate the

transformation between them. As mentionned in sec-

tion 3, the orientation of the local frames vectors de-

pend on parameterization. However, a coherent orien-

(a) (b) (c)
Figure 4: Sampling. (a): Uniform sampling, (b): Adap-

tive sampling, (c): Chosen sample points

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 242 ISBN 978-80-86943-75-6

(a) No fixed point (b) Line of fixed points (c) Plane of fixed points
Figure 5: Classification of Indirect Isometries based on fixed points. Here, local frames consist of a normal (red

vector) and two principal directions (blue and green vectors).

tation of the frame is necessary, for example to distin-

guish direct from indirect transformation. The normal

vector well oriented (and coherently for the whole sur-

face) by the parameterization, but we modify the direc-

tion of tangent frame vectors. For each pair (pi, p j), we

identify the orientation of principal vectors at p j that

is the most coherent to direction associated to those at

pi. Suppose that the frame at point pi is fixed, in other

words, the direction of vectors t i
1 and t i

2 is arbitrarily

fixed. Consider now the frame at p j. Each of the tan-

gent vector at p j can be oriented arbitrarily. Consider-

ing both tangent vectors, there are four possible differ-

ent orientations of principal vectors at p j.

We project the neighbours of pi into the tangent plane,

and order them into a sequence by turning around pi.

This gives us a reference list of curvatures. The four

lists of neighbours of p j corresponding to the four pos-

sible orientations of t
j
1 and t

j
2 are compared to the ref-

erence list. The chosen directions are thus the one that

minimizes the sum of squares of differences between its

list and the reference list.

Figure 3 shows a case of a plane symmetry where the

initial orientation of vectors would have led to identify-

ing a (wrong) direct transformation between points pi

and p j.

5 ISOMETRY SPACES

Instead of considering all transformations in a 6-

dimensional transformation space [Mit13a], we first

partition the isometries and map them into one of

the five isometry spaces. The advantage of these

classifications is two fold: it simplifies the clustering,

but also, it expresses the transformation in a space

with the appropriate dimension. As an example,

clustering translations in the original 6-dimensional

transformation space requires the clustering algorithm

to discriminate between points that belong to a degen-

erated 3-dimensional subspace. In our approach, the

clustering will be applied directly in this subspace,

taking into account only the relevant parameters.

5.1 Computation of the isometry

Given a points pair (pi, p j) as in the figure 1, we would

like to evaluate the transformation from pi to p j so

that pi move to p j’s position and that the computed or-

thonormal frame at pi aligns to the frame at p j. We

denote Ri j the rotation between these two frames and

ti j the corresponding translation. The computation is as

follow:

Ri j =

ni

t i
1

t i
2

T

∗

ni ·n j ni · t j
1 ni · t j

2

t i
1 ·n

j t i
1 · t

j
1 t i

1 · t
j
2

t i
2 ·n j t i

2 · t
j
1 t i

2 · t
j
2

∗

ni

t i
1

t i
2

 (7)

ti j = p j −Ri j ∗ pi (8)

The transformation Ri j is an orthogonal matrix, i.e.

Ri j ∈ O(3), thus Ti j : pi(n
i, t i

1, t
i
2) 7−→ p j(n

j, t
j
1 , t

j
2) is

then an isometry. Hence, Ti j belongs to Is(X), the isom-

etry group. We denote
−→
Ti j the associated linear trans-

form, that is, the transform of matrix Ri j.

5.2 Classification of isometries

Affine isometry in three dimensional space, can be clas-

sified by considering the nature of its fixed points, ac-

cording to the following theorem [Tis88a].

Theorem 1 Given T ∈ Is(X), there exists a unique

couple (g, t−→a) where g is an isometry having a non

empty set of fixed points G and here t−→a is a translation

of −→a ∈
−→
G such that T = t−→a ◦g. Additionally:

• T = g ◦ t−→a and
−→
G = E(1,

−→
T), the vector subspace

associated with the eigenvalue 1.

• T = g and −→a = 0 if and only if T has at least one

fixed point.

• If T has no fixed point, dimG ≥ 1.

In our case, suppose that
−→
T is not the identity and

α = dimE(1,
−→
T),

−→
T is direct if det(

−→
T) = 1 and

−→
T is

indirect if det(
−→
T) = −1. We can deduce the isometry

type of T depending on its fixed points, as follow:

Direct Isometry

1. A line (D) of fixed points (α = 1, −→a = 0): T is

a rotation around the line (D) directed by −→n ∈

E(1,
−→
T).

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 243 ISBN 978-80-86943-75-6

2. No fixed point (−→a 6= 0): T is either a translation

of −→a or the composition of a rotation around (D)
directed by −→a and a non-zero translation colinear

to (D).
Indirect Isometry

1. A unique fixed point A (α = 0, −→a = 0): T con-

sists of a rotation around an axis (D) directed by
−→n ∈ E(−1,

−→
T) and passing through A, and a re-

flection relative to the plane (G) containing A and

perpendicular to (D) (figure 5a).

2. A plane G of fixed points (α = 2, −→a = 0): T is a

symmetry relative to the plane G that is defined

by −→n 1,2 ∈ E(1,
−→
T) (figure 5b).

3. No fixed point (−→a 6= 0): T is composed of a sym-

metry relative to a plane G whose the normal
−→n ∈ E(−1,

−→
T), and a non-zero translation par-

allel to this plane (figure 5c).

Table 1 details the classification of isometries into five

subsets. These groups will be treated separately to de-

tect similar patches either among these surfaces or in a

surface itself.

While the groups of direct isometries identify approxi-

mated patches by rotating and/or translating, the group

of indirect isometries determine approximated ones by

reflecting.

❍
❍
❍
❍
❍

FP

Iso
Indirect Direct

Without Ti j = sG ◦ t−→a Ti j = r(D,θ)◦ t−→a
Line of Ti j = sG ◦ r(D,θ) Ti j = r(D,θ)
Plane of Ti j = sG Not possible

Table 1: Classification of the isometries based on isom-

etry types (Iso) and nature of fixed points (FP); sG is a

symmetry relative to the plane G; t−→a is a translation of

vector −→a ; r(D,θ) is a rotation of angle θ around axis

(D).

5.3 Comparison of two isometries

We now have five different transformation spaces, and

for each, will apply a clustering algorithm. The cluster-

ing need to have a distance in each of these spaces, that

is, we derive distances for two isometries of the same

type.

For direct isometries, the components of isometries are

the rotation axis (D) and angle θ , and the translation t−→a .

As the rotation axis and the translation have the same

direction, the translation vector −→a and a point P on the

axis are sufficient. For comparing the rotations we use

the angles and the distance between the two axes, and

the difference of the angles; for translations, we still

compare the length of the translation vectors (the angle

is the same as for the axes).

For indirect isometries, the analysis is identical to the

direct setting, except for the symmetry plane G. The

comparison between planes consists in comparing the

normals to these planes and computing the distance be-

tween the mid-point and the plane.

In the following, we denote d(T,T ′) the distance be-

tween the two isometries T and T ′ corresponding to

the two point pairs (pi, p j) and (pi′ , p j′); Mi j, Mi′ j′ the

midpoints of [pi, p j] and [pi′ , p j′]; dist(P,G) denotes the

distance from a point, line or a plane to another one.

Direct isometries

d(T,T ′) = (1−|cos(D ·D′|)+ |(θ−θ ′)|
2π

+ω1dist(D,D′)+ω2|(‖t‖−‖t ′‖)|
(9)

Indirect isometries

d(T,T ′) = (1−|cos(−→n ·
−→
n′)|)

+ω1(dist(Mi j,G
′)+dist(Mi′ j′ ,G))

+
|(θi j−θi′ j′)|

π
(10)

The weight ωi are chosen as the diagonal of the bound-

ing box of the model and so that the terms all vary be-

tween 0 and 1.

6 CLUSTERING

After computing the isometries as described in the pre-

vious section (Section 5), the clustering step aims at

grouping pairs of points having approximatively the

same isometry. This step is based on a spectral ap-

proach called spectral clustering and differs from the

Mean Shift algorithm [Mit13a] which requires difficult

parameters tuning.

6.1 Method

Introduced in machine learning by Shi et al.

[Shi00a, Von07a], the spectral clustering is an un-

supervised method that consists in extracting dominant

eigenvectors of a normalized Gaussian affinity matrix.

These eigenvectors span a low dimensional spectral

embedding in which projected data are grouped

into clusters. We describe the different steps of this

clustering method below.

Let d(T,T ′) be the distance between the two isometries

T and T ′ in the same class corresponding to the two

point pairs (pi, p j) and (pi′ , p j′). Note that d(T,T ′),
and consequently the affinity measure (11), will change

depending on the class of the isometries (as described

in section 5.2). Let S = {(pi, p j)}{i, j=1..Nl} ∈ Γl , l ∈
[|1,5|]} be the set of Nl pairs in the l-th isometry space

and let k be the number of clusters.

This method is based on Gaussian affinity measure, its

parameter and their spectral elements. It uses inher-

ent properties of the Mercer kernel (here, the Gaussian

kernel) that implicitly projects data in a large scale di-

mension space where data will be linearly separable.

In other words, the Gaussian measure defines a near-

ness criterion in the linear vector space and weights the

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 244 ISBN 978-80-86943-75-6

SpectralClustering (S,k)

Construct the affinity matrix A ∈ R
Nl×Nl defined by:

Aii′ =

e

(

− d(T,T ′)2

(σ/2)2

)

if (pi, p j) 6= (pi′ , p j′),

0 otherwise.
(11)

Construct the normalized matrix : L = D− 1
2 AD− 1

2 with

Di,i = ∑
Nl

r=1 Air,∀i ∈ {1, ..Nl}.

Construct the matrix X = [X1X2..Xk] ∈ R
Nl×k by stacking

the k largest eigenvectors of L.

Construct the matrix Y by normalizing rows from matrix

X .

Consider each row of matrix Y as a point in R
k and group

them into k clusters with K-means method.

Assign the original point pair (pi, p j) to class θ if and only

if the ith row of matrix Y is assigned to class θ .

Algorithm 1: Spectral Clustering

matching scores. Moreover, classes of arbitrary shapes

(in particular, non convex) may be defined [Von07a].

Furthermore, this algorithm only depends on two pa-

rameters which are the Gaussian Affinity parameter and

the number of classes k. To make this method fully un-

supervised, we adopt a heuristic to determine each pa-

rameter [Mou11a].

6.2 Affinity parameter

The expression of the Gaussian affinity, defined in

equation (11), depends on the parameter σ . The

parameter σ defines a threshold on transformation

distances between point pairs (pi,p j). To set it, we

consider a uniform distribution of the points, that is,

such that all points are equidistant from each other.

Elements of S which defines an isotropic distri-

bution are included in a bounding box of size

Dmax = max
(pi,p j) 6=(pi′ ,p j′)

d(T,T ′) in each of the m dimen-

sion – d(T,T ′) is defined in section 5.3. By dividing

this box into Nl identical volumes, the (uniform)

distance between two points is, noted Duni f , is:

Duni f =
max(pi,p j) 6=(pi′ p j′)

d(T,T ′)

N
1/m

l

. (12)

where m is the dimension of the isometry space (varies

depending on the nature of the isometry). We can con-

sider that if a cluster exists, there are points that are

separated by a distance lower than Duni f . Similarly, the

Gaussian parameter σ is used as a fraction of distance

Duni f : σ = Duni f /2. Thus this heuristic integrates a no-

tion of density of points in a m-dimensional space, and

derives a threshold from which points are considered

closed.

6.3 Number of clusters

The choice of number of clusters is a general problem

for all unsupervised clustering algorithms[Von07a]. To

determine this number of clusters k, we adopt a try-and-

test approach by exploiting the Gaussian affinity matrix

A and defining a quality measure based on the ratio of

Frobenius norms. Let αk be a bound on the number

of clusters to identify. For a value k′ ∈ [|2,αk|], the

affinity matrix is indexed per cluster. A block matrix

is then defined: off-diagonal blocks represent the affin-

ity between clusters and diagonal blocks represent the

affinity within the cluster. From this block structure,

we can evaluate a mean ratio, called rk′ , between all

off-diagonal blocs and the diagonal blocks in Frobenius

norm. From this, among the values k′ ∈ [|2,αk|], the

minimum of the ratio rk′ defines the optimal number of

classes k:

k = arg min
k′∈[|2,αk|]

rk′ . (13)

This minimum corresponds to a case where the affinity

between clusters is the lowest and the affinity within

cluster is the highest. More details in this interpretation

can be found in [Mou11a].

7 VALIDATION

Ideally, every class obtained by the clustering is a set of

point pairs which belong to a couple of surface patches

similar up to an approximated isometry. However, spa-

tial coherence between point pairs is lost during the

isometry clustering. Therefore, the purpose of the vali-

dation is to overcome this problem in order to identify

similar patches. We present the validation step within

a NURBS patch (section 7.1) and then consider region

growing over a B-Rep model, which may include mul-

tiple NURBS patches (section 7.2).

7.1 Validation within a NURBS patch

The validation is performed by a region expanding pro-

cess. Given Ck, a class of points pairs in an isometry

space, a pair (pi, p j) is selected randomly. The chosen

isometry Ti j is applied to the eight neighbours of pi,

their images are thus compared to eight neighbours of

p j. If the deviation of any neighbour is under a chosen

threshold, the points pair is accepted as belonging to the

two similar patches. This process continues iteratively;

we further test the neighbours of pi. It is repeated un-

til all points on the surface are visited, or the condition

does not hold, or until all pairs in class are considered.

This step generates a candidate for two similar patches.

Nevertheless, this process stops at the boundary of the

surface. But a 3D object modelled by NURBS based

B-rep is composed by several NURBS surfaces.

7.2 Validation within a B-rep

The figure 6 represents an overview of the B-rep specifi-

cation in the context of OpenNURBS. In fact, a NURBS

based B-rep is a set of trimmed NURBS that consists in

a surface and some trimming contours. The trimming

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 245 ISBN 978-80-86943-75-6

Find the closest edge e to p

if e is shared with other face then

Determine the adjacent face S

Take the set P of points on all edges of S

Find q the closed point to p in P

Find curvilinear parameters of q

Algorithm 2: Identification of adjacent point

contours define which parts of the surface are kept or

removed. In OpenNURBS context, the loop is an ab-

straction of a trimming contour. It is defined by a set

of closed trimming curves that are in turn expressed by

trims. Each trim is attached to a 2D curve and an edge.

The 2D curve defines the curvilinear coordinates of the

trim within the surface. The edge is a 3D curve on the

surface and is a boundary. Furthermore, an edge can

be shared among multiple trims. Given p the point on

Figure 6: Boundary representation (B-rep) in the con-

text of OpenNURBS (from http://wiki.mcneel.com/).

the boundary of the surface where the validation cannot

continue. The proposed algorithm 2 identifies a point q

on an adjacent surface close to p.

8 EXPERIMENTS

We have implemented the pipeline described in section

3 to identify the similar patches within the following B-

Rep models. We use CAD models under OpenNURBS

specifications (http://www.opennurbs.org/) for our ex-

periments. In general, the main tool that affects directly

on the robustness of our pipeline is the surface orien-

tation algorithm (section 4.4) and the classification of

isometries (section 5.2). In the following, we propose

some test scenarios to validate these tools following by

the results on some CAD models of our pipeline.

Since the surface orientation algorithm is only applica-

ble for indirect isometries, the models for our test cases

exhibit only these types. We proposed three B-rep mod-

els of leaves as showed in the figure 7. Given NExp the

number of expected re-oriented pairs and NTotal the to-

tal number of pairs computed in each model. Then, the

tolerance rate RTol is the ratio between these two fac-

tors.

(a) Sym. (b) Sym. + Rot. (c) Sym. + Trans.

Figure 7: Proposed CAD models representing the sym-

metry (Sym.), the rotation (Rot.) and the translation

(Trans.) for the surface orientation algorithm test cases.

According to table 2, our test cases shows that this al-

gorithm has a tolerance rate up to 80%. Despite the ori-

entation still failed at points whose the opposite neigh-

bors (symmetric via these points in the parameters net)

are similar, this algorithm guarantees that the classifi-

cation of isometries is reliable and thus the similarity

detection is robust. Next, by applying our algorithm of

Model NExp NTotal RTol

7a 520 621 0.84

7b 509 618 0.82

7c 505 621 0.81

Table 2: Tolerance rate of the surface orientation algo-

rithm.
Automatic Spectral clustering [Mou11a], the results of

clustering in the figure 8 illustrate the effectiveness be-

tween Euclidean transformation approach [Mit13a] and

our approach of classification of Isometry. This figure

represents three leaves in a model that have two sym-

metric pairs of leaves. Besides, every line that connects

two points having the same signature corresponds to a

point in transformation space. Additionally, lines with

the same color are in the same cluster (i.e. the same

transformation in general). In this test case, we use the

computation of Euclidean transformation and the dis-

tance metric as represented by Mitra et al. [Mit13a]. We

can observe that while there are some wrong classified

points in the Euclidean transformation approach (fig-

ure 8a), our approach can address this problem (8b). In

other words, with the aid of the classification of isome-

tries, the output of the clustering algorithm was signifi-

cantly improved. Moreover, the use of Automatic Spec-

tral clustering algorithm also contributes to the robust-

ness of our pipeline. In fact, the results shown in this

figure are obtained without tuning any parameter.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 246 ISBN 978-80-86943-75-6

(a) (b)
Figure 8: Comparison of the effectiveness between the

Euclidean transformation approach 8a and the classifi-

cation of Isometry approach 8b.

Also, the figure 9 presents the result of our proposed

validation within B-rep. The figure 9a shows that there

are two separated B-reps that are formed by several

trimmed NURBS surfaces displayed by different col-

ors. As in the figure 9b, the validation has successfully

validated all the points over the surface of these B-rep

objects.

(a) Original B-reps (b) Result
Figure 9: Result of validation within a B-rep.

Finally, the figures 10, 11, 12 and 13 represent the final

results of our experiments on some CAD models down-

loaded from GrabCAD (http://grabcad.com/). These re-

sults represent different isometries detected by our pro-

posed pipeline. The first set of leave models exhibit the

indirect isometries. In fact, while the figure 10a shows

a symmetry, the figure 10b represents a symmetry fol-

lowing by a rotation axis, and a symmetry following

by a translation is detected in the figure 10c. Also, the

figures 12a and 12b describe the direct isometries be-

tween the four legs of a dragon: this isometry is de-

composed into a translation and a rotation. The figures

of the plane and the sunglasses demonstrate the sym-

metry between different parts in these models. In addi-

tion, the figure 11a also demonstrates a direct isometry

composed by a rotation axis between the two parts of

the plane tail. Next, the figure 13a and 13b describe the

similarity detection result of a series of human head in a

model, in which, from left to right, every head presents

a refinement step on the surface. In other words, there

are some deformations between these heads. When ap-

plying our pipeline, one of the identified transforma-

tions is the translation between the green dots and the

blue dots (figure 13a), another is the symmetry inside

a B-rep (figure 13b). This result demonstrates that our

pipeline works well even if there is a slight deformation

between the similar surfaces.

(a) (b) (c)
Figure 10: Similarities in leaves models.

(a) (b)
Figure 11: Symmetry detected in models.

(a) (b)
Figure 12: Direct isometry detected in models.

(a) (b)
Figure 13: Similarities detected in a model of human

heads.

9 CONCLUSION

In this article, we propose an algorithm to identify sim-

ilar parts within objects modelled by NURBS based B-

Reps, by adapting and improving the votes transforma-

tion space approach described by Mitra et al. [Mit13a].

Beside adapting the approach for parametric represen-

tations, we have proposed a local coherent frames ori-

entation simply based on the points neighbours. A (ro-

bust) globally coherent orientation is then insured at

the validation step. The local orientation allows to sort

direct and indirect isometries. Furthermore, based on

the analysis of fixed points, local isometries are fur-

ther partitioned into five subsets. The experiments show

that this classification before the clustering steps signif-

icantly improves the results. Furthermore, the cluster-

ing was further improved by using a fully unsupervised

spectral method, for which, unlike for the Mean-shift

algorithm, parameter tuning is not necessary. In partic-

ular, the number of isometries (clusters) to be identified

does not need to be known in advance. Finally, the vali-

dation step extends the identified isometries among dif-

ferent NURBS patch within the B-rep. We are now able

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 247 ISBN 978-80-86943-75-6

to recover isometric patches of B-splines or NURBS

surfaces or similar to an isometry, or an approximate

isometry (like shown in the experiment section). For

future work, first we would like to filter the similar-

ity detection by filtering similarities between control

points. Second, we would like to exploit the isometries

for applications: by linking the control structures cor-

responding to these patches, to offer the possibility to

coherently edit or segment the models. Moreover, we

could use the similarity to limit the storage size of the

model.

10 REFERENCES

[Baj97a] Bajaj, C., Lee, H. Y., Merkert, R., and Pascucci, V.

NURBS based B-rep models for macromolecules and

their properties. Proc. of Symposium on Solid modeling

and applications, p. 217-228, 1997.

[Ber08a] Berner, A., Bokeloh, M., Wand, M., Schilling, A.,

and Seidel, H. P. A graph-based approach to symmetry

detection. Proc. of conf. on Point-Based Graphics, p. 1-

8, 2008.

[Bok09a] Bokeloh, M., Berner, A., Wand, M., Seidel, H.

P., and Schilling, A. Symmetry detection using feature

lines. Computer Graphics Forum, p. 697-706, 2009.

[Car06a] Cardone, A., Gupta, S.K., Deshmukh, A., Karnik,

M. Machining feature-based similarity assessment

algorithms for prismatic machined parts. Computer-

Aided Design (C A D) 38, p. 954-972, 2006.

[Cau03a] Caumon, G., Sword Jr, C. H., and Mallet, J. L.

Constrained modifications of non-manifold b-reps.

Proc. of the symposium on Solid modeling and ap-

plications, p. 310-315, 2003.

[Cha08a] Chaouch, M., and Verroust-Blondet, A. A novel

method for alignment of 3D models. Shape Modeling

Internaltional, p. 187-195, 2008.

[Che12a] Chen, X., Gao, S., Guo, S., and Bai, J. A flex-

ible assembly retrieval approach for model reuse.

Computer-Aided Design 44, p. 554-574, 2012.

[Chu06a] Chu, C.H., and Hsu, Y.C. Similarity assessment of

3D mechanical components for design reuse. Robotics

and Computer-Integrated Manufacturing 22, p. 332-

341, 2006.

[Cui11a] Cuilliere, J.C., François, V., Souaissa, K., Be-

namara, A., and BelHadjSalah, H. Automatic com-

parison and remeshing applied to CAD model

modification.Computer-Aided Design 43, p. 1545-

1560, 2011.

[Cyb97a] Cybenko, G., Bhasin, A., and Cohen, K.D. Pattern

recognition of 3D CAD objects: Towards an electronic

yellow pages of mechanical parts. International Jour-

nal of Smart Engineering System Design, no 1, p. 1-13,

1997.

[Dim99a] Dimas, E., and Briassoulis, D. 3D geometric mod-

elling based on NURBS: a review. Advances in Engi-

neering Software, no 9, p. 741-751, 1999.

[Far92a] Farin, G. Courbes et surfaces pour la CGAO - Con-

ception Géométrique Assistée par Ordinateur. Masson,

1992.

[Hil01a] Hilaga, M., Shinagawa, Y., Kohmura, T. Topology

matching for fully automatic similarity estimation of

3D shapes. Proc. on Computer graphics and interactive

techniques, p. 203-212, 2001.

[Iye05a] Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., and

Ramani, K. Three-dimensional shape searching: state-

of-the-art review and future trends. Computer-Aided

Design 37, p. 509-530, 2005.

[Li11a] Li, X., Yin, Z., Wei, L., Wan, S., Yu, W., and Li, M.

Symmetry and template guided completion of damaged

skulls. Computers and Graphics 35, p. 885-893, 2011.

[Lip09a] Lipman, Y., and Funkhouser, T. Möbius voting for

surface correspondence. ACM Transactions on Graph-

ics (TOG). ACM, p. 72, 2009.

[Liu13a] Liu, Y.J., Luo, X., Joneja, A., Ma, C. X., Fu, X.

L., and Song, D. User-Adaptive Sketch-Based 3D CAD

Model Retrieval, 2013.

[Kaz04a] Kazhdan, M., Chazelle, B., Dobkin, D.,

Funkhouser, T., and Rusinkiewicz, S. A reflective sym-

metry descriptor for 3D models. Algorithmica 38, p.

201-225, 2004.

[Ma10a] Ma, L., Huang, A., and Wang, Y. Automatic dis-

covery of common design structures in CAD models.

Computers and Graphics 34, p. 545-555, 2010.

[Mit07a] Mitra, N.J., Guibas, L.J., and Pauly, M. Sym-

metrization. ACM Transactions on Graphics (TOG)

26, p. 63, 2007.

[Mit13a] Mitra, N. J., Pauly, M., Wand, M., and Ceylan, D.

Symmetry in 3d geometry: Extraction and applications.

Computer Graphics Forum, 2013.

[Mou11a] Mouysset, S., Noailles, J., Ruiz, D., and Guivarch,

R. On a strategy for spectral clustering with parallel

computation. Proc. of VECPAR. p. 408-420, 2011.

[Shi00a] Shi, J., and Malik, J. Normalized cuts and image

segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 22, p. 888-905, 2000.

[Str61a] Struik, D. J. Lectures on classical differential geom-

etry. Courier Dover Publications, 1961.

[Sun97a] Sun, C., and Sherrah, J. 3D symmetry detection

using the extended Gaussian image. IEEE Trans. on

Pattern Analysis and Machine Intelligence 19, p. 164-

168, 1997.

[Tis88a] Tisseron, C. Géométries affine, projective et eucli-

dienne. Hermann, 1988.

[Pod06a] Podolak, J., Shilane, P., Golovinskiy, A.,

Rusinkiewicz, S., and Funkhouser, T. A planar-

reflective symmetry transform for 3D shapes. ACM

Trans. on Graphics, p. 549-559, 2006.

[Von07a] Von Luxburg, U. A tutorial on spectral clustering.

Statistics and computing 17, no 4, p. 395-416, 2007.

[Zab95a] Zabrodsky, H., Peleg, S., and Avnir, D. Symmetry

as a continuous feature. IEEE Transactions on Pattern

Analysis and Machine Intelligence 17, p. 1154-1166,

1995.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 248 ISBN 978-80-86943-75-6

Generation of Parameterized Models for Vessels Design

Ruben G. Diaz.2, Marcelo Dreux1, Luiz Cristovão G. Coelho2
1Deparment of Mechanical Engineering

2Tecgraf-Computer Graphics Group
Pontifícia Universidade Católica do Rio de Janeiro

Rua Marquês de São Vicente, 225, Gávea
Phone: +55 (21) 3527-1162/1639/1164

CEP 22453-900 - Rio de Janeiro - RJ - BRAZIL
rgomez@tecgraf.puc-rio.br, dreux@puc-rio.br, lula@tecgraf.puc-rio.br

ABSTRACT

This work proposes an integrated environment for modeling, and static and dynamic analysis of vessels. The main advantage of
the proposed environment is that it is possible to automatically obtain variants of a specific model in order to achieve a desired
configuration, not only in relation to geometry but also concerning the static stability aspect. This environment uses the Lua
programming language and it is possible to define global variables to be used as parameters which retrieve or modify modeling
values such as length, width, height, and so on. Any model can be parameterized, as a function of user chosen variables, which
allows an automatic modeling with the variation of those parameters.

Keywords: Geometric Modeling, Computer Aided Geometric Design, Vessel Stability, Computational Geometry, Mesh
Generation and Simplification, Lua.

1 INTRODUCTION
Many different engineering areas deal with complex
geometry shapes such as compressors, turbines, vessel
units, car, etc and relies on different kinds of modeling
systems ([3], [19], [4], etc) that are capable to reproduce
these shapes. Those systems can also define a finite
element mesh in order to perform numeric simulations.

The area of Computer Aided Ship Hull Design
(CASHD) is concerned with modeling systems that can
generate different shapes and geometries of a vessel
unit in an iterative or automatic manner.

The design and construction of an offshore vessel
unit is not a simple task. Many aspects have to be
be considered before building it, as in all engineering
projects. The most used methodology to develop an
offshore unit was proposed by Evans [11].

The designer of a vessel unit searches for a solution
that best fits the operational requirements, while
attending the economic and engineering constraints.
During this search the designer will come up with
several solutions that can be either unfeasible or do not
fulfill the design criteria. Therefore, it is necessary a
rational approach to guide the designer in this pursuit.

Bearing this scenario in mind, PETROBRAS
(the Brazilian oil Company) has developed two

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

softwares in collaboration with two research groups:
CENPES (Research Center of PETROBRAS) and
Tecgraf (Computer Graphic Technology Group) from
PUC-Rio. These softwares are called MG (Mesh
Generator) [8] and Sstab [7].

MG is used during the modeling phase in order
to create the basic geometry of a vessel unit. The
meshes for static and dynamic analysis are also
generated and then in the phase of static stability
analysis the Sstab software is used. The static stability
evaluates the capacity of the vessel unit to restore
its initial equilibrium after any perturbation. Finally,
the Wamit [21] software is used to perform dynamic
analysis in order to study the influence of the sea waves
against the vessel unit structure.

2 RELATED WORK
Coelho [8] presented a modeling system based on
patches (MG-Mesh Geneator), which makes use of a
boundary representation model (BRep). Kassar [16]
implemented an efficient solution to solve the surface
mesh generation problem but representing the regions
where the surface curvature changes using a reduced
set of non uniform faces. This approach uses a
modification of the space quadtree subdivision.

Regular meshes using NURBS surfaces are generated
for simulation purposes and in some cases a technique
that uses advancing front mesh generation with
quadtrees is used where it is not possible to create a
regular mesh [18]. Another work that uses NURBS
surfaces in order to perform ship hull modeling is
presented by Rasmussen [20], where the ship modeling
is divided in several parts. Each part, like bow, stern,
parallel middle body, etc is modeled by a NURBS

1

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 249 ISBN 978-80-86943-75-6

surface and then this surfaces are merged into a global
NURBS surface that represents the whole ship model.

An automatic parametric modeling approach was
implemented by Oliveira [10] using the MG software
in order to create the geometric model, but at the same
time it is necessary to use another software to define
the shape of the model. Therefore, it is possible to
perform automatic modeling in order to generate many
instances of the model, varying some form parameters.
After the modeling phase these instances could be used
to perform static and dynamic stability analysis.

Mendonça [9] allows the designer to perform a shape
optimization of an offshore vessel unit by combining
neural networks and a genetic algorithm that makes use
of scripts written in Lua language [17].

Moreover, integrating the tools for modeling,
analysis, simulation and assessment leads to faster
processes and better products. So, Abt [2] proposed
a tool integration system for simulation-driven
design using XML(Extensible Markup Language)
and COM(Component Object Model) interfaces
into the FRIENDSHIP CAD environment for ship
models. Abt [1] also proposed a new integration of
FRIENDSHIP combining CAD and CFD, allowing
rapid hydrodynamic evaluation in the ship design.

Birk [6] presented an hydrodynamic analysis
optimization which uses a command language
approach that interconnects the modeling phase
with the hydrodynamic analysis. Harries et al [13]
developed an integrated approach that simultaneously
covers all relevant aspects of early ship design: main
dimensions, hull form, hydrodynamics and safety
including intact and damage stability; etc.

Other work for hull optimization is presented by
Karri [15], where a simple interpolation scheme is used
to generate panels for any conventional ship hull and
the main objective is to design a ship hull that matches
its operational conditions.

There is a strong tendency in searching an
automatization process in the geometry phase modeling
and also in the stability and dynamic phase analysis.

3 MODELING METHODOLOGY

The previous section presented some works that are
concerned with automatic geometric modeling but also
require an external software to perform this task.

The framework shown in Figure 1 provides to the
project designer the necessary tools to create a set of
instances of a model, by simply varying some chosen
form parameters.

Lua language has been embedded into the MG and
Sstab software in order to provide a single environment
with the three softwares.

Figure
1:M

odeling
fram

ew
ork

forvesseldesign

2

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 250 ISBN 978-80-86943-75-6

This work presents a methodology to create
engineering vessel models using the MG (Mesh
Generator) [8] and Sstab [7] software combined with
automatic parametric geometry modeling. Scritps
written in Lua [17] allow the project designer to obtain
a set of different vessel units, according to constraints
in the geometry and aspects of the static stability.

All the user actions (the creation or modification of
vertices, curves, surfaces, volumes, etc.) during the
geometric modeling phase are stored in a script history
file and can be reproduced in an intuitive way. These
scripts can also be parameterized in order to obtain
different variations of the original model.

Geometric constraints are checked as well as static
(Sstab) and dynamic (Wamit) stabilities. Once the
static and dynamic analysis are performed the results
can be exported to an optimization module. If the
model does not comply with the geometric or stability
restrictions some form parameters can be changed.
These changes are achieved by Lua [17] scripts and
MG generates a new model. This fact may reduce
the process of re-visiting several times some cycles of
the spiral methodology design process proposed by
Evans [11]. This process goes on until a convergency
appears in the simulations.

4 PARAMETRIC MODELING OF A
SHIP HULL

One of the softwares used in this work, MG, is a shell
modeler based on cross sections curves and it has been
widely used in the design of several large offshore
oil structures at Petrobras, the brazilian oil company.
This software has an interactive modeling environment
based on direct manipulation in 3D space, so it
addresses several interesting user-interface issues, that
have been discussed elsewhere [12]. Different types
of meshes can be generated by the geometric modeler
using trilinear, bilinear, planar, BSpline surfaces, etc.

In the next sections some modeling strategies using
MG environment will be presented which could be used
when designing a realistic engineering model. Some
designing stages may be a hard task and some of these
strategies presented here could be useful.

4.1 Volume Composition
Two schemes for representing a three-dimensional
geometric model into a computer are used: a boundary
scheme and a constructive scheme. In the boundary
scheme, the geometry of an object is defined by its
boundary elements, such as vertices, edges and surface
patches, which may be created through an interactive
graphics interface. The most common constructive
scheme is constructive solid geometry (CSG) [5], in
which the final object is obtained by a set of boolean
operations applied to a set of primitive objects.

Figure 2: Example of volume composition

Realistic engineering model like vessel structures
generally are composed by a hull volume and a set
of internal compartments. Defining which mesh is
internal or external is particularly important for finite
element mesh generation and in this case could be a
hard work when there is a lot of adjacent surfaces like
it is shown in figure 2 where the stern of a ship has
many internal compartments and empty spaces.

In order to define a new volume or an internal
compartment that could fit in all empty spaces shown
in figure 2 it is necessary to perform addition or
subtraction operations, and to make sure that the
created volume will be topologically correct. Volume
contribution for each face will be positive and negative
respectively.

A less complicated model than the one presented in
figure 2 is a cylinder with one internal compartment
(figure 3a). Sstab software uses the mesh exported
by MG for static analysis by computing the volume
contribution below a draft plane. Considering the new
faces orientation defined (External or Internal) it is
possible to see an empty space relative to the smaller
compartment defined inside the cylinder where no
volume contribution is considered for the final volume
computation (figure 3b).

Figure 3: Volume contribution for composed volumes

The new created volume will fit into the empty space
left by the other existing volumes. All volumes are
modeled individually and then composed into a new
one.

3

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 251 ISBN 978-80-86943-75-6

This approach is similar to the constructive scheme
called CSG where a set of operations is also applied but
in this case is more simplified with only two operations,
so it was called of Pseudo-CSG because makes easy
to create new volume considering a set of existing
volumes.

4.2 Virtual Entities
Mirror symmetry is another important feature of an
object being modeled from a set of curves and surfaces.
Generally a ship hull contains symmetry properties in
one or more planes relative to the cross section curves.
Models that contain for example 30 surfaces could be
modeled by half of the surfaces and curves by just
applying mirror transformations.

An inportant task when defining a ship hull surface is
to achieve a faired surface or a set of surfaces that are
created using some specific points that belong to the
cross section curves of the ship hull (figure 4).

Figure 4: Cross sections of a ship hull.

This section proposes an approach to model an
object that has some similar properties using virtual
entities. Each virtual entity created is defined as an
OpenGL matrix transformation that will be applied to
the original surface in order to get the final position of
each surface, curve, etc.

Virtual entities may contain any kind of
transformation such as: mirror, shear, scale, translation
etc. These type of entities could be very useful when
designing an engineering model holding a lot of
surfaces that have some properties in common. Due
this the final model can contain a minimal set of
curves and surfaces that represents the whole geometry
itself. It is used an OpenGl optimization technique
called Display List in order to avoid repeating a set
of transformation operations. Display list is just a
group of compiled function calls stored for subsequent
execution. Once a display list is created it could be
called as many times as needed by the final application.

FEM meshes that will be generated considering a
model with symmetry properties need to orient its faces
according to the mirror operation applied. Figures 5a
and 5b show a model containing a set of virtual surfaces
and its corresponding created FEM mesh. Meshes
containing virtual entities with no symmetry do not
need to re-orient their internal faces. This operation is
only performed for mirror transformation.

Figure 5: Virtual Entities.

4.3 Volume Sweeps
The sweep volume of a 3D object is a powerful tool that
makes possible to transform a surface into a volume. It
has been proved to be an excellent aid when planning
and designing a 3D model (shell) that contains internal
compartments like a 3D vessel structure. Volume sweep
is a solid bounded by parametric surfaces undergoing
an arbitrary direction. The direction chosen in this
work is the normal direction of each parametric surface.
Figure 6 shows creation of volumes considering a set of
initial selected surfaces and a chosen direction. In the
example shown below the chosen direction was along Z
axis.

Figure 6: Volume sweep creation.

The building approach shown here leads to model
a 3D volume or internal compartments of a vessel
structure much more easy as shown in figure 7 where
all internal compartments of a cylindrical vessel
structure have been modeled using this approach.

Figure 7: Internal compartments of a cylindrical vessel
using sweep volume creation.4

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 252 ISBN 978-80-86943-75-6

Internal compartments in a vessel structure are
very important to be modeled in order to simulate
a damage situation for example where one or more
internal compartments can be flooded. Figure 8
shows the mesh used to perform some simulation
according its hydrodynamic or static properties defined
by a current situation. Symmetry properties are
automatically detected when a mesh is generated to
perform simulations. The mesh is generated only
in part of the model and then transformed to its
symmetrical parts relative to XZ and YZ planes.

Figure 8: Mesh compartments of a cylinder

4.4 Lua Language Programming
Many different engineering areas deal with complex
geometry shapes and the environment used to
reproduce this models are adopting extension language
or scripts as a way to increase flexibility and modeling
facilities.

Parametric modeling allows to describe properties of
a model by using geometric descriptors known as form
parameters. This descriptors can be used in order to
increase a wide range of facilities in the early modeling
phase of a CAD model.

It is shown in figure 9 an example of MG capabilities
where a ship hull is modelled using different
type of surfaces (bilinear, trilinear, Bspline) with
their corresponding geometric support and mesh
discretization. It is also possible to model sweep
surfaces defined by a translational, rotational or generic
direction.

The main dimensions of a ship hull, as the one shown
in Figure 9, are LBP, Breadth and Depth. LBP specifies
the size of the ship hull between perpendiculars relative
to X axis. Breadth specifies the size of the ship relative
to Y axis and Depth is the height of the ship, relative to
Z axis.

It is shown in table 1 values of the parameters LBP,
Breadth and Depth that were set to 319, 56 and 30,2
respectively. The value of 165 refers to the middle
section of the ship.

Lua scripts have been written that are able to modify
the shape of the ship hull but keeping the model always
centered in relation to its middle section. Therefore,
the Lua function TransformLBP shown in Figure 10,

Figure 9: Ship hull modelled by Bspline surfaces,
bilinear and trilinear mappings.

Description Value
Mid Ship 165,00
with respect to (wrt) Keel
Length Between 319,00
Perpendiculars wrt Mid Ship
Molded Breadth wrt Mid Ship 56,00
Molded Depth wrt Mid Ship 30,20

Table 1: Initial dimensions of the ship hull.

is used to parameterize the ship in relation to the LBP
parameter.

Figure 10: Lua script to parameterize the ship with
relation to LBP parameter

The function TransformLBP computes a scale factor
between the current LBP value and the new value
NLBP, passed as a parameter. The current LBP value
is computed using the reference points passed to the
function by idv1 and idv2 parameters. After the scale
factor is computed, all entities of the model (vertex,
surfaces, volumes, etc) are selected and then the
appropriated transformations are applied.

5

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 253 ISBN 978-80-86943-75-6

Skala
Obdélník

The translation is performed in relation to the middle
point of LBP, in order to keep the model centered with
its midship section, and then the scale factor is applied.
The function to transform the Breadth ship parameter
is similar to the TransformLBP but all transformations
must be applied relative to Y axis.

The function TransformDepth, shown in Figure 11,
applies transformations in relation to the Depth
parameter of the ship hull. The same transformations
of TransformLBP are also applied in this function,
but it is necessary to apply an extra transformation
according to the scale factor value.

Figure 11: Lua script to parameterize the ship with
relation to Depth parameter

Each parameter LBP, Breadth or Detph of the
ship hull can be individually modified or the three
modifications can be done at the same time.

Figure 12 shows the modified hull of Figure 9. In
case that the hull vessel has internal (hull, ballast,
diesel, void spaces, etc) or external compartments
(super structure, etc), all of them will be also
transformed in order to fit the new model geometry. The
transformations of the ship hull internal compartments
are important in order to guarrantee the consistency of
the generated model.

In other words, there are geometric correlations
between the internal tanks and the ship hull. This
correlation is attended by Lua scripts implemented in
this work.

Once the geometric modeler automatically modifies
the hull shape, it is exported to Sstab software in order
to analyze its static stability. If the model is symmetric

Figure 12: Ship hull parameterized by Lua function
TransformShip.

in relation to the diametral plane, then the generated
meshes should also be symmetric. In order to avoid the
occurrence of trim and heel, due to an inconsistent mesh
generation, only half of the model is stored.

5 FORM SHAPE STABILITY ANALY-
SIS

The behavior of an offshore unit is evaluated in two
different situations:

• The static intact stability considering wind actions;

• The static stability in a damaged condition.

These situations are regulated by international
organizations such as IMO (International Maritime
Organization) [14], NMD (Norwegian Maritime
Directorate), etc

In this work, an offshore ship unit (Figure 9) has been
studied to evaluate its behavior when submitted to an
overweight with the intention to simulate a damaged
condition.

In the design project of a vessel unit, the weight
conditions are organized in classes that usually separate
the intact conditions from the damaged conditions,
according to IMO. In order to test a damaged condition,
an intact condition must be simulated beforehand.

The stability requirements after a damaged condition,
according the MARPOL 73/78 rules, are listed below
and are shown in Figure 13.

• In the final stage of flooding, the absolute angle
equilibrium shall not exceed 25 degrees.

• The stability in the final stage of flooding shall be
investigated and may be regarded as sufficient if the
righting lever curve has at least a range of 20 degrees
beyond the position of equilibrium.

• The maximum residual righting lever shall not
exceed 0.1 meters within the 20 degrees range
indicated above.

• The area under the curve within this range shall not
be less than 0.0175 meters radians.

6

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 254 ISBN 978-80-86943-75-6

Skala
Obdélník

Figure 13: Stability damage rules

Initial Damage Conditions The damaged condition
considered in this example is the bulkhead’s ship
vessel collision that causes the flooding of two stern
compartments and the moorings storehouse. Figure 14
shows the same ship presented in Figure 9 but
considering all its internal compartments. Damaged
tanks are indicated by a black circle.

Figure 14: Initial damaged conditions

Table 2 presents the results of the static equilibrium
analysis and their corresponding stability diagram for
the current damaged condition. The initial dimensions
of the ship hull are the same listed in table 1, and the
VCG (Vertical Center of Gravity) of the light weight
within the ship vessel structure is located in 33 meters.

All the restrictions imposed by the MARPOL 73/78
regulations are being accepted but one restriction
concerning to the minimal range of stability angles of
20 degrees is currently rejected. This result can be seen
in table 2 where the range angle is highlighted in red
text.

The next section of this work will present an
approach to overcome this damaged situation by
testing different variations of the ship model until all
MARPOL 73/78 restrictions rules are being accepted.

Automatic Weight Estimation In order the ship meets
all the requirements imposed by MARPOL 73/78, it’s
geometry must be changed by varying the light weight

Criterion Value Eval

Equilibrium free-board 5,554 > 0,000 OK
(lowest flooding point
height)
Angle of deck edge 18,392 Ok
immersion
Equilibrium heel angle 14,297 < 25,000 OK
Equilibrium trim angle 0,648 -
Stability range 18,627 > 20,000 NO
(beyond equil.
position with 0.1m level)
Area under GZ curve 0,204 > 0,018 OK
in Stability range
Maximum GZ in 1,009 > 0,100 OK
Stability range
Theta WE > Theta 0 27,949 > 14,297 OK

Table 2: Marpol Damaged Condition Stability Table
Results

of the vessel structure and the draft equilibrium in order
get all MARPOL 73/78 requisites to be approved.

Figure 15: Lua script to find light weight proportional
to 63% of the vessel.

A parameter considered to redefine the hull shape
is the breadth, but resizing the hull structure does
not guaranty a significant gain in the stability range
because it is directly linked with the initial GM

7

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 255 ISBN 978-80-86943-75-6

(distance between the mass center and the metacenter)
computed in its intact equilibrium condition.

Once the ship geometric model have been exported
into Sstab software, it was decided to keep constant
the relation between submersed volume by total volume
in about 63% taking as reference the intact condition.
This way, the light weight increases proportional the
variation of the submersed volume.

The function FindLightWeight (Figure 15)
developed in Lua language searches for the light
weight that reaches the 63% of flooded volume,
according of the input geometric model. This process
is done iteratively adding and subtracting weights until
a determined tolerance that defines the correct light
weight of the vessel is reached, where the total flooded
volume must be proportional to 63% equal to the intact
condition. At each search step of the FindLightWeight
function the vessel equilibrium is computed in order to
check the flooded volume percentage.

The Lua function ComputGammaAngles shown
in Figure 16 checks if the current damage condition
is approved by the MARPOL 73/78 requirements.
Each damage condition computes the currente static
stability diagram, and the minimal range angle value is
evaluated. This value must be greater than 20 degrees.

]

Figure 16: Lua script to compute stability range.

In order to find the ship that meets all the
requirements imposed by MARPOL 73/78, considering
a set of ship models that have their breadth parameters
varying between 56 and 70 meters. The function
CheckModels (Figure 17) were developed using the
functions FindLightWeight and ComputGammaAngles
presented above. This function loads a file that has
stored the intact and damage condition for each breadth
value and then sets the VCG in 33 meters (function
FindLightWeight) and then checks the minimal
range angles of stability for both conditions (function
ComputGammaAngles).

Figure 17: Lua generic script to compute stability range
of a set of ship models.

6 RESULTS
Different variations of the model shown in Figure 9
were generated varying the breadth parameter and using
Lua functions to perform this process in an automatic
way. The geometry variation doest not changes the
value of the block coefficient that stand in around 0.70
meters. So, it could be say that fluctuation characteristic
of the vessel was kept intact.

The static stability properties results with the tested
models according to the breadth and weight variation
parameters are presented in Table 3.

The model reference or initial condition is
highlighted with horizontal lines that forms a box.
Therefore it can see that the breadth parameter (B) was
modified up and down the breadth reference that is 56
so only three models from Table 3 (bold data) achieved
the minimal range stability for the current damage
condition.

The partial volume shown in the table is the total
flooded volume with relation to the added weight.
The column Displacement indicates the total displace
weight of the vessel. The data in columns 1 to 7 were
extracted with reference to its intact condition, so there
is no damage being considered. Data from columns 8
to 10 were extracted considering the damage condition.

Considering the models that were approved by the
MARPOL 73/78 restrictions in its damage condition, in
case that the vessel needs to supports the current weight
loading, the most indicated geometry to be adopted as

8

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 256 ISBN 978-80-86943-75-6

Skala
Obdélník

B
D

ra
ft

D
is

pl
ac

em
en

t
To

ta
lv

ol
Pa

rc
ia

lv
ol

Vo
l.%

W
ei

gh
t

K
G

G
M

R
an

ge
50

20
,4

5
27

25
01

,4
42

08
70

,8
26

58
36

0,
63

25
00

0
15

,7
5

5,
20

20
,2

6
52

20
,4

8
28

40
98

,8
43

77
12

,1
27

71
52

0,
63

35
00

0
16

,0
1

5,
79

19
,0

4
53

20
,5

1
29

01
79

,0
44

61
25

,0
28

30
84

0,
63

41
00

0
16

,1
7

6,
07

18
,7

1
54

20
,4

8
29

51
94

,3
45

45
40

,0
28

79
77

0,
63

46
00

0
16

,2
6

6,
42

18
,8

0
56

20
,5

2
30

69
98

,8
47

13
75

,4
29

94
99

0,
63

57
80

6
16

,5
6

7,
02

18
,6

2
57

20
,4

4
31

11
97

,3
47

97
98

,9
30

35
91

0,
63

62
00

0
16

,6
2

7,
44

19
,0

9
58

20
,3

7
31

53
91

,4
48

82
15

,5
30

76
84

0,
63

66
19

4
16

,6
9

7,
86

19
,5

4
58

,2
20

,3
7

31
67

15
,3

48
98

93
,6

30
89

76
0,

63
67

51
8

16
,7

2
7,

92
19

,4
9

58
,5

20
,3

5
31

87
01

,2
49

24
18

,8
31

09
13

0,
63

69
50

3
16

,7
8

8,
00

22
,4

6
59

20
,3

8
32

11
97

,6
49

66
31

,4
31

33
49

0,
63

72
00

0
16

,8
4

8,
19

19
,5

3
60

20
,3

9
32

70
03

,8
50

50
44

,1
31

90
14

0,
63

77
80

6
16

,9
8

8,
54

19
,5

2
62

20
,4

2
33

86
16

,3
52

18
79

,8
33

03
43

0,
63

89
41

8
17

,3
0

9,
24

19
,4

8
70

20
,3

9
38

21
99

,5
58

92
19

,1
37

28
67

0,
63

13
30

00
18

,3
0

12
,6

19
,8

1
72

20
,4

1
39

38
31

,4
60

60
54

.0
38

42
15

0,
63

14
46

32
18

,6
0

13
,4

9
34

,1
0

Ta
bl

e
3:

B
re

ad
th

pa
ra

m
et

er
va

ri
at

io
ns

of
a

sh
ip

hu
ll.

reference would be the model whose breadth parameter
is 58.5 meters because this model could have the least
economical cost to be considered.

The implemented Lua scripts for searching the
optimal geometry of the vessel that supports the current
weight loading and the damage condition may consider
or not all the restrictions imposed by MARPOL 73/78
(minimal stability ranges angles, right arm, etc).

In this work the minimal stability ranges angles were
only considered because it was the only condition that
was not satisfied for the damage condition simulated
considering a hull vessel with breadth equal to 56
meters.

The varying process modifies the breadth parameter
up and down considering the reference model (breadth
equal to 56) does not mean that the minimal range
stability angles (column 10) will have a proportional
variation. This fact could be seen in the Table 3 where
the breadth variation parameter can get a gain or loss in
the minimal range stability angles.

Hence, the current problem is to look up for the local
minimum that minimizes a certain objective function
that project designer wants to achieve and at the same
time all the restrictions requirements by the classifying
societies (IMO, DNV, etc) must be approved.

Criterion Value Eval

Equilibrium free-board 7,226 > 0,000 Ok
(lowest flooding point
height)
Angle of deck edge 19,795 Ok
immersion
Equilibrium heel angle 14,144 < 25,000 Ok
Equilibrium trim angle 0,520 -
Stability range 22,456 > 20,000 Ok
(beyond equil.
position with 0.1m level)
Area under GZ curve 0,398 > 0,018 Ok
in Stability range
Maximum GZ in 1,662 > 0,100 Ok
Stability range
Theta WE > Theta 0 29,636 > 12,144 Ok

Table 4: Approved Marpol Damaged Condition
Stability Table Results

Table 4 show the corresponding numeric table
resume of all MARPOL 73/78 restrictions that were
considered after the equilibrium computation of the
vessel and can be appreciated an stability range of
22.456 value.

7 CONCLUSIONS
This work has as principal contribution the building of
an embedded scripting language inside a well known
softwares that are actually been used at PETROBRAS,
the Brazilian oil company for modeling shells of vessel

9

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 257 ISBN 978-80-86943-75-6

Skala
Obdélník

unit based on cross sections and for static stability
analysis. Lua language was chosen because is freely
available for both academic and commercial purposes
and is a general-purpose embedded programming
language designed to support procedural programming
with data-description facilities and the most important
is that Lua was born at PUC-Rio.

The embedded Lua language let the user to define
variables in Lua. This variables can be used as input
parameters for parametric modeling functions that
sintetize data as: length, hight, etc of any kind model.

A set of Lua languages commands was defined in
order to perform automatic modeling in MG. The Lua
language was also embedded into the Sstab software in
order to be able to write all the Lua functions shown
in this section. The Lua language enables that many
iterative process to be done in an automatic way.

This command sets sintetize the process of creating
any kind of basic geometric entities (vertices, curves,
surfaces, etc). A set o Lua language commands was
also create for the Sstab software in order to perform
automatic analysis as the scripts shown in the section
Form Shape Stability Analysis.

8 ACKNOWLEDGEMENT
The authors are grateful to Department of Mechanics
of PUC-Rio and Tecgraf-PUC-Rio for the opportunity
to develop this work. The first author is also grateful
to CNPq, the Brazilian government research council
which partially sponsored this research.

REFERENCES
[1] C. ABT and S. Harries. A new approach to integration of cad

and cfd for naval architects. 6th COMPIT, 2007.

[2] C. ABT, S. HARRIES, S. WUNDERLICH, and B. ZEITZ.
Flexible tool integration for simulation-driven design using
xml, generic and com interfaces. 8th COMPIT, 2009.

[3] www.spatial.com/products/3d/modeling/acis.html.

[4] www.ansys.com.

[5] M. C Arruda. Operações booleanas em sólidos compostos
representados por fronteira. Master’s thesis, Departamento de
Engenharia Civil,PUC-Rio, 2005.

[6] Lothar Birk. Hydrodynamic Shape Optimization of Offshore
Structures. PhD thesis, Technische Universit at Berlin, 1998.

[7] L.C.G Coelho, C.G. Jordani, M.C. Oliveira, and I.Q
Masetti. Equilibrium, ballast control and free-surface effect
computations using the sstab system. International Conference
of Stability of Ships and Ocean Vehicles -Stab, 8:377–388,
2003.

[8] Luiz Cristovão Coelho. Modelagem de Cascas com Interseções
Paramétricas. PhD thesis, Departmento de Informatica,
PUC-Rio, 1998.

[9] Carlos Eduardo Luz Riodades de Mendonça. Um Sistema
Computacional para Otimização Através de Algortimos
Genéticos e Redes Neurais. PhD thesis, COPPE-UFRJ, 2004.

[10] Mauro Costa de Oliveira. Offshore platforms sizing
optimization through genetic algorithms. In 20th Deep Offshore
Technology International Conference(DOT 2008), 2008.

[11] J H Evans. Basic design concepts. Technical report, 1959.

[12] L.C. Gomes Coelho and C.S. de Souza. Comunicação de
problemas e soluções geometricas em uma interface 3d. In
Anais do VII SIBGRAPI, pages 233–240, 1995.

[13] S. HARRIES, F. Tillig, M. Wilken, and G. Zaraphonitis. An
integrated approach for simulation in the early ship design of a
tanker. 10th COMPIT, 2011.

[14] The international convention for the prevention of pollution
from ships. Technical report, International Maritime
Organization, Protocolo, 1978.

[15] K.M. Karri. Hull shape optimization for wave resistance using
panel method. Master’s thesis, Naval Architecture and Marine
Engineering Department,University of New Orleans, 2010.

[16] B. B. M. Kassar. Mesh generation on curved parametric
surfaces based on a modified quadtree algorithm. 2009.
PrePrint.

[17] www.lua.org.

[18] Antonio Carlos Oliveira Miranda and Luis Fernando Martha.
Uma biblioteca computacional para geração de malhas
bidimensionais e tridimensionais de elementos finitos. Anais do
XXI Ibero Latino Americano Sobre Métodos Computacionais
para Engenharia, 1:1–10, 2000.

[19] http://www.plmsolutionseds.com/products/parasolid.

[20] V.O. Rasmussen. Hull form modeling in conceptual design by
assembly and modification of 3d hull modules. Master’s thesis,
Marine Systems Design Department,Norwegian University of
Science and Technology-NTNU, 2009.

[21] www.wamit.com.

10

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 258 ISBN 978-80-86943-75-6

Skala
Obdélník

Skala
Obdélník

Real-time visualization of Moebius transformations

in space using Quaternionic-Bezier approach

Vytautas Karpavicius
Faculty of Mathematics and Informatics

Vilnius University, Lithuania
vytautas.karpavicius@mif.vu.lt

Rimvydas Krasauskas
Faculty of Mathematics and Informatics

Vilnius University, Lithuania
rimvydas.krasauskas@mif.vu.lt

ABSTRACT
Moebius transformations in space are much more sophisticated than the classical case on the plane, which has
been well studied. We present a WebGL approach for visualization of Moebius transformations in 3-space by
animating deformations of geometric objects composed of patches parametrized by Quaternionic-Bezier
formulas. The idea is to represent Moebius transformations in a quaternionic form as well, and to use GPU
shaders for transforming control points, weights, and normals, then seamlessly stitching patches with different
levels of detail, and computing points on every patch. Finally, we demonstrate the main classes of Moebius
transformations in space on several 3D objects including primitive shapes, Dupin cyclide patchworks, and Utah
Teapot.

Keywords
Moebius transformation, Quaternionions, Quaternionic-Bezier, Visualization, GPU, WebGL, Shaders

1. INTRODUCTION
This paper was inspired by a wonderful video clip
“Moebius Transformations Revealed” by Arnold and
Rognes, which is available in various formats online
[Arn09] (the theory behind is described in the paper
[Arn08]) and some recent Quaternionic-Bezier
surface constructions [Kra11].
Since our goal is to visualize Moebius trans-
formations in 3-space, we cannot apply the afore-
mentioned Arnold-Rognes approach directly. Indeed,
for that one needs to show 3-sphere in 4-space. So we
switched to the idea of animating deformations of
familiar geometric objects in space using real time
graphics. The concept of a Quaternionic-Bezier
surface is the other important aspect of the proposed
visualization method. Moebius transformations of the
plane are usually identified with fractional-linear
functions of complex variable, when complex
numbers are treated as points on that plane (see e.g.
[Arn08]). In the 3D case one can change complex
numbers by quaternions and derive similar formalism
based on 2×2 quaternionic matrices [Bis10].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

This approach in combination with ideas of [Gwy12]
allows us to derive short original proofs of Theorems
1 and 2, which describe the main properties of
Moebius transformations in 3-space.
Finally, we choose WebGL framework for
implementation of our visualization method, since
this modern technology enables us to deliver
interactive real time 3D graphics in web
environment.
The paper is organized as follows. We review
definitions of quaternions, Quaternionic-Bezier
formulas, and we describe the main properties of 3D
Moebius transformations in Section 2. Section 3 is
devoted to the visualization framework using
WebGL. Examples of screenshots, showing the
behavior of several 3D objects under Moebius
transformations, are presented in Section 4. Finally,
the conclusions are derived in Section 5.

2. USING QUATERNIONS
Algebra of Quaternions
We will use the algebra of quaternions H with the
standard basis 1, i, j, k and product rules:

𝒊! = 𝒋! = 𝒌! = −𝟏, 𝒊𝒋 = 𝒌, 𝒋𝒌 = 𝒊,𝒌𝒊 = 𝒋.
Any quaternion 𝑞 = 𝑟𝟏 + 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 can be
decomposed in its real part Re 𝑞 = 𝑟 and its
imaginary (vector) part Im 𝑞 = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 = 𝒗,

𝑞 = Re 𝑞 + Im 𝑞 = 𝑟 + 𝒗.
Reals R and space R3are identified with subsets in H:
𝑞 ∈ 𝐇: Im 𝑞 = 0 and 𝐇! = {𝑞 ∈ 𝐇: Re 𝑞 = 0}.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 259 ISBN 978-80-86943-75-6

Other useful notations for quaternions 𝑞 = 𝑟 + 𝒗:
• conjugate 𝑞 = 𝑟 − 𝒗
• norm (length) 𝑞 = 𝑟! + 𝒗 ∙ 𝒗
• inverse (if 𝑞 ≠ 0) 𝑞!! = 𝑞 /|𝑞|!

If 𝑞 = 1 then q has a trigonometric form
𝑞 = cos𝛼 + sin𝛼 𝒖, 𝑢 ∈ 𝐇!, 𝒖 = 1,

and a square root of 𝑞 is defined
𝑞 = cos !

!
+ sin !

!
𝒖. (1)

Moebius Transformations in Space
Moebius (M) transformations in space are defined as
compositions of inversions in space with respect to
spheres. Alternatively, M-transformations can be
generated by 4 elementary transformations in
𝐑! = 𝐇𝟎:

1. translation 𝑥 ↦ 𝑥 + 𝑎, 𝑎 ∈ 𝐇!,
2. scaling 𝑥 ↦ 𝜆𝑥, 𝜆 ∈ 𝐑,
3. rotation about axis u by angle 2α:

 𝑥 ↦ 𝑞𝑥𝑞!!, 𝑞 = cos𝛼 + sin𝛼 𝒖,
4. inversion with a center in the origin and unit

radius: 𝑥 ↦ −𝑥!!.
Note that the first 3 types of elementary
transformations generate Euclidean similarities.
Arbitrary M-transformations can be represented by
fractional-linear functions
 𝐹 𝑥 = 𝑎𝑥 + 𝑏 𝑐𝑥 + 𝑑 !! (2)
of quaternion variable 𝑥 or by 2×2 matrices

 𝐴 = 𝑎 𝑏
𝑐 𝑑 , 𝑎, 𝑏, 𝑐,𝑑 ∈ 𝐇,

using notations 𝐹 𝑥 = 𝐴 ∗ 𝑥.
It is easy to check that usual multiplication of
matrices corresponds to the composition of
fractional-linear functions. The formula (2) defines
transformation of all quaternions H. The subgroup of
all 2×2 matrices that define M-transformations of
𝐇! is characterized in [Bis10], Theorem 11.1.
Elementary M-transformations correspond to the
following matrices (here 𝑎 ∈ 𝐇! , 𝜆 ∈ 𝐑, |q| = 1):

Tr(𝑎) = 1 𝑎
0 1 , Rot(q) = 𝑞 0

0 𝑞 ,

Sc 𝜆 = 𝜆 0
0 1 , Inv = 0 −1

1 0 .

Two theorems below are formulated following
similar results in [Gwy12] about M-transformations
in 4-space, but our proofs are different.
Theorem 1. For any given three distinct points
𝑎!, 𝑎!, 𝑎! ∈ 𝐇! and another triple of distinct points
𝑏!, 𝑏!, 𝑏! ∈ 𝐇! there exists an M-transformation F,
such that 𝐹 𝑎! = 𝑏!, 𝐹 𝑎! = 𝑏!, 𝐹 𝑎! = 𝑏!.
If both triples of points are not collinear, F maps a
plane going through points a0, a1, a2 to another plane.
Sketch of the proof. Similar to the 2D case it will be
convenient to extend our 3-space by adding the
infinite point ∞. Then we observe that M-trans-

formations that preserve ∞ are Euclidean similarities.
Define transformation

𝐻 𝑎!, 𝑎! = Tr −𝑎!! ∗ Inv ∗ Tr −𝑎! ,
𝑎!! = Inv ∗ Tr −𝑎! ∗ 𝑎!,

that maps the triple (𝑎!, 𝑎!, 𝑎!) to ∞, 0, 𝑎!! .
Similarly, 𝐻 𝑏!, 𝑏! maps (𝑏!, 𝑏!, 𝑏!) to ∞, 0, 𝑏!! ,
and it remains to find an appropriate transformation
𝑅 𝑎!! , 𝑏!! from ∞, 0, 𝑎!! to ∞, 0, 𝑏!! . This can be a
composition of rotation and scaling (see (1))
 𝑅 a, 𝑏 = Sc 𝑞 ∗ Rot 𝑞 𝑞 !! , 𝑞 = 𝑏𝑎!!.

Finally, the composition
𝐹 = 𝐻 𝑏!, 𝑏! !! ∗ 𝑅 𝑎!! , 𝑏!! ∗ 𝐻 𝑎!, 𝑎!

will map (𝑎!, 𝑎!, 𝑎!) to (𝑏!, 𝑏!, 𝑏!).
Theorem 2. Let 𝑎!, 𝑎!, 𝑎!,𝑎! ∈ 𝐇! be four distinct
points, and let 𝑏!, 𝑏!, 𝑏! ∈ 𝐇!, be three distinct
points. Then the set of the images 𝐹 𝑎! for all M-
transformations F, such that 𝐹 𝑎! = 𝑏!, 𝐹 𝑎! =
𝑏!, 𝐹 𝑎! = 𝑏! is either a single point (if points a0,
a1, a2, a3 are co-circular), a line or a circle.
Sketch of the proof. According to the Theorem 1 one
can suppose that (𝑎!, 𝑎!, 𝑎!) = (𝑏!, 𝑏!, 𝑏!) =
∞, 0, 𝒊 . Then 3 points ∞, 0, 𝒊 are fixed and we are

looking for Euclidean similarity with 2 fixed points
0, 𝒊. There are two cases: 0, 𝒊, 𝑎! are collinear or not.
In the first case all 4 points ∞, 0, 𝒊, 𝑎! are on a line
(i.e. points a0, a1, a2, a3 are co-circular) and we
cannot move 𝑎! to any other position. In the second
case the only possibility for 𝑎! is to rotate around the
axis going through the both 0, 𝒊. Therefore, 𝐹 𝑎!
can be any point of the particular circle (or line in
general).

Quaternionic-Bezier (QB) Formulas
Here we remind some results publicated in [Kra11].

Circular Arc
Let 𝑝! and 𝑝! be two endpoints of a circular arc C
in 𝐑! = 𝐇𝟎, and let q be some interior point on C.
QB-curve of degree 1 defined by the formula
𝐶 𝑡
= 𝑝!𝑤! 1 − 𝑡 + 𝑝!𝑤!𝑡 𝑤! 1 − 𝑡 + 𝑤!𝑡 !!

with quaternionic control points 𝑝!, 𝑝! and weights
𝑤! = 𝑞 − 𝑝! !!, 𝑤! = 𝑝! − 𝑞 !!,

defines a rational parametrization 0,1 → 𝑯𝟎 of C.
A tangent vector 𝑣! at the endpoint 𝑝! is

 𝑣! = 𝑝! − 𝑝! 𝑤!𝑤!!!. (3)
Bilinear QB-surface patch
Let us define a bilinear QB-surface patch by the
usual rational Bezier formula but with quaternionic
control points 𝑝!" and weights 𝑤!" (0 ≤ 𝑠, 𝑡 ≤ 1):

𝑃 𝑠, 𝑡 =
𝑝!"!!!,! 𝑤!"𝑠!𝑡!!!!,! 𝑤!"𝑠!𝑡!!!!,!!!!,!

!!
,

where 𝑠! = 1 − 𝑠, 𝑠! = 𝑠, 𝑡! = 1 − 𝑡, 𝑡! = 𝑡.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 260 ISBN 978-80-86943-75-6

Here we consider just two important cases: Dupin
cyclide and Darboux cyclide (cf. [Kra11], [Pot12]).
Let 𝑝!, 𝑝!, 𝑝!, 𝑝! be any 4 points on a circle in
 𝐑! = 𝐇𝟎, and let 𝒗!,𝒗! be two orthonormal vectors,
i.e. |𝒗!| = 𝒗! = 1 and 𝒗! ⊥ 𝒗!. Then there is a
unique principal Dupin cyclide patch with corners in
these points, and bounded by circular arcs with
tangent vectors 𝒗!,𝒗! at the corner 𝑝!, which can be
rationally parametrized by the formula 𝑃 𝑠, 𝑡 , where
double index notations are changed to single ones

00, 01, 10, 11 ⟶ 0, 1, 2, 3 .
Here weights 𝑤! are computed by formulas:
𝑤! = 1, 𝑤! = 𝑞!"𝑣!, 𝑤! = 𝑞!"𝑣!,
𝑤! = 𝛿!"𝛿!"!!𝑞!"𝑤!𝑞!"𝑤!,
where
𝛿!" = 𝑝! − 𝑝! ∈ 𝐑, 𝑞!" = 𝑝! − 𝑝! 𝛿!"!! ∈ 𝐇!.

A Darboux cyclide patch is the most general case of
a bilinear QB-surface [Kra11]. For our purposes it
will be enough to consider cases with unit weights
and their images under M-transformations, when the
correct weights will be automatically computed as
explained below.
Moebius invariance
QB-curves and QB-surfaces are Moebius invariant:
their image under a certain M-transformation has the
same formula, where only control points and weights
need to be changed 𝑝 ↦ 𝑝′, 𝑤 ↦ 𝑤′:

 𝑝! = 𝐹 𝑝 = 𝑎𝑥 + 𝑏 𝑐𝑥 + 𝑑 !!, (4)
𝑤! = 𝐹𝑊(𝑝,𝑤) = 𝑐𝑝 + 𝑑 w. (5)

3. WEBGL FRAMEWORK
Here we describe a framework which enables us to
visualize Moebius transformations in the web envi-
ronment. Transforming, computing and rendering QB
surfaces are very computionally intensive tasks.
While it is possible to do it all in javascript, it would
be terribly slow and would not allow us to represent
real-time animations of such transformations. This
framework offloads most of the computation tasks to
the GPU which is well suited for such massively
parallelizable computations [Bro13].
We have chosen to deliver visualization content in
web environment so that it would be available to
wider audience with ease of access.
GPU is reached through an API exposed by WebGL
technology [Khr12], which is based on OpenGL ES
2.0 [Khr10]. Even if it does not allow to use the most
modern GPU features, it is possible to achieve
desired result solely through WebGL API.
An abstract outline of the framework algorithm:
1. Initialization

1.1. Loading a model
1.2. Preparing buffers

2. Computing surface points
2.1. Transforming position, weights, normals

2.2. Estimating the level of details for patches
2.3. Mapping patches to batches
2.4. Computing batches

3. Rendering surface points
Surface points are recomputed every time the surface
is transformed. Surface gets rendered when the
camera has moved or user changes any of the display
options (e.g. switches to wireframe mode).

Loading a Model
We start by loading a model from .obj file. The file
format is adjusted to accommodate weights which are
required by QB patches. Each weight is defined by a
line starting with w and following 4 real numbers
separated by spaces – representing 4 components of
the quaternion in the order: x, y, z, r. Then each face
references their weights by the index in adjusted face
vertex definition format: position/uv/normal/weight.
Three textures are created to fit positions, normals
and weights. Each face stores their vertex attributes
separately in these textures (vertices are no longer
shared among faces). Face vertices correspond to 4
subsequent pixels in textures. After this data has been
uploaded to GPU, each face vertex object in
javascript gets a reference to their respective data in
textures, that is, a fetch coordinate is stored.
After loading the model, we search for adjacent
faces. This is required later when patches of different
LOD are stitched together. Each face gets references
to their adjacent left, right, top and bottom faces.

Preparing Buffers
Buffers which do not depend on transformation state
get precomputed and uploaded to GPU in advance.
For every LOD level 7 buffers need to be pre-
computed. 4 of those will be used during the
computation stage, other 3 – during the rendering
stage. Those buffers will be described in surface
point computation and rendering sections
respectively.

Computing Surface Points
3.1.1 Render to Texture
To use GPU for arbitrary computation instead of just
rendering images, we take advantage of the technique
called render-to-texture. Instead of drawing to the
screen, custom texture is attached to the framebuffer
and rendered image gets stored in it. The data from
the framebuffer then can be read back to the main
memory and processed with the CPU. Alternatively
the texture containing rendering results can be used
in subsequent rendering passes as a data source.
A quad is drawn to cover entire texture. Quad
vertices have attributes (0;0), (0;1), (1;0) and (1;1)
which get interpolated and passed to the fragment
shader. This interpolated parameter lets the fragment
shader know which fragment it is working with and
proceed with computation accordingly.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 261 ISBN 978-80-86943-75-6

Figure 1. Diagram showing data flow across all

stages in the framework.

3.1.2 Applying transformations
All Mobius transformations can be reduced to 4
quaternion coefficients 𝑎, 𝑏, 𝑐,𝑑 (see (2)). Those
coefficients are then set as vec4 uniform parameters
in 3 fragment shaders which transform positions,
weights and normals of control points.
Formulas (4), (5) are used for transforming control
points and weights. The transformation of normal 𝑛
at point 𝑝! can be achieved by transforming to two
points: 𝑝! and 𝑝! = 𝑝! + 𝑛. In general Moebius
transformation of a line segment [𝑝!, 𝑝!] will be a
circular arc. Therefore, to get the transformed normal
we compute a tangent to that arc according to
formulas (3)-(5):

 𝑛! = 𝐹 𝑝! − 𝐹 𝑝! 𝐹𝑊 𝑝!, 1 𝐹𝑊 𝑝!, 1 !!.

Estimating Level of Detail
Moebius transformation can significantly deform the
surface of the model. Our framework implements a
feature to estimate dynamically the level of detail
(LOD) for each patch. The more curved patches will
get higher level of detail, the more surface points will
be evaluated.
The level of detail for each patch is computed in a
separate shader by taking transformed positions and
weights of the patch. The results are then read back
to the main memory so that javascript code could
map patches to appropriate buffers.
One can choose different ways to estimate LOD.
Note that it is not crucial to have mathematically
exact formula to find the curvature of the patch. Our
implementation takes into account two measures: the
size of the patch L and the distance H between
middle points of transformed patch f and flat plane on
patch control points c.

Figure 2. Measures used in estimating LOD.

The level of detail is computed by taking ratio H/L,
raising it to the power p and then scaling by s.
Constants p and s are passed to the shader as uniform
parameters. They allow a user to fine tune surface
LOD.

 LOD = 𝑠 !
!

!
 (4)

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 262 ISBN 978-80-86943-75-6

Mapping Patches to Batches
The patches of the surface are computed and
rendered in groups. A bunch of patches having the
same level of detail gets layed out in the texture next
to each other. Such texture is called a batch. In other
words, a buffering mechanism for data sent to the
GPU is created in order to achieve better
performance.
All batches are of the size 256×256. It gives us a total
of 65536 (or 216) pixels in the texture. Later, when
the batch is rendered, an index buffer of triangles (or
lines) is used, where each index is of type
gl.UNSIGNED_SHORT. Therefore a whole batch
gets rendered in one draw call. There is no point to
make bigger batches since we will not be able to
render them at once anyway.
Minimum level of details is 2×2. It takes only
original control points without interpolating any
additional internal points. One such batch can hold
up to 16384 patches. Maximum available LOD –
256×256. A patch with this LOD takes up the whole
batch. So there are 8 different levels of details: 2, 4,
8, 16, 32, 64, 128 and 256.
Every time the model is transformed, we need to
remap patches since their LOD may have changed. It
is done by storing fetch coordinates of face vertices
to the attribute buffer. The shader that is used to
compute the batch will use these coordinates to fetch
transformed positions and weights from textures that
had got computed in the transform stage. At this
point we also prepare LODs buffer of adjacent
patches. Each vertex gets vec4 attribute where
components 𝑥, 𝑦, 𝑧,𝑤 store LODs of bottom, right,
top and left adjacent patches. Finally, we increment
the counter that stores the amount of patches this
batch holds. If all patches of the same LOD do not fit
in one batch, additional batches are created.

Figure 3. Example of 4×4 patches (quads) mapped

to the batch texture.

Computing Batches
3.1.3 Batch buffers
A batch gets computed by drawing a bunch of quads
to the texture. Each quad represents a patch. In order
to draw those quads we need 6 buffers. 2 of them are

prepared during the mapping stage – a buffer of fetch
coordinates and a buffer of adjacent LODs. The other
4 are precomputed in advance. Those include: quad
vertex buffer, parameter buffer, triangle index buffer
and lines index buffer.
The quad vertex buffer contains coordinates(x,y) in
batch space. That is, they are integers from zero
which refer to the pixels of the texture. For LOD=4,
this buffer would look like: (0,0), (3,0), (0,3), (3,3),
(4,0), (7,0), (4,3), (4,7)…
In the vertex shader these coordinates are
transformed to homogeneous space using this
function:

 𝑓 𝑥 = −1
−1 + !

!"#
2𝑥 + 1

1 (5)

The scaling factor 1/256 comes from the fact that we
use 256 sized batches. As fragments are evaluated at
their centers, we also need add vector (1,1). This
shifts quads so that their cornerswill be at the center
of fragments.
The previous function can also be written as matrix,
transforming quad vertices to homogeneous space.
The quad vertex vector also needs to be expanded to
4 components vector: (x,y) → (x,y,0,1).

1 128 0 0 − 255 256
0 1 128 0 − 255 256
0 0 0 0
0 0 0 1

The parameter buffer holds a repeating sequence of
(0,0), (1,0), (0,1), (1,1) vectors that will act as s and t
parameters in the equation of the bilinear QB-surface
𝑃 𝑠, 𝑡 . These vectors are passed to fragment shader,
where they will get interpolated for every fragment.
Finally, we have index buffers for drawing triangles
and lines. The usage of triangles index buffer is
straightforward – to connect vertices into primitives
(quads). However, because of rasterization rules not
all fragments get covered by triangles. A fragment is
covered by a triangle if the center of that fragment is
inside the triangle. If a fragment center happens to be
exactly on triangle edge – the top-left rule is applied
[Mic12]. It states that the fragment is rasterized if it
is on the left edge (or the top, in case the edge is
horizontal).
The bottom and right edges of the quad do not get
rasterized. For this reason we also need lines buffer
which is used for drawing edge lines of the patch.

3.1.4 Evaluating surface points
The evaluation of surface points is performed in the
fragment shader. Bilinear interpolation of 4 control
points is achieved using 3 mix instructions. Two of
them interpolates in x axis (between 0-1 and 2-3
points). The third then interpolates in y axis between
the results of the previous. This interpolation needs to

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 263 ISBN 978-80-86943-75-6

be performed for 𝑝!𝑤! and for 𝑤!. These will give us
the numerator and denominator of the bilinear QB-
surface 𝑃 𝑠, 𝑡 . The excerpt of fragment shader is
given below:
vec4 a = mix(vPW[0], vPW[1], s);
vec4 b = mix(vPW[2], vPW[3], s);
vec4 nomin = mix(a, b, t);
a = mix(vW[0], vW[1], s);
b = mix(vW[2], vW[3], s);
vec4 denomin = mix(a, b, t);
gl_FragColor = qMult(nomin, qInv(denomin));

Note that premultiplied 𝑝!𝑤! and 𝑤! of each control
point are passed from vertex shader as varying
parameters. Even though varying parameters are
interpolated, we do not need that. They are used just
as a way to pass data from the vertex shader. To
cancel interpolation, each vertex in the quad has to
compute the same values for the varyings.
The vertex shader receives fetch coordinates in an
attribute buffer that was assembled during patch
mapping. Using those coordinates, it can fetch
transformed positions and weights of control points.
It is not enough for a vertex to fetch its own position
and weight. All 4 control points need to be fetched so
that they could be passed to the fragment shader
canceling unwanted interpolation.
Consider that current quad vertex has fetch
coordinate (𝑥, 𝑦). Then all 4 fetch coordinates
𝑓! , 𝑖 = 0,1,2,3, can be found using:

 𝑓! =
𝑥 −𝑚𝑜𝑑 𝑥,4 + 𝑖

𝑦 (6)

Note that if we were working with triangle patches
(instead of quad patches), this varying-cancelation
mechanism would not be required. Every vertex
would simply fetch its own attributes and pass them
through varyings to the fragment shader where they
would be already interpolated. However, the
interpolation that occurs during rasterization, works
only for triangles, that is why we need our own
interpolation system for quads.

3.1.5 Stitching patches of different LODs
Dynamically computing patches of different level of
detail allows us to render them with enough accuracy
while keeping performance required for real-time
animations. Due to this, patches with different LOD
do not align perfectly and create gaps.
We have established a patch stitching mechanism
which alters how border points of the patch surface
are evaluated. The idea is to supply every patch with
information about LOD of neighbouring patches. In
this way the patch checks if neighbouring patch has
lower LOD, and if this is the case, that means the
points of the edge are snapped to the nearest points of
the neighbour patch.

Figure 4. Surface without patch stiching (upper)

and surface with patch sitching (lower).
Given that surface point evaluation coordinate
(across X axis) is x and n is required LOD for the
edge of this patch, evaluation coordinate can be
adjusted using the following formula

 𝑥' = round 𝑥 𝑛 − 1 𝑛 − 1 . (7)

This correction has to be applied to the bottom
(𝑦 = 0) and top (𝑦 = 1) edges. Similarly for the left
(𝑥 = 0) and right (𝑥 = 1) edges the same correction
is applied, except for different axis – Y.

Figure 5. Patch edge vertices snapped to lower

level of detail neighbouring patch.
Shader program does not need to know what the
LOD of current patch is. It needs only 4 LODs for
patch edges. This information is collected in
javascript and passed to the shader as an attribute
buffer.

Rendering Batches
Batches are rendered by fetching vertex positions
from textures computed in the last stage. Fetch
buffers for every different LOD are precomputed in
advance. They contain (x,y) coordinates of vertices
that make up patches. Two index buffers are also
prepared for every different LOD batch. The lines
index buffer is used for displaying a model in
wireframe mode. The triangle index buffer is used for
a solid mode. Alternatively, a user can choose to
display only surface points. No index buffer is used
then.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 264 ISBN 978-80-86943-75-6

Figure 6. Different display modes: points,

wireframe and solid.
While geometry of the surface is approximated to a
certain level of detail, normals are computed exactly.
They get evaluated per-fragment when rendering the
final image which results in more accurate and better
looking lighting.
For each batch auxiliary texture, containing fetch
coordinates and parameters, is prepared. The texture
components xy are used to store QB-patch parameter.
The components zw store fetch coordinates. The sole
purpose of this texture is to carry information that is
available during computation phase to the rendering
phase. This texture would not be required if we have
chosen to compute normals together with positions in
the batch computation stage. Positions/Normals
textures would be passed from the compute stage to
the rendering stage. However, this approach would
only give us normals per-vertex.

Performance
The prototype of the framework was implemented
and its performance was evaluated. Below there are
the results of the visualization of various models. The
evaluation was performed on the Nvidia 9400M
GPU, Safari 6 browser. The results were collected
while the 5 seconds animation of Clifford
transformation was rotating model from 0 to 2π.

During transformation number of computed points
varied because LOD of patches was changing.
Model Patch

count
Min
points

Max
points

Min
FPS

Max
FPS

Square 1 4 65536 39 74
Cube 6 24 82944 31 52
Sphere 4 4096 4096 45 76
Cone 2 2048 2048 47 84
Cylinder 2 2048 8192 49 77
Torus 4 1024 40960 36 55
Teapot 3305 13220 467648 12 16
Model1 150 21504 40512 35 56
Model2 96 22800 34176 38 58
Model3 56 37376 57344 28 65

Table 1. Performance of the framework.
The results show that the performance of all models
except for the teapot was high enough to visualize
transformations in real-time.
An alternative for this framework could be brute
force approach: precompute points of all patches
with high enough fixed LOD. Transformation would
then be applied for all final points directly. Even
though this might work well on modern GPUs, we
would lose the structure of the surface. That is, it will
no longer be possible to modify control points as well
transformation parameters without recomputing data
buffers.

Figure 7. “Rotating” a cube about the fixed circle.

Figure 8. Deformation of a smooth Dupin cyclide patchwork (surface model by [Bo10]).

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 265 ISBN 978-80-86943-75-6

Figure 9. Clifford translation of Utah Teapot.

4. EXAMPLES
Using Theorems 1 and 2 one can control M-trans-
formations by 3 or 4 points. Several examples are
illustrated by figures:
Example 1. Rotation about a circle (Fig. 7): 3 points
are fixed on the given circle and the 4-th point is a
vertex of the cube and moves in circular orbit (cf.
Theorem 2). Faces of the cube are deformed to
spherical patches.
Example 2. Hyperbolic transformation (Fig. 8): 2
endpoints of the circular arc are fixed and the 3-rd
point moves along that arc (see Theorem 1). The
model is a smooth patchwork of Dupin cyclides,
borrowed from [Bo10] (look for details in [Bo11]).
Example 3. Clifford translation (Fig. 9): M-trans-
formation of Example 1 composed with Euclidean
rotation along the circle going through the first 3
points. The model is the quad mesh of Utah Teapot.
An interactive web-based visualization tool is
accessible at: http://mif.vu.lt/~vyka6761/quaternionic

5. CONCLUSIONS
A web-based approach for real time interactive
visualization of Moebius transformations in 3-space
was introduced. Both surface constructions and space
transformations were presented in a uniform
quaternionic setting based on Quaternionic-Bezier
formulas. Original proofs of the main properties of
Moebius transformations in 3-space were derived.
The proposed WebGL framework was evaluated in
the prototype implementation.
One possible extension of the proposed visualization
method is related to increasing degrees of surface
patches. Indeed, the formulas (4) and (5) used for the
transformed control points and weights can be
generalized for arbitrary degrees. Then, for example,
one can apply Moebius transformations to arbitrary
NURBS surfaces.
We hope this paper will not only be useful for better
understanding of Moebius transformations in space
but also will attract attention to new opportunities for
shape modeling and animations.

6. ACKNOWLEDGMENTS
Our thanks to Pengbo Bo for allowing us to use
models of smooth Dupin cyclide patchworks from his
PhD thesis [Bo10].

7. REFERENCES
[Arn08] Arnold D.N., Rognes J., Moebius

Transformations Revealed, Notices of the AMS
55 (2008), 1226-1231.

[Arn09] Arnold D.N., Moebius Transformations
Revealed, Webpage, updated February 14, 2009,
http://www.ima.umn.edu/~arnold/moebius/

[Bo10] Bo P., Surface Fitting and Developable
Surface Modeling, PhD Thesis, The University of
Hong Kong, 2010.

[Bo11] Bo P., Pottmann H.,Kilian M., Wang W.,
Wallmer J., Circular arc structures, ACM
Transactions on Graphics 30 (2011), #101,1-11.
http://www.geometrie.tugraz.at/wallner/cas.pdf

[Gwy12] Gwynne E., Libine M., On a Quaternionic
Analogue of the Cross-Ratio, Advances in
Applied Clifford Algebras 22 (2012), 1041-1053.

[Bis10] Bisi C., Gentili G., Moebius Transforma-
tions and the Poincare Distance in the
Quaternionic Setting, Indiana University
Mathematics Journal 58 (2010), 2729-2764.

[Kra11] Krasauskas R., Zube S., Bezier-like para-
metrizations of spheres and cyclides using
geometric algebra, in: Guerlebeck, K. (Ed.),
Proceedings of 9-th International Conference on
Clifford Algebras and their Applications in
Mathematical Physics, 2011, Weimar, Germany.
http://www.mif.vu.lt/~rimask/old/pdf/Bezier-
like.pdf

[Pot12] Pottmann H., Shi L. and Skopenkov M.,
Darboux cyclides and webs from circles,
Computer Aided Geometric Design 29 (2012),
77–97.

[Khr10] The Khronos Group. OpenGL ES Common
Profile Specification. Version 2.0.25, November
2, 2010. http://www.khronos.org/registry/gles/
specs/2.0/es_full_spec_2.0.25.pdf

[Khr12] The Khronos Group. WebGL Specification,
Version 1.0.1, 2012. https://www.khronos.org/
registry/webgl/specs/1.0.1/

 [Bro13] Brodtkorb A.R., Hagen T.R, Sætra M.L.,
GPU Programming Strategies and Trends in GPU
Computing, Journal of Parallel and Distributed
Computing 73 (2013), 4-13.

[Mic12] Microsoft Developer Network, Rasterization
Rules, 2012. http://msdn.microsoft.com/en-us/
library/windows/desktop/cc627092(v=vs.85).aspx

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 266 ISBN 978-80-86943-75-6

	!_2013-WSCG-communitations.pdf
	A05-full.pdf
	A17-full.pdf
	A41-full.pdf
	A59-full.pdf
	B03-full.pdf
	Introduction
	Requirements
	General Requirements of Graphics Debugging
	Requirements for Using State History

	Related Work
	Enabling Technology for Graphics Debugging
	Graphics Debugging
	Debugging using History

	Design
	Probe
	Controller
	Data Store

	Implementation
	Use Cases
	Incorrect Graphics State
	State Leakage
	Missing Error Handling

	Evaluation
	Methodology
	Results and Discussion

	Conclusion
	Acknowledgments

	B13-full.pdf
	B61-full.pdf
	B71-full.pdf
	C07-full.pdf
	C19-full.pdf
	C41-full.pdf
	D13-full.pdf
	D71-full.pdf
	E13-full.pdf
	E23-full.pdf
	E71-full.pdf
	E73-full.pdf
	E83-full.pdf
	E97-full.pdf
	F03-full.pdf
	F13-full.pdf
	F29-full.pdf
	F31-full.pdf
	F37-full.pdf
	F47-full.pdf
	F71-full.pdf
	F79-full.pdf
	F89-full.pdf
	G02-full.pdf
	Introduction
	Previous Work
	Proposed Pipeline for Isometry Detection
	Computation of the Signatures
	NURBS based models
	Local differential properties: computation of the signature
	Sampling
	Robust surface orientation

	Isometry Spaces
	Computation of the isometry
	Classification of isometries
	Comparison of two isometries

	Clustering
	Method
	Affinity parameter
	Number of clusters

	Validation
	Validation within a NURBS patch
	Validation within a B-rep

	Experiments
	Conclusion
	References

	G11-full.pdf

