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ABSTRACT
Scanning 3D objects has become a valuable asset to many applications. For larger objects such as buildings or 
bridges, a scanner is positioned at several locations and the scans are merged to one representation. Nowadays, 
such scanners provide, beside geometry, also color information. The different lighting conditions present when 
taking the various scans lead to severe luminance artifacts, where scans come together. We present an approach to 
remove such luminance inconsistencies during rendering. Our approach is based on image-space operations for 
both  luminance  correction  and  point-cloud  rendering.  It  produces  smooth-looking  surface  renderings  at 
interactive rates without any preprocessing steps. The quality of our results is similar to the results obtained with 
an object-space luminance correction. In contrast to such an object-space technique the presented image-space 
approach allows for instantaneous rendering of scans, e.g. for immediate on-site checks of scanning quality.
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1. INTRODUCTION
In the field of civil engineering large structures like 
bridges  have  to  be  surveyed  on  a  regular  basis  to 
document  the  present  state  and  to  deduct  safety 
recommendations  for  repairs  or  closures.  Typically 
this is done by measuring the structures manually or 
semiautomatically at predefined measuring points and 
adding detailed photographs or by using completely 
automatic 3D scanning techniques.
Nowadays,  both  dominant  surface  digitalization 
techniques,  laser  scanning [BR02]  as  well  as 
photogrammetry [SSS06,TS08],  produce  colored 
point clouds where the color of each point matches 

the  color  of  the  respective  surface  part  under  the 
lighting  conditions  at  the  time  of  scanning.  Many 
photographs  become redundant  with  this  additional 
information.  However,  when  dealing  with  large 
structures one has to do several scans from different 
points  of  view  in  order  to  generate  a  complete 
building  model  of  desired  resolution.  As  in  most 
cases only one 3D scanner is used and relocated for 
each scan, the time of day and therefore the lighting 
conditions may differ significantly between adjacent 
scans or, on a cloudy day, even within one scan.
When combining  the  different  scans  to  one  object 
representation and using a standard geometry-based 
registration approach, the resulting point cloud may 
have severe inconsistencies in the luminance values. 
Because of the scanning inaccuracies in the geometric 
measures, the renderings of registered scans exhibit 
disturbing  patterns  of  almost  randomly  changing 
luminance  assignment  in  regions  where  scans  with 
different lighting conditions overlap. We present an 
approach  to  correct  the  luminance  and  create  a 
consistent  rendering.  "Consistent"  in  this  context 
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means that no local luminance artifacts occur; it does 
not mean that the global illumination in the rendering 
is consistent.
A  simple,  yet  effective  approach  to  adjust  the 
luminance is to average the luminances locally within 
neighborhoods  in  object  space,  as  outlined  in 
Section 4. We use this approach as a reference to the 
image-space approach we propose in Section 5. The 
reason for  introducing the image-space approach is 
that the luminance correction in object space is rather 
time-consuming  and  needs  to  be  done  in  a 
preprocessing  step.  The  engineers,  however,  would 
like to get an immediate feedback during their field 
trip whether the scans they have taken are capturing 
all  important  details  and  are  of  sufficient  quality. 
Hence,  an  immediate  rendering  of  the  combined 
scans is required. Our image-space approach allows 
for such an instantaneous investigation of the scans 
since  it  is  capable  of  producing  high-quality 
renderings  of  inconsistently  lit  point  clouds  at 
interactive framerates.

2. RELATED WORK
Today both the amount and size of generated surface 
data  are  steadily  increasing.  Beginning  with  the 
Digital  Michelangelo  project [LPC+00],  which  was 
the  first  one  generating  massive  point  clouds,  the 
scanning hardware was getting significantly cheaper 
while producing results of increasing resolution and 
quality. The datasets that are typically generated these 
days range from hundreds of million to several billion 
surface points [WBB+08].
In this setting it is obvious, that global reconstruction 
of the surface becomes infeasible and the use of local 
reconstruction  techniques,  like  splatting [LMR07, 
PzvBG00,  RL00]  or  implicit  reconstruction [AA03, 
ABCO+03,  GG07],  has  become  state  of  the  art. 
However,  these  approaches  still  need  some 
preprocessing steps,  constricting instant  preview of 
generated data. With the advent of image-space point-
cloud rendering techniques [DRL10, MKC07, RL08, 
SMK07]  it  became possible  to  interactively render 
and explore scanned datasets on the fly without any 
preprocessing.
These new possibilities open up a whole set of new 
applications,  but  also  induce  new  challenges.  The 
sampling of the generated point clouds can be highly 
varying,  making  the  use  of  several  rendering 
approaches  difficult.  This  can  be  circumvented  by 
using  level-of-detail  methods  conveying  a  nearly 
uniform sampling in image space [BWK02, GZPG10, 
RD10].
Registration of color scans, produced under different 
light  conditions,  can  result  in  luminance 
inconsistencies of the resulting colored point cloud. 
Consequently, renderings of such point clouds exhibit 

significant  high-frequency  noise.  Removing  such 
noise has always been an important  topic in image 
processing. There exists a vast amount of approaches 
in this field [BC04, BJ10, KS10, WWPS10],  which 
typically  try  to  remove  noise  in  an  image  by 
analyzing  the  spatial  neighborhood  of  a  pixel  and 
adjusting  the  pixel  value  accordingly.  Adams  et 
al. [AGDL09] propose a kd-tree-based filtering which 
is  also  able  to  handle  geometry  if  connectivity 
information is given. This is  not  the case for  point 
clouds resulting from standard scanning techniques. 
The  aforementioned  approaches  are  specialized  on 
denoising  images  and  do  not  utilize  the  particular 
nature of point-cloud renderings. A notable example 
of  denoising that  was explicitly designed  for  point 
clouds was presented by Kawata and Kanai [KK05], 
but it suffers from the restriction to only two different 
points for denoising.
We will  show how to effectively exploit  the whole 
amount of surface points that project to a pixel for 
interactively  generating  smooth  renderings  of 
inconsistently lit point clouds.

3. GENERAL APPROACH
Let P be  a  colored  point  cloud,  i.e.  a  finite  set  of 
points p∈ℝ

3 where each point is enhanced with RGB 
color  information.  Furthermore,  we  assume  that 
colors  stored at  the surface points approximate the 
respective  surface  color  except  for  luminance 
correctly.  Our  goal  is  to  produce  an  interactive 
rendering of the point cloud with smoothly varying 
luminance, following the assumption that neighboring 
points represent surface parts with similar luminance.
To  adjust  the  luminance  of  the  point  cloud  we 
decided  to  use  the  HSV  color  model,  since  it 
naturally describes the luminance of a point p in its 
V  component.  Thus,  we  are  able  to  manipulate 
luminance  without  interfering  with  hue  and 
saturation.  The  basic  approach  is  to  convert  the 
colors of all points to the HSV model, average the V 
component  between  selected  surface  points  and 
convert the colors back to the RGB format for final 
rendering.
As  a  first  idea  one  could  think  of  prefiltering  the 
whole  point  cloud  in  object  space  to  achieve  this 
goal. We implement this idea by generating a space 
partition  for  the  point  cloud,  enabling the  efficient 
generation of neighborhood information. Luminance 
of neighboring surface points is smoothed to generate 
a point cloud with smoothly varying luminance, see 
Section 4. This approach can effectively eliminate the 
luminance  noise  in  point  clouds  when  choosing  a 
sufficiently large neighborhood. However, it takes a 
significant amount of precomputation time, especially 
for  massive  point  clouds  with  hundreds  of  million 



points,  which  inhibits  the  instant  rendering  of 
generated point clouds.
To avoid this preprocessing step, we propose a GPU-
assisted  image-space  luminance  correction  working 
on the fly. The approach utilizes the fact, that in most 
cases  multiple  surface  points  get  projected  to  one 
pixel  during  rendering,  as  illustrated  in  Figure 1. 
When  restricting  the  surface  points  to  those 
representing  non-occluded  surface  parts,  a  good 
approximation  for  the  desired  luminance  can  be 
obtained by averaging the luminance of the respective 
surface points. This is done in two rendering steps. In 
a first pass the scene is rendered to the depth buffer 
generating a depth mask. Following the idea of a soft 
z-buffer [PCD+97],  an  additional  threshold ϵ is  ad-
ded  to  the  depth  mask,  which  defines  the  minimal 
distance between different consecutive surfaces. In a 
second  render  pass  the  depth  mask  is  utilized  to 
accumulate  the  luminance  of  all  surface  points, 
effectively  contributing  to  a  pixel.  A detailed  des-
cription of the method is given in Section 5.
 After  this step we apply image-space filters to fill 
pixels  incorrectly  displaying  background  color  or 
occluded surface parts, as proposed by Rosenthal and 
Linsen [RL08].  The final  rendering with associated 
depth  buffer  can  be  used  to  approximate  surface 
normals  per  fragment,  which  opens  up  several 
possibilities for calculating postprocessing effects.

4. OFFLINE LUMINANCE
 CORRECTION
Luminance  correction  in  object  space  requires  the 
definition of a certain neighborhood for each surface 
point. We use the n nearest neighbors for each point 
as  neighborhood.  For  fast  detection  of  these 
neighborhoods,  a  three-dimensional  kd-tree  is  built 
for  the  point  cloud.  Since  luminance  correction  is 
done utilizing the HSV color space, all point colors 
are converted to this space. Then for each point we 
compute its neighbors and average their luminance. 
Finally the complete point cloud is converted back to 
RGB for rendering.
Note,  that  for  weighted  averaging  also  a  kernel 
function  can  be  used.  However,  several  tests,  e.g. 
with  a  Gaussian  kernel,  revealed  no  significant 
differences. Regarding the neighborhood size a value 
of  n=40  has proven to produce appealing results. 
However,  the  precomputation  time  increases 
significantly with the number of points and number of 
neighbors. The luminance correction of a point cloud 
with  150  million  surface  points  takes  for  example 
nearly six  hours  in  an  out-of-core  implementation. 
Also  when  using  an  in-core  implementation,  the 
computation  times  are  far  too  long  for  allowing 
instant views of generated point clouds.

Figure 1. Image-space rendering of a real world point cloud. The number of projected points per pixel is color 
coded between 1 (green) and 150 (red), which is also emphasized by the isolines. The image was produced with  
applied depth thresholding and shading to enhance geometry perception.



5. IMAGE-SPACE LUMINANCE
CORRECTION

Following the main idea of image-space point-cloud 
rendering,  we propose  an  algorithm that  facilitates 
high-quality  point-cloud  inspection  without 
preprocessing,  utilizing  luminance  correction  in 
image space.  The algorithm takes advantage of  the 
fact  that  many points are projected to  one pixel  in 
models with high point densities, as already shown in 
Figure 1.  Usually  a  large  fraction  of  these  points 
describe nearly the same geometric  position on the 
surface. The other points belong to parts of the scene 
which  are  occluded  by  the  surface  closest  to  the 
viewer.

Our  algorithm  for  correcting  luminance  in  image 
space consists of two main rendering steps. In a first 
rendering pass a (linearized) depth map, selecting all 
points  which  represent  visible  surface  parts,  is 
generated (see Figure 2). In a second pass luminance 
is corrected for each pixel, taking all surface points 
into account which pass the depth-mask test.
For  the first  rendering pass  all  points are  rendered 
resulting in a preliminary depth map and a texture T
with the preliminary rendering result. The depth map 
is  extended  fragment-wise  by the  z-threshold,  gen-
erating  the  desired,  slightly  displaced  depth  mask. 
Afterwards,  we  prohibit  writing  operations  to  the 
depth  buffer  such  that  every  surface  point  that  is 
closer  than  the  value  stored  in  the  depth  mask  is 
drawn in the next render pass while farther points are 
discarded.

In  the  second  render  pass  we  accumulate  the 
luminance of the rendered points using the OpenGL 
blending with a  strictly additive  blending function. 
All  surface  points  are  rendered  to  a  non-clamped 
RGB floating point texture using the depth test. In the 
fragment shader we set the color of each fragment to 
(luminance,0,1), which produces a texture T̃ with the 
accumulated luminances in the R component and the 
number  of  blended  points  in  the  B  component. 
Finally,  we combine the blended texture T̃ with the 
preliminary  rendering  result T by  converting  T to 
the HSV color space, applying

T HSV :=(T H , T S ,
T̃ R
T̃ B

)

and  converting  the  result  back  to  the  RGB  color 
space. The result per pixel is a color with averaged 
luminance over all surface points, which passed the 
depth test, i.e. which belong to the visible surface.
Note that one can also easily average colors in RGB 
space  by  using  a  four-channel  texture  for T̃ and 
blending  (R,G,B,1)  for  each  fragment.  Then  the 
resulting color would be given by

T RGB :=(
T̃ R
T̃ A
,
T̃G
T̃ A
,
T̃ B
T̃ A

)

The  difference  between  traditional  z-buffering  and 
our approach is depicted in Figure 3.  Although our 
algorithm requires two rendering passes and therefore 
basically halves the framerate, we are able to produce 
smooth  lighting  much  faster  than  with  the  prepro-
cessing algorithm, making on-site preview feasible.
 An enhancement to the base algorithm is to correct 
luminance not only in one pixel but to additionally 
use points  from neighboring pixels.  We do  this  by 
summing the luminance of a fragment in the final step 
over  its  8-neighborhood  and  dividing  by  the  total 
number of points. A Gaussian kernel can be used as 
additional  weight  for  the points  of  the neighboring 
fragments to take their distances into account.  This 
produces  even  smoother  results  than  the  simple 

a) b)

Figure 3. Comparison of the rendering results with 
(a)  normal  z-buffering  and  (b)  depth  masked 
luminance  correction.  The  change  of  predominant 
luminance at the surface points from top to bottom is 
rendered much smoother with luminance correction.

Figure  2. 2D  illustration  of  point  projection.  The 
traditional  z-buffer  test  renders  only  the  nearest 
points  (light  green).  Points  representing  occluded 
surface parts (red) but also redundant points on the 
same  surface  (dark  green)  are  discarded.  By 
increasing  a  fragment's  z-value  by  a  threshold ϵ
(dotted lines) we still  discard points from occluded 
surface parts but are able to blend the luminance of 
the remaining points for each pixel. (The view plane 
is the dashed line on the left-hand side.)



averaging  per  fragment  while  not  overblurring  the 
image.
The advantage  of  using the  HSV space  lies  in  the 
error  tolerance  when applying the Gaussian.  While 
RGB averaging produces smoother transitions in the 
image, it tends to blur away details in the rendering. 
HSV  averaging  in  contrast  preserves  even  small 
features and sharp edges if this is desired (Figure 4).
The amount of points necessary to successfully use 
this  approach  can  be  roughly approximated  by the 
following  calculation:  Assume  that  a  spherical 
volume element with a volume of 1cm3 is projected 
to the center of a Full HD screen. Then the volume 
element  gets  projected to  a  spherical  disc with the 
absolute (world-space) radius r= 3√ 3

4π
. Now let α be 

the vertical field of view of the virtual camera. The 
projected area of the volume element in distance d
from the camera is then given by

A=π⋅( 1080 r
2d tan(α))

2

.

Our experiments have shown that a number of seven 
to ten points per pixel usually suffice to yield smooth 
transitions. Therefore, in order to view a model from 
a given distance d , the resolution k of the dataset in 
terms  of  points  per cm 3 has  to  satisfy  k≥10⋅A,
which corresponds to around 50 points per cm 3 for a 
view from a distance of 5 meters with  =35 ° .  If 
this  requirement  is  met  the  angle  from  which  the 
point cloud is viewed is not of great importance since 
the  geometric  measuring  accuracy  is  usually  very 
high,  producing  only  minor  inconsistencies  in  the 
point-to-pixel mapping in adjacent views. It can only 
pose  problems  in  the  immediate  vicinity of  edges, 
when the  depth  threshold  is  so  high  that  occluded 
points are included during blending. This, however, 
can be mitigated by a sufficiently low threshold and 
did not induce visible errors in our experiments.

a) b) c)

d) e)

Figure 4. (a) - (c)  Comparison of averaging in HSV colorspace without (left) and with Gaussian neighborhood  
(middle) and RGB space with Gaussian neighborhood (right). A part of the wall is visible between the viewer and 
the street. While in HSV space the wall is only brightened up but still visible, in RGB space it is smoothed away.
(d) - (e) HSV smoothing (left) preserves sharp corners and the structure of the road in the rendering while using  
RGB (right) produces an antialiased image. In both cases the 3 × 3 neighborhood has been used.



Having normalized the luminance of our points we 
can fill remaining small holes in the rendering using 
the  image-space  filters  proposed  by Rosenthal  and 
Linsen [RL08].  Finally  we  apply  a  simple  trian-
gulation  scheme  over  a  pixel's  8-connected  neigh-
borhood  in  image  space  to  achieve  a  satisfying 
rendering  enhanced  with  lighting  and  ambient 
occlusion (See Figure 8).

6. RESULTS AND DISCUSSION
We have tested our luminance correction approach in 
terms of quality and speed with the help of two types 
of  datasets:  unaltered  real  world data  (Hinwil)  and 
real  world  data  with  artificial  noise  (Lucy,  dataset 
courtesy of  the  Stanford  3D Scanning Repository). 
We implemented the method using C++ and GLSL on 
an  Intel  Core  i7-970  machine  with  an  NVIDIA 
Quadro 4000 graphics card. All results were obtained 
by rendering to a viewport of 1920 × 1080 pixels.
The  Hinwil  dataset  was  acquired  by  scanning  a 
bridge  with  several  stationary  high-resolution  laser 
scanners.  Two  directly  adjacent  scans,  each  one 
containing about  30  million points,  were  registered 
using a geometry-based approach to obtain a dataset 
with 59 million points. The two scans were taken at 
different  times  of  the  day,  resulting  in  different 
lighting conditions. An image-space rendering of the 
data is shown in Figure 6. It  exhibits three common 
problems  in  such  data  that  are  highlighted  and 
magnified:

1. Scattering:  A part  of  the  object  was  scanned 
from  different  scanners,  but  the  point  cloud 
from one scanner is significantly more dense in 
that region than the other's. The result is a noisy 
appearance of the surface because single points 
are scattered over the surface.

2. Shadowing:  A part  of  the  object  can  be  seen 
from  only  one  scanner,  resulting  in  aliased 
lighting borders.

3. Border regions: These are the regions, where the 
point  density of  two scanners  is  nearly equal, 
causing sharp borders when applying a median 
filter.

Figure 5. Image-space point-cloud rendering of the 
Hinwil  dataset  with  closeup  views  of  three 
problematic regions (left column). The application of 
standard image filters, like a Gaussian filter (middle 
column)  or  a  median  filter  (right  column)  is  not 
producing satisfying results.

The first problem can, in many cases, be satisfyingly 
handled by a median filter, which fails at the border 
regions since it produces a sharp border between the 
scans.  Smoothing  with  a  Gaussian  filter  yields 
slightly better results in border regions, but it keeps 
most of the scattered specks and leads to an overall 
blurry  appearance  of  the  rendered  image,  as 
illustrated in Figure 5. The shadowing problem is not 
easy to solve in image space, since we would have to 
correct  the  lighting over  larger  planar  parts  of  the 
object.

a) b) c)

Figure 6. Detail view of the Hinwil dataset using different approaches. For each approach, the overview and 
three closeup views are presented. (a) Image-space point-cloud rendering, exhibiting typical artifacts in regions 
with inconsistent lighting. (b) Image-space point-cloud rendering of the complete dataset with offline luminance 
correction (n=50). The preprocessing effectively eliminates the artifacts. (c) Image-space point-cloud rendering 
with image-space luminance correction. The visual quality is comparable to the offline method.



# Points Rendering Rendering + Correction

1M

4M

16M

64M

140 fps

75 fps

19 fps

5 fps

80 fps

40 fps

10 fps

2.5 fps

Table 1. Performance of  luminance  correction.  For 
different numbers of points the performance for just 
image-space  point-cloud  rendering  and  for  the 
combination with image-space luminance correction 
is given in frames per second. 

Our image-space approach eliminates most of these 
problems  and  even  weakens  the  sharp  shadow 
borders  slightly.  In  Figure 6(c)  a  smooth  transition 
from  one  scan  to  the  other  was  achieved  without 
emphasizing borders or blurring the image. To judge 
our  approach  in  terms  of  quality,  we compare  the 
result  to  the  one  obtained  by  offline  luminance 
correction,  shown  in  Figure 6(b).  Both  approaches 
achieve similar results in terms of quality. However, 
the  image-space  luminance  correction  is  able  to 

interactively  display  the  dataset  without  time-
consuming  preprocessing  (offline  luminance 
correction took more than one hour of computation 
time).
To  evaluate  the  performance  of  our  image-space 
algorithm we used the full  Hinwil dataset  with 138 
million  surface  points  and  downsampled  it  to 
different resolutions. As shown in Table 1 the average 
rendering  performance  decreases  by  around  45% 
when  applying  image-space  luminance  correction. 
This is due to the two-pass nature of our approach.
As a real world dataset with artificial luminance noise 
we  used  the  Lucy  dataset,  which  consists  of  14 
million  surface  points.  To  achieve  sufficient  point 
density in close up views we upsampled the model to 
40 million points and, since we were only interested 
in  point  data,  we  discarded  the  given  connectivity 
information and colored each point uniformly white. 
We  simulated  the  effects  of  scans  under  different 
lighting  conditions  by  shading  the  surfaces  points 
using the Phong model with a light source randomly 
positioned on a  90° circular  arc  directly above the 
model. An image-space rendering without luminance 
correction as well as an image-space rendering with 

a) b)

Figure 7. An image-space rendering of the Lucy model with artificial noise (a) without and (b) with luminance 
correction. The model was artificially up-sampled to 40 million points to achieve a high-enough point density.  
The normalization was again carried out over the weighted neighborhood. In this image the prevailing noise is 
less visible than in the torus rendering, since the surface shape of the model is not as homogeneous as the torus.



image-space  luminance  correction  are  shown  in 
Figure 7. Our algorithm was able to largely remove 
the noise and yielded a satisfying rendering.

7. CONCLUSIONS
We have presented an approach for rendering point 
clouds with corrected luminance value at interactive 
frame  rates.  Our  luminance  correction  operates  in 
image space and is applied on the fly.  As such, we 
have  achieved  our  goal  to  allow for  instantaneous 
rendering of large point clouds taken from multiple 
3D  scans  of  architecture.  No  preprocessing  is 
necessary and the quality of the results is pleasing.
In order to work properly our algorithm relies on a 
sufficient number of points per pixel. Moreover, we 
observed in our experiments that  single very bright 
scanlines from far away scanners were blended with 
darker regions of small point density, still leading to 
noticeable  artifacts.  This  can  be  solved  by 
considering only point clouds from directly adjacent 
scanners for blending which, at the present time, was 
done manually but will hopefully be automated in a 
future version.
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