
On-the- y Luminance Correction for Rendering offl
Inconsistently Lit Point Clouds

Thomas Kanzok

Chemnitz University of
Technology

Department of Computer Science
Visual Computing Laboratory

Straße der Nationen 62
 09111 Chemnitz, Germany

thomas.kanzok@informatik.tu-
chemnitz.de

Lars Linsen

Jacobs University

School of Engineering & Science
Visualization and Computer

Graphics Laboratory
Campus Ring 1

28759 Bremen, Germany

l.linsen@jacobs-university.de

Paul Rosenthal

Chemnitz University of
Technology

Department of Computer Science
Visual Computing Laboratory

Straße der Nationen 62
 09111 Chemnitz, Germany

paul.rosenthal@informatik.tu-
chemnitz.de

ABSTRACT
Scanning 3D objects has become a valuable asset to many applications. For larger objects such as buildings or
bridges, a scanner is positioned at several locations and the scans are merged to one representation. Nowadays,
such scanners provide, beside geometry, also color information. The different lighting conditions present when
taking the various scans lead to severe luminance artifacts, where scans come together. We present an approach to
remove such luminance inconsistencies during rendering. Our approach is based on image-space operations for
both luminance correction and point-cloud rendering. It produces smooth-looking surface renderings at
interactive rates without any preprocessing steps. The quality of our results is similar to the results obtained with
an object-space luminance correction. In contrast to such an object-space technique the presented image-space
approach allows for instantaneous rendering of scans, e.g. for immediate on-site checks of scanning quality.

Keywords
Point-cloud Rendering, Image-space Methods, Luminance Correction, Color-space Registration

1. INTRODUCTION
In the field of civil engineering large structures like
bridges have to be surveyed on a regular basis to
document the present state and to deduct safety
recommendations for repairs or closures. Typically
this is done by measuring the structures manually or
semiautomatically at predefined measuring points and
adding detailed photographs or by using completely
automatic 3D scanning techniques.
Nowadays, both dominant surface digitalization
techniques, laser scanning [BR02] as well as
photogrammetry [SSS06,TS08], produce colored
point clouds where the color of each point matches

the color of the respective surface part under the
lighting conditions at the time of scanning. Many
photographs become redundant with this additional
information. However, when dealing with large
structures one has to do several scans from different
points of view in order to generate a complete
building model of desired resolution. As in most
cases only one 3D scanner is used and relocated for
each scan, the time of day and therefore the lighting
conditions may differ significantly between adjacent
scans or, on a cloudy day, even within one scan.
When combining the different scans to one object
representation and using a standard geometry-based
registration approach, the resulting point cloud may
have severe inconsistencies in the luminance values.
Because of the scanning inaccuracies in the geometric
measures, the renderings of registered scans exhibit
disturbing patterns of almost randomly changing
luminance assignment in regions where scans with
different lighting conditions overlap. We present an
approach to correct the luminance and create a
consistent rendering. "Consistent" in this context

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific
permission and/or a fee.

means that no local luminance artifacts occur; it does
not mean that the global illumination in the rendering
is consistent.
A simple, yet effective approach to adjust the
luminance is to average the luminances locally within
neighborhoods in object space, as outlined in
Section 4. We use this approach as a reference to the
image-space approach we propose in Section 5. The
reason for introducing the image-space approach is
that the luminance correction in object space is rather
time-consuming and needs to be done in a
preprocessing step. The engineers, however, would
like to get an immediate feedback during their field
trip whether the scans they have taken are capturing
all important details and are of sufficient quality.
Hence, an immediate rendering of the combined
scans is required. Our image-space approach allows
for such an instantaneous investigation of the scans
since it is capable of producing high-quality
renderings of inconsistently lit point clouds at
interactive framerates.

2. RELATED WORK
Today both the amount and size of generated surface
data are steadily increasing. Beginning with the
Digital Michelangelo project [LPC+00], which was
the first one generating massive point clouds, the
scanning hardware was getting significantly cheaper
while producing results of increasing resolution and
quality. The datasets that are typically generated these
days range from hundreds of million to several billion
surface points [WBB+08].
In this setting it is obvious, that global reconstruction
of the surface becomes infeasible and the use of local
reconstruction techniques, like splatting [LMR07,
PzvBG00, RL00] or implicit reconstruction [AA03,
ABCO+03, GG07], has become state of the art.
However, these approaches still need some
preprocessing steps, constricting instant preview of
generated data. With the advent of image-space point-
cloud rendering techniques [DRL10, MKC07, RL08,
SMK07] it became possible to interactively render
and explore scanned datasets on the fly without any
preprocessing.
These new possibilities open up a whole set of new
applications, but also induce new challenges. The
sampling of the generated point clouds can be highly
varying, making the use of several rendering
approaches difficult. This can be circumvented by
using level-of-detail methods conveying a nearly
uniform sampling in image space [BWK02, GZPG10,
RD10].
Registration of color scans, produced under different
light conditions, can result in luminance
inconsistencies of the resulting colored point cloud.
Consequently, renderings of such point clouds exhibit

significant high-frequency noise. Removing such
noise has always been an important topic in image
processing. There exists a vast amount of approaches
in this field [BC04, BJ10, KS10, WWPS10], which
typically try to remove noise in an image by
analyzing the spatial neighborhood of a pixel and
adjusting the pixel value accordingly. Adams et
al. [AGDL09] propose a kd-tree-based filtering which
is also able to handle geometry if connectivity
information is given. This is not the case for point
clouds resulting from standard scanning techniques.
The aforementioned approaches are specialized on
denoising images and do not utilize the particular
nature of point-cloud renderings. A notable example
of denoising that was explicitly designed for point
clouds was presented by Kawata and Kanai [KK05],
but it suffers from the restriction to only two different
points for denoising.
We will show how to effectively exploit the whole
amount of surface points that project to a pixel for
interactively generating smooth renderings of
inconsistently lit point clouds.

3. GENERAL APPROACH
Let P be a colored point cloud, i.e. a finite set of
points p∈ℝ

3 where each point is enhanced with RGB
color information. Furthermore, we assume that
colors stored at the surface points approximate the
respective surface color except for luminance
correctly. Our goal is to produce an interactive
rendering of the point cloud with smoothly varying
luminance, following the assumption that neighboring
points represent surface parts with similar luminance.
To adjust the luminance of the point cloud we
decided to use the HSV color model, since it
naturally describes the luminance of a point p in its
V component. Thus, we are able to manipulate
luminance without interfering with hue and
saturation. The basic approach is to convert the
colors of all points to the HSV model, average the V
component between selected surface points and
convert the colors back to the RGB format for final
rendering.
As a first idea one could think of prefiltering the
whole point cloud in object space to achieve this
goal. We implement this idea by generating a space
partition for the point cloud, enabling the efficient
generation of neighborhood information. Luminance
of neighboring surface points is smoothed to generate
a point cloud with smoothly varying luminance, see
Section 4. This approach can effectively eliminate the
luminance noise in point clouds when choosing a
sufficiently large neighborhood. However, it takes a
significant amount of precomputation time, especially
for massive point clouds with hundreds of million

points, which inhibits the instant rendering of
generated point clouds.
To avoid this preprocessing step, we propose a GPU-
assisted image-space luminance correction working
on the fly. The approach utilizes the fact, that in most
cases multiple surface points get projected to one
pixel during rendering, as illustrated in Figure 1.
When restricting the surface points to those
representing non-occluded surface parts, a good
approximation for the desired luminance can be
obtained by averaging the luminance of the respective
surface points. This is done in two rendering steps. In
a first pass the scene is rendered to the depth buffer
generating a depth mask. Following the idea of a soft
z-buffer [PCD+97], an additional threshold ϵ is ad-
ded to the depth mask, which defines the minimal
distance between different consecutive surfaces. In a
second render pass the depth mask is utilized to
accumulate the luminance of all surface points,
effectively contributing to a pixel. A detailed des-
cription of the method is given in Section 5.
 After this step we apply image-space filters to fill
pixels incorrectly displaying background color or
occluded surface parts, as proposed by Rosenthal and
Linsen [RL08]. The final rendering with associated
depth buffer can be used to approximate surface
normals per fragment, which opens up several
possibilities for calculating postprocessing effects.

4. OFFLINE LUMINANCE
 CORRECTION
Luminance correction in object space requires the
definition of a certain neighborhood for each surface
point. We use the n nearest neighbors for each point
as neighborhood. For fast detection of these
neighborhoods, a three-dimensional kd-tree is built
for the point cloud. Since luminance correction is
done utilizing the HSV color space, all point colors
are converted to this space. Then for each point we
compute its neighbors and average their luminance.
Finally the complete point cloud is converted back to
RGB for rendering.
Note, that for weighted averaging also a kernel
function can be used. However, several tests, e.g.
with a Gaussian kernel, revealed no significant
differences. Regarding the neighborhood size a value
of n=40 has proven to produce appealing results.
However, the precomputation time increases
significantly with the number of points and number of
neighbors. The luminance correction of a point cloud
with 150 million surface points takes for example
nearly six hours in an out-of-core implementation.
Also when using an in-core implementation, the
computation times are far too long for allowing
instant views of generated point clouds.

Figure 1. Image-space rendering of a real world point cloud. The number of projected points per pixel is color
coded between 1 (green) and 150 (red), which is also emphasized by the isolines. The image was produced with
applied depth thresholding and shading to enhance geometry perception.

5. IMAGE-SPACE LUMINANCE
CORRECTION

Following the main idea of image-space point-cloud
rendering, we propose an algorithm that facilitates
high-quality point-cloud inspection without
preprocessing, utilizing luminance correction in
image space. The algorithm takes advantage of the
fact that many points are projected to one pixel in
models with high point densities, as already shown in
Figure 1. Usually a large fraction of these points
describe nearly the same geometric position on the
surface. The other points belong to parts of the scene
which are occluded by the surface closest to the
viewer.

Our algorithm for correcting luminance in image
space consists of two main rendering steps. In a first
rendering pass a (linearized) depth map, selecting all
points which represent visible surface parts, is
generated (see Figure 2). In a second pass luminance
is corrected for each pixel, taking all surface points
into account which pass the depth-mask test.
For the first rendering pass all points are rendered
resulting in a preliminary depth map and a texture T
with the preliminary rendering result. The depth map
is extended fragment-wise by the z-threshold, gen-
erating the desired, slightly displaced depth mask.
Afterwards, we prohibit writing operations to the
depth buffer such that every surface point that is
closer than the value stored in the depth mask is
drawn in the next render pass while farther points are
discarded.

In the second render pass we accumulate the
luminance of the rendered points using the OpenGL
blending with a strictly additive blending function.
All surface points are rendered to a non-clamped
RGB floating point texture using the depth test. In the
fragment shader we set the color of each fragment to
(luminance,0,1), which produces a texture T̃ with the
accumulated luminances in the R component and the
number of blended points in the B component.
Finally, we combine the blended texture T̃ with the
preliminary rendering result T by converting T to
the HSV color space, applying

T HSV :=(T H , T S ,
T̃ R
T̃ B

)

and converting the result back to the RGB color
space. The result per pixel is a color with averaged
luminance over all surface points, which passed the
depth test, i.e. which belong to the visible surface.
Note that one can also easily average colors in RGB
space by using a four-channel texture for T̃ and
blending (R,G,B,1) for each fragment. Then the
resulting color would be given by

T RGB :=(
T̃ R
T̃ A
,
T̃G
T̃ A
,
T̃ B
T̃ A

)

The difference between traditional z-buffering and
our approach is depicted in Figure 3. Although our
algorithm requires two rendering passes and therefore
basically halves the framerate, we are able to produce
smooth lighting much faster than with the prepro-
cessing algorithm, making on-site preview feasible.
 An enhancement to the base algorithm is to correct
luminance not only in one pixel but to additionally
use points from neighboring pixels. We do this by
summing the luminance of a fragment in the final step
over its 8-neighborhood and dividing by the total
number of points. A Gaussian kernel can be used as
additional weight for the points of the neighboring
fragments to take their distances into account. This
produces even smoother results than the simple

a) b)

Figure 3. Comparison of the rendering results with
(a) normal z-buffering and (b) depth masked
luminance correction. The change of predominant
luminance at the surface points from top to bottom is
rendered much smoother with luminance correction.

Figure 2. 2D illustration of point projection. The
traditional z-buffer test renders only the nearest
points (light green). Points representing occluded
surface parts (red) but also redundant points on the
same surface (dark green) are discarded. By
increasing a fragment's z-value by a threshold ϵ
(dotted lines) we still discard points from occluded
surface parts but are able to blend the luminance of
the remaining points for each pixel. (The view plane
is the dashed line on the left-hand side.)

averaging per fragment while not overblurring the
image.
The advantage of using the HSV space lies in the
error tolerance when applying the Gaussian. While
RGB averaging produces smoother transitions in the
image, it tends to blur away details in the rendering.
HSV averaging in contrast preserves even small
features and sharp edges if this is desired (Figure 4).
The amount of points necessary to successfully use
this approach can be roughly approximated by the
following calculation: Assume that a spherical
volume element with a volume of 1cm3 is projected
to the center of a Full HD screen. Then the volume
element gets projected to a spherical disc with the
absolute (world-space) radius r= 3√ 3

4π
. Now let α be

the vertical field of view of the virtual camera. The
projected area of the volume element in distance d
from the camera is then given by

A=π⋅(1080 r
2d tan(α))

2

.

Our experiments have shown that a number of seven
to ten points per pixel usually suffice to yield smooth
transitions. Therefore, in order to view a model from
a given distance d , the resolution k of the dataset in
terms of points per cm 3 has to satisfy k≥10⋅A,
which corresponds to around 50 points per cm 3 for a
view from a distance of 5 meters with =35 ° . If
this requirement is met the angle from which the
point cloud is viewed is not of great importance since
the geometric measuring accuracy is usually very
high, producing only minor inconsistencies in the
point-to-pixel mapping in adjacent views. It can only
pose problems in the immediate vicinity of edges,
when the depth threshold is so high that occluded
points are included during blending. This, however,
can be mitigated by a sufficiently low threshold and
did not induce visible errors in our experiments.

a) b) c)

d) e)

Figure 4. (a) - (c) Comparison of averaging in HSV colorspace without (left) and with Gaussian neighborhood
(middle) and RGB space with Gaussian neighborhood (right). A part of the wall is visible between the viewer and
the street. While in HSV space the wall is only brightened up but still visible, in RGB space it is smoothed away.
(d) - (e) HSV smoothing (left) preserves sharp corners and the structure of the road in the rendering while using
RGB (right) produces an antialiased image. In both cases the 3 × 3 neighborhood has been used.

Having normalized the luminance of our points we
can fill remaining small holes in the rendering using
the image-space filters proposed by Rosenthal and
Linsen [RL08]. Finally we apply a simple trian-
gulation scheme over a pixel's 8-connected neigh-
borhood in image space to achieve a satisfying
rendering enhanced with lighting and ambient
occlusion (See Figure 8).

6. RESULTS AND DISCUSSION
We have tested our luminance correction approach in
terms of quality and speed with the help of two types
of datasets: unaltered real world data (Hinwil) and
real world data with artificial noise (Lucy, dataset
courtesy of the Stanford 3D Scanning Repository).
We implemented the method using C++ and GLSL on
an Intel Core i7-970 machine with an NVIDIA
Quadro 4000 graphics card. All results were obtained
by rendering to a viewport of 1920 × 1080 pixels.
The Hinwil dataset was acquired by scanning a
bridge with several stationary high-resolution laser
scanners. Two directly adjacent scans, each one
containing about 30 million points, were registered
using a geometry-based approach to obtain a dataset
with 59 million points. The two scans were taken at
different times of the day, resulting in different
lighting conditions. An image-space rendering of the
data is shown in Figure 6. It exhibits three common
problems in such data that are highlighted and
magnified:

1. Scattering: A part of the object was scanned
from different scanners, but the point cloud
from one scanner is significantly more dense in
that region than the other's. The result is a noisy
appearance of the surface because single points
are scattered over the surface.

2. Shadowing: A part of the object can be seen
from only one scanner, resulting in aliased
lighting borders.

3. Border regions: These are the regions, where the
point density of two scanners is nearly equal,
causing sharp borders when applying a median
filter.

Figure 5. Image-space point-cloud rendering of the
Hinwil dataset with closeup views of three
problematic regions (left column). The application of
standard image filters, like a Gaussian filter (middle
column) or a median filter (right column) is not
producing satisfying results.

The first problem can, in many cases, be satisfyingly
handled by a median filter, which fails at the border
regions since it produces a sharp border between the
scans. Smoothing with a Gaussian filter yields
slightly better results in border regions, but it keeps
most of the scattered specks and leads to an overall
blurry appearance of the rendered image, as
illustrated in Figure 5. The shadowing problem is not
easy to solve in image space, since we would have to
correct the lighting over larger planar parts of the
object.

a) b) c)

Figure 6. Detail view of the Hinwil dataset using different approaches. For each approach, the overview and
three closeup views are presented. (a) Image-space point-cloud rendering, exhibiting typical artifacts in regions
with inconsistent lighting. (b) Image-space point-cloud rendering of the complete dataset with offline luminance
correction (n=50). The preprocessing effectively eliminates the artifacts. (c) Image-space point-cloud rendering
with image-space luminance correction. The visual quality is comparable to the offline method.

Points Rendering Rendering + Correction

1M

4M

16M

64M

140 fps

75 fps

19 fps

5 fps

80 fps

40 fps

10 fps

2.5 fps

Table 1. Performance of luminance correction. For
different numbers of points the performance for just
image-space point-cloud rendering and for the
combination with image-space luminance correction
is given in frames per second.

Our image-space approach eliminates most of these
problems and even weakens the sharp shadow
borders slightly. In Figure 6(c) a smooth transition
from one scan to the other was achieved without
emphasizing borders or blurring the image. To judge
our approach in terms of quality, we compare the
result to the one obtained by offline luminance
correction, shown in Figure 6(b). Both approaches
achieve similar results in terms of quality. However,
the image-space luminance correction is able to

interactively display the dataset without time-
consuming preprocessing (offline luminance
correction took more than one hour of computation
time).
To evaluate the performance of our image-space
algorithm we used the full Hinwil dataset with 138
million surface points and downsampled it to
different resolutions. As shown in Table 1 the average
rendering performance decreases by around 45%
when applying image-space luminance correction.
This is due to the two-pass nature of our approach.
As a real world dataset with artificial luminance noise
we used the Lucy dataset, which consists of 14
million surface points. To achieve sufficient point
density in close up views we upsampled the model to
40 million points and, since we were only interested
in point data, we discarded the given connectivity
information and colored each point uniformly white.
We simulated the effects of scans under different
lighting conditions by shading the surfaces points
using the Phong model with a light source randomly
positioned on a 90° circular arc directly above the
model. An image-space rendering without luminance
correction as well as an image-space rendering with

a) b)

Figure 7. An image-space rendering of the Lucy model with artificial noise (a) without and (b) with luminance
correction. The model was artificially up-sampled to 40 million points to achieve a high-enough point density.
The normalization was again carried out over the weighted neighborhood. In this image the prevailing noise is
less visible than in the torus rendering, since the surface shape of the model is not as homogeneous as the torus.

image-space luminance correction are shown in
Figure 7. Our algorithm was able to largely remove
the noise and yielded a satisfying rendering.

7. CONCLUSIONS
We have presented an approach for rendering point
clouds with corrected luminance value at interactive
frame rates. Our luminance correction operates in
image space and is applied on the fly. As such, we
have achieved our goal to allow for instantaneous
rendering of large point clouds taken from multiple
3D scans of architecture. No preprocessing is
necessary and the quality of the results is pleasing.
In order to work properly our algorithm relies on a
sufficient number of points per pixel. Moreover, we
observed in our experiments that single very bright
scanlines from far away scanners were blended with
darker regions of small point density, still leading to
noticeable artifacts. This can be solved by
considering only point clouds from directly adjacent
scanners for blending which, at the present time, was
done manually but will hopefully be automated in a
future version.

8. ACKNOWLEDGMENTS
The authors would like to thank the enertec
engineering AG (Winterthur, Switzerland) for
providing us with the real-world data and for their
close collaboration. This work was partially funded
by EUREKA Eurostars (Project E!7001 "enercloud").

9. REFERENCES
[AA03] Anders Adamson and Marc Alexa. Ray tracing

point set surfaces. In SMI ’03: Proceedings of the
Shape Modeling International 2003, pp.272–279,
Washington, DC, USA, 2003. IEEE Computer
Society.

[ABCO+03] Marc Alexa, Johannes Behr, Daniel Cohen-
Or, Shachar Fleishman, David Levin, and Claudio T.
Silva. Computing and rendering point set surfaces.
IEEE Transactions on Visualization and Computer
Graphics, 9:3–15, 2003.

[AGDL09] Andrew Adams, Natasha Gelfand, Jennifer
Dolson, and Marc Levoy. Gaussian kd-trees for fast
high-dimensional filtering. ACM Transactions on
Graphics, 28:21–33, 2009.

[BC04] Danny Barash and Dorin Comaniciu. A common
framework for nonlinear diffusion, adaptive
smoothing, bilateral filtering and mean shift. Image
and Vision Computing, 22(1):73 – 81, 2004.

[BJ10] Jongmin Baek and David E. Jacobs. Accelerating
spatially varying gaussian filters. ACM Transactions
on Graphics, 29:169–179, 2010.

[BR02] Fausto Bernardini and Holly Rushmeier. The 3d
model acquisition pipeline. Computer Graphics
Forum, 21(2):149–172, 2002.

[BWK02] M. Botsch, A. Wiratanaya, and L. Kobbelt.
Efficient high quality rendering of point sampled
geometry. In Proceedings of the 13th Eurographics
workshop on Rendering, pp.53–64, 2002.

[DRL10] Petar Dobrev, Paul Rosenthal, and Lars Linsen.
Interactive image-space point cloud rendering with

Figure 8. Rendering of a scene with image-space luminance correction, lighting and screen space ambient
occlusion.

transparency and shadows. In Vaclav Skala, editor,
Communication Papers Proceedings of WSCG, The
18th International Conference on Computer
Graphics, Visualization and Computer Vision,
pp.101–108, Plzen, Czech Republic, 2010. UNION
Agency – Science Press.

[GG07] Gaël Guennebaud and Markus Gross. Algebraic
point set surfaces. ACM Transactions on Graphics,
26, 2007.

[GZPG10] P. Goswami, Y. Zhang, R. Pajarola, and E.
Gobbetti. High quality interactive rendering of
massive point models using multi-way kd-Trees. In
Pacific Graphics Poster Papers, 2010.

[KK05] Hiroaki Kawata and Takashi Kanai. Direct point
rendering on gpu. In George Bebis, Richard Boyle,
Darko Koracin, and Bahram Parvin, editors,
Advances in Visual Computing, volume 3804 of
Lecture Notes in Computer Science, pp.587–594.
Springer Berlin / Heidelberg, 2005.

[KS10] Michael Kass and Justin Solomon. Smoothed local
histogram filters. ACM Transactions on Graphics,
29:100–110, 2010.

[LMR07] Lars Linsen, Karsten Müller, and Paul
Rosenthal. Splat-based ray tracing of point clouds.
Journal of WSCG, 15:51–58, 2007.

[LPC+00] Marc Levoy, Kari Pulli, Brian Curless, Szymon
Rusinkiewicz, David Koller, Lucas Pereira, Matt
Ginzton, Sean Anderson, James Davis, Jeremy
Ginsberg, Jonathan Shade, and Duane Fulk. The
digital michelangelo project: 3d scanning of large
statues. In Proceedings of the 27th annual conference
on Computer graphics and interactive techniques,
SIGGRAPH ’00, pp.131–144, New York, NY, USA,
2000. ACM Press/Addison-Wesley Publishing Co.

[MKC07] Ricardo Marroquim, Martin Kraus, and Paulo
Roma Cavalcanti. Efficient point-based rendering
using image reconstruction. In Proceedings of the
Symposium on Point-Based Graphics, pp.101–108,
2007.

[PZvBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen
van Baar, and Markus Gross. Surfels: surface
elements as rendering primitives. In SIGGRAPH ’00:
Proceedings of the 27th annual conference on
Computer graphics and interactive techniques,
pp.335–342, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[RD10] R. Richter and J. Döllner. Out-of-core real-time
visualization of massive 3D point clouds. In
Proceedings of the 7th International Conference on
Computer Graphics, Virtual Reality, Visualisation
and Interaction in Africa, pp.121–128, 2010.

[RL00] S. Rusinkiewicz and M. Levoy. QSplat: a
multiresolution point rendering system for large
meshes. In Proceedings of the 27th annual
conference on Computer graphics and interactive
techniques, pp.343–352, 2000.

[RL08] Paul Rosenthal and Lars Linsen. Image-space point
cloud rendering. In Proceedings of Computer
Graphics International, pp.136–143, 2008.

[SMK07] R. Schnabel, S. Moeser, and R. Klein. A
parallelly decodeable compression scheme for
efficient point-cloud rendering. In Proceedings of
Symposium on Point-Based Graphics, pp.214–226,
2007.

[SSS06] Noah Snavely, Steven M. Seitz, and Richard
Szeliski. Photo tourism: exploring photo collections
in 3D. ACM Transactions on Graphics, 25:835–846,
2006.

[TS08] Thorsten Thormählen and Hans-Peter Seidel. 3D-
modeling by ortho-image generation from image
sequences. ACM Transactions on Graphics, 27:86:1–
86:5, 2008.

[WBB+08] Michael Wand, Alexander Berner, Martin
Bokeloh, Philipp Jenke, Arno Fleck, Mark
Hoffmann, Benjamin Maier, Dirk Staneker, Andreas
Schilling, and Hans-Peter Seidel. Processing and
interactive editing of huge point clouds from 3D
scanners. Computers & Graphics, 32(2):204–220,
2008.

[WWPS10] Z. Wang, L. Wang, Y. Peng, and I. . Shen.
Edge-preserving based adaptive icc method for image
diffusion. In Proceedings of the 3rd International
Congress on Image and Signal Processing, CISP
2010, volume 4, pp.1638–1641, 2010.

	1. INTRODUCTION
	2. RELATED WORK
	3. GENERAL APPROACH
	4. OFFLINE LUMINANCE CORRECTION
	5. IMAGE-SPACE LUMINANCE CORRECTION
	6. RESULTS AND DISCUSSION
	7. CONCLUSIONS
	8. ACKNOWLEDGMENTS
	9. REFERENCES

