
The 20
th

 International Conference in Central Europe on Computer

Graphics, Visualization and Computer Vision

in co-operation with

EUROGRAPHICS

W S C G ' 2012

Conference Proceedings

Part I

Plzen

Czech Republic

June 26 - 28, 2012

Co-Chairs

Enhua Wu, University of Macau & Chinese Academy of Sciences, China

Vaclav Skala, University of West Bohemia, Czech Republic

Edited by

Vaclav Skala

 Vaclav Skala – Union Agency

WSCG’2012 Conference Proceedings

Editor-in-Chief: Vaclav Skala

c/o University of West Bohemia, Univerzitni 8

CZ 306 14 Plzen

Czech Republic

http://www.VaclavSkala.eu

Managing Editor: Vaclav Skala

Published and printed by:

Vaclav Skala – Union Agency

Na Mazinách 9

CZ 322 00 Plzen

Czech Republic

Hardcopy: ISBN 978-80-86943-79-4

http://www.vaclavskala.eu/

WSCG 2012

International Program Committee

Adzhiev,V. (United Kingdom)

Benes,B. (United States)

Bengtsson,E. (Sweden)

Benoit,C. (France)

Bilbao,J. (Spain)

Biri,V. (France)

Bittner,J. (Czech Republic)

Bouatouch,K. (France)

Bourke,P. (Australia)

Coquillart,S. (France)

Daniel,M. (France)

de Geus,K. (Brazil)

Debelov,V. (Russia)

Feito,F. (Spain)

Ferguson,S. (United Kingdom)

Flaquer,J. (Spain)

Gavrilova,M. (Canada)

Gudukbay,U. (Turkey)

Havran,V. (Czech Republic)

Hege,H. (Germany)

Chmielewski,L. (Poland)

Chover,M. (Spain)

Chrysanthou,Y. (Cyprus)

Jansen,F. (Netherlands)

Klosowski,J. (United States)

Magnor,M. (Germany)

Max,N. (United States)

Molla Vaya,R. (Spain)

Muller,H. (Germany)

Murtagh,F. (Ireland)

Myszkowski,K. (Germany)

Pan,R. (China)

Pasko,A. (United Kingdom)

Pedrini,H. (Brazil)

Platis,N. (Greece)

Rojas-Sola,J. (Spain)

Rokita,P. (Poland)

Rudomin,I. (Mexico)

Sakas,G. (Germany)

Santos,L. (Portugal)

Skala,V. (Czech Republic)

Slavik,P. (Czech Republic)

Sochor,J. (Czech Republic)

Sramek,M. (Austria)

Staadt,O. (Germany)

Stroud,I. (Switzerland)

Teschner,M. (Germany)

Tokuta,A. (United States)

Triantafyllidis,G. (Greece)

Vergeest,J. (Netherlands)

Vitulano,D. (Italy)

Weiss,G. (Germany)

Wu,E. (China)

Wuethrich,C. (Germany)

Zara,J. (Czech Republic)

Zemcik,P. (Czech Republic)

Zitova,B. (Czech Republic)

WSCG 2012

Board of Reviewers

Abad,F. (Spain)

Adzhiev,V. (United Kingdom)

Ariu,D. (Italy)

Assarsson,U. (Sweden)

Aveneau,L. (France)

Barthe,L. (France)

Battiato,S. (Italy)

Benes,B. (United States)

Benger,W. (United States)

Bengtsson,E. (Sweden)

Benoit,C. (France)

Beyer,J. (Saudi Arabia)

Biasotti,S. (Italy)

Bilbao,J. (Spain)

Biri,V. (France)

Bittner,J. (Czech Republic)

Bosch,C. (Spain)

Bouatouch,K. (France)

Bourdin,J. (France)

Bourke,P. (Australia)

Bruckner,S. (Austria)

Bruder,G. (Germany)

Bruni,V. (Italy)

Buriol,T. (Brazil)

Cakmak,H. (Germany)

Capek,M. (Czech Republic)

Cline,D. (United States)

Coquillart,S. (France)

Corcoran,A. (Ireland)

Cosker,D. (United Kingdom)

Daniel,M. (France)

Daniels,K. (United States)

de Geus,K. (Brazil)

De Paolis,L. (Italy)

Debelov,V. (Russia)

Dingliana,J. (Ireland)

Dokken,T. (Norway)

Drechsler,K. (Germany)

Durikovic,R. (Slovakia)

Eisemann,M. (Germany)

Erbacher,R. (United States)

Erleben,K. (Denmark)

Essert,C. (France)

Faudot,D. (France)

Feito,F. (Spain)

Ferguson,S. (United Kingdom)

Fernandes,A. (Portugal)

Flaquer,J. (Spain)

Flerackers,E. (Belgium)

Fuenfzig,C. (Germany)

Galo,M. (Brazil)

Garcia Hernandez,R. (Spain)

Garcia-Alonso,A. (Spain)

Gavrilova,M. (Canada)

Giannini,F. (Italy)

Gobron,S. (Switzerland)

Gonzalez,P. (Spain)

Gudukbay,U. (Turkey)

Guérin,E. (France)

Hall,P. (United Kingdom)

Hansford,D. (United States)

Haro,A. (United States)

Hasler,N. (Germany)

Hast,A. (Sweden)

Havran,V. (Czech Republic)

Hege,H. (Germany)

Hernandez,B. (Mexico)

Herout,A. (Czech Republic)

Hicks,Y. (United Kingdom)

Horain,P. (France)

House,D. (United States)

Chaine,R. (France)

Chaudhuri,D. (India)

Chmielewski,L. (Poland)

Choi,S. (Korea)

Chover,M. (Spain)

Chrysanthou,Y. (Cyprus)

Ihrke,I. (Germany)

Jansen,F. (Netherlands)

Jeschke,S. (Austria)

Jones,M. (United Kingdom)

Juettler,B. (Austria)

Kanai,T. (Japan)

Kim,H. (Korea)

Klosowski,J. (United States)

Kohout,J. (Czech Republic)

Krivanek,J. (Czech Republic)

Kurillo,G. (United States)

Kurt,M. (Turkey)

Lay Herrera,T. (Germany)

Lien,J. (United States)

Liu,S. (China)

Liu,D. (Taiwan)

Loscos,C. (France)

Lucas,L. (France)

Lutteroth,C. (New Zealand)

Maciel,A. (Brazil)

Madeiras Pereira,J. (Portugal)

Magnor,M. (Germany)

Manak,M. (Czech Republic)

Manzke,M. (Ireland)

Mas,A. (Spain)

Masia,B. (Spain)

Masood,S. (United States)

Matey,L. (Spain)

Matkovic,K. (Austria)

Max,N. (United States)

McDonnell,R. (Ireland)

McKisic,K. (United States)

Mestre,D. (France)

Molina Masso,J. (Spain)

Molla Vaya,R. (Spain)

Montrucchio,B. (Italy)

Muller,H. (Germany)

Murtagh,F. (Ireland)

Myszkowski,K. (Germany)

Niemann,H. (Germany)

Okabe,M. (Japan)

Oliveira Junior,P. (Brazil)

Oyarzun Laura,C. (Germany)

Pala,P. (Italy)

Pan,R. (China)

Papaioannou,G. (Greece)

Paquette,E. (Canada)

Pasko,A. (United Kingdom)

Pasko,G. (United Kingdom)

Pastor,L. (Spain)

Patane,G. (Italy)

Patow,G. (Spain)

Pedrini,H. (Brazil)

Peters,J. (United States)

Peytavie,A. (France)

Pina,J. (Spain)

Platis,N. (Greece)

Plemenos,D. (France)

Poulin,P. (Canada)

Puig,A. (Spain)

Reisner-Kollmann,I. (Austria)

Renaud,c. (France)

Reshetov,A. (United States)

Richardson,J. (United States)

Rojas-Sola,J. (Spain)

Rokita,P. (Poland)

Rudomin,I. (Mexico)

Runde,C. (Germany)

Sacco,M. (Italy)

Sadlo,F. (Germany)

Sakas,G. (Germany)

Salvetti,O. (Italy)

Sanna,A. (Italy)

Santos,L. (Portugal)

Sapidis,N. (Greece)

Savchenko,V. (Japan)

Sellent,A. (Germany)

Sheng,B. (China)

Sherstyuk,A. (United States)

Shesh,A. (United States)

Schultz,T. (Germany)

Sirakov,N. (United States)

Skala,V. (Czech Republic)

Slavik,P. (Czech Republic)

Sochor,J. (Czech Republic)

Solis,A. (Mexico)

Sourin,A. (Singapore)

Sousa,A. (Portugal)

Sramek,M. (Austria)

Staadt,O. ()

Stroud,I. (Switzerland)

Subsol,G. (France)

Sunar,M. (Malaysia)

Sundstedt,V. (Sweden)

Svoboda,T. (Czech Republic)

Szecsi,L. (Hungary)

Takala,T. (Finland)

Tang,M. (China)

Tavares,J. (Portugal)

Teschner,M. (Germany)

Theussl,T. (Saudi Arabia)

Tian,F. (United Kingdom)

Tokuta,A. (United States)

Torrens,F. (Spain)

Triantafyllidis,G. (Greece)

TYTKOWSKI,K. (Poland)

Umlauf,G. (Germany)

Vavilin,A. (Korea)

Vazquez,P. (Spain)

Vergeest,J. (Netherlands)

Vitulano,D. (Italy)

Vosinakis,S. (Greece)

Walczak,K. (Poland)

WAN,L. (China)

Wang,C. (Hong Kong SAR)

Weber,A. (Germany)

Weiss,G. (Germany)

Wu,E. (China)

Wuensche,B. (New Zealand)

Wuethrich,C. (Germany)

Xin,S. (Singapore)

Xu,D. (United States)

Yang,X. (China)

Yoshizawa,S. (Japan)

YU,Q. (United Kingdom)

Yue,Y. (Japan)

Zara,J. (Czech Republic)

Zemcik,P. (Czech Republic)

Zhang,X. (Korea)

Zhang,X. (China)

Zillich,M. (Austria)

Zitova,B. (Czech Republic)

Zwettler,G. (Austria)

WSCG 2012

Communications Proceedings

Contents

Kenwright,B.: A Beginners Guide to Dual-Quaternions : What They Are, How They

Work, and How to Use Them for 3D Character Hierarchies

1

Hast,A., Marchetti,A.: An Efficient Preconditioner and a Modified RANSAC for Fast

and Robust Feature Matching

11

Vassilev,T.I., Spanlang,B.: Fast GPU Garment Simulation and Collision Detection 19

Saito,P.T.M., de Rezende,P.J., Falcao,A.X., Suzuki,C.T.N., Gomes,J.F.: Improving

Active Learning with Sharp Data Reduction

27

Morik,M., Masik,S., Müller,R., Köppen,V.: Exposing Proprietary Virtual Reality

Software to Nontraditional Displays

35

Lee,G.R. , Lee,H.C. , Lee,T.M. , Yoon,G.H.: Image Abstraction with Cartoonlike

Shade Representation

45

Klein,A., Nischwitz,A., Obermeier,P.: Contact Hardening Soft Shadows using

Erosion

53

Schmidt,M., Guthe,M., Blanz,V.: Diffusion-based parametrization of surfaces on

3D-meshes

59

Minoi,J.-L., Gillies,D.F., Robert,A.J.: Realistic Facial Expression Synthesis of 3D

Human Face based on Real Data using Multivariate Tensor Methods

69

Kurowski,M.: Procedural Generation of Meandering Rivers Inspired by Erosion 79

Schiffner,D., Krömker,D.: Parallel Treecut-Manipulation for Interactive Level of

Detail Selection

87

Nakata,N., Kakimoto,M., Nishita,T.: Animation of Water Droplets on a

Hydrophobic Windshield

95

Noguera,J.M., Jimenez,J.R.: Visualization of Very Large 3D Volumes on Mobile

Devices and WebGL

105

Crumley,Z., Marais,P., Gain,J.: Voxel-Space Shape Grammars 113

Tang,Y., Wu,Z., Zhou,M.: Interactively Simulating Fluid based on SPH and CUDA 123

Lazunin,V., Savchenko,V.: Artificial jellyfish: evolutionary optimization of

swimming

131

Pimenta,W., Santos,L.P.: A Comprehensive Taxonomy for Three-dimensional

Displays

139

Metzgar,J., Semwal,S.K.: Approximating the Fire Flicker effect using Local

Dynamic Radiance Maps

147

Schumann,M., Hoppenheit,J., Müller,S.: A Matching Shader Technique for Model-

Based Tracking

155

Tomori,Z., Gargalik,R., Hrmo,I.: Active Segmentation in 3D using Kinect Sensor 163

Marks,S., Windsor,J., Wuensche,B.: Using Game Engine Technology for Virtual

Environment Teamwork Training

169

Leonardi,V., Mari,J.L., Vidal,V., Daniel,M.: A Morphing Approach for Kidney

Dynamic Modeling : from 3D Reconstruction to Motion Simulation

179

Debelov,V., Kozlov,D.: Rendering of Translucent Objects, Verification and

Validation of Algorithms

189

Klein,A., Tappert,B., Nischwitz,A., Obermeier,P.: Volumetric Percentage Closer

Soft Shadows

197

Klicnar,L., Beran,V.: Robust Motion Segmentation for On-line Application 205

Oshita,M.: Multi-Touch Interface for Character Motion Control Using Example-

Based Posture Synthesis

213

Hulík,R., Kršek,P.: Local Projections Method and Curvature Approximation on 3D

Polygonal Models

223

Bahnsen,C., Dewilde,A., Pedersen,C., Tranchet,G., Madsen,C.B.: Realtime global

illumination using compressed pre-computed indirect illumination textures

231

Reuter,A., Seidel,H.-P., Ihrke,I.: BlurTags: spatially varying PSF estimation with

out-of-focus patterns

239

Nguyen,M.H., Wuensche,B., Delmas,P., Lutteroth,C.: 3D Models from the Black

Box: Investigating the Current State of Image-Based Modeling

249

Krivokuca,M., Wuensche,B., Abdulla,W., Lavoué,G.: Investigating the Rate-

Distortion Performance of a Wavelet-Based Mesh Compression Algorithm by

Perceptual and Geometric Distortion Metrics

259

Bittorf,B., Wüthrich,C.: EmotiCon - Interactive emotion control for virtual

characters

269

Mahiddine,A., Seinturier,J., Jean-Marc Boi,J.-M., Drap,P., Merad,D.: Performances

Analysis of Underwater Image Preprocessing Techniques on the Repeatability

of SIFT and SURF Descriptors

275

Bruni,V., Rossi,E., Vitulano,D.: Unsupervised Perception-based Image Restoration

of Semi-transparent Degradation using Lie Group Transformations

283

Bugaj,M., Cyganek,B.: GPU Based Computation of the Structural Tensor for Real-

Time Figure Detection

291

Safdar,K.: Detecting and Removing Islands in Graphics-Rendering-Based

Computations of Lower Envelopes of Plane Slabs

299

Minich,C.: Search for small monostatic polyhedra 309

Warburton,M., Maddock,S.: Creating Animatable Non-Conforming Hexahedral

Finite Element Facial Soft-Tissue Models for GPU Simulation

317

François,A., Raffin,R., Aryal,J.: 3D modelling and analysis: ISO standard tools for

air traffic

327

Jawad,M., Yasin,M., Sarfraz,M.S.: License Plate Detection using NMF with

Sparseness constraints through still Images

335

Bian,X., Krim,H.: Video-based Human Motion Analysis: An Operator-based

Approach

341

Arora,N., Kumar,A., Kalra,P.: Digital Restoration of Old Paintings 347

Khurana,S., Brener,N, Benger,W., Karki,B., Roy,S., Acharya,S., Ritter,M.,

Iyengar,S.: Multi Scale Color Coding of Fluid Flow Mixing Indicators along

Integration Lines

357

Qureshi,H., Malik,M., Ahmad,M.A., Heinzl,C.: Benchmarking of De-noising

Techniques for Streaking Artifacts in Industrial 3DXCT Scan Data

367

Graca,S., Oliveira,J.F., Realinho,V.: WorldPlus: An Augmented Reality Application

with Georeferenced content for smartphones - the Android example

377

A Bigger Mathematical Picture
for Computer Graphics

Eric Lengyel

Terathon Software LLC
http://www.terathon.com/lengyel/

USA

ABSTRACT

Some of the most brilliant mathematical discoveries
of the 1800s were pushed aside for over a century in
favor of the vector analysis and linear algebra that we
are all familiar with. However, these old ideas have
recently been rediscovered in the field of computer
graphics by researchers who understand how they
can unify many of the geometric operations that are
used every day.
This talk introduces the basic concepts of the exterior
algebra and presents a bigger mathematical picture
that enables a deeper understanding of the homoge-
neous representation of points, lines, and planes, as
well as the operations that can be performed among
them using the progressive and regressive products.
Some emphasis is placed on the history of related
mathematics and the past development of incomplete
pieces of the bigger picture, such as Plücker coordi-
nates. The goal is to help the audience unlearn some
longstanding misnomers in 3D geometry and to pro-
vide the knowledge of a larger, unified world into
which many familiar mathematical concepts fit to-
gether.

BRIEF BIOGRAPHY

Eric Lengyel is the founder of Terathon Software and
the creator of the C4 Engine, a comprehensive tech-
nology platform for games and virtual simulations.
He holds a Ph.D. in Computer Science from the Uni-
versity of California at Davis and a Masters Degree
in Mathematics from Virginia Tech.
Eric is the best-selling author of the book Mathemat-
ics for 3D Game Programming & Computer
Graphics, and he is the series editor for the new
Game Engine Gems series. Eric is also a member of
the editorial board for the Journal of Graphics Tools,
and he is a major contributor to the successful Game
Programming Gems series.
Eric previously worked in the advanced technology
group at Naughty Dog where he developed the driver
architecture for the Playstation 3. Prior to that, was
the lead programmer for Sierra Studio’s popular ad-
venture game Quest for Glory V, and he worked on
OpenGL in Apple’s graphics and imaging depart-
ment.

Overcoming Physical Limitations of Display Devices
in Rendering

Karol Myszkowski

Max-Planck-Institut für Informatik
http://www.mpi-inf.mpg.de/

Germany

ABSTRACT
The knowledge of human visual system (HVS)
enables more efficient image rendering by
overcoming physical constraints of display devices.
This talk presents a number of successful examples
of embedding HVS models into real-time rendering
pipelines. In particular, I discuss the problem of
improving the appearance of highlights and light
sources by boosting their apparent brightness using
the temporal glare technique. Also, I discuss how to
overcome physical contrast limitations of display
devices by using the 3D unsharp masking technique
to boost the apparent contrast. Also, I present
techniques for apparent resolution enhancement,
which enable showing image details beyond the
physical pixel resolution of the display device.
Finally, I discuss the role of perception in context of
stereovision and accommodation/vergence conflict
reduction

BRIEF BIOGRAPHY
Karol Myszkowski is a tenured senior researcher at
the MPI Informatik, Saarbruecken, Germany. In the
period from 1993 till 2000 he served as an associate
professor in the Department of Computer Software at
the University of Aizu, Japan. In the period from
1986 till 1992 he worked for Integra, Inc. a Japan-
based, company specialized in developing rendering
and global illumination software. He received his
PhD (1991) and habilitation (2001) degrees in
computer science from Warsaw University of
Technology (Poland). In 2011 he was awarded with a
lifetime professor title by the President of Poland.
His research interests include perception issues in
graphics, high dynamic range imaging, global
illumination and rendering. Karol published and
lectured on these topics widely including ACM
Siggraph/Siggraph Asia Courses in 2001, 2002,
2004, 2006, and 2012. He also co-chaired Rendering
Symposium in 2001, ACM Symposium on Applied
Perception in Graphics and Visualization in 2008,
Spring Conference on Computer Graphics 2008, and
Graphicon 2012

Physically Based Weathering Simulation of Natural
Objects Based on Biological Analysis

Enhua Wu

State Key Lab. of Computer Science, Chinese Academy of Sciences, Beijing
&

University of Macau, Macao，China

ABSTRACT
The Weathering effect of nature objects or natural
scenes is a common phenomenon in our daily life.
However, little investigation has been made to the
phenomenon so far in computer graphics field. The
weathering procedure on the nature objects such as
plants, trees, grasses etc. is a slowly changing
process, and in fact it is involved with a
comprehensive drying procedure made towards the
biological structure of the nature objects, in terms of
the shape change of the objects & the color change of
their appearance. With regard to the shape change or
deformation, a physically based mechanical
calculation is applied to the biological components
incurred by the drying effect in our solution. On the
other hand, the change of color appearance could be
simulated based on the synthesis to the color
spectrum of the samples collected in the weathering
process of the objects. The simulation based the
scheme will be demonstrated by the simulation result
to the trees, grassland, fruits etc.

BRIEF BIOGRAPHY
Dr. Enhua Wu completed his BSc in Tsinghua
University, Beijing in 1970 and received his Ph.D
degree from Dept. of Computer Science, University
of Manchester, England in 1984. Since 1985 he has
been working at the Institute of Software, Chinese
Academy of Sciences, as a director of the Research
Dept. of Fundamental Theory and Advanced
Technology until 1998. Since September of 1997, he
has been also invited as a full professor of University
of Macau (UM).

Dr. Wu’s main interests are Realistic Image
Synthesis, Virtual Reality and Scientific
Visualization. Now he is an Associate Editor-in-
Chief of the Journal of Computer Science and
Technology (Science Press and Springer) and the
editorial board member of TVC, CAVW, IJIG, IJVR,
IJSI. He has been also in recent years invited as a
keynote speaker or chairing works in a number of
international conferences such as ACM VRST2010,
CASA2011, ACM VRCAI2008-2012, IEEE
VR2011-12 etc.

A Beginners Guide to Dual-Quaternions
What They Are, How They Work, and How to Use Them for 3D Character Hierarchies

Ben Kenwright

School of Computing Science, Newcastle University

Newcastle Upon Tyne, United Kingdom

b.kenwright@ncl.ac.uk

ABSTRACT
In this paper, we give a beginners guide to the practicality of using dual-quaternions to represent the rotations

and translations in character-based hierarchies. Quaternions have proven themselves in many fields of science

and computing as providing an unambiguous, un-cumbersome, computationally efficient method of representing

rotational information. We hope after reading this paper the reader will take a similar view on dual-quaternions.

We explain how dual number theory can extend quaternions to dual-quaternions and how we can use them to

represent rigid transforms (i.e., translations and rotations). Through a set of examples, we demonstrate exactly

how dual-quaternions relate rotations and translations and compare them with traditional Euler’s angles in

combination with Matrix concatenation. We give a clear-cut, step-by-step introduction to dual-quaternions,

which is followed by a no-nonsense how-to approach on employing them in code. The reader, I believe, after

reading this paper should be able to see how dual-quaternions can offer a straightforward solution of

representing rigid transforms (e.g., in complex character hierarchies). We show how dual-quaternions propose a

novel alternative to pure Euler-Matrix methods and how a hybrid system in combination with matrices results in

a faster more reliable solution. We focus on demonstrating the enormous rewards of using dual-quaternions for

rigid transforms and in particular their application in complex 3D character hierarchies.

Keywords
Dual-Quaternion, 3D, Real-Time, Character Hierarchies, Rigid Transformation

1. INTRODUCTION
Real-time dynamic 3D character systems combine

key framed animations, inverse kinematics (IK) and

physics-based models to produce controllable,

responsive, realistic motions. The majority of

character-based systems use a skeleton hierarchical

composition of rigid transforms. Each rigid

transform has six degrees of freedom (DOF) that

consists of three translational and three rotational

components. Matrices are the most popular method

of storing and combining these transforms. While

matrices are adequate, we ask the question, is there a

better method? In this paper, we address the

advantages and disadvantages of matrices while

proposing a novel alternative based on quaternions

called dual-quaternions. The purpose of this paper is

to present a beginner’s guide to dual-quaternions in

sufficient detail that the reader can begin to use them

as a practical problem-solving tool for rigid character

transforms. This paper covers the basics of dual-

quaternions and their application to complex

hierarchical systems with many DOF.

Dual-quaternions are interesting and important

because they cut down the volume of algebra. They

make the solution more straightforward and robust.

They allow us to unify the translation and rotation

into a single state; instead of having to define

separate vectors. While matrices offer a comparable

alternative to dual-quaternions, we argue that they

can be inefficient and cumbersome in comparison. In

fact, dual-quaternions give us a compact, un-

ambiguous, singularity-free, and computational

minimalistic rigid transform. In addition, dual-

quaternions have been shown to be the most efficient

and most compact form of representing rotation and

translation. Dual-quaternions can easily take the

place of matrices in hierarchies at no additional cost.

For rigid transform hierarchies that combine and

compare rigid transforms on a frame-by-frame bases

(e.g., character inverse kinematics (IK) and joint

constraints), alternative methods such as matrices

need to be converted to quaternions to generate

reliable contrast data; this can be done without any

conversion using dual-quaternions.

Many students have a great deal of trouble

understanding essentially what quaternions are and

how they can represent rotation. So when the subject

of dual-quaternions is presented, it is usually not

welcomed with open arms. Dual-quaternions are a

break from the norm (i.e., matrices) which we hope

to entice the reader into embracing to represent their

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2012 Communication Proceedings 1 http://www.wscg.eu

rigid transforms. The reader should walk away from

this paper with a clear understanding of what dual-

quaternions are and how they can be used.

The majority of computer scientists are familiar with

vectors, matrices, and quaternions. They provide a

set of tools to help solve problems. This paper

presents the case for adding dual-quaternions to this

set of tools.

The contribution of this paper is the explanation and

demonstration of dual-quaternions in a sufficiently

detailed way that the reader can begin to appreciate

their practical problem-solving advantages. We use

character-based hierarchies as a base method to

illustrate the realistic reward of dual-quaternions in

time critical systems (e.g., games).

This paper presents dual-quaternions as a method for

representing rigid transforms in complex character

hierarchies with a large number of DOF. We explain

how to implement a basic dual-quaternion class and

combine dual-quaternions through straightforward

multiplication to work in place of matrices.

The roadmap for the rest of the paper is as follows:

we begin with a review of recent and related work

that emphasises the power of dual-quaternions. We

review familiar rigid transform methods and their

advantages and disadvantages. We then outline the

primary reasons for using dual-quaternions and why

you would want to use them for rigid transforms over

other methods. We then give the background

mathematical information for dual numbers,

quaternions and dual-quaternions. The following

sections then focus on the practical aspects of dual-

quaternions. We discuss a variety of experiments

with computer simulations and character hierarchies

in relation to dual-quaternion. Finally, the end

section presents the conclusion and proposed future

work.

2. RELATED WORK
The dual-quaternion has been around since 1882

[CLIF82] but has gained less attention compared to

quaternions alone. Comparable to quaternions the

dual-quaternions have had a taboo associated with

them, whereby students avoid quaternion and hence

dual-quaternions. While the robotics community has

started to adopt dual-quaternions in recent years, the

computer graphics community has not embraced

them as whole-heartedly. We review some recent

work which has taken hold and has demonstrated the

practicality of dual-quaternions, both in robotics and

computer graphics.

2.1. Computer Graphics
Kavan [KCŽO08] demonstrated the advantages of

dual-quaternions in character skinning and blending.

Ivo [IVIV11] extended Kavans [KCŽO08] work with

dual-quaternions and qtangents as an alternative

method for representing rigid transforms instead of

matrices, and gives evidence that the results can be

faster with accumulated transformations of joints if

the inferences per vertex are large enough.

Selig [SELI11] address the key problem in computer

games. Examining the problem of solving the

equations of motion in real-time and puts forward

how dual-quaternion give a very neat and succinct

way of represent rigid-body transformations.

Vasilakis [VAFU09] discussed skeleton-based rigid-

skinning for character animation.

Kuang [KMLX11] presented a strategy for creating

real-time animation of clothed body movement.

2.2. Robotics
Pham [PPAF10] solved linked chain inverse

kinematic (IK) problems using Jacobian matrix in the

dual-quaternion space.

Malte [SCHI11] used a mean of multiple

computational (MMC) model with dual-quaternions

to model bodies.

Ge [GVMC98] demonstrated dual-quaternions to be

an efficient and practical method for interpolating

three-dimensional motions.

Yang-Hsing [LIWC10] calculated the relative

orientation using dual-quaternions.

Perez [PEMC04] formulated dynamic constraints for

articulated robotic systems using dual-quaternions.

3. FAMILIAR PHYSICAL CONCEPTS
We review the most common methods of

representing rigid body orientations and translations

in our physical world (three spatial dimensions).

While orientation and rotation are familiar concepts,

there are many ways to represent them both

mathematically and computationally, each with their

own strengths and weaknesses. We briefly describe

four of the most popular methods of representing

rigid transforms in character systems. This helps

illustrate the mathematical and computational issues

that occur. The four alternate methods we compare

mathematically and computationally to dual-

quaternions are:

Matrices
Axis-Angles
Euler-Angles + Translation
Quaternions

Each alternative method needs to represent both the

orientation and translation. In some cases this is

achieved by using two separate state variables and

combining them separately, while matrices and dual-

quaternions give us a unified state variable.

For each case we focus on issues of interpolation,

computational speed, mathematical robustness and

distance metrics.

WSCG 2012 Communication Proceedings 2 http://www.wscg.eu

The properties we look for to represent the rigid body

transform are:

Robustness – be continuous and not contain any

discontinuities (such as gimbal lock with Euler’s

angles which we discuss later). Contain a unique

representation, where some methods contain

redundant information, such that several or an

infinite number of elements can represent the same

transform.

Efficiency – should consume the smallest necessary

amount of space and be computationally fast. We

would like a minimum number of calculations to

combine and convert between alternative

representations (e.g., cost to convert between

matrices and Euler angles).

Ease of Use – can be used without too many

complications.

3.1. Orientation and Translation
It might seem intuitive how objects are rotated and

translated. For example, we can pick up any object

around us and spin (rotate) and translate (move) it

without thinking. However, how do we model this

computationally and mathematically? The following

sub-sections are devoted to the explanation and

understanding of these basic principles.

For methods which are formed from separate

orientation and translational information, we can

analyse their workings by considering orientation and

translation separately and combining them at the end

of each transform.

3.2. Translation
The translation coordinates are relatively simple to

work with. They compose of the scalar values along

each of the principle axes (x, y and z). The computed

orientations are combined with the translations by

rotating the principle axis.

3.3. Euler-Angles
A familiar way of representing the orientation and

translation in character systems is to factor it into

three sequential angles around the principle

orthogonal axes (x, y and z).

Euler’s angles in 3D do not (in-general) commute

under composition.

In practice, the angles are used by inserting them into

matrices. The product of the three angle-matrices

produces the Euler angle set. There are twelve

possible products: XYZ, XYX, YZX, YZY, ZXY,

ZXZ, XZY, XZX, YXZ, YXY, ZYX, and ZYZ.

These are the order the rotations are applied in. For

example, the factorization XYZ, would mean rotate

round X then Y then Z.

To work with Euler angles we convert them to

matrices:

1 0 0

0 cos sin

0 sin cos

cos 0 sin

0 1 0

sin 0 cos

cos sin 0

sin cos 0

0 0 1

x x

x x

y y

y y

z z

z z

X

Y

Z

Combining the translation is just a matter of rotating

the translational components (x, y and z) by the

rotation.

To combine and calculate interpolating differences

requires us to find the equivalent axis-angle of the

two orientations and extrapolate the Euler angles.

 Create a matrix for each Euler angle.

 Multiply the three matrices together.

 Extract axis-angle from resulting matrix.

Converting, combining, and extracting Euler angles

is computationally expensive. Moreover, Euler

angles can have discontinuities around 0 and 2,

since the components live on separate circles and not

a single vector space.

3.3.1. Advantages
People prefer Euler angles as they can comprehend

them effortlessly and can create orientations with

them without difficulty. They are also very intuitive

and have a long history in physics and graphics and

can make certain integrals over rotational space

easier.

Euler angles are minimalistic and require only three

parameters; however, we show later how four

parameters are better than three. Furthermore, since

the angles are used directly, there is no drifting or the

need for normalization.

3.3.2. Disadvantages
Euler angles suffer from singularities - angles will

instantaneously change by up to 2 radians as other

angles go through the singularity; Euler angles are

virtually impossible to use for sequential rotations.

There are twelve different possible Euler angle

rotation sequences - XYZ, XYX, XZY, and so on.

There is no one "simplest" or "right" set of Euler

angles. To derive a set of Euler angles you must

know which rotational sequence you are using and

stick to it.

In practice when Euler angles are needed; the

underlying rotation operations are done using

quaternions and are converted to Euler angles for the

task at hand.

WSCG 2012 Communication Proceedings 3 http://www.wscg.eu

3.3.3. Gimbals Lock
The coordination singularity in Euler’s angles is

commonly referred to as gimbals lock. A gimbal is a

physical device consisting of spherical concentric

hoops with pivots connecting adjacent hoops,

allowing them to rotate within each other (see Figure

1).

Figure 1. Gimbal with points of rotation indicated.

A gimbal is constructed by aligning three rings and

attaching them orthogonally. Gimbals are often seen

in gyroscopes used by the aeronautical industry.

As objects are rotated, they approach gimbal lock the

singularity will cause numerical ill-conditioning,

often evidented physically by the gimbal wiggling

madly around as it operates near the singularity. This

is one reason why the aerospace industry, early on,

switched to quaternions to represent orientation –

satellites, rockets and airplanes would have their

navigation gyro lock up and could cause them to

crash.

3.3.4. Interpolation
The major problem with Euler interpolation is that

they have problems while interpolating near gimbals

lock regions. When close to a gimbal lock

singularity the interpolation become jittery and noise

ridden; eventually becoming random and unstable as

it converges on the singularity.

If Euler angles are interpolated linearly the resulting

path will not take the shortest path between the

endpoints as it does in vector space [ALMA92].

3.4. Axis-Angle
The axis-angle is represented by a unit axis and angle

(ˆ,n) pair. This axis-angle representation can easily

be converted to and from a matrix.

It is difficult to combine the axis-angle elements in

their native form; usually being converted to an

alternate representation for concatenation (e.g.,

matrices, quaternions).

3.4.1. Advantages
The greatest single advantage of the axis-angle

representation is that it directly represents the action

of rotation, while being straightforward and intuitive

to work with.

3.4.2. Disadvantages
We can renormalize the axis since it is a unit vector,

but numerical errors can still creep into the angle

portion.

Infinite number of angle choices (multiples of 2), so

two axis-angle pairs can still refer to the same

rotation but be different.

Axis-angle interpolation cannot be done using linear

interpolation of the four elements. Interpolating

between the four elements naively in this way does

not give the shortest path.

Interpolating the angle alone can introduce

discontinuities as the angle crosses from 0 to 2.

These ‘jumps’ are highly undesirable and can cause

anarchy with the interpolation and numerical

integration schemes.

3.5. Matrices
Representing a rigid transform using a matrix we

extend a 3x3 rotation matrix to include translation

information which makes it a 4x3 matrix. While a

4x3 matrix is the most efficient, on most occasions a

4x4 matrix is used because of availability.

The 3x3 part of the matrix consists of three

orthogonal column vectors which are of unit

magnitude.

A transform matrix can transform a vector coordinate

by simply matrix multiplication:

y Tx

where T is a transform matrix, x a vector coordinate

and y the transformed result.

If the position and basis vectors are known, the

transform matrix can trivially be produced, because

each of the columns in the 3x3 part of the matrix

represent the base vectors and the bottom row the

translation.

The combination of matrix elements is achieved

through simple multiplication. Matrices are not

commutative and therefore their matrix

representation of rigid body transforms is non-

commutative as well.

3.5.1. Advantages
Matrices are taught in linear algebra early on in

colleges so this makes them more familiar and

favourable. In addition, a great many algorithms

have been formulated and tested with matrices and so

people choose them instinctively first.

3.5.2. Disadvantages
While matrices might seem to be the utopia, they in-

fact can be found to have several problems.

Firstly, they take a minimum of 12 parameters to

represent a structure with only six DOF; if memory is

at a premium this can be undesirable.

WSCG 2012 Communication Proceedings 4 http://www.wscg.eu

Secondly, the rotational part of the matrix is

composed of orthogonal columns which can drift and

introduce unwanted scaling and sheering. We can re-

normalize the matrix using Gram-Schmidt method

[GILB86] but this can be computationally expensive.

Thirdly, interpolating between matrices is difficult.

The three columns forming the orthogonal axis

directions in the rotation part of the matrix do not

represent the vector space and cannot be interpolated.

Finally, it is difficult to visualize a matrix and the

axis-angle component about which it will rotate and

translate.

3.6. Method Summary
We have outlined and examined current methods for

representing a robust, practical and viable

hierarchical rigid body solution. We now follow on

from this by introducing and explaining how and

why dual-quaternions stand-out above these methods.

4. WHY DUAL-QUATERNIONS?
We use dual-quaternions as a tool for expressing and

analyzing the physical properties of rigid bodies.

Dual-quaternions can formulate a problem more

concisely, solve it more rapidly and in fewer steps,

present the result more plainly to others, be put into

practice with fewer lines of code and debugged

effortlessly. Furthermore, there is no loss of

efficiency; dual-quaternions can be just as efficient if

not more efficient than using matrix methods. In all,

there are several reasons for using dual-quaternions,

which we summarize:

 Singularity-free

 Un-ambiguous

 Shortest path interpolation

 Most efficient and compact form for

representing rigid transforms [SCHI11] - (3x4

matrix 12 floats compared to a dual-quaternion 8

floats)

 Unified representation of translation and rotation

 Can be integrated into a current system with

little coding effort

 The individual translation and rotational

information is combined to produce a single

invariant coordinate frame [GVMC98]

5. DUAL NUMBERS
Clifford [CLIF82] introduced dual numbers; similar

to complex numbers that consists of two parts known

as the real and complex component. Dual numbers

break the problem into two components and are

defined as:

z r d with 2 0 but 0

where is the dual operator, r is the real part and d

the dual part. Similar to complex number theory,

where i is added to distinguish the real and complex

components, the dual operator is used in the same

way.

The dual number theory can be extended to other

concepts, such as vectors and real numbers, but we

focus on their applicability in conjunction with

quaternions to represent rotation and translation

transforms.

5.1. Dual Number Arithmetic Operations
Dual numbers can perform the fundamental

arithmetic operations below:

Addition

() () () ()A A B B A B A Br d r d r r d d

Multiplication

2()()

()

A A B B A B A B B A A B

A B A B B A

r d r d r r r d r d d d

r r r d r d

Division

2

2 2

() () ()

() () ()

()

()

A A A A B B

B B B B B B

A B B A A B

B

A B B A A B

B B

r d r d r d

r d r d r d

r r r d r d

r

r r r d r d

r r

Further reading on the subject of dual numbers is

presented by Gino [BERG09].

5.2. Dual Number Differentiation
Dual numbers differentiate in the same way as any

other vector using elementary calculus principles,

e.g.:

0

d () ()
() lim

dx x

x x x
x

x

s s
s

The derivative of a dual number is another dual

number. Remarkably, the dual operator’s condition
2 0 enables us to take advantage of Taylor series

to find the differentiable. Where we can see below,

if we substituting a dual number into Taylor series,

we get:

2 3

2

'() ''() '''()
() () () () ...

1! 2! 3!

'()
() 0 0 ... (, 0)

1!

() '()

A A A
A A A A A A

A
A A

A A A

f r f r f r
f r d f r d d d

f r
f r d as

f r f r d

Remarkably, the Taylor series result gives us an

exceptionally tidy answer; from this we use dual

number arithmetic and substitution to find the

solution to any differential.

The derivative also enables us to find the tangent of

an arbitrary point p on a given parametric curve that

is equal to the normalized dual part of the point p.

WSCG 2012 Communication Proceedings 5 http://www.wscg.eu

6. QUATERNIONS
Quaternions were introduced by Hamilton in 1866

[HAMI86] and have had a rollercoaster of a time with

acceptance. Quaternions are an extension of

complex number-theory to formulate a four

dimensional manifold. A quaternion is defined as:

()w x y z q i j k

where w, x, y and z are the numerical values, while i,

j and k are the imaginary components.

The imaginary components properties:

2 2 2 1i j k

and

,

,

,

ij k ji k

jk i kj i

ki j ik j

It is more common to represent the quaternion as two

components, the vector component (x, y and z) and

the scalar component (w).

(,)wq v

For further reading on the workings of quaternions

and their advantages I highly recommend reading

McDonalds [MCDO10] introductory paper for

students.

6.1. Quaternion Arithmetic Operations
Since we are combining quaternions with dual

number theory, we give the elementary quaternion

arithmetic operations below:

Scalar Multiplication

(,)s sw sq v

 where s is a scalar value.

Addition

1 2 1 2 1 2(,)w w q q v v

Multiplication

1 2 1 2 1 2 1 2 2 1 1 2(, ())w w v v w w q q v v v v

Conjugate

* (,)w q v

Magnitude

*|| ||q qq

For a unit quaternion, || || 1q . The unit quaternion

is used to represent a rotation of an angle , radians

about a unit axis n , in three-dimensional space:

(cos(), sin())
2 2

q n

6.2. Quaternion Interpolation
An extremely important quality of quaternions that

make them indispensable in animation systems is

their ability to interpolate two or more quaternions

smoothly and continuously. Shoemake [SHOE85],

presents an outstanding paper on using quaternion

curves for animating rotations. Furthermore, it

should be noted, the spherical linear interpolation

(SLERP) properties of quaternions are inherited by

dual-quaternions.

7. DUAL-QUATERNIONS
When quaternions are combined with dual number

theory, we get dual-quaternions which was presented

by Clifford in 1882 [CLIF82]. While the unit

quaternion only has the ability to represent rotation,

the unit dual-quaternion can represent both

translation and rotation. Each dual-quaternion

consists of eight elements or two quaternions. The

two quaternion elements are called the real part and

the dual part.

r d q q q

where
rq and

dq are quaternions. Combining the

algebra operations associated with quaternions with

the additional dual number , we can form the dual-

quaternion arithmetic.

7.1. Dual-Quaternion Arithmetic

Operations
The elementary arithmetic operations necessary for

us to use dual-quaternions are:

Scalar Multiplication

r ds s s q q q

Addition

1 2 1 2 1 2()r r d d q q q q q q

Multiplication

1 2 1 2 1 2 1 2()r r r d d r q q q q q q q q

Conjugate
* * *

r d q q q

Magnitude
*|| ||q qq

Unit Condition

 || || 1q

* * 0r d d r q q q q

The unit dual-quaternion is our key concern as it can

represent any rigid rotational and translational

transformations.

The rigid rotational and translational information for

the unit dual-quaternion is:

WSCG 2012 Communication Proceedings 6 http://www.wscg.eu

1

2

r

d

q r

q t r

where r is a unit quaternion representing the rotation

and t is the quaternion describing the translation

represented by the vector (0,)tt .

The dual-quaternion can represent a pure rotation the

same as a quaternion by setting the dual part to zero.

[cos(), sin(), sin(), sin()][0,0,0,0]
2 2 2 2

r x y z

q n n n

To represent a pure translation with no rotation, the

real part can be set to an identity and the dual part

represents the translation.

[1,0,0,0][0, , ,]
2 2 2

yx z
t

tt t
q

Combining the rotational and translational

transforms into a single unit quaternion to represent

a rotation followed by a translation we get:

t r q q q

This arithmetic operation defines how we transform a

point p, using a unit dual-quaternion:

*' p qpq

where *andq q represent a dual-quaternion

transform and its conjugate; while and 'p p

represent our point inserted into a quaternion and its

resulting transform.

8. PORTING EXISTING CODE TO

DUAL-QUATERNIONS
A dual-quaternion consists of two quaternions, but is

represented by a single variable Q. Systems that

have been constructed using separate translation and

rotation (vector for translation and quaternion for

rotation) in combination with matrices schemes are

easily modified to use dual-quaternions for spatial

information.

1. For each link, construct a dual-quaternion Q

from the rotation and translation information.

2. Real part of the quaternion is the rotation

quaternion r. The dual part is calculated by

multiplying the quaternion r and translation

component t, e.g.:

0.5 (0,)

Qr r

Qd t r

3. Combine transformations as you would matrices

using multiplication.

4. If necessary, for long chains, the dual-quaternion

should be re-normalized (to mend drift and

maintain a unit dual-quaternion).

5. To get the homogeneous transformation matrix,

convert the dual-quaternion by extracting the

translational and rotational components.

6. The extracted rotation quaternion r and vector

translation information is extracted using:

*2

r Qr

t Qd Qr

Dual-quaternion multiplication is more efficient than

matrix multiplication and can effortlessly be

converted back to a matrix when needed. Dual-

quaternions, unlike Euler angles, do not present

issues like "gimbal lock" and hence, are ideal for

complex articulated hierarchies.

9. COMPLEX CHARACTER

HIERARCHY FORWARD

KINEMATICS
The focus of our attention is with rigid hierarchies

having a large number of DOF. Humans have a

tremendous amount of flexibility which we emulate

and analyze using numerical and mathematical

models. Forward kinematics is the method of

concatenating local positions and rotations together

to give their global ones. The forward kinematic

method for concatenating transforms is the same for

dual-quaternions and matrices; which use simple

multiplication to propagate transforms between the

connected links.

For example, the concatenation of transforms with

matrices and dual-quaternions:

Matrix

03 0 1 2 3M M M M M

Dual-Quaternion

03 0 1 2 3q q q q q

where the subscript represents the transform, matrix

transform 0M corresponding to dual-quaternion

transform 0q .

10. EXPERIMENTAL RESULTS
We used traditional matrix methods during initial

character transformation experiments; e.g., inverse

kinematic (IK) and animation blending to

demonstrate their numerous problems. Matrix

methods are a popular choice and solutions to these

problems have been developed; we used some of

these engineering solutions. Of course, these

workarounds to these problems introduced an

additional computational cost. Furthermore, certain

circumventions to overcome a problem often

introduced errors in other areas. One such

engineering solution for reducing the impact of drift

WSCG 2012 Communication Proceedings 7 http://www.wscg.eu

and concatenation error was to renormalize the

matrices at each level (and at each update frame).

The error reduced skewing and scaling but

manifested itself in the ideal global end-link

orientations and positions being inaccurate.

To demonstrate the problems, we constructed

numerous test cases to emphasis them. We also

demonstrate and explore how dual-quaternions can

represent rigid body character based systems.

10.1. Rigid Body Transform Chains
We constructed a straightforward IK solver that

would follow a target end-effector. To mimic how a

character would move his arm or leg. The end-

effector had six DOF, which the IK solver had to

work with to meet its target goal.

Figure 2. Rigid body links attached in a single

hieararchy frame. (Draw ideal(red) and calculated

end-effector (green).

The hierarchy is composed of rigid links. Each link

held a rotation and translation in the form of a matrix

or dual-quaternion. For calculations, the axis-angle

and translation could be extracted and used when

needed. Local transforms were combined from the

root to the end-effectors. Concatenation of the

transforms throughout the levels was achieved by

multiplying parent transforms with current

transforms.

Certain orientation and translation configurations

produced errors in the output, shown in Figure 3.

These errors presented themselves as skewing and

scaling manifestations.

Figure 3. Artifact error when matrices representing

translation and orientation in linked hierarchies.

Early workarounds to amend the problem were to

repair the matrix at each level in the hierarchy by

ortho-normalizing the rotational component. While

ortho-normalizing the matrix reduced scaling and

skewing artifacts, alternative errors manifest

themselves in alternative forms.

Figure 4. Ortho-normalizing matrices in

hierarchies in an attempt to reduce errors.

Ortho-normalizing the rotational part of the

transform matrix between updates removed scaling

and skewing problems. The joints presented

discontinuity errors in the frames hierarchy (see

Figure 4). The ideal end-effectors position and

rotation were also different from the calculated one

using the refurbish matrices.

10.2. Biped Model
For our test character, we used a 16 link biped model,

shown in Figure 5. The character has 36 degrees of

freedom (DOF). Character rigs can produce

extremely non-linear motions due to their joint limits,

flexibility and elaborate arrangement of joints.

Figure 5. 16 link biped model used for testing.

Figure 5, shows the biped model in its starting stance

pose.

Buildup of computational inaccuracies will cause a

dual-quaternion to become of non-unit length; we fix

these errors by renormalization. In contrast,

repairing a non-orthogonal matrix is much more

complicated (see [SALA79]).

11. RESULTS
The dual-quaternion unifies the translation and

rotation into a single state variable. This single state

variable offers a robust, unambiguous,

computationally efficient way of representing rigid

transform.

The computational cost of combining matrices and

dual-quaternions:

Matrix4x4 : 64mult + 48adds

Matrix4x3 : 48mult + 32adds

DualQuaternion : 42mult + 38adds

WSCG 2012 Communication Proceedings 8 http://www.wscg.eu

In our tests, we found the dual-quaternion

multiplication method of transforms on average ten

percent faster compared matrix multiplication. We

did not take advantage of CPU architecture using

parallel methods such as SIMD which can further

improve speeds as demonstrated by Pallavi

[MEHU10] (both for matrices and quaternion

multiplication).

One major advantage we found when working with

dual-quaternions was the added advantage of

calculating angular and linear differences. When

working with pure matrix methods we needed to

convert the matrix to a quaternion to calculate

angular variations.

12. CONCLUSION AND FURTHER

WORK
The dual-quaternion model is an accurate,

computationally efficient, robust, and flexible

method of representing rigid transforms and should

not be overlooked. Implementing pre-programmed

dual-quaternion modules (e.g., multiplication and

normalization) enables the creation of more elegant

and clearer computer programs that are easier to

work with and control.

While matrices are the de-facto method used for the

majority of hierarchy based simulations, we have

shown that they can present certain problems which

are costly to avoid (e.g., renormalizing a matrix).

The problem and cost of drifting and normalizing is

less with dual-quaternions compared to matrix

methods. When dealing with rigid transforms the

dual-quaternion method shines through due to its

numerous advantages.

This paper has only provided a taste of the potential

advantages of dual-quaternions, and one can only

imagine the further future possibilities that they can

offer. For example, there is a deeper investigation of

the mathematical properties of dual-quaternions (e.g.,

zero divisions). There is also the concept of dual-

dual-quaternions (i.e., dual numbers within dual

numbers) and calculus for multi-parametric objects

for the reader to pursue if he desires.

13. APPENDIX

13.1. Dual-Quaternion Implementation

Class.
public class DualQuaternion_c
{
public Quaternion m_real;
public Quaternion m_dual;
public DualQuaternion_c()
{
 m_real = new Quaternion(0,0,0,1);
 m_dual = new Quaternion(0,0,0,0);
}
public DualQuaternion_c(Quaternion r, Quaternion d)
{
 m_real = Quaternion.Normalize(r);
 m_dual = d;
}

public DualQuaternion_c(Quaternion r, Vector3 t)
{
 m_real = Quaternion.Normalize(r);
 m_dual = (new Quaternion(t, 0) * m_real) * 0.5f;
}
public static float Dot(DualQuaternion_c a,
DualQuaternion_c b)
{
 return Quaternion.Dot(a.m_real, b.m_real);
}
public static DualQuaternion_c operator* (DualQuaternion_c
q, float scale)
{
 DualQuaternion_c ret = q;
 ret.m_real *= scale;
 ret.m_dual *= scale;
 return ret;
}
public static DualQuaternion_c Normalize(DualQuaternion_c q
)
{
 float mag = Quaternion.Dot(q.m_real, q.m_real);
 Debug_c.Assert(mag > 0.000001f);
 DualQuaternion_c ret = q;
 ret.m_real *= 1.0f / mag;
 ret.m_dual *= 1.0f / mag;
 return ret;
}
public static DualQuaternion_c operator + (DualQuaternion_c
lhs, DualQuaternion_c rhs)
{
 return new DualQuaternion_c(lhs.m_real + rhs.m_real,
 lhs.m_dual + rhs.m_dual);
}
// Multiplication order - left to right
public static DualQuaternion_c operator * (DualQuaternion_c
lhs, DualQuaternion_c rhs)
{
 return new DualQuaternion_c(rhs.m_real*lhs.m_real,
 rhs.m_dual*lhs.m_real + rhs.m_real*lhs.m_dual);
}
public static DualQuaternion_c Conjugate(DualQuaternion_c q
)
{
 return new DualQuaternion_c(Quaternion.Conjugate(
q.m_real), Quaternion.Conjugate(q.m_dual));
}
public static Quaternion GetRotation(DualQuaternion_c q)
{
 return q.m_real;
}
public static Vector3 GetTranslation(DualQuaternion_c q)
{
 Quaternion t = (q.m_dual * 2.0f) * Quaternion.Conjugate(
q.m_real);
 return new Vector3(t.X, t.Y, t.Z);
}
public static Matrix DualQuaternionToMatrix(
DualQuaternion_c q)
{
 q = DualQuaternion_c.Normalize(q);

 Matrix M = Matrix.Identity;
 float w = q.m_real.W;
 float x = q.m_real.X;
 float y = q.m_real.Y;
 float z = q.m_real.Z;

 // Extract rotational information
 M.M11 = w*w + x*x - y*y - z*z;
 M.M12 = 2*x*y + 2*w*z;
 M.M13 = 2*x*z - 2*w*y;

 M.M21 = 2*x*y - 2*w*z;
 M.M22 = w*w + y*y - x*x - z*z;
 M.M23 = 2*y*z + 2*w*x;

 M.M31 = 2*x*z + 2*w*y;
 M.M32 = 2*y*z - 2*w*x;
 M.M33 = w*w + z*z - x*x - y*y;

 // Extract translation information
 Quaternion t = (q.m_dual * 2.0f) * Quaternion.Conjugate(
q.m_real);
 M.M41 = t.X;
 M.M42 = t.Y;
 M.M43 = t.Z;
 return M;

WSCG 2012 Communication Proceedings 9 http://www.wscg.eu

}

#if false
public static void SimpleTest()
{
 DualQuaternion_c dq0 = new DualQuaternion_c(
Quaternion.CreateFromYawPitchRoll(1,2,3), new
Vector3(10,30,90));
 DualQuaternion_c dq1 = new DualQuaternion_c(
Quaternion.CreateFromYawPitchRoll(-1,3,2), new
Vector3(30,40, 190));
 DualQuaternion_c dq2 = new DualQuaternion_c(
Quaternion.CreateFromYawPitchRoll(2,3,1.5f), new
Vector3(5,20, 66));
 DualQuaternion_c dq = dq0 * dq1 * dq2;

 Matrix dqToMatrix =
DualQuaternion_c.DualQuaternionToMatrix(dq);

 Matrix m0 = Matrix.CreateFromYawPitchRoll(1,2,3) *
Matrix.CreateTranslation(10, 30, 90);
 Matrix m1 = Matrix.CreateFromYawPitchRoll(-1,3,2) *
Matrix.CreateTranslation(30, 40, 190);
 Matrix m2 = Matrix.CreateFromYawPitchRoll(2,3,1.5f) *
Matrix.CreateTranslation(5, 20, 66);
 Matrix m = m0 * m1 * m2;
}
#endif
} // End DualQuaternion_c

13.2. Novice Errors
There are a few things to look out for when

implementing a dual-quaternion class. Firstly,

ensure the multiplication order is correct and

remains consistent with matrices (i.e., left to right).

Secondly, always ensure that the dual-quaternions

remain normalized (i.e., unit-length).

14. REFERENCES
[CLIF82] W. Clifford, Mathematical Papers.

London: Macmillan, 1882.

[KCŽO08] L. Kavan, S. Collins, J. Žára, and C.

O’Sullivan, “Geometric skinning with

approximate dual quaternion blending,” ACM

Transactions on Graphics (TOG), vol. 27, no. 4,

p. 105, 2008.

[IVIV11] F. Z. Ivo and H. Ivo, “Spherical skinning

with dual quaternions and QTangents,” ACM

SIGGRAPH 2011 Talks, vol. 27, p. 4503, 2011.

[SELI11] J. Selig, “Rational interpolation of rigid-

body motions,” Advances in the Theory of

Control, Signals and Systems with Physical

Modeling, pp. 213–224, 2011.

[VAFU09] A. Vasilakis and I. Fudos, “Skeleton-

based rigid skinning for character animation,” in

Proc. of the Fourth International Conference on

Computer Graphics Theory and Applications,

2009, no. February, pp. 302–308.

[KMLX11] Y. Kuang, A. Mao, G. Li, and Y. Xiong,

“A strategy of real-time animation of clothed

body movement,” in Multimedia Technology

(ICMT), 2011 International Conference on, 2011,

pp. 4793–4797.

[PPAF10] H. L. Pham, V. Perdereau, B. V. Adorno,

and P. Fraisse, “Position and orientation control

of robot manipulators using dual quaternion

feedback,” in Intelligent Robots and Systems

(IROS), 2010 IEEE/RSJ International Conference

on, 2010, pp. 658–663.

[SCHI11] M. Schilling, “Universally manipulable

body models — dual quaternion representations

in layered and dynamic MMCs,” Autonomous

Robots, 2011.

[GVMC98] Q. Ge, A. Varshney, J. P. Menon, and C.

F. Chang, “Double quaternions for motion

interpolation,” in Proceedings of the ASME

Design Engineering Technical Conference, 1998.

[LIWC10] Y. Lin, H. Wang, and Y. Chiang,

“Estimation of relative orientation using dual

quaternion,” System Science and, no. 2, pp. 413-

416, 2010.

[PEMC04] A. Perez and J. M. McCarthy, “Dual

quaternion synthesis of constrained robotic

systems,” Journal of Mechanical Design, vol.

126, p. 425, 2004.

[ALMA92] W. Alan and W. Mart, Advanced

Animation and Rendering Techniques: Theory

and Practice. Adison-Wesley, 1992.

[GILB86] S. Gilbert, Introduction to Applied

Mathematics. Wellesley-Cambridge Press, 1986.

[BERG09] G. van den Bergen, “Dual Numbers:

Simple Math, Easy C++ Coding, and Lots of

Tricks,” GDC Europe, 2009. [Online]. Available:

www.gdcvault.com/play/10103/Dual-Numbers-

Simple-Math-Easy.

[HAMI86] W. R. Hamilton, Elements of

Quaternions. London: , 1886.

[MCDO10] J. McDonald, “Teaching Quaternions is

not Complex,” Computer Graphics Forum, vol.

29, no. 8, pp. 2447-2455, Dec. 2010.

[SHOE85] K. Shoemake, “Animating rotation with

quaternion curves,” ACM SIGGRAPH computer

graphics, 1985.

[SALA79] E. Salamin, “Application of quaternions

to computation with rotations,” Internal Report,

Stanford University, Stanford, CA, vol. 1, 1979.

[MEHU10] P. Mehrotra and R. Hubbard, “Benefits

of Intel® Advanced Vector Extensions For

Quaternion Spherical Linear Interpolation

(Slerp),” 2010. [Online]. Available:

http://software.intel.com/en-us/articles/benefits-

of-intel-advanced-vector-extensions-for-

quaternion-spherical-liner-interpolation-slerp/.

WSCG 2012 Communication Proceedings 10 http://www.wscg.eu

An Efficient Preconditioner and a Modified RANSAC for Fast
and Robust Feature Matching

Anders Hast
Uppsala University,
Uppsala, Sweden

anders.hast@it.uu.se

Andrea Marchetti
IIT, CNR

Pisa, Italy
andrea.marchetti@iit.cnr.it

ABSTRACT
Standard RANSAC does not perform very well for contaminated sets, when there is a majority of outliers. We present a method
that overcomes this problem by transforming the problem into a 2D position vector space, where an ordinary cluster algorithm
can be used to find a set of putative inliers. This set can then easily be handled by a modified version of RANSAC that draws
samples from this set only and scores using the entire set. This approach works well for moderate differences in scale and
rotation. For contaminated sets the increase in performance is in several orders of magnitude. We present results from testing
the algorithm using the Direct Linear Transformation on aerial images and photographs used for panographs.

Keywords
RANSAC, Preconditioner, Homography, Clustering, Feature Matching, Image Stitching.

1 INTRODUCTION
RANSAC was introduced by Fischler and Bolles more
than 30 years ago [FB81] and is one of the far most
used algorithms for finding corresponding pairs of fea-
ture points in images. Distinguishing these so called
true matches or inliers from the outliers or non match-
ing pairs is essential for many applications of com-
puter vision, such as image stitching [Sze10], 3D re-
construction [Pol00] and point-cloud shape detection
[SWK07], just to mention a few. Many variants have
been proposed since then, trying to enhance perfor-
mance of the algorithm in different ways, as will be
shown in the end of this section.

One disadvantage with standard RANSAC is that it
handles contaminated sets poorly. In fact, many imple-
mentations of RANSAC do not perform well when the
number of inliers is less than 50% [Low04]. RANSAC
is based on random sampling, as the name itself sug-
gests: RANdom Sample Consensus and the proba-
bility of finding an initial sample containing inliers
only, decreases when the amount of outliers increases.
Furthermore, RANSAC usually terminates when the
probability of finding more inliers is low or rather
when an outlier free set has been picked with some
predefined probability. Nonetheless, for heavily con-
taminated sets, the output is not useful as it usually
contains too few inliers if any. Moreover, the output

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

set of putative inliers is often contaminated with out-
liers. Another consequence for highly contaminated
sets is that the stopping criterion might indicate that
there is not yet a consensus, while most of the inliers
are already found.

Contributions and Delimitations
We propose a naive preconditioner that eliminates the
majority of outliers before running a modified version
of LO-RANSAC [CMK03] on the set. The precondi-
tioner transforms the problem of finding the consen-
sus set to a position vector space, where an ordinary
clustering algorithm can be used to find the cluster
that contains the putative inliers. It will be show in
examples that the approach works well if the differ-
ences in rotation and scale are moderate, which they
usually are for matching of images with mainly side-
way camera translations. The modified RANSAC will
draw samples from this set only and whenever a larger
set is found the local optimization step samples this
set at least 4 times while using the homography to
score the whole set. This approach will be many times
faster for contaminated sets than ordinary RANSAC,
as the transformation is simple and clustering is rel-
atively fast. Moreover, the modified RANSAC will
find consensus in very few iterations as it works on
a set with a large majority of inliers. The precondi-
tioner will therefore reduce the number of iterations
in the modified RANSAC by orders of magnitude for
contaminated sets. Since clustering can be done with
O(n) complexity it could also be used for sets with low
contamination as it will be fast. However, In this paper
an O(n2) algorithm was used.

The proposed approach will be compared to stan-
dard RANSAC only, as many of the already proposed
extensions of RANSAC could be used to enhance

WSCG 2012 Communication Proceedings 11 http://www.wscg.eu

the modified RANSAC. Especially, MultiRANSAC
[ZKM05] could be used when there are multiple
planes in the images. Nonetheless, the proposed
approach is able to handle such cases too and it will
be discussed how.

Furthermore, we have chosen to delimit ourselves in
this paper to use a perspective transformation based on
at least four points, the so called Direct Linear Trans-
formation (DLT)[HZ03], which throughout the text we
will be referred to as the homography. This transfor-
mation can be used for a number of applications such
as image stitching of aerial images and panographs.

RANSAC and some of its Variants
Standard RANSAC proceeds in the following way:
first a minimal number of points is selected, which is
required to determine the homography [BL07] [HZ03]
[VL01], which is the projective transformation be-
tween the images. Then the set is scored so that the
inliers that falls below a certain predefined tolerance
ε are counted. After transforming using the homogra-
phy, these points are close enough to its corresponding
match and are therefore regarded as true inliers. The
algorithm terminates when the probability of finding a
better model falls under a predefined threshold, other-
wise it starts all over.

RANSAC generally treats all correspondences
equally and draws random samples uniformly from
the full set. However there are some approaches that
tries to exclude probable outliers early on or alterna-
tively determining which ones are probable inliers.
Just to mention a few: MLESAC [TZ00] performs
non-uniform, i.e. guided sampling of correspondences
and PROSAC [CM05] draw samples from a pro-
gressively larger set of top-ranked correspondences.
GODSAC [MvHK∗06] use an assessment driven
selection of good samples, instead of random sam-
pling. Fuzzy RANSAC [LK07] divides the input data
into categories depending on the residual error and
sampling is done in the good set. Another approach
[ZK06] transforms the whole problem into classi-
fication of the residual distribution. SCRAMSAC
[SLK09] tries to reduce the number of outliers using a
spatial consistency check. R-RANSAC [CM08], was
proposed for the situation when the contamination of
outliers is known, using a randomized model verifi-
cation strategy. Cov-RANSAC [RFP09] incorporates
the inherent uncertainty of the estimation proce-
dure in order to achieve a more efficient algorithm.
GroupSAC[NJD09] take advantage of additional
grouping information between features provided by
optical flow based clustering.

Other approaches, designed for real-time tracking
take into account that there are similarities between
a series of images captured by a camera. Hence,
the order of the scoring of the pairs of matches can

be planned in order to avoid scoring useless pairs.
KALMANSAC [VJFS05] was designed for estima-
tion of structure from motion (SFM). It is derived
from pseudo-Bayesian filtering algorithms in a sam-
pling framework and can handle sequences contain-
ing large number of outliers. Other examples from
robotics are Preemptive RANSAC [Nis03] and Itera-
tive RANSAC [KK06].

Other important contributions to RANSAC use dif-
ferent strategies. MultiRANSAC [ZKM05] is a par-
allel version that allows to deal with multiple models
and have the advantage of being able to cope with a
high percentage of outliers. GASAC [RH06] is an-
other parallel approach using a genetic algorithm ap-
proach. Moreover, RANSAC has a low probability
to find the correct solution when the data is quasi de-
generate and QDEGSAC [FP05] was proposed for use
in such cases. NAPSAC[MTN∗02] was proposed for
problems with high noise and takes advantage of the
fact that if an inlier is found then any point close to
that point will have a high probability to be an inlier.

There are many more versions proposed in literature
and a performance evaluation of some of the more im-
portant variants of RANSAC is done by Choi et al.
[CKY09] and a comparative analysis of RANSAC is
given by Raguram et al. [RFP08]. Lowe [Low04] pro-
posed to use the Hough transform [DH72] for cluster-
ing data instead of RANSAC, and there are even hy-
brids [HH07]. Nevertheless, RANSAC is after more
than 30 years still used and improved for computer vi-
sion applications.

2 THE PRECONDITIONER
The idea is to use a preconditioner that transforms the
problem of finding the consensus set to finding a clus-
ter in a position vector space. Generally, a vector can
be constructed from two points and each matching pair
consists of exactly two points. Hence, it can be re-
garded as a vector from image a to image b, just like
how the final homography transforms each point in im-
age a to its corresponding point in image b, within a
certain threshold ε . The main advantage is that a po-
sition vector can be treated as a 2D point rather than
a 2D vector. The position vector will be scaled in the
range [0..1] so that the cluster algorithm can be given
a tolerance εc similar to the tolerance ε used for the
modified RANSAC. This is done by dividing the vec-
tor by the length of the sum of the sides in each di-
rection, where image b is translated in each direction
using the lengths of image a, so that there is no spatial
overlap between the images.

Let the position vector between the feature point at
(x0,y0) in image a and the corresponding point (x1,y1)
in image b be:

v =

[
(ax + x1)− x0

ax +bx
,
(ay + y1)− y0

ay +by

]
, (1)

WSCG 2012 Communication Proceedings 12 http://www.wscg.eu

where ax,ay and bx,by are the sizes in the x and y di-
rection for image a and b, respectively.

The nice result of such an approach is that true
matches will yield points in the 2D space that are
forming a cluster, while outliers will be spread out in a
more random fashion. The search for true matches can
therefore be done using any appropriate 2D cluster-
ing algorithm, since the vectors are regarded as points
rather than vectors, i.e. they are position vectors. This
is true also for cases when the images are taken from
a sequence of a forward camera motion. Some pre-
fer to visualize the matching by showing only one of
the images using lines that start in the feature points in
that image. The line ends in the point corresponding
to the feature points of the second image, which is not
shown but is supposed to overlap the first image. If the
images are taken from a sequence of a forward camera
motion this approach will yield lines that can point in
independent directions. However, if the proposed ap-
proach is used, where the images are put so that they
do not overlap and they do not share an edge, then they
will all have a similar direction compared to the out-
liers. The direction and length of these lines or vectors,
will not be exactly the same and can vary. Nonethe-
less, they will usually vary a lot less than compared to
the outliers even if the cluster will be less dense.

Clustering
There are many clustering algorithms [CRW91]
[JMF99] that could be used and some of the more
popular are k-means clustering [Mac67] and the mean
shift algorithm [CM02]. In our tests it was chosen to
use a simple approach that for each point (position
vector) in the set computes the distance to all other
points. The point that have most neighbors closer
than the threshold εc will be chosen as the cluster
center and all points in the cluster are considered
putative inliers. Obviously a better algorithm could
be used, especially for situations where the points
lie in different planes giving different homographies.
However, focus in this paper does not lie on the
clustering algorithm as it is a well studied area.
Hence, we will instead focus on the preconditioner
that transforms the matches to the new position vector
space and on how to treat the clustered points using a
modified version of LO-RANSAC.

The cluster will contain a majority of the inliers
and also some outliers depending both on the toler-
ance εc and how well the cluster algorithm performs.
Nonetheless, it is not of vital importance that the clus-
ter will contain inliers only, as the modified RANSAC
will clean it up. In all our tests we used the same value
of εc for the clustering as the tolerance ε for the mod-
ified RANSAC.

The computational cost for the preconditioner is
rather low. We used a simple approach to find the clus-

ter center. First the vectors are computed and then the
clustering algorithm needs to find the cluster. The cost
of computing the distance between all points in the
space for a brute force algorithm is n(n−1)/2, hence
the complexity is O(n2). Then all points sufficiently
near the point with most neighbors need to be found.
Nevertheless, this cost could be reduced by dividing
the space using for instance quad trees [FB74] or kd-
trees [TBK08]. Moreover, binning would reduce the
complexity to O(n) as each point is classified to be-
long to a bin depending on its spatial location, in a lin-
ear search. The bin with most points will be chosen as
the cluster. Nonetheless, the borders of the bins may
divide the cluster and this can easily be handled by
overlapping bins. Once again the bin with most points
are the putative inliers. The size of the bins would be
proportional to the tolerance εc.

A Modified RANSAC
A modified version of the LO-RANSAC [CMK03]
[CMO04] algorithm is here proposed, which utilizes a
local optimization step. Both the cluster and the whole
set are input parameters to the algorithm, which sam-
ples from the cluster only. As the cluster contains the
set, which is close to the final solution and therefore
pretty free from outliers, it was chosen to sample us-
ing up to half of the matches in the cluster but obvi-
ously never less than four. This usually lead to consen-
sus faster than sampling just four samples every time,
which give less support compared to using up to half
of them. This set is used to estimate the homography
and scoring the number of inliers.

Every time scoring gives a maximum set of inliers
the local optimization step samples iteratively from
this set and estimates the homography from it. How-
ever, scoring is done using the whole set. Once again
it is more efficient to use up to half the size of the set,
when doing re-estimation and re-scoring. Whenever a
larger set is found it uses this set to sample from and
restarts the local optimization loop. We have found
that about 4 iterations is usually enough for the pro-
posed approach, while Chum et al used 10 iterations.
This is of course a value that can be increased if nec-
essary. The algorithm terminates when the probability
is 99% that we have picked an outlier free set and the
parameters for this test are constructed using the set
belonging to the cluster. Generally, N iterations are
need in order to find an outlier free set with the proba-
bility p as:

N =
log(1− p)

log(1− γ s)
, (2)

where γ is the inlier ratio, i.e. number of inliers di-
vided by number of points in the cluster and s is the
number of samples drawn each time.

WSCG 2012 Communication Proceedings 13 http://www.wscg.eu

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1: The result of using the preconditioner of
a quasi degenerate set, where all points in blue are
outliers. Left: the cluster found by the clustering
algorithm (red). Right: the points in the space that
corresponds to the true inliers found by the modi-
fied RANSAC (green).

If N is larger than the number of iterations of the
main loop the algorithm starts all over and samples the
cluster set from the preconditioner once again.

3 RESULTS
Several tests using different images were conducted in
order to prove the efficiency of the proposed precondi-
tioner and the modified RANSAC. The Harris corner
detector [HS88] was chosen to detect features in most
of the tests instead of the more accurate SIFT detector
[Low04]. As the proposed method will be of inter-
est especially for sets with rather high contamination,
at least 50%, Harris is preferable as it is less accurate
than SIFT.

A Quasi Degenerate Set
A quasi degenerate set with an inlier ratio of 0.1651
was chosen and according to equation 2 it would need
6196 iterations to find an outlier free set. The perspec-
tive distortion is small in these aerial images. How-
ever, they are rotated in a way that it becomes very
hard for standard RANSAC to find the consensus set.
A test was performed 10 000 times measuring how
many iterations were needed to find all inliers and the
result was on average 32 887 iterations. Moreover, a
test was done 10 000 times counting both number of it-
erations and number of inliers using the preconditioner
and the modified RANSAC. The result is shown in Ta-
ble 1 on the first row. The preconditioner finds the set
(red) in Fig. 1 at the left. In the right is the same points
with the inliers (green) that are found by the modified
RANSAC.

The images used for the result in Fig. 1 are shown in
Fig. 2. The true inliers are connected by yellow lines
and the outliers with red ones. The set is quasi de-
generate because the true matches covers a small area,
which is rather elongated. Furthermore, the images are
not perfectly aligned with each other as there is about
18 degrees of rotation between them. This causes stan-
dard RANSAC to find just a portion of the inliers in
most runs. This problem is overcome by the precon-
ditioner as it finds the major part of the inliers and the
modified RANSAC draws sample from this set.

Figure 2: c©MiBAC-ICCD, Aerofototeca
Nazionale, fondo RAF. Two historical photos
taken over Pisa during WWII, with the true inliers
connected with yellow lines (16.5%) and the false
matches with red lines (83.5%)

Iterations Inliers
N µ σ µ σ

1 6196 6.144 0.452 36.000 0.000
2 1123000 17.904 6.967 81.005 0.261
3 87 6.000 6.000 211.000 0.000
4 8271 11.103 5.747 46.999 0.150
5 26 7.000 0.000 225.000 0.000
6 731 8.817 2.878 76.723 0.828
7 9 6.000 0.000 137.000 0.000
8 90 7.934 3.573 11.954 2.646
9 18 6.005 0.071 90.000 0.000

Table 1: The number of iterations (theoretical) and
the mean and standard deviation for number of it-
erations and inliers for different matchings and im-
ages.

A Heavily Contaminated Set
A heavily contaminated set with just an inlier ratio of
0.045 was obtained by increasing the number of fea-
ture points and the ratio for the matching. Figure 3
shows how the preconditioner finds the cluster (red) in
the image at the left. In the right is a close-up of the
inliers (green). Standard RANSAC would, according
to equation 2, need about 1 123 000 iterations to find
the majority of inliers. After the preconditioner, the
probability is increased to 0.9759, which corresponds
to 1.93 iterations on average. The modified RANSAC
could easily find almost all inliers in every run in just
about 17 iterations as shown on the second row in Ta-
ble 1 which is an enormous increase in performance
compared to the theoretical 1 123 000 iterations.

An Almost All Inlier Set
A set that is almost outlier free with an inlier ratio is
98.40% was tested and Figure 4 shows how the pre-
conditioner finds the whole set (red). The theoreti-
cal number of iterations are just 1.66 and the modi-
fied RANSAC needs 6 iterations to find the set, which

WSCG 2012 Communication Proceedings 14 http://www.wscg.eu

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.15 0.2 0.25 0.3

0.15

0.2

0.25

0.3

0.35

Figure 3: The result of using the preconditioner of
a highly contaminated set, where all points in blue
are outliers. Left: the cluster found by the clus-
tering algorithm (red). Right: a close up of the
points in the space that corresponds to the true in-
liers found by the modified RANSAC (green).

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.5

0.55

0.6

0.65

0.7

0.75

Figure 4: A set with an inlier ratio of 98.40% The
preconditioner finds the cluster (red), which is the
same set as the modified RANSAC will find.

could be reduced by diminishing the number of itera-
tions in the local optimization.

Multiple Planes
A set of photos taken on ground were used to test the
algorithm for stitching of panographs. The precondi-
tioner is also able to find the correct cluster for images
where the perspective distortion is greater and as in
this case, where there are several planes. The precon-
ditioner and modified RANSAC was used for the set
of images shown in Figure 5 and Figure 6 shows how
the preconditioner finds the cluster (red) in the image
to the left and on the right is a close-up of the inliers
(green). The cluster becomes elongated and curved
because of perspective distortions and the three planes
in the image. Nevertheless, the clustering algorithm is
able to find the cluster containing all three planes. A
more sophisticated clustering algorithm might be able
to separate it into three clusters. However, this task
could also be handled by a version of RANSAC that
finds multiple planes.

The modified RANSAC finds all inliers in every run
in just 6 iterations as shown on the third row in Table 1
compared to the theoretical value of 87 iterations for
finding 99% of the inliers. This is not a huge increase
in performance. However, keep in mind that the modi-
fied RANSAC finds all inliers in every run for this set,
which is not the case for standard RANSAC. Increas-
ing the rate to 99.99% would double the theoretical
number of iterations needed.

Another set of images were used in the next test and
Figure 7 shows how the preconditioner finds the clus-
ter (red) at the left. In the right is a close-up of the

Figure 5: c©Anders Hast. Two images of the "Ponte
Vecchio" in Florence, Italy. The inliers are con-
nected with yellow lines (47.63%) and the false
matches are depicted with red crosses (52.37%)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.27 0.275 0.28 0.285 0.29 0.295

0.47

0.472

0.474

0.476

0.478

0.48

0.482

0.484

0.486

0.488

0.49

Figure 6: A moderately contaminated set with an
inlier ratio of 47.63% Left: The preconditioner
finds the cluster (red). Right: A close up of the in-
liers found by the modified RANSAC (green).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

Figure 7: A contaminated set with an inlier ratio of
15.36% Left: The preconditioner finds the cluster
(red). Right: A close up of the inliers found by the
modified RANSAC (green).

inliers (green). The modified RANSAC finds almost
all inliers in every run in just 11 iterations as shown on
the fourth row in Table 1 compared to the theoretical
value of 8271 iterations.

Yet another set of images where used and Figure 8
shows how the preconditioner finds the cluster (red) at
the left. In the right is a close-up of the inliers (green).
The modified RANSAC finds almost all inliers in ev-
ery run in just 7 iterations as shown on the fifth row
in Table 1 compared to the theoretical value of 26 it-
erations. Standard RANSAC found all inliers in an
average of 157.6 iterations with a standard deviation
of 156.4. Hence, the proposed method have the ad-
vantage of being less variable when it comes to the
number of iterations, also for medium contaminated
sets.

Finally we made a test using SIFT on a pair of im-
ages where there are two separate planes as shown in
Figure 9. This time SIFT was used since Harris was
not able to detect the points we were interested in. One
set of inliers is connected with yellow lines and the
other with blue ones. The cluster found for the yellow

WSCG 2012 Communication Proceedings 15 http://www.wscg.eu

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37

0.5

0.52

0.54

0.56

0.58

0.6

Figure 8: A set with an inlier ratio of 63.38% Left:
The preconditioner finds the cluster (red). Right:
A close up of the inliers found by the modified
RANSAC (green).

Figure 9: c©Anders Hast Two images with two
clearly separable planes. The major set of inliers
are connected with yellow lines and the minor set
of inliers with blue ones.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Figure 10: The preconditioner finds the first plane
corresponding to the cluster (left). RANSAC finds
at the inliers corresponding to that cluster and it
is removed from the set. The preconditioner finds
the second plane (right) corresponding to the clus-
ter (red)

ones is shown in the left of Figure 10 and the other
cluster in the right. Since the clusters were easily sep-
arated the preconditioner and modified RANSAC was
run to find the first set of inliers. Then these were re-
moved from the whole set and the procedure was re-
peated. The next set of inliers was easily found by the
proposed approach. The result is on row six and seven
in the Table 1 for each set.

Scale Differences
One aerial image was scaled down to 75% of its size to
examine the impact on the cluster. As can be seen from
Figure 11 the shape of the cluster is different from the
one in Figure 8 even if they are exactly the same im-
ages. Depending on the cluster approach used and the
tolerance εc, the preconditioner will find such sets as
well and the modified RANSAC has no problems of
handling them. (See row eight in Table 1.)

In the second test a pair of images, shown in Fig-
ure 12 were matched using SIFT in order to obtain

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46

0.4

0.45

0.5

0.55

0.6

Figure 11: The Cluster (left) becomes larger in size
when the scale in the input images are different. To
the right is the inliers (green).

Figure 12: c©Anders Hast. Two images with taken
on different distances from the main object (the
chuch towers). The set of inliers are connected with
yellow lines and the outliers are depicted with red
crosses.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Figure 13: A set with an inlier ratio of 63.38%
Left: The preconditioner finds the cluster (red).
Right: A close up of the inliers found by the modi-
fied RANSAC (green).

better matches of the images that were taken on differ-
ent distances to the object. Hence, the same problem
of scale will occur. Figure 13 shows how the precon-
ditioner finds just a part of the set (depending on the
tolerance εc), which once again becomes more spread
over a larger area. Anyhow, the modified RANSAC
will find the whole set and the result is on row nine in
Table 1.

Efficiency
Some further testing were done to test the efficiency
of the method and the results are shown in Table 2.
Four sets of aerial images (four first rows) and six sets
of photos taken on the ground (rows five to ten) were
used. The tests were once again performed 10 000
times. In the first column is the size of the clusters
obtained by the preconditioner. Next is the theoreti-
cal number of iterations (N). Then follows the mean µ

and standard deviation σ of the number of iterations
needed by the modified RANSAC to find the inliers.

WSCG 2012 Communication Proceedings 16 http://www.wscg.eu

Cluster Iter. Inl.
Size N µ σ µ σ

1 559 19 7.5 1.5 551.0 0.09
2 82 569 28.9 11.9 73.6 4.9
3 37 9144 7.9 2.3 36.7 0.48
4 50 2.3 ·104 14.5 6.2 49.0 0.7
5 221 61 10.9 1.9 196.9 0.5
6 141 214 19.6 5.1 119.8 0.97
7 105 891 25.7 10.5 101.0 0.25
8 61 6109 20.6 7.7 53.1 1.3
9 44 6.0 ·104 6.0 0.03 56.0 0.0
10 56 2.4 ·106 6.2 0.5 67.0 0.09

Table 2: Four test runs for aerial images and six for
images with multiple planes, with the cluster size,
the mean and standard deviation for number of it-
erations and inliers.

The next values in the end of the row is the µ and σ of
number of inliers.

The proposed approach is able to find most of the
inliers with low deviation, except for the case on row
2 and 8, which have a σ greater than 1.0. Remember
that only 4 iterations are done in the local optimization
step and the σ could be decreased by increasing this
number, which of course would increase the number
of iterations in total.

Obviously, the proposed approach is very efficient
as it reduces the number of iterations while still main-
taining a high accuracy in terms of number of inliers
found. Most remarkably is that the preconditioner
makes it, not only possible, but even easy and fast to
find the consensus set when the theoretical number of
iterations exceeds tenth’s of thousands and even mil-
lions. The result on row ten is from a set with an inlier
ratio of 0.0372 and the theoretical number of iterations
exceeds 2.4 million iterations. By using the precon-
ditioner the number of iterations were 6.2 on average
with only 0.5 in deviation. All 67 inliers were found in
almost every run with a deviation of only 0.09. When
the proposed approach does not find all inliers in ev-
ery run one could increase the number of iterations in
the local optimization step to increase the probability
of finding more inliers.

4 DISCUSSION
It is important to set an appropriate tolerance ε for
RANSAC and likewise it is important that the toler-
ance εc is set properly for the preconditioner. By scal-
ing the position vector into the range [1..0] it is pos-
sible to use the same tolerance for both. Nonetheless,
care must be taken so that the tolerance is proportional
to the size of the image. Moreover, one must take into
account the scale differences as it will affect the size of
the cluster and the tolerance must be set accordingly.

A similar case is when the images are taken during a
forward camera movement, which yields images with
different scales. It has been shown that the precon-
ditioner is able to handle moderate changes in scale,
even if only a part of the cluster is found because the
cluster becomes proportionally larger, i.e it is spread
out.

When there are multiple planes in the image, the
cluster will be a bit different and sometimes it is even
separable in space, but not always. Here some more
sophisticated clustering algorithm could be used in or-
der to separate the clusters in a more accurate way.
Nonetheless, the preconditioner was able to find the
main cluster in all our tests and the modified RANSAC
extracted all inliers from the set. Hence, it is possible
to modify and use some other version of RANSAC
that is able to yield separate planes such as Multi-
RANSAC [ZKM05]. Otherwise, one could also in
many cases extract one cluster at a time and run the
modified RANSAC on each of them.

The size of the cluster will also affect the result and
different εc could be tested. Moreover, it is possible to
change the performance by changing how many sam-
ples are drawn. Usually four samples are drawn in
standard RANSAC. However, by increasing this num-
ber to half of the current consensus set, but obviously
never less than four, performance was increased for
the modified RANSAC. One could experiment further
with what is actually the optimal number to use.

We delimited ourselves to use the four point DLT.
Nonetheless, there is nothing that prevent using other
types of homographies. In any case, the output of the
preconditioner is independent of the homography. It
is just the result of the modified RANSAC that might
change depending on what homography is being used.
Moreover, we used a clustering algorithm that was
easy to implement but is not the fastest one. Never-
theless, what clustering algorithm to use is not so im-
portant. The important thing is that it finds the cluster
and preferably does that fast.

5 CONCLUSION AND FUTURE
WORK

Standard RANSAC handles highly contaminated sets
poorly as the probability of drawing samples giving
an outlier free set after scoring becomes very small.
This problem can easily be overcome by the proposed
preconditioner that transforms the problem to a posi-
tion vector space where each vector is a scaled vector
representing the matches. An ordinary clustering al-
gorithm can be used to find the cluster of putative in-
liers. This set is then processed by a modified version
of RANSAC that draws from this set exclusively but
scores using the whole set. This approach will increase
performance substantially for contaminated sets. The
preconditioner can be used also for sets with low con-

WSCG 2012 Communication Proceedings 17 http://www.wscg.eu

tamination as the clustering algorithm is relatively fast
compared to estimation and scoring in the RANSAC
procedure.

The preconditioner can be modified in such way that
more powerful clustering methods are used in order
to find more than one projection plane. Moreover, it
should be determined how large differences in scale
and rotation the preconditioner can handle and also
what could be done to handle the more extreme cases.

6 REFERENCES
[BL07] Brown M., Lowe D. G.: Automatic panoramic image

stitching using invariant features. International Journal of Com-
puter Vision 74, 1 (2007), 59–73.

[CKY09] Choi S., Kim T., Yu W.: Performance evaluation of
ransac family. In British Machine Vision Conference (2009),
pp. 1–12.

[CM02] Comaniciu D., Meer P.: Mean shift: A robust approach
toward feature space analysis. IEEE Transactions on Pattern
Analysis Machine Intelligence (PAMI) 24, 5 (2002), .603–619.

[CM05] Chum O., Matas J.: Matching with prosac - progressive
sample consensus. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2005), pp. 220–226.

[CM08] Chum O., Matas J.: Optimal randomized ransac. IEEE
Transactions on Pattern Analysis and Machine Intelligence 30,
8 (2008), 1472–1482.

[CMK03] Chum O., Matas J., Kittler J.: Locally optimized ransac.
In the Annual Pattern Recognition Symposium of the German
Association for Pattern Recognition (DAGM) (2003), pp. 236–
243.

[CMO04] Chum O., Matas J., Obdrzalek S.: Enhancing ransac by
generalized model optimization. In Asian Conference on Com-
puter Vision (ACCV) (2004).

[CRW91] Capoyleas V., Rote G., Woeginger G.: Geometric clus-
terings. Journal of Algorithms 12 (1991), 341–356.

[DH72] Duda R. O., Hart P. E.: Use of the hough transformation to
detect lines and curves in pictures. Communications of the ACM
15 (1972), 11–15.

[FB74] Finkel R. A., Bentley J. L.: Quad trees a data structure for
retrieval on composite keys. Acta Informatica 4, 1 (1974), 1–9.

[FB81] Fischler M. A., Bolles R. C.: Random sample consensus: A
paradigm for model fitting with applications to image analysis
and automated cartography. Communications of the ACM 24
(1981), 381–395.

[FP05] Frahm J. M., Pollefeys M.: Ransac for (quasi-) de-generate
data (qdegsac). In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2005), pp. 220–226.

[HH07] Hollander R. J. M. D., Hanjalic A.: A combined ransac-
hough transform algorithm for fundamental matrix estimation.
In British Machine Vision Conference (2007).

[HS88] Harris C., Stephens M.: A combined corner and edge de-
tection. In Alvey Vision Conference (1988), pp. 147–151.

[HZ03] Hartley R. I., Zisserman A.: Multiple View Geometry â 2nd
edition. Cambridge University Press, 2003.

[JMF99] Jain A., Murty M., Flynn P.: Data clustering - a review.
ACM Computing Surveys 31, 3 (1999), 264–323.

[KK06] K K. T., Kondo E.: Incremental ransac for online reloca-
tion in large dynamic environments. In IEEE International Con-
ference on Robotics and Automation (ICRA) (2006), pp. 1025–
1030.

[LK07] Lee J. J., Kim G.: Robust estimation of camera homog-
raphy using fuzzy ransac. In Proceedings of the 2007 inter-
national conference on Computational science and its applica-

tions - Volume Part I (Berlin, Heidelberg, 2007), ICCSA’07,
Springer-Verlag, pp. 992–1002.

[Low04] Lowe D. G.: Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vision
60, 2 (2004), 91–110.

[Mac67] MacQueen J. B.: Some methods for classification and
analysis of multivariate observations. In 5-th Berkeley Sympo-
sium on Mathematical Statistics and Probability (1967), vol. 1,
Berkeley, University of California Press, pp. 281–297.

[MTN∗02] Myatt D., Torr P., Nasuto S., Bishop J., Craddock R.:
Napsac: High noise, high dimensional robust estimation - its in
the bag. In British Machine Vision Conference (2002), vol. 2,
pp. 458–467.

[MvHK∗06] Michaelsen E., von Hansen W., Kirchhof M., Meidow
J., Stilla U.: Estimating the essential matrix: Goodsac versus
ransac. In Photogrammetric Computer Vision (2006), pp. 1–6.

[Nis03] Nister D.: Preemptive ransac for live structure and motion
estimation. In International Conference on Computer Vision
(ICCV) (2003), pp. 109–206.

[NJD09] Ni K., Jin H., Dellaert F.: Groupsac: Efficient consensus
in the presence of groupings. In ICCV (2009), IEEE, pp. 2193–
2200.

[Pol00] Pollefeys M.: Automated reconstruction of 3d scenes from
sequences of images. ISPRS Journal of Photogrammetry and
Remote Sensing 55, 4 (2000), 251–267.

[RFP08] Raguram R., Frahm J.-M., Pollefeys M.: A comparative
analysis of ransac techniques leading to adaptive real-time ran-
dom sample consensus. In European Conference on Computer
Vision (ECCV) (2008), pp. 500–513.

[RFP09] Raguram R., Frahm J.-M., Pollefeys M.: Exploiting un-
certainty in random sample consensus. In International Confer-
ence on Computer Vision (ICCV) (2009), pp. 2074–2081.

[RH06] Rodehorst V., Hellwich O.: Genetic algorithm sample con-
sensus (gasac) - a parallel strategy for robust parameter estima-
tion. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshop (CVPRW) (2006), pp. 1–8.

[SLK09] Sattler T., Leibe B., Kobbelt L.: Scramsac: Improv-
ing ransac’s efficiency with a spatial consistency filter. In
International Conference on Computer Vision (ICCV) (2009),
pp. 2090–2097.

[SWK07] Schnabel R., Wahl R., Klein R.: Efficient ransac for
point-cloud shape detection. Computer Graphics Forum 26, 2
(2007), 214–226.

[Sze10] Szeliski R.: Computer vision : Algorithms and applica-
tions. Computer 5, 3 (2010), 832.

[TBK08] Tsakok J. A., Bishop W., Kennings A.: kd-tree traversal
techniques. 2008 IEEE Symposium on Interactive Ray Tracing
44, 1 (2008), 190–190.

[TZ00] Torr P. H. S., Zisserman A.: Mlesac: A new robust estima-
tor with application to estimating image geometry. Computer
Vision and Image Understanding 78 (2000), 138–156.

[VJFS05] Vedaldi A., Jin H., Favaro P., Soatto S.: Kalmansac:
Robust filtering by consensus. In International Conference on
Computer Vision (ICCV) (2005), pp. 633–640.

[VL01] Vincent E., Laganiere R.: Detecting planar homographies
in an image pair. Image and Signal Processing and Analysis
(2001), 182–187.

[ZK06] Zhang W., Kosecka J.: A new inlier identification scheme
for robust estimation problems. In Proceedings of Robotics:
Science and Systems (Philadelphia, USA, August 2006).

[ZKM05] Zuliani M., Kenney C., Manjunath B.: The multiransac
algorithm and its application to detect planar homographies.
In The International Conference on Image Processing (ICIP)
(2005), vol. 3, pp. 153–156.

WSCG 2012 Communication Proceedings 18 http://www.wscg.eu

Fast GPU Garment Simulation

and Collision Detection

Tzvetomir I. Vassilev

Dept. of IIT, University of Ruse
8 Studentska St

Bulgaria 7017, Ruse

tvassilev@uni-ruse.bg

Bernhard Spanlang

EventLab, Universitat de Barcelona
Campus de Mundet - Edifici Teatre
Passeig de la Vall d'Hebron 171,

Spain 08035, Barcelona

bspanlang@ub.edu

ABSTRACT
This paper describes a technique for garment simulation and collision detection implemented on modern

Graphics Processors (GPU). It exploits a mass-spring cloth model with velocity modification approach to over-

come the super-elasticity. Our novel algorithms for cloth-body and cloth-cloth collision detection and response

are based on image-space interference tests. For collision detection a 3D texture is generated, in which each slice

represents depth and normal information for collision detection and response. These algorithms were implement-

ed to build a fast web-based virtual try-on system. Our simulation starts from flat garment pattern meshes and

performs the entire seaming and cloth draping simulation on the GPU. By mapping cloth properties of real fabric

measurements we are able to approximate the real drape behaviour of different types of fabric, taking into ac-

count different warp and weft fabric drape properties. As the results section shows the average time of dressing a

virtual body with a garment on state of the art graphics hardware is 0.2 seconds.

Keywords
Cloth Simulation, GPU programming, Collision detection.

1. INTRODUCTION
Physical simulation and elastic deformable objects

have been widely used by researchers in computer

graphics. The main applications of garment simula-

tion are in the entertainment industries, in the fashion

design industry and in electronic commerce when

customers shop for garments on the web and try them

on in a virtual booth.

The graphics processing unit (GPU) on today's com-

modity video cards has evolved into an extremely

powerful and flexible processor [LHG
*
06]. The latest

graphics architectures provide huge memory band-

width and computational power, with fully program-

mable vertex and pixel processing units that support

vector operations up to full IEEE floating point preci-

sion. Architecturally, GPUs are highly parallel

streaming processors optimized for vector operations,

with single instruction on multiple data (SIMD) pipe-

lines. Not surprisingly, these processors are capable

of general-purpose computation beyond the graphics

applications for which they were designed and many

researchers have utilized them in cloth modelling

[Zel05], [GW05].

2. BACKGROUND

Previous work in cloth simulation
Physically based cloth modelling has been a problem

of interest to computer graphics researchers for more

than two decades. First steps, initiated by Terzopou-

los et al. [TPBF87], characterised cloth simulation as

a problem of deformable surfaces and used the finite

element method and energy minimisation techniques

borrowed from mechanical engineering. Since then

other groups have been formed [BHW94], [EWS96],

[CYTT92] challenging the cloth simulation using

energy or particle based methods.

Provot [Pro95] used a mass-spring model to describe

rigid cloth behaviour, which proved to be faster than

the techniques described above. Its major drawback

is the super-elasticity. In order to overcome this prob-

lem he applied a position modification algorithm to

the ends of the over-elongated springs. However, if

this operation modifies the positions of many verti-

ces, it may elongate other springs. Vassilev et al.

[VSC01] used a velocity modification approach to

solve the super-elasticity problem.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistrib-

ute to lists, requires prior specific permission and/or a fee.

WSCG 2012 Communication Proceedings 19 http://www.wscg.eu

The nature of the mass-spring system is suitable for

implementation on the GPU. NVIDIA [Zel05] have

provided a free sample demo of a mass-spring cloth

simulation on their graphics processors. Their cloth

model is quite simple and does not simulate re-

sistance to bending. Rodriguez-Navarro et al. have

published two implementations of cloth model on the

GPU. The first is based on a mass-spring system

[RNSS05] and the second on the finite element meth-

od [RNS06]. Georgii and Westermann [GW05] com-

pared two possible implementations of mass-spring

systems on the GPU and tested them with cloth simu-

lation. A GPU accelerated mass-spring system has

been used in other fields like surgical simulation

[MHS05]. The advantage of the mass-spring system,

described in this paper, is that it implements on the

GPU a velocity modification approach for overcom-

ing the super-elasticity, which results in a faster and

more realistic simulation. Unlike other GPU imple-

mentations we perform also the garment seaming

process on the GPU and we use fabric property

measurements in order to approximate the behaviour

of real fabric to a good degree.

Mass-spring model of cloth
The method, described in this work is based on the

cloth model described in [VSC01]. The elastic model

of cloth is a mesh of l×n mass points, each of them

linked to its neighbours by massless springs of natural

length greater than zero. There are three different

types of springs: structural, shear, and flexion, which

implement resistance to stretching, shearing and

bending, correspondingly.

Let pij(t), vij(t), aij(t), where i=1,…, l and j=1,…, n,

be correspondingly the positions, velocities, and ac-

celerations of the mass points at time t. The system is

governed by Newton’s basic law:

fij = m aij, (1)

where m is the mass of each point and fij is the sum of

all forces applied at point pij. The force fij can be di-

vided in two categories.

The internal forces are due to the tensions of the

springs. The overall internal force applied at the point

pij is a result of the stiffness of all springs linking this

point to its neighbours:

∑

−−
lk,

ijkl

ijkl

ijklijklijklijint

pp

pp
lppk=)(pf

0
, (2)

where kijkl is the stiffness of the spring linking pij and

pkl and lis the natural length of the same spring.

The external forces can differ in nature depending

on what type of simulation we wish to model. The

most frequent ones are gravity and viscous damping.

All the above formulations make it possible to com-

pute the force fij(t) applied on cloth vertex pij at any

time t. The fundamental equations of Newtonian dy-

namics can be integrated over time by a simple Euler,

Verlet or Runge-Kutta method [PTVF92].

Collision detection
Collision detection (CD) and response prove to be the

bottleneck of dynamic simulation algorithms that use

highly discretised surfaces. Most CD algorithms be-

tween cloth and other objects in the scene are based

on geometrical object-space (OS) interference tests.

Some apply a prohibitive energy field around the

colliding objects [TPBF87], but most of them use

geometric calculations to detect penetration between

a cloth particle and a triangle of the object together

with techniques that reduce the number of tests.

Most common approaches are voxel or octree subdi-

vision [Gla98]. Another solution is to use a bounding

box (BB) hierarchy [BW98], [Pro97]. Objects are

grouped hierarchically according to proximity rules

and a BB is pre-computed for each object. The colli-

sion detection is then performed by analysing BB

intersections in the hierarchy. Other techniques ex-

ploit proximity tracking [VM95] or curvature compu-

tation [Pro97] to reduce the large number of collision

checks, excluding objects or parts which are impossi-

ble to collide.

Another approach to CD is based on image-space

(IS) tests [SF91], [MOK95], [BWS99]. These algo-

rithms use the graphics hardware to render the scene

and then perform checks for interference between

objects based on the depth information of the ren-

dered image. In this way the 3D problem is reduced

to 2.5D. Vassilev et al. [VSC01] applied this tech-

nique for detecting collisions between cloth and body

when dressing virtual characters. They created depth,

normal and velocity maps using two orthogonal cam-

eras that were placed at the centre of the front and the

back face of the body’s BB. The depth map was used

for detecting collisions, while the normal and velocity

maps were used for collision response. Since they

perform cloth simulation on the CPU they have to

read back the frame buffers from the GPU which is

time consuming.

Heidelberger at al [HTG04] extended the image

space based approach to also deal with self-collisions

by creating separate layered depth images (LDIs) on

the GPU for front and back facing polygons. Their

approach only works with water tight volumes and

also requires the reading back of the frame buffer to

the CPU for analysis.

WSCG 2012 Communication Proceedings 20 http://www.wscg.eu

Allard et al [AFC
*
10] recently built on the LDI ap-

proach but moved the whole simulation of deforma-

ble volumes to the GPU, avoiding the bottleneck of

framebuffer readback. However, their approach also

relies on watertight volume geometry.

In Govindaraju et al. [GKLM07] collision detection

is regarded as a visibility problem and they use occlu-

sion queries on the graphics processor to detect colli-

sions at fast rates. Their performance tests show colli-

sion detection at rates over 100ms though.

Another approach to perform collision detection on

the GPU was introduced by Sud et al [SGG
*
06]. They

create a discrete Voronoi diagram (DVD) of the sce-

ne on the GPU and can therefore access proximity

and collision information. This is useful if the topolo-

gy of the geometry can change, as for example in

fractures, etc. However, they report rates of several

hundred milliseconds just for creating the discrete

Voronoi diagrams.

The method described in this paper exploits the idea

of the image-space approach of Vassilev et al.

[VSC01] but we implement it entirely on the GPU

including the cloth simulation and therefore we elim-

inate the bottleneck of frame buffer readback and the

analysis of the framebuffer for collision detection and

response on the CPU. Moreover, we extend the algo-

rithm to test not only for cloth-body collisions, but

also to cloth-cloth collisions. Unlike [HTG04] and

[AFC
*
10] our self-collision tests are not based on

LDIs but our method exploits the information we

have on the GPU about the separate layers of cloth.

Our method therefore does not rely on watertight

volume geometry and we are able to perform colli-

sion detection and cloth-cloth collision detection at

rates much higher than previously reported.

3. MASS-SPRING CLOTH ON THE

GPU

Algorithm
Implementation of the mass-spring cloth model

[VSC01] on the CPU requires an algorithm similar to

the following pseudo code:

For each spring

 Compute internal forces

 Add forces to 2 end mass points

Endfor

For each mass point

 Add external forces

 Compute velocity

 Do collision detection and response

 Correct velocities for over-elongated

springs

 Compute new positions

Endfor

Two implementations of the mass-spring system are

possible on the GPU, which were compared by

Georgii and Westermann [GW05]. The first one is to

directly follow the CPU implementation, which they

call edge-centred approach (ECA). The main difficul-

ty here is to distribute the spring forces to the correct

mass points with the correct sign. To solve this they

use vertex shaders, but two additional render passes

are required. The advantage of the ECA is that spring

forces are computed only once, but it has several

drawbacks:

- it requires more graphics memory for spring and

force textures;

- it requires at least four rendering passes;

- additive blending in the render target is used to

accumulate the force contributions, which has

precision problems on some cards.

The second implementation uses only one for loop

(for each mass point) and the computation of the

spring forces is the first step inside. As a result it can

be implemented in only one or two render passes,

requires less graphics memory and is more straight-

forward to implement. Its only disadvantage is that

each spring force is computed twice, but considering

the parallel nature and tremendous power of recent

GPUs this is negligible. Therefore the work in this

paper is based on the second method. The texture

units needed for our algorithm are described in the

next sections.

GPU data structures for the cloth model
On the GPU the mass-spring model naturally maps

into several texture2Ds. Several important facts have

to be considered, when organising the data. If a tex-

ture is set as a rendering target, it is not available for

reading. So, in order to compute the new velocities

and positions of cloth vertices, the old values have to

be stored in another texture, just for reading. We use

the so called "ping-pong" technique [Göd07]: after a

computational step, the two textures are swapped, and

the texture from which was read before becomes the

new rendering target.

Therefore, we need two textures (read/write) for ve-

locities, two textures (read/write) for positions and

one texture for normal vectors of the cloth surface at

each cloth vertex, which are also computed on the

GPU.

The main idea of this work is to store information

about the springs connected to each mass point in an

additional texture, which we call "spring connectivity

texture". A suitable constraint on the maximum num-

ber of other vertices connected to a given mass point

has to be imposed. For our cloth model this number is

12, owing to GPU architecture it is simpler to reserve

16 values, therefore we have 4 values for future ex-

tensions. If the textures for velocities, positions and

WSCG 2012 Communication Proceedings 21 http://www.wscg.eu

normals have size (texSize × texSize), then the spring

connectivity texture is of size

(4*texSize)×(4*texSize). This spring matrix consists

of 16 smaller matrices. Each entry in these 16 matri-

ces has 4 channels (RGBA) and keeps the following

information of a spring connected to the correspond-

ing vertex: texture coordinates of the other spring end

point, natural length and spring stiffness. If all chan-

nels are equal to -1.0, this means that the entry repre-

sents no connection.

Seaming of garment pieces
Our Virtual Try-On system reads a body file and a

garment file and dresses the body. The garment file

holds information about the geometry of the cutting

patterns, physics parameters of the cloth and seaming

information. The patterns are automatically posi-

tioned around the body and external forces are ap-

plied along the seaming lines. The seaming lines are

discretized into groups of two or three cloth vertices

to be sewn together.

The connectivity of cloth vertices into seams is stored

in a similar texture as for the springs, which we call

"seam connectivity texture". Each entry of the texture

keeps information about the other mass points to

which the current cloth vertex has to be sewn. During

the simulation forces are applied which pull together

the corresponding vertices. When the vertices are

closer than a certain threshold, they are marked as

sewn and are attached to each other. The simulation

ends when all seams are done, or after a pre-defined

number of iterations which means the garment is too

small for the body.

Occlusion queries for counting sewn ver-

tices
In order to identify when the garment is sewn, the

number of vertices still to be sewn have to be count-

ed. Counting on the GPU can be performed using a

reduction approach similar to the max reduction, de-

scribed by Harris [Har05]. However, it cannot be

applied directly. First, a 2D buffer has to be built,

which contains ones for the not sewn vertices and

zeros for the sewn ones. Then a sum reduction should

be applied to the buffer, which will perform the re-

quired count.

In our system we utilize GPU occlusion queries for

counting. Occlusion queries are implemented in

hardware on most of the recent graphics cards and

they allow the programmer to render a 3D scene and

to obtain the number of fragments that passed the

depth test. There is an internal counter, which is ini-

tially set to zero, and during the rendering it is in-

creased by one for each fragment that passes the

depth test.

In order to use occlusion query in our case, the fol-

lowing steps have to be carried out:

- Allocate a depth texture;

- Set this texture as a depth buffer for rendering;

- Render a suitable geometry and perform an occlu-

sion query to retrieve the number of fragments

that pass the depth test.

After the new positions were computed by the mass

spring simulation we call a shader which holds the

sewn vertices together and also builds a seam depth

texture with the following values: 0 if the vertex is

not involved in a seam, 1 if the vertex is part of a

seam but is not sewn yet and 0.5 if the vertex is part

of a seam, which is sewn. Then we set this texture as

the default depth buffer. The z-buffer is turned to

read only, otherwise the depth values will be replaced

with the ones of the incoming vertices. Next we ren-

der a quad with a depth value of 0.8 that covers the

whole draw buffer. In this way the occlusion query

counts all fragments with a depth value greater than

0.8, that is the number of unsewn vertices. In fact we

can render a quad with any depth value in the interval

(0.5, 1).

The function for counting unsewn vertices does not

need to be called after every integration step. To

speed the simulation up it could be called after every

10 or 15 iterations.

Cloth Modelling Shaders
The following shaders are used in the system:

Velocity shader. This is the main cloth simulation

shader. It computes the forces applied to each cloth

vertex due to springs' tension, gravity, damping and

seaming, then integrates over time to compute veloci-

ty and writes the result in the velocity texture. It also

checks for collisions, as described below and if there

is a collision it applies a force and also modifies the

velocity to resolve the collision.

Position shader. It reads from the velocity texture

and computes the new cloth vertex positions.

Seam shader. It checks if the cloth vertices that par-

ticipate in a seaming line are close enough to be con-

sidered sewn, holds the sewn vertices together and

builds the seam depth texture, as described in the

above section.

4. COLLISION DETECTION BODY-

CLOTH AND CLOTH-CLOTH

Cloth-body collision detection
As explained in Section 2 this paper exploits the idea

of Vassilev et al. [VSC01] for collision detection.

However, we do not build velocity maps, because the

current system does not animate the virtual body rep-

resentation. The garment is dressed and simulated on

a static body. To build the normal maps more effi-

WSCG 2012 Communication Proceedings 22 http://www.wscg.eu

ciently we use a simple vertex shader, which replaces

the vertex colour RGB values with the XYZ coordi-

nates of the normal. In addition, to reduce the number

of texture units, the front and back maps are placed in

a single texture, as shown in Figure 1.

Figure 1: Front and back normal maps in one tex-

ture

And finally the normal and depth maps are placed in

the same texture unit; RGB representing the normal

coordinates and the alpha channel contains the depth.

This speeds up the simulation, because when testing

for collisions the velocity shader samples the colli-

sion texture only once to get depth and normal values

of the front and the back of the body.

Figure 2: Normal maps generated for collision de-

tection

Cloth-cloth collision detection
Our system does not aim at detecting all cloth-cloth

collisions. It does not test for collisions in one piece

of cloth as such are less likely to happen in tight gar-

ments on static body we simulate. When constructing

garments some pieces of cloth have to be placed on

top of others, for example pockets, belt loops, etc.

When a person tries on two garments one is always

on top of the other for example a T-shirt and a pair of

jeans. The cloth pieces are grouped into layers, to

know which layer is on top of other layers and we can

assign a layer number to each cloth piece, starting

from zero. Our system only tests for collisions be-

tween these different cloth layers.

The idea of this work is to use the same image-space

approach for detecting collisions between layers of

cloth. For this purpose several maps are generated

(Fig. 2):

- Map[0]: body depth and normals

- Map[1]: body and cloth-layer 0 depth and nor-

mals

- …

- Map[n]: body and cloth-layers 0 to n-1 depth and

normals

The number of maps, n, depends on the number of

cloth layers we wish to simulate. Map[0] is generated

only once at the beginning of the simulation, because

the body does not move in our case. All other maps

have to be generated at each iteration step. If we want

to simulate garments on a body in motion, map[0] has

to be generated at each iteration as well.

Collision checking

The computation of internal, external forces and ve-

locities, as well as collision detection and response is

performed in the velocity shader, as described above.

This shader is called only once per integration step.

When testing for collisions of a particular cloth ver-

tex, which belongs to cloth layer i, we have to check

if it collides with the body and all layers beneath it,

which means that we have to use map[i] for CD and

response. All maps are stored in a 3D texture in

which each slice corresponds to a depth/normal map,

as described above. The properties of each cloth ver-

tex, such as mass, elasticity, cloth layer number, etc.,

are stored in another texture. The velocity shader uses

the layer number to sample the appropriate slice of

the 3D texture, for example cloth layer with number i

samples slice i and uses it for collision detection and

response as described in [VSC01]. The depth value

of the current mass point is compared to the depth

value read from the depth map. If a collision is de-

tected a repulsive force is computed and applied to

the cloth vertex using the normal vector, retrieved

from the normal map. The velocity of the cloth vertex

is also modified. The collision response enables us to

simulate friction between layers, too.

Applying this approach allows us to simulate one-

way interactions only. The lower layers push the up-

per layers back to prohibit penetration, but the upper

layers do not affect the layers below. So, if a pair of

jeans is dressed on top of a loose shirt, the jeans will

not push the shirt towards the body.

In order to model interaction in both directions we do

the following. The faces on the cloth surface are

numbered from one to the number of faces and each

number is encoded as vertex colour. When generating

WSCG 2012 Communication Proceedings 23 http://www.wscg.eu

the depth and normal maps the cloth surface is ren-

dered using flat shading, so that these colours are not

interpolated and the face colour encodes the face

number. The fragment shader, used for the generation

of the maps, stores the XYZ values of the normal

vector in the RGB values of the map and the alpha

value is computed as follows:

map_alpha = depth + face_number, (3)

where face_number is decoded from the colour val-

ues. As the depth value is from 0 to 1 and the face

number is greater than or equal to one, the two values

can be easily separated. If a collision is detected the

velocity shader, in addition to applying repulsive

forces and modifying velocities, also writes the fol-

lowing alpha in the velocity texture:

velo_alpha = face_number. (4)

If there is no collision the alpha is set to zero.

Another pair of vertex/fragment shaders is used to

apply forces to lower layers of cloth. If a lower layer

cloth face has collided with an upper layer vertex, we

apply forces to each of the three vertices of this face,

which are opposite to the face normal. These forces

have to be summed up for each vertex, as a vertex

can be part of several adjacent faces that have collid-

ed. In fact we integrate the forces over time and add

them to the velocities. One of the velocity textures is

set as a rendering target and the velocities are ren-

dered three times as points with additive blending,

once for each vertex of a triangular face. A uniform

variable is set to 0, 1 or 2 before the rendering to

define which face vertex is targeted. The vertex

shader checks the forth coordinate of the velocity. If

it is greater than zero, then this is a face which has

collided to an upper layer cloth vertex. The indices of

the cloth vertices of that face are read from an index

texture. Knowing the size of the velocity texture and

the index, the output position of the vertex shader is

computed so that it projects to the targeted cloth ver-

tex (number 0, 1 or 2 of the face) in the rendering

target. As a result the fragment shader is executed for

this cloth vertex and it applies a constant force oppo-

site to the cloth normal, multiplied by the time step,

and in this way pushes the cloth back. The magnitude

of the force is determined experimentally. If there

was no collision, the new position is computed so that

it is outside the viewing volume and the fragment

shader is not executed for this vertex.

Maps generation

As mentioned above map[0] is generated only once at

the beginning. After each integration step we have to

render maps from 1 to n in each slice of the 3D tex-

ture. In order to speed the simulation up, when gener-

ating map[i], we first copy map[i-1] to map[i], set it

as the default colour and depth buffers and render

cloth layer number (i-1). In this way the body and all

cloth layers from 0 to (i-2) are already present in the

frame buffer and do not have to be rendered again. So

we have to render only the pieces with a layer number

(i-1).

5. RESULTS
The system was implemented in OpenGL and GLSL.

Figure 3 shows an example of the simulation of a pair

of jeans and gives a closer look of pockets and belt

loops.

In order to check the system performance, it was test-

ed on several configurations. Two implementations of

the Virtual-Try-On system were compared: 1) pro-

grams running on the CPU and 2) GPU-based as de-

scribed in this paper. For the second one the textures

used to store the cloth vertices positions and veloci-

ties were of a size 64 × 64. The influence of the upper

to lower layers was not simulated, as for a single

garment it is not significant. The performance results

of 3 GPUs and the fastest CPU are given in Table 1

and Figure 4. They show that the virtual try-on runs

very well on a modern laptop GPU, which is about 20

times faster than the fastest tested CPU. One iteration

includes integration, collision detection and response.

Figure 3: Layers of cloth: pockets and belt loops

The average time of putting a garment on a virtual

body using the NVIDIA GTX 460 GPU is about 0.2

seconds depending on the garment complexity and

size.

Figure 6 shows results of the simulation of two gar-

ments, jeans dressed on top of a shirt. The jeans were

discretised with 3600 mass points and 2100 vertexes

were used for the shirt. Two modifications of the

cloth-cloth collision detection algorithm are depicted:

WSCG 2012 Communication Proceedings 24 http://www.wscg.eu

left – no impact of upper to lower layers. The simula-

tion is faster (0.20 sec for dressing the jeans), but not

satisfactory.

right – with impact of upper to lower layers. The

simulation is slower (0.34 sec for dressing the jeans),

but of much better quality. The time spent only on

collision detection and response is 0.21 seconds for

the whole cycle of dressing a pair of jeans, which

requires 675 iterations. This means that for each it-

eration 0.31 ms is spent on cloth-cloth collision de-

tection and response.

 Time for 1000

iterations, s

Iterations per

second

Intel core i7, 2.2

GHz

8.65 116

ATI Radeon

HD4850

0.57 1769

NVIDIA GeForce

GTX 560M laptop

0.40 2491

NVIDIA GeForce

GTX 460

0.30 3300

Table 1: Performance of the system, measured on

3 GPUs and a CPU

Figure 4: Performance of CPU and 3 GPUs

The algorithms for cloth simulation and collision

detection and response were also implemented using

NVidia CUDA and OpenCL. The comparison with

the GLSL implementation [Vas10] showed that

GLSL outperforms CUDA (OpenCL). One of the

main reasons is that CUDA (OpenCL) and OpenGL

have to share buffers for the rendering and this buff-

ers should be mapped and later unmapped when used

in CUDA (OpenCL), which slows down the simula-

tion.

Figure 6: Jeans dressed on a shirt; left: no impact

of upper to lower layers; right: with impact of

upper to lower layers

6. CONCLUSIONS
An efficient technique for dynamic garment simula-

tion entirely on the GPU has been presented. It im-

plements a mass-spring system with velocity modifi-

cation to overcome super elasticity and exploits an

image-space approach for collision detection and

response. The following more important conclusions

can be drawn:

- A general mass-spring system can be implement-

ed on the GPU using several textures for storing

data and several connectivity textures for keeping

spring and seaming information.

- Hardware assisted occlusion queries can be uti-

lised for counting unsewn cloth vertices, which

speeds simulation up.

- The same image-space based approach can be

applied for detecting collisions cloth-body and

cloth-cloth when layers of cloth are simulated.

Multiple collision maps can be stored in a 3D tex-

ture.

The system can simulate approximately 20 garments

per second on a PC with 2 dual GPU NVidia Ge-

Force graphics cards. This is currently sufficient for

our web based Virtual Try On service.

The system can be extended to simulating garments

on animated virtual characters. For this purpose ve-

locity maps will also have to be generated and stored

in another 3D texture.

7. ACKNOWLEDGEMENTS
Tzvetomir Vassilev's work is partly supported by a

National Research Fund project at the University of

WSCG 2012 Communication Proceedings 25 http://www.wscg.eu

Ruse, Bulgaria. Bernhard Spanlang’s work is partial-

ly supported by the ERC project TRAVERSE.

8. REFERENCES
[AFC

*
10] Allard J., Faure F., Courtecuisse H., Fali-

pou F., Duriez C., Kry P. G.: Volume contact

constraints at arbitrary resolution. ACM Trans.

Graph. 29, 4 (2010), 1–10.

[BHW94] Breen D., House D., Wozny M.: Predict-

ing the drape of woven cloth using interacting

particles. In Computer Graphics Proceedings, An-

nual Conference Series (1994), vol. 94, pp. 365–

372.

[BW98] Baraff D., Witkin A.: Large steps in cloth

simulation. In Computer Graphics Proceedings,

Annual Conference Series (1998), SIGGRAPH,

pp. 43–54.

[BWS99] Baciu G., Wong W. S., Sun H.: Recode: an

image-based collision detection algorithm. The

Journal of Visualization and Computer Animation

10, 4 (1999), 181–192.

[CYTT92] Carignan M., Yang Y., Thalmann N. M.,

Thalmann D.: Dressing animated synthetic actors

with complex deformable clothes. In Computer

Graphics Proceedings, Annual Conference Series

(1992), vol. 92, pp. 99–104.

[EWS96] Eberhardt B., Weber A., Strasser W.: A

fast, flexible, particle-system model for cloth

draping. j-IEEE-CGA 16, 5 (Sept. 1996), 52–59.

[GKLM07] Govindaraju N. K., Kabul I., Lin M. C.,

Manocha D.: Fast continuous collision detection

among deformable models using graphics proces-

sors. Comput. Graph. 31, 1 (2007), 5–14.

[Gla98] Glassner N. I. B. A. S.: 3d object modelling.

SIGGRAPH 12, 4 (1998), 1–14.

[Göd07] Göddeke D.: Gpgpu::basic math tutorial,

2007.

[GW05] Georgii J., Westermann R.: Mass-spring

systems on the gpu. Simulation Modelling Prac-

tice and Theory 13 (2005), 693–702.

[Har05] Harris M.: Mapping computational concepts

to gpus. In SIGGRAPH ’05: ACM SIGGRAPH

2005 Courses (New York, NY, USA, 2005),

ACM, p. 50.

[HTG04] Heidelberger B., Teschner M., Gross M.:

Detection of collisions and self-collisions using

image-space techniques. In Journal of WSCG

(2004), pp. 145–152.

[LHG
*
06] Luebke D. P., Harris M., Govindaraju

N. K., Lefohn A. E., Houston M., Owens J. D.,

Segal M., Papakipos M., Buck I.: S07 - gpgpu:

general-purpose computation on graphics hard-

ware. In SC (2006), ACM Press, p. 208.

[MHS05] Mosegaard J., Herborg P., Sørensen T. S.:

A gpu accelerated spring mass system for surgical

simulation. Studies in health technology and in-

formatics 111 (2005), 342–348.

[MOK95] Myszkowski K., Okunev O. G., Kunii

T. L.: Fast collision detection between complex

solids using rasterizing graphics hardware. The

Visual Computer 11, 9 (1995), 497–512.

[Pro95] Provot X.: Deformation constraints in a

mass-spring model to describe rigid cloth behav-

iour. In Proceedings of Graphics Interface (1995),

pp. 141–155.

[Pro97] Provot X.: Collision and self-collision detec-

tion handling in cloth model dedicated to design

garments. In Proceedings of Graphics Interface

(1997), pp. 177–189.

[PTVF92] Press W. H., Teukolsky S. A., Vetterling

W. T., Flannery B. P.: Numerical Recipes in C,

2nd. edition. Cambridge University Press, 1992.

[RNS06] Rodriguez-Navarro X., Susín A.: Non struc-

tured meshes for cloth gpu simulation using fem.

In 3rd. Workshop in Virtual Reality, Interactions,

and Physical Simulations (VRIPHYS) (2006),

pp. 1–7.

[RNSS05] Rodriguez-Navarro X., Sainz M., Susin

A.: Gpu based cloth simulation with moving hu-

manoids. In Actas XV Congreso Español de In-

formática Gráfica (CEIG’2005) (2005),

J. Regincós D. M., Thomson-Paraninfo E., (Eds.),

pp. 147–155.

[SF91] Shinya M., Forgue M. C.: Interference detec-

tion through rasterization. j-J-VIS-COMP-

ANIMATION 2, 4 (Oct.–Dec. 1991), 132–134.

[SGG
*
06] Sud A., Govindaraju N., Gayle R., Kabul

I., Manocha D.: Fast proximity computation

among deformable models using discrete voronoi

diagrams. ACM Trans. Graph. 25, 3 (2006),

1144–1153.

[TPBF87] Terzopoulos D., Platt J., Barr A., Fleischer

K.: Elastically deformable models. Computer

Graphics (Proc. SIGGRAPH’87) 21, 4 (1987),

205–214.

[Vas10] Vassilev T.I.: Comparison of several parallel

API for cloth modelling on modern GPUs. In

Proceedings of CompSysTech (2010).

[VM95] Volino P., Magnenat Thalmann N.: Collision

and self-collision detection: Efficient and robust

solutions for highly deformable surfaces. In Com-

puter Animation and Simulation ’95 (1995), Ter-

zopoulos D., Thalmann D., (Eds.), Springer-

Verlag, pp. 55–65.

[VSC01] Vassilev T., Spanlang B., Chrysanthou Y.:

Fast cloth animation on walking avatars. Comput-

er Graphics Forum 20, 3 (2001), 260–267. ISSN

1067-7055.

[Zel05] Zeller C.: Cloth simulation on the gpu. In

SIGGRAPH ’05: ACM SIGGRAPH 2005

Sketches (New York, NY, USA, 2005), ACM,

p. 39

WSCG 2012 Communication Proceedings 26 http://www.wscg.eu

Improving Active Learning with Sharp Data Reduction

Priscila T. M. Saito†, Pedro J. de Rezende†, Alexandre X. Falcão†,
Celso T. N. Suzuki†, Jancarlo F. Gomes†‡

†Institute of Computing, University of Campinas - UNICAMP, Campinas, SP, Brazil
‡Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil

{maeda, rezende, afalcao, celso.suzuki, jgomes}@ic.unicamp.br

ABSTRACT
Statistical analysis and pattern recognition have become a daunting endeavour in face of the enormous amount of
information in datasets that have continually been made available. In view of the infeasibility of complete manual
annotation, one seeks active learning methods for data organization, selection and prioritization that could help
the user to label the samples. These methods, however, classify and reorganize the entire dataset at each iteration,
and as the datasets grow, they become blatantly inefficient from the user’s point of view. In this work, we propose
an active learning paradigm which considerably reduces the non-annotated dataset into a small set of relevant
samples for learning. During active learning, random samples are selected from this small learning set and the
user annotates only the misclassified ones. A training set with new labelled samples increases at each iteration and
improves the classifier for the next one. When the user is satisfied, the classifier can be used to annotate the rest of
the dataset. To illustrate the effectiveness of this paradigm, we developed an instance based on the optimum path
forest (OPF) classifier, while relying on clustering and classification for the learning process. By using this method,
we were able to iteratively generate classifiers that improve quickly, to require few iterations, and to attain high
accuracy while keeping user involvement to a minimum. We also show that the method provides better accuracies
on unseen test sets with less user involvement than a baseline approach based on the OPF classifier and random
selection of training samples from the entire dataset.

Keywords: Pattern Recognition, Machine Learning, Active Learning, Semi-Automatic Dataset Annotation, Data
Mining, Optimum-Path Forest Classifiers.

1 INTRODUCTION
The amount of available information has been increas-
ing due to the advances of computing and data acquisi-
tion technologies, resulting in large datasets. Handling
and analysing such increasing volume of information
have become humanly infeasible and highly suscepti-
ble to errors, since it is extremely time consuming and
wearisome. Hence, there is an increasing demand for
the development of effective and efficient ways to an-
notate these datasets.

Active learning techniques have been explored and rea-
sonably successful. However, these methods fall in a
single paradigm which requires, at each iteration, the
classification of the entire dataset under annotation, fol-
lowed by the organization of all these samples accord-
ing to some criterion, in order to select the most in-
formative samples to be used for training the classifier.
These phases are highly interdependent and, for large

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

datasets, performing them at each iteration is very inef-
ficient or even computationally infeasible.

In this paper, to overcome the aforementioned prob-
lems, we propose a new active learning paradigm which
is verifiably effective and more efficient in practice,
when dealing with large datasets, than those based on
the current state of the art. The proposed paradigm re-
lies on a significant reduction in the dataset size to cre-
ate a small representative set of samples, for the learn-
ing process. By constructing the first instance of the
classifier based on the knowledge of as many classes
as possible, as well as incorporating the best samples
at each iteration, subsequent selection and classifica-
tion phases are much more efficacious. This approach
differs from the traditional active learning methods, in
which all samples in the database have to be classified
and re-organized at each iteration.

Being a paradigm, it can be implemented using differ-
ent strategies. This paper also presents an instantiation
(Cluster-OPF-Rand) which has been developed to illus-
trate the effectiveness of this paradigm. It is based on
the Optimum Path Forest (OPF) classifier, while relying
on clustering and classification for the learning process.
Cluster-OPF-Rand prevents the user from having to an-
notate a large (and usually wasteful) number of training
samples. Moreover, it prevents poor selection of sam-

WSCG 2012 Communication Proceedings 27 http://www.wscg.eu

Selector

Non-Annotated
Dataset

Annotated
Dataset

Classification

Organization

Selection

Training

Classifier

user

Learning Cycle

Labeled

Non-labeled
(first iteration)

Annotated
Samples

Figure 1: Pipeline of the traditional active learning paradigm.

ples from a large learning set, since this set is reduced
so as to contain essentially the most representative sam-
ples. After this reduction, the proposed paradigm en-
ables the organization of the learning samples to occur
beforehand (and only once). In this particular imple-
mentation, the organization of the reduced set occurs in
a randomized fashion.

The experiments performed on three datasets show that
Cluster-OPF-Rand is interactively and iteratively effi-
cient, in addition to providing high accuracies earlier.
That is to say, the number of learning iterations is sig-
nificantly reduced with better accuracies, while requir-
ing the annotation of only a small number of sam-
ples, when compared to a baseline approach using the
OPF classifier and random selection of training samples
from the entire dataset. The results also showed impres-
sive reductions of over 90% in user effort, at the same
time providing accuracies of over 97%.

The remainder of this paper is structured as follows.
Section 2 summarizes the major active learning tech-
niques presented in the literature. Section 3 presents
the clustering approach based on optimum-path forest
used. Section 4 details the active learning paradigm and
the reduced method proposed. Section 5 discusses the
experiments and the accomplished results. Finally, Sec-
tion 6 presents the conclusions and future work.

2 BACKGROUND AND TECHNIQUES
Recent works in active learning have yielded a vari-
ety of heuristics, which are designed mostly for binary
classification and are applicable primarily to classifiers
such as Artificial Neural Network (ANN), Support Vec-
tor Machine (SVM), k-Nearest Neighbour (k-NN) and
Optimum-Path Forest (OPF).

In active learning techniques, the key idea relies on
the strategy used to select the most informative sam-
ples such that they allow for the achievement of greater
accuracies with fewer training labels annotated by the
user. Much effort has been placed in investigating

strategies for active learning. However, it is focused on
methods that classify all samples in the database, then
organize these samples according to certain criteria and
subsequently select and display the most informative
samples to be annotated by the user, at each learning
iteration. For large databases, these complete phases,
at each learning iteration, are very inefficient or even
impractical to be done computationally.
Figure 1 illustrates the execution pipeline of the tradi-
tional active learning paradigm presented in prior liter-
ature. This paradigm is comprised of a learning algo-
rithm and a selector. The selector consists of three mod-
ules (classification, organization and selection) that are
highly interdependent. At each iteration cycle, the sys-
tem presents to the user a set of samples that consists of
either non-labelled samples (from the entire database,
in the first iteration) or labelled ones (obtained through
the classifier), all chosen by the selector. As these sam-
ples are annotated by the user, they are included in the
training set to retrain the classifier for the next cycle.
Besides the aforementioned inefficiency, most of the
existing research in the traditional active learning
paradigm has focused on binary classification. Rel-
atively few approaches [12, 20, 9, 16, 11, 10] have
been proposed for multiclass active learning and are
typically based on extensions of predominantly binary
active learning methods to the multiclass scenario.
In the ANN literature, although several works [4, 1, 7]
have explored the use of active learning in the context
of efficient network training, this approach shows the
disadvantage of being computationally expensive.
Alternatively, SVM has been used in [19, 18], under the
assumption that the samples closest to the separating
hyperplane are the most informative ones. During the
iterations of relevance feedback, the method finds the
optimal hyperplane separating relevant and irrelevant
samples and presents to the user the samples closest to
this hyperplane. This hyperplane is adjusted throughout
the iterations, and after the last one, the method presents
the most relevant samples as being the farthest ones to

WSCG 2012 Communication Proceedings 28 http://www.wscg.eu

the hyperplane. Extensions to the multiclass scenario
are typically based on extensions of binary classifica-
tion using pairwise comparisons or 1-vs-all strategy.

In contrast, [10] introduced a probabilistic variant of
k-NN. Although, this variant was designed specifically
for multiclass problems, it involves learning a certain
number of parameters. Moreover, the performance of
the method is dependent on the similarity measure used.

A strategy, similar to the one presented in [18], was pro-
posed in [6], using a faster and more effective classi-
fier based on Optimum-Path Forest (OPF). They devel-
oped greedy (GOPF) [5] and planned (POPF) [6] active
learning strategies for CBIR systems. For a given set of
relevant and irrelevant samples, the method computes
an optimum-path forest using samples from the query
set for training the classifier.

Optimum-Path Forest (OPF) is a framework for devel-
oping pattern classifiers (supervised, semi-supervised
or unsupervised) which defines how the samples are
connected by an adjacency relation that gives rise to a
graph, and how to measure the connectivity (the cost
of a path in the graph generated by the adjacency) be-
tween them by means of a function that gives rise to an
optimum path forest.

The supervised and the unsupervised classifiers were
described in [14, 17], respectively. Both learning ap-
proaches are fast and robust for large datasets [13, 2].
In addition, the classes/clusters may present arbitrary
shapes and have some degree of overlapping. Classi-
fiers based on OPF have been widely used in several ap-
plications and have demonstrated that OPF-based clas-
sifiers can be more effective and much faster than ANN
and SVM based ones [14].

The following Section details the OPF based clustering
approach.

3 CLUSTERING BY OPTIMUM-PATH
FOREST

The data reduction approach we implemented is based
on clustering by Optimum-Path Forest (OPF) [17]. This
is a non-parametric approach which estimates the num-
ber of natural groups in a dataset as the number of max-
ima of its probability density function (pdf). In this ap-
proach, each maximum of the pdf will define a cluster
as an optimum-path tree rooted at that maximum. It
can handle plateaux of maximum, by electing a single
root (one prototype per maximum), groups with arbi-
trary shapes, and some overlapping among clusters.

In this unsupervised learning algorithm, an unlabelled
training set is interpreted as a graph whose nodes are
samples (images, in this paper) and each node is con-
nected with its k-closest neighbours in the feature space
to form directed arcs. The pdf value at each node is
estimated from the distance between adjacent samples,

and a connectivity (path-cost) function is designed such
that the maximization of a connectivity map defines an
optimum-path forest rooted at the maxima of the pdf. In
this forest, each cluster is one optimum-path tree rooted
at one maximum (prototype). The pdf estimation also
requires multiple applications of the algorithm for dif-
ferent values of k in order to select the best clustering
result as the one that produces a minimum normalized
cut in the k-NN graph. The clusters are found by or-
dered label propagation from each maximum, as op-
posed to the mean-shift algorithm of [3] which searches
for the closest maximum by following the direction of
the gradient of the pdf — a strategy that does not guar-
antee the assignment of a single label per maximum,
and presents problems on the plateaux of the pdf.

In order to handle large datasets, this approach esti-
mates the pdf from random samples and fast propagates
the group labels to the remaining samples of the dataset.
The best k for pdf estimation is found by optimization,
but its search interval [1, kmax] may produce different
numbers of groups. The parameter kmax represents an
observation scale for the dataset. If kmax is too high,
it means that we are looking at the dataset from infinity
and so, the result will be a single cluster. As we ap-
proximate the dataset (reducing the value of kmax), the
number of clusters increases up to some high number
for kmax = 1. Still, the number of possible solutions is
low, because the method produces an identical number
of clusters for several values of kmax. This shows the
robustness of the method in finding natural groups in
the dataset for distinct observation scales. In this work,
we chose kmax so as to obtain a number of groups
higher than the number of classes known. Note that,
we do not use any knowledge on the classes of sam-
ples, but we assume that we know how many classes
are present in the dataset.

4 PROPOSED PARADIGM
We propose a new paradigm for active learning in or-
der to select, more efficiently and effectively, a small
number of the most representative samples for train-
ing a classifier. The execution pipeline of the proposed
paradigm is illustrated in Figure 2.

In the proposed paradigm, a classifier instance is gen-
erated at each iteration. After retraining the classifier
(a process that relies on user annotations), the selector
displays the most informative samples to the user. As
the classifier improves, the user is required to correct
fewer misclassified samples and progressively develops
a sense of when the learning process has reached a sat-
isfactory state.

Active learning methods presented in the literature dif-
fer from one another in their learning algorithms and in
the selection strategies employed. The main difference

WSCG 2012 Communication Proceedings 29 http://www.wscg.eu

Reduction
and

Organization

Selector

Selection
and

Classification

Non-Annotated
Dataset

Annotated
Dataset

Training

Classifier

user

Learning Cycle

Labeled

Non-labeled
(first iteration)

Annotated
Samples

Reduced
dataset

Figure 2: Pipeline of the proposed active learning paradigm.

between the proposed paradigm and previously pro-
posed ones lies within the selector. Traditional methods
make use of three modules that correspond to classifica-
tion, organization and selection of samples (Figure 1).
In these methods, the selection criterion is based solely
on a classifier that is not yet reliable. When the clas-
sification accuracy is still low, the organization phase
becomes useless, since when samples are classified, in-
formative samples may not be selected to participate in
the organization phase and therefore they will not be
shown to the user.

The proposed paradigm is based on a priori data re-
duction and organization of the reduced dataset. It fo-
cuses on reversing the process adopted by traditional
paradigms where an classification phase occurs before
the organization phase. In the proposed paradigm, the
selector consists of only one module of selection and
classification. A major advantage presented by the pro-
posed paradigm is that the reduction and organization
of samples can be performed only once, unlike tradi-
tional methods.

Thus, the selector becomes faster, especially consider-
ing large databases, since the improvement of the clas-
sifier at each iteration does not require rearranging all
samples; only the selection and classification phases are
required. Moreover, a remarkably faster selection phase
is completed by the choice of a small subset of samples
and the classification of only these.

The strategy to be developed in order to select the
most informative samples itself occurs as preprocess-
ing in the module of reduction and organization (Fig-
ure 2). This strategy should not be based on a classi-
fier, because it is still unreliable, but rather based on an
absolute criterion previously established (for instance,
exploring the organization of the data in the feature
space). The classification phase is performed a pos-
teriori, supporting the choice of the most informative
samples by the selector, which follows a predetermined
order in the reduction and organization module. In
this module, different methods can be applied in our

paradigm. In Subsection 4.1, we develop and present
an effective method for the learning process.

4.1 Instantiation of the proposed
paradigm

As it was mentioned, any method can be incorporated
into the proposed paradigm in order to reduce the
learning set and later to organize the reduced one. In
this section, we present an effective method called
Cluster-OPF-Rand. Figure 3 illustrates an example of
the pipeline of Cluster-OPF-Rand.
The proposed method is divided into two modules: (1)
reduction and organization, (2) selection and classifica-
tion. The reduction and organization module is com-
prised of two steps: clustering and reduction of the data
(steps 1 and 2 of Figure 3, respectively). The selection
and classification module choose and label (steps 3 and
4 of Figure 3, respectively) the most informative sam-
ples of the reduced set chosen in a randomized fashion.
Each sample is represented by a pair (id, lbl), where id
corresponds to the identifier of the sample and lbl cor-
responds to the label given by the classifier. Note that it
does not classify all samples in the dataset, but only the
selected subset.
Initially, clusters are computed in order to obtain sam-
ples of all classes, as described in Section 3. One or
more clusters represent samples of all classes in the
non-labelled set, so that each cluster comprises mostly
samples of a single class. Then, their roots (highlighted
after step 1) cover samples of all classes and are defined
as an initial training set for manual annotation. This is
fundamental to be able to train the classifier with sam-
ples of all classes, since the first iteration. This clas-
sifier should be as good as possible because it is used
in the classification of samples, providing an initial la-
belling, in which the user is not required to annotate all
samples shown but only to correct a small number of
misclassified ones.
Besides knowing which samples are roots of clusters,
it is possible to identify those that are boundary sam-

WSCG 2012 Communication Proceedings 30 http://www.wscg.eu

1 2 3 4
(1,1)

(2,?)

(3,?)

(4,2)

Figure 3: An example of pipeline of the proposed method.

ples between different clusters. A sample s is consid-
ered a boundary sample if there exists, among its k-NN
adjacent samples, at least one whose label (given by
the clustering) is different from that of s. The clus-
ter boundary samples are expected to correspond to
the boundary between classes. This identification of
boundary samples allows for the reduction of the learn-
ing set to a small relevant set (consisting of boundary
samples), since these can be considered as the most rep-
resentative samples for improving the classifier.

In the first iteration of the learning phase, the roots of
the clusters are displayed to the user, who annotates
their labels. These samples constitute the training set
for the first instance of the classifier. For all other itera-
tions, among the samples of the reduced set (boundary
samples of the clusters) a few randomly chosen ones are
selected for classification. Once classified, these sam-
ples are submitted to the user for confirmation of the
labels assigned by the current classifier. Since only a
small number of misclassified samples require annota-
tion, the user’s time and effort are lessened. In fact, as
the classifier improves throughout the iterations the ac-
tions required from the user are increasingly reduced.
After the labels are confirmed/corrected by the user, the
samples are incorporated into the training set and a new
instance of the classifier is generated. This entire cycle
is repeated until the user is pleased with the accuracy of
the classification.

Moreover, it is important to emphasize that different
clustering techniques (such as k-means or k-medoids)
can be used in the data reduction phase. Similarly, dif-
ferent supervised classifiers can be used in the classifi-
cation and selection phases of the proposed paradigm.
We choose OPF-based clustering since it offers many
advantages, as mentioned in Section 2.

5 EXPERIMENTS
For evaluation, we developed a baseline approach
(OPF-Rand) using the OPF-classifier and random se-
lection of samples. At each learning iteration, the same
number of random samples is selected from the entire
dataset for OPF-Rand and, from the reduced dataset,
for the Cluster-OPF-Rand. This number of samples is
equal to the number suggested by Cluster-OPF-Rand
based on the clustering results – a fair choice. These
samples are classified and presented to the user for
annotation. The user annotates the misclassified sam-
ples and they are added to the training set to improve
the OPF classifiers used in each method for the next

iteration. Thus, one can easily note the gain obtained
by using clustering for dataset reduction, which induces
the knowledge of a large number of classes, resulting
in an early increase in accuracy. Moreover, clustering
also allows for the choice of random samples from the
reduced set comprised of good representative samples,
instead of a much larger set of data (as in OPF-Rand).

The reported results were compiled from the average
of experiments run 10 times, with randomly generated
learning sets and unseen test sets for accuracy mea-
sures. For all datasets used, we chose 80% of the avail-
able samples for learning, and 20% for testing.

5.1 The Dataset Description
To perform the experiments we have used real-world
datasets from very diverse domains. Due to space lim-
itations, in the present paper there are only results ob-
tained from three datasets.

The first dataset was obtained from the University of
Notre Dame [8]. It was originally designed to study the
effect of time on face recognition. The images were
acquired in several weekly sessions with the participa-
tion of distinct individuals. In these sessions, different
expressions (neutral, smiling, sad) were captured. In
this work, we concentrated on a subset containing 1,864
samples with 162 features and 54 classes. Figure 4 dis-
plays specimens from this dataset.

Figure 4: Examples of images from the Faces dataset.

The second dataset is composed of images of parasites,
provided by a research laboratory at the University of
Campinas, where faecal parasitological examination is
performed for diagnosis of enteroparasitosis present in
humans. We used a dataset consisting of 1,660 faecal
samples with 262 features and 15 classes. A particu-
larity of this set is that each class contains a different
number of images varying from 33 to 163 depending on
the parasite species found on microscope slides. Figure
5 displays samples from this dataset.

The third one is the Pen-Based Recognition of Hand-
written Digits dataset obtained from the UCI Machine

WSCG 2012 Communication Proceedings 31 http://www.wscg.eu

Faces Accuracy (%) Total Annotated Images (%)
Iteration Cluster-OPF-Rand OPF-Rand Cluster-OPF-Rand OPF-Rand

1 94.85 85.11 6.51 6.51
2 97.27 94.21 7.59 8.51
3 98.06 97.35 8.11 9.40
4 98.57 98.35 8.41 9.78
5 98.85 98.78 8.68 9.98

Table 1: Accuracies and total annotated images for Cluster-OPF-Rand and OPF-Rand on the Faces dataset.

Figure 5: Examples of images from each class of the
structures of intestinal parasites in the Parasites dataset.

Learning Repository [15], that consists of 10,992 ob-
jects in 16 dimensions, distributed in 10 classes corre-
sponding to the digits [0...9]. The 16 dimensions are
drawn by re-sampling from handwritten digits. This
digits database was built from a collection of 250 sam-
ples from 44 writers.

5.2 Results
To compare the effectiveness of each method (Cluster-
OPF-Rand and OPF-Rand), Tables 1-3 present the
mean accuracy and the total annotated images using the
datasets Faces, Parasites and Pendigits, respectively. It
is important to emphasize that comparisons were not
performed between Cluster-OPF-Rand and methods
that require classifying and organizing all samples in
the database, at each learning iteration, due to this
process being infeasible in practice.
Notice that the proposed method creates a new classi-
fier instance at each iteration. We would like to verify
the ability of Cluster-OPF-Rand in choosing the most
representative samples from a reduced set, as well as,
in which iteration, whether the user might be pleased
with the classification accuracy. Therefore, we monitor
the mean accuracy of each instance on the unseen sam-
ples of the test set. Furthermore, for each sample set
selected at each iteration, we simulate the user interac-
tion by correcting the misclassified labels given by the
current classifier instance. Tables 1-3 help compare the
total number of annotated images used to increase the
training set.

In summary, Cluster-OPF-Rand started off with a bet-
ter performance than OPF-Rand, for all datasets anal-
ysed. Moreover, it achieves high accuracies sooner.
To reach the same accuracies, the randomized method
(OPF-Rand) required more samples annotated by the
user as well as more learning iterations than Cluster-
OPF-Rand.

Using the Faces dataset (Table 1), both methods achieve
similar accuracies and both can be improved with more
user annotations and more learning iterations. How-
ever, Cluster-OPF-Rand allows the learning process to
stop earlier in comparison with OPF-Rand. Further-
more, it is important to highlight that, out of 1,469 sam-
ples only 132.94 (about 9.05%) had to be annotated for
the proposed method to achieve accuracy above 99%, in
its last (9th) iteration using all samples on the reduced
set. These results are similar to those for the remaining
datasets (Tables 2 and 3). This shows that our method
can outperform OPF-Rand in effectiveness.

Considering the Parasites dataset (Table 2), in the first
iteration, Cluster-OPF-Rand achieves accuracies above
92% with less than 2% of the learning samples anno-
tated by the user, while the randomized method OPF-
Rand reaches similar accuracies only from the fourth
iteration on and requiring the user to annotate more
than 3% of the learning samples. Furthermore, out of
1,323 samples only 77.7 (about 5.87%) had to be an-
notated for Cluster-OPF-Rand to achieve an accuracy
above 97%, in its last (25th) iteration using all samples
in the reduced set.

For the Pendigits dataset (Table 3), our method obtains
high accuracies in all learning iterations. In the first
one, it presents an accuracy of 88.80%. In the remain-
ing iterations, the accuracies tend to increase continu-
ously, reaching over 99%. Furthermore, out of 8,791
samples only 79.9 (about 0.90%) had to be annotated
for the proposed method to achieve accuracy above
97% in the 30th iteration. In a practical situation, a user
would be very pleased at this point, mainly considering
that the randomized method (OPF-Rand) learning pro-
cess consists of 440 iterations, when using all available
learning samples.

Figure 6a-b illustrates the mean accuracies and the
number of samples annotated by the user at each
iteration for each dataset using Cluster-OPF-Rand,

WSCG 2012 Communication Proceedings 32 http://www.wscg.eu

Parasites Accuracy (%) Total Annotated Images (%)
Iteration Cluster-OPF-Rand OPF-Rand Cluster-OPF-Rand OPF-Rand

1 92.68 79.44 1.98 1.98
2 94.12 88.50 2.54 2.66
3 94.94 91.60 2.91 3.06
4 95.30 92.67 3.12 3.29
5 95.21 93.64 3.36 3.54

Table 2: Accuracies and total annotated images for Cluster-OPF-Rand and OPF-Rand on the Parasites dataset.

Pendigits Accuracy (%) Total Annotated Images (%)
Iteration Cluster-OPF-Rand OPF-Rand Cluster-OPF-Rand OPF-Rand

1 88.80 70.36 0.13 0.13
2 90.96 82.97 0.22 0.25
3 91.99 87.49 0.29 0.30
4 92.89 89.72 0.35 0.35
5 93.70 91.25 0.40 0.40

Table 3: Accuracies and total annotated images for Cluster-OPF-Rand and OPF-Rand on the Pendigits dataset.

respectively. We used logarithmic scales, due to the
size of these datasets. Our method requires a greater
effort by the user in the first few iterations, since the
selected samples are the most difficult to classify.
However, looking at the end of the learning phase,
one can observe that the proposed method demands
less effort from the user, who annotates much fewer
samples after some iterations (reaching almost no
annotations at all).
The reduction strategy becomes very important in a pro-
cess where a goal is to limit the number of iterations to
as few as possible. In this context, selecting samples
that speed up the improvement of the classifier through
the iterations becomes critical. The more difficult to
classify the selected samples in the current iteration are,
the more useful they are to improve the classifier for the
next iteration. Therefore, the selection of hard to clas-
sify samples coupled with the early knowledge of all
classes allow for higher accuracy sooner.
Note that, in the first iteration with all datasets (Ta-
bles 1-3), Cluster-OPF-Rand provides higher accura-
cies than OPF-Rand. Using roots of each cluster for the
first classifier instance becomes really important due
to its use in the next iteration. This reduces the time
and effort by the user who mainly has only to confirm
the labels of the samples that have already been classi-
fied. Hence, this first instance of the classifier should
be based on the knowledge of as many classes as pos-
sible (ideally, all of them). In later learning iterations,
the performance gain depends on the choice of good
samples. With the proposed method, it is possible to
improve these choices by reducing a large dataset to a
small subset consisting of boundary cluster samples for
the training of the subsequent classifiers.
It is clear that Cluster-OPF-Rand, in addition to pro-
viding high accuracies, requires fewer learning itera-

tions than those demanded by OPF-Rand. Addition-
ally, it relies on fewer interactions with the user whose
effort is reduced to almost none after a few iterations.
Therefore, clustering improves the knowledge of sam-
ples from most/all classes. From the results presented,
we can see that clustering roots allow us to obtain high
accuracy since the first iteration. In the remaining it-
erations, the growth of accuracy is faster for Cluster-
OPF-Rand, which also proves beneficial for the reduc-
tion strategy proposed.

6 CONCLUSION AND FUTURE
WORK

In this work, we introduced an efficient active learning
paradigm which enables the reduction and organization
of the learning set a priori. A first instantiation, Cluster-
OPF-Rand, of the proposed paradigm was developed in
order to illustrate its effectiveness. The data reduction
is based on clustering and the organization uses a ran-
domized choice of samples of the reduced set, which
contains the most representative (boundary) ones for
the learning process. Cluster-OPF-Rand enables us to
achieve the desired results, by using the knowledge of
both user and classifier, at each learning iteration, along
with the reduction strategy developed.
We concluded that our paradigm is more suitable to
handle large datasets than the traditional one where
methods require, at each learning iteration, the clas-
sification of all samples in the database, followed by
their organization, and, finally selection. The proposed
paradigm enables the reduction and organization phases
to occur only once, as pre-processing. In addition, clas-
sification does not occur for all samples in the database,
but to a small set of samples.
Experiments with datasets from distinct applications
showed that Cluster-OPF-Rand, in addition to achiev-

WSCG 2012 Communication Proceedings 33 http://www.wscg.eu

(a) (b)

Figure 6: Comparison of Cluster-OPF-Rand on the three datasets. (a) Mean accuracy on the test sets. (b) Total
annotated samples in each iteration (in percentage).

ing higher accuracy sooner, requires fewer learning it-
erations than those presented by OPF-Rand. Moreover,
it is important to highlight that the user’s time and ef-
fort are reduced to almost none after just a few itera-
tions. Furthermore, experiments also demonstrated that
it is possible to reduce the user’s effort by over 90%,
obtaining a classification accuracy above 97%.
Considering that new technologies have provided large
datasets for many applications and that he traditional
paradigms for active learning present unacceptable
training times, we conclude that the proposed paradigm
is an important contribution to active machine learning.
Future works include developing other ways to explore
the reduction and organization of data, for instance, a
strategy that relies on an absolute criterion established
a priori which explores the organization of the data in
the feature space.

7 ACKNOWLEDGEMENTS
This work has been supported by grants from Con-
selho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq): 481556/2009-5, 303673/2010-9,
552559/2010-5, 483177/2009-1, 473867/2010-9; from
Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES): 01-P-01965/2012; from Fun-
dação de Amparo à Pesquisa do Estado de São Paulo
(FAPESP): 07/52015-0 and from FAEPEX/UNICAMP.

8 REFERENCES
[1] D. Angluin. Queries and Concept Learning. Machine Learning,

2:319–342, 1988.

[2] F.A.M. Cappabianco, J.S. Ide, A.X. Falcão, and C.-S.R. Li.
Automatic subcortical tissue segmentation of mr images using
optimum-path forest clustering. In International Conference on
Image Processing (ICIP), pages 2653–2656, 2011.

[3] Yizong Cheng. Mean shift, mode seeking, and clustering.
TPAMI, 17(8):790–799, 1995.

[4] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning
with statistical models. JAIR, 4:129–145, 1996.

[5] A. T. da Silva, A. X. Falcão, and L. P. Magalhães. A new CBIR
approach based on relevance feedback and optimum-path forest
classification. Journal of WSCG, pages 73–80, 2010.

[6] A. T. da Silva, A. X. Falcão, and L. P. Magalhães. Active learn-
ing paradigms for CBIR systems based on optimum-path forest
classification. Pattern Recognition, 44:2971–2978, 2011.

[7] D. T. Davis and J. N. Hwang. Attentional focus training by
boundary region data selection. In Intern. Joint Conference on
Neural Networks (IJCNN), volume 1, pages 676–681, 1992.

[8] Faces. Biometrics Database Distribution. The Computer Vision
Laboratory, University of Notre Dame, 2011. www.nd.edu/
~cvrl/CVRL/Data_Sets.html.

[9] A. Holub, P. Perona, and M.C. Burl. Entropy-based active
learning for object recognition. In CVPRW, pages 1–8, 2008.

[10] P. Jain and A. Kapoor. Active learning for large multi-class
problems. In IEEE Conference on Computer Vision and Pat-
tern Recognition(CVPR), pages 762–769, 2009.

[11] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Gaussian
Processes for Object Categorization. International Journal of
Computer Vision (IJCV), 88:169–188, 2010.

[12] X. Li, L. Wang, and E. Sung. Multi-label SVM Active Learn-
ing for Image Classification. In International Conference on
Image Processing (ICIP), volume 4, pages 2207–2210, 2004.

[13] J. P. Papa, A. X. Falcão, V. H.C. de Albuquerque, and J. M.R.S.
Tavares. Efficient supervised optimum-path forest classification
for large datasets. Pattern Recognition, 45:512–520, 2012.

[14] J. P. Papa, A. X. Falcão, and C. T. N. Suzuki. Supervised pattern
classification based on optimum-path forest. Intern. Journal of
Imaging Systems and Technology (IJIST), 19(2):120–131, 2009.

[15] Pendigits. Pen-Based Recognition of Handwritten Dig-
its Dataset. UCI - Machine Learning Repository, 2011.
archive.ics.uci.edu/ml/datasets/Pen-Based+
Recognition+of+Handwritten+Digits.

[16] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, and H.-J. Zhang. Two-
dimensional multilabel active learning with an efficient online
adaptation model for image classification. IEEE Transact. on
Pattern Analysis and Machine Intel., 31(10):1880–1897, 2009.

[17] L. M. Rocha, F. A. M. Cappabianco, and A. X. Falcão. Data
clustering as an optimum-path forest problem with applications
in image analysis. Intern. Journal of Imaging Systems and
Technology (IJIST), 19(2):50–68, 2009.

[18] S. Tong and E. Chang. Support vector machine active learning
for image retrieval. In ICM, pages 107–118. ACM, 2001.

[19] S. Tong and D. Koller. Support vector machine active learn-
ing with applications to text classification. Journal of Machine
Learning Research (JMLR), 2:45–66, 2002.

[20] R. Yan, J. Yang, and A. Hauptmann. Automatically labeling
video data using multi-class active learning. In IEEE Intern.
Conference on Computer Vision (ICCV), volume 1, pages 516–
523, 2003.

WSCG 2012 Communication Proceedings 34 http://www.wscg.eu

Exposing Proprietary Virtual Reality Software to
Nontraditional Displays

Maik Mory
Otto-von-Guericke-University

maik.mory@ovgu.de

Steffen Masik
Fraunhofer IFF

steffen.masik@iff.fraunhofer.de

Richard Müller
University of Leipzig

rmueller@wifa.uni-leipzig.de

Veit Köppen
Otto-von-Guericke-University

veit.koeppen@ovgu.de

Abstract

Nontraditional displays just started their triumph. In contrast to traditional displays, which are plane and rectangular, they do not
only differ in design and architecture; they also implicate different semantics and pragmatics in the rendering pipeline. We strive
for a generic solution that couples legacy applications with nontraditional displays. In this paper, we present an architecture and
a respective experiment, which exposes a proprietary virtual reality software to a 360 degree virtual environment. Therefore
we introduce a rigorous master-slave design. The proposed architecture requires discussion of the following details: how to
access a proprietary application’s OpenGL stream; how to transmit the OpenGL stream efficiently in a clustered rendering setup;
how to process the OpenGL stream for adaption to nontraditional display semantics; and how to deal with the arising code
complexity, withal. Our design decisions are highly interdependent. The presented architecture overcomes limitations, which
were implied by client-server design in earlier work. The proposed rigorous master-slave design is totally transparent to the
client software, and reduces interdependencies between rendering software and rendering clusters. Thus, it inherently reduces
network round trips and promotes the use of scalable multicast. Our architecture is tested in a reproducible experiment, which
provides a qualitative proof of concept.

Keywords: Nontraditional Display, OpenGL, Distributed Rendering, Multicast, Interoperability, Generative Programming

1 INTRODUCTION
Nontraditional displays (e.g., CAVEs, powerwalls,
domes) just started their triumph. In the 1990s, non-
traditional displays were driven by special monolithic
rendering hardware. Together with the advent of cheap
general and graphics computation power driven by
the computer games industry, research shifted towards
rendering clusters made from off-the-shelf hardware,
during the first decade of our century.

In contrast to traditional displays, which are plane and
rectangular, nontraditional displays do not only differ in
design and architecture; they implicate different seman-
tics and pragmatics in the rendering pipeline, too. This
paper discusses several solutions that were implemented
to bring legacy software to nontraditional displays. Our
predecessors inherited client-server semantics from the
OpenGL specification. We present an implementation
that rigorously uses master-slave semantics to enhance
scalability of distributed rendering architectures, beside
other minor optimizations. Throughout our discussion,
we use a practical application scenario that is presented
in this section’s remainder together with a problem state-
ment. Section 2 provides background on interoperability

Permission to make digital or hard copies of all or
part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

of distributed virtual reality software. An architecture,
which enables node-based OpenGL stream processing
with little interference to the communication between a
central OpenGL client software and its local OpenGL
server hardware, is presented in Sections 3 and 4. That
our proposed architecture is feasible is proven with a
reproducible experiment in Sections 5 and 6. Finally,
we conclude with an outlook on future work.

1.1 Application Scenario
Today, every engineering process is supported by soft-
ware. Any reasonable engineering software has a visual-
ization component. Note, the visualization component
is not necessarily a dominant or permanent element of
the user interface; we only require it to be available. We
choose Bitmanagement’s BSContact [8] as an exemplary
sample of generic information and geometry visualiza-
tion. Basically, BSContact is a generic 3D file viewer
for VRML and X3D. Most engineering software is able
to export these data formats. Although, for us BSCon-
tact’s primary functionality is not that relevant. For us it
is important, that BSContact uses the most widespread
patterns of three dimensional data visualization; it is
proprietary; and it renders interactive geometry.

Several nontraditional displays exist in various dimen-
sions and shapes. Most of them have an entertainment
background, but some of them are also used for research
and industrial applications. One of those systems is the
ElbeDom located at the Fraunhofer Institute for Fac-
tory Operation and Automation (IFF) in Magdeburg,
Germany. The ElbeDom is a large cylindrical virtual
environment. It has been designed to satisfy the demand

WSCG 2012 Communication Proceedings 35 http://www.wscg.eu

for immersive virtual reality (VR) and massive multi-
user collaboration in the areas of virtual manufacturing
and factory planning. A detailed description of the sys-
tem and a comparison of similar projection systems are
provided in [22]. Basically, the ElbeDom is representa-
tive hardware for distributed, tiled rendering on curved
screens.

Briefly, the ElbeDom’s cylindrical screen is 6.5m high
and 16m in diameter. The 330m2 screen is covered by
six LDT G2 laser projectors. The projectors operate at
1600×1200 pixels. Thus, the viewer is surrounded by
approximately eleven megapixels from -20◦ below hori-
zon to +30◦ above horizon and full 360◦ in horizontal.
Six so-called warping engines geometrically adjust and
blend the six projector’s pictures. Their input is gener-
ated by a cluster of six commodity nodes. Throughout
this paper we call the six nodes slaves. Among other con-
trol and automation nodes, there is a dedicated headed
node for the operator. We will call it the master in this
paper. The commodity cluster is interconnected via off-
the-shelf GBit Ethernet.

1.2 Problem Statement
Our primary goal is to provide interoperability between
arbitrary proprietary virtual reality software and arbi-
trary nontraditional displays. Looking at this paper’s
application scenario alone, several questions arise. Bit-
management’s BSContact has been developed for tra-
ditional displays connected to local graphics hardware.
Thus, one has to consider aspects of syntactical, se-
mantical and pragmatical interoperability between the
visualization software and the nontraditional display’s
rendering pipeline. Challenges, how to interface a pro-
prietary software’s visualization component and how
to handle variant implementations of several hundred
OpenGL functions frame our considerations.

2 BACKGROUND
Engineers describe system architectures in terms of com-
ponents and interfaces. Depending on the engineer’s
domain and preferred method, what we call a compo-
nent may be called an object, device, service, module, or
other too. We focus on the domain of computer science.
Therefore, a component is a definable software artifact.
Connections of components are differentiated between
tight couplings and loose couplings. Tight coupling ex-
ploits interdependencies and relations between compo-
nents; the connected components are not supposed to be
exchanged. A loose coupling minimizes dependencies
and relations between the components to a well-defined
specification of the interface; loosely coupled compo-
nents tend to be exchangeable. In real life, couplings are
not clearly the one or the other. Rather, real couplings
distribute in a continuum with ideal loose coupling on
one end and with ideal tight coupling on the other end.

The distinction is made, whether an instance is more the
one or the other.

Coupling components is the subject of interoperabil-
ity. Interoperability is a field of active research. The
most exhaustive, recent survey we know of was done
by Manso et al. [17]. They declare seven levels of in-
teroperability: technical, syntactic, semantic, pragmatic,
dynamic, conceptual, and organizational. In our con-
text it is sufficient to stick with a three level hierarchy
of interoperability [14], which we briefly introduce as
follows:

Syntactic interoperability is data exchange with a
common set of symbols to which a formal grammar
applies.

Semantic interoperability is information exchange
with a shared, common vocabulary for interpretation
of the syntactic terms.

Pragmatic interoperability is contextual exploitation
of applications and services through shared knowl-
edge.

Another aspect about couplings are messaging patterns.
Most procedural, object-oriented, and distributed sys-
tems follow the client-server pattern. A server compo-
nent provides an interface. A client component requires
an interface. If a client’s required interface and a server’s
provided interface are compatible, they can be connected.
Then, the client uses the server. Servers or services can
be stateful or stateless. If the server is stateless, the
effect to a request depends on the request only. If the
server is stateful, the reply depends on the request and
on the server’s state.

The Gang of Four [7] identified an extreme variant,
where the request declares the client’s interest in a series
of replies – the observer pattern. Other names are one-
way messaging, publish-subscribe, producer-consumer,
or master-slave as we call it in this paper. Master-slave
tends to be loosely coupled, because in an ideal imple-
mentation the consumer requires no knowledge about
identity or number of the producers and vice versa as
well, for example.

An interface definition covers a slice of the interoper-
ability hierarchy. Most interface definitions in computer
science, especially application programming interfaces’
documentations focus on syntactic and semantic interop-
erability. Software developers usually delegate technical
interoperability to electrical engineers, who design com-
puter chips and network links. The upper half of the
interoperability hierarchy usually is in the responsibility
of software project’s stakeholders.

In a system of n components, one may implement
O(n2) adapters for each coupled pair of components.
When there is a common concept, which is shared
among several interfaces, established protocols and other

WSCG 2012 Communication Proceedings 36 http://www.wscg.eu

interface specifications are reused for multiple compo-
nents. This we call an interoperability platform. In a
system of n components, one implements O(n) adapters
between each component and the interoperability plat-
form.

There has been vast work to establish interoperabil-
ity platforms for VR applications. For example, Schu-
mann [23] uses the high-level architecture (HLA) for
syntactical interoperability among distributed simula-
tions; Ošlejšek [21] tries to establish semantic interoper-
ability with a unified scene graph definition. The crucial
point in the design of an interoperability platform is
the common concept shared between participants. In
our observation, there are two types of interoperability
platforms: those which declare and impose an artificial
common concept; and those which find and exploit an
existing common concept. We believe that the latter have
better chances to succeed in software evolution. Looking
at the abundance of VR software, there is one thing ob-
viously common: OpenGL. The OpenGL specification
defines syntax through function signatures together with
a finite state machine and it defines semantics through
human readable documentation for modules and func-
tions.

We are not the first ones who exploit the well sup-
ported OpenGL industry standard for interoperability.
The commercial software products TechViz XL [2] and
ICIDO’s Capture [1] impressively show the potential.
However, because they are closed-source they give lit-
tle value to our discussion. During our discussion we
mostly refer to selected aspects of Chromium [11, 16],
Lumino [25], and BroadcastGL [13].

3 EXPOSING A PROPRIETARY APPLI-
CATION’S OPENGL STREAM

In [18], the authors evaluate four techniques, how to
intercept a proprietary application’s invocations of the
OpenGL API. Three out of the four techniques have
been used in multi-hosted rendering before. The re-
link library technique (e.g., MPIglut [15], although it is
not a node-based stream processor) cannot be applied
to proprietary software. The replace dynamic library
technique (e.g., Chromium [11]) is unreliable within
MS Windows’ dynamic library facility. The virtual de-
vice driver technique (e.g., VirtualBox [26]) does not
scale for complex application scenarios. We prefer the
binary interception technique because it is flexible and
robust at once.

The binary interception technique was introduced by
Hunt and Brubacher [12] to instrument and extend pro-
prietary software. An injected intermediary manipulates
the proprietary software’s binary image at runtime. We
illustrate the principle in Figure 1. For each function that
should be instrumented, the intermediary installs what
is referred to as detour. The installation procedure for a

original function
1 2

(a) In unmodified software, the client requests the server function (1);
then the server function returns a reply (2).

original function
detouring

code

instrumentation function

trampoline

1

2
3

4

5

6

(b) In intercepted software, the detouring code redirects the instruction
pointer to an instrumentation function (2). We internally invoke the
original function through the trampoline (3,4,5). After processing the
request-reply tuple, we return to the client (6).

Figure 1: Binary Interception

function overwrites the first bytes of the server’s func-
tion with machine code, which detours the execution
path to the intermediary’s function. When the OpenGL
client invokes an intercepted OpenGL server’s function,
the overlaid detouring code is executed instead of the
original code. In effect, the client invokes the interme-
diary’s function. The installation procedure produces a
so-called trampoline function, which keeps the original
server’s function available. The trampoline contains a
backup of the server function’s machine code that was
overwritten during installation of the detour and addi-
tional machine code that repatriates the execution path
to the unmodified remainder of the server function’s
machine code. In effect, invocations of the trampoline
delegate calls to the server.

Microsoft Windows’ implementation of OpenGL,
which is determined to be compatible with OpenGL
version 1.1, provides 2400 functions (c.f., Section 6),
which divide into 357 core functions, 1671 extension
functions, and 372 alias functions. Core functions are
provided in the opengl32.dll’s symbol table. We in-
stall interceptions for every core function during startup
time before the application is able to access them. Ex-
tension functions are provided on the client’s demand on
the server through the wglGetProcAddress func-
tion. We install interceptions for every extension func-
tion when it is passed through the wglGetProcAd-
dress function for the first time. What is known as
alias functions are alias names for core or extension func-
tions. In the data structure that tracks installed intercep-
tions, alias functions are associated with their respective
original functions.

In result, the complete OpenGL API is instrumented.
Our instrumentation functions first transparently dele-
gate the client’s request to the original function through
the trampoline. After the original function returned
(item 5 in Figure 1b), the request-reply tuple is available
to the instrumentation function from a totally transpar-
ent observation. In our further discussion, a published
sequence of request-reply tuples we call the OpenGL

WSCG 2012 Communication Proceedings 37 http://www.wscg.eu

(a) Traditionally, the client’s requests are fanned to the distributed
renderer and replies are merged after a full round trip. The display’s
semantics and pragmatics are opaque to the client.

(b) With our approach, the server master uses a local server to gather
replies with minimal latency. Then it publishes the requests with
attached replies to the slaves without network round trips. The slaves
adapt semantics and pragmatics transparently.

Figure 2: A node-based OpenGL stream processor that
multicasts request-reply tuples has looser couplings.

stream. After publication of the new OpenGL stream
element, we return to the original OpenGL client using
the reply from the original server function. Thus, we
have extracted the OpenGL stream from the client-server
coupling with minimal interference.

4 FULL MULTICAST SEMANTICS
FOR OPENGL STREAM DISTRIBU-
TION

Commonly, implementations of node-based, distributed
OpenGL processing use unicast via TCP/IP for data dis-
tribution. We guess that this design decision has two
major reasons. Back in the days of the first hype about
rendering on commodity clusters (for a survey see Chen
et al. [5]), TCP/IP was available, tried-and-tested, and
well supported. Further, for those systems it is a basic
assumption, that the invocation actually happens on the
remote site; and thus, return values and argument alter-
ations have to be propagated back from the distributed
OpenGL server to the central client. Figure 2a illus-
trates this in terms of distributed systems. The OpenGL
client’s requests are fanned to multiple OpenGL servers.
For operations with output, the server fan adapts the
client’s request for the remote servers and merges the
remote servers’ replies to a singular reply for the client.

Thus, the nontraditional display’s semantics and prag-
matics are opaque to the client. As an example for
opaque semantics, all of our predecessors tried to map
the semantics of windowing and camera setup (e.g., the
glViewport function) from their tiled display setups
to the clients’ calls.

In 2005, Ilmonen et al. [13] unveiled the potential of
non-unicast stream distribution in the context of multi-
tile rendering. They discovered, that unicast stream
distribution does not scale with the number of tiles, be-
cause shared commands that are used by n tiles have
to be sent n times. The more tiles a distributed graph-
ics application uses, the more neighboring and blended
regions share geometry data. Global state changes are
shared between all tiles. Ilmonen et al. describe an
experiment, where they use broadcast via UDP/IP for
stream distribution and a TCP/IP backchannel to add re-
liability and congestion control. Their main contribution
is an empirical proof, that broad- and multicast OpenGL
stream distribution scales with the number of tiles in a
centralized application with distributed graphics.

Lorenz et al. [16] implement a modification of
Chromium, which uses multicast for parallelizing
commands and unicast for serializing commands.
In their reasoning, serializing commands are those
commands that are unique to each remote server.
Serializing commands are different with respect to the
distinct peers, because they are adapted on the client’s
side of the network in the server fan. We argue that they
could be parallel calls – and thus be appropriate for
multicast distribution – if the adaption stage would be
shifted from the server fan to the remote peers.

Ilmonen et al. [13] already shift adaption of the re-
quests to the remote peers. In their discussion, they
point out that commands which require merged replies
from the distributed server stall the streaming. Neal et
al. [20], who advance efficiency in multicast OpenGL
stream distribution by applying compression techniques
to the distributed stream, observe the same problem.
They identify, that commands which have replies effec-
tively are network round trips and hence cause blocking
at the client. This leads us to the question: Is it really
necessary to aggregate state from the distributed server?
Neal et al. as well as Ilmonen et al. still use client-server
semantics as it is defined in the OpenGL API specifica-
tion. As an aside, they borrow a potential solution from
prior work, that round trips may be avoided by state
management [4].

Chromium [11] and Lumino [25], for example, imple-
ment state management. State management emulates
the OpenGL state machine as a component of the stream
processing framework. Stavrakakis et al. [25] claim that
state management is necessary for two reasons: late join-
ers should be able to retrieve OpenGL machine’s state;
and operation accumulation can be used for compres-
sion of transferred data (i.e., a-priori-aggregated state of

WSCG 2012 Communication Proceedings 38 http://www.wscg.eu

the distributed server). However, state management is
expensive. With emulation software, it is tedious to keep
track with the original implementations in functionality
and in performance. When Chromium introduced state
management, they assumed that the client may run on
a platform without graphics acceleration. Today, every
host has basic graphics hardware acceleration or at least
a good software implementation. Hence, we consider
the topic of emulated state management obsolete. Even
more, we explicitly recommend using the central appli-
cation’s local OpenGL implementation.

This yields a novel architecture for centralized ap-
plications with distributed graphics, which is depicted
in Figure 2b. Our implementation of the intercepted
OpenGL API, which we name Vanadium1, first invokes
the original local OpenGL server with unmodified com-
mands from the client and returns unmodified output to
the client. This renders Vanadium transparent in func-
tional behavior to the OpenGL client and in appearance
to the user at the host with the central application, as
well. After the trampoline function has returned and
before the decorator function returns (cf., Figure 1), the
decorator publishes the OpenGL stream. In contrast to
earlier work, the stream does not only contain opcode
and relevant input arguments (i.e., the request), but also
every output, like return values and referenced arrays
(i.e., the reply). After publishing the stream, any further
stream processing is asynchronous. Thus, there are no
round trips on the network anymore.

We agree to Stavrakakis et al. [25], that there should
be a possibility to join lately to the stream. Nevertheless,
late joining is a very infrequent event. Thus, we abne-
gate the implementation cost and runtime cost of dedi-
cated state management. In the infrequent case of a late
join, we are able to retrieve the OpenGL machine state
directly from the original driver vendor’s implementa-
tion through the glGet function and other inspection
functions; at least unless the client uses no deprecated
technique like display lists. The joined slave uses its
adaption (see Section 5) to map the master’s late state to
a consistent slave’s state. Then, the stream processing
can continue. Regarding stream compression, which
is a topic to all distributed OpenGL renderers, because
the network bandwidth bottleneck is very dominant, we
refer to Neal’s work [20] and Lorenz’ work [16].

5 EXAMPLES FOR DETACHED
PROCESSING OF THE OPENGL
STREAM

In this section, we clarify the architecture shift that we
propose in Section 4. Therefore, we describe the process-
ing chain as we implemented it with Bitmanagement’s

1 Vanadium as used in the presented experiment is provided in the
additional material. It will be open-sourced, soon.

Figure 3: VDTC’s ElbeDom driven by Vanadium. The
transparently distributed application is Bitmanagement’s
BSContact with a software visualization scene [19].

BSContact as source and VDTC’s ElbeDom as sink (cf.,
Section 1.1 and Figure 3).

Please note, that we intercept the whole OpenGL and
WGL API. In the decorator functions we first delegate
the call to the original function via the trampoline. After
the trampoline function returned with the output from
the original server, the processing described in this sec-
tion takes place. After our processing, the decorator
function returns the values from the local original server
invocation to the original client (cf., Figures 1 and 2).

First of all, we need to handle recursion. As we use
binary interception, we get each and every call of the
OpenGL API – literally. So, there are the calls actu-
ally made by the client; and there are recursive calls by
the original server implementation to itself. For exam-
ple, the wglDescribePixelFormat function calls
itself; many functions call the glFlush function in-
ternally. We distinguish client calls and recursive server
calls by tracking stack depth with a counter. When there
is no active call from the client, the counter rests at mi-
nus one. During client’s requests the counter is zero.
When the server calls itself, the counter is greater than
zero. Recursive calls are skipped in stream processing,
because they reflect internal behavior of the original
local server and thus do not matter. Now, the stream
contains every invocation actually made by the client.

WSCG 2012 Communication Proceedings 39 http://www.wscg.eu

Figure 4: Vertex Array Cache – The master maintains
a shadow copy of the client’s vertex arrays. The vertex
array transmission to the slave is differential.

Looking at the stream of client calls, there is a huge
amount of calls that are irrelevant to the remote dis-
play. Most commercial OpenGL software use an off-
screen rendering technique for auxiliary calculations,
like mouse pointer ray collision testing or occlusion
culling. In Bitmanagement’s BSContact, a temporary
viewport is used, that is overdrawn by visible content
before the next SwapBuffers invocation. BSContact’s
hidden viewport is easily determinable, because it is al-
ways square (e.g., 100×100 pixels) and smaller than the
window’s rendering area. We skip all calls that are made
to the finally invisible viewport. Then BSContact sets
the viewport to the whole visible area and renders the
visible content. We passthrough these calls for handling
on the nontraditional screen. As can be seen from the
invocation log, another viewport is set, that is always
86 pixels in height. Because we could not imagine a map-
ping from its two-dimensional content to the 360 degree
screen of the ElbeDom, we skip the two-dimensional
content, too. The considerations in this paragraph are
highly interdependent with the client software and thus,
have to be reconsidered for every new client.

To reduce bandwidth usage further, we apply a
caching technique to the vertex array facility (Figure 4).
To achieve this, our decorated glDrawElements
function and related vertex array draw functions
determine the array in CPU’s RAM that should be
drawn by pointer and by size. The master keeps a
shadow copy that resembles the arrays in the slave’s
cache. We introduce cache management commands
in the stream to advice the slave for modifications
of its cache. Initially the master’s shadow copy and
the slave’s cache are empty. When there is a new
array (i.e., pointer is not in shadow copy mapping),
it is added to the shadow copy and transmitted to the
slaves. When the client draws a known array (i.e.,
pointer exists in shadow copy mapping) whose content
is unchanged (i.e., client’s array equals shadow copy
array), the slave is told to use the cached array. When
the client draws a known array whose content has

changed (i.e., pointer exists in shadow copy mapping
and client’s array is not equal to shadow copy array),
the changed array is transmitted to the slave before
usage. At the slave, the modified array replaces the
respective array, because obviously the client discarded
the old content before. When distributing the arrays and
when referring to them in draw commands, the master
uses handles that are derived from its shadow copy
index. During cache management commands, the slave
maintains a mapping between the master’s handles and
the cache’s pointers. After cache synchronization the
master emits the draw command. Then the slave uses its
master’s-handle-to-slave’s-pointer mapping to invoke
the draw command with valid data. This simple caching
technique doubles the client application’s memory
consumption with respect to its vertex arrays. We do
not recommend the use of hashes, because collisions in
the index may corrupt the stream fatally [16]. For us,
usage of the memcmp function worked out by reducing
network bandwidth at negligibly increased CPU load.

For networking, we use ØMQ [10], which provides
us with superior inter-thread, inter-process, cluster-wide,
and world-wide messaging. One command is one mes-
sage. For each command in OpenGL’s API specification,
we derive a struct, which contains the opcode, any value
arguments, and the return value if applicable. Array
arguments are packed into submessages. Because Ze-
roMQ takes care of message sizes robustly, therewith
we significantly reduce any risk associated with wrong
array sizes in C/C++. As an optimization, we exploit
that call-by-value arguments already are packed in the
stack. Thus, we only need to copy a slice from the stack
into the corresponding slice of the message buffer struct.
ZeroMQ offers various reliable multicast protocols for
data distribution. After message transmission through
ZeroMQ to the slaves, the commands are dispatched to
handler functions based on their opcode. The slave’s de-
fault handler implementation directly mimics the client
node’s invocation. Some handler functions are modified
to implement adaption of the stream at slave side.

Comparable to the mapping of array pointers the
slave implements a mapping of OpenGL names. In
OpenGL’s terminology, names are numeric identifiers
for objects in the OpenGL state machine. For example,
the glGenTextures function outputs integers to the
client, which the client should use to identify and re-
fer textures unambiguously. Usually, equally replayed
commands should yield equal names. However, we can-
not guarantee that for heterogeneous environments, for
late joiners, and when splicing command streams. The
mapping mechanism is simple. There are functions that
generate (i.e., output) names and there are functions that
use (i.e., input) names. The slave maintains an asso-
ciative array with the master’s names as keys and the
slave’s names as values. Please remember, that the mas-
ter includes invocations’ outputs in the stream. When

WSCG 2012 Communication Proceedings 40 http://www.wscg.eu

Figure 5: If lighting is calculated relative to the camera
and the camera has different poses on different tiles then
the light’s pose is different on each tile (left). Repos-
ing light sources with respect to the tiles’ camera pose
differences compensates the visual inconsistency (right).

a command that generates names is called, the slave
extracts the master’s names from the arrived message. It
replays the command, which yields the slave’s names.
Then the pair is added to the map. When a name is used,
the message refers the master’s name. The slave decodes
the master’s name to its local name using the map. We
call this mechanism name mapping.

The ElbeDom is an exemplary virtual environment.
The cylindrical, surrounding screen has little potential
for two-dimensional WIMP semantics. Hence, we do
not even try to map the client’s WIMP semantics to the
system’s VE semantics. The filtering stage at the master
yields a singular stream with visually relevant content
only. Therefore, calls to the glViewport function,
which refer to the whole visible window area at the
master, are mapped to fullscreen rendering at the slaves.
This leaves us to adapt the camera pose. The appropriate
place in the stream to achieve camera adaption is client-
software-specific. With Bitmanagement’s BSContact,
the most robust solution is to modify invocations of the
glLoadIdentity function and the glLoadMatrix
function where the model view matrix is selected. There
we premultiply the tile’s camera orientation. This gives
us the basic adaption to the ElbeDom’s 360 degree view.
Additionally, the ElbeDom’s warping and blending fa-
cility specifies asymmetric frusta for each tile. At the
glFrustum function we discard the client’s inputs for
a symmetric view into the window and overwrite with
the tile’s asymmetric frustum configuration. This com-
pletes camera adaption to the ElbeDom’s interleaved
frustum configuration.

The adaption pipeline is completed by a pragmatic
adaption of lighting. Like most other OpenGL software,
BSContact uses lighting to give three-dimensional im-
pression. BSContact’s lighting is designed relative to
the camera. Because we rotate the world to adapt the
camera position, the lighting is inconsistent between
the tiles (cf., Figure 5). Hence, we install a filter on
the glLight function family, which applies the tile’s
camera pose to the position and direction lighting pa-

rameters. Thus, the lighting is consistent through all of
the ElbeDom’s six tiles.

6 HANDLING CODE COMPLEXITY
The functionality that we describe in this paper handles
several hundred functions from the OpenGL API. More-
over, we talk about variant functionality. During analysis
of the application’s OpenGL stream, we need a variant
that logs the OpenGL stream to disk. The sender is a
variant that implements serialization. The receivers have
to implement deserialization. Processing of the OpenGL
streams yields building blocks (i.e., filters, adapters),
that ideally should be individually and independently
reusable with a broad variety of virtual reality software
and virtual environments. Nevertheless, we expect that
processing nodes need to be tailored with respect to
functional and non-functional behavior (cf., Siegmund
et. al. [24]) as soon as more than one application will
be supported. At a first glance, this requires a codebase
of several thousand repetitive functions. At the second
glance, we see two core problems: repetitiveness and
variability.

Under the bottom line, we deal with a component
oriented system, where the components stem from a
software system family. Such a family includes a num-
ber of systems that are similar enough from an archi-
tectural point of view to be assembled from a common
set of components. We achieve development efficiency
through Generative Programming (GP) [6]. The main
goal of GP is to generate a partial or an entire software
system automatically from such implementation com-
ponents. The requirements for the desired result, i.e.
the generate, are defined in a domain specific language
(DSL). A DSL is a specialized and problem-oriented
language for domain experts to specify concrete mem-
bers of a system family. This specification is processed
by a generator, which automatically builds the system
by combining components according to configuration
knowledge. The Generative Domain Model (GDM) in
Fig. 6 illustrates the concept of this paradigm estab-
lishing a relationship between the basic terms of GP. It
consists of the problem space, the solution space, and
the configuration knowledge mapping both spaces. The
problem space includes domain specific concepts and
features to specify requirements by means of one or
more DSL(s). The solution space offers elementary
and reusable implementation components correspond-
ing to the system family architecture. The configuration
knowledge comprises illegal feature combinations, de-
fault settings, construction rules, and optimizations as
well as related information. In order to instantiate this
theoretical concept, we perform a technology projec-
tion. Therefore, we identify concrete techniques for the
elements of the GDM.

In particular, we enhanced Microsoft Visual C++ at
Visual Studio 2010’s prebuild stage. First, our Python

WSCG 2012 Communication Proceedings 41 http://www.wscg.eu

Problem Space Configuration
Knowledge

- Domain specific
 concepts and
- Features

Domain Specific Language(s)
(DSLs)

- Illegal feature
 combinations
- Defaults settings
- Default dependencies
- Construction rules
- Optimizations

Generator(s)

- Elementary and
 reusable components

Solution Space

Components & System
Family Architecture

Figure 6: Generative Domain Model [6]

script parses the OpenGL API’s formal specification.
At the time of our experiment, the OpenGL specifica-
tion (revision 12819) defines 2269 functions. Microsoft
Windows’ OpenGL windowing system (WGL) (revi-
sion 10796) adds 131 function definitions. Thus, an
OpenGL application on Windows has access to a repos-
itory of 2400 functions. Secondly, within our Python-
based domain specific language, a feature configuration
is modeled. Both models together are applied to a tem-
plate engine, which generates C++ source code. Then,
the prebuild step, or code generation step respectively,
terminates and the Visual C++ tool chain builds the ex-
ecutable software artifacts. Applying the means of the
generative paradigm, repetitive development tasks are
automated and the high variability of the virtual reality
domain is made manageable.

7 CONCLUSION AND FUTURE
WORK

We presented an architecture for node-based OpenGL
stream processing. It is highly interoperable with pro-
prietary and legacy software, because we use a robust
technique for function interception, and especially be-
cause we adapt from OpenGL’s client-server pattern to a
master-slave pattern, which is more feasible for stream
processing. The adaption is as transparent as possible to
the client. Thereby, the proposed architecture removes
any interdependencies between rendering software and
rendering clusters. We show that there is no source code
access to the application required. The reduced inter-
dependency promotes to use scalable multicast, and re-
moves network roundtrips. The architecture is tested by
a reproducible experiment, which we comprehensively
described in Section 5.

For sake of clarity, we focused on the combination of
one virtual reality software with one nontraditional dis-
play. We want to generalize our approach of course. At
the time of this writing, we are experimenting with other
rendering software, and we are experimenting with other
nontraditional displays, which have different pragmatics
than the ElbeDom. One open question we are research-
ing is how to deal with frustum culling and occlusion

culling in legacy software. These techniques are highly
optimized towards traditional displays. With BSContact,
we could switch them off through its ActiveX interface.
If culling was not disengageable, further investigation
would be necessary. In the long term we are curious, if
fully programmable pipelines may yield new rendering
pipeline semantics, will our approach scale?

With our proposed rigorous master-slave design, the
nodes of an OpenGL stream processor are coupled more
loosely than in competing frameworks. Therefore, our
architecture supports development and recombination
of OpenGL stream processor nodes. For example, we
would be glad to see an effect processing engine (e.g.,
Haringer and Beckaus [9], or Brennecke et al. [3]) ap-
plied to our OpenGL stream processing approach. In
summary, we see great potential for innovative use cases
in entertainment and engineering.

ACKNOWLEDGEMENTS
We are thankful to Fraunhofer IFF’s Virtual Develop-
ment and Training Center (VDTC), which provided its
ElbeDom for our experiments.

REFERENCES
[1] IC:IDO – The Visual Decision Company.

http://www.icido.de/PDF/ICIDO_
Broschuere_A4.pdf, Stuttgart, November
2006. In German.

[2] Emanuela Boutin-Boila. TechViz XL, March 2010.
[3] Angela Brennecke, Christian Panzer, and Stefan

Schlechtweg. vSLRcam – Taking Pictures in Vir-
tual Environments. In WSCG (Journal Papers),
pages 9–16, 2008.

[4] Ian Buck, Greg Humphreys, and Pat Hanra-
han. Tracking graphics state for networked
rendering. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics
hardware, HWWS ’00, pages 87–95, New York,
NY, USA, 2000. ACM.

[5] Yuqun Chen, Han Chen, Douglas W. Clark, Zhiyan
Liu, Grant Wallace, and Kai Li. Software Envi-
ronments For Cluster-Based Display Systems. In
Proceedings of the 1st International Symposium
on Cluster Computing and the Grid, CCGRID
’01, pages 202–210, Washington, DC, USA, 2001.
IEEE Computer Society.

[6] Krzysztof Czarnecki and Ulrich W. Eisenecker.
Generative Programming Methods, Tools and Ap-
plications. Addison-Wesley, 2000.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns. Addison Wesley,
Reading, MA, 1995.

[8] Bitmanagement Software GmbH. BS Contact 8.0.
http://www.bitmanagement.de.

WSCG 2012 Communication Proceedings 42 http://www.wscg.eu

http://www.icido.de/PDF/ICIDO_Broschuere_A4.pdf
http://www.icido.de/PDF/ICIDO_Broschuere_A4.pdf
http://www.bitmanagement.de

[9] Matthias Haringer and Steffi Beckhaus. Dynamic
Visual Effects for Virtual Environments. In WSCG
(Full Papers), pages 49–56, 2010.

[10] Pieter Hintjens. ØMQ – The Guide. iMatix Corpo-
ration, http://zguide.zeromq.org/.

[11] Greg Humphreys, Mike Houston, Ren Ng, Randall
Frank, Sean Ahern, Peter D. Kirchner, and James T.
Klosowski. Chromium: A Stream-Processing
Framework for Interactive Rendering on Clusters.
In ACM SIGGRAPH ASIA 2008 courses, SIG-
GRAPH Asia ’08, pages 43:1–43:10, New York,
NY, USA, 2008. ACM.

[12] Galen Hunt and Doug Brubacher. Detours: Binary
Interception of Win32 Functions. In Proceedings
of the 3rd conference on USENIX Windows NT
Symposium - Volume 3, WINSYM ’99, page 14,
Berkeley, CA, USA, 1999. USENIX Association.

[13] Tommi Ilmonen, Markku Reunanen, and Petteri
Kontio. Broadcast GL: An Alternative Method
for Distributing OpenGL API Calls to Multiple
Rendering Slaves. In WSCG (Journal Papers),
pages 65–72, 2005.

[14] Veit Köppen and Gunter Saake. Einsatz von
Virtueller Realität im Prozessmanagement. Indus-
trie Management, 2:49–53, 2010. In German.

[15] Orion Sky Lawlor, Matthew Page, and Jon Genetti.
MPIglut: Powerwall Programming Made Easier.
In WSCG (Journal Papers), pages 137–144, 2008.

[16] Mario Lorenz, Guido Brunnett, and Marcel
Heinz. Driving Tiled Displays with an Extended
Chromium System Based on Stream Cached
Multicast Communication. Parallel Computing,
33(6):438 – 466, 2007. Parallel Graphics and Vi-
sualization.

[17] Miguel-Ángel Manso, Monica Wachowicz, and
Miguel-Ángel Bernabé. Towards an Integrated
Model of Interoperability for Spatial Data Infras-
tructures. Transactions in GIS, 13(1):43–67, 2009.

[18] Maik Mory, Mario Pukall, Veit Köppen, and
Gunter Saake. Evaluation of Techniques for
the Instrumentation and Extension of Propri-
etary OpenGL Applications. In 2nd Interna-
tional ACM/GI Workshop on Digital Engineer-
ing (IWDE), pages 50–57, Magdeburg, Germany,
2011.

[19] Richard Müller, Pascal Kovacs, Jan Schilbach, and
Ulrich Eisenecker. Generative Software Visual-
izaion: Automatic Generation of User-Specific Vi-
sualisations. In 2nd International ACM/GI Work-
shop on Digital Engineering (IWDE), pages 45–49,
Magdeburg, Germany, 2011.

[20] Braden Neal, Paul Hunkin, and Antony McGre-
gor. Distributed OpenGL Rendering in Network
Bandwidth Constrained Environments. In Torsten

Kuhlen, Renato Pajarola, and Kun Zhou, editors,
EGPGV, pages 21–29. Eurographics Association,
2011.

[21] Radek Ošlejšek. Virtual Scene as a Software Com-
ponent. In WSCG (Posters), pages 33–36, 2008.

[22] Wolfram Schoor, Steffen Masik, Marc Hofmann,
Rüdiger Mecke, and Gerhard Müller. ElbeDom:
360 Degree Full Immersive Laser Projection Sys-
tem. In Virtual Environments 2007 - IPTEGVE
2007 - Short Papers and Posters, pages 15–20,
2007.

[23] Marco Schumann. Architektur und Applikation
verteilter, VR-basierter Trainingssysteme. Disser-
tation, Otto-von-Guericke-University Magdeburg,
Magdeburg, November 2009. In German.

[24] Norbert Siegmund, Martin Kuhlemann, Sven Apel,
and Mario Pukall. Optimizing Non-functional
Properties of Software Product Lines by means
of Refactorings. In Proceedings of Workshop Vari-
ability Modelling of Software-intensive Systems
(VaMoS), pages 115–122, 2010.

[25] John Stavrakakis, Masahiro Takatsuka, Zhen-Jock
Lau, and Nick Lowe. Exposing Application Graph-
ics to a Dynamic Heterogeneous Network. In Pro-
ceedings of the 14th International Conference in
Central Europe on Computer Graphics, Visualiza-
tion and Computer Vision, WSCG ’2006, pages
71–78, 2006.

[26] VirtualBox Service Desk. #475 – 3D acceler-
ation support for VBox guests. http://www.
virtualbox.org/ticket/475 Accessed
2011-10-10.

WSCG 2012 Communication Proceedings 43 http://www.wscg.eu

http://zguide.zeromq.org/
http://www.virtualbox.org/ticket/475
http://www.virtualbox.org/ticket/475

WSCG 2012 Communication Proceedings 44 http://www.wscg.eu

Image Abstraction with
Cartoonlike Shade Representation

ABSTRACT
Luminance quantization, which maps the luminance values of an image to discrete levels, is widely used for

image abstraction and the expression of a cartoonlike effect. Existing luminance quantization techniques use
each pixel’s luminance value separately, leading to a noisy image. Additionally, they do not take the shape of the

imaged object into consideration. Thus, they suffer limitations in terms of cartoonlike shade representation.

We propose a new luminance quantization algorithm that takes into account the shape of the image. We extract

the silhouette from the image, compute edge-distance values, and incorporate this information intothe process of

luminance quantization. We integrate the luminance values of neighboring pixels using an anisotropic filter,

using gradient information for this filtering. As a result, ourquantized image is superior to that given by existing

techniques.

Keywords
Image Abstraction, Image cartoonize, cartoonlike shade generation, luminance quantization

1. INTRODUCTION
The purpose of image abstraction is to simplify color

and shape. In particular, image cartooning makes

images look like a cartoon. Abstracted imagesmake it

easier to recognize a scene,because their color and

shape information is very simple. For example

cartoon is easier to recognize than real scene, so it is

often used for children’s contents. Because of this

advantage, abstracted images are widely used in

books and movies. Cartoon images have the

following features:

1. Simple color and shade (not noisy)

2. Silhouette-like object shade

To express these features, we use luminance

quantization, a simple and fast non-photorealistic

rendering (NPR) technique. Conventional approaches

change an image’s luminance values to certain

discretelevels to give simplified images. However,

they use the luminance values of individual pixels,so
they are limited in representing the shade that reflects

the shape of the object, especially since real-world

objects are influenced by complex lighting. So,

conventional approaches can’t represent neat shade

like a cartoon.

We propose an improved luminance quantization

algorithm and image cartooning process. Our

algorithm takes into account the shape of the

depicted object. We extract the silhouette of the

object and compute an edge-distance map, and then

compute the gradient values of the pixels to create an

anisotropic filter. Then we integrate neighboring
luminance valuesusing this filter. Our algorithm thus

results in an image that is less noisy and has cartoon-

like shade.

Our main contributions are the following:we

represent cartoon-like shade by considering the shape

information of the object, and we improve the quality

of the luminance quantization image by integrating

neighboring luminance values using anisotropic

filtering.

2. RELATEDWORK
There are several NPR approaches to abstract the

color in a 2D image. The most conventional approach

is image segmentation and express with average

GyeongRok Lee* HoChang Lee* TaeMin Lee* KyungHyun Yoon**

Chung-Ang University
Department for Computer
Science and Engineering
Korea (156-756), Seoul

starz | fanpanic | kevinlee @ cglab.cau.ac.kr*

khyoon @ cau.ac.kr **

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2012 Communication Proceedings 45 http://www.wscg.eu

color of region, which can simplifies image color but

cannot preserve the original shape and detail.

More recently, filtering-based methods for image

abstraction have gained popularity. The filtering

approach is simple and very fast, so it is used widely.

Filters include the blurring filter, the Kuwahara filter

[Kuw76a], and [Pap07a] that is a generalization of

various Kuwahara filters. Newer approaches include

the bilateral filter [Tom98a] and the anisotropic

Kuwahara filter. Thebilateral filter takes into account

color and edge information, so it preserves the
original shape. It is also very fast; Winnemoller et al.

[Win06a] use this filter for video abstraction. The

anisotropic Kuwahara filter expresses a painting

effect by using an anisotropic filter within an existing

Kuwahara filter. The above approaches express a

cartoon-like effect through color simplification, but

cannot express cartoon-like shad. For this, we use

luminance quantization.

Quantization is a technique that is widely used with

video, image, and audio. The original quantization

[Cho89a, Zha95a] is a compression technique that is
pursuing the save input information and reduce

storage space. Apply this, Image quantization is used

to reduce the cost on compressionand transmission

costs by reducing the color information of the

image.And quantization technique was used to

representthe shading effect in NPR, which is

luminance quantization. Conventional luminance

quantization techniques individually change the

luminance value of each pixel to a representative

value. This leads to noise in the result image due to

rapid stylization of luminance at the boundary (Fig.1-
a). Therefore, in [Win06a] the tangent function is

used to represent a smooth boundary and a natural

transition between each step, solving the problem of

sharp differences between the steps (Fig.1-b). This

technique is simple and presentsthe shading effect

well, so it has been widely used to express cartoon

effects. However, the study in [Win06a] considers

only the luminance information of individual pixels

too , and thus does not reflect the morphological

information of the image.

(a) (b)

Figure 1. (a) General luminance quantization

(b) [Win06a]’s luminance quantization

Shape information is very important featurefor image

abstraction. Many researchers have studied it: Kang

et al. [Kan07a] proposed the edge tangent flow (ETF)

technique that applies gradients to express a coherent

line effect. Their method was extended to [Kan08a],

which simplifies the shape and color of the image.

Hertzmann [Her98a] and Hays et al. [Hay04a]

determined the direction of the stroke by considering

the form of the image to express the painting effect.

Hochang et al. [Lee10a] utilized extra information on
the image gradient from texture transfer and

suggested a texture transfer technique with the

direction. In their research on mosaics [Hau01a],

Hausner used edge information to follow the

direction ofthe edge to determine the direction of the

tile. Although there have been many 2D-based

studies that consider the shape of images, the form of

the object has not been taken into account for the

study of images’ shade effects.

3. SHAPE-DEPENDENT

LUMINANCEQUANTIZATION
Fig.2 shows our system flow. We use a 2D image as
an input and apply Mean Curvature Flow(MCF)

[Kan08a]. This gives an image with simplified color

and shape. After that, we perform two steps. Firstly,

we analyze the shape of the object. To do this, the

silhouette is extracted and the distance of each pixel

from the silhouette is calculated. In this step, flow

information is extracted too.This step performed only

once. After that, we integrate the luminance values of

neighboring pixels using flow information, perform

luminance quantization and modify luminance values

using silhouette distance values. This step performed

iteratively for all pixels of image. Finally, we apply
MCF to shade shape clear up. Through these steps,

we generate an image that expresses a cartoon-like

shading effect.

3.1 Shape analysis
In order to express shade that reflectsshape of object,

the shape information must be analyzed. Edge

information is commonly used to reflect the shape of

image. General edge detection techniques for image
processing would extract too much information, so it

is not suitable to extract result image which reflect

shape like cartoons. Therefore in this study, we used

the silhouette of the image and selected significant

edge as shape information.

It is a simple matter to get the silhouette line of an

object in a 3D environment since each object is saved

in a separate space. Because of this, it is easy for

extract boundary. In a 2D image, it is difficult to

extract the silhouette of the foreground object since

there is no depth information. (so, this is not perfect)
We use mean-shift segmentation (result shown in Fig.

3-b) followed by user selection of the foreground

WSCG 2012 Communication Proceedings 46 http://www.wscg.eu

object (Fig.3-c), which is then displayed as a white

object on a black background

Performing an edge detection procedure gives the

silhouette line (Fig.3-d). We then apply the edge-

distance transform, an algorithm that extracts the

distance between a pixel and the edge closest to it, on

the pixels of the foreground object. This leads to an

edge-distance map (Fig.3-e). The value of each pixel

of the edge-distance map has been normalized to lie

between 0 and 1.Thisedge-distance is used as an

additional feature for luminance quantization, which

will be covered later in this paper.

 (a) (b)

(c) (d) (e)

Figure 3. (a)original image (b) segmented image

(c) extracted object (d) silhouette line

 (e) distance map

In the cartoon, there are not only silhouette-like

shades but also other shades, for example creases of
cloth and important curves. To express these shades,

we calculate the direction of light and extract the

significant inner edge. we suppose that strong edge is

significant edge. Strong edges have strong gradient

value, so it can be remained after apply smoothing.

Use this, we apply Gaussian smoothing to image

firstly. after that, we extract edge and use this as a
significant edge. Using a method used to calculate

light direction in photography and videography, we

use the highlight points (as seen in Fig.4)to calculate

the direction of the light. This allows us to generate a

virtual light source. After that, we extract the inner

edge. Because the edge image is very complex when

we use normal edge detection, we use a smoothed

image as input of edge detection algorithm. Then we

rule some edges which near to silhouette out inner

edge.

Figure 4. light direction in the photography and

videography

 (a) (b) (c)

Figure 5. (a) light map (b) inner edge distance

map (c) concept of inner edge distance

We can get two important features from the light

point and inner edge. One is the light-distance map
and the other is the inner edge-distance map. The

light-distance map (Figure 5-a) is a map of the

Figure 2. System Flow

WSCG 2012 Communication Proceedings 47 http://www.wscg.eu

normalized distance between each object pixel and

the light point. We use the light map to prevent omni-

directional shade generation, in other words, it

enables us to generate shade on only one side of the

object.

 (a) (b) (c)

Figure 6. (a) edge image (b) normal edge distance

map (c) example of edge movement

e calculatethe inner edge-distance map using a

modified edge-distance transform. As we see in

(Fig.6–a) and (Fig6-b), a normal distance transform

gives distance values on both sides of an edge.
Further, these values are spread over large area. This

would lead to an unnatural shade. Hence, we modify

the edge-distance transform to generate a narrow

distance value, and we use a moved edge image

made by moving the edge to the opposite side of the

light (Fig.6–c). This gives the inner edge distance

map. We see this in (Fig.5–b) and (Fig.5-c)

3.2 Luminance Modification and Quantization
In this step, we apply two processes to all the pixels
of image iteratively. The first is the use of an

anisotropic filter to merge the luminance of

neighboring pixels.This filtering applied anisotropic

filter to pixel which have strong gradient. For find

gradient, we use ETF field. On the contrast, if pixel

do not have strong gradient, filter will be isotropic

like (Fig.7) and (Fig.8)The second is the modification

of luminance values using the silhouette distance

map, the inner edge distance map and the light map.

Finally, we apply quantization.

If we were to perform luminance quantization on the

original input image, the result would be noisy
because luminance values are not distributed evenly

across an image. We need a coherent luminance

distribution, for which we use a kernel that integrates

the luminance values of neighboring pixels. We

perform anisotropic filtering which takes into

account image flow for the removal of image noise.

To facilitate image flow information, we use

[Kan07a]’s method to utilize ETF (Fig.7-b). ETF,

which interpolates gradient values, can extract more

accurate and coherent pixel directions than other,

more general methods that use Sobel or Laplacian
filters. From the extracted ETF values, we calculate

the structure tensor using x,y direction information.

Using this matrix, we deform the circle filter to an

anisotropic form. This filter reflects the flow of

pixels. (Fig.7) is the ETF field obtained throughline

integral convolution (LIC) [Cab93a], showing the

orientation of each pixel in the image. In Fig.8 we

can see how the anisotropic filter is applied. The

luminance of the purple region is used as P in

equation (1) below.

(a) (b)

Figure 7. (a) Original image (b)ETF field

We use quantization to express the shading effect on

the smoothened input image. In order to express a
shade thatfollows the borderline, we define fallowing

rule.

- Darken the luminance as the silhouette gets closer,

lighten it as the silhouette gets further.

If the edge-distance value of the current pixel (P) is

disP and its luminance value is lumP we calculate

lumP
~

as follows:

)1(*
~

WPP lumlum

(1)

LWWkW IL *2/)/(log10

(2)

 (a) (b)

Figure 8. (a) Anisotropic filtering

(b) Isotropic filtering

WSCG 2012 Communication Proceedings 48 http://www.wscg.eu

)1)100*((

)1)100*((

EF

P
k dis

(3)

In order to calculate the luminance value that reflects

the current luminance information and the

information on the distance to the silhouette, we

applied weighting based on the log function. Formula

(1) shows the process of obtaining the weights W.

We have used the effect control factor (EF) to adjust
the value for log function. EF is the control variable

that can adjust the distance value from the silhouette

to where the shading effect is applied. The value of

EF is between 0 and 1.As EF approaches 1, the value

of K becomes somewhere between 0-1.Because disP

is normalized into 0 - 1. Hence, the weighting value

w is always negative and the final result is darker.

Conversely, if the value of EF equals 0, the value of

K is between 1 and100 and the weighting gets a

positive value.0.25 is generally used as the value of

EF. We divide this value k by ILW , the inner edge-

distance value. Through this we can generate shade
on the inner edge region. As the value range of log(K)

is -2 to 2, we use log(K) divided by 2. We multiple

that value by light weightLW . We can get this value

from the light map. The effect of this parameter can

be seen in Fig.13.

Finally, the obtained lumP
~

value is used as the input

to the quantization process. We use the method used

by Winnemoller et al. (Fig.1-(b)). Through this

process, we get shade which is influenced by the

shape. Finally, we apply MCF again for the

arrangement of the shade.

4. RESULTS
(Fig.9-a) is the input image, (Fig.9-b) is the result of

conventional luminance quantization. (Fig.9-c) is the

result of our anisotropic filtering and quantization.

(Fig.9-c) maintains coherence among neighboring

pixels and we can see the shade, it is scattered.

(Fig.9-d) is the result of applying the MCF to (Fig.9-

c). in this image we can see much better shade,
although it is blurred. In (Fig.9-e), we enhance the

edges. In the (Fig.9-f) we clearly see the shade on the

object and we can check that shade arrangement by

MCF.

(Fig.10) shows the result for different values of EF.

A larger EF value results in an image with a larger

shaded area.

 (a) 0.05 (b) 0.25 (c) 0.75

Figure 10. Results by EF value

We compare our results with conventional
methods in (Fig.11).(Fig.11-a) is input image,

(Fig.11-b) uses conventional luminance quantization.

(Fig.11-c), which is the result of applying the

quantization described by (Fig.1-b), shows superior

definition in the shaded area compared to (Fig.11-b).

(Fig.11-d), which is our result, better represents

object shape than conventional approaches. (Fig.11-e)

is the result of the procedure described in [Win06a].

(Fig.11-f) is the result of using the anisotropic

Kuwahara filter. Compared with these, our result

exhibits shade which reflects the object’s shape.
From (Fig.11-g) to (Fig.11-j) are other comparisons.

 (a) (b) (c)

 (d) (e) (f)

Figure 9. Our results

(a)Originalimage (b)Conventional QT

(c)Our method (not MCF) (d)(c) + MCF

(e) (d)+Line (f) detail from (c) and (d)

WSCG 2012 Communication Proceedings 49 http://www.wscg.eu

 (a) Input (b) Figure1-a (c) Figure 1-b

(d) Our result (e) [Win06a] (f) [Kyp11a]

 (g) Input (h) Our result

 (i) [Win06a] (j) [Kyp11a]

Figure 11. compare results with conventional

researches

In (Fig.12), where the luminance is uniform, the

shading is not expressed under conventional

quantization. However, our method can generate

shade.

 (a) Input (b) Conventional (c) Our result

Figure 12. result of same-luminance image

(Fig.13) shows the results of varying the value of LW.

(Fig.13-a) is input image. (Fig.13-b) is result of

conventional luminance quantization. In (Fig.13-c),

the light is at the top right; in (Fig.13-d), it is at the

top left. In (Fig.13-e), the light is focused at the

center of the object. Thus, we can control the shade

effect through this parameter. We use this by making

distance map. If user select light spot, system

calculate light-distance map. This distance value is

LW value. And if we don't use LW, we will get result

image like (Fig.13-e). That has omni-directional

shade. And (Fig.15) is our additional results.

5. Conclusion and Future Work
In this paper, we proposed an image abstraction

technique that is based onluminance quantization and

takes into account the shape information of an image.

We extracted the silhouette of the input image and

utilized each pixel’sedge-distance from the silhouette

as an additional feature. We were able to remove the

noise while preserving the shape through anisotropic

filtering. Through our algorithm, we could expressthe

shading effects reflecting the shape of the image
better than previous approaches.

The proposed algorithm has two advantages in terms

ofthe shading effect compared to conventional

luminance quantization. Firstly, the output we have

producedmaintainsbetterconsistency among

neighborhood pixels. This is because of anisotropic

filtering, which considers the flow of the image in

contrast to simple isotropic filtering. Thus, the noise

was reduced compared to previous studies. The

algorithm should be applicable to video content as
well. Secondly, the shadow that tags along the shape

of the image can be generated. Therefore, the shadow

effect is more cartoonlike than in previous studies. In

addition, through a simple parameter, the degree of

shading can be adjusted and this can easily express

variety of effects.

However, our algorithm has several limitations.

Firstly, it is sensitive to the background of the image.

 (a) (b)

 (c) (d) (e)

Figure 13. Results by LW value

WSCG 2012 Communication Proceedings 50 http://www.wscg.eu

If the background is complicated, the result of the

segmentation step is poor and object extraction

becomes difficult.In (Fig14-a), we can see this

limitation. To overcome this, we could use superior

segmentation techniques (e.g. matting-based

techniques). Secondly, our algorithm has problem

when applied to very bright or dark image. Although

we use light-map, we can't generate shade. (Fig14-b)

Because dark image is very insensitive to luminance

change.on the contrary, bright image is very sensitive

to luminance change. So, it generates omni-
directional shade. Thirdly, the execution time of our

algorithm is very sensitive to the size of the

anisotropic kernel. However, our algorithm is

computationally parallelizable because it works on

individual pixels;thus we can overcome this

limitation by using a graphics processing unit (GPU).

Finally, our algorithm needs some user interactions.

If there are automatic object extract techniques, it can

be improved

Figure 14. limitation

Acknowledgments
This work was supported by a Korean Science and

Engineering Foundation(KOSEF) grant funded by

the Korean government(MEST) (No.20110018616).

And this work was also supported by a Seoul R&BD

Program(PA110079M093171).

Figure 15. Additional results(arrow : light)
(a) left-original image, right-segmented image

(b) upper-light map, lower-result image

WSCG 2012 Communication Proceedings 51 http://www.wscg.eu

6. REFERENCES

[Bra97a] J.P Braquelaire, L.Brun : Comparison and

Optimization of Methods of Color Image

Quantization, IEEE transactions on image

processing, Vol.6, No.7, pp.1048-1052, 1997.

[Cab93a] B. Cabral, L.C. Leedom :Imageing Vector
Field using Line Integral Convolution,

SIGGRAPH conference proceedings, pp.263-270,

1993.

[Cel09a] M.E. Celebi : Fast color quantization using

weightedsort-means clustering. JOSA A, Vol. 26,

No.11, pp.2434-244, 2009.

[Cha94a] N. Chaaklha, W.C. Tan, Teresa H.Y.Meng :

Color Quantization of Images Based on Human

Vision Perception. IEEE International Conference,

1994.

[Cho89a] P. CHOU, T. LOOKABAUGH,

R.MGRAY : Entropy-Constrained Vector
Quantization. IEEE TRANSACTIONS ON

ACOUSTICS, SPEECH, AND SIGNAL

PROCESSING, Vol. 31, No.1, pp.31-42, 1989.

 [Hau01a] A.Hausner : Simulating Decorative

Mosaics. SIGGRAPH conference proceedings,

pp.573-580, 2001.

[Hay04a] J. Hays, I. Essa: Image and Video Based

Painterly Animation, NPAR, pp.113-120, 2004.

[Her98a] A. Hertzmann: Painterly Rendering with

Curved Brush Strokes of Multiple Sizes.

SIGGRAPH conference proceedings, pp.453-460,
1998.

 [Kan07a]H. Kang, S. Lee, C. Chui. : Coherent Line

Drawing, Proc. ACM Symposium on Non-

photorealistic Animation and Rendering, pp.43-

50, 2007.

[Kan08a] H. Kang, S. Lee : Shape-simplifying Image

Abstraction, Computer Graphics Forum, Vol.27,

No.7, pp.1773-1780, 2008.

[Kan09a] H. Kang, S. Lee, K.C. Chui :Flow Based

Image Abstraction, IEEE transactions on

visualization and computer graphics, Vol.15,

No.1, pp.62-76, 2009.

[Kim96a] K.M Kim, C.S. Lee, E.J Lee, Y.H Ha :

Color Image Quantization Using Weighted

Distortion Measure Of HVS Color Activity. IEEE

TRANSACTIONS ON IMAGE PROCESSING,

Vol.3, pp.1035-1039, 1996.

[Kuw76a] M. Kuwahara, K. Hachimura, S. Eiho, M.

Kinoshita: Processing of ri-angio cardio graphic

images, Digital Processing of Biomedical images,

pp.187–203, 1976.

[Kyp09a] J.E. Kyprianidis, H. Kang, J.Döllner :

Image and Video Abstraction by Anisotropic

Kuwahara Filtering, Computer Graphics Forum,

Vol.28, No.7, 2009.

[Kyp11a] J.E. Kyprianidis, H. Kang : Image and

Video Abstraction by Coherence-Enhancing

Filtering, Computer Graphics Forum, Vol.32,

No.8, pp.593-602, 2011.

[Lee10a] H. Lee, S.H. Seo, S.T. Ryoo, K.H. Yoon :

Directional Texture Transfer. Proceedings of the

8th International Symposium on Non-
Photorealistic Animation and Rendering (NPAR

2010), pp.43-48, 2010.

 [Moj01a] A. Mojsilovic, E. Soljanin : Color

Quantization and Processingby Fibonacci Lattices.

IEEE transactions on image processing, Vol.10,

No.11, pp.1712-1725, 2001.

 [Ozd02a] D.Ozdemir, L.Akarun : A Fuzzy

Algorithm for Color Quantization of Images,

Pattern Recognition, Vol.35, No.8, pp.1785–1791,

2002.

[Pap07a] G. Papari, N. Petkov, P.Campisi: Artistic
edge andcorner enhancing smoothing. IEEE

Transactions on Image Processing,Vol.16, No.10,

pp.2449-2462, 2007.

[Qia09a] W.H. Qian, D.Xu, G.Zheng: A NPR

Technique of Abstraction Effects,2nd

International Congress on Image and Signal

Processing, Vol.1721, No.828, pp.1-5 2009.

 [Tom98a] C. Tomasi, R. Manduchi: Bilateral

filtering for gray and color images. In

Proceedings international Conference

onComputer Vision, pp. 839-846, 1998.

 [Win06a] H. Winnemoller, C.S. Olsen, B.Gooch :

Real-Time Video Abstraction. SIGGRAPH
Conference Proceedings,pp.1221-1226, 2006.

 [Zha95a] W. LI, Y.Q. ZHANG : Vector-Based
Signal Processing and Quantization for Image and

Video Compression. IEEE Processing, Vol.83,

No.2, pp.317-335, 1995.

[Zha08a] H. Zhao, X. Jin, J. Shen, X. Mao, J. Feng :

Real-Time Feature-aware Video Abstraction. The

Visual Computer: International Journal of

Computer Graphics, Vol24, No7-9, pp.727-747,

2008.

WSCG 2012 Communication Proceedings 52 http://www.wscg.eu

Contact Hardening Soft Shadows using Erosion

Andreas Klein
Munich University of

Applied Sciences
Lothstrasse 64

80335 Munich, Germany
andreas.klein@hm.edu

Alfred Nischwitz
Munich University of

Applied Sciences
Lothstrasse 64

80335 Munich, Germany
nischwitz@cs.hm.edu

Paul Obermeier
MBDA Deutschland

GmbH
Hagenauer Forst 27

86529 Schrobenhausen,
Germany

paul.obermeier@mbda-
systems.de

ABSTRACT
In this paper, we present an image based method for computing contact hardening soft shadows by utilizing an ero-
sion operator. Our method is based on shadow mapping and operates in screen space. By using object silhouettes
in hard shadows, we estimate the penumbra size and scale an erosion operator to generate the penumbra areas.
Furthermore, we present two solutions to generate the shadow factor for the penumbra areas. Our method works
best for small penumbras and can be easily integrated into existing shadow mapping based applications.

Keywords
Shadow Mapping, Soft Shadows.

1 INTRODUCTION

Shadows are an important part for the human percep-
tion. They give clues about the spatial relationship and
the form of objects. Real world shadows can be divided
into an umbra and a penumbra. An umbra occurs when
a light source is completely occluded and a penumbra
when it is partially occluded.

In real-time rendering, a popular method to generate
shadows is shadow mapping [Wil78a]. Shadow
mapping assumes point light sources and thus, only
hard shadows are produced. However, real world light
sources are extended, and they generate penumbras,
whose size often can be proportional to the light size
and the receiver-blocker distance.

Current methods for generating contact hardening soft
shadows are not suited for high shadow map resolu-
tions [Lau07a], require a high amount of texture fetches
[Fer05a] or the performance decreases with the number
of shadow maps [Gum10a].

We present an algorithm to produce contact hardening
soft shadows using an erosion operator. Our algorithm
is an extension to shadow mapping and operates in

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

screen space. Furthermore, it is suited for high shadow
map resolutions as well as multiple shadow maps.

2 RELATED WORK
The rendering of soft shadows has been studied exten-
sively over the last years. Therefore, we focus our re-
view on publications closely related to our work. For
an exhaustive survey on other methods see [Eis11a].

Percentage closer filtering (PCF) [Ree87a] is a popu-
lar method for generating soft shadows. The idea is to
make multiple shadow comparisons within a user de-
fined filter window. The shadowing factor is then built
by averaging the result. To generate contact hardening
soft shadows with PCF, Fernando [Fer05a] proposed
percentage closer soft shadows (PCSS). He introduced
a blocker search as a preprocessing step, where he sam-
pled the shadow map to calculate an average blocker
depth for each screen space pixel and approximated a
penumbra width with a parallel planes approximation.
Finally, he used the penumbra width to scale the PCF
filter window.

Arvo et al. [Arv04a] estimated the penumbra regions
by detecting the edges in hard shadows and propagat-
ing a visibility factor using a flood fill algorithm. Rong
and Tan [Ron06a] accelerated this method using jump
flood fill algorithms. Gumbau et al. [Gum10a] dilated
a shadow map to replace the blocker search of PCSS.
Furthermore, they replaced the PCF filtering with a sep-
arable Gaussian blur.

There are several approaches to calculate soft shadows
in screen space. Robison and Shirley [Rob09a] used
a screen space distance map to estimate a penumbra

WSCG 2012 Communication Proceedings 53 http://www.wscg.eu

width and blurred a hard shadow map with it. Hanjun
and Huali [Han10a] developed an algorithm that prop-
agates a shadow factor using erosion and dilation that
is closely related to our work. However, we incorpo-
rate contact hardening soft shadows as well as penum-
bra anti-aliasing. Aguado and Montiel [Agu10a] pre-
sented an approach where a penumbra size is propa-
gated using a mipmap flood fill and the penumbra is
generated with a Gaussian filter in screen space. How-
ever, this approach produces light leaks which can be
reduced by using multiple layers. MohammandBagher
et al. [Moh10a] used a projected shadow map in screen
space to estimate a penumbra size and to blur a hard
shadow map

3 ALGORITHM OVERVIEW
Our algorithm computes the penumbra in screen space
and is an extension to existing shadow mapping ap-
proaches. The algorithm proceeds as follows. First,
we render hard shadows with a shadow mapping al-
gorithm. Second, we detect edges in the hard shad-
ows and store the blocker-receiver distance as well as
the camera-receiver distance for the edge pixels. Now
we can calculate the penumbra width since it is pro-
portional to the blocker-receiver distance and indirect
proportional to the camera-receiver distance. Next, we
erode the edges with a filter kernel that is scaled ac-
cording to the penumbra width and thus, estimating the
inner and outer penumbra regions for contact hardening
soft shadows. In order to generate the final penumbra,
we propose two solutions. First, by filtering the shadow
map in the penumbra regions with PCF and second, by
directly calculating it during erosion.

Rendering Hard Shadows
The first step in the algorithm is to render hard shadows
and auxiliary buffers. We assume that a shadow map
has already been rendered. The scene is rendered from
the observer and we perform a standard shadow com-
parison for each screen space pixel. We store a one in
a screen space hard shadow buffer for each lit pixel and
a zero for each shadowed pixel. Additionally, the depth
difference between the blocker and receiver as well as
the distance to the camera is stored. Furthermore, we
store the diffuse color in a separate texture to calculate
the final shading in the last pass.

Edge Detection
The second step is to estimate the penumbra regions
by detecting the edges in the screen space hard shadow
buffer. As the hard shadow buffer is a binary image, we
can easily detect the edges with a 3 x 3 Laplacian filter,
which needs five texture fetches: 0 1 0

1 −4 1
0 1 0

We calculate the penumbra width for each edge pixel
by using the parallel planes approximation of Fernando
[Fer05a]. Additionally, the kernel size is scaled based
on the camera-receiver distance [Gum10a]:

ωpenumbra =
(dreceiver −dblocker)ωlight

dblockerdobserver

where ωlight is the light dimension. We store the
penumbra width in the second texture channel.

Erosion
After the edges have been detected, they are eroded
with a variable sized erosion filter1. We estimate the
erosion by using a min-max mipmap [Isi06a, Dmi07a]
(Figure 1). Recall that the edge texture stores a zero
for each boundary pixel in the first channel and the
penumbra size in the second channel. First we gener-
ate the min-max mipmap hierarchy for the edge texture
by performing a min operation in the first channel and
a max operation in the second texture channel. During
erosion we calculate a maximum search radius for the
given light dimension and the distance to the observer
in order to find the closest edge, as the penumbra widths
are only stored in the edge pixels. We choose a mipmap
level based on the maximum search radius and query
the min-max mipmap hierarchy. If the first channel con-
tains no boundary pixel, we immediately terminate the
erosion. Otherwise, we read the penumbra width from
the second texture channel and choose again a mipmap
level. Finally, we access the mipmap hierarchy in this
mipmap level and test for boundary pixels. If a bound-
ary pixel is found, we store the penumbra width in the
result texture. Otherwise we discard the pixel.

Determine the Shadow Factor
In the final pass, we use PCF to determine the shadow
factor for each pixel. We scale the PCF filter based on
the penumbra width and combine the result with the
hard shadow map rendered in the first pass.

4 ESTIMATE A SHADOW FACTOR
WITH EROSION

A second solution is to estimate a shadow factor di-
rectly during erosion. In order to realize this idea, some
changes in the algorithm are necessary.

As the screen space hard shadow buffer is rendered
from the observer’s viewpoint, objects may occlude
shadowed areas and thus, the edge detector will pro-
duce edges which do not belong to penumbra regions.
As Arvo et al. [Arv04a] pointed out, this issue can
be solved by testing the shadow map for silhouettes on

1 In terms of image processing this operation is an erosion, as
the zeros in the edge texture are propagated.

WSCG 2012 Communication Proceedings 54 http://www.wscg.eu

1.

2.

3.

Figure 1: Erosion of the edges using a min-max mipmap. First, we choose mipmap level based on a maximum
search radius and read the penumbra size from the max channel of the mipmap. Second, we calculate a mipmap
level based on the penumbra size and read the edge value stored in min channel. Finally, we output the penumbra
size if the edge value can be classified as a boundary pixel.

each detected edge pixel. We use the same 3 x 3 Lapla-
cian filter and compare the result against a threshold. If
the result is within the threshold, the edge pixel is valid
and will be used in the next step. Otherwise, we discard
it.

In order to compute the shadow factor, we implemented
the variable sized erosion in a gathering approach. First,
we determine a maximum kernel size and search for
edge pixels within this area. If an edge pixel is found,
we calculate its penumbra width and check, whether the
current pixel is within its range. We continue until we
found the edge pixel with the smallest distance to the
current pixel. The shadow factor of the outer penumbra
can then be directly calculated:

souter =
ωpenumbra −dmin

2ωpenumbra

where dmin is the minimum distance to the edge and
ωpenumbra the penumbra size. The inner penumbra is
simply calculated with sinner = 1− souter.

Figure 2: Left: Artifacts due to aliasing in hard shad-
ows. Right: Result after the distance correction. Note
that there are still some incorrect pixels at the transition
from the outer to the inner penumbra.

Due to aliasing in the screen space hard shadow buffer,
this method replicates the aliasing in the penumbra
(Figure 2).

To increase the visual quality, we search for a best fit
straight line by a least square method in a discrete envi-
ronment around each edge pixel prior to the erosion and
store the line parameters in an auxiliary texture. During
erosion, we read the line parameters from the texture
and calculate the vector vline from the edge pixel’s cen-
ter to the line. Finally, we add vline to the vector from
the erosion point to the edge, calculate the distance and
use it during erosion (Figure 3).

This compensates parts of the aliasing in the screen
space hard shadow buffer and increases the visual qual-
ity (Figure 2). However, there are still some incor-
rect pixels at the transition from the outer to the inner
penumbra. We will try to solve this issue in future work.

Figure 3: In order to improve the visual quality, we
search for a best fit line and offset the vector to the edge
with the vector from the edge to the line. Finally, we
use the distance of the resulting vector during erosion.

WSCG 2012 Communication Proceedings 55 http://www.wscg.eu

5 RESULTS
We compared our algorithm against a PCSS implemen-
tation and a reference solution. This PCSS implementa-
tion uses a Poisson disk for the blocker search and PCF
filtering. Both methods use 32 samples for the final
PCF. The reference solution is realized by approximat-
ing the area light source with 512 point light sources.
The screen resolution was 1920 x 1080 pixels and the
shadow map size was 2048 x 2048. Figure 4 and 5
shows the resulting images and Table 1 the performance
results. Table 2 shows the duration of the algorithm
steps in the buddha dataset. The performance results
were obtained on an Intel Xeon E5620 CPU with 2.4
GHz, 8 GB RAM and a NVIDIA GeForce GTX 680
graphics card with 2048 MB memory.

Cactus Hairball Buddha
(188K tris) (2.88M tris) (1.08M tris)

Erosion 1.62 12.56 5.77
PCSS 8 1.58 11.51 4.68
PCSS 32 1.60 11.89 5.11
PCSS 64 1.66 12.44 5.69

Table 1: Performance results in comparison with PCSS
using 8, 32 and 64 blocker search samples. The screen
resolution is 1080p.

Step Time [ms]
Shadow Map 2.20
Hard Shadows 2.52
Edge Detection 0.31
Erosion 0.30
Shading 0.44

Table 2: Duration of the algorithm steps using the bud-
dha dataset.

6 DISCUSSION
The bottleneck of PCSS [Fer05a] is the blocker search
that is performed for each screen space pixel. Our moti-
vation is to replace the blocker search per pixel by oper-
ating only on silhouettes of hard shadows. However, the
rendering chain of our method is more complex. Thus,
a speedup is only achieved when the blocker search is
performed with 64 samples per pixel and the penum-
bra area is small. In contrast to PCSS, our method does
not produce artifacts resulting from a small number of
blocker search samples when rendering fine structured
geometry, such as in Figure 4.
One possible issue in the method of [Gum10a] is that
the algorithm operates on shadow maps. In contrast
our algorithm operates on a screen space hard shadow
buffer, which makes it attractive for applications with
multiple shadow maps.
Compared to [Han10a] we incorporated variable sized
penumbras and increased the visual quality by calculat-
ing the distance to a best fit straight line. Furthermore,

we implemented a second solution for generating the
shadow factor with a PCF filter, which results in a su-
perior image quality.

Nevertheless, this technique has limitations. As our
method is based on PCSS, it has the same limitations,
such as overestimating the penumbra size. Further-
more, the erosion size is bounded and thus, we may
miss relevant occluding information. This could result
in visible artifacts. Due to mipmap erosion and the
scaling of the penumbra width based on the distance
to the camera, our method introduces aliasing when the
camera is moved. Another limitation is that the visual
quality is strongly dependent on the quality of the hard
shadows. Consequently, aliasing reduction algorithms
such as cascaded shadow mapping (CSM) [Eng06a]
and light space perspective shadow maps (LiSPSM)
[Wim04a] should be used.

7 CONCLUSIONS AND FUTURE
WORK

We proposed a method for generating contact hardening
soft shadows in screen space. As with all image based
methods, this technique works best for small penum-
bras and can be used to extend shadow mapping based
applications. Furthermore, we presented two solutions
to generate a shadow factor for the penumbra. While
the mipmap erosion is fast and produces results com-
parable to PCSS, the calculation of the shadow factor
during erosion still produces some artifacts.

For future work, we wish to explore the possibility to
replace the least square line fitting with a low pass filter
and try to reduce the remaining artifacts.

8 ACKNOWLEDGMENTS
We thank the anonymous reviewers for their useful
comments. The work of A. Klein is funded by MBDA
Deutschland GmbH.

9 REFERENCES
[Agu10a] Aguado, A. and Montiel, E. MipMapped

Screen Space Soft Shadows. In GPU Pro 2. 2010
[Arv04a] Arvo J., Hirvikorpi M., Tyystjarvi J. Ap-

proximate Soft Shadows with an Image-Space
Flood-Fill Algorithm. Computer Graphics Forum
23, 271-279, 2004.

[Dmi07a] Dmitriev K., Uralsky Y. Soft shadows using
hierarchical min-max shadowmap. GDC 2007,
2007.

[Eis11a] Eisemann E., Schwarz M., Assarsson U.,
Wimmer M. Real-Time Shadows, Taylor & Fran-
cis, 2011.

[Eng06a] Engel W. Cascaded shadow maps. In Shader
X5, Engel W., (Ed.). Chares River Media, 197-
206, 2006.

WSCG 2012 Communication Proceedings 56 http://www.wscg.eu

Figure 4: Visual results in the cactus dataset. Top Left: Our algorithm. Top Right: PCSS with 8 blocker search
samples. Notice the artifacts resulting from missed blockers due to the small number of blocker samples. Bottom
Left: PCSS with 64 blocker search samples. Bottom Right: reference solution.

[Fer05a] Fernando R. Percentage-Closer Soft Shad-
ows. ACM SIGGRAPH 2005 Sketches, 2005.

[Gum10a] Gumbau J., Chover M., Sbert M. Screen
space soft shadows. In GPU Pro - Advanced Ren-
dering Techniques, Engel W., (Ed.). A.K. Peters,
2010.

[Han10a] Hanjun J., Huali S. Rendering fake soft shad-
ows based on the erosion and dilation. 2nd Inter-
national Conference on Computer Engineering
and Technology, 234-236, 2010.

[Isi06a] Isidoro J. R. Shadow Mapping GPU-based
Tips and Techniques. GDC 2006, 2006.

[Lau07a] Lauritzen A. Summed-area variance shadow
maps. In GPU Gems 3, Nguyen H., (Ed.).
Addison-Wesley, 157-182, 2007

[Moh10a] MohammadBagher M., Kautz J.,
Holzschuch N. and Soler, C. Screen-space
percentage-closer soft shadows. ACM SIG-
GRAPH 2010 Posters, 2010.

[Ree87a] Reeves W. T., Salesin D. H., Cook R. L.
Rendering antialiased shadows with depth maps.
In Conf.proc SIGGRAPH ’87, ACM, 283-291,
1987.

[Rob09a] Robison A. and Shirley P. Image space gath-
ering. In Conf.proc. High Performance Graphics
2009, 91-98, 2009.

[Ron06a] Rong G., Tan T.-S. Utilizing jump flooding
in image-based soft shadows. In Conf.proc. VRST
’06, ACM, 173-180, 2006.

[Wil78a] Williams L. Casting curved shadows on
curved surfaces. In Conf.proc. SIGGRAPH ’78,
ACM, 270-274, 1978.

[Wim04a] Wimmer M., Scherzer D., Purgathofer
W. Light space perspective shadow maps. In
Conf.Proc. Eurographics Symposium on Render-
ing, 2004.

WSCG 2012 Communication Proceedings 57 http://www.wscg.eu

Figure 5: Resulting shadows from the hairball and buddha datasets. Note that the shadow softness increases with
the blocker-receiver distance. From left to right: Our method, PCSS with 32 blocker search samples, PCSS with
64 blocker search samples and reference solution.

WSCG 2012 Communication Proceedings 58 http://www.wscg.eu

Diffusion-based parametrization of surfaces on 3D-meshes

Martin Schmidt
Philipps-University of

Marburg
Hans-Meerwein-Str. 6

Germany, 35032 Marburg
schmidtma@informatik.uni-

marburg.de

Michael Guthe
Philipps-University of

Marburg
Hans-Meerwein-Str. 6

Germany, 35032 Marburg
guthe@informatik.uni-

marburg.de

Volker Blanz
University of Siegen

Hölderlinstr. 3
57076 Siegen

blanz@informatik.uni-
siegen.de

ABSTRACT
This work presents a new approach towards parametrization of three-dimensional wireframe models. The method
is derived from a specific phenomenon of cellular development in nature. It recreates the effect of diffusion of
messengers through tissue, which leads to the formation of extremities and other anatomical structures depending
on the position on the tissue surface. This process of diffusion on the surface is analyzed and simplified for usage
as a parametrization of mesh surfaces. The presented approach uses the similarity of wireframe meshes and graphs
in order to carry out the mechanism of diffusion. For this it implements a specialized algorithm based on Dijkstra’s
algorithm for finding the shortest paths.
The results of this mechanism are saved and organized in a binary tree structure, which allows for simple and
efficient construction of correspondence between two distinct meshes. The paper concludes with an outlook on
possibilities of further development and enhancements of the approach.

Keywords
mesh, parametrization, diffusion, geometric analysis

1 INTRODUCTION

Whenever computers analyze or display visual objects,
they need to represent these objects in a suitable mathe-
matical form that is appropriate to the processing tasks.
The typical representation of an object is a polygon
mesh, but for many purposes such as texturing, object
retrieval, shape comparisons, differential geometry or
for computing point-to-point correspondence between
pairs of objects, it is important to describe shapes as
parameterized surfaces. Hence, the purpose of this pa-
per is to introduce a new approach in parametrization
and its evaluation.

1.1 Parametrization

In the following, we give a short introduction on the
topic of parametrization, its applications and related
work. This is concluded by the analysis of the distinc-
tion of our approach in contrast to previous work.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Basics

An important aspect of 3D shape processing and anal-
ysis is the connection of objects with each other. By a
correct link between two objects, algorithms can trans-
fer knowledge and properties from one object to the
other. It is also possible to describe the similarity be-
tween these objects. This link is generated by a surface
parametrization that is consistent across different ob-
jects.

A parametrization of surfaces is defined as a mapping
from a parameter domain onto the surface. This is
also called Surface-to-Surface-Mapping, if the parame-
ter domain is a surface itself. The parametrization of a
parameter domain maps each point on the domain onto
a certain point of the surface.

Bijectivity is an important property of parametriza-
tions, as many applications rely on a complete cover of
the originating surface without introducing ambiguity.
That means each point on the surface maps to exactly
one point on the parameter domain and vice versa.

Possible applications in computer graphics

There are several possible applications for parametriza-
tions in computer graphics. The three most important
applications are briefly described in the following.

WSCG 2012 Communication Proceedings 59 http://www.wscg.eu

1.1.1 Transfer of detail:

One of the first times a parametrization of objects be-
came necessary was the application of texture mapping
in rendering (see Figure 1. As a part of the rendering
of a scene, texture mapping increases the detail of the
surfaces of objects by drawing a pregenerated image on
the surface.

Figure 1: Texture mapping

Further improvements of this approach include Normal
Mapping, which transfers the shading of a high qual-
ity mesh consisting of thousands of polygons to a mesh
with reduced polygon count to increase the detail on
the latter mesh without decreasing render speed. More
approaches like this are Bump Mapping and Displace-
ment Mapping, which – similar to Normal Mapping –
also apply more detail onto a mesh without significant
impact on the render time.

1.1.2 Remeshing:

Polygonal meshes are created by several methods like
scanning with lasers and modeling by hand in a special
software. This leads to meshes of different resolution
and different surface generation techniques (e.g. trian-
gles, quads, mixes of both). Sometimes an application
only allows for a certain kind of triangulation and reso-
lution.

This is where Remeshing becomes important. Remesh-
ing parametrizes a mesh and then maps a regular and
desired triangulation on the parameter domain to retri-
angulate the original mesh [13]. The application of sub-
division on the parameter domain can also lead to good
results in regard to desired mesh quality [17], [14].

1.1.3 Correspondence:

If two meshes should be analyzed, it is sometimes de-
sired to link those meshes to each other by means of
correspondence. The correspondence of two meshes
means that the relationship between a region A on the
first mesh and a region B on the second mesh is known.
This can be used to transfer details from one mesh to
the other.

To create this link, both meshes need to be mapped
to the same representation. By using a bijective
parametrization, an algorithm can map each point on
the first mesh to the corresponding point on the second
mesh simply by choosing the same parameter values.

Figure 2: Correspondence between two surfaces

1.2 Related Work
The increasing requirements for parametrizations on
surfaces have led to the development of different ap-
proaches with different pros and cons. The following
section summarizes these attributes.

Criteria for the evaluation of parametrizations

The attributes, by which parametrizations can be mea-
sured regarding their potential application, are:

• the degree of distortion

• the aspect of bijectivity

• the limitation on certain mesh types

Distortions in the parameter domain are a direct re-
sult of parametrization and can be of different type. It
has been proven by differential geometry that there is
no distance-preserving parametrization for generic sur-
faces [8]. The distortion can be minimized, but not fully
prevented.

Possible types of distortion are the distortion of distance
– an irregular distribution of parameter values in one di-
mension – and angular distortion. Type and degree of
distortion are important criteria in judging methods of
parametrization. It is often dependent on the specific
application which methods are more suitable than oth-
ers. This leads to compromises almost every time since
no parametrization is completely free of distortion.

The methods of parametrization also show different bi-
jective behavior. This can be separated into global and
local bijectivity. Global bijectivity is maintained over
the whole mesh, while local bijectivity is given only for
local regions on the surface. Not every parametrization
leads to bijectivity of one of these kinds.

The third criterion is the limitation on certain mesh
types. Some parametrizations need convex meshes,
while other approaches can also use more complex
meshes.

Approaches

Perhaps the oldest method of parametrization was de-
veloped by William Tutte in 1963 [27]. Tutte used
graph embedding as the basis of the approach, which
led to a bijective parametrization with distortion in dis-
tance and angular aspects. Using the same approach,

WSCG 2012 Communication Proceedings 60 http://www.wscg.eu

two algorithms developed by Floater show similar be-
havior, but at the same time reduce angular distortion
[10], [11].
Eck et al. use a parametrization for remeshing at differ-
ent resolutions [9]. This method is based on harmonic
maps and therefore preserves angular dimensions.
DCP is a different parametrization developed by
Desbrun et al. [6] and combines the already known
Dirichlet-energy [20] with a new quadratic Chi-energy
Eχ , which describes the inner angles of triangles. This
method is not bijective in every situation, but can be
used without limitations (e.g. only convex meshes).
Implementing the Least-Squares-method, the
parametrization called LSCM preserves the orien-
tation of each triangle and angle. It is independent of
resolution but cannot guarantee bijectivity for every
mesh [18].
Linear parametrizations like those mentioned above
tend to create an increased distance-based distortion
on meshes with sharp slopes. Using non-linear
parametrizations helps to reduce these distortions. An
example is MIPS [15], which divides the mesh into
several linear maps. A special functional reduces the
distortion map by map and creates a parametrization
which is bijective and can be used without limitation.
The parametrization ABF differs from the mentioned
methods, as it does no work on the vertices, but on the
angles of the triangles [22]. It reduces angular distor-
tion and shows local bijectivity. A variation of the al-
gorithm called ABF++ increases calculation speed and
stability on large meshes.
Kharevych et al. adopt a similar approach by defining
circumcircles on every vertex [16]. Cutting circumcir-
cles define the angles between vertices, which are then
minimized. This approach works best on Delaunay-
triangulations [5].
The introduced parametrizations are primarily based on
mathematical ideas and concepts from computer sci-
ence. These are the topics of differential geometry,
topology and graph theory, which are combined to rep-
resent a mesh in parameter domain.
In the past, several approaches to carry concepts over
from natural processes to computer science were suc-
cessful and lead to groundbreaking and novel meth-
ods, for example genetic algorithms, routing algorithms
and graph algorithms [19, 7, 1]. Other approaches that
use similar diffusion-based processes called reaction-
diffusion create textures automatically [26, 28].
In the topic of parametrizations, this transfer is yet to
be made.

1.3 Motivation
This work applies insights from biology and chemistry
to the problem of consistent surface parametrization.

Diffusion helps cellular development and differentia-
tion by giving hints on the position in the organism to
individual cells. The aim of this paper is to show that
the natural processes of diffusion can help in the devel-
opment of algorithms for parametrizations.

The proposed method guarantees local bijectivity on
convex mesh parts, which are constructed from the orig-
inal mesh. The parametrization retains the proportions
of distance of the mesh parts. Because the mesh is
viewed as a graph, already available and highly op-
timized algorithms from graph theory can be used to
achieve an efficient and stable parametrization.

In the following, the course of the paper is to present an
introduction to physical and biological diffusion, fol-
lowed by evaluation of algorithms which can be appro-
priate for serving as a basis for further development.
Later on, the modifications to the chosen algorithm are
explained. The paper concludes with a discussion and
and an outlook on possibilities for further research.

2 DIFFUSION

The basis of our approach originates from morphogene-
sis. Morphogenesis controls the differentiation and de-
velopment of cells in multicellular organisms to organs
and extremities, and it produces patterns on skin, fur or
shells of animals. Well-directed flow and diffusion of
activators through the tissue leads to specific develop-
ment of the stem cells depending on the structure they
are going to form.

The gradients of concentrations of specific substances
form a metric in the tissue and on the surface. On dif-
ferent shapes of the same type, these gradients and thus
the induced metric are similar, so they describe objects
regardless of position in space, scale, orientation and
resolution of the mesh.

2.1 Physical diffusion

Diffusion occures whenever particles – for example
atoms, molecules or charge carriers – are aggregated
in a carrier medium and there exists a concentration
gradient between these particles. The reason for this
movement is called pedesis or Brownian motion [3].
The atoms and molecules are in an undirected motion,
depending on temperature: Due to collisions, their di-
rection changes randomly over time. If there is a con-
centration gradient, there will be an overall net motion
along this direction, which forms the diffusion process
described by the following equation:

δu
δ t

= D ·∆u = D ·div(grad u) (1)

WSCG 2012 Communication Proceedings 61 http://www.wscg.eu

2.2 Diffusion in developmental biology
Diffusion plays an important role in biological pro-
cesses. By diffusion through membranes cells are sup-
plied with nutrients and metabolic waste products are
removed. Patterns on the skin or fur are also controlled
by diffusion of messengers.

This is described in detail by Gierer and Meinhardt,
who present a model which depicts the formation of
structures in biological cell structures [12]. The in-
teraction of two messengers – the so called activa-
tor/inhibitor pair – play a major role in position depen-
dent pattern formation. Both agents diffuse through the
tissue and lead to different concentrations depending on
position. This process – called morphogenesis – has
been described by Turing [25] and was specified further
by Gierer and Meinhardt. A gradient of concentration
values runs between the cells producing the activator
and between the cells producing the inhibitor. The re-
sulting patterns of cell differentiation are aligned along
this axis.

One special form of this mechanism is observable in
the polyps of the genus Hydra. Their heads and feet are
shaped depending on the concentration of the activator
[12]. Gierer and Meinhardt showed that the diffusion
of the morphogenes in Hydra takes a gradual course.
This gradient of source density gives orientation in the
tissue over the longitudinal axis of the animal’s body.
The gradient serves as an indicator of relative position
within the animal.

2.3 Formulation of the idea
Several criteria influence the parametrization and con-
struction of correspondence, depending on the geome-
try and quality of the mesh. These are:

• Scale of the mesh

• Position of the mesh relative to the coordinate sys-
tem

• Rotation of the mesh

• Internal geometry of the mesh (for correspondence
a rough similarity is sufficient)

There may be considerable variation in these parame-
ters and properties, which makes many surface anal-
ysis problems challenging. In many cases, surface
parametrizations help to find more simple and efficient
solutions.

Our diffusion-based parametrization is inspired by the
gradient of source density, which defines a polar ori-
entation. We will ignore most of the details of the
biological mechanism and develop the idea towards
parametrization of surface patches.

2.4 Diffusion as a description of surfaces
To successfully compute the diffusion on the surface,
the physical and biological model needs to be simpli-
fied. The first simplification is to consider the surface as
a two-dimensional carrier medium and discarding any
effects of diffusion into depth. Both complexity and
computational costs are decreased due to the fact that
only two dimensions are considered.

We assume a dynamic equilibrium where a substance
is produced in a source point or a line-shaped set of
sources, travels along the surface due to diffusion and
is diluted, washed away, absorbed or deactivated chem-
ically over time. Therefore, in our simplified model,
the concentration of the substance is proportional to the
distance from the source.

To obtain relative distances on the surface, independent
of the scale of the object, we introduce pairs of antago-
nist substances that have concentrations d1 and d2 and
are defined on each vertex of the mesh. To calculate the
relative distance between each of the reference points,
the following equation is used:

d̂ =
d1

d1 +d2
(2)

This formula makes sure that d̂ takes the value 0 on the
source points of the first substance and value 1 on the
source points of the second substance. It then increases
smoothly in between. The possible values of distance d̂
are clamped to the interval [0,1].

This operation is the necessary first step in parametriz-
ing the whole mesh. To get an even distribution of the
parameters, sets of points form the source points. This
leads to a smooth and near parallel distribution of the
isolines on the surface (see Figure 3).

Figure 3: An ideal distribution of isolines of d̂ is ob-
tained if sources for d1 (red) and d2 (green) are not only
single points, but sets of points along the edges

For a unique identification of each point a second axis
in parameter distribution is needed (see Figure 4). If
this second axis is orthogonal to the first direction of
diffusion, two linearly independent parameters result
and are able to describe every point on the surface by
a pair of the interval [0,1]2. We call these two axes the
gradients of diffusion ∇u and ∇v. The parameters are
called u and v and form pairs (ui,vi) for each point Pi
on the surface.

WSCG 2012 Communication Proceedings 62 http://www.wscg.eu

Figure 4: A 2D parametrization (u,v) is obtained by
two separate diffusion processes, one along the hori-
zontal and one along the vertical direction, with two
variables d̂u, d̂v

2.5 Organization of the parameter values
in a kd-tree

By simply saving the parameter values to each point,
one can easily retrieve the tuple (u,v) for every given
point. This is done in a linear array, which can be ac-
cessed in O(1). For an adequate use the other way
around is also important, therefore it is necessary to
have an efficient data structure for finding a point cor-
responding to a given value. Different data structures
exist, which help to find a given value in a set of points
quickly without comparing each point to the search
term. In our work we chose the kd-tree [2], which
scales well with a certain number of points. The com-
plexity of searching for a value lies in O(logn), where
n is the number of vertices of the mesh.

2.6 Viewing surfaces as a discrete point
set

Polygonal surfaces are usually intended to be approx-
imate models of smooth surfaces such as geometrical
primitives (spheres), vehicles, human faces or charac-
ters. The higher the number of polygons is, the better
the approximation of the surface can be. Because of
this approximation it is difficult to model the process
of diffusion, as it runs through a continuous substance.
The triangulated surface has no continuous nature, but
instead has gaps between discrete points.

The algorithm to solve this problem needs to simulate
the continuous progression of the diffusion along the
surface with special regard to the distance between the
points. One algorithm with these characteristic is Dijk-
stra’s algorithm for shortest paths. With a given starting
point, Dijkstra’s algorithm assigns each following point
the shortest distance to the starting point. It propagates
the distance values iteratively in a process that is similar
to diffusion.

We modified the algorithm in such a way that it takes a
complete set of points to start instead of a single point.
After a successful pass, each distance d1 between point
and start is measured. A second pass in the reverse di-
rection leads to the second value d2 of diffusion, which

is used in order to determine the value of relative dis-
tance d̂ in the calculation.

We deliberately decided to propagate the values along
edges. Alternatively one could choose the geodesics,
i.e. direct paths along the surface which are not con-
strained to points in the set. Geodesics, however, do
not respect the structure of the mesh. Interpolation is re-
quired to calculate the geodesic path through the poly-
gons. Because of this computational increase the idea
of geodesics had been discarded.

2.7 Segmentation
Whether global bijectivity of the parametrization can
be achieved at all depends on the topology of a mesh.
A mesh which is topologically equivalent to a disc can
be mapped to a parameter domain in the plane. These
simple meshes do not need to be partitioned and eas-
ily achieve global bijectivity. Other meshes with more
complex topology cannot be mapped to a plane and
therefore violate global bijectivity.

Consider the simple example of a sphere. From topol-
ogy, we know that we cannot find a homeomorphism
from parameter space [0,1]2 to the sphere, so we expect
singularities and ambiguities if we apply our algorithm
to the entire sphere. For the first parameter u and its
relative distance function d̂, consider a line from pole
to pole (half of a great circle) as a source for d1, and
the other half of the same great circle as source for d2.
This defines a diffusion which spreads over both hemi-
spheres. However, both poles will be singularities be-
cause they are sources of both d1 and d2. On the other
hand, if we use two opposite points as sources for d1
and d2, respectively, we violate the uniqueness criterion
as soon as both parameters u and v are computed: As
shown in Figure 5, two arbitrary isolines of each diffu-
sion cintersect twice, so these intersection points obtain
the same parameter tuple (u,v).

Figure 5: Ambiguity on certain points on meshes that
are not homeomorphic to a disc.

The solution to this undesired effect is the segmentation
of the mesh into hemispheres. Two passes parametrize
each hemisphere separately. This guarantees local bi-
jecitivity on each partial mesh. If the segmentation of
the mesh is adequate, the whole mesh can be partitioned
in topological discs with guaranteed uniqueness.

WSCG 2012 Communication Proceedings 63 http://www.wscg.eu

Global bijectivity is not given and therefore the direct
mapping of (u,v)-tuples from two meshes is not possi-
ble. A mechanism is required to assign regions of dif-
ferent meshes to the same or similar areas, which intro-
duces a new level of hierarchy.
The segmentation must lead to reproducible regions.
Only then is the parametrization useful, particularly in
regard to the correspondence between meshes. Several
criteria define the usefulness of the segmentation.
Besides the reproducibility these are the number of
segmented regions, similar segmentation on similar
meshes and interaction of the user to mark logical
areas.
To achieve a 1 : 1 connectivity between meshes, the
segmentation must separate both mesh A and mesh B
to each set of regions rA0 ,rA1 , ..,rAn and rB0 ,rB1 , ..,rBn .
Each vertex must be assigned to a region. Both sets of
regions can be related to each other if both meshes have
the same number of regions. To create a meaningful
correspondence, the regions must map to similar parts
on the meshes in the first place. This means that the
segmentation must follow a fixed orientation over the
mesh, which also adds to the reproducibility.
Meshes from different classes of objects should seg-
ment to semantic similarities of the same type. The al-
gorithm should react on the user’s input, which denom-
inates the points of interest regarding the logical areas.
This simplifies the finding of correspondence between
meshes and enhances quality.
Existing approaches for reproducible segmentations
lack the possibilities to work on a predefined number
of regions and only respect the user’s input marginally.
Therefore, we chose to implement a simple, but
efficient approach that gives the user the freedom of
choice in segmenting the mesh (see Figure 6).
The idea is that the user paints the regions on the sur-
face manually with an interactive tool. This defines the
segments of the patchwise parametrization. Moreover,
and this is the core idea of the user interface, the bound-
aries of the segments are a natural choice of source-sets
for the diffusion algorithm. Depending on the label of
the adjacent region, a boundary vertex will be a source
point of d1 or d2 for parameter u or v, respectively. The
goal of the segmentation is to produce patches with
closed and connected boundaries that can be divided
into 4 parts, similar to a rectangle.
Those parts which form the ends of extremities (e.g.
hands and feet in Figure 6) of the depicted mesh need
special treatment. They could be seen as single regions,
because they fulfill the topological criterion. The prob-
lem of this naive approach is the nature of their edges.
These edges overly stretch during the mapping to the
plane (as seen in 7). This leads to increased angular
distortion, with higher extremes in parts with longer
stretched edges.

Figure 6: Segmentation example

Figure 7: Edge stretching and angular distortion

Separating such meshes into two halfs helps preventing
these unfavorable results. By splitting the meshes in
question before mapping them to the plane a lower dis-
tortion is achieved, as the change of length of the edges
is reduced.

After choosing the regions carefully to avoid bad
segmentation, the next step is the selection of starting
and ending edges. As mentioned before, the process
of diffusion needs the four edges of the surface to
be parametrized. The edges resemble the sets of
starting and ending points for the modified Dijkstra.
Because the diffusion is not limited to four-sided
surfaces, it must be possible to choose four logical
edges on arbitrary convex surfaces, leading to edges
Eu1 ,Eu2 ,Ev1 ,Ev2 . The finding of suitable edges can be
based on the segmentation into regions, as the borders
between two regions already form suitable edges.

In the case that there is only one continuous border be-
tween two regions, the edge is simply the overlapping
part of both regions. In order to not include a set of
points in two edges at once, the method can choose to
include or exclude these vertices. This discrimination
is necessary if a point takes part in both regions as seen
in Figure 8.

A user who is familiar with the process of segmentation
can handle it very quickly. The segmentation in Figure
6 did not take longer than 10 minutes with the interac-
tive, mouse-based tool.

WSCG 2012 Communication Proceedings 64 http://www.wscg.eu

Figure 8: Overlapping of vertices in two regions

2.8 Process of diffusion
The diffusion processes each region on the mesh sep-
arately. This is done by separation and transformation
of the whole mesh into partial graphs. As all regions
are combined to the original mesh, the partial graphs
of each parametrized region form the whole graph that
represents the mesh.

The construction of partial graphs shifts the process of
diffusion away from the original mesh. Each partial
graph leads to an own uv-map, which in turn is indepen-
dent to the uv-maps of other partial graphs, thus solving
the global bijectivity problem. But as shown later, the
local bijectivity on each partial graph is given.

The modified Dijkstra algorithm is initialized just like
the original algorithm. Each vertex that does not belong
to the starting points is assigned di = ∞. Unlike the
original Dijkstra’s algorithm, which starts from a single
vertex, it is here the initial starting (source) set that is
initialized as diS = 0. After inserting each point of the
whole partial graph into a min-heap, the algorithm can
start.

Taking the first element out of the min-heap gives the
point with the minimal value of diffusion dimin . In
the first iterations this will be the whole set of start-
ing points, but later on this will govern all points in the
whole partial graph. Each extracted point is treated in
exactly the same way. Every edge of this vertex will be
relaxed, using the following equation 3.

dB =

{
dA +w(A,B), if dA +w(A,B)< dB

dB, otherwise
(3)

The function w(A,B) is the weighting function which
returns the length of the edge between vertices A and B.
Vertex A is the vertex that is currently being processed
and vertex B is the target of the edge that the algorithm
actually relaxing. Therefore, A stays the same for the
vertex that is processed and B changes to each of the ad-
jacent vertices during relaxation of the adjacent edges.

This relaxation leads to updated values of diffusion
in each adjacent vertex. By updating the value, the
process of diffusion iteratively spreads over the whole

graph, until reaching its end (see Figure 9 for an illus-
tration). Since the relaxation affects the value of dif-
fusion, which in turn is the key to the min-heap, the
residing vertices are sorted after each update to reflect
the correct sequence of increasing key values.

Figure 9: The process of diffusion illustrated with a
simplified mesh.

As soon as the min-heap is empty, the process of dif-
fusion finishes. At this point, each vertex holds its dis-
tance to the set of starting points. This distance is the
path to the closest vertex in the set of starting points.
This algorithm is run twice, once for d1 and once for
d2. From these, d̂ is computed, which is equivalent to
the parameter u. With another pair of source sets, the
parameter v is computed in the same way.

After the completion of the second two-pass, each ver-
tex holds the values du1 , du2 , dv1 and dv2 . These values
are the direct values of distance to their corresponding
starting edge. By inserting these into the two equations
4, we normalize the values into the interval [0,1]:

d̂u =
du1

du1 +du2

d̂v =
dv1

dv1 +dv2

(4)

These values of diffusion d̂u and d̂v are then saved in the
kd-tree. By combining the kd-tree with a simple linear
array, we get a uv-map that supports fast retrieval of
(u,v)-tuples for a given vertex and also grants an effi-
cient search for a vertex, which lies as close as possible
to a given (u,v).

3 RESULTS
We implemented the modified Dijkstra’s algorithm. We
parametrized a scan from a human and a cow and man-
ually developed a segmentation of the meshes. The hu-
man mesh (see Figure 10) containes about 11k vertices
with 3 to 5 edges adjacent to each vertex. The cow (see
Figure 11) is made up of ca. 3.1k vertices, also con-
nected to neighbors with 3 to 5 edges. The parametriza-
tions were done in 68 ms for the cow and 224 ms for the
human mesh on a Pentium i7-2600 3.40 GHz.

The parametrization of the whole mesh took place as
a sequence of parametrizations on the list of partial

WSCG 2012 Communication Proceedings 65 http://www.wscg.eu

meshes after the segmentation. Like the original algo-
rithm by Dijkstra our modified approach has a complex-
ity lying in O(|E|log|V |), where |E| is the number of
edges in the mesh and |V | is the number of vertices in
the mesh. We then applied a grid on the mesh, using the
parametrized values as texture coordinates (see Figure
10).

Figure 10: The parametrization visualized by a grid

From these pictures we can judge the quality of the
parametrization. The distribution depends on the mesh
structure and it is clearly visible that this leads to an
increased jitter of parameter values.

On the large areas like chest and back of the human
mesh (Figure 10) there is less distortion than on struc-
turally smaller areas. These areas (e.g. the arms and
legs) show a ratio between horizontal and vertical dis-
tribution which is not aspect-preserving.

The different length of the edges in a mesh is directly
visible in the grid. For example, the edges on the side of

Figure 11: Parametrization of another object

the cow are longer than the edges on other parts of the
mesh. The apparent gap between the isolines shows that
the edges on this side are almost double in length. Right
behind the right shoulder of the cow there is a loop that
continues on the bottom side of the mesh. This loop
is part of the isoline that moved downwards due to the
larger distance between the vertices on the side.

An important aspect is the examination of the bound-
aries between the regions. They show irregularities
which probably stem from the different parameter val-
ues that overlap on these vertices. Regardless of which
set of (u,v)-values is chosen, there will always be a
residual distortion, even though the algorithm contains
mechanisms that guarantee a continuous parametriza-
tion across boundaries of segments: Consider a seg-
ment pattern that looks like a distorted rectangular grid
on the 3D surface, and a boundary segment S between
two patches A and B. Let the parameter u be 1.0 along
the boundary in A, and 0.0 in B, while v varies from
0.0 to 1.0 continuously. Then v is determined by the
boundaries (source sets) adjacent to S in A and in B. If
these adjacent boundaries in A and B fit together as one
continuous curve, like in a rectangular grid, the param-
eter v on S will be the same in A and B, so the patch-
wise global parametrization is continuous across patch
boundaries.

3.1 Comparison
Based on Alla Sheffer’s work [24], we compared
our parametrization with other approaches. Table 1
shows various parametrizations [24]. We added our
parametrization in the last line.

WSCG 2012 Communication Proceedings 66 http://www.wscg.eu

The images show clearly that the algorithm does hardly
prevent distortion. Especially in parts with complex
curvature (e.g. the head and breast of the cow) angular
distortion increases. Deficiencies on the mesh (e.g. dif-
ferent edge lengths, jumps, doubled vertices) further in-
crease the distortion. Adding the evaluation of an error
metric before the parametrization can value the quality
that can be expected.
Especially the uniform, harmonic and mean-value
weighted parametrizations [27, 9, 11] show similarities
between different patches on the surface, e.g. the
breast region of the cow. Algorithms like DCP and
LSCM have similar problems preserving areas and
distances, but are better in preserving angles than our
algorithm. This is because they sacrifice the distance
preservation in favor of minimized angular distortion.
Our algorithm has problems with angular distortion in
specific regions.
Singularities like the ears of the cow show cycles
that are direct result of the diffusion process. Other
parametrizations handle such singularities more grace-
ful. Circle patterns [16] and stretch minimizing [21]
approaches excel at these parts.

4 CONCLUSION AND FUTURE
WORK

In this paper we showed the development of a new ap-
proach in parametrization, inspired from nature. Our
approach can lead to a patchwise bijective parametriza-
tion, which concentrates on local bijectivity. User inter-
action makes global bijectivity possible. The main tar-
geted application is the creation of correspondence be-
tween two objects. Our approach simplifies this by us-
ing a combination of a kd-tree and a linear array named
uv-map, which stores tuples of (u,v) and provides fast
and efficient two way searches.
The approach is limited by the heavy dependency on
the users input. The segmentation process is entirely
controlled by the user as is the assignment of regions
between two parametrized meshes. Here lies further
potential for improvement. A fully automated segmen-
tation method, which leads to reproducible partition and
comparable results between different, but similar ob-
jects, would enhance the application of this approach.
We will investigate current and future segmentation al-
gorithms for suitability.
Our limitation to convex patches is also subject to pos-
sible research, as other parametrizations do not depend
on convex meshes. By surpassing this limitation it
could be possible to completely omit the segmentation
and any user input. We will investigate this, too.

ACKNOWLEDGEMENTS
We want to thank the anonymous reviewers for their
valuable comments.

5 REFERENCES
[1] Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama

Barkai, and Ziv Bar-Joseph. A biological solution to a funda-
mental distributed computing problem. Science, Vol. 331, No.
6014:183–185, 2011.

[2] Jon Louis Bentley. Multidimensional binary search trees
used for associative searching. Communications of the ACM,
18:509–517, 1975.

[3] Robert Brown. A brief account of microscopical observations
made in the months of june, july and august, 1827, on the
particles contained in the pollen of plants; and on the general
existence of active molecules in organic and inorganic bodies.
Philosophical Magazine, Vol. 2:161–173, 1828.

[4] Patrick Degener, Jan Meseth, and Reinhard Klein. An adapt-
able surface parameterization method. In 12th International
Meshing Roundtable, 2003.

[5] Boris N. Delaunay. Sur la sphère vide. Bulletin of Academy of
Sciences of the USSR, 7:793–800, 1934.

[6] Mathieu Desbrun, Mark Meyer, and Pierre Alliez. Intrinsic pa-
rameterizations of surface meshes. Computer Graphics Forum,
Vol. 21:209–218, 2002.

[7] Gianni DiCaro and Marco Dorigo. Antnet: Distributed stig-
mergetic control for communications networks. Journal of
Artificial Intelligence Research, Vol. 9:317–365, 1998.

[8] Manfredo P. do Carmo. Differential geometry of curves and
surfaces. Prentice Hall, 1976.

[9] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe,
Michael Lounsbery, and Werner Stuetzle. Multiresolution anal-
ysis of arbitrary meshes. In ACM SIGGRAPH, 1995.

[10] Michael S. Floater. Parameterization and smooth approxi-
mation of surface triangulations. Computer Aided Geometric
Design, Vol. 14, No. 3:231–250, 1997.

[11] Michael S. Floater. Mean value coordinates. Computer Aided
Geometric Design, Vol. 20, No. 1:19–27, 2003.

[12] Alfred Gierer and Hans Meinhardt. A theory of biological
pattern formation. Kybernetik, 12:30–39, 1972.

[13] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry
images. In ACM SIGGRAPH, 2002.

[14] Igor Guskov, Kiril Vidimce, Wim Sweldens, and Peter
Schröder. Normal meshes. In ACM SIGGRAPH, 2000.

[15] Kai Hormann and Günther Greiner. MIPS: An Efficient Global
Parameterization Method. Vanderbilt University Press, 2000.

[16] Liliya Kharevych, Boris Springborn, and Peter Schröder. Dis-
crete conformal mappings via circle patterns. ACM Transac-
tions on Graphics, Vol. 25, No. 2:412–438, 2006.

[17] Aaron Lee, Hugues Hoppe, and Henry Moreton. Displaced
subdivision surfaces. In ACM SIGGRAPH, 2000.

[18] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Mail-
lot. Least squares conformal maps for automatic texture atlas
generation. In ACM SIGGRAPH, 2002.

[19] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT
Press, Cambridge, 1996.

[20] Ulrich Pinkall and Konrad Polthier. Computing discrete mini-
mal surfaces and their conjugates. Experimental Math, Vol. 2,
No. 1:15–36, 1993.

[21] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues
Hoppe. Texture mapping progressive meshes. In ACM SIG-
GRAPH, 2001.

[22] Alla Sheffer and Eric de Sturler. Surface parameterization for
meshing by triangulation flattening. In 9th International Mesh-
ing Round Table Conference, 2000.

[23] Alla Sheffer, Bruno Lévy, Maxim Mogilnitsky, and Alexander
Bogomyakov. Abf++: Fast and robust angle based flattening.
ACM Transactions on Graphics, Vol. 24, No. 2:311–330, 2005.

WSCG 2012 Communication Proceedings 67 http://www.wscg.eu

Name Distortion mini-
mized Bijektivity Boundary Source

Uniform none yes convex [27]
Harmonic angular no convex [9]
Shape preserving angular yes convex [10]
Mean-value angular yes convex [11]
DCP angular no free [6]
LSCM angular no free [18]
MIPS angular yes free [15]
ABF/ABF++ angular yes (only local) free [22]/[23]
Circle patterns angular yes (only local) free [16]
Stretch minimizing distance yes free [21]
MDS distance no free [29]
Adaptable surface area yes free [4]

Our approach:
Diffusion-based to a degree:
distance yes (only local) convex

Table 1: Comparison of parametrizations with our approach

[24] Alla Sheffer, Emil Praun, and Kenneth Rose. Mesh parameteri-
zation methods and their applications. Foundations and Trends
in Computer Graphics and Vision, Vol. 2, No. 2:105–171, 2006.

[25] Alan Mathison Turing. The chemical basis of morphogene-
sis. Philosophical Transactions of the Royal Society of London,
Series B, Vol. 237, No. 641:37–72, 1952.

[26] Greg Turk. Generating textures on arbitrary surfaces using
reaction-diffusion. SIGGRAPH Comput. Graph., 25:289–298,
1991.

[27] William T. Tutte. How to draw a graph. London Mathematical
Society, Vol. 13:743–768, 1963.

[28] Andrew Witkin and Michael Kass. Reaction-diffusion textures.
In Computer Graphics, pages 299–308, 1991.

[29] Gil Zigelman, Ron Kimmel, and Nahum Kiryati. Texture map-
ping using surface flattening via multi-dimensional scaling.
IEEE Transactions on Visualization and Computer Graphics,
Vol. 8, No. 2:198–207, 2002.

WSCG 2012 Communication Proceedings 68 http://www.wscg.eu

Realistic facial expression synthesis of 3D human

face based on real data using multivariate tensor

methods

Jacey-Lynn Minoi

Faculty of Computer Science and
Information Technology

Universiti Malaysia Sarawak
94300 Kota Samarahan

 Sarawak, Malaysia

jacey@fit.unimas.my

Duncan F. Gillies

Department of Computing
Imperial College London

180 Queen’s Gate, London,
SW7 2RH, U.K.

d.gillies@imperial.ac.uk

Amelia Jati Robert Jupit

Faculty of Computer Science and
Information Technology

Universiti Malaysia Sarawak
94300 Kota Samarahan

 Sarawak, Malaysia

rjajati@fit.unimas.my

ABSTRACT
This paper presents a novel approach of facial expression synthesis and animation using real data sets of people

acquired by 3D scanners. Three-dimensional faces are generated automatically through an interface provided by

the scanners. The acquired raw human face surfaces went through a pre-processing stage using rigid and non-

rigid registration methods, and then each of the face surface is synthesized using linear interpolation approaches

and multivariate statistical methods. Point-to-point correspondences between face surfaces are required in order

to do the reconstruction and synthesis processes. Our experiments focused on dense correspondence, as well as,

to use some points or selected landmarks to compute the deformation of facial expressions. The placement of

landmarks is based on the Facial Action Coding System (FACS) framework and the movements were analysed

according to the motions of the facial features. We have also worked on reconstructing a 3D face surface from a

single two-dimensional (2D) face image of a person. After that, we employed tensor-based multivariate statistical

methods using geometric 3D face information to reconstruct and animate the different facial expressions.

Keywords

Three-dimensional facial animation, facial expression synthesis, face reconstruction.

1. INTRODUCTION
Facial animation is complex and difficult to achieve

realistically. Facial features that contribute the most

to facial expressions are the eyelids, eyebrows and

mouth. Wrinkles and budges also contribute to the

change of facial appearances. Movements or the flow

of features can be measured and then used to animate

facial expressions. This approach is known as

feature-based deformation. [Ste81] used landmark

information to deform face shapes and models while

[Wat87] used pseudo muscles for face expression

animation. Work by [Gue98, Pig98] used facial

movement information.

According to [Fas02], the deformation approach does

not necessarily require extensive facial movement,

which makes the animation process faster and

simpler. However, this approach is unreliable in

creating exaggerated realistic face shapes and facial

expressions.

A large number of facial modelling and facial

animation works have employed muscle-based

approaches [Ter90, Lee95]. Synthetic facial

movements are generated by mimicking the

contraction of facial muscles. This can be done by

firstly defining the functionality and locations of the

facial muscles on the face model and then applying a

combination of muscle contractions [Wat87]. The

combinations of the muscles are defined by Action

Units (AUs) from the Facial Action Coding System

(FACS) framework. Using AUs could reduce the

amount of work in characterising facial expression

data.

Many face animators, [Fox05] for example, imitate

facial muscles movements to generate facial

expressions. Similar to the prior muscle-based

Permission to make digital or hard copies of all or part

of this work for personal or classroom use is granted

without fee provided that copies are not made or

distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first

page. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific

permission and/or a fee.

WSCG 2012 Communication Proceedings 69 http://www.wscg.eu

animation problems, this approach only creates a

limited set of facial expressions.

Multi-layer models supplement the use of facial

muscles. A multi-layer model is built from the

anatomical structure of the face, facial muscles, skin,

soft tissues and etc. [Ter90, Lee95, Sif05, Wil97].

[Ter90] proposed facial animation by contracting

synthetic facial muscles embedded in a face skin

model. This approach improves the realism of the

synthetic facial expressions; however the use of

sophisticated biomedical models requires accurate

simulation methods and high computational costs

[Lee95]. Furthermore, animating expressions in

complex multi-layer structures requires non-linear

methods to simulate dynamic deformation of the skin.

Failing to create a detailed skin deformation (such as

wrinkles) may result in less realistic facial

expressions [Ers08].

The geometry warping approach is another method

for synthesizing facial expressions. The facial

expression information is measured from two images

– one with a neutral expression and another with a

particular facial expression. The calculated facial

movement difference vectors are transferred to a

target image of a neutral face [Pig98, Sha01, Par96,

Wil90]. The facial movement differences can be

controlled by using linear interpolation. The

disadvantage of this approach is that the overall

shapes of the face, including the geometric shapes,

poses and orientations, and facial expression, are

calculated and computed together. It is therefore not a

perfect solution for generating the in-between facial

expressions [Ers08]. Recent work has been

undertaken to overcome this weaknesses by using

non-linear interpolation or by combining linear and

non-linear interpolation.

[Par96] used simple geometric interpolation to

synthesize expression on 3D face models. The feature

points are manually digitised on each face model.

This was followed by automatic expression synthesis

where the data of real actors are captured and

analysed [Wil90, Ber85, Ess96]. The captured face

surfaces are represented using a structured mesh,

along with texture information.

Segmenting face models into smaller regions is also

employed with the aim of synthesizing only the

relevant parts of the face contributing to an

expression. [Jos03] applied this approach on 3D face

models. On the other hand, [Bla03] employed a

morphable technique to animate facial expressions on

existing 2D images and videos. The advantage of the

morphable modelling approach is that it can work on

faces without acquiring examples of facial expression

data of a person. [Vla05] mapped facial movements

from a recorded video to a target face using an

optical flow-based tracker to estimate 3D shape

movements. In addition, they used a multilinear

model to manage the face attributes separately.

Theoretically, by using multilinear models on a larger

collection of faces with different expressions, faces

with any expressions can be generated. However, the

collection used in Vlasic‟s work is limited in size.

Nevertheless, the advantage of this technique is that

visible facial markers or special face-spanning

equipment is not required.

In order to simulate a realistic facial expression, a

larger collection of facial expression examples is

required. When using muscle information, accurate

muscle descriptions or templates are needed to

produce visually correct facial movements. Using

fewer facial expression resources means that

expressions may appear artificial and unrealistic.

Methods to optimise the animation computation may

also be needed to allow real-time facial animations. It

should be noted that facial animation field has grown

into a complicated and broad subject. Facial

animation applications are extensively used in various

areas, including movie industries, computer games,

medicine and telecommunication.

The remainder of this work is organised as follows.

In Section 2, we start with a description of the data

set of 3D face scans from which our synthesis of

facial expression model is built.

In Section 3, we briefly present the pre-processing

technique used on raw 3D face surfaces, followed by

a description on the algorithm for synthesizing and

animating facial expressions using linear

interpolation based on landmark placements, is given

in Section 4.

In Section 5, we describe PCA and LDA approaches

used in this work and then introduce our idea of

applying tensor model to those two approaches on

generating a variety of facial expressions that can be

applied in differing degrees. Following that, we look

at reconstructing 3D faces from 2D photographic

images of faces with only neutral expression and then

map facial expression onto the reconstructed face

surface.

Section 6 then describes all the experiments that

were carried out in the study, and present the results

of the synthesis on 3D face data. Finally, in Section 7,

we conclude the paper, summarising its main

contributions and describing possible future work.

2. FACE DATA SETS USED
In our experiment, we have used four face data sets of

real human faces: the Notre Dame 3D face data set,

the Imperial College 3D face data set, SUNY

Binghampton 3D face data set, and the FERET 2D

face data set.

WSCG 2012 Communication Proceedings 70 http://www.wscg.eu

The Notre Dame data set was acquired at the

Computer Vision Research Lab at the University of

Notre Dame (see web page,

http://www.nd.edu/~cvrl/CVRL/Data_Sets.html). A

total of 150 subjects participated in the image

acquisition sessions, giving a total of 300 three-

dimensional face surfaces. The 3D data was captured

using a Minolta Vivid camera [Kon] which uses a

structured light sensor to scan surfaces. The captured

faces are only frontal faces of neutral facial

expression.

In the Imperial College face data set was acquired at

the Department of Computer Science at Imperial

College London [Pap05]. The 3D face surfaces are

captured using a VisionRT stereo camera [Vis]. It

contains a set of 60 individual face surfaces of which

we used two expressions, one where the subject is

frowning and another smiling – totalling to 120 three-

dimensional face surfaces. Each face is associated

with greyscale texture image.

In the SUNY Binghampton data sets [Wan06], the

3D face surfaces consists of 7 different emotional

facial expressions, namely anger, disgust, happiness,

sadness, surprise, fear and neutral. Each of the

emotional expression contains 4-levels of expression

intensity ranging from low to high. In total, there are

2,500 faces from 100 subjects.

FERET face data set is a well-known 2D standard

face image data set normally used for evaluating face

recognition performance. See web page,

http://www.itl.nist.gov/iad/humanid/feret/feret_master

.html).

3. PRE-PROCESSING
The obtained 3D face surfaces using current

technologies would require pre-processing procedure

before they can be further analysed. A raw surface

may have holes or spikes caused by acquisition and

measurement errors. Raw surfaces also have different

alignment and surface areas in addition to having a

different number of points in the surface

representation. The first step in any technique using

statistical shape modelling is to normalise the surface

with respect to the orientation and the surface area.

The second step is then to establish point-to-point

correspondence between the surfaces in the input

database.

As a result of these steps, extraneous portions of a

surface are removed so that all the surfaces cover the

same features and are represented by the same

number of corresponding vertices. The dense

correspondence is established so that, ideally, each

point on a surface represents the same anatomical

position on all the other surfaces. Thus, each vertex is

a landmark point once the correspondence is

established. In our experiments, correspondence

between 3D face models was established using the

method proposed by [Pap05]. Pre-processing is

applied to each raw face surface to regularise the

position, scale and surface tessellation, and to

establish a correspondence between faces.

4. SYNTHESIZING EXPRESSIONS

USING LINEAR INTERPOLATION

BASED ON LANDMARK

PLACEMENTS

In this section, we describe the use of features points

that gives parameters of facial expression and

deformation. Using these parameters, one can

generate any possible facial expressions according to

the selected landmark points.

In our experiment, we selected two sets of
identifiable landmark points, whereby set 1 has thirty-
three landmarks and set 2 has forty-three landmark
points. Figure 1(a) illustrates thirty-three landmarks
and they are placed along the eyebrows, the corners
of the eyes and crowfeet, the glabella, the upper part
and the tip of the nose, the mouth and areas around
the mouth and lips, the chin and the cheeks. Figure
1(b) shows set 2 landmark points. The chosen
landmark points are based on the landmarks used in
craniofacial anthropometry and muscle-based
landmarks in the FACS framework.

The main source that contributes to expression
variation is facial muscular movements. We
employed a registration framework [Pap05], based on
the selected facial landmarks, to create expressions
on surface model of the face.

The step is similar to the geometric warping

approach, whereby we calculate the facial movement

difference vectors from two face surfaces – one face

with a neutral expression and another with a

particular facial expression – using landmark points.

Then, we use linear interpolation to transfer the

generated facial expression to a neutral face.

Figure 1(a). A set of 33 selected points.

WSCG 2012 Communication Proceedings 71 http://www.wscg.eu

http://www.nd.edu/~cvrl/CVRL/Data_Sets.html
http://www.itl.nist.gov/iad/humanid/feret/feret_master.html
http://www.itl.nist.gov/iad/humanid/feret/feret_master.html

Figure 1(b). A set of 43 selected points.

5. SYNTHESIZING EXPRESSIONS

USING MULTIVARIATE

STATISTICAL METHODS
In this section, we present another approach to

generate and synthesize facial expressions using

multivariate statistical method based on PCA and

mLDA (Maximum uncertainty Linear Discriminant

Analysis). And then we introduce a tensor-based

multivariate statistical method to construct new face

shapes with a range of different face variations.

Active Shape Model (ASM) [Coo95] is a commonly

used approach to build statistical shape models of the

human face. The modelling of anatomical face

structures are from statistical information found in a

training set. Unlike the multivariate statistical method

and tensor-based multivariate statistical approaches,

new face shapes are created based on statistical

information from pre-defined classes of specific

features or face variations found in the training set.

Our idea of using tensor model on the multivariate

statistical method is to use all the face features with a

variety of facial variants simultaneously rather than

separating them into two numbers of classes. The

advantage with this method is that it is practical to

generate a variety of face shapes applied in different

degrees. Additionally, the transition between face

shapes is also continuous and natural.

Following that, we applied the tensor-based method

to the reconstructed 3D faces from 2D photographic

images and synthesize facial expressions.

Revisiting PCA and LDA
Principal Component Analysis (PCA) is one of the

most successful methods to reduce the dimensionality

of the original space with a minimum loss of

information by finding the projection directions that

maximise the total scatters across all data. However,

in the covariance structure of PCA, the first principal

component with the largest eigenvalue does not

necessarily represent the important discriminant

directions to separate sample groups. Therefore, we

employ the idea of using the discriminant weights

given by separating hyperplanes to select among the

principal components the most discriminant ones.

Linear Discriminant Analysis (LDA) is computed to

separate samples of distinct groups by maximising the

ratio of the determinant of the between-class

separability to the determinant of the within-class

variability. The performance will degrade if there are

only a limited number of total training samples N

compared to the dimension of the feature space n.

This critical issue is the singularity and instability of

the within-class scatter matrix. In order to avoid these

problems, we propose to use Maximum uncertainty

Linear Discriminant Analysis (mLDA) approach. The

idea of mLDA is to regularise the eigenvalues. The

details of the mLDA method can be found in

[Tho06].

Multivariate statistical method
The multivariate statistical method is essentially a

two-stage approach, the first stage is to characterise a

type of variation and the second stage is to

reconstruct faces. The method is used to find the most

significant direction of change between two classes,

and to reconstruct and visualize intermediate data

between two classes. This method is based on

Principal Component Analysis (PCA) and Maximum

uncertainly Linear Discriminant Analysis (mLDA)

separating hyper-plane. This technique was first

applied by [Kit06] to extract and characterise the

most discriminant changes between two groups of 2D

probed images.

The initial training set of 3D face data consisting of N

training examples on n variables is managed by

dividing the training data into two groups or classes,

C1 and C2. The training datasets can be projected

from the original vector space of N by n to a lower

dimensional space using a full rank PCA

transformation. The principal component space forms

an n x m transformation matrix, where m = N – 1.

This step may or may not be necessary to overcome

the singularity of the within class covariance matrix.

If N ≥ n, then PCA transformation is not required. It

is possible that after PCA dimensionality reduction,

the within-class scatter matrix Sw may still be less

than full rank. If so, the mLDA approach is used to

ensure that the scatter matrix Sw is non-singular.

Ordering the eigenvectors is not necessary for this

process. As there are only two classes, g = 2 and the

resulting mLDA is a unidimensional vector of length

m (the linear discriminant eigenvector has dimension

m x 1).

WSCG 2012 Communication Proceedings 72 http://www.wscg.eu

Back projecting into the original data space, the most

discriminant feature is a n x 1 vector. The final step

in the first stage is to calculate the mean of each

group and the corresponding variances on the

unidimensional space. This is a very fast computation

because we are dealing with one-dimensional data

from two-group classification problem. To

reconstruct these discriminant points (based on

standard deviations and means) on the original space,

we do the inverse steps. Once the classifier has been

constructed, we then extract and project the

discriminant vector. This can be done simply by

converting the discriminant to its corresponding n x 1

dimensional face vector.

The final stage of the PCA+mLDA method is the

reconstruction step. If we project the most

discriminant vector found for the two classes into the

original data space, we will obtain a n x 1 vector.

Moving a point in the original data space in this

direction will change the point from an example of

one class to a maximum likelihood estimate of that

point in the other class. Assuming that the spread of

each class follows a Gaussian distribution, the limits

of variation can be set to ±3sdi, where sdi is the

standard deviation of each class i. By moving along

the n x 1 dimensional most discriminant features

based on the mean of each group and the

corresponding standard deviations of each group, the

face shapes according to the class variant can be

reconstructed in the original face domain. As stated

before, since there is only one dimensional data from

a two group classification problem, the computation

is very fast. Figure 2 shows the geometric overview

of the two-class multivariate statistical approach. This

method is then extended by using tensor model to 3D

face shapes to allow multiple numbers of classes.

Figure 2. The geometric overview of the

multivariate method between two classes.

Tensor-based multivariate statistical

method
A tensor is a multidimensional matrix or mode-n

matrix and is useful for the description of higher

order quantities. The N
th

 order tensor is written as

, where the IN represents the mode-n

space. A tensor is then flattened (see [Lat00] for

flattening details) into a matrix form, An, along any

dimension n where n = I1, I2, ..., IN.

Starting with a dataset of 3D face surfaces, we

organise the data in a tensor model according to N

varieties of face shapes. In our experiment, the

training set is arranged into a tensor explicitly

accounts for facial expression variation, where the

core tensor manages the interaction between the

indices of the 9-mode matrices, (Isubject x Ianger x Idisgust

x Ifear x Ihappy x Isad x Isurprise x Ineutral x Ipoints). Next, we

perform matrix unfolding to retrieve a set of the basis

matrices for all the 9-mode matrices. Then, we

compute the left singular value matrices using

Singular Value Decomposition (SVD) method to

obtain UN matrices. Each of the UN matrix can be

thought of as the principal components in each mode,

and they may not necessarily be of the same

dimension as the tensor. The generalised N-mode

SVD can be written as follows, and can be interpreted

as a standard linear decomposition of the data

ensemble.

An = Un • Dn (U
n-1

 ○...○ U
1
○ U

N
 ○ ... ○ U

n+2
 ○ U

n+1
)
T

The „○‟ is denoted as Kronecker product [Rao71] and

it is applied to compute the product of the matrices.

All the computed I sets of non-zero eigenvalues are

extracted and stored differently according to the

features of interest and are not ordered.

Since we have I-group classification, there are gi=gi-1

+ (i - 1) number of discriminant vectors, where

 is the number of group

classification based on the feature of interest and each

represent the most expressive features. The resulting

mLDA now has multiple coefficient vectors in a

dimension of {g x (m x 1)} depending on the choice

of facial expression transformations. Next, is to

compute the second stage of multivariate statistical

method. Based on the feature of interest, we then

determine the most discriminant vectors that best

characterise the particular change in facial features.

Tensor-based multivariate statistical method is used

on the SUNY Binghampton 3D face dataset and the

reconstructed 3D faces from 2D images of neutral

faces.

3D Face Reconstruction
The reconstruction method has four distinct steps,

which are: (1) 3D-2D alignment, (2) texture mapping,

WSCG 2012 Communication Proceedings 73 http://www.wscg.eu

(3) illumination adjustment, and (4) shape estimation.

The detailed methods can be found in [Has07]. First,

the 2D image, which is to be reconstructed, is

landmarked manually by hand using a set of uniquely

identifiable points with the same landmarks already

known in the 3D statistical shape model. This

landmarking is used to establish correspondence

between the 2D image and the 3D model, which then

allows mapping of the 2D image texture to the 3D

face surface. The objective of the shape estimation is

to optimize the match between the projection of the

3D shape model and the original 2D image. This is

carried out by adjusting the shape parameters with the

most discriminant vector. Figure 3 illustrates the 2D-

to-3D reconstruction approach.

Figure 3. The overall process of 3D face
reconstruction (adapted from [Has07]).

Here, we look at reconstructing 3D faces from 2D

photographic images of faces with no facial

expression and then generating realistic human facial

expressions. In this case, frontal images from FERET

and Notre Dame Face databases are used for

evaluating facial expression synthesis on unseen

subjects.

6. EXPERIMENTS AND RESULTS
Three facial expression synthesizing and animation

experiments with three different face data sets were

performed.

In the first experiment, we selected two sets of

identifiable landmark points and then employ linear

interpolation method. Figure 4 compares the results

of the synthesis of a smile on 3D human faces using

33 and 43 landmark points. The results show an

obvious geometric distortion to the overall shapes of

the face (see the distortion on the nose at the bottom

row of the figure), and using only 33 landmarks do

not reconstructed a noticeable smile.

Figure 4. Synthesis of a smile using 33 landmarks

(top row) and 43 landmarks (bottom row).

Figure 5 shows an example of an unrealistic face

shape with a reconstructed smile using higher number

of landmark points, which are placed mainly around

the cheek. This shows that the number and the

placement of landmark points on a face are critical to

produce a realistic facial expression.

The disadvantage of using the linear interpolation

approach is that the overall geometric shape of the

face and the facial expression are computed together.

Furthermore, there is no way to generate the in-

between facial expression to allow a smooth synthesis

and animation of facial expressions.

Figure 5. (a) Original smile; (b) Reconstructed

caricature smile.

In the second experiment, we employed tensor-based

multivariate statistical method to the SUNY

Binghampton face data set. We compared the output

of the synthesis with ASM.

The results of the reconstructed facial expressions

using the most expressive features captured using

ASM is as illustrated in Figure 6. The reconstructed

WSCG 2012 Communication Proceedings 74 http://www.wscg.eu

faces are restricted by limiting the change in each

principal component to ±3√{λi}, where λi are the

corresponding largest eigenvalues. The first mode

describes the vertical stretch along the centre of the

face. The second mode models the variations in the

horizontal direction. The third mode captures

variation around the mouth and cheek to create

expression changes from distorted frowning

expression to a caricature smile.

Figure 7 illustrates the facial expression

transformations of the first four largest principal

components captured by ASM on the Imperial

College data set. The first mode describes the

horizontal stretch around the cheek and mouth. The

second mode models the variation in the vertical

direction. The third mode captures variations around

the nose and eyes areas. The fourth mode captures the

horizontal variation of the geometric shape of the

face.

By examining Figure 6 and Figure 7, we see that

the face shapes are not properly grouped according to

facial expressions. The changes of face shape are

global to the data set which makes it impossible to

synthesize individual facial expression. Thus, ASM

method is not suitable to capture specific facial

expression variations.

Figure 6. Synthesis of facial expressions

reconstruction using the most expressive principal

components captured by ASM.

Figure 7. Synthesis of facial expressions

reconstruction using the most expressive principal

components captured by ASM using Imperial

College face data set.

Figure 8 shows the results of the reconstruction for a

neutral and an angry face expression using the tensor-

based multivariate statistical method. Figure 9

illustrates the synthesis of facial expressions between

a surprise and a frowning face.

This method is effective to capture facial expressions

variation and it is able to find the most characteristic

direction of change involved in an expression. This

magnitude of change can be controlled by a single

scalar magnitude. We explore the reconstruction and

synthesis of face shapes by moving the point from

one side of the dividing hyper-plane to the other,

respecting the limits of the standard deviation and the

measured mean of each sample group.

Figure 8. Synthesis from a neutral to an angry

expression using most characteristic direction

captured by tensor-based multivariate statistical

method.

WSCG 2012 Communication Proceedings 75 http://www.wscg.eu

Figure 9. Synthesis of a surprise to a frowning

expression using the most characteristic direction

captured by tensor-based multivariate statistical

method.

In the third experiment, we work on synthesizing

realistic facial expressions on a reconstructed 3D real

human face given only a single frontal 2D face

image. We tested the technique using the 2D FERET

face data set. Figure 10 shows the reconstructed 3D

face shapes from faces taken from FERET face

images and the synthesized facial expressions to the

reconstructed 3D face shapes. The fourth column

from the left of the figure displays the original faces.

As we move from the original to the left side of the

figure, a range of smiling expressions is generated.

Similarly, when we move to the right side of the

figure, a range of frowning expressions is generated.

Having texture embedded to the 3D face surfaces

makes the expression change smoother and more

visible. For example, the raised cheeks and eyebrows,

and the opened mouth show a smile.

Figure 11 shows the synthesis and animation of facial

expressions on the Notre Dame 3D face data set,

given that Notre Dame 3D faces only contain neutral

face (the fourth column from the left of the figure).

 Figure 10. The reconstruction of smiling and

frowning expressions using tensor-based

multivariate statistical approach.

Figure 11. The reconstruction and synthesis of the

most characteristic component when using 3D

Notre Dame faces along the smile and frown

expressions.

Examining Figures 8 to 11, we can clearly see that

the tensor-based multivariate statistical approach

effectively extract the 3D facial expression changes.

In fact, this approach is also able to generate a

gradual change on facial expressions that is not

explicitly present in the training data sets.

7. CONCLUSIONS
This paper describes 3D facial expression animation

using real human faces. We have analysed the

placement of landmarks based on FACS for

deformation and synthesis of facial expressions.

Unfortunately, landmark-dependent may not create

realistic facial expressions. We introduce another

method, which is the multivariate statistical method,

which differs from many other synthesizing and facial

expression animation approaches in terms of using

the whole face data points instead of selecting feature

points or landmarks on the face for shape variations.

This approach could extract facial expression

characteristic discriminant information efficiently,

providing a gradual transformation on the 3D faces.

The strength of this work is the realism of the facial

expression generated as we use and extract only

facial expressions from real human faces. We could

also generate facial expressions at varying intensities

for a subject without prior examples of expression.

The concept of using PCA+ mLDA approach to

discriminate pattern of interest is not new. However,

in the work of real human 3D faces, synthesizing and

analysing facial expression is still in its preliminary

stage. We have also implemented to using tensor

model to extend the two-class problem to several

classes.

8. ACKNOWLEDGMENTS
The authors would like to thank Prof. Carlos Thomaz

for his technical advices, the referees for their

constructive comments which helped to improve this

paper, and Universiti Malaysia Sarawak (UNIMAS)

for the travelling fund.

WSCG 2012 Communication Proceedings 76 http://www.wscg.eu

9. REFERENCES
[Ste81] Stephen M. Platt and Norman I. Badler.

“Animating facial expressions.” SIGGRAPH Computer

Graphics, 15(3):245–252, 1981.

[Wat87] K. Waters. “A muscle model for animation three-

dimensional facial expression.” International

Conference on Computer Graphics and Interactive

Techniques, pages 17–24, 1987.

[Gue98] B. Guenter, C. Grimm, D. Wood, H. Malvar, and

F. Pighin. “Making faces.” Annual Conference on

Computer Graphics and Interactive Techniques, pages

55–66, 1998.

[Pig98] F. Pighin, J. Hecker, D. Lischinski, and R.

Szeliski. “Synthesizing realistic facial expressions from

photographs”. In SIGGRAPH Computer graphics,

pages 75–84, Orlando; FL, 1998. ACM Press.

[Fas02] B. Fasel and J. Luettin. “Automatic facial

expression analysis: a survey”. IDIAP Research Report

99-19, 2002.

[Ter90] D. Terzopoulos and K.Waters. “Physically-based

facial modeling, analysis and animation”. Journal on

Visualisation and Computer Animation, 1(2):73–80,

1990.

[Lee95] Y. Lee, D. Terzopoulos, and K. Walters. “Realistic

modeling for facial animation”. In SIGGRAPH on

Computer Graphics and Interactive Techniques, pages

55–62, New York, NY, USA, 1995.

[Fox05] B. Fox. “Barrett fox character animator”.

Internet: http://www.barrettfox.com/, 2005.

[Sif05] E. Sifakis, I. Neverov, and R. Fedkiw.

“Automatic determination of facial muscle activations

from sparse motion capture marker data.” ACM

Transactions Graphics, 24(3), 2005.

[Wil97] J. Wilhelms and A.V. Gelder. “Anatomically

based modeling.” Annual Conference on Computer

Graphics and Interactive Techniques, 1997.

[Ers08] N. Ersotelos and F. Dong. “Building highly

realistic facial modeling and animation: a survey.” The

Visual Computer, 24(1):13–30, 2008.

[Sha01] A. Shashua and T. Riklin-Raviv. “The quotient

image: class-based re-rendering and recognition with

varying illuminations.” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23(2):129–139,

2001.

[Par96] F.I. Parke and K. Waters. “Computer facial

animation”. A K Peters, 1996.

[Wil90] L. Williams. “Performance-driven facial

animation.” Annual Conference on Computer Graphics

and Interactive Techniques, pages 235–242, 1990.

[Ber85] P. Bergeron and P. Lachapelle. “Controlling

facial expressions and body movements in the

computer-generated animated short "tony de peltrie".”

In ACM SIGGRAPH Advanced Computer Animation

seminar notes, 1985.

[Ess96] I. Essa, S. Basu, T. Darrell, and A. Pentland.

“Modeling, tracking and interactive animation of faces

and heads using input from video.” IEEE International

Conference on Computer Animation, 00:68, 1996.

[Jos03] P. Joshi, W.C. Tien, and M. Desbrun. “Learning

controls for blend shape based realistic facial

animation.” ACM SIGGRAPH Eurographics

Symposium on Computer Animation, pages 187–192,

2003.

[Bla03] V. Blanz, C. Basso, T. Poggio, and T. Vetter.

“Reanimating faces in images and video.” Annual

Conference of the European Association for Computer

Graphics, 22(3):641–650, 2003.

[Vla05] D. Vlasic, M. Brand, H. Pfister, and J. Popovic.

“Face transfer with multilinear models.” ACM

Transactions on Graphics, 24(3), 2005.

[Kon] Konica Minolta, Vivid 910. [Online].

Available: http://www.minoltausa.com

[Pap05] T. Papatheodorou and Daniel Rueckert.

“Evaluation of 3d face recognition using registration

and PCA.” In Takeo Kanade, Anil K. Jain, and Nalini

K. Ratha, editors, AVBPA, volume 3546 of Lecture

Notes in Computer Science, pages 997-1009. Springer,

2005.

[Vis] VisionRT. [Online]. Available:

http://www.visionrt.com

[Wan06] J. Wang and L. Yin and X. Wei and Y. Sun.

“Facial expression recognition based on primitive

surface feature distribution.” in the IEEE International

Conference on Computer Vision and Pattern

Recognition (CVPR 2006), New York, 2006.

[Coo95] Cootes, T., Taylor, C.J., Cooper, D.H., Graham, J.

“Active shape models - their training and application.”

Computer Vision and Image Understanding, 61(1):

3859. 1995.

 [Tho06] C.E. Thomaz, E.C. Kitani and D.F. Gilles: “A

Maximum uncertainty LDA-based approach for

limited size problems with applications to face

recognition.” Journal of the Brazilian Computer

Society, Vol 12(2), pg 7-18, 2006.

[Kit06] Kitani, E.C., Thomaz C.E., Gillies, D.F. “A

Statistical discriminant model for face interpretation

and reconstruction.” In: 19th Brazillian Symposium on

Computer Graphics and Image Processing. 2006.

[Lat00] L.D. Lathauwer, B.D. Moor, and J. Vandewalle.

“A multilinear singular value decomposition”. SIAM

Journal on Matrix Analysis and Applications,

21(4):1253–1278, 2000.

[Rao71] C.R. Rao and S. Mitra. “Generalised inverse of

matrices and its applications”. Wiley New York, 1971.

[Has07] S. Hassan Amin and Duncan Gillies.

“Quantitative analysis of 3d face reconstruction using

annealing based approach”. In: IEEE International

Conference on Biometrics: Theory, Applications, and

Systems, BTAS 2007, pg 1–6, 2007.

WSCG 2012 Communication Proceedings 77 http://www.wscg.eu

http://www.visionrt.com/

WSCG 2012 Communication Proceedings 78 http://www.wscg.eu

Procedural generation of meandering rivers inspired
by erosion

 Michał Kurowski

Warsaw University of Technology, the Faculty of Electronics and Information Technology
Pl. Politechniki 1

00-661, Warsaw, Poland

M.Kurowski@ii.pw.edu.pl

ABSTRACT
This paper describes a method of procedural generation of meandering rivers inspired by erosion, which can

enhance visual realism of virtual terrains. Terrain is represented using an adaptively subdivided triangle mesh

with additional information (e.g. amount of soft deposit) stored in vertices. Water is simulated using Smoothed

Particle Hydrodynamics (SPH), modified in order to model erosion occurring within meanders. Most

experiments were performed on an initially flat terrain, so in order to provide the initial disruption of an

otherwise straight flow, a simple force simulating an exaggerated Coriolis effect was introduced.

Keywords
Computer graphics, procedural terrain generation, meanders, Smoothed Particle Hydrodynamics, erosion.

1. INTRODUCTION
Creation of “virtual worlds” used in computer games,

simulations, movies or art requires a significant

amount of various content, including, but not limited

to, textures, object models, sounds and terrains. This

content can be either handcrafted by skilled

professionals or generated procedurally. This

distinction is not very sharp, as various packages

offer the ability to combine both approaches (e.g.

map editor in “Earth 2150” game), by allowing their

users to procedurally generate some elements of the

content (e.g. fractal terrain for use in a Real-Time

Strategy game) and then manually combine and

tweak them to match specific requirements (in case

of the previous example: create a level patch of

terrain for player’s base or place resources and

bridges). The growing computational power of

devices in the hands of end-users is followed by their

growing expectations for visual quality, which is

often linked to visual complexity [Mus02]. This in

turn leads to the growing amount of required work,

which translates to development time, staff size and

budget size, making the procedural approaches more

noteworthy. Automatic generation is already very

attractive to indie game developers who are aiming

for low cost and low development time instead of

high complexity within an acceptable budget.

Terrain is present in many “virtual worlds” and often

strongly influences the final product: beautiful

landscapes create atmosphere in movies and

complement the action, while maps for strategy

games decide the gameplay style. A complete and

practical solution should be able to produce a

visually complex scene in an acceptable time. This

scene should contain features desired by an artist or a

level designer. Unfortunately, pure procedural

approaches are often either hard to control or produce

results which look artificially. Methods based on

physical simulations are often more intuitive and

easy to integrate with other solutions, but they are

also either very slow or too simplified to produce

certain phenomena, such as for example meanders.

This paper describes a method that can be used to

enhance an existing terrain model (created

procedurally or manually) with meandering rivers,

thus introducing some amount of physically inspired

realism. The presented heuristic solution produces

meanders by eroding the outer river banks

horizontally and depositing the eroded material

mainly near the inner banks. It uses SPH for water

simulation and an adaptive triangle mesh for terrain

representation. The most important contributions of

this work are: the introduction of separate material

particles, simulating an exaggerated Coriolis effect to

initiate the meandering and using a low number of

particles to represent water in order to achieve

acceptable performance. The resulting method can be

used interactively by an artist or a level designer, can

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2012 Communication Proceedings 79 http://www.wscg.eu

take into account an existing terrain topography and

can be further enhanced to allow for different

material properties.

2. RELATED WORK
Due to the practical applications of procedural terrain

generation many different methods were proposed. In

[Mus02] Musgrave covers terrain synthesis using

multifractals. Various erosion based approaches were

presented in [Nei05], [Sta08] and [Kel88]. [Ben06a]

by Benes is a short paper focused on hydraulic

erosion introducing some problems that need to be

addressed: scene size, simulation speed, user input,

interactivity and covering of different scales. Some

of these issues are addressed by a GPU based method

introduced in [Val11], which uses an adaptively tiled

“virtual layered terrain” together with pipe model for

water simulation and allows interactive editing. The

authors of [Cen09] present automatic terrain

generation based directly on user’s sketches, while

Zhou, Sun and Turk propose a method which

combines a “feature map” sketched by the user with

example data from a digital elevation model [Zho07].

A similar idea, where a user specifies terrain

primitives which are then matched against a database

of “terrain units” manually extracted from real-world

elevation data is presented in [Chi05]. Brosz [Bro06]

proposes a method of enhancing user created model

with high-resolution details extracted from another

terrain. A fairly recent general overview of

procedural techniques for creating 3D environments

can be found in “A survey of Procedural Methods for

Terrain Modelling“ [Sme09].

The problem of meandering rivers is rarely

addressed. One of the exceptions is work by

Prusinkiewicz and Hammel [Pru93], where a river

modeled using a squig curve is incorporated into a

mountainous terrain created using midpoint-

displacement algorithm. The process involves

recursive subdivision of the triangles within the

terrain’s mesh and classification of the triangles’

edges into river entry, river exit and neutral ones. The

proposed solution produces complex fractal terrains,

but lacks some realism: the river flows on constant

altitude in an asymmetric valley. The authors also

mention certain issues with tributaries which are not

solved in the article.

Belhadj [Bel05] proposed an enhanced midpoint-

displacement algorithm which is constrained by a

pre-computed set of ridge lines and a river network.

The network is created by tracing and combining the

trajectories of randomly seeded “river particles”. The

results look promising and contain meander-like river

paths, but their origin is not presented in the paper.

Teoh [Teo08] presented a different approach in

WaterWorld. Rivers can be “seeded” by the user and

then grown downward cell-by-cell in the direction of

the lowest neighbor until they find another body of

water. If a section of the river is found to be gently

sloping, meanders are generated as an alternating

curve defined by “wavelength”, which is proportional

to the flow of the river and “meander angle” set by

the user.

In a more recent work [Teo09] the same author

proposed another approach in which ridge lines are

created by the user, while the river network is grown

inward into the land mass from randomly placed

river mouths. Each river is generated by adding

consequent, randomly rotated segments and then

fitting an alternating curve through them. In order to

achieve varied terrain, different rivers have different

“SegmentLength” and “MeanderCurvature”

parameters. The heightmap is then created to

accommodate the generated ridges and rivers.

The authors of [Ben06b] proposed a method based on

the Navier-Stokes equations and a regular voxel grid.

In one of their experiments they simulated a riverbed

with meanders flooded by a wave. The simulation

produced excellent results, with the river eroding the

outer banks, breaking through the meanders and

leaving two billabongs. However, the algorithm has

high computational cost and is unsuitable for

simulating large terrains (the experiment was

conducted on a 120x32x120 grid). Also, the initial

meanders were not created during the simulation.

A recent work on hydraulic erosion using CUDA for

acceleration [Bez10], while not dealing with

meanders, has some similarities with the method

presented in this paper. Both use particles for water

simulation and adaptive triangle meshes for terrain.

However, the solution proposed by Bezin performs

the subdivision during an off-line pre-processing and

constrains the movement of vertices to the vertical

axis (the authors use the term “adaptive heightfield”).

3. PROCEDURAL MEANDERS

Proposed Mechanism
Flow of water within a meandering channel is a

complex 3D phenomenon which can be resolved into

a primary downstream and a secondary transverse

components [Nal97]. Conducted experiments

[Ram99] show that these components change with

depth, distance from banks and along the length of

the meander. An exact physically correct simulation

(like [Ben06b]) on a large scale would require a

substantial amount of computations. On the other

hand, a simple curve fitting algorithms (like in

[Teo08]) do not take into account local terrain

variations. This paper proposes a simple erosion

inspired heuristic algorithm, which is less complex

than an exact simulations, but can also accommodate

these variations and produces plausible results.

The presented method takes into account both

erosion and deposition. The “erosion force” is

WSCG 2012 Communication Proceedings 80 http://www.wscg.eu

proportional to the speed of water multiplied by its

amount and a “directional factor”, which is

interpolated from 0 at the inner bank of the meander

to 1 at the outer bank. The amount of material that

can be potentially eroded depends on the , the

area for which is calculated, the material’s

softness and a user specified multiplier :

The actual amount of eroded material is

clamped so that water is not oversaturated with

sediment. If it weren’t for this condition, the

multiplication and the consequent division by

wouldn’t be necessary. Direction in which eroded

terrain is displaced consists of two components:

downward , which is constant, and horizontal [

],

pointing at the outer bank. The magnitude of [

] is

equal 0 where water flows straight and grows to a

user defined value when the flow is curved. The

terrain’s displacement is calculated as follows:

[

]

The “directional factor” ensures that the outer bank is

eroded more than the inner one and [

] introduces

lateral erosion, thus ensuring growth of the meander.

It should be noted, that the erosion occurs only when

water speed is greater than a certain user-defined

amount. This measure was introduced during early

experiments in order to avoid issues with self-

deepening or oscillating bed, which occurred in

places where water was semi-stationary. However,

further research into the mechanics of erosion

revealed the existence of “critical shear stress”. The

introduced threshold is applied to speed, not the

actual shear stress, but as both parameters are

correlated, it serves the same purpose.

The emergence of meanders is the result of both the

horizontal erosion of the outer bank and the

deposition of sediment near the inner bank. In order

to facilitate the latter process, the eroded material

carried by water is attracted toward the inside of the

meander (Figure 1). The strength of this attraction is

user defined.

Both erosion and deposition create a positive

feedback loop which causes the growth of meanders,

but also requires some initial curvature. This

curvature can be supplied by the shape of the terrain

or by an external force. In one of his speeches,

Einstein [Ein26] mentioned the role of Coriolis force

in the non-uniform distribution of velocities within a

flowing river. The magnitude of this force is

dependent on the Earth’s rotation speed, the current’s

velocity and the geographical latitude. In order to

reduce the amount of user-controlled parameters, the

presented method assumes that the changes of

latitude are negligible within the simulation’s

domain. This leads to a simplified formula, which is

intuitively consistent with Baer’s law and produces

satisfactory results:

 [

] ,

where is the force, is a user defined factor, is

the velocity of water projected onto the X axis and

 is the mass of water to which the force is applied.

Water Simulation
The presented method requires the water simulation

to provide not only the speed and mass of water in

certain areas, but also information whether the stream

is curving and in what direction. The process of

meandering depends on small, smooth variations in

the direction of river flow, which should not be

dampened in time. For performance reasons, the

simulation should be conducted only in areas

containing water, which usually occupy a fraction of

the entire domain.

Existing water simulation methods can be divided

into Eulerian (operating on meshes or fixed grids)

and Lagrangian (operating on particles). Although

hybrid methods exist and are used in computer

graphics, erosion simulation usually employs pure

approaches ([Ben06b] and [Ben09]). The Eulerian

methods usually produce excellent, physically correct

Figure 1. Attraction of the sediment to the inner

banks of curves within the river channel. Green

particles – water; violet particles (with vectors) –

sediment.

WSCG 2012 Communication Proceedings 81 http://www.wscg.eu

results, but are computationally expensive, especially

when applied to large 3D domains. They also reveal

a tendency to dampen movement which isn’t aligned

with the used grid. There are works which solve

some of these problems by introducing non-regular

adaptive meshes or additional particles, but they are

usually complicated. Interaction with solid

boundaries is either complex or requires high

resolution. On the other hand, even simple

Lagrangian methods do not suffer from anisotropy

and can be easily optimized for large, sparse

domains. Current consumer hardware is capable of

simulating tens of thousands of particles at

interactive rates using GPGPU [Gos10]. Physical

accuracy of the simplified methods doesn’t match

that of the Eulerian ones, but it is usually good

enough for applications in computer graphics.

The presented paper uses Smoothed Particle

Hydrodynamics, which was introduced in [Mul03]

and combines relative simplicity with great

flexibility. The characteristic feature of this method

is that certain quantities (e.g. pressure) defined at

discrete particle locations can be evaluated also in

their neighborhoods as continuous values. This is

achieved by accumulating contributions from

individual particles weighted by radial symmetrical

smoothing kernels. The SPH particles used in this

paper are enhanced with additional quantities for use

only in the erosion algorithm – scalar “curve

accumulator” and vector “curve direction” . is

defined initially as 0 for each particle. If a particle’s

horizontal velocity vector changes its direction more

than a certain value, is increased or decreased

depending on whether the velocity was changed to

the left or to the right, while is set to left. If the

absolute value of is greater than a certain

threshold, the stream is assumed to be curving in the

direction defined by . This value is then used as

[

]. The performance of SPH method relies on fast

finding of neighboring particles. A simple regular 2D

grid containing indices of particles within a certain

volume is used for this purpose.

Sedimentation
Eroded soil is carried with water as sediment. In

other works using SPH this information is usually

embedded in water particles. The sediment flow and

concentration is influenced not only by the water

velocity, but also for example by gravity and

diffusion. The authors of [Ben09] solve this problem

using a donor-acceptor scheme, where the movement

of imaginary sediment particles is simulated by

material transfer between water particles. This

approach produces realistic results, but depends on a

large amount of particles and allows the sediment

concentration to be defined only in and between

them. The method described in this paper strives for

river representation using the lowest possible amount

of particles and requires the sediment to be attracted

towards the inner banks, so that the center of its

concentration may not overlap with the center of

water mass. For this reason the presented solution

uses separate sediment particles that are influenced

by the flow of water, gravity and attraction to the

insides of the meanders.

Each particle’s speed is calculated as:

 [

] ,

Where is the particle’s speed in the next

simulation step, is the particle’s speed in the

current simulation step, is the gravity vector, is

the strength of repulsion from the terrain, is a user

defined “acceleration factor”, is a user specified

attraction factor, is the average speed of the

surrounding SPH particles and is the time delta

between the simulation steps.

If new sediment is added to the simulation, the

nearest sediment particle is searched for. If such

particle is not found, then a new one is created. If the

search is successful, a certain amount of the sediment

is added to the existing particle, so that the capacity

of the particle is not exceeded. The amount that could

not be added is returned to the erosion algorithm and

is used to clamp the value introduced earlier.

This stops erosion when water is oversaturated with

eroded material. However, the oversaturation can

occur if multiple particles concentrate in a small

volume (there are no collisions between them, so

they can be arbitrarily close to each other). In this

case the sedimentation process is initiated to get rid

of the excess material. The sedimentation also occurs

as the particle ages, when it loses contact with water

(which rarely happens) or its speed is lower than a

threshold , calculated based on user-controlled

parameter and the distance from the center of

water mass :

 (

‖ ‖)

where is the particle’s position and is the

smoothing radius of the SPH simulation. This

formula is purely heuristic and was developed by

experimentation. The situation in which the sediment

particle leaves water is undesired, so it’s movement

is restricted to the volume within of the nearest

SPH particle. This solution works most of the time,

but breaks if water velocity changes rapidly.

However, these rare stray sediment particles do not

seem to introduce any problems to the simulation.

For performance reasons, if two particles are close

enough and do not exceed the saturation limit, they

WSCG 2012 Communication Proceedings 82 http://www.wscg.eu

are merged together into a larger one. The search for

neighbors in a given area is accelerated by a 2D grid

identical to the one used in water simulation.

Terrain Representation
The author’s first experiments with meandering were

conducted on a commonly used heightmap

(Figure 3). The directional feature of the erosion was

simulated by eroding two points at the same time –

the one where the erosion parameters were calculated

and its neighbor in the direction of the erosion. The

meanders started to form, but their evolution ended

fast. When the elevation difference between the river

bed and its bank increased, the simplified lateral

erosion was less effective, while the sedimentation

performance was constant. This lead to silting and

overflowing of the bed. A better terrain

representation was required.

Further experiments were conducted using

“deformable voxels” introduced by the author in

[Kur11a]. The initial results were encouraging, but as

it turned out, it was difficult to maintain coherence of

the grid. An attempt to refine the terrain

representation was made. However, before a

satisfactory solution was found, rising computational

complexity made the idea impractical and without

much room for optimization.

Because of the difficulties with voxel representations,

a polygonal mesh was used. The collision surface is

defined by triangles, while the properties of the

terrain are stored within vertices, which are displaced

by erosion and sedimentation. Triangles are

adaptively subdivided (Figure 2) in order to ensure,

that no water particle can touch a triangle without

influencing the erosion of at least one of its vertices.

One of the obvious advantages of such a mesh is that

any surface can be easily represented. There are

however some important issues to deal with. If some

vertices are moved further apart, then some others are

moved closer together. This results in an

oversampled mesh and while it doesn’t pose any

problems to the correctness of the simulation, it can

significantly reduce the performance. Smooth

merging of triangles without causing sudden changes

in terrain geometry is yet to be implemented in this

solution. The mesh can become degenerated when

two surfaces get close enough to penetrate each

other. This issue was solved in [Mul09], but can be

difficult in case of an almost unconstrained mesh

with arbitrary resolution used in the presented paper.

A simple solution requires the previous problem to

be addressed first. However, this degeneration seems

to occur only in the last stages of a meander’s

evolution, so while it certainly limits the simulation,

it is still possible to achieve decent results.

Additional issues occur if the vertices defining

consequent triangles on the river bed are at

Figure 3. Evolution of a meander on a heightmap terrain (green particles – water; violet particles –

sediment; green terrain – deposition; red terrain - erosion). The initial bends are due to the simulated

Coriolis force and shape of the terrain. The positive feedback loop ensures the growth of the meander,

which is unfortunately slower and slower, until it stops completely. It should also be noted, that the bend

closest to the source is the most prominent, which is undesirable.

Figure 2. Terrain represented using a triangle

mesh. The river channel is adaptively subdivided.

WSCG 2012 Communication Proceedings 83 http://www.wscg.eu

significantly different distances from the flow of

water. This results in irregular erosion, which

produces uneven bed surface which significantly

slows the flow of water, creating unwanted small

ponds. One solution is to introduce denser

subdivision, which results in poorer performance.

Other option which was also used was to perform

smoothening of the eroded terrain after each 10

simulation steps.

The amount of eroded or deposited material is

proportional to the magnitude of the displacement

and the area supporting the displaced vertex. The

deposition is always upwards and the erosion is

assumed to be mainly downwards. Therefore the area

is calculated as a sum of areas of all the triangles to

which the given vertex belongs, projected on the

horizontal plane.

Usually a hard bedrock or cohesive soil is harder to

erode than fresh sediment. In order to take into

account this feature, each vertex stores the thickness

of a “soft layer”. It indicates what part of the vertex

displacement is due to the accumulation of material

that was eroded elsewhere. If this value is larger than

0, we assume that we are eroding soft, fresh

sediment. The introduced earlier material softness

of the base terrain is set to 1, while of this layer is

controlled by the user. While the thickness of the soft

layer is increased by deposition, it is decreased both

by erosion and time. The latter is introduced to

simulate the hardening of the sediment into rock. The

soft layer prevents sedimentation in places which are

being constantly eroded and facilitates the transport

of the material.

In order to facilitate the performance of adaptive

subdivision, area calculation and collision detection,

vertices are indexed in a 3D grid and contain

information about all their neighbors and all the

triangles they belong to.

4. SIMULATION SOFTWARE
The simulation software was written in C++ and uses

FLTK library for user interface, OpenGL for

visualization and OpenMP for parallel computations,

so that it can take advantage of the modern multi-

core processors. These libraries were chosen to

enable the application to be compiled and run both on

Windows and Linux systems. Water simulation,

sediment transport and terrain representation were

carefully separated in order to enable easy swapping

of different terrain implementations. The code uses

lambda functions introduced in the new C++11

standard. While they do not have any noticeable

impact on performance, they greatly reduced the time

needed to implement and test various approaches

without compromising the introduced separation.

Water sources and sinks can be added, modified or

removed before and during the simulation. SPH,

erosion and deposition parameters can also be

adjusted in run-time.

5. RESULTS
First experiments were conducted in an artificial

valley with cross-section in the shape of a flattened

sinusoid. Meandering in such a terrain occurs

naturally if the stream of water is not perfectly

aligned with the valley. However, many rivers

meander on flatlands and so further experiments were

conducted on a completely flat surface (4096 x 768

units in size) surrounded by barriers from 3 sides. In

order to enforce the flow of water, the surface was

tilted towards the side without any barrier. An

artificial source producing one particle per second at

a random position within a radius of 10 units was

placed on the top. Water and sediment that fell from

the surface after reaching its lower end was removed

by an artificial sink. The created system was thus

open. The CM factor regulating the force induced by

Coriolis effect was set to 0.005. SPH radius was 25

units. Other user-controlled variables (over 20 in

total, their complete description is beyond the scope

of this article) were different in consequent

experiments and sometimes tweaked in run-time.

The simulation contained usually around 300 SPH

particles and a similar - sometimes slightly larger -

amount of sediment particles. One step of the

simulation took around 0.02s on Intel Core 2 Quad

2.66 GHz with 4GB of RAM. The approximate time

spent in different subsystems is as follows: drawing ~

1%, erosion ~ 25%, adaptive subdivision of terrain ~

5%, SPH simulation ~ 30% (~25% is spent in

calculating collisions with ground), sediment

transport and deposition ~30%. Precise percentages

depend strongly on the state of the simulation.

The artificial river bends, the outer banks are

intensively eroded and the deposition occurs mainly

on the inner ones. Meanders start to form and then

grow (Figure 4). Dense subdivision is visible within

the river channel, especially on the outer banks. The

horizontal shape of the river looks convincing.

However, the cross-section reveals one unwanted

feature – the smoothing of the eroded terrain

introduced to ensure the undisturbed flow of water

causes the river channel to be too flat, lowering the

bed near the inner banks (where most deposition

occurs) and raising the bed near the outer ones

(Figure 5).

WSCG 2012 Communication Proceedings 84 http://www.wscg.eu

6. CONCLUSIONS
The main goal of the experiments – to produce

growing meanders – was achieved. Introduction of

the simplified Coriolis force lead to satisfactory

results. Triangle mesh seems to be the best choice for

this type of simulation, but there are certain issues

that require more work. In order to ensure the proper

shape of the cross-section, the smoothing algorithm

needs to be refined or completely replaced by a better

solution with a possibly low negative effect on the

performance. An effective solution to the mesh

degeneration must be implemented in order to enable

the full evolution of meanders up to the formation of

billabongs. Additional tests on more complicated

terrains should be conducted in order to find and

resolve possible issues.

After refining the existing functionality, certain

features will be added. At this moment the only

sources of water are artificial and placed by the user.

This results in the amount of water being

approximately constant along the channel’s length,

while natural rivers tend to be small at the source and

then grow larger due to additional supply from

tributaries. Such tributaries should be automatically

generated based on a rainfall simulation, probably

similar to [Teo08]. The present method assumes the

same material softness for the entire base terrain. It

was shown in [Kur11b] and [Ben01] that introduction

of several, possibly intersecting, layers of terrain with

different parameters may significantly enhance the

results of erosion. A similar feature should be

implemented using the triangle mesh.

The SPH simulation was planned to be migrated to a

GPGPU solution like OpenCL or CUDA. However,

the solver uses just a few percent points of the

processing time, so the expected benefits would be

negligible. Possible performance related

optimizations (and potential porting to GPGPU)

should concentrate on the terrain representation and

collision detection instead.

The proposed method has also an interesting feature

compared to purely random algorithms – the

emergence and growth of the meanders is a

continuous process, which could be presented to the

end-users as a feature. “From Dust” is a game in

which the player assumes the role of a god and

achieves the mission objectives by shaping the

landscape using nature elements. One of these

elements is water, which erodes the terrain.

Adaptation of the proposed method for a direct use in

a game environment would require a significant

amount of work, but should be possible and could

enhance the gameplay.

Figure 4. Meanders generated using the proposed method using a triangle mesh terrain representation.

Green particles denote water and the yellow area corresponds to the river channel. It should be noted that

the curves started to form due to the introduced Coriolis effect on an initially flat surface. The further

downstream, the larger the meanders are, which gives them a plausible appearance.

Figure 5. Close-up of the river channel (terrain

surface is rendered using Gouraud shading with a

single light source at the camera’s position). The

bed is too wide and too flat.

WSCG 2012 Communication Proceedings 85 http://www.wscg.eu

7. REFERENCES
[Bel05] Belhadj F. and Audibert P.. Modeling Landscapes

with Ridges and Rivers. Proceedings of the ACM

Symposium on Virtual Reality Software and

Technology 2005, 2005.

[Ben01] Benes B. and Forsbach R.. Layered Data

Representation for Visual Simulation of Terrain

Erosion. IEEE SCCG2001 Budmerice, Slovakia, 2001.

[Ben06a] Benes B.. Hydraulic Erosion: A Survey. Invited

paper to SCCG 2006, ACM SIGGRAPH, 2006.

[Ben06b] Benes B., Tešinsky V., Hornys J. and Bhatia

S.K.. Hydraulic Erosion. Computer Animation and

Virtual Worlds 17(2), 2006.

[Ben09] Kristof P., Benes B., Krivanek J. and Stava O..

Hydraulic Erosion Using Smoothed Particle

Hydrodynamics. Proceedings of Eurographics 2009

vol. 28 No.2, 2009.

[Bez10] Bezin R., Peyrat A., Crespin B., Terraz O., Skapin

X. and Meseure P.. Interactive hydraulic erosion using

CUDA. Proceedings of the 2010 international

conference on Computer vision and graphics: Part I,

2010.

[Bro06] Brosz, J., Samavati, F. and Sousa, M.. Terrain

synthesis by-example. Advances in Computer Graphics

and Computer Vision International Conferences

VISAPP and GRAPP 2006, 2006.

[Cen09] Puig-Centelles A., Varley P.A.C. and Ripolles O..

Automatic Terrain Generation with a Sketching

Interface. Proceedings of the 17th International

Conference in Central Europe on Computer Graphics,

Visualization and Computer Vision (WSCG ’09), 2009.

[Chi05] Chiang, M.Y., Huang, J.Y., Tai, W.K., Liu, C.D.

and Chiang, C.C.. Terrain synthesis: An interactive

approach. Proceedings of the International Workshop

on Advanced Image Technology, 2005.

[Ein26] Einstein, A.. The cause of the formation of

meanders in the courses of rivers and of the so-called

Baer's Law. Read before the Prussian Academy,

January 7, 1926, published in Die Naturwissenschaften,

Vol. 14 (English translation in "Ideas and Opinions,"

by Albert Einstein, Modern Library, 1994), 1926.

[Gos10] Goswami P., Schlegel P., Solenthaler B. and

Pajarola R.. Interactive SPH Simulation and Rendering

on the GPU. Proceedings ACM

SIGGRAPH/Eurographics Symposium on Computer

Animation, 2010.

[Kel88] Kelley A.D., Malin M.C. and Nielson G.M..

Terrain simulation using a model of stream erosion.

Proceedings of SIGGRAPH '88, 1988.

[Kur11a] Kurowski M.. Modelowanie terenu na bazie

symulacji erozji z wykorzystaniem deformowalnych

wokseli. Zeszyty Naukowe Wydzialu Elektroniki,

Telekomunikacji i Informatyki Politechniki Gdanskiej,

Proceedings of WGK 2011 vol. 1, 2011.

[Kur11b] Kurowski M.. Modelowanie terenu 3D z

jaskiniami inspirowane erozją. Zeszyty Naukowe

Wydzialu Elektroniki, Telekomunikacji i Informatyki

Politechniki Gdanskiej, Proceedings of ICT Young

2011 vol. 1, 2011.

[Mul03] Müller M., Charypar D. and Gross M.. Particle-

based fluid simulation for interactive applications. SCA

'03 Proceedings of the 2003 ACM

SIGGRAPH/Eurographics symposium on Computer

animation, 2003.

[Mul09] Müller M.. Fast and Robust Tracking of Fluid

Surfaces. Proceedings of ACM SIGGRAPH /

EUROGRAPHICS Symposium on Computer

Animation (SCA), 2009.

[Mus02] Ebert D.S., Musgrave F.K., Peachey D., Perlin K.

and Worley S.. Texturing and Modeling, Third Edition:

A Procedural Approach. The Morgan Kaufmann Series

in Computer Graphics, 2002.

[Nal97] Nalder G.. Aspects of Flow in Meandering

Channels. Transactions of the Institution of

Professional Engineers New Zealand: General Section

Volume 24 Issue 1, 1997.

[Nei05] Neidhold B., Wacker M. and Deussen O..

Interactive physically based Fluid and Erosion

Simulation. Proceedings of the Eurographics Workshop

on Natural Phenomena, NPH 2005, 2005.

[Pru93] Prusinkiewicz P. and Hammel M..A Fractal Model

of Mountains with Rivers. Proceedings of Graphics

Interface’93, 1993.

[Ram99] Rameshwaran P., Spooner J., Shiono K., and

Chandle, J.H.. Flow Mechanisms in two-stage

meandering channel with mobile bed. Proceedings of

IAHR Congress in Graz, Austria, 1999.

[Sme09] Smelik R.M., Kraker K.J., Groenewegen S.A.,

Tutenel T. and Bidarra R.. A survey of Procedural

Methods for Terrain Modelling., CASA Workshop on

3AMIGAS, 2009.

[Sta08] Stava O., Benes B., Brisbinn M. and Krivanek J..

Interactive Terrain Modeling Using Hydraulic Erosion.

Eurographics/SIGGRAPH Symposium on Computer

Animation, 2008.

[Teo08] Teoh T.S.. River and Coastal Action in Automatic

Terrain Generation. Proceedings of the International

Conference on Computer Graphics and Virtual

Reality’08, 2008.

[Teo09] Teoh T.S.. RiverLand: An Efficient Procedural

Modeling System for Creating Realistic-Looking

Terrains. ISVC ’09 Proceedings of the 5th International

Symposium on Advances in Visual Computing, 2009.

 [Zho07] Zhou, H., Sun, J., Turk, G. and Rehg, J.. Terrain

synthesis from digital elevation models. IEEE

Transactions on Visualization and Computer Graphics

13,2007.

[Van11] Vanek J., Benes B., Herout A. and Stava O..

Large-Scale Physics-Based Terrain Editing Using

Adaptive Tiles on the GPU. IEEE Computer Graphics

and Applications November/December 2011, Vol 31,

No 6, 2011.

WSCG 2012 Communication Proceedings 86 http://www.wscg.eu

Parallel Treecut-Manipulation for Interactive Level of Detail
Selection

Daniel Schiffner

Goethe Universität
Robert-Mayer-Str. 10

Germany, 60054, Frankfurt (Main)

dschiffner@gdv.cs.uni-frankfurt.de

Detlef Krömker

Goethe Universität
Robert-Mayer-Str. 10

Germany, 60054, Frankfurt (Main)

kroemker@gdv.cs.uni-frankfurt.de

ABSTRACT
We present a dynamic system that allows to alter the Level of Detail (LOD) of a treecut-based object. The adap-
tation and selection is made in a parallel process which avoids stalling or locks because of expensive calculations
and LOD changes. We present a method to control the exchange between the independent threads. Based on this
separation, we present multiple strategies to perform the LOD-selection for point-based representations.

Keywords
Level Of Detail, Parallel LOD-selection, LOD-strategies, Thread Management.

1 INTRODUCTION
Level of Detail (LOD)-techniques are required in
today’s rendering environments to assure interactivity
because of the ever growing number of primitives
used [Hol11]. The selection of a LOD-representation,
for example, can be based on the current view or
object-related properties. However, these selections
may require expensive computations, and thus, discrete
LODs are preferred over continuous methods. We
address this issue and present a system to allow parallel
LOD-selection.

This LOD-selection can be derived using different
strategies. These range from a simple recursive
algorithm up to a priority-based selection. Using a
perceptual metric in combination with a prioritization,
the visual quality of an existing representation is
preserved with respect to the human visual system. As
the necessary calculations made by a perceptual metric
can be expensive, the LOD-selection is performed in a
parallel thread. So, stalling of the rendering is reduced
to a minimum.

In this work, we describe our point-based rendering sys-
tem and show how to manage the individual threads.
Furthermore, we present multiple LOD-strategies that
evolve an existing representation using only local oper-
ations.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Following to this introduction, we will give an insight
into related work and then present our framework. This
includes the synchronization of the evaluation as well as
the LOD-strategies. We present performance and visual
results that were achieved with the proposed framework
and conclude with an outlook regarding future work.

2 RELATED WORK
Several methods to create a LOD-hierarchy exist. Typ-
ically, these levels are created by the hand of a designer
who may be supported by a reduction algorithm. These
pregenerated LODs are then used during rendering and
are exchanged by some kind of metric.

It is possible to avoid the generation of a hierarchy
or pregenerated LODs to reduce the amount of stored
information. Especially interesting in this context are
progressive representations. These produce intermedi-
ate solutions and are not restricted to fixed, i.e. discrete,
levels. For this reason, these methods are referred to
as continuous LOD. Hoppe [Hop96] presented a mesh-
based reduction method, which was extended to point-
based representations by [Wu05].

To create the individual levels, the reduction methods
can exploit geometric information to increase details.
[Gar97], for example, apply an error metric to increase
the quality of the reduced versions. If such an algorithm
is applied sequentially and the results are stored, a hier-
archy is created. The current representation is defined
by a vertex front or a cut / treecut.

Instead of generating details, the vertex front can be
altered to select the representation based on the cur-
rent hierarchy. Schiffner and Krömker [Sch10] use a
treecut to adapt the representation by prioritizing nodes
with high curvature. A similar approach is presented

WSCG 2012 Communication Proceedings 87 http://www.wscg.eu

Controller

TC Evaluation

Feedback Stage

Model

Data

Static
Representation

TC
Modify

Representation

. . . TC
Modify

Representation

Scene View
Extract Data

Invokes
R
efresh

Model Info Visual Info

Update

Commands, etc.

Figure 1: The design of our framework is based upon a Model-View-Controller (MVC) pattern. We introduce
a Feedback Stage, which consists of a LOD-strategies and generates the new representation of the TreeCut. This
component extracts information from both the Model and the View. Changes are relayed via the Controller.

by [Car11], where an octree cut is used to select data
for visualization of large data sets. Both methods avoid
a retraversal of the hierarchy and preserve the current
vertex front, similar to Progressive Meshes [Hop96]
or Progressive Splats [Wu05]. Both cuts includes a
method to alter the current distribution. This idea will
be used as a so-called LOD-strategy within this work.

Multi-threaded or parallel applications for rendering
often focus on splitting the current representation into
multiple viewports. Applications here range from
Global Illumination [Hol11] to efficient large data set
visualization [Gos12]. Recently, Peng et al. [Pen11]
presented an approach to generate large crowds by par-
allel processing the individual models. Similar to our
work, a scene is optimized for interactive renderings.
They, however, use a fixed evaluation method.

3 SYSTEM DESIGN
As common in graphics applications [Shi10], our
framework is based upon a Model-View-Controller
(MVC) pattern. The Controller invokes the changes
of the Model, i.e. the TreeCut [Sch10], which holds
the current LOD representation. The View uses this
current representation to derive a visual output using a
graphics API.

We extend this default pattern by introducing a
Feedback Stage (see figure 1). It is similar to an
observer component, but with the ability to influence
the Controller. Thus, the Feedback Stage can alter the
Model which results in a different View. The Feedback
Stage utilizes a strategy to apply the necessary LOD-
operations. Therefore, the strategy may need to extract
information from the rendered scene. This is visualized
by the connection between the Feedback Stage and
the View in figure 1. In the following, we will refer
to the extraction of information and application of the
strategy as an iteration.

Thread Management
We separate the Feedback Stage from the Controller,
as it is an independent component. As it has access to
all information required, it will be executed in parallel
to the default rendering. During evaluation, the ren-
dering of the old representation is continued. Due to
the parallelization of both processes, some kind of syn-
chronization needs to be included to avoid deadlocks or
race-conditions.

S
y
n
c
e
d

P
a
r
a
l
l
e
l

S
y
n
c
e
d

Evaluation Rendering

wait

process

Extract

Process Update

Alter Draw

wait Query

Exchange

Data

Signal

if
p
r
o
c
e
s
s

Figure 2: The processing sequence used to control the
evaluation and rendering threads. While the evaluation
is processing, the rendering thread displays the current
LOD-version. Once the evaluation has completed, the
data is exchanged and the LOD is updated gracefully.
The query from the rendering thread is made without
lock. This conditionally triggers the exchange of a new
representation, which must be performed synchronized.

WSCG 2012 Communication Proceedings 88 http://www.wscg.eu

We propose a synchronization-strategy based on two
states that are queried by the rendering thread: wait
and process. This allows to add the evaluation with
only small changes to the rendering code. The ren-
dering thread only has to query for a new representa-
tion, while the Feedback Stage will handle the complete
strategy evaluation and LOD-selection. The performed
steps are visualized in figure 2.
We leverage the fact that the TreeCut is only repre-
sented with an index-list. The derivation of a new LOD
thus only requires to generate a new index-list, which
will be swapped or blended with the current one. This
minimizes stall and flicker once a new representation is
available. Only a pointer, or the VBO id, needs to be
replaced. No copying of this data is performed during
synchronization.
On initialization of the evaluation thread, the state is
set to wait. In this state, all data can be accessed
safely from the rendering thread. Here, no locking the
data is required as no processing is performed. Only in
this state the data will be exchanged. As stated before,
the evaluation will generate an index-list, which can be
swapped with the current one used for display.
If a new representation is requested, because the scene
has changed or is considered invalid, the rendering pro-
cess issues an update request to the evaluation via a sig-
nal. The evaluation thread is then set to the process-
state. The rendering continues displaying the old rep-
resentation as long as the evaluation is generating an
updated version. After rendering a single frame, the
evaluation is queried.
When starting to generate a new representation, the
evaluation extracts the required data. This includes to
copy the current index-list used by the rendering thread.
As this is an read-only operation, no lock is required.
LOD-strategies may need to aquire additional data from
the View or the Model which can also be copied without
a lock.
After completion of a single iteration, the evaluation
thread will change its state to wait. As it is possible
that the current representation is optimal for the applied
strategy, a flag is used to indicate this case. This also
allows to accelerate the LOD-strategies as they may ter-
minate prematurely.
When the evaluation is in wait-stage again, the Ex-
change is executed. The Exchange does not cause a
race-condition in both threads, because neither the ren-
dering nor the evaluation requires access to the crucial
data at this time. Additionally, we only require to ex-
change, i.e. swap, the used index-list if a new represen-
tation has been generated.
The Feedback Stage can be invoked again directly after
the completion of the iteration. No additional updates
to the Feedback Stage are required, as it extracts the
current information in parallel.

4 LOD-STRATEGIES
Once a TreeCut has been established, only two core op-
erations are applied (refine, coarse), which repre-
sent the changes in the detail. To alter the representa-
tion in a global manner, we apply LOD-strategies that
are based solely on the current cut.
We include a threshold value to control the application
of the individual operations. This counteracts repet-
itive refines or coarses of nodes. We, hereby,
mean that a node is refined in an iteration while it
is coarsened in the next.
In the following, we will present three different types
of strategies: An optimization, a bucket-based approach
and a recursive traversal of the hierarchy. The latter dif-
fers from the first ones because it operates on the com-
plete LOD-hierarchy instead. It is included to show the
universal applicability of the proposed thread manage-
ment.

Optimization Strategy
The optimization LOD-strategy evaluates the current
cut and applies a partial sorting based on a priority
value, similar to [Car11]. This strategy requires some
kind of limitation regarding the cut-size, e.g. a maximal
node count. The priorities of the parent nodes should
to be larger than their children to avoid artifacts. Oth-
erwise, a parent node, i.e. a coarser representation, is
favoured over a more detailed one.
During the Extract in the evaluation thread (refer to fig-
ure 2), the priorities are aquired. In our implementation,
we use the curvature from the cut-nodes as priorities.
The partial sorting is applied by iterating the complete
cut and storing only the nodes with highest and lowest
priority.
The algorithm selects nodes with highest priority for
refinement, while nodes with lowest priority are

Nodes

HighLow

Optimize

if space

refine

if no-space

coarse

if {} or no-gain

abort

re
p
ea
t

Figure 3: The optimization LOD-strategy for TreeCut-
evaluation. Only the nodes with highest and lowest pri-
ority are processed. This accelerates the evaluation as
it reduces the theoretical time complexity [Car11]. The
most important ones are refined, while the least im-
portant ones are coarsened. This strategy requires a
maximal node count to be applied

WSCG 2012 Communication Proceedings 89 http://www.wscg.eu

coarsened in the representation. A coarse frees
space for further refinement with more important nodes.
The operations performed by this strategy are visual-
ized in figure 3.

As the partial sorting size can be considered constant
during run-time, e.g. the size is not changed during an
iteration, a linear time-complexity is given: O(n logk)
with k being the constant partial sorting size and n the
size of the current cut.

The threshold is defined as the minimal gain in prior-
ity required when altering the TreeCut. Therefore, the
primitives in the sorted sequences (low and high) are
compared before a coarse is applied. A refine is
always executed as long as space is available.

Bucket-based Strategy
The second strategy assigns a target bucket to each node
within the cut. The strategy alters the TreeCut to match
a certain distribution as closely as possible. This strat-
egy requires a method that determines the target bucket
for a node.

An example for application is the generation of a
stippling-like appearance of an object. The target
bucket for each node is derived by using the illumi-
nation at the current node’s location. The darker the
current location, the more nodes are used within this
region, i.e. the hierarchy is refined. The node is
coarsened if a lighter representation is required.

In figure 4, an exemplary application of the LOD-
strategy is shown. For each node, a target bucket is
calculated. If this bucket differs from the currently as-
signed bucket, the delta is used to determine the accord-
ing cut-operation. In the figure, a + denotes a posi-
tive delta and a refine needs to be applied, a - is a
coarse. The 0 is the special case, that the node al-
ready has the correct bucket and no operation is neces-
sary.

After the buckets have been calculated for all siblings,
the operations are validated. As in the optimization
LOD-strategy, a refine has higher precendence than
a coarse. For this reason, the left branch is expanded
in figure 4.

Special care has to be taken, if a coarse-operation
needs to be applied. The parent node needs be inspected
as well. The operation is only executed, if the bucket of
the parent does not invalidate it. A small example will
illustrate this scenario.

In the right branch of the tree in figure 4, a coarse
needs to be applied. Therefore, the parent node is in-
spected (visualized by the question mark). In this case,
the target bucket for the parent does not have a different
delta (it is 0), i.e. it does not invalidate the operation.
Thus, the coarse can be applied safely. The same ap-
plies, if the delta would be negative. If the parent would

have a positive value, the node would be expanded in
the next iteration. This would invalidate the operation
and introduce a flicker into the represenation and the
coarse is not executed.

As each node within the cut is evaluated, a linear time
complexity is given: O(n) with n being the cut-size.

For this LOD-strategy, the threshold is defined as the
minimal delta that is required to force a coarse. We
have achieved good results by a threshold of 0.

Recursive Strategy
The last strategy evaluates the complete LOD-hierarchy
instead of the current cut. This method is inspired by
the QSplat rendering system [Rus00]. Starting at the
root node, the new cut is defined by the individual nodes
when aborting the recursion. This abort is either due to
culling, small splat area, or when no further refinement
is possible, i.e. a leaf node is reached.

For this method it is required to additionally store the
complete hierarchy, which is not the case for the other
two LOD-strategies. During the Extract-step, this hier-
archy is mapped to be accessible. The evaluation then
starts the recursive traversal on a plain index-list.

The worst time complexity of this algorithm is O(N)
where N is the number of nodes within the tree. As
the abort criterion includes culling, an acceleration is
achieved, which results in an average logarithmic time
complexity for large objects.

As opposed to the other two methods, the recursive
strategy generates a new cut instead of manipulating an
existing one. Thus, the definition of the threshold is not
applicable to this strategy.

5 RESULTS
We tested the different evaluation strategies with our
rendering system. We measured the rendering times
and the overhead introduced by the usage of our sys-
tem. The proposed LOD-strategies are compared to
each other and the evaluation times in dependency of
the original primitive count and the current count will
be given as well.

+ 0 -

0

- - +

+ -

?

Figure 4: The bucket-based strategy for TreeCut-
evaluation. Each node is assigned a target node. All sib-
lings and the parent define the operation to be applied.
If a coarse-operation is requested, the parent node is
inspected (indicated by the question mark). Only if the
operation is considered save, it is executed.

WSCG 2012 Communication Proceedings 90 http://www.wscg.eu

 0

 10

 20

 30

 40

 50

 0 500,000 1,000,000 1,500,000

T
im

e
 [

m
s
]

Surfels

Without Feedback (fit)
Feedback (fit)

Figure 5: The performance impact when using the pro-
posed Feedback System. The new representation gen-
erated is swapped from the evaluation thread to the ren-
dering. Note that the increase is not required every
frame, but only when an iteration has been completed.
In our prototype, no changes are made to the represen-
tation during rendering. The average overhead is the
difference between the fitted lines.

A sequential comparison is not included using the pro-
posed strategies, but can be derived easily by summing
up the rendering and evaluation times.

Additionally, we present some visual outputs generated
by our renderer. For all renderings, we use a point-
based rendering method that utilizes the Phong Splat-
ting technique presented by [Bot05].

As noted before, we use the curvature as the priority
value in case of the optimization LOD-strategy. The
curvature identifies important regions on the surface of
the object, and detail is preserved in regions where the
surface changes. This was also presented in [Sch10]
and [Lee05]. We preprocessed the curvature and in-
cluded it within the LOD-hierarchy. Additionally, we
assure that parent nodes have a higher curvature value
than their children. During rendering of the scene, the
maximal node count is set to be idendtical to the count
given by the recursive LOD-strategy.

The bucket-based strategy uses the illumination infor-
mation to derive a target bucket for each node. We use a
fixed splat size for each node, and so create a stippling-
like appearance of an object.

Finally, the recursive method implements the QSplat hi-
erarchy and enables the basic QSplat method to be ren-
dered efficiently using the Phong Splatting technique
[Bot05] without further adaptation.

Time Measurements
Our prototype is written in C++ and openGL. The tests
were made with a Intel i5 with 3.47 GHz, 8.0 GB
RAM and a nVidia GeForce 260 GTX with 896MB
RAM. The graphics in figure 5 show the overhead in-
troduced due to the exchange of the newly generated

LOD-version after an iteration has been completed.
Note that this increase is only generated if the eval-
uation is in wait-stage and a new LOD-version was
created. The overall time falls below the version with-
out the Feedback Stage (labeled Without Feedback) be-
cause rendering is accelerated and less primitives are
required.
The graphs in figure 6 show the performance of the pro-
posed strategies. We tested each strategy with multiple
objects that are drawn in a predefined scene. During
rendering, only one object and one light source is used.
Both are rotated and moved to assure a large number
of update request for the LOD-strategies. The objects
are taken from the Standford 3d repository [3DScan].
As the same scene is used for all objects and LOD-
strategies, the aquired evaluation times are comparable.
We omit information of the transfer of the data from the
evaluation thread to the rendering thread as the gener-
ated data is only swapped.
As expected, both TreeCut-based strategies perform
with linear time complexity. The bucket-based (refer
to figure 6a) LOD-strategy does not change the size
of the TreeCut as much as in the optimization LOD-
strategy (refer to figure 6b). This is due to the fact that
the bucket-based strategy is not limited by a maximal
node count.
The optimization LOD-strategy allows to include any
priority into an existing hierarchy. The evaluation re-
mains linear despite the performed sorting. In the
shown case, 8k elements are sorted.
The recursive strategy applies the QSplat traversal pre-
sented by [Rus00]. The abort criterion includes back-
face culling, and for this reason, multiple nodes or sur-
fels can be rejected early. This results in an overall ac-
celeration of the traversal. For simple objects, the gain
is not as large as with objects with higher geometric
complexity. However, the strategy does not allow fine-
tuning of a single representation. Only the recursive
algorithm can be altered.

Visual Results
Some results achieved with the proposed LOD-
strategies are shown in figure 7. A directional light
source is used for illumination.
In figure 7a, we applied the bucket-based strategy along
with an illumination-based target bucket function. We
determine the target bucket by weighting the current il-
lumination with respect to the depth of the node and
maximal depth of the tree. This creates a stippling-like
appearance of the drawn object. We enhanced Phong
Splatting technique for the bucket-based approach to
generate both a closed surface and equal-sized surfels.
The visual quality of the rendered version depends
mainly on the used hierarchy. We enhanced the gener-
ation by using a node as parent instead of the average

WSCG 2012 Communication Proceedings 91 http://www.wscg.eu

 0

 50

 100

 150

 200

 250

 300

 0 100,000 200,000 300,000 400,000 500,000

T
im

e
 [
m

s
]

TreeCut Size [Nodes]

Bucket (fit)

(a) Bucket-based LOD-strategy performance
graph.

 0

 50

 100

 150

 200

 250

 300

 0 100,000 200,000 300,000 400,000 500,000

T
im

e
 [
m

s
]

TreeCut Size [Nodes]

Optimization 8k (fit)

(b) Optimization LOD-strategy performance
graph.

 0

 50

 100

 150

 200

 250

 300

 0 250,000 500,000 750,000

T
im

e
 [
m

s
]

TreeCut Size [Nodes]

Dragon
Bunny

Lion
Buddha

(c) Recursive LOD-strategy performance
graph.

Figure 6: The performance graphs of the proposed LOD-strategies. The values are given for an average single
iteration. The LOD-strategies have been applied to mulitple objects with varying sizes. The first two offer linear
time complexity, but the priority strategy has a larger overhead due to the required partial sorting. The recursive
strategy is able to fast reject large portions of the hierarchy, which results in logarithmic time.

as proposed by [Rus00]. This suppresses motion of
surfels when changing the LOD. Also, the more leaf
nodes are available, the better the dark regions can be
displayed.

A result generated with the optimization LOD-strategy
is shown in figure 7b. The surfels are prioritized by the
local curvature and surfel-size. This preserves details at
regions where the object’s surface is changing. Larger
surfels are used in flat regions resulting in a reduction
of the number of used surfels. In the shown image, only
45k surfels (original 183k) are used. The surfel-size has
been added to avoid generation of too large splats that
could mask detailed areas. This additional information
is solely required for point-based representations.

Figure 7c shows the result created with the recursive
LOD-strategy. Obviously, there is no difference in the
visual quality compared to the original QSplat algo-
rithm if plain splatting is used. However, the paral-
lelization increases performance of the rendering. This
is because the rendering can leverage VBOs and so
avoids repetitive transfer of rendering data.

A higher visual quality is achieved by using the Phong
Splatting technique. This can be used without any adap-
tation as the LOD-strategy is independent of the ren-
dering. With the original QSplat, the multiple render-
passes of the Phong Splatting would require to traverse
the hierarchy more than once, which would massively
penalize the performance.

A rendering with the maximal available detail of a sam-
ple object (the Stanford lion) is depicted in figure 7d.
It uses all 183408 leaf nodes and does not offer more
details than the reduced versions (shown in figures 7b
(45K) and 7c (87K)).

6 CONCLUSION AND OUTLOOK
Our approach increases the range of parallel pro-
cessing existing LOD-hierarchies. The different
LOD-strategies account for many scenarios, ranging

from budget-based restrictions with perceptual opti-
mization up to a bucket-based selection where nodes
are assigned a specific level. Also, non-cut-based
methods can benefit from the proposed system, which
has been shown as well by including the QSplat
algorithm.

As the object and selection is made in parallel, no
stalling of the actual rendering occurs. In addition, the
exchange between old and new representation can be
made with blending to avoid flicker artifacts. The newly
deduced LOD is not generated in advance, but created
using information from the current representation. This
allows a finer grained adaptation to a given scenario.
Due to the design, the system can be included into ex-
isting LOD-management systems as a data provider for
new LOD-versions.

All presented strategies have a low theoretical time
complexity and show good performance in our proto-
type. The parallel processing of the data preserves in-
teractivity of the rendering without being restricted to
a fixed LOD-set. The synchronization is achieved by
a simple query and thread-safe exchange is assured by
design.

The LOD-strategies can be extended to account for in-
formation that is present in the scene. For example, the
optimization strategy can include perceptual informa-
tion acquired from the current scene. This increases the
quality of the representation, while no new data needs
to be generated. Especially interesting is the application
of the TreeCut methods within the GPU to completely
avoid transfer of data between CPU and GPU.

Yet, the system and the strategies are not optimal and
need to be refined. Similar to other approaches, we
plan to evaluate our system using many objects. The
question arises, whether a centralized thread or a agent-
based approach provides better results. Developers
should be supported to decide which is the best for their
scenario.

WSCG 2012 Communication Proceedings 92 http://www.wscg.eu

(a) Bucket-based strategy.
The Stanford dragon is
altered in dependency of the
illumination.

(b) Optimization strategy. The sur-
fels for rendering are prioritized by
their curvature and surfel-size. This
version uses 45k surfels.

(c) Recursive strategy. The surfels
are generated by the QSplat algo-
rithm (87k surfels).

(d) High quality rendering without
the Feedback Stage (183k surfels).

Figure 7: Results generated with proposed LOD-strategies. A stippling like appearance can be created by deter-
mining the target bucket based on the current illumination. The second figure has been generated with the curvature
and surfel-size as priority. The recursive splatting method presented by QSplat can be accelerated by employing a
recursive evaluation strategy. The figure on the right shows the high detailed version of the Stanford lion.

We plan to include a complete perception model in
the optimization LOD-strategy. In this case, a full 3d
model, like [Sch11] or [Lee05], seems most suitable,
as the perception information is extracted directly from
the 3d data.

The bucked-based method does currently not include
important properties like blue-noise [Hil01]. This infor-
mation needs to be encoded within the hierarchy during
generation of the LOD and has to be ensured during
selection of the individual nodes as well. Also, the tar-
get bucket function needs to carefully select nodes for
replacement.

Finally, the system itself needs be enhanced, so that
the performance and the selection quality increases.
We plan to extend it with environmental information,
e.g. processing power or battery. This allows to selec-
tively apply the LOD-selection on different hardware
platforms, while being restricted to a universal, system-
independent criterion.

7 REFERENCES
[3DScan] http://graphics.stanford.edu/

data/3Dscanrep/.
[Bot05] Botsch, M., Hornung, A., Zwicker, M.,

Kobbelt, L. P. High-Quality Surface Splatting
on Today’s GPUs. Eurographics Symposium on
Point-Based Graphics. pp.17-24. 2005.

[Car11] Carmona, R., Froehlich, B. Error-controlled
real-time cut updates for multi-resolution volume
rendering. Computers & Graphics. pp.934–944.
2011.

[Gar97] Garland, M., and Heckbert, P. S. Surface Sim-
plification using quadric errormetrics. The art and
interdisciplinary programs of SIGGRAPH 97.
pp.209–216. 1997.

[Gos12] Goswami, P., Erol, F., Mukhi, R., Pajarola, R.,
Gobbetti, E. An Efficient Multiresolution Frame-
work for High Quality Interactive Rendering of

Massive Point Clouds using Multi-way kd-Trees.
The Visual Computer 28. 2012.

[Hil01] Hiller, S., Deussen, O., Keller, A. Tiled Blue
Noise Samples. Vision, modeling and visualiza-
tion. pp.265–272. 2001.

[Hol11] Hollander, M., Ritschel, T., Eisemann, E.,
and Boubekeur, T. ManyLoDs: Parallel Many-
View Level-of-Detail Selection for Real-Time
Global Illumination. Computer Graphics Forum
30. pp.1233–1240. 2011.

[Hop96] Hoppe, H. Progressive Meshes. SIGGRAPH
96 conference proceedings. pp.99–108. 1996.

[Lee05] Lee, C. H., Varshney, A., Jacobs, D. W. Mesh
saliency, Proceedings of ACM SIGGRAPH 2005.
pp.659–666. 2005.

[Pen11] Peng, C., Park, S., Cao, Y., and Tian, J. A
Real-Time System for Crowd Rendering: Par-
allel LOD and Texture-Preserving Approach on
GPU. Lecture notes in computer science vol.
7060. pp.27–38. 2011.

[Rus00] Rusinkiewicz, S. and Levoy, M. QSplat: a
multiresolution point rendering system for large
meshes. SIGGRAPH 2000 conference proceed-
ings. pp.343–352. 2000.

[Sch10] Schiffner, D., Krömker, D. Tree-Cut: Dy-
namic Saliency Based Level of Detail for Point
Based Rendering. Sensyble 2010. pp.37–43.
2010.

[Sch11] Schiffner, D., Krömker, D. Three Dimensional
Saliency Calculation Using Splatting. Sixth In-
ternational Conference on Image and Graphics
(ICIG). pp.835–840. 2011.

[Shi10] Shirley, P., Marschner, S. R., and Ashikhmin,
M. Fundamentals of computer graphics 3rd edi-
tion. 2010.

[Wu05] Wu, J., Zhang, Z., and Kobbelt, L. P. Pro-
gressive Splatting. Eurographics Symposium on
Point-Based Graphics. pp.25–32. 2005.

WSCG 2012 Communication Proceedings 93 http://www.wscg.eu

WSCG 2012 Communication Proceedings 94 http://www.wscg.eu

Animation of Water Droplets on a Hydrophobic
Windshield

Nobuyuki Nakata

The University of Tokyo
5-1-5 Kashiwa-no-Ha

Kashiwa, Chiba
277-8561 Japan

nobnak@nis-lab.is.s.u-tokyo.ac.jp

Masanori Kakimoto

Tokyo University of Technology
1404-1 Katakura-machi

Hachioji, Tokyo
192-0982 Japan

kakimotoms@stf.teu.ac.jp

Tomoyuki Nishita

The University of Tokyo
5-1-5 Kashiwa-no-Ha

Kashiwa, Chiba
277-8561 Japan

nis@is.s.u-tokyo.ac.jp

ABSTRACT

Animation of water drops on a windshield is used as a special effect in advanced driving games and simulators.

Existing water droplet animation methods trace the trajectories of the droplets on the glass taking into account

the hydrophilic or water-attracting nature of the glass material. Meanwhile, in the automobile industry, usage of

hydrophobic glass windshields has recently been a common solution for the drivers’ clear vision in addition to

cleaning the water with wipers. Water drops on a hydrophobic windshield behave differently from those on a

hydrophilic one. This paper proposes a real-time animation method for water droplets on a windshield taking

account of hydrophobicity. Our method assumes each relatively large droplet as a mass point and simulates its

movement using contact angle hysteresis accounting for dynamic hydrophobicity as well as other external forces

such as gravity and air resistance. All of a huge number of still, tiny droplets are treated together in a normal map

applied to the windshield. We also visualize the Lotus effect, a cleaning action by the moving droplets. Based on

the proposed simulation scheme, this paper demonstrates the motion of the virtual water droplets on the

windshield of a running vehicle model.

Keywords
Water droplets, hydrophobicity, windshield, driving simulator, contact angle hysteresis

1. INTRODUCTION

Water flow on the window or windshield surfaces

are commonly used as a rainy scene description in

film works and other types of motion pictures. More

recently, computer generated animations of water

flow on the windshields are realized for advanced

video games and driving simulators. Since the glass

material has hydrophilic or water-attracting nature,

water droplets move along irregular trajectories

seeking for water-attracting places of the surface, as

we often find on the windows in a rainy day. Most

of the existing water droplet animation methods

simulated these winding trajectories of the droplets.

In real driving situations, those water trajectories

or water-film on the windshields due to the

hydrophilicity seriously affect the visibility through

the glass. To clear the water, mechanical wipers

have been used since the beginning of the

automobile history. In addition, as auxiliary

measures, coating the windshield with water

repellent material became a solution a few decades

ago. In the year 2000, the first water-repellent

finished windshield became commercially available.

Nowadays such hydrophobic windshield products

are widely used in the automobile market.

A large amount of research literature on the

behaviour of water on hydrophobic surfaces is

published in chemical and mechanical engineering

fields. To the authors’ knowledge, however, little

work has been done on real-time simulation of

water droplets sliding across hydrophobic

windshields. In this paper, we address this problem

and propose a solution consisting of several

practical simulation models for use in games and

driving simulators.

Water attracting or repelling feature of surface

material should be quantified differently in two

situations, static and dynamic. The static repellency

has been investigated for a long time and the

fundamentals have been established. For water

droplet animation, knowledge on the dynamic

repellency is more important, which is true in

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2012 Communication Proceedings 95 http://www.wscg.eu

engineering analysis of water-shedding phenomena

on the windshield. While the dynamic water

repellency includes a number of unexplainable

phenomena, there are a couple of major factors and

indicators characterizing the dynamic repellency.

Those include contact angle hysteresis, falling angle,

falling velocity, and falling acceleration.

The relationship between the contact angle

hysteresis and the slope angle has long been

investigated. In case of an ideal water droplet shape,

the contact angle hysteresis is known to be in

proportion to the falling angle.

The falling velocity and acceleration vary by the

surface material even when the slope angle remains

constant. Although the standard methods for

evaluating and measuring the falling

velocity/acceleration were not established until

recently, it is known that the behaviour of a falling

water droplet on the hydrophobic surface is

explainable in terms of rolling and sliding.

In this paper, we take the knowledge on the

dynamic repellency into account and propose a real-

time animation method for water droplets on the

hydrophobic windshield. As the water-repellent

coated windshields become standard in the

automobile market, our contribution is to provide

video game and simulator developers with a means

of reproducing realistic and harmonious motions of

the water droplet cluster traveling across the

hydrophobic windshield.

This paper is organized as follows. In the next

section we introduce related work on both

engineering analyses and animation techniques for

water droplets. Then our proposed method is

explained in a theoretical point of view in Section 3,

followed by more detailed descriptions on the

implementation and results in Section 4. Finally we

give conclusions and future work in Section 5.

2. RELATED WORK

In the computer graphics field, several methods

have been introduced for animating water droplets.

Kaneda et al. [Kan93a] [Kan96a] proposed methods

to describe the movement of the droplets by

defining each droplet as a particle and move it with

particle dynamics. Since the droplets travel seeking

for water-attracting places, their trajectories on the

glass surface form complex shapes. They also

simulated these motions by a random walk method

using random numbers [Kan99a]. Recently their

method was implemented as a real-time simulator

with a GPU computing technique [Tat06a].

Fournier et al. [Fou98a] depicted the trajectories of

droplets using the mass spring model. None of the

above methods took into account the

hydrophobicity of the inclined surface since they

assume hydrophilicity. Also, they do not

incorporate air resistance against the water drops or

rolling resistance of the drops.

Several researchers have developed fluid

dynamics based methods for the water droplet

simulation. Wang et al. [Wan05a] took into account

surface tension, contact angle, and contact angle

hysteresis. The surface tension is more dominant in

a water droplet than in regular large-scale fluid

forms. Thürey et al. [Thu10a] introduced the mean

curvature flow, which is known as a motion

equation for surface boundaries, and evaluated the

phenomena caused by the surface tension more

appropriately than Wang et al.

Zhang et al. [Zha11a] developed a faster

computation method for droplets using the mean

curvature flow without other fluid simulations.

They ignored the internal fluid flow of the droplets

but used the surface tension and other external

forces to give deformation, collision and division to

each droplet represented as a polygon mesh. They

achieved 10-50 fps in the experiment with 10K-50K

polygon mesh. However, due to the implicit method

for the mean curvature flow computation, the

stability of their solution depends highly on the

mesh quality and the time step, and the performance

optimization is limited.

In order to tackle the problem of the droplet

motion on the hydrophobic surfaces, we need to

understand dynamic repellency. The structure or the

behaviour of the surface molecules are considered

to be a source of the dynamic repellency. To figure

out the behaviour, Hirvi et al. [Hir08a] simulated a

droplet consisting of thousands of water molecules

using a molecular dynamics calculation technique.

Korlie [Kor93a] proposed a cluster model of quasi-

molecular particles on a horizontal plane and

introduced its dynamical equations which lead to

the value of the contact angle of the cluster.

Analyses of real water droplets have been done

by several research groups. For example, Sakai et al.

[Sak06a] measured the velocity and the acceleration

of a droplet sliding across water-repellent surfaces.

Droplets are known to run down either rolling or

slipping on the incline depending on the degree of

hydrophobicity [Ric99a] [Suz09a]. Hashimoto et al.

[Has08a] measured the relationship between the

volume and the velocity of a windswept droplet.

We address the problem of dynamic water-

repellency taking the contact angle hysteresis into

account. In addition, we use the knowledge of the

real water drop analyses to verify and compensate

our results. We avoided using the fluid dynamics

simulation, the mean curvature flow, or any type of

molecular forces since they are not suitable for real-

time visualization. Due to the computing load and

WSCG 2012 Communication Proceedings 96 http://www.wscg.eu

the time step limitations, those methods cannot

handle sufficient number of droplets on a car

windshield.

In our method, each droplet is represented as a

mass point or a particle. Thus, we are able to

incorporate additional forces into the real-time

simulation loop; air resistance against the water

droplets and viscous dissipation which acts as a

rolling resistance of each drop. Although these

forces are crucial factors for the fast movement of

water drops, they have not been fulfilled in the

previous methods [Wan05a] [Thu10a] [Zha11a].

Particle dynamics are common in the real-time

simulation field. They are widely adopted in games

and interactive applications. Real-time physics

engines in the market are equipped with features of

particle dynamics and rigid body dynamics

including collision detections as fundamental

functions. We implemented our method on top of a

game engine ‘Unity’ and added unique behaviours

of water droplets running slowly or quickly, or

staying on the hydrophobic surfaces.

3. A PRACTICAL MODEL FOR
WATER DROPLETS ON

HYDROPHOBIC WINDSHIELDS

3.1 Water Droplet Geometry

When a droplet is on a solid surface, the contact

angle is defined as the angle between the solid

surface and the droplet surface. The contact angle is

determined by the Young equation, which describes

the balance of three surface tensions, as shown in

Equation (1). ��cos� � �� 	 ��� , (1)

where, � is the contact angle, �� is the surface

tension of the water droplet, �� is the surface

tension of the solid, ��� is the boundary tension

between the water and the solid (Figure 1).

Figure 1. Contact angle and tensions of a water

droplet.

When the radius of the droplet on hydrophobic

surfaces is less than the radius of capillary (2.8mm),

the surface tensions are the dominant factors of the

water drop shape. Thus the droplet forms a near

spherical geometry. Meanwhile, the contact angle of

the glass becomes 90°-100° when it is coated with

commercially available repellent material.

Based on the above two observations, we assume

that each rain droplet is rendered as a hemisphere.

In practice, the geometric shape is basically a disc-

like plane and the normal vectors for refraction are

controlled to make it look hemisphere. Details are

described in Section 4.3.

3.2 Contact Angle Hysteresis

When a thin pipe is inserted into water, the water

level in the pipe is raised by the capillary action.

This is caused by a force called the capillary force

which operates along the triple boundary line

among the water, the solid and the air. The capillary

force is determined by the Young-Laplace equation.

Figure 2. Advancing and receding contact angles of

a water droplet.

With regard to a droplet which lies on a solid

plane, the capillary forces along the circular triple

boundary cancel each other out if the contact angle

is constant along the circle. When some external

forces are put on the droplet and its shape is

deformed, the contact angles vary while the droplet

stands still until the contact angle variance reaches

at a certain value.

The contact angle hysteresis is defined as the

difference between the advancing and receding

contact angles (�� and �, respectively). These two

angles are defined as the largest and the smallest

contact angles, respectively, at the moment that the

water droplet starts moving on the solid plane by

the sufficient external force. The slope angle at this

moment is called the falling angle. Figure 2

illustrates the advancing and receding contact

angles for an incline.

While the droplet is moving on the plane, a drag

operates on the droplet toward the reversed

direction against the proceeding direction. The

amount of drag is related to the contact angle

hysteresis. Assuming that the shape of the triple

Lγ

Sγ SLγ

θ

Water droplet

aθ

rθ

Receding
contact angle

Drag due to the
contact angle

hysteresis

α Slope angle
Advancing

contact angle

Proceeding
direction

WSCG 2012 Communication Proceedings 97 http://www.wscg.eu

boundary is a circle, the drag ���� is approximated

with the following equation [Car95a] ���� � �������cos � 	 cos ���, (2)

where, � represents the radius of the water droplet. � and �� are the receding and the advancing

contact angles, respectively.

3.3 Wind Drag

Automobile windshields meet with air resistance, or

wind drag, according to the velocity of the running

vehicle. The wind drag is defined as follows:

����� � �� ��� !�, (3)

where, � is the density of the air, �� is the

coefficient of resistance, is the projected size of

the droplet, and ! is the velocity relative to the air.

In Equation (3), the droplet is assumed to be

floating in the air. Since all droplets in our model

are placed on a solid windshield, the equation needs

to be modified. We assume that the wind is

weakened at places very close to the solid plane. It

is known that in such near-boundary layer, the wind

velocity changes in a complicated manner.

We employed a simplest compensation to

decrease the velocity in the near-boundary layer

using an exponential law as shown in the following

formula.

!" � # ! $�%&'(�* + δ�!														�* - δ�,			 (4)

where, ! is the wind velocity out of the boundary

layer (relative to the solid plane), * is the height of

the droplet, . is a parameter representing the

thickness of the boundary layer, and !" is the

compensated wind velocity for the droplet.

3.4 Viscous Dissipation

When a droplet is moving or rolling, another drag is

caused by some in-bulk friction called viscous

dissipation [Bic05a]. The drag is in proportion to

the velocity of the droplet and represented as �/012 � η456���, (5)

where, 7 is the degree of viscosity of the water, 4 is

the radius of the droplet, 5 is the velocity of the

droplet. 6��� is a factor dependent on the contact

angle.

3.5 Wind Speed and the Droplet
Acceleration

In the surface finishing engineering discipline,

Hashimoto et al. [Has08a] introduced an experiment

to measure the acceleration of various volumes of

water droplets placed on an angled hydrophobic

plane in a wind tunnel. Figure 3 quotes from the

literature and shows the result of the measured

descending or ascending acceleration of the droplets.

The contact angle, the slope angle, and the falling

angle are 105° , 35° and 10°, respectively.

In the range where the wind velocity is relatively

low, moderate but more falling accelerations are

observed as the droplet size becomes greater. When

the wind velocity is raised beyond a certain value

(7m/s in Figure 3), the droplet stays still within

some range of wind velocities. When the velocity is

further raised beyond a higher value (11m/s), rapid

ascending accelerations are observed, which are

greater as the droplet becomes larger.

On the other hand, we simulated the sliding

accelerations of a droplet taking the following five

forces into account (Figure 4).

� Gravity (vertical) �8
� Wind drag (horizontal) �����
� Perpendicular force (normal to windshield)

Figure 3. A measured relationship between the

wind velocity and the acceleration of droplets,

using a varying droplet size as a parameter

(excerpt from [Has08a]).

Figure 4. External forces added to a droplet and

the resultant acceleration. In this example, the

gravity is more dominant than the wind drag and

thus the droplet slides down.

WSCG 2012 Communication Proceedings 98 http://www.wscg.eu

� Viscous dissipation drag (tangential to

windshield) �/012
� Contact angle hysteresis drag (tangential to

windshield)	����
The wind drag ����� has been described in

Section 3.3. The contact angle hysteresis drag

behaves as a resistance force parallel to the

windshield, in the same way as the perpendicular

force normal to the windshield. The force ����
represented in Equation (2) defines the maximum

limit of the hysteresis drag.

In our implementation, the maximum limit is

specified by a dimensionless coefficient Ω ≡ cos � 	 cos ��. Since the relationship between

the wind velocity and the contact angles is hard to

simulate, we approximate the Ω value as a function

of the wind velocity !. When the velocity is small,

we force the Ω value to keep a minimum constant Ω<�� which is typically 0.5.

Ω�!� � max @Ω<�� , 2 B1 	 exp $	 FG&H	I, (6)

where, σ is a constant parameter which controls the

saturation rate of Ω�!�. When the wind is extremely

strong, the contact angles are assumed to be also as

extreme as �� → 180° , � → 0°, and thus Ω�∞� →2. This is well accounted for by Equation (6).

Figure 5 shows a simulated result of the

accelerations for the varying droplet sizes. The

range of wind velocities in which the droplet stays

still is reproduced, and the range is very similar to

the measured result in Figure 3.

3.6 Collision between Droplets

The surface tension of the water droplet causes a

pressure difference in the droplet. This is known as

the Laplace pressure and is greater as the droplet

radius is smaller. Therefore, when two water

droplets of different sizes collide with each other,

the small droplet gets absorbed by the larger one.

We implemented this process and it is invoked on

droplet collision detection.

3.7 Distribution of Raindrop Radii and
the Lotus Effect

Lotus effect is a phenomenon which occurs when a

water droplet moves across a hydrophobic surface.

Lots of very small droplets and contamination

spread on the surface are removed by the moving

droplet along the trajectory. The same phenomenon

is observed on a windshield as demonstrated in the

snapshot of Figure 6.

 Figure 7, an excerpt from [Fur02a], is a rain

droplet radius distribution under 1mm/h rainfall.

The graph is with the raindrop diameters as the

horizontal axis and the number of raindrops for each

diameter as the vertical logarithmic axis. The line

indicated as ‘MP’ is an exponential distribution

model called the Marshall-Palmer distribution

[Mar48]. Each graph legend is the place name of the

observing site. Some legends contain observing

periods in months.

Figure 7. Distribution of the number of raindrops for

each diameter (drop size distribution). Each graph

legend indicates the name of the observing site

(excerpt from [Fur02a]).

Figure 6. Droplet trajectories caused by the Lotus

effect (image captured from a live-action movie of a

windshield).

Figure 5. Simulation results of the droplet

accelerations.

WSCG 2012 Communication Proceedings 99 http://www.wscg.eu

According to the model, the smaller the raindrop

diameter is, the greater the number of raindrops

becomes. Especially, tiny raindrops of below 1mm

are contained with an exponentially large numbers.

Therefore, it is impractical to simulate the motion of

every droplet. Fortunately, those tiny raindrops do

not move at all with our simulation model as shown

in Figure 5. Thus we apply a single large normal

map onto the windshield. The map contains the

normal vectors which represents all the small

droplets standing still on the windshield.

4. IMPLEMENTATION AND
RESULTS

This section describes implementation of our

method proposed in the previous section and

demonstrates some results.

4.1 Implementation Overview

We implemented the system on top of Unity, a

popular game engine. Although our method regards

each water droplet as a particle, we implemented

each droplet as a small rigid body which does not

rotate. Regarding the rigid body physics engine, we

used NVIDIA PHYSX embedded in the Unity

system.

The flow of the whole process is outlined as

follows.

� Initialization

� Main loop

� Droplet generations

� Physics simulation

� Collision detection

� Droplet mergers

� Droplet deletions

� Updates of large droplet shapes

� Update of windshield alpha map (Lotus

effect over small droplets)

� Rendering

4.2 Physics Simulation of Droplets

In each time step of the simulation, our system

calculates the external forces imposing on the water

droplets as illustrated in Figure 4.

Regarding the gravity, we added some random

noise to the force component parallel to the

windshield in order to realize natural motions of the

droplets caused by some assumed fluctuation of the

running vehicle.

The implementation of viscous dissipation

(Section 3.4) is a heuristic matter since the factor 6��� in Equation (5) is not determined. We used a

constant value η6��� � 0.5 in the equation. The

important point is that the viscous dissipation drag �/012 is in proportion to the droplet velocity. The

above constant value can be used to control the

maximum droplet speed.

While the droplets are moved by the external

forces, we obtain each collision point with its u-v

coordinates and the normal vectors of the colliders

from the collision detector of the physics engine.

For a droplet being regarded as to be on the

windshield, the windshield point corresponding to

the droplet is calculated and the refraction map

image for the Lotus effect is updated.

In case that a droplet collides with another

droplet, the Laplace pressure effect is applied. The

system compares the masses of the two droplets. If

the difference is greater than the pre-defined

threshold, these two will fuse together into one

droplet.

4.3 Rendering Large, Movable
Droplets

Each large water droplet (with over 1mm diameter)

is rendered as a disc-shape polygon mesh when it is

staying still on the windshield. The normal vectors

on the disc surface are controlled so that the

refracted environment appears to be mapped on a

hemisphere.

 While the droplet is moving across the

windshield, its shape is deformed to be longer along

the moving direction. The normal vectors are

controlled so that the lengthened transparent droplet

looks like a drug capsule sectioned by a screen-

parallel plane. The deformation is controlled so that

the assumed volume of the droplet is preserved.

Using its normal vectors, the pixel shader calculates

the refraction directions and maps the background

texture image as the environment. Figure 8 is a

close-up rendering image of a pseudo-hemisphere

water droplet and a deformed pseudo-hemisphere.

Those large droplets are generated with various

Figure 8. Droplets rendered as a pseudo-

hemisphere (left) and a deformed pseudo-

hemisphere (right).

WSCG 2012 Communication Proceedings 100 http://www.wscg.eu

sizes according to the Marshall-Palmar distribution

shown in Figure 7. The number of large droplets

generated per frame is set to be five typically. They

are accumulated but eventually moved away out of

the windshield or collided and fused with others. As

a result, a couple of hundred to one thousand large

droplets reside in the steady-state situation.

4.4 Rendering Small and Still Droplets

Small droplets (with less than 1mm diameter) are

represented as perturbation in a normal map image

for the windshield, as described in Section 3.7. The

diameters of the generated small droplets vary also

according to the Marshall-Palmar distribution. The

number of small droplets in our implementation

amounts to approximately 800K/QR.
The outside scene image is refracted according to

the normal map. The trajectories of large droplets

(pseudo-hemispheres) are stored as an image

component which is used to suppress the normal

map. They are composed in the shader program and

the Lotus effect on the windshield surface is

rendered (Figure 9).

4.5 Performance

All results referred to in this section are captured

snapshots of real-time animations rendered from the

driver’s point of view toward the automobile

proceeding direction viewing the outside through

the windshield. The source of the outside image is a

motion picture shot with a video camera placed

between the two front seats of a running car when

no rain is falling. The pre-recorded image is

mapped as a video texture onto a billboard model

placed in front of the windshield model.

Figures 10 and 11 are the examples with a small

wind velocity. In Figure 10, a relatively large

contact angle hysteresis is specified and thus the

adherence is strong that the droplets do not move at

all. In Figure 11, the adherence is smaller and the

droplets move along the windshield curve.

Figure 12 is a result with stronger wind and the

large droplets climb straight up the windshield.

Since the adherence is strong and the boundary

layer is set to be thick, the small droplets are made

still.

The frame rates for Figures 10, 11 and 12 are

134-153fps, 80-100fps, and 70-100fps, respectively.

The scene contains a windshield, large droplets and

the video texture billboard shapes, which total

approximately 17K vertices.

Figure 10. A result with low wind velocity

(11.3m/s) and a large contact angle hysteresis

with Ω<�� � 0.5.

Figure 9. The Lotus effect. Small and still

droplets are rendered as a normal map on the

windshield. Large and moving droplets are

rendered as pseudo-hemispheres.

Figure 11: A result with low wind velocity

(11.3m/s) and a small contact angle hysteresis

with Ω<�� � 0.05.

Figure 12. A result with high wind velocity

(15m/s) and a large contact angle hysteresis with Ω<�� � 0.5.

WSCG 2012 Communication Proceedings 101 http://www.wscg.eu

4.6 Rendering Conditions

For the rendering results, we used an Intel Core2

Extreme X9600 (3GHz), NVIDIA GeForce

GTX480 Graphics and 8GB main memory. The

horizontal field of view was 45° and the distance

between the viewpoint and the windshield was

approximately 0.5m. The horizontal curvature

radius of the windshield geometry was 5m constant

and the vertical curvature was 0 (flat). The slope of

the windshield was inclined at a 45° angle.
5. CONCLUSION AND FUTURE

WORK

We proposed a real-time animation method which

reproduces the behaviour of a group of water

droplets on a hydrophobic windshield. We modeled

each of large droplets as a mass point and took into

account dynamic hydrophobicity by employing the

contact angle hysteresis which causes appropriate

adherence for each droplet.

We also compared the accelerations of simulated

droplets with those of measured real water droplets

from literature of surface finishing engineering

analysis. By introducing a near boundary layer

where the wind is reasonably weakened, our result

matched the measured one and reproduced realistic

behaviours of the droplets.

For a huge number of tiny water droplets which

do not move in our model, we introduced a normal

map applied to the windshield. By using the image-

based droplets, the Lotus effect was effectively

reproduced.

For practical number of large droplets, our

method runs in real-time and can be easily adopted

as an effect for video games and vehicle simulators.

The performance is degraded when the large

droplets are not blown off and accumulated on the

windshield because the motion simulation is done

on a per large droplet basis.

Future work includes the performance

improvement for larger number of droplets, more

realistic deformation of the droplets, and handling

of uneven wind velocity distributions.

REFERENCES

[Bic05a] Bico, J., Basselievre, F., and Fermigier, M.

Windswept droplets. Bulletin of the American

Physical Society 2005, 58th Annual Meeting of

the Division of Fluid Dynamics, 2005.

[Car95a] Carre, A., and Shanahan, M.E.R. Drop

motion on an inclined plane and evaluation of

hydrophobia treatments to glass. Journal of

Adhesion, Vol.49, No.3-4, pp.177-185, 1995.

[Fou98a] Fournier, P., Habibi, A., Poulin, P.,

Simulating the flow of liquid droplets. Graphics

Interface, pp.133-142, 1998.

[Fur02a] Furutsu, T., Shimomai, T., Reddy, K.K.,

Mori, S., Jain, A. R., Ong, J.T., Wilson, C.L.

Comparison of the characteristics of the drop

size distributions in the tropical zone (In

Japanese). Open Workshop 2002 on Coupling

Processes in the Equatorial Atmosphere, 2002.

[Has08a] Hashimoto, A., Sakai, M., SONG, J.-H.,

Yoshida, N., Suzuki, S., Kameshima Y., and

Nakajima, A. Direct observation of water

droplet motion on a hydrophobic self-assembled

monolayer surface under airflow. Journal of

Surface Finishing Society of Japan, Vol.59,

No.12, pp.907-912, 2008.

[Hir08a] Hirvi, J.T., and Pakkanen, T.A.

Nanodroplet impact and sliding on structured

polymer surfaces. Surface Science. No.602,

pp.1810–1818, 2008.

[Kan93a] Kaneda, K., Kagawa, T. and Yamashita,

H. Animation of water droplets on a glass plate.

Proc. Computer Animation ‘93, pp.177–189,

1993.

[Kan96a] Kaneda, K., Zuyama, Y., Yamashita, H.

and Nishita, T. Animation of water droplet flow

on curved surfaces. Proc. Pacific Graphics ’96,

pp.50–65, 1996.

[Kan99a] Kaneda, K., Ikeda, S., and Yamashita, H.

Animation of water droplets moving down a

surface. Journal of Visualization and Computer

Animation, Vol.10, No.1, pp.15-16, 1999.

[Kor97a] Korlie, M. S., Particle modeling of liquid

drop formation on a solid surface in 3-D.

Computers & Math. with Applications, Vol.33,

No.9, pp.97-114, 1997.

[Mar48a] Marshall, J.S., and Palmar, W.McK. The

distribution of raindrops with size. Journal of

Meteorology, Vol.5, pp.165-166, 1948.

[Ric99a] Richard, D., and Quere, D. Viscous drops

rolling on a tilted non-wettable solid. Europhys.

Lett., Vol.48, No.3, pp.286-291, 1999.

[Sak06a] M. Sakai, J-H Song, N. Yoshida, S.

Suzuki, Y. Kameshima and A. Nakajima,

Relationship between sliding acceleration of

water droplets and dynamic contact angles on

hydrophobic surfaces. Surface Science, 600 (16),

204-208, 2006.

[Suz09a] Suzuki, S., Nakajima, A., Sakurada, Y.,

Sakai, M., Yoshida, N., Hashimoto, A.,

Kameshima, Y., Okada, K. Mass Dependence of

rolling/slipping ratio in sliding acceleration of

water droplets on a smooth fluoroalkylsilance

WSCG 2012 Communication Proceedings 102 http://www.wscg.eu

coating. Europhys. Lett., Vol.48, No.3, pp.286-

291, 2009.

[Tat06a] Tatarchuk, N. Artist-directable real-time

rain rendering in city environments. Course

Note #26, SIGGRAPH 2006.

[Thu10a] Thürey, N., Wojtan, C., Gross, M., and

Turk, G. A multiscale approach to mesh-based

surface tension flows. ACM TOG, Vol.29, No.4

(Proc. SIGGRAPH 2010), 48, 2010.

[Wan05a] Wang, H., Mucha, P.J., and Turk, G.

Water drops on surfaces. ACM TOG, Vol.24,

No.3 (Proc. SIGGRAPH 2005), pp.921-929,

2005.

[Zha11a] Zhang, Y., Wang, H., Wang, S., Tong Y.,

and Zhou, K. A deformable surface model for

real-time water drop animation. IEEE TVCG,

PrePrint, August 2011.

WSCG 2012 Communication Proceedings 103 http://www.wscg.eu

WSCG 2012 Communication Proceedings 104 http://www.wscg.eu

Visualization of Very Large 3D Volumes on Mobile Devices
and WebGL

José M. Noguera, Juan-Roberto Jiménez
Graphics and Geomatics Group of Jaén. University of Jaén.

Campus Las Lagunillas, Edificio A3, 23071 Jaén, Spain.
{jnoguera,rjimenez}@ujaen.es

ABSTRACT
Platforms based on OpenGL ES 2.0 such as mobile devices and WebGL have recently being used to render 3D
volumetric models. However, the texture storage limitations of these platforms cause that only low-resolution
models can be visualized. This paper describes a novel technique that overcomes these limitations and allows us to
render detailed high resolution volumes on these platforms. Additionally, we propose a software architecture that
permits existing volume rendering techniques to be adapted to mobile devices and WebGL. A set of experiments
has been carried out to assess the performance of the proposed architecture on these platforms with different
volumes of increasing resolution. Results prove that our proposal is feasible, robust and achieves visualization of
very large volumes on constrained platforms.

Keywords: Volume visualization, OpenGL ES, mobile devices, WebGL, large volumetric models, software
architecture.

1 INTRODUCTION
Nowadays mobile devices are extensively used as a
worthy tool in many different scenarios of our life.
Their hardware and software capabilities are constantly
being enhanced, and recent research has demonstrated
their validity to compute complex computer graphics
algorithms. In fact, it has been proved that the vol-
ume visualization field can benefit from the proper-
ties of mobile devices in many interesting applications
[18, 1, 5, 7, 9, 11, 13, 22].

However, it is a common misunderstanding to assume
that the same results can be achieved by a literal trans-
lation to mobile devices of classic algorithms originally
developed for standard PCs or workstations. There are
two important factors that must be taken into account:

• The standard graphics specification of this kind of
devices is OpenGL ES 2.0 [12], which differs from
the desktop PC counterpart in several aspects, e.g.,
the lack of 3D texture support.

• These devices must rely on batteries, so their
hardware and software architectures are designed to
favour power-efficiency instead of pure computing
power.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

In addition, recent advances in display technologies al-
low today’s mobile devices to feature large and high
resolution screens, which require large volumetric mod-
els in order to achieve a minimum of quality. For exam-
ple, newer tablets such as the iPad3 feature screen reso-
lutions that surpass the Full-HD standard used in most
monitors and TV screens. Nevertheless, their GPU and
memory capacities are still limited and do not support
large models directly.

In this paper, we deeply study this problem in the con-
text of direct volume rendering. We present a pro-
posal to render very large volumetric models in order to
meet the user expectations in quality and performance
by overcoming the referred limitations of handheld de-
vices, see Figure 1. Moreover, we describe a software
architecture that allows us to adapt existing volume ren-
dering techniques based on 3D textures to platforms
that only support 2D textures.

The ideas described in this paper are also applied to We-
bGL1, the standard for accelerated graphics on the Web.
As this standard is based on the same specification used
by mobile devices, i.e. OpenGL ES 2.0, it suffers from
the same limitations, including the lack of 3D textures.

Finally, we have implemented a mobile and a WebGL
based prototypes and conducted a set of experiments
to test performance of these platforms under the condi-
tions of maximum storage requirements.

The rest of the paper is organized as follows. Section 2
presents current research in volume visualization tech-
niques for mobile devices and WebGL. In Section 3,

1 https://www.khronos.org/registry/webgl/

WSCG 2012 Communication Proceedings 105 http://www.wscg.eu

64×64×256 128×128×256 256×256×256 512×512×256
Figure 1: Volumes of increasing resolution. Images rendered using the proposed technique.

our novel technique and architecture for volume render-
ing are presented. Section 4 presents our performance
evaluation and discusses the results. Finally, Section 5
concludes the paper.

2 PREVIOUS WORK
In the context of scientific visualization and volume
rendering, a volume is usually represented as a set of
images/slices that are parallel and evenly distributed
across the volume. Equation 1 expresses the compu-
tation of the final color of a given pixel by composing
the colors and opacities of the samples along a given
line across the volume, for a certain wavelength λ [10]:

Cλ (x) =
n

∑
k=0

cλ (x+ rk)α(x+ rk)
n

∏
l=k+1

(1−α(x+ rl))

(1)

where Cλ (x) is the final color at a given position x, c(x+
rk) is the color of the kth sample at position x+rk inside
the volume and a(x+ rk) is its corresponding opacity.

Volume visualization algorithms have not been applied
to mobile devices until recently. First attempts over-
came the mobile devices limitations by employing a
server-based rendering approach. This approach relies
on a dedicated rendering server that carries out the ren-
dering of the volume and streams the resulting images
to the mobile client over a network [7, 9]. Also follow-
ing a server-client scheme, Zhou et al. [22] employed a
remote server to precompute a compressed iso-surface,
which is sent to the mobile device allowing a faster ren-
dering. Moser and Weiskopf [11] introduced an interac-
tive technique for volume rendering on mobile devices
that adopts the 2D texture slicing approach. Noguera
et al. [13] proposed an algorithm that overcomes the
3D texture limitation of mobile devices and achieves
interactive frame rates by caching the geometry of the
slices in a vertex buffer object (VBO). ImageVis3D [5]
is an iOS application that uses the 2D texture slicing

approach. While the user is interacting the number of
slices is drastically reduced. At the end of an inter-
action a new image is rendered with the whole set of
slices. This rendering step is carried out in the mobile
device itself, or in a remote server in case of complex
or large models. Focused on the visualization of bones,
Campoalegre [18] also proposed a client-server scheme
where the model is compressed in the server side by the
Haar Wavelet function and reconstructed in the client
device. On the other hand, Congote et al. [1] imple-
mented a ray-based technique using the WebGL stan-
dard.

All the aforementioned techniques share the same lim-
itation: the lack of 3D textures on OpenGL ES 2.0 and
WebGL severely restricts the size and resolution of the
volumetric models that can be rendered. The problem is
aggravated on WebGL, as these applications are usually
run on desktop computers equipped with large moni-
tors.

The following proposals deal with the problem of very
large volumetric models but in the context of PC or
workstations whose features differ from the intrinsic
peculiarities of mobile devices and WebGL. A straight-
forward method to deal with a large volume is the brick-
ing technique [2]. This technique subdivides the vol-
ume into several smaller blocks in such a way that a sin-
gle block fits into texture memory. Gunthe and Straßer
[3] used a wavelet based volume compression in order
to render large volume data at interactive frame rates
in a standard PC. Tomandl et al. [17] combined lo-
cal and remote 3D visualization (standard PC + high-
end graphics workstation) achieving low-cost but high-
quality 3D visualization of volumetric data. Schneider
and Westermann [15] also overcame the problem of the
limited texture memory by compressing large scale vol-
umetric data sets. Their solution takes advantage of
temporal coherence on animated environments. Thelen
et al. [16] introduced a dynamic subdivision scheme in-
corporating multi-resolution wavelet representation to

WSCG 2012 Communication Proceedings 106 http://www.wscg.eu

visualize data sets with several gigabytes of voxel data
interactively on distributed rendering clusters. Finally,
Xie et al. [21] subdivided the volume dataset into a
set of uniform sized blocks and combined early ray ter-
mination, empty-space skipping and visibility culling
techniques to accelerate the rendering process.

3 METHODOLOGY
This section details the algorithm, the software archi-
tecture and the implementation details that we propose
to render large volumetric models on handheld devices
and WebGL. Volumes are usually stored as a set of
slices, each one containing a 2D image that represents
the intersection of the volume with the slice. Common
volume rendering approaches [19] store these slices in
a 3D texture. However, neither mobile devices nor We-
bGL support 3D textures. This limitation can be over-
come by storing the slices in a single 2D texture follow-
ing a mosaic configuration [1, 13]. Nonetheless, with-
out recurring to external servers, this technique limits
the size of the volume that can be stored because 2D
textures are considerably smaller than 3D textures.

We extend this mosaic configuration solution to exploit
the maximum texture capacity of the GPU in order to
deal with larger volumetric models. Our idea is based
on maximizing the multi-texture storage capacity of the
device by using all the available texture units and color
channels. Usually, current handheld devices are able
to store up to 8 RGBA textures of 20482 texels each.
These numbers give us a maximum volume size of 5123

voxels when using our technique, which is considerably
larger than the models rendered until now on mobile
platforms.

Our technique stores the 3D volume by placing each
slice one next to the other in a given color channel of a
2D texture. If the texture dimensions are exceeded, we
continue storing slices in the next color channel. This
way, data-level parallelism is optimized [6, 20]. When
all the channels of the texture are completed, the re-
maining slices are stored in consecutive texture units
following the same pattern. Figure 2 shows an exam-
ple of a 2D texture where each color channel stores a
subset of slices in a mosaic configuration. Thus, each
RGBA color represents the values inside four different
non-consecutive slices of the volume.

Our storage configuration technique can be utilized
with any standard volume rendering approach based
on 3D textures. Figure 3 illustrates our proposal for a
volume rendering architecture designed for OpenGL
ES 2.0. This architecture is divided into two main
parts: the texture memory and the shader. The texture
memory is used to store both the 3D volume and the
transfer function. The volume is stored using multi-
textures as previously described. On the other hand, the
transfer function refers to the texture normally required

Figure 2: Four mosaics stored in an RGBA texture.

... Transfer
Function

Direct Volume Rendering
Technique

Sh
ad

e
r

Te
xt

u
re

s

Texture Coords.
Adapter

3D Model

Figure 3: Software architecture of our proposal.

by volume rendering techniques to assign a color to
each voxel [19]. Thereby, different parts of the model
(bones, muscles, etc.) can selectively be emphasized
by interactively modifying the transfer function.

In the shader section there are two modules: the texture
coordinate adapter (TCA) and the selected direct vol-
ume rendering (DVR) technique. The DVR technique
sends a 3D coordinate to the TCA and receives back an
interpolated grey-tone. This tone is then converted into
an RGBA value according to the given transfer func-
tion and used to compute the color of the corresponding
fragment. It is important to remark that the DVR tech-
nique is unaware of the underlying 3D model storage
method. In fact, this architecture provides an straight-
forward mechanism to adapt existing DVR techniques
to the platforms we are interested in this paper.

WSCG 2012 Communication Proceedings 107 http://www.wscg.eu

aux1 = f loor(S∗ z)

aux2 = f loor
(

aux1

MxMy

)
depth = min

(
1.0,

MxMy

S

)
zini = aux2 ∗depth

zres =
z− zini

depth

u1 = f loor
(

aux2

Maxch

)
ch1 = mod(aux2,Maxch)

Listing 1: Computation of the texture unit u1, the color
channel ch1 and the corresponding (x,y,zres) from the
3D texture coordinate (x,y,z).

The TCA module transforms the 3D texture coordinate
provided by the DVR technique to a format suitable for
the volume representation and computes the grey-tone.
The returned value includes the trilinear interpolation
with the one-voxel distance neighbourhood. The pro-
cess performed by this module can be decomposed into
two differentiate tasks.

The first task consists of deriving the texture unit u1, the
RGBA channel ch1 and the new local 3D texture coordi-
nates (x,y,zres) from the original 3D texture coordinates
(x,y,z). Listing 1 shows how to compute these values.
S is the number of slices in the volume, Mx ×My is the
maximum number of slices in a mosaic stored in a sin-
gle color channel of a texture, see Figure 2, and Maxch
is the number of channels per texture. As the slices
are stored in a consecutive manner along the channels
and texture units, each mosaic stores an interval of the
z-component of the full volume. The value zres is the
residual z defined as the original z minus the z coordi-
nate of the voxel stored in the first texel of the selected
mosaic.

The second task is devoted to compute a pair of 4-
tuples (u1,ch1,x1,y1), (u2,ch2,x2,y2) that define two
texels from the set of 2D textures, where ui,chi refers to
the texture unit and the color channel, respectively, and
xi,yi are the 2D texture coordinates of the desired texel
in the corresponding mosaic stored in the texture unit ui.
These two texels are neighbours along the z direction,
and are placed in the same or in consecutive mosaics.
The grey-tones of these texels are merged to simulate
trilinear interpolation. Note that bilinear interpolation
is automatically obtained by the texture interpolator of
the GPU. Listing 2 shows how to perform these opera-
tions. Here, T is an array of 2D samplers that contains
the volumetric model.

Stex = min(MxMy,S)

aux3 = f loor(zres ∗Stex)

aux4 = mod(aux3 +1,Stex)

x1 =
aux3

Mx
+

x
Mx

y1 =
f loor

(
aux3
My

)
My

+
y

My

x2 = f ract
(

aux4

Mx

)
+

x
Mx

y2 =
f loor

(
aux4
My

)
My

+
y

My

next = c+ step(aux3,aux4)

u2 = t + step(Maxch,next)

ch2 = mod(next,Maxch)

v1 = tex2D(T [u1], (x1, y1))[ch1]

v2 = tex2D(T [u2], (x2, y2))[ch2]

V = mix(v1, v2, zres ∗Stex −aux3)

Listing 2: Computation of V , the value of the grey-tone
at position (x,y,z).

The shaders represented by Listings 1 and 2 have care-
fully been designed in order to avoid flow control op-
erators, when possible, by promoting the use of built-in
GLSL functions like step. Observe that the use of flow
control operators have a cost in the GPU of mobile de-
vices.

4 RESULTS

In order to measure the effectiveness and performance
of our technique two prototypes have been imple-
mented. The first one is a mobile application using
OpenGL ES 2.0 and the second one is a desktop
solution using WebGL. The selected technique for the
DVR module is a ray-based technique implemented in
the GPU [4, 8]. This technique basically consists of a
loop of n steps that traverses the volume accumulating
color and opacities along a given ray-direction.

Recall that our architecture is independent of the visu-
alization technique, and a faster texture-based approach
could have been used instead [13]. However, our goal
was not to measure the performance of the DVR tech-
nique, but to assess the performance and scalability
when the resolution of the 3D model increases and mul-
tiple textures are used.

WSCG 2012 Communication Proceedings 108 http://www.wscg.eu

In our experiments, we used the CT human male dataset
provided by the Visible Human Project2. This dataset
has a total resolution of 5122 ×1877 voxels.

4.1 Results on Mobile Devices
The experiments were conducted on an iPad2
tablet. This device features a dual core PowerVR
SGX543MP2 GPU and the iOS 5 operating system.
The test application was developed as a native iOS
application, using C++ and GLSL ES 2.0. According
to Apple’s technical specifications, this device supports
a maximum 2D texture size of 20482 texels, and up to
8 texture units.

Our experiments intended to cover all the range of
model resolutions provided by our technique. We used
a subset of the CT human dataset, shown in Figure 4,
with different resolutions. For each experiment, a 100
frame animation of the camera rotating around the
CT human model was generated, and the mean times
needed to render each frame were taken. Due to the
tile-based deferred rendering architecture [14] used by
the GPU, OpenGL ES calls can be deferred until the
scene is presented. In order to perform exact timings,
we forced the frame rendering to finish by means of a
glFinish call. Figure 5 shows graphically the results
obtained in milliseconds. The results for the following
experiments are included:

• 1283A: stored using one single-channel texture.

• 1283B: the same model as the previous experiment.

• 2563A: stored using one RGBA texture.

• 2563B: stored using four single-channel textures.

• 5122 ×384: stored using six RGBA textures.

The experiment 1283A utilized a simplified version of
the TCA module that only handles one mosaic, similar
to the proposal of Congote et al. [1], while the experi-
ments 1283B, 2563A, 2563B and 5122 × 384 used our
proposed TCA module that can deal with high resolu-
tion 3D models.

Note that 5122 × 384 is the maximum resolution that
can be achieved by our technique on this device, be-
cause one texture unit is used by the transfer function
and another one is required by the rendering technique.

In all cases, uncompressed 20482 textures were used.
The ray-based DVR technique performed 80 steps in all
the experiments. The screen resolution was 480× 320
pixels.

Results in Figure 5 show that the rendering times are al-
most constant among all the tested datasets when using

2 http://www.nlm.nih.gov/research/visible/
visible_human.html

Figure 4: The CT human model on an iOS mobile de-
vice. Resolution 2563 using 4 textures and 80 steps-
raytracing.

0

200

400

600

800

1000

1200

1400

128^3A 128^3B 256^3A 256^3B 512^2x384 1283 A 1283 B 2563 A 2563 B 5122 x 384

Figure 5: Rendering time (ms) for an iPad2 mobile de-
vice. Screen resolution: 320×480 pixels. Raytracing:
80 steps.

the same TCA module. This suggests that the resolution
of the volumetric model does not have a significative
impact on the performance of the rendering process, as
long as the model fits in the device’s memory. The per-
formance of the volumetric rendering depends on the
screen resolution and on the number of steps performed
during the raycasting rather than on the model resolu-
tion, as it was studied in [1, 13].

As stated above, the experiments 1283A and 1283B
were performed using the same dataset but different
TCA modules. The experiment 1283B used our
technique to compute the texture coordinates whereas
1283A used a simplified one. It was possible to use
this simplified version because the model is small
enough to fit in one mosaic. As shown in Figure 5, the
rendering time of the second experiment doubles the
time achieved by the first one. Our proposed technique
neither increases the number of texture accesses nor

WSCG 2012 Communication Proceedings 109 http://www.wscg.eu

adds additional conditional branches in the shader.
Nevertheless, it increases its longitude by about a dozen
of straightforward code lines to handle additional color
channels and texture units, see Listings 1 and 2. Albeit
these lines only perform simple computations, they are
repeated once per step.

The experiments 2563A and 2563B employed a dataset
that is too large for one mosaic of 20482 pixels. Two
strategies can be used to store it: we can use either one
RGBA texture (2563A) or four single-channel textures
(2563B). Our experiments show that there are no signi-
ficative differences between both strategies in terms of
rendering times, and as a consequence, we can use the
best suited for our particular application.

Finally, we also prove that our technique allows us to
exploit all the available texture resources of the mobile
device in order to render a very large dataset. We man-
age to render a model of up to 5122 ×384 voxels while
keeping the same rendering speed.

4.2 Results on WebGL
Following, we conducted a similar set of experiments
to test the performance of the WebGL implementation.
The tests were carried out using an Intel Core2 Quad
CPU Q6600, 4 GB of RAM, a GeForce 8800GT and
Windows 7 SP1 64 bits. As web browser, we tested
Opera 11.50 labs (build 24661).

The selected GPU supports 2D texture sizes of up to
81922 texels and provides 16 texture units. Given that
the texture size is considerably larger than the provided
by the iPad2, we used a larger subset of the CT human
dataset for our experiments, as shown in Figure 6.

In order to measure the rendering times, we forced the
WebGL canvas to redrawn continuously and counted
the number of frames rendered during an animation.
This animation consisted of the camera rotating around
the model during 5 seconds. Figure 7 shows graphi-
cally the mean times needed to render each frame in
milliseconds. The results for the following experiments
are included:

• 5122 × 256A: stored using one single-channel tex-
ture.

• 5122×256B: the same model as the previous exper-
iment.

• 5122 ×1024: stored using one RGBA texture.

The experiment 5122 × 256A utilized the simplified
version of the TCA module described in Section 4.1,
while the experiments 5122 × 256B and 5122 × 1024
used our proposed TCA module. In this case, we used
uncompressed 81922 textures and 128 steps for the ray-
casting. The WebGL canvas resolution was 8002 pixels.

We found that Opera stopped working every time we
tried to load more than one 81922 texture. The reason
was that the NVIDIA driver exceeded the Windows im-
posed rendering time limit (TDR) of two seconds. This
limited our experimentation to a model of 5122 ×1024
voxels, which is the maximum size that can be encoded
using all color channels of a single 81922 RGBA tex-
ture.

Interestingly, we did not run into these problems when
we were experimenting with mobile devices, in spite of
the fact that both platforms share the OpenGL ES 2.0
specification. In our opinion, today’s WebGL imple-
mentations are still relatively immature and the tested
mobile device proved to be a more predictable and sta-
ble platform. As opposed to WebGL under Opera, the
iPad2 was able to correctly handle all our experiments,
including those using the maximum texture size on all
the available texture units.

Nevertheless, comparing Figures 5 and 7 we can easily
observe that WebGL is more than one order of magni-
tude faster than the selected mobile device when render-
ing a similar volumetric model, even with a commodity
desktop PC.

The experiments 5122 × 256A and 5122 × 256B (see
Figure 7) used a model that can be stored in a single
mosaic. Therefore, our proposed TCA module was not
strictly needed for such a small model. As stated above,
both experiments differed in the TCA module. The dif-
ference in time shows the cost of including our module
to deal with large models. We can clearly see that the
GPU handles the additional operations without a no-
ticeable increment of time.

The last experiment (5122 × 1024) used a large model
that cannot be encoded on one mosaic in a conventional
way. Therefore, our TCA module is mandatory to ren-
der it. In this case, the four color channels of a texture
were used, and thus, the model was four times larger
than the one used in the previous experiments. This ex-
periment showed that the rendering time is greater than
in the previous experiments. This result is somewhat a
surprise, since the texture dimensions, operations and
texture fetches are the same. In fact, the only difference
is the number of color channels.

5 CONCLUSIONS
Due to the today’s mobile GPU limitations, it was not
possible to render volumetric models larger than 1283

voxels on devices such as the Apple’s smartphones and
tablets. However, in this paper we have proposed a
novel technique that enables mobile devices to render
very large volumes by using multi-texturing to encode
volumetric models on a set of RGBA 2D textures.

We have also proposed a simple and easy to implement
architecture that can be used to adapt any existing di-

WSCG 2012 Communication Proceedings 110 http://www.wscg.eu

Figure 6: Visible human dataset rendered with WebGL, resolution: 5122 ×1024 voxels.

0

20

40

60

80

100

120

140

512^2x256A 512^2x256B 512^2x10245122 x 256 A 5122 x 256 B 5122 x 1024

Figure 7: Rendering time (ms) for a desktop PC with a
nVidia Geforce 8800GS. Screen resolution: 8002 pix-
els. Raytracing: 128 steps.

rect volume rendering technique based on 3D textures
to mobile devices and WebGL.

Our experiments have proved that we can render vol-
umes of up to 5123 × 384 voxels on a mobile device
without decreasing the rendering speed. The proposed
technique is also very akin to WebGL, because this
standard shares the same limitations that mobile de-
vices, mainly the lack of 3D texture support.

Regarding future works, we plan to study texture com-
pression in order to reduce cache issues and improve ef-
ficiency. Furthermore, we plan to test the performance
problems when transmitting large volumes across the
Internet on WebGL. We want to explore multiresolution
techniques in order to optimize network bandwidth.
Progressive refinement techniques can probably be used
in this context to improve the user interaction experi-
ence with the volume.

ACKNOWLEDGEMENTS
This work has been partially supported by the Span-
ish “Ministerio de Ciencia e Innovación” and the Eu-
ropean Union (via ERDF funds) through the research
project TIN2011-25259; by the “Consejería de Inno-
vación, Ciencia y Empresa” of the “Junta de Andalucía”

and the European Union (via ERDF funds) through the
research project P07-TIC-02773; and by the University
of Jaén through the project PID441012.

6 REFERENCES
[1] J. Congote, A. Segura, L. Kabongo, A. Moreno,

J. Posada, and O. Ruiz. Interactive visualization
of volumetric data with WebGL in real-time. In
Proceedings of the 16th International Conference
on 3D Web Technology, Web3D ’11, pages 137–
146, New York, NY, USA, 2011. ACM.

[2] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn,
C. R. Salama, and D. Weiskopf. Real-time vol-
ume graphics. In ACM SIGGRAPH 2004 Course
Notes, SIGGRAPH ’04, New York, NY, USA,
2004. ACM.

[3] S. Guthe and W. Straßer. Real-time decompres-
sion and visualization of animated volume data.
Proceedings of the IEEE Visualization Confer-
ence, pages 349–356, 2001.

[4] M. Hadwiger, P. Ljung, C. R. Salama, and
T. Ropinski. Advanced illumination techniques
for GPU-based volume raycasting. In ACM SIG-
GRAPH 2009 Courses, SIGGRAPH ’09, pages
2:1–2:166, New York, NY, USA, 2009. ACM.

[5] ImageVis3D. ImageVis3D: A real-time volume
rendering tool for large data. scientific computing
and imaging institute (sci), 2011. [accessed 29
September 2011].

[6] F. Ino, S. Yoshida, and K. Hagihara. RGBA pack-
ing for fast cone beam reconstruction on the GPU.
In , Proceedings of the SPIE Medical Imaging,
2009.

[7] S. Jeong and A. E. Kaufman. Interactive wire-
less virtual colonoscopy. The Visual Computer,
23(8):545–557, 2007.

WSCG 2012 Communication Proceedings 111 http://www.wscg.eu

[8] J. Kruger and R. Westermann. Acceleration tech-
niques for GPU-based volume rendering. In Pro-
ceedings of the 14th IEEE Visualization 2003
(VIS’03), VIS ’03, pages 38–, Washington, DC,
USA, 2003. IEEE Computer Society.

[9] F. Lamberti and A. Sanna. A solution for display-
ing medical data models on mobile devices. In
SEPADS’05, pages 1–7, Stevens Point, Wiscon-
sin, USA, 2005. World Scientific and Engineering
Academy and Society (WSEAS).

[10] M. Levoy. Display of surfaces from volume data.
IEEE Comput. Graph. Appl., 8:29–37, May 1988.

[11] M. Moser and D. Weiskopf. Interactive Volume
Rendering on Mobile Devices. In Workshop on
Vision, Modelling, and Visualization VMV ’08,
pages 217–226, 2008.

[12] A. Munshi, D. Ginsburg, and D. Shreiner.
OpenGL(R) ES 2.0 Programming Guide.
Addison-Wesley Professional, 1 edition, 2008.

[13] J. Noguera, J. Jiménez, C. Ogáyar, and R. Segura.
Volume rendering strategies on mobile devices. In
International Conference on Computer Graphics
Theory and Applications (GRAPP 2012). Rome
(Italy), pages 447–452, 2012.

[14] Power VR. PowerVR Series5 Graphics SGX ar-
chitecture guide for developers, 2011.

[15] J. Schneider and R. Westermann. Compression
domain volume rendering. Proceedings of the
IEEE Visualization Conference, pages 293–300,
2003.

[16] S. Thelen, J. Meyer, A. Ebert, and H. Hagen.
Giga-scale multiresolution volume rendering on
distributed display clusters. Lecture Notes in
Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 6431 LNCS:142–162, 2011.

[17] B. Tomandl, P. Hastreiter, C. Rezk-Salama, K. En-
gel, T. Ertl, W. Huk, R. Naraghi, O. Ganslandt,
C. Nimsky, and K. Eberhardt. Local and remote
visualization techniques for interactive direct vol-
ume rendering in neuroradiology. Radiographics,
21(6):1561–1572, 2001.

[18] L. C. Vera. Volumetric medical images visualiza-
tion on mobile devices. Master’s thesis, Polytech-
nic University of Catalonia, 2010.

[19] D. Weiskopf. GPU-based interactive visualiza-
tion techniques. Mathematics and visualization.
Springer, 2007.

[20] C. Wooley. GPU Gems 2: Programming Tech-
niques for High-Performance Graphics and
General-Purpose Computation (Gpu Gems),
chapter 35, pages 557–571. Addison-Wesley Pro-
fessional, 2005.

[21] K. Xie, J. Yang, and Y. , Zhu. Real-time visu-
alization of large volume datasets on standard pc
hardware. Computer Methods and Programs in
Biomedicine, 90(2):117–123, 2008.

[22] H. Zhou, H. Qu, Y. Wu, and M. yuen Chan. Vol-
ume visualization on mobile devices. In 14th
Pacific Conference on Computer Graphics and
Applications, pages 76–84, 2006.

WSCG 2012 Communication Proceedings 112 http://www.wscg.eu

Voxel-Space Shape Grammars

Zacharia Crumley
University of Cape Town

South Africa
zacharia.crumley@gmail.com

Patrick Marais
University of Cape Town

South Africa
patrick@cs.uct.ac.za

James Gain
University of Cape Town

South Africa
jgain@cs.uct.ac.za

ABSTRACT
We present a novel extension to shape grammars, in which the generated shapes are voxelized. This allows easy
Boolean geometry operations on the shapes, and detailing of generated models at a sub-shape level, both of which
are extremely difficult to do in conventional shape grammar implementations. We outline a four step algorithm
for using these extensions, discuss a number of optional enhancements and optimizations, and test our extension’s
performance and range of output. The results show that our unoptimized algorithm is slower than conventional
shape grammar implementations, with a running time that is O(N3) for a N3 voxel grid, but is able to produce a
broad range of detailed outputs.

Keywords:
procedural generation, shape grammars, voxels

1 INTRODUCTION
For video games, virtual environments, and cinema spe-
cial effects, cost-effective content creation is an increas-
ing concern. The amount of models, animations, tex-
tures, and sounds needed for these applications has
been steadily growing with the increase in computa-
tional power and the quality of graphics. It is now at
a point where hundreds of modellers, animators, and
artists will work for months or years to create the con-
tent necessary for a single mainstream video game or
blockbuster film. The large size of these teams means
the costs involved are significant, and in spite of the
number of people working on the project, long develop-
ment times are still the norm. For this reason, content
creators have begun turning to procedural generation,
as a way of decreasing costs and shortening develop-
ment times.
Procedural generation refers to methods designed to
algorithmically generate content, instead of having it
hand-crafted. Minimal human interaction is required –
generally limited to setting the initial parameters of the
algorithm, or providing example inputs.
Today procedural generation is increasingly used to
generate large amounts of high quality content, par-
ticularly plants, landscapes, and textures. This is ev-
idenced by the growth of commercial procedural gen-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

eration software, such as SpeedTree1, Terragen2, and
CityEngine3. There are many procedural generation al-
gorithms [14] but our research focuses specifically on
shape grammars [18]. These are a type of formal gram-
mar, consisting of an axiom (the initial item to begin
with) and a set of production rules which modify, add,
or replace items.
Shape grammars are distinguished from conventional
grammars, in that their rules operate directly on ge-
ometric shapes instead of symbols from an alphabet.
Their production rules include geometric operations on
shapes (such as rotation, scaling, etc.), in addition to
shape replacement (as grammars do with symbols). An
example of a basic shape grammar is shown in figure 1.
Shape grammars were originally developed in architec-
ture as a tool for formalizing architectural design. Al-
though still used for that purpose, they are also find-
ing use in computer science as a method for procedu-
rally generating models of buildings and other struc-
tures. This is the application our research focuses on.
Conventional shape grammars operate on mesh repre-
sentations of shapes. These are moved, rotated, subdi-
vided and otherwise operated on until a final collection
of shape meshes is produced: the output of the shape
grammar.
However, there are two major problems with conven-
tional mesh-based shape grammars, as used in proce-
dural generation and both are difficult to solve.
Firstly, it is difficult to robustly apply constructive solid
geometry (CSG) or Boolean geometric operations on

1 http://www.speedtree.com/
2 http://www.planetside.co.uk/
3 http://www.procedural.com/

WSCG 2012 Communication Proceedings 113 http://www.wscg.eu

Axiom Rule 1 Rule 2

Figure 1: A simple shape grammar that produces an
infinite series of 2D stairs, and its first three iterations.

meshes: overlapping edges and vertices must be identi-
fied and trimmed or removed, whichever is appropriate.
This can lead to complications around numeric stabil-
ity, slivers, degenerate triangles, and other issues. Al-
ternatively, this redundant geometry can be left hidden,
but this is inefficient. It may also be necessary to cre-
ate new geometry. This process is complex, and there
are edge cases that remain problematic. Even with such
an algorithm, the overlap between different shapes can
lead to texture seams. This is visually unappealing and
difficult to overcome.

The second limiting problem of mesh shape grammars
is that texturing is done at a per-shape level. The faces
of each shape, or pre-made piece of geometry, have
fixed texture coordinates and associated 2D textures
that are projected onto the faces. This means it is diffi-
cult to have texture details that span multiple shapes, or
control the textures at a sub-shape level.

For example, it would be difficult to create racing strips
running along a car model produced by a shape gram-
mar, since the different sections of the car are made up
of different polygons created by different rules.

Modifying shape grammars to operate in a voxel-space
solves these limitations. CSG operations on voxels are
trivial, solving the first deficiency. For the second, tex-
tures can be assigned on a per-voxel basis, which allows
details to more easily span shapes and removes the tex-
ture’s association with a specific shape.

Using voxels presents some challenges, such as the
need for large amounts of memory and storage, and
the discrete nature of the underlying grid, which can
introduce aliasing artifacts and other sampling issues.
However, these problems can be dealt with, or worked
around, using tree data structures for efficiently manag-
ing space, which also allow us to use high resolution
voxel grids, reducing the impact of aliasing artifacts.

This paper presents our preliminary research into inter-
preting shape grammars in a voxel space, in contrast to
the traditional mesh geometry approach. Our goal is to
extend the expressive range of shape grammars with the
ability to easily and robustly apply Boolean geometry
operations.

Our major, and novel, contribution is an algorithm for
this process. The algorithm is made up of four main

stages, and produces a mesh model, suitable for use in
real-time, or offline, 3D graphics. We also discuss opti-
mizations and optional steps for the algorithm, as well
as testing its performance and range of output.

2 RELATED WORK

Stiny and Gips [18] first developed shape grammars in
an attempt to formalize architectural design. Although
still used in architecture, they have also been adapted
for use in the procedural generation of structures for
other applications [19, 12].

Early shape grammars were simplistic with a limited
range of output, but over time several ideas from pro-
cedural generation, most notably from L-systems, were
incorporated into shape grammar implementations.
Most notably, environmental sensitivity and stochastic
rules [3]. With environmental sensitivity, rules can
query the current set of shapes and adjust their output
based on the information they get. Stochastic rules
introduce randomness, by randomly choosing different
outputs and parameters to introduce variation in the
shapes generated.

Shape grammars were later extended to building gen-
eration using split grammars [19], which focus on sub-
division of shapes. For example, a building’s wall is
divided first into floors, then the floors into different
rooms, and finally the walls of the rooms into different
windows. Split grammars are particularly well suited to
façade generation [19] due to the regular, grid-like lay-
out of building windows. They work by recursive sub-
division of a shape, guided by following productions
from a rule set. The final set of shapes that arise from
the repeated subdivision form a model of the desired
building wall. However, split grammars are less suc-
cessful at creating internal structure. Early approaches
to this problem tended to be simplistic, such as using
n-sided prisms as the split grammar axioms [4]. Subse-
quently, better methods were developed, such as start-
ing from the building’s footprint obtained from aerial
imagery [7], and creating the building’s structure with
shape grammar rules [12].

Along with the other extensions mentioned, the features
of split grammars have since been incorporated into
current grammar implementations, unifying all features
under one grammar, for greater ease-of-use [12].

The range of output possible from modern shape gram-
mar implementations is extremely broad [12] and as
a result, shape grammars are considered the industry
standard for procedurally generating architecture. They
are able to create whole cities with realistic buildings
(using additional techniques [15] to create the road net-
works and block layout). The best example of this in

WSCG 2012 Communication Proceedings 114 http://www.wscg.eu

practice is the CGA grammar of CityEngine4, which
procedurally creates cities and buildings.
Example-based shape grammars can be used to gen-
erate different models in the same style as the given-
example. This can be done from an image of a build-
ing’s façade [13], or from existing models [2].
The problem of easily, and visually, editing shape gram-
mars has also been addressed by Lipp et al. [9] in their
work on interactively editing shape grammars for archi-
tecture. Their approach is primarily concerned with op-
erating on the grid-like façades of buildings, but does
feature methods for assisting in the overall building
structure creation.
Recent work [1, 5] has also developed methods for au-
tomatically creating a structural skeleton for models
generated by shape grammars. These skeletons can
then be used to create animations or run structural simu-
lations on the generated models using a physics engine.
However, shape grammars do have limitations. In split
grammars, shapes that span multiple subdivisions, and
shape intersections, are difficult to handle gracefully.
In addition, particularly unusual building designs with
complex elements, such as tunnels and interior hollows,
are very hard to generate.
Voxels have seen previous use in procedural genera-
tion, predominantly in games 5 and terrain represen-
tation. However, 3D texture synthesis methods have
been extended to create 3D models. Merell’s algorithm
[11] works by assigning a cuboid section of geome-
try to each voxel type, and then keeping a record of
how these cubes of geometry can be placed adjacent to
each other while keeping the resulting model consis-
tent. Texture synthesis methods are employed to create
a, potentially infinite, voxel grid that corresponds to a
consistent model. One downside is that this requires the
manually created cuboid sections of geometry.
Another modelling approach that allows Boolean
geometry operations while avoiding the issues around
mesh-based CSG was proposed by Leblanc et al.
[8]. Their approach allows modeling of shapes using
Boolean geometry operations, but is substantially more
complex than a voxel-based approach, and does not
solve the issue of creating surface detail at a sub-shape,
or trans-shape, level.

3 FRAMEWORK
The process of interpreting a shape grammar to produce
a model in our framework consists of five stages (one
of which is optional), and requires two inputs from the
user. The final output is a textured mesh, suitable for
use in modern graphics applications. The two user in-
puts are:

4 http://www.procedural.com/
5 http://www.minecraft.net/

Shape Grammar Interpretation

Shape Voxelization

Voxel Detailing

Mesh Generation

Mesh Post-processing

tagged shapes

voxel grid with tags

detailed voxel grid

mesh of voxel grid

Grammar Specifiction

Detailing Rule Set

Figure 2: A flow chart of our algorithm. The cyan boxes
are user inputs; the grey boxes are the four stages of the
algorithm. Arrow labels show the output of each stage.
Mesh post-processing is optional.

Shape Grammar Specification: This is the set of pro-
ductions and associated parameters for the shape
grammar itself.

Detailing Rule Set: The collection of rules that are
used to assign visual detailing information to the
voxel grid. This information is used when display-
ing the created model.

The five stages of the algorithm are:

1. Shape Grammar Interpretation: The input gram-
mar is run to produce a collection of shapes.

2. Shape Voxelization: The shapes from the previous
step are voxelized into a voxel grid.

3. Voxel Detailing: Surface voxels in the grid are as-
signed visual detailing information.

4. Mesh Generation: A mesh representation of the
voxel shape is produced, using the marching cubes
algorithm.

5. Mesh Post-processing (optional) The generated
mesh is smoothed and refined.

Below, we cover each of the five stages in detail, ex-
plain their operation, what inputs they use, and what
outputs they generate. Figure 2 shows an overview of
the process.

3.1 Shape Grammar Interpretation
The first stage of the algorithm requires that we specify
a shape grammar and then iterate it to produce the out-
put set of shapes. This step is very similar to applying
a conventional shape grammar, with some minor dif-
ferences. A set of shape grammar rules, and an axiom
shape, are provided by the user. This rule set is then
run on the axiom, producing new shapes and modify-
ing existing shapes on each iteration of the rules. This
continually-updated set of shapes (the current shape set)
converges to the final output of the shape grammar. An

WSCG 2012 Communication Proceedings 115 http://www.wscg.eu

rule 0: building_base -> roof (shape: triangle) | tower (shape: rectangle; symmetry:
reflective) | window (shape: square; symmetry: reflective) | door (shape: square)

rule 1: roof -> chimney (shape: rectangle)

rule 2: tower -> tower_peak (shape: triangle) |
tower_window (shape: rectangle)

rule 3: window -> window_arch (shape: triangle)

rule 4: door -> door_arch (shape: circle)

Axiom: building_base

Figure 3: A simple shape grammar being interpreted in parallel to form a basic building. Grey shapes are additive,
and red ones are subtractive. Position and size information in the example grammar are not shown, for the sake of
simplicity. Note that the final step involves the symmetric copies being created, as the grammar only requires two
iterations to complete.

Algorithm 1 Shape Grammar Interpretation
currShapeSet←{Axiom}
iterations← 0
while iterations < MaxIterations and
currShapeSet.hasNonTerminals() do

if parallelExecution = TRUE then
for all i ∈ currShapeSet do

i← doRuleDerivation(i)
end for

else
a← getFirstNonTerminal(currShapeSet)
a← doRuleDerivation(a)

end if
iterations← iterations+1

end while
for all i ∈ currShapeSet do

if i.hasSymmetry() then
s← i.createSymmetricCopies()
currShapeSet.insert(s, i−1)

end if
end for

example of this stage is shown in figure 3. Pseudocode
for this process is shown in algorithm 1.

This process will terminate under one of two condi-
tions: Either after a user-defined maximum number of
iterations, or once all shapes are terminal and none of
the rules can be performed on the set of shapes.

Rules can be interpreted in parallel (as done in L-
systems [16]), or in series (as done in traditional formal
grammars [12]). These are appropriate in different situ-
ations, depending on the type of model being generated
by the shape grammar. Serial rule derivation is suitable
for most situations, except for models that have fractal
qualities, where parallel rule derivation is advised.

Any of the many enhancements and extensions to gram-
mar generation methods can be used here: environ-
mental sensitivity, stochastic rules, a derivation tree for
querying earlier shape set states, and more.

Our implementation includes these three extensions, as
well as split grammar operators [12]. For more infor-

mation on these extensions, we refer readers to the lit-
erature [16, 12, 3]. We also have a collection of stan-
dard utility functions for common operations, such as
scaling, translation, rotating, and hollowing shapes. All
that is required from this stage of the generation process
is a specification of the final set of shapes.

There are two grammar extensions that we found very
useful for generating models in our experiments.

First is the tagging of shapes with metadata. One of the
operations that the shape grammar rules can perform is
to add metadata tags to shapes in the current shape set.
We implemented these as arbitrary strings. These serve
to preserve additional information about the shapes that
can be used in later stages of the generation algorithm.
For example, in generating a castle, a cylinder (and its
children if recursive tagging is used) could be tagged
with “type:tower” and “material:stone”. These tags in-
dicate additional properties of the shape that enhance
later detailing and texturing.

Secondly, we support the specification of symmetry in
the grammar rules. Our grammar implementation has
special operators for indicating that a shape, or group
of shapes, (and any child shapes that derive from them)
should be cloned to create symmetrical versions.

We support two types of symmetry: rotational and re-
flective. In rotational symmetry, three arguments are
provided to the operator, from which positioning infor-
mation for the symmetrical copies can be derived: Prot
- the center point around which the symmetric branches
are rotated; Vrot - a vector normal to the plane of rota-
tion, and Nrot - the number of rotational copies to create.

For reflective symmetry, only two arguments are re-
quired to fully construct the mirror copies of the shape,
or group of shapes, to be reflectively copied: Pre f - a
point on the plane of reflection, and Vre f - a normal to
the plane of reflection.

Symmetry information is specified when the grammar
is run, but symmetric copies are only added once the
grammar rules terminate. This is done as a post-process
because further shapes could be added to the set of
shapes undergoing symmetry, in iterations after the

WSCG 2012 Communication Proceedings 116 http://www.wscg.eu

symmetry is specified. Rather than tracking the sym-
metric copies and updating each of them for every
change in shape, we simply flag the set of shapes for
symmetry and wait until the rule derivation completes,
before creating the symmetric copies.

Once the shape grammar has finished, a full specifica-
tion of the final output set of shapes is passed to the
next stage. This includes positions, dimensions, orien-
tations, tags, and any other relevant information.

3.2 Shape Voxelization
In this phase, the shapes output from the shape gram-
mar are voxelized into a voxel grid. This is analogous
to rasterizing vector graphics into a pixel format. An
example of this process is shown in figure 4, and pseu-
docode in algorithm 2.

Algorithm 2 Shape Voxelization
shapes← getShapeGrammarOutput()
shapes← sortByPriority(shapes)
shapes_bbox← getBoundingBox(shapes)
gridResolution← getVoxelGridResolution()
voxelGrid← initializeEmptyGrid(gridResolution)
for all i ∈ shapes do

i← scaleShape(i, gridResolution, shapes_bbox)
end for
for all i ∈ shapes do

voxelGrid.voxelizeShape(i)
end for
return voxelGrid

Due to the large memory requirements of storing voxel
grids naïvely, it is infeasible to store the grid as a 3D
array. Our implementation uses an octree, to efficiently
manage space [17].

It is possible to use other tree data structures for stor-
ing the voxel grid, such as point region octrees (PR-
octrees), kd-trees, or R-trees. In the general case, where
no assumptions can be made about the data sets to be
stored, and no special look-ups are required, the best
option is an octree [17]. This is because the other tree
types all require re-balancing (an expensive operation).

Tags associated with the shapes to be voxelized are
assigned to the relevant voxels. In the case of over-
lapping shapes, it is possible that a voxel may inherit
tags from multiple shapes. This is not problematic at
this stage, but may cause ambiguities during detail-
ing, which could have unintended consequences. Users
should bear this in mind when designing grammars.

The order in which shapes are added is also important,
because shapes may be additive or subtractive (additive
for creating solid structures, or subtractive for carving
empty spaces out of solids). Adding and subtracting
geometry in this manner is not commutative. Hence a

Figure 4: The output of the simple building shape gram-
mar from figure 3 after being voxelized. The colours of
the voxels correspond to the tags they inherited from the
shapes. Grey indicates ‘material:wall’, brown indicates
‘material:roof’, and the dark grey ‘material:chimney’.

grammar may generate unintended results, depending
on the order in which the shapes are voxelized.

To resolve this ambiguity, the shape grammar can as-
sign a priority to the shapes. This is an integer that de-
termines when the shape will be voxelized. Before vox-
elization, the shapes are sorted by priority, and added in
sorted order. This allows a user to control when shapes
are added, and resolve order-dependency issues.

Finally, we can manually edit the voxel grid once the
shapes have been voxelized. This could be done to al-
low hand-crafted modifications to the output of a gram-
mar, or because the user is dissatisfied with some aspect
of the output that is difficult to correct in the grammar.

Manual editing is important for artists and modellers,
and our shape grammar extensions do not restrict it at
all, although it requires voxel editing software.

The final output of this stage is a 3D voxel grid, where
each voxel is either solid or empty, and may have meta-
data tags associated with it.

3.3 Voxel Detailing
In this stage of the algorithm, voxels are assigned an
appearance in the final model. This can include, but is
not limited to, texturing information, bumps maps, dis-
placement maps, lighting information, and materials.
This is done on a per-voxel basis, by a user-created rule
set which operates on each voxel individually. These
rules may iterate over the voxels multiple times, al-
lowing the creation of complex multi-pass detail. For
example, cellular automata patterns could be created,
since they map very well onto the discrete, gridded na-
ture of voxels. The scope of these rules is extremely
broad, and features such as context-sensitivity and ran-
domness can easily be included. Everything from as-
signing a simple texture based on position, to random-
ized complex multi-pass procedural methods are possi-
ble. A simple example of a voxel grid after undergoing
detailing is shown in figure 5, and pseudocode of the
detailing process is found in algorithm 3.

WSCG 2012 Communication Proceedings 117 http://www.wscg.eu

Detailing Rules
rule_0: if "material:roof" in tags then texture = red_tile
rule_1: if "material:chimney" in tags then texture = black_stone
rule_2: if "material:stone" in tags then texture = random_selection(grey_brick,
dark_brick)
rule_3: if voxel.borders_enclosed_space() == true then texture = blue_paint

Figure 5: The voxel grid from figure 4 after detailing.
Each voxel has been assigned a texture in accordance
with the detailing rule set supplied. Non-surface voxels
are ignored, and are not displayed in the diagram.

Algorithm 3 Voxel Detailing
detailingRuleSet← getDetailingRuleSet()
maxIterations← getMaxDetailingIteration()
sur f aceVoxels← voxelGrid.getSurfaceVoxels()
for i = 1 to maxIterations do

for all j ∈ sur f aceVoxels do
n = voxelGrid.getNeighbouringVoxels(j)
j.detailTags← detailingRules.runRules(j, n)

end for
end for

Detailing is done on a per-voxel level as opposed to
the per-shape level of conventional shape grammars be-
cause this allows more complex procedural detailing
of generated models, and it is much easier for detail
features to span shapes and work on sub-shape scales.
This also circumvents the problem of texture seams be-
tween adjacent shapes prevalent in conventional gram-
mars. The disadvantage to this freedom is more com-
plexity for the user. This complexity could be reduced
in two ways. Firstly, by creating a visual rule editor to
use, as opposed to text-based programming. Secondly,
by designing an interface that allowed rapid prototyping
of rules on small examples, to quickly detect problems.
However, we did not implement these, and leave them
to future work.

Relevant details about the voxel are passed to the rule
set. In our implementation these details are: tags as-
sociated with the voxel; normal of the voxel; the max-
imum resolution of the octree; the coordinates of the
current voxel; the count of the current iteration of the
rule set, and the above details for all neighbouring vox-
els, within a user-specified radius.

It should also be noted that this stage is independent of
previous steps. A detailing rule set can be applied to

Figure 6: Our Enterprise model with two different de-
tailing rule sets applied to it. Above, with its original
detailing; below, with a camouflage pattern. This shows
how detailing rule sets that are not reliant on shape tags,
such as camouflage, can be applied to any voxel grid.

any voxel grid, and does not need to concern itself with
how that data set was produced.

It is possible to have a detailing rule set that is com-
pletely independent of metadata tags. For example, de-
tailing that creates a consistent pattern across the entire
model without using the context information from the
tags. These detailing rules will work on any model pro-
vided to them, regardless of tags. An example of such a
detailing rule set being applied to a model intended for
a different rule set is shown in figure 6.

However, in most practical situations, we expect that
rules from the detailing rule set will be dependent on
metadata tags in the voxel data set. For example, de-
tailing a house’s walls with brick textures and the doors
with wooden ones requires that the two parts of the
model be distinguished. Hence the user should en-
sure that the shapes in the shape grammar are properly
tagged for the detailing stage.

Running snippets of code for each voxel in a grid can
be extremely slow, especially so if the grid is large, or
the rule’s code is complex. For this reason, we only run
the rule set on surface voxels in the grid.

We define a surface voxel to be any solid voxel in the
grid which is 26-connected to at least one empty voxel.
Because the marching cubes algorithm does not gener-
ate triangles for completely empty or solid space, only
voxels on the border between solid and empty space
will affect the final model. All others can be ignored.

Using the hierarchical structure of the octree, surface
voxels can be quickly identified. If a node of the octree
does not have any children, then only the voxels around
the edge of that node need be checked further. For all
reasonable models, this dramatically reduces the num-
ber of surface voxel candidates that need to be checked,
improving speed by an order of magnitude or more.

The final output of this step is a voxel grid where all
surface voxels have been assigned detailing informa-
tion. This information must unambiguously provide all

WSCG 2012 Communication Proceedings 118 http://www.wscg.eu

information required for rendering, either as is, or when
converted to a mesh.

3.4 Mesh Generation and Post-processing
There are many methods for rendering voxel grids.
These are often based on ray tracing, or point rendering.
In some situations it may be suitable to render the out-
put of the shape grammar with these methods, but most
graphics applications today work with triangle meshes,
not voxel data sets. For this reason, we need to convert
our voxel data set into a mesh that can be used in con-
ventional raster graphics applications, such as modern
3D game engines.
The marching cubes algorithm [10] is a well-
established solution to the problem of extracting a
mesh representation of a voxel grid or isosurface.
We make use of it to produce a mesh version of our
generated model.
The algorithm outputs a list of triangles, each of which
can be associated with a voxel in the input grid. Each
triangle is then assigned textures, materials, and other
detailing information from the surface voxel.
Hence we end up with a fully textured and detailed
mesh representation of the voxel grid that the original
shape grammar produced.
The mesh produced by the marching cubes algorithm is
suitable for direct use in graphics applications, but its
visual quality could be improved by post-processing.
One of the problems with the marching cubes algorithm
is that the output mesh has visual artifacts caused by the
discrete nature of the voxels. Curves in particular, are
not fully captured during the meshing process, and will
instead appear ‘bumpy’, although increasing the reso-
lution of the voxel grid can reduce this.
The severity of this problem can be reduced by an ap-
propriate mesh smoothing algorithm, which will signif-
icantly decrease the impact of such artifacts [6].
It should be noted though, that naïve smoothing algo-
rithms can lose details that are not artifacts, and should
be retained, such as sharp corners. For this reason,
we recommend the use of one of the more advanced
smoothing algorithms, which will retain these features.
There are a number of such algorithms, but in general
these advanced methods of smoothing come at the cost
of more complexity and a longer running time.

3.5 Optimizations
There are several optimizations to our algorithm that we
did not implement due to time constraints. These have
the potential to dramatically reduce running times, and
hence we discuss them here.
Voxelization of shapes can be performed extremely ef-
ficiently by exploiting the hierarchical nature of the oc-
tree. Beginning at the root of the tree, query the inter-
section between each of the eight children of the octree

node, and the shape to be added. If the area covered by
a child node is entirely within the shape, then that voxel
is set with the shape’s information, if there is a partial
intersection between the child node and the shape, then
the algorithm is recursively called on that node.

While faster, this is more complex to implement, and
requires an exact collision detection algorithm. We
suggest that future implementations make use of this
method to greatly reduce run times.

The implementation of marching cubes can also be sub-
stantially accelerated by only marching over the surface
voxels of the voxel grid. Since solid or empty regions
will not produce triangles, the voxels of those regions
need not be processed. The list of surface voxels from
the detailing step can be re-used here.

4 TESTING AND EXPERIMENTATION
In order to evaluate our voxel-space extensions to
shape grammars we undertook three experimental
tasks: performance testing, where we analyzed the
time and memory required; variation testing, where
we produce multiple similar models from a single
grammar; and output range testing, where we examine
the range of outputs our algorithm can produce, and its
ability to generate models of well-known structures.

4.1 Performance
We analyzed our algorithm’s performance across a va-
riety of voxel grid sizes and user inputs. The two main
results of interest are the time taken to generate a model,
and the peak memory usage of the process.

We decomposed timing into the four stages of the al-
gorithm to get an idea of their relative durations (post-
processing was excluded as it is an optional step).

Testing was performed on a PC with an Intel Core 2
Duo clocked at 2.4Ghz and 3 gigabytes of RAM.

Performance testing was conducted with a selection of
36 shape grammar and detailing rule-set combinations,
at 4 different voxel grid resolutions. The selection of
grammars and rule sets was specifically chosen to en-
compass a wide range of complexity. figure 7 shows
the timing results across all of the 36 models.

Before analyzing the results it should be noted that
our implementation was strictly intended as a single-
threaded proof-of-concept. Hence, performance was
not a priority, and there is large scope for improvements
in this area (as mentioned in section 3.5.) Nonethe-
less, we include our results as we believe they provide
a baseline for comparison to future implementations of
our work.

The first thing to note is that the shape grammar inter-
pretation is orders of magnitude faster than the other

WSCG 2012 Communication Proceedings 119 http://www.wscg.eu

64 128 256 512
0

100

200

300

400

500

600

700

800

900

Mesh Generation
Voxel Detailing
Shape Voxelization

Size of Voxel Grid

R
un

ni
ng

 T
im

e
(i

n
se

co
nd

s)

Figure 7: A cumulative graph of the average times taken
for our algorithm to run on 36 different inputs, covering
a range of complexities. Shape grammar interpretation
is not shown as it was negligible compared to the other
three stages.

stages, due to its independence from the voxel grid res-
olution. The average interpretation time was 50 mil-
liseconds. Due to the minuscule relative time, grammar
interpretation is not shown in figure 7.

As expected the running times of the other stages of
the algorithm is approximately cubic in the size of the
voxel grid. This is expected, as their running time is
directly proportional to the number of voxels to operate
on, which scales cubically with the size of the grid.

The biggest cause of variation in running times is the
number of iterations in the surface detailing. Because
each voxel must be processed for every iteration, the
number of iterations makes a large difference in the
amount of processing to be done, especially for higher
voxel grid resolutions.

Peak memory usage followed the same pattern of be-
ing cubic in the resolution of the voxel grid. The min-
imum and maximum amount of memory used, across
all testing inputs, were approximately 150 and 1400
megabytes, respectively.

These running times are significant for larger resolu-
tion grids. However, in practice, users can prototype
their grammars and rule sets on lower resolution mod-
els and, once satisfied with them, then do off-line gen-
eration of a high resolution model for actual use. This
means the long running times for large models will not
significantly disrupt work-flow.

4.2 Variation and Range Testing
Variation testing involved randomizing the parameters
in several of our shape grammars, and producing mul-
tiple models from them. The objective is to ensure that
our algorithm is capable of producing many different
models that share a similar style, from a single shape
grammar. A selection of the models produced in this
manner are shown in figure 8.

As can be seen from the images, our algorithm is capa-
ble of producing a variety of models, sharing a common

theme and style, from a single shape grammar and de-
tailing rule set, by randomizing the parameters of the
shape grammar and detailing rules.

To test the power of our shape grammar extensions, we
created shape grammars and detailing rule sets repre-
sentative of a broad variety of models, including imita-
tions of well-known existing structures. A selection of
these generated models are shown in figure 9.

5 LIMITATIONS
There are two limitations to our voxel-space shape
grammar algorithm that could restrict its potential uses.

Firstly, in order to obtain a high quality model from
a voxel data set, the set must be at a high resolution,
so as to remove “blocky” visual artifacts caused by the
discrete nature of a voxel grid. Mesh smoothing as a
post-process helps, but it is not sufficient on its own.

However, the higher the resolution, the slower the voxel
detailing process is. This is because each voxel in the
model must be detailed, and the number of voxels is
cubic in the dimensions of the voxel grid.

Secondly, texturing at a per-voxel level may be insuf-
ficient in certain cases, such as for curved surface de-
tails, where the discrete nature of the underlying voxel
data can cause visual artifacts. For example, an elabo-
rate spiral design with fine curved detail on the side of
a spaceship would almost certainly run into sampling
issues if created with a detailing rule set.

A possible solution to this problem would be allowing
the addition of decal textures to the final version of the
mesh. These decals would replace the existing details
in certain locations and display detail that could not be
created within the detailing rule set framework.

It must be noted though, that neither of these limitations
are critical, and none of them should be problematic in
the majority of cases.

6 CONCLUSION
We have presented a novel extension to conventional
shape grammars, where the shape output of the gram-
mar is voxelized, allowing more robust Boolean geom-
etry operations and a new per-voxel approach to detail-
ing the surface of generated models.

These extensions address two shortcomings in current
shape grammar implementations: the support of com-
plex shapes through CSG, and sub-, or trans-, shape de-
tailing at per-voxel level, for more elaborate and con-
trolled texturing.

Our algorithm is slower and more memory intensive
than conventional shape grammar implementations, but
not outside acceptable limits. Additionally, our exten-
sions allow the generation of a wide range of models,
including variations from a single shape grammar.

WSCG 2012 Communication Proceedings 120 http://www.wscg.eu

Figure 8: A selection of tanks and space stations produced by two of our shape grammars, using randomized
parameters in their rules. This shows how a single grammar can produce multiple models in the same style. These
models were all generated from cubic voxel grids of resolution 256.

Figure 9: A broad selection of the models produced by our algorithm, using a range of detailing rule sets and
shape grammar extensions, including cellular automata patterns, symmetry and multiple-pass textures. All of
these models were generated using a cubic voxel grid of size 256.

Our extensions add new functionality to shape gram-
mars, without losing existing capabilities, and signifi-
cantly increase the range of achievable content.

6.1 Future Work
The per-voxel detailing stage could be expanded to ad-
dress the interior of generated models. In our work, we
have only performed detailing on the surface voxels of
the model, but the method could be extended to detail
the interior voxels too. This would allow the creation of
details such as rooms inside generated buildings.
Post-processing could also be done on the voxel grid
before it is detailed. This could be used to add, remove,

and tag voxels to create detail corresponding to damage,
wear and tear over time, growth of mold, and more.

The voxel detailing rules could be extended to operate
at multiple resolutions of the voxel grid. Octree nodes
could easily be coalesced to form a lower-resolution
version of the model, to which the rule set could then
be applied. This would allow the creation of large scale
detailing initially, working down to finer details as the
rules are run at higher resolutions.

Finally, a solution to the constraint of texturing being
limited to a per-voxel level is the use of decal textures
on the generated mesh. Detailing could be extended to

WSCG 2012 Communication Proceedings 121 http://www.wscg.eu

allow arbitrary textures to be projected onto the gener-
ated mesh, complimenting the textures assigned in the
detailing step. This would allow texturing beyond the
per-voxel level our system is currently limited to.

ACKNOWLEDGEMENTS
The financial assistance of the National Research Foun-
dation (NRF) towards this research is hereby acknowl-
edged. Opinions expressed and conclusions arrived at,
are those of the authors and are not necessarily to be
attributed to the NRF.

Funding assistance for this research was also provided
by the University of Cape Town.

7 REFERENCES
[1] Richard Baxter, Zacharia Crumley, Rudolph

Neeser, and James Gain. Automatic addition
of physics components to procedural content. In
Proceedings of the 7th International Conference
on Computer Graphics, Virtual Reality, Visual-
isation and Interaction in Africa, AFRIGRAPH
’10, pages 101–110, New York, NY, USA, 2010.
ACM.

[2] Martin Bokeloh, Michael Wand, and Hans-Peter
Seidel. A connection between partial symmetry
and inverse procedural modeling. In ACM SIG-
GRAPH 2010 papers, SIGGRAPH ’10, pages
104:1–104:10, New York, NY, USA, 2010. ACM.

[3] Peter Eichhorst and Walter J. Savitch. Growth
functions of stochastic lindenmayer systems.
Information and Control, 45(3):217–228, June
1980.

[4] Stefan Greuter, Jeremy Parker, Nigel Stewart, and
Geoff Leach. Real-time procedural generation
of ‘pseudo infinite’ cities. In Proceedings of the
1st international conference on Computer graph-
ics and interactive techniques in Australasia and
South East Asia, GRAPHITE ’03, pages 87–ff,
New York, NY, USA, 2003. ACM.

[5] Martin Ilčík, Stefan Fiedler, Werner Purgath-
ofer, and Michael Wimmer. Procedural skeletons:
kinematic extensions to cga-shape grammars. In
Proceedings of the 26th Spring Conference on
Computer Graphics, SCCG ’10, pages 157–164,
New York, NY, USA, 2010. ACM.

[6] Thouis R. Jones, Frédo Durand, and Mathieu
Desbrun. Non-iterative, feature-preserving mesh
smoothing. In ACM SIGGRAPH 2003 Papers,
SIGGRAPH ’03, pages 943–949, New York, NY,
USA, 2003. ACM.

[7] R. G. Laycock and A. M. Day. Automatically
generating large urban environments based on the
footprint data of buildings. In Proceedings of the
eighth ACM symposium on Solid modeling and

applications, SM ’03, pages 346–351, New York,
NY, USA, 2003. ACM.

[8] Luc Leblanc, Jocelyn Houle, and Pierre Poulin.
Modeling with blocks. The Visual Computer
(Proc. Computer Graphics International 2011),
27(6-8):555–563, June 2011.

[9] Markus Lipp, Peter Wonka, and Michael Wim-
mer. Interactive visual editing of grammars for
procedural architecture. In SIGGRAPH ’08: ACM
SIGGRAPH 2008 papers, pages 1–10, New York,
NY, USA, 2008. ACM.

[10] William E. Lorensen and Harvey E. Cline. March-
ing cubes: A high resolution 3d surface construc-
tion algorithm. SIGGRAPH Comput. Graph.,
21:163–169, August 1987.

[11] Paul Merrell. Example-based model synthesis.
In Proceedings of the 2007 symposium on Inter-
active 3D graphics and games, I3D ’07, pages
105–112, New York, NY, USA, 2007. ACM.

[12] Pascal Müller, Peter Wonka, Simon Haegler, An-
dreas Ulmer, and Luc Van Gool. Procedural mod-
eling of buildings. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Papers, pages 614–623, New
York, NY, USA, 2006. ACM.

[13] Pascal Müller, Gang Zeng, Peter Wonka, and Luc
Van Gool. Image-based procedural modeling of
facades. In SIGGRAPH ’07: ACM SIGGRAPH
2007 papers, page 85, New York, NY, USA, 2007.
ACM.

[14] F. Kenton Musgrave, Darwyn Peachey, Ken Per-
lin, and Steven Worley. Texturing and modeling:
a procedural approach. Academic Press Profes-
sional, Inc., San Diego, CA, USA, 1994.

[15] Yoav I. H. Parish and Pascal Müller. Procedu-
ral modeling of cities. In Proceedings of the 28th
annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’01, pages
301–308, New York, NY, USA, 2001. ACM.

[16] P. Prusinkiewicz and Aristid Lindenmayer. The
algorithmic beauty of plants. Springer-Verlag
New York, Inc., New York, NY, USA, 1990.

[17] Hanan Samet. The design and analysis of spa-
tial data structures. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1990.

[18] G. Stiny and J. Gips. Shape grammars and the
generative specification of painting and sculpture.
Information processing, 71:1460–1465, 1972.

[19] Peter Wonka, Michael Wimmer, François Sil-
lion, and William Ribarsky. Instant architecture.
In SIGGRAPH ’03: ACM SIGGRAPH 2003 Pa-
pers, pages 669–677, New York, NY, USA, 2003.
ACM.

WSCG 2012 Communication Proceedings 122 http://www.wscg.eu

Interactively Simulating Fluid based on SPH and

CUDA

Yige Tang

Beijing Normal University

No. 19 XinJieKouWai St

Haidian District

100875, Beijing, China

solidsnake1905@gmail.co

m

Zhongke Wu

Beijing Normal University

No. 19 XinJieKouWai St

Haidian District

100875, Beijing, China

zwu@bnu.edu.cn

Mingquan Zhou

Beijing Normal University

No. 19 XinJieKouWai St

Haidian District

100875, Beijing, China

mqzhou@bnu.edu.cn

ABSTRACT

In this paper, we propose a novel method of interactive fluid simulating based on SPH, and

implement it on CUDA (Compute Unified Device Architecture). Firstly we use SPH (Smoothed

Particle Hydrodynamics) theory to simulate the motion of fluids. Secondly we propose an interactive

method between fluid and rigid objects. We treat the rigid objects as two different types, static one and

dynamic one. We deal with the two types in separately suitable ways in order to enforce their motion

similar to the real world. By taking advantages of CUDA which are greatly effective for large scale

numeric computation in parallel, our simulation achieves real time with low cost.

Keywords

Simulation, Fluid, SPH, CUDA, Interactive

1. Introduction

As a common phenomenon in nature, simulation

of fluid including water and smoke is an important

part in visual reality. After Reeves’ proposal of

particle system in 1983, which is used to present

non-solid objects such as water, fire and smokes,

researchers have done a lot of work for simulating

fluid vividly and effectively. Fluid simulation is

usually applied in medical image visual reality and

video game. Simulating fluid in computer is a tough

issue. Although the theory of computational fluid

dynamics has existed for many years, some properties

of fluid which contains convection, turbulence and

surface tension are difficult to be expressed through

simple modeling. However, due to the fact that the

real time simulation is more important than

computational precision in computer graphics, the

mathematical model and implementation focus on

real time and visual effects more than precision in

fluid computation.

The earliest approach of fluid simulation is

simple particle system, which is proposed by Reeves

in simulating fire and flake [Ree83a]. After that,

Shinya and Stam improved particle system

respectively in their work by introducing random

turbulences [Shi92a] [Sta93a]. Fluid simulation based

on Navier-Stokes Equations is implemented in 2D

space firstly, both Gamito and Yaeger et al. have

made contributions to it [Gam95a] [Yae86a]. In 1997,

Stam et al. proposed an approach based on grid to

simulating smoke [Sta99a], which is the first

interactive method on fluid simulation.

There are two approaches of simulating fluid

based on Navier-Stokes equations, the Eulerian

viewpoint and the Lagrangian viewpoint.

In the Eulerian approach, which is based on

WSCG 2012 Communication Proceedings 123 http://www.wscg.eu

mailto:solidsnake1905@gmail.com
mailto:solidsnake1905@gmail.com
mailto:zwu@bnu.edu.cn

position, the fluid properties on some fixed points are

computed. The absolute locations of fixed points

never change, and the properties need to be computed

are velocity, pressure, density, etc. The Eulerian

method is appropriate for simulating gases, while is

not able to present liquid well in wave and foam. The

Lagrangian approach is different from Eulerian one

as it is based on particles. Desbrun et al. and

Tonnesen use particles to present soft objects [Ses96a]

[Ton98a]. Witkin et al. use particles to control

implicit surface [Wit94a]. Dan et al. simulate lava by

using particles [Sto99a]. Comparing with Eulerian

approach, Lagrangian approach has several following

advantages. First, it’s not grid based, so fluid can

move in the whole scene and interact with other

object. Second, it can present more details of fluid,

such as the mergence and dispersing of water drop.

Recently, the most common Lagrangian

approach is based on smoothed particle

hydrodynamics (SPH), which is proposed by Lucy in

1977 [Luc77a] firstly used in

astronomical phenomenon. Muller et al. introduced

SPH theory to compute fluid simulation in 2003

[Mul03a]. Their approach simplifies solution method

of Navier-Stokes equations, while the amount of

calculation is so great that it’s hard to implementing

animation in real time when the quantity of particles

is huge.

Development of programmable GPU technique

makes large-scale numeric computation be solved

effectively under low cost. Due to the feature, SPH

method can be solved in parallel. Through

programming on GPU, real-time simulation for

large-scale-particles fluid becomes possible. The

GPU based radix sorting approach designed by Satish

et al. combining with spatial uniformed-grid, reduces

the cost in finding neighbors of particles

[Sat08a].Then the method improves the

computational speed. In 2004 Amada et al.

implemented forces’ computation of particles

[Ama04a], while the neighbor finding task is still

done by CPU. The method completely implemented

on GPU is firstly proposed by Kolb and Cunts in

2005 [Kol05a]. This approach emerges earlier than

CUDA.

 CUDA is a general-purpose GPU programming

toolkit released by nVIDIA in 2007, which makes it

possible to use C language program on GPU. With

the help of CUDA, the processors of GPU can run

parallelly by independently executing the same

groups of operations on different sets of data. The

above features are well suited for SPH method,

because the same groups of operations such as force

computation, speed and position update are

completely same and have to be executed for each

particle.

2. Fundamentals

2.1 Smoothed Particle Hydrodynamics

Essentially, SPH is a computational model to

compute the interactive result of each particle in the

fluid system. It defines a way to compute properties

of a fix point impacted by other particles in the

continuous space. A distance related weighted

function which is called kernel function is the

key of SPH method. is the distance between some

position and particle position . Another form

of kernel function is | | . Kernel function

satisfies the following equation ∫ | |

 .We use poly6 kernel as our kernel function, its

form is

 {

 (1)

After affirming kernel function, smoothed fields

 of arbitrary attributes of the particle as

 ∑

 | | (2)

After replacing the kernel in formula (2) by the

gradient of the kernel, we easily get the gradients of

the field as following.

 ∑

 | | (3)

WSCG 2012 Communication Proceedings 124 http://www.wscg.eu

 In SPH simulation, we only need consider

pressure, viscous force and external force. Pressure

and viscous force can be calculated by above

formulations.

2.1.1 Pressure

Formula (2) is used on computing pressure yields

 ∑

 | | (4)

If there are only two particles, the pressure force

calculated by formula (4) will not be symmetric

because the pressures at the locations of the two

particles are not equal. Following equation is a

simple, stable and fast solution.

 ∑

 | | (5)

Since particles only carry the three quantities mass,

position and velocity, the pressure at particle

locations has to be evaluated firstly.

We compute pressure by using equation (6)

 (6)

Here is a gas constant and is the

environmental pressure.

2.1.2 Viscosity

We use following equation to calculate

viscosity.

 ∑

 | | (7)

Since viscosity forces are dependent on velocity

differences and not on absolute velocities, there is a

natural way to symmetrize the viscosity forces by

using velocity differences:

 ∑

 | | (8)

2.1.3 External Forces

External forces include gravity, collision forces

and interaction forces with environment. They are

applied directly to the particles without the use of

SPH.

2.1.4 Computing Procedure

The SPH model is executed under the following

steps:

1) Find neighbors of each particle

2) Calculate the particle density

3) Calculate forces on particles

4) Update position and velocity of particles in

next time step

After finishing these steps, the particles move

obeying SPH rules can be rendered shown in Figure

1.

2.2 Neighbors Search

SPH is computationally heavy. The first step is

finding neighbors of each particle. In worst case, each

particle should be compared with all of others, whose

complexity is .To avoid this, using uniform

grid reduces most of cost. We use the algorithm

presented in [Gre08a], which can be summarized as

follows:

Figure 1. A group of SPH particles. Their

motions are computed by above formulas.

WSCG 2012 Communication Proceedings 125 http://www.wscg.eu

1) Divide the simulation domain into a

uniform grid.

2) Use the spatial position of each particle to

find the cell it belongs to.

3) Use the particle cell position as input to a

hash function

4) Sort the particle according to their spatial

hash.

5) Reorder the particles in a linear buffer

according to their hash value.

After those steps, it satisfies that particles in the

same cell will lie consecutively in the linear buffer,

which makes finding neighbors much more

effectively.

Radix sort’s implementation on GPU is

proposed by Satish et al. [5]

(a)

Before sort:

ParticleIndex

81 2 3 4 5 6 7

ParticleCell

20 3 0 1 1 2 1

(b)

After sort:

ParticleIndex

81 2 3 4 5 6 7

OldIndex

81 23 4 5 67

ParticleCell

20 30 1 1 21

CellStart

1 3 6 8

CellEnd

2 5 7 8

(c)

3. Interaction with Rigid Objects

We classify rigid objects into two types. One

type of them is static object such as glass with water.

However the water acts, the glass keeps still. Another

type is dynamic object such as a block on the water.

We use different methods to simulate them

respectively.

3.1 Interaction with Static Objects

It is easy to compute the interaction between

particles and static rigid objects. Since the object

can’t move, there is no need to compute a force from

the particles on the object. We only compute the

penalty force, which forces the particle back into the

fluid region in the opposite direction. Deformation

will not happen on that static object.

When a particle collides with a static object, a

penalty force is applied. Moore and Wilhelms

provide a comprehensive introduction to the penalty

force method [Mat88a]. Here we use the penalty

force applied to a fluid particle can be calculated by

equation (9).

 (9)

In equation (9), is the distance by which the

particle has interpenetrated the static object, is a

Figure 2. Data structure used by radix sort. (a)

presents particles’ position in the cells. (b)is

status of arrays before sort. (c) shows the

arrays needed after sort. The particles in same

cell are consecutive in ParticleIndex array. We

use OldIndex array to get the particle index

before sort in order to access the velocity and

position of particles.

WSCG 2012 Communication Proceedings 126 http://www.wscg.eu

spring constant, is a damping constant, is the

normal vector at the collision location, and is the

relative velocity of the particle to the static object.

3.2 Interaction with Dynamic Rigid

Bodies

Computing interaction with dynamic objects is

more complicated.

We treat dynamic rigid bodies as a portion of

fluid whose initial density is greater than the initial

density of the fluid. The only difference is in

computing the pressure impaction between fluid and

particles of rigid bodies. The rigid particles push the

fluid away from the rigid bodies. Likewise, the fluid

particles apply a pressure that results in a pure

translation or rotation of the rigid bodies.

The pressure applied on a rigid body particle is

given by equation (10), and the pressure at a fluid

particle is given by equation (11).

 {
 (

)

 (10)

 {
 (

)

 (11)

Here,

is the rigid body’s initial density,

while
 is the fluid’s.

The rigid objects construct of rigid particles,

whose motion is restricted to translation and rotation

without deformation. Pressure is applied individually

to each rigid particle, causing them to move

independently. After that, we need modify the

position of those particles to keep the rigid body’s

shape.

 The mass of whole object formed by rigid

particles is calculated by formula (12).

 ∑ (12)

Here, is the single particle’s mass. Assuming all

of the particles are the same, then the velocity of the

center of mass can be computed by formula (13).

∑ (13)

N is the amount of particles, and is velocity

of a single particle .The angular velocity of the rigid

body is approximated by equation (14).

∑ (14)

Here is the location of a single particle

relative to its corresponding rigid body center of

mass.

By using those above equations, we can get a

rigid object’s velocity and angular velocity. Then we

can simulate the motion of that rigid object.

4. CUDA Computation

In our implementation, we use three texture

arrays to store positions, velocities and densities of

particles in last computing procedure, and we write

new values to global memory of GPU respectively.

The following Table 1 outlines the steps of our SPH

algorithm with CUDA.

SPHCompute() //for each frame

{

 Copy particles’ properties from CPU to GPU

 Set physical parameters of environment

 Hash particles by their spatial position

Sort particles using radix-sort

/*--ComputeDensity--*/

Launch CUDA kernel function for each

thread

Each thread calculate one particle

Compute new densities using other particles

in 27 neighbor grids by using SPH kernel function

 __syncthreads()

WSCG 2012 Communication Proceedings 127 http://www.wscg.eu

Table 1.The procedure of SPH computing in our

implementation

5. Rendering

By using density we have computed in above

work, the Marching Cubes method is applied in our

work. An image spaced method is applied to simulate

the refractive effect. The rendering method not only

obtains a good visualization effect, but also bring

little calculation burden. The rendering results are

shown in Figure 3.

.

6. Conclusions

In this paper, we presented an interactive fluid

simulating method based on Smoothed Particle

Hydrodynamics. Our implementation can simulate

fluid in real time and vividly with the help of CUDA

and GLSL. The fluid we simulate looks like in real

world with wave and foam. Additionally, the method

which we propose in this paper also makes the fluid

interacting with rigid objects well. The fluid in the

box can move with the rotation of the box. The wood

block in the box is floated under the force from the

water. Figure 4 shows the interactive results of our

implementation.

(a) Result of interacting with static rigid objects.

(b) Result of interacting with dynamic rigid objects.

Through using CUDA, the method achieves real

time simulation, since we take the advantage of the

capacity of parallel computation afforded by GPU.

Our implementation runs on below platform:

Windows7 OS 64-Bit， Intel(R) Core(TM) i7

CPU @3.07GHZ, 6GB RAM and GeForce GTX 570

with 1280MB video memory.

The results of frame rates are shown in table 2.

/*--Compute Force--*/

Launch CUDA kernel function for each thread

Each thread calculate one particle

Calculate forces using densities computed above,

including pressure and viscosity

Handle external forces such as gravity

}

Figure 3. Water rendered by using marching

cube. The refraction effects are generated by

CGSL

Figure 4. Results of interacting with

rigid objects

WSCG 2012 Communication Proceedings 128 http://www.wscg.eu

number of Particles frame rate (FPS)

65,536 98.1

131,072 42.2

262,144 18.8

(a) results without free surface rendering

number of Particles frame rate (FPS)

65,536 50.9

131,072 22.8

262,144 10.4

(b) results with free surface rendering

Table 2. Runtime result of our implementation on

above platform

The large performance gap between the results in

Table 2(a) and the ones in Table 2(b) is due to the

surface rendering. The surface rendering takes extra

cost on memory and time. The above table presents

that our implementation performs very well.

7. References

 [Ama04a] T. Amada, M. Imura, Y. Yasumuro, Y.

Manabe, K. Chihara. Particle - based fluid simulation

on the GPU. Proc. ACM Workshop on General -

purpose Computing on Graphics Processors, 2004.

[Gam95a] M. N. Gamito, P. F. Lopes, and M. R.

Gomes. Two dimensional Simulation of Gaseous

Phenomena Using Vortex Particles. In Proceedings of

the 6th Eurographics Workshop on Computer

Animation and Simulation, pages 3–15. Springer -

Verlag, 1995.

[Gre08a] S. Green. Cuda Particles. Technicle report,

NVIDIA.

[Kol05a] A. Kolb, N. Cuntz. Dynamic particle

coupling for GPU-based fluid simulation. Proc. 18th

Symposium on Simulation Technique, 722-727,

2005.

[Luc77a] L. B. Lucy. A numerical approach to the

testing of the fission hypothesis. The Astronomical

Journal, 82: 1013-1024, 1977.

[Mat88a] M. Matthew, J. Wilhelms, Collision

Detection and Response for Computer Animation.

Proceedings of the 15th Annual Conference on

Computer Graphics and Interactive Techniques,

ACM Press: p. 289-298, 1988.

[Mul03a] M. Muller, D. Charypar, M. Gross.

Particle-Based Fluid Simulation for Interactive

Applications.Eurographics/SIGGRAPH Symposium

on Computer Animation, 2003

[Ree83a] W. T. Reeves. Particle systems: a technique

for modeling a class of fuzzy objects. ACM

Transactions on Graphics 2(2), pages 91-108, 1983.

[Sat08a] N. Satish, M. Harris, M. Garland. Designing

efficient sorting algorithms for many core gpus.

NVIDIA Technical Report NVR-2008-001, NVIDIA

Corporation, Sept, 2008.

[Ses96a] M. Desbrun and M. P. Cani. Smoothed

particles: A new paradigm for animating highly

deformable bodies. In Computer Animation and

Simulation ’96 (Proceedings of EG Workshop on

Animation and Simulation), pages 61-76. Springer -

Verlag, Aug 1996.

[Shi92a] M. Shinya and A. Fourier Stochastic Motion:

Motion Under the Influence of Wind. In Proceedings

of Eurographics’92, pages 119-128, September 1992.

[Sta93a] J. Stam and E. Fiume. Turbulent Wind

Fields for Gaseous Phenomena. In Proceedings of

SIGGRAPH ’93, pages 369–376. Addison-Wesley

Publishing Company, August 1993.

[Sta99a] J. Stam. Stable fluids. In Proceedings of the

26th annual conference on Computer graphics and

interactive techniques, pages 121–128. ACM

Press/Addison-Wesley Publishing Co., 1999.

[Sto99a] D. Stora, P. Agliati, M. Cani, F. Neyret, J.

Gascuel. Animating lava flows. In Graphics Interface,

pages 203-210, 1999.

[Ton98a] D. Tonnesen. Dynamically Coupled

Particle Systems for Geometric Modeling,

Reconstruction, and Animation. PhD thesis,

University of Toronto, November 1998.

[Wit94a] A. Witkin and P. Heckbert. Using particles

to sample and control implicit surfaces. In Computer

Graphics (Proc. SIGGRAPH ’94), volume 28, 1994.

[Yae86a] L. Yaeger and C. Upson. Combining

Physical and Visual Simulation. Creation of the

WSCG 2012 Communication Proceedings 129 http://www.wscg.eu

Planet Jupiter for the Film 2010. ACM Computer

Graphics (SIGGRAPH ’86), 20(4):85–93, August

1986.

Acknowledgements
The work is partially supported by National Natural

Science Foundation of China (No: 61170170) and the

Fundamental Research Funds for the Central

Universities (No: 2009SD-11)

Corresponding author, Email: zwu@bnu.edu.cn

WSCG 2012 Communication Proceedings 130 http://www.wscg.eu

mailto:zwu@bnu.edu.cn

Artificial jellyfish: evolutionary optimization of swimming

V. Lazunin
Hosei University

lazunin@gmail.com

V. Savchenko
Hosei University

vsavchen@hosei.ac.jp

ABSTRACT

Jellyfish, also known as "medusae", move by rhythmically contracting and expanding their bell-shaped bodies and are the
earliest known animals to achieve locomotion through the muscle power. Development of a generalized dynamical model of
medusan swimming is of interest to biologists as well as engineers. In this paper we present a new approach to modeling the
swimming behavior of a jellyfish. Due to the axial symmetry of the creature we used a 2D cross-section for the calculation with
the surface of the bell represented by two hemi-ellipsoidal curves. A simplified approach based on non-linear deformations of
a geometric object is used to model the bell contraction-expansion cycle. We used a particle-gridless hybrid method for the
analysis of incompressible flows, with averaging velocities field by the Shepard’s method (partition of unity). To the best of
our knowledge this is the first work where the optimal contraction and expansion parameters for the jellyfish movement were
found by solving the optimization problem of maximizing the speed while minimizing the energy loss.

Keywords

Fluid dynamics, jellyfish, vortex, elasticity, optimization

1 INTRODUCTION

Jellyfish are the earliest known animals to use muscle
power for swimming [DCC07]. They swim by contract-
ing and expanding their mesogleal bells. The swim-
ming muscles contract to expel a portion of water rear-
ward out of the subumbrellar cavity, thus generating a
thrust force to move the animal forward. The bell is
refilled when it restores its shape after deformation it
received during the thrust phase. The bell consists of a
fiber-reinforced composite material called "mesoglea".
The elastic characteristics of the mesogleal tissue were
studied, for example, by Megill et al. [MGB05]

The contractile muscle fibers of the medusae are only
one cell layer thick, so the forces that they can pro-
duce do not scale favorably with the increasing medusa
size. For a medusa with the bell of diameter D, the
mass of water that needs to be expelled from within the
bell scales as D3, while the muscle force only scales as
D1. Therefore the force required for jet propulsion in-
creases with the animal size more rapidly than the avail-
able physiological force [DCC07]. Thus, the swimming
performance may change dramatically with the increase
of the medusan body size, and it is impossible to predict
the optimal swimming parameters based on the geomet-
ric and kinematic similarity.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

The physics of jellyfish swimming is not well under-
stood. Existing animation techniques use combinations
of sinusoidal curves to specify the deformations. How-
ever, it is important for animation to achieve a real-
istic movement depending on the size and shape of a
bell. We assume that "realistic" also means "optimal",
as the movements of the real jellyfish were "optimized"
by the process of natural evolution, and we, therefore,
would be able to find realistic movements for an artifi-
cial 3D model of jellyfish by means of artificial evolu-
tion. Other applications, such as computational biology,
soft robotics and development of new propulsion tech-
niques can benefit from development of a generalized
model of jellyfish swimming.

In this paper we present a system for finding opti-
mal swimming parameters for jellyfish models, based
on our previous work where we studied vortex simula-
tion for jellyfish [LS10]. The system consists of two
main parts: simulated swimming and motion optimiza-
tion. We introduce a simple technique based on radial
basis functions (RBF) to model deformations of the jel-
lyfish bell and a particle-gridless hybrid method for the
analysis of incompressible flows. We modeled the in-
teraction between the fluid particles and the surface of
the bell in a form of elastic collision and reflection of
the fluid particles off the boundary surface. The swim-
ming efficiency was estimated for the bell and its par-
ticular movement specified by a set of control points.
Genetic algorithms were used to find the optimal swim-
ming pattern. To the best of our knowledge, this is the
first work where the optimal swimming parameters for
the jellyfish movement were found by solving the op-
timization problem. Throughout the paper we refer to
two other paper concerning computational simulation

WSCG 2012 Communication Proceedings 131 http://www.wscg.eu

of jellyfish ([LM09] and [RM09]), but neither of those
employs any numerical optimization.

The remainder of the paper is divided into 7 sections.
In section 2 we discuss related work. We describe our
approach in sections 3 to 5 and outline the algorithm in
section 6. In section 7 we outline the specifics of our
prototype implementation and report of the experimen-
tal results, and in section 8 we conclude and describe
directions of future work.

2 RELATED WORK

2.1 Studies of real life jellyfish
Experimental studies, including dye injection, filming
and analyzing the resulting flow, indicate that smaller
prolate medusae create strong jets during their bell con-
traction stage. Bigger oblate medusae, however, pro-
duce substantially less distinct jets and broad vortices at
the bell margins. A hypothesis proposed by Colin and
Costello [CC02] [DCC07] [DCC03] [DCCG05] is that
oblate species are using their bell’s margins as "pad-
dles", thus utilizing a paddling, or rowing, mode of
swimming. According to the model presented by Dabiri
et al. [DCC07], big oblate medusae are not capable
of swimming via jet propulsion. There is, however, a
study of McHenry and Jed [MJ03] which suggests that
the jetting model still provides more accurate approxi-
mation of swimming in oblate jellyfish.

The flow generated by oblate medusa’s pulsatile jets
consists mostly of radially symmetric rotating currents
called vortex rings. To better understand the vortex for-
mation and their effect on swimming performance, nu-
merous experimental studies of real live jellyfish were
performed [CC02] [DCC07] [MJ03] [DG03] [DCC03]
[DCCG05]. Researches using mechanical jet genera-
tors demonstrate that there is a physical limit – called
the "vortex formation number" – for the maximum size
of the vortex rings. Once this number is reached, no
bigger vortex formation is possible, and the extra wa-
ter creates a trailing current behind the vortex. The en-
ergy cost for generating this current is higher than that
of creating the vortex ring, so it is optimal to generate
the largest possible vortex without any trailing current
[DCC03]. Both thrust and efficiency increase in direct
proportion with vortex ring volume [DCCG05]. Lip-
inski and Mohseni [LM09] used digitized motions of
two real hydromedusae to computationally simulate the
flows. Their results confirm the hypothesis proposed by
Colin and Costello and demonstrate that distinct type
of jellyfish ("jetting" and "paddling") produce substan-
tially different kinds of vortices.

2.2 Fluid-solid interaction
Müller et al. proposed a particle-based method for in-
teraction of fluids with deformable solids [MST+04].

In their method they model the exchange of momen-
tum between Lagrangian particle-based fluid model and
solids represented by polygonal meshes with virtual
boundary particles to model the solid-fluid interaction.

Lipinski and Mohseni [LM09] used digitized mo-
tions of two real hydromedusae to computationally sim-
ulate the flows. They used a new arbitrary Lagrangian-
Eulerian method with mesh following the boundary be-
tween the fluid and the jellyfish body.

Yoon et al. presented a particle-gridless hybrid
method for the analysis of incompressible flows
[YKO99]. Their numerical scheme included La-
grangian and Eulerian phases. The moving-particle
semi-implicit method (MPS) was used for the La-
grangian phase, and a convection scheme based on
a flow directional local grid was developed for the
Eulerian phase.

Chentanez et al. presented a method for simulating
the two-way interaction between fluids and deformable
solids [CGFO06]. The fluids were simulated using
an incompressible Eulerian formulation where a linear
pressure projection on the fluid velocities enforces mass
conservation, whereas elastic solids were simulated us-
ing a semi-implicit integrator implemented as a linear
operator applied to the forces acting on the nodes in
Lagrangian formulation.

Hirato et al. proposed a method for generating ani-
mations of jellyfish with tentacles [HK03]. They used
a simplified computational model based on the MPS
method to simulate the fluid. Their work is mainly fo-
cused on visually plausible modeling of tentacles.

Rudolf and Mould created a system for physically-
based animation of jellyfish [RM09]. Their approach
may look very similar to ours, as they also exploited the
radial symmetry, simulating only a 2D cross-section,
and then creating a 3D bell for the visualization. The
main difference between the approach proposed in
[RM09] and the one discussed in this paper is that
Rudolf and Mould did not employ any optimization,
instead assigning a visually plausible set of parameters
manually, by trial and error. They used a spring-mass
system to represent the body of a jellyfish and a
grid-based immersed boundary method for fluid-solid
coupling. As they note in their work, there is still
very little knowledge about physical properties of real
jellyfish. Thus, we didn’t feel necessary to employ
something as complex as a spring-mass system, since
the actual physical accuracy of the model would still
be uncertain. Moreover, modeling a multi-layered
structure of the jellyfish bell with only one layer
of springs attached directly to the opposite sides of
the bell does not look realistic. Some fugures from
[RM09] demonstrate drastic change of both area and
linear size of the umbrella cross-section during the
contraction, something we failed to observe in real
species, such as presented in experiments of Colin

WSCG 2012 Communication Proceedings 132 http://www.wscg.eu

and Costello [DCCG05]. Instead of a spring-mass
system, we use a simpler approach, with the umbrella
of the jellyfish represented in 2D as two spline curves,
deformed by RBFs. Instead of a grid-based method,
for fluid simulation we used a particle-based method
[YKO99] with elastic collision and reflection of the
fluid particles off the boundary surface to prevent fluid
leaking across the boundary. Finally, [RM09] employs
a very primitive visualization technique, an issue we
were trying to address with a GPU-based parallel ray
tracer, capable of representing transparency, reflectivity
and venous structure.

2.3 Optimization
The problem was studied by many researchers from the
computer graphics and animation community, but we
have no room for the comprehensive referencing, so we
will mention only a few we found most relevant to out
work.

Sims was one of the pioneers of artificial evolution.
In his work [Sim91] he used genetic algorithms to
create evolving images, textures, animations and
plants, represented by procedural geometry, with hu-
man aesthetical selection instead of a fitness function.
In [Sim94] he used similar approach to artificially
evolve both morphology and behavior of articulated
(e. g. composed of rigid parts and connecting joints)
creatures, which were evolved and trained to perform
specific tasks, like walking, jumping, following a light
source, competing for a ball with other creatures etc.

Terzopoulos et al. [TTG94] modeled artificial fish
as NURBS and spring-mass systems, using simulated
annealing to find efficient moving patterns. Based on
simulated sensory input, their fish could learn complex
group behaviour, such as schooling, mating etc.

Tan et al. [TGTL11] used covariance matrix adap-
tation to find optimal swimming motion for fish, frog,
turtle and even some fictional creatures, represented as
articulated bodies; however, they stated that their simu-
lation method is unsuitable for soft body creatures, such
as jellyfish.

The works, discussed in this section, inspired our at-
tempt to create a combined approach suitable for mod-
eling and optimizing jellyfish. We emphasize that our
work unites two themes of different research history:
generation of time-dependent shapes and estimation of
dynamical characteristics of the generated models.

3 BELL SIMULATION
To simulate the bell contraction-expansion cycle we
used a simplified approach based on non-linear defor-
mations of a geometric object. Because the model
of jellyfish has radial symmetry, we used a 2D model
(cross-section) with the surface of the bell represented
by two hemi-ellipsoidal curves – the upper and the
lower. For our model we used a piece-wise linear

approximation with the initial number of nodes equal
40. A space mapping technique based on RBFs (see
[SS01], and references therein) was used for non-linear
approximation of shape deformations in numerous ap-
plications. Space mapping in Rn defines a relation-
ship between each pair of points in the original model
and the model after geometric modification. Let an
n-dimensional region Ω⊂ Rn of an arbitrary configu-
ration be given, and let Ω contain a set of arbitrary
control points {qi = (qi

1,q
i
2, ...,q

i
n) : i = 1,2, ...,N}for the non-

deformed object, and {di = (di
1,d

i
2, ...,d

i
n) : i = 1,2, ...,N}for

the deformed object. By assumption, the points qi and
di are distinct and given on or near the surface of each
of two objects. The goal of the construction of the
deformed object is to find a smooth mapping function
that approximately describes the spatial transformation.
The inverse mapping function can be given in the form

qi = f (di)+di, (1)

where the components of the vector f (di) are volume
splines interpolating displacements of initial points qi
(see Appendix for the details).

4 FLUID-SOLID COUPLING
Using a grid-based approach for jellyfish is possible,
but poses a number of problems. Using a regular grid,
as in [TGTL11] for an elastic body with varying thick-
ness will result either in a huge computational overkill
(if the grid is dense enough to accomodate the thin
edges), or in a poor accuracy of the computation (if
the grid is more sparse). Using an irregular grid, as
in [LM09] requires solving a mesh warping/re-meshing
problem. Solving Navier-Stokes equations with mov-
ing boundary is a hard problem. For simplicity, we
chose a particle-based method. Particle-based meth-
ods became a de-facto standard for a class of prob-
lems where high precision is not required. For mod-
eling we used almost the same scheme as proposed by
Yoon, Koshizuka and Oka [YKO99]. They proposed a
particle-gridless hybrid method for the analysis of in-
compressible flows, where tracing of virtual moving
particles is used instead of solving nonlinear equations
of velocity field. A particle interacts with other particles
according to a weight function w(r), where r is the dis-
tance between two particles. The weight function used
by Koshizuka et al. is

w(r) =

 −(2r/re)
2 +2 (0≤ r < 0.5re)

(2r/re−2)2 (0.5re ≤ r < re)
0 (re ≤ r)

(2)

Density for a particle is calculated as the sum of
weights of its interactions with the other particles (all
interaction happens only within the radius re):

〈n〉i = ∑
i

w(|r j− ri|). (3)

WSCG 2012 Communication Proceedings 133 http://www.wscg.eu

Note, that, unlike in the MPS method, the particle num-
ber density here is not required to be constant. A gra-
dient vector between two particles i and j possessing
scalar quantities φi and φ j at coordinates ri and r j is
equal to (φ j−φi)(r j− ri)/|r j− ri|2. The gradient vec-
tor at the particle i is given as the weighted average of
these gradient vectors:

〈∇φ〉i =
d
n0 ∑

j 6=i

[
φ j−φi

|r j− ri|2
(r j− ri)w(|r j− ri|)

]
, (4)

where d is the number of space dimensions and n0 is
the particle number density.

Diffusion is modeled by distribution of a quantity
from a particle to its neighbors using the weight func-
tion:

〈∇2
φ〉i =

2d
λn0 ∑

j 6=i
[(φ j−φi)w(r j− ri)], (5)

where λ for a two-dimensional case with Equation (2)
as the weight function is equal to 31

140 r2
e . This model is

conservative, because the quantity lost by the particle i
is obtained by the particle j.

The continuity equation for incompressible fluid can
be written as follows:

Dρ

Dt
=−ρ(∇ ·u) = 0. (6)

The velocity divergence at the particle i is given by:

〈∇ ·u〉= d
n0 ∑

j 6=i

(u j−ui) · (r j− ri)

|r j− ri|2
w(|r j− ri|). (7)

Then the pressure is calculated as:
u∗∗i −u∗i

∆t
=− 1

ρ
〈∇Pn+1〉i, (8)

〈∇2Pn+1〉i =
ρ

∆t
〈∇ ·u∗〉i, (9)

where u∗ is the temporal velocity obtained from the ex-
plicit calculation and u∗∗i is the new-time velocity. The
left side of (9) is calculated using the Laplacian model
(5). The right side is the velocity divergence, calcu-
lated by (7). We use variable re to avoid cases where
some particles near the boundary will have very few
neighbours to interact with. It gives a system of lin-
ear equations represented by an unsymmetric matrix,
which is solved by an unsymmetric-pattern multifrontal
method [Dav04]. Solving (9) may seem computation-
ally expensive, but with jellyfish, the most important
fluid-solid interaction often happens near the very thin
edges of the bell, so calculating accurate pressure field
is necessary.

Instead of using a higher-order gridless convection
scheme as it was proposed by Yoon et al. [YKO99] to
approximate flow directions, we applied averaging of
the velocities field by a simple scheme, based on Shep-
ard’s method (partition of unity) [She68].

Boundary conditions are perhaps the most important
factor influencing the accuracy of the flow computation.
The manner in which the boundary conditions are im-
posed influences the convergent properties of the solu-
tion. Usually in particle-based methods boundary par-
ticles are used to approximate the no-penetration con-
dition [MST+04] [PTB+03]. Repulsion and adhesion
forces between the particles are used to simulate the
no-penetration, no-slip and actio = reactio conditions
on the boundary of the solid.

In our work contour points represent the geometry of
the model and also define fluid boundaries. That is, the
solution points are defined by the fluid particles and the
particles located on the boundary of the bell. For each
boundary particle we can calculate the boundary normal
vector, pointing outwards, into the flow domain. For
the no-slip condition, only the normal speed compo-
nent of any boundary particle is used, while the tangen-
tial speed component is discarded. The no-penetration
condition is modeled in a form of elastic collision and
reflection of the fluid particles off the boundary surface.
The motion of the bell was computed using only trans-
lational parts in y direction. One component of the force
F on a rigid body is a derivative of linear momentum
mv of the gravitational center. It is assumed that jelly-
fish body density is equal to the density of the water.
Thus m is a volume occupied by the jellyfish.

The force F also invokes fluid and rigid body inter-
action. Points on the curve used to represent the bell
can be considered as rigid particles. When the bell is
deformed, distances between boundary particles may
change, so we put a new set of boundary particles af-
ter each deformation, by evenly subdividing the curves.
The strategy of using rigid particles we followed was
first proposed in [CMT04]. The forces on rigid parti-
cles are computed by assuming the rigid body as a fluid.
Therefore, for a particle i with the pressure pi, mass
density ρi and speed vi, the force from the fluid acting
on the node particle f f luid

i = f press
i + f vis

i is calculated
by using the physical values of the neighbor particles as
follows [DC96]:

f press
i =−∑

i6= j
(pi + p j)/2ρ̄ j∇iw

i j
h (10)

f vis
i =−∑

i6= j
Πi j∇iw

i j
h (11)

where

Πi j =

{
−(cµi j +2µ2

i j)/ρ̄ j µi j < 0
0 µi j ≥ 0

(12)

µi j = ervi jri j/(r2
i j +0.01e2

r), ρ̄ j = 0.5(ρi +ρ j),
ri j = ri− r j, vi j = vi− v j

5 OPTIMIZATION
In techniques based on the error functional minimiza-
tion it may become necessary to solve highly non-linear

WSCG 2012 Communication Proceedings 134 http://www.wscg.eu

problems. Minimization by standard techniques re-
quires high computational effort. Minimization of a
simplified functional, for example a quadratic one, is
reduced to solving a simple system of linear equations.
However, it leads to iterative minimization that depends
on a sufficiently good initial guess. It seems to us that
an attractive way of attacking this problem is to use op-
timization techniques based on genetic algorithms, pro-
posed by Mahfoud and Goldberg in [MG92]. In this
work we used an algorithm with simulated annealing
type selection.

The application of the genetic algorithm starts with
initially selecting a set of M variable control points
{di = (d1i,d2i,d3i, ...) : i = 1,2, ...,M} for the definition
of the space transformation generating the deformed
object. Actually, the user defines points qi on the ini-
tial image of the bell in its rest state with correspond-
ing points di on the model of fully contracted bell (Fig.
1). The collection of coordinates di and the contraction
time tcont define a creature. The algorithm begins by
randomly distorting the initial creature and generates s
creatures, which form the initial population. Now, the
genetic algorithm with sequential simulated annealing
is applied to this initial population to minimize the fit-
ness function.

Figure 1: An example of a creature: the right half of the
bell cross-section in two states (initial and deformed)
and the deformation vector

The spline f (P), determined by the set of N vari-
able control points di which constitute a creature, used
for global space mapping, provides a minimization of
quantity htA−1h, that is called "bending energy". 8
points belonging to the border of the bounding box and
two additional points in the center of the bell (x = 0) on
the upper and lower curve are used as anchor points. k
destination points define general deformation of the jel-
lyfish bell. A−1 is the bending energy matrix, which is
the inverse N×N upper left submatrix of T , and hi are
so-called heights and N = 10+ k. Space transformation
hi is the difference between the coordinates of the ini-
tial and destination point placements as shown in Fig. 1.
The bending energy of a general transformation is the
sum xtA−1x+ ytA−1y of the bending energy of its hori-
zontal x-components, modeled as a "vertical" plate, and

the bending energy of its vertical y-component, mod-
eled similarly as a "vertical" plate.

In our simulation we used the "economy" principle:
the jellyfish is striving to reach maximum speed with
minimum deformation of the bell. Thus, one of the fit-
ness function component is the bending energy Eb. In
the numerical analysis we also measured two quanti-
ties characterizing jellyfish locomotion, i. e. distance
D passed by a body which is defined by swimming
speed ν and energy loss E l . Energy loss is assumed
to be equal to surrounding water energy. Following the
"economy" principle, we define the fitness function as
follows:

Fitness = wv ·D−wb ·Eb−we ·E l (13)

where wb is the weight for RBF energy, we is the weight
for kinetic energy of a particle, wd is the weight for the
object velocity. These parameters are set by the user to
choose a mode of movement.

6 ALGORITHM
Initially, the 2D contour of the bell cross-section is
specified as an array of points. Deformations are as-
signed to the bell margin points. Particles are placed at
a regular interval (on a regular grid) inside the bounding
box, except the inner area of the bell. Then, the follow-
ing steps are performed iteratively for each step of the
contraction/expansion cycle:

1. The averaged density is calculated for every parti-
cle. A ball is generated for every particle, and the
density is defined as the volume of the ball divided
by the number of particles inside the ball. The ball
diameter is not constant, and is adjusted so that all
balls contain roughly similar number of particles.

2. The bell margin points are moved by a step along the
deformation vectors. For the rest of the points their
displacement vectors are calculated using RBFs.

3. A cardinal spline is fit through the displaced bound-
ary points. Because some segments may become
too long, we discard the boundary points and insert
them again by subdividing the spline curve evenly,
so that all the distances between neighboring points
are mostly equal.

4. A Poisson equation in a matrix form (unsymmetric,
about 10000 linear equations) is solved, giving new
values of pressure for each particle.

5. Gradient vectors are calculated applying equation
(4). For every particle, the speed vector is calcu-
lated, and the particle is then moved along the vector
by the time step ∆t.

6. New pressure values for the displaced particles are
interpolated back to the nodes of the regular grid.

WSCG 2012 Communication Proceedings 135 http://www.wscg.eu

Number of sub-steps Time (sec) Path (m)
6 7 0.02

10 13.14 0.032
14 18 0.031
18 23.99 0.033
20 26.6 0.038
40 25.39 0.039

Table 1: Performance results

7. Distance passed and energy lost at this step are cal-
culated for the creature.

At the end of a swimming cycle, we have a fitness for
the creature according to (13). A population of 10 such
creatures is evolved until convergence within 10%. The
best creature is then selected as "optimal".

For animation, we created a 3D model out of the 2D
contour, and then visualized by ray tracing. At first,
the mesh was created by rotational extrusion and tes-
sellation of the original 2D contour. Finally, we used
Blender 3D modeling suite to create a roughly simi-
lar 3D model with some embellishments, such as inner
"veins", inward-oriented "velum" and several tentacles.
Rotation of the original 2D contour was still used to put
anchor points at some interval around the bell. The an-
chor points were used as a "skeleton" for RBF-based
deformations of the entire bell model in 3D, including
the veins, at each animation step. Some random per-
turbations were added to the anchor points to make our
jellyfish look less artificial (Fig. 2). The tentacles were
modeled as soft cloth with one side attached to the bell
and deformed separately. The cloth structure was rep-
resented by a triangular mesh, with nodes affected by
the water flow.

7 RESULTS AND DISCUSSION
We implemented this method and used it to find the op-
timal swimming parameters for a simple oblate jelly-
fish similar to Aurelia aurita [DCCG05]. The program
was written in C++ and CUDA C. UMFPACK library
[Dav04] was used for solving large sparse systems of
linear equations. The algorithm terminates when a sat-
isfactory fitness level has been reached for the popula-
tion. In practice it happens when the number of gen-
erations is approximately 30. As Table 1 shows, the
path differs at the 3rd decimal digit. In our implementa-
tion we typically used 14 substeps with the calculation
time of about 10 minutes on a single core of an Intel
Core 2 Quad computer. The size of the simulation area
is 20x20 cm, with the resoultion of 100x100 particles.
The bell diameter is 10 cm.

In the particular case (see Fig. 2) weights (lazy mode)
wb = 0.3, we = 0.3 and wd = 0.4 were used. The vor-
tices produced by the simulation (Fig. 3) were similar

to those observed for real jellyfish, showing that appli-
cation of the no-slip condition looks reasonable.

A GPU-based parallel ray tracing system was devel-
oped for the visualization (Fig. 2). We used recursive
ray tracing to visualize the bell as a transparent object
with refraction and reflection. Each primary ray hitting
the bell was spawning several secondary rays, so the an-
imation performance varied depending on the number
of primary rays hitting the bell, and, thus, on the dis-
tance from the camera to the jellyfish and on the view-
ing angle. Our ray tracer produced 20-30 frames per
second on a GeForce GT 540M GPU. See the supple-
mentary video for an example of animation. We must
add, that experience in areas such as 3D art and texture
painting would add significantly to the observed real-
ism of the animation, but that is beyond the scope of
this work.

To validate our results, we compared them with ex-
perimental data received by Colin and Costello [CC02]
[DCCG05]. The distance passed by our model during
one full contraction-expansion cycle (which is roughly
equal to the bell radius) and the resulting water flows
seem to be in agreement with their data.

8 LIMITATIONS AND FUTURE WORK
We employed our simulation software to find the opti-
mal movement for a very simple 2D model, swimming
straight ahead. A more thorough validation of our tech-
nique, using a variety of sizes and shapes, as well as
robustness and sensitivity studies are required and are
subjects of future work. A few control points were used
to specify bell contraction, and the movements of the
bell margins were set by only two axially-symmetric
vectors. Real jellyfish have no brain or eyes (although
some of them have photosensitive spots on their bells)
and do not deliberately choose any complex swimming
trajectory, so we think our simplification has no big im-
pact on the results veracity for jellyfish. However, fol-
lowing complex paths would be crucial for jellyfish-like
robots. To simulate such behavior, it may be necessary
to perform the simulation in 3D and with larger number
of (possibly asymmetric) control points.

We did not, either, take into account jellyfish feed-
ing behavior and tentacles. Real jellyfish have an oral
opening inside the bell. Some of them also have nu-
merous tentacles spread in the water. The tentacles add
drag force and decrease swimming performance, but
are used to catch prey. Jellyfish create water flows to
carry their prey through the tentacles or into the oral
cavity itself. Modeling such behavior is important for
computational biology. Additional parameters for it can
be incorporated into the fitness function.

Another possible future work would be optimization
of the shape itself, e. g. finding both optimal movement
and optimal shape, satisfying constraints imposed by a
3D designer.

WSCG 2012 Communication Proceedings 136 http://www.wscg.eu

Figure 2: Animation sequence of two contraction steps (left) and two expansion steps (right) for a jellyfish with
floating tentacles and small additional deformations applied to the bell.

Figure 3: Vortex formation

Figure 4: Velocity change for a jellyfish during the ini-
tial swimming cycle (10.00 cm diameter, 0.39 sec con-
traction time, 0.61 sec expansion time)

9 ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their helpful
comments.

10 APPENDIX
We consider a mapping function as a thin-plate inter-
polation. For an arbitrary area Ω, the thin-plate inter-
polation is a variational solution that defines a linear
operator T when the following minimum condition is
used: ∫

Ω
∑
|α|=m

m!/α!(Dα f)2dΩ→ min, (14)

where m is a parameter of the variational function and
α is a multi-index. It is equivalent to using the RBFs
φ(r) = rlog(r) or r3 for m = 2 and 3 respectively,
where r is the Euclidean distance between two points.

The volume spline f (P) having values hi at N points
Pi is the function

f (P) =
N

∑
j=1

λ jφ(|P−Pj|)+ p(P), (15)

where p = ν0 +ν1x+ν2y+ν3z is a degree-one polyno-
mial. To solve for the weights λ j we have to satisfy the
constraints hi by substituting the right part of Equation
(15), which gives

hi =
N

∑
j=1

λ jφ(|Pi−Pj|)+ p(Pi). (16)

λ and ν are the coefficients that satisfy a linear system
T x = b, where

T =

[
A BT

B D

]
,

x = [λ1,λ2, ...,λN ,ν0, ...,ν3]T ,
b = [h1,h2, ...,hN ,0,0, ...,0]T

(17)

For 2D and 3D cases we call f (P) a volume spline.

REFERENCES
[CC02] S. P. Colin and J. H. Costello. Morphol-

ogy, swimming performance and propul-
sive mode of six co-occuring hydrome-
dusae. The Journal of Experimental Biol-
ogy, 206:427–437, 2002.

[CGFO06] N. Chentanez, T. G. Goktekin, B. E. Feld-
man, and J. F. O’Brien. Simultaneous
coupling of fluids and deformable bodies.
Eurographics/ ACM SIGGRAPH Sympo-
sium on Computer Animation, pages 83–
89, 2006.

[CMT04] M. Carlson, P. J. Mucha, and G. Turk.
Rigid fluid: Animating the interplay be-
tween rigid bodies and fluid. ACM Trans-
actions on Graphics, volume 23, pages
377–384, 2004.

WSCG 2012 Communication Proceedings 137 http://www.wscg.eu

[Dav04] T. A. Davis. Umfpack, an unsymmetric-
pattern multifrontal method. ACM
Transactions on Mathematical Software,
30(2):196–199, June 2004.

[DC96] M. Desburn and M. P. Cani. Smoothed
particles: A new paradigm for animating
highly deformable bodies. Computer ani-
mation and simulation, pages 61–67, 1996.

[DCC03] J. O. Dabiri, S. P. Colin, and J. H. Costello.
Fast-swimming hydromedusae exploit ve-
lar kinematics to form an optimal vortex
wake. The Journal of Experimental Biol-
ogy, 206:3675–3680, 2003.

[DCC07] J. O. Dabiri, S. P. Colin, and J. H. Costello.
Morphological diversity of medusan lin-
eages constrained by animal-fluid interac-
tions. The Journal of Experimental Biol-
ogy, 210:1868–1873, 2007.

[DCCG05] J. O. Dabiri, S. P. Colin, J. H. Costello,
and M. Gharib. Flow patterns generated
by oblate medusan jellyfish: field measure-
ments and laboratory analyses. The Jour-
nal of Experimental Biology, 208:1257–
1265, 2005.

[DG03] J. O. Dabiri and M. Gharib. Sensi-
tivity analysis of kinematic approxima-
tions in dynamic medusan swimming mod-
els. The Journal of Experimental Biology,
206:3675–3680, 2003.

[HK03] J. Hirato and Y. Kawaguchi. Calcula-
tion model of jellyfish for simulating the
propulsive motion and the pulsation of
the tentacles. 18th International Confer-
ence on Artificial Reality and Telexistence,
2003.

[LM09] D. Lipinski and K. Mohseni. Flow struc-
tures and fluid transport for the hydrome-
dusae Sarsia tubulosa and Aequorea victo-
ria. The Journal of Experimental Biology,
212:2436–2447, 2009.

[LS10] V. Lazunin and V. Savchenko. Vortices
formation for medusa-like objects. Pro-
ceedings of Fifth European Conference on
Fluid Dynamics (ECCOMAS CFD 2010),
June 2010.

[MG92] S. W. Mahfoud and D. E. Goldberg. A ge-
netic algorithm for parallel simulated an-
nealing. Parallel problem solving from na-
ture, 2:301–310, 1992.

[MGB05] W. M. Megill, J. M. Gosline, and R. W.
Blake. The modulus of elasticity of
fibrillin-containing elastic fibres in the
mesoglea of the hydromedusa polyorchis
penicillatus. The Journal of Experimental

Biology, 208:3819–3834, 2005.
[MJ03] M. J. McHenry and J. Jed. The ontoge-

netic scaling of hydrodynamics and swim-
ming performance in jellyfish (aurelia au-
rita). The Journal of Experimental Biology,
206:4125–4137, 2003.

[MST+04] M. Müller, S. Schirm, M. Teschner, B. Hei-
delberger, and M. Gross. Interaction of flu-
ids with deformable solids. Computer An-
imation and Virtual Worlds, 15:159–171,
2004.

[PTB+03] S. Premože, T. Tasdizen, J. Bigler,
A. Lefohn, and R.T. Whitaker. Particle-
based simulation of fluids. Computer
Graphics Forum, 22(3):401–410, 2003.

[RM09] D. Rudolf and D. Mould. Interactive jelly-
fish animation using simulation. Interna-
tional Conference on Computer Graphics
Theory and Applications (GRAPP), pages
241–248, 2009.

[She68] D. Shepard. A two-dimensional interpo-
lation function for irregularly spaced data.
Proceedings of the 23th Nat. Conf. of the
ACM, pages 517–523, 1968.

[Sim91] K. Sims. Artificial evolution for computer
graphics. Computer graphics, pages 319–
328. ACM SIGGRAPH, July 1991.

[Sim94] K. Sims. Evolving virtual creatures. Com-
puter graphics, pages 15–22. ACM SIG-
GRAPH, July 1994.

[SS01] V. Savchenko and L. Schmitt. Reconstruct-
ing occlusal surfaces of teeth using genetic
algorithm with simulated annealing type
selection. 6th ACM Symposium on Solid
Modeling and Applications, pages 39–46,
June 2001.

[TGTL11] J. Tan, Y. Gu, G. Turk, and C. K. Liu. Ar-
ticulated swimming creatures. Computer
graphics, volume 30. ACM SIGGRAPH,
July 2011.

[TTG94] D. Terzopoulos, X. Tu, and R. Grzeszczuk.
Artificial fishes: autonomous locomotion,
perception, behavior, and learning in a
simulated physical world. Artificial Life,
1(4):327–351, 1994.

[YKO99] H. Y. Yoon, S. Koshizuka, and Y. Oka. A
particle-gridless hybrid method for incom-
pressible flows. International Journal for
Numerical Methods in Fluids, 30:407–424,
1999.

WSCG 2012 Communication Proceedings 138 http://www.wscg.eu

A Comprehensive Taxonomy
for Three-dimensional Displays†

Waldir Pimenta
Departamento de Informática

Universidade do Minho
Braga, Portugal

wpimenta@di.uminho.pt

Luı́s Paulo Santos
Departamento de Informática

Universidade do Minho
Braga, Portugal

psantos@di.uminho.pt

ABSTRACT
Even though three-dimensional (3D) displays have been introduced in relatively recent times in the context of dis-
play technology, they have undergone a rapid evolution, to the point that a plethora of equipment able to reproduce
dynamic three-dimensional scenes in real time is now becoming commonplace in the consumer market.
This paper’s main contributions are (1) a clear definition of a 3D display, based on the visual depth cues supported,
and (2) a hierarchical taxonomy of classes and subclasses of 3D displays, based on a set of properties that allows
an unambiguous and systematic classification scheme for three-dimensional displays.
Five main types of 3D displays are thus defined –two of those new–, aiming to provide a taxonomy that is largely
backwards-compatible, but that also clarifies prior inconsistencies in the literature. This well-defined outline should
also enable exploration of the 3D display space and devising of new 3D display systems.

Keywords
three-dimensional displays, depth cues, 3D vision, survey, taxonomy

1. INTRODUCTION
The human ability for abstraction, and the strong de-
pendence on visual information in the human brain’s
perception of the external world, have led to the emer-
gence of visual representations of objects, scenery and
concepts, since pre-historical times. Throughout the
centuries, many techniques have been developed to in-
crease the realism of these copies.

Recent years have revealed a focusing of these efforts
in devising ways to realistically recreate the sensa-
tion of depth, or three-dimensionality, of the depicted
scenes. 3D displays thus emerged as an active area of
research and development.

Despite this being a relatively recent field, many dif-
ferent approaches for 3D displays have been already
proposed and implemented, and new ones surface with
some regularity. Moreover, these implementations
provide different sets of approximations for the depth
cues that our visual system uses to perceive the three-
dimensionality of a scene.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

†This work has been funded by the Portuguese agency FCT – Fundação para a Ciência e a Tecnologia, through the grant SFRH/BD/74970/2010.

This profusion of implementations has plagued at-
tempts to define a nomenclature system for 3D dis-
plays. While a few comprehensive classification
schemes have been proposed, most based on or com-
patible with Okoshi’s seminal work [Oko76], several
are now obsolete, while recent attempts tend to be
specific to a subset of displays [MK94, Hal97, BS00,
Dod05, GW07, UCES11].

Mostly what is seen are overview sections in publi-
cations that on the one hand assume implicit defini-
tions of 3D perception and 3D displays, and on the
other hand frequently avoid taking a stance (or do so
inconsistently) in undecided issues emerging from par-
tially incompatible previous classifications, such as the
placement of holographic technology [Fav05] or in-
tegral imaging [DM03]. A definitive, exhaustive and
unambiguous categorization system for 3D displays
has thus been lacking in the literature [CNH+07, p.1],
which hinders the classification and evaluation of dif-
ferent implementations, especially hybrid ones.

The approach presented in this paper focuses in the
formalization of the properties of each category of 3D
displays, to provide a stable system for classifying ex-
isting or new implementations. Specifically, the defini-
tion and categorization of 3D displays is based in their
fundamental properties, rather than in implementation
details, as is the case with most current classifications.

WSCG 2012 Communication Proceedings 139 http://www.wscg.eu

As a necessary foundation for this taxonomy, Sec-
tion 2 presents a general overview of the depth cues
used by the human visual system to perceive three-
dimensionality. With this knowledge, we can then, in
Section 3, determine the specific subset of these that
clearly mark the frontier between 2D and 3D displays,
and define basic properties of 3D displays. Section 4
then delves into the 3D display realm, defining a hi-
erarchy of types and subtypes for 3D displays, based
primarily on the depth cues they implement.

By employing a systematic approach, we expect the
outcome to be a logical, well-structured and extensi-
ble taxonomy that will facilitate comparison of dif-
ferent approaches, and the evaluation of appropriate
techniques for a given application. The Conclusion as-
sesses the degree to which this objective was fulfilled,
and illuminates what further work is to be performed
to complement the proposed taxonomy.

2. VISUAL CUES TO THREE-DIMEN-
SIONALITY

The origins of the Human species, as primates living
and moving in trees, and later as hunter-gatherers, con-
tributed significantly to make perception of depth a
very important feature of our vision. Developments in
art and research in optics and display technology have
revealed some of the cues that our visual system uses
to interpret the location of objects. These hints, known
as depth cues, can be divided into two main groups:
psychological cues, which depend on acquired knowl-
edge of the visual aspect of familiar objects, and phys-
iological cues, which manifest through the anatomy of
our visual system [Oko76].

The main psychological depth cues are:

Occlusion. The overlap of some objects by others that
are closer to us. This is one of the most fundamen-
tal ways we perceive depth on a scene.

Linear perspective. Given prior knowledge of com-
mon shapes and/or sizes of objects, we interpret
perceived distortions in their shape (parts farther
away from us appear smaller), differences in size
between them, and variation of their angular size
(how much of our visual field they cover) as indi-
cators to their location in three-dimensional space.

Atmospheric perspective. Commonly known as “dis-
tance fog”, it refers to the fading in contrast and
detail, and shift to bluish colors, of objects located
at a great distance. This happens because the light
we get from them had to travel an increased dis-
tance through air and thus underwent more scat-
tering from the atmospheric gases and particles.

Shading and shadow projection. Effects caused by
the relationship between objects and light sources.
The distribution of brightness and color in an ob-
ject’s surface provides information about (among
other things) its shape and position relative to the
light sources that illuminate it. Also, the location,
format and darkness of shadows projected into the
object (due to parts of it or other objects obscuring
the light) and into its vicinity allow us to interpret
its 3D form and relative position to other objects
and/or the environment.

The above are all static cues. There are two more psy-
chological cues, which are dynamic; that is, they man-
ifest when there is movement either of the observer or
of the observed object (or both):

Motion parallax. Relative changes in perceived po-
sition between two objects when we move. For
example, during a car trip a tree seems to be “trav-
elling past us” faster than the distant mountains.

The kinetic depth effect. Changes in the appearance
of an object due to its own motion. For example,
when a spherical object –say, a football– is uni-
formly illuminated so that no shadows give away
its round shape, a slow rotation around itself is suf-
ficient for our visual system to infer that it is a solid
body and not a flat disk facing us, due to the rela-
tive motions of features in its surface.

The physiological depth cues consist of:

Binocular disparity (or stereo parallax)1. Differ-
ences in images received by each eye, commonly
called stereoscopy2. Studies indicate [Oko76] that
for a moderate viewing distance, binocular dispar-
ity is the dominant depth cue to produce depth sen-
sation, through a process called stereopsis, which
is the effort made by the brain to fuse the images
together into a 3D perception of the scene. This
fusion effort is always necessary because conver-
gence of the eyes can only produce a perfect match
for a limited subset of the points from the images,
due to projection geometry constraints.

Convergence. When both eyes rotate inwards to aim
at the object of interest, thus aligning the differ-
ent images they receive, so they can be more ef-
fectively combined by the brain. As with ac-
commodation, this rotation manifests itself with
greater amplitude when differences in distance oc-
cur closer to the eye, so it is also a cue that is
more strongly perceived for nearby objects (less

1“Binocular” comes from the Latin bini (pair) + oculus (eye).
“Stereo” comes from the Greek stereós (solid).
2It’s been known since as early as 300 B.C. that depth perception
in human vision is related to the fact that we have two eyes, in sep-
arate physical locations, which collect different simultaneous per-
spectives of the same object [EucBC].

WSCG 2012 Communication Proceedings 140 http://www.wscg.eu

than 10m, according to [Wid01]). If they are close
enough, one can clearly feel the eyes “crossing” so
that they can keep aiming at the same point.

Accommodation. The effort made by the muscles in
the eye that control the shape of its lens in order
to bring the image into focus in the retina. Even
though we usually do not consciously control these
actions, our brain uses this muscular contraction
information as an indicator of the distance of ob-
jects we are observing. Since the focusing effort
varies much more for distance changes near the
eye, the effect is particularly notable for nearby ob-
jects (less than 2m, according to [MZ92]).

The depth cues described above are summarized in Ta-
ble 1.

The Accommodation-Convergence Mis-
match
The fact that most visual representational media are
unable to implement all depth cues –especially the
physiological ones–, does not pose a serious problem,
either because the scenes represented are meant to take
place (or be viewed from) a distance where the physi-
ological cues aren’t relevant [Oko76, p.39], or because
we can cognitively ignore the mismatch in psycholog-
ical vs. physiological depth cues, as our abstraction
ability allows us to understand their purported three-
dimensionality regardless.

However, a mismatch among the physiological cues
is less tolerable. This mismatch is common in current
3D displays, because every display that provides stere-
oscopy (one view for each eye) is theoretically able to
implement proper convergence cues for each object in
the scene depending on their location. But accommo-
dation (provided by the ability to make the light rays
diverge not from the screen, but from the virtual posi-
tions of the scene objects) is much harder to achieve;
therefore, most of these displays end up forcing the
eye to always focus at the screen to get a sharp im-
age, which conflicts with the cues of convergence and
stereopsis. The resulting phenomenon is called the
accommodation-convergence mismatch.

This mismatch is more serious than the aforemen-
tioned one, because providing the brain with conflict-
ing physical signals causes discomfort, the same way
mismatch between visual and vestibular (from the bal-
ance system in the inner ear) perception of movement
causes motion sickness. The consequences may in-
clude headaches, fatigue or disequilibrium, preventing
continued use of these displays. This, of course, in ad-
dition to the reduction it causes in the realism of the
3D visualization, which might become uninteresting
or even visually confusing [Hal97].

Table 1: Summary of visual depth cues for three-
dimensional vision

static dynamic
psycho-
logical

occlusion (overlap); linear
perspective; atmospheric
perspective (distance fog);
shading and shadows.

motion
parallax;
kinetic
depth effect.

physio-
logical

accommodation (focus);
binocular disparity (stere-
oscopy); convergence.

3. DEFINITION OF A 3D DISPLAY
Before defining what a 3D display is, it is necessary
to clarify what is meant by “display”. As a word with
multiple meanings, we will assume the context of vi-
sual perception and the word’s usage as a concrete
noun (i.e., the name of a thing). As such, the defi-
nition adopted will be “a visual output device for the
presentation of images”.

It’s worth pointing out that the word “images” is in
plural, because we will consider only display media
that don’t produce permanent records, but instead are
mutable, or rewritable, by comprising reconfigurable
active elements, such as pixels, voxels3 or catoms4

– in other words, electronic visual displays. This, as
[Oko76] pointed out, effectively excludes static visual
representations such as paintings, photographs, sculp-
tures, and even classical (static) holograms, for they
are not displays in the sense adopted above, but merely
the physical embodiment of a specific image. These
will therefore be left out of this taxonomy. Never-
theless, all the principles behind them are present in
the displays we consider, the only difference being the
adoption of a rewritable medium.5

With the clarification of what constitutes a display
device, we can now approach the question of what
makes a display three-dimensional. Firstly, we must
acknowledge that the line separating 3D displays from
2D displays is not always clearly defined, despite
what the dichotomic “2D/3D” nomenclature seems to
suggest. This fuzziness occurs because, on the one
hand, the psychological 3D depth cues can, in fact, be
reproduced in media traditionally considered as 2D;
and on the other hand, many displays deemed three-
dimensional are actually flat screens, which means that
the images are emitted from a two-dimensional sur-
face.

3A portmanteau of the expression “volumetric pixels”.
4In the (still theoretical) field of claytronics –dynamic sculptures
made of microscopic robots–, ”catom” is a combination of the words
“claytronic atoms” [GCM05].
5For instance, when we mention holography, or stereoscopic dis-
plays, we will be referring to their electronic counterparts.

WSCG 2012 Communication Proceedings 141 http://www.wscg.eu

With these limitations in mind, we define 3D displays
as visual output devices that evoke at least one of
the physiological depth cues (stereoscopy, accommo-
dation and convergence) – besides, naturally, the psy-
chological cues enabled by the specific display tech-
nology used. This definition ensures that the 3D per-
ception is truly engaged in a natural way, and not by
ignoring the apparent flatness of the scene, as happens
with displays based only in psychological depth cues.

4. PROPOSED TAXONOMY FOR 3D
IMAGING TECHNIQUES

To define a basis for the proposed taxonomy, we will
apply two general criteria as orthogonal axes of cat-
egorization. We’ll demonstrate that by intersecting
these two basic properties, it is possible to estab-
lish a well-grounded, formally-defined taxonomy that
largely validates current consensus but also clarifies
conflicting definitions.

The first axis is the number of views supported by
the display. The reasoning behind this is that most of
the depth cues for 3D perception (occlusion, motion
parallax, convergence, stereopsis, etc.) are dependent
on the angle from which the observer views the scene.
3D displays will employ different methods to emulate
this viewpoint-dependent variation of the light field.

One such method consists simply in producing two
views and ensuring that each is only seen by the appro-
priate eye of the observer. Another approach employs
displays that are able to project multiple views into dif-
ferent directions. This is implemented by segmenting
the image into as many perspectives as desired, mul-
tiplexing them into the display, and using a filtering
mechanism to direct each view to the corresponding
direction. Finally, a third type comprises displays that
can generate or approximate a continuous wavefront of
light that propagates as coming from the actual 3D po-
sition of the virtual object, rather than dispersing from
its projection in the display surface.6

Throughout the years, as 3D displays advanced past
the two-views (binocular) approach, the word “stereo-
scopic” has gradually expanded its range to become
largely synonymous with three-dimensional vision
(and rightly so), and is thus routinely applied to dis-
plays of all of these types. Therefore, in the spirit
of unambiguity, the three meta-categories described
above will be named “duoscopic”, “multiscopic” and
“omniscopic”, respectively.7

6Head tracking by itself only implements monocular directional
variation; thus, it doesn’t constitute a 3D display as defined above.
7Prior attempts to define the difference between these types of dis-
plays have entailed the use of the terms “stereograms” and “panora-
magrams” [Oko76, Hal97], but the distinction hasn’t been widely
adopted in the literature, and even less in the industry.

The other main axis we’ll use to map the 3D displays
space is the effective shape of the display medium
itself, which can be “flat” or “deep”. This doesn’t de-
pend strictly on the shape of the display surface, but
rather on the effective volume it occupies while dis-
playing the 3D image. The flat displays can be com-
pared to a window, a planar surface which provides
different perspectives as one moves around, but limits
the scene at its boundaries. For the deep displays, there
is a volume of space occupied by the display medium
(either permanently or due to moving elements) and
the virtual object is displayed inside the volume, also
not able to exist outside the volume’s boundaries as
they are perceived by the observer. We can say that
one looks through flat displays as if through a window,
and looks into deep displays as if they were a crystal
ball.

Aside: the projection constraint

The boundary limitation of both the flat and the deep
displays are manifestations of the “projection con-
straint”.8 Countering this effect may be done by increas-
ing the absolute size of the display (for example, a cin-
ema screen), shaping it in order to surround the viewer
(as is done in the CAVE virtual reality environment), or
increasing its relative size by bringing it closer to the ob-
server (the technique used by virtual reality glasses).

These two criteria allow us to effectively separate the
displays into five main categories, most of which are
already well-established in the literature. Table 2 sum-
marizes this division.

It might be noticed that two of those terms are not
common in most taxonomies, namely “virtual vol-
ume displays” and “multi-directional displays”. They
are, in fact, key components of this taxonomy, in that
they clarify the classification of techniques for which
past works have not been able to agree on a category.
Other categories, however, were included with their
currently de facto standard names, in order to prevent
excessive disruption and preserve as much backwards-
compatibility as sustainable without breaking the con-
sistency of the proposed framework.

Table 2: Proposed Taxonomy

display shape

flat deep

#
vi

ew
s duoscopic stereoscopic

multiscopic autostereoscopic multi-directional
omniscopic virtual volume volumetric

8[Hal97] describes the projection constraint by stating that “a dis-
play medium or element must exist in the line of sight between the
viewer and all parts of the [visible] image.”

WSCG 2012 Communication Proceedings 142 http://www.wscg.eu

In the following subsections we will complete the def-
inition of these five groups by specifying their main
properties and, where applicable, defining relevant
subcategories inside them.

Flat 3D displays
Flat-type, screen-based 3D displays are the most pop-
ular kind of 3D displays used currently, with commer-
cial use now common in movie theaters and domestic
entertainment devices. They work mostly by provid-
ing stereoscopy (different images for each eye), which,
as mentioned in Section 2, is the main depth cue for 3D
vision at moderate distances.

These displays can be further divided in three main
groups: stereoscopic devices, which work in conjunc-
tion with glasses to provide two distinct views; au-
tostereoscopic screens, which can generate multiple
views without requiring any headgear; and virtual
volume displays, which recreate the 3D wavefront as
if propagating from the actual location of the 3D im-
age – the most notable example being the hologram.

4.1.1 Stereoscopic Displays
Stereoscopic 3D displays can display one image to
each eye in two ways: either by combining (i.e, mul-
tiplexing) two separate streams of images in one de-
vice, and filtering them with special glasses, or by us-
ing separate display devices for each eye.

Glasses-based stereoscopic displays can be imple-
mented through three filtering techniques [Ben00]:

Wavelength multiplexing. Separating the left-eye and
right-eye images in different colors, the most well-
known example of which is the anaglyph, with its
characteristic “red-green” glasses;

Temporal multiplexing. Using shutter glasses syn-
chronized with the screen and a doubled frame-rate
that displays the images for the left and right eye
alternatively;

Polarization multiplexing. Achieved by emitting im-
ages for each eye with different light polarizations
(direction of wave oscillation), and filtering them
with polarized-filter glasses.

The stereoscopic displays that use separate screens for
each eye are usually called head-mounted displays
(HMDs). This name is justified because the whole
display system is head-mounted, rather than only the
filtering mechanism.

HMDs include mostly devices such as virtual reality
(VR) or augmented reality (AR) glasses, but also com-
prise techniques still largely embryonic, such as retinal
projection, contact lens displays and brain-computer
interfaces.

As previously mentioned, HMDs can overcome the
projection constraint by displaying the image closer to
the eye, thus increasing its relative size and coverage
of the visual field.

There are two key characteristics of stereoscopic dis-
plays that separate them from other 3D vision tech-
niques: (1) they require either the whole display sys-
tem or the filtering mechanism to be fixed regard-
ing the eyes, which in most cases implies some sort
of headgear, thus being potentially invasive to varied
degrees (ranging from light and inexpensive filtering
glasses to surgery-requiring neural implants), and (2)
because they only present two views, they only sup-
port a single user/perspective.9

Motion parallax is not natively supported by stereo-
scopic displays, but they can be enhanced to support it
by employing head tracking [Dod05].

4.1.2 Autostereoscopic Displays
Autostereoscopic screens are usually implemented us-
ing two techniques:

Parallax barriers, which work by sequentially inter-
lacing the images for each perspective in vertical
strips, and employing a fence-like barrier that re-
stricts the light from each strip to propagate only
in its corresponding direction.

Lenticular displays, which do this filtering by using
an array of lenses that direct each part of the im-
age to the correct direction. These lenses are usu-
ally cilindrical, providing only horizontal parallax,
but spherical lenslets have been proposed to over-
come this limitation, resulting in what is called an
“integral imaging” device.

Autostereoscopic screens exploit the fact that the eyes
occupy different points in space to provide stere-
oscopy. In other words, they employ direction-
multiplex to channel information of the left and right
views into appropriate eyes [DM03].

These direction multiplexing techniques can be gener-
alized to produce more than two views, which enables
motion parallax, and consequently the ability to sup-
port multiple observers with a single display, without
any headgear. However, undesired optical distortions
caused by too small lenses or barriers limits the num-
ber of possible views. The motion parallax supported
is thus markedly non-continuous, which reduces the
realism of the 3D effect [Hal97].

9It is possible, using HMDs, to implement multi-user applications
by having each user wear their own device, and keeping all of them
synchronized, but this is obviously a costly and technically chal-
lenging approach.

WSCG 2012 Communication Proceedings 143 http://www.wscg.eu

Anisotropic diffusers (surfaces that scatter light in
very narrow horizontal directions) have been presented
as a potential solution to such limits [UCES11]. It’s
been reported[Tak06] that with enough angular resolu-
tion, such displays could even create accomodation re-
sponses in the eye. Therefore, by sufficiently approx-
imating (in the assigned visualization area) the conti-
nouous wavefront that a real object would create, they
could be considered omniscopic instead.

4.1.3 Virtual Volume Displays
Virtual volume displays, as the name says, are able
to generate the sensation of depth by placing virtual
images in 3D space, without having to physically span
the imaging volume [Hal97]. Since each point of the
image is optically located at the correct depth, these
displays are able to provide proper accommodation.
This can be implemented either by adaptive optics, or
through the holographic technique.

Adaptive optics employ dynamic optical systems that
can change their focusing power. These can be de-
formable (varifocal) membrane mirrors, or “liquid”
lenses, usually produced through an effect called
“electrowetting”. They are similar to the old illu-
sion called Pepper’s ghost, which consists in a semi-
transparent mirror that superimposes a reflection (of
a real object, or a verisimilar 2D projection) over the
background scene, producing a ghostly image of the
object, and which still finds modern use in many theme
parks and live shows.

In displays based on adaptive optics, the flexible opti-
cal element will reflect or transmit a static screen that
displays a sequence of depth slices, synchronized with
the curvature of the mirror or lens to place the image of
the slice in the appropriate depth location. This kind of
display will prevent occlusion, since the virtual slices
cannot block the light from those behind it. But if a
single-perspective is acceptable, such as in HMDs or
single-user desktop displays, occlusion can be simu-
lated by subtracting a depth layer from those behind it
(from the perspective of the observer).

While the surface of the lens or mirror is not strictly
planar, slight changes in their focal length lead to large
variations in the virtual image’s location [DM03].
Coupled with the window-like viewing mode they en-
able, this means that adaptive optics-based displays
can be considered flat displays.

Holography, on the other hand, works by storing the
shape of the wavefront of the light emanating from the
scene, by recording the interference pattern of its in-
teraction with a clean, coherent light source. The orig-
inal wavefront can then be reconstructed by illuminat-

ing the pattern with a copy of the reference coherent
beam. All optical effects such as shadows, reflections
and occlusions are present in the resulting image.10

Unlike most autostereoscopic screens, virtual volume
displays can provide all the physiological depth cues
(particularly accommodation), as well as continuous
motion parallax. The recent advances in anisotropic
screens have shortened this gap, but further properties
such as vertical parallax are yet unreported in such dis-
plays, which positions virtual volume displays favor-
ably in the realism of the 3D effect and the compact-
ness and portability of the display system.

Deep 3D Displays
Deep displays physically occupy a volume of space
and display the object inside it. Two methods can be
used to implement such a system: volumetric dis-
plays, which place the virtual points of the object
in physical 3D space, and multi-directional screens,
which, as the name says, have either a single rotating
screen, or multiple static screens facing different di-
rections – in either case, users in a given position will
see only the appropriate perspective.

Volumetric displays are omniscopic, since having the
object displayed in actual 3D space allows virtually
any viewpoint to get the correct perspective. Multi-
directional screens will have to subdivide the perspec-
tives into a finite number of views, and are therefore
part of the multiscopic meta-category. Both can po-
tentially implement a 360◦ viewing angle.

4.2.1 Volumetric Displays
Volumetric displays use several techniques to display
an image in real 3D space. This means that each point
of the image is actually located at the position they
seem to be. This can be achieved by two main meth-
ods: static volume displays, and swept-volume dis-
plays.

Static volume displays use a substrate (solid, liquid,
or gas) that is transparent in its resting state, but be-
comes luminous, or opaque, when excited with some
form of energy. If specific points can be selectively
addressed inside a volume of space filled with such
a material, the activation of these points (called volu-
metric pixels, or voxels) forms a virtual image within
the limits of the display.

Naturally, gaseous substrates are preferred, and dis-
plays have been made using artificial haze to produce
unobtrusive, homogeneous clouds suspended in the air

10Holograms store the entirety of the information from a scene –
hence their name, which derives from the Greek “holo”, the same
root that the word “whole” came from.

WSCG 2012 Communication Proceedings 144 http://www.wscg.eu

that make light beams visible. Purely air-based dis-
plays have also been proposed, using infrared laser
light to produce excited plasma from the gases in the
air, at the focal points of the laser. Advanced forms
of such displays are common in science fiction, often
mistakenly referred to as “holograms” [Hal97]. How-
ever, the actual visual quality of such displays is very
far from their imagined counterparts, and even quite
low compared to other current methods of 3D vision.

Swept-volume displays use a two-dimensional sur-
face that cyclically sweeps through a volume (either
moving from one extremity to another, or rotating
around an axis) and display, at each point of this path,
the corresponding slice of the virtual object. Due to
the temporal persistence of vision, this results in what
resembles a 3D object.

The main problem with volumetric displays is that,
since most of the substrates used become bright when
excited, rather than opaque, each point of the vir-
tual object won’t block light from the other points
[Fav05], which undermines the very basic depth cue
of occlusion; that is, observers would see the back
side of objects as well as their front side. This is
the same problem that plagues varifocal mirror dis-
plays. Such devices are therefore better-suited to
display hollow or naturally semi-transparent objects,
or non-photorealistic scenes – for example, icons, or
wireframe 3D models [Hal97].

This difficulty could be surpassed in static-volume dis-
plays, if the substrate can be made opaque; however,
a solid, static substrate would make direct manipula-
tion and interaction with the object impossible (which
is also true of swept-volume displays). The ideal vol-
umetric display would thus be a “dynamic sculpture”
that is able to change its shape and appearance accord-
ing to the desired properties of the object being visu-
alized. This has already been proposed, in a concept
called “claytronics” [GCM05], but remains a strictly
theoretical possibility, with no practical implementa-
tions produced so far.

4.2.2 Multi-Directional Displays
Recently, some claims have been made in the litera-
ture that the lack of occlusion in volumetric displays
is not an intrinsic characteristic of the category, but a
technical limitation that can be addressed.

While, as described above, this is true of static-
volume volumetric displays, swept-volume displays
are strictly unable to overcome this property because
they work through persistence of vision, and therefore
even if the active elements could be made opaque, no
part of the image is permanently located in its physical

position, so light would still pass through that space in
the fractions of time where the display surface isn’t
sweeping through that particular location.

Still, swept-volume displays purported as “occlusion-
capable” have been presented in recent research (for
instance, [CNH+07]). They work by employing
highly anisotropic diffusers to ensure that light pro-
duced or projected in the display surface is only emit-
ted in roughly the direction the display is facing, thus
ensuring that only the correct view is observed in each
direction. By correctly varying the image presented
in the screen according to the direction it is facing, a
3D image is produced, which can also appear to float
outside the display volume.

This kind of display, however, while very similar to
swept-volume volumetric displays, is not volumetric
itself, since the image points are not located in the ac-
tual position they appear to be; in other words, they
manifest the property we earlier associated with mul-
tiscopic displays, that light from each point disperses
from the screen itself rather than from the correct loca-
tion of the virtual point, which disables the provision
of the accommodation depth cue.

These rotating screen displays are fundamentally
similar to an earlier technique known as cylindrical
hologram [FBS86], in which a series of images taken
of a subject, with a camera performing a 360◦ orbit
around it, are recorded in thin vertical holographic
strips, which are then assembled in a cylindrical shape
to provide full panoramic view of the 3D object.

In both cases, the viewer-depended variation is im-
plemented explicitly through segmenting the viewing
field, rather than producing the appropriate wavefront
of the 3D scene. Cylindrical holograms, however,
can potentially implement accommodation if the strips
aren’t holograms of a flat photograph, but of the actual
3D object itself.

5. CONCLUSIONS AND FUTURE
WORK

3D displays are increasingly popular choices to pro-
vide new, more immersive and intuitive tools for edu-
cation, entertainment (especially in gaming, television
and cinema), telepresence, advertising, among others.

Moreover, as the technology advances, more demand-
ing uses of such displays have started becoming fea-
sible or expectable in the near future. Such uses re-
quire high-fidelity 3D reproductions of objects, and
include areas as diverse as product design, medical
imaging and telemedicine, 3D cartography, scientific

WSCG 2012 Communication Proceedings 145 http://www.wscg.eu

visualization, industrial prototyping, remote resource
exploration, professional training and architecture.

Such wide appeal has led to the rapid development of
many techniques for 3D visualization, and sometimes
this has resulted in poorly-defined boundaries between
techniques – especially hybrid ones. This work pre-
sented a comprehensive taxonomy of 3D displays, fo-
cusing on fundamental characteristics rather than im-
plementation details. This property should make the
taxonomy robust and expansible to include new tech-
niques and innovations. It also provides a high-level
overview of the 3D displays landscape, a useful tool
for researchers entering the field.

An important property of the proposed taxonomy is
that it equips both researchers and practitioners with
a well-defined field map which enables application-
based exploration of the 3D display space. Logically
separated groups of technologies allow a faster analy-
sis of desired properties, such as the ability to perform
direct manipulation on the virtual objects at their ap-
parent locations, or to overlay the images onto the
real world, to provide augmented reality, or to operate
without headgear. Proper accommodation might be
crucial for high-precision applications, while support
for multiple users is relevant in design contexts.

Furthermore, a well-defined taxonomy should also en-
able informed speculation over the 3D display space
henceforth outlined, regarding possible new tech-
niques and analysis of their feasibility and properties,
or alternatively, discarding of a specific combination
of properties (or set thereof) due to economic, phys-
ical or technological limitations. This is expected to
enable new 3D display systems to be conceived. As an
example, one could easily conceive a static volumetric
display that provides occlusion, by using a substrate
that becomes opaque when excited. This could be a
relevant research topic in materials science.

This study now calls for further developments in the
form of an exhaustive listing of implementations and
their calatoguing in a table or database that will allow
manual or automatic filtering and comparison of dif-
ferent display technologies and respective features.

6. REFERENCES
[Ben00] S.A. Benton. Selected papers on three-

dimensional displays. SPIE, 2000.

[BS00] B. Blundell and A. Schwarz. Volumetric
Three-Dimensional Display Systems. Wi-
ley, 2000.

[CNH+07] O.S. Cossairt, J. Napoli, S.L. Hill, R.K.
Dorval, and G.E. Favalora. Occlusion-

capable volumetric 3D display. Applied
Optics, 46(8):1244–1250, 2007.

[DM03] S. Dudnikov and Y. Melnikov. Review of
technologies for 3D acquisition and dis-
play. Technical report, EU Project IST-
2001-38862 TDIS, 2003.

[Dod05] N.A. Dodgson. Autostereoscopic 3D dis-
plays. Computer, 38(8):31–36, 2005.

[EucBC] Euclid. Optics. 300 B.C.

[Fav05] G.E. Favalora. Volumetric 3D displays
and application infrastructure. Computer,
38(8):37–44, 2005.

[FBS86] D.S. Falk, D.R. Brill, and D.G. Stork. See-
ing the Light. chapter 14: Holography,
pages 389–391. Wiley, 1986.

[GCM05] S.C. Goldstein, J.D. Campbell, and T.C.
Mowry. Programmable matter. Computer,
38(6):99–101, 2005.

[GW07] T. Grossman and D. Wigdor. A taxonomy
of 3D on the tabletop. In IEEE Int’l Work-
shop on Horiz. Interactive Hum.-Comp.
Systems, pages 137–144, 2007.

[Hal97] M. Halle. Autostereoscopic displays and
computer graphics. ACM SIGGRAPH
Computer Graphics, 31(2):58–62, 1997.

[MK94] P. Milgram and F. Kishino. A taxonomy
of mixed reality visual displays. IEICE
Transactions on Information and Systems,
77(12):1321–1329, 1994.

[MZ92] M. McKenna and D. Zeltzer. Three di-
mensional visual display systems for vir-
tual environments. Presence, 1(4):421–
458, 1992.

[Oko76] T. Okoshi. Three-Dimensional Imaging
Techniques. Academic Press, 1976.

[Tak06] Y. Takaki. High-density directional
display for generating natural three-
dimensional images. Proceedings of the
IEEE, 94(3):654–663, 2006.

[UCES11] H. Urey, K. V. Chellappan, E. Erden, and
P. Surman. State of the art in stereoscopic
and autostereoscopic displays. Proceed-
ings of the IEEE, 99(4):540–555, 2011.

[Wid01] T. Widjanarko. Brief survey on three-
dimensional displays. Media, pages 1–27,
2001.

WSCG 2012 Communication Proceedings 146 http://www.wscg.eu

Approximating the Fire Flicker Effect Using Local Dynamic
Radiance Maps

Jonathan Brian Metzgar
University of Colorado at

Colorado Springs
jonathan@metzgar-

research.com

Sudhanshu Kumar Semwal
University of Colorado at

Colorado Springs
ssemwal@uccs.edu

ABSTRACT
Realistic fire and the flicker effect is a complicated process to simulate in realtime and little work has been done
to simulate this complicated illumination effect in realtime. Fire is not a directionally uniform source of light but
varies in intensity not only with time but also with direction. Most realtime applications use a standard point light
source model for local illumination effects and may use a model to change the light source intensity with time but not
direction. The problem is that point light sources are isotropic, but many sources of light have anisotropic qualities
as well. Radiance maps and Precomputed Radiance Transfer (PRT) have been used to increase realism at realtime
interactive frame rates. These models approximate global illumination by applying an environment map (typically
approximated with spherical harmonics) to get their soft lighting effect. In this paper we present Local Dynamic
Radiance Maps (LDRM) which uses radiance maps in a local illumination model to add anisotropic behavior to
light sources. We implemented a realtime rendering engine that supports shadow mapping and the physically based
Cook-Torrance model to approximate global illumination. In particular, we generate dynamic radiance maps using
Perlin noise to simulate the nonlinear radiance of fire and we also implement a rudimentary Lattice-Boltzmann
flame rendering effect. Finally, we show how LDRM can be applied not just to approximating the fire flicker effect,
but as a general framework for simulating the illumination properties of other nonlinear light sources.

Keywords: radiosity, global illumination, fire, Lattice-Boltzmann, radiance maps, shadow-mapping.

1 INTRODUCTION
Advances in graphics processing units (GPU) have re-
sulted in not only improved speed and quality of com-
puter generated images, but now feature massively par-
allel processors capable of running several general pur-
pose programs. This parallelism allows for the imple-
mentation of global illumination algorithms. Physical
simulations of natural phenomena like fire and water are
taking advantages of the hardware acceleration.
Rendering fire is a big challenge for computer graph-
ics because it touches so many areas of image genera-
tion. It is even harder to do it well in realtime. One
would want to eventually render fire based on a full 3D
simulation using Navier-Stokes equations and render a
scene in realtime using the illumination effects mod-
eled by a radiosity algorithm. Since this is not practical,
fire imagery is often created through precomputed ren-
derings, video, or particle effects and the illumination

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

comes from a point light source with a dynamic inten-
sity. But, simply modulating the intensity and location
of a point light source does not adequately model the
way that fire radiates in a nonlinear way. It is this non-
linear radiance that causes the flicker effect to occur.

For the last decade, radiance maps and precomputed ra-
diance transfer have become essential for creating high
quality realtime visualizations. Essentially by utiliz-
ing approximations like spherical harmonics, they can
quickly apply the illumination model to objects in a
scene and get radiosity like shading effects. This model
works with an outward-in approach where the incoming
light is mapped to a sphere which is mapped to the pre-
computed radiance map. We propose a variation of this
method that 1) dynamically computes the radiance and
2) is a local source of radiance which can move around
inside an environment. We call these local dynamic ra-
diance maps or LDRM. The main goal of the LDRM
model is to make lights appear and act like they belong
in the scene by modeling their anisotropic behavior as a
function of time.

In this paper, we present a new way to approximate the
flicker effect by procedurally generating a LDRM into
a cube map. This LDRM is projected outwards from
the position of the fire source through the cube texture
and onto the surrounding scene’s geometry simulating

WSCG 2012 Communication Proceedings 147 http://www.wscg.eu

the first bounce of radiosity. To achieve our results, we
have chosen bump mapping, physically based lighting,
and soft shadow mapping algorithms to calculate direct
and indirect illumination of the fire source. Finally, we
implement a procedurally simulated fire effect based on
a Lattice-Boltzmann model which can be simulated on
the GPU or CPU to approximate the flames emitted from
a torch. This is rendered in our scene at the location of
our fire source.

2 PREVIOUS WORK
Simulating fire is a fluid simulation problem that has a
variety of solutions ranging from artist derived flame
profiles, procedural generation of flames, and fluid
simulation of flames. [Ngu01a] and [Ngu02a] present
a solution for Navier-Stokes equations to simulate the
flames but is time consuming. [Hon07a] combine
both a Navier-Stokes simulation with detonation shock
dynamics to get wrinkled flames and cellular patterns
but also takes a long time to render. A near realtime fire
simulation and control system that uses artist derived
flame profiles is described by Lamorlette and Foster
in [Lam02a]. The Perlin noise function and an artist
specified flame profile is used to generate procedural
fire by [Ful07a].
The groundbreaking 1970’s work by [Har73a] and
[Har76a] first introduce the Lattice-Boltzmann Model
(LBM) methods which have become the basis of many
non Navier-Stokes fluid simulations. [Wei02a] use
overlapping textures with turbulence details employing
LBM for motion of the flames. [Zha03a] also employ
LBM to simulate fire fronts around solid objects.
Some models, such as [Lam02a], discuss in much de-
tail how to compute the lighting effects. For example
[Lam02a] uses an emitting sphere at each flame seg-
ment to generate lighting. It is assumed that the light-
ing details are automatically handled at the renderer
level which combine several global illumination algo-
rithms like radiosity, ray tracing, and/or photon map-
ping. Importance sampling using volumetric illumina-
tion has been used by [Zha11a]. GPU simulation with
volumetric data creates a variety of realistic and detailed
fire simulation such as moving fire [Hor09a],
Radiance maps are images that store the intensities of
light passing through each pixel. The direction of the
light is determined by the projection used to create the
image. They are used in high dynamic range imagery
(HDRI) as described by [Deb97a]. Methods such as
precomputed radiance transfer (PRT) first introduced
by [Slo02a] use a spherical harmonics representation
for low-frequency radiance computation. These spher-
ical harmonics representations approximate a high res-
olution HDRI radiance map and are very effective for
relighting objects in an environment. Primarily they
have been used for static scenes but the technique is

expanding for dynamic scenes as well. For example,
[Kri05a] relight architectural models in real-time with
moving lights by combining precomputed point light
source clouds.

3 THE POINT LIGHT MODEL
The predominantly implemented illumination model for
fire in realtime applications is the point light source
model. It is used widely because there is hardware sup-
port for the algorithm and also because it is easy to com-
pute the shading value since the light position is sub-
tracted from the vertex or fragment position to get the�L
vector that is used by a Lambertian illumination model.
In some implementations, the intensity is constant with
a distance based falloff function. It can become more so-
phisticated by varying the intensity of the light or adding
a random perturbation to the coordinates of the light
source. The intensity and position are often varied us-
ing a smooth noise or interpolation scheme. The easiest
way to think of this is a person holding a simple light
bulb with a rapidly sliding dimmer switch and a jittery
hand. In Figure 1, you can see the smooth uniform in-
tensity that the point light model has. The problem is
that point light sources are isotropic, but many sources
of light are anisotropic. We will now present the LDRM
model which attempts to model the anisotropic features
that fire and other natural phenomena possess.

4 THE LDRM MODEL

Figure 1: The LDRM method is compared to the point
light source method. In the LDRM image, the intensity
and frequency is turned up very high to clearly show
the difference of the LDRM method and the point light
source method. Realistic settings would be tuned to be
more subtle.

Our Local Dynamic Radiance Map (LDRM) model
stores a dynamically computed radiance map at co-
ordinates P. The light emitted from P is cast in all
directions simulating the first bounce of radiosity. The
radiance may either be precomputed as an animation

WSCG 2012 Communication Proceedings 148 http://www.wscg.eu

or procedurally generated in realtime. A cube map or
other similar abstraction is an ideal way of storing these
radiance values.
We reproduce Kajiya’s rendering equation [Kaj86a] be-
low so we can illustrate how the LDRM fits into this
standard model:

I(x,x�) = g(x,x�)[ε(x,x�)+
�

ρ(x,x�,x��)I(x�,x��)dx��]. (1)

The radiance of the LDRM is represented by ε(x,x�)
while being directly affected by the visibility of the point
x at point x� by the function g(x,x�). More specifically,
the function ε(x,x�) is the radiance coming from direc-
tion�L where�L is the vector from the position of the light
source to the point x, and is the direction of the sample.
This value can be obtained by looking into the radiance
map using the direction provided. For example, most
graphics hardware have the ability to easily look up this
value from a cube map using a vector as an input.

Figure 2: Two LDRMs generated using different fre-
quencies of noise and their corresponding effect on the
environment.
From Kajiya’s rendering equation, we then map this to a
simplified model where we can incorporate our render-
ing algorithms. Since we are not simulating the integral
in his equation, we decided to make that a constant value
and focus on just ε and g which is just the radiance of the
light source and the visibility of the light source with the
surface being illuminated. Essentially, the LDRM acts
like a Gaussian surface in the sense, that instead of try-
ing to compute the interactions with the actual flames or
other phenomena and the surrounding environment, we
perform an intermediate step of mapping it to a surface
we can easily use in a rendering situation. This is clearly
seen in Figure 3.
The incoming radiance which we will now call R, is then
divided into the specular and diffuse reflection colors
kspecularR and kdi f f useR, respectively where kspecular +
kdi f f use = 1. Depending on the reflectance model used,
kspecular and kdi f f use may be computed differently. We
decided to implement the Cook-Torrance model and we
will discuss later in section 4.1 how to compute these
values.
The dynamic radiance of a torch fire is approximated
by using Ken Perlin’s noise function. The radiance of
each direction of the torch fire is computed and stored
inside the radiance map. The unit vector l is used as
input to the Perlin noise function and the resulting value
is used to look up the color associated with the radiance.

Figure 3: The LDRM method (right) differs from the
point light source method (left) by modeling the light’s
outgoing radiance as a function of time, intensity, and
direction.

A blackbody radiation color map is used to give color to
the torch fire. An example color map is shown in Figure
7.
The LDRM is flexible. If a variety of natural phenom-
ena used the same kind of simulation algorithm but dif-
fered only in color, a different color map will easily al-
low for adjusting that. For example, fire could probably
use the same simulation code, but the specific chemical
combustion properties would be approximated by map-
ping the resulting intensity values with the appropriate
color map.
In our implementation, we have chosen Perlin noise be-
cause it generates smooth noise that can be animated
and provides enough variety for our ideas to be imple-
mented. Generation of a LDRM function that simulates
the unique properties of fire (or other phenomena) is
most definitely a topic for future study but is outside the
scope of our research. Later we will discuss this pos-
sibility, but our experiments with Perlin noise showed
significant enough improvement in scene realism ver-
sus the traditional point light source method that we dis-
cussed in the last section.

Figure 4: The LDRM projects radially from the center
of the light position. Areas in blue get ambient lighting
while others get direct illumination.

Figure 4 shows a diagram of how the LDRM method
works. The box located around the position of the light
represents the cube map. The arrows emitted from the
center of the light through the box will look up the ap-
propriate radiance and project it on the environment. If
the area is in shadow (represented by shaded blue areas)
then an ambient algorithm can determine the final illu-
mination of those fragments. The containing rectangle

WSCG 2012 Communication Proceedings 149 http://www.wscg.eu

and the red and green rectangles represent the environ-
ment and objects visible to the light source. Figure 2
shows two example LDRMs generated using two differ-
ent frequencies of noise. It can be easily seen how the
LDRM works in a practical sense by observing that vari-
ation in intensity in the environment corresponds to the
frequency of noise.

5 IMPLEMENTATION

Figure 5: A rendering of the fire flicker effect program.

Our fire flicker effect simulation presented in this paper
is designed to employ the LDRM model. A variety of
rendering algorithms is used to simulate global illumi-
nation and a screenshot is shown in Figure 5. The global
illumination algorithm implements the Cook-Torrance
model, Blinn bump mapping, and cube map shadow
mapping. It uses a simple ambient function that approx-
imates indirect illumination by scaling the direct illu-
mination by the amount of shadow present at that pixel
location. The Cook-Torrance model allows for physi-
cally based illumination while the bump mapping algo-
rithm allows for increased higher-frequency pseudo de-
tails. Finally instead of rendering the LDRM cube map
in the scene, flames are dynamically computed and ren-
dered into 2D textures and drawn onto rectangles in a
fan like structure to give the torch a 3D look. In effect,
the torch fire is used as an aesthetic place mat to show
where the LDRM is located in the scene.

5.1 Illumination and Shadow Model
The Cook-Torrance model was chosen because it is a
physically based model. Other models can easily be in-
tegrated as desired. The LDRM was used to supply the
specular color kspecularR for the Cook-Torrance model.
This color is mixed in with the surface color of the frag-
ment being rendered and scaled by the dot product of
the surface normal and incoming light vector�L.
Since a torch is an omni-directional light source, cube
mapped shadow mapping was selected to render the
shadows. It is a fairly straightforward algorithm to im-
plement, but it does take some tweaking to get the high-
est image quality. We chose to write a scalable multi-
sampled shadow algorithm that we could adjust to mea-
sure performance of our technique. The number of sam-
ples can go from one sample to N = 257 samples. Here

N can be varied based on the hardware capabilities of
the system. The penumbra width is adjustable as a con-
stant parameter in the shader program. Figure 6 shows
two screenshots of the program using 1 sample shadows
and 257 sample, wide penumbra shadows.

Figure 6: These two images shows a basic one sample
shadow and a wide penumbra, 257 sample shadow.

5.2 Radiance Cube Map Generation
Perlin noise is a simple solution to generating non-linear
radiance that is repeatable, smooth, and fluid. Depend-
ing on application performance, the noise can either be
generated on the GPU or CPU. The fire program im-
plemented in this paper used the GPU and a render-to-
texture set up to render the six sides of a cube map. The
GPU code for generating Perlin noise was implemented
by [Gus06a] which we slightly modified to adjust for
noise scaling and animation parameters used in the fire
program.
The six textures are used as a cube map in the final ren-
dering pass by the global illumination shader. The gray
scale output of the radiance is then converted from heat
values to RGB values by looking up the data in a color
look up table. The texture is updated once per frame
or as needed to maintain a target frame-rate. The color
look up table is shown in Figure 7 and one side of a
LDRM is shown in figure 8.

Figure 7: The color look up table mapping heat to their
corresponding RGB values.

Figure 8: One face of a cube map generated by the
LDRM method.
Special care needs to be taken to balance the noise so
that it adds a subtle lighting effect to the scene. If the
frequency of the noise is too high then the effect may
look overdone where it can quickly be distracting. On
the other hand, using hardly any noise or under using the
effect will look as if the effect is not being used, so care-
ful balancing needs to done to find a good range where
the effect will be effective. Figure 2 shows this effect in

WSCG 2012 Communication Proceedings 150 http://www.wscg.eu

practice. Note how the high frequency map may make
the environment look splotchy which is not realistic.
The LDRM may be used to create good lighting effects,
but it is not complete without some motion of the shad-
ows in the environment. Perlin noise is used once again
to compute a time-varying offset which we add to the
original position of the light. This new position is used
to render the shadow maps and lighting. The final prod-
uct then has dancing shadows which enhance realism.

5.3 Global Illumination in the Simulation
The equation

Cout =max(Rambient ,Rshadow) ·
�
kdi f f use +Rspecular · kspecular

�
.

(2)
is the basis for the global illumination algorithm for the
fire program. The Rambient term specifies the ambient
intensity of the pixel, the Rshadow represents the contri-
bution of any direct lighting occuring at the pixel, the
kdi f f use term is the color of the surface at that pixel, the
kspecular term is the color of the specular reflection of the
pixel, and the Rspecular term is the amount of reflected
light at the pixel.
The terms are all computed from four different algo-
rithms. The first algorithm is bump mapping which cal-
culates the normal of the pixel. The second algorithm
is the Cook-Torrance model which calculates the specu-
lar reflectance values Rspecular and kspecular of the pixel.
The third algorithm is the Cube Map Shadow algorithm
which allows for omni-directional point light sources.
Finally, the fourth algorithm is an intensity falloffmodel
for the Rambient term to model indirect light. These have
been covered in detail in previous works, but integrat-
ing them together will be briefly explained in light of
the equation to compute Cout .

5.4 Ambient and Shadow Term
The ambient term is a simple approximation based on
a inverse falloff law from the distance to the fire. The
ambient term Ra is computed by the formula

Rambient =
1

4|L| . (3)

This equation is a variation based on the inverse power
law I = P

4πr2 which gives us a brighter overall light in-
tensity which is normally lost unless you do a full on
radiosity simulation to get the intensity back through in-
direct reflections. This gives us some of that light which
is normally “lost” in a local illumination model.
The shadow term Rshadow is computed with the follow-
ing formula:

Rshadow = min
�
�Nvertex ·�L,�Nbump ·�L

�
∗ 1

n

n

∑
j=0

s j (4)

where �Nvertex is the interpolated vertex normal, �Nbump
is the per pixel normal derived from the normal map,
�L is the incoming direction of the light source, n is the
number of samples being used for the shadows, and s j is
the boolean result of comparing the jth pixel depth value
to the light depth buffer which is either 1 or 0. Taking the
minimum of the dot products eliminates bump mapping
on polygons not facing the light.
Together the ambient and shadow terms are used to de-
termine the minimum illumination level of the fragment
to be rendered. A simple maximum function is used to
choose the ambient term or shadow term. If a fragment
is completely shadowed, then the ambient term is used,
otherwise the fragment is in penumbra and has some il-
lumination.

5.5 Diffuse and Specular Term
The diffuse term kdi f f use is generated from the surface
color or texture of the object. The specular terms
Rspecular and kspecular are the coefficient of the reflected
light and its color, respectively. This is where we can
incorporate the LDRM model. The kspecular value is
obtained by using the �L vector as the lookup in the
LDRM cube map. The Rspecular term is based offthe
Cook-Torrance model equation [Coo81a]

Rspecular =
F
π

DG
(N ·L)(N ·V)

. (5)

F is the Fresnel term, D is the micro-facet distribution
factor, G is the geometric attenuation factor, V is the
view vector, and L is the vector from the light to the frag-
ment. Additional details about using the Cook-Torrance
may be found by referring to the original paper. It is im-
portant to note that the LDRM model is not just limited
to Cook-Torrance, but may be incorporated with any il-
lumination model.

5.6 CPU and GPU 2D Flame Simulation
Our flame rendering system is based off a simple cellular
automata model to generate fire. This cellular automata
is a simplified model of Lattice Boltzmann Methods
(LBM) which originated with the work of [Har73a].
[Che98a]’s work summarize the developments of the
model into its more current form. The method works
by using a lattice structure representing the fluid to be
simulated. A convection operator and collision oper-
ator transform the lattice over time and cause the fluid
process to occur. The nineties demo scene fire effect
used a simple averaging function to cause convection
and simulate collisions. Figure 9 shows a screenshot
that simulates this full screen fire effect.
This fire effect can be modified to generate small flames
or torch sources. Further improvements can be made to
increase precision as well. Typically this effect uses 8-
bit integer mathematics to store the heat values. While

WSCG 2012 Communication Proceedings 151 http://www.wscg.eu

Figure 9: This image shows a fire simulation where the
entire bottom row is used as the heat source and that
use of integer math causes noisy artifcats near these ran-
domized heat sources.

this is accurate enough for most of the effect, it results
in artifacts near the source of the fire as shown in Figure
9. Changing the representation from integers to floating
point math eliminates these artifacts and increases dy-
namic range. This can be coupled with established HDR
techniques and physically based color computations for
different chemical reactions.
The flame is generated by adding or seeding heat to
points on the lattice. The flame will flow during the
convection operator step. During the collision opera-
tor step, the flame mixes together. The three steps will
cause the flame to take shape as this process repeats.
A simple circular falloff model is used for seeding the
heat to the fire. Notice in Figure 11 two different kinds
of falloff patterns: the simple radial falloff used in the
fire program and a noisy radial falloff used for the fires
in Figure 10. By quickly changing the location of the
falloff pattern, turbulence is created. The fire effect and
varying levels of turbulence are shown in Figure 10.

Figure 10: The radius of the circle in which the center
of the flame source is moved causes a more turbulent
flame. On the far right, improperly handled edges cause
“heat sink” artifacts.

Figure 11: Two falloff patterns for seeding fires. The
second pattern adds some turbulence to the resulting
flames.
This fire effect can be computed using a GPU and
a graphics based shader language (i.e. GLSL) was
adequate for our simulation. The algorithm is shown
in Listing 1 and is fairly straightforward. It determines
whether the fragment is in the simulation area or not
(which if not handled correctly creates “heat sinks"
shown on the far right in Figure 10). Simulating
diffusion and cooling is obtained by averaging several
neighbor samples at each fragment and multiplying

by a factor li f e, respectively. Heat is added to all the
fragments located inside a circle (a “heat sink") which
is randomly jittered according to the desired turbulence
of the flame.

@VERTEXSHADER
uniform mat4 ProjectionMatrix;
varying vec2 uv;

void main() {\\
uv = gl_MultiTexCoord0.st;

gl_Position = ftransform();
}

@FRAGMENTSHADER
#version 140
uniform sampler2DRect FireLattice;
uniform sampler1D radianceCLUT;
uniform float a, b, radius;
uniform float width, height;
uniform float heat, life;
uniform float turbulence;
in vec2 uv;
out vec4 gl_FragColor;
float rand(vec2 co) {
return fract(sin(dot(co.xy ,vec2(
12.9898,78.233))) * 43758.5453);

}
void main() {
float x = uv.s, y = uv.t;
float data = 0;
float r2 = radius * radius;

if (x >= 1 && x < width-2 &&
y >= 3 && y < height-1) {

if (x >= a-radius && x < a+radius &&
y >= b-radius && y < b+radius) {

float f = (x-a)*(x-a) + (y-b)*(y-b);
if (f < r2) {
data = texture(FireLattice,

vec2(x, y)).a;
data += heat * (1 - f/r2);

}
}
data+=texture(FireLattice,

vec2(x, y+1)).a;
data+=texture(FireLattice,

vec2(x-1, y-1)).a;
data+=texture(FireLattice,

vec2(x+1, y-1)).a;
data+=texture(FireLattice,

vec2(x, y-2)).a;
data = clamp(data * life / 4.0,

0.0, 1.0);
} else {
data = 0;

}
vec3 color2 = texture(radianceCLUT,

data).rgb;
gl_FragColor = vec4(color2,data);

}

Listing 1: A GLSL Shader that computes the flame sim-
ulation.

WSCG 2012 Communication Proceedings 152 http://www.wscg.eu

6 RESULTS
The LDRM model takes up relatively little extra load
in conjunction with normal rendering depending on the
number of lights being used. The majority of perfor-
mance loss comes from shadow mapping when large
numbers of samples are being used. Rendering high res-
olution LDRM cube maps may also reduce performance
but this can be mitigated by using low resolution maps
when large numbers of lights are being used.
The benchmarks were conducted using a Windows 7
OS, Intel i7 930 2.80GHz processor with 6GB of RAM,
and a NVIDIA GeForce GTX 480 graphics card with
1.5 GB of GDDR5 memory. Each benchmark was mea-
sured by recording the number of frames per second
(FPS) once per second over a period of 25 seconds. The
mean frame rate was then computed to filter noise in
the readings, though the noise present was so low that
it had an insignificant effect on the final numbers. Fi-
nally, we kept the frame rate as high as possible so we
could ensure that our simulation would run on less ca-
pable graphics cards.

Figure 12: A comparison of radiance cube map size ver-
sus performance.

We tested the performance of our method using differ-
ent resolution LDRM cube maps and by not rendering
them at all. Figure 12 shows the results when 1, 2, 4, or
8 lights are being used. When using a 256x256 LDRM
cube map, performance drops by 41%, 68%, and 83%
for 2, 4, or 8 lights, respectively. When using 512x512
cube maps, performance drops by 39%, 66%, and 82%
for 2, 4, or 8 lights, respectively. For 1024x1024 cube
maps, performance drops by 33%, 60%, and 77% for
2, 4, or 8 lights, respectively. Compared to not us-
ing LDRMs at all, performance drops by 4% to 17%
for 256x256 cube maps, 6% to 25% for 512x512 cube
maps, and 11% to 42% for 1024x1024 cube maps.
Next, we tested the performance of our flame rendering
system on the CPU and the GPU. Overall, the GPU had
a clear lead in performance especially as resolution is
increased. However, until much higher resolutions of
flame simulations are used, the number of flames ren-
dered per second on the CPU was in the hundreds which
is sufficient. It is also clearly shown that using the GPU
in conjunction with the CPU yielded little decrease in
overall performance. We are unable to easily compare

Figure 13: On the left, we see that application perfor-
mance is not affected until high resolution lattice sizes
are used. On the right, the GPU far surpasses the CPU
in raw fire rendering performance.

our flame rendering algorithm with others because ours
is not volumetric and has very strong boundary condi-
tions which make it incapable of handling interactions in
a 3D environment which a volumetric simulation could.
When integrated with the global illumination simula-
tion, the GPU advantage becomes more obvious. CPU
performance drops off fast when using high resolution
lattice simulations, though it is almost unnoticeable
when using reasonably sized maps. In contrast, the
GPU simulations have a very small performance
penalty when using large lattices. It should be noted
that multithreading was not used in the CPU simulation,
but the GPU still has enough compute power for the
large lattice sizes that even an 8 core CPU could not
outperform it. Figure 13 shows the performance graphs
for running the global illumination simulation and
rendering the flames with either the CPU, GPU, or
both. It also shows the baseline performance of the GI
simulation without rendering the flames. Effectively,
you get the flame rendering for free for small resolution
flame images.

Figure 14: On the left, antialiasing halves overall per-
formance. On the right, reasonable numbers of shadow
samples still allow interactive frame rates.

Finally, we examine the performance of the global illu-
mination algorithm. Figure 14 shows the performance
of the global illumination algorithm both when using
multi-sampled shadows and different resolution shadow
maps, respectively. When using a reasonable number of
lights, it is very easy to obtain very interactive rates. Per-
formance drops quite a bit when using anti-aliasing, but
the image quality is greatly improved and small pixel ar-
tifacts that show up when not using anti-aliasing almost
entirely disappear.
Shadow quality is very good at 33 samples per pixel and
the frame-rate is quite interactive. Wide penumbras are
allowed which increases the realism of far off shadows
where the area lighting effect of the flames would not

WSCG 2012 Communication Proceedings 153 http://www.wscg.eu

create sharp edges. The shadow map size affects per-
formance but not as dramatic as varying the number
of samples. Memory usage does increases quickly so
tweaking is necessary to determine the lowest accept-
able shadow map resolution.
Adding motion to the shadows does a good job of dis-
tracting the observer from noticing some minor prob-
lems with shadow mapping. Some of these problems
include light leakage or surface acne. Ultimately, the
moving shadows create the realistic appearance that the
fire has on the scene while the LDRM model adds a sub-
tle ambience to the scene, that when switched off, makes
the simple intensity modulation based fire flicker effect
seem somewhat lifeless.

7 CONCLUSION AND FUTURE WORK
The LDRM model presented in this paper helps add re-
alism to scenes where torch fires are being used. The
ambiance created by using shifting anisotropic illumi-
nation patterns add subtle depth and realism to scenes
compared to the simple point light source model. The
performance penalty is small and the algorithm is trivial
to implement for any realtime graphics engine.
Future study of LDRMs to enhance direct illumination
is promising and is an excellent extension to normal pre-
computed radiance transfer. In the future we are looking
into simulating a volumetric fire and comparing the ac-
tual radiance with our approximation. We believe that
creating LDRM models of other nonlinear light sources
would be highly beneficial towards accurately simulat-
ing other phenomena in a realtime application. Finally,
we are looking into using spherical harmonics as a sub-
stitute for cube maps which may allow LDRMs to be
used in resource limited environments.

8 REFERENCES
[Che98a] Chen, S., and Doolen, G.D., Lattice boltzmann

method for fluid flows. Annual Review Fluid Mechanics,
1998, pp.329-364.

[Coo81a] Cook, R. L., and Torrance, K. E., A reflectance
model for computer graphics. Proceedings of the 8th an-
nual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, SIGGRAPH
’81, 1981, pp. 307–316.

[Deb97a] Debevec, P. E., and Malik, J., Recovering high dy-
namic range radiance maps from photographs. Proceed-
ings of the 24th annual conference on Computer graphics
and interactive techniques, ACM, New York, NY, USA,
SIGGRAPH ’97, 1997, pp. 369–378.

[Ful07a] Fuller, A. R., Krishnan, H., Mahrous, K., Hamann,
B., and Joy, K. I., Real-time procedural volumetric fire.
In Proceedings of the 2007 symposium on Interactive 3D
graphics and games, ACM, New York, NY, USA, I3D
’07, 2007, pp. 175–180.

[Gus06a] Gustafson, S., Dsonoises, a set of useful functions
for sl., 2007. url:http://staffwww.itn.liu.se/~stegu
/aqsis/DSOs/DSOnoises.html

[Har73a] Hardy, J., Pomeau, Y., and de Pazzis, O., Time evo-
lution of a two-dimensional classical lattice system. Phys.
Rev. Lett. 31, 5, 1973, pp. 276–279.

[Har76a] Hardy, J., de Pazzis, O., and Pomeau, Y., Molecular
dynamics of a classical lattice gas: transport properties
and time correlation functions. Phys. Rev. A 13, 5 (May),
1976, pp.1949-1961.

[Hon07a] Hong, J.-M., Shinar, T., and Fedkiw, R., Wrinkled
flames and cellular patterns. In ACM SIGGRAPH 2007
papers, 2007, ACM, New York, NY, USA, SIGGRAPH
’07.

[Hor09a] Horvath C and Geiger W., Directable high Resolu-
tion simulation of fire on the gpu. In ACM SIGGRAPH
2009 papers, 2009, ACM, New York, NY, USA, SIG-
GRAPH ’09, 28(3).

[Kaj86a] Kajiya, J. T., The rendering equation. In ACM SIG-
GRAPH 1986 papers, ACM, New York, NY, USA, SIG-
GRAPH ’86, 1986, pp. 143-150.

[Kri05a] A. W., Akenine-Möller, T., and Jensen, H. W., Pre-
computed local radiance transfer for real-time lighting
design. ACM Trans. Graph. 24, July 2005, pp. 1208-
1215.

[Lam02a] Lamorlette, A., and Foster, N. Structural model-
ing of flames for a production environment. Proceedings
of the 29th annual conference on Computer graphics and
interactive techniques, ACM, New York, NY, USA, SIG-
GRAPH ’02, 2002, pp. 729-735.

[Ngu01a] Nguyen, D. Q., Fedkiw, R. P., and Kang, M. A
boundary condition capturing method for incompressible
flame discontinuities. Journal of Computational Physics
172, September, 2001, pp. 71–98.

[Ngu02a] Nguyen, D. Q., Fedkiw, R., and Jensen, H. W.
Physically based modeling and animation of fire. Pro-
ceedings of the 29th annual conference on Computer
graphics and interactive techniques, ACM, New York,
NY, USA, SIGGRAPH ’02, 2002, pp. 721–728.

[Slo02a] Sloan, P.-P., Kautz, J., and Snyder, J. Precomputed
radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. Proceedings of the 29th
annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, SIGGRAPH ’02,
2002, pp. 527–536.

[Wei02a] Wei, X., Li, W., Mueller, K., and Kaufman, A.
Simulating fire with texture splats. Proceedings of the
conference on Visualization ’02, IEEE Computer Soci-
ety, Washington, DC, USA, VIS ’02, 2002, pp. 227–235.

[Zha03a] Zhao, Y., Wei, X., Fan, Z., Kaufman, A., and Qin,
H. Voxels on fire. Proceedings of the 14th IEEE Visual-
ization 2003 (VIS’03), IEEE Computer Society, Wash-
ington, DC, USA, VIS ’03, 2003, pp. 36.

[Zha11a] Zhang, Y., Zhu, D., Qiu, X., Wang, Z. Important
Sampling for volumetric illumination of flames. Visual
Computing in Biology and Medicine, VR in Brazil, Com-
puter & Graphics, 35(2), 2011, pp. 312-319.

WSCG 2012 Communication Proceedings 154 http://www.wscg.eu

A Matching Shader Technique for Model-Based Tracking

Martin Schumann, Jan Hoppenheit, Stefan Müller
University of Koblenz-Landau

Institute of Computational Visualistics
56070 Koblenz, Germany

{schumi, silver, stefanm}@uni-koblenz.de

ABSTRACT
We present a line feature matching method for model-based camera pose tracking. It uses the GPU for computing
the best corresponding image line match to the edges of a given 3D model on a pixel basis. Further, knowledge
about the model is considered to improve the matching process and to define quality criteria for match selection.
Each edge is rendered several times with image offsets from the last estimated position of the model. The shader
counts the number of pixels in an underlying canny-filtered camera input image. Returning the best fit by pixel
count can be done applying occlusion queries. A speed-up can be achieved using a more elaborate shader with
texture read-back reducing the number of rendering passes. The matching shader is not limited to work with lines
and can be extended to other structures as well.

Keywords
Model-Based Camera Pose Tracking, Line Feature Matching, GPU Shader.

1 INTRODUCTION
Camera pose tracking is the process of estimating the
viewing position and orientation of a camera. This can
be performed using a model of the environment repre-
sented by 3D data available from a modeling process
or created online. Using a model leads to more stable
tracking without drift occurrence, as it is the case for
frame-to-frame tracking. Further the model serves as
an absolute reference for initialization.

The pose estimation problem is based upon establish-
ing 2D-3D correspondences between features of the
model and features in the camera image that may be
points, lines or higher structures. The aim is to min-
imize the distance between projected 3D features and
their 2D correspondences in the camera image. Estab-
lishing these correspondences is crucial for estimating
a good camera pose. False matches lead to shifting in
the pose, jittering or even loss of the tracking.

Tracking on CAD models was realized by [Com03],
and respectable success in combination of edges with
texture information could be demonstrated by [Vac04].
Current research is focused on SLAM (Simultaneous
Localization and Mapping) algorithms [Kle07], where

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

feature cloud maps are reconstructed from the visible
surroundings.

In the approach of analysis-by-synthesis even further
knowledge about the model is used for the tracking pro-
cess. Beginning from an initially estimated pose or the
pose of the given 3D model in the last image, a ren-
dered image or a structure of features is synthesized to-
gether with a collection of additional information avail-
able from rendering process or from global knowledge.
In the analysis step these are compared to a real camera
image to estimate the current camera pose. In [Wue07]
they use depth and normal information to derive the
line trait of the model. The work of [Sch09] analyzes
similarity-based and feature-based methods for com-
paring synthetic and real image and [Bra11] simulate
the lightning conditions to improve tracking.

We present a method for matching model edges to lines
in the camera image using the GPU. It uses the model
knowledge to define the quality of the matches for
match selection. In our approach we work with straight
lines but the technique is not limited to this type of fea-
ture and can be used for other structures as well.

2 RELATED WORK
The problem of matching and registration of images
does not only appear in camera pose tracking but also
in applications of object recognition and image regis-
tration e.g. for medical purposes. In our approach we
want so solve for the 3D pose of a camera in a model-
based tracking system. What we are focusing on, is
a method for line feature-based model-image matching
so that the knowledge about the model geometry and

WSCG 2012 Communication Proceedings 155 http://www.wscg.eu

perspective can be used to improve the correspondences
and to define quality criteria, which is not a usual task.

Possible approaches for matching are intensity-based
similarity measures regarding the entire image or
patches of it, analysis of the image in the frequency
domain or discrete image features like points and lines,
describing visually perceivable structures in the image.

Detection and matching of feature points has been de-
veloped for a long time. First, the locations of interest-
ing points like edge crossings or corners are detected in
the image. The pixel surrounding of an interest point
is then described by a vector of intensities, and may
also include scale and orientation as SIFT [Low99] and
SURF [Bay08] do. Matching is realized by comparing
the entries of these descriptors which may be very time
consuming due to scale space calculation. For accelera-
tion there exist GPU-based implementations of feature
detection, matching or tracking algorithms as the well-
known KLT [Shi94] by [Sin06].

Feature edges can be detected by common image pro-
cessing filters like the Sobel operator or more advanced
developments as the canny algorithm [Can86]. Sobel
and Canny implementations using the GPU in the con-
text of a particle filter framework are shown in [Kle06]
and [Bro12]. Line matching is mainly realized by min-
imizing the Euclidean distances between the projected
model edges and corresponding gradients in the image.
A simple distance measure may be gained by projecting
the start and end point of the model edge to the image
line or matching in parameter space. However, this re-
quires a parameter transformation as Hough [Dud72],
which may be expensive. In [Low91] simply the per-
pendicular distances of the projected model and the 2D
image segments are used and in [Low92] a combination
of distance and orientation is proposed.

Another popular distance-based matching method
is the Moving Edges algorithm [Bou89]. It is
used in various tracking frameworks as shown in
[Har90],[Dru02],[Com03] or [Vac04] to name some of
them. The model edge is sampled for control points
and from these, orthogonal search lines are spanned
in both directions. Alongside these line normals the
gradient maximum of the image is calculated and the
distance between 3D control point and 2D image point
found is minimized. To deal with possible multiple
gradient maxima the approach can be improved using
multiple hypotheses for each sample point which
provides higher stability [Vac04][Wue05].

3 THE MATCHING SHADER
3.1 Shader Outline
The model-based tracking approach uses a 3D model of
the object to be tracked. Model edges can be obtained
from this model by rendering an image with the last

pose, detecting lines in the image and back-projecting
to the model in order to gain 3D coordinates. Instead
we use the model data structure directly by selecting
individual edges and performing a visibility test. So
the image processing step on the rendered image can be
omitted. The advantage of a candidate edge list is that
the matching result can be sorted and weighted by the
quality of the matches.

For these 3D model edges corresponding 2D line
matches should be found in the camera image. This
camera image is canny-filtered so that natural structures
are expressed as a binary image. The model edges
selected for matching are projected and rendered with
a matching shader from the pose of the last estimation
with frame buffer write disabled. For each drawn
pixel of the model edge the called pixel shader reads
the value of the underlying canny image at the pixel
position. If there is a black edge pixel in the canny
image, the shader outputs a color. Otherwise it is
discarded and the render pass will interrupt. The
concept is displayed in figure 1 and listing 1 shows the
matching shader in GLSL code.

Figure 1: Rendered edge (red), image pixel edge
(black) and common pixel to be counted (hatched).

The number of successful render passes now corre-
sponds to the number of image line pixel counted. Re-
trieving this result number can be done by running oc-
clusion queries while rendering (Section 3.3). The pixel
count itself tells us about the probability that a found
line in the canny image corresponds to a model edge.
The number of counted pixel is a measure of the line
length. Ideally the matching shader count equals the
model edge length.

Using information of the model can help to improve the
matching process. From the known pixel length of the
rendered model edge we can expect a certain length of
the image line response and thus define a threshold for a
minimum pixel count. If the image line found does not
fulfill this minimum length, it will be rejected as corre-

WSCG 2012 Communication Proceedings 156 http://www.wscg.eu

Vertex shader
void main()
{

gl_Position = ftransform();
gl_TexCoord[0] = gl_MultiTexCoord0;

}

Fragment shader
uniform sampler2D cannyImg;
vec3 val;
void main()
{

val = texture2D(cannyImg, gl_TexCoord[0].st).xyz;
if((val != vec3(1.0,1.0,1.0)))

gl_FragColor = vec4(0.0,0.0,0.0,1.0);
else

discard;
}

Listing 1: Counting shader.

spondence. In the next section we show further criteria
for evaluation of the matches like depth and distance.

3.2 Sample Edge Generation
While we assume small movements of the camera from
one image to the next, the model edges must be varied
in position and orientation covering translations and ro-
tations of the camera. This is done by sampling several
new image edges around the known projected model
edge. For each model edge start and end point in the
image are known. Around these new points are sam-
pled with an offset, e.g. on a 3x3 window around the
central model edge start and end point, 8 new possible
points are generated for each one. All generated points,
including the original ones, are then connected to new
edges, resulting in a total of 81 candidate edges in this
case. Figure 2 and 3 show an example for some sample
edges covering possible translations and rotations of the
model edge. Notice that the sampling is done in 2D im-
age space for projected edges. The 3D model data itself
remains rigid.

For all of these candidate sample edges the matching
shader returns a number of pixel counted as described
in Section 3.1. The candidate edge returning the high-
est pixel count can be regarded as the best fitting match.
Beneath the expected pixel length, it is even possible to
consider the distance between the pixel count results of
each candidate as quality criterion for matching. Sim-
ilar parallel lines will return almost equal numbers of
pixel count and thus can be recognized as ambiguous
features. Such results may be rejected for matching.

Choosing the offset depends on accuracy and compu-
tational speed. A higher offset covers stronger move-

Figure 2: Generating edge samples (dotted) for a given
model edge on a 3x3 window.

Figure 3: Sampled edges from the model in 2D image
space. Only some random edges are shown for better
visibility.

ments of the line features because more lines are sam-
pled at greater distances and with wider angles, but this
leads to a decrease in performance, especially when us-
ing occlusion queries. From the model knowledge the
information about the depth of the 3D edge can be used
to improve the sample edge generation. Movements
far away from the camera lead to smaller shifting in
pixel space while the same movement next to the cam-
era is expressed in a large shift in pixel space. Knowing
the depths of start and end point from the model edge,
we can define different sizes for the sampling windows
for both points, i.e. perspectively dependent genera-
tion of sample edges. If the depths of both points differ
more than a threshold, for the nearer point more sample
points are generated than for the farther point. This re-
duces the total number of sample edges to be rendered.

3.3 Occlusion Query Management
Retrieving the pixel count from the matching shader by
occlusion queries affords a management process that
can handle multiple queries to be executed fast. We
have a list of model edges to be rendered and for each
one a separate occlusion query has to be run. But the

WSCG 2012 Communication Proceedings 157 http://www.wscg.eu

graphics hardware limits the number of queries that can
efficiently return a result in sequence. Trying to retrieve
the counter result immediately after each query has fin-
ished would stall the CPU [Fer04].

While there are more edges to be rendered than queries
can be executed, the task has to be splitted in several
passes. A set of n maximal queries is created. A part of
the model edges can be rendered until the maximum
number of n available queries is reached. Then the
results of all n queries have to be retrieved before a
new block of n queries can be started for the remain-
ing edges. The result with the highest count is stored.
Alternatively an ordered list of the results can be cre-
ated for better comparing of the results. The absolute
number of query calls is also counted and the process
finishes, when all edges have been drawn (See listing
2).

create n query objects
generate sample edges
enable shader
load canny texture
disable color and depth buffer write
while(query count != number of edges){

for n queries{
start query
render edge
end query
query count++

}
for n queries{

retrieve result
if query result > last query

save result
}

}
enable color and depth buffer write
disable shader

Listing 2: Using managed occlusion queries.

3.4 Advanced Texture Read-Back
The results showed that using a simple shader with oc-
clusion queries does not perform very well with large
sets of edges to match (see section 4). Therefore, we
developed a more sophisticated shader for matching a
significant amount of edges in short time by extending
our first shader approach. It is based on texture read-
back incorporating the sample edge generation. Oppos-
ing to the occlusion query approach the sample edges
are not precomputed on CPU. The generation and com-
putation of the sample edges is entirely transferred to
graphics hardware. Thus the number of render passes
is reduced to the number of model edges, instead of
rendering each sample edge in its own pass. Further

this solves the problem of stalling the CPU while wait-
ing for the occlusion query result. The pixel count of
all sample edges belonging to one model edge can be
retrieved with one texture read-back.
In addition to the canny texture the pixel shader now
gets the coordinates of projected 2D start and end point
of the model edge and the offset for sample edge gen-
eration as input variables. As described below, the
shader calculates new sample points in a window with
the given offset around the start and end point of the
model edge.

Figure 4: Shader target texture organization.

Each new start and end point is then connected to a sam-
ple edge. This is done by the shader performing the
Bresenham line algorithm [Bre65a] between every start
and end point generated. The pixel coordinates result-
ing from the line calculation are used to search for cor-
responding pixels on the canny-texture. The number of
counted pixels is written as output value on the render-
target texture. One render-target texture can store all
counter results of the sample edges generated for one
model edge. The texture has the size of all possible
sample edges, e.g. when 9 sample points are generated
in a 3x3 window for every start and endpoint, 81 sam-
ple edges are checked and this number of results has to
be stored in the texture. Thus the texture must have size
9x9 for 81 entries.
Figure 4 shows the organization of the texture. For the
start points A and end points B every column and its u-
coordinate correspond to one start point in the sample
window and every row and its v-coordinate correspond
to one end point. Every pixel in the texture is now ad-
dressed for the result of one sample edge. The pixel
shader is aware of the texture coordinate (u,v) it is go-
ing to write its value to, so it can use this information
to apply an offset to the start and end point of the input
model edge to generate the sample points. Thus, each
pixel shader call calculates one sample edge depending
on its writing position as follows.
Subtracting the offset from the x and y coordinates of
the model edge start point A gives us the position of the
first start point A0 with the lowest coordinates in the

WSCG 2012 Communication Proceedings 158 http://www.wscg.eu

sample window. From that point, adding the modulo of
the u coordinate and window width s to the x coordi-
nate and adding the division of the u coordinate by the
window width s to the y coordinate results in the new
sample start point:

s = 2*offset+1
sampleStartX = modelStartX - offset + (u % s)
sampleStartY = modelStartY - offset + (u / s)
sampleEndX = modelEndX - offset + (v % s)
sampleEndY = modelEndY - offset + (v / s)

Doing the same for the end point B and v coordinate
returns the corresponding end point. Between these the
Bresenham line will be calculated by the shader and the
pixel count is written to the current position.
After the shader run the texture is read-back to CPU
and the maximum value is determined by comparing
all pixel values. From the pixel position (u,v) of the
maximum and the offset applied, the pixel coordinates
of the resulting sample edge can now be identified by
the formulas shown above. It is also possible to use
parallel reduction as described in [Fer04a] to directly
obtain the maximum on the texture instead of using the
CPU. Advanced computation of the resulting texture,
like applying a non-maximum suppression leads to fur-
ther quality criteria beneath the length of the matching
line. The counting results of parallel edges are ordered
diagonally on the target texture, which enables a quick
check for this second quality criterion, e.g. given the
case of figure 4 having a maximum at pixel position
(2,2) and one or more significant high counts on one of
the pixels in the diagonal from (0,0) to (8,8) this shows
the existence of at least one parallel line with similar
length and may lead to rejection of this match.

3.5 Optical Flow Support
Strong shaking of the camera may introduce a high
level of motion blur. Due to the limited search area de-
fined by the generated sample edges, the correct match-
ing and subsequently the tracking may be lost when the
image line is shifted too far. To prevent this, strong
movements can be detected by estimation of optical
flow [Bea95]. Calculating optical flow predicts the dis-
placement of pixels in between two frames of an image
sequence. The movement of the distinct start and end
points of each projected model edge between the last
and the current camera frame can be determined using
a sparse optical flow function from OpenCV [Ocv11]
that accepts an array of feature points as input. The
predicted new start and end point positions corrected
by optical flow are then used for sample edge genera-
tion. Matching with optical flow support allows reduc-
ing the distribution of sample edges because the match-
ing can be performed in a smaller region. Using fewer
sample edges leads to faster computation time. Another
method to overcome motion blur is using additional in-
ertial sensors [Rei06] to estimate rapid camera motion.

4 RESULTS
We tested our shader-based matching approach by
tracking simple and complex objects on indoor and
outdoor scenes (figure 5). As camera input we used
video streams at a resolution of 640x480 pixels with
varying lighting conditions. The canny filter applied to
the camera images is taken from the OpenCV [Ocv11]
implementation with standard parameters (threshold1
= 50, threshold2 = 200, aperture = 3).

The initial camera pose is assumed to be roughly known
at the start of the sequence, which is a prerequisite for
model-based tracking. This may be done by manually
aligning the model in the camera frame. The intrin-
sic parameters of the video camera delivering the input
stream are gained from previous calibration. Models of
the tracking scenes are available and from these lists of
the model edges are built to be used for the matching
process. Each model edge is projected from the cur-
rent camera pose and the matching shader returns the
corresponding image line. For the computation of the
new camera pose from the line correspondences we use
a non-linear Levenberg-Marquardt optimization.

Figure 5: Test scenes (video and rendered model).

We compared our shader approach to two other
distance-based matching methods. One method is
to parameterize the binary canny image by a Hough
transform [Dud72]. The model edge is projected into
the image plane and a window around this edge defines
a region of interest where the Hough transform is run.
The output is a list of straight image lines defined
by the parameters of line angle to the y-axis and line
distance to the image origin. These can be directly
compared to the parameters of the corresponding

WSCG 2012 Communication Proceedings 159 http://www.wscg.eu

model edge. However, matching in two dimensional
parameter space proves to be very unstable. Neither
length nor line similarity is judged this way, so we
did not further consider this approach. Measuring the
distance in image space can be done by projection
of the start and end point of the model edge to the
straight image line found by the Hough transform.
The problem is the high dependency of the results
on the chosen parameters of the transform. Possible
matches are extremely ambiguous and lead to jittering
in the estimated pose. At strong motion some matches
completely fail.

Another popular approach is to set control points along
the model edge and search for strong image gradients
on orthogonal lines through these control points. We
used an implementation from [Vis11] for our tests. The
pose becomes more stable, but movements or interrup-
tions in the image lines corrupt the matching result.
Generally, these distance measures in image space can
lead to stable camera pose estimation when the cam-
era movement is slow and smooth enough, which is the
case in the controlled indoor test scenario (figure 5 top,
middle). However, at fast camera movements inducing
motion blur the matching fails. We will show this on
examples of the outdoor scene (figure 5 bottom).

Our matching shader has proven to deliver good match-
ing results with minimal error even in the worst scenario
of a video captured with a strongly shaking hand cam-
era. The following figures illustrate the results of three
matching approaches on a test sequence after the oc-
currence of strong motion. The motion blur occurs for
duration of 6 frames while the image content is shifted
over 80 pixels in this time. We regard the matching er-
ror in the frame right after this strong motion. Figure
6 shows the shift of the image within the 6 frames and
the sub-picture the moment of strongest motion blur in
the video sequence which disturbs the canny image to
a large extent. Image lines are only partly visible and
hard to handle by the matching methods.

Figure 6: Image shift with strong motion blur.

The line projection approach (figure 7) obviously gets
distracted by the parallel pipe next to the house cor-
ner, which is an ambiguous feature. The error ends up
with a maximum displacement of 37 pixels. The match-
ing with orthogonal search (figure 8) is more precise
concerning ambiguities but also gets disturbed by the
motion blur up to an error of 24 pixels. The match-
ing shader approach with optical flow support (figure
9) overcomes the blur and results in an error of 3 pixel
displacement.

Figure 7: Line projection results after motion.

Figure 8: Orthogonal search results after motion.

In figure 10 the moment of strongest motion blur in the
outdoor scene can be seen together with the resulting
pose estimation overlay from the matches proposed by
our method. Concerning the parameters, in our tests we
found a good window size for the generation of sample
edges at 4x4 with supporting optical flow. Without op-
tical flow the best trade-off between computation time
and matching quality could be reached with generating
sample edges at 7x7 windows. The best threshold for
rejection of the image line length as match is 3

4 of the
model line length.

Table 1 lists the average computation time in millisec-
onds of the components for our matching approach on

WSCG 2012 Communication Proceedings 160 http://www.wscg.eu

Figure 9: Matching shader results after motion.

Figure 10: Correct camera pose computation at strong
motion blur (top) and for other scenes.

a Intel Core2Duo 3.2GHz with nVidia GeForce GTX
285. The canny filter and optical flow calculation step
are called only once for a new frame, independently of
the number of edges to match. Although time consump-
tion for the canny filter is not too high, this additional
step can be reduced by implementing gradient search
inside the shader instead.

Next, times for the occlusion query approach and the
texture read-back variant are compared. The number
in brackets names the amount of edges to render. Obvi-

Canny filter 5 ms
Optical flow 4 ms
Occlusion query 97 ms (11), 54(7), 7(2)
Texture read-back 18 ms (11), 14,(7), 7(2)

Table 1: Computation time.

ously using a query executes fast only when a very little
number of edges is used. But enlarging the number of
model edges the texture approach quickly outperforms
the query usage. Overall, real-time capability for track-
ing is ensured, however the implementation is not yet
optimized.

5 CONCLUSION
We presented a shader approach for matching corre-
sponding image lines to model edges in a model-based
tracking scenario. The knowledge about the model is
used to improve the matching and to define criteria for
match selection. For a given model edge based on the
last pose several sample edges are generated and ren-
dered with a matching shader. The shader counts un-
derlying pixels of a canny-filtered camera input image
at the position of the edges. The image line with highest
accordance to criteria of length and distance is chosen
as match. This procedure delivers good matching and
results in a correct camera pose estimation even at oc-
currence of strong motion blur.

We compared two methods to realize the matching
shader. Using a simple counting shader and occlusion
queries to retrieve the pixel count result is straightfor-
ward but significantly lowers the frame rate when many
sample edges are generated because each render pass.
The more sophisticated way is to read-back a texture
value which can be done quite fast. The whole process
of sample edge generation can be transferred into the
shader, so a render pass is only called once per model
edge instead for each sample edge.

Although we used straight lines from our testing mod-
els, the work is not limited to this type of feature. The
counting shader can be extended to run on other render-
able structures as well, like circles, curves or NURBS.
For this purpose the sample generation algorithm has
to be adapted to the wanted structure to match. A fur-
ther advancement could be the integration of gradient
calculation into the shader. This would save the canny
preprocessing step to the camera image. Additionally,
when calculating the gradient, the gradient orientation
is also known. This could be used by the matching
shader to count those pixels only, which have the same
gradient direction and thus belong to the same line.

6 ACKNOWLEDGMENTS
This work was supported by grant no. MU 2783/3-1 of
the German Research Foundation (DFG). We also want

WSCG 2012 Communication Proceedings 161 http://www.wscg.eu

to thank our former colleague Niklas Henrich for his
support on GPU programming and Carsten Neumann
from University of Louisiana at Lafayette for technical
discussions.

7 REFERENCES
[Bay08] H. Bay, A. Ess, T. Tuytelaars and L. Van Gool.

SURF: Speeded Up Robust Features. Computer
Vision and Image Understanding (CVIU), 110(3),
pp. 346–359, 2008.

[Bea95] S.S. Beauchemin and J. L. Barron. The com-
putation of optical flow. ACM Computing Sur-
veys, 27(3), pp. 433-466, 1995.

[Bou89] P. Bouthemy. A Maximum Likelihood Frame-
work for Determining Moving Edges. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 11, pp. 499-511, 1989.

[Bra11] A.K. Braun and S. Mueller. GPU-assisted 3D
Pose Estimation Under Realistic Illumination.
18th WSCG International Conference on Com-
puter Graphics, Visualization and Computer Vi-
sion, Plzen, Czech Republic, 2011.

[Bre65] J.E. Bresenham. Algorithm for Computer
Control of a Digital Plotter. IBM Systems Journal,
4(1) , pp. 25-30, 1965.

[Bro12] J.A. Brown and D.W. Capson. A Framework
for 3D Model-Based Visual Tracking Using a
GPU-Accelerated Particle Filter. IEEE Transac-
tions on Visualization and Computer Graphics,
18, pp. 68-80, 2012.

[Can86] J. Canny. A Computational Approach To Edge
Detection. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, 8(6), pp. 679-698, 1986.

[Com03] A.I. Comport, E. Marchand and F.
Chaumette. A Real-Time Tracker for Markerless
Augmented Reality. ACM/IEEE Int. Symp. on
Mixed and Augmented Reality, pp36-45, Tokyo,
Japan, 2003.

[Dru02] T. Drummond and R. Cipolla. Real-time vi-
sual tracking of complex structures. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, 24(7), pp. 932-946, 2002.

[Dud72] R.O. Duda and P.E. Hart. Use of the Hough
Transformation to Detect Lines and Curves in
Pictures. Communications of the ACM, 15(1), pp.
11-15, 1972.

[Fer04] R. Fernando. GPU Gems. Programming Tech-
niques, Tips, and Tricks for Real-Time Graphics.
Addison-Wesley, Longman, Amsterdam, 2004

[Har90] C. Harris and C. Stennet. RAPID - A Video
Rate Object Tracker. In Proc. British Machine Vi-
sion Conference, pp. 73-77, Oxford, UK , 1990.

[Kle06] G. Klein and D. Murray. Full-3D Edge Track-
ing with a Particle Filter. Proc. British Machine

Vision Conference (BMVC’06), 3, pp. 1119-
1128, 2006.

[Kle07] G. Klein and D. Murray. Parallel Tracking and
Mapping for Small AR Workspaces. ACM/IEEE
Int. Symp. on Mixed and Augmented Reality, pp.
225-234, Nara, Japan, 2007.

[Low91] D.G. Lowe. Fitting Parameterized Three-
Dimensional Models to Images. IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, 13(5), 1991.

[Low92] D.G. Lowe. Robust model-based motion
tracking through the integration of search and
estimation. International Journal of Computer Vi-
sion, 8(2), pp. 113-122, 1992.

[Low99] D.G. Lowe. Object Recognition From Local
Scale-Invariant Features. International Confer-
ence on Computer Vision, pp. 1150-1157, Corfu,
Greece, 1999.

[Ocv11] OpenCV library, version 2.3.1, taken from
http://opencv.willowgarage.com/wiki/

[Rei06] G. Reitmayr and T.W. Drummond. Going out:
Robust Tracking for Outdoor Augmented Real-
ity. International Symposium on Mixed and Aug-
mented Reality (ISMAR06), pp. 109-118, 2006

[Sch09] M. Schumann, S. Achilles and S. Mueller.
Analysis by Synthesis Techniques for Marker-
less Tracking. Virtuelle und Erweiterte Realität,
6. Workshop der GI Fachgruppe VR/AR, Braun-
schweig, Germany, 2009.

[Shi94] J. Shi and C. Tomasi. Good Features to Track.
IEEE Conference on Computer Vision and Pattern
Recognition, pp. 593-600, 1994.

[Sin06] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and
Y. Genc. GPUbased video feature tracking and
matching. Workshop on Edge Computing Using
New Commodity Architectures (EDGE 2006),
2006.

[Vac04] L. Vacchetti, V. Lepetit and P. Fua. Combin-
ing Edge and Texture Information for Real-Time
Accurate 3D Camera Tracking. ACM/IEEE Int.
Symp. on Mixed and Augmented Reality, pp. 48-
57, Arlington, USA, 2004.

[Vis11] ViSP Visual Servoing Platform
library, version 2.6.1, taken from
http://www.irisa.fr/lagadic/visp/visp.html

[Wue05] H. Wuest, F. Vial and D. Stricker. Adaptive
Line Tracking with Multiple Hypotheses for Aug-
mented Reality. ACM/IEEE Int. Symp. on Mixed
and Augmented Reality, pp. 62-69, Santa Barbara,
USA, 2005.

[Wue07] H. Wuest and D. Stricker. Tracking of Indus-
trial Objects by Using CAD Models. Journal of
Virtual Reality and Broadcasting, 4(1), 2007.

WSCG 2012 Communication Proceedings 162 http://www.wscg.eu

Active Segmentation in 3D using Kinect Sensor

Zoltan Tomori

Inst. of Experimental Physics
Slovak Academy of Sciences

Watsonova 47
 040 01 Kosice, Slovakia

tomori@saske.sk

Radoslav Gargalik

Inst. of Computer Science
P.J. Safarik University

Jesenna 5,
040 01 Kosice, Slovakia

radoslavgargalik@gmail.com

Igor Hrmo

Inst. of Experimental Physics
Slovak Academy of Sciences

Watsonova 47
040 01 Kosice, Slovakia

hrmo@saske.sk

ABSTRACT
The combination of color image and depth map significantly improves the segmentation. The Kinect sensor with

pan/tilt motorized movement captures both images and segments them separately by the Grab Cut method. The

resulting contours are converted to polar coordinates. After the floor plane detection, corresponding "depth" and

"color" contours are combined such that the importance of depth /color information is proportional to the

distance from the floor. The segmentation is followed by the extraction of simple scale invariant features like

color components and height/width ratio. Subsequently, features are used to train Normal Bayes Classifier. The

algorithm was tested on a set of simple objects (mugs) on the table.

Keywords
Active segmentation, Kinect, Depth map, RGBD image

1. INTRODUCTION
Segmentation in 3D is a critical problem in many

areas of computer vision. The information about the

depth can be obtained by various methods like stereo

vision, moving camera or object, defocusing,

structured light or comparison with known

geometrical model [Mir04]. Kinect - a low-cost 3D

sensor for gaming console was launched in

November 2010 and achieved big commercial

success. Support for programmers appeared shortly

after it (Microsoft Kinect SDK, OpenNI,

OpenKinect, Freenect etc.). A more comprehensive

source of information about Kinect hardware and

programming was published only recently - e.g.

[Web12].

Kinect provides 3D information which can be easily

retrieved (color, depth, points cloud in real distance

units). Its depth sensor consists of infrared

transmitter/camera system. The transmitter projects

small dots (speckles) on the surrounding scene and

the IR camera acquires image and compares their

position with the reference one. The depth is then

calculated from the displacement of the individual

speckles. The color + depth images are acquired

approximately at the same moment and after their

alignment they can be considered as one RGBD

image.

The concept of active segmentation was inspired by

the biological visual system where the object of

interest is segmented with high resolution by the

fovea, while the rest of the scene is captured in lower

resolution on the periphery of retina [Mis09].

Another important concept is the "contact boundary"

introduced in [Mis11] where the boundary pixels

touching the surface (floor, desk) are distinguished

from the remaining ones. Contact boundary is

important in segmentation based on the combination

of color image and depth map, both provided by

Kinect.

2. ACQUISITION

Mechanical Construction
For testing purposes, we constructed a motorized

equipment and we named it KATE (Kinect Active

Tracking Equipment) - see Figure 1a). It consists of

the Kinect sensor attached to the turntable driven by

a precise stepper motor (Intelligent Motion Systems,

USA). This allows horizontal movement around its

vertical axis (pan) with the resolution 51200 steps per

360 degrees. For the vertical movement (tilt) we

exploited the built-in Kinect stepper motor controlled

via the same USB port as cameras. This solution is

simple but it has a poor resolution in range <-31, 31>

degrees. Another problem is that the tilt value is

related to the absolute horizontal position measured

automatically by Kinect accelerometer. However,

this solution is sufficient for testing purposes.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2012 Communication Proceedings 163 http://www.wscg.eu

Calibration and tracking
Camera calibration based on the pinhole camera

model is necessary in applications like objects

reconstruction from multiple views. As Kinect

consists of 2 cameras (RGB and IR), more

complicated model is required [Paj11]. However,

initial calibration included in OpenNI library is

sufficient for segmentation and tracking purposes.

The depth values correlate well with real values, the

correspondence between the depth (Z) and XY

dimensions can be easily corrected by scale

constants.

We developed a supervised calibration function

adjusting the scale in both horizontal and vertical

directions. KATE watches the given scene displaying

live image along with the cross in the image center

pc(x,y) - see Figure 1b). The operator clicks a position

p1(x,y) representing the desired future position of the

image center. From pc and p1 values in pixels we can

find corresponding 3D points Pc=(0, 0, Z0) and

P1=(X1, Y1, Z1) in real units (meters). Using simple

trigonometry we obtain pan angle as arcsin(X1/Z1)

and tilt as arcsin(Y1/Z1).

Calculated angles are converted to the stepper motor

units and both motors move the given number of

steps. In ideal case, the new central position pc(x,y)

should show the same place of the scene as the

p1(x,y) before the movement. If it is not the case, the

scale factor can be adjusted. The calibration function

allows manual control of the motors. The number of

correcting steps is recalculated to the new scale

factors for both pan and tilt values.

We created a face tracking system to test KATE

[Sen12]. The new position of motors is not given by

the click as described in the previous section, but it is

determined by the face bounding rectangle (see

Figure 2). Face detector is based on the Haar cascade

classifier included in the OpenCV library. If a face is

recognized (in the predefined depth range) then the

displacement between the face rectangle and the

center of the image is calculated. Pan/tilt motors

correct the Kinect position trying to keep the face

rectangle in the image center.

Preprocessing
The depth image contains a lot of artifacts resulting

from the depth measurement principle. Shadows-like

defects appear in places visible from the depth

camera but not illuminated by IR projector.

We exploited the "Inpaint" method described in

[Tel04], which recovers the missing depth

information. Implementation of this method is easy

as it is included in OpenCV library.

3. PROCESSING
Processing consists of the following sequence of

steps: plane detection, finding volume of interest and

segmentation.

Floor Plane Detection and Region of

Interest (ROI)
One of the basic operations in computer vision is the

detection of the plane where the segmented objects

are standing on (floor, table top). The detection is

based on the popular RANSAC algorithm which

finds the plane representing the input points cloud.

The plane is determined by the equation

 0 dcxbyax (1)

where [a,b,c] is the normal vector and d is the

distance from the origin.

Figure 2. Face tracking. Kinect detects face by

using Haar classifier included in OpenCV

library. In the next step, pan/tilt motors adjust

Kinect position such that the face rectangle is in

the center of image.

 a) b)

Figure 1. a) KATE (Kinect Active Tracking

Equipment) b) Object as seen by Kinect.

Central rectangle represents the region of

interest (fovea) where the active

segmentation is performed.

WSCG 2012 Communication Proceedings 164 http://www.wscg.eu

Although RANSAC eliminates the influence of

outliers in principle, it is possible to improve the

plane detection by filtering the points that are

definitely outliers. There are a lot of RANSAC

modifications performing this task [Chu03]. It is

possible to iterate plane detection and calculation of

the volume of interest (described in the next section).

Data for the next plane detection create only voxels

from the volume of interest.

Figure 3a) shows the detected plane (green pixels).

As can be seen there, plane consists of the table top

area as well as some undesirable green strips on the

walls. We filtered them as follows:

 Erosion filter isolates table top from the

connected strips (like this on the top right

corner of table).

 Table top contour is found as the largest

contour which includes center of image

(fixation point).

 Convex hull function eliminates local

discontinuities and gives the polygon

outlining the table top (red in Figure 3b).

Finding the Volume of Interest (VOI)
The majority of applications focus on a limited space

above the floor or the table-top. The bottom of this

space is represented by the ROI detected in the

previous step. Its top is given by the maximal

expected height of our objects.

Limits from sides (walls, furniture) can be found by

an algorithm based on a simplified model of the

scene assuming that side limits are higher than

segmented objects.

1) Project all voxels higher than the top limit to

the floor plane.

2) Find the polygon with maximal area that

does not include projected points. The

number of vertices is given in advance.

3) Side limits of our volume of interest are

created by planes perpendicular to the floor

crossing the polygon sides.

4) Project voxels lying between the top and the

bottom limits. If there are points falling

inside the polygon and connected with its

sides, algorithm returns to step 2.

Segmentation by Grab Cut
The algorithm exploited in our experiments is based

on the idea of active segmentation briefly explained

in the introduction. From a lot of possible

segmentation methods we focused on these which are

based on the classification of pixels inside a region of

interest (ROI) and the minimization of an energy

function. We assume that the segmented object is

placed inside the square frame which is our initial

region of interest.

GrabCut [Rot04] is a very popular segmentation

algorithm based on the Gaussian Mixture Model and

energy minimization. All pixels outside the ROI are

labeled as background ones, pixels inside ROI are

labeled according to the energy function consisting of

regional and boundary terms. Briefly speaking,

regional term reflects the likelihood that a given label

is appropriate for the given pixel and the boundary

term reflects how easily the label can expand to its

neighborhood. Assigning a boundary label to a pixel

inside a homogeneous region is penalized. The

strength of N-link (the link between pixels m and n)

is calculated

where Zm is the color of the pixel m, constant γ has

recommended value = 50, d(m,n) is the unit distance

(1 for horizontal and vertical neighbors and sqrt(2)

for diagonal ones). Value of β is the average inverse

difference value calculated in advance.

Combined Segmentation
Kinect generates two images reflecting the same

scene - color image and the depth map. Figure 4

shows the problem of color image segmentation if

the other object with similar color is behind our

object of interest. On the other hand, the depth map

segmentation has troubles with parts near the floor

where the depth of object and the background are

almost the same.

 2

exp
),(

),(nm ZZ
nmd

nmN

(2)

 2
2

1

nm ZZ

(3)

 a) b)

Figure 3. Floor plane detection. a) RANSAC

detects not only table-top voxels but also

unwanted strips of voxels on the walls b)

Region of interest represented by the top of the

table (green) outlined by polygon (red).

WSCG 2012 Communication Proceedings 165 http://www.wscg.eu

Above mentioned problems can be solved combining

information from both - the depth map and color

image. Several authors [Kar10], [Mut10] combine

color and depth information. In [Sil11] a model was

proposed which modifies computation of N-link as

follows:

),()1(),(),(nmNknmkNnmN DC (4)

where NC and ND are N-links from color image and

depth image respectively and k controls the influence

of both links to the final N-link calculation (e.g. 80%

color and 20% depth). Modified N-link calculation is

incorporated into the energy function optimized by

graph cut method.

Distance Dependent Segmentation
Our approach is based on the assumption that the

value of k from (4) is not constant but depends on the

distance from the floor. In standard situations, the

object standing on the floor is captured by Kinect

under tilt angle. The top part of the object has a much

higher contrast of the depth image than its bottom

(Figure 5b). We combine the results of contours

segmented from both color and depth images.

The initial step is a conversion of both contours from

Cartesian to polar coordinates using the center of the

image as the origin. The x-axis corresponds to the

angle in the clockwise direction starting from the

position "3" on the clock, y-axis is magnitude. The

blue curve in Figure 5c corresponds to the contour

from the color image and the green one to the depth

image, the resulted red curve is their combination.

After its conversion back to the Cartesian coordinates

we can obtain a contour shown in Figure 5d.

Several alternatives exist how to change the

color/depth influence, depending on the type and

configuration of the objects on the scene.

a) Piecewise combination of segmented curves is the

simplest method. The depth image contour

representing the contact boundary is replaced by

the corresponding part of the color image contour

in a pre-selected interval. For instance, an interval

<45,135> degrees represents the bottom of an

object where a low contrast of depth image is

expected. Selection of the end points of the

interval should respect the continuity of resulted

curve. Good candidates are intersections of the

both curves.

b) Derivation of k on the distance from the plane

using normal vector (1). As Kinect gives (x,y,z)

values in the camera coordinate system, the

calculation of the distance from the plane is

straightforward.

Classification of segmented objects
The successful segmentation is often the crucial step

in computer vision (e.g. in objects recognition based

on machine learning principles). We tested our

system to recognize several simple objects (like mugs

on the table). We exploited supervised learning based

on the Normal Bayes Classifier. System segmented

each object on the table and found the bounding

rectangle of its contour as well as the average color.

Feature vector consisting of 4 components (R, G, B

color components and height/width ratio of bounding

Figure 5. Segmentation by combined GrabCut

method. a) color image b) depth map c)

contours in polar coordinates d) result of

segmentation

c)

d)

Figure 4. a) Overlapping objects with shadow

on the right side. b) Segmentation by the

GrabCut method exploiting only the color

image. c) Floor plane detection (green pixels)

d) Segmentation of depth image masked by the

floor plane.

a) b)

c) d)

WSCG 2012 Communication Proceedings 166 http://www.wscg.eu

rectangle) was used in the supervised learning stage

taking cca 5 seconds. After the learning, the system

was able to recognize object and display its label

(Figure 6).

4. SUMMARY
Motorized pan/tilt Kinect system was constructed for

the acquisition of color and depth images. This

system tracks the object of interest keeping it in the

center of image (tested with face tracking based on

the Haar cascade classifier included in OpenCV

library).

We applied Grab Cut method to segment both color

and depth images using the image center as the

fixation point. We transformed contours into the

polar coordinates and combined them. The weights

controlling the importance of color/depth edges was

dependent on the distance from the floor detected by

RANSAC method. This approach significantly

improved segmentation near the floor as well as in

partially overlapping objects. Segmented contours

were used for the features extraction (R, G, B color

components and height/width ratio). We used this

features vectors for supervised training of Normal

Bayes Classifier and for the classification of simple

objects like mugs on the table.

Future work
This communication paper reflects our experiments

with Kinect as the initial stage of the project oriented

to application of Natural User Interface. We plan to

exploit RGBD images for wider group of problems

like active segmentation, tracking and control of

specific devices. Growing number of papers

combining color + depth along with the progress in

sensors hardware make this research area very

promising.

5. ACKNOWLEDGMENTS
This work was supported by the Slovak research

grant agencies APVV (Project No. 0526-11) and

VEGA (Project No. 2/0191/11).

6. REFERENCES
 [Chu03] Chum, O. Matas, J. and Kittler, J. Locally

Optimized RANSAC, Lecture Notes in Computer

Sciences, 2781, pp. 236-243, 2003.

[Kar10] Karthikeyan, V. Anil, A. and Ebroul, I.

GrabcutD: improved grabcut using depth

information. Proc. ACM workshop on Surreal

media and virtual cloning, Firenze, Italy, pp. 57-

62 , 2010.

[Mir04] Mirzabaki, M. Depth Detection Through

Interpolation Functions: A New Method. Proc.

WSCG, Plzen, Czech Rep., pp. 105-108, 2004.

 [Mis11] Mishra, A. and Aloimonos, Y. Visual

Segmentation of "Simple" Objects for Robots.

Proc. Robotics Science and Systems conference

(RSS), Los Angeles, June 27 - July 1, 2011.

http://www.umiacs.umd.edu/~mishraka

 [Mis12] Mishra, A. K. Aloimonos, Y. Cheong, L. F.

and Kassim, A. A. Active Visual Segmentation.

IEEE Transactions on Pattern Analysis and

Machine Intelligence, 34, pp. 639-653, 2012.

 [Mut10] Mutto, C. D. Zanuttigh, P. and Cortelazzo,

G. M. Scene Segmentation by Color and Depth

Information and its Applications. Proc.

Streaming Day, Udine, 2010.

[Paj11] Pajdla, T. Smisek, J. and Jancosek, M. 3D

with Kinect. Proc. of the 1st IEEE Workshop on

Consumer Depth Cameras for Computer Vision,

Barcelona, Spain, pp. 1154-1160, 2011.

[Rot04] Rother, C. Kolmogorov, V. and Blake, A.

"GrabCut" - Interactive foreground extraction

using iterated graph cuts. ACM Transactions on

Graphics, 23, pp. 309-314, 2004.

[Sen12] Senaj, M. OpenCV library in computer

vision applications in robotics, Master's thesis,

FEI, Technical University of Kosice, 2012.

[Sil11] Silberman N. and Fergus, R. Indoor Scene

Segmentation using a Structured Light

Sensor.Proc. Int. Conf. on Computer Vision -

Workshop on 3D Representation and

Recognition, Barcelona, 2011.

[Tel04] Telea, A. An image inpainting technique

based on the fast marching method. Journal of

Graphics Tools, 9, pp. 23-34, 2004.

[Web12] Webb, J. and Ashley, J. Beginning Kinect

Programming with the Microsoft Kinect SDK.

Apress, (ISBN 978-1-4302-4104-1), 2012.

Figure 6. Classification of segmented objects

using Normal Bayes Classifier based on the

feature vector created by RGB color

components and height/width ratio.

WSCG 2012 Communication Proceedings 167 http://www.wscg.eu

WSCG 2012 Communication Proceedings 168 http://www.wscg.eu

Using Game Engine Technology for Virtual Environment
Teamwork Training

Stefan Marks
Auckland University of

Technology, New Zealand
stefan.marks.ac@gmail.com

John Windsor
The University of Auckland,

New Zealand
j.windsor@auckland.ac.nz

Burkhard Wünsche
The University of Auckland,

New Zealand
b.wuensche@auckland.ac.nz

ABSTRACT
The use of virtual environments (VE) for teaching and training is increasing rapidly. A particular popular medium
for implementing such applications are game engines. However, just changing game content is usually insufficient
for creating effective training and teaching scenarios. In this paper, we discuss how the design of a VE can be
changed to adapt it to new use cases. We explain how new interaction principles can be added to a game engine
by presenting technologies for integrating a webcam for head tracking. This enables head-coupled perspective as
an intuitive view control and head gestures that are mapped onto the user’s avatar in the virtual environment. We
also explain how the simulation can be connected to behavioural study software in order to simplify user study
evaluation. Finally we list problems and solutions when utilising the free Source Engine Software Development
Kit to design such a virtual environment. We evaluate our design, present a virtual surgery teamwork training
scenario created with it, and summarize user study results demonstrating the usefulness of our extensions.

Keywords: Serious Game, Source Engine, Medical Teamwork Training, Head Tracking, Non-Verbal Communi-
cation, Head-Coupled Perspective

1 INTRODUCTION

In recent years, virtual environments (VEs) have
become increasingly popular due to technological
advances in graphics and user interfaces [MSL+09].
One of the many valuable uses of VEs is teamwork
training. The members of a team can be located
wherever it is most convenient for them (e.g., at home)
and solve a simulated task in the VE collaboratively,
without physically having to travel to a common
simulation facility. Medical schools have realised
this advantage and, for example, created numerous
medical simulations within Second Life or similar VEs
[DPH+09].

To implement a VE, the developer has to choose be-
tween three possibilities:

1. To use a completely implemented commercial or
free VE solution like Second Life [Lin10]. This has
the advantage of being able to completely focus on
content creation instead of having to deal with tech-
nical implementation questions and problems. How-
ever, the disadvantage is that these frameworks can-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

not easily be extended with additional functionality
required for a specific simulation scenario.

2. To build a VE from scratch. This enables complete
freedom in the design and usability of the VE, but
significantly extends development time.

3. To use a simulation framework that can be flexibly
extended to account for special design requirements,
but already provides a solid foundation of function-
ality to achieve a quick working prototype.

Whereas the first two options are located at the oppo-
site extremes of the spectrum, the last option is located
between these extremes in terms of development flex-
ibility and rapid prototyping. A game engine, the un-
derlying component of computer games, can be used as
such a framework. This is the principle behind “seri-
ous games”: To use the technology of computer games,
e.g., graphics, sound, physical simulation, multi-user
support, but to replace and adapt the original content to
build “serious” applications, e.g., for education, train-
ing, or simulation.
The literature provides several examples of studies with
simulation environments based on game engines, e.g.,
[TSHW08], [MRL+06], [ST09]. For an extended re-
view of serious games, see [SJB07].
However, rarely does the reader find information dis-
cussing design options, the advantages and disadvan-
tages of tools such as game engines, and how to use
them effectively and integrate new functionalities. This
makes it difficult for researchers to extend existing sim-
ulations or create new ones. One example of the few
exceptions is the publication of Ritchie, Lindstrom, and

WSCG 2012 Communication Proceedings 169 http://www.wscg.eu

Client Computer

- Face detection
- Head tracking
- Eye tracking
- Expression recognition
- ...

User Monitor (Xpressor)

- Head orientation
- Gaze direction
- Facial expression
- ...

Data Model

Network

Server

Game Engine Client

Plug-InVE Engine Client

Training Scenario

Game Engine Server

VE Engine Server

Figure 1: The functional blocks of the simulation framework

Duggan, where not only the used tools for the develop-
ment process but also source code details are provided
[RLD06].

We have created a VE for medical teamwork training
which provides additional control mechanisms by using
a webcam to capture the head movement of the user.
This head movement is decomposed into the transla-
tional part which is used for head-coupled perspective
(HCP), and the rotational part which is used to control
head gestures of the user’s avatar to convey non-verbal
communication cues. The results of our user studies
show that HCP improves the usability of the VE as it
introduces an intuitive view control metaphor that even
inexperienced users were able to master within seconds.
In addition, tracking-based head gesture control of the
avatar improved the perceived realism of the simulation
[MWW11].

This paper provides insight into the design of game
engines and their modification for advanced “serious
games” applications. In particular we explain how new
user interface devices can be integrated. In our discus-
sions, we use the Source Engine [Val07] as an example,
which, at the time of the survey, fulfilled most of our
simulation requirements: good graphical and animation
capabilities, availability of an Software Development
Kit (SDK) and developer tools, and reliable synchroni-
sation of physically simulated objects among multiple
clients. The details of the selection process of a suitable
engine can be found in [MWW07].

Section 2 presents the design of our VE framework. In
Section 3, we describe the details of the implementa-
tion. A summary of the results of our user studies con-
ducted with the framework are then presented and dis-
cussed in Section 4, and we finish with the conclusion
in Section 5.

2 DESIGN

The goal of the research described in this paper is to
utilise a game engine to implement a virtual environ-
ment for surgical teamwork training. An important
component in teamwork is non-verbal communication,
such as head gestures, which we capture with a web-
cam and then map onto avatars in the virtual environ-
ment. In addition we need an intuitive method for view
control, since most surgical procedures require the sur-
geon to use both hands for instruments. We therefore
decided to implement HCP using webcam input. HCP
changes the view of the VE based on the movements of
the user’s head position in front of the monitor. The im-
plementation of these additional hardware components
and control metaphors is also part of this paper.

Realising our simulation scenario requires changing the
game content, gameplay, and integration of webcam in-
put to control game engine parameters. Figure 1 gives
an overview of the architecture of the resulting system.
The sections marked in red were developed, extended,
or modified for the implementation. Figure 2 shows a
screenshot of the final VE for teamwork training simu-
lations.

The simulation is run on a central server that all users
connect to with their client computers. The server as
well as the clients run their part of the VE engine, be-
ing constructed on top of the Source Engine. It is im-
portant to distinguish between the terms “game engine”
referring to components of the simulation framework
that are parts on the Source Engine itself and therefore
cannot be altered, and “VE engine” referring to compo-
nents that are based on the Source SDK and have been
altered to create a VE with new features and interac-
tions.

The original game content on the server is replaced by
the teamwork training scenario. This includes virtual

WSCG 2012 Communication Proceedings 170 http://www.wscg.eu

Figure 2: Screenshot of the final surgical teamwork simulator
MedVE created from the original deathmatch game code

rooms, objects, instruments, sounds, textures, 3D mod-
els, etc.

On each client, an additional program, called Xpressor,
is running, using the input from the webcam for track-
ing the user’s head and face. The tracking information
is sent in the form of a specific data model (see Sec-
tion 3.3) to a plug-in of the VE engine. By using an
external tracking program and the plug-in architecture,
it is easily possible to exchange these components later
with more advanced ones, without having to modify the
actual VE engine.

The translational head tracking information is used to
control the view “into” the VE. This so called head-
coupled perspective (HCP) enables intuitive control,
such as peeking around corners by moving the head
sideways, or zooming in by moving the head closer to
the monitor.

The rotational head tracking information is used to con-
trol the head rotation of the user’s avatar. That way,
other users in the VE can see head movement that is
identical to the movement actually performed physi-
cally by the user, such as nodding, shaking, or rolling
of the head.

In addition, data from face tracking can be used to de-
tect facial expressions and transfer them onto the user’s
avatar. Bartlett et al [BLWM08], for example, present a
system that recognises a large set of movements of fa-
cial keypoints, such as lip corners, eyebrows, or blink-
ing. Using a simpler set of movements and keypoints,
the authors of [QCM10] created a virtual mirror, where
an avatar mimics smile, gaze and head direction, and an
opened/closed/smiling mouth of the user in realtime. In
our implementation, we use a non-commercial version
of the face tracking library faceAPI which does not in-
clude the detection of facial expressions.

3 IMPLEMENTATION
In the following three sections, we will explain the im-
plementation of the three important components of this
framework: the virtual environment, the user monitor
Xpressor, and the data model.

3.1 Virtual Environment
3.1.1 Steam Client

The modification of a game that utilises the Source
Engine starts off with Steam, a client software of the
manufacturer Valve, designed to enable the user to buy
games online, download and install them, and to keep
the games updated when bugfixes or extras are released.

3.1.2 Creating a New Project

The Source SDK is available to anybody who has pur-
chased at least one game that utilises the Source En-
gine, e.g., Half-Life 2, Team Fortress 2, Portal. With the
help of the Steam client, the SDK is easily downloaded
and installed like any other game. The SDK gives a
good starting point to experiment with the code and the
game engine, and to start modifying certain aspects of
the game. Several pages on the Valve Developer Com-
munity (VDC) website give additional hints and ideas,
for example the “My First Mod” tutorial [Val10b].

3.1.3 Version Control

Directly after creating and compiling the modification
project, we put the code under version control, using
Subversion [The11], as described in [Val10e]. That
way, we were able to update the code with changes that
were applied to the SDK later in the development pro-
cess.

3.1.4 Concepts of the Source Engine

Gaining an understanding of the design and function-
ality of the Source Engine was a very time-consuming
process. At first sight, the developer website creates an
impression of a thorough documentation. But when it
comes down to details and specific questions, this doc-
umentation reveals large gaps and provides outdated or
even contradictory information.

The majority of work necessary for understanding the
Source Engine was to read through the provided code
of the SDK, ignore several inconsistently implemented
naming conventions, insert execution breakpoints, trace
method calls through several class inheritance levels,
and much more.

Good documentation and a well structured codebase is
important for any game engine that is to be the founda-
tion of a simulation. Without these prerequisites, a lot
of time is spent on deciphering the inner workings of
the underlying code or on figuring out how to achieve

WSCG 2012 Communication Proceedings 171 http://www.wscg.eu

Game Client / client.dll

Engine Client

Game Server / server.dll

Engine Server

IBaseClientDLL

IVEngineClient

IServerGameDLL

cdll_int.h

IVEngineServer

eiface.h

▪ Initialise/shutdown
▪ Calculate view, render frame
▪ Process mouse/keyboard event
▪ Prepare data for saving/loading
▪ ...

Get player/object info ▪
Execute server/client command ▪

Get map/game settings ▪
Get system settings/time/screen size ▪

… ▪

▪ Initialise/shutdown
▪ Simulate one frame
▪ Provide map information
▪ Prepare data for saving/loading
▪ ...

Load/change map ▪
Create/destroy/move entities ▪

Simulate physical objects ▪
Emit sounds ▪

… ▪

S
ou

rc
e

S
D

K
S

ou
rc

e
E

ng
in

e
hl
2.
ex
e

Figure 3: Boundaries between the Source SDK and the Source Engine

a certain functionality, instead of implementing the es-
sential parts of the program.

In the following sections, we will present some of the
major concepts of the Source Engine that played an im-
portant role in the development and modification phase.

3.1.5 Game Engine/SDK Boundaries

When a multi-user Source Engine game is started, four
program parts are involved (see Figure 3):

• The game engine (hl2.exe) is executed, consist-
ing of the server

• and the client part.

Depending on whether the user chooses to start a new
game server or to connect to an existing game server,
the engine then activates

• either the game server dynamic link library (DLL)
server.dll

• or the game client DLL client.dll.

The game engine itself cannot be modified at all. No
source code of the inner workings of the engine is given.

The SDK contains header files with interface defini-
tions for the server (eiface.h) and the client part
(cdll_int.h) of the engine. These interfaces pro-
vide access to very basic entity and resource manage-
ment, and to the sound, graphics, and system functions
of the engine.

It is possible to build a game completely from scratch,
using only those header files. However, the SDK deliv-
ers a comprehensive set of classes and methods that, in
its entirety, already constitutes a complete game. Start-
ing from this point, the developer can now modify, re-
move or add custom parts to this framework. The ad-
vantage is rapid prototyping, as long as the result does
not differ much from the original kind of game.

However, with every additional change that is necessary
to get away from the original game towards the final
product, it gets more and more difficult to implement
the changes. Some of these difficulties are described
further down in this section.

3.1.6 Client-Server Architecture
Games and VEs for multiple users are mostly con-
structed using a client/server architecture [Val10d]. The
basic principle of client and server communication of a
game based on the Source Engine is shown in Figure 9.

The server is mainly responsible for running the simu-
lation, updating the position, orientation, and speed of
animated and physically simulated objects. In regular
intervals, e.g., every 33ms (=30Hz), it receives com-
pressed command packets from the clients, carrying in-
formation about mouse movement, keyboard input, and
other events that the users on the clients have triggered.
These command packets are unpacked, checked, and
their effect is taken into consideration for the simula-
tion: avatars move, objects are picked up or released,
sounds are played, etc. After each simulation step, the
new state of all objects and avatars is sent to the clients
which can in turn update the changed state of the world
on the screen.

During runtime, each simulated object in the VE ex-
ists in two versions: One version, the “server entity”, is
managed on the server, and is actively simulated. The
second version, the “client entity”, exists on each client
and is kept in sync with the server version by network
variables [Val10c].

These variables automatically take care of maintaining
a synchronous state between the server and all clients.
As soon as a variable value changes, its value is marked
for transmission on the next update data packet from the
server to the clients. To conserve bandwidth, the val-
ues are being compressed and only sent when they have
changed. This mechanism is important to enable fluid
gameplay on low-bandwidth connections, e.g., dial-up.

3.1.7 Prediction
The fact that clients have to wait for a data packet from
the server to show the updated world has a major draw-
back: Users would experience a noticeable delay to
their actions, especially on slow network connections.

To avoid this delay and to provide a fast and respon-
sive game, the client predicts the response of the server

WSCG 2012 Communication Proceedings 172 http://www.wscg.eu

and uses this prediction for an immediate response to
user input. When the client later receives the real server
response, it corrects the prediction, if necessary.

For the prediction, the client needs to have the same
rules and simulation routines as the server. In the
SDK, this is implemented by a major duplication
of code for the server and client entity representa-
tions. However, instead of physical file duplication,
shared code is contained in shared source files (e.g.,
physics_main_shared.cpp) that are included in
both, client and server projects.

3.1.8 Stripping Down the Engine
The next big step, after understanding the engine, was
to strip the project code of unnecessary classes and enti-
ties, e.g., weapons and the player health indicator. This
step proved very difficult due to numerous interdepen-
dencies within the code. Weapon related code espe-
cially, was very deeply integrated into basic classes.
Removal of one class file would break several other
classes. It required a lot of re-compilation passes and
uncommenting of large code sections until the code
would compile again.

3.1.9 Changing the Interaction
One major change in the original SDK deathmatch
game style was the primary interaction type. After we
had removed all weapons, we wanted to assign the left
mouse button click to grabbing and releasing of phys-
ical objects, and to triggering of interactions with ob-
jects, e.g., buttons or patients.

This seemingly simple change required a lot of rework-
ing in the code to create access methods to the objects
that the user interacts with, to enable users to take ob-
jects from each other, and to log all of those interaction
events.

On a visual level, we wanted the avatars to grab an ob-
ject with the right hand as soon as the user would pick
it up. This can be implemented with inverse kinemat-
ics (IK): When the target position of the hand is given,
IK calculates the position of the animating bones of the
arm so that the attached hand reaches that position ex-
actly.

The Source Engine is capable of IK, as can be seen in
Half-Life 2 – Episode 2, where a certain tripod char-
acter always touches uneven ground with all three feet.
However, the Source SDK website states that in multi-
player games, IK is not activated due to difficulties and
performance reasons on the server [Val10a].

Our queries in the developer forums resulted in a con-
firmation that the engine is capable of IK, but nobody
was able to give an answer on how to do it.

For this reason, grabbed objects “float” in front of the
avatar while they are carried around. However, this flaw

Figure 4: Different styles for the viewpoint indicator

Figure 5: Creating body awareness for the avatar

Figure 6: Examples of a room with the original Source SDK
textures (left) and the custom textures for the user studies

in realism did not distract the participants of the user
studies. Some of them even made fun of the strange
appearance, mentioning “Jedi-powers”.

3.1.10 Changing the User Interface
Together with the change of the interaction style, we
redesigned parts of the user interface. In the original
SDK, the centre of the screen is marked by a crosshair,
indicating the point where the weapon would be fired
at.

With the removal of any weapon related code, the
crosshair turned into a viewpoint indicator. After
some experiments with different indicator styles, We
chose a segmented circle that turns green as soon as
an interactive object is in focus, and closes when a
physical object is grabbed and held (see Figure 4).
Such a circle has an improved visibility over, e.g., a
simple point. It is also less associated with weapons
than, e.g., a crosshair.

The original weapon crosshair was simply painted at
the centre of the screen. With the inclusion of head
tracking however, we also had to consider a position
offset caused by the avatar head rotation and translation.

3.1.11 Body Awareness
In the original SDK, the user cannot see the avatar’s
own body when looking down, as shown in the left im-
age of Figure 5.

To create body awareness, we had to change several as-
pects:

WSCG 2012 Communication Proceedings 173 http://www.wscg.eu

Figure 7: Observer XT visualising interactions, movements,
and talk patterns of a teamwork simulation

1. The body model has to be drawn, even when the
game is in first-person view.

2. The camera viewpoint has to be synchronised with
any animation of the body model, e.g., walking,
standing idle. To achieve this, the camera position
is constantly updated with the position of the eye-
balls of the avatar model.

3. When looking up or down, the vertical head rotation
cannot simply be translated into a camera rotation,
because in that case the user would be able to see
the inside of the head or the body (see left screenshot
in Figure 5). We added a forwards translation to the
camera that is slightly increased when the user looks
up or down. Together with correct settings for the
near and far plane of the camera frustum, this creates
a realistic body awareness without literally having
“insight” into the avatar model.

We had planned to use IK to visualise the head move-
ment caused by head tracking. Physical, translational
head movement of the user would then have resulted in
identical translational upper body and head movement
of the avatar. As a result, an avatar would lean forward
or sideways in sync with the user who is controlling it.
However, we were not able to implement this feature
due to the insufficient documentation of the IK features
of the engine.

3.1.12 Textures

The original textures of the SDK are designed for creat-
ing games that are set in a post-war era. These textures
are, in general, worn down and dull, creating a depres-
sive feeling in all maps created with them.

We replaced some of the wall, floor, and ceiling tex-
tures with synthetic textures that look like clean tiles.

Figure 8: Screenshot of the user interface of Xpressor

The regular style of the tile textures creates a very or-
ganised, sterile look. The realism of the rooms created
with these textures could be increased further by using
photos of real rooms. However, this was not a priority
for our research, but it is an indicator of the complexity
of designing and creating realistic environments.

3.1.13 Data Logging

We also implemented a data logging module that
records user head movement, user interactions, and
gaze targets and duration. The generated logfiles enable
us to analyse individual and teamwork scenarios for
statistical evaluations. An additional benefit, especially
for teamwork assessment, is the ability of the logfiles
to be imported into external assessment tools, like
the behavioural analysis tool Observer XT shown in
Figure 7 [Nol10]. This import eliminates the need
for human assessors to observe a teamwork recording
again to create a list of actions and behaviours. All this
information is already present in the VE engine during
the simulation and can therefore be directly exported
into the logfile.

3.2 Xpressor
Xpressor is the program that we developed for encapsu-
lating the head tracking library faceAPI. The program
communicates bidirectionally with the VE engine, us-
ing two local user datagram protocol (UDP) connec-
tions.

The communication with the VE engine occurs through
a plug-in, as shown in Figure 1. The Source SDK has
certain settings and abstraction layers that prevent the
direct use of networking functions and several other op-
erating system related functions. However, it is possible
to load plug-in DLLs and to exchange data with them.
We therefore created a simple Xpressor plug-in that is
loaded in the beginning, accepts the UDP connection,
and relays the following data into the VE engine:

• translational and rotational tracking data,

WSCG 2012 Communication Proceedings 174 http://www.wscg.eu

ClientsClients

User Avatar
Client Entity

User Avatar
Server Entity

User Avatar
Client Entity

Input Module

Client Server Clients

Control Input

Extended Client Data Packet

Build compressed
client data packet

Unpack and evaluate

Network VariablesNetwork Variables

Display on screen Display on screen

Run simulation step

other Client
Data Packets

User Xpressor

Tracking Data

Head
Movement

Figure 9: Data exchange between Xpressor, the VE clients, and the server

• a low resolution video stream,
• information regarding whether the user is speaking

or not, and
• values to control the facial expression of the avatar.

The video stream is helpful for the user e.g., to ad-
just his or her position at the beginning of a simula-
tion. To conserve bandwidth, the video is resized to
100×60pixel, converted to 4bit greyscale, and trans-
mitted with 10fps via a separate UDP connection.

The program also monitors the signal strength of the
connected microphone, signalising the VE engine via
a flag whether the user is speaking or not. The state of
this flag is determined by a simple signal energy thresh-
old algorithm.

Xpressor is written in C++, using the Microsoft Foun-
dation Classes (MFC) for the graphical user interface
(GUI) (see Figure 8). For the control of the facial ex-
pression, we developed a custom circular controller in-
terface, visualising six expression types as circle seg-
ments and the strength of the expression by the distance
of the controller position from the centre of the circle.

While sitting in front of the screen, the user inadver-
tently shifts his or her neutral head position relative to
the camera. As a result, any concept relying on an abso-
lute position will reflect that drift in a slowly changing
view of the VE. Similar to the recommendations from
Sko and Gardner for games using HCP, we have imple-
mented a configurable automatic slow adjustment of the
neutral position towards the average of the measured
position over several seconds [SG09]. This adjustment
accommodates for the gradual change of the neutral po-
sition and rotation of the user’s head. To avoid an un-
wanted compensation when the user is at the extreme
ends of the tracking range, e.g., when looking at an ob-

ject from the side, the adjustment is reduced towards
the outer regions of the tracking volume.

3.3 Data Model
The data model is a description of how to pack the
values from head tracking and future facial expression
recognition into a data structure that can be easily ex-
tended, but at the same time also easily compressed and
transmitted.
Figure 9 visualises the extension in the data flow be-
tween the VE clients and server. Because of the fast
local UDP connection between Xpressor and the client,
the data is transferred uncompressed. Between the
clients and the server however, bandwidth can be lim-
ited, therefore the parameters are compressed.

4 RESULTS
The modification of the Source Engine into a virtual en-
vironment for medical teamwork training with webcam
support for HCP and head gestures was a non-trivial
process due to the complexity and insufficient docu-
mentation of the engine, but allowed for rapid proto-
typing of early design stages.
All software outside of the VE engine, e.g., Xpressor,
was kept modular, as well as most of the code we cre-
ated to add functionality to the VE engine. This en-
abled us in the early stages of our experiments to easily
exchange our own head tracking module by faceAPI.
However, features or modifications that required deep
changes within the original code had to be kept close
to the coding style of the SDK itself, resulting in sub-
optimal program code. The latter problem might be of
a different magnitude when using different game en-
gines, e.g., Unity 3D [Uni11] that provide a more struc-
tured codebase to program against. The problems with

WSCG 2012 Communication Proceedings 175 http://www.wscg.eu

the complexity of the code of the Source SDK were in-
creased by insufficient documentation. A lot of devel-
opment time was spent on deciphering the code or con-
sulting the forums and developer websites for examples
to compensate for the lack of documentation. To avoid
this problem, it is important to put more emphasis on
the quality of the documentation and the code of a game
engine when engines are considered for selection.

Content for our VE was created using the free 3D editor
Blender [Ble11] and the tools provided by the Source
Engine, e.g., the map editor Hammer and the charac-
ter animation tool Faceposer. Most time during content
creation was spent on figuring out ways how to simulate
a specific effect or physical behaviour with the engine
which is optimized for fast action gameplay, not for pre-
cise simulations. On several occasions, we had to com-
promise between realism and the ability of the engine to
simulate a specific feature. One example is the bleeding
that occurs during the surgical procedure we designed
for the multi-user study. The Source Engine does not
provide physically correct fluid simulation. Instead, we
created a particle effect that resembles a little fountain.

We measured the “success” of the design and imple-
mentation of our VE indirectly by the user studies we
conducted for our overall goal: to show improvements
of usability, realism, and effectiveness of VE-based
training scenarios by including camera-based non-
verbal communication support and intuitive HCP-based
view control.

Overall, the VE proved to be stable and intuitive to use
for the participants, regardless if they were experienced
in playing computer games or not. Our studies compar-
ing manual view control against HCP showed that HCP
is an intuitive and efficient way of controlling the view,
especially for inexperienced users [MWW10].

For highest user comfort, it is important that the delay
between physical head movement and virtual camera
movement is as short as possible. Our framework was
able to deliver a relatively short response time of about
100ms. However, this delay lead to participants repeat-
edly overshooting their view target. We suspect that the
delay is a sum of several smaller delays in each process-
ing stage of the data flow, therefore requiring several
different optimisation steps for an improvement.

For our latest user study, we created a surgical team-
work training scenario and alternated between HCP and
avatar control being enabled or disabled to investigate
the effect of tracking-based avatar head movement on
non-verbal communication within a VE. The results
showed an increase in perceived realism of the commu-
nication within the environment [MWW11]. An effect
on teamwork training effectiveness was not proven, but
might have been masked by the experiment design. A
clarification is subject to future research.

5 CONCLUSION
In summary, the Source Engine is suitable for rapidly
developing a teamwork training VE, as long as the
changes required to the original SDK code are not too
major. The more functionality that is necessary for spe-
cific features of the desired VE, the more complex the
coding task becomes. At a certain point, it would be in-
feasible to use this engine and alternative game engines
would have to be considered.

However, the Source Engine proved stable and flexi-
ble enough for our medical teamwork training scenario
with additional support for HCP and camera-controlled
avatar head gestures. The user studies we have con-
ducted show that these extensions are well received, and
improve the usability and the perceived realism of the
simulation. In addition, the digital recording of the in-
teractions and behaviours within the VE is a valuable
support for automated (e.g., with tools like Observer
XT) as well as “manual” assessment of teamwork per-
formance.

6 REFERENCES
[Ble11] Blender Foundation. Blender, 2011.

http://www.blender.org.
[BLWM08] Marian Bartlett, Gwen Littlewort, Tingfan

Wu, and Javier Movellan. Computer Ex-
pression Recognition Toolbox. In Demo:
8th Int’l IEEE Conference on Automatic
Face and Gesture Recognition, 2008.

[DPH+09] Douglas Danforth, Mike Procter, Robert
Heller, Richard Chen, and Mary Johnson.
Development of Virtual Patient Simula-
tions for Medical Education. Journal of
Virtual Worlds Research, 2(2):3–11, Au-
gust 2009.

[Lin10] Linden Research, Inc. Second Life, 2010.
http://secondlife.com.

[MRL+06] Brian MacNamee, Pauline Rooney,
Patrick Lindstrom, Andrew Ritchie,
Frances Boylan, and Greg Burke. Seri-
ous Gordon: Using Serious Games To
Teach Food Safety in the Kitchen. In Pro-
ceedings of the 9th International Confer-
ence on Computer Games: AI, Animation,
Mobile, Educational & Serious Games
(CGAMES06), November 2006.

[MSL+09] Paul R. Messinger, Eleni Stroulia, Kelly
Lyons, Michael Bone, Run H. Niu, Kris-
ten Smirnov, and Stephen Perelgut. Vir-
tual Worlds – Past, Present, and Future:
New Directions in Social Computing. De-
cision Support Systems, 47(3):204–228,
June 2009.

WSCG 2012 Communication Proceedings 176 http://www.wscg.eu

[MWW07] Stefan Marks, John Windsor, and
Burkhard Wünsche. Evaluation of Game
Engines for Simulated Surgical Train-
ing. In GRAPHITE ’07: Proceedings of
the 5th international conference on Com-
puter graphics and interactive techniques
in Australia and Southeast Asia, pages
273–280, New York, NY, USA, December
2007. ACM.

[MWW10] Stefan Marks, John Windsor, and
Burkhard Wünsche. Evaluation of the Ef-
fectiveness of Head Tracking for View and
Avatar Control in Virtual Environments.
25th International Conference Image and
Vision Computing New Zealand (IVCNZ)
2010, November 2010.

[MWW11] Stefan Marks, John Windsor, and
Burkhard Wünsche. Head Tracking Based
Avatar Control for Virtual Environment
Teamwork Training. In Proceedings of
GRAPP 2011, 2011.

[Nol10] Noldus Information Technol-
ogy. Observer XT, 2010.
http://www.noldus.com/
human-behavior-research/
products/the-observer-xt.

[QCM10] Rossana B. Queiroz, Marcelo Cohen, and
Soraia R. Musse. An extensible frame-
work for interactive facial animation with
facial expressions, lip synchronization and
eye behavior. Computers in Entertainment
(CIE) - SPECIAL ISSUE: Games, 7:58:1–
58:20, January 2010.

[RLD06] Andrew Ritchie, Patrick Lindstrom, and
Bryan Duggan. Using the Source En-
gine for Serious Games. In Proceed-
ings of the 9th International Conference
on Computer Games: AI, Animation,
Mobile, Educational & Serious Games
(CGAMES06), November 2006.

[SG09] Torben Sko and Henry J. Gardner.
Human-Computer Interaction — INTER-
ACT 2009. In Tom Gross, Jan Gulliksen,
Paula Kotzé, Lars Oestreicher, Philippe
Palanque, Raquel Oliveira Prates, and
Marco Winckler, editors, Lecture Notes in
Computer Science, volume 5726/2009 of
Lecture Notes in Computer Science, chap-
ter Head Tracking in First-Person Games:
Interaction Using a Web-Camera, pages
342–355. Springer Berlin / Heidelberg,
August 2009.

[SJB07] Tarja Susi, Mikael Johannesson, and
Per Backlund. Serious Games -– An

Overview. Technical report, School of
Humanities and Informatics, University of
Skövde, Sweden, February 2007.

[ST09] Shamus P. Smith and David Trenholme.
Rapid prototyping a virtual fire drill envi-
ronment using computer game technology.
Fire Safety Journal, 44(4):559–569, May
2009.

[The11] The Apache Software Foundation.
Apache Subversion, 2011. http://
subversion.apache.org.

[TSHW08] Jeffrey Taekman, Noa Segall, Eugene
Hobbs, and Melanie Wright. 3DiTeams
— Healthcare Team Training in a Virtual
Environment. Simulation in Healthcare:
The Journal of the Society for Simulation
in Healthcare, 3(5):112, 2008.

[Uni11] Unity Technologies. UNITY: Unity 3 En-
gine, 2011. http://unity3d.com/
unity/engine.

[Val07] Valve Corporation. Source Engine, 2007.
http://source.valvesoftware.
com.

[Val10a] Valve Developer Community. IK
Chain, 2010. http://developer.
valvesoftware.com/wiki/
$ikchain.

[Val10b] Valve Developer Community. My First
Mod, 2010. http://developer.
valvesoftware.com/wiki/
First_Mod.

[Val10c] Valve Developer Community. Net-
working Entities, 2010. http://
developer.valvesoftware.com/
wiki/Networking_Entities.

[Val10d] Valve Developer Community. Source
Multiplayer Networking, 2010. http://
developer.valvesoftware.com/
wiki/Net_graph.

[Val10e] Valve Developer Community. Us-
ing Subversion for Source Control
with the Source SDK, 2010. http:
//developer.valvesoftware.
com/wiki/Using_Subversion_
for_Source_Control_with_the_
Source_SDK.

WSCG 2012 Communication Proceedings 177 http://www.wscg.eu

WSCG 2012 Communication Proceedings 178 http://www.wscg.eu

A morphing approach for kidney dynamic modeling
From 3D reconstruction to motion simulation

Valentin Leonardi
LSIS, UMR CNRS 7296

Campus de Luminy
13288 Marseille cedex 9,

France
valentin.leonardi@univ-amu.fr

Jean-Luc Mari
LSIS, UMR CNRS 7296

Campus de Luminy
13288 Marseille cedex 9,

France
jean-luc.mari@univ-amu.fr

Vincent Vidal
L2PTV, EA 4264

CERIMED
13385 Marseille cedex 5,

France
vincent.vidal@ap-hm.fr

Marc Daniel
LSIS, UMR CNRS 7296

Campus de Luminy
13288 Marseille cedex 9,

France
marc.daniel@univ-amu.fr

ABSTRACT
Motion simulation of an organ can be useful in some cases like organ study, surgery aid or tumor destruction.
When using a non-invasive way of tumor destruction through transcutaneous transmition of waves, it is primordial
to keep the wave beam focused on the tumor. When the tumor is not in movement, such a task is trivial. But when
the tumor is located in a moving organ like the kidney, motion simulation is necessary. We present here an original
method to obtain the kidney motion simulation: this is done using a mesh morphing (we consider the kidney has
already been segmented and reconstructed for three different phases of the respiratory cycle). Such an approach
allows a smooth transition between the different kidney models, resulting in a motion simulation. Thus, the method
is purely geometric and does not need any kind of markers or tracking device. It gives directly a full 3D simulation
and models are animated in real time. Finally, our approach is automatic and fast, so that it can easily be used in a
medical environment.
Keywords: Geometrical modeling, organ motion simulation, kidney modeling, mesh morphing

1 INTRODUCTION
Tumors can be treated by low-invasive approaches. The
goal is to minimize interactions between the surroun-
ding environment and the patient in order to limit the
consequences of surgery (incision treatment, convales-
cence) and their possible complications (nosocomial in-
fections). Kidney tumors can be treated by radiofre-
quency. Radiofrequency is a low-invasive, non-surgical
percutaneous heat treatment. The principle is to locate
the tumor through CT scan, and insert a radiofrequency
electrode in its center. An electric current is then deli-
vered, in order to destroy the tumor. However, there is a
chance of cancerous cell displacement when removing
the electrode.

The KiTT project (for Kidney Tumor Tracking, of
which we take part) is fully involved in the low-invasive
protocol. Its goal is to create a totally non-invasive new
approach by transmitting radiofrequency waves, in a
transcutaneous way until tumor eradication. The main
difficulty is to keep the wave beam continuously fo-
cused on the tumor while the kidney is deformed and

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

moves because of the respiratory cycle. A kidney (and
a tumor) tracking is therefore necessary. Before this or-
gan tracking stage, we need to obtain a solid 3D model
of it. This work is described in our previous paper
[LMVD11].

What we propose here is a new method which has
two goals: the first one is the motion and deformation
visualization of an organ (the kidney in this case) un-
der the influence of natural breathing. The second goal
results directly from the first one and is the tracking of
a part of this organ: its tumor. The originality of this
method is that it uses a fully geometric approach: mesh
morphing. Thus it is fast and only needs three models
corresponding to three breathing phases: inhale phase
(when volume of air in lungs is maximal), exhale phase
(when volume of air in lungs is minimal) and the mid-
dle phase between the two previous ones, which we re-
fer as the mid-cycle phase. Moreover, the results ob-
tained are fully geometric; the output is an animated
3D model. Thereby general motion and all deforma-
tions can be studied at once where some methods only
offer the possibility of a 2D visualization. Finally, as
the tumor is also animated, it is possible to know its po-
sition at any time.

Section 2 of this article deals with the previous work
in organ tracking and mesh morphing. Section 3 in-
troduces the general process of our method: a brief re-
call of the kidney reconstruction is done, then the al-
gorithm used for mesh morphing is described in detail.

WSCG 2012 Communication Proceedings 179 http://www.wscg.eu

In section 4, we present the obtained results, their per-
formances and we discuss them. Finally in section 5,
we present the limits of our method, the possibilities to
overcome them and the perspectives of future work.

2 RELATED WORK
2.1 Organ tracking
Organ tracking methods are either based on mathema-
tical models which represent the respiratory cycle as a
periodical function, or on empirical algorithms which
predict future movements by observation and analysis
of previous ones.

The most intuitive way to track an organ is to put a
marker which is highly detectable by a classic medical
imaging acquisition near this organ [NUG+08, NPSA07,
OTW+05, SGB+00, SSK+00]. This formalism is also
used in all-in-one robotic radiosurgery systems such as
the Cyberknife [MCG+03]. This kind of method re-
quires a surgical intervention which is not suitable for
our problematic.

The following approaches assume the kidney has
been segmented and reconstructed previously for two or
more phases of the respiratory cycle. Most of the time,
only two models are needed, but three [SBMG06] or
even more [RMOZ01] are sometimes necessary. These
extra acquisitions can be used to improve the precision
of the organ deformation. In other cases, it is not an
extra acquisition of the organ that is needed, but other
kind of data essential to the method. Hostettler et al.
[HNS+08] use the diaphragm movement in order to re-
flect it on the abdomen organs. In [SBMG06], air, tis-
sues and lungs have to be segmented for three acquisi-
tions in order to get an organ tracking.

Deformation fields are used to understand the mo-
tion of an organ. This field computes the deforma-
tions necessary to apply on a given source model Ms
to deform it into a given target model Mt . The defor-
mation field can be computed using several methods
like Maximum Likelihood / Exceptation-Maximisation
[RMK+05], least squares [SBMG06] or approaches
based on Normalized Mutual Information [RSH+99].
Deformations can also be applied on a mesh through
a deformable superquadratic in order to get the move-
ment of an organ [BCA96].

Registration methods are also a good way to have
an organ tracking. Nicolau et al. [NPSA07] use two
acquisitions: on the first one, markers are used in or-
der to get the position of the organ of interest. Then a
second acquisition is done without these markers. By a-
nalyzing the difference of position of the spine for both
acquisitions, the registration is performed using the mi-

nimization of the Extended Projective Point Criterion.
In [RSH+99] two operations are done to compute the
registration: affine transformation is used for global
movements while Free Form Deformation is used for
local movements. Two registration algorithms based
on optical flow are implemented and accelerated using
GPU programming in [NdSE+08] in order to perform
an image-guided radiotherapy.

2.2 Principle of morphing
Mesh morphing is a method used to transform progres-
sively a source model Ms into a target model Mt . The
most usual method to perform a mesh morphing is to
find a common vertex/edge/face network for both mo-
dels in order to compute a metamesh Mm which con-
tains the topology of Ms and Mt . The common net-
work is obtained by mapping the mesh into arbitrary
shapes, using different kind of mappings based on the
resolution of a linear system. This approach was first
used by Kent et al. in [KCP92], where both models
are mapped onto the unit disk. In [ACOL00] Alexa
et al. perform a mesh morphing where the interior is
also considered. A 3D mesh is decomposed into a set
of tetrahedrons and a 2D shape into a set of triangles.
The interpolation of a tetrahedron is done using a ro-
tation and a scale-shear with positive scaling matrices.
In [GSL+98] both Ms and Mt are divided into an equal
number of patches P. Each patch is then mapped so
that the patch Pk of Ms is morphed into the patch Pk of
Mt . This approach is close to the one used by [KSK00]
since models are also divided into n arbitrary shapes.
These shapes are mapped onto a polygon, where ver-
tices of the border of a shape lie on the border of the
polygon. The position of the remaining vertices is then
computed by considering the shape as a spring-mass
system at rest, the border vertices being the the fixed
masses. In [LDSS99] Ms and Mt are simplified into M′s
and M′t using the MAPS method [LSS+98]. Vertices for
which vertex-vertex correspondences is already known
are kept. Ms and Mt are finally mapped in order to com-
pute the correspondences. Unfortunately, the previous
approaches always need either user interaction (which
can be very time consuming for some methods) or ver-
tices correspondence between Ms and Mt prior to the
mesh morphing. In both case, our constraints do not
allow to spend a lot of time on cutting up a mesh man-
ually or making vertex-vertex correspondences.

It is possible to fully automate a mesh morphing al-
gorithm by using an automatic mesh cutting up. In-
deed, such a process allows to separate a model into
at least two different parts which can then be mapped.
Several works can be found, although it is a difficult
problem: some methods are based on the use of a sin-
gle patch [KSK97], where others are related to graph

WSCG 2012 Communication Proceedings 180 http://www.wscg.eu

theory problem and aim at balancing the size of patches
[EDD+95, KK99]. However, our models are close to
each other, which does not justify such an advanced
approach. Another way to have a complete automatic
mesh morphing is to map models onto the unit sphere
[KCP92]. Indeed, there is no need to divide the models
anymore since they are homeomorphic to a sphere. On
the other hand, the model has to be star-shaped, which
is not the case of a kidney. Alexa [ACOL00] introduces
a variant for sphere mapping: as for barycentric map-
ping, each vertex is placed at the centroid of its neigh-
bors. Finally, a new approach for mesh morphing is
done by Lee et al. in [YHM07]. The principle is to
compute a constraints field C in order to deform Ms
into Mt . C is then interpolated in order to determine
a new constraints field C′ for an intermediate model Mi
between Ms and Mt .

3 GENERAL PROCESS
3.1 Overview
A general view of our entire workflow is presented
on Figure 1. It shows how to get the kidney motion
visualization from 3 sets of images. These sets result
from three CT-scan or MRI acquisitions. First, the kid-
ney and tumor are segmented for the three sets of im-
ages. Then, the organ is reconstructed in order to have
three 3D models (called M1, M2 and M3), each one cor-
responding to a precise breathing phase. Mesh mor-
phing between M1 and M2 and between M2 and M3 is
computed. Our mesh morphing approach is based on
an automatic mesh cutting up, unit disk mapping and
metamesh creation. Since models are relatively close to
each other, they can be divided into only two patches.
Moreover, the frontier between the two patches always
has the same orientation on the kidney, which allows
this step to be entirely automatic. Once the two patches
are defined for Ms and Mt , a unit disk mapping is per-
formed in order to overlay the two mappings of a cor-
responding patch of both models. We cannot use a
sphere mapping here as kidney models are not star-
shaped. Detections of mapped edge intersections and
mapped vertices positions allow to create a metamesh
which comprises the topology of both models. As an
initial and a final position are known for all metamesh
vertices, the metamesh is animated by linear interpola-
tion. The alternation between metameshes coming from
M1 and M2 and from M2 and M3 gives a full kidney
animation from inhale to exhale phase, i.e. the whole
respiratory cycle. The only part of our method done in
real time and during the whole tumor destruction pro-
cess is the metamesh vertices interpolation. Everything
before this step is done once and for all and takes less
than 2 minutes (from kidney segmentation to metamesh
creation).

Figure 1: Overview of our entire workflow: three sets
of images resulting from a medical imaging acquisi-
tion for the inhale, mid-cycle and exhale phase is done
(first line). The kidney and the tumor are segmented for
every images of these three acquisitions (second line).
The Poisson surface reconstruction is then applied to
the point cloud extracted from the segmentation of each
three different phases. We call the resulting models M1,
M2 and M3 (third line). Mesh morphing is computed
between M1 and M2 and between M2 and M3. The re-
sults are two metameshes which allow a smooth transi-
tion between M1 to M2 and M2 to M3 (fourth line). By
alternating the two metameshes, a full and smooth tran-
sition from M1 to M3 is possible, resulting in the kidney
motion visualization (fifth line).

3.2 Kidney reconstruction
A full description of the kidney reconstruction is de-
tailed in [LMVD11]. The method used to get the kid-
ney model is divided into two stages: the first one is
the kidney segmentation from which a point cloud is
extracted. The second stage consists in reconstructing

WSCG 2012 Communication Proceedings 181 http://www.wscg.eu

this point cloud in order to obtain a model.

A region growing approach is used in order to seg-
ment the kidney. Despite some methods exist to define
automatically the seed needed for initialization, our ap-
proach uses a minor user-interaction and needs a single
mouse click to define it. However, this is done only for
one image (since the whole kidney is present in at least
60 slices). The region segmented in an image Ik−1 is
used to get the seed for the next image Ik: the weighted
barycenter of the points defining the contour in Ik−1 de-
fines the seed for Ik. Results of this method are shown
on Figure 2

Figure 2: Final results using our kidney segmenta-
tion approach for left and right kidney on two different
slices.

The point cloud extracted from the segmentation stage
is reconstructed using the Poisson Surface Reconstruc-
tion [KBH06]. The principle of this algorithm is to
define an indicator function χ peculiar to a model M,
which is 0 for every point outside the model and 1 in-
side. Deducing χ directly from the oriented point cloud
is the major problem in this case. The solution is to use
the gradient of χ since the point cloud can be conside-
red as samples of

−→
∇ χ (see Figure 3). Indeed,

−→
∇ χ is a

vector field that is 0 almost everywhere except near the
surface. A vector field −→V which is an approximation of−→
∇ χ is found using the original normals. χ must now
be deduced from −→V , i.e.

−→
∇ χ =

−→V . This is done by
applying the divergence operator to express it as a Pois-
son equation: ∆χ ≡ ∇ · −→∇ χ = ∇ · −→V . The resolution
of this equation is a well known problem (especially in
physics) but will not be discussed here. The final re-
construction is then obtained from the extraction of an
appropriated isosurface (see Figure 4).

Figure 3: Overview of the Poisson surface reconstruc-
tion.

Figure 4: Final result of a kidney point cloud (left) and
its reconstruction using the Poisson surface reconstruc-
tion (right).

3.3 Morphing
The morphing stage must have very basic user- interac-
tions. The two models to morph are close to each other
since they both come from the same kidney. Thus, the
mesh morphing method uses an automatic mesh cutting
up in two patches, unit disk mapping and metamesh cre-
ation. We cannot map onto a sphere as kidney models
are not star-shaped. All these steps are described in de-
tail hereunder. For the rest of this paper, we will use
the following symbols: M represents a given model, Ms
is the source model and Mt the target model, as used
in the previous sections. C is the connectivity between
vertices, edges and faces of M. V = {v1,v2,v3, ...,vn} is
the position in R3 of vertices. Edges are represented as
a pair of vertices {i, j} and faces as a triplet of vertices
{i, j,k}. Finally, N(i) is the set of adjacent vertices to
vertex {i}, i.e. N(i) = {{ j}|{i, j} ∈C}.

Mesh cutting up: obtaining the tearing path

The first stage of the mesh dissection consists in com-
puting its principal axis. This can be done by consi-
dering only the vertices and using Principal Component
Analysis (PCA). Moreover, the PCA gives the 3 princi-
pal vectors of the mesh; the firsts two and the barycenter
of the mesh define the principal plane. Thus, the next
stage consists in computing the intersections between
edges of M and the principal plane, defining what we
call the intersected edges. In the same way, the vertices
{i, j} of an intersected edge are called intersected ver-
tices. This set of the intersected edges is the first stage
of the final tearing path (see Figure 5).

The tearing path must be a unique loop of edges in
C, i.e. {{i1, i2},{i2, i3}, ...,{in−1, in} , {in, i1}|{ik, im} ∈
C ∀(k,m) ∈ [1;n]; this set of edges is a subset of C
and is called c. Thus, two successive intersected edges
must share a same vertex. The purpose of the first
post-process of the intersected edges is to remove dead-
end edges from c. Such edge has one of its vertices
which is not shared with any other intersected edge, i.e.
{{i, j}|∀l ∈ N(j){ j, l} /∈ c}. To detect such edges, we

WSCG 2012 Communication Proceedings 182 http://www.wscg.eu

Figure 5: Intersection between the kidney model and its
principal plane (in blue). The resulting tearing path is
displayed in red.

first compute the partial adjacency list of each vertex in
c. This list is the set of adjacent vertices { j} in c to
a vertex {i}, i.e. {{ j}|{i, j} ∈ c}. A dead-end edge
is then simply detected when at least one of its ver-
tices has only one neighbor, i.e. its partial adjacency
list length is 1 (see Figure 6 - b). The second post-
process consists in removing local loops: the tearing
path must be a unique succession of edges and each ver-
tex must be shared by two and only two edges. Thanks
to the partial adjacency list, vertices from which the
tearing path separates are easily detected: such vertices
have, at least, 3 neighbors. Thus, local loops are re-
moved as follow. Starting from a 2-adjacency vertex we
choose arbitrarily one of its neighbors and so on, until
a 3-adjacency vertex is reached. During this step, each
vertex is skimmed only once so that it appears at most
once in the final tearing path. An arbitrary neighbor of
the current 3-adjacency vertex is still chosen, but every
other edges containing the current vertex is suppressed
from c. As such a process creates new dead-end edges,
every edge of each 2-adjacency neighbor is recursively
suppressed until the neighbor is a 3-adjacency vertex
(see Figure 6 - c,d,e). As the current 3-adjacency ver-
tex becomes a 2-adjacency vertex, the whole process is
repeated until we fall back on the first vertex.

Mapping mesh onto the unit disk

Once the tearing path has been computed, vertices are
tagged in three different way. We call them tag 0, 1 and
2. Tagging the mesh allows to define the two parts of it
which will be mapped later. Vertices defining the tear-
ing path are tagged as 0. A unique arbitrary neighbor
of a vertex tagged as 0 is tagged as 1. We recursively
tag all its neighbors, so that a whole part of the mesh
is tagged as 1. The other part is tagged as 2. Both

Figure 6: Whole example of the post-process of a tear-
ing path. Although this example cannot exist in a real
situation, it presents all the cases needed to under-
stand how the full post-process works. From top to bot-
tom: (a) Original tearing path - (b) 1-adjacency vertex
detection (diamond) and dead-end edges suppression
- (c) 3 (or more)-adjacency vertex detection (square).
Starting from the pointed vertex, an arbitrary neigh-
bor is chosen. - (d) For a 3-adjacency vertex, we still
choose an arbitrary neighbor, but every other edge is
suppressed. - (e) To avoid apparition of new dead-
end edges when edges are suppressed, recursive sup-
pression of every edges from 2-adjacency neighbor is
done. - (f) The final tearing path obtained after the
post-process.

meshes are then rotated so that their principal planes
are aligned with xz-plane. This way, it is possible to
check if parts tagged the same in the two models have
the same y orientation. If not, tags 1 and 2 of one model
are swapped. This step is essential since the part of Ms
tagged as 1 (resp. 2) will be morphed into the part of
Mt tagged as 1 (resp. 2) (see Figure 7).

Now that every vertex is tagged, they can be mapped
onto the unit disk. Although any kind of mapping is
applicable, we choose the discrete harmonic mapping
[Pol00] since it preserves as much as possible the topo-

WSCG 2012 Communication Proceedings 183 http://www.wscg.eu

Figure 7: Example of two models for which a same tag
has a different y orientation. Vertices in red are tagged
as 0, vertices in cyan tagged as 1 and vertices in ma-
genta tagged as 2.

logy of faces of both models. The most straightforward
step of this mapping is for the intersected vertices. They
are fixed on the unit circle in a way that arc length be-
tween each pair of successive vertices is proportional to
the original length of edge in mesh. For vertices tagged
as 1 or 2, discrete harmonic mapping (as well as other
mapping) amounts to solving a linear system described
as follow. Two distinct mappings are done, one for each
tag. Let Vi be the vertices to map with 0 ≤ i < n index
of vertices tagged as 1 (resp. 2) and n≤ i < N index of
vertices tagged as 0. Then, the linear system to solve is:

(I−Λ)

v1
v2
v3
...

vn−1

=

∑

N−1
i=n λ0,ivi

∑
N−1
i=n λ1,ivi

∑
N−1
i=n λ2,ivi

...
∑

N−1
i=n λn−1,ivi

where Λ = {λi, j} and λi, j is a coefficient depending

on the mapping used. Here, for discrete harmonic map-
pings, we have:

λi, j =

{
cotαi, j+cotβ i, j

∑ j∈N(i)(cotαi, j+cotβi, j)
if {i, j} ∈C

0 if {i, j} /∈C

with αi, j = ∠(i,k0, j) and βi, j = ∠(i,k1, j). Edge
{i, j} is adjacent to two and only two faces since M
is a triangular mesh. k0 and k1 are the two vertices that
define these faces. We call M′sN M′t N the mapping of Ms
and Mt for tag N. Similarly we call {i′} a mapped ver-
tex. Although such notation should not exist since only
the position of vertices (vi) changed during the map-
ping, this notation will make further expressions more
straightforward.

Metamesh creation and animation: computing in-
tersections and barycentric coordinates

The next step is to overlay M′sN M′t N for both tags in
order to compute the metamesh. The first stage is to
detect intersections between mapped edges. When two
edges {i′, j′} ∈ C for M′s and {k′, l′} ∈ C for M′t cross,
a new vertex is created. Two valid definitions of this

intersection point are v′i +α
−→
v′iv
′
j and v′k +β

−−→
v′kv′l . Coef-

ficient α and β are saved along with the new vertex.
These coefficients will be necessary for intermediate
models as they are sufficient to compute the coordi-
nates of the vertex, even when vi,v j,vk and vl are inter-
polated. These kind of vertex is called an intersection
vertex. Once an intersection vertex is created, appro-
priate edges and faces are created along with it in order
to build the topology of the metamesh Mm. These new
edges and faces will allow Mm to combine topology of
both Ms and Mt and to have a continuous interpolation
between the two models (see Figure 8).

Figure 8: Example of intersections between mapped
edges of Ms (solid line) and Mt (dotted line). Intersec-
tion points 1, 2, 3 and 4 are created, as well as appro-
priate edges (C1, 1D, C2, 2F, ...) and faces (C12, F23,
...).

The second stage of the metamesh creation is the
computation of barycentric coordinates (BC) for every
vertices of Ms and Mt . To do that, we first want to know
on which mapped face {i′, j′,k′} of M′t (resp. of M′s) a
mapped vertex v′m of M′s (resp. M′t) lies on. The BC are
a unique triplet u,v,w such that v′m = uv′i + vv′j +wv′k.
The face where v′m lies on and its BC are saved. This
kind of vertex is called a mesh vertex (see Figure 9).

Figure 9: Mapped vertex of M′t , v′ lies on face
{v′1,v′2,v′3} of M′s. Its BC are computed so that v′ =
0.8v′1 +0.7v′2 +0.2v′3. Position of v on face {v1,v2,v3}
of Ms is then known thanks to these coordinates: v =
0.8v1 +0.7v2 +0.2v3.

Thus, the metamesh is completely built and com-
posed of a set of intersection vertices and mesh vertices.

WSCG 2012 Communication Proceedings 184 http://www.wscg.eu

Intermediate models can now be easily obtained by in-
terpolating positions of vertices. The interpolation is
possible since we know, for each one of them, an ini-
tial and a final position as following: for a mesh vertex
coming from Ms, the initial position is its position in
Ms. The final position is known by the combination
of its BC and the face of Mt it lies on. Inversely, for
a mesh vertex coming from Mt , the initial position is
known using its BC and the face of Ms it lies on. The
final position is its natural position in Mt . For an inter-
section vertex, the initial position is known thanks to its
α coefficient and the edge of Ms it lies on. The final po-
sition is computed using its β coefficient and the edge
of Mt it lies on.

3.4 Tracking the tumor
The tumor tracking is the second goal of our method.
It is important to know where it is located to adjust
the wave beam accordingly. From this point of view,
there are two main differences between the tumor and
the kidney. The first one is the tumor is not deformed
by the respiratory cycle, it only moves along with the
kidney. The second one is the tumor is similar to an
ellipsoid. In the segmentation step, the tumor is seg-
mented separately from the kidney and in a such way
that the center of the tumor is known. An other mesh
morphing to obtain the tumor movements (i.e. its track-
ing) would be inappropriate since its shape remains the
same from one breathing phase to another. Moreover, it
would cost useless computational time. A more conve-
nient way to do that is to interpolate the position of the
tumor since we have the coordinates of its center for
the inhale, exhale and mid-cycle phases. We can use
a quadratic Bézier curve interpolation, which gives the
tumor position for intermediate phases. In real condi-
tions, the patient will be anesthetized and on respirator,
allowing a full control on his breathing, i.e. the phase of
his respiratory cycle is known at any time. Therefore,
it is really easy to synchronize the metamesh and the
tumor interpolation along with the patient’s breathing.
Thus, the 3D coordinates of the tumor are known at any
time and correspond to its real position, resulting in the
tumor tracking.

4 RESULTS
Our method has been tested on a set of three kidney
models M1, M2 and M3 obtained as described in sec-
tion 3.2. Theses models correspond respectively to the
inhale phase, mid-cycle phase and exhale phase. Two
mesh morphing were performed: the first between M1
and M2 and the second between M2 and M3. Figures
11, 12 present several intermediate models obtained
while performing the morphing from M1 to M2 to M3.
As results are not very explicit with frozen models, an

animated version can be seen at the following URL:
http://www.youtube.com/watch?v=dhPqLp2X8NQ.

General movement and deformation of the kidney are
respected. The natural rotation of the principal axis of
the organ is present here, as well as its enlargement. On
the other hand, local deformations are not totally sa-
tisfying, especially for the tumor. The one on the mor-
phed kidney is absorbed into a part of the kidney and
reappear from a different part, right next to its origi-
nal location. The natural deformation would have been
a smooth displacement between theses two locations,
almost like a translation. This is due to the morphing
method itself. Although these false deformations are
not really noticeable, they become obvious when tumor
is displayed: it sticks out of the kidney model (Figures
10). Another drawback of our method is the cutting
of the mesh by a plane. In order to have a correct mor-
phing, the tearing path obtained from the intersection of
the mesh and this plane must be composed of one con-
nected component. Such a criterion is not always gua-
ranteed. From our experiment and analysis, computing
intersection between a kidney model and its principal
plane will result in a one connect component tearing
path (this is due to the shape of the organ itself), but
that would not be necessarily the case for another organ
or some kind of arbitrary models.

Figure 10: Highlighting local deformation problem. In-
termediate model with tumor (blue ellipsoid) presents
local inaccuracy, especially for the tumor region (en-
circled).

As the three models have more or less the same num-
ber of vertices, edges and faces, computation times for
one morphing are equivalent for the other.s The models
we have are composed by up to 2,300 vertices, 6,900
edges and 4,600 faces. A morphing is computed in 40s,
each step being repeated twice, one for each tag (data
was processed on a laptop with an Intel Core i7 proces-
sor and 4 Go of RAM). Although that does not allow
to compute mesh morphing in real time, this execution
time is acceptable for our medical environment, where
interventions used for our non-invasive tumor destruc-
tion (High Focused Ultrasound) are very long (up to 3
hours). Moreover, the whole computation time is al-
most needed only for the metamesh creation, which is
done only once. Its animation can be done in real time
as it is simply an interpolation between an initial and
final position of its vertices as seen in section 3.3.

WSCG 2012 Communication Proceedings 185 http://www.wscg.eu

Figure 11: Final results showing natural movements of the right kidney due to respiration. Source and target
models obtained from reconstruction are displayed in red. Intermediate models are displayed in grey. Morphing
from M1 to M2 is showed here (from left to right).

Figure 12: Morphing between M2 to M3 from a different point of view (rotation of 180 degrees around vertical
axis). Models are displayed in wireframe and the tumor is visible (blue ellipsoid).

5 CONCLUSION
We have presented an original and geometric approach
to obtain the natural motion simulation of the kidney
under the respiratory cycle. Starting from three medi-
cal imaging acquisitions of the organ, each one for a
different phase of the cycle, kidney is first segmented
then reconstructed in order to create one model for each
phase. Kidney is finally animated in 3D and respira-
tory movements are simulated through mesh morphing
among the three models we previously had (from first
to second model and from second to third). To do that,
it is first necessary to cut the mesh, which is done auto-
matically here. Then the two different parts of a mesh
are mapped onto the unit disk. This mapping is used
to compute a metamesh which comprises the topology
of two successive models. Soft transition between two
models, and thus the kidney animation, is finally ob-
tained by interpolating each vertex of the metamesh be-
tween an initial and a final position. Although general
deformation and movement of the kidney is well simu-
lated, local deformations are not precise enough, espe-
cially for tumors near the surface. A way to overcome
this problem would be to force regions with similar cur-
vature to morph into each other.

ACKNOWLEDGMENT
This work is granted by the Foundation "Santé, Sport
et Développement Durable", presided by Pr. Yvon
Berland. The authors would like to thank everyone
involved in the KiTT project: Christian Coulange for
his precious help, Marc André, Frédéric Cohen and
Philippe Souteyrand for their wise advices and for pro-
viding CT scan data, and Pierre-Henri Rolland for his

support.

REFERENCES
[ACOL00] Marc Alexa, Daniel Cohen-Or, and David Levin.

As-rigid-as-possible shape interpolation. Pro-
ceedings of Computer Graphics and Interactive
Techniques, 2000.

[BCA96] Eric Bardinet, Laurent Cohen, and Nicholas Ay-
ache. Tracking and motion analysis of the left
ventricle with deformable superquadrics. Medi-
cal Image Analysis, 1(2):129 – 149, 1996.

[EDD+95] Matthias Eck, Tony DeRose, Tom Duchamp,
Hugues Hoppe, Micheal Lounsbery, and Werner
Stuetzle. Multiresolution analysis of arbitrary
meshes. Proceedings of SIGGRAPH, pages 173
– 182, 1995.

[GSL+98] A. Gregory, A. State, M.C Lin, D. Manocha, and
M.A. Livingston. Feature-based surface decom-
position for correspondence and morphing be-
tween polyhedra. Proceedings of Computer An-
imation, pages 64 – 71, 1998.

[HNS+08] Alexandre Hostettler, Stéphane Nicolau, Luc
Soler, Yves Rémond, and Jacques Marescaux.
A real-time predictive simulation of abdominal
organ positions induced by free breathing. Inter-
national Symposium on Biomedical Simulation,
pages 89 – 97, 2008.

[KBH06] Michael Kazhdan, Matthew Bolitho, and
Hugues Hoppe. Poisson surface reconstruction.
Eurographics Symposium on Geometry Process-
ing, 2006.

[KCP92] James Kent, Wayne Carlson, and Richard Par-
ent. Shape transformation for polyhedral ob-
jects. Computer Graphics, 26(2), July 1992.

WSCG 2012 Communication Proceedings 186 http://www.wscg.eu

[KK99] George Karypis and Vipin Kumar. Multilevel
k-way hypergraph partitioning. Proceedings of
the 36th annual ACM/IEEE Design Automation
Conference, 1999.

[KSK97] T. Kanai, H. Suzuki, and F. Kimura. 3d geo-
metric metamorphosis based on harmonic map.
Proceedings of The Fifth Pacific Conference on
Computer Graphics and Applications, 1997.

[KSK00] Takashi Kanai, Hiromasa Suzuki, and Fumihiko
Kimura. Metamorphosis of arbitrary triangular
meshes. Proceedings of Computer Graphics and
Application, 20(2), March 2000.

[LDSS99] Aaron Lee, David Dobkin, Win Sweldens, and
Peter Schroder. Multiresolution mesh morphing.
Proceedings of Computer Graphics and Interac-
tive Techniques, 1999.

[LMVD11] Valentin Leonardi, Jean-Luc Mari, Vincent Vi-
dal, and Marc Daniel. Reconstruction 3d du vol-
ume rénal à partir d’acquisitions scanner volu-
miques. Journée du Groupe de Travail en Mod-
élisation Géométrique, GTMG, pages 83 – 92,
March 2011.

[LSS+98] Aaron Lee, Win Sweldens, Peter Schroder,
Lawrence Cowsar, and David Dobkin. Maps:
Multiresolution adaptive parameterization of
surfaces. Proceedings of SIGGRAPH, pages 95
– 104, July 1998.

[MCG+03] Martin Murphy, Steven Chang, Iris Gibbs,
Quynh-Thu Le, Jenny Hai, Daniel Kim, David
Martin, and John Adler. Patterns of patient
movement during frameless image-guided ra-
diosurgery. International Journal of Radiation
Oncology Biology Physics, 55(5):1400 – 1408,
2003.

[NdSE+08] Karsten Ostergaard Noe, Baudouin Denis
de Senneville, Ulrik Vindelev Elstrom, Kari
Tanderup, and Thomas Sangild Sorensen. Ac-
celeration and validation of optical flow based
deformable registration for image-guided radio-
therapy. Acta Oncology, 47(7):1286 – 1293,
2008.

[NPSA07] Stéphane Nicolau, Xavier Pennec, Luc Soler,
and Nicholas Ayache. Clinical evaluation of
a respiratory gated guidance system for liver
punctures. Medical Image Computing and
Computer-Assisted Intervention, pages 77 – 85,
2007.

[NUG+08] Masahiko Nakamoto, Osamu Ukimura, Inderbir
Gill, Arul Mahadevan, Tsuneharu Miki, Makoto
Hashizume, and Yoshinobu Sato. Realtime or-
gan tracking for endoscopic augmented reality
visualization using miniature wireless magnetic
tracker. Medical Imaging and Augmented Real-
ity, pages 359 – 366, 2008.

[OTW+05] B. Olbricha, J. Trau, S. Wiesner, A. Wicherta,
H. Feussner, and N. Navab. Respiratory motion
analysis: Towards gated augmentation of the
liver. Computer Assisted Radiology and Surgery,

1281:248 – 253, 2005.

[Pol00] K. Polthier. Conjugate harmonic maps and min-
imal surfaces. Technical report, Technische Uni-
versity of Berlin, 2000.

[RMK+05] Mauricio Reyes, Grégoire Malandain,
Pierre Malick Koulibaly, Miguel Gonzalez
Ballester, and Jacques Darcourt. Respiratory
motion correction in emission tomography im-
age reconstruction. Medical Image Computing
and Computer-Assisted Intervention, pages 396
– 376, 2005.

[RMOZ01] Torsten Rohlfing, Calvin Maurer, Walter O’Dell,
and Jianhui Zhong. Modeling liver motion and
deformation during the respiratory cycle using
intensity-based free-form registration of gated
MR images. Medical Imaging 2001: Visual-
ization, Image-Guided Procedures, and Display,
pages 337 – 348, February 2001.

[RSH+99] Daniel Rueckert, L. I. Sonoda, C. Hayes,
D. L. G. Hill, M. O. Leach, and D. J. Hawkes.
Nonrigid registration using free-form deforma-
tions: Application to breast MR images. IEEE
Transactions on Medical Imaging, 18(8), Au-
gust 1999.

[SBMG06] David Sarrut, Vlad Boldea, Serge Miguet,
and Chantal Ginestet. Simulation of four-
dimensional CT images from deformable reg-
istration between inhale and exhale breath-hold
CT scans. Medical Physics, 33(3), March 2006.

[SGB+00] Achim Schweikard, Greg Glosser, Mohan Bod-
duluri, Martin Murphy, and John Adler. Robotic
motion compensation for respiratory movement
during radiosurgery. Journal of Computer-Aided
Surgery, 2000.

[SSK+00] H. Shirato, S. Shimizu, K. Kitamura, T. Nish-
ioka, K. Kagei, S. Hashimoto, H. Aoyama,
T. Kunieda, N. Shinohara, H. Dosaka-Akita, and
K. Miyasaka. Four dimensional treatment plan-
ning anf fluoroscopic real-time tumor tracking
radiotherapy for moving tumor. International
Journal of Radiation Oncology Biology Physics,
48:435 – 442, September 2000.

[YHM07] Han-Bing Yan, Shi-Min Hu, and Ralph Mar-
tin. 3d morphing using strain field interpolation.
Computer Science and Technology, 1, 2007.

WSCG 2012 Communication Proceedings 187 http://www.wscg.eu

WSCG 2012 Communication Proceedings 188 http://www.wscg.eu

Rendering of Translucent Objects, Verification and
Validation of Algorithms

Victor A. Debelov

Institute of Comp. Math. & Math. Geophysics
SB RAS

Prospect Lavrentieva, 6
630090, Novosibirsk, Russia

debelov@oapmg.sscc.ru

Dmitry S. Kozlov

Novosibirsk State University
Pirogova str., 2

630090, Novosibirsk, Russia
kozlov@oapmg.sscc.ru

ABSTRACT
An approach to verification and validation of algorithms that render transparent objects (media) is described.

Rendering of transparent optically isotropic objects has been studied extensively. However, the papers devoted

to optically anisotropic objects are few in number. The main goal of the present paper is to suggest a

collaboration in creating and supporting an open database of tests. To prepare a real scene with a crystal

specimen, to photograph it, and to describe the corresponding virtual scene is a complex problem. Obviously this

is an almost impossible task for many devolopers of rendering algorithms. Well-known examples of translucent

media are crystals. They are convenient for testing purposes as they have permanent solid shapes. Although the

crystals are rendered by a recursive ray tracing algorithm, the tests considered in the paper can be applied to

other algorithms.

Keywords
Anisotropic media, crystal, birefringence, pleochroism, optical dispersion, ray tracing, polarized light, rendering

algorithm, test repository, verification, validation.

1. INTRODUCTION
The difference between isotropic and anisotropic

media is explained in [Hay06]: "There are two types

of optical crystals, isotropic and anisotropic crystal.

The isotropic crystals have the same refractive index

for all directions. The anisotropic crystal has a

different refractive index in a different direction, and

has two different values for the same direction.

However, there are one or two particular directions

where these two refractive indices have the same

value. These particular directions are called optic

axes and the crystal having one optic axis is called

uniaxial or monoaxial crystal, while the one having

two optic axes is called biaxial crystal. Since the

anisotropic crystal has two refractive indices, there

are two refracted rays in crystal for one incident ray

and so-called double refraction or birefringence

occurs".

In the literature on computer graphics there are not

many papers on crystal rendering devoted to

rendering by polarized light and the optical

phenomena (the major properties are optical

dispersion, birefringence, and pleochroism). A

comprehensive review of early works can be found in

[Guy04] and [Wei08]. The latter paper is devoted to

rendering of uniaxial monocrystals. The paper

[Deb12] describes an algorithm to render isotropic

and uniaxial crystalline aggregates. The paper

[Lat12] describes also computations of refracted rays

in biaxial crystals.

The above papers provide with different 3D scenes. It

would be useful to combine the test sets. This would

allow third parties to provide improvements of the

algorithms.

A good example is the site [Mat], which represent a

repository of test data for use in comparative studies

of the algorithms of numerical linear algebra. Any

new numerical algorithm has an opportunity to be

examined for accuracy and steadiness and compared

with the other algorithms.

A similar role in global illumination is played by the

Cornell Box [Cor]. The Cornell Box has become a de

facto standard. It contains an exhaustive test scene

definition. Later this test was extended to

semitransparent surfaces; see [Far05]. In [Smi00] are

proposed a number of tests devoted to global

illumination algorithms which are available on the

Internet. The description of the tests is a paper text. It

would be more useful to separate the papers devoted

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2012 Communication Proceedings 189 http://www.wscg.eu

to a description of simulation and those with test

specifications.

In paper [Deb10] an approach is proposed to create a

database for verification and validation of algorithms

that render transparent optically anisotropic objects.

As an appendix to the paper an Internet resource is

made with exact specifications of test scenes'

geometry and illumination. At the present time the

resource is under reconstruction to adjust the ideas

proposed in the above paper.

We recall that the purpose of the present paper is to

create a common test database for the algorithms that

render optically anisotropic translucent objects. No

analysis and criticism of the algorithms are given.

We describe our process of verification and

validation in section 2. Section 3 is devoted to a

survey of tests used by developers. Section 4

describes a real scene, techniques, and tricks used to

recover the geometry and other parameters. A typical

virtual scene is considered in Section 5. Section 6

describes some additional parameters of the

rendering process to determine uniquely the

calculated image. In section 7 additional useful tests

are described. In section 8 conclusive remarks on our

test repository are given.

2. PROCESS OF VALIDATION
After a local model of light interaction with

transparent optically anisotropic crystalline media

[Deb12] was developed we decided to create a

rendering algorithm to verify and validate the model.

Our algorithm is based on recursive ray tracing. One

criterion of validation is to reach the maximal

coincidence between a photograph of a real scene

and a simulated image of a virtual scene similarly to

an approach used in the Cornell Box project. In other

words, the purpose is to compute a visually plausible

image corresponding to a photograph of a real scene.

The algorithm is implemented in the following steps:

1. Selection of a test mineral specimen. It must be a

transparent monocrystal with strong

birefringence.

2. Cutting the specimen to obtain a simple

geometric shape. In our case it is a hexahedron.

3. Recovery of the geometry.

4. Determination of scene illumination.

5. Creating a real test scene of crystal and light

sources.

6. Selection of a photo camera.

7. Obtaining a photograph of the real scene.

8. Creating a virtual scene, i.e., a computer model

of the test scene.

9. Selection of the computer model of the virtual

camera. In our case it is a well-known pin-hole

camera.

10. Single view calibration of the pin-hole camera

from the photograph of the real scene.

11. Spectral Rendering. It is necessary to have the

spectral characteristics of all objects of the real

test scene or their approximate values. While

rendering a spectral image representation is

obtained. We call it a SRGB image.

12. Tone reproduction: transformation of the SRGB

image to a RGB image.

13. Visual comparison of the photograph and the

synthesized image.

14. Pixel by pixel comparison of the photograph and

the synthesized image. The image resolution

must be equal to the photograph resolution.

The purpose of this comparison is to test the

assumptions and operation of the algorithm and

determine the field of its application.

Below we will consider the steps in detail.

3. RELATED WORK
In [Guy04] several crystals are described without

detailed specifications of the specimens geometry,

camera, optical axis, etc. Although the authors

claimed that models of standard gemstone cuts are

readily available on the Internet they performed an

additional investigation to justify geometry of an

available specimen of tourmaline. Authors worked

also on the acquisition of light illuminating their test

scene. No data on the geometry obtained, virtual

camera, and lighting (cube-map) are available in the

paper.

Another paper [Wei08]: a calcite specimen was used

for a real test scene. Again, the paper contains no

detailed specifications of the specimen geometry,

landscape grid pattern, virtual camera, optical axis,

and illumination.

The paper [Lat12] describes algorithms based on a

recursive numerical method in contrast to both papers

mentioned above, which contain closed form

formulas for exact calculations. Actually, this paper

allows calculating the refracted rays for a ray

incident onto a boundary of a crystal of different

types: isotropic, uniaxial, and biaxial. The authors

produce test images using a convex calcite plate in a

virtual scene. The paper includes computed images

that illustrate birefringence. Note, that exact

geometry of virtual scenes and camera parameters,

illumination, and image resolution are not specified

in the text. Although the algorithms [Lat12] do not

compute the correct colors of the resulting images,

those images allow comparing with images obtained

WSCG 2012 Communication Proceedings 190 http://www.wscg.eu

by other algorithms in order to examine the

correctness of birefringence.

The paper [Deb12] is devoted to derivation of closed

form formulas to calculate a local illumination model

for interaction of a light ray with the boundary of two

transparent media of isotropic and uniaxial optical

types. It includes also: a photograph of a calcite

uniaxial crystal over a color checkered pattern, a

corresponding virtual scene with the recovered

geometry of the specimen, a synthesized image, and

several virtual test scenes with corresponding

rendered images. In spite of the fact that the paper

contains detailed description of validation

experiments, nevertheless, the data presented are

insufficient to reproduce them thoroughly.

The paper [Deb10] has a similar purpose to create a

testbed for algorithms rendering transparent isotropic

and anisotropic media with polarized light. There the

following groups of tests are suggested in the paper:

 Low level test based on some clearly formulated

physical laws like Snell's law, Brewster's angle,

etc. These tests allow us to assess, e.g., the

accuracy of algorithms.

 Special virtual scenes demonstrating the physical

phenomena: ortoscopic and conoscopic images,

internal conical refraction, etc. [Bor80]. The

authors thoroughly describe a 3D scene to render

the effect of internal conical refraction. Instead

of giving the exact scene specifications they

describe some guidelines how to construct such

scenes. Since the camera parameters and

computed image are not described, it is difficult

to compare the algorithms.

 Comparison of a real scene photograph with a

computed image of the corresponding virtual

scene. Note that the photograph of a real scene in

the paper is much different from the image of

the virtual one. Moreover, the real calcite

specimen used is not a monocrystal but a

crystalline aggregate. Besides, the camera

parameters are not known.

No detailed specifications of the virtual test scenes to

be rendered are available also in the papers

mentioned above.

We suggest a different approach: to create a special

appendix that stores exact specifications of the virtual

test scenes described in a paper. It may be a personal

Internet site. Note that the data presented at the site

recommended in our paper [Deb10] are also

incomplete and poorly documented. At the present

time this site is being reconstructed.

Our main objections concern fact that the information

on test scenes is often incomplete and does not allow

one to reproduce the rendering of scenes and

comparing of the images obtained. However, all the

above-mentioned papers present numerous pictures

that illustrate the approaches and/or algorithms being

described. Also a limited length of papers does not

allow authors to present all details which could

overload a text. We expand an idea proposed in

[Deb10] and suggest creating a testbed as a common

Internet resource devoted to detailed information on

the test data. We expect that new efficient algorithms

to render anisotropic crystals will appear in the near

future. This test repository, being an expandable

database, can be helpful in debugging them.

4. REAL SCENE
A real scene is selected in steps 1–7 mentioned in

section 2. We spent more than a year to find a crystal,

cut it, take a photograph, and calibrate the virtual

camera. The above repository can be helpful to save

time and efforts of the developers of renderers.

Otherwise the community will be limited to those

who have stones, able to cut a specimen and calibrate

the virtual camera, etc. The majority of researchers

are programmers rather than geologists or jewelers.

Therefore all photographs of proper specimens or

gemstones are important. First we consider

specimens that have simple geometric shapes: cube,

sphere, or convex polyhedron. Jewelry shapes are

more complex and require additional efforts to

recover the exact geometry, see [Guy04].

Figure 1. Scheme of a real scene.

WSCG 2012 Communication Proceedings 191 http://www.wscg.eu

Figure 3. Scan of the face with vertices 1234. The

fat black dot is the exit of the optical axis.

It seems that recovering the geometry of transparent

crystals is a difficult task. For example, calcite is too

fragile, so the faceted shape of a specimen may get

chipped and peeling. The KDP (a Potassium

Dihydrogen Phosphate) crystals are not waterproof

(expired air also), and require additional care, e.g.,

mask, gloves, etc. The crystals are not expensive, and

have visible strong birefringence. Measuring the

linear sizes of edges by standard tools may produce

errors due to the possible chipped vertices of the

specimen.

Often knowledge of the construction of a real scene

may be useful. A scheme of a real scene and its

approximate sizes are shown in Fig. 1. A specimen

lies on a sheet of white paper with a printed color

texture. The sheet is put on a transparent glass plate

and covered by a sheet of black paper with a

rectangular window. Two cylindrical luminescent

lamps are placed under the plate in such a way as to

provide an approximately uniform illumination of the

sheet. Other light sources are absent. Specifically, a

window with the printed texture and lamps determine

the geometrical shape and spectrum of the light

source.

Figure 2. Photograph of a calcite specimen.

Consider a photo with enumerated vertices (Fig.2). In

our experiment we took a calcite specimen

(hexahedron). Using a scanner we obtained some

images of the faces (like one in Fig.3) and

determined the lengths of edges of all faces, see

Fig.4.

A source of illumination in the scene is a rectangle

with a color texture, Fig.2. There were problems of

coincidence of the spectra of real and virtual textures:

a) the spectra of the lamps being used are usually

unknown; b) the spectra of transmittance of the paper

and inks are unknown; c) the lens adds some

unknown distortions to the spectrum of transmitted

light; d) the sensitivity of the camera matrix to

various parts of the spectrum is unknown too, etc. In

our calculations we used a light source as shown in

Fig.5. In order to decrease the difference between the

textures colors in the photo and the calculated image

ones, the colors of the virtual texture can be taken

from a blurred (unfocused) photograph of the real

texture made with the same camera parameters and

exposition.

The only optical axis was determined from scans of

two opposite faces, 1234 and 5678, a look through

which results in the absence of doubling of the

texture. On each face we selected a dot that belonged

to the axis. An important point: the dots were

selected manually, which can lead to small errors in

the direction of the axis.

Some specifications of the photo camera being used

may be useful too, for example, a camera Canon

450D with a lens EFS18-55 mm F:3.5-5.6 IS. A

minimal matrix sensitivity of ISO100 was selected to

decrease noise. To minimize the lens’s aperture, the

Figure 4. Scan of the face with vertices

1234. Lines approximating edges are shown.

WSCG 2012 Communication Proceedings 192 http://www.wscg.eu

diaphragm was set to a maximal value of F:36. In this

case diffraction does not affect significantly the

image. The exposition must be taken considerably

longer than the blinking lamp period (if luminous

lamps are used).

The vertices of the hexahedron are obtained as the

intersection points of lines approximating the edges

(Fig.6), e.g., vertex 7 in Fig.2.

Figure 6. Gray scan of the photograph with lines

approximating edges.

Thus, we have obtained some specifications of the

geometry and illumination of the virtual scene with

some errors at each step.

Finally, the camera parameters (camera calibration)

were determined manually with the help of an

interactive application. A photograph (Fig.2) and a

gray scan (Fig.6) were used for calibration.

5. VIRTUAL SCENE
Our test environment is quite similar to that used in

[Guy04], [Wei08], [Deb10], [Deb12]. It is not clear

what illumination was used in [Lat12] as according

to [Lat12, Fig.13] the test scene was illuminated by a

point light source at the camera tip.

A typical virtual scene is shown in Fig.7: a specimen,

a camera, and an axis aligned box around the

specimen. The latter can be positioned and resized by

the user. It plays the role of a cube-map which

determines illumination. Arranging the box the user

can put one of specimen's faces just onto the box's

face. In such a way virtual scenes similar to those

used in [Wei08] and [Deb12] were constructed. The

six textures used allow one flexibility with assigning

of illumination of the scene.

Figure 7. Virtual scene environment.

Note that all the textures are one-sided, and are

invisible from outside. They illuminate unpolarized

light inside the box. It is best to use a spectral

representation but, in practice, only a RGB

representation is available. Other explicitly defined

formats can be applied, e.g., those in [Guy04].

Various formats can be considered as additional

information, and a source of data. We believe that the

spectra being used must always be provided.

Generally, the scene is filled with air or vacuum,

sometimes, it may be any of transparent media:

isotropic, uniaxial, and biaxial. The substance is

called filler.

The following optical characteristics are specified for

the scene filler and the specimen:

1) Axes. The only optical axis с is specified for a

uniaxial medium and two axes 1с and 2с for a

biaxial one. For biaxial media the directions of

optical axes depend on the wavelength therefore they

must be specified for each wavelength used in the

image calculation, even if the directions are

calculated. Obviously, isotropic media require no

axis specification.

2) Main indices of refraction: one for an isotropic

medium in , two for a uniaxial (on , en), and three

for a biaxial one (1n , 2n , 3n). The corresponding

values are specified for each wavelength used in the

image calculation, even if the calculation of samples

is done with the Sellmeier's equation, Laurent's

equation [Bor80], or in another way.

Figure 5. The texture used as a light source

in the virtual scene.

WSCG 2012 Communication Proceedings 193 http://www.wscg.eu

3) Absorption. In the case of a transparent colorless

medium no absorption data are required. In the

general case the modeling of absorption is

challenging problem because of the following two

facts. First, the refraction and absorption properties

are not independent [Bor80]. Second, the rays

propagating in absorbing anisotropic media are

elliptically polarized but in transparent anisotropic

media they are linearly polarized [Bor80]. These

facts are usually ignored, see e.g. [Guy04]. Therefore

majority of crystalline media require the

determination of one, two, or three attenuation

spectra. Apparently, this format satisfies the

absorption data from [Guy04].

Similarly to the above remark about the format of

illumination data, we believe that some parameters of

a virtual scene as the spectra must be determined.

Note that a source of possible errors in the final per

pixel comparison of a photo and a calculated image

are the unknown physical conditions of the specimen,

namely, the temperature, external forces and fields,

etc. These parameters are usually taken from

references where they are evaluated accordingly to

certain conditions.

All the virtual scenes must be placed in the

repository, even if there are no corresponding

photographs of the real scenes. This may help in

comparing the algorithms being used.

6. VIRTUAL TEST SCENES
A most important group consists of tests of

comparison of the photograph with the computed

image is as considered above.

A second group of tests consists of virtual scenes that

do not require the existence of the corresponding real

scenes.

Figure 8. Computed image of a biaxial cube.

Various virtual scenes are created during the

debugging process. In Fig.8, Fig.9, and Fig.10 three

typical examples are shown. For the tests the

repository includes:

Figure 9. Computed image of a uniaxial cube.

 An image of a test scene rendered with OpenGL.

It is used to comment the scene geometry and

simplify the understanding.

 Coordinates of cube vertices.

 Coordinates of a square axes-aligned textured

plate.

 Texture image.

 Light environment.

 Ray tracing depth in bounces.

 Pin-hole camera parameters: focus length,

aperture point, view direction.

 Image plane sizes.

 Image resolution.

Figure 10. Computed image of an isotropic cube.

WSCG 2012 Communication Proceedings 194 http://www.wscg.eu

 Optical type of the scene filler: isotropic,

uniaxial, biaxial. In our case it is isotropic.

 Refractive index of the filler.

 Optical type of the specimen: biaxial (Fig.8),

uniaxial (Fig.9), or isotropic (Fig.10).

 Representation of the spectra: number of

samples from 380nm to 780nm.

 Main refractive indices for each sample.

 Calculated image.

 Several copies of the calculated image with

appropriate comments (optional).

It is now possible to calculate the image of the

specified scene and provide its per pixel comparison

with the image from the repository.

7. RENDERING
The repository may include several calculated images

for a single virtual scene. They can be different

because of the following rendering parameters:

 Image resolution.

 Number of wavelengths used (e.g., one for

monochromatic light). All the optical parameters

(see previous section) should be represented by

spectra of equal length to represent the smooth

part of the spectrum and the set of separate peaks

to represent the another part.

 Depth of ray tracing. A recursive ray tracing is

very time consuming, since at each bounce the

ray is split into up to four generated rays. For

example, if the data are: depth=20, spectra of 21

samples the rendering took several hours of

calculation on a 8-processor cluster.

Figure 11. Calculated image corresponding to the

photograph in Fig.2.

 Camera parameters given in the scene coordinate

system. For example, we used pin-hole camera

in the algorithm.

Each image is specified by its computer platform and

the computational time. This will facilitate in

comparing the performance of the algorithms.

A result of rendering our virtual scene is shown in

Fig.11.

8. OTHER TESTS

Virtual Scenes Illustrating Some Well-

Known Facts From Optics
Internal conical refraction is a phenomenon observed

in biaxial crystals. The conoscopic images of

anisotropic crystals are a practical means in

petrography; see [Bor80] for a theoretical foundation.

In [Deb10] corresponding virtual scenes are

described. These tests can help in debugging and

comparing the rendering algorithms.

Additional Tests
This group of tests is targeted to help in the

debugging of separate program blocks. The

description may be reduced to a minimum. We

suggest that the authors contributing to the repository

may only name a fact and refer to a proper source

from the well known literature. For example,

"Brewster Angle Test”, see [xx, page yyy]. A better

way is a detailed description of a test including the

specifications of: a) the optical characteristics of two

media; b) the ray incident onto the boundary between

the media; c) polarization of the ray; d) the resulting

rays (reflected and refracted) with their polarization

states.

Figure 12. Birefringence test, arrows show

polarization state.

In [Deb10] several examples are given: Snell's law,

Brewster's angle, and a birefringence test. Consider

the last one. In Fig.12 a typical scene is presented.

Not only the ray directions be verified, but the

polarization state of the generated rays as well. This

can be useful if the repository includes several

examples of optical media with incident rays and

derived rays of different polarization states and

intensities.

The problem of numerical stability may arise in

debugging, e.g., when the directions of the ray, the

optical axis, and the normal are almost the same. We

believe that such situations must be put into the

WSCG 2012 Communication Proceedings 195 http://www.wscg.eu

repository too, especially, the problem has been

solved.

9. CONCLUSIONS
We did not intend to cover every possible situation in

the rendering of crystals. In this paper we have

presented our approach. The repository must not

have a certain predefined format. Tests of any

complexity delivered by any developers are

welcome. The contributing developer may deliver

his/her information in any convenient format.

Nevertheless, we have remarks: a) lossless image

formats like BMP, PNG should be used; b) the

spectra should be used wherever it is possible. In

case other formats are used they should be

transformed to the BMP or spectra formats explicitly.

This will help in avoiding possible uncertainties.

Additional information of any kind will be very

useful, for example: an OpenGL image of the

recovered geometry (see Fig.7), references to the

relevant papers and reports, images with comments, a

photograph or a scheme of a real scene (Fig.1), and

appropriate unpublished comments.

We suggest separating all tests in the repository into

the following groups:

 A photograph of a real scene,

 Virtual scenes,

 Virtual scenes of optic phenomena,

 Tests of particular features,

 Other tests.

Additionally, a set of keywords should be supported;

each keyword refers to the relevant tests. The set of

keywords contains: real scene photographs; recovery

of specimen's geometries; definitions of illumination,

transparent media, absorbing media, isotropic media,

uniaxial media, biaxial media, camera calibration,

etc.

We do not believe that we have found a complete

solution. This paper was caused by the present time

situation with accessible tests.

An Internet site, [Crt], was developed initially as a

support for the paper [Deb10]. At the present time it

is under reconstruction. Nevertheless, the reader can

find a detailed description of the tests corresponding

to Fig.8-11.

The problem of creating test scenes based on real

scene photographs is not an easy task. Experts on a

wide variety of research have to be involved:

crystallographers, specimen cutters, etc. Also a wide

range of specific devices have to be used:

spectrometers, etc.

We hope that this paper will help in creating a

repository with the specifications described above.

The inclusion of any test into our website is

welcome.

10. ACKNOWLEDGMENTS
This work was supported in part by the Russian

Foundation for Basic Research, grants No. 12-07-

00386 and No. 12-07-00391.

11. REFERENCES
[Bor80] Born, M. and Wolf, E. Principles of optics:

electromagnetic theory of propagation,

interference and diffraction of light. Cambridge:

Cambridge University Press, 1980.

[Cor] Cornell Box:

http://www.graphics.cornell.edu/online/box

[Crt] Crystal tests:

http://oapmg.sscc.ru/temp_crystal_tests/

[Deb10] Debelov, V.A., Kozlov, D.S. Verification of

algorithms of photorealistic rendering of crystals.

Proc. Graphicon'2010, Russia, St.Petersburg,

September 20-24, 2010, pp. 238–245. (In

Russian).

http://www.graphicon.ru/proceedings/2010/Proce

edings.pdf

[Deb12] Debelov, V.A., Kozlov, D.S. A local model

of light interaction with isotropic and uniaxial

transparent media. Vestnik of Novosibirsk State

University, Series: Information Technologies,

vol. 10, No. 1, pp. 5–23, 2012, (in Russian).

[Far05] Farnsworth, M., Erbacher, R. F. Global

illumination: efficient renderer design and

architecture. Proc. Intern. Conf. on Geometric

Modeling, Visualization & Graphics, pp. 1691-

1695, 2005.

[Hay06] Hayamitzu, Y. Analysis of internal conical

refraction using ray tracing formulas for the

biaxial crystal. Optical review 13, No. 4, pp.169–

183, 2006.

[Guy04] Guy, S. and Soler, C. Graphics gems

revisited. ACM Trans. on Graphics (Proceedings

of the SIGGRAPH conference) 23, No. 3,

pp.231–238, 2004.

[Lat12] Latorre, P., Seron, F. J., and Gutierrez, D.

Birefringence: calculation of refracted ray paths

in biaxial crystals. The Visual Computer 28, No.

4, pp. 341-356, 2012.

 [Mat] Matrix Market:

http://math.nist.gov/MatrixMarket/

 [Smi00] B. Smits, and H. W. Jensen. Global

illumination test scenes. Tech. Rep. UUCS-00-

013, Computer Science Department, University

of Utah, June 2000.

 [Wei08] Weidlich, A. and Wilkie, A. Realistic

rendering of birefringency in uniaxial crystals.

ACM Transactions on Graphics 27, (1):6:1–6:12

WSCG 2012 Communication Proceedings 196 http://www.wscg.eu

WSCG 2012

Index

Abdulla,W. 259
 Ahmad,M.A. 367
 Acharya,S. 357
 Arora,N. 347
 Aryal,J. 327
 Bahnsen,C. 231
 Benger,W. 357
 Beran,V. 205
 Bian,X. 341
 Bittorf,B. 269
 Blanz,V. 59
 Brener,N. 357
 Bruni,V. 283
 Bugaj,M. 291
 Crumley,Z. 113
 Cyganek,B. 291
 Daniel,M. 179
 de Rezende,P.J. 27
 Debelov,V. 189
 Delmas,P. 249
 Dewilde,A. 231
 Drap,P. 275
 Falcao,A.X. 27
 François,A. 327
 Gain,J. 113
 Gargalik,R. 163
 Gillies,D.F. 69
 Gomes,J.F. 27
 Graca,S. 377
 Guthe,M. 59
 Hast,A. 11
 Hoppenheit,J. 155
 Hrmo,I. 163
 Hulík,R. 223
 Ihrke,I. 239
 Iyengar,S. 357
 Jawad,M. 335
 Jean-Marc Boi,J.-M. 275

Jimenez,J.R. 105
 Kakimoto,M. 95
 Kalra,P. 347
 Karki,B. 357
 Kenwright,B. 1
 Khurana,S. 357
 Klein,A. 53
 Klein,A., 197
 Klicnar,L. 205
 Köppen,V. 35
 Kozlov,D. 189
 Krim,H. 341
 Krivokuca,M. 259
 Krömker,D. 87
 Kršek,P. 223
 Kumar,A. 347
 Kurowski,M. 79
 Lavoué,G. 259
 Lazunin,V. 131
 Lee,G.R. 45
 Lee,H.C. 45
 Lee,T.M. 45
 Leonardi,V. 179
 Lutteroth,C. 249
 Maddock,S. 317
 Madsen,C.B. 231
 Mahiddine,A. 275
 Malik,M. 367
 Marais,P. 113
 Marchetti,A. 11
 Mari,J.L. 179
 Marks,S. 169
 Masik,S., 35
 Merad,D. 275
 Metzgar,J. 147
 Minich,C. 309
 Minoi,J.-L. 69
 Morik,M. 35

Müller,R. 35
 Müller,S. 155
 Nakata,N. 95
 Nguyen,M.H. 249
 Nishita,T. 95
 Nischwitz,A. 53 197

 Noguera,J.M. 105
 Obermeier,P. 53 197

 Oliveira,J.F. 377
 Oshita,M. 213
 Pedersen,C. 231
 Pimenta,W. 139
 Qureshi,H. 367
 Raffin,R. 327
 Realinho,V. 377
 Reuter,A. 239
 Ritter,M. 357
 Robert,A.J. 69
 Rossi,E. 283
 Roy,S. 357
 Safdar,K. 299
 Saito,P.T.M. 27
 Santos,L.P. 139
 Sarfraz,M.S. 335
 Savchenko,V. 131

Seidel,H.-P. 239
 Seinturier,J. 275
 Semwal,S.K. 147
 Schiffner,D. 87
 Schmidt,M. 59
 Schumann,M. 155
 Spanlang,B. 19
 Suzuki,C.T.N. 27
 Tang,Y. 123
 Tappert,B. 197
 Tomori,Z. 163
 Tranchet,G. 231
 Vassilev,T.I. 19
 Vidal,V. 179
 Vitulano,D. 283
 Warburton,M. 317
 Windsor,J. 169
 Wu,Z. 123
 Wuensche,B. 169 249 259

Wüthrich,C. 269
 Yasin,M. 335
 Yoon,G.H. 45
 Zhou,M. 123

	A29-full.pdf
	A67-full.pdf
	A73-full.pdf
	A97-full.pdf
	B03-full.pdf
	Introduction
	Application Scenario
	Problem Statement

	Background
	Exposing a Proprietary Application's OpenGL Stream
	Full Multicast Semantics for OpenGL Stream Distribution
	Examples for Detached Processing of the OpenGL Stream
	Handling Code Complexity
	Conclusion and Future Work

	B05-full.pdf
	B37-full.pdf
	B43-full.pdf
	B47-full.pdf
	B59-full.pdf
	B61-full.pdf
	B67-full.pdf
	B71-full.pdf
	B73-full.pdf
	B79-full.pdf
	C13-full.pdf
	C41-full.pdf
	Introduction
	Visual Cues to Three-Dimensionality
	The Accommodation-Convergence Mismatch

	Definition of a 3D Display
	Proposed Taxonomy for 3D Imaging Techniques
	Flat 3D displays
	Stereoscopic Displays
	Autostereoscopic Displays
	Virtual Volume Displays

	Deep 3D Displays
	Volumetric Displays
	Multi-Directional Displays

	Conclusions and FutureWork

	C47-full.pdf
	C53-full.pdf
	C59-full.pdf
	C67-full.pdf
	C71-full.pdf
	C89-full.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

