
A Layered Depth-of-Field Method for Solving Partial
Occlusion

David C. Schedl*
david.schedl@cg.tuwien.ac.at

Michael Wimmer*

wimmer@cg.tuwien.ac.at

*Vienna University of Technology, Austria

ABSTRACT
Depth of field (DoF) represents a distance range around a focal plane, where objects on an image are crisp. DoF
is one of the effects which significantly contributes to the photorealism of images and therefore is often simulated
in rendered images. Various methods for simulating DoF have been proposed so far, but little tackle the issue of
partial occlusion: Blurry objects near the camera are semi-transparent and result in partially visible background
objects. This effect is strongly apparent in miniature and macro photography. In this work a DoF method is
presented which simulates partial occlusion. The contribution of this work is a layered method where the scene
is rendered into layers. Blurring is done efficiently with recursive Gaussian filters. Due to the usage of Gaussian
filters big artifact-free blurring radii can be simulated at reasonable costs.

Keywords:
depth of field, rendering, real-time, layers, post-processing

1 INTRODUCTION
DoF represents a distance range around a focal plane
in optic systems, such as camera lenses. Objects out of
this range appear to be blurred compared to sharp ob-
jects in focus. This effect emphasizes objects in focus
and therefore is an important artistic tool in pictures and
videos.

People in the field of computer graphics aim for the
ambitious goal of generating photo-realistic render-
ings. Depth of Field is one effect which significantly
contributes to the photorealism of images because
it is an effect that occurs in most optical systems.
In computer renderings, the pinhole-camera model,
which relies upon the assumption that all light-rays
travel through one point before hitting the image
plane, is used. Therefore, there is no focus range
and no smearing occurs, resulting in a crisp image.
However, in real-life optical systems—such as the
eye or photographic cameras—sharp images are only
produced if the viewed object is within a certain depth
range: the depth of field.

DoF can be simulated very accurately by ray tracing,
but the rendering of accurate DoF effects is far from in-
teractive frame rates. For interactive applications, the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

(a) (b)
Figure 1: A pinhole rendering of the scene Dragons resulting in a
crisp image (a). Simulating shallow depth-of-field with the proposed
method partly reveals occluded scene content (b). Note how the
tongue of the dragon almost vanishes.

effect has to be approximated in real time. Therefore,
most approaches use fast post-processing techniques
and sacrifice visual quality, causing artifacts. Com-
mon techniques to produce the DoF effect use an ap-
proach where pixels get smeared according to their cir-
cle of confusion (CoC) [25]. The CoC depends on the
distance of objects and the lens parameters. One arti-
fact in post-processing approaches is partial occlusion:
An object in-focus occluded by an out-of-focus object
should be partly visible at the blurred object borders of
the front object. In computer graphics, the used pin-
hole camera model in combination with depth testing
leads to a dismissing of background pixels. Real optical
systems use a finite aperture camera model where light
rays from occluded objects can hit the image sensor.
Figure 1 shows this effect next to a pinhole rendering.

In this paper, we present an approach to tackling the
partial occlusion problem. By rendering the scene with
depth peeling [11], occluded pixels can be retrieved
(Section 3.1). This occluded scene information is used

zfocus
zp

sensor

p p′

dcoc

q q′

Figure 2: The model of a thin lens and how the points q (in-focus)
and p (out-of-focus) are projected onto the image sensor (inspired by
[25]).

to overcome the problem of partial occlusion. Rendered
fragments are weighted, based on their depth, into lay-
ers (section 3.2), where each layer is blurred uniformly
(section 3.3). Previous such layered DoF methods pro-
duced artifacts due to the layer splitting. We avoid most
of these artifacts by smoothly decomposing layers and
additional scene information. After blurring, the layers
are composed by blending, thus producing renderings
with convincing partial occlusion effects.

2 PREVIOUS WORK
DoF is an effect caused by the fact that optical lenses in
camera systems refract light rays onto the image sensor,
but fail to produce crisp projections for all rays. Fig-
ure 2 shows a schematics of a thin lens model and how
rays are refracted. Although modern optical systems
use a set of lenses, for the purpose of explaining DoF, a
single lens is sufficient. Hypothetically, a sharp image
point will only appear on the image plane from an ob-
ject exactly in focus, located at zfocus (see figure 2). In
practice, because of limitations of the human eye, ob-
jects within an acceptable sharpness are recognized as
sharp. Objects out of the DoF range are projected as cir-
cles on the image plane. The diameter of this so-called
circle of confusion (CoC) can be calculated as

dcoc(z, f ,N,zfocus) =

∣∣∣∣ f 2 (z− zfocus)

zN (zfocus− f)

∣∣∣∣ , (1)

where z is the distance to the object in front of the lens,
f is the focal length of the lens, N is the f -stop number,
and zfocus is the focus distance [25].

While the blurring is produced as an imperfection in
optical systems, computer renderings usually produce
a crisp image. Therefore DoF has to be simulated by
specific rendering methods [1, 2, 10, 3].

Methods operating in object space simulate rays that do
not go through the center of the lens. These methods
include distributed ray tracing [8] and the accumulation
buffer method [12], which both produce high-quality
results but fail to deliver real-time frame rates.

Faster methods are based on the idea of rendering the
scene with a pinhole camera model and simulating the

DoF effect via post processing, leading to few or no
changes in the rendering pipeline. The first method dis-
cussed by Potmesil and Chakravarty in 1981 presented
equation 1, the formula for calculating the CoC [25].
Most modern methods (including this one) are based
on this work.

Methods using graphic cards for acceleration use pyra-
mid methods, Poisson sampling or a combination of
both [24, 26, 27, 13, 22]. Isotropic filters lead to in-
tensity leaking artifacts, where colors from in-focus
foreground pixel bleed on the out-of-focus background.
Cross-bilateral filters or heat diffusion ([6, 14]) can
be used to overcome this artifact, but this introduces
other issues like discontinuity artifacts: Out-of-focus
objects have sharp boundaries although the object itself
is blurred.

The partial occlusion artifact is apparent in all previ-
ously mentioned methods. Rasterization techniques do
not store occluded fragments, therefore it is not possible
to accurately simulate transparency caused by out-of-
focus smearing. To fully simulate this effect, occluded
information has to be either stored or interpolated in
layers. Layered DoF methods compose scene frag-
ments into layers depending on fragment depth. With
this representation it is possible to store or interpolate
occluded scene content. Furthermore it is possible to
uniformly blur each layer. One prominent artifact in
layered DoF methods are discretization artifacts: Lay-
ers get blurred and therefore object borders are smeared
out. When this smeared-out layer is blended with the
other layers, the smeared border region appears as a
ringing artifact at object borders due to the reduced
opacity. In [4, 5], the authors investigate such artifacts.
One way to avoid these ringing artifacts is presented
in [18], where occluded scene information is interpo-
lated before layers are created. Blurring and interpo-
lation is done by a pyramidal method, which approxi-
mates a Gaussian filter. The author presents a variation
of this method in [17], where the costly interpolation
steps are left out and different filters are used. How-
ever, these methods fail to correctly solve the partial
occlusion problem, because hidden scene information
is only interpolated and does not represent any actual
scene content.

The DoF methods [21, 15] are able to solve partial oc-
clusion by generating CoC-sized splats for each pixel.
However, these methods come with additional costs for
sorting fragments, making them impractical for com-
plex scenes.

In [19], layered rendering is used to generate a layered
representation. The DoF effect is then generated by ray-
traversing these layers. Rays are scattered across the
aperture of a virtual lens, thus avoiding the previously
mentioned discretization artifacts. An improvement is
discussed in [20], where the layers are generated by

depth peeling and ray-tracing is done differently. Fur-
thermore various lens effects (e.g., chromatic aberra-
tion and lens distortion) can be simulated. However,
the method needs preprocessing previously to ray in-
tersecting and needs back faces to be rendered. If the
number of rays is not sufficient both methods produces
noise and aliasing artifacts. Especially for strong blurs
many rays have to be used, resulting in non-interactive
rates.

For a solid approximation of partial occlusion, a lay-
ered scene representation, storing occluded fragments,
has to be used. The approach presented in the following
section is a layered DoF method which produces con-
vincing partial occlusion effects while vastly avoiding
the discussed issues.

3 METHOD
The method proposed in this paper decomposes the
scene into depth layers, where each layer contains pix-
els of a certain depth range. The resulting layers are
then blurred with a filter that is sized according to the
distance from the focal point, and then composited.
This approach handles partial occlusion, because hid-
den objects are represented in more distant layers and
contribute to the compositing.

One way to generate the K layers would be to render
the scene K times, with near- and far planes adjusted
to cover the desired depth range of the layer. However,
this leads to two problems: first, rendering the scene K
times is too expensive for interactive applications, and
second, discretization artifacts would appear due to the
hard layer borders. In this paper, we solve both prob-
lems:

In order to avoid rendering the scene K times, we use
depth peeling to generate a number M of occlusion lay-
ers (also named buffers in the following), where M <K.
Note that each occlusion layer can contain fragments
from the full depth range of the scene, while a depth
layer is bound by its associated depth range. We then
generate the depth layers by decomposing the occlusion
layers into the depth ranges, which is much faster than
rendering each depth layer separately.

To avoid discretization artifacts, we do not use hard
boundaries for each depth layer, but a smooth transition
between the layers, given by matting functions.

Furthermore, we also propose a method for efficiently
computing both the blur and the layer composition in
one step.

Our method consists of the following steps:

1. Render the scene into M buffers, where I0 and Z0
contain the color and depth from an initial pinhole
rendering. The buffers I1 . . . IM−1 and Z1 . . .ZM−1
store peeled fragments from front to back.

Z0

I0

Z1

I1

L0 L1 LK−1

. . .

L′0 L′1 L′K−1

. . .

Matting

Rendering/Depth peeling

Blurring

Compositing

I′

. . .

. . .

ZM−1

IM−1

Figure 3: A overview of the proposed method in this work: The scene
is rendered into color buffers I0 to IM−1 and depth buffers Z0 to ZM−1
by depth peeling . The color buffers are decomposed into K layers
L0 to LK−1 by a depth-dependent matting function. The decomposed
layers get blurred by their CoC and composed. Note that the final
algorithm combines the blurring and composing step, which is sim-
plified in this figure.

2. Decompose the fragments of the input buffers into K
depth layers L0 to LK−1, based on a matting function
and the fragments’ depth.

3. Blend and blur each layer Lk onto the buffers I′front,
I′focus or I′back, which are composed back-to-front af-
terwards.

Figure 3 outlines the above described algorithm.

3.1 Rendering
Rendering is done by depth peeling [11]. For depth
peeling, first a 3D scene is rendered into a buffer stor-
ing the color I0 and the depth Z0 of a rendering, shown
in figure 3. Then the scene is rendered a second time

into new buffers Im and Zm while projecting the pre-
vious depth buffer Zm−1 onto the scene. A fragment
p gets rejected if its depth zp has the same or smaller
depth than the previously rendered fragment, stored in
Im−1 and Zm−1. This means that only previously oc-
cluded fragments are stored in Im and Zm. This is done
iteratively until M layers are retrieved. If a fragment is
rejected, it is “peeled away,” revealing objects behind
the first layer. Although there are faster peeling meth-
ods (e.g., [23]), we rely on [11], because peeling can be
done iteratively from front to back.

3.2 Scene decomposition
The input images I0 . . . IM−1 are decomposed into K lay-
ers L0 . . .L(K−1) by matting functions ω(z) and ω̇:

Lk =
(

I0 ·ωk(Z0)
)
⊕
(

I1 · ω̇k(Z1)
)
. . .

⊕
(

IM−1 · ω̇k(ZM−1)
)

. (2)

The functions ωk(z) and ω̇k(z) denote the matting func-
tion for the layer Lk and A⊕B denotes alpha-blending
A over B.

3.2.1 Matting functions
The matting function ωk was introduced in [18] and
guarantees a smooth transition of objects between lay-
ers, while ω̇k retains a hard cut at the back layer bound-
aries to avoid situations where background fragments
would be blended over foreground layers. The formu-
las are

ω̇k(z) =

z−zk−2

zk−1−zk−2
for zk−2 < z < zk−1,

1 for zk−1 ≤ z≤ zk,
0 otherwise,

(3)

and

ωk(z) =

{
zk−z

zk−zk+1
for zk < z < zk+1,

ω̇k(z) otherwise,
(4)

where zk−2 to zk+1 defines anchor points for the layer
boundaries. A plot of the functions is shown in figure
4. Special care has to be taken when matting the front
L0 and back LK−1 layer, where the boundaries are set to
z−2 = z−1 = z0 =−∞ and zK−1 = zK = ∞, respectively.

3.2.2 Layer boundaries
The layer matting relies on anchor points. Similarly to
[18], the boundaries are spaced according to the filter
size of the blurring method (further explained in sec-
tion 3.3). Potmesil’s formula for calculating the CoC
(equation 1) can be rearranged to calculate a depth z
based on a given CoC d. Since dcoc is non-injective,
there are two possible results of this inversion:

d−1
coc(d) =

(
D1(d),D2(d)

)
(5)

0

1

zk−2 zk−1 zk zk+1

ω
k(

z)

z
0

1

zk−2 zk−1 zk zk+1

ω̇
k(

z)

z

(a) (b)

Figure 4: The matting functions ωk (a) and ω̇k (b) with exemplary
depth coordinates zk−2 to zk+1.

with

D1(d) =
zfocus · f 2

f 2 +d ·N · (zfocus− f)
, (6)

D2(d) =
zfocus · f 2

f 2−d ·N · (zfocus− f)
. (7)

With equation 5, the depth of anchor points can be cal-
culated by using dcocas input parameter, calculated by
the filter size of the blurring method. Note that D2(d),
d ∈ R+ is only applicable as long as

d <
f 2

N · (zfocus− f)
. (8)

The anchor point furthest away from the camera, zK−1,
is limited by this constraint. An anchor pointzk is placed
at the average CoC of the layers Lk and Lk+1. Thus

zk =

D1

(
dk+dk+1

2

)
for k < kfocus,

D2

(
dk+dk+1

2

)
for k ≥ kfocus,

(9)

where kfocus is the index of the layer in focus and dk
and dk+1 are the CoCs of the layers Lk and Lk+1 respec-
tively. The layer’s CoC dk is given by the blur radius for
a discrete layer Lk, determined by the blurring method
(see section 3.3).

3.2.3 Determining the number of layers
The depth of rendered fragments in the scene should
lie within the depth range of the closest and furthest
anchor points (zK−1 and z0). Therefore enough an-
chor points to cover the scene have to be generated.
This can be done manually or automatically. One naive
automatic approach would be to use the near and far
clipping planes, resulting in the highest possible depth
range, which usually is not present in a scene. A better
approach is to use hierarchical N-Buffers for determin-
ing the minimum and maximum depth values within the
view frustum [9].

3.3 Blurring and Composition
We use Gaussian filters for blurring, because they can
be separated, recursively applied and produce smooth
results. The mapping from CoC to the standard devia-
tion σ of a Gaussian kernel is chosen empirically as

dpix = 4σ . (10)

L0

L̂0 L1

⊕

L̂1

∗Ĥ0

∗Ĥ1

⊕

L2
...

LK−1

L̂K−1LK−2

⊕

L̂K−2

∗ĤK−1

∗ĤK−2

⊕

LK−3

L̂kfocus−1 Lkfocus

⊕

L̂kfocus+1

⊕

I′

...

Figure 5: Overview of the combined blurring and composition steps:
The layers L0 to LK−1 are blended iteratively. Between each blending
step the composition is blurred. Layers in front of the focus layer
Lkfocus and layers behind the focus layer are composed separately.
Those are combined in a final step into the result I′.

Note that dpix is the dcoc in screen coordinates and has to
be transformed into the world coordinate system. Each
layer is blurred by a Gaussian kernel Hk with the stan-
dard deviation σk as

L′k = Lk ∗Hk, (11)

where ∗ denotes a convolution.

Instead of convolving each layer separately (shown in
figure 3 for illustrative reasons), a cascaded approach is
chosen. Between each blur, one layer is blended onto
the composition.

Layers in front and behind the in-focus layer have to be
composed and blurred separately. Otherwise it is not
possible to keep the correct depth ordering of the lay-
ers. The composition of the front layer starts by taking
the layer closest to the camera (i.e., L0) and blurring it
with the filter kernel Ĥ0. In the next step this blurred
layer is blended over the next closest layer (i.e., L1) and
afterwards blurred with Ĥ1. A schematic of the compo-
sition steps is shown in figure 5. Since a blurred layer
Lk is blended over Lk+1 and then blurred again, the ef-
fect of this method is that Lk is blurred by Ĥk and by
Ĥk+1. The iteration continues until the layer in-focus
Lkfocus is reached. In general, such recursive Gaussian
filters produce the same result as blurring with one big
Gaussian. The resulting filter sizes can be calculated by

the Euclidean distance [7, chapter 8]. However, in our
application the results differ due to occlusions within
the layers.

Back layers are blurred similarly, starting with LK−1.
To keep the correct layer ordering, the layer closer to
the camera (i.e., LK−2) has to be blended over the pre-
viously blurred layer. The iteration is again continued
until the layer in-focus is reached.

The number of blurring iterations for a layer Lk is given
by |k− kfocus|. Calculating the final composition I′ is
done by

I′ = L̂kfocus−1⊕ (Lkfocus ⊕ L̂kfocus+1), (12)

where

L̂k =

Lk for k = kfocus

Lk ∗ Ĥk for k = 0 and k = K−1
(L̂k−1⊕Lk)∗ Ĥk for k < kfocus

(Lk⊕ L̂k+1)∗ Ĥk for k > kfocus

(13)

Results in section 4 are produced with a Gaussian filter
kernel Ĥk with a standard deviation of σ̂k:

σ̂k = |k− kfocus|. (14)

Various methods for calculating the filter size can be
used. For Gaussians, the adequate (non-recursive) σk
can be calculated by

σk =

0 for k = kfocus,√

σ̂2
k +σ2

k+1 for k < kfocus,√
σ̂2

k +σ2
k−1 for k > kfocus,

(15)

where k is in the interval [0,K−1].

3.3.1 Normalization
Due to the usage of matting functions ω and ω̇ , result-
ing in expanded depth layers, and the usage of depth
peeling, discretization artifacts as discussed in [5, 4]
are mostly avoided. However, in some circumstances
(e.g., almost perpendicular planes) such artifacts may
still appear. We use premultiplied color values while
matting and filtering. Therefore the composition can be
normalized (divided by alpha), thus further minimizing
discretization artifacts.

4 RESULTS
The proposed method was implemented in OpenGL and
the shading language GLSL. Performance benchmarks
are done on an Intel Core i7 920 CPU with a Geforce
GTX 480 graphics card. Depth peeling uses a 32bit

H
om

un
cu

lu
s

D
ra

go
ns

original our method ray-traversal accumulation buffer
(K = 17/22 layers) (256 rays) (256 views)

Figure 6: DoF effects produced with our method, the ray-traversal method ([20]) and the accumulation-buffer method. The first row shows the
scene Homunculus (74k faces), and the second shows Dragons (610k faces). Renderings have the resolution 1024×1024. Note that there are
sampling artifacts on the chest of the Homunculus scene in the accumulation and ray-traversal method, although there are 256 rays/views used.
Our method avoids such artifacts by cascaded Gaussian filtering. Also note the partial-occlusion artifacts (e.g., in the second red dragon) in the
ray-traversal method. The lens settings are f = 0.1, N = 1.4 and is focused at the stone wall in the back (zfocus = 18.5) for the Homunculus and
at the foremost blue dragon (zfocus = 3) for the Dragon scene.

z-buffer to avoid any bias values due to z-buffer impre-
cisions.

We compare our method to the accumulation buffer-
technique [12] and to a ray-traversal technique[20], be-
cause the first simulates high-quality DoF effects if
enough views are sampled, while the latter method is
a state-of-the-art method which handles partial occlu-
sion correctly. The accumulation buffer technique is
implemented in OpenGL, but does not use the accu-
mulation buffer, because of precision issues when ac-
cumulating a high number of views. Instead, a 32bit-
per-channel float texture is used for accumulation. The
ray-traversal method was implemented in OpenGL and
GLSL. Although there are some tweakable parameters,
the authors give little information about their configu-
ration. So for the intersection tests of rays, we use 100
steps for the linear search and 5 for the binary search
in normalized device coordinates. A hierarchical N-
Buffer is used to decrease the depth range for each
rays. In our implementation, we decrease the depth
range for each ray individually—while the original au-
thors packed rays—and we use 4 regular depth-peeling
layers, without any optimizations. Additionally, the
ray-traversal method requires closed scene objects and
back-face culling to be turned off, for reliable intersec-
tion testing. This introduces additional rendering costs
and decreases the usable peeling layers to only 2. The
authors propose ways to overcome the latter limitation.
However, in our implementation we use the simplified
version containing only two peeling layers and their
backface counterparts. For both reference methods we

use a Gaussian distribution for lens samples position-
ing.

The methods are applied to the scenes Homunculus
(74k triangles) and Dragons (610k triangles), shown
in figure 6. Performance comparisons are shown in
table 1. Rendering costs for the accumulation-buffer
method are basically the costs for one scene render-
ing multiplied by the number of views. Our method
is, apart from depth peeling, independent of the scene
complexity, and faster than the ray-traversal method,
even when that method uses only 32 rays, resulting in
sampling artifacts. Our method is faster at processing
the Dragons scene, although the scene Homunculus has
fewer triangles. This can be explained by the distribu-
tion of the depth layers and the resulting amount of blur.
In the Homunculus scene there are more highly blurred
foreground layers, resulting in overall more rendering
costs than in Dragons, where the layers are more, but
evenly spread. Note that although scene Dragons has
more triangles than Homunculus, it is rendered faster
due to shading without textures and the use of vertex-
buffer objects.

We currently store all sub-images on the graphics
card—for convenience and debug reasons—resulting
in heavy memory usage. However, additional depth
layers (L̂0 to L̂K−1) can be avoided by applying the
process-queue (matting, blurring, composing) in one
buffer, which would decrease memory consumption.

our (DP/matting/blur) Total (DP/ray-traversal) Total accum.
cascaded non-cascaded 256 128 32 rays 256 views

Homunculus (74k tri.) (46/5/51)102 (46/5/95)146 (58/1290)1348 (48/643)691 (48/140)188 4809
Dragons (610k tri.) (40/7/51)98 (40/8/85)133 (69/1374)1443 (69/685)754 (59/152)211 4163

Table 1: Performance comparisons, in ms, of our method (cascaded and non-cascaded blurring) with the ray-traversal method ([20]) and
the accumulation-buffer method for the scenes Homunculus and Dragons. Renderings have the resolution 1024× 1024 and 4 Depth-peeling
iterations (DP) have been used.

5 CONCLUSION AND FUTURE
WORK

We have presented a depth-of-field post-processing
method with the aim of overcoming the partial occlu-
sion artifact. The contribution of this work is a simple,
efficient and GPU-friendly method. We combine
depth-peeling with improved matting functions to
avoid the overhead of rendering to a high number
of depth layers. Furthermore we use high-quality
Gaussian filters in a recursive way, which has not been
done—to our knowledge—in DoF methods before.
With the usage of Gaussian filters, high blur radii can
be simulated, where even the reference methods start
to produce sampling artifacts. We have shown that
those DoF effects can be produced at frame rates that
are significantly higher than previous methods, making
high-quality DoF available for interactive applications.

One important step for the correct handling of partial
occlusion is depth peeling, which is frequently used to
resolve transparency issues, thus making the method
hardly usable for interactive applications like games.

Currently we use Gaussian filters, which are separa-
ble and can be computed efficiently while delivering
artifacts-free images. The usage of cascaded filters
while composing the DoF effect slightly alters the pro-
duced image, but results in better performance. If
higher frame rates are needed and visual quality can be
sacrificed faster blurring methods (e.g., box, pyramid
filters) can be used.

The composition by alpha-blending is simple and effi-
cient, thus leading to faster results when compared to
current methods like [20]. Layering discretization arti-
facts known from other methods are mostly avoided by
matting, depth peeling and normalization.

Wide-spread anti-aliasing methods (i.e., MSAA)
cannot be easily enabled for our method. However,
image-based anti-aliasing methods (such as MLAA or
FXAA)—which are becoming more popular due to the
wide usage of deferred shading—can be applied.

Currently, layers are split based on the dcoc of fragments
and on the chosen blurring method. This might result
in empty layers. Decomposition could be optimized by
using clustering methods, such as k-means clustering,
as proposed in [21, 16]. With the use of clustering, layer
borders could be tailored to the pixel density in scenes
and empty layers could be avoided. However, cluster-

ing is a costly process and therefore only applicable for
off-line rendering.

One further field of investigation would be the impact
of correct partial occlusion rendering on human percep-
tion. We think that a correct handling of partial oc-
clusion in combination with gaze-dependent focusing
(e.g., with an eye-tracker) would result in deeper im-
mersion of the user.

6 ACKNOWLEDGMENTS
Thanks to Juergen Koller for providing the Homunculus
model. The used Dragon and Sponza models are cour-
tesy of Stanford Computer Graphics Laboratory and
Marko Dabrovic.

7 REFERENCES
[1] Brian A. Barsky, Daniel R. Horn, Stanley A.

Klein, Jeffrey A. Pang, and Meng Yu. Cam-
era models and optical systems used in computer
graphics: Part I, Object based techniques. Tech-
nical report, University of Berkeley, California,
USA, 2003.

[2] Brian A. Barsky, Daniel R. Horn, Stanley A.
Klein, Jeffrey A. Pang, and Meng Yu. Cam-
era models and optical systems used in computer
graphics: Part II, Image-based techniques. Tech-
nical report, University of Berkeley, California,
USA, 2003.

[3] Brian A. Barsky and Todd J. Kosloff. Algorithms
for rendering depth of field effects in computer
graphics. In Proceedings of the 12th WSEAS
international conference on Computers, pages
999–1010, Stevens Point, Wisconsin, USA, 2008.
World Scientific and Engineering Academy and
Society (WSEAS).

[4] Brian A. Barsky, Daniel R. Tobias, Michael
J.and Horn, and Derrick P. Chu. Investigating
occlusion and discretization problems in image
space blurring techniques. In First International
Conference on Vision, Video and Graphics, pages
97–102, University of Bath, UK, July 2003.

[5] Brian A. Barsky, Michael J. Tobias, Derrick P.
Chu, and Daniel R. Horn. Elimination of artifacts
due to occlusion and discretization problems in
image space blurring techniques. Graphics Mod-
els, 67(6):584–599, November 2005.

[6] Marcelo Bertalmio, Pere Fort, and Daniel
Sanchez-Crespo. Real-time accurate depth of field
using anisotropic diffusion and programmable
graphics cards. In Proceedings of the 3D Data
Processing, Visualization, and Transmission, 2nd
International Symposium, 3DPVT ’04, pages
767–773, Washington, DC, USA, 2004.

[7] Wilhelm Burger and Mark J. Burge. Principles of
Digital Image Processing: Advanced Techniques.
To appear, 2011.

[8] Robert L. Cook, Thomas Porter, and Loren Car-
penter. Distributed ray tracing. In Proceed-
ings of the 11th annual conference on Computer
graphics and interactive techniques, SIGGRAPH
’84, pages 137–145, New York, NY, USA, 1984.
ACM.

[9] Xavier Décoret. N-buffers for efficient depth map
query. Computer Graphics Forum, 24(3), 2005.

[10] J. Demers. Depth of field: A survey of tech-
niques. In Fernand Randima, editor, GPU Gems,
chapter 23, pages 375–390. Pearson Education,
2004.

[11] C. Everitt. Interactive order-independent trans-
parency. Technical report, NVIDIA, 2001.

[12] Paul Haeberli and Kurt Akeley. The accumulation
buffer: hardware support for high-quality render-
ing. SIGGRAPH Computer Graphics, 24:309–
318, September 1990.

[13] Earl J. Hammon. Practical post-process depth
of field. In Hubert Nguyen, editor, GPU Gems
3: Programming Techniques for High-Perfor-
mance Graphics and General-Purpose Computa-
tion, chapter 28, pages 583–606. Addison-Wesley,
2007.

[14] Michael Kass, Lefohn Aaron, and John Owens.
Interactive depth of field using simulated diffu-
sion on a GPU. Technical report, Pixar Animation
Studios, 2006.

[15] Todd J. Kosloff, Michael W. Tao, and Brian A.
Barsky. Depth of field postprocessing for layered
scenes using constant-time rectangle spreading.
In Proceedings of Graphics Interface 2009, pages
39–46, Toronto, Canada, 2009.

[16] Todd Jerome Kosloff. Fast Image Filters for
Depth of Field Post-Processing. PhD thesis,
EECS Department, University of California,
Berkeley, May 2010.

[17] Martin Kraus. Using Opaque Image Blur for Real-
Time Depth-of-Field Rendering. In Proceedings
of the International Conference on Computer
Graphics Theory and Applications : GRAPP
2011, pages 153–159, Portugal, 2011. Institute
for Systems and Technologies of Information,
Control and Communication.

[18] Martin Kraus and Magnus Strengert. Depth-of-
field rendering by pyramidal image processing.
Computer Graphics Forum, 26(3):645–654, 2007.

[19] Sungkil Lee, Elmar Eisemann, and Hans-Peter
Seidel. Depth-of-field rendering with multiview
synthesis. ACM Transactions on Graphics (TOG),
28(5):1–6, 2009.

[20] Sungkil Lee, Elmar Eisemann, and Hans-Peter
Seidel. Real-time lens blur effects and focus
control. ACM Transactions on Graphics (TOG),
29(4):65:1–65:7, July 2010.

[21] Sungkil Lee, Gerard Jounghyun Kim, and Seung-
moon Choi. Real-time depth-of-field rendering
using splatting on per-pixel layers. Computer
Graphics Forum (Proc. Pacific Graphics’08),
27(7):1955–1962, 2008.

[22] Sungkil Lee, Gerard Jounghyun Kim, and Seung-
moon Choi. Real-time depth-of-field rendering
using anisotropically filtered mipmap interpola-
tion. IEEE Transactions on Visualization and
Computer Graphics, 15(3):453–464, 2009.

[23] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu,
and En-Hua Wu. Single pass depth peeling via
cuda rasterizer. In SIGGRAPH 2009: Talks, SIG-
GRAPH ’09, New York, NY, USA, 2009. ACM.

[24] Jurriaan D. Mulder and Robert van Liere. Fast
perception-based depth of field rendering. In Pro-
ceedings of the ACM symposium on Virtual Re-
ality Software and Technology, VRST ’00, pages
129–133, Seoul, Korea, October 2000. ACM.

[25] Michael Potmesil and Indranil Chakravarty. A
lens and aperture camera model for synthetic im-
age generation. In Proceedings of the 8th Aannual
Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’81, pages 297–305,
Dallas, Texas, USA, 1981. ACM.

[26] Guennadi Riguer. Real-time depth of field simu-
lation. In Wolfgang F. Engel, editor, ShaderX2:
Shader Programming Tips and Tricks with Di-
rectX 9, pages 529–556. Wordware Publishing,
October 2003.

[27] Thorsten Scheuermann and Natalya Tatarchuk.
Improved depth of field rendering. In Wolfgang
Engel, editor, ShaderX3: Advanced Rendering
Techniques in DirectX and OpenGL, pages 363–
378. Charles River Media, 2004.

