

ISSN 1213-6972 Volume 19, Number 1-3, 2011

Journal of
WSCG

An international journal of algorithms, data structures and techniques for
computer graphics and visualization, surface meshing and modeling, global
illumination, computer vision, image processing and pattern recognition,
computational geometry, visual human interaction and virtual reality,
animation, multimedia systems and applications in parallel, distributed and
mobile environment.

EDITOR – IN – CHIEF

Václav Skala

Vaclav Skala – Union Agency

Journal of WSCG

Editor-in-Chief: Vaclav Skala
 c/o University of West Bohemia, Univerzitni 8
 306 14 Plzen
 Czech Republic
 skala@kiv.zcu.cz

Managing Editor: Vaclav Skala

Published and printed by Printed and Published by:

 Vaclav Skala - Union Agency
 Na Mazinach 9
 CZ 322 00 Plzen
 Czech Republic

Hardcopy: ISSN 1213 – 6972
CD ROM: ISSN 1213 – 6980
On-line: ISSN 1213 – 6964

 ISBN 978-80-86943-84-8

Journal of WSCG

Editor-in-Chief

Vaclav Skala, University of West Bohemia

Centre for Computer Graphics and Visualization
Univerzitni 8, CZ 306 14 Plzen, Czech Republic

skala@kiv.zcu.cz http://herakles.zcu.cz
Journal of WSCG: URL: http://wscg.zcu.cz/jwscg

Direct Tel. +420-37-763-2473
Direct Fax. +420-37-763-2457

Fax Department: +420-37-763-2402

Editorial Advisory Board
MEMBERS

Baranoski,G. (Canada)
Bartz,D. (Germany)
Benes,B. (United States)
Biri,V. (France)
Bouatouch,K. (France)
Coquillart,S. (France)
Csebfalvi,B. (Hungary)
Cunningham,S. (United States)
Davis,L. (United States)
Debelov,V. (Russia)
Deussen,O. (Germany)
Ferguson,S. (United Kingdom)
Goebel,M. (Germany)
Groeller,E. (Austria)
Chen,M. (United Kingdom)
Chrysanthou,Y. (Cyprus)
Jansen,F. (The Netherlands)
Jorge,J. (Portugal)
Klosowski,J. (United States)
Lee,T. (Taiwan)
Magnor,M. (Germany)

Myszkowski,K. (Germany)
Pasko,A. (United Kingdom)
Peroche,B. (France)
Puppo,E. (Italy)
Purgathofer,W. (Austria)
Rokita,P. (Poland)
Rosenhahn,B. (Germany)
Rossignac,J. (United States)
Rudomin,I. (Mexico)
Sbert,M. (Spain)
Shamir,A. (Israel)
Schumann,H. (Germany)
Teschner,M. (Germany)
Theoharis,T. (Greece)
Triantafyllidis,G. (Greece)
Veltkamp,R. (Netherlands)
Weiskopf,D. (Canada)
Weiss,G. (Germany)
Wu,S. (Brazil)
Zara,J. (Czech Republic)
Zemcik,P. (Czech Republic)

WSCG 2011

Board of Reviewers

Akleman, E. (United States)

Ariu, D. (Italy)

Assarsson, U. (Sweden)

Aveneau, L. (France)

Balcisoy, S. (Turkey)

Battiato, S. (Italy)

Benes, B. (United States)

Benoit, C. (France)

Biasotti, S. (Italy)

Bilbao, J. (Spain)

Biri, V. (France)

Bittner, J. (Czech Republic)

Bosch, C. (France)

Bouatouch, K. (France)

Boukaz, S. (France)

Bouville, C. (France)

Bruni, V. (Italy)

Buehler, K. (Austria)

Cakmak, H. (Germany)

Camahort, E. (Spain)

Capek, M. (Czech Republic)

CarmenJuan-Lizandra, M. (Spain)

Casciola, G. (Italy)

Coquillart, S. (France)

Correa, C. (United States)

Cosker, D. (United Kingdom)

Daniel, M. (France)

de Amicis, r. (Italy)

de Geus, K. (Brazil)

Debelov, V. (Russia)

Domonkos, B. (Hungary)

Drechsler, K. (Germany)

Duke, D. (United Kingdom)

Dupont, F. (France)

Durikovic, R. (Slovakia)

Eisemann, M. (Germany)

Erbacher, R. (United States)

Erleben, K. (Denmark)

Farrugia, J. (France)

Feito, F. (Spain)

Ferguson, S. (United Kingdom)

Fernandes, A. (Portugal)

Flaquer, J. (Spain)

Fontana, M. (Italy)

Fuenfzig, C. (France)

Gallo, G. (Italy)

Galo, M. (Brazil)

Garcia Hernandez, R. (Spain)

Garcia-Alonso, A. (Spain)

Gavrilova, M. (Canada)

Giannini, F. (Italy)

Gonzalez, P. (Spain)

Grau, S. (Spain)

Gudukbay, U. (Turkey)

Guggeri, F. (Italy)

Gutierrez, D. (Spain)

Habel, R. (Austria)

Hall, P. (United Kingdom)

Hansford, D. (United States)

Haro, A. (United States)

Hasler, N. (New Zealand)

Havemann, S. (Austria)

Havran, V. (Czech Republic)

Hernandez, B. (Mexico)

Herout, A. (Czech Republic)

Horain, P. (France)

House, D. (United States)

Chaine, R. (France)

Chaudhuri, D. (India)

Chmielewski, L. (Poland)

Chover, M. (Spain)

Iwasaki, K. (Japan)

Jansen, F. (Netherlands)

Jeschke, S. (Austria)

Jones, M. (United Kingdom)

Jones, M. (United States)

Juettler, B. (Austria)

Kheddar, A. (Japan)

Kim, H. (Korea)

Klosowski, J. (United States)

Kohout, J. (Czech Republic)

Kurillo, G. (United States)

Kyratzi, S. (Greece)

Lanquetin, S. (France)

Lay Herrera, T. (Germany)

Lee, T. (Taiwan)

Lee, S. (Korea)

Leitao, M. (Portugal)

Liu, D. (Taiwan)

Liu, S. (China)

Lutteroth, C. (New Zealand)

Madeiras Pereira, J. (Portugal)

Maierhofer, S. (Austria)

Manzke, M. (Ireland)

Marras, S. (Italy)

Maslov, O. (Russia)

Matey, L. (Spain)

Matkovic, K. (Austria)

Max, N. (United States)

Meng, W. (China)

Mestre, D. (France)

Michoud, B. (France)

Mokhtari, M. (Canada)

Molla Vaya, R. (Spain)

Montrucchio, B. (Italy)

Muehler, K. (Germany)

Murtagh, F. (Ireland)

Nishio, K. (Japan)

OliveiraJunior, P. (Brazil)

Oyarzun Laura, C. (Germany)

Pan, R. (China)

Papaioannou, G. (Greece)

Pasko, A. (United Kingdom)

Pasko, G. (Cyprus)

Patane, G. (Italy)

Patow, G. (Spain)

Pedrini, H. (Brazil)

Peters, J. (United States)

Pina, J. (Spain)

Platis, N. (Greece)

Puig, A. (Spain)

Puppo, E. (Italy)

Purgathofer, W. (Austria)

Reshetov, A. (United States)

Richardson, J. (United States)

Richir, S. (France)

Rojas-Sola, J. (Spain)

Rokita, P. (Poland)

Rosenhahn, B. (Germany)

Rudomin, I. (Mexico)

Sakas, G. (Germany)

Salvetti, O. (Italy)

Sanna, A. (Italy)

Segura, R. (Spain)

Sellent, A. (Germany)

Shesh, A. (United States)

Schultz, T. (United States)

Schumann, H. (Germany)

Sirakov, N. (United States)

Skala, V. (Czech Republic)

Slavik, P. (Czech Republic)

Sochor, J. (Czech Republic)

Sousa, A. (Portugal)

Srubar, S. (Czech Republic)

Stroud, I. (Switzerland)

Subsol, G. (France)

Sundstedt, V. (Sweden)

Tang, M. (China)

Tavares, J. (Portugal)

Teschner, M. (Germany)

Theoharis, T. (Greece)

Theussl, T. (Saudi Arabia)

Tokuta, A. (United States)

Tomori, Z. (Slovakia)

Torrens, F. (Spain)

Trapp, M. (Germany)

Umlauf, G. (Germany)

Vazques, P. ()

Vergeest, J. (Netherlands)

Vitulano, D. (Italy)

Vosinakis, S. (Greece)

Walczak, K. (Poland)

Weber, A. (Germany)

Wu, S. (Brazil)

Wuensche, B. (New Zealand)

Wuethrich, C. (Germany)

Yoshizawa, S. (Japan)

Yue, Y. (Japan)

Zara, J. (Czech Republic)

Zemcik, P. (Czech Republic)

Zhu, Y. (United States)

Zhu, J. (United States)

Zitova, B. (Czech Republic)

Journal of WSCG

Contents

Vol. 19, No.1-3

• Sellent,A., Eisemann,E., Magnor,M.: Robust Feature Matching in General Multi‐
Image Setups

 1

• Denker,K., Umlauf,G.: An Accurate Real‐Time Multi‐Camera Matching on the GPU
for 3D Reconstruction

 9

• Borland,D.: Ambient Occlusion Opacity Mapping for Visualization of Internal
Molecular Structure

 17

• Lawlor,O., Genetti,J.: Interactive Volume Rendering Aurora on the GPU 25
• Schulze,F., Major,D., Buehler,K.: Fast and Memory Efficient Feature Detection using

Multiresolution Probabilistic Boosting Trees
 33

• Vaaraniemi,M., Treib,M., Westermann,R.: High‐Quality Cartographic Roads on High‐
Resolution DEMs

 41

• Zhang,Y., Hartley,R., Mashford,J., Wang,L., Burn,S.: Pipeline Reconstruction from
Fisheye Images

 49

• Mueckl,G., Dachsbacher,C.: Deducing Explicit from Implicit Visibility for Global
Illumination with Antiradiance

 59

• Mukovskiy,A., Slotine,J.J.E., Giese,M.A.: Analysis and design of the dynamical
stability of collective behavior in crowds

 69

• Domonkos,B., Csebfalvi,B.: Evaluation of the Linear Box‐Spline Filter from Trilinear
Texture Samples: A Feasibility Study

 77

• Yusov,E., Shevtsov,M.: High‐Performance Terrain Rendering Using Hardware
Tessellation

 85

• Zobel,V., Reininghaus,J., Hotz,I.: Generalized Heat Kernel Signatures 93
• Kang,Y.‐M., Cho,H.‐G.: Plausible and Realtime Rendering of Scratched Metal by

Deforming MDF of Normal Mapped Anisotropic Surface
 101

• Pasewaldt,S., Trapp,M., Doellner,J.: Multiscale Visualization of 3D Geovirtual
Environments Using View‐Dependent Multi‐Perspective Views

 111

• Cullen,B., O'Sullivan,C.: A caching approach to real‐time procedural generation of
cities from GIS data

 119

Robust Feature Point Matching in General Multi-Image

Setups

Anita Sellent
TU Braunschweig, Germany

sellent@cg.tu-bs.de

Martin Eisemann
TU Braunschweig, Germany

eisemann@cg.tu-bs.de

Marcus Magnor
TU Braunschweig, Germany

magnor@cg.tu-bs.de

ABSTRACT

We present a robust feature matching approach that considers features from more than two images during matching. Tradi-

tionally, corners or feature points are matched between pairs of images. Starting from one image, corresponding features are

searched in the other image. Yet, often this two-image matching is only a subproblem and actually robust matches over mul-

tiple views and/ or images acquired at several instants in time are required. In our feature matching approach we consider the

multi-view video data modality and find matches that are consistent in three images. Requiring neither calibrated nor synchro-

nized cameras, we are able to reduce the percentage of wrongly matched features considerably. We evaluate the approach for

different feature detectors and their natural descriptors and show an application of our improved matching approach for optical

flow calculation on unsynchronized stereo sequences.

Keywords: Keypoint matching, motion estimation, multi-view video.

1 INTRODUCTION

In recent years the increased availability of high qual-

ity video cameras together with readily available stor-

age space and fast data transfer has led to a grow-

ing interest in stereoscopic or, more general, multiple

view video. Although multi-view video data actually

is highly redundant, many algorithms in the processing

pipeline consider only pairs of images. One important

processing step is establishing feature point correspon-

dences that are used, e.g. as low-level starting point for

motion estimation [SLW+10, BWSS09, BBM09]. De-

termination of robust feature points and corresponding

feature point descriptions has been an intensely investi-

gated area of research for decades [MTS+05, MS05].

In spite of great advances, wrongly matched corre-

spondences are still commonly encountered. If addi-

tional information on the images is provided, e.g. by

calibration, synchronization or assumption of constant

rigid motion, this information can be used to eliminate

wrongly matched correspondences [HZ03]. Unfortu-

nately, in practical applications additional information

is not always available as, for instance, multiple cam-

eras are hard to synchronize in an outdoor environment

and usually images of independently moving objects

are recorded.

The goal of our work is to develop a versatile, robust

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

feature point matching method that is generally appli-

cable, e.g. also in the unconstrained multi-view video

setup. Our basic idea is to exploit the redundancy in

the data of multi-view video sequences with a common

field of view. We use it to establish more reliable cor-

respondences to ensure high-quality matches. Feature

points are matched by considering loops of images. We

introduce three image consistent matching and evaluate

it by means of the percentage of wrong matches.

Additionally, we show how a stereo-video optical

flow algorithm [SLM10] can benefit from incorporat-

ing our robustly matched features. Recent research

has shown that optical flow can be improved if

ideas from feature matching are included into the

approach, [BBM09, XJM10]. In contrast to variational

based optical flow algorithms that require an iterative

approach to cope with large distances [BBPW04], fea-

tures can be matched independently from their position

in the image and thus deal with arbitrary distances,

as long as their descriptor is sufficiently robust to

the corresponding changes in perspective or object

deformations. For the inclusion of feature matching,

optical flow approaches pay careful attention to outier

matches as these are able to prevent convergence to

the desired motion fields. In this work we show that

our robust loop matching strategy which exploits the

data modality given for multi-view video is able to

improve optical flow estimations without further outlier

treatment.

2 RELATEDWORK

Usually features are matched between two images from

synchronized cameras and spurious matches can be

discarded using epipolar geometry [SZ02, HZ03]. Gen-

erally, the assumption of global affine motion between

Journal of WSCG 1 ISSN 1213-6972

I1 I2

I3

Figure 1: Three images with detected features (SIFT)

of a multi-view video sequence: our algorithm ac-

cepts three images with some common field of view

acquired by one or several unsynchronized and uncali-

brated cameras. By requiring consistency of matches

on a loop of three images, false matches are elimi-

nated and correspondences between images can be es-

tablished robustly.

two images can be used to validate matches [BGPS07].

But also game theoretic approaches exploiting local

similarity transforms are used to establish reliable

matchings between two images [ART10].

If several independent objects move in a monocular

sequence, e.g. for person or object tracking [YJS06],

feature locations from previous frames can also be

used to estimate feature locations in the current frame

[Zha94]. Assuming that features have at most one

correct match in each frame, disjoint tracks of features

over multiple frames can be considered to improve

correspondences [VRB03, SS05, SSS06]. Thereby,

the tracks provide a regularization of the matches

over time, but no feedback for the correctness of the

tracking is provided.

For static scenes, the trifocal tensor [TZ97] can be

used to consider consistency of the matching between

more than two images [BTZ96]. Yao and Cham first

verify and add matches between image pairs to sat-

isfy the epipolar constraint, before the matches are ex-

tended to image triples and the trifocal tensor is com-

puted [YC07]. In contrast, Zach et al. first deter-

mine global, invertible transformations between im-

age pairs before they detect wrong transformations on

multi-image loops and discard them [ZKP10], enabling

more robust multi-image static 3D reconstruction.

If a dynamic scene is recorded by multiple, unsyn-

chronized cameras Ho and Pong work with high den-

sity feature points and use assignments of neighboring

pixel in a relaxation labeling framework to obtain con-

sistent matchings [HP96]. In the same setup, Ferrari et

al. perform consistency checks on loops of images, but

require an additional similarity measure that is different

from the measure used to establish preliminary match-

ings [FTV03].

Mathematically the problem of finding consistent

correspondences on three sets of equal, finite car-

dinality is well studied [Spi00] and approximation

algorithms to the NP-hard problem have been proposed

by several authors [CS92, BCS94].

In Sect. 3 we will adapt these approximation schemes

to sets of different sizes. In Sect. 4 we evaluate the

results of this new algorithm. We incorporate our con-

sistent matches into a three image spatio-temporal op-

tical flow algorithm, Sect. 5 and show how consistency

of flow and features can improve dense correspondence

estimation.

3 THREE IMAGE-FEATURE MATCH-

ING

Let I1 :Ω1 → R, I2 :Ω2 → R and I3 :Ω3 → R be three

images of a multi-view video sequence that have some

common field of view on a dynamic scene. In contrast

to previous robust matching methods, we do not require

epipolar geometry between images to be applicable, nor

do we assume a temporal ordering, i.e. the three im-

ages can be acquired by one, two or three unsynchro-

nized cameras, Fig. 1. For each image Ii, i ∈ {1,2,3} a

feature detector determines features fi,k,k ∈ {1, . . . ,Ni}
with corresponding descriptors si,k. We denote the de-

scriptor distance function with d(si,k,s j,m). In our ex-

periments, Sect. 4, we evaluate the algorithm for sev-

eral detector/ descriptor variants, so we keep the de-

scription general in this section.

Usually, after detection the features are matched be-

tween two images at a time. Authors of different de-

scriptors propose slightly different matching methods.

To keep the results comparable, we follow the approach

of [MS05] and use nearest neighbor matching (NN) for

all two-matching steps.

A more elaborate two-matching strategy (NNDR)

compares the distance of the nearest neighbor to the dis-

tance of the second nearest neighbor and only accepts

a match if their ratio is below a threshold [Low04]. We

also include this matching strategy into our evaluation.

If more than two images are considered, inconsis-

tencies in the matches such as (f1,k, f2,m), (f1,k, f3,n)
and (f2,m, f3,p), p 6= n become obvious. In multi-view

video, corresponding feature points are supposed to be-

long to one single scene point, so inconsistent matches

indicate false matches. A straightforward approach to

reduce the number of false matches is to filter out any

match that is not consistent on a three image circle. To

eliminate inconsistent matches already during the as-

signment we formulate the matching problem in a dif-

ferent way.

In our approach we look for triples (f1,k, f2,m, f3,n)
such that each fi, j is present in at most one triple. To

each of the triples we assign a cost d̃ that is the sum of

Journal of WSCG 2 ISSN 1213-6972

the distances of all three descriptors d̃(s1,k,s2,m,s3,n) =
d(s1,k,s2,m) + d(s1,k,s3,n) + d(s2,m,s3,n), i.e. the dis-

tance between each pair of features is considered in the

cost function, which therefore is independent of the or-

dering of the images. In contrast to previous approaches

this formulation requires the matches in all images to

be similar and thus closes the loop between the images,

providing a feedback to the matching and avoiding the

drift commonly encountered in considering ordered set

of images. If all features were present in all three im-

ages this is an instance of the classical three-matching

problem with decomposable cost-function, a NP hard

problem which can be solved approximately with the

following algorithm [CS92]:

i. Match the features in I1 and I2, e.g. using the Hun-

garian algorithm, (see [PS98]).

ii. Merge the sets of features on the basis of

the matching in (i.) such that the new cost

function between features in I1 and I3 is

d̂(s1,k,s3,n) = d̃(s1,k,s2,m,s3,n).

iii. Match the features in I1 and I3 with the new distance

function.

iv. Sum up all distances present in the matching.

v. Interchange the role of I1, I2, I3 and restart at (i.).

vi. Of the three matchings thus obtained, return the one

with the smallest sum of distances.

Note that step (ii.) enforces the third feature in the triple

to be close both to the feature in I1 and the feature in

I2. Enforcing this condition simultaneously provides

the means to transport the information of the other im-

ages to the bilateral matching.

The three-match returned by this algorithm can be

proved to lie within a certain distance to the actual best

solution and in practice it often turns out to be the best

solution [BCS94].

Yet, working with real images, we have to deal with

occluded and non-detected features as well as with non-

distinctive descriptors. We therefore adjust the above

algorithm. In step (i.) we use NN matching or option-

ally NNDR matching. Additionally we match feature

points only if they are mutual nearest neighbors. Thus

the processing is independent from the ordering of the

images and the feature points. For step (ii.) we remove

all features from both images that are not matched in the

previous step. We are only interested in feature points

that can be matched consistently in three images. As

the number of feature points differ in every image and

we do not require all feature points to be matched, the

sum of all matchings is no longer a reliable quality mea-

sure and step (iv.) is skipped. Correspondingly, for step

(vi.) we do not return the match with the smallest over-

all cost, as this is dependent on the number of feature

points actually matched. Instead we merge the three

matches and only return those triples that are found

in all three matching directions. Though this last step

might seem rather restrictive, in our setup we opt for

less matches with high quality instead of a higher num-

ber of matches with more questionable quality. This

proceeding is in accordance with considering d̃ in (iii.)

that enforces the matches to be mutual neighbors. In

summary our algorithm looks as follows:

1. (a) Match the features in I1 and I2, using NNmatch-

ing, optionally with distance check to the second

nearest neighbor.

(b) Match the features in I2 and I1, using NNmatch-

ing, optionally with distance check to the second

nearest neighbor.

(c) Accept only symmetrically matched features.

2. Remove unmatched features in I1 and merge the re-

maining features on the basis of the matching in (1.)

such that the new cost function between matched

features in I1 and features in I3 is d̂(s1,k,s3,n) =
d̃(s1,k,s2,m,s3,n).

3. (a) Match the features in I1 and I3 with the new dis-

tance function using NN matching.

(b) Match the features in I3 and I1 with the new dis-

tance function using NN matching.

(c) Accept only symmetrically matched features.

4. Interchange the role of I1, I2, I3 and restart at (1.).

5. Merge the three matchings and return only those

matches that are assigned in all three matching di-

rections.

4 EVALUATION OF THREE IMAGE-

FEATURE MATCHING

A great number of feature detectors [MTS+05] and

feature descriptors [MS05] exist in literature. For a

comparison of those we refer the reader to these sur-

veys. The aim of our work is to evaluate the im-

pact of three-image matching and so we chose four

widely used detector/ descriptor combinations for our

evaluations: SIFT [Low04] and SURF [BETV08] are

both scale invariant detectors for blob-like structures

and with their natural descriptors also invariant to ro-

tation and changes in illumination. We also evalu-

ate our matching algorithm on Harris-corners [HS88]

and the more recent accelerated corner detector FAST

[RD06] and combine both with the normalized cross

correlation (NCC) on a 9× 9 window. We transform

the normalized cross-correlation to a cost function via

d(si,k,s j,m) = 1−NCC(fi,k, f j,m) to obtain a descriptor

distance as used in Sect. 3. Using rather advanced and

robust detectors as well as rather low level detectors we

Journal of WSCG 3 ISSN 1213-6972

SIFT NN SURF NN Harris NN FAST NN SIFT NNDR

M %WM # M %WM # M %WM # M %WM # M %WM

art
2IM 1444 53.39 616 64.45 93 49.46 474 45.57 674 10.53

3IM 603 11.28 177 20.90 44 13.64 220 13.64 506 2.57

books
2IM 1786 15.58 713 38.85 364 21.98 914 27.02 1506 2.52

3IM 1373 2.26 318 8.81 200 9.00 517 8.70 1315 0.84

dolls
2IM 2206 23.75 809 35.60 134 18.66 812 19.33 1583 2.21

3IM 1545 4.27 434 7.60 102 2.94 528 4.17 1367 1.02

laundry
2IM 1112 49.64 675 68.89 158 80.38 420 55.58 627 19.94

3IM 550 15.82 193 28.50 32 40.63 174 17.24 457 7.66

moebius
2IM 1634 24.24 475 38.95 77 20.78 317 35.65 1211 4.54

3IM 115 5.02 254 14.96 50 4.00 160 6.88 1011 2.47

reindeer
2IM 943 27.78 428 43.69 49 20.78 290 33.79 683 6.88

3IM 664 7.08 200 14.50 37 8.11 143 11.89 578 2.77

waving
2IM 4345 11.12 1314 24.20 196 26.53 353 19.97 3804 1.26

3IM 3995 4.76 1069 12.16 156 19.23 135 9.43 3720 0.70

stonemill
2IM 628 34.71 251 62.55 225 49.78 763 49.15 366 2.73

3IM 427 13.11 114 35.96 133 27.82 452 22.79 324 0.62

RubberW.
2IM 2077 3.85 236 16.53 48 0.00 255 6.67 1975 0.56

3IM 1585 0.32 107 5.61 25 0.00 153 1.31 1510 0.20

Hydr.
2IM 1111 16.56 432 20.88 176 25.57 576 22.74 853 1.52

3IM 254 2.76 56 8.93 20 15.00 70 8.57 136 0.74

wall
2IM 7776 25.44 2365 49.26 1693 28.53 6733 33.71 5327 0.56

3IM 5363 2.50 686 5.10 906 1.21 2892 1.87 4714 0.19

graffiti
2IM 2057 62.52 1385 77.98 265 90.68 822 91.12 689 25.83

3IM 626 11.50 140 33.57 8 87.50 39 78.95 338 4.14

Table 1: As three image matches (3IM) have to satisfy stricter requirements than two image matches (2IM),

the total number of matches is reduced while the quality of the matching is increased as the percentage of wrong

matches (%WM) is considerably decreased no matter which of the feature detectors (SIFT, SURF, Harris or FAST)

or matching strategy (nearest neighbor(NN) or nearest neighbor with threshold on the distance ratio (NNDR)) is

used.

want to evaluate our matching scheme independently

from the detector used.

For reason of comparison, in our experiments we

apply nearest neighbor (NN) matching in all cases

[MS05]. Additionally we apply the more advanced

NNDR matching that was proposed for SIFT-features,

using a threshold of 0.8 on the distance ratio [Low04].

We apply the thresholding step accordingly in the

matching step (1.), but found it to have no impact in the

matching step (3.) as the combined matching already is

sufficiently distinguishing. We therefore do not apply

the distance check in (3.).

Using a naïve MATLAB implementation on a

2.66GHz processor, three image consistent matching

of 975 FAST features with 81 dimensional descriptors

in I1, 944 features in I2 and 860 features in I3 for

the art scene requires 736ms. With the same setup,

independent two-matchings between I1 and I2, I1 and

I3 and I2 and I3 last together 126ms.

In our experiments we determine the number of

matches and the percentage of matches outside a

5 pixel circle around the ground-truth location in

different scenes. The scenes art, books, dolls, laundry,

moebius and reindeer are rectified multiple view

images of a static scene with known disparity [SP07].

The scenes waving [SLM10] and stonemill [LLM10]

are synthetic, unsynchronized stereo sequences of a

moving scene with known ground-truth correspon-

dence fields. The scenes RubberWhale and Hydrangea

are the only monocular sequences of more than two

Journal of WSCG 4 ISSN 1213-6972

(a) (b)

Figure 2: The two image-based matching approach (a)

results in more outliers (red circles) and a lower rela-

tive amount of inliers (yellow crosses) than our three

image based-matching (b). From top to bottom: scene

art with SIFT features, RubberWhale with SURF fea-

tures, stonemillwith Harris corners, laundrywith FAST

features, all using nearest neighbor matching.

images with independently moving objects and known

ground-truth motion from the Middlebury optical

flow data set [BSL+07]. In contrast, the scenes wall

and graffiti describe a viewpoint change for a static,

mostly planar scene [MS05]. The number of matches

and percentage of outliers are shown in Tab. 1, some

examples are given in Fig. 2. As expected the number

of matches is reduced with our stricter three-matching

strategy. But at the same time the percentage of outliers

among the assigned matches is also considerably

reduced.

We also apply our algorithm to the real multi-video

recordings scenes market, 421 × 452 pixel, and

capoeira, 817× 578 pixel, which are recorded using

unsynchronized, uncalibrated cameras with automatic

gain, while in the scene outside, 270 × 480 pixel,

cameras are additionally hand-held. The algorithm is

performed on the entire images with all features points

found, but for visibility reasons, Fig. 3 shows the results

only for 100 randomly selected SIFT-features: matched

features are marked with a white x and connected

via a yellow line to the location of the corresponding

(a) (b) (c)

Figure 3: For three real world scenes market, capoeira

and outside (a) we compare different matching strate-

gies. Two-image matches (b) provides a larger num-

ber of matches but many outliers among them. Three-

image matches (c) reduce the number of outliers con-

siderably. For better visibility here 100 features are ran-

domly selected and connected with the location of their

matched features by a yellow line if such a feature is

found.

feature. As features are only matched if they are likely

correspondences in three images, the three matching

algorithm obviously decreases the number of matches

as compared to the algorithm that matches features

based on two images. But our algorithm renounces to

match many inconsistent features so that the percentage

of outliers is greatly decreased. As we will show in

the subsequent sections, this reduction of the relative

amount of outliers allows matching based algorithms

to start off much better.

5 APPLICATION TO STEREO-VIDEO

CONSISTENT OPTICAL FLOW

Recent optical flow algorithms started to include fea-

ture matches into the dense correspondence estima-

tion to faithfully detect large motion also of small ob-

jects. More specifically, Xu et al. consider motion

vectors of matched features to possibly assign them to

pixels all over the image [XJM10], whereas Brox et

al. [BBM09] include matched regions as prior into their

optical flow algorithm. We adopt the latter idea here

and include matched features into the state-of-the-art

optical flow for stereo sequences [SLM10]. This opti-

cal flow approach is derived from an optical flow algo-

rithm [WTP+09] classified on the Middlebury bench-

mark [BSL+07]. It considers symmetry and consis-

tency on a three image loop and therefore provides a

suitable mean to evaluate the three image based match-

ing. While in the approach of Brox et al. [WTP+09]

Journal of WSCG 5 ISSN 1213-6972

(a) (b) (c) (d)

Figure 4: For the scenes art, laundry, waving, stonemill, Rubber Whale and Hydrangea (a) dense ground-truth

motion fields are given (b). Compared to the motion fields of the loop-consistent TV-L2 algorithm of [SLM10], (c)

the inclusion of our three-image match as prior results in motion fields with better motion detail (d).

several matches are considered to make sure that the

correct correspondence is among them, we incorpo-

rate our matched features in their one-to-one fashion.

Adopting the notation of wr
i, j for the current estimate

of the motion field between image Ii and I j we simply

replace the point-wise energy Eq in [SLM10] with

E f = Eq +δ f ‖Wi, j−wr
i, j−dwi, j‖

2
2 (1)

where for matches (fi,k, f j,n, fh,m) and [fi,k] the nearest
integer position to the feature location

Wi, j :Ωi → R
2
, Wi, j(x) =

{

f j,n− fi,k if x = [fi,k]

0 else

(2)

is a function that describes the matching of the features,

µ ,c > 0 constants and

δ f (x) = µ

{

1− arctan
d̃(si,k,s j,n)

c2π if x = [fi,k]

0 else
(3)

Journal of WSCG 6 ISSN 1213-6972

a function that assigns values depending on the match-

ing costs or 0 to each point in Ωi. This new energy is

still a quadratic function in the update dwi, j, so the up-

dating scheme of [SLM10] is maintained. Note that for

all experiments we fix µ = 103 and c = 1
5

To speed up calculations and assist the determina-

tion of large flows, loop consistent flow estimation is

performed on a factor 0.5 image pyramid. Similar to

[BBM09] we down-sample the prior Wi, j by consider-

ing the 2× 2 pixels that are represented by one single

pixel in the next coarser level. From the four pixels

in the finer level we only pass on to the next coarser

level half the motion and the weight of the pixel with

the highest weight δ f (x). Thus, if no other matches are

found in the vicinity, the original match is propagated to

the next coarser level or else the match with the smallest

cost is used. Having thus established a matching-based

prior on all levels of a scale pyramid, we initialize the

dense flows on the coarsest level with zero and perform

10 iterations of the updating scheme before proceeding

to the next finer level. We use the upscaled flow field

from the previous level as initialization on the finer level

and thus proceed till the original resolution is reached.

5.1 Evaluation

To evaluate the impact of three image-consistent match-

ing on optical flow estimation, we use all the data sets

with known ground-truth motion from Sect. 4 except

for the scenes graffiti and wall which only contain cam-

era motion around a planar scene and are therefore of

no interest for dense motion field estimation. We mea-

sure the average angular error (AAE) and average end-

point error (AEE) [BSL+07] between the computed and

the ground-truth displacement fields. For comparison,

we also calculate flow fields with a two-image TV-L2

approach [SLM10] incorporating standard two image-

feature matching as prior and the three image-loop con-

sistent optical flow algorithm [SLM10] without prior.

As SURF features provide the best cover of our test

scenes with feature points, we here only show the re-

sults obtained with SURF. Flow fields incorporating

priors obtained with other descriptors behave qualita-

tively in the same way:

If only two image matches and forward flow are con-

sidered, wrong matches have a strong impact and lead

to results with high error, Tab. 2. In [SLM10] Sell-

ent et al. show that loop consistent flow improves the

results of the TV-L2 approach. Incorporating feature

points that are likewise consistent on three images is

able to further improve the results. An improvement is

also visible in the flow field, Fig. 4, as small structures

such as e.g. the hand in the waving scene are better

preserved than without the prior matches.

6 CONCLUSIONS AND FUTURE

WORK

In our article we show that even in the absence of cam-

era calibration and synchronization, feature points can

be matched more robustly if three images are consid-

ered simultaneously. By requiring that features are con-

sistent in three images, the quality of the matching im-

proves as the percentage of wrong matches is consider-

ably reduced.

We also combine three-image matching with three

image-loop consistent optical flow estimation and ob-

tain dense flow fields that have a smaller error and better

preserved motion details than either the loop-consistent

flow or basic flow with non-robustly matched features.

In this work we extend the traditional two image ap-

proach to three images and obtain more robust results.

Future work in this direction compromises to evaluate

whether this trend can be continued if four or more im-

ages are used and whether there is an optimal number

of images to be used.

ACKNOWLEDGEMENTS

This work has been funded by the German Science

Foundation, DFG MA2555/4-2.

REFERENCES

[ART10] A. Albarelli, E. Rodolà, and A. Torsello. Robust game-

theoretic inlier selection for bundle adjustment. In Proc.

of the International Symposium on 3D Data Process-

ing, Visualization and Transmission, pages 1–8, Paris,

France, May 2010.

[BBM09] T. Brox, C. Bregler, and J. Malik. Large displacement

optical flow. In Proc. of the Conference on Computer

Vision and Pattern Recognition (CVPR), pages 41–48.

IEEE, 2009.

[BBPW04] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High

accuracy optical flow estimation based on a theory for

warping. In Proc. of the European Conference of Com-

puter Vision (ECCV), pages 25–36, 2004.

[BCS94] H. Bandelt, Y. Crama, and F. Spieksma. Approximation

algorithms for multi-dimensional assignment problems

with decomposable costs. Discrete Applied Mathemat-

ics, 49(1-3):25–50, 1994.

[BETV08] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-

up robust features (SURF). Computer Vision and Image

Understanding, 110(3):346–359, 2008.

[BGPS07] S. Battiato, G. Gallo, G. Puglisi, and S. Scellato. SIFT

features tracking for video stabilization. In Proc. of the

International Conference on Image Analysis and Pro-

cessing, pages 825–830, 2007.

[BSL+07] S. Baker, D. Scharstein, JP Lewis, S. Roth, M.J. Black,

and R. Szeliski. A database and evaluation methodology

for optical flow. In Proc. ICCV, pages 1–8. IEEE, 2007.

[BTZ96] P. Beardsley, P. Torr, and A. Zisserman. 3D model ac-

quisition from extended image sequences. In Proc. of

the ECCV, volume 2, pages 683–695. Springer, 1996.

[BWSS09] X. Bai, J. Wang, D. Simons, and Guillermo Sapiro.

Video snapcut: robust video object cutout using local-

ized classifiers. ACM Trans. Graph., 28(3):1–11, 2009.

Journal of WSCG 7 ISSN 1213-6972

TV-L2 TV-L2 & 2IM [SLM10] [SLM10] & 3IM

AAE AEE AAE AEE AAE AEE AAE AEE

art 1.68 10.62 49.45 84.82 1.32 9.34 1.09 8.70

books 11.23 14.60 31.99 55.37 2.67 6.43 1.62 4.85

dolls 1.93 5.81 32.86 67.66 0.53 2.85 0.51 2.27

laundry 7.83 14.16 40.38 58.08 1.27 9.20 1.03 8.39

moebius 0.96 3.67 16.85 23.77 0.87 3.61 0.87 3.13

reindeer 18.89 25.91 18.70 30.50 2.22 16.35 1.02 8.55

waving 2.95 1.03 26.96 31.39 2.74 0.97 2.58 0.92

stonemill 16.72 4.53 48.59 23.16 11.29 3.81 9.73 3.52

RubberW 6.60 0.20 15.07 5.72 6.46 0.20 6.34 0.20

Hydr. 2.98 0.27 9.28 4.39 2.79 0.25 2.77 0.24

Table 2: Including 2-image SURF matching priors (2IM) into TV-L2 flow significantly increases average angular

(AAE) and average endpoint error (AEE) in comparison to the basic TV-L2 approach. Under consideration of

consistency on a loop of three images, inclusion of 3-image SURF matching priors (3IM) decreases the AAE and

AEE of the loop consistent TV-L2 approach [SLM10].

[CS92] Y. Crama and F. C. R. Spieksma. Approximation algo-

rithms for three-dimensional assignment problems with

triangle inequalities. European Journal of Operational

Research, 60(3):273–279, 1992.

[FTV03] V. Ferrari, T. Tuytelaars, and L. Van Gool. Wide-baseline

multiple-view correspondences. In Proc. of the CVRP,

volume 1, pages 718–725, June 2003.

[HP96] A.Y.K. Ho and T.C. Pong. Cooperative fusion of stereo

and motion. Pattern Recognition, 29(1):121–130, 1996.

[HS88] C. Harris and M. Stephens. A combined corner and edge

detector. In Proc. of the Alvey Vision Conference, vol-

ume 15, pages 147–151, 1988.

[HZ03] R. Hartley and A. Zisserman. Multiple view geometry in

computer vision. Cambridge University Press, 2003.

[LLM10] C. Linz, C. Lipski, and M. Magnor. Multi-image inter-

polation based on graph-cuts and symmetric optic flow.

In Proc. of the International Workshop on Vision, Model-

ing and Visualization, page to appear, Siegen, Germany,

November 2010. Eurographics, Eurographics.

[Low04] D. G. Lowe. Distinctive image features from scale-

invariant keypoints. IJCV, 2(60):91–110, 2004.

[MS05] K. Mikolajczyk and C. Schmid. A performance evalu-

ation of local descriptors. IEEE T-PAMI, 27(10):1615–

1630, 2005.

[MTS+05] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,

J. Matas, F. Schaffalitzky, T. Kadir, and L.V. Gool. A

comparison of affine region detectors. Intern. Journal of

Computer Vision, 65(1):43–72, 2005.

[PS98] C.H. Papadimitriou and K. Steiglitz. Combinatorial op-

timization: algorithms and complexity. Dover Publica-

tions, Mineola, New York, USA, 1998.

[RD06] E. Rosten and T. Drummond. Machine learning for

high-speed corner detection. In ECCV, pages 430–443.

Springer, May 2006.

[SLM10] A. Sellent, C. Linz, and M. Magnor. Consistent optical

flow for stereo video. In Proc. ICIP, Sept. 2010.

[SLW+10] T. Stich, C. Linz, C. Wallraven, D. Cunningham, and

M. Magnor. Perception-motivated interpolation of im-

age sequences. ACM Transactions on Applied Percep-

tion, pages 1–28, 2010.

[SP07] D. Scharstein and C. Pal. Learning conditional random

fields for stereo. In Proc. of the CVPR, pages 1–8. IEEE

Computer Society, June 2007.

[Spi00] F.C.R. Spieksma. Multi index assignment problems:

complexity, approximation, applications. Nonlinear As-

signment Problems, Algorithms and Applications, pages

1–12, 2000.

[SS05] K. Shafique and M. Shah. A noniterative greedy al-

gorithm for multiframe point correspondence. IEEE T-

PAMI, pages 51–65, 2005.

[SSS06] N. Snavely, S.M. Seitz, and R. Szeliski. Photo tourism:

exploring photo collections in 3D. ACM Transactions on

Graphics, 25:835–846, July 2006.

[SZ02] F. Schaffalitzky and A. Zisserman. Multi-view match-

ing for unordered image sets, or "How do I organize my

holiday snaps?". In Proc. of the ECCV, volume 1, pages

414–431. Springer, May 2002.

[TZ97] P.H.S. Torr and A. Zisserman. Robust parameterization

and computation of the trifocal tensor. Image and Vision

Computing, 15(8):591–605, 1997.

[VRB03] C.J. Veenman, MJT Reinders, and E. Backer. Estab-

lishing motion correspondence using extended temporal

scope. Artificial Intelligence, 145(1-2):227–243, 2003.

[WTP+09] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cre-

mers, and H. Bischof. Anisotropic Huber-L1 optical

flow. In Proc. BMVC, London, UK, Sept. 2009.

[XJM10] L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving

optical flow estimation. In CVPR, San Francisco, 2010.

IEEE Computer Society.

[YC07] J. Yao and W.K. Cham. Robust multi-view feature

matching from multiple unordered views. Pattern

Recognition, 40(11):3081–3099, 2007.

[YJS06] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A

survey. Computing Surveys, 38(4):13, 2006.

[Zha94] Z. Zhang. Token tracking in a cluttered scene. Image

and Vision Computing, 12(2):110–120, 1994.

[ZKP10] C. Zach, M. Klopschitz, and M. Pollefeys. Disambiguat-

ing visual relations using loop constraints. In Proc. of

the CVPR, pages 1–9. IEEE, June 2010.

Journal of WSCG 8 ISSN 1213-6972

Accurate Real-Time Multi-Camera Stereo-
Matching on the GPU for 3D Reconstruction

Klaus Denker
HTWG Konstanz, Germany
kdenker@htwg-konstanz.de

Georg Umlauf
HTWG Konstanz, Germany
umlauf@htwg-konstanz.de

ABSTRACT

Using multi-camera matching techniques for 3d reconstruction there is usually the trade-off between the quality of the computed
depth map and the speed of the computations. Whereas high quality matching methods take several seconds to several minutes
to compute a depth map for one set of images, real-time methods achieve only low quality results. In this paper we present a
multi-camera matching method that runs in real-time and yields high resolution depth maps.
Our method is based on a novel multi-level combination of normalized cross correlation, deformed matching windows based
on the multi-level depth map information, and sub-pixel precise disparity maps. The whole process is implemented completely
on the GPU. With this approach we can process four 0.7 megapixel images in 129 milliseconds to a full resolution 3d depth
map. Our technique is tailored for the recognition of non-technical shapes, because our target application is face recognition.

Keywords
Stereo-matching, multi-camera, real-time, gpu, computer vision.

1 INTRODUCTION
Stereo matching is a technique to compute depth infor-
mation of a captured object or environment from two
or more 2d camera images. Many applications ranging
from remote sensing to robotics, archeology, cultural
heritage, reverse engineering, and 3d face recognition
[15, 17, 10, 26] use stereo matching. It is the only
passive method to generate depth information. This
means there is no artificial interaction with the object
that might do any harm and only natural light is used
for the data acquisition.

The main challenge of stereo matching is the trade-
off between the quality of the depth map and the com-
putation time to compute the depth map. For some
applications a real-time computation is not important.
So many stereo- and multi-view-matching methods fo-
cus on high quality results instead of fast computation
times. These high quality methods need at least sev-
eral seconds to compute a single depth map from one
set of images [9]. However, for robotics faster compu-
tation times are more important than the quality of the
depth map. This led to the development of GPU based
real-time matching methods [28, 27].

Our target application is 3d face recognition. For face
recognition the requirements are somewhere between
these fields. A trade-off between a high depth map qual-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ity and an acceptable speed must be found. The whole
reconstruction and recognition needs to be done in less
than half a second. A longer delay is not acceptable
for the captured person. Nevertheless, the quality of
the reconstructed surface needs to be high enough for a
reliable recognition of the person.

1.1 Overview and contribution
In order to classify our approach for the subsequent
related work section we give here a brief layout of
our system. It is based on weighted normalized cross-
correlation for all matching windows of a reference im-
age to a set of additional images from different perspec-
tives. This cross-correlation yields a score for every
matching window position and the maximal score in-
dicates the best matching position. This best matching
position corresponds to a disparity of the matching win-
dows and thus to the depth information. These steps
will be described in Sections 3 - 4. Our contribution
in this process is the GPU optimized use of weighted
normalized cross-correlations, the combination of mul-
tiple cameras to a total score for simultaneously moved
matching window, a projection-free depth-map-based
deformation of the matching windows, and a sub-pixel
precise disparity estimation. These techniques account
for the quality of the generated depth maps. To compute
the depth maps in real-time our process is implemented
on the GPU. This is described in Section 5 and has not
be done in such a consequent form before.

2 RELATED WORK
Our method may be classified between two very dif-
ferent classes of stereo matching methods. On the one
hand, the high quality methods with long computation
time to achieve excellent results. On the other hand,

Journal of WSCG 9 ISSN 1213-6972

the fast GPU methods using much simpler algorithms.
Therefore, we will contrast our approach to both classes
of stereo matching methods.

2.1 High quality methods
High quality stereo matching methods have been devel-
oped based on various techniques. The quality of such
methods is compared at [19, 21, 25]. Newer bench-
mark results are available on the associated websites
[20, 22, 24].

One of the earliest methods in this class is the adap-
tive least squares correlation of [6]. In this approach
local affine transformations are estimated using a least
squares approximation. Although, this method theoreti-
cally converges to an optimal solution, the convergence
is too slow and the computation too costly due to the
size of the linear systems.

Today, best reconstruction quality is achieved by re-
gion growing algorithms, e.g. [5, 9]. These methods
are typical for high quality matching algorithms, where
a set of good matches is generated using a sparse set of
interesting features. Then, these good matches are ex-
tended with a growing strategy. The growing operations
are iterated in combination with filter operations to con-
trol the quality of the matches. Because the growing
process is based on an optimization of complex objec-
tive functions, these methods do not allow a fast GPU
implementation.

A novel alternative is the phase only correlation of
[23]. Here, the disparity of matching windows is es-
timated by the phase difference of the image signal
along epipolar lines. This requires the computation of a
Fourier transformation, which is difficult to implement
on the GPU [14]. This is particularly problematic if the
Fourier transform must be evaluated for every pixel of
the captured image.

Global optimization of a Markov Random Field
(MRF) is used in [1]. For each pixel multiple depth hy-
potheses are stored and the best is picked by the MRF
optimization. The solution of this NP-hard problem
is approximated using a sequential tree re-weighted
message passing algorithm [11]. Although the GPU is
used to solve several steps of the algorithm, the global
optimization makes it much slower than typical GPU
methods.

A particle cloud optimization is used by [8] to gener-
ate depth representations for each camera image. The
particles are aware of depth discontinuous silhouettes
and use a special volumetric view space parametriza-
tion instead of the usual image-based parametrization
of matching windows. Then, these depth representa-
tions are combined and rendered in real-time using the
GPU.

Approaches based on dynamic programming, e.g.
[12, 18], are relatively similar to our approach. For
these methods fields of matching scores are computed

for every epipolar line. Within these fields an optimal
path is computed using dynamic programming. The
computations of the optimal path can either be done on
the CPU or on the GPU requiring significant amount of
memory.

Our approach is also based on matching scores along
epipolar lines, but the computations are local and sim-
ple to allow an implementation on the GPU.

2.2 GPU methods
Much faster methods implement the stereo-matching
algorithm on the GPU using hardware features of the
graphics card like mip-mapping.

A typical example for this class of methods is de-
scribed in [27]. This approach consists of a set of indi-
vidual steps of the overall stereo-matching process im-
plemented on the GPU. For the matching score either
the sum of squared differences or the sum of absolute
differences are used. These matching scores are easily
implemented on the GPU, but yield only low quality
disparity maps. To exploit the capabilities of the mip-
map a pyramidal matching kernel is used, which does
not allow for an independent movement of the individ-
ual levels in the pyramid. In both aspects our approach
improves this method. Some other aspects of [27], like
cross-checking and feature aligned matching windows,
could easily be integrated to our system.

A different approach of the same first author is [28].
Here five calibrated cameras are matched at once. Us-
ing the same technique with a reconfigurable array of
48 cameras is described in [30]. For this technique the
matching window covers only one pixel to simplify the
computations on the GPUs. This local approach is not
stable but very fast and avoids all disadvantages of large
matching windows.

Another technique for a large number of images is
[29]. It is not as fast as the other GPU methods, but
includes a volumetric reconstruction of the objects. A
plane sweep method is used for depth estimation on
non-rectified images.

The method from [2] uses the pyramidal matching
kernel and mip-mapping from [27] and adds a fore-
ground/background separation on the GPU. This addi-
tional step avoids typical artifacts of the pyramidal ker-
nel like wrong depth estimates for regions with low tex-
ture details usually found in the background. Our im-
proved multi-level approach does not show such prob-
lems.

3 THE CAMERA SYSTEMS
We built a system of four USB Logitech R© QuickCam R©

Pro 9000 cameras, see Figure 1(a). Each camera is used
at a resolution of 960× 720 at five frames per second.
The cameras could yield a much higher resolution, but
the bandwidth of the USB 2.0 controllers is limited.

Journal of WSCG 10 ISSN 1213-6972

To improve the quality for later face recognition,
we built a second camera system of four Point Grey
Flea R©2 FireWire 800 cameras, see Figure 1(b). These
cameras synchronously capture images at a resolution
of 1392× 1032 at 15 fps. For synchronization we use
all four cameras on a single FireWire 800 Bus. Thus,
in RGB mode only a frame rate of 3.75 fps is possible.
This can be improved by de-mosaicking on the GPU
and transferring the data in eight bit raw mode. This
allows for 11.25 fps.

Our experiments showed that a Y-constellation of
four cameras as shown in Figure 1 gives the best re-
sults. The image of the central camera is used as refer-
ence image for matching and texturing. Each possible
image pair has a different angle. Otherwise preferred
directions of the camera constellation could deteriorate
the detection of features along these directions, e.g. an
image containing horizontal stripes causes problems for
horizontal camera arrangements.

Independently of the used hardware system, our
method can be adapted to other camera constellations.
This adaption is much easier for camera systems where
all cameras are mounted on a plane perpendicular to
the viewing direction. The individual camera images
are rectified using a lens correction similar to [4].

4 MATCHING
The overall matching process consists of several nested
loops shown in Figure 3. We describe this process from
the inner to the outer loop.

4.1 Stereo matching
The aim of stereo matching is to find corresponding
points in two images. Usually two square regions,
called matching windows are compared. These win-
dows are moved over the images to find the best match-
ing position. To identify the best position, a score
is computed, that rates the similarity of two matching
windows. Similar to [13] we use a weighted normal-
ized cross-correlation on RGB color values. First the
weighted average color f i of the matching window Wi
in the i-th image is computed

f i = ∑
(x,y)∈Wi

w(x,y) f (x,y). (1)

Here w(x,y) = cos2 (πx/a) · cos2 (πy/a) is a weight
function that smooths the result to emphasize pixels
at the center of the matching window over pixels at
the border, and a denotes the matching window size in
pixels. Then the weighted auto-correlation αi of each
matching window with itself is computed as

αi = ∑
x,y

w(x,y)
[

fi(x,y)− f i
]2
. (2)

To evaluate the similarity of two matching windows Wi
and Wj the weighted cross-correlation βi, j is computed

βi, j = ∑
x,y

w(x,y)
[

fi(x,y)− f i
]
·
[

f j(x,y)− f j
]
. (3)

The weighted normalized score γi, j is computed as the
weighted cross-correlation normalized by the geomet-
ric mean of the respective weighted auto-correlations

γi, j = βi, j/
√

αi ·α j. (4)

4.2 Multi-camera matching
Stereo matching evaluates the similarity of two match-
ing windows. We extend this score to a set of n cameras
and matching windows by summing up the weighted
normalized scores of all possible image pairs. Thus, we
need n(n− 1)/2 stereo matching operations. To com-
pute a total score we compute a camera score

γi = ∑
j 6=i

γi j (5)

and a total score

γ = ∑
i

γi−2min
i

γi. (6)

This eliminates all scores from the worst matching cam-
era to improve robustness to occlusion on one of the
cameras. The total score is used to evaluate the similar-
ity of matching windows of multiple cameras simulta-
neously.

4.3 Moving the matching windows
Between the images a disparity estimation is computed
to get the depth information. Therefore, the matching
windows are moved simultaneously over all images. A
total score of each position and the best matching win-
dow position with the highest total score are computed.
Since the evaluation of all possible positions is too ex-
pensive, the movement of the matching window is lim-
ited to the epipolar lines projected by the center point
of the matching window of the reference image. The
image of the central camera is used as reference im-
age, i.e. the matching window on the central image is
fixed. Figure 2 shows the simultaneous movement of
the matching windows in the other images along the
epipolar lines. These movements along the epipolar
line have a step size of one pixel for our camera config-
uration. For other camera configurations the step size
depends linearly on the distance to the central camera.
We test 3≤ k≤ 35 different positions for each matching
window, see Section 4.5. Note that the color values for
the score computations are bi-linearly interpolated to
allow an exact movement along the epipolar line. The
best similarity of the matching windows is marked by
the matching window position with the highest score

Journal of WSCG 11 ISSN 1213-6972

(a) USB camera system. (b) FireWire camera system.

Figure 1: For our experiments we use two systems of four cameras arranged in an upside down Y-constellation.

Figure 2: Moving the matching windows (solid
squares) in all images (dashed rectangles) along epipo-
lar lines (arrows) simultaneously.

sbest. From the position on the epipolar line, the dispar-
ity dbest of the best match is estimated. The real depth
can be computed by reverse projection using the posi-
tion of the reference camera, the distances to the other
cameras, and the disparity.

4.4 Sub-pixel matching
To achieve sub-pixel precision for the disparity map we
use a method similar to sub-pixel accurate edge detec-
tion of [3]. The best disparity is achieved at a local max-
imum of the total score, i.e. both neighboring scores
sleft and sright are smaller or at most one of them is equal
to sbest

sleft ≤ sbest > sright or sleft < sbest ≥ sright. (7)

Interpolating these three total scores with a quadratic
polynomial yields a best sub-pixel score at the global
maximum of the quadratic polynomial. This maximum
is achieved within half the distance to the neighbor po-
sitions. The position of this maximum is the interpo-
lated sub-pixel disparity dsub.

4.5 Multi-level matching
Our method generates disparity data for one image at a
fixed resolution. To allow large disparities, many possi-

ble matching window positions must be evaluated. Be-
cause this is computationally expensive, we use a real
multi-level approach that can reduce the effort for large
disparities. A similar approach in [27] uses a matching
pyramid. In contrast to our method, the windows on
different detail levels cannot be moved independently.

Independent levels allow us to re-use high level in-
formation to get a much faster low level disparity com-
putation. The graphics card stores the lens corrected
image in a mip-map at eight different resolutions. Each
level has half the horizontal and vertical resolution of
the one below. All matching windows have a fixed size
of 7× 7 pixels. A smaller window size increases the
noise while a larger size blurs sharp features. Start-
ing on the coarsest resolution level l = 7, the dispari-
ties of all pixels in the reference images are computed
at the same coarse resolution. The matching windows
are evaluated at k = 35 different positions. Then the
image resolution is doubled and the same process starts
again, while k = 1+ 2b1.5+ l2/3c is reduced quadrat-
ically. As starting position for the matching windows
on lower levels, the bi-linearly interpolated disparities
of the next coarser level are used. Thus, the matching
window moves k pixels around the best position of the
previous level.

4.6 Deformed matching windows
Square matching windows can only yield good results,
if the captured object surface is parallel to the image
plane. Every surface not parallel to the image plane
generates imprecision. To avoid this the matching win-
dows are deformed to fit the perspective deformation of
the object surface. The idea is based on [7], but we use
the multi-level depth information and a projection free
computation.

To estimate the deformation we use the disparity map
of the previous multi-level step. First nine disparity val-
ues at the corners, the edge midpoints, and the center of
the matching window are interpolated. This gives a dis-
parity estimate for every pixel in the actual matching

Journal of WSCG 12 ISSN 1213-6972

Multiple mip-
mapped textures

Multiple textures on
the same detail level

Position in
reference image

Multiple matching
windows

Two matching windows

Normalized
cross correlation

Score for pair of
matching windows

Score for multiple
matching windows

Best match for
one depth pixel

Disparity map on
one detail level

Full resolution
disparity map

fo
re

ac
h

im
ag

e
pa

ir

m
ov

e
m

at
ch

in
g

w
in

do
w

s

fo
re

ac
h

pi
xe

lo
fr

ef
er

en
ce

im
ag

e

ne
xt

de
ta

il
le

ve
l–

do
ub

le
re

so
lu

tio
n

Figure 3: Overview of our matching process.

window. Subtracting the disparity at the center of the
matching window yields a local displacement for every
pixel. This displacement is added to the pixel coordi-
nates before the color values are read. This results in
a matching window adapted to the perspective of the
previous level without computing any perspective pro-
jections. Note, that for planar object surfaces this ap-
proach is almost equivalent to the projections used by
[7]. The difference is that it is based on disparity instead
of depth.

4.7 Measuring the matching quality
For each resolution level a complete disparity map is
computed. So, for each pixel of this map the best to-
tal score computed is also stored. Averaging these to-
tal scores over multiple resolution levels gives a quality
measure for each pixel of the full resolution depth map,
see Figure 4(b). Pixels with low quality measures can
be masked for rendering or subsequent computations of
the user application.

The quality measure is also used to improve the per-
formance of the multi-level matching. A low quality
measure on a coarse matching step usually causes the
finer level matches in this region to fail too. Matching
calculations are skipped if the quality measure on the
next coarser level is too low.

5 IMPLEMENTATION ON THE GPU
The method described so far uses images and generates
a depth image as result. Therefore, we use GLSL frag-
ment shaders for the GPU implementation. A fragment

shader is a program that runs in parallel on the GPU and
processes one or multiple texture images into one result
image. For our shader operations we need GPUs which
support at least shader model 4.0. The required amount
of computations in a single shader run is not feasible on
older GPUs.

5.1 GPU lens correction
Our input data are multiple raw camera images. Each
raw image is corrected by a shader implementing a lens
correction similar to [4]. The resulting corrected im-
ages are rendered into separate textures. Each of these
textures is then transformed into a mip-map. These
mip-maps of the corrected images are used by all sub-
sequent shaders of our system.

5.2 GPU optimized matching
A single pixel shader run usually computes the color
values for one result image, each pixel separately. More
complex computations require the combination of mul-
tiple shader runs. Three fragment shader programs are
used for each step of our multi-level matching.

The first shader takes the corrected image mip-map
and computes the weighted average color of the pix-
els of a matching window at the actual resolution level.
These averages are rendered to separate average tex-
tures. This shader is invoked once for every image.

The second shader takes the corrected image mip-
map and the average texture and computes the weighted
auto-correlation for the same matching window. Again

Journal of WSCG 13 ISSN 1213-6972

(a) The four captured sample images.

(b) Result textures. Disparity map (left) and quality measure (right).

(c) Reconstructed 3d model.

Figure 4: Example from our USB camera system.

the result is rendered to a separate auto-correlation tex-
ture and the shader is invoked once for every image.

The third shader takes the average and auto-
correlation textures and performs all matching
operations, i.e. it moves the deformed matching
windows, computes the total score, and finds the best
sub-pixel score. The result is rendered as the disparity
map, the best total score of the finest resolution and
the quality measure to the three color channels of a
separate texture. These three shaders are invoked once
per resolution level.

Most important strategies used to improve the GPU
performance are the pre-calculation of weighted aver-
age and weighted auto-correlation just described and
the multi-level matching described in Section 4.5.

6 RESULTS

Our target application is face recognition. We present
our results in that area. For easier comparison with
other algorithms we also applied our algorithm to a well
known benchmark for stereo matching.

(a) The four captured sample images.

(b) Result textures. Disparity map (left) and quality measure (right).

(c) Reconstructed 3d model.

Figure 5: Example from our FireWire camera system.

6.1 Face reconstruction

We took some example images with our USB camera
system shown in Figure 4(a). The disparities between
these images are very large. The result texture of the
fragment shaders holds the disparity map, the best to-
tal score of the finest resolution level, and the quality
measure encoded in the color channels, see Figure 4(b).

After transformation of the disparities to depth val-
ues, the data can be rendered as 3d model, see Fig-
ure 4(c). The low quality regions are masked and ig-
nored in this rendering.

A typical problem of stereo matching can be seen at
the highlights on the forehead generating small dents,
because the reflection is further away from the cameras
than the forehead. More diffuse lighting could avoid
this problem. The computation for the example im-
ages takes an average processing time of 129 ms on an
NVidia GeForce GTX 285 GPU. This allows real-time
frame rates of 7.5 fps.

A higher resolution of 1392× 1032 is achieved by
the FireWire camera system. An example image set is
shown in Figure 5(a). Figure 5(b) shows the result tex-
tures and Figure 5(c) a 3d model of the resulting depth

Journal of WSCG 14 ISSN 1213-6972

map. The higher camera resolution yields a better shape
quality at the most important regions of the face. Espe-
cially the reconstruction of the eye and mouth regions
is much more precise.

For this example an average processing time of 263
ms is needed on the same GPU. For images of 30 dif-
ferent persons we get an average processing time of
254 ms. In most of these images the face region is
smaller than in the displayed examples, so the compu-
tations are a bit faster. In comparison to the first exam-
ple, the computation time grows almost linearly with
the number of pixels p. This conforms to a runtime
of O(p log p) for our multi-level algorithm: The match-
ing window size, the stretch of the window movement,
and the count of image pairs are constant. So the worst
case costs for the computations in each depth map pixel
is constant. The pixels of the resulting depth map, or
smaller versions of it, are computed once for each of
the log2(width)∈O(log p) multi-level steps. Hence the
overall count of pixel calculations and the complexity
of the algorithm is within O(p log p).

6.2 Stereo vision benchmarks
Several benchmarks can be used to compare the qual-
ity of stereo matching algorithms [19, 21, 25]. Our al-
gorithm is tailored to face reconstruction and contains
simplifications that require a planar camera configura-
tion. Thus, it is not comparable to the benchmark [25].
Furthermore, our algorithm is also tailored to large dis-
parities between the images and achieves a much bet-
ter reconstruction quality using more than two cameras.
So, only a comparison with the results of the extended
datasets of the Middlebury stereo benchmark [20] is rel-
atively fair. However, this benchmark does not provide
an official score.

Compared to the algorithms providing results and
timings for these benchmark our algorithm works much
faster. At the same time the quality of our result is com-
parable to the quality of these algorithms. However, for
this comparison we have to adapt our algorithm.

For the Middlebury stereo evaluation [20], we in-
tegrated a modified local version of Multi Hypothe-
sis Matching [1] to improve the sharpness of edges in
our algorithm. The movement range of the matching
windows is extended to the depth extrema of the local
neighborhood on the last detail level. Instead of evalu-
ating only the best matching score, the eight best match-
ing scores are stored. A post-processing step re-weights
these scores based on the values and depth distances to
the best scores in the direct pixel neighborhood. The re-
weighting is repeated two times without any global op-
timization as in [1]. This multi hypothesis matching is
implemented as an post-processing fragment shader on
the GPU. The additional shader and the increased range
for the matching windows cause a large performance
loss. Processing our example images at a resolution of

960× 720 pixels takes 900 ms. This is still faster than
the other algorithms in [20], but not fast enough for our
target application.

Figure 6 shows our algorithm applied to the extended
Tsukuba dataset from [20, 16]. The two images in Fig-
ure 6(b) show the results from all five input images
without and with the additional edge improvement.

7 CONCLUSION AND FUTURE
WORK

The quality of the resulting surface model is sufficient
and the processing times are more than sufficient for
our target application 3d face recognition. Additional
methods like cross-checking that can be implemented
on the GPU could further improve our results. Further-
more, for an application of our method in a face recog-
nition system, a simple method to guide persons to the
optimal distance from the camera system is required.

For the future we plan to record synchronous video
sequences with the FireWire camera system. Similar to
multi-level matching, the matching information of an
earlier video frame could be used to improve the per-
formance.

ACKNOWLEDGMENTS
This work was supported by DFG GK 1131 and AiF
ZIM Project KF 2372101SS9. We thank Jens Hensler
for his help on creating a collection of face pictures.

REFERENCES
[1] Neill D. Campbell, George Vogiatzis, Carlos Hernández, and

Roberto Cipolla. Using multiple hypotheses to improve depth-
maps for multi-view stereo. In Proc. of the 10th European
Conf. on Computer Vision, pages 766–779, 2008.

[2] Jia-Ching Cheng and Shin-Jang Feng. A real-time multiresolu-
tional stereo matching algorithm. In ICIP (3), pages 373–376,
2005.

[3] F. Devernay. A non-maxima suppression method for edge de-
tection with sub-pixel accuracy. Technical Report RR-2724,
INRIA, 1995.

[4] F. Devernay and O. Faugeras. Straight lines have to be straight:
automatic calibration and removal of distortion from scenes of
structured enviroments. Mach. Vision Appl., 13(1):14–24, 2001.

[5] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and ro-
bust multi-view stereopsis. In CVPR, pages 1–8, 2007.

[6] A W Gruen. Adaptive least squares correlation: A powerful im-
age matching technique. South African Journal of Photogram-
metry, Remote Sensing and Cartography, 14:175–187, 1985.

[7] Hiroshi Hattori and Atsuto Maki. Stereo matching with direct
surface orientation recovery. In In Ninth British Machine Vision
Conference, pages 356–366, 1998.

[8] Alexander Hornung and Leif Kobbelt. Interactive pixel-
accurate free viewpoint rendering from images with silhou-
ette aware sampling. Comp. Graph. Forum, 28(8):2090–2103,
2009.

[9] Andreas Klaus, Mario Sormann, and Konrad Karner. Segment-
based stereo matching using belief propagation and a self-
adapting dissimilarity measure. In Proc. of the 18th
Int. Conf. on Pattern Recognition, pages 15–18, 2006.

Journal of WSCG 15 ISSN 1213-6972

(a) The extended Tsukuba dataset pictures.

(b) Result disparity map of our algorithm without (left) and with edge
enhancement (right).

(c) Ground truth disparity map (left) and 3d rendering of the result
with edge enhancement (right).

Figure 6: Results of the extended Tsukuba dataset from the Middlebury stereo benchmark [20].

[10] Reinhard Koch, Marc Pollefeys, and Luc Van Gool. Realis-
tic 3-d scene modeling from uncalibrated image sequences. In
ICIP’99, Kobe: Japan, pages 500–504, 1999.

[11] Vladimir Kolmogorov. Convergent tree-reweighted message
passing for energy minimization. IEEE Trans. Pattern Anal.
Mach. Intell., 28(10):1568–1583, 2006.

[12] Cheng Lei, Jason Selzer, and Yee-Hong Yang. Region-tree
based stereo using dynamic programming optimization. In
Proc. of the 2006 IEEE Conf. on Computer Vision and Pattern
Recognition, pages 2378–2385, 2006.

[13] J. P. Lewis. Fast template matching. In Vision Interface, pages
120–123, 1995.

[14] Kenneth Moreland and Edward Angel. The FFT on a GPU. In
Proc. of the ACM Conf. on Graphics Hardware, pages 112–119,
2003.

[15] Don Murray and Jim Little. Using real-time stereo vision for
mobile robot navigation. In Autonomous Robots, pages 161–
171, 2000.

[16] Yuichi Nakamura, Tomohiko Matsuura, Kiyohide Satoh, and
Yuichi Ohta. Occlusion detectable stereo – occlusion patterns
in camera matrix. In CVPR, pages 371–378, 1996.

[17] D.T. Pham and L.C. Hieu. Reverse engineering - hardware and
software. In V. Raja and K.J. Fernandes, editors, Reverse En-
gineering - An Industrial Perspective, pages 33–30. Springer,
2008.

[18] H. Sadeghi, P. Moallem, and S. A. Monadjemi. Feature based
dense stereo matching using dynamic programming and color.
International Journal of Computational Intelligence, 4(3):179–
186, 2008.

[19] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. Int. J. Com-
put. Vision, 47(1-3):7–42, 2002.

[20] D. Scharstein and R. Szeliski. Middlebury stereo vision page.
http://vision.middlebury.edu/stereo/, 2007.

[21] S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo reconstruc-
tion algorithms. In Proc. of the 2006 IEEE Conf. on Computer
Vision and Pattern Recognition, pages 519–528, 2006.

[22] Steve Seitz, Brian Curless, James Diebel, Daniel Scharstein,
and Richard Szeliski. Multi-view stereo.
http://vision.middlebury.edu/mview/, 2009.

[23] T. Shibahara, T. Aoki, H. Nakajima, and K. Kobayashi. A sub-
pixel stereo correspondence technique based on 1d phase-only
correlation. In ICIP07, pages 221–224, 2007.

[24] Christoph Strecha. Multi-view stereo test images.
http://cvlab.epfl.ch/~strecha/multiview/,
2008.

[25] Christoph Strecha, Wolfgang von Hansen, Luc J. Van Gool,
Pascal Fua, and Ulrich Thoennessen. On benchmarking camera
calibration and multi-view stereo for high resolution imagery.
In CVPR, pages 1–8. IEEE Computer Society, 2008.

[26] Francesca Voltolini, Sabry El-Hakim, Fabio Remondino, and
Lorenzo Gonzo. Effective high resolution 3d geometric recon-
struction of heritage and archaeological sites from images. In
Proc. of the 35th CAA Conference, pages 43–50, 2007.

[27] Ruigang Yang and Marc Pollefeys. A versatile stereo imple-
mentation on commodity graphics hardware. Real-Time Imag-
ing, 11(1):7–18, 2005.

[28] Ruigang Yang, Greg Welch, and Gary Bishop. Real-time
consensus-based scene reconstruction using commodity graph-
ics hardware. In Proc. of the 10th Pacific Conf. on Computer
Graphics and Applications, pages 225–235, 2002.

[29] Christopher Zach, Mario Sormann, and Konrad F. Karner.
High-performance multi-view reconstruction. In 3DPVT, pages
113–120, 2006.

[30] Cha Zhang and Tsuhan Chen. A self-reconfigurable camera
array. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Sketches,
page 151, 2004.

Journal of WSCG 16 ISSN 1213-6972

Ambient Occlusion Opacity Mapping for Visualization of
Internal Molecular Structure

David Borland
The Renaissance Computing

Institute, USA
borland@renci.org

ABSTRACT

Molecular surfaces often exhibit a complicated interior structure that is not fully visible from exterior viewpoints due to occlu-
sion. In many cases this interior cavity is the most important feature of the surface. Applying standard blended transparency can
reveal some of the hidden structure, but often results in confusion due to impaired surface-shape perception. We present am-
bient occlusion opacity mapping (AOOM), a novel visualization technique developed to improve understanding of the interior
of molecular structures. Ambient occlusion is a shading method used in computer graphics that approximates complex shad-
ows from an ambient light source by rendering objects darker when surrounded by other objects. Although ambient occlusion
has previously been applied in molecular visualization to better understand surface shape, we instead use ambient occlusion
information to determine a variable opacity at each point on the molecular surface. In this manner, AOOM enables render-
ing interior structures more opaque than outer structures, displaying the inner surface of interest more effectively than with
constant-opacity blending. Furthermore, AOOM works for cases not handled by previous cavity-extraction techniques. This
work has been driven by collaborators studying enzyme-ligand interactions, in which the active site of the enzyme is typically
formed as a cavity in the molecular surface. In this paper we describe the AOOM technique and extensions, using visualization
of the active site of enzymes as the driving problem.

Keywords: Molecular visualization, ambient occlusion, transparent surfaces

1 INTRODUCTION
Visualization has become an essential tool for many
scientists working with molecular data. Ball-and-stick,
ribbon, and surface renderings are all visualization
techniques that enable improved understanding of
molecular structures [10, 23, 30, 40]. Our collaborators
use visualization techniques such as these to study
enzyme-ligand interactions.

Enzymes are proteins that catalyze the transforma-
tion of a substrate molecule into a product. The sub-
strate/product is often referred to as the “ligand” with
which the enzyme binds. Our collaborators use molec-
ular surface renderings to understand the shape of the
active site of the enzyme and its spatial relationship to
the ligand during binding. The active site is typically a
complicated internal cavity that is largely hidden from
exterior viewpoints due to occlusion (Figure 2). Two
tools commonly used for viewing occluded structures
are transparency and clipping planes.

Applying standard blended transparency to the
surface reveals some of the internal structure, but
often results in impaired surface-shape perception [24].
Clipping planes can also reveal internal structure, but
are typically insufficient for displaying complicated

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Figure 1: Standard transparency on the left versus am-
bient occlusion opacity mapping (AOOM) on the right.
The structure of the inner cavity, and its context within
the outer surface, is easier to understand with AOOM.

non-planar surfaces such as enzyme active sites.
Another potential technique that might be used is
applying depth-peeling to remove the closest surface to
the viewpoint. Such a technique would be inaccurate
for this application, however, as the visible portions of
the cavity would be removed, and the second surface
may not correspond to the cavity in areas of folds
and bumps of the outer surface. To enable improved
visualization of the active sites of enzymes, we have
developed a technique that uses ambient occlusion
information to identify and emphasize these hidden
structures.

Ambient occlusion is a shading method used in
computer graphics that approximates complex shadows
from an ambient light source. Surfaces surrounded
by objects that block ambient light are rendered

Journal of WSCG 17 ISSN 1213-6972

darker than those open to the environment, so ambient
occlusion is therefore a measure of the “hiddenness”
of an object. Ambient occlusion has been successfully
used in molecular visualization to help understand
surface shape and identify the locations of cavities
in molecular surfaces [39]. Instead of using ambient
occlusion information solely for enhancing surface
shading, ambient occlusion opacity mapping (AOOM)
uses ambient occlusion to calculate a variable opacity at
each point on the molecular surface. Because ambient
occlusion is a measure of the hiddenness of an object,
AOOM can render outer structures more transparent
and inner structures more opaque, displaying the inner
surface of interest more effectively than with standard
transparency (Figure 1). In this paper we apply AOOM
to the visualization of enzyme active sites and describe
various extensions to the core AOOM technique driven
by collaboration with biochemists.

The paper is organized as follows: Section 2 pro-
vides background information on the biochemistry our
collaborators are studying. Section 3 provides related
work in the areas of molecular surface visualization, oc-
clusion and transparency in visualization, and ambient
occlusion. Section 4 describes the AOOM implemen-
tation, extensions, and supplemental visualization tech-
niques. Section 5 concludes and provides future work.

2 SCIENTIFIC BACKGROUND

Our collaborators study the architecture of the active
sites of enzymes involved in the tetrapyrrole biosynthe-
sis pathway. The enzymes in this pathway catalyze re-
actions involving ligands that are necessary for the for-
mation of various molecules such as hemoglobin, vi-
tamin coenzyme B12, and chlorophyll. Of interest are
how different enzyme active-site architectures interact
with their respective ligands.

PyMOL, an open-source molecular visualization sys-
tem (www.pymol.org), is used by our collaborators to
visualize ligands bound in the enzyme active sites, with
crystallographic data taken from the Protein Data Bank
(www.pdb.org). Understanding the active site where the
ligand binds with the enzyme is especially important
for answering questions such as: a) How much space is
available for the ligand within the volume occupied by
the protein? b) How does the ligand access the active
site cavity? c) How completely is the active site cavity
filled by the ligand? and d) Which residues in the cavity
are close enough to the ligand to provide the anchoring
interactions that bind it in place?

Each of these questions involves understanding the
shape of the active site cavity, which can be problem-
atic due to self-occlusion of the inner cavity by the outer
surface (Figure 2). Dealing with occluded surfaces has
long been an area of research in visualization. The next
section provides previous work on molecular surface vi-

Figure 2: The surface cavity forming the active site of
the PGB deaminase enzyme is circled. Much of the
cavity is occluded by the outer surface.

sualization, visualizing occluded surfaces, and ambient
occlusion.

3 PREVIOUS WORK

3.1 Molecular Surface Visualization
Molecular surfaces are a common visualization
technique for studying molecular structures. The
solvent-excluded molecular surface is formed by
rolling a spherical probe over spheres representing
the atoms of the molecule [34]. It represents areas
accessible by molecules of a given probe radius.
Connolly described methods for generating these
surfaces [8, 9]. Methods improving the efficiency
and quality of computing these surfaces have also
been described [1, 6, 36, 41]. While such methods
for producing molecular surfaces are necessary for
the visualizations produced in this paper, they do not
address the problem of visualizing the occluded interior
structure of the generated surfaces.

The problem of visualizing protein docking using
surfaces has been addressed [27]. This approach com-
putes the intermolecular negative volume of two docked
proteins to determine the amount of intersection be-
tween the two surfaces, with the purpose of enhanc-
ing drug-design by testing different potential confor-
mations. While effective for such work, this approach
is not directly applicable to the biochemistry presented
in this paper, which involves data with known structure
and no surface intersection.

Methods for analytically extracting pockets and cav-
ities using computational geometry techniques also ex-
ist. CASTp uses the weighted Delaunay triangulation
and alpha complex to identify and measure the area and
volume of pockets and cavities [17], and is available as
a PyMOL plugin. The ability to extract measurements
of pockets and cavities is very useful, however compar-
ison with an AOOM rendering demonstrates that im-
portant features of the cavity may be missed, such as
the circled portion of the cavity on the left and the cir-
cled access tunnel on the right in Figure 3, Bottom Left
(Bottom Right includes a Focal Region technique dis-

Journal of WSCG 18 ISSN 1213-6972

Figure 3: CASTp cavity extraction (bottom left, ren-
dered using PyMOL) does not extract the entire cav-
ity, and does not conform to the original molecular sur-
face (missing circled regions). A focal-region approach
(bottom right) based on distance from the center is less
effective than AOOM (top), as it occludes portions of
the inner cavity (circled access tunnel on the right) and
erodes regions of the outer surface that otherwise pro-
vide visual context.

cussed in Section 3.2), because the cavity is not calcu-
lated from the full molecular surface, but instead from
the extracted atoms that form the cavity. Also, there are
a number of structures for which CASTp fails, whereas
AOOM will work for any molecular surface (Figure 4).
Future work will include augmenting AOOM with the
types of analytical capabilities provided by CASTp. A
promising step in this direction involves extracting the
cavity by thresholding based on ambient occlusion in-
formation, followed by connected components analysis
to remove smaller pockets in the surface (Figure 4, Bot-
tom).

Recent work has resulted in techniques for producing
simplified abstractions of complicated molecular sur-
faces [7]. While this technique does not directly address
revealing hidden internal structure, it may prove bene-
ficial to combine AOOM with such abstracted surfaces,
as AOOM will work with any surface-based represen-
tation. Furthermore, AOOM could be applied to other
representations, such as ball-and-stick and ribbon ren-
derings.

3.2 Occlusion and Transparency
Occlusion is the most powerful of all depth cues [43].
However, occlusion can be problematic when visualiz-
ing 3D data, as objects of interest can be hidden from
view. Applying transparency to occluding objects can

Figure 4: A molecular structure [35] (top left) for which
CASTp fails, that reveals a long tube-like cavity struc-
ture when rendered using AOOM (top right). If desired,
the cavity can be extracted by thresholding on ambient
occlusion information followed by connected compo-
nents analysis (bottom).

make hidden objects visible, but simple transparent sur-
faces do a poor job of conveying surface shape [24].
Various techniques have therefore been developed to
enable more effective visualization of occluding and oc-
cluded surfaces.
Illustrative Techniques Illustrative techniques in-
clude a surface-rendering technique for view-dependent
tranparency that aims to automatically produce trans-
parent surfaces similar to technical illustrations [15].
Later work describes techniques for automatically pro-
ducing breakaway and cutaway illustrations of nested
surfaces [16]. These techniques are useful for nested
surfaces, but do not address a single self-occluding sur-
face. Similar work has been applied to isosurfaces ex-
tracted from volumetric data [19], which is useful for
objects within the volume of the isosurface, but not for
a single self-occluding surface.
Focus-and-Context Techniques A class of direct
volume rendering techniques has been developed to
reveal the inner structure of volumes while retaining
some outer structure to maintain context. Importance-
driven volume rendering highlights presegmented re-
gions based on user-supplied importance criteria [42].
Opacity reduction of occluding volumes by finding vol-
umetric features indicating a separation between areas
with similar voxel intensities has been described [2, 3].
Selective opacity reduction of regions using a function
of shading intensity, gradient magnitude, distance to
the eye point, and previously accumulated opacity has
also been described [5]. Opacity-peeling can be used
to remove some fixed number of fully-opaque layers
of material [32]. These focus-and-context techniques
use various features of the volumetric data to modu-
late opacity and reveal hidden structure, and therefore

Journal of WSCG 19 ISSN 1213-6972

do not apply directly to molecular surface rendering.
A depth-dependent focal region can also be used for
opacity modulation [29]. However, applying a similar
technique to our data shows that it is insufficient by it-
self due to the irregular geometries formed by molecu-
lar surfaces, even for a relatively round and centralized
cavity (Figure 3, Bottom Right). The work of [11] is
closest to that described in this paper, as ambient occlu-
sion is also used for modulating opacity. However, their
work focuses on volumetric data, and does not perform
the smoothing process described in 4.2 (Figure 6 shows
AOOM without smoothing).

3.3 Ambient Occlusion
For the techniques listed above, some method of deter-
mining the object or volume of interest is necessary, ei-
ther via distinct and separate surfaces or via functions of
the underlying volume. For displaying the inner cavity
of a molecular surface, we need a means to determine
which portions of the surface constitute the inner cavity
of interest. To do so we calculate ambient occlusion for
the surface.

Ambient occlusion [4, 26] is a shading method used
in computer graphics that approximates complex shad-
ows from an ambient light source by rendering objects
darker when surrounded by other objects (Figure 5,
Left). The basic algorithm involves casting a number
of rays at various angles from each point on a surface,
keeping track of the number of rays that intersect an-
other (or the same) surface. Recent work has focused
on real-time ambient-occlusion calculation for dynamic
scenes [20, 25, 37, 38], but for our static surfaces it is
sufficient to use a pre-calculated ray-tracing approach
and store the ambient occlusion per-vertex. The ambi-
ent occlusion term Op at a point p on a surface with
normal N can be computed by integrating the visibility
function Vp over the hemisphere Ω with respect to the
projected solid angle:

Op =
1
π

∫
Ω

Vp(~ω)(N ·~ω)dω, (1)

where Vp(~ω) is zero if p is occluded in the direction
~ω , and one otherwise. The dot product N · ~ω results
in a cosine-weighting across the hemisphere. Using a
cosine-weighted distribution of rays therefore removes
the need for this cosine factor, resulting in a simple ratio
of the number of rays that intersect a surface ri and the
number of total rays rt :

Op =
ri

rt
. (2)

Areas of the surface that are largely occluded will there-
fore have a high Op value.

Ambient occlusion rendering was developed to en-
hance realism in computer graphics by replacing the
standard ambient term by 1 − Op to darken objects

blocked from ambient light. Ambient occlusion has
also proven useful for scientific visualization. For ex-
ample, with molecular surface rendering, the locations
of cavities in the molecular surface become more ap-
parent (Figure 5, Left). Because ambient occlusion
is a measure of the “hiddenness” of a particular point
on a surface, we can use ambient occlusion informa-
tion to identify hidden structures and render them more
opaquely to provide visual emphasis.

4 AMBIENT OCCLUSION OPACITY
MAPPING

Ambient occlusion opacity mapping (AOOM) uses am-
bient occlusion information to modulate the opacity of
the molecular surface. Areas with high ambient occlu-
sion that would typically be rendered dark, are instead
rendered more opaque than areas with low ambient oc-
clusion. The color of the surface can also be adjusted
based on ambient occlusion to enhance perception of
the inner cavity versus the outer surface. This section
describes the implemenation details of AOOM, exten-
sions to the core AOOM technique enabling enhanced
opacity control, and supplemental visualization tech-
niques used with AOOM to visualize enzyme-ligand in-
teractions.

4.1 Implementation Details
The examples shown here use surfaces exported from
PyMOL. A molecular surface with a probe size of 1.4 Å
(≈ radius of water) is used. For most of the examples in
this paper, we show PBG deaminase [28] for consistent
comparison. Figures 4 and 12 show AOOM applied to
other molecules.

We have implemented AOOM via extensions to the
Visualization Toolkit (VTK) (www.vtk.org). Surfaces
exported from PyMOL are loaded in OBJ or VRML
format. Ambient occlusion is pre-computed on the
CPU for each vertex on the input via a ray-casting ap-
proach, and stored as scalar point data. As with other
ray-tracing techniques, calculating per-vertex ambient
occlusion is embarrassingly parallel, so we accelerate
computation by distributing computation across pro-
cessing units. Results are typically stored in one of
VTK’s polygonal file formats so that computation is
only necessary once. Because the ambient occlusion
is pre-computed, there is a neglible decrease in perfor-
mance when rendering with AOOM.

Depth sorting is performed to obtain correct blend-
ing, which can affect performance for large surfaces,
however this is also the case for standard transparency.
A depth-peeling approach could also be used to achieve
order-independent transparency [14, 18]. Because the
Op term constitutes a scalar field mapped to the surface,
a full range of color and opacity functions can be ap-
plied, typically in the same fragment program used for
lighting and shading. In the simplest case, the opacity

Journal of WSCG 20 ISSN 1213-6972

Figure 5: Ambient occlusion (left) vs. smoothed ambi-
ent occlusion (right). Using smoothed ambient occlu-
sion for opacity enables filtering of small-scale concav-
ities in the surface.

is set equal to the Op ambient occlusion term, α = Op,
via a linear lookup table, and a constant color is used
(Figure 6, Left). A double-ended color map that sepa-
rates high and low ambient occlusion values can also be
applied to help viewers distinguish interior and exterior
structures (Figure 6, Right). For the examples in this
paper we apply a color map from orange (low ambient
occlusion) to green (high ambient occlusion).

This approach is more effective than standard trans-
parency (Figure 1, Left) in revealing the structure of the
inner cavity, but can be improved upon with additional
opacity controls.

4.2 Smoothed Ambient Occlusion
Although Figure 6 demonstrates an improvement over
standard transparency techniques, there are still areas
of the outer surface that occlude the interior cavity, due
to small concave pockets formed on the surface. To
deemphasize these pockets, we smooth the ambient oc-
clusion data over the surface. Smoothing the ambient
occlusion filters out small-scale features, while retain-
ing the larger cavity (Figure 5). We smooth the ambi-
ent occlusion data directly on the surface by iteratively
solving the diffusion partial differential equation:

∂u
∂ t

= D ∇
2u, (3)

where D is a constant controlling the amount of dif-
fusion per time step (= 1 in the general case). This
approach is equivalent to smoothing using a Gaussian
filter, with more iterations equal to a Gaussian with a
larger standard deviation. We solve the diffusion equa-
tion rather than performing direct convolution with a
Gaussian because solving the diffusion equation itera-
tively only requires sampling immediate neighbors in
the polygonal mesh. In practice we have found that 100
iterations works well for our data, and has been used for
all images. The smoothing is typically performed once
at run-time, upon loading the data.

Although smoothed ambient occlusion is useful for
selecting the scale of features that are rendered more

Figure 6: The simplest implementation of AOOM, in
which ambient occlusion is directly mapped to opac-
ity. The image on the left uses a constant color, and the
image on the right applies a color map to the ambient
occlusion.

opaquely, we also provide the ability to use the original
ambient occlusion for color to retain detail (Figure 8).

4.3 Opacity Control
Arbitrary functions can be used to map the smoothed
ambient occlusion values to opacity, however we de-
sire a mapping that maintains the opacity of the inner
cavity while providing control over the opacity of the
outer surface. We experimented with functions such as
smoothstep, however the following equation was deter-
mined via visual inspection to produce better results:

α =

(
Op

τ

)ρ

, (4)

where α is clamped to [0,1]. The τ parameter provides
a threshold such that an Op >= τ gives an α of 1. A τ of
0.7 is used for all images in this paper (other than Figure
6, which uses a simple linear ramp). The ρ parameter
controls the shape of the curve as an exponential, and in
practice is allowed to vary over [0,10]. For a τ value of
1, a ρ value of 1 will give the same result as the simple
linear opacity mapping decribed in section 4.1. Increas-
ing ρ from 1 will reduce the opacity of the outer surface
to a greater degree than the inner surface. Decreasing ρ

from 1 will increase the overall opacity until ρ reaches
0, resulting in a constant α of 1 and a fully opaque sur-
face. A graphical representation of Equation 4 is shown
in Figure 7. The effect of changing ρ is shown in Figure
8, and is typically adjusted interactively by the user.

4.4 Supplementary Visualization Tech-
niques

We also apply a number of supplementary visualization
techniques to enable improved understanding of the en-
zyme active site cavity and ligand.
Silhouette-Edge Highlighting To maintain contextual
information of the outer surface while rendering the in-
terior surface more visible, silhouette-edge highlighting
can optionally be applied:

α = αin
(N̂·Ê+1), (5)

Journal of WSCG 21 ISSN 1213-6972

Figure 7: Example AOOM opacity functions.

Figure 8: Result of changing the ρ parameter to adjust
outer opacity while maintaining the opacity of the inner
cavity.

Figure 9: AOOM example without (left) and with
(right) silhouette-edge highlighting.

where αin is the opacity after applying Equation 4, and
N̂ · Ê is the dot product of the surface normal and the
eye vector. This equation selectively reduces the opac-
ity of areas on the surface with low opacity that face
the viewer. Areas of high opacity are less affected, and
areas of full opacity are unaffected. The calculation is
performed in the same fragment program used for light-
ing and AOOM. Other edge highlighting techniques,
such as suggestive contours [12, 13], could also be ap-
plied. Figure 9 shows the result of applying silhouette-
edge highlighting.
Colored Surfaces To better understand the chem-
istry occuring in the active site, it can be useful to
color the molecular surface by atom type. A nominal
color coding is employed, with charged residues col-
ored blue for cationic (positive) species and red for an-
ionic (negative) species. The carbon backbone is col-
ored green in our examples (coloring of specific groups,

Figure 10: Colored molecular surface (left), along with
AOOM renderings without (middle) and with (right)
silhouette-edge highlighting.

such as yellow sulfur groups, are also used). Because
the molecular surface color conveys information, color
mapping as described in Section 4.1 is not desirable in
this case, as the nominal color encoding will be dis-
torted. The silhouette-edge highlighting described in
above can therefore be especially helpful when using
such a color coding (Figure 10).
Enclosed Region Removal Sometimes fully-enclosed
regions are formed during the molecular surface calcu-
lation. These regions are not accessible from positions
exterior to the enzyme (for molecules with a radius >=
the surface probe radius) and can add visual clutter to
the scene. These regions can be automatically removed
by computing connected components on the molecular
surface and rendering only the largest connected com-
ponent, which will be the main molecular surface (Fig-
ure 1, Right vs. Figure 3, Top).
Textured Surfaces Textured surfaces can help im-
prove surface-shape perception [21, 22]. We therefore
apply an optional Perlin noise solid texture [31] to the
molecular surface. This can be especially helpful when
zoomed in close to the cavity surface (Figure 11).
Ligand Visualization To understand the interaction be-
tween enzymes and ligands, it can be useful to display
the ligand within the active site of the enzyme. Figure
11 shows comparison views incorporating stick models
of the ligand within the surface cavity, as well as speci-
fied enzyme residues of interest. The carbon backbones
are colored grey. Other representations of the ligand
and residues, such as spheres or van der Waals surfaces,
could also be used.
Backface Opacity Modulation When displaying the
ligand within the cavity, portions of the ligand can be
obscured within small pockets of the cavity. To enable
visualization of the ligand in these areas, further opac-
ity modulation can be applied to render back-facing
polygons more transparent (Figure 11). The opacity of
back-facing polygons is modulated as:

α = αin ∗
(
1.0− (N̂ · Ê)∗C

)
, (6)

where αin is the opacity after Equation 4 and option-
ally Equation 5 are applied, N̂ · Ê is the dot product
of the surface normal and the eye vector, and C con-
trols the overall opacity reduction. This equation selec-
tively reduces the opacity of back-facing surfaces more

Journal of WSCG 22 ISSN 1213-6972

Figure 11: The top views show AOOM renderings of
a closeup of the inner cavity. The image on the left
shows the back-facing surface with full opacity, and the
image on the right shows the back-facing surface ren-
dered with a view-dependent opacity to reveal the lig-
and within. The bottom image shows the same view-
point using standard transparency.

where the surface faces the viewer, providing subtle
edge highlighting of the back-facing surface. For fu-
ture work, it may be interesting to apply texture-based
transparency methods to back-facing polygons to en-
able improved perception of the outer and inner sur-
faces of these pockets [24, 33, 44].

5 CONCLUSION AND FUTURE
WORK

We have presented ambient occlusion opacity mapping
(AOOM), a novel technique for viewing inner molec-
ular surface structure. AOOM uses ambient occlusion
information, a measure of the “hiddenness” of a par-
ticular point on a surface, to render occluded areas of a
surface more opaque than non-occluded areas. We have
shown the application of AOOM to the specific prob-
lem of visualizing the active sites of enzymes, as our
collaborators have successfully used AOOM to better
understand the structure of this inner cavity. Smoothing
the ambient occlusion information over the surface en-
ables control over the scale of the cavities to highlight.
Color and opacity controls, including silhouette-edge
highlighting, have also proven useful in highlighting the
inner cavity of interest. AOOM is more effective than
techniques such as transparency, clipping planes, and
focal regions, and works for cases where cavity extrac-
tion techniques such as CASTp fail.

We have implemented AOOM via extensions to the
Visualization Toolkit (VTK), and have created a test

Figure 12: Various enzymes rendered using AOOM
(bottom) to enable better perception of inner structure
than with standard transparency (top right).

application using this code. Future work includes in-
corporating AOOM into existing molecular visualiza-
tion packages, such as PyMOL, to take advantage of
features, including measurements and ribbon-style ren-
dering, that our collaborators already find useful.

It may also prove useful to apply AOOM in fields
other than molecular visualization. Specifically, med-
ical visualization and oil and gas visualization could
benefit from AOOM, as both fields often work with data
sets exhibiting inner structures of interest that may be
occluded.

6 ACKNOWLEDGMENTS
We would like to thank Charles Lewis and Kenneth
Ashe II from the Department of Biochemistry and Bio-
physics at the University of North Carolina at Chapel
Hill for their help with this work.

REFERENCES
[1] Jean-Daniel Boissonnat, Olivier Devillers, and Jacqueline

Duquesne. Computing Connolly surfaces. J. Molecular Graph-
ics, 12(1):61–62, 1994.

[2] David Borland. Flexible Occlusion Rendering for Improved
Views of Three-Dimensional Medical Images. PhD thesis, De-
partment of Computer Science, University of North Carolina at
Chapel Hill, 2007.

[3] David Borland, John P. Clarke, Julia R. Fielding, and Russell M.
Taylor II. Volumetric depth peeling for medical image display.
In Robert F. Erbacher, Jonathan C. Roberts, Matti T. Gröhn,
and Katy Börner, editors, Visualization and Data Analysis, Pro-
ceedings of SPIE-IS&T Electronic Imaging 2006, volume 6060,
pages 35–45, January 2006.

[4] Rob Bredow. Renderman on film: Combining CG and live
action, Course 16: RenderMan in Production. In ACM SIG-
GRAPH 2002 Course Notes, 2002.

Journal of WSCG 23 ISSN 1213-6972

[5] Stefan Bruckner, Sören Grimm, Armin Kanitsar, and M. Ed-
uard Gröller. Illustrative context-preserving exploration of vol-
ume data. IEEE Transactions on Visualization and Computer
Graphics, 12(6):1559–1569, 2006.

[6] Ho-Lun Cheng and Xinwei Shi. Quality mesh generation for
molecular skin surfaces using restricted union of balls. In Pro-
ceedings of IEEE Visualization, pages 399 – 405, 2005.

[7] Gregory Cipriano and Michael Gleicher. Molecular surface ab-
straction. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1608–1615, 2007.

[8] Michael L. Connolly. Solvent-accessible surfaces of proteins
and nucleic acids. Science, 221(4612):709–713, 1983.

[9] Michael L. Connolly. The molecular surface package. J. Molec-
ular Graphics, 11(2):139–141, 1993.

[10] Michael L. Connolly. Molecular surfaces: A review. Net-
work Science, online article http://www.netsci.org/
Science/Compchem/feature14.htm, 1996.

[11] Carlos Correa and Kwan-Liu Ma. The occlusion spectrum for
volume classification and visualization. IEEE Transactions on
Visualization and Computer Graphics, 15(6):1465–1472, 2009.

[12] Doug DeCarlo, Adam Finkelstein, and Szymon Rusinkiewicz.
Interactive rendering of suggestive contours with temporal co-
herence. In Proceedings of the 3rd international symposium
on Non-photorealistic animation and rendering, pages 15–24,
2004.

[13] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and
Anthony Santella. Suggestive contours for conveying shape. In
Proceedings of SIGGRAPH, pages 848–855, 2003.

[14] Paul J. Diefenbach. Pipeline rendering: Interaction and real-
ism through hardware-based multi-pass rendering. PhD thesis,
Department of Computer Science, University of Pennsylvania,
1996.

[15] Joachim Diepstraten, Daniel Weiskopf, and Thomas Ertl.
Transparency in interactive technical illustration. Computer
Graphics Forum, 21(3):317–325, 2002.

[16] Joachim Diepstraten, Daniel Weiskopf, and Thomas Ertl. In-
teractive cutaway illustrations. Computer Graphics Forum,
22(3):523–532, 2003.

[17] Joe Dundas, Zheng Ouyang, Jeffery Tseng, Andrew Binkowski,
Yaron Turpaz, and Jie Liang. CASTp: Computed atlas of sur-
face topography of proteins with structural and topographical
mapping of functionally annotated residues. Nucleic Acids Re-
search, 34:W116–W118, 2006.

[18] Cass Everitt. Interactive order-independent transparency. Tech-
nical report, Nvidia Corporation, 2002.

[19] Jan Fischer, Dirk Bartz, and Wolfgang Strasser. Illustrative dis-
play of hidden iso-surface structures. In Proceedings of IEEE
Visualization, pages 663–670, 2005.

[20] Athanasios Gaitatzes, Yiorgos Chrysanthou, and Georgios Pa-
paioannou. Presampled visibility for ambient occlusion. Jour-
nal of WSCG, 16(1-3):17–24, 2008.

[21] James J. Gibson. The Perception of the Visual World. Houghton
Mifflin, 1950.

[22] James J. Gibson. The Ecological Approach to Visual Percep-
tion. Houghton Mifflin, 1979.

[23] David S. Goodsell. Visual methods from atoms to cells. Struc-
ture, 13(3):347–354, 2005.

[24] Victoria Interrante, Henry Fuchs, and Stephen M. Pizer. Con-
veying the 3D shape of smoothly curving transparent surfaces
via texture. IEEE Transactions on Visualization and Computer
Graphics, 3(2):98–117, 1997.

[25] Adam G. Kirk and Okan Arikan. Real-time ambient occlusion
for dynamic character skins. In Proceedings of the ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games,
April 2007.

[26] Hayden Landis. Production-ready global illumination, Course
16: RenderMan in Production. In ACM SIGGRAPH 2002
Course Notes, 2002.

[27] Chang Ha Lee and Amitabh Varshney. Computing and display-
ing intermolecular negative volume for docking. In G. M. Niel-
son G.-P. Bonneau, T. Ertl, editor, Scientific Visualization: The
Visual Extraction of Knowledge from Data. Springer-Verlag,
ISBN 3-540-26066-8, 2005.

[28] G. V. Louie, P. D. Brownlie, R. Lambert, J. B. Cooper, T. L.
Blundell, S. P. Wood, M. J. Warren, S. C. Woodcock, and P. M.
Jordan. PDB #: 1pda: Structure of porphobilinogen deaminase
reveals a flexible multidomin polymerase with a single catalytic
site. Nature, 359:33–39, 1992.

[29] Rakesh Mullicka, R. Nick Bryanb, and John Butmana. Confo-
cal volume rendering: Fast segmentation-free visualization of
internal structures. In Seong K. Mun, editor, Medical Imaging
2000: Image Display and Visualization. Proceedings of SPIE,
SPIE Vol. 3976, 2000.

[30] Arthur J. Olson and Michael E. Pique. Visualizing the future of
molecular graphics. SAR and QSAR in Environmental Research,
8(3-4):233–247, 1998.

[31] Ken Perlin. Improving noise. Computer Graphics, 35(3), 2002.

[32] Christof Rezk-Salama and Andreas Kolb. Opacity peeling
for direct volume rendering. Computer Graphics Forum,
25(3):597–606, 2006.

[33] Penny Rheingans. Opacity-modulating triangular textures for
irregular surfaces. In Proceedings of IEEE Visualization, pages
219–225, 1996.

[34] Frederic M. Richards. Areas, volumes, packing and protein
structure. Annual Review of Biophysics and Bioengineering,
6:151–176, 1977.

[35] E. H. Rydberg, C. Li, R. Maurus, C. M. Overall, G. D. Brayer,
and S. G. Withers. PDB #: 1kbb: Mechanistic analyses of
catalysis in human pancreatic alpha-amylase: detailed kinetic
and structural studies of mutants of three conserved carboxylic
acids. Biochemistry, 41(13):4492–4502, April 2002.

[36] Michel F. Sanner, Arthur J. Olson, and Jean-Claude Spehner.
Fast and robust computation of molecular surfaces. In Proceed-
ings of the eleventh annual symposium on Computational ge-
ometry, pages 406 – 407, 1995.

[37] Perumaal Shanmugam and Okan Arikan. Hardware accelerated
ambient occlusion techniques on GPUs. In Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, pages 73–80, April 2007.

[38] Peter-Pike Sloan, Naga K. Govindaraju, Derek
Nowrouzezahrai, and John Snyder. Image-based proxy
accumulation for real-time soft global illumination. In Pro-
ceedings of the 15th Pacific Conference on Computer Graphics
and Applications, pages 97–105, 2007.

[39] Marco Tarini, Paolo Cignoni, and Claudio Montani. Ambient
occlusion and edge cueing to enhance real time molecular visu-
alization. In Proceedings of IEEE Visualization, 2006.

[40] John Tate. Molecular visualization. In Philip E. Bourne and
Helge Weissig, editors, Structural Bioinformatics, chapter 23.
Wiley-Liss, 2003.

[41] Amitabh Varshney and Jr. Frederick P. Brooks. Fast analyti-
cal computation of richardï¿ 1

2 s smooth molecular surface. In
Proceedings of IEEE Visualization, pages 300–307, 1993.

[42] Ivan Viola, Armin Kanitsar, and Meister Eduard Gröller.
Importance-driven volume rendering. In Proceedings of IEEE
Visualization, pages 139–146, 2004.

[43] Colin Ware. Information Visualization: Perception for Design.
Morgan Kaufmann Publishers, second edition, 2004.

[44] Chris Weigle and Russell M. Taylor II. Visualizing intersect-
ing surfaces with nested-surface techniques. In Proceedings of
IEEE Visualization, pages 503–510, 2005.

Journal of WSCG 24 ISSN 1213-6972

Interactive Volume Rendering Aurora on the GPU

Orion Sky Lawlor∗ Jon Genetti†

Department of Computer Science, University of Alaska Fairbanks

Figure 1: Our rendered aurora, 60km above Finland.

ABSTRACT
We present a combination of techniques to render the
aurora borealis in real time on a modern graphics pro-
cessing unit (GPU). Unlike the general 3D volume ren-
dering problem, an auroral display is emissive and can
be factored into a height-dependent energy deposition
function, and a 2D electron flux map. We also present
a GPU-friendly atmosphere model, which includes an
integrable analytic approximation of the atmosphere’s
density along a ray. Together, these techniques enable
a modern consumer graphics card to realistically render
the aurora at 20–80fps, from any point of view either
inside or outside the atmosphere.
Keywords: Volume rendering, aurora borealis, atmo-
spheric scattering.

1 THE AURORA
The aurora borealis and aurora australis are beautiful
phenomena that have fascinated viewers in Earth’s po-
lar regions for centuries. Aurora are generated when
charged particles trapped by a planet’s magnetic field
collide with and excite gas in the upper atmosphere.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

∗e-mail:lawlor@alaska.edu
†e-mail:jdgenetti@alaska.edu

Figure 2: Global progress of a typical auroral substorm.

On Earth, these charged particles rarely penetrate be-
low 50 kilometers altitude, and the aurora become dif-
ficult to discern above 500 kilometers due to the thin
atmosphere.

The charged particle fluxes visible as auroral displays
are driven by magnetohydrodynamics that are complex
and the details are poorly understood, but the effects can
be qualitatively described. As is typical in magnetohy-
drodynamics, magnetic effects expel currents from the
body of a conductive plasma, compressing the charged
particle currents flowing through the magnetosphere
into thin sheets around one kilometer thick. As these
current sheets are bent along magnetic field lines and
intersect the atmosphere, they become visible as auro-
ral “curtains," long linear stripe-like features. Depend-
ing on the activity level of the aurora, curtains can be
nearly featureless greenish blur, or an extremely com-
plex and jagged path.

A typical “auroral substorm” [Aka64] begins with
simple, smooth curtains. These then grow and be-
gin to fold over during substorm onset, resulting in
many overlapping and interacting curtains, which be-
come more and more complex and fragmentary as the
substorm breaks up, and finally substorm recovery gives
dim pulsating aurora. Recent work by Nishimura et
al. [Nis10] has linked ground observations of pulsating
aurora to space-based observations of electromagnetic
waves deep in Earth’s magnetotail, using the THEMIS
satellites.

Because the detailed interactions of the charged par-
ticles and magnetic fields that drive auroral substorms
are poorly understood, for rendering purposes we ap-
proximate their effect. We represent an auroral curtain’s
path using a time-dependant 2D spline curve “foot-
print,” which are animated by hand to match the broad
global outlines of an auroral substorm as it moves over
the surface of the planet as shown in Figure 2.

Journal of WSCG 25 ISSN 1213-6972

1.1 Algorithm Overview
In this paper, we present a combination of techniques
to interactively render the aurora on modern graphics
hardware. To summarize our interactive GPU rendering
algorithm:

1. We begin with aurora curtain footprints, described
in Section 2, stored as 2D splines curving along the
planet’s surface.

2. We add 2D complexity to those curtain footprints
by wrapping a long thin fluid dynamics simulation
along them as described in Section 2.

3. We preprocess the curtain footprints into a 2D dis-
tance field described in Section 3.2, and stored in
another GPU 2D texture and used to accelerate ren-
dering.

4. We stretch the curtains into 3D using an atmospheric
electron deposition function, as described in Sec-
tion 2.1. The deposition function is expensive and
constant, so it is stored as a GPU texture lookup ta-
ble.

5. For each frame, we shoot rays from the camera
through each pixel onscreen. Any camera model
may be used.

6. For each ray, we determine the portion of the ray
that intersects the aurora layer and atmosphere, and
determine the layer compositing order as described
in Section 3.1.

7. To intersect a ray with an aurora layer, we step along
the ray at conservative distances read from the dis-
tance field, as described in Section 3.2. At each 3D
sample point, we sum up the auroral emission as the
product of the 2D curtain footprint and the vertical
deposition function.

8. To intersect a ray with the lower atmosphere, we
evaluate a closed-form airmass approximation as de-
scribed in Appendix A.

9. Final displayed pixels are produced by compositing
together the resulting aurora, atmosphere, and planet
colors followed by an sRGB gamma correction, as
described in Section 3.3.

Section 4 describes the performance of our algorithm
on various graphics hardware.

2 MODELING THE AURORA IN 3D
Because curtains become fragmented and complex dur-
ing the highly excited periods of an auroral substorm,
splines alone do not convey the complexity of real cur-
tains, as illustrated in Figures 3 and 4. Several ap-
proaches have been used to simulate this complexity,

Figure 3: Photograph of auroral curtains during a mod-
erate substorm. The shutter was open for four seconds.

Figure 4: High-speed video of a portion of a very active
curtain. Field of view is 4km wide.

Figure 5: Portions of the 2D fluid dynamics simulations
we use to model small-scale curtain complexity, and the
resulting 3D auroral curtains.

such as raycasting caustics, but we find the phenomena
are better matched by a fluid dynamics simulation.

To simulate aurora curtain footprint complexity, we
use an simple 2D Stam-type [Sta99] fluid advection
simulator. We use a multigrid divergence correction
approach for the Poisson step, which is both asymp-
totically faster than an FFT or conjugate gradient ap-
proach, and makes the simulator amenable to a graph-
ics hardware implementation. The simulator is solving
a Kelvin-Helmholtz instability problem, with the fluid
shear zone lying along the flux center of the auroral cur-
tain, as illustrated in Figure 5. We perform the simula-

Journal of WSCG 26 ISSN 1213-6972

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 80 100 120 140 160 180 200

R
e

la
ti
v
e

 C
o

n
c
e

n
tr

a
ti
o

n

Altitude in Atmosphere (km)

Temperature, relative to 1000°K
Total Shielding Mass M(z)

Density D(z)
Nitrogen

Atomic Oxygen

Figure 6: MSIS atmosphere as a function of altitude.

tion in a long vertical domain with periodic boundary
conditions, so we could replicate the same simulation
along an arbitrarily long spline. The resulting simu-
lated auroral curtain is stretched along the spline that
defines the center line of the curtain. For quiet early pe-
riods during the substorm, we use the initial steps of the
simulation, before substantial turbulence has distorted
the smooth initial conditions; later more chaotic cur-
tains are represented using later steps in the simulation,
when the simulation’s fluid turbulence results in a very
complex electron flux pattern. The magnetosphere’s ac-
tual plasma dynamics are of course very different from
simple Navier-Stokes fluids, but this simulation seems
to approximate the final turbulent appearance of the au-
rora reasonably well.

2.1 Aurora Vertical Deposition
We use splines to impose the global location of the au-
roral curtains, and fluid dynamics to approximate the
small-scale variations in brightness, but both of these
give only an electron flux footprint on the surface of
the planet, in 2D. To create a full 3D volume model of
the aurora, we must specify how the electrons are de-
posited through the atmosphere, via an electron deposi-
tion function.

The depth that charged particles penetrate the atmo-
sphere depends on both the velocity of the charged par-
ticles and the atmosphere’s state. However, the state
of the upper atmosphere is not constant, due to variable
energy input from solar radiation, ground-based upward
travelling radiation, and even variable auroral energy
deposition itself. Since the auroral energy deposition
profile depends on a variety of factors, including feed-
back due to auroral heating, an exact deposition model
would require us to simulate the spatial and temporal
variations in the upper atmosphere’s density, tempera-
ture, and chemistry. Software exists to do this, such as
NCAR’s thermospheric general circulation model, but
it is not amenable to either the GPU or to realtime inter-
active simulation. Instead, we begin with the standard
MSIS-E-90 atmosphere [Hed91], as shown in Figure 6.

 0.001

 0.01

 0.1

 1

 80 100 120 140 160 180 200

R
e

la
ti
v
e

 E
n

e
rg

y
 D

e
p

o
s
it
io

n
 R

a
te

Altitude in Atmosphere (km)

Summed
E=20 KeV
E=10 KeV

E=5 KeV
E=2 KeV
E=1 KeV

Figure 7: Auroral energy as a function of altitude.

We then apply the Lazarev charged particle energy
deposition model [Lum92], which is still the definitive
model for low-energy auroral electrons [Fan08]. The
inputs to the Lazarev model are the particle energy E
and the atmosphere’s mass Mz and density Dz at the
desired height z, and the output is the auroral energy
deposition rate Az:

E Initial energy of incoming particles, in thousands
of electron-volts [keV]. For aurora, this is 1–30keV
[Fan08]. These equations work well below 32keV.

z Altitude above surface to evaluate deposition.

Dz Atmosphere’s density at altitude z [g/cm3]. This is
listed directly in the MSIS data.

Mz =
∫

∞

z Dz′dz′ Atmosphere’s total shielding mass above
altitude z [g/cm2].

ME = 4.6×10−6 E1.65 Characteristic shielding mass for
particles of energy E [g/cm2]

r = Mz/ME Relative penetration depth [unitless]

L = 4.2r e−r2−r +0.48e−17.4r1.37
Lazarev’s unscaled in-

teraction rate [unitless]

Az = L E (Dz/ME) Aurora energy deposition rate at al-
titude z.

The result of the Lazarev deposition model is shown
in Figure 7 for several discrete input energies, as well
as a sum over energies from 1keV to 20keV. Vari-
ous parameterizations of this deposition function exist,
such as the popular Thermospheric General Circulation
Model [Rob87], which assumes a Maxwellian distri-
bution of electron energies. TGCM is actually simple
enough to evaluate per pixel at runtime, as we explore in
Section 4. However, both the Lazarev or TGCM mod-
els need an atmosphere model as input, and the ther-
mosphere’s density profile Dz is complex, as shown in
Figure 6. Since we will need a lookup table to store
the atmosphere’s shielding mass and density, we sim-
ply pre-evaluate the deposition function for various en-
ergies and store the result in a table.

Journal of WSCG 27 ISSN 1213-6972

2.2 Prior Work in Aurora Modeling
We extend the excellent and rigorous aurora rendering
work of Baranoski et al. [Bar00] in several ways. First,
this prior work forward maps aurora curtain points on-
screen followed by a guassian blur, while our renderer
walks backward along camera rays accumulating visi-
ble energy. Our raytracing approach allows us to ren-
der to arbitrary resolutions and produce sharp rendered
images. Second, we provide an interactive GPU imple-
mentation which includes the effect of the lower atmo-
sphere on the aurora and allows us to render the aurora
from any point inside or outside the atmosphere. In the
prior work, electron-atmosphere impacts are simulated
explicitly, while we simply look up their well known
altitude dependent statistical energy deposition func-
tion. Finally, the prior work’s curtains are constructed
from a combination of sine wave with phase shift os-
cillations and a caustic-type electron beam deflection
model; while our curtains begin as splines, with smaller
turbulent deflections applied via a fluid dynamics sim-
ulation.

The later work of Baranoski et al. [Bar05] presents a
detailed physically plausible model of the magnetohy-
drodynamics of a charge sheet’s path through the mag-
netosphere prior to becoming visible as an auroral cur-
tain. There appears to be an almost exact analogy be-
tween this work and our fluid dynamics simulation of
curtain dynamics: electric charges with inertia interact
via an electrostatic field, while fluid parcels with iner-
tia interact via a pressure field. Both electrodynamic
and fluid dynamic simulations use a multigrid Poisson
solver to control field divergence, and the results ap-
pear roughly similar as well. One difference is we have
not yet attempted to specialize our initial conditions to
generate the spiral structures visible as auroral surges.

3 GPU RAYTRACING THE AURORA
Raytracing is a rendering technique that finds a scene’s
color along a ray by intersecting the ray with the scene
geometry. Raytracing is computationally demanding,
and the first interactive raytracers used a combination of
carefully constructed scenes (such as a set of spheres)
and massive parallel computing horsepower. Univer-
sity of Utah researchers [Par98] used a large shared-
memory machine for this, while John Stone’s Tachyon
[Sto98] used a network of distributed-memory work-
stations. GPU raytracing is such a natural fit that ini-
tial work in this area [Pur02] actually preceded fully
programmable GPU hardware, and an abundance of
modern work exists. Similarly, volume rendering via
raytracing is a venerable and well known technique
[Kaj84].

3.1 Aurora rendering geometry
The aurora are almost perfectly emissive phenomena,
since the degree of absorption and scattering by the at-

mosphere is vanishingly small around 100km altitude.
Even at sea level air’s optical properties are reasonably
close to that of vacuum, and at 100km altitude the air’s
density is a millionfold smaller. The isotropic emis-
sions, and lack of absorption and scattering, simplifies
Kajiya’s rendering equation [Kaj84] for the aurora layer
into a single integral along the path of the ray.

Since aurora only appear in the upper layers of the at-
mosphere, we can treat them as a separate purely emis-
sive “aurora layer.” Below 80km is the bulk of the
lower atmosphere, which both absorbs and scatters light
as discussed in Appendix A. Underneath all of this
is the planet’s surface. Because the lower atmosphere
includes scattering, implemented using alpha blending,
we must composite the layers in the correct order.

A general-purpose raytracer typically uses recursion
to resolve the depth order of multiple layers of translu-
cent geometry that intersect a ray, but this general solu-
tion is not appropriate in our case. First, GPU hardware
that directly supports recursion was only introduced in
2010 with the NVIDIA Fermi line, and most current
cards do not directly support recursion. Second, even
where it is supported this recursive search for geometry
is expensive, typically requiring O(n2) intersection tests
to determine the depth order of n translucent layers, and
we find the many branches required can become a lim-
iting factor in a high performance GPU raytracer.

Thus instead of a recursive search, for each ray we
programmatically determine the correct compositing
order of the intersected geometry, as summarized in
Figure 8. The easy case is 8(a), where the ray misses
all geometry and heads out into deep space. Case 8(b)
is a ray that enters the aurora layer, accumulates some
emitted energy, and exits. The most complex case is
8(c), where the aurora layer is entered twice: once be-
fore the atmosphere, then some aurora light is scattered
out by the atmosphere, and finally a disjoint stretch of
aurora layer emits more light into the ray. Finally, case
8(d) begins on the planet’s surface, whose light is atten-
uated by the atmosphere, and then some aurora light is
picked up before reaching the viewer. The same cases
apply for a viewer inside the aurora layer. For a viewer
inside the lower atmosphere, the only two compositing
possibilities are atmosphere then planet, or atmosphere
then aurora.

One limitation of our explicit ray compositing order
is we do not support atmospheric refraction. However,
Earth’s atmosphere only very gently refracts rays, re-
sulting in a maximum curvature near the horizon which
is less than 1/6 of the planet’s curvature, so we feel it is
acceptable to ignore atmospheric refraction.

Given a portion of a ray that intersects the aurora
layer, in principle we step through the layer accumu-
lating aurora energy, at each step sampling the aurora
curtain footprint in 2D and multiplying it by the height-
dependent energy deposition function. The step size is

Journal of WSCG 28 ISSN 1213-6972

Figure 8: Possible ray/geometry intersection paths for camera rays originating outside the atmosphere.

Figure 9: Naive ray stepping, left, is inefficient when
curtains are sparse. Using a distance field, as shown on
the right, allows the raytracer to take much larger steps
in the empty spaces between curtains.

Figure 10: On the left, aurora curtain footprints. On the
right, the distance field to accelerate raytracing those
curtains.

a tunable parameter, with finer steps giving more aurora
detail but as we show in Section 4, taking more time to
compute. The step size is limited by the resolution of
the aurora footprint texture: an 8192x8192 aurora foot-
print stretched across a 12742km diameter planet gives
pixels that are 1.55km along the coordinate axes, and
2.2km diagonally. We find a 2km step size gives a rea-
sonable quality image, but with naive sampling is quite
slow. In the next section, we show how to accelerate the
aurora sampling process.

3.2 Acceleration via a Distance Field
The auroral layer is hundreds of kilometers high, and
wraps around a planet thousands of kilometers in di-
ameter. Yet auroral curtains are only a few kilometers
thick, so as we step along a ray we must sample the au-
rora layer at least every few kilometers to avoid missing
curtains. Even modern GPU hardware cannot support
thousands of such 3D samples per pixel in real time,
since there are millions of onscreen pixels.

However, most of the auroral layer does not actually
contain curtains, so if we could skip over the empty
space between curtains, we could dramatically improve
our overall performance. Figure 9 illustrates the prob-
lem, and the solution we use: a distance field [Coh94].
This field stores the distance to the nearest geometry,
which allows the raytracer to take much larger steps
through empty space.

The distance field is stored as a 2D texture, with a
slightly lower resolution than the aurora curtain image.
As we step along a ray, we read the step size from the
distance field, so we step at a fine 2km/step rate while
inside curtains; yet can take much longer steps far from
curtains, up to 1000km/step, without ever skipping over
a curtain. In pseudocode, our sampling loop through the
aurora is as follows.

float t = ray.start;
while (t < ray.end) {

vec3 P = ray.origin + ray.dir*t;
t += distance_field(P);
aurora += sample_aurora(P);

}

One surprising aspect of the GPU branch hardware is
that it is actually a performance loss to skip the aurora
sampling when distant from a curtain. We found it to
be at least 18% slower to do the following “optimized”
sampling; our other attempts at similar optimizations
have been up to sevenfold slower!

float t = ray.start;
while (t < ray.end) {

vec3 P = ray.origin + ray.dir*t;
float d = distance_field(P);
t += d;
if (d<ε) /* inside curtain */

aurora += sample_aurora(P);
}

The performance problem in this sort of loop is branch
divergence, when some GPU threads take the distance-
dependent branch and sample the curtain while others
do not. The large GPU branch divergence penalty ex-
ceeds the savings from avoided samples, which makes

Journal of WSCG 29 ISSN 1213-6972

it faster to simply sample everywhere than to carefully
decide whether to sample or not.

We generate the distance field from the curtain image
on the GPU, but as a preprocess before rendering. We
use a clever constant-time algorithm known as “jump
flooding” [Ron06], which takes distance propagation
steps at power of two distances to fill the distance field
across the 2D image.

3.3 Coloring the Aurora
On short timescales, the upper layers of the aurora are
green, while the lower layers have a purple tinge. We
use the Baranoski et al. [Bar00] approach to convert the
auroral emissions’ isolated spectral color peaks to CIE
XYZ and then a linear sRGB colorspace.

More difficult are numerical problems encountered
while summing thousands of dim samples. In Bara-
noski et al., aurora samples are forward mapped and
summed in a framebuffer, while we step along camera
rays in a loop on the GPU. Because the GPU registers
are floating-point, and floating-point framebuffers are
expensive, a raytracer can more efficiently sum aurora
samples in a high precision and high dynamic range lin-
ear colorspace. We then convert to the standard sRGB
gamma of 2.2 using the following function, which out-
puts a color with vector magnitude equal to the old
magnitude raised to the 1/2.2 power.

float brightness=length(color);
return color*pow(brightness,1/2.2-1);

4 PERFORMANCE ANALYSIS
We use the standard OpenGL Shading Language, GLSL,
to implement our GPU aurora raytracer. Unlike the
general-purpose GPU languages CUDA and OpenCL,
the older GLSL is specialized for rendering tasks, so
it directly supports graphics hardware features such as
anisotropic mipmapping. Recent work on VOREEN
[Men10] showed CUDA only improves performance
when volume samples overlap, such as in gradient cal-
culations. Table 1 compares the performance of our
GPU aurora rendering algorithm across various GPU
families, and a C++ OpenMP multicore CPU version
of the algorithm. Even using four cores and nearest-
neighbor texture sampling, the CPU runs about a hun-
dred times slower than the GPU versions.

Table 2 lists the performance impact of various al-
gorithm and parameter modifications. This is a list of
alternatives not chosen for the current implementation,
although many of these could still be useful.

Our raytracer acceleration distance field results in
rather dramatic per-pixel performance variations, as
shown in Figure 11. The corresponding frame is shown
in Figure 1. Where multiple curtains cross camera rays
the rendering cost can be hundreds of nanoseconds per
pixel, while empty regions of space require less than

GPU FPS
NVIDIA GeForce GTX 280 60fps

NVIDIA GeForce 8800M GTS 38fps
ATI Radeon HD 4830 23fps

Intel Q6600 2.4GHz Quad-Core CPU 0.4fps
Table 1: Comparing renderer performance across hard-
ware. Resolution is 720p: 1280x720.

Modified Rendering Method Cost
No distance field, use naive stepping +350%
Make aurora layer 100km thicker +32%
Take 1km steps through aurora, not 2km +60%
Take 4km steps through aurora, not 2km -33%
No table, use TGCM deposition function +55%
No decibel map, linear deposition table -10%
No deposition function, constant value -14%
No curtain footprint image lookup -14%
No exponential atmosphere -15%
No planet texture -0.6%
No sRGB gamma correction -0.5%

Table 2: Performance impact of various alternatives.
Positive time cost lowers framerate.

Figure 11: Measured rendering time per pixel: black
represents 10ns/pixel, white represents 200ns/pixel.

ten nanoseconds per pixel. This experiment was run
on the NVIDIA GeForce 8800M GTS; timings on dif-
ferent cards vary, but the ratios are similar. This fig-
ure is somewhat blurred due to the nature of GPU per-
formance analysis: GPU hardware provides no means
to time individual pixels, and in fact extensive GPU
pipelining makes per-pixel timing difficult to even de-
fine, so instead we time overlapping blocks of 64x64
pixels. After several repetitions, the median per-block
times are converted to per-pixel times by subtracting off
the per-block overhead and dividing by the number of
pixels. The remaining sampling jitter due to OS and
driver overhead is approximately σ = 2ns/pixel.

4.1 GPU Aurora on a Powerwall
We used the parallelizing library MPIglut [Law08] to
port our sequential OpenGL/GLUT aurora rendering
application to a twenty-screen powerwall, as shown in

Journal of WSCG 30 ISSN 1213-6972

Figure 12: Interactive aurora rendering on a powerwall
cluster with ten GPUs and twenty screens at 29fps.

GPUs Resolution FPS Speedup
1 1680x2100 35 1
2 3360x2100 30 1.6
4 6720x2100 27 3.0
8 6720x4200 29 6.5

10 8400x4200 29 8.2
Table 3: Parallel aurora rendering via MPIglut.

Figure 12. This was a surprisingly straightforward pro-
cess, involving recompiling the rendering application
with MPIglut instead of glut, and running the result-
ing binary. Scalability as shown in Table 3 is rea-
sonably good, although view-dependent load imbalance
becomes large when some screens must draw complex
curtains and other screens only empty space; for the
benchmark this impacts the two and four GPU val-
ues somewhat. The aggregate rendering rate on ten
NVIDIA GeForce GTX 280 cards is a little over 29
frames per second at 8400x4200 resolution, or just over
a billion finished pixels per second.

5 CONCLUSIONS
With only moderate programming effort, modern graph-
ics hardware is capable of truly incredible amounts of
computation. We have harnessed that power to render
the aurora at interactive rates, but much work remains.

At the moment, our raytracer implementation stands
alone, and includes no polygonal geometry. It would be
relatively straightforward to extend this to a hybrid ray-
tracer, where ordinary polygon-based geometry is first
rasterized to a typical depth buffer, and these depth val-
ues are then used to limit the extent of each ray [Sch05].
This extension would allow the techniques described
in this paper to add atmospheric and aurora effects to
a scene that includes terrain, vegetation, spacecraft, or
other geometry.

We currently render a single instantaneous snapshot
of the aurora; the viewer is free to move, but the cur-
tains are stationary. It should be straightforward to ex-
tend this to animating curtains, and we have done so
offline, but image I/O and texture upload rate becomes
an issue when rendering in realtime. Similarly, we cur-
rently do not integrate the curtains across the minutes-
long timescale that gives high red aurora. This should
be a simple change to our input curtain footprint im-
ages. Both changes should allow a detailed compari-
son with the widespread seconds-long-exposure photo-
graphic images of the aurora.

Since aurora are purely emissive phenomena, our at-
mospheric airmass model currently ignores clouds and
the interesting multiple scattering effects of sunlight on
the air. Incorporating these effects would allow us to
simulate aurora at sunrise, or aurora rising over a thun-
derhead. More ambitiously, implementing a global il-
lumination algorithm such as photon mapping or path
tracing could allow aurora to cast light onto complex
geometry, such as a mountainside or spacecraft.

Aurora are visible on many planets, and often display
curtains and dynamics similar to those on Earth. How-
ever, the dynamics of aurora on planets without a single
dominant magnetic field, such as Venus or Mars, can be
quite different, and simulations would be beneficial for
studying these fascinating phenomena.

ACKNOWLEDGEMENTS
The authors sincerely thank Dr. Syun-Ichi Akasofu
for providing the schematics of a typical auroral sub-
storm and the video capture in Figure 4, as well as Dr.
Bill Brody for digitizing and animating that substorm
as a series of continuous splines as shown in Figure 2.
Our night earth texture is from NASA’s Visible Earth
project. Previous support for this project has been pro-
vided by the American Museum of Natural History.

REFERENCES
[Aka64] Syun-Ichi Akasofu. The development of the

auroral substorm. Planetary and Space Science,
12(4):273 – 282, 1964.

[Bar00] G.V.G. Baranoski, J.G. Rokne, P. Shirley,
T. Trondsen, and R. Bastos. Simulating the aurora
borealis. In Computer Graphics and Applications,
pages 422–432, october 2000.

[Bar05] Gladimir V. G. Baranoski, Justin Wan, Jon G.
Rokne, and Ian Bell. Simulating the dynamics of
auroral phenomena. ACM Trans. Graph.,
24(1):37–59, 2005.

[Coh94] D Cohen and Z Sheffer. Proximity clouds–an
acceleration technique for 3D grid traversal. The
Visual Computer, 11(1):27–38, 1994.

[Fan08] X. Fang, C. E. Randall, D. Lummerzheim, S. C.
Solomon, M. J. Mills, D. R. Marsh, C. H.
Jackman, W. Wang, and G. Lu. Electron impact

Journal of WSCG 31 ISSN 1213-6972

ionization: A new parameterization for 100 eV to
1 MeV electrons. J. Geophys. Res., 113(A09311),
2008.

[Hed91] A. E. Hedin. Extension of the MSIS Thermosphere
Model into the Middle and Lower Atmosphere. J.
Geophys. Res., 96(A2):1159–1172, 1991.

[Kaj84] James T. Kajiya and Brian P Von Herzen. Ray
tracing volume densities. SIGGRAPH Comput.
Graph., 18(3):165–174, 1984.

[Law08] Orion Sky Lawlor, Matthew Page, and Jon Genetti.
MPIglut: Powerwall programming made easier.
Journal of WSCG, pages 130–137, February 2008.

[Lum92] D. Lummerzheim. Comparison of energy
dissipation functions for high energy auroral
electrons and ion precipitation. Technical Report
UAG-R-318, Geophys. Inst., Univ. of
Alaska-Fairbanks, April 1992.

[Men10] Jörg Mensmann, Timo Ropinski, and Klaus H.
Hinrichs. An advanced volume raycasting
technique using GPU stream processing. In
GRAPP Proceedings, pages 190–198, 2010.

[Nis10] Y. Nishimura, J. Bortnik, W. Li, R. M. Thorne,
L. R. Lyons, V. Angelopoulos, S. B. Mende, J. W.
Bonnell, O. Le Contel, C. Cully, R. Ergun, and
U. Auster. Identifying the driver of pulsating
aurora. Science, pages 81–84, October 2010.

[Par98] Steven Parker, Peter Shirley, Yarden Livnat,
Charles Hansen, and Peter-Pike Sloan. Interactive
ray tracing for isosurface rendering. Visualization
Conference, IEEE, 0:233, 1998.

[Pur02] Timothy J. Purcell, Ian Buck, William R. Mark,
and Pat Hanrahan. Ray tracing on programmable
graphics hardware. ACM Transactions on
Graphics, 21(3):703–712, July 2002.

[Rob87] R. G. Roble and E. C. Ridley. An auroral model
for the NCAR thermospheric general circulation
model (TGCM). Annales Geophysicae, Series A -
Upper Atmosphere and Space Sciences, pages
369–382, december 1987.

[Ron06] Guodong Rong and Tiow-Seng Tan. Jump
flooding in GPU with applications to Voronoi
diagram and distance transform. In I3D ’06:
Proceedings of the 2006 symposium on Interactive
3D graphics and games, pages 109–116, New
York, NY, USA, 2006. ACM.

[Sch05] Henning Scharsach. Advanced GPU raycasting. In
Proceedings of CESCG, 2005.

[Sta99] Jos Stam. Stable fluids. In SIGGRAPH ’99
Conference Proceedings, pages 121–128, 1999.

[Sto98] John Stone. An efficient library for parallel ray
tracing and animation. Master’s thesis, Dept. of
Computer Science, University of Missouri Rolla,
1998. http://jedi.ks.uiuc.edu/j̃ohns/.

[You69] A.T. Young. High-resolution photometry of a thin
planetary atmosphere. Icarus, 11(1):1–23, March
1969.

A CALCULATING AIRMASS
The integral of atmospheric density along a ray, known
as “airmass,” is widely used in astronomy, and we use
it to approximate both the aurora light lost to the at-
mosphere, and night sky light added. A gravitationally
bound atmosphere of uniform temperature and compo-
sition falls off in density at an exponential rate with
height: D(z) = e−z/H , with the exponential constant H
known as the atmosphere’s “scale height.” The airmass
integral along a ray parameterized by t is then:

A =
∫ te

ts
D(z(t))dt =

∫ te

ts
e−z(t)/Hdt

Even assuming a spherical planet, height varies non-
linearly along the ray path: z(t) =length(~S+ t~D)− r =√

a+bt + ct2− r, so:

A =
∫ te

ts
e−
√

a+bt+ct2−r
H dt

This integral cannot be solved in closed form. A
trigonometric substitution [You69] allows high-order
terms to be discarded, giving an integral that is easy to
evaluate at the surface of the planet or at infinity, but a
general raytracer requires arbitrary start and end points.
We do this by approximating z(t)/H with a quadratic
m + l t + kt2. We can eliminate the linear term l by
translating the ray parameter t to t ′, leaving m as the
height of closest approach of the ray to the planet, and
k as the quadratic slope of that approach, both measured
in scale height units.

A≈
∫ t ′e

t ′s
e−m−kt2

dt

This integral can be evaluated exactly using the error
function “erf”:

A≈ e−m
√

π

4k

(
erf(
√

kt ′e)− erf(
√

kt ′s)
)

Some GPU languages like GLSL do not have a built-in
erf, so we use the Winitzki approximation:

erf(x)≈

√
1− e−x2

4
π +0.147x2

1+0.147x2

Despite the plentiful transcendentals, this performs quite
well on the graphics card at runtime. Despite the stacked
approximations, accuracy appears quite good as well,
except where numerical roundoff causes the erf differ-
ence to approach zero. This case can be handled by
either falling back to a linear approximation of z(t), or
by interpreting the finite difference of erf values as a
scaled derivative of erf: e−kt2

.

Journal of WSCG 32 ISSN 1213-6972

Fast and Memory Efficient Feature Detection using
Multiresolution Probabilistic Boosting Trees

Florian Schulze
VRVis Center for Virtual
Reality and Visualization

Research
fschulze@vrvis.at

David Major
VRVis Center for Virtual
Reality and Visualization

Research
dmajor@vrvis.at

Katja Bühler
VRVis Center for Virtual
Reality and Visualization

Research
buehler@vrvis.at

Abstract

This paper presents a highly optimized algorithm for fast feature detection in 3D volumes. Rapid detection of structures and
landmarks in medical 3D image data is a key component for many medical applications. To obtain a fast and memory efficient
classifier, we introduce probabilistic boosting trees (PBT) with partial cascading and classifier sorting. The extended PBT
is integrated into a multiresolution scheme, in order to improve performance and works on block cache data structure which
optimizes the memory footprint. We tested our framework on real world clinical datasets and showed that classical PBT can be
significantly speeded up even in an environment with limited memory resources using the proposed optimizations.

Keywords: Feature Detection, Machine Learning, Decision Trees

1 INTRODUCTION

In the past years various methods for automatic pro-
cessing and understanding of medical 3D image data
have been developed. One important building block is
the automatic detection of anatomical landmarks. De-
tection of these features stands often at the beginning
of the processing pipeline: it transforms the dense vol-
ume representation into a sparse set of possible land-
mark locations, allowing a significant acceleration of
subsequent high level segmentation methods.

However, making the transition from pure research
algorithms which focus often solely on detection per-
formance to real world radiology applications brings a
number of additional requirements into consideration.
The algorithm has to be able to deal with possibly lim-
ited technical resources - not all workstations in a hos-
pital might be equipped with the newest hardware, and
the algorithm shall run in the context of radiology work-
station software which already occupies resources. Ex-
cellent time performance is required because automatic
algorithms often substitute manual workflows while the
result must be authorized and/or adjusted by the radiol-
ogist. In this case an automatic algorithm will only be
used if the execution time of the algorithm is consider-
ably shorter than the manual approach would be.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

This work presents a highly optimized general pur-
pose feature detection framework for the effective re-
duction of possible feature candidate positions in 3D
image data as preprocessing step for more expensive
object detection methods. Referring to the clinical ap-
plication context, we designed our method according to
the following requirements:

1. Time Performance: The result must be calculated in
relatively short time (e.g. within seconds) in order
to be usable in a clinical environment.

2. Memory Performance: The algorithm must also ex-
ecute on standard PCs with limited technical re-
sources.

Thus, the focus of the proposed algorithm and its im-
plementation is on a small adaptable memory footprint
while retaining as much execution speed as possible.

2 RELATED WORK
Object recognition, and local feature detection as a sub-
discipline of it, are since many years core topics of com-
puter vision research.

Point based methods beginning with the Harris cor-
ner detector [HS88] try to automatically extract points
of interest from an image. Exact control of which points
are extracted is not supported, therefore recognition of
complex structures/areas is done by combining sets of
feature points. The most prominent point detector is
the SIFT algorithm [Low99] which overcomes the lim-
itations of previous solutions by being scale, rotation
and perspective invariant. However, translating SIFT,
which is aimed for 2D images, to 3D volumes suffers
from dramatic performance problems. Niemeijer et al.
report in [NGL+09] that SIFT feature extraction on a

Journal of WSCG 33 ISSN 1213-6972

200×200×1024 volume downscaled by 50% takes 10
minutes to compute.

Machine learning based approaches use a (learned)
classifier to decide if a specific region of an image be-
longs to an object. A prominent example for this class
of algorithms is the method for real time face detection
presented by Viola and Jones [VJ01] that uses a cascade
of boosted weak classifiers. A more general approach
has been proposed by Tu et al. [Tu05] by introducing
Probabilistic Boosting Trees (PBT). PBTs are decision
trees which use boosted learners as classifiers in each
tree node. Violas boosted classifier cascades are a spe-
cial case of a PBT. An alternative to PBTs is the pop-
ular d-tree forests method [MDUA07] which produces
higher detection rates, but with the drawback of much
higher execution costs [LK08].

PBTs have been successfully applied on tissue classi-
fication on medical images: Militzer and Vega-Higura
[MV09] use PBT for bone removal in CT angiography.
The volume is first split into segments using the wa-
tershed algorithm, then each segment is classified with
PBT.

Fast preselection of feature candidates for more ex-
pensive high level methods is the topic of the paper of
Langer and Kuhnert [LK08]. They integrate classical
decision trees with simple color based features and a
multiresolution scheme for candidate computation for
the expensive SIFT feature detection.

The problem of the large memory footprint of vol-
ume data is often discussed in context of volume ren-
dering. LaMar et al. [LHJ99] use an octree structure
with blocks containing different resolutions, where only
the needed subvolume is downloaded to graphics hard-
ware. However, the whole volume data still has to fit
into main memory. This has been improved by Guthe
et al. [GWGS02] who proposed to hold the data 30:1
wavelet compressed in memory and extract needed data
on demand block-wise and cache the data as long as
possible.

The purpose of our feature detection method is sim-
ilar to that of Langer and Kuhnert [LK08] since we
also aim to reduce the list of possible candidate posi-
tion as much as possible for later more expensive meth-
ods. Langer and Kuhnert tailored their algorithm es-
pecially for pre-filtering for SIFT feature computation.
In difference to them we decided to use the more gen-
eral PBT [Tu05]. This has several advantages: first,
it is independent from SIFT features and easily adapt-
able to any kind of landmark/structure. Second, deci-
sion tree methods can capture large image variabilities
while only need to execute logn weak classifiers. Third,
they are robust against over-fitting unlike classic deci-
sion algorithms.
Our contribution. To satisfy the high performance re-
quirements to the algorithm in a clinical environment,
we extend the original PBT by integrating cascading

tree nodes into normal tree building and introduce the
concept of classifier sorting (Section 3.1). Both result
in higher execution speed of the classifier. A second
performance optimization is achieved by integrating the
PBT into a multiresolution classification scheme (Sec-
tion 3.2). An effective postprocessing step is intro-
duced that applies particle filters to compute probability
maps for candidate features for outlier detection (Sec-
tion 3.3). The memory footprint of our feature detection
framework is optimized by the introduction of a mul-
tiresolution, multi-derivative block cache data structure
(Section 4). The performance of our method has been
evaluated on a real world clinical usecase (Section 5).

3 ALGORITHM
In the following we explain in detail the classifier and
our extensions on it (Section 3.1), the multiresolution
feature detection framework (Section 3.2) and the post-
processing step based on candidate probability (Section
3.3).

3.1 Probabilistic Boosting Tree with Par-
tial Cascading and Classifier Sorting

Probabilistic Boosting Trees. A PBT [Tu05] is a spe-
cial kind of decision tree which holds at each tree node a
boosted classifier. PBTs are trained top down. Based on
a set of positive and negative samples a boosted classi-
fier with a limited number of weak classifiers is trained
for each tree node. On each recursion level the sam-
ple set is split using the generated classifier and the
new subsets are used to train positive and negative child
branches. Although multi-class classifiers are possible,
we limited our implementation to the simple two-class
model.
Classical Cascading. If the boosted classifier in each
tree node is trained in a way that it does not produce
false negative results, the resulting decision tree con-
sists of positive child nodes only. Traversing this tree
has only one sequential path and degenerates to the cas-
cade of boosted classifiers of Viola and Jones [VJ01]
(see figure 1 left). Cascading improves execution speed.
It allows the classifier to early terminate and reduces

Cascading Tree Node Default Tree Node

false

true

false

false

false true

false

true

false

false

Cascaded Boosting Classifier Boosting Tree with one Cascading Step

Figure 1: Probabilistic Boosting Tree. Left, tree with
cascading nodes only. Right, one cascading node at the
tree root followed by a default PBT.

Journal of WSCG 34 ISSN 1213-6972

in this way the number of classification tests, but it re-
duces also the flexibility of the original PBT to capture
a high variability of features.
PBT with Partial Cascading. We observed that a high
number of samples can be classified as false by execut-
ing only one boosted classifier (see section 5.2). This
allows to combine the speed-up of cascading with the
flexibilty of the PBT by placing one cascaded classi-
fier in front of the PBT: Our tree model contains one
cascading node at the root level. A negative outcome
stops the classification immediately, a positive outcome
is further processed using the full PBT (figure 1 right).
Classifier Sorting. We also observed that a high
amount of samples can be early terminated with a cheap
and fast performing classifier (see section 5.2) and that
it is advantageous to use expensive classifiers only in
places which are executed less often. In our model the
most visited place is the cascading node at the root of
the tree which can discard a large amount of samples
as false. The rest of the tree is visited less frequently.
Hence, we sort the expensive classifiers into the later
tree nodes while the first node can only use fast execut-
ing classifiers.
Image Features. The classifier decides on a per voxel
basis if the current voxel belongs to the searched struc-
ture or not. Since PBT is a so called ensemble classi-
fier, basically every possible classification method can
be integrated. However, the selection of image features
has influence on detection performance and execution
speed.

In the current work we integrated classifiers which
make decisions based on five different image features.

1. Haar-like features with different patterns and sizes.

2. Image intensity

3. Gradients and principal curvatures

4. Region histograms based on image intensity and
derivatives with different sampling resolutions and
sizes.

5. Structure tensors

Haar-like features and image intensities are the fea-
tures with the lowest computational costs and are there-
fore used for building the cascaded root. Gradients need
to be computed by filtering as well as principal curva-
tures which need an additional Hessian analysis step.
Region histogram classification multiplies the cost by
the number of samples. Structure Tensors require the
convolution of the gradient image with a Gaussian ker-
nel and subsequent eigenanalysis of the structure tensor
matrix. These three types of classifiers are exclusively
used for the non-cascaded part of our PBT.

The chosen weak classifiers are scale variant which
is adequate for our application scenario because we ex-
pect anatomical structures to have a specific size (small

Level 0

Level 1

Level 2

Not evaluated Evaluated but
not accepted

Evaluated and
accepted

Figure 2: Multiresolution Algorithm

variations in size should be accepted anyway, larger
variations because of age or gender can be covered with
different detectors and pre-classification based on pa-
tient background data).

3.2 Multiresolution Feature Detection
The PBT with Partial Cascading is embedded into a
multiresolution scheme based on a power of two Gaus-
sian image pyramid [AAB+84] to further reduce the
number of voxels to be processed.

A separate classifier Ci is trained for each resolution
level. Multiresolution classification starts at the lowest
resolution level n by applying classificator Cn on image
In. Classification results in a set positively marked vox-
els (p+,n

0 , ..., p+,n
m). These voxels are propagated into

the next higher resolution level n− 1 where each posi-
tive lower resolution voxel marks the voxels within the
corresponding filter kernel in level n−1 as candidates.
Classification of the current level is only computed on
the remaining candidate voxel. The propagation is re-
peated until the original resolution (level 0) is reached.
Figure 2 depicts the algorithm with a 1D example. Note
that most of the high resolution voxels do not need to
be checked using this scheme.

In the case of overlapping kernels some higher reso-
lution voxels have two or more parent voxels and it can
happen that a voxel is marked as positive and negative.
In this case the positive mark is kept. This leads to a
slight over-segmentation, but on the other hand the ef-
fect of false negative samples might be reduced, which
is a wanted effect.

3.3 Filtering of Results Using Fast Proba-
bility Computation

The direct result of our feature detection algorithm is a
bit mask of candidates which still might contain false
positives. One method to reduce the number of false
positives is to assign a probability to each candidate that
reflects the confidence in its classification. The result-
ing probability map can then be further processed by
thresholding which effectively removes outliers and/or
non-maximum-suppression which only leaves the can-
didates which are at the center of the expected shape.

Journal of WSCG 35 ISSN 1213-6972

derivatives

re
so
lu
tio
n

intensity gradient curvature

normalization

Figure 3: Datastructure: Only the base intensity volume
is kept completely in memory. All other data, derivative
and lower resolution volumes are computed block wise
on demand.

Probabilistic boosting trees can deliver such a proba-
bilistic classification. Drawback of this straight forward
approach is the low time performance.

We observed that the result of feature detection form
clusters at the feature location resembling already the
searched structure (e.g. the intervertebral discs in figure
9). Thus, we propose to assign probabilities to candi-
dates by comparing the shape of its surrounding cluster
with the searched shape.

A fast option to compute this are shape particle filters
which are applied in our framework. The likelihood that
a candidate belongs to the searched structure is com-
puted by applying a shape approximating the structure
of interest around each candidate and by measuring the
ratio of overlap of neighborhood and shape.

4 IMPLEMENTATION

4.1 Data Preprocessing

The spatial resolution of medical 3D images in a clin-
ical environment is generally highly anisotropic. Es-
pecially the slice distances show high variability from
modality to modality, from scanner to scanner depend-
ing on the used imaging protocol. The scale variant
nature of the image features described in section 3.1 re-
quires the same spatial resolution of all images to be
processed.

Thus, training data as well as unseen data is prepro-
cessed by resampling the original volume data to an
isotropic voxel size that is selected based on the targeted
anatomical landmark. The current implementation uses
bilinear interpolation for resampling.

The resampled volume (in the following denoted as
"base volume") is the basis for all following computa-
tions and the original data can be discarded at this point.

4.2 Data Management and Derivative
Computation

The data management component is responsible for ef-
ficiently providing the necessary data to compute the
requested weak classifiers on all resolution levels while
keeping the memory footprint small and flexible.

The supported weak classifiers require intensity,
gradient and principal curvature data for all positively
marked voxel positions on the different levels of
resolution. It is obvious that the performance of the
weak classifiers decides on the performance of the
whole PBT.

It is well known that filtering volume data with sep-
arated filters for derivative computation is much faster
than applying a three dimensional filters per voxel in-
dividually. We currently use a 3× 3× 3 Sobel for gra-
dient computation, which can be replaced by any other
appropriate separable filter. However, applying a sepa-
rable filter for derivative computation requires to keep
the whole filtered volume in memory, which might be
problematic having our initial requirements in mind.

To overcome this limitation and to make the memory
footprint manageable also in an environment with lim-
ited resources, we introduce a cached block structure
(see Figure 3). The intensity base volume is entirely
located in memory. Lower resolution volumes, gradi-
ents, structure tensors and principal curvature are or-
ganized into smaller blocks that are only computed on
request. After computation, block data remains cached
in memory. If the memory for allocation of new blocks
gets low, the cache is partially cleaned by removing data
which was accessed the longest time ago.

For fast computation of Haar-like features an addi-
tional data structure, an integral volume, is needed.
This data is currently computed as a whole and kept in
memory. This is due to the more complicated genera-
tion method of this data which makes it hard to compute
the value block-wise on demand.

4.3 Optimized Classifier Execution
Generally each voxel can be classified individually by
executing the whole boosting tree starting from the low-
est resolution. However, having in mind that one voxel
in a lower resolution volume has influence on a num-
ber of voxels in the higher resolution and that the data
is arranged in a cached block structure, it is worth to
consider a optimal execution order.

Detection of features on the whole volume or of a sub
volume follows two strategies. First, feature detection
is done in resolution level order. This means that the
PBT for one level is executed on the whole region of
interest and then all positive classified voxels are prop-
agated to the next higher level.

Second, all per level classification is performed block
wise. In this way only a small number of data blocks

Journal of WSCG 36 ISSN 1213-6972

must be in cache. Any other execution order (for ex-
ample line wise) would cause a lot of cache misses and
would likely lead to often re-computation of block data.
If multiple classifiers must be applied on the same vol-
ume all classifiers are executed on each block sequen-
tially. After the first classifier is executed the block
cache remains in (partially) filled state. Data which is
already cached must not be computed if the next clas-
sifier tries to access this data. Parallelization is imple-
mented using a worker thread-pool. Classification of
one block is fed into a job queue which distributes the
work to the worker threads.

5 EXPERIMENTS
Our multiresolution PBT framework was tested in a
real world scenario as preprocessing part for a semi-
automatic annotation algorithm for the vertebral col-
umn. The task was to preselect appropriate candidates
for the location of the intervertebral discs and the spinal
canal.

For the intervertebral discs, three different detectors
were trained to cover the different appearance of lum-
bar, thoracic, and cervical disks. The spinal canal could
be detected by using only one detector.

5.1 Setup and Training
The algorithm has been trained and evaluated on 19 CT
datasets (13 for training 6 for evaluation only) contain-
ing different parts of the vertebral column. The datasets
have up to 1112 axial slices with a slice resolution of
512× 512 and a slice distance between 0.62 mm and
3.0 mm. Some of the data contains pathologies (bro-
ken vertebrae, collapsed disc, scoliotic spines) as well
as one cervical dataset from a child.

Experiments have shown that the thinnest interver-
tebral discs in the cervical section can still be distin-
guished if the slice distance is at least 1.5 mm. We
therefore fixed the base volume voxel scale for this ex-
periment as 1.5 mm isotropic and the datasets were re-
sampled accordingly.

In all datasets position and location of the interver-
tebral discs and the spinal column have been manually
labeled. Based on the given annotation, positive sam-
ples have been generated randomly inside the interver-
tebral disc and the spinal column. Negative samples
have been generated randomly all over the volume with
the constraint to have a minimal distance to positive
samples of 10 mm.

5.2 Performance Evaluation
Time performance of the algorithm has been assessed
based on a set of eleven CT volumes (six evaluation
and five training datasets). The properties of the data,
its original and normalized size is listed in table 1. The
classifier is trained using one cascading step and al-
low only intensity and Haar-like features in the cascade

Volume original size normalized size
1 512×512×202 106×106×134
2 512×512×163 113×113×108
3 512×512×361 144×144×168
4 512×512×222 89×89×148
5 512×512×249 170×170×166
6 512×512×152 91×91×101
7 512×512×277 245×245×184
8 512×512×260 244×244×179
9 512×512×1112 274×274×370

10 512×512×228 176×176×228
11 512×512×945 244×244×630

Table 1: Properties of volumes for performance evalua-
tion.

0 50 100 150
MB

2000

4000

6000

8000

10 000

12 000

14 000

time HmsL

Volume 7

Volume 6

Volume 5

Volume 4

Figure 4: Memory Limits

node. Influence of the different optimizations is mea-
sured against this default. Detection performance was
measured based on 8 datasets containing the 6 evalua-
tion datasets.
Limited Memory The data structure is designed to
cope with limited resources. However, reaching the
bounds of memory provokes clearance of cache blocks
that might have to be recomputed at a later stage of
the algorithm. Figure 4 illustrates the time performance
over different cache memory bounds for datasets 4−7
and show a clear threshold (∼ 25 MB) for all four
datasets where the performance/memory ratio changes
dramatically. This memory limit is slightly different for
each dataset and depends on the dataset size. If the
available memory falls below that threshold computa-
tion time rises heavily whereas performance remains
stable if enough memory is available. The threshold
marks the point where data blocks need to be frequently
recomputed. As long as enough memory is available
deletion of block data from the cache and occasional re-
computation has almost no influence on performance.
Multithreading. We tested the multithreading per-
formance of our algorithm on an Intel quad core CPU
with 2.4 Ghz and hyperthreading. Figure 5 plots the
computation speed over the number of threads again on
datasets 4−7. Time drops until 4 threads are used. For
more threads no significant speed-up (but also no sig-
nificant slowdown) can be monitored.

Journal of WSCG 37 ISSN 1213-6972

0 2 4 6 8 10
threads

5000

10 000

15 000

20 000

25 000

time HmsL

Volume 7

Volume 6

Volume 5

Volume 4

Figure 5: Plot computation time against number of
threads. Tested on a quad-core with Hyperthreading.

Figure 6: Detection speed comparison between PBT
with (blue) and without (green) cascading on eleven dif-
ferent datasets.

The scaling with the number of threads below four is
not linear. This is caused by the current locking strat-
egy that prohibits accessing one block if it is currently
computed by another thread. This situation mainly oc-
curs if 2nd derivatives have to be computed that require
accessing also neighboring first derivative blocks. If
another thread is classifying one of these neighboring
blocks at the same time it has to wait until the lock is re-
leased. This kind of collision happens more frequently
as more threads are used. We expect therefore a loga-
rithmic scaling of time performance with the number of
cores as long as the locking behavior is not improved.
Cascading Speed-up. The impact of cascading on
detection speed has been measured by comparing the
time performance of our default detectors with detec-
tors which are trained without including a cascading
step. The result is plotted in figure 6. Over eleven
datasets we measured a speed-up of 1.45−2.67 for de-
tectors including a cascading step.
Classifier Sorting Speed-up. The impact of classi-
fier sorting is plotted in figure 7. We compare the time
performance of our default detector including cascad-
ing and sorting with detectors which are allowed to use
all classifiers in the cascading node. Classifier sorting
results in a speed-up up to 1.65 for detectors which use
sorting.
Multiresolution Speed-up. To measure the impact
of multiresolution feature detection we compared de-

Figure 7: Detection speed comparison between PBT
with (blue) and without (green) classifier sorting on
eleven different datasets.

Figure 8: Detection speed comparison between mul-
tiresolution vs. one resolution.

tectors using three levels of resolution against detectors
using only one level. The results are plotted in figure 8.
The measured speed-up ranges between 3.44 and 17.51.

Detection Performance. Two feature detection results
are depicted in Figure 9. The first row shows the detec-
tion of intervertebral discs in the lumbar section of the
spine, the second row the detection of the spinal canal
on a whole spine. The detection progress from lowest
to highest resolution level is depicted from left to right.

The images illustrate well the effectiveness of the
multiresolution scheme since already at the lowest res-
olution level the major part of the volume is excluded
from higher resolution analysis.

The selected voxels (blue) reproduce the shape of the
searched anatomical parts to a large extend. However
outliers can be observed, for example inside the verte-
bral body (first row) or at the ventral side of the ribcage
(second row). Moreover missing features can be ob-
served as well (first row, ventral side of the topmost
disc).

This observation is also reflected in recall and 1-
precision plots (figure 10). Recall denotes the ratio be-
tween selected voxels within the ground truth and all
possible ground truth voxels. 1-precision stays for se-
lected voxels outside the ground truth divided by all
the voxels which were selected by the feature detection
(also the falsely selected ones). The evaluated data in-
volves healthy spines (1, 2, 3, 6, 7 in figure 10) and

Journal of WSCG 38 ISSN 1213-6972

. .

. .
Figure 9: Coronal and sagittal images of detection results for the intervertebral disc (first row) and the spinal
column (second row). Three levels of resolution document the detection process, lowest resolution left to highest
resolution right.

Figure 10: Recall and 1-Precision Plots

spines with diseases like scoliosis and broken vertebrae
(4, 5, 8 in figure 10).

The first and the third graph show results after feature
detection without any postprocessing where the high re-
call rates give information about good detection results
of structures of interest (discs and spinal canal). How-
ever, besides the high recall rates there are also high
rates of 1-precisions because of the occurrence of out-
liers (i.e. spongy bone within vertebrae with similar
features to discs). The high 1-precision rates can be
reduced by postprocessing steps such as particle filters
which are visible in the second and fourth graph of fig-
ure 10. The recall rates remain fairly the same, minor
reductions are due to moving towards the center voxels
of the discs by particle filtering.

An example for postprocessing of the resulting fea-
ture mask is depicted in figure 11. First probabilities are
computed by applying a box shape particle filter with
the dimensions 9× 9× 60mm3. The box approximates
elongated shape of the spinal canal. Second, the feature

Figure 11: Feature mask (blue) post processed with par-
ticle filtering, non-maximum suppression and thresh-
olding (yellow).

points are reduced by non-maximum suppression of the
probabilities. Third, outliers are removed by threshold-
ing the probability. The threshold is defined at t = 0.15.

6 DISCUSSION AND CONCLUSION
We have presented a method for time and memory ef-
ficient feature detection on medical 3D volume data.
The goals and requirements formulated at the end of

Journal of WSCG 39 ISSN 1213-6972

Section 1 have been reached by selecting a classifica-
tion based approach based on a Probabilistic Boosting
Tree classifier. The classification method was improved
by combining the decision tree with one cascading step
and the introduction of classifier sorting. This classi-
fier was embedded into a multiresolution framework.
We could show that all optimizations together result in
a huge time performance gain with an approximated
speed-up factor of 20.

Multithread performance was measured to scale non
linear (almost logarithmic) which is due to internal data
locking. The speed-up is for state of the art quad core
CPUs still significant. But to benefit from more paral-
lelism, improvements have to be done in this section.
However it is likely that more sophisticated access pat-
terns and locking schemes can help to overcome this
problem.

The behavior of the block cache data structure was
evaluated in section 5.2. It is noticeable that even larger
datasets require only ∼ 25MB for the block cache to run
almost unhindered. However even under circumstances
where less memory is available the algorithm will just
perform slower.

Detection rate of this feature detector is not as good
as it could be. We believe that other image features and
filtering techniques, a finer bases scale and also a dif-
ferent kind of classifier could result in better detection
performance. However, trading detection performance
against execution speed was a conscious design deci-
sion. The results are good enough to use this method to
reduce the search space for more specialized and more
expensive image processing methods.

REFERENCES
[AAB+84] E.H. Adelson, C.H. Anderson, J.R. Bergen, P.J. Burt,

and J.M. Ogden. Pyramid methods in image processing.
RCA engineer, 29(6):33–41, 1984.

[GWGS02] S. Guthe, M. Wand, J. Gonser, and W. Straßer. Interac-
tive rendering of large volume data sets. In Visualiza-
tion, 2002. VIS 2002. IEEE, pages 53–60. IEEE, 2002.

[HS88] C. Harris and M. Stephens. A combined corner and
edge detector. In Alvey vision conference, volume 15,
page 50. Manchester, UK, 1988.

[LHJ99] E. LaMar, B. Hamann, and K.I. Joy. Multiresolution
techniques for interactive texture-based volume visual-
ization. In Proceedings of the conference on Visualiza-
tion’99: celebrating ten years, pages 355–361. IEEE
Computer Society Press, 1999.

[LK08] M. Langer and K.-D. Kuhnert. A new hierarchical ap-
proach in robust real-time image feature detection and
matching. In Pattern Recognition, 2008. ICPR 2008.
19th International Conference on, pages 1 –4, dec.
2008.

[Low99] D.G. Lowe. Object recognition from local scale-
invariant features. In iccv, page 1150. Published by the
IEEE Computer Society, 1999.

[MDUA07] Christophe Marsala, Marcin Detyniecki, Nicolas
Usunier, and Massih-Reza Amini. High-level feature
detection with forests of fuzzy decision trees combined

with the rankboost algorithm. Technical report, Univer-
sité Pierre et Marie Curie-Paris, 2007.

[MV09] A. Militzer and F. Vega-Higuera. Probabilistic boost-
ing trees for automatic bone removal from CT angiog-
raphy images. In Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series, volume 7259
of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, February 2009.

[NGL+09] M. Niemeijer, M.K. Garvin, K. Lee, B. van Ginneken,
M.D. Abràmoff, and M. Sonka. Registration of 3D spec-
tral OCT volumes using 3D SIFT feature point match-
ing. In Society of Photo-Optical Instrumentation Engi-
neers (SPIE) Conference Series, volume 7259, page 51,
2009.

[Tu05] Z. Tu. Probabilistic boosting-tree: learning discrimina-
tive models for classification, recognition, and cluster-
ing. In ICCV, volume 2, pages 1589 –1596, 2005.

[VJ01] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In Proceedings of
the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR 2001), vol-
ume 1, pages I–511 – I–518, 2001.

Journal of WSCG 40 ISSN 1213-6972

High-Quality Cartographic Roads on High-Resolution DEMs

Mikael Vaaraniemi
BMW Forschung und Technik GmbH

München, Germany
mikael.va.vaaraniemi@bmw.de

Marc Treib Rüdiger Westermann
Technische Universität München

München, Germany
{treib,westermann}@tum.de

Figure 1: Cartographic rendering of roads in the Vorarlberg region, Austria, and in central Munich, Germany.

ABSTRACT
The efficient and high quality rendering of complex road networks—given as vector data—and high-resolution digital elevation
models (DEMs) poses a significant problem in 3D geographic information systems. As in paper maps, a cartographic repre-
sentation of roads with rounded caps and accentuated clearly distinguishable colors is desirable. On the other hand, advances
in the technology of remote sensing have led to an explosion of the size and resolution of DEMs, making the integration of
cartographic roads very challenging. In this work we investigate techniques for integrating such roads into a terrain renderer
capable of handling high-resolution data sets. We evaluate the suitability of existing methods for draping vector data onto
DEMs, and we adapt two methods for the rendering of cartographic roads by adding analytically computed rounded caps at the
ends of road segments. We compare both approaches with respect to performance and quality, and we outline application areas
in which either approach is preferable.

Keywords
cartography, vector draping, shadow volume, GIS, roads, terrain.

1. INTRODUCTION

Geographic Information Systems (GIS) store, analyze
and visualize geo-referenced data. Road networks, land
usage regions and selected points of interest are usu-
ally stored as vector data. In urban planning, carto-
graphy, and for navigation purposes, the visualization
of roads on digital terrain models plays an important

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

role [Döl05]. GIS engines should be able to handle and
display such vector data efficiently and at high qual-
ity. A bare and uncluttered visualization as in paper
maps is desirable. This cartographic representation of
roads requires vivid colors, dark edges, rounded caps
and runtime scaling of road width [Kra01, RMM95].
Dynamic scaling allows the perception of roads at every
distance. In a cartographic rendering, roads are tinted
using vivid colors to distinguish them from the underly-
ing terrain. Associating different colors to each type of
road induces an automatic cognitive grouping of simi-
lar roads [Kra01]. In addition, dark edges around roads
add visual contrast [RMM95]. Examples of such carto-
graphic representations are shown in Fig. 1 and 2. An
additional aspect of a cartographic representation are
rounded caps at each road segment. This avoids the ap-

Journal of WSCG 41 ISSN 1213-6972

Figure 2: Cartographic rendering of road maps using vivid colors and dark edges to achieve a high visual contrast
to the underlying terrain.

pearance of cracks between segments and makes the vi-
sualization more appealing by introducing smooth end-
ings and avoiding undesirable angular corners.
Another important information layer in GIS is the digi-
tal elevation model (DEM). It is usually given as raster
data defining a 2.5D height map. Since the resolution
and size of these DEMs are increasing rapidly, render-
ing approaches must be capable of dealing with TBs of
data and gigantic sets of primitives that have to be dis-
played at high frame rates. To cope with these require-
ments, visualization techniques employ adaptive Level-
Of-Detail (LOD) surface triangulations [LKR+96] and
data compression, combined with sophisticated stream-
ing and pre-fetching strategies [DSW09]. In such sce-
narios, the combined visualization of roads and a high-
resolution DEM in a single visualization engine be-
comes a challenging task.
The main contribution of this paper is a method for ren-
dering cartographic roads with rounded caps on high-
resolution DEMs. We extend existing vector draping
methods by introducing the possibility to compute caps
analytically, thus avoiding an explicit triangulation. In
this way we achieve a high-quality appearance with-
out increasing the number of geometric primitives to be
rendered. Furthermore, we introduce screen-space road
outlines, runtime width scaling, and correct treatment
of road intersections.
We have integrated our method into a tile-based terrain
rendering engine. During preprocessing, this engine
builds an multiresolution pyramid for both the DEM
and the photo texture. It then partitions each level into
square tiles, creating a quad tree. Each tile stores a
Triangulated Irregular Network (TIN) representation of
the DEM along with the photo texture. During runtime,
tiles are chosen based on a maximum allowed screen-
space error. In combination, this enables interactive 3D
browsing of high-resolution terrain data with superim-
posed cartographic roads.

2. RELATED WORK
Terrain Rendering. Terrain rendering approaches us-
ing rasterization have been studied extensively over the
last years. They employ the GPU to render large sets of

polygonal primitives, and they differ mainly in the hier-
archical height field representation used. There is a vast
body of literature related to this field and a comprehen-
sive review is beyond the scope of this paper. However,
Pajarola and Gobbetti [PG07] discuss the basic prin-
ciples underlying such techniques and provide many
useful algorithmic and implementation-specific details.
A thorough discussion of terrain rendering issues that
are specifically related to high resolution fields is given
in [DSW09].

Vector Data. The mapping of vector data on DEMs is
an active research subject. The existing methods can be
broadly classified into geometry-based, texture-based
and shadow volume-based approaches.

Geometry-based methods generate and render sepa-
rate primitives for the vector data. As the sampling fre-
quency of the vector data generally does not match the
triangulation of the underlying terrain, an adaption to
the terrain triangulation and its LOD scheme is neces-
sary. Because of this preprocess, geometry-based al-
gorithms are strongly tied to the terrain rendering sys-
tem and usually only allow static vector data [ARJ06,
SGK05, WKW+03].

Texture-based techniques map the vector data onto a
DEM in two steps: first, the data is rendered into off-
screen textures either at runtime or in a preprocess. Af-
terwards, these textures are overlaid onto the terrain
using texture mapping [DBH00]. This approach does
not produce any aliasing artifacts thanks to hardware-
supported texture filtering. Additionally, these methods
are independent of the underlying terrain triangulation
algorithms.
Static texturing methods provide high performance, but
do not allow runtime changes of rendering parameters.
Further problems occur at large zoom factors, as only
limited resolution textures can be precomputed—there
is an inherent tradeoff between the memory require-
ments and the obtainable quality [DBH00]. There-
fore, Kersting and Döllner [KD02] combine this ap-
proach with on-demand texture pyramids: associating
each quadtree region with an equally sized texture al-
lows on-the-fly generation of appropriate textures. Dy-
namic vector data can be visualized if these textures

Journal of WSCG 42 ISSN 1213-6972

are created in each frame. However, this severely im-
pacts performance, as many render target switches are
needed. To overcome this, Schneider et al. [SGK05]
introduce an approach using a single reparameterized
texture for the vector data, analogously to perspective
shadow mapping (PSM) [SD02]. As in PSM, some
aliasing artifacts occur.
Bruneton and Neyret [BN08] present an approach that
adapts the terrain heightfield to constraints imposed by
the vector data (e.g. to enforce locally planar roads).
Their method works only on regular meshes and would
be difficult to generalize to our TIN-based terrain sys-
tem. It is also not feasible for high-resolution terrain
data. Additionally, an adaption of the heightfield is only
necessary if the terrain resolution is insufficient to re-
solve such constraints, or if real-time editing is desired.
A shadow volume-based approach, recently introduced
by Schneider and Klein [SK07], uses the stencil shadow
volume algorithm to create pixel-exact draping of vec-
tor data onto terrain models. A stencil mask is created
by extruding polygons along the nadir and computing
the screen-space intersection between the created poly-
hedra and the terrain geometry. Using this mask, a sin-
gle colored fullscreen quad is drawn. For each color, a
separate stencil mask has to be generated. However, as
the number of different vector data colors is typically
small, this is not a major problem. The approach does
not require any precomputations and is thus completely
independent of the terrain rendering algorithm.
Our goal is to render cartographic roads on a high-
resolution DEM. Continuous road scaling is a prerequi-
site, which makes texture-based approaches unsuitable.
Likewise, a runtime triangulation of roads to match the
DEM is not feasible, so most existing geometry-based
approaches are not usable in our case.
We chose to use the shadow volume approach, as it does
not require a preprocess and thus allows for runtime
scaling of roads. It also provides pixel-exact projec-
tions. As a simpler and faster alternative, we also in-
vestigate a geometry-based approach where we adapt
only the road centerlines to the DEM, so road scaling
remains possible.

3. CARTOGRAPHIC ROADS

In GIS, roads are usually stored as vector data, i.e. as
a collection of 2D polylines. One possibility to visu-
alize such data is to convert the vector data into geo-
metric primitives that are rendered on top of the ter-
rain. However, a naive extrusion of each line segment
to a quad results in the appearance of cracks between
segments. The higher the curvature of a polyline, the
more these cracks become visible. Two pragmatic so-
lutions exist: filling the holes with additional triangles
(see Fig. 3(a)) or connecting the corners of adjacent
quads (see Fig. 3(b)). Both solutions are only possi-

(a) Extra triangle (b) Moving corners (c) Rounded caps

Figure 3: Methods for removing cracks between quads.

ble if adjacency information is available. In real data
sets, however, this information is commonly incom-
plete. Fig. 4 shows an example from a real data set
where one continuous road is represented by several in-
dividual polylines, resulting in cracks between adjacent
road segments where the polylines meet. We therefore
choose a robust and elegant solution, which draws caps
to avoid the appearance of cracks (see Fig. 3(c)) and
does not require adjacency information. In addition to

(a) Cracks (b) Fixed with caps

Figure 4: Cracks occur because of missing adjacency
information.

filling cracks, this approach generates visually pleasant
smooth road endings (see Fig. 5, top). It also naturally
handles sharp turns in a road (Fig. 5, bottom). Many
major navigation systems visualize roads using rounded
caps, for example Nokia with Ovi Maps, Google with
Google Maps, Navigon and TomTom. It has become
a de-facto standard technique when rendering carto-
graphic roads [Phy09]. A naive method for render-

(a) No rounded caps (b) With rounded caps

Figure 5: Quality improvement with rounded caps.

ing caps is the triangulation of a half-circle, leading
to a large number of additional triangles per segment.
Furthermore, the discrete triangulation becomes visible
at large zoom factors. In the following sections, we
present two methods that allow using perfectly round
caps while avoiding an increase of the triangle count.

4. GEOMETRIC APPROACH
Our first method renders cartographic roads using a
geometry-based approach. From the initial polyline

Journal of WSCG 43 ISSN 1213-6972

representation of a road, we individually process each
line segment defined by successive vertices. In a pre-
process, these lines are clipped against the terrain mesh
in 2D, inserting additional vertices at each intersection
(see Fig. 6). For more details on this preprocess, see
section 6.1.

(a) Incorrect mapping of a road
(grey vertices); problematic
areas are marked by spirals

(b) Correct mapping of the road
using additional vertices
(red)

(c) Top-down view with additional
vertices

Figure 6: Geometry-based mapping of roads onto a ter-
rain mesh.

To render rounded caps, we do not explicitly triangu-
late half-circles at the beginning and the end of each
road segment. Instead, we render a single quad encom-
passing an entire road segment and evaluate the caps
analytically in a shader program [Gum03] (see Fig. 7).

(a) Line segment i (b) Generated quad (c) Analytical caps

Figure 7: Analytical evaluation of rounded caps on a
base quadrilateral.

We use the endpoints Pi and Pi+1 of each line segment
and the tangent~ti to generate a quad encompassing both
capped ends (see Fig. 7(a) and (b)).
The caps are cut out of the generated quad in a pixel
shader. We create a normalized local coordinate system
inside both caps [RBE+06], which allows determining
those fragments of a quad that are outside the cap and
have to be discarded (see Fig. 7(c)).
Given points P0, P1, the ratio h between their distance
d = P0P1 and the cap radius w

2 is given by

h =
w

(d +2 · w
2)

=
w

d +w
.

Equipped with h, we generate the local coordinates in-
side the caps with

xcap =
|x|−1

h
+1 , ycap = |y|.

If xcap > 0, the fragment lies inside the cap area (the red
area in Fig. 7(c)). If x2

cap + y2
cap > 1.0, it is outside of

the half circle that builds the cap, and is discarded.

5. SHADOW VOLUME APPROACH
Our second algorithm is an extension of the shadow
volume-based approach introduced by Schneider and
Klein [SK07]. We extrude the road geometry along
the nadir and apply a stencil shadow volume algo-
rithm [Cro77, Hei91]. Thus, we compute the intersec-
tions between the extruded roads with the terrain geom-
etry, resulting in per-pixel accurate projections onto the
terrain. Similar to the approach described in section 4,
we extend this algorithm by adding analytic rounded
caps. We enlarge the geometry of each line segment
to encompass the caps, and construct a local coordinate
system that allows us to determine the fragments lying
inside or outside the cap area. In the inside area, we an-
alytically evaluate the caps via an intersection test be-
tween a ray and a cylinder and compute the depth value
of the intersection point to be used during the depth test.

5.1. Intersection
From the camera position O, the fragment position F ,
and the view direction ~v = (F −O)/ |F−O| we con-
struct the view ray R = O+ t~v. Given such a ray, the
intersection of the ray with the cylinder spanned by the
cap can be computed. Because the cylinder is always
aligned with the z axis (the nadir), we can replace the
3D ray-cylinder test by a 2D ray-circle test in the xy
plane (see Fig. 8).
A circle with center C and radius r is defined by the
equation

(X−C)2 = r2.

Inserting the ray R into this equation with ~c := O−C
yields

((O+ t~v)−C)2 = (~c+ t~v)2 = r2.

Expanding this results in the quadratic equation

(~v ·~v) t2 +2 (~v ·~c) t +(~c ·~c− r2) = 0.

Solving for t gives the discriminant

d = 4 (~v ·~c)2−4 (~v ·~v) (~c ·~c− r2).

If d ≤ 0, there is none or only a single solution to the
quadratic equation. This means that the ray does not hit
the cap at all, or just grazes it. In this case, we discard
the fragment. Otherwise, we get

t1/2 =
−2 (~v ·~c) ±

√
d

2 (~v ·~v)
.

For front faces, min(t1, t2) is the correct solution, for
back faces it is max(t1, t2).
So far, we have assumed that the road geometry is ex-
truded toward infinity to generate the shadow volumes.
Since this is wasteful in terms of rasterization fill rate,
we consider the height field for limiting the extent of

Journal of WSCG 44 ISSN 1213-6972

the shadow volumes. Assuming the terrain being par-
titioned into tiles, it is sufficient to extrude each line
segment only within the extent of the bounding box of
the tile it belongs to.
To accommodate this, the intersection algorithm has to
be extended to handle the top and bottom sides of the
extruded polyhedron: If the 2D distance between F and
C is smaller than the cap radius (which can only hap-
pen for fragments belonging to the top or bottom side),
F already gives the final intersection.

5.2. Numerical Precision

The algorithm as presented so far suffers from prob-
lems caused by limited numerical precision. One such
problematic situation is depicted in Fig. 8: The inter-
section between each ray and the cylinder is computed
twice, once for the front face of the bounding box (cor-
responding to F0 in the figure) and once for the back
face (corresponding to F1). The ray direction is com-
puted as F0−O and F1−O, respectively. Because of
small perturbations in F0 and F1, which are caused by
the limited precision of the interpolation hardware, one
of the intersection tests may report an intersection while
the other one does not. This results in inconsistent out-
put causing visible artifacts.

Figure 8: Numerically problematic ray-circle intersec-
tion.

In order to achieve consistent results, we compute both
intersections in the same shader invocation: We render
the geometry with front face culling enabled, and ana-
lytically compute the entry point into the bounding box
of the extruded road. We then compute both intersec-
tions between the ray and the road as described above.
This results in two depth values z0, z1 that need to be
compared to the terrain depth zt . We therefore replace
the regular depth test with a custom two-sided test: zt is
read from a texture created as a secondary render target
during the terrain rendering pass. If z0 < zt < z1, then
the road volume intersects the terrain geometry; other-
wise, we discard the fragment.

Two beneficial side effects of this approach are that only
half the amount of geometry needs to be rasterized com-
pared to the naive approach, and that in contrast to the
original shadow volume algorithm it does not require
the rendering of full-screen quads to color the intersec-
tions.

6. IMPLEMENTATION DETAILS
In our proposed GIS engine, we visualize vector data
e.g. from the OpenStreetMap project [Ope10]. Road
networks are stored as a collection of polylines. Each
polyline has a functional road class (FRC) [Tal96],
defining a distinct width and color. For efficient data
management at runtime, we partition the vector data
into quadtree tiles, similar to the terrain data. Inside
each tile, roads are stored sorted by their FRC.

6.1. Geometry Clipping
To avoid an incorrect mapping of roads onto the DEM
in the geometric approach as in Fig. 6(a), we apply a
preprocess where the centerline of each road segment
is clipped against the terrain mesh in 2D. Additional
vertices are inserted at each intersection (see Fig. 6(c)).
However, finding the exit point of a line in a triangle by
line-line intersection tests with the triangle edges pro-
vides poor numerical stability. We therefore perform
these calculations in barycentric coordinates as illus-
trated in Fig. 9.

Figure 9: Computing line – triangle edge intersections.

We trace a line starting at point P along the normalized
direction vector~v in the triangle defined by the vertices
T0, T1 and T2. The change in the barycentric coordinate
λ2 of P with respect to T2 is given by the signed distance
moved along ~a0 divided by the distance d0 of T2 from
~e0, where ~a0 is a normalized vector perpendicular to ~e0
and pointing inside the triangle. When moving along~v,
this becomes (~a0 ·~v)/d0. If this value is larger than zero,
~v is pointing away from ~e0 and we skip this edge. Oth-
erwise, the maximum distance x0 we can move along~v
before we hit ~e0 is given by

x0 =
λ2d0

~a0 ·~v
.

This can be done analogously for the other edges to
compute x1 and x2; the smallest of these provides the
actual exit point. At this point, an additional vertex is
inserted into the polyline.

6.2. Cartographic Rendering
Scaling. In cartographic rendering, roads should be
visible at all zoom levels. Therefore, while zooming
out our system scales the roads’ widths continuously.

Journal of WSCG 45 ISSN 1213-6972

The scaling factor is determined by the distance to the
viewer. To avoid that roads close to the viewer become
too wide, we only scale roads that are further away from
the user than a given distance threshold (see Fig. 10).

(a) No scaling (b) Constant scaling (c) Distance-based
scaling

Figure 10: Scaling of road width. Without scaling, dis-
tant roads become too narrow (left). A constant scale
makes close roads too wide (middle). Distance-based
width scaling gives satisfactory results (right).

Intersections. At crossroads or junctions, multiple
roads of potentially different FRCs overlap, resulting in
visible artifacts caused by additive blending. To resolve
this problem, we draw roads into an offscreen render
target without blending, in increasing order of impor-
tance.
The same approach allows for an easy integration of
multi-colored roads by drawing a road multiple times
with different widths and colors. This increases the ge-
ometry count proportionally to the number of colors,
but since typically only a few important roads use mul-
tiple colors, this is acceptable. Fig. 11 demonstrates the
correct handling of intersections of roads with different
FRCs, including a two-color motorway.

Figure 11: Correct handling of road intersections.

Outlines. To distinguish cartographic roads from the
underlying terrain, we add dark edges around roads to
increase contrast [RMM95]. To detect edges in screen
space, we use a 3× 3 or 5× 5 kernel to find the local
maximum road intensity αmax around each fragment.
The road intensity is the road opacity for pixels which
are covered by a road, and 0 otherwise. The differ-
ence αmax−αcurrent defines the resulting edge intensity.
Fig. 12 demonstrates the increase in visibility achieved
by using outlines around roads.

(a) Without outlines (b) With outlines

Figure 12: Improving visibility by using dark outlines.

7. RESULTS
We have tested the proposed algorithms using three
high-resolution data sets:
• A DEM of the US State of Utah, covering an area of

about 276,000 km2 at a geometric resolution of 5 m.
The road data set contains about 6,839,000 vertices
(216 MB).

• A DEM of Bavaria in Germany, covering an area of
about 70,500 km2 at a geometric resolution of up to
80 cm. The road data set contains about 5,697,000
vertices (151 MB).

• A DEM of the Vorarlberg region in Austria, covering
an area of about 4,760 km2 at a geometric resolution
of 1 m. The road data set contains about 213,000
vertices (7 MB).

The size of the terrain data including photo textures is
around 1 TB per data set. We therefore use an out-of-
core visualization system capable of handling arbitrar-
ily large data sets.
The preprocessing step for the geometric approach (see
section 6.1) increased the size of the road data by about
a factor of ten in all tested cases. Note that for the
shadow volume approach, this step is not required.
Performance. All performance measurements were
taken at a display resolution of 1600× 1200 on a PC
with Windows Vista, a 2.66 GHz Intel Core 2 Quad
CPU, 8 GB of RAM and an ATI Radeon HD 5870 GPU
(driver version 10.6).
The graph in Fig. 13 shows the frame rate during a
recorded flight over the medium-resolution DEM of
Utah at an average speed of about 1750 m/s. When
rendering geometric roads (GEO), the maximum (aver-
age) performance drop is about 30% (26%) compared
to rendering the terrain without roads. The highest per-
formance impact occurs over Salt Lake City (far right
in the graph). This area contains a dense road network
and only a small amount of terrain geometry, as build-
ings are not included in the height field. The additional
rendering of rounded caps does not significantly influ-
ence the performance.
For shadow volume-based roads (SV), the maximum
(average) performance drop is around 40% (35%) with-
out and 55% (42%) with rounded caps. Breaking the
numbers down to the sole rendering of roads, SV with
caps is about 1.4 times as expensive as without caps.

Journal of WSCG 46 ISSN 1213-6972

The visual quality produced by both techniques is iden-
tical at most locations in Utah. Therefore, GEO is
preferable because of its higher performance. Fig. 14

0

100

200

300

400

FPS

0 100 200 300 400 500
Time (s)

SV, no caps
SV, capsNo roads GEO, caps

GEO, no caps

Figure 13: Performance - Utah

shows the frame rates during a flight over the high-
resolution data set of Bavaria at an average speed of
about 950 m/s. In this scenario, the performance of all
approaches is very close; the average cost is between
33% and 43%. Even though GEO often requires many
more triangles (up to about 3 million) than SV (≤ 1M)
because of the adaption to the terrain mesh (which itself
uses up to about 35M triangles), GEO is still slightly
faster. Thus, the GPU is more limited by shading com-
putations than by the geometry throughput. However,
GEO can often not provide an adequate mapping on
such high-resolution terrain data (see Fig. 15). There-
fore, SV is preferable for such fine-grained DEMs.

0

50

100

150

200

250

300

FPS

0 50 100 150 200 250 300
Time (s)

SV, no caps
SV, capsNo roads GEO, caps

GEO, no caps

Figure 14: Performance - Bavaria

(a) Geometric (b) Shadow volume (c) Wire frame

Figure 15: Comparison of our draping algorithms on
high-resolution terrain.

The Vorarlberg data set has a similar geometric res-
olution as the Bavaria data set, but the road network
is much more sparse. Regardless of which algorithm
is chosen for rendering roads, the highest performance
impact amounts to only 15%. However, as in Bavaria,
GEO can not provide adequate quality.
Matching. We should note that in many situations the
vector data set did not exactly match the terrain data,
i.e. there was a certain offset between the vector data
roads and roads in the phototextures. These problems
frequently occur in cities or forests, where even a slight
offset causes a road to be projected onto a building or a
tree. GEO fails to produce any reasonable results in this
case (see Fig. 16(a)); SV produces a technically correct
but not very useful projection (see Fig. 16(b)). This is
a problem of the data rather than the draping algorithm.
An additional preprocessing step could match the vec-
tor data to the terrain and its phototextures.

(a) Geometric (b) Shadow volume

Figure 16: Artifacts caused by a mismatch between ter-
rain and vector data.

Comparison. Our method presents a marked improve-
ment over several commercial GIS systems. For ex-
ample, Google Earth 6.0 uses a simple geometric ap-
proach without adaption to the terrain and therefore
does not achieve a correct projection of roads onto the
DEM. It also does not provide correct road intersec-
tions and does not support multi-color roads or outlines.
ArcGIS 10.0 rasterizes vector data into textures which
are overlaid onto the terrain, similar to the orthophotos.
This results in a correct projection and correct behav-
ior at road intersections. However, a dynamic scaling
of road widths is not possible, and multi-color roads or
outlines are not supported.

8. CONCLUSION

In this paper, we have proposed and evaluated two ap-
proaches for rendering high-quality cartographic roads
with rounded caps on high-resolution 3D terrain mod-
els. Both can be used on hardware platforms support-
ing Direct3D 10 or OpenGL 3.0. We have shown that
a geometry-based approach provides high performance
and good quality for low- to medium-resolution ter-
rain data sets. However, it requires a moderately com-
plex preprocessing step, and it can not provide an ade-
quate visual quality with high-resolution terrain data.
It is therefore a reasonable choice for low-end hard-
ware, e.g. on mobile devices, where rendering of high-
resolution terrain data is not feasible.

Journal of WSCG 47 ISSN 1213-6972

The shadow volume algorithm enables pixel-exact ren-
dering of cartographic roads on 3D terrain. It is more
expensive at runtime than the geometry-based approach;
however, the rendering of high-resolution terrain re-
mains the larger part. In low-resolution terrain data
sets, on the other hand, its relative performance impact
is large. The algorithm is easy to integrate into exist-
ing terrain rendering engines, as no adaption of roads
to the terrain is required. It also extends naturally to
polygonal vector data.
In further research, we plan to evaluate the use of tes-
selation shaders for the creation of geometric caps on
Direct3D 11 or OpenGL 4.0 capable hardware.

9. ACKNOWLEDGEMENTS
The authors wish to thank the Landesvermessungsamt
Feldkirch, Austria, the Landesamt für Vermessung und
Geoinformation Bayern and the State of Utah for pro-
viding high-resolution geo data.
This publication is based on work supported by Award
No. UK-C0020, made by King Abdullah University of
Science and Technology (KAUST).

10. REFERENCES
[ARJ06] Agrawal, A., Radhakrishna, M., and Joshi, R.

Geometry-based mapping and rendering of vec-
tor data over LOD phototextured 3D terrain
models. In Proceedings of WSCG, pages 787–
804, 2006.

[BN08] Bruneton, E. and Neyret, F. Real-time rendering
and editing of vector-based terrains. In Com-
put. Graph. Forum, volume 27, pages 311–320,
April 2008. Special Issue: Eurographics ’08.

[Cro77] Crow, F. C. Shadow algorithms for com-
puter graphics. SIGGRAPH Comput. Graph.,
11(2):242–248, 1977.

[DBH00] Döllner, J., Baumann, K., and Hinrichs, K.
Texturing techniques for terrain visualization.
In VISUALIZATION ’00: Proceedings of the
11th IEEE Visualization 2000 Conference (VIS
2000), Washington, DC, USA, 2000. IEEE
Computer Society.

[Döl05] Döllner, J. Geovisualization and real-time
3d computer graphics. In E., Dykes, J.,
MacEachren, A., and Kraak, M., editors, Ex-
ploring Geovisualization, chapter 16, pages
325–343. Pergamon, 2005.

[DSW09] Dick, C., Schneider, J., and Westermann, R.
Efficient geometry compression for GPU-based
decoding in realtime terrain rendering. Com-
puter Graphics Forum, 28(1):67–83, 2009.

[Gum03] Gumhold, S. Splatting illuminated ellipsoids
with depth correction. In Proceedings of 8th
International Fall Workshop on Vision, Mod-
elling and Visualization, volume 2003, pages
245–252, 2003.

[Hei91] Heidmann, T. Real shadows, real time. IRIS
Universe, 18:28–31, 1991.

[KD02] Kersting, O. and Döllner, J. Interactive 3d visu-
alization of vector data in GIS. In GIS ’02: Pro-
ceedings of the 10th ACM international sym-
posium on Advances in geographic information
systems, pages 107–112, New York, NY, USA,
2002. ACM.

[Kra01] Kraak, M. Cartographic principles. CRC,
2001.

[LKR+96] Lindstrom, P., Koller, D., Ribarsky, W., Hodges,
L. F., Faust, N., and Turner, G. A. Real-time,
continuous level of detail rendering of height
fields. In SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graph-
ics and interactive techniques, pages 109–118,
New York, NY, USA, 1996. ACM.

[Ope10] OpenStreetMap. OpenStreetMap website,
2010.

[PG07] Pajarola, R. and Gobbetti, E. Survey of semi-
regular multiresolution models for interactive
terrain rendering. Vis. Comput., 23(8):583–605,
2007.

[Phy09] Physical Storage Format Initiative. Naviga-
tion Data Standard: Compiler Interoperability
Specification, 2009.

[RBE+06] Reina, G., Bidmon, K., Enders, F., Hastreiter,
P., and Ertl, T. GPU-Based Hyperstreamlines
for Diffusion Tensor Imaging. In Proceedings
of EUROGRAPHICS - IEEE VGTC Symposium
on Visualization 2006, pages 35–42, 2006.

[RMM95] Robinson, A., Morrison, J., and Muehrcke, P.
Elements of cartography. John Wiley & Sons
Inc, 1995.

[SD02] Stamminger, M. and Drettakis, G. Perspective
shadow maps. In SIGGRAPH ’02: Proceed-
ings of the 29th annual conference on Computer
graphics and interactive techniques, pages 557–
562, New York, NY, USA, 2002. ACM.

[SGK05] Schneider, M., Guthe, M., and Klein, R. Real-
time rendering of complex vector data on 3d
terrain models. In Thwaites, H., editor, The
11th International Conference on Virtual Sys-
tems and Multimedia (VSMM2005), pages 573–
582. ARCHAEOLINGUA, October 2005.

[SK07] Schneider, M. and Klein, R. Efficient and ac-
curate rendering of vector data on virtual land-
scapes. Journal of WSCG, 15(1-3), January
2007.

[Tal96] Talvitie, A. Functional Classification of Roads.
Transportation Research Board, Washington,
D.C., 1996.

[WKW+03] Wartell, Z., Kang, E., Wasilewski, T., Ribarsky,
W., and Faust, N. Rendering vector data over
global, multi-resolution 3d terrain. In VISSYM
’03: Proceedings of the symposium on Data vi-
sualisation 2003, pages 213–222, Aire-la-Ville,
Switzerland, 2003. Eurographics Association.

Journal of WSCG 48 ISSN 1213-6972

Pipeline Reconstruction from Fisheye Images

Yuhang Zhang
The Australian National

University
yuhang.zhang@anu.edu.au

Richard Hartley
The Australian National

University
richard.hartley@anu.edu.au

John Mashford
CSIRO

Australia
john.mashford@csiro.au

Lei Wang
The Australian National

University
lei.wang@anu.edu.au

Stewart Burn
CSIRO

Australia
stewart.burn@csiro.au

ABSTRACT

Automatic inspection of pipelines has great potential to increase the efficiency and objectivity of pipeline condition assessment.
3-D pipeline reconstruction aims to reveal the deformation of the pipe surface caused by internal or external influences. We
present a system which can reconstruct the inner surface of buried pipelines from multiple fisheye images captured inside the
pipes. Whereas the pipelines are huge, a fatal defect can be as tiny as a fine crack. Therefore a reliable system demands both
efficiency and accuracy. The repetitive patterns on the pipe surface and the poor illumination condition during photographing
further increase the difficulty of the reconstruction. We combine several successful methods found in the literature as well as
new methods proposed by ourselves. The proposed system can reconstruct pipe surface not only accurately but also quickly.
Experiments have been carried out on real pipe images and show promising performance.

Keywords: 3D reconstruction, surface reconstruction, fisheye lens, water pipelines, pipe inspection, image processing.

1 INTRODUCTION
Water pipelines are indispensable facilities of modern
urban systems. After serving for decades underground,
the condition of the pipelines deteriorates to varying
degrees. Timely inspection and repair is therefore re-
quired to prevent imminent collapse. Traditionally pipe
inspection involves intensive manual effort. Manual
image interpretation is an expensive process for which
wrong decisions caused by fatigue and subjective bias
are inevitable. Hence a computer-aided inspection sys-
tem is of great value.

We present a system which can reconstruct the in-
ner surface of buried water pipes based on a sequence
of images captured inside the pipes (Figure 1). De-
formation of the pipe surface which foreshadows the
pipeline collapse can then be detected from the recon-
structed model. Early work on similar applications re-
lied on range cameras such as laser scanners, which is
expensive. Later, due to the developments of computer
vision, methods solely based on 2D images were pro-
posed [3, 8, 9]. However, because of the limitation in
computer vision at the time and the difficulty in this
particular application, some of these works made re-
strictive assumptions such as that, the pipes are built

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

from bricks which provide distinctive patterns; and the
others terminate with reconstructing a small group of
isolated points only. Some 3D reconstruction applica-
tions of general scenes [18] bear the same limitation
as well. More recently, several large-scale 3D recon-
struction applications of general scenes have been pro-
posed [1, 20], which can reconstruct millions of points
in a relatively short time. However, their implementa-
tion requires high-end parallel computers.

What distinguish the proposed system from all the
previous ones are:

1. we intensively reconstruct the pipe surface, which is
composed of millions of points, rather than a group
of selected points;

2. our algorithm is fast and can be implemented on nor-
mal PCs;

3. we have proposed a number of specific mechanisms
to increase the robustness of the system, so that it
can work with pipe surface without distinctive pat-
terns under poor illumination conditions.

We first give an overview of the reconstruction prob-
lem, as well as our method. When discussing each step
in detail, experimental results will be provided accord-
ingly. As will be seen, our method performs not only
accurately but also quickly.

2 OVERVIEW
We make no particular assumption about the material
of the pipelines. Actually, the pipes a civil engineer fre-
quently confronts are made from concrete which gives

Journal of WSCG 49 ISSN 1213-6972

Figure 1: fisheye images captured inside of the
pipelines. The pipe on the top is in relatively good con-
dition, whereas the one on the bottom is in poor condi-
tion.

little reliable texture. We will therefore make our sys-
tem capable of handling pipes of this type.

To assess the pipeline condition, images are collected
by a mobile camera travelling through the pipelines. To
capture more details from the pipe surface, the mobile
camera is equipped with a wide view angle fisheye lens
rather than an ordinary perspective lens. During pho-
tographing the illumination is provided by a light fixed
to the camera, which can only illuminate a limited range
in the pipe unevenly. Figure 1 shows two example im-
ages captured in different pipelines. As we can see,
only the peripheral regions of the images contain clear
pipe surface. The texture on the pipe surface is fine and
weak. In the same pipe the surface appears to be simi-
lar everywhere. A sequence of images is captured as the
camera moves. Two adjacent images share overlapping
regions.

Our reconstruction follows a four-step paradigm.

Figure 2: image cylinder:C is the camera center;zaxis
is the central axis of this image cylinder;P is an object
point, withP’ as its image.

1. Firstly, initial point matching is established between
overlapping images;

2. Matched points will then be utilized to estimate the
relative pose of calibrated cameras corresponding to
different views.

3. With the obtained camera parameters, we implement
dense matching between overlapping images while
enforcing the epipolar constraints. This step was
never included in the previous works [3, 8, 9], in
which only those matched points detected in the first
step were reconstructed. This step is also arguably
the most sophisticated and time consuming step in
the whole algorithm. Handling it efficiently is our
major contribution.

4. Finally, the 3D location of each point in the image is
densely determined through triangulation and a 3D
model is built up.

As computer vision algorithms about perspective
cameras have already been well studied [4], one might
transform each fisheye image to a perspective image
to simplify the subsequent process [8, 9]. However,
such a transformation either produces an extremely
large perspective view which significantly upsampled
the peripheral region in the original image, or produces
a perspective view of proper size but at the cost of
cropping off the peripheral region. In either case,
we will destroy the region which really contains the
important information in the original image. Therefore,
in our work we choose to process the images in their
original form, or transform them, when necessary, onto
an image cylinder (Figure 2) instead of an image plane.

We define an image cylinder by specifying its central
axis. Its radius can be deliberately set to unity without
affecting its functionality. The central axis of the im-
age cylinder can be the optical axis of the camera or the
baseline between two cameras, depending on the cir-
cumstances. The cylindrical image of each point in the
3D world is generated by the intersection of the image
cylinder and the ray going from the point to the cam-
era center. Each parallel line on the cylindrical surface

Journal of WSCG 50 ISSN 1213-6972

functions like a perspective camera by itself, however,
altogether they receive an omnidirectional image more
readily than a normal perspective camera does. This im-
age cylinder is particularly useful during point match-
ing and depth estimation, as will become clear soon.

In the remaining part of this paper, we discuss each
step mentioned above in detail.

3 INITIAL POINT MATCHING
Due to the development of local invariant features [13,
16], finding corresponding points between overlapping
images is much easier now than ever. Comprehensive
surveys into the feature detectors and descriptors can
be found in [14, 15]. However, point matching on a
pipe surface is still difficult due to the faint and sim-
ilar patterns everywhere. Moreover, whereas all the
proposed local invariant features are approximately in-
variant under affine transformations, the transformation
conducted by a fisheye lens is not even perspective, but
nonlinear. Thus the corresponding points identified by
local invariant features on pipe surface contain many
false matches. Our experiments show that the number
of false matches can easily exceed the number of true
matches by an order of magnitude.

To improve the situation, besides enforcing loose ge-
ometry constraints, we transform each fisheye image
onto the image cylinder we discussed in Section 2. The
image cylinder here takes the optical axis of the cam-
era as its central axis. The consequential advantage
of such a transformation is obvious. Since the optical
axis of all cameras are roughly parallel to each other as
well as to the central axis of the pipe, the images gener-
ated on different image cylinders only differ from each
other approximately by a simple translation. Compar-
ing to the original fisheye images, we not only remove
the scale difference between corresponding regions in
different images, but also largely rectify the distortion
caused by the nonlinear projection through a fisheye
lens. Hence the corresponding points found by local in-
variant features on the cylindrical images are more reli-
able. Geometry consistency is also easier to enforce on
the transformed images. All line segments connecting
corresponding points in two cylindrical images should
be roughly parallel and of almost the same length. After
detecting corresponding points in the transformed im-
ages, we can easily back-project them onto the original
fisheye images to facilitate camera pose estimation.

Figure 3 shows the matching results on the original
images and the transformed images respectively.
Particularly, Hessian-affine detector [16] and SIFT
descriptor [13] are used for feature extraction. Matches
are identified if two SIFT features share a Euclidean
distance under a predefined threshold. Although point
matching is between two images, we only present
one of them here for clear presentation. We plot the
matched points from two images onto one image and

Figure 3: matches found on the image pair of original
form and transformed form respectively. Only those
matches that pass the loose geometry verification are
presented. The rejected false matches are thousands in
number. They happen so frequently because the pipe
surface is similar everywhere.

connect each pair with a yellow line segment. As we
can expect, the lines in the original image should all
roughly point to the image center, whereas those in the
transformed images should all be roughly horizontal.
We only present those matches that can be verified
with these loose geometry constraints in Figure 3. On
the original image 239 matches passed the verification,
whereas on the transformed image 563 matches passed
the verification. That justifies our earlier discussion
that matching on the transformed images is more
reliable.

Intuitively the matches from both cases are more than
sufficient to implement subsequent estimation. One
might therefore suspect the necessity of the cylindrical
transform. However, as we can see, the lines presented
in the image do not seem to match the numbers given
above. That is because more than one match can happen
intensively on neighbor pixels. Considering matches at
the same location does not increase the estimation accu-
racy, more matches than sufficient is in fact necessary.
The number of qualified matches also depends on the
texture on the pipe surface. On some smooth surfaces,
the number of matches will be much smaller as fewer
local features can be detected. That is when the image
transformation becomes more important.

Some false matches still remain in Figure 3 as their
line segments are not of reasonable length. Again, it is
more convenient to enforce this constraint on the trans-
formed images rather than on the original images. On
the transformed images, the length of all lines segments
should be roughly equal. In the original images, their
length should not be equal due to the nonlinearity of
the fisheye lens, which is difficult to use as a loose con-
straint.

Journal of WSCG 51 ISSN 1213-6972

4 CAMERA POSE ESTIMATION

A calibration method for fisheye cameras can be found
in [10]. Here we assume the camera is calibrated and
only aim to estimate the external parameters of the cam-
era. We have briefly discussed the reason why we do
not transform the original image into perspective view
in Section 2. Particularly on camera pose estimation,
the nonlinear transformation between a fisheye view
and a perspective view might significantly enlarge the
matching error from one pixel to hundreds of pixels in
the peripheral region of the image. Hence we need a
pose estimation scheme that can be applied directly to
fisheye images and is efficient.

We use a modified version of the direct estimation
method initially designed for perspective cameras [6].
The main result of the original method is that, given
a close enough initialization of the camera parameters
as well as the point locations, a structure from motion
problem can be solved directly using some iterative op-
timizing algorithms, e.g. the Levenberg-Marquardt al-
gorithm [12]. The advantage of this method lies in the
fact that it is one-stop. It requires no sophisticated oper-
ation on any interim variables, e.g. the fundamental ma-
trix required in [5] or the measurement matrix required
in [21]. The disadvantage of this algorithm is the re-
quirement of a close initialization, which is usually im-
possible, especially when the number of unknown pa-
rameters is huge.

We discover that the advantage and the disadvantage
of the direct estimation method can be magnified and
reduced respectively in our problem. In particular, un-
like the other algorithms of structure from motion appli-
cations, this algorithm bears no assumption on the cam-
era model, neither perspective nor affine. That means it
can be adapted to fisheye camera as well, as long as we
change the cost function in the Levenberg-Marquardt
minimization from the perspective projection to the
fisheye projection. Furthermore, as we know the nor-
mal condition of the pipelines as well as the approxi-
mate location of the camera with respect to the pipe, we
can initialize all the parameters accordingly. Obviously,
many other inspection purposed applications share the
same convenience.

Another important fact about the parameter initializa-
tion is that, the parameters are not independent. More
precisely, from the parameters of two random cam-
eras, we can accurately determine the 3D locations of
all the matched points captured by the two cameras
through triangulation. This observation largely reduces
the number of variables we need to initialize, i.e. we
only initialize the camera parameters, and then derive
the location of the points. Besides dependence, ob-
viously, there is also independence between different
parameters. Whereas millions of points were captured
from thousands of different locations, the camera pose

for each image is only related to the dozens of points
that have appeared in its image. The location of each
point is only affected by the few cameras capturing
it. This observation not only leads to the simplifica-
tion within Levenberg-Marquardt optimization, i.e. the
sparse-Levenberg-Marquardt [6], but also to the sim-
plification of our reconstruction. We firstly estimate the
camera parameters and points location locally between
each pair of adjacent images with the direct estimation
method. Although this estimation is local, it has already
considered most of the information relevant to the two
cameras. Hence the output should still be quite accu-
rate. We then transform all the estimated points and
cameras into the same frame of reference. That gives us
the initialization of a global direct estimation. Indeed,
when the global consistency is not compulsory, we can
even terminate without a global estimation. Later we
will see, at least for the purpose of pipe condition as-
sessment, local estimation can already detect deforma-
tion and cracks on the pipe surface.

The error to be minimized with Levenberg-
Marquardt algorithm is given by (1), wherêxi j is the
coordinates of pointi observed in imagej, andxi j is
the estimated coordinates of the corresponding point
in the corresponding image. When̂xi j is unknown,
which really means pointi is not observed in image
j, we setx̂i j = xi j , so that their difference is 0 and
the total error will not be affected. During local
estimation, as the numbers of points and cameras are
limited, the sparse-Levenberg-Marquardt algorithm
converges quickly. In our experiment, it takes about
0.5 seconds to estimate the relative pose between each
pair of cameras, when200point matches are involved.
The root mean square error is around one pixel upon
converging.

e= ∑
j
∑
i
||x̂i j −xi j ||2 (1)

Further more, we might add the intrinsic camera pa-
rameters into the local estimation. That converts our
problem to an uncalibrated reconstruction, requiring in-
putting three images each time. We do not recommend
estimation based on three views. That is because the
number of matching points that can survive three views
are usually too small to facilitate reliable estimation.

5 INTENSIVE MATCHING
Whereas reconstructing a set of isolated points is suffi-
cient to reveal the pipe deformation on large scale, in-
tensive points reconstruction is required to reveal those
cracks which are only several pixels wide on images.
To intensively reconstruct the pipe surface, we need in-
tensively match the points on the pipe surface.

Implementing intensive stereo matching between
overlapping images is by nature a difficult problem,
even though we can narrow the matching range using

Journal of WSCG 52 ISSN 1213-6972

the epipolar constraint. A good review of relevant
algorithms can be found in [19]. The state of the art
of intensive stereo matching lies in theα-expansion
method proposed in [22], which approaches the
problem by way of optimizing a multi-label Markov
Random Field (MRF). However, when the size of
the image is huge, optimizing a corresponding MRF
requires heavy computation. Another method called
FastPD [11] is faster but requires much more mem-
ory. More recently, a hierarchical mechanism is
incorporated into MRF optimization [23], enabling
optimizing large MRFs more efficiently with low
memory occupancy.

However, due to the following reasons, our prob-
lem cannot be solved by these off-the-shelf methods.
Firstly, since the light source is carried by the mov-
ing camera, corresponding points in different images
are captured under significantly different illuminations,
which obviously makes the matching tougher. Sec-
ondly, even the hierarchical mechanism [23] largely
boosts the speed of solving an individual problem, in-
tensively matching a large number of images is still a
huge task. Therefore, we propose two mechanisms to
improve the situation.

5.1 Illumination Regularization
Some illumination invariant description and compari-
son methods have been proposed in the literature, such
as the Normalized Cross-correlation (NCC) and the
SIFT descriptor [13]. They non-exclusively require
more complex computation, which will significantly
slow down the system. Here instead of using illumi-
nation invariant description, we make the illumination
invariant.

Although the light source moves during photograph-
ing, its relative position to the camera center is fixed
and the location of the camera center within each cross-
section of the pipe is in general stable. That suggests,
the pipe surface captured by the pixels on the same lo-
cation within every image is illuminated by approxi-
mately the same light. From each pipeline, we have
collected thousands of images. The average grey level
of a pixel on the same location over thousands of im-
ages can be then regarded as the illumination intensity
of this pixel or its corresponding points on the pipe sur-
face.

Figure 4 shows the average illumination intensity on
images captured in the two pipelines. They are differ-
ent because the camera travelled at different height in
the two pipes and the deterioration degree of the two
pipes are different. Based on the illumination intensity
images in Figure 4, we can regularize the illumination
within each image through (2), whereI(i) is the pixel
value of pixeli in the original image,G(i) is the grey
level of pixel i in the illumination intensity image,a
is a positive constant controlling the brightness in the

Figure 4: the average illumination intensity obtained
from images of two pipelines: some dark blobs can be
observed on the top image, which were caused by wa-
ter drops spread onto the lens; the white threads on the
bottom image are caused by some rubbish attached to
the lens. However, their affect to the matching process
is ignorable.

regularized image. Figure 5 compares the image be-
fore and after illumination regularization. Especially
on the regularized cylindrical images, the obvious il-
lumination variance is removed leaving all pixels under
comparable illumination. After illumination regulariza-
tion, we can easily measure the similarity between pix-
els by the absolute difference between their regularized
pixel values.

Ir(i) =
aI(i)
G(i)

(2)

5.2 Sequential MRF Optimization
We first explain the design ofα-expansion as well as
its hierarchical version in our problem and then intro-

Journal of WSCG 53 ISSN 1213-6972

Figure 5: images before and after illumination regular-
ization.

duce our sequential mechanism, which further boosts
the speed of our system.
α-expansion After rectification [4], the corresponding
points between two overlapping images all lie in corre-
sponding scan lines. One of the two images will later be
referred to as the reference. Localizing corresponding
points along a scan line, namely estimating the dispar-
ity of each object point within the two images can be
modelled as estimating the variables in a second order
Markov Random Field.

In particular, each variable in the MRF corresponds
to a pixel in the reference image. The value of each
variable corresponds to the disparity of its correspond-
ing pixel. The probability for each variable to have a
particular value, or equivalently for a pixel to have a
particular disparity, is subject to two factors. The first
one, a function of the color difference between the two
pixels related by this particular disparity, is usually re-
ferred to as the unary term or the data term. In our work,
we use the following unary term:

Ui = ||I1(i)− I2(i′)||1 (3)

whereI1(i) is the color of pixeli in the reference im-
age, I2(i′) is the color of the pixel related toi by its
current disparity in the other image, andUi is computed
as aL1-norm difference between the two. The other
one, a function of the disparity difference between the

pixel and its neighbor, is usually referred to as the bi-
nary term or the smooth term. Each pixel usually has
four neighbors, hence there are four binary terms. Bi-
nary terms are used to enforce the smooth constraint,
i.e. the disparity of points in a scene should be smooth
almost everywhere [17]. In our work, we use the fol-
lowing binary term:

Bi j = |L(i)−L(j)| (4)

whereL(i) and L(j) is the disparity of two neighbor
pixel i and j in the reference image, andBi j is computed
as their absolute difference.

The unary term and the binary term really play the
role of likelihood and prior in the Bayesian theory.
Therefore, through maximizing the probability of a
MRF, one really globally maximizes the posterior of
each variable and obtains the most probable disparity
of each pixel. Due to the Hammersley-Clifford theo-
rem, maximizing the joint probability of variables in
the above MRF is equivalent to minimizing the follow-
ing cost-function:

E = ∑
i

Ui +λ ∑
i j

Bi j (5)

where λ is a positive constant balancing the weight
between the unary term and the binary term. An ef-
fective way of perceiving (5) is through constructing a
weighted graph. As shown by Figure 6, each vertex in
the graph corresponds to a pixel in the reference image
or a disparity value. Edges are created between each
disparity vertex and all the pixel vertices. Each edge of
this type can be represented by a termUi in (3). Pixel
vertices which are neighbors in the image are connected
by edges as well. Each edge of this type corresponds
to a Bi j in (4). Then, minimizing (5) is equivalent to
finding the minimal cut on its graph after which each
subgraph contains one and only one disparity vertex.

If the graph contains only 2 disparity vertices, the
minimal cut can be found using the max-flow algo-
rithm, regarding the two disparity vertices as the source
and the sink respectively. When the number of disparity
vertices is larger than two, minimizing (5) is in general
NP-hard [2]. α-expansion can provide a high quality
suboptimal solution in polynomial time.

Starting from a random initial state,α-expansion se-
quentially examines the applicability of each dispar-
ity, represented byα , to all the pixels. In particu-
lar, for eachα, a new graph is created. In the new
graph, the source node corresponds to the current dis-
parity of each pixel; the sink node corresponds to the
α disparity. Those pixels, whose current disparity is
α are not included into the new graph. A bi-cut is
then implemented using max-flow algorithm to deter-
mine whether the pixels currently having other dispar-
ities should change their disparities toα. After each

Journal of WSCG 54 ISSN 1213-6972

Figure 6: a graphic explanation of minimizing (5): the
four blue vertices each correspond to a pixel in the ref-
erence image; the two orange vertices correspond to
two possible disparities respectively; minimizing (5) is
equivalent to a minimal cut to the graph after which
each subgraph contains one and only one disparity ver-
tex. The dashed line in the figure shows a possible cut.

round of bi-cut, only the subgraph containingα vertex
can be increased. That is why the algorithm is named
asα-expansion. To compensate the loss in optimality,
multiple outer iterations are usually implemented.

Denote the number of outer iterations asm, the num-
ber of disparity vertices asn, the processing time of
max-flow algorithm asf . The processing time ofα-
expansion ismn f. When running on images of small
size, e.g. 300× 300, α-expansion can usually termi-
nate quickly in 20 seconds on a normal PC. However,
when dealing with a pair of images in large size, whose
disparity range is usually large as well, the max-flow
algorithm needs to be implemented on a huge graph
many times. The processing time ofα-expansion ex-
pands significantly. Our experiments show that when
dealing with a stereo pair in the size of1000× 1000,
α-expansion needs more than 30 minutes to converge.
That is by definition too slow for practical use. The
alternative method, FastPD, cannot be applied either,
because a normal PC cannot provide sufficient memory
space.
Hierarchical α-expansion The idea of hierarchical
α-expansion can be explained as solving the problem
with α-expansion under a low resolution first, and then
fine tuning the low resolution solution onto higher res-
olution through optimizing another MRF. More details
can be found in [23]. As these two steps can be im-
plemented recursively, the original problem is really
solved in a coarse-to-fine manner. Besides, since the
MRFs being optimized in the two steps are both much
smaller than the original one, the processing speed is
largely improved. With the hierarchicalα-expansion,
processing a stereo pair in the size of1000×1000re-
quires only around10seconds on a normal PC, and the
optimality is comparable to the originalα-expansion.

Figure 7 shows two sample images on which we have
implemented hierarchicalα-expansion. This time, the

Figure 7: two adjacent images mapped onto the same
image cylinder. Images before and after illumination
regularization are both provided for comparison.

central axis of the image cylinder is the baseline con-
necting the two camera centers. As we have already
obtained the external parameters of the cameras, we
can accurately generate the cylindrical image through
back-projection. Although this image cylinder is dif-
ferent from an image plane in shape, it can parallelize
the epipolar lines as well. It takes minor effort to snip
and unwind that cylindrical image into a planar image.
Just make sure to snip the two cylinders along the same
epipolar line. So we obtain an image pair in the form
people usually deal with during intensive matching,
namely corresponding points always lie on the same
scan line. The pipe surface presented in these two im-
ages contains a vertical connection line and two hor-
izontal narrow cracks, which will test our algorithm’s
capability in detecting small defects on the pipe surface.
We crop off the region submerged by water before im-
plementing graph cuts. That is because we are only in-
terested in the pipe surface, and that dropping the water
region can help saving processing time. Figure 8 shows
the interim and final results of the hierarchical graph
cuts. We can see how the final disparity map is reached
through a coarse-to-fine procedure. The disparity value
is larger in the center of the image, which corresponds
to the top region in the pipe. That suggests that the cam-
era is closer to the top of the pipe compared to the left
and right sides of the pipe. The vertical connection line
and the horizontal cracks can be clearly observed in the
final result as well.
Sequentialα-expansion To further boost the process-
ing speed, we propose a sequential mechanism in MRF
optimization, the key idea of which lies in better label
initializations and smaller label range. The time cost
by the max-flow algorithm which is a subroutine inα-
expansion depends on the flows needed to be pushed
before reaching the optimal state. The number of nec-
essary flows depends on the initial state of the network.
That really suggests, if the initial state of the network is

Journal of WSCG 55 ISSN 1213-6972

Figure 8: the interim and final results of the hierarchical
graph cuts.

more similar to the optimal state, fewer flow, and hence
less time, will be needed in optimization. Moreover,
starting from an initial state close to the optimal also re-
duces the number of outer iterations in theα-expansion
algorithm. A smaller label range will reduce the num-
ber of max-flow implementations in a single iteration.

Whereas for a contextless image pair one can only
initialize all labels to be zero or arbitrary values, for se-
quential pipe images in our case we can largely predict
the label configuration. The disparity of each point on
the pipe surface is determined by two factors: firstly, its
deterioration degree; secondly, and more importantly
the location of the camera center. If the camera center
travels along the central axis of the pipe, the disparity
of different points will only differ slightly due to de-
terioration. However, if the camera center travels along
some line far away from the central axis, the disparity of
different points on the pipe will vary significantly. Al-
though the deterioration degree of different regions on
the pipe surface is arbitrary, the location of the camera
center within each cross section of the pipe is generally
stable. Therefore, we only use a large label set dur-
ing the intensive matching for the first few image pairs.
We can then acquire the relative location of the camera
within the cross-section of the pipe, or more directly the
average disparity along each scan line in the image. On
subsequent image pairs, the pixels on each scan line are
initialized with the corresponding average disparity. A
smaller label set will then be used to estimate their dis-
parities accurately. The smaller label set only needs to
cover the variety caused by deterioration, which will be
significantly narrower than that caused by the camera
location. The MRF optimizing speed is hence boosted.

6 BUILDING A 3D MODEL
Through dense matching on the image cylinder, we
have acquired the depth information related to each
pixel on the cylindrical image. Together with the cam-
era parameters estimated earlier, we can easily deter-

Figure 9: reconstructed pipe surface from the point
cloud together with its triangulation state.

mine the 3D location of each point on the pipe surface
through triangulation. The scale ambiguity is removed
by setting the length of the baseline between two cam-
era centers as unity. From each pair of adjacent images,
we can obtain several millions of isolated 3D points.
For better visualization, we might reconstruct a contin-
uous surface with these isolated points using the algo-
rithm proposed in [7]. However, a model containing
millions of independent points is too huge for a normal
PC to render.

Figure 9 only shows the surface reconstructed from
one hundredth of all the points. However, even after
this significant downsampling, the connection line is
still clearly presented, so is the pipe deformation on the
large scale. The two cracks are missing because they
are both less then ten pixels wide, which can not be pre-
served during this one hundredth downsampling. How-
ever, their existence and state have been represented
by the point cloud containing millions of independent
points, which will be assessed by civil engineers during
force analysis. Note that we can only reconstruct the
pipe surface above the water. We observe a complete
cylinder here because the missing part has been manu-
ally complemented with ideal cylindrical surface.

Journal of WSCG 56 ISSN 1213-6972

7 CONCLUSION
We successfully reconstruct the inner surface of buried
pipelines from a sequence of fisheye images. The ob-
tained point cloud can be used to generate a virtual sur-
face for visualization, as well as to facilitate other al-
gorithms for pipe condition analysis. We used various
efficient and reliable schemes over the four-step recon-
struction. We paid particular attention to the process of
intensive matching, which is generally slow and mem-
ory demanding based on previous algorithms. Our new
method overcomes the obstacle of illumination variance
and largely boosts the speed. More improvement on
3D model generation is still necessary. One possible
development lies in automatically detecting regions of
interest and unevenly downsampling the point cloud ac-
cordingly. This will be a direction of future work.

ACKNOWLEDGEMENTS
This work was supported by CSIRO, Water for a
Healthy Country Flagship.

REFERENCES
[1] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz,

and Richard Szeliski. Building rome in a day. InICCV, pages
72 –79, 2009.

[2] Endre Boros and Peter L. Hammer. Pseudo-boolean optimiza-
tion. Discrete Appl. Math., 123:155–225, November 2002.

[3] D. Cooper, T.P. Pridmore, and N. Taylor. Towards the recov-
ery of extrinsic camera parameters from video records of sewer
surveys. InMVA, pages 53–63, 1998.

[4] Richard Hartley and Andrew Zisserman.Multiple View Geom-
etry in Computer Vision. Cambridge University Press, March
2004.

[5] Richard I. Hartley. Estimation of relative camera positions for
uncalibrated cameras. InECCV ’92: Proceedings of the Sec-
ond European Conference on Computer Vision, pages 579–587,
London, UK, 1992. Springer-Verlag.

[6] Richard I. Hartley. Euclidean reconstruction from uncalibrated
views. InApplications of Invariance in Computer Vision, pages
237–256, 1993.

[7] Hugues Hoppe.PhD Thesis: Surface Reconstruction from Un-
orgnized Points. 1994.

[8] J.H. Kannala, S.S. Brandt, and J. Heikkila. Measuring and mod-
elling sewer pipes from video. InMVA, volume 19, pages 73–
83, March 2008.

[9] Juho Kannala and Sami S. Brandt. Measuring the shape of
sewer pipes from video. InMVA, pages 237–240, 2005.

[10] Juho Kannala and Sami S. Brandt. A generic camera model
and calibration method for conventional, wide-angle, and fish-
eye lenses.PAMI, 28(8):1335–1340, 2006.

[11] N. Komodakis and G. Tziritas. Approximate labeling via graph
cuts based on linear programming.PAMI, 29(8):1436–1453,
August 2007.

[12] K. Levenberg. A method for the solution of certain non-linear
problems in least squares.Quarterly Journal of Applied Math-
matics, II(2):164–168, 1944.

[13] David G. Lowe. Distinctive image features from scale-invariant
keypoints.IJCV, 60(2):91–110, 2004.

[14] K Mikolajczyk and C Schmid. A performance evaluation of
local descriptors.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(10):1615–1630, October 2005.

[15] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A compar-
ison of affine region detectors.Int. J. Comput. Vision, 65:43–72,
November 2005.

[16] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine in-
variant interest point detectors.IJCV, 60(1):63–86, 2004.

[17] Tomaso Poggio, Vincent Torre, and Christof Koch. Computa-
tional vision and regularization theory.Nature, 317:314–319,
September 1985.

[18] Radka Pospíšilová. Occlusion detection and surface comple-
tion in 3d reconstruction of man-made environments. InWSCG,
2007.

[19] Daniel Scharstein and Richard Szeliski. A taxonomy and evalu-
ation of dense two-frame stereo correspondence algorithms.Int.
J. Comput. Vision, 47:7–42, April 2002.

[20] N. Snavely, S.M. Seitz, and R. Szeliski. Skeletal graphs for
efficient structure from motion. InCVPR, pages 1 –8, 2008.

[21] Carlo Tomasi and Takeo Kanade. Shape and motion from im-
age streams under orthography: a factorization method.Int. J.
Comput. Vision, 9(2):137–154, 1992.

[22] R. Zabih, O. Veksler, and Y.Y. Boykov. Fast approximate energy
minimization via graph cuts. InICCV, pages 377–384, 1999.

[23] Yuhang Zhang, Richard Hartley, and Lei Wang. Fast multi-
labelling for stereo matching. InECCV 2010, volume 6313,
pages 524–537. Springer, 2010.

Journal of WSCG 57 ISSN 1213-6972

Journal of WSCG 58 ISSN 1213-6972

Deducing Explicit from Implicit Visibility for Global
Illumination with Antiradiance
Gregor Mückl

University of Stuttgart
Allmandring 19

70569 Stuttgart, Germany
Gregor.Mueckl@visus.uni-

stuttgart.de

Carsten Dachsbacher
Karlsruhe Institute of

Technology
Am Fasanengarten 5

76131 Karlsruhe, Germany
dachsbacher@kit.edu

Abstract

The antiradiance method, a variant of radiosity, allows the computation of global illumination solutions without determining
visibility between surface patches explicitly, unlike the original radiosity method. However, this method creates excessively
many links between patches, since virtually all elements exchange positive and negative energy whose interplay replaces the
visibility tests. In this paper we study how and if explicit visibility information can be recovered only by analyzing the link mesh
to identify chains of links whose light transport cancels out. We describe heuristics to reduce the number of links by extracting
visibility information, still without resorting to explicit visibility tests, e.g. using ray casting, and use that in combination with
the remaining implicit visibility information for rendering. Further, to prevent the link mesh from growing excessively in large
scenes in the beginning, we also propose a simple means to let graphic artists define blocking planes as a way to support
our algorithm with coarse explicit visibility information. Lastly, we propose a simple yet efficient image-space approach for
displaying radiosity solutions without any meshing for interpolation.

Keywords: global illumination, radiosity, antiradiance

1 INTRODUCTION

In the 1990s, radiosity methods have been significantly
improved, but after a period of large interest research
essentially ceased for several years. Mainly three dif-
ficulties with radiosity caused the degrading interest:
meshing of the input geometry and computing the (hier-
archical) link mesh, the necessity of storing all patches
and radiosity values in memory for computing a view-
independent solution, and above all, the expensive visi-
bility computation that typically consumes most of the
computation time [8]. However, some of these prob-
lems have recently been successfully tackled: the an-
tiradiance method reformulates the rendering equation
such that visibility computation for form factors is no
longer necessary, and by this enables a simple and fast
GPU implementation of radiosity methods. Dong et
al. [4] also demonstrated a GPU-radiosity algorithm
by coarsely discretizing visibility that can be computed
without ray casting. Motivated by this progress, Meyer
et al. [15] introduced a data-parallel method for mesh-
ing and hierarchical linking, and demonstrate a CUDA
implementation. In combination, these methods allow

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

for interactive radiosity in dynamic scenes. Fig. 1 illus-
trates the fundamental differences of traditional radios-
ity, and the two aforementioned improvements. While
Dong et al.’s [4] method produces small link meshes –
actually smaller than traditional radiosity – it affects the
global illumination result negatively due to the coarse
discretization. In this paper, we focus our study on the
antiradiance method which matches traditional radios-
ity in terms of quality. However, it replaces costly vis-
ibility computation for form factors by creating exces-
sively many links to transport negative energy to com-
pensate for missing occlusion (see Fig. 2).

That is, two solutions at the opposite ends of the
spectrum exist for handling visibility in the radiosity
method: either fully explicit or fully implicit. This
paper bridges the gap in between by presenting a
method to deduce explicit visibility information from
the link mesh that is generated for the antiradiance (AR)
method. By this we can reduce the number of links,
however, still without computing form factors with ex-
plicit visibility, e.g. using ray casting. Obviously, the
visibility information of a scene must be encoded in
the AR link mesh: otherwise it would not be possi-
ble to compute the correct global illumination result
with implicit visibility. Our method starts at exactly
this point: we analyze the link mesh to identify chains
of links whose light transport cancels out. Once such
a chain has been identified, we can remove it with-
out changing the result or reducing the rendering qual-
ity noticeably. However, reducing the number of links
saves memory and computation time during light prop-

Journal of WSCG 59 ISSN 1213-6972

Traditional Radiosity Antiradiance (Dachsbacher et al.) Implicit Visibility (Dong et al.)

(b)

(c)
(d)

(a)

(b)

(c)
(d)

(a)

(b)

(c)
(d)

(a)

Figure 1: Light transport in different radiosity variants between a patch (a), and three other patches (transport
links to (a) shown as dashed lines; sizes of yellow arrows indicate transported intensity): Left: radiosity computes
visibility for each pair of patches; the transport from (b) is partly blocked. Center: the antiradiance method
transports energy as if there is no blocking, but compensates for this by propagating negative light that originates
from (b) via (c) to (a) (red arrow). Right: Dong et al. [4] discretize visibility to one link per direction bin eliminating
transport from (b) to (a). In case of full visibility, as for patch (d), all three methods yield the same result.

agation. We consider our contribution being a principal
study of deducing explicit from implicit visibility, and
report statistical as well as visual results from our proto-
typal implementation. We also incorporate an effective
way to let graphics artists define during the modeling
stage where light transport cannot take place. For ex-
ample, if there is no light exchange between two wings
of a building, then we indicate this by simply placing a
polygon somewhere in between. Our algorithm will use
this coarse explicit visibility information to prevent the
AR link mesh from growing large even prior to our re-
duction. Lastly, we describe a novel way for rendering
high-quality antiradiance solutions without meshing or
interpolating the final radiance across neighboring ele-
ments. At render time, we light the scene using every
element as an area light source with an (anti)radiance
distribution obtained from the global illumination so-
lution. This allows the rendering of images with high
quality interpolation and better contact shadows.

2 RELATED WORK
The importance of global illumination (GI) for com-
puter graphics can be seen from the vast body of re-
search papers in this field. Two main directions have
been studied intensively in the last decades: ray tracing
and radiosity methods; we refer the reader to excellent
text books on these topics, e.g. Dutré et al. [5].

With the increasing computational power of graphics
hardware, there have been many attempts to use GPUs
to speed up global illumination. In recent years, re-
search in ray tracing made a great leap forwards and
there exist algorithms for real-time, parallel kd-tree
construction [24], BVH construction [12], and fully in-
teractive GI based on photon mapping [22].

Ray tracing based methods often cache information
about the lighting in a scene, e.g. irradiance caching
[23], photon mapping [9, 7], or instant radiosity [11].
In particular instant radiosity gained much attraction as
represent the lighting of a scene by a set of virtual point

lights, and thus easily maps to GPUs [18]. The light
cuts method [21] clusters point lights into a hierarchy
to speed up rendering. Final gathering is an essential
step for computing high-quality images and a parallel
algorithm therefor has recently be demonstrated [17].

In the following, we discuss work which is more
closely related to our approach. There have been sev-
eral attempts to compute radiosity solutions on the
GPU. The main cost factor is the evaluation of the mu-
tual visibilities between surfaces patches. Either ras-
terization together with the hemicube method [2, 1], or
ray tracing on the GPU [19] have been used to compute
form factors. The antiradiance reformulation [3] of the
rendering equation [10] replaces explicit visibility by
a recursive computation with negative light (“antiradi-
ance”). Dong et al. [4] use a directional discretization
and store only one link to the respective closest patch
per direction. Thus the visibility is constructed implic-
itly with the link hierarchy. Although both methods
are fundamentally different, both rely on a hierarchi-
cal link structure which initially had to be generated
sequentially on the CPU. Meyer et al. [15] present a

S

R1

O

R2

R3

Figure 2: Radiance and antiradiance links for a 1D ex-
ample. The normal of patch S is pointing downwards,
the other surface normals are pointing towards S. There
is only one unoccluded radiance link S

(+)−→ O (blue).
The other radiance links S

(+)−→ Rn (yellow) and anti-
radiance links Rn

(−)−→ Rm (red) only exist for implicit
occlusion handling.

Journal of WSCG 60 ISSN 1213-6972

data-parallel algorithm for link and patch creation, im-
plemented in CUDA, which allows interactive radiosity
methods with fully dynamic scenes.

Typically, the per-patch radiosity values that repre-
sent the GI solution are interpolated across adjacent
patches. This can be done by generating an accordingly
tessellated triangle mesh together with Gouraud shad-
ing [5] and improved using discontinuity meshing [14].
Dachsbacher et al. [3] used an image-space splatting ap-
proach that does not require a special mesh. Lehtinen
et al. [13] directly compute global illumination using
a meshless hierarchical representation and display the
solution similarly.

3 ANTIRADIANCE
In this section we briefly review the antiradiance meth-
od [3], also following the notation of this work. The
rendering equation describes the equilibrium of light
transport in a scene and the radiance at a surface point
x in direction ωo is:

L(x,ωo) =E(x,ωo)+
∫

Ω+
f (x,ωo,ωi)Lin(x,ωi)cosθdωi

=E(x,ωo)+(KLin)(x,ωo) .

The incoming radiance at position x from direction ωi
originates from the closest surface in that direction. It
is determined using the ray casting operator ray(x,ωi)
and part of the transport operator G:

Lin(x,ωi) = L(ray(x,ωi),ωi) = (GL)(x,ωi) . (1)

As the computation of G is a very costly, the AR
method strives to replace G by another transport op-
erator that is cheaper to compute. Instead of resolving
visibility explicitly by finding the nearest surface, the
radiance is gathered from all surfaces along a ray yield-
ing the transport operator U. Extraneous light is then
propagated and must be compensated. A pass-through
operator J is defined that lets incoming radiance at a
patch pass through without changing its magnitude or
direction. The operators are related as follows:

GL = UL−UJGL = U(L−A) (2)

with A = JGL being the antiradiance. With this refor-
mulation of the standard transport operator, the antira-
diance rendering equation is obtained as:

L = E +KU(L−A) (3)
A = JU(L−A) . (4)

When L, A and E are projected into a suitable Hilbert
base over the scene surface with finite dimensional-
ity, these functions can be expressed as vectors of their
components in that Hilbert space. Likewise, the opera-
tors U, K and J become matrices:(

L
A

)
=

(
E
0

)
+

(
KU 0
0 JU

)(
L−A
L−A

)
. (5)

We can then separate K out of this matrix and get:(
L
A

)
=

(
E
0

)
+

(
K 0
0 I

)(
UL 0
0 JUA

)(
L−A
L−A

)
.

(6)
The thus remaining matrix describes the occluded light
transport by means of the transport operator U. Replac-
ing it with

(G 0
0 0

)
yields the discretized equation for oc-

cluded light transport (as in standard radiosity) again.
This comparison shows that the upper left part UL of
the matrix describes radiance transport while the lower
right part UA describes antiradiance transport.

4 REMOVING OCCLUDED LINKS
Eq. 6 shows that once we separated out the transport
operator matrix we can interpret antiradiance and tra-
ditional radiosity as two extremes of how light is prop-
agated between elements in the scene. However, the
transport matrix does not have to take the form of ei-
ther the fully occluded or the fully unoccluded trans-
port. Within limits that we will discuss in the follow-
ing, it is possible to create intermediate matrices U′L
and U′A that contain transport with and without explicit
visibility, i.e. essentially a mixture of entries from G
and U.

Let us first assume the case where we replace one
unoccluded transport by a transport with explicit visi-
bility. For this we define the matrix U′L which contains
one entry of G, i.e. U′Lkl = G′Akl , and all other entries
are equal to UL. If the resulting light transport is cor-
rect, then the solutions Li j and L′i j for both matrices are
equal. The equation for the k-th patch, Lk, becomes:

Lk = ∑
i6=l

Kki(UL
kiLi−U′Aki Ai)+Kkl(GklLkl−U′Akl Akl) .

(7)
An entry Gi j is always less or equal to the respective
entry Ui j, and thus the sum over all U′Aki Ai in this equa-
tion must either be equal or less than the sum over all
UA

kiAi. This means, that at least one of the entries in
this particular row of U′A must be decreased in value.
In other words, if the radiance transport between two
patches is performed with proper occlusion, the receiv-
ing patch must no longer receive the same amount of
antiradiance that was previously transported to it (to ac-
count for the occlusion along this transport path that we
now consider explicitly). Note that although this shows
that unoccluded and occluded light transport can be per-
formed at the same time, no rules for the adjustments to
U′A can be derived from these equations alone. If we
assume for now that we can replace values of UL

i j one
after another, then we can repeat this until U′L equals
G, and in this case U′A vanishes.

4.1 Link Removal in 1D
We have shown that mixing occluded and unoccluded
light transport operations is possible under the re-
striction that antiradiance must only be transported to

Journal of WSCG 61 ISSN 1213-6972

S

R

O

L L’

xx

Figure 3: Convention for creating links: radiance links
are created between patches facing each other (left);
antiradiance links are in the negative hemisphere of a
patch (center). Right: For every incoming link (here:
L) we search if there are shorter incoming links (L′).
Then we can remove L. Note that the antiradiance link
shown in red is removed because of the same fact and
thus the result is again correct at last.

patches that are the target of unoccluded transport op-
erations. To introduce our algorithm we start with the
instructional example of patches along one line. We
will discuss rules for removing transport links for the
case where a target patch is fully occluded from the
source. Note that this information is solely based on
the patch positions and extents, and the link mesh. De-
tecting partial occlusion, i.e. not only removing links
for fully occluded patches, requires visibility computa-
tion, e.g. using ray casting that we still want to avoid.
Also, we only consider opaque surfaces as potential oc-
cluders.

The motivation for the link removal is that the im-
plicit handling of visibility in antiradiance generates a
number of light transporting links that rises dispropor-
tionally with the depth complexity of the scene.

A simple set of surfaces in a 1D example as seen in
Fig. 2 motivates the removal of unnecessary links. With
unoccluded light transport, the topmost surface S illu-
minates all other surfaces. Therefore, it is linked to all
of these surfaces, although the nearest surface O already
fully occludes the light, and the light transported across
the links to the surfaces further away needs to be com-
pensated for. This is achieved by the antiradiance links
from O to all other patches Rn below, and the pattern re-
peats analogously for every surface. When explicit vis-
ibility is taken into account, only the link S

(+)−→O is re-
quired to illuminate this example scene correctly. With
the implicit handling of occlusion as described above,
n+n!−1 excess links are generated for n patches.

The first observation here is that all occluded radi-
ance links in this example intersect the sole unoccluded
patch O. Removing them along with all antiradiance
links that originate from O itself effectively results in
the occluded transport again. However, the remain-
ing antiradiance links do not transport energy anymore
since the patches where they start from do not receive
any. To optimally reduce the link mesh, we also want
to remove those from the transport matrix.

It is now possible to formulate two rules to find

Full visibility Partial visibilityNo Visibility

S

R

S

R

O

S

R

O

Figure 4: Classification of visibility in 3D used for our
heuristics. A sender patch S emits radiance towards a
receiving patch R, which may be blocked by a potential
occluding patch O. Three situations need to be distin-
guished: full (left), none/fully occluded (middle) and
none (right).

groups of links that can be removed from the link mesh
without changing the result:
Rule 1 Search for a pattern of three links: from the
sender S to the occluding receiver O, from S to the oc-
cluded receiver R, and from O to R. When such a pat-
tern is found, both links to the occluded receiver S

(+)−→R
and O

(−)−→ R may be removed. We distinguish radiance
and antiradiance links by the sign over the arrow.
Rule 2 Check for every incoming link of a patch L if
there is another, shorter incoming link L′. If such a link
is found, we can remove L as it is occluded (Fig. 3).
Note that this rule is only valid if the objects in the
scenes are manifolds with closed surfaces as also as-
sumed in [3].

4.2 Heuristics for Link Removal in 3D
Obviously, the aforementioned removal in 1D retains
validity in two or three dimensions only if it is applied
to infinitely small patches along a single ray through
the scene. For patches with finite size and only a finite
number of discrete directions (directional bins), as used
in the antiradiance method [3], we can derive heuristics
from these rules that still work well when the scene dis-
cretization is reasonably fine. In Section 6 we evaluate
the validity of both heuristics described in this section.

The modification compared to the 1D case is neces-
sary due to the fact that the visibility function V be-
tween two patches is no longer either 0 or 1, but can
take any value in-between (see Fig. 4). Furthermore, a
special treatment is required to respect peculiarities in
a hierarchical link mesh: to determine if the light trans-
port between two patches is blocked, we might have to
search across different levels of the hierarchy.
Heuristic 1 The first rule from Section 4.1 trans-
forms into Algorithm 1. Again we find a combination
of sender S, occluder O, and receiver R. However, we
only remove the links, if O or one of its parents (in the
patch hierarchy) subtends a large enough solid angle
such that the light transport from a sender to another
surface is completely blocked (see Fig. 5). In addition,
the radiance link S

(+)−→ R must have the same (discrete)
direction as the antiradiance link O

(−)−→ R. To test this,

Journal of WSCG 62 ISSN 1213-6972

S

R

O

S

R

O

S

R

O

Figure 5: Left: the occluder O, as seen from S (note
that in the antiradiance method links are established be-
tween patch centers), subtends a larger solid angle than
the receiver patch R. Center: the subtended solid an-
gle of O is too small and the link from S to R cannot
be removed. Right: the radiance link S

(+)−→ R is on a
different level of the hierarchical link mesh than the an-
tiradiance links O

(−)−→ R. Thus we also consider parents
in the patch hierarchy when searching for blockers.

we construct two infinite circular cones with their tips
in S: the first one, CLink connects the centers of S and O
with its axis and has an opening angle so that the solid
angle subtended by this cone equals that of O as seen
from S. The second cone, Cbin has the discrete direc-
tion of the link’s source bin as its axis and its opening
angle is chosen so that Cbin covers a solid angle of ωbin.
Then, CLink must enclose Cbin (cf. Alg. 1 lines 6-10).
This ensures that all patches lie on one line, analogous
to the 1D example before. When using hierarchical link
meshes, an occluder can be linked to the receiver on a
finer level than the sender-receiver link, in which case
the patch at the finer level takes on the role of R (Fig. 5,
right, Alg. 1 line 5). Also, the full extent of the occlud-
ing geometry can be better estimated by checking the
solid angles subtended by any parents of the suspected
occluding patch.
Heuristic 2 The second removal rule transfers to the
3D case analogous to the previous one (see also Algo-
rithm 2). The aforementioned restriction to scenes con-
sisting entirely of closed manifolds stays valid. When

Algorithm 1 Find and disable all links between
senders, occluders and receivers.

1 for each radiance l ink L
2 required [L] = true
3
4 for each radiance l ink L
5 for al l target patch Pj of l ink L and i t s parents
6 CLink ← cone(center (Pi) , actualdir (L) , ωi← j)
7 / / sourcedir (L) is discreet source direct ion of Link L
8 Cbin← cone(center (Pi) , sourcedir (L) , ωbin)
9 i f ωi← j > ωbin and CLink encloses Cbin

10 binOccluded ← true
11
12 i f binOccluded
13 for al l antriadiance l inks L′ start ing from Pj
14 Pk ← target_patch (L)
15 i f l ink Pi→ Pk exists
16 i f sourcedir (L)=sourcedir (L′)
17 i f targetdir (L)= targetdir (L′)
18 required [L] ← false
19 required [L′] ← false
20
21 remove al l l inks where required [L] is false

S

R

O

O1

S

R

O

L L’

(a) (b) (c) (d)

Figure 6: (a) Two incoming links L and L′ at R have the
same direction. To determine if we can remove L, we
need to test if the transport from S to R is blocked. Test-
ing this blocking with the patch O where L′ emanates
from does not reveal this information. Ascending the
hierarchy and testing with the parent of O determines
full blocking (c) and L can be faithfully removed. (d) A
situation where a fully occluded antiradiance link must
not be removed: The link S

(+)−→ R is partially occluded
by O and O1 and the link O

(−)−→ R is fully occluded by
O1, but the antiradiance produced at O must arrive at R
to correctly reproduce the partial occlusion. Therefore,
the link O

(−)−→ R must not be removed.

we test if a link S
(+)−→R can be removed, we need to find

a shorter link from a potential occluder O to R. How-
ever, these two links must have the same (discretized)
direction (Alg. 2 line 4). If we detect such a situation,
then we need to determine if O, or the surface to which
is belongs, is large enough to block the transport from
S to R by ascending the hierarchy from O to its largest
parent. Next, we project S onto the plane of this par-
ent patch and only if the projection is fully on that sur-
face the link can be removed (Fig. 6, Alg. 2 lines 9-15).
Note that patches that share a common parent with S
will never be considered as occluders (Alg. 2 line 8).

However, not all links that are detected as fully oc-
cluded may actually be removed. As illustrated in Fig. 6
antiradiance links might be necessary to capture par-
tial occlusion although the above heuristic marks them
as occluded. Algorithm 3 detects these links and pre-
vents them from being removed. For each partially vis-
ible link S→ R it searches all other antiradiance links

Algorithm 2 Classify Link visibility as seen from target
patch.

1 for each radiance l ink L
2 visibility [L] = f u l l
3 for each l ink L′ ending at target patch of L
4 i f target_bin (L)=target_bin (L′)
5 R← target_patch (L)
6 S← source_patch(L)
7 O← source_patch(L′)
8 i f S and O do not have same parent patch
9 / / I f S or O are clusters , the following is

10 / / checked on every pair of patches in these clusters
11 O′← biggest parent of O
12 S′← perspective projection of S onto O′

13 i f S on far side of O′ and S′ f u l l y inside O′
14 visibility [L] ← none
15 continue
16 else
17 visibility [L] ← par t ia l

Journal of WSCG 63 ISSN 1213-6972

Algorithm 3 Finding required occluded links.

1 for each l ink L
2 i f visibility [L] = none
3 required [L] = false
4 else
5 required [L] = true
6
7 for each l ink L with visibility [L]= par t ia l
8 S← source_patch(L)
9 R← target_patch (L)

10 for R and each chi ld patch of R
11 for each antiradiance l ink L′

12 S′← source_patch(L′)
13 R′← target_patch (L′)
14 i f R=R′

15 for each l ink L′′ connecting S to S′

16 i f visibility [L′′] != none and L′′ is radiance l ink
17 required [L′] ← true

S′
(−)−→ R to the same target patch and checks if a non-

occluded link S→ S′ exists. If so, S′
(−)−→ R is required

to keep the partial occlusion of S′ from R by S intact
and is marked as required. Note that this heuristic can-
not be used after heuristic 1 because links S′

(−)−→ R may
already have been removed, resulting in required links
getting missed and removed.
Patches without incoming links In case of static di-
rect lighting in the scene we can also remove all links
emanating from patches that are neither light sources
nor have any incoming links, as these links will never
transport energy. However, similar to the original anti-
radiance implementation [3] we typically use shadow
maps for computing direct illumination and thus po-
tentially every patch can receive energy that has to be
propagated further.

4.3 User-Defined Link Removal
In addition to the link removal heuristics described
above, we can optionally perform link removal based
on user-defined (invisible) blocking geometry which
strictly cuts all links that intersect it. This additional
geometry can be a simple polygon generated by the
user along with the scene to separate parts of the scene
that obviously do not directly exchange light with each
other, e.g. two rooms separated by solid walls (see
Fig. 8). Since this geometry consists of few polygons
only, we test for every link if it intersects the blocking
geometry without generating high cost, and remove the
link if this is the case. Note that this is similar to Fradin
et. al. [6] who used manually placed portals to section
large scenes.

5 FINAL SHOOTING
Dachsbacher et al. [3] used a splatting approach, similar
to point-based rendering, to render an image with inter-
polated patch colors. Instead we propose to use a “final
shooting” approach: we treat each patch in the scene as
a patch light source (PLS) with a directional intensity
distribution according to the total exitant intensity de-
termined by the antiradiance solver. For rendering the

final solution, we simply light the scene only using the
PLSs. This approach can be seen as a variant of instant
radiosity [11], where light sources emit radiance and
antiradiance (computed using the antiradiance method)
and thus account for shadowing implicitly. Note that
the resulting number of virtual light sources in our ap-
proach is typically orders of magnitudes higher. Fur-
thermore, every PLS is an area light source from which
lighting computation is more intricate than from point
lights. To this end, when computing the lighting of a
fragment due to a PLS, we replace the PLS by 8 point
light sources randomly placed on the PLS. This can
be seen as a Monte-Carlo sampling of the area light
sources; no noise is visible in the images, as the number
of PLS is very high (it equals the number of patches in
the scene). Note that by lighting the scene with all PLSs
we obtain not only a smooth interpolation, but also one
(additional) indirect bounce at the same time with no
additional cost.

When using a full link mesh, we efficiently accumu-
late the contributions of all PLSs using deferred shading
and interleaved sampling [20]. However, care has to be
taken when using final shooting together with the link
removal heuristics: in this case, only those patches are
to be lit by a PLS that are still linked to it after reducing
the link mesh. To account for this, instead of using de-
ferred shading, we have to render every receiver patch
for every PLS, compute per-pixel lighting, and accu-
mulate the contributions. Note that this process bene-
fits from the GPU’s early-z culling automatically omit-
ting occluded receivers. For lighting computing from
a PLS, we look up the interpolated intensity towards a
fragment using precomputed interpolation weights in a
cube map (6×5122 resolution in our examples).

6 RESULTS AND DISCUSSION

In this section we compare the heuristics and the user-
defined link removal. To determine the impact of the
heuristics’ approximation regarding the link removal,
we modified both to perform explicit visibility checks
using ray casting and Monte Carlo sampling instead
of the link mesh based checks. Note that no heuristic
should remove more links than those removed with ex-
plicit visibility testing. We have implemented an Anti-
radiance solver similar to the one described in [3], using
the same algorithm for building the hierarchy. The pre-
processing, including the previously discussed link re-
moval heuristics, is initially implemented and executed
on the CPU (running on multiple cores), while OpenGL
is used for the simulation of the light transport and for
displaying the result. While our current implementation
can be seen as an experimental prototype, we plan to
integrate our heuristics into the data-parallel link gen-
eration method by Meyer et al. [15] in the future.

Journal of WSCG 64 ISSN 1213-6972

heuristic 1 heuristic 2
explicit heuristic not explicit heuristic not

scene patches links test removal incorrect removed test removal incorrect removed
Japan 12745 629665 157449 129313 54872 (42%) 83058 (52%) 71007 34408 11732 (34%) 48331 (68%)
Office 14246 1470440 581768 395592 124232 (31%) 310408 (53%) 260475 85075 28739 (34%) 204139 (78%)
Desks 14396 1465632 759669 280705 7752 (10%) 486716 (40%) 690145 300316 11577 (4%) 401406 (58%)
Soda Hall 25023 2774452 2076609 1621749 73998 (5%) 528858 (25%) 1888014 1016923 21026 (2%) 892117 (47%)

Table 1: Results of applying our heuristics to the test scenes with: the total number of radiance and antiradiance
links, the number of links removed by the explicit test, the links removed by the heuristic, the number of incorrectly
removed links compared to the explicit test, and the number of links that have not been removed by the heuristic
but by the explicit test.

scene patches links heuristic 1 heuristic 2
Japan 12745 629665 22.1s 26.0s
Office 14246 1470440 248.2s 224.9s
Desks 14396 1465632 80.5s 127.0s
Soda Hall 25023 2774452 87.9s 280.0s

Table 2: Measured run time for our multithreaded CPU
implementation of the heuristics running 8 concurrent
threads (averaged over 10 runs)

6.1 Link Removal Heuristics
We tested our link removal heuristics against the ex-
plicit visibility oracle on various scenes: the Japanese
room and office from [3], the “desks” shown in Fig. 8
and the model of the fifth floor of the Soda Hall (see
Fig. 12). The results are summarized in Table 1 and
the run times are given in Table 2. All measurements
were taken on an Intel Core i7 CPU with 2.66MHz,
6GB RAM, and an NVIDIA GeForce GTX 465 with
1024MB RAM, running Linux.

Our results show that the heuristics also remove links
that are not totally occluded. In the Japanese room and
office scene, which both consist of a single room with

(a) heuristic 1 (b) heuristic 2

(c) 4× difference heuristic 1 (d) 4× difference heuristic 2

Figure 7: The Japan scene rendered with reduced link
meshes using final shooting (top), and then luminance
differences to an image computing with the full link
mesh (red is less, green is greater than original). The
difference images have been scaled by a factor of 4.
Compare Fig. 9, 10a for references.

many objects inside, the error rate is particularly high
while it is low for the “desks“ scene and the Soda Hall
with their walls as main occluders. This shows that
while both heuristics perform well with big solid oc-
cluders, they are prone to inaccuracy with correctly es-
timating visiblity along silhouettes of objects. The first
heuristic relies on the subtended solid angle for testing
blocking. However, this gives no indication about the
actual patch shapes: for instance, elongated patches can
be visible although nearly quadratic patches with larger
solid angles are in front of them. The second heuristic
erroneously removes links for which unblocked paths
between the patches may still exist although the projec-
tion test succeeds. The runtime for heuristic 1 depends
on the number of occluders in the scene: the algorithm
only needs one occluder per link and thus has to search
less links and terminates quicker when many large oc-
cluders are present. Heuristic 2 spends most time in al-
gorithm 3, whose complexity is dominated by the num-
ber of links that have to be searched.

Although the resulting error due to the link removal
heuristics seems significant for the affected scenes, the
impact on the rendered images is hardly perceivable
(see Fig. 7 and Fig. 10a). Obviously, errors are only in-
troduced for links whose contribution (either radiance
or antiradiance) is negligible. The first heuristic creates
generally brighter shadow regions. It discards O

(−)−→ R

Figure 8: Desk scene with blocking geometry (red) af-
ter 6 antiradiance iterations, rendered with splatting.

Journal of WSCG 65 ISSN 1213-6972

Figure 12: Soda Hall level 5 lit by diffuse emitting area
light sources in the rooms and on the hallways. It was
rendered using final shooting and the reduced link mesh
produced using heursitic 1 (see Table 1).

links even if there exists another link S′
(+)−→ R that is

only partially occluded by O and requires the antira-
diance generated at O to correctly light R. The second
algorithm of heuristic 2, which is run to preserve partial
occlusion, results in a stronger tendency to keep antira-
diance links. Thus, the corresponding difference image
shows lesser brightening of shadow regions. Applying
heuristic 2 followed by heuristic 1 on the Japanese room
and Soda Hall scenes results in 144983 removed links
(45.5% error) and 1628987 removed links (4.7% error),
respectively, and visual quality comparable to Fig. 7.

We tested the blocking planes by adding two such
polygons between the rooms in the “desks” scene (see
Fig. 8). These two quads alone caused a removal of
almost 76% of all occluded links in the scene, demon-
strating that this mechanism is not only cheap to com-
pute, but also highly efficient.

6.2 Rendering Quality
Fig. 9 shows resulting images for the Japanese room
without interpolation, with splatting, and final shoot-
ing. The global illumination solution has been com-
puted with 4 antiradiance iterations and 128 direction
bins for all of our test scenes.

At a resolution of 800× 600 pixels the rendering
speed was 8.5 frames per second with no interpolation,
7.7 fps with splatting, and 0.04 fps with shooting. Al-
though final shooting has a considerable impact on per-
formance due to the high number PLSs, the resulting
images capture finer details, e.g. contact shadows, due
to patches emitting antiradiance. Interleaved sampling
for final shooting with 4× 4 interleaved sampling runs
at 0.44 fps, and the performance increases further when
using larger interleaving patterns yielding 1.22 fps at
8×8, and 2.88 fps at 16×16. However, at some point
the wider Gaussian blur filter again removes details (see
Fig. 10). Nichols et al. [16] report tremendous speed-
ups with multi-resolution splatting compared to inter-
leaved sampling, however, there is another way to speed
up shooting. So far, we used the leaf nodes in the hier-
archy as PLSs, but we also can use interior nodes there-
for. Using the leaves’ parents yields about 75% less
PLSs, but only slightly reduces the amount of detail in

the lighting as we treat them as area lights (see Fig. 11),
but already yields a significant speedup: shooting at full
resolution runs at 0.14 fps, at 1.29 fps with 4×4, at 2.99
fps with 8×8, and at 5.09 fps with 16×16 interleaving,
respectively. A further optimization, and direction for
future work, is to exploit the patch hierarchy also for
selecting the PLSs, in spirit of [21].

7 CONCLUSIONS
In this paper we studied heuristics operating directly on
the hierarchical link mesh of the antiradiance method
to deduce explicit visibility information and thus to re-
duce the number of links. The energy propagation is
the most time consuming step in antiradiance methods
and greatly benefits from link removal as its cost is
proportional to the number of links. Our heuristics re-
move links more faithfully than Dong et al.’s method [4]
yielding results of similar quality as the antiradiance
method. The user-defined blocker geometry can further
be used to remove links with little computation. The
final shooting simplifies the rendering of a high-quality
final solution and yields better results and requires less
tweaking than Dachsbacher et al.’s splatting approach.

Obviously, our heuristics will have to be incorpo-
rated into a data-parallel link generation method, such
as Meyer et al.’s work [15] to actually speed up antira-
diance in fully dynamic scenes. This data-parallel al-
gorithm is about two orders of magnitude faster than
our (and Dachsbacher et al.’s) CPU-based link genera-
tion algorithm (45 million links/s versus 140 thousand
links/s), and we would expect a similar speedup for the
link removal. Another challenge is to create blocking
geometry automatically by analyzing the scene geome-
try. We believe that these two steps will enable our link
removal in fully dynamic scenes at interactive speed.

ACKNOWLEDGEMENTS
The authors would like to thank the German Research
Foundation (DFG) for financial support of the project
within the Cluster of Excellence in Simulation Tech-
nology (EXC 310/1) at the University of Stuttgart.

REFERENCES
[1] Attila Barsi, László Szirmay-Kalos, and Gábor

Szijártó. Stochastic glossy global illumination
on the gpu. In Spring Conference on Computer
Graphics 2005, pages 187–193, 2005.

[2] Greg Coombe, Mark J. Harris, and Anselmo Las-
tra. Radiosity on graphics hardware. In Graphics
Interface 2004, pages 161–168, 2004.

[3] Carsten Dachsbacher, Marc Stamminger, George
Drettakis, and Frédo Durand. Implicit visibility
and antiradiance for interactive global illumina-
tion. ACM Trans. on Graphics (Proc. of SIG-
GRAPH), 26(3):61, 2007.

Journal of WSCG 66 ISSN 1213-6972

Figure 9: The Japanese room with different rendering methods. The room is lit from outside the window on the
left. The images were rendered with 4 iterations at a resolution of 800×600 pixels with a full link mesh.

(a) PBRT reference (b) 4×4 interleaved sampling (c) 16×16 interleaved sampling

Figure 10: Results with different interleaved sampling patterns: larger patterns result in stronger blurring and loss
of small scale features.

(a) final shooting (b) 4×4 interleaved sampling (c) 16×16 interleaved sampling

Figure 11: Final shooting using not the leafs of the patch hierarchy, but its parents as PLSs. This results in
significantly faster rendering speed, sacrificing only little details in the lighting (e.g. visible in shadowed areas
around the bookshelf).

[4] Zhao Dong, Jan Kautz, Christian Theobalt, and
Hans-Peter Seidel. Interactive global illumination
using implicit visibility. In Proc. of Pacific Graph-
ics, pages 77–86, 2007.

[5] P. Dutré, K. Bala, and P. Bekaert. Advanced
Global Illumination. AK Peters, 2006.

[6] D. Fradin, D. Meneveaux, and S. Horna. Out-of-
core photon-mapping for large buldings. In Pro-
ceedings of Eurographics symposium on Render-
ing, June 2005.

[7] Toshiya Hachisuka, Shinji Ogaki, and Hen-
rik Wann Jensen. Progressive photon mapping.
In SIGGRAPH Asia ’08: ACM SIGGRAPH Asia
2008 papers, pages 1–8, 2008.

[8] Nicolas Holzschuch, François X. Sillion, and
George Drettakis. An efficient progressive refine-
ment strategy for hierarchical radiosity. In Pho-
torealistic Rendering Techniques (Eurographics

Workshop on Rendering), pages 357–372, 1994.
[9] Henrik Wann Jensen. Realistic image synthesis

using photon mapping. A. K. Peters, Ltd., 2001.
[10] James T. Kajiya. The rendering equation.

Computer Graphics (Proc. of SIGGRAPH ’86),
20(4):143–150, 1986.

[11] Alexander Keller. Instant radiosity. In SIG-
GRAPH ’97, pages 49–56, 1997.

[12] Christian Lauterbach, Michael Garland, Shub-
habrata Sengupta, David Luebke, and Dinesh
Manocha. Fast bvh construction on gpus. Com-
puter Graphics Forum, 28(2), 2009.

[13] Jaakko Lehtinen, Matthias Zwicker, Emmanuel
Turquin, Janne Kontkanen, Frédo Durand,
François X. Sillion, and Timo Aila. A meshless
hierarchical representation for light transport.
ACM Trans. on Graphics (Proc. of SIGGRAPH),
27(3):1–9, 2008.

Journal of WSCG 67 ISSN 1213-6972

[14] Dani Lischinski, Filippo Tampieri, and Donald P.
Greenberg. Discontinuity meshing for accurate
radiosity. IEEE Computer Graphics and Appli-
cations, 12(6):25–39, 1992.

[15] Quirin Meyer, Christian Eisenacher, Marc Stam-
minger, and Carsten Dachsbacher. Data-Parallel,
Hierarchical Link Creation. In Proceedings of
the Eurographics Symposium on Parallel Graph-
ics and Visualization, 2009.

[16] Greg Nichols, Jeremy Shopf, and Chris Wyman.
Hierarchical image-space radiosity for interactive
global illumination. In Computer Graphics Forum
28(4), pages 1141–1149, 2009.

[17] Tobias Ritschel, Thomas Engelhardt, Thorsten
Grosch, Hans-Peter Seidel, Jan Kautz, and
Carsten Dachsbacher. Micro-rendering for scal-
able, parallel final gathering. ACM Trans. on
Graphics (Proc. of SIGGRAPH Asia), 28(5),
2009.

[18] Tobias Ritschel, Thorsten Grosch, Min H. Kim,
Hans-Peter Seidel, Carsten Dachsbacher, and Jan
Kautz. Imperfect shadow maps for efficient com-
putation of indirect illumination. ACM Trans.
on Graphics (Proc. of SIGGRAPH Asia), 27(5),
2008.

[19] Arne Schmitz, Markus Tavenrath, and Leif

Kobbelt. Interactive global illumination for de-
formable geometry in cuda. Computer Graphics
Forum (Proc. of Pacific Graphics 2008), 27(7),
2008.

[20] B. Segovia, J. C. Iehl, R. Mitanchey, and
B. Péroche. Non-interleaved deferred shading of
interleaved sample patterns. In Proceedings of the
21st ACM SIGGRAPH/EUROGRAPHICS sympo-
sium on Graphics Hardware, pages 53–60, 2006.

[21] Bruce Walter, Sebastian Fernandez, Adam Ar-
bree, Kavita Bala, Michael Donikian, and Don-
ald P. Greenberg. Lightcuts: a scalable approach
to illumination. ACM Trans. on Graphics (Proc.
of SIGGRAPH), 24(3):1098–1107, 2005.

[22] Rui Wang, Rui Wang, Kun Zhou, Minghao Pan,
and Hujun Bao. An efficient gpu-based approach
for interactive global illumination. ACM Trans. on
Graphics (Proc. of SIGGRAPH), 28(3):1–8, 2009.

[23] Gregory J. Ward and Paul S. Heckbert. Irradiance
gradients. In Eurographics Workshop on Render-
ing, pages 85–98, 1992.

[24] Kun Zhou, Qiming Hou, Rui Wang, and Baining
Guo. Real-time kd-tree construction on graphics
hardware. ACM Trans. on Graphics (Proc. of SIG-
GRAPH Asia), 27(5):1–11, 2008.

Journal of WSCG 68 ISSN 1213-6972

Analysis and design of the dynamical stability of collective
behavior in crowds

Albert Mukovskiy
Section for Computational

Sensomotorics, Department of
Cognitive Neurology, Hertie

Institute for Clinical Brain
Research & Centre for Integrative
Neuroscience, University Clinic,

Tübingen, Germany
albert.mukovskiy@medizin.uni-

tuebingen.de

Jean-Jacques E. Slotine
Nonlinear Systems Laboratory,

Department of Mechanical
Engineering, MIT; Cambridge,

MA, USA
jjs@mit.edu

Martin A. Giese
Section for Computational

Sensomotorics, Department of
Cognitive Neurology, Hertie

Institute for Clinical Brain
Research & Centre for Integrative
Neuroscience, University Clinic,

Tübingen, Germany
martin.giese@uni-tuebingen.de

ABSTRACT

The modeling of the dynamics of the collective behavior of multiple characters is a key problem in crowd animation. Collective
behavior can be described by the solutions of large-scale nonlinear dynamical systems that describe the dynamical interaction
of locomoting characters with highly nonlinear articulation dynamics. The design of the stability properties of such complex
multi-component systems has been rarely studied in computer animation. We present an approach for the solution of this
problem that is based on Contraction Theory, a novel framework for the analysis of the stability complex nonlinear dynamical
systems. Using a learning-based realtime-capable architecture for the animation of crowds, we demonstrate the application of
this novel approach for the stability design for the groups of characters that interact in various ways. The underlying dynamics
specifies control rules for propagation speed and direction, and for the synchronization of the gait phases. Contraction theory
is not only suitable for the derivation of conditions that guarantee global asymptotic stability, but also of minimal convergence
rates. Such bounds permit to guarantee the temporal constraints for the order formation in self-organizing interactive crowds.

Keywords: computer animation, crowd animation, coordination, distributed control, stability.

1 INTRODUCTION
Dynamical systems are frequently applied in crowd an-
imation for the simulation of autonomous and collec-
tive behavior of many characters [MT01], [TCP06].
Some of this work has been inspired by observations
in biology, showing that coordinated behavior of large
groups of agents, such as flocks of birds, can be mod-
elled as emergent behavior that arises from the dynami-
cal coupling between interacting agents, without requir-
ing an external central mechanism that ensures coor-
dination [CS07, Cou09], [CDF+01]. Such models can
be analyzed by application of methods from nonlinear
dynamics [PRK03]. The simulation of collective be-
havior by self-organization in systems of dynamically
coupled agents is interesting because it might reduce
the computational costs of traditional computer ani-
mation techniques, such as scripting or path planning
[TCP06, Rey87]. In addition, the generation of col-
lective behavior by self-organization allows to imple-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

ment spontaneous adaptation to external perturbations
or changes in the system architecture, such as the vari-
ation of the number of characters. However, due to the
complexity of the models describing individual char-
acters the mathematical analysis of the underlying dy-
namical systems is typically quite complicated.

In crowd animation, some recent studies have tried to
learn interaction rules from the behavior of real human
crowds [DH03], [PPS07], [LFCCO09]. Other work has
tried to optimize interaction behavior in crowds by ex-
haustive search of the parameter space exploiting com-
puter simulations by definition of appropriate cost func-
tions (e.g. [HMFB01]). However, most of the ex-
isting approaches for the control of group motion in
computer graphics have not taken into account the ef-
fects of the articulation during locomotion on the con-
trol dynamics [PAB07], [NGCL09], [KLLT08]. Con-
sequently, the convergence and stability properties of
such dynamical animation systems have rarely been ad-
dressed. Distributed control theory has started to study
the temporal and spatial self-organization of crowds of
agents, and the design of appropriate dynamic interac-
tions, typically assuming rather simple and often even
linear agent models (e.g. [SS06], [PLS+07], [SDE95]).
However, human-like characters are characterized by
highly complex kinematic and even dynamic proper-
ties, c.f. [BH97]. Consequently, approaches for a sys-
tematic analysis and design of the dynamical properties

Journal of WSCG 69 ISSN 1213-6972

of crowd animation systems are largely lacking. How-
ever, such methods seem highly desirable, since they
permit one to guarantee desired system properties and
to ensure the robustness of the generated behavior under
variations of system inputs and the system parameters.

In this paper we introduce Contraction Theory
([LS98], [PS07]) as a framework that makes such
stability problems tractable, even for characters with
multiple coupled levels of control. Contraction Theory
provides a useful tool specifically for modularity-based
stability analysis and design [Slo03], [WS05]. This
framework is applied to a simple learning-based
animation architecture for the real-time synthesis of
the movements of interacting characters, which is
based on a method that approximates complex human
behavior by relatively simple nonlinear dynamical sys-
tems [GMP+09], [PMSA09]. Consistent with related
approaches in robotics [RI06], [BC89], [GRIL08],
[Ijs08], [BRI06], [GTH98], [CS93], this method gen-
erates complex movements by the combination of the
learned movement primitives [OG06], [GMP+09]. The
resulting system architecture is rather simple, making
it suitable for a mathematical treatment of dynamical
stability properties.

The paper is structured as follows: The structure of
the animation system is sketched in section 2. The dy-
namics underlying navigation control is described in
section 3. Subsequently, in section 4 we introduce some
basic ideas from Contraction Theory. The major results
of our stability analysis and some demos of their appli-
cations to the control of crowds are described in section
5, followed by the conclusions.

2 SYSTEM ARCHITECTURE
Our investigation of the collective dynamics of crowds
was based on a learning-based animation system, de-
scribed in details in [GMP+09] (see Fig. 1). By ap-
plying anechoic demixing [OG06] to motion capture
data, we learned spatio-temporal components. These
source components were generated online by nonlinear
dynamical systems, Andronov-Hopf oscillators. The
mappings σ j between the stable solutions of the nonlin-
ear oscillators and the required source functions were
learned by application of kernel methods [GMP+09].
Each character is modelled by a single limit cycle os-
cillator, whose solution is mapped by support vector re-
gression (SVR) onto three source signals. These signals
were then superimposed with different linear weights
wi j and phase delays τi j in order to generate the joint
angle trajectories ξi(t) (see Fig. 1). By blending of
the mixing weights and the phase delays, intermediate
gait styles were generated. This allowed us to simu-
late specifically walking along paths with different cur-
vatures, changes in step length and walking style. In-
teractive behavior of multiple agents can be modelled
by making the states of the oscillators and the mixing

Figure 1: Architecture of the simulation system.

weights dependent on the behavior of the other agents.
Such couplings result in a highly nonlinear system dy-
namics.

The heading direction of the characters was changed
by morphing between curved gaits, controlled by a non-
linear navigation dynamics. In the shown applications
this dynamics steers the avatars towards goal points that
were placed along parallel straight lines. The heading
dynamics was given by a nonlinear first-order differen-
tial equation (see [GMP+09] for details). Control of
heading direction was only active during the the initial
stage of the organization of the crowd, resulting in an
alignment of the avatars along the parallel straight lines,
independent of their initial positions and gait phases.
(See Fig. 2 and Fig. 3).

3 CONTROL DYNAMICS
Beyond the control of heading direction, the analyzed
scenarios of order formation in a group of characters
require the control of the following variables: 1) phase
within the step cycle, 2) step length, 3) gait frequency,
and 4) heading direction.

The dynamics of each individual character was mod-
elled by an Andronov-Hopf oscillator with constant
equilibrium amplitude (r∗i = 1). For appropriate choice
of parameters, these nonlinear oscillators have a stable
limit cycle that corresponds to a circular trajectory in
phase space [AVK87].

In polar coordinates and with the instantaneous
eigenfrequency ω this dynamics is given by:
ṙ(t) = r(t)

(
1− r2(t)

)
, φ̇(t) = ω . Control affects

the instantaneous eigenfrequency ω of the Andronov-
Hopf oscillators and their phases φ , while the first
equation guarantees that the state stays on the limit
cycle (r(t) = 1,∀t).

The position zi of each character along the paral-
lel paths (see Fig. 2) fulfills the differential equation
żi(t) = φ̇ig(φi), where the positive function g deter-
mines the propagation speed of the character depend-
ing on the phase within the gait cycle. This nonlinear

Journal of WSCG 70 ISSN 1213-6972

Figure 2: Crowd coordination scenario. Every character i
is characterized by its position zi(t), the phase φi(t) and the
instantaneous eigenfrequency ωi(t) = φ̇i(t) of the correspond-
ing Andronov-Hopf oscillator, and a step-size scaling param-
eter µi(t).

Figure 3: A sliding goal for each avatar was placed on a
straight line at fixed distance ahead in z-direction. Heading
direction angle: ψheading and goal direction angle: ψgoal .

function was determined empirically from a kinematic
model of character. By integration of this propagation
dynamics one obtains zi(t) = G(φi(t) + φ 0

i) + ci, with
an initial phase shift φ 0

i and some constant ci depending
on the initial position and phase of avatar i, and with the
monotonously increasing function G(φi) =

∫ φi
0 g(φ)dφ ,

assuming G(0) = 0. Three control rules described:
I) Control of step frequency: A simple form of

speed control is based on making the frequency of the
oscillators φ̇i dependent on the behavior of the other
characters. Let ω0 be the equilibrium frequency of the
oscillators without interaction. Then a simple controller
is defined by the differential equation

φ̇i(t) = ω0−md

N

∑
j=1

Ki j[zi(t)− z j(t)−di j] (1)

The constants di j specify the stable pairwise relative
distances in the formed order for each pair (i, j) of char-
acters. The elements of the link adjacency matrix K are
Ki j = 1 if characters i and j are coupled and zero oth-
erwise. In addition, we assume Kii = 0. The constant
md > 0 defines the coupling strength.

With the Laplacian Ld of the coupling graph, which
is defined by Ld

i j = −Ki j for i 6= j and Ld
ii = ∑

N
j=1 Ki j,

and the constants ci = −∑
N
j=1 Ki jdi j the last equation

system can be re-written in vector form:

φ̇ = ω01−md(LdG(φ +φ
0)+ c) (2)

II) Control of step length: Step length was varied
by morphing between gaits with short and long steps. A

Figure 4: Propagation velocity for 10 different values the
of step length morphing parameter µ = [0 . . .0.25] dependent
on gait cycle phase φ(t) and ω(t) = 1. The vertical axis is
scaled in order to make all average velocities equal to one for
µ = 0 (lowest thick line). This empirical estimates are well
approximated by (1+ µ)g(φ(t)).

detailed analysis shows that the influence of step length
on the propagation could be well captured by simple
linear rescaling. If the propagation velocity of char-
acters i is vi(t) = żi(t) = φ̇i(t)g(φi(t)) = ωi(t)g(φi(t))
for the normal step size, then the velocity for modi-
fied step size was well approximated by vi(t) = żi(t) =
(1 + µi)ωi(t)g(φi(t)) with the morphing parameter µi.
The range of morphing parameters was restricted to the
interval −0.5 < µi < 0.5, where this linear scaling law
was fulfilled with high accuracy. The empirically es-
timated propagation velocity in heading direction, de-
pendent on gait phase, is shown in Fig.4 for different
values of the step length morphing parameter µi. Using
the same notations as in equation (1), this motivates the
definition of the following dynamics that models the in-
fluence of the step length control on the propagation
speed:

ż = ωg(φ +φ
0)(1−mz(Lzz+ c)) (3)

In this equation Lz signifies the Laplacian of the rel-
evant coupling graph, and mz the strength of the cou-
pling. For uncoupled characters (mz = 0) this equa-
tion is consistent with the the definition of propagation
speed that was given before.

III) Control of step phase: By defining separate
controls for step length and step frequency it becomes
possible to dissociate the control of position and step
phase of the characters. Specifically, it is interesting to
introduce a controller that results in phase synchroniza-
tion between different characters. This can be achieved
by addition of a simple linear coupling term to equation
(1), written in vector form:

φ̇ = ω01−md(LdG(φ +φ
0)+ c)− kLφ

φ (4)

with k > 0 and the Laplacian Lφ . (All sums or differ-
ences of angular variables were computed by modulo
2π).

IV) Control of heading direction:
The heading directions of the characters were con-

trolled by a navigation dynamics that steers the avatars

Journal of WSCG 71 ISSN 1213-6972

towards goal points, which were placed along parallel
straight lines in front of the avatars (2). The heading dy-
namics was given by a nonlinear differential equation,
independently for every character [GMP+09]:

ψ̇i = sin(ψgoal
i −ψi) (5)

where ψ
goal
i = arctan(∆ξ

goal
i /∆zgoal

i), ∆ξ
goal
i is the dis-

tance to the goal line in the direction orthogonal to the
propagation direction, while ∆zgoal

i is constant, (see Fig.
3). The morphing weight that controls the mixture of
walking with left and right turning was proportional to
ψ̇i(t). For the mathematical stability analysis presented
in the following, we neglected the influence of the dy-
namics of the control of heading direction, focusing on
the order formation scenarios when the agents’ heading
directions are already aligned, when they walk along
parallel straight lines towards sliding goal points. In
this case, the positions of the agents can be described
by a single position variable z(t). An extension of the
developed analysis framework including the control of
the heading direction is in progress.

The mathematical results derived in the following
sections apply to subsystems of the complete system
dynamics that is given by equations (3) and (4). In ad-
dition, simulations are presented for the full system dy-
namics.

4 CONTRACTION THEORY
Dynamical systems describing the behavior of au-
tonomous agents are essentially nonlinear. In contrast
to the linear dynamical systems, a major difficulty
of the analysis of stability properties of nonlinear is
that the stability properties of parts usually do not
transfer to composite systems. Contraction Theory
[LS98] provides a general method for the analysis of
essentially nonlinear systems, which permits such a
transfer, making it suitable for the analysis of complex
systems with many components. Contraction Theory
characterizes the system stability by the behavior of
the differences between solutions with different initial
conditions. If these differences vanish exponentially
over time, all solutions converge towards a single
trajectory, independent from the initial states. In this
case, the system is called globally asymptotically
stable. For a general dynamical system of the form

ẋ = f(x, t) (6)

assume that x(t) is one solution of the system, and
x̃(t) = x(t) + δx(t) a neighboring one with a differ-
ent initial condition. The function δx(t) is also called
virtual displacement. With the Jacobian of the sys-
tem J(x, t) = ∂ f(x,t)

∂x it can be shown [LS98] that any
nonzero virtual displacement decays exponentially to
zero over time if the symmetric part of the Jacobian

Js = (J+JT)/2 is uniformly negative definite, denoted
as Js < 0. This implies that it has only negative eigen-
values for all relevant state vectors x. In this case, it
can be shown that the norm of the virtual displacement
decays at least exponentially to zero, for t → ∞. If the
virtual displacement is small enough, then

δ̇x(t) = J(x, t)δx(t)

implying through d
dt ||δx(t)||2 = 2δxT (t)Js(x, t)δx the

inequality: ||δx(t)|| ≤ ||δx(0)|| e
∫ t

0 λmax(Js(x,s))ds. This
implies that the virtual displacements decay with a
convergence rate (inverse timescale) that is bounded
from below by the quantity ρc =−supx,t λmax(Js(x, t)),
where λmax(.) signifies the largest eigenvalue. With
ρc > 0 all trajectories converge to a single solution ex-
ponentially in time [LS98].

Contraction analysis can be applied also to hierarchi-
cally coupled systems [LS98]. Consider a composite
dynamical system with two components, where the dy-
namics of the first subsystem is not influenced by the
dynamics of the second one. Such system is called hier-
archically coupled. The composite dynamical system:

d
dt

(
x1
x2

)
=
(

f1(x1)
f2(x1,x2)

)
(7)

results in the Jacobian:

F =

(
∂ f1(x1)

∂x1
0

∂ f2(x1,x2)
∂x1

∂ f2(x1,x2)
∂x2

)
=
(

F11 0
F21 F22

)
(8)

Consider then the smooth dynamics of virtual dis-

placements: d
dt

(
δx1
δx2

)
=
(

F11 0
F21 F22

)(
δx1
δx2

)
,

where F21 is bounded. The first subsystem does
not depend on the second, so that δx1 exponentially
converges to 0 if (F11)s < 0. Then, F21δx1 is an
exponentially decaying disturbance for the second sub-
system. In this case, (see [LS98] for details of proof),
uniformly negative definite F22 implies exponential
convergence of δx2 to an exponentially decaying
ball. The whole system is then globally exponentially
convergent to a single trajectory.

Many systems are not contracting with respect to all
dimensions of the state space, but show convergence
with respect to a subset of dimensions. Such behav-
ior can be mathematically characterized by partial con-
traction [WS05], [PMSA09]. The underlying idea is
to construct an auxiliary system that is contracting with
respect to a subset of the arguments of the function f.
The major result is the following:

Theorem 1 Consider a nonlinear system of the form

ẋ = f(x,x, t) (9)

and assume the existence of auxiliary system

ẏ = f(y,x, t) (10)

Journal of WSCG 72 ISSN 1213-6972

that is contracting with respect to y uniformly for all
relevant x. If a particular solution of this auxiliary sys-
tem verifies a specific smooth property, then trajectories
of the original system (9) verify this property exponen-
tially. The original system is then said to be partially
contracting. [WS05].

A ’smooth property’ is a property of the solution that
depends smoothly on space and time, such as conver-
gence against a particular solution or a properly defined
distance to a subspace in phase space. The proof of
the theorem is immediate noticing that the observer-like
system (10) has y(t) = x(t) for all t ≥ 0 as a particu-
lar solution. Since all trajectories of the y-system con-
verge exponentially to a single trajectory, this implies
that also the trajectory x(t) verifies this specific prop-
erty with exponential convergence.

It is thus sufficient to show that the auxiliary system is
contracting in order to prove the convergence to a sub-
space. Let us assume that system has a flow-invariant
linear subspace M , which is defined by the property
that trajectories starting in this space always remain in
it for arbitrary times (∀t : f(M , t) ⊂ M). If matrix V
is an orthonormal projection onto M⊥, then sufficient
condition for global exponential convergence to M is:

V
(

∂ f
∂x

)
s
VT < 0, (11)

where smaller sign indicates that this matrix is negative
definite (see [PS07, PMSA09]).

5 RESULTS
We derived contraction bounds for three scenarios that
correspond to control dynamics with increasing levels
of complexity.

1) Control of step phase without position control:
The simplest case is a control of the phase within the
step cycle of the walkers without simultaneous control
of the position of the characters. Such simple control
already permits to simulate interesting behaviors, such
as soldiers synchronizing their step phases [PMSA09],
[Demo1]. The underlying dynamics is given by (4) with
md = 0. For N identical dynamical systems, with sym-
metric identical coupling gains k this dynamics can be
written

ẋi = f(xi)+ k ∑
j∈Ni

(x j −xi), ∀i = 1, . . . ,N (12)

where Ni defines the index set specifying the neighbor-
hood in the coupling graph, i.e. the other subsystems or
characters that are coupled with character i.

This type of symmetric coupling, where the interac-
tion forces between subsystems depend only on the dif-
ferences of the phase variables is called diffusive cou-
pling. In this case, the Laplacian matrix of the coupling

1 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video0.avi

scheme is given by L = LG
⊗

Ip, where p is the di-
mensionality of the individual sub-systems, and where⊗

signifies the Kronecker product. The Laplacian of
the coupling graph is the matrix LG. The system then
can be rewritten compactly as ẋ = f(x, t)− kLx with the
concatenated phase variable x = [xT

1 , ...,xT
n]T . The Ja-

cobian of this system is J(x, t) = D(x, t)− kL, where
the block-diagonal matrix D(x, t) has the Jacobians of
the uncoupled components ∂ f

∂x (xi, t) as entries.
The dynamics has a flow-invariant linear subspace

M that contains the particular solution x∗1 = · · ·= x∗n.
For this solution all state variables xi are identical and
thus in synchrony. In addition, for this solution the cou-
pling term in equation (12) vanishes, so that the form of
the solution is identical with the solution of the uncou-
pled systems ẋi = f(xi). If V is a projection matrix onto
the subspace M⊥, then, according to (11), the suffi-
cient contraction condition for convergence toward M
is given by V(D(x, t)− kL)sVT < 0, [PMSA09]. This
implies

λmin
(
V(kL)sVT)= kλ

+
L > sup

x,t
λmax (Ds)

with λ
+
L being the smallest non-zero eigenvalue

of symmetrical part of the Laplacian Ls. The
maximal eigenvalue for the individual oscillator
is supx,t λmax

(
∂ f
∂x (x, t)

)
. The sufficient condi-

tion for global stability of the overall system is
given by k > supx,t λmax

(
∂ f
∂x (x, t)

)
/λ

+
L . This im-

plies the following minimum convergence rate:
ρc =−supx,t λmax(V(D(x, t)−L)sVT).

For the special case of (4) with md = 0 this implies
the sufficient contraction conditions k > 0 and (Lφ)s ≥
0.

Different topologies of the coupling graphs result in
different stability conditions, since for example λ

+
L =

2(1 − cos(2π/N)) for symmetric ring coupling, and
λ

+
L = N for all-to-all coupling. (N is the number of

avatars.) See [WS05] and [PMSA09] for details.
2) Speed control by variation of step frequency:
The dynamics of this system is given by equations (2)

and (3) for mz = 0. Assuming arbitrary initial distances
and phase offsets for different propagating characters,
implying G(φ 0

i) = ci, ci 6= c j, for i 6= j, we redefine di j
as di j − (ci − c j) in (1), and accordingly redefine c in
(2). Assuming this control dynamics, and two avatars
i and j that follow a leading avatar, their phase tra-
jectories converge to a single unique trajectory only if
ci = c j. This is a consequence of the one-to-one corre-
spondence between gait phase and position of the avatar
that is given by equation (2). In all other cases the tra-
jectories of the followers converge to one-dimensional,
but distinct, attractors in phase-position space that are
uniquely defined by ci. These attractors correspond to a
behavior where the follower’s position oscillates around
the position of the leader.

Journal of WSCG 73 ISSN 1213-6972

For the analysis of contraction properties we
regard an auxiliary system obtained from (2) by
keeping the terms which are only dependent on φ :
φ̇ = −mdLdG(φ + φ

0). The symmetrized Jacobian of
this system projected to the orthogonal compliment of
flow-invariant linear subspace φ ∗1 +φ 0

1 = . . . = φ ∗N +φ 0
N

determines whether this system is partially contracting.
By virtue of a linear change of variables the study of
the contraction properties of this system is equivalent
to study the contraction properties of the dynamical
system φ̇ = −mdLdG(φ) on trajectories converging
towards its flow-invariant manifold, the linear subspace
of φ ∗1 = . . . = φ ∗N .

In order to derive an asymptotic stability condition,
we consider the following auxiliary system, corre-
sponding to a part of (2): φ̇ = −mdLdG(φ). The
Jacobian of this system is given by J = −mdLdDg,
where (Dg)ii = g(φi) = G′(φi) > 0 is a strictly positive
diagonal matrix. Exploiting diagonal stability theory
[Per69], it is straightforward to demonstrate that the
auxiliary system is globally asymptotically stable and
its state converges to an attractor with φ ∗1 = . . . = φ ∗N for
any initial condition assuming (Ld)s ≥ 0 and md > 0.
The sufficient conditions for asymptotic stability are
satisfied for all types of symmetric diffusive couplings
with positive coupling strength. For the case of asym-
metric coupling graphs with more general structure
including negative feedback links some results on
asymptotic stability have been provided in [SA08].

The sufficient conditions for (exponential) partial
contraction towards flow-invariant subspace are, (see
(11)): VJs(φ)VT =−mdVB(φ)VT < 0, introducing
B(φ) = LdDg +Dg(Ld)T and V signifying the pro-
jection matrix onto the orthogonal complement of the
flow-invariant linear subspace. For diffusive coupling
with symmetric Laplacian the linear flow-invariant
manifold φ ∗1 = . . . = φ ∗N is also the null-space of
the Laplacian. In this case, the eigenvectors of the
Laplacian that correspond to positive eigenvalues can
be used to construct the projection matrix V. For
md > 0 the contraction conditions are thus satisfied
if VB(φ)VT = V(LdDg +Dg(Ld)T)VT > 0 for any
diagonal matrix Dg > 0.

Next we prove the exponential contraction condi-
tions for the particular case of symmetrical all-to-all
coupling. In this case Ld = NI− 11T ≥ 0, where I
is identity matrix of size N. Since V1 = 1T VT = 0,
we obtain 1

2 V(LdDg + Dg(Ld)T)VT = NV(Dg)VT >
0 for Dg > 0. A lower bound for the contraction
rate is computed from the projected symmetrized Jaco-
bian VJs(φ)VT =−md

2 VB(φ)VT . Contraction theory
also permits to compute the guaranteed contraction rate
ρmin = md minφ (g(φ))λ+

Ld , with λ
+
Ld = N for all-to-all

symmetric coupling.
For a general symmetric couplings with

positive links (with equal coupling strength

md > 0) we obtain the sufficient contrac-
tion condition as: λ

+
min(L

d)/λ+
max(Ld) >

maxφ (|g(φ) − mean(g(φ))|)/mean(g(φ)), where
mean value of g(φ) over the gait cycle period T is:
mean(g(φ)) = 1/T

∫ T
0 g(φ)dφ . This condition is derived

from the fact that for symmetric (positive) matrices
M1 and M2 for M1 −M2 > 0 it is sufficient to satisfy
M1 > M2 (the last means λmin(M1) > λmax(M2)). This
sufficient condition put the constraints on admissible
topologies of the coupling scheme dependent on the
smoothness of gait velocity function g(φ). Alterna-
tively, it is possible to introduce low-pass filtering of
the forward kinematics of walking characters in order
to increase the smoothness of g(φ).

An illustration of these stability bounds if given
by the [Demo2]; that shows convergent behavior
of the characters when the contraction condition
md > 0,(Ld)s ≥ 0 is satisfied for all-to-all coupling.
[Demo3] shows the divergent behavior of a group when
this condition is violated when md < 0.

The same proof can be extended for nonlinear con-
trol rules. In this case the eigenfrequency is given
by a nonlinear modification of the control rule in eq.
(1), for character i coupled to character j as: ωi =
ω0 + mdh(z j − zi + di j), where the saturating nonlin-
ear function h could be given, for example by h(z) =
1/[1 + exp(−γz)] with γ > 0. This nonlinear function
limits the range of admissible speeds for the controller.
Using the same notations as above, the dynamics of a
single follower that follows a leader at position P(t) is
given by: φ̇(t) = ω0 +mdh(P(t)−G(φ(t))+ c). The
Jacobian of this dynamics Js =−mdh′g(φ) < 0 is neg-
ative, which follows from md > 0, g(φ) > 0 and taking
into account h′(z) = dh(z)/dz > 0,∀z, what guarantees
contraction.

Again this dynamics can be extended for N avatars,
resulting in the nonlinear differential equation system:
φ̇i(t) = ω0−md ∑

N
j=1 Ki jh(G(φi)−G(φ j)+di j),∀i.

The Jacobian of the system is: J(φ) =−mdLd(φ)Dg,
where Ld

i j(φ) = −Ki jh′(G(φi) − G(φ j) + di j),
Ld

ii(φ) = ∑
N
j 6=i Ki jh′(G(φi)−G(φ j)+di j), dii = 0,

(Dg is defined as before). Furthermore, the even
function h′(z) > 0 implies that the Laplacian Ld(φ) is
symmetric diagonally dominant and it stays positive
semidefinite for any positive Ki j > 0, by Gershgorin’s
Theorem [HJ85]. This implies that the system is
asymptotically stable, its solutions converging to an
attractor. The analysis of exponential convergence
requires further steps that exceed the scope of this
paper.

3) Stepsize control combined with a control of
step phase: The dynamics is given by equations (3)
and (4) with md = 0. This dynamics defines a hier-

2 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video1.avi
3 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video2.avi

Journal of WSCG 74 ISSN 1213-6972

Figure 5: Self-organized reordering of a crowd with 16 characters. Control dynamics affects direction, distance
and gait phase. See [Demo7].

archically coupled nonlinear system (see (7), Section
4), which is difficult to analyze with classical meth-
ods [LS98]. The dynamics for z(t) given by equation
(3) is partially contracting in case of all-to-all coupling
for any bounded external input φ(t), if mz > 0, Lz ≥ 0
and ω(t) > 0. These sufficient contraction conditions
can be derived from the requirement of the positive-
definiteness of the symmetrized Jacobian applying a
similar technique as above. The Jacobian of this sub-
system is J(φ ,ω) =−mzDz

g(φ ,ω)Lz, with the diago-
nal matrix (Dz

g(φ ,ω))ii = ωig(φi +φ 0
i) > 0 that is pos-

itive definite since g(φ) > 0 and ω > 0. This subsystem
is (exponentially) contracting and its relaxation rate is
determined by ρz = mz minφ (g(φ))λ+

Lz (in the case of
all-to-all coupling) for any input from the dynamics of
φ(t) eq. (4). The last dynamics is contracting when
(Lφ)s ≥ 0 and its relaxation rate is ρφ = kλ

+
Lφ , where

λ
+
Lφ is the smallest non-zero eigenvalue of (Lφ)s. The

effective relaxation time of the overall dynamics is thus
determined by the minimum of the contraction rates ρφ

and ρz.
Demonstrations of this control dynamics satisfying

the contraction conditions are shown in [Demo4], with-
out control of step phase, and in [Demo5], with control
of step phase.

4) Advanced scenarios: A simulation of a system
with stable dynamics with both types of speed control
(via step size and step frequency) and step phase con-
trol is shown in [Demo6]. Using the same dynamics,
a larger crowd of 16 avatars simulated with the open-
source animation engine Horde3d [Sch09] is shown in
[Demo7]. In this scenario, dynamic obstacle avoid-
ance and control of heading direction were activated in
an initial time interval for unsorting of a formation of
avatars. In a second time interval navigation is deacti-
vated, and speed and position control according to the
discussed principles takes over. [Demo8] demonstrates
a large synchronizing crowd with 36 avatars without
initial reordering. [Demo9] shows the divergence dy-
namics of the crowd from previous example, when

4 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video3.avi
5 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video4.avi
6 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video5.avi
7 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video6.avi
8 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video7.avi
9 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video8.avi

negative distance-to-eigenfrequency coupling strength
used (md < 0). Two videos [Demo10] and [Demo11]
show convergence dynamics of the crowd of 49 avatars
for two different values of the strength of the distance-
to-step size coupling (slow and fast). The coupling
strength for the phase coupling dynamics is constant for
this example. The development of stability bounds and
estimates of relaxation times for even more advanced
scenarios including multiple control levels of naviga-
tion is the goal of ongoing work.

6 CONCLUSION
For the example of a learning-based system for the an-
imation of locomoting groups, we have demonstrated
first applications of Contraction Theory for the analysis
and the design of stability and convergence properties
of collective behaviors in animated crowds. The dy-
namics of the collective behavior of animated crowds is
highly nonlinear and prevents the stability analysis us-
ing classical approaches. Opposed to these approaches,
Contraction theory allows to transfer stability results
from the components to composite systems. Future
work has to extend this approach to more complex sce-
narios, especially including non-periodic movements.

ACKNOWLEDGEMENTS
Supported by DFG Forschergruppe ’Perceptual Graph-
ics’, the EC FP7/2007-2013 projects ’AMARSI’ (grant
agreement No.248311) and ’TANGO’ and the Hermann
und Lilly-Schilling-Stiftung. Authors thank Karsten
Rohweder for help with animations in Horde3d.

REFERENCES
[AVK87] A. A. Andronov, A. A. Vitt, and S. E. Khaikin.

Theory of oscillators. Dover Publ. Inc., New York, 1987.
[BC89] A. Bruderlin and T. W. Calvert. Goal-directed, dy-

namic animation of human walking. Proc. of the 16th
Conf. on Computer graphics and interactive techniques,
ACM SIGGRAPH, pages 233–242, 1989.

[BH97] D. C. Brogan and J. K. Hodgins. Group behav-
iors for systems with significant dynamics. Autonomous
Robots, pages 137–153, 1997.

10www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video9.avi
11www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video10.avi

Journal of WSCG 75 ISSN 1213-6972

[BRI06] J. Buchli, L. Righetti, and A. J. Ijspeert. Engi-
neering entrainment and adaptation in limit cycle systems
- from biological inspiration to applications in robotics.
Biol. Cyb., 95, 6:645–664, 2006.

[CDF+01] S. Camazine, J. L. Deneubourg, N. R. Franks,
J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-
Organization in Biological Systems. Princeton University
Press, New Jersey, 2001.

[Cou09] I. D. Couzin. Collective cognition in animal
groups. Trends in Cogn. Sci., 13, 1:1–44, 2009.

[CS93] J. J. Collins and I. N. Stewart. Coupled nonlinear
oscillators and the symmetries of animal gaits. J. Nonlin-
ear Sci., 3:349–392, 1993.

[CS07] F. Cucker and S. Smale. Emergent behavior in
flocks. IEEE Trans. Automat. Control, 52, 5:852–862,
2007.

[DH03] W. Daamen and S. P. Hoogendoorn. Controlled
experiments to derive walking behaviour. European Jour-
nal of Transport and Infrastructure Research, 3, 1:39–59,
2003.

[GMP+09] M. A. Giese, A. Mukovskiy, A. Park, L. Omlor,
and J. J. E. Slotine. Real-time synthesis of body move-
ments based on learned primitives. In D. Cremers et
al., editor, Stat. and Geom. Appr. to Vis. Mot. Anal.,
LNCS5604, pages 107–127. Springer, 2009.

[GRIL08] A. Gams, L. Righetti, A. J. Ijspeert, and
J. Lenarcic. A dynamical system for online learning
of periodic movements of unknown waveform and fre-
quency. Proc. of the IEEE RAS / EMBS Int. Conf. on
Biomedical Robotics and Biomechatronics, pages 85–90,
2008.

[GTH98] R. Grzeszczuk, D. Terzopoulos, and G. Hinton.
Neuroanimator: Fast neural network emulation and con-
trol of physics based models. Proc. ACM SIGGRAPH,
Int. Conf. on Comp. Graph. and Interactive Techniques,
pages 9–20, 1998.

[HJ85] R.A. Horn and C.R. Johnson. Matrix Analysis.
Cambridge University Press, Cambridge, 1985.

[HMFB01] D. Helbing, P. Molnár, I. J. Farkas, and K. Bo-
lay. Self-organizing pedestrian movement. Environ-
ment and Planning B: Planning and Design, 28:361–383,
2001.

[Ijs08] A. J. Ijspeert. Central pattern generators for loco-
motion control in animals and robots: A review. Neural
Networks, 21, 4:642–653, 2008.

[KLLT08] T. Kwon, K. H. Lee, J. Lee, and S. Takahashi.
Group motion editing. ACM Transactions on Graphics,
SIGGRAPH 2008, 27, 3:80–87, 2008.

[LFCCO09] A. Lerner, E. Fitusi, Y. Chrysanthou, and
D. Cohen-Or. Fitting behaviors to pedestrian simula-
tions. Proc. Eurographics/ACM SIGGRAPH Symposium
on Computer Animation, pages 199–208, 2009.

[LS98] W. Lohmiller and J. J. E. Slotine. On contraction
analysis for nonlinear systems. Automatica, 34, 6:683–
696, 1998.

[MT01] S. R Musse and D. Thalmann. A behavioral model
for real time simulation of virtual human crowds. IEEE
Trans. on Vis. and Comp. Graph., 7, 2:152–164, 2001.

[NGCL09] R. Narain, A. Golas, S. Curtis, and M. Lin.
Aggregate dynamics for dense crowd simulation. ACM
Transactions on Graphics, Art.122, 28, 5:1–8, 2009.

[OG06] L. Omlor and M. A. Giese. Blind source separa-
tion for over-determined delayed mixtures. Adv. in NIPS,
19:1049–1056, 2006.

[PAB07] N. Pelechano, J. M. Allbeck, and N. I. Badler.
Controlling individual agents in high-density crowd sim-
ulation. Proc. Eurographics/ ACM SIGGRAPH Sympo-
sium on Computer Animation, pages 99–108, 2007.

[Per69] S. K. Persidskii. Problem of absolute stability. Au-
tomat. Remote Control, 12:1889–1895, 1969.

[PLS+07] D. A. Paley, N. E. Leonard, R. Sepulchre,
D. Grunbaum, and J. K. Parrish. Oscillator models and
collective motion: Spatial patterns in the dynamics of en-
gineered and biological networks. IEEE Control Systems
Magazine, 27:89–105, 2007.

[PMSA09] A. Park, A. Mukovskiy, J. J. E. Slotine, and
Giese M. A. Design of dynamical stability properties in
character animation. Proc. of VRIPHYS 09, pages 85–94,
2009.

[PPS07] S. Paris, J. Pettré, and Donikian S. Pedestrian re-
active navigation for crowd simulation: a predictive ap-
proach. Proc. Eurographics 2007, 26, 3:665–674, 2007.

[PRK03] A. Pikovsky, M. Rosenblum, and J. Kurths. Syn-
chronization, A Universal Concept in Nonlinear Sciences.
Cambridge University Press, Cambridge, 2003.

[PS07] Q. C. Pham and J. J. E. Slotine. Stable concur-
rent synchronization in dynamic system networks. Neural
Networks, 20, 3:62–77, 2007.

[Rey87] C. W. Reynolds. Flocks, herds, and schools: A
distributed behavioral model. Computer Graphics, 21,
4:25–34, 1987.

[RI06] L. Righetti and A. J. Ijspeert. Programmable cen-
tral pattern generators: an application to biped locomo-
tion control. Proc. of the 2006 IEEE Int. Conf. on Rob.
and Autom., pages 1585–1590, 2006.

[SA08] E. D. Sontag and M. Arcak. Passivity-based sta-
bility of interconnection structures. In V. et al. Blondel,
editor, Rec. Adv. in Learning and Control. Vol.371, pages
195–204. Springer-Verlag, NY, 2008.

[Sch09] N. Schulz. http://www.horde3d.org/. 2006–2009.
[SDE95] G. Sch’́oner, M. Dose, and C. Engels. Dynam-

ics of behavior: Theory and applications for autonomous
robot architectures. Robotics and Autonomous Systems,
16, 2-4:213–245, 1995.

[Slo03] J. J. E. Slotine. Modular stability tools for dis-
tributed computation and control. Int. J. Adaptive Control
and Signal Processing, 17, 6:397–416, 2003.

[SS06] L. Scardovi and R. Sepulchre. Collective optimiza-
tion over average quantities. Proceedings of the 45th
IEEE Conference on Decision and Control, San Diego,
California, pages 3369–3374, 2006.

[TCP06] A. Treuille, S. Cooper, and Z. Popović. Contin-
uum crowds. Proc. ACM SIGGRAPH ’06, 25, 3:1160–
1168, 2006.

[WS05] W. Wang and J. J. E. Slotine. On partial contrac-
tion analysis for coupled nonlinear oscillators. Biological
Cybernetics, 92, 1:38–53, 2005.

Journal of WSCG 76 ISSN 1213-6972

Evaluation of the Linear Box-Spline Filter from Trilinear

Texture Samples: A Feasibility Study

Balázs Domonkos
Mediso Medical Imaging Systems,

Hungary

balazs.domonkos@mediso.hu

Balázs Csébfalvi
Budapest University of

Technology and Economics

cseb@iit.bme.hu

ABSTRACT

The major preference for applying B-spline filtering rather than non-separable box spline filtering on the BCC lattice is the fact

that separable filtering can be performed more efficiently on current GPUs due to the utilization of the hardware-accelerated

trilinear texture fetching. In order to make a fair comparison, a similar, efficient evaluation scheme is required that uses trilinear

texture fetches instead of nearest-neighbor ones also for the box splines. Thus, in this paper, we propose an evaluation scheme

for the linear BCC box spline built upon a trilinear B-spline basis. We compare our trilinearly evaluated linear box spline

scheme to the latest method, that uses twice as many nearest neighbor fetches. Then we give a comparison to the major

competitive methods: the BCC B-spline filtering and the BCC DC-spline filtering in terms of their performance.

Keywords: Volume Rendering, Filtering, Reconstruction.

1 INTRODUCTION

In many applications in engineering and computing sci-

ence, a continuous phenomenon is represented by its

discrete samples. In order to operate on the underlying

continuous function, first it has to be accurately recon-

structed from its discrete representation. Reconstruc-

tion filters have received attention also in image pro-

cessing and volume visualization since appropriate re-

construction of multivariate functions is a key step of

the processing pipeline [2, 3, 17, 18].

According to the most commonly-used sampling

scheme in practice, volumetric data is often acquired

on a uniform lattice by regular sampling, while recon-

struction is performed by convolution filtering. An

appropriate choice of both the sampling lattice and

the reconstruction filter kernel is of crucial importance

as they together directly determine the quality of the

reproduced continuous function and the efficiency of

the reconstruction.

Recent results advocate the benefits of non-Cartesian

lattices for regular sampling. The application of Body-

Centered Cubic (BCC) sampling received increased at-

tention from the perspective of continuous signal recon-

struction in the last decade [5, 6, 11, 12]. This lattice

is optimal for sampling 3D signals of isotropic band-

width [19, 21], unlike the commonly used Cartesian

Cubic (CC) lattice along with tensor-product recon-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Plzen, Czech Republic.
Copyright UNION Agency – Science Press

struction. To perfectly reconstruct a signal of a spher-

ically bounded spectrum from its discrete representa-

tion, roughly 30% fewer samples per unit volume have

to be taken on a BCC lattice than on an equivalent CC

lattice. In addition to the improved spectral isotropy,

this directly translates into an explicit reduction of the

storage cost.

A crucial question of BCC sampling is the way in

which the original continuous signal is reconstructed

from its discrete samples. Although due to the shift-

invariant property of the sampling lattice, the recon-

struction can be implemented by a simple convolution,

the choice of the filter kernel has a direct impact on both

numerical accuracy and visual quality. Generally, an

appropriate filter is chosen by making a compromise

between quality and efficiency.

Currently, three promising resampling techniques ex-

ist for the BCC lattice that provide high visual quality,

numerical accuracy, and efficiency at the same time:

the box splines [11], the BCC B-splines [8, 6], and the

BCC DC-splines [10]. As only the latter two methods

can exploit the hardware-accelerated trilinear filtering,

it has not been possible to make a fair comparison so far.

To remedy this problem, we propose an algorithm that

uses trilinear fetches for the box spline filtering as well.

Since these filters have already been compared in terms

of visual quality and numerical accuracy [6, 10, 13], in

this paper, we focus on a fair comparison of their per-

formance.

2 RELATEDWORK

One of the most important aspects of rendering sampled

data is how to perform proper and efficient resampling

depending on the applied lattice. For the CC lattice, re-

construction filters are usually designed in 1D, and then

Journal of WSCG 77 ISSN 1213-6972

extended to the trivariate setting by a separable tensor-

product extension. However, the BCC lattice is not sep-

arable itself, therefore the advantageous properties of a

1D filter are not necessarily inherited in 3D by a sepa-

rable extension [21, 22, 15].

The first reconstruction filters tailored to the geome-

try of the non-Cartesian lattices were proposed by En-

tezari et al. [11]. They applied box splines, that offer a

mathematically elegant toolbox for constructing a class

of multidimensional elements with flexible shape and

support. Box splines are often considered as a gener-

alization of B-splines to multivariate setting. Theoret-

ically, the computational complexity of a box spline is

lower than that of an equivalent B-spline, since its sup-

port is more compact and its total polynomial degree

is lower. To investigate this potential also in practice,

several attempts were made. Although de Boor’s recur-

rence relation [9] is the most commonly used technique

for evaluating box splines at an arbitrary position, it is

computationally inefficient and has numerical instabili-

ties [14]. Addressing this issue, Entezari et al. [12] de-

rived a piecewise-polynomial representation of the lin-

ear and quintic box splines for the BCC lattice. In a

CPU-based implementation, due to the smaller support

of the box spline kernels, the data access cost of dis-

crete BCC samples turned out to be twice as low as for

the equivalent B-spline filters on the CC lattice [12].

Following their work, Finkbeiner et al. proposed an al-

gorithm to convolve the BCC samples with these box

spline kernels [13]. Though they applied early selec-

tion of polynomial segments of the piecewise polyno-

mial form that enabled them to avoid a full kernel eval-

uation for each affected sample point, the theoretical

advantages of box splines could not be exploited on the

GPUs, which are rather optimized for separable filter-

ing.

Another family of non-separable filters is repre-

sented by the Voronoi splines [16] that inherit the

geometry of a sampling lattice through its Voronoi

cell. For Cartesian lattices, Voronoi splines coincide

with tensor-product B-splines. For the 2D hexagonal

lattice, Voronoi splines were originally proposed by

Van de Ville et al. [23] as Hex-splines. For the BCC

lattice Voronoi splines were derived as BCC-splines

by Csébfalvi [5]. Recently, Mirzargar et al. [16]

formulated the BCC-splines in terms of multi-box

splines. In spite of their theoretical elegance, Voronoi

splines are currently impractical, since their piecewise

evaluation is not known yet.

Csébfalvi recommended a prefiltered Gaussian re-

construction scheme [4] adapting the principle of gener-

alized interpolation [1] to the BCC lattice. According to

this approach, first a non-separable discrete prefiltering

is performed as a preprocessing step, and afterwards a

fast separable Gaussian filtering is used for continuous

resampling on the fly. This method was extended also

to the B-spline family of filters [8]. An efficient GPU

implementation was proposed exploiting the fact that

the BCC lattice consists of two interleaved CC lattices,

where the second CC lattice is translated by half of the

grid spacing. The reconstruction can be performed sep-

arately for these two CC lattices in the given sample po-

sition by using a standard trilinear or tricubic B-spline

resampling, and then the contributions are averaged [8].

BCC B-splines reconstruction was reported to be four

to five times faster on an NVIDIA GeForce 6800 graph-

ics card than a non-separable box spline reconstruc-

tion of the same approximation power [6], since the

B-splines can utilize the hardware-accelerated trilinear

texture fetching [20].

Recently, Domonkos et al. [10] proposed a discrete/-

continuous filter family generated by the impulse re-

sponse of the BCC trilinear kernel. This technique is

theoretically equivalent to the discrete upsampling of

the BCC-sampled volume on a higher resolution CC

lattice, where the standard trilinear interpolation is used

for resampling. In practice, however, the missing CC

samples are calculated on the fly and not in a prepro-

cessing. Using an optimized GPU implementation, the

linear DC-spline was reported to be slightly faster than

the linear box spline.

3 SPLINE RECONSTRUCTION FOR

THE BCC LATTICE

In the following, we briefly review the main properties

of the BCC lattice, as well as the box spline, B-spline,

and DC-spline family of filters, as they are applied for

reconstruction on the BCC lattice.

3.1 BCC Lattice

The BCC lattice ΛBCC is a discrete subgroup of R3 gen-

erated by integer linear combinations of the following

basis vectors:

ΞΞΞBCC = [ξξξ 1,ξξξ 2,ξξξ 3] =
1

2





1 −1 −1

−1 1 −1

−1 −1 1





ΛBCC =
{

ΞΞΞBCCi : i ∈ Z
3
}

⊂ R
3.

Besides, the BCC lattice points are located on a CC

lattice with an additional sample placed in the center of

each cube. Thus, the BCC lattice can also be consid-

ered as two interleaved CC lattices ΛCCA
and ΛCCB

. By

shifting the secondary CC lattice ΛCCB
by half of the

grid spacing, the vertices of the secondary CC lattice

are moved to the centers of the primary CC cells:

ΛBCC = ΛCCA
∪ΛCCB

(1)

ΛCCA
=

{

i : i ∈ Z
3
}

ΛCCB
=







i+





1/2
1/2
1/2



 : i ∈ Z
3







.

Journal of WSCG 78 ISSN 1213-6972

On the other hand, the BCC lattice can be obtained

also from a dense CC lattice by keeping only the lattice

points whose coordinates have identical parity:

ΛBCC =







1

2





i

j

k





: i≡ j ≡ k (mod 2)
i, j,k ∈ Z







. (2)

3.2 Box Splines for the BCC Lattice

A box spline MΞΞΞ is the shadow of a unit-hypercube in

R
n projected toRs,s≤ nwhere the projection is charac-

terized by ΞΞΞ = [ξξξ 1,ξξξ 2, . . . ,ξξξ n] ∈ R
s×n, ξξξ i ∈ R

s\0 [9].

The shape, the continuity order, and the approximation

power of a given box spline MΞΞΞ is determined by ΞΞΞ.

The simplest box spline is constructed when s= n as a

normalized characteristic function of its support:

MΞΞΞ(x) =

{

1
detΞΞΞ if ΞΞΞ−1x ∈ [0,1)n

0 otherwise.
(3)

When adding a further direction vector ξξξ ∈ R
s to ΞΞΞ,

s< n, the box splineM[ΞΞΞ,ξξξ] is given by the convolution:

M[ΞΞΞ,ξξξ](x) =
∫ 1

0
MΞΞΞ(x− tξξξ)dt. (4)

The linear box splineMΞ1
BCC

∈C0 for the BCC lattice

is constructed as a 3D shadow of a tesseract along its

antipodal axis, resulting a function with a rhombic do-

decahedron support, which is the first neighbors cell of

the BCC lattice [12]:

ΞΞΞ1
BCC =



 ΞΞΞBCC

1/2
1/2
1/2



 . (5)

MΞΞΞ1
BCC

has its maximum value at the center, and has a

linear falloff towards the 14 first-neighbor vertices:

MΞΞΞ1
BCC

(x) =max(1− x− y, 0) , (6)

where x is the largest and y is the second largest com-

ponent of the absolute coordinates of x [12].

3.3 B-Splines for the BCC Lattice

The B-spline of order zero is defined as a box filter:

β 0(t) =

{

1 if |t|< 1
2

0 otherwise.
(7)

Generally, the B-spline filter of order n is derived by

successively convolving β 0(t) n times with itself. The

first-order B-spline is the linear interpolation filter or

tent filter:

β 1(t) = β 0(t)∗β 0(t) =

{

1−|t| if |t| ≤ 1

0 otherwise.
(8)

The 1D B-splines can be extended to the 3D CC lat-

tice by a tensor product extension. BCC B-spline re-

sampling exploits the decomposition property of the

BCC lattice (Eq. 1). The reconstruction is performed

separately for the two CC sub-lattices in the given sam-

ple position by using a standard separable CC B-spline

resampling, and then the contributions are simply aver-

aged [8, 6]. This evaluation is equivalent to the convo-

lution of the BCC samples with a B-spline kernel.

3.4 DC-Splines for the BCC Lattice

The BCC lattice can be obtained from a CC lattice by

removing the lattice points whose coordinates have dif-

ferent parity (Eq. 2). The BCC trilinear interpolation

reproduces these “missing CC samples” by interpolat-

ing between the available BCC samples on the fly using

a discrete filter. The resultant impulse response χ1
BCC

of the linear BCC DC-spline is obtained by convolving

this discrete filter with a scaled trilinear kernel β 1(2x):

χ1
BCC(x) = β 1(2x)+

1

2

6

∑
k=1

β 1 (2(x−νk)) (9)

[ν1...6] =





1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1





4 EVALUATIONOF THE LINEAR BOX

SPLINE FROM TRILINEAR TEX-

TURE SAMPLES

The major preference for applying the BCC B-spline

filtering over the non-separable box spline filtering is

the fact that separable filtering can be performed signif-

icantly faster on current GPUs due to the utilization of

the hardware-accelerated trilinear texture fetching [20].

In order to make a fair comparison, an efficient eval-

uation scheme is required that uses trilinear texture

fetches instead of nearest neighbor ones also for the box

splines. In the following, we propose an algorithm for

evaluation of the linear BCC box spline built upon a

trilinear B-spline basis.

According to Eq. 6, the support ofMΞ1
BCC

covers four

BCC samples that form a tetrahedron, thus the B-form

of resampling is [11]:

f (r) =
4

∑
i=1

s(ri)MΞ1
BCC

(ri− r), (10)

where r is an arbitrary resampling point and s is a

3D array of the discrete BCC samples. Direct imple-

mentation of this B-form is rather inefficient, since a

full kernel evaluation is performed for each ri sample

point [13].

A more efficient piecewise-polynomial evaluation

scheme can be set up, since it is possible to evaluate

the ordering of the absolute coordinates of ri − r in

advance for each ri lattice points [13].

Journal of WSCG 79 ISSN 1213-6972

r1

r2

r3

r4

ΛCCA

ΛCCB

r

rA

rB

l

Figure 1: Trilinear evaluation scheme. For an arbitrary

point r, interpolation is performed within the green

tetrahedron formed by the nearest points r1,r2 ∈ ΛCCA

of the red CC lattice and the nearest points r3,r4 ∈ΛCCB

of the blue CC lattice. When r is an internal point, that

is, r /∈ r1,2 and r /∈ r3,4, there is exactly one line l that

intersects r, and edges r1,2 and r3,4.

4.1 Trilinear Evaluation Scheme

The key point of the derivation lies in the fact that the

linear box spline constitutes a linear interpolator on the

BCC lattice [11]. This enables us to evaluate the lin-

ear interpolation within the tetrahedron more efficiently

than a direct evaluation of Eq. 10.

The first observation we make is that the tetrahedron

is composed of four congruent isosceles triangles (see

Fig. 1):

1. r1,2,3 2. r1,2,4 3. r3,4,1 4. r3,4,2

Four edges of the tetrahedron are formed by the equal

sides of these triangles with the length of
√
3
2

while the

remaining two edges of the tetrahedron are formed by

the sides r1,2 and r3,4 of the triangles with the length of

1:
√
3

2
= |r1,3|= |r2,3|= |r1,4|= |r2,4|

1 = |r1,2|= |r3,4|

The edges r1,2 and r3,4 overlap the edges of the BCC

lattice. Moreover, when the BCC lattice is considered

as two interleaved CC lattices (Eq. 1), edge r1,2 is con-

tained by the first CC lattice ΛCCA
, while edge r3,4 is

contained by the second CC lattice ΛCCB
.

This enables us to rewrite the tetrahedral interpola-

tion as the compound of three linear interpolations us-

ing the following scheme:

1. First, we define line l that contains r and intersects

both r1,2 ∈ ΛCCA
and r3,4 ∈ ΛCCB

(see Fig. 1). The

intersection points with edges r1,2 and r3,4 are rA
and rB, respectively. This decouples the BCC re-

sampling problem into resamplings of two separate

CC lattices, to ΛCCA
and ΛCCB

.

2. Next, the discrete data is resampled in rA for ΛCCA

and rB for ΛCCB
using a simple linear kernel:

fA = sA(r1+ |r1,A|r1,2) (11)

fB = sB(r3+ |r3,B|r3,4),

where sA and sB are linearly addressable 3D arrays

of the discrete CC samples corresponding to ΛCCA

and ΛCCB
, respectively.

3. Finally, the linear combination of the two CC sam-

ples is calculated:

f (r) = fA+
|r− rA|
|rA,B|

(fB− fA) . (12)

The clear advantage of this evaluation scheme is that

Step 2 can be performed by only two trilinear fetches on

the GPU instead of four nearest neighbor fetches. Actu-

ally, these trilinear fetches involve in fact only 1D linear

interpolations since rA and rB lie on a lattice edge. Re-

garding the storage scheme, the consequence is that the

BCC samples need to be stored in two separate CC lat-

tices, i.e. conventional 3D textures, to be able to exploit

the trilinear fetching capability of the GPU just like in

case of the BCC B-spline and the BCC DC-spline.

4.2 Orientation Cases

Addressing r1, r2, r3, and r4 for an arbitrary r is re-

quired in Step 1 which needs some further explanation.

Let rbase = round(r) be the nearest lattice point in ΛCCA

and let d = r− rbase be the relative resampling coordi-

nates with their absolute values a = [|dx|, |dy|, |dz|]T ∈
[0, 1

2
)3 and their signs s = [sgn(dx),sgn(dy),sgn(dz)]

T .

Considering the symmetries of the rhombic dodeca-

hedral support of MΞ1
BCC

, six different orientations of

the resampling tetrahedron can be distinguished (see

Fig. 2). These six cases are the 3! possible orderings

of the absolute coordinates a in Eq. 6 as it was reported

in [13].

Since using any control flow statement in the re-

sampling implementation dramatically cuts the perfor-

mance of the GPUs which have a SIMD architecture, it

is advisable to avoid this six-fold branching. Descend-

ing order of three scalars can be calculated in a SIMD-

aware manner as:

x= max(ax,ay,az) z= min(ax,ay,az) (13)

y= ax+ay+az− x− z.

On the other hand, based on the sort order of ax, ay,

and az all the six orientations of the resampling tetrahe-

dron can be transformed back to the first one (the green

Journal of WSCG 80 ISSN 1213-6972

x

y

z

r1

r2

r3

r4

ax ≥ ay ≥ az

r1

r3
r4

ax ≥ az ≥ ay

r1
r2

r3

r4

ay ≥ ax ≥ az

r1r2

r3

r4

ay ≥ az ≥ ax

r1

r2

r3r4

az ≥ ax ≥ ay

r1

r2

r3

r4

az ≥ ay ≥ ax

Figure 2: There are six orientation cases for ordering

the coordinates of a ∈ [0, 1
2
)3. The required resampling

points r1,r2 ∈ ΛCCA
and r3,r4 ∈ ΛCCB

are determined

by these six cases. These resampling points are indi-

cated as red and blue dots for each orientation case.

tetrahedron for ax ≥ ay ≥ az in Fig. 2). Thus, the re-

sampling formula needs to be written only for the first

orientation case, and the other cases can be retrieved by

using this transformation. The transformation can be

defined by a rotation matrix ΠΠΠ as

Πi, j = si · eπ(j),i, (14)

where eπ(1), eπ(2), and eπ(3) are the unit vectors cor-

responding to x, y, and z, respectively (Eq. 13). As a

compact notation, π represents the descending order of

ax, ay, and az as a permutation. By using ΠΠΠ, the lattice

points can be addressed as

r1 = rbase+ΠΠΠ [0 0 0]T r2 = rbase+ΠΠΠ [1 0 0]T

r3 = rbase+ΠΠΠ

[

1

2

1

2
− 1

2

]T

r4 = rbase+ΠΠΠ

[

1

2

1

2

1

2

]T

.

4.3 Formal Derivation

In the following, we also give a formal derivation of

the proposed algorithm. The derivation is based on the

rewriting of the tetrahedral interpolation in barycentric

coordinates. Barycentric coordinates provide a conve-

nient way for interpolation on a tetrahedral mesh:

f (r) =
4

∑
i=1

λis(ri), (15)

where scalars λ1...4 are barycentric coordinates of rwith
respect to the vertices of the tetrahedron r1...4 under the

constraint ∑4
i=1λi = 1. The barycentric expansion of r

is set up in terms of the vertices of the tetrahedron as:

Tλλλ = r− r4 (16)

T = [r1− r4 | r2− r4 | r3− r4]

λλλ =
[

λ1 λ2 λ3
]T

.

The solution of this linear equation system is

T=





− 1
2

1
2

0

− 1
2

− 1
2

0

− 1
2

− 1
2

−1



 , T−1=





−1 −1 0

1 −1 0

0 1 −1



 ,

λ1 = 1− x− y λ2 = x− y

λ3 = y− z λ4 = y+ z.

This enables us to write Eq. 10 as

f (r) =
2

∑
i=1

λisA(ri)+
4

∑
i=3

λisB(ri). (17)

Using the separable trilinear technique of Sigg and

Hadwiger [20], evaluation of Eq. 17 can be derived by

two linear fetches instead of four nearest neighbor ones.

In general, two nearest neighbor fetches can be replaced

by a linear fetch as:

(1− t) fi+ t fi+1 ⇒ f (i+ t) (18)

a fi+b fi+1 ⇒ (a+b) f

(

i+
b

a+b

)

,

as long as t ∈ [0,1] and b
a+b

∈ [0,1]. By combining both

λ1 with λ2 and λ3 with λ4, the linear box spline can be

evaluated by two linear texture fetches:

2

∑
i=1

λisA(ri) ⇒ (1−2y)sA



r1+
x− y

1−2y
ΠΠΠ





1

0

0









4

∑
i=3

λisB(ri) ⇒ 2ysB



r3+
y+ z

2y
ΠΠΠ





0

0

1









Journal of WSCG 81 ISSN 1213-6972

Summing these terms up, we get

fA = sA

(

rbase+
x− y

1−2y
s◦ eπ(1)

)

(19)

fB = sB



rbase+ s◦









1/2
1/2
1/2



+
z− y

2y
eπ(3)







 ,

f (r) = (1−2y) fA+2y fB

where ◦ represents the element-wise product. This is

exactly what was claimed in Step 2 and Step 3 of the

proposed evaluation scheme.

5 GPU IMPLEMENTATION

We employed the proposed trilinear evaluation

scheme formulated in Eq. 19 in a GPU-based first-hit

ray-casting application by using ray marching with

equidistant steps. At each sample position, a filter

kernel was used to reconstruct the volume from

the discrete BCC samples. To get a numerically

stable formulation when the resampling point lies

within a triangular face, on an edge, or coincides

a vertex, the divisions in Eq. 19 are evaluated as

limε→0 ε · si(constantε) = 0. This numerical safeguard

was incorporated in the GPU implementation as well.

In our GPU implementation, the lattice samples are

stored as textures. Function sA(r) fetches the sample

set sA at r+[1
2
, 1
2
, 1
2
]T , while function sB(r) fetches the

shifted sample set sB at r. Sample sets sA and sB can be

implemented as two separate textures or as one texture

with two channels. We have not found an appreciable

difference between these two methods. We present the

complete Cg source of the proposed linear box spline

resampling algorithm in the appendix.

We compare the rendering speed of our trilinearly

evaluated linear box spline scheme to the latest method,

that uses twice as many nearest neighbor fetches [13].

We also give a comparison to the major competitive

methods: to the BCC B-spline [8] and to the BCC DC-

spline [10]. Comprehensive analysis of the numerical

accuracy, and visual quality of these splines are out of

the scope of this paper. We refer the interested reader

to [6, 10, 13] for a more thorough overview.

The number of texture lookups and the arithmetic

costs differ for each filter (see Table 1). The arithmetic

cost of the trilinear B-spline filtering is practically neg-

ligible [6, 8], the DC-spline filtering has moderate ad-

dressing overhead [10], while the trilinear and nearest

neighbor linear box spline schemes have the highest

number of floating point operations [13]. Concerning

the number of texture fetches, the trilinear B-spline and

the trilinearly evaluated linear box spline are in the best

position: they need only two lookups, while the lin-

ear box spline filtering needs four fetches, and the DC-

spline filtering needs six lookups.

Filter lookups complexity

Lin. box spline (nearest) 4 high

Lin. box spline (linear) 2 high

Trilinear B-spline 2 low

Linear DC-spline 6 medium

Table 1: Number of texture lookups and the arithmetic

cost of different reconstruction filters. These properties

determine the rendering performance.

The skeleton of the ray caster application was the

same for each filtering technique, only the filter ker-

nels and the storage scheme of the BCC samples were

altered. For the nearest neighbor box spline evaluation,

the BCC samples are stored in a one-channel texture

by shifting the samples of the second lattice by half a

grid spacing in every dimension [13]. For the trilinear

box spline scheme, for the BCC B-splines, and for the

BCC DC-splines, the BCC samples were stored as two

separate set of CC samples as a two-channel texture.

5.1 Rendering Speed

We rendered four data sets of different voxel counts

at an image resolution of 512× 512. The analyti-

cally defined Marschner-Lobb test signal was sampled

at 643 × 2 BCC resolution. The other three data sets

are well-known CT scans reconstructed originally on a

CC lattice. To get a BCC representation of them, we

employed a frequency-domain upsampling [7].

The viewing rays were evaluated in front-to-back or-

der, which enabled us to use early ray termination. The

first-hit isosurfaces were shaded by the Blinn-Phong

model using gradients calculated from central differ-

ences. The ray marching step and the central differ-

encing step were adjusted to the voxel size of the data

sets.

The renderings of the Marschner-Lobb test signal are

illustrated in Figure 3. Note that the linear box spline

introduces postaliasing artifacts along the diagonal di-

rections, while the artifacts produced by the linear DC-

spline or the trilinear B-spline are less apparent.

To get relevant rendering speeds, we chose the

middle-aged NVIDIA Geforce 8700 GPU for our

experiments. The observed frame rates are illustrated

in Table 2. According to our prior expectations,

the frame rates depended on the number of samples

fetched, the algorithmic complexity of the filter kernel,

the resolution of the volume, and the distance of the

iso-surface from the image plane.

We can confirm the observation, that the frame rates

get similar as the number of voxels increases with ap-

propriately decreasing the sampling distance. Possibly,

the texture fetches become the bottleneck of the render-

ing pipeline. This can be the reason why the DC-spline

results in the lowest frame rates for the highest voxel

counts.

Journal of WSCG 82 ISSN 1213-6972

Analytical. Linear box spline.

Trilinear B-spline. Linear DC-spline.

Figure 3: Renderings of the analytical Marschner-Lobb

test signal and its sampled representations at 643 × 2

reconstructed by different resampling filters.

Data set M
Ξ
1,nearest
BCC

M
Ξ
1,linear
BCC

β 1 χ1
BCC

ML 21.03 22.90 53.64 21.75
Engine 16.28 17.18 41.82 16.42
Carp 9.22 10.00 25.07 9.19
Xmas Tree 5.77 6.19 6.57 4.61

Table 2: Frame rates in frames per second for dif-

ferent reconstruction filters and popular data sets: the

Marschner-Lobb test signal sampled at 643 × 2, the

“Engine Block” at 2562×110×2, the “Carp” at 2562×
512×2, and the “Christmas Tree” at 512×499×512×
2.

On the other hand, for low and moderate volume res-

olutions, the arithmetic complexity seems to be more

important than the number of texture fetches. It is inter-

esting to note that the concept of applying linear fetches

instead of nearest neighbor ones [20] does not always

pay off. We think that the texture cache operates very

well for filters with a narrow support. This might ex-

plain that the nearest neighbor version and the linear

version of the linear box spline filtering as well as the

linear DC-spline filtering with even six samples attain

similar frame rates, while the trilinear B-spline holds a

towering lead in performance.

6 CONCLUSION AND FUTURE

WORK

In this paper, we have proposed a GPU evaluation

scheme for the linear BCC box spline filtering exploit-

ing the hardwired trilinear texture fetching. This result

enabled us to make a fair comparison of the linear box

spline, the BCC B-spline, and the BCC DC-spline in

terms of their performance. We found that, in general,

the proposed linear evaluation scheme operates slightly

faster than the evaluation scheme with nearest neighbor

fetches [13]. However, using an optimized GPU im-

plementation, the trilinear B-spline can still achieve the

best performance, as it takes the minimum number of

samples with the lowest arithmetic cost. Since the tex-

ture fetches become more expensive when the support

of the filter gets wider or the resolution of the volume

increases, we plan to develop a similar scheme for the

quintic box spline for the BCC lattice.

ACKNOWLEDGMENTS

This project was supported by Mediso Medical

Imaging Systems, the Hungarian National Office for

Research and Technology (Project ID: TECH 08/A2),

and the New Hungary Development Plan (Project

ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002). This

work is connected to the scientific program of the

“Development of quality-oriented and harmonized

R+D+I strategy and functional model at BME” project.

REFERENCES

[1] T. Blu, P. Thévenaz, and M. Unser. Generalized

interpolation: Higher quality at no additional cost.

In Proceedings of IEEE International Conference

on Image Processing, pages 667–671, 1999.

[2] Dutta Roy S. C. and Kumar B. Handbook of

Statistics, volume 10, chapter Digital Differentia-

tors, pages 159–205. Elsevier Science Publishers

B. V., N. Holland, 1993.

[3] I. Carlbom. Optimal filter design for volume re-

construction and visualization. In Proceedings of

the 4th conference on Visualization, pages 54–61.

IEEE Computer Society, 1993.

[4] B. Csébfalvi. Prefiltered gaussian reconstruction

for high-quality rendering of volumetric data sam-

pled on a body-centered cubic grid. In Proceed-

ings of IEEE Visualization, pages 311–318, 2005.

[5] B. Csébfalvi. BCC-splines: Generalization of B-

splines for the body-centered cubic lattice. Jour-

nal of WSCG 16, 1–3 (2008), pages 81–88, 2008.

[6] B. Csébfalvi. An evaluation of prefiltered B-

spline reconstruction for quasi-interpolation on

the body-centered cubic lattice. IEEE Transac-

tions on Visualization and Computer Graphics 16,

3 (2010), pages 499–512, 2010.

[7] B. Csébfalvi and B. Domonkos. Frequency-

domain upsampling on a body-centered cubic lat-

tice for efficient and high-quality volume render-

ing. In Proceedings of Vision, Modeling, and Vi-

sualization, pages 225–232, 2009.

Journal of WSCG 83 ISSN 1213-6972

[8] B. Csébfalvi and M. Hadwiger. Prefiltered

B-spline reconstruction for hardware-accelerated

rendering of optimally sampled volumetric data.

In Proceedings of VMV, pages 325–332, 2006.

[9] C. de Boor, K. Höllig, and S. Riemenschneider.

Box Splines, volume 98. Springer-Verlag, 1993.

[10] B. Domonkos and B. Csébfalvi. DC-splines: Re-

visiting the trilinear interpolation on the body-

centered cubic lattice. In Proceedings of VMV,

pages 275–282, 2010.

[11] A. Entezari. Optimal Sampling Lattices and

Trivariate Box Splines. PhD thesis, Simon Fraser

University, Vancouver, Canada, July 2007.

[12] A. Entezari, D. Van De Ville, and T. Möller. Prac-

tical box splines for reconstruction on the body

centered cubic lattice. IEEE Trans. on Vis. and

Computer Graphics, 14(2):313–328, 2008.

[13] B. Finkbeiner, A. Entezari, D. Van De Ville, and

T. Möller. Efficient volume rendering on the body

centered cubic lattice using box splines. Comput-

ers and Graphics, 34(4):409–423, 2010.

[14] L. Kobbelt. Stable evaluation of box splines. Nu-

merical Algorithms, 14, 1996.

[15] O. Mattausch. Practical reconstruction schemes

and hardware-accelerated direct volume rendering

on bodycentered cubic grids. Master’s thesis, Vi-

enna University of Technology, 2003.

[16] M. Mirzargar and A. Entezari. Voronoi

splines. IEEE Transactions on Signal Processing,

58:4572–4582, Sept 2010.

[17] T. Möller, R. Machiraju, K. Mueller, and R. Yagel.

A comparison of normal estimation schemes. In

Proceedings of the 8th conference on Visualiza-

tion, pages 19–ff., Los Alamitos, CA, USA, 1997.

IEEE Computer Society Press.

[18] T. Möller, K. Mueller, Y. Kurzion, R. Machiraju,

and R. Yagel. Design of accurate and smooth

filters for function and derivative reconstruction.

In Proceedings of the IEEE symposium on Vol-

ume visualization, pages 143–151, NewYork, NY,

USA, 1998. ACM.

[19] D. P. Petersen and D. Middleton. Sampling and

reconstruction of wave-number-limited functions

in n-dimensional euclidean spaces. Information

and Control, 5(4):279–323, 1962.

[20] C. Sigg and M. Hadwiger. GPU Gems 2:

Programming Techniques for High-Performance

Graphics and General-Purpose Computation,

pages 313–329. Addison- Wesley, 2005.

[21] T. Theußl, T. Möller, and M. E. Gröller. Optimal

regular volume sampling. In Proceedings of the

conference on Visualization, pages 91–98. IEEE

Computer Society, 2001.

[22] T. Theußl, T. Möller, and M. E. Gröller. Recon-

struction schemes for high quality raycasting of

the body-centered cubic grid. Technical Report

TR-186-2-02-11, Institute of Computer Graphics

and Algorithms, TU Vienna, Dec 2002.

[23] D. Van De Ville, T. Blu, M. Unser, W. Philips,

I. Lemahieu, and R. Van de Walle. Hex-Splines:

A novel spline family for hexagonal lattices. IEEE

Transactions on Image Processing, 13(6):758–

772, 2004.

CG SHADER CODE

uniform f l o a t 3 S i z e ;

uniform sampler3D Volume ;

/ / Handle removab le s i n g u l a r i t y

de f i n e DIV(A, B) \

(abs (B) ? (A) / (B) : 0 . 0)

/ / Ith c o o r d i n a t e o f u n i t v e c t o r eπ(1)

de f i n e E_PI_1 (I) (a . I == x)

/ / Ith c o o r d i n a t e o f u n i t v e c t o r eπ(3)

de f i n e E_PI_3 (I) \

(a . I == z && a . I != x && a . I != y)

/ / Un i t v e c t o r eπ(J)

de f i n e E_PI (J) f l o a t 3 (E_PI_ ## J (x) , \

E_PI_ ## J (y) , E_PI_ ## J (z))

/ / F e t c h i ng a t r i l i n e a r sample from ΛCCA a t R

de f i n e S_A(R) \

tex3D (Volume , (r _ b a s e + (R) + 0 . 5) / S i z e) . r

/ / F e t c h i ng a t r i l i n e a r sample from ΛCCB a t R

de f i n e S_B (R) \

tex3D (Volume , (r _ b a s e + (R)) / S i z e) . a

f l o a t l i n e a rB o xS p l i n e (f l o a t 3 t exCoo rd s) {

/ / Resampl ing p o i n t r

f l o a t 3 r = t exCoo rd s ∗ S i z e − 0 . 5 ;

/ / Nea r e s t l a t t i c e p o i n t o f ΛCCA

f l o a t 3 r _ b a s e = round (r) ;

/ / R e l a t i v e c o o r d i n a t e s d ,

/ / t h e i r a b s o l u t e v a l u e s a , and s i g n s s

f l o a t 3 d = r − r _ b a s e ;

f l o a t 3 a = abs (d) ;

f l o a t 3 s = s i g n (d) ;

/ / S o r t i n g a by i t s components

f l o a t x = max (a . x , max (a . y , a . z)) ;

f l o a t z = min (a . x , min (a . y , a . z)) ;

f l o a t y = a . x + a . y + a . z − x − z ;

/ / F e t c h i ng from sample s e t s ΛCCA and ΛCCB

f l o a t two_y = 2 . 0 ∗ y ;

f l o a t tA = DIV(x − y , 1 . 0 − two_y) ;

f l o a t tB = DIV (z − y , two_y) ;

f l o a t fA = S_A(tA ∗ s ∗ E_PI (1)) ;

f l o a t fB = S_B (s ∗ (0 . 5 + tB ∗ E_PI (3))) ;

/ / L i n ea r i n t e r p o l a t i o n o f t h e two samples

re turn l e r p (fA , fB , two_y) ;

}

Journal of WSCG 84 ISSN 1213-6972

High-Performance Terrain Rendering Using

Hardware Tessellation

Egor Yusov

Intel Corporation
30 Turgeneva street,

603024, Russia, Nizhny Novgorod

egor.a.yusov@intel.com

Maxim Shevtsov

Intel Corporation
30 Turgeneva street,

603024, Russia, Nizhny Novgorod

maxim.y.shevtsov@intel.com

ABSTRACT
In this paper, we present a new terrain rendering approach, with adaptive triangulation performed entirely on the

GPU via tessellation unit available on the DX11-class graphics hardware. The proposed approach avoids

encoding of the triangulation topology thus reducing the CPU burden significantly. It also minimizes the data

transfer overhead between host and GPU memory, which also improves rendering performance. During the

preprocessing, we construct a multiresolution terrain height map representation that is encoded by the robust

compression technique enabling direct error control. The technique is efficiently accelerated by the GPU and

allows the trade-off between speed and compression performance. At run time, an adaptive triangulation is

constructed in two stages: a coarse and a fine-grain one. At the first stage, rendering algorithm selects the

coarsest level patches that satisfy the given error threshold. At the second stage, each patch is subdivided into

smaller blocks which are then tessellated on the GPU in the way that guarantees seamless triangulation.

Keywords
Terrain rendering, DX11, GPU, adaptive tessellation, compression, level of detail.

1. INTRODUCTION
Despite the rapid advances in the graphics hardware,

high geometric fidelity and real-time large scale

terrain visualization is still an active research area.

The primary reason is that the size and resolution of

digital terrain models grow at a significantly higher

rate than the graphics hardware can manage. Even the

modest height map can easily exceed the available

memory of today’s highest-end graphics platforms.

So it is still important to dynamically control the

triangulation complexity and reduce the height map

size to fit the hardware limitations and meet real-time

constraints.

To effectively render large terrains, a number of

dynamic multiresolution approaches as well as data

compression techniques have been developed in the

last years. These algorithms typically adapt the

terrain tessellation using local surface roughness

criteria together with the view parameters. This

allows dramatic reduction of the model complexity

without significant loss of visual accuracy. Brief

overview of different terrain rendering approaches is

given in the following section. In the previous

methods, the adaptive triangulation was usually

constructed by the CPU and then transferred to the

GPU for rendering. New capabilities of DX11-class

graphics hardware enable new approach, when

adaptive terrain tessellation is built entirely on the

GPU. This reduces the memory storage requirements

together with the CPU load. It also reduces the

amount of data to be transferred from the main

memory to the GPU that again results in a higher

rendering performance.

2. RELATED WORK
Many research papers about adaptive view-dependent

triangulation construction methods were published in

the last years. Refer to a nice survey by R. Pajarola

and E. Gobbetti [PG07].

Early approaches construct triangulated irregular

networks (TINs). Exploiting progressive meshes for

terrain simplification [Hop98] is one specific

example. Though TIN-based methods do minimize

the amount of triangles to be rendered for a given

error bound, they are too computationally and storage

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

Journal of WSCG 85 ISSN 1213-6972

demanding. More regular triangulations such as

bintree hierarchies [LKR+96, DWS+97] or restricted

quad trees [Paj98] are faster and easier to implement

for the price of slightly more redundant triangulation.

Recent approaches are based on techniques that fully

exploit the power of modern graphics hardware.

CABTT algorithm [Lev02] by J. Levenberg as well

as BDAM [CGG+03a] and P-BDAM [CGG+03b]

methods by Cignoni et al exploit bintree hierarchies

of pre-computed triangulations or batches instead of

individual triangles. Geometry clipmaps approach

[LH04] renders the terrain as a set of nested regular

grids centered about the viewer, allowing efficient

GPU utilization. The method exploits regular grid

pyramid data structure in conjunction with the lossy

image compression technique [Mal00] to

dramatically reduce the storage requirements.

However, the algorithm completely ignores local

surface features of the terrain and provides no

guarantees for the error bound, which becomes

especially apparent on high-variation terrains.

Next, C-BDAM method, an extension of BDAM and

P-BDAM algorithms, was presented by Gobbetti et al

in [GMC+06]. The method exploits a wavelet-based

two stage near-lossless compression technique to

efficiently encode the height map data. In C-BDAM,

uniform batch triangulations are used which do not

adapt to local surface features. Regular triangulations

typically generate significantly more triangles and

unreasonably increase the GPU load.

Terrain rendering method presented by Schneider and

Westermann [SW06] partitions the terrain into square

tiles and builds for each tile a discrete set of LODs

using a nested mesh hierarchy. Following this

approach, Dick et al proposed the method for tile

triangulations encoding that enables efficient GPU-

based decoding [DSW09].

All these methods either completely ignore local

terrain surface features (like [LC03, LH04,

GMC+06]) for the sake of efficient GPU utilization,

or pre-compute the triangulations off-line and then

just load them during rendering [CGG+03a,

CGG+03b]. For the case of compressed data, GPU

can also be used for geometry decompressing as well

[SW06, DSW09].

By the best of our knowledge, none of the previous

methods take an advantage of the tessellation unit

exposed by the latest DX11-class graphics hardware

for precise yet adaptive (view-dependent) terrain

tessellation.

3. CONTRIBUTION
The main contribution is a novel terrain rendering

approach, which combines efficiency of the chunk-

based terrain rendering with the accuracy of fine-

grain triangulation construction methods. In contrast

to the previous approaches, our adaptive view-

dependent triangulation is constructed entirely on the

GPU using hardware-supported tessellation. This

offloads computations from the CPU while also

reduces expensive CPU-GPU data transfers. We also

propose fast and simple GPU-accelerated

compression technique for progressively encoding

multiresolution hierarchy that enables direct control

of a reconstruction precision.

Algorithm Overview
To achieve real-time rendering and meet the

hardware limitations, we exploit the LOD technique.

To create various levels of detail, during the

preprocessing, a multiresolution hierarchy is

constructed by recursively downsampling the initial

data and subdividing it into overlapping patches. In

order to reduce the memory requirements, the

resulting hierarchy is then encoded using simple and

efficient compression algorithm described in

section 4.

Constructing adaptive terrain model to be rendered is

a two-stage process. The first stage is the coarse per-

patch LOD selection: the rendering algorithm selects

the coarsest level patches that tolerate the given

screen-space error. They are cached in a GPU

memory and due to the frame-to-frame coherence are

re-used for a number of successive frames. On the

second stage, a fine-grain LOD selection is

performed: each patch is seamlessly triangulated

using hardware. For this purpose, each patch is

subdivided into the equal-sized smaller blocks that

are independently triangulated by the GPU-supported

tessellation unit, as described in section 5.

Experimental results are given in section 6. Section 7

concludes the paper.

4. BUILDING COMPRESSED

MULTIRESOLUTION TERRAIN

REPRESENTATION

Patch Quad Tree
The core structure of the proposed multiresolution

model is a quad tree of square blocks (hereinafter

referred to as patches). This structure is commonly

used in real-time terrain rendering systems [Ulr00,

DSW09].

The patch quad tree is constructed at the preprocess

stage. At the first step, a series of coarser height maps

is built. Each height map is the downsampled version

of the previous one (fig. 1). At the next step, the

patch quad tree itself is constructed by subdividing

each level into)12()12( nn square blocks

(65x65, 129x129, 257x257 etc.), refer to fig. 2.

Journal of WSCG 86 ISSN 1213-6972

Each patch in the quad tree hierarchy approximates

the same area as its four children but with lower

accuracy. To eliminate cracks, each patch shares one-

sample boundary with its neighbors (hence 12 n

size).

The hierarchy is progressively encoded in a top-down

order such that each patch’s reconstruction error in
L metric is bounded by the given error tolerance.

Quantizing Height Maps
Let’s denote a sample in the l-th level located at the

(i, j) position by)(

,

l

jih . Note that since level l-1 is

simply the downsampled version of the level l, the

following relation is always true:)(

2,2

)1(

,

l

ji

l

ji hh  .

During the compression process, each level l of the

hierarchy is quantized using a uniform quantizer with

a dead zone (see fig. 3) as follows:

  lll

l

ji

l

ji hh  2)2/()(ˆ)(

,

)(

, 

where  x is rounding to the largest integer that is

less than or equal to x,)(

,
ˆ l

jih is the quantized value,

)(0

0
2

ll

ll


  is the maximum reconstruction error

for the level l; l0 is the finest resolution level number

and 0
0
l is the user-defined error tolerance for the

finest level. Since our compression scheme is lossy,

we assume that 0
0
l .

Quantized (integer) values)()(

,

)(

,

l

jil

l

ji hQq  where

 )2/()()(lll hhQ  are lossless encoded as

described below. The decoder reconstructs values as:

)(

,

)(

, 2ˆ l

jil

l

ji qh 

This quantization rule assures that for the l-th level,

the maximum error is bounded by the l :

l

l

ji

l

ji
ji

hh  |ˆ|max)(

,

)(

,
,

The quantized values }{)0(

, jiq of the coarsest patch

(located at the level 0) are encoded using adaptive

arithmetic coding [WNC87]. The remaining patches

are then progressively encoded as described in the

following subsection.

Progressively Encoding Quantized Height

Maps
Let us consider a patch’s quantized height map

)1(ˆ l

PH at the level l-1, and its 4 children joined height

map)(ˆ l

CH at the level l. Note that the first height map

is)12()12( nn in size, while the second one is

)122()122( nn , both covering the same area.

As it can be seen from fig. 1 and 2 (see also fig. 4),
)(ˆ l

CH shares the samples located at the even positions

((0,0), (0,2), (2,0) and so on) with)1(ˆ l

PH . That is, the

reconstructed sample)1(

,
ˆ l

jih from the parent patch’s

height map)1(ˆ l

PH corresponds to the sample)(

2,2
ˆ l

jih in

the)(ˆ l

CH . However)1(

,
ˆ l

jih approximates the original

(exact) value with the 2x lower accuracy than)(

2,2
ˆ l

jih

should approximate and thus needs to be refined:

ll

l

ji

l

ji hh  2|ˆ| 1

)1(

,

)1(

,  



l

l

ji

l

ji hh  |ˆ|)(

2,2

)(

2,2

Recall that)(

2,2

)1(

,

l

ji

l

ji hh  .

Our compression scheme consists of two steps. At the

first step, we refine common samples of)(ˆ l

CH and

)1(ˆ l

PH (filled circles in fig. 4) to the required

accuracy l . At the second step, we encode the

remaining samples (dotted circles in fig. 4) by

interpolating the refined samples and encoding the

prediction errors. Let’s denote R to be the set of

refined samples positions from)(ˆ l

CH and I to be the

set of interpolated samples positions:

},,2,2ˆˆ:),{()()(

, ZtstjsiHhjiR l

C

l

ji 

Figure 2. Patch quad tree.

Level 1

Level 0

Level 2= 0l

Level 2= 0l Level 0 Level 1

Figure 1. Downsampling initial height map.

0 1 2 3 4 5 6 7 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 4 8 12 16

Journal of WSCG 87 ISSN 1213-6972

}),(ˆˆ:),{()()(

, RjiHhjiI l

C

l

ji 

To refine samples from R, we exploit the following

observation: the refined sample)(

2,2
ˆ l

jih (from)(ˆ l

CH)

corresponding to the sample)1(

,
ˆ l

jih (from)1(ˆ l

PH) can

only take one of the following 3 values (see fig. 3):

}2ˆ,ˆ,2ˆ{ˆ)1(

,

)1(

,

)1(

,

)(

2,2 l

l

ji

l

jil

l

ji

l

ji hhhh    .

This also means that if)1(

,
ˆ l

jih is encoded by the

quantized value)1(

,

l

jiq , then corresponding)(

2,2

l

jiq can

only take one of the following 3 values:

}12,2,12{)1(

,

)1(

,

)1(

,

)(

2,2   l

ji

l

ji

l

ji

l

ji qqqq

Since)1(

,

l

jiq is known, encoding the)(

2,2

l

jiq requires

only 3 symbols: 1 , 0 or 1 . These symbols are

encoded using adaptive arithmetic coding [WNC87].

At the second step, we encode the remaining samples

located at positions from I in)(ˆ l

CH (dotted circles in

fig. 4). This is done by predicting the sample’s value

from the refined samples and by encoding the

prediction error.

For the sake of GPU-acceleration, we exploit bilinear

predictor)ˆ()(

,

l

jiR hP that calculates predicted value of

)(

,
ˆ l

jih as a weighted sum of 4 refined samples located

at the neighboring positions in R. We then calculate

the prediction error as follows:

)(

,

)(

,

)(

,))ˆ((l

ji

l

jiRl

l

ji qhPQd  , Iji ),(

Magnitudes and signs of the resulting prediction

errors)(

,

l

jid are then separately encoded using

adaptive arithmetic coding.

As it was already discussed, symbols being used

during described compression process are encoded

with the technique described in [WNC87]. We

exploit adaptive approach that learns the statistical

properties of the input symbol stream on the fly. This

is implemented as a histogram which counts

corresponding symbol frequencies (see [WNC87] for

details). Note that simple context modeling can

improve the compression performance with minimal

algorithmic complexity increase.

During the preprocessing, the whole hierarchy is

recursively traversed starting from the root (level 0)

and the proposed encoding process is repeated for

each patch.

The proposed compression scheme enables direct

control of the reconstruction precision in L error

metric: it assures that the maximum reconstruction

error of a terrain block at level l of the hierarchy is no

more than l . For comparison, compression method

[Mal00] used in geometry clipmaps [LH04] does not

provide a guaranteed error bound in L metric. C-

BDAM [GMC+06] exploits sophisticated two-stage

compression scheme to assure the given error

tolerance. This provides higher compression ratios

but is more computationally expensive than the

presented scheme. Moreover, as we will show in the

next section, our technique can be efficiently

accelerated using the GPU.

Calculating Guaranteed Patch Error

Bound
During the quad tree construction, each patch in the

hierarchy is assigned a world space approximation

error. It conservatively estimates the maximum

geometric deviation of the patch’s reconstructed

height map from the underlying original full-detail

height map. This value is required at the run time to

estimate the screen-space error and to construct the

patch-based adaptive model, which approximates the

terrain with the specified screen-space error.

Let’s denote the patch located at the level l of the

quad tree at the (m, n) position by the)(

,

l

nmP and its

upper error bound by the)()(

,

l

nmPErr . To calculate

)()(

,

l

nmPErr , we first calculate approximation error

)()(

,

l

nmAppr PErr , which is the upper bound of the

maximum distance from the patch’s precise height

map to the samples of the underlying full-detail (level

0

0

l

Figure 3. Quantizing two successive levels.

l
l2 l2 l3 l3

l2

0

0

1 l
1l 12 l 12  l 13 l 13  l

12  l 12 l

l4
l5

l6 l4
l5

l6

l4 l2
l4)(

2,2
ˆ l

jih

0 1 -1

0 1 2 3 -1 -2 -3)(

2,2

l

jiq

)1(

,
ˆ l

jih
)1(

,

l

jiq

Interpolated samples (I)
Refined samples (R)

Figure 4. Refined and interpolated samples of

the child patches joined height map
)(ˆ l

CH .

Journal of WSCG 88 ISSN 1213-6972

0l) height map. It is recursively calculated using the

same method as used in ROAM [DWS+97] to

calculate the nested wedgie thickness:

0)(
)(

,
0 
l

nmAppr PErr

})({max)()()1(

2,2
1,

)(

,

)(

,






 l

tnsmAppr
ts

l

nmInt

l

nmAppr PErrPErrPErr ,

0,...10  ll

where)()(

,

l

nmInt PErr is the maximum geometric

deviation of the linearly interpolated patch’s height

map from its children height maps. Two-dimensional

illustration for determining)()(

,

l

nmInt PErr is given in

fig. 5.

Since for the patch)(

,

l

nmP , the reconstructed height

map deviates from the exact height map by at most

l , the final patch’s upper error bound is given by:

l

l

nmAppr

l

nm PErrPErr )()()(

,

)(

,

5. CONSTRUCTING VIEW-

DEPENDENT ADAPTIVE MODEL
The proposed level-of-detail selection process

consists of two stages. The first stage is the coarse

LOD selection which is done on a per-patch level: an

unbalanced patch quad tree is constructed with the

leaf patches satisfying the given error tolerance. On

the second stage, the fine-grain LOD selection is

performed, at which each patch is precisely

triangulated using the hardware tessellation unit.

Coarse Level of Detail Selection
The coarse LOD selection is performed similar to

other quad tree-based terrain rendering methods. For

this purpose, an unbalanced patch quad tree is

maintained. It defines the block-based adaptive

model, which approximates the terrain with the

specified screen-space error.

The unbalanced quad tree is cached in a GPU

memory and is updated according to the results of

comparing patch’s screen-space error estimation

)()(

,

l

nmScr PErr with the user-defined error threshold  .

Since we already have the maximum geometric error

for the vertices within a patch,)()(

,

l

nmScr PErr can be

calculated using standard LOD formula for

conservatively determining the maximum screen-

space vertex error (see [Ulr00, Lev02]):

),(

)(
)(

)(

,

)(

,)(

, l

nm

l

nml

nmScr
Vc

PErr
PErr




where))2/(),2/(max(
2
1

vvhh ctgRctgR   , hR

and vR are horizontal and vertical resolutions of the

view port, h and v are the horizontal and vertical

camera fields of view, and),()(

,

l

nmVc is the distance

from the camera position c to the closest point on the

patch’s bounding box)(

,

l

nmV .

Tessellation Blocks
During the fine-grain LOD selection, each patch in

the unbalanced patch quad tree is adaptively

triangulated using the GPU. For this purpose, each

patch is subdivided into the small equal-sized blocks

that we call tessellation blocks. For instance, a 65×65

patch can be subdivided into the 4×4 grid of 17×17

tessellation blocks or into the 8×8 grid of 9×9 blocks

etc. Detail level for each tessellation block is

determined independently by the hull shader: the

block can be rendered in the full resolution (fig. 6,

left) or in the resolution reduced by a factor of d2 ,

d = 1,2,… (fig. 6, center, right).

To determine the degree of simplification for each

block, we calculate a series of block errors. These

errors represent the deviation of the block’s

simplified triangulation from the patch’s height map

samples, covered by the block but not included into

the simplified triangulation (dotted circles in fig. 6).

Let’s denote the error of the tessellation block located

at the (r, s) position in the patch, whose triangulation

is simplified by a factor of d2 by
)(

,

d

sr . The

tessellation block errors
)(

,

d

sr are computed as

follows:

),(max)(

,

)(

,)(
,

d

sr
Tv

d

sr Tv
d
sr




 , d = 1,2,…

Child patches’ (level l) height map samples

Parent patch’s (level l-1) height map samples

)()(

,

l

nmInt PErr

)()(

,

l

nmInt PErr

Figure 5. Patch’s height map interpolation error.

Figure 6. Triangulations of a 9×9 tessellation

block.

)1(

,sr
)2(

,sr 0)0(

, sr

d=0 d=1 d=2

Journal of WSCG 89 ISSN 1213-6972

where)(

,

d

srT is the tessellation block (r,s) triangulation

simplified by a factor of d2 and),()(

,

d

srTv is the

vertical distance from the vertex v to the triangulation
)(

,

d

srT . Two and four times simplified triangulations as

well as these samples (dotted circles) of the patch’s

height map that are used to calculate)1(

,sr and)2(

,sr

are shown in fig. 6 (center and right images

correspondingly).

To get the final error bound for the tessellation block,

it is necessary to take into account the patch’s error

bound. This final error bound hereinafter is referred

to as)(

,

d

sr and is calculated as follows:

)()(

,

)(

,

)(

,

l

nm

d

sr

d

sr PErr 

In our particular implementation, we calculate errors

for 4 simplification levels such that tessellation block

triangulation can be simplified by a maximum factor

of 256)2(24  . This enables us to store the

tessellation block errors as a 4-component vector.

Fine-Grain Level of Detail Selection
When the patch is to be rendered, it’s necessary to

estimate how much its tessellation blocks’

triangulations can be simplified without introducing

unacceptable error. This is done using the current

frame’s world-view-projection matrix. Each

tessellation block is processed independently and for

each block’s edge, a tessellation factor is determined.

To eliminate cracks, tessellation factors for shared

edges of neighboring blocks must be computed in the

same way. The tessellation factors are then passed to

the tessellation stage of the graphics pipeline, which

generates final triangulation.

Tessellation factors for all edges are determined

identically. Let’s consider some edge and denote its

center by ce . Let’s define edge errors
)(d

ec
 as the

maximum error of the tessellation blocks sharing this

edge. For example, block (r, s) left edge’s errors are

calculated as follows:

),max()(

,

)(

,1

)(d

sr

d

sr

d

ec
  , d = 1,2,…

Next let’s define a series of segments in a world

space specified by theirs end points ),(d

ce and ),(d

ce

determined as follows:

z

d

ec

d

c eee
c

 2/)(),(

z

d

ec

d

c eee
c

 2/)(),(

where ze is the world space z (up) axis unit vector.

Thus ),(d

ce and ),(d

ce define a segment of length

)(d

ec
 directed along the z axis such that the edge

centre ce is located in the segment’s middle.

If we project this segment onto the viewing plane

using the world-view-projection matrix, we will get

the edge screen space error estimation (fig. 7) given

that the neighboring tessellation blocks are simplified

by a factor of d2 . We can then select the maximum

simplification level d for the edge that does not lead

to unacceptable error as follows:

 ),(maxarg),(),(d

c

d

c
d

eeprojd

The same selection process is done for each edge.

Tessellation factor for the block interior is then

defined as the minimum of its edge tessellation

factors. This method assures that tessellation factors

for shared edges of neighboring blocks are computed

equally and guarantees seamless patch triangulation.

An example of a patch triangulation is given in fig. 8.

To hide gaps between neighboring patches, we

exploit “vertical skirts” around the perimeter of each

patch as proposed by T. Ulrich [Ulr00]. The top of

the skirt matches the patch’s edge and the skirt height

is selected such that it hides all possible cracks.

Note that in contrast to all previous terrain

simplification methods, all operations required to

triangulate the patch are performed entirely on the

GPU and does not involve any CPU computations.

Figure 7. Calculating edge screen space error.

),(d

ce

),(d

ce

),(),(),( d

c

d

c eeproj

ce

0

0

1

1

Figure 8. Seamlessly triangulated patch’s

tessellation blocks.

Journal of WSCG 90 ISSN 1213-6972

Implementation Details
The presented algorithm was implemented with the

C++ in an MS Visual Studio .NET environment.

In our system, the CPU decodes the bit stream in

parallel to the rendering thread and all other tasks are

done on the GPU. To facilitate GPU-accelerated

decompression, we support several temporary

textures. The first one is)12()12( nn 8-bit

texture RT that is populated with the parent patch’s

refinement labels (1 , 0 or 1) from R. The second

one is)122()122( nn 8-bit texture IT

storing prediction errors)(

,

l

jid for samples from I.

GPU-part of the decompression is done in two steps:

 At the first step, parent patch height map is

refined by rendering to the temporary texture PT .

 At the second step, child patch height maps are

rendered.

During the second step, PT is filtered using

hardware-supported bilinear filtering, interpolation

errors are loaded from IT and added to the

interpolated samples from PT .

Patch’s height and normal maps as well as the

tessellation block errors are stored as texture arrays.

A list of unused subresources is supported. When

patch is created, we find unused subresource in the

list and release it when the patch is destroyed.

Tessellation block errors as well as normal maps are

computed on the GPU when the patch is created by

rendering to the appropriate texture array element.

Exploiting texture arrays enables the whole terrain

rendering using single draw call with instancing. The

per-instance data contains patch location, level in the

hierarchy and the texture index. Patch rendering hull

shader calculates tessellation factor for each edge and

passes the data to the tessellator. Tessellator

generates topology and domain coordinates that are

passed to the domain shader. Domain shader

calculates world space position for each vertex and

fetches the height map value from the appropriate

texture array element. The resulting triangles then

pass in a conventional way via rasterizer.

6. EXPERIMENTAL RESULTS AND

DISCUSSION
To test our system, we used 16385×16385 height

map of the Puget Sound sampled at 10 meter spacing,

which is used as the common benchmark and is

available at [PS]. The raw data size (16 bps) is 512

MB. The compression and run-time experiments were

done on a workstation with the following hardware

configuration: single Intel Core i7 @2.67; 6.0 GB

RAM; NVidia GTX480.

The data set was compressed to 46.8 MB (11:1) with

1 meter error tolerance. For comparison, C-BDAM

method, which exploits much more sophisticated

approach, compressed the same data set to 19.2 MB

(26:1) [GMC+06]. Note that in contrast to C-BDAM,

our method enables hardware-based decompression.

Note also that in practice we compress extended

)32()32( nn height map for each patch for the

sake of seamless normal map generation. As opposed

to compressing conventional diffuse textures, height

maps usually require less space. That is why we

believe that provided 11x compression rate is a good

justification for the quality of our algorithm.

During our run-time experiments, the Puget Sound

data set was rendered with 2 pixels screen space error

tolerance at 1920x1200 resolution (fig. 10). We

compared the rendering performance of our method

with our implementation of the chunked LOD

approach [Ulr00]. As fig. 10 shows, the data set was

rendered at 607 fps on average with minimum at 465

fps with the proposed method. When the same terrain

was rendered with our method but without exploiting

instancing and texture arrays described previously,

the frame rate was almost 2x lower. As fig. 10 shows,

our method is more than 3.5x faster than the chunked

LOD approach.

Chunked LOD

H/W Tessellation

H/W tess + tex
array & instancing

0

200

400

600

800

1000

1200

F
P

S

Chunked LOD H/W Tessellation H/W tess + tex array & instancing

Figure 10. Rendering performance at 1920×1200

resolution.

Our experiments showed that the optimal tessellation

block size that provides the best performance is 8×8.

Other interesting statistics for this rendering

experiment is that approximately 1024 of 128×128

patches were kept in GPU memory (only ~200 of

them were rendered per frame on average). Each

height map was stored with 16 bit precision. All

patches demanded just 32 MB of the GPU memory.

We also exploited normal map compressed using

BC5, which required additional 16 MB of data.

Diffuse maps are not taken into account because

special algorithms that are behind the scope of this

work are designed to compress them. However, the

same quad tree-based subdivision scheme can be

integrated with our method to handle diffuse texture.

Since our method enables using small screen space

error threshold (2 pixels or less), we did not observe

any popping artifacts during our experiments even

Journal of WSCG 91 ISSN 1213-6972

though there is no morph between successive LODs

in our current implementation.

In all our experiments, the whole compressed

hierarchy easily fitted into the main memory.

However, our approach can be easily extended for the

out-of-core rendering of arbitrary large terrains. In

this case, the whole compressed multiresolution

representation would be kept in a repository on the

disk or a network server, as for example in the

geometry clipmaps. This would allow on-demand

extraction from the repository rather accessing the

data directly in the memory.

7. CONCLUSION AND FUTURE

WORK
We presented a new real-time large-scale terrain

rendering technique, which is based on the

exploitation of the hardware-supported tessellation

available in modern GPUs. Since triangulation is

performed entirely on the GPU, there is no need to

encode the triangulation topology. Moreover, the

triangulation is precisely adapted to each camera

position. To reduce the data storage requirements, we

use robust compression technique that enables direct

control over the reconstruction precision and is also

accelerated by the GPU.

We consider support for dynamic terrain

modifications as a future work topic. Since the

triangulation topology is constructed entirely on the

GPU, it would require only updating the tessellation

block errors, and the triangulation will be updated

accordingly. Another possible direction is to extend

the presented algorithm for rendering arbitrary high-

detailed 2D-parameterized surfaces.

8. REFERENCES
[CGG+03a] Cignoni, P., Ganovelli, F., Gobbetti, E.,

Marton, F., Ponchio, F., and Scopigno, R.

BDAM – batched dynamic adaptive meshes for

high performance terrain visualization. Computer

Graphics Forum, Vol. 22, No. 3, pp. 505–514,

2003.

[CGG+03b] Cignoni, P., Ganovelli, F., Gobbetti, E.,

Marton, F., Ponchio, F., and Scopigno, R. Planet-

sized batched dynamic adaptive meshes (P-

BDAM). In Proc. IEEE Visualization, pp. 147–

154, 2003.

[DSW09] Dick, C., Schneider, J., and Westermann,

R. Efficient Geometry Compression for GPU-

based Decoding in Realtime Terrain Rendering.

In Computer Graphics Forum, Vol. 28, No 1, pp.

67–83, 2009.

[DWS+97] Duchaineau, M., Wolinsky, M., Sigeti,

D.E., Miller, M.C., Aldrich, C., and Mineev-

Weinstein, M.B. ROAMing terrain: Real-time

optimally adapting meshes. In Proc. IEEE

Visualization, pp. 81–88, 1997.

[GMC+06] Gobbetti, E., Marton, F., Cignoni, P.,

Di Benedetto, M., and Ganovelli, F. C-BDAM –

compressed batched dynamic adaptive meshes for

terrain rendering. Computer Graphics Forum,

Vol. 25, No. 3, pp. 333–342, 2006.

[Hop98] Hoppe, H. Smooth view-dependent level-of-

detail control and its application to terrain

rendering. In Proc. IEEE Visualization, pp. 35–

42, 1998.

[LC03] Larsen, B.D., and Christensen, N.J. Real-time

Terrain Rendering using Smooth Hardware

Optimized Level of Detail. Journal of WSCG,

Vol. 11, No. 2, pp. 282–289, 2003.

[Lev02] Levenberg, J. Fast view-dependent level-of-

detail rendering using cached geometry. In Proc.

IEEE Visualization, pp. 259–265, 2002.

[LKR+96] Lindstrom, P., Koller, D., Ribarsky, W.,

Hodges, L.F., Faust, N., and Turner, G.A. Real-

time, continuous level of detail rendering of

height fields. In Proc. ACM SIGGRAPH, pp.

109–118, 1996.

[LH04] Losasso, F., and Hoppe, H. Geometry

clipmaps: Terrain rendering using nested regular

grids. In Proc. ACM SIGGRAPH, pp. 769–776,

2004.

[Mal00] Malvar, H. Fast Progressive Image Coding

without Wavelets. In Proceedings of Data

Compression Conference (DCC ’00), Snowbird,

UT, USA, pp. 243–252, 28-30 March 2000.

[Paj98] Pajarola, R. Large scale terrain visualization

using the restricted quadtree triangulation. In

Proc. IEEE Visualization, pp. 19–26, 1998.

[PG07] Pajarola, R., and Gobbetti, E. Survey on

semi-regular multiresolution models for

interactive terrain rendering. The Visual

Computer, Vol. 23, No. 8, pp. 583–605, 2007.

[PS] Puget Sound elevation data set is available at

http://www.cc.gatech.edu/projects/large_models/p

s.html

[SW06] Schneider, J., and Westermann, R. GPU-

Friendly High-Quality Terrain Rendering. Journal

of WSCG, Vol. 14, pp. 49–56, 2006.

[Ulr00] Ulrich, T. Rendering massive terrains using

chunked level of detail. ACM SIGGraph Course

“Super-size it! Scaling up to Massive Virtual

Worlds”, 2000.

[WNC87] Witten, I.H., Neal, R.M., and Cleary J.G.,

Arithmetic coding for data compression. Comm.

ACM, Vol. 30, No. 6, pp. 520–540, June 1987.

Journal of WSCG 92 ISSN 1213-6972

http://www.cc.gatech.edu/projects/large_models/ps.html
http://www.cc.gatech.edu/projects/large_models/ps.html

Generalized Heat Kernel Signatures

Valentin Zobel
Zuse-Institut Berlin, Germany

zobel@zib.de

Jan Reininghaus
Zuse-Institut Berlin, Germany

reininghaus@zib.de

Ingrid Hotz
Zuse-Institut Berlin, Germany

hotz@zib.de

ABSTRACT

In this work we propose a generalization of the Heat Kernel Signature (HKS). The HKS is a point signature derived from
the heat kernel of the Laplace-Beltrami operator of a surface. In the theory of exterior calculus on a Riemannian manifold,
the Laplace-Beltrami operator of a surface is a special case of the Hodge Laplacian which acts on r-forms, i. e. the Hodge
Laplacian on 0-forms (functions) is the Laplace-Beltrami operator. We investigate the usefulness of the heat kernel of the
Hodge Laplacian on 1-forms (which can be seen as the vector Laplacian) to derive new point signatures which are invariant
under isometric mappings. A similar approach used to obtain the HKS yields a symmetric tensor field of second order; for
easier comparability we consider several scalar tensor invariants. Computed examples show that these new point signatures are
especially interesting for surfaces with boundary.

Keywords: Shape analysis, Hodge Laplacian, heat kernel, discrete exterior calculus

1 INTRODUCTION
The identification of similarly shaped surfaces or parts
of surfaces, represented as triangle meshes, is an im-
portant task in computational geometry. In this paper,
we consider two surfaces as being similar if there is an
isometry between them. For example, all meshes de-
scribing different poses of an animal are considered to
be similar.

One approach to solve this problem makes use of
spectral analysis of the Laplace-Beltrami operator ∆0
of the surface. The Laplace-Beltrami operator ∆0 de-
scribes diffusion processes, is by definition invariant
under isometries, and is known to reveal many geomet-
ric properties of the surface.

In [8] the eigenvalues of the Laplace-Beltrami oper-
ator are proposed as a ’Shape-DNA’. If two surfaces
are isometric, then the eigenvalues of the respective
Laplace-Beltrami operators coincide. While one can
construct counter examples to the converse of this state-
ment, this does not seem to pose a problem in practice.

In contrast to this global characterization of surfaces,
in [10] the eigenvalues and eigenfunctions of the
Laplace-Beltrami operator are used to compute a point
signature. This point signature is a function on the
surface containing a scale parameter, and is called Heat
Kernel Signature. For benchmarks evaluating the Heat
Kernel Signature and other methods we refer the reader
to [3], [4].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

In this work we propose and investigate a general-
ization of the Heat Kernel Signature. The Laplace-
Beltrami operator ∆0 of a surface can be generalized
to the Hodge Laplacian ∆r which is an operator acting
on r-forms. This operator is defined in the setting of ex-
terior calculus in Section 2 and its heat kernel is intro-
duced in Section 3. We can then derive a new isometry
invariant point signature from the Hodge-Laplacian on
1-forms ∆1 in Section 4. This yields a symmetric tensor
field of second order containing a scale parameter. As
it is difficult to compare and quantify such tensor fields,
we consider several scalar valued tensor invariants for
the purpose of surface analysis. To increase the repro-
ducibility of the results shown in Section 6, we give
some details about our implementation of this method
in Section 5. For our discretization of ∆1 we use the
theory of discrete exterior calculus (DEC) which mim-
ics the theory of exterior calculus on a discrete level.

2 MATHEMATICAL BACKGROUND
To generalize the Laplace-Beltrami operator and the
heat kernel to r-forms it is beneficial to employ the the-
ory of exterior calculus on a Riemannian manifold. We
will give a short introduction to this topic in this sec-
tion. An extensive introduction to exterior calculus can
be found for example in the textbook [1].

For simplicity we restrict ourselves to a Riemannian
manifold (M,g) of dimension 2. Readers who are not
familiar with Riemannian manifolds may think of M
being a surface embedded in R3. In this case the Rie-
mannian metric g is given by the first fundamental form,
i. e. gp is the scalar product on the tangent space Tp(M)
at p which is induced by the standard scalar product on
R3.

The set of r-forms on M is denoted by
∧r(M), where

r = 0 . . .2. A 0-form on M is a smooth function from
M to R, consequently

∧0(M) = C∞(M). A 1-form on

Journal of WSCG 93 ISSN 1213-6972

M is a smooth map which assigns each p ∈M a linear
map from Tp(M) to R, i. e. an element of the dual space
(Tp(M))∗ of Tp(M). A 2-form α on M is a smooth map
which assigns each p ∈ M a bilinear form on Tp(M)
which is skew-symmetric, that is for each p ∈ M and
v,w ∈ Tp(M) we have αp(v,w) = −αp(w,v). We will
later see that a 1-form can be identified with a vector
field while a 2-form can be interpreted as a function on
the manifold.

The Hodge-Laplace operator will now be de-
fined in terms of local coordinates. Let (U,φ)
be a chart with coordinate functions (x1,x2), i. e.
φ(p) = (x1(p),x2(p)) ∈ R2. The tangent vectors to
the coordinate lines which are denoted by ∂

∂x1
, ∂

∂x2
, or

shorter ∂1,∂2, form a frame on U , i. e. (∂1)p,(∂2)p
is a basis of Tp(M) for each p ∈ U . The differentials
dx1,dx2 of x1 and x2 form a coframe on U , i. e.
(dx1)p,(dx2)p is a basis of (Tp(M))∗, and we have
dxi(∂ j) = δ i

j . Thus, for any 1-form α ∈
∧1(M) there

are functions f1, f2 ∈ C∞(U) such that

α|U = f1 dx1 + f2 dx2 ,

where f1 = α(∂1), f2 = α(∂2).
The wedge prodcut ∧ of two 1-forms α,β is defined

pointwise at each p ∈M by

(αp∧βp)(v,w) = αp(v)βp(w)−βp(v)αp(w)

for all v,w ∈ Tp(M). A two form α ∈
∧2(M) can

thereby be represented by α|U = f dx1 ∧ dx2 , where
f = α(∂1,∂2) ∈C∞(M).

There is an isomorphism between vector fields and
1-forms on M which is called flat operator and denoted
by [. For a vector field v it is defined by v[p(·) = g(vp, ·)
at each p ∈ M. Its inverse is the sharp operator].
If e1,e2 is an orthonormal basis of Tp(M) and ε1,ε2

its dual basis we have (λ1e1 + λ2e2)
[= λ1ε1 + λ2ε2 ,

where λ1,λ2 ∈ R.
The differential d takes a function f on M to the 1-

form

d0 f =
∂ f
∂x1

dx1 =
∂ f
∂x2

dx2 ,

i. e. d0 maps 0-forms to 1-forms. One may think of d0
as ∇. We will denote d also by d0 and define the map
d1 taking 1-forms to 2-forms by

d1 (f1 dx1 + f2 dx2) =

(
∂ f2

∂x1
− ∂ f1

∂x2

)
dx1∧dx2 .

d1 can be interpreted as ∇×. The maps d0 and d1 are
referred to as exterior derivative.

Next we will define the maps δ1 and δ2 which take 1-
forms to 0-forms and 2-forms to 1-forms, respectively,
and are also called codifferential. These maps depend,
in contrast to d0 and d1, on the metric of M. We set
gi j = g

(
∂

∂xi
, ∂

∂x j

)
and G =

√
det[gi j]. For simplicity

we use orthogonal coordinates, that is [gi j] is a diagonal
matrix. This is not a restriction, since any point p∈M is
contained in a chart with this property. The Hodge star
operator ∗r is a map taking r-forms to (2− r)-forms,
r = 0, . . . ,2, defined by

∗0 f = G f dx∧dy ,

∗1(f1 dx1 + f2 dx1) =−g22G f2 dx1 +g11G f1 dx2 ,

∗2(f dx1∧dx2) =
f
G

.

Now δ1 and δ2 are defined by

δ1 =−∗2 d1∗1 , δ2 =−∗1 d0∗2 ,

which can be rewritten to

δ1 (f1 dx1 + f2 dx2) =−
1
G

(
∂g11G f1

∂x1
+

∂g22G f2

∂x2

)
,

δ2(f dx1∧dx2) = g22G
∂

f
G

∂x2
dx1−g11G

∂
f
G

∂x1
dx2 .

One may think of −δ1 as ∇· and −δ1 as ∇⊥.
The Hodge Laplacian ∆r :

∧r(M)→
∧r(M), where

r = 0, . . . ,2, is now defined by

∆0 = δ1d0 ,

∆1 = δ2d1 +d0δ1 ,

∆2 = d1δ2 .

Sometimes ∆r is also called Laplace-de Rham oper-
ator or just Laplacian, where ∆0 is also referred to as
Laplace-Beltrami operator. If M = R2 with standard
coordinates we have g11 = g22 = G = 1, thus −∆0 co-
incides with the well-known definition of the Laplacian
on R2, i. e. ∆0 =

∂ 2

∂ 2x1
+ ∂ 2

∂ 2x2
.

3 HEAT KERNEL
The basic properties of heat diffusion on a Riemannian
manifold will be introduced in this section. Of special
interest for us is the heat kernel and its generalization
to 1-forms. In Section 4 we will derive point signatures
from the heat kernel for 1-forms in a similar way as the
Heat Kernel Signature is derived from the heat kernel
for functions. For details on the heat kernel for r-forms
see [9].

Let (M,g) be a 2-dimensional, compact, oriented
Riemannian manifold. Given an initial heat distribution
f (p) = f (0, p) ∈ C∞(M) on M, considered to be per-
fectly insulated, the heat distribution f (t, p) ∈ C∞(M)
at time t is governed by the heat equation

(∂t +∆0) f (t, p) = 0 .

The function k0(t, p,q) ∈ C∞ (R+×M×M) such that
for all f ∈C∞(M)

(∂t +(∆0)p)k0(t, p,q) = 0 ,

lim
t→0

∫
k0(t, p,q) f (q)dq = f (p) ,

Journal of WSCG 94 ISSN 1213-6972

is called heat kernel. (∆0)p denotes the Laplacian act-
ing in the p variable. Using the heat kernel one can
define the heat operator Ht for t > 0 by

Ht f (p) =
∫

M
k0(t, p,q) f (q)dq .

One can show that f (t, p) = Ht f (p) solves the Heat
equation, thus Ht maps an initial heat distribution to
the heat distribution at time t. The heat kernel can be
computed from the eigenvalues λi and the correspond-
ing eigenfunctions φi of ∆0 by the formula

k0(t, p,q) = ∑
i

e−λitφi(p)φi(q) .

Next we will generalize the heat kernel to 1-forms
which results in a so-called double 1-form. A double
1-form is a smooth map which assigns each (p,q) ∈
M×M a bilinear map TpM×TqM→R . Consequently,
if β is a double form on M, v∈ Tp(M), w∈ Tq(M), then
q 7→ β (p,q)(v, ·) and p 7→ β (p,q)(·,w) are 1-forms on
M. The heat kernel for 1-forms is now a double form
k1(t, p,q) depending smoothly on an additional param-
eter t, which satisfies for each α ∈

∧k(M)

(∂t +(∆1)p)k1(t, p,q) = 0 ,

lim
t→0

∫
M

k1(t, p,q)
(
· ,α](q)

)
dq = α(p)(·) .

Note that, given α ∈
∧1(M) and p,q∈M we obtain a

bilinear map Tp(M)×Tq(M)→R by multiplying α(p)
and α(q); thus

(p,q) 7→ α(p)(·)α(q)(·)

is a double form. Similarly to the heat kernel for func-
tions, we can compute the heat kernel for 1-forms from
the eigenvalues λi and the eigenforms αi of ∆1 by

k1(t, p,q)(·, ·) = ∑
i

e−λitαi(p)(·)αi(q)(·) .

4 POINT SIGNATURES FROM THE
HEAT KERNEL FOR 1-FORMS

In this section we will derive new point signatures from
the heat kernel of 1-forms. This is done in a similar way
as the Heat Kernel Signature is derived from the heat
kernel for functions (0-forms). The main difference is
that this approach does not result in a time-dependent
function for the heat kernel of 1-forms, instead we ob-
tain a time-dependent tensor field. Thus, to obtain com-
parable values, we consider scalar tensor invariants. In
this way we obtain several point signatures which are
especially interesting for manifolds with boundary, as
we will see in Section 6.

The Heat Kernel Signature at p is defined by

t 7→ k0(t, p, p) ,

i. e. a function R+ → R is assigned to each point
p ∈ M. It is shown in [10] that two points p,q have
similar shaped neighborhoods if {k(t, p, p)}t>0 and
{k(t,q,q)}t>0 coincide.

The analogous definition for the heat kernel for 1-
forms,

t 7→ k1(t, p, p) ,

assigns each point p ∈ M a bilinear form on Tp(M)
or equivalently a symmetric covariant tensor of sec-
ond order. Comparing covariant tensors of second or-
der on Tp(M) and Tq(M) is not possible unless we
have a meaningful map between Tp(M) and Tq(M).
It is therefore difficult to compare {k1(t, p, p)}t>0 and
{k1(t,q,q)}t>0 directly. However, we can consider
scalar tensor invariants which are independent of the
chosen orthonormal basis of the tangent space.

If e1,e2 is an orthonormal basis of Tp(M) we can as-
sign to each bilinear form β a matrix B = (bi j), where
bi j = β (ei,e j), i, j = 1,2. Now B is the matrix represen-
tation of β with respect to the orthonormal basis e1,e2
and the eigenvalues of β are defined to be the eigen-
values of B. If ẽ1, ẽ2 is another orthonormal basis and
S the orthogonal matrix satisfying ẽ1 = Se1, ẽ2 = Se2,
then the corresponding matrix representation B̃ of α is
given by B̃ = SBST , and with that the definition of the
eigenvalues of β is independent of a certain orthonor-
mal basis. Consequently, if λ1 is the larger and λ2 the
smaller eigenvalue of β , quantities like λ1 or λ2 or com-
binations of it like the trace tr(β) = tr(B) = λ1 +λ2 or
the determinant det(β) = det(B) = λ1λ2 are scalar ten-
sor invariants. Using such tensor invariants we obtain
point signatures like {tr(k1(t, p, p))}t>0 which can be
compared similarly as the Heat Kernel Signature, see
[10] for details.

5 NUMERICAL REALIZATION
To compute our point signatures we need a matrix rep-
resentation of the bilinear forms k1(t, p, p). We will use
the equation

k1(t, p, p)(·, ·) = ∑
i

e−λitαi(p)(·)αi(p)(·) , (1)

where λi and αi are the eigenvalues and eigenforms of
∆1. For the computation of the eigenvalues and eigen-
forms we use the theory of discrete exterior calculus
(DEC), which mimics the theory of exterior calculus on
surfaces approximated as triangle meshes. A short in-
troduction to DEC is given in Subsection 5.1.

Unfortunately the computation of the eigenvalues and
eigenforms of ∆1 using DEC is not straightforward.
The common definitions work only for very special tri-
angulations. We propose a solution to this problem in
Subsection 5.2. Moreover we explain a way to realize
the product αi(p)(·)αi(p)(·) of two eigenforms which
is not obvious for discrete r-forms.

Journal of WSCG 95 ISSN 1213-6972

5.1 Discrete Exterior Calculus
DEC deals with discrete forms which are defined on
on a triangle mesh as an approximation of a surface.
Additionally counterparts of operators like the exterior
derivative and the Hodge star operator are defined for
discrete forms. This enables us to define a discrete
Hodge Laplacian. Thus DEC mimics the theory of
smooth r-forms on surfaces. For details on DEC we re-
fer the reader to [7], which is the most extensive source,
as well as to [5] and [6].

Let K be a triangle mesh with vertex set V = {vi},
edge set E = {ei} and triangle set T = {ti}. We assume
that all triangles and edges have a fixed orientation. The
orientation of a vertex is always positive; the orientation
of an edge ei is given by an order of vertices e = [viv j];
the orientation of a triangle t is given by a cyclic order
of vertices t = [viv jvk]. If v is a vertex of the edge e =
[viv j], the orientations of v and e are said to agree if
v = v j and disagree if v = vi. Similarly, given an edge
e of a triangle t, the orientations of e and t are said to
agree (disagree) if the vertices of e occur in the same
(opposite) order in t.

Discrete 0-forms, 1-forms and 2-forms are defined to
be functions from V , E and T to R, respectively. The
function values should be understood as the integral of
a continuous 0-form, 1-form or 2-form over a vertex,
edge or triangle, respectively. Note that reversing the
orientation of vertices, edges or triangles changes the
sign of the associated integral values, thus the same
holds for discrete r-forms. Of course, this definition of
discrete r-forms does not allow a point-wise evaluation.

However, it is possible to interpolate discrete r-forms
by Whitney forms which are piecewise linear r-forms
on the triangles. Whitney 0-forms are the so-called hat
functions, i. e. φvi is the piecewise linear function with
φvi(v j) = δ i

j. For an edge e = [vi,v j] the Whitney 1-
form φe is supported on the triangles adjacent to e and
given by φe = φvi dφv j−φv j dφvi . Note that φe is piece-
wise linear on each triangle, but discontinuous on the
edge. However, the integral of both parts of φe over e
is 1. We also have that the integral of φe is 0 over each
edge different from e. There is a similar definition for
Whitney 2-forms which we omit here. The Whitney in-
terpolant I α of a discrete 0-form α is now given by

I α = ∑
i=1,...,|V |

α(vi)φvi .

The Whitney interpolant for discrete 1-forms and
2-forms is defined analogously.

0-forms, 1-forms and 2-forms can be seen as vectors
in R|V |, R|E| and R|T |. Thus operators like the exterior
derivative, the hodge star operator and the codifferential
are defined as matrices. To define the discrete exterior
derivate we need to define the boundary operator first.

The boundary operator ∂1 is given by the matrix of di-
mension |V |× |E| with the entries

(∂1)i j =

{
1 , orientations of vi and e j agree ,

−1 , orientations of vi and e j disagree ,

if vi is a vertex of the edge e j and zero otherwise. The
boundary operator ∂2 is now defined analogously by

(∂1)i j =

{
1 , orientations of ei and t j agree ,

−1 , orientations of ei and t j disagree ,

if the e j is an edge of the triangle t j and zero otherwise.
The discrete exterior derivate is now defined to be the
transpose of the boundary operator, i. e.

d0 = (∂1)
T , d1 = (∂2)

T .

Thus, as for smooth r-forms we have that d0 maps 0-
forms to 1-forms, and d1 maps 1-forms to 2-forms.

While the hodge star operator ∗r in the continuous
case maps r-forms to (2− r)-forms, the discrete hodge
star operator maps a discrete r-form to a so-called dual
(2− r)-form which is defined on the dual mesh. We
assume for the moment that every triangle t ∈ T con-
tains its circumcenter. Then the (circumcentric) dual
mesh is a cell decomposition of K where the cells are
constructed as follows: The dual 0-cell ?t of a triangle
t ∈ T is the circumcenter of t. The dual 1-cell ?e of an
edge e∈ E consists of the two line segments connecting
the circumcenters of the triangles adjacent to e and the
midpoint of e. The dual 2-cell ?v of a vertex v ∈ V is
the area around v which is bounded by the dual 1-cells
of the edges adjacent to v. Note that the dual mesh co-
incides with the Voronoi tesselation of K corresponding
to the vertex set V , see [2] for details.

A dual r-form is now a map which assigns each dual
r-cell a real number. Thus dual 0-forms, 1-forms and
2-forms can be represented as vectors in R|T |, R|E| and
R|V |. The exterior derivative on dual 0-forms and dual
1-forms is defined by the matrices

dDual
0 = dT

1 = ∂2 , dDual
1 =−dT

0 =−∂1 .

The discrete Hodge star operator ∗r which maps r-
forms to dual 2− r forms is given by square matrices

∗0 ∈ R|V |×|V | , ∗1 ∈ R|E|×|E| , ∗2 ∈ R|T |×|T | .

Unfortunately there is no unique way to define the en-
tries of these matrices. A possible choice for ∗0, ∗1 and
∗2 are diagonal matrices with entries given by

(∗0)ii =
|? vi|
|vi|

, (∗1)ii =
|? ei|
|ei|

, (∗2)ii =
|? ti|
|ti|

,

where |v|= 1, |e| is the length of e, |t| is the area of t and
analogously for dual cells. Since this is the common

Journal of WSCG 96 ISSN 1213-6972

definition in DEC, see [7] and [5] for example, we also
denote this Hodge star by ∗DEC

r .
Another possible definition, suggested in [6], is to de-

fine (∗0)i j as the the L2-inner product of the Whitney 0-
forms φvi and φv j , and analogously for ∗1 and ∗2 using
Whitney 1-forms and 2-forms corresponding to edges
and triangles, respectively. For more details and an ex-
plicit computation of the entries of ∗Whit

r we refer to
[11]. We denote this Hodge star operator also by ∗Whit

r
in allusion to the use of Whitney forms. The advantages
and disadvantages of ∗DEC and ∗Whit in view of spectral
analysis of the Hodge Laplacian will be discussed in
Subsection 5.2.

To map dual (2− r)-forms to discrete r-forms we
need an inverse Hodge star operator ∗Dual

2−r . An obvi-
ous choice would be ∗−1 but in this case the property
∗r ∗2−r α = (−1)r(2−r)α which we have for a smooth
r-form α would not hold. Instead ∗Dual

2−r is defined by

∗Dual
2−r = (−1)r(2−r)(∗r)

−1 .

Now, similarly as for smooth r-forms, we define the
discrete codifferential which maps discrete r-forms to
discrete (r−1)-forms for r = 1,2 by

δ1 =−∗Dual
2 dDual

1 ∗1 ,

δ2 =−∗Dual
1 dDual

0 ∗2 .

This enables us to define the discrete Hodge Laplacian
∆r just the same way as in the smooth case by

∆0 = δ1d0 ,

∆1 = δ2d1 +d0δ1 ,

∆2 = d1δ2 .

Thus ∆r can be assembled from the boundary operator
and the discrete Hodge star operator by

∆0 = ∗−1
0 ∂1 ∗1 ∂

T
1 ,

∆1 = ∗−1
1 ∂2 ∗2 ∂

T
2 +∂

T
1 ∗−1

0 ∂1∗1 ,

∆2 = ∂
T
2 ∗−1

1 ∂2 ∗2 .

5.2 Numerical Computation of the Point
Signatures

To compute k1(t, p, p) using the formula (1) we need
to compute the eigenvalues and eigenforms of ∆1 in
a first step. We will see that we need certain com-
binations of the Hodge star operators ∗DEC

r and ∗Whit
r

to accomplish this. In a second step we need to com-
pute the products of two eigenforms αi(p)(·)αi(p)(·).
Since DEC does not provide such a product, we use
Whitney forms to interpolate smooth r-forms from dis-
crete r-forms. This results in matrix representations of
αi(p)(·)αi(p)(·) which can be summed easily.

To compute the eigenvalues of ∆1 we need to solve
the eigenvalue problem

∆1α =
(
∗−1

1 ∂2 ∗2 ∂
T
2 +∂

T
1 ∗−1

0 ∂1∗1
)

α = λα ,

or alternatively the generalized eigenvalue problem(
∂2 ∗2 ∂

T
2 +∗1∂

T
1 ∗−1

0 ∂1∗1
)

α = λ ∗1 α .

The advantage of the generalized eigenvalue problem is
that one does not need the inverse of ∗1, but only needs
the inverse of ∗0. However, to solve such a generalized
eigenvalue problem with usual numerical methods, e. g.
by using the command eigs in Matlab, the matrix on
the right hand side, i. e. ∗1, must be symmetric positive
definite. Moreover we need to compute the inverse of
∗0. So, which of the matrices ∗DEC

r , ∗Whit
r , r = 0, . . . ,2,

are invertible, which are also symmetric positive defi-
nite?

Since ∗DEC
1 is a diagonal matrix with diagonal entries

given by

(∗1)ii =
|? ei|
|ei|

,

it is invertible if and only if | ? ei|/|ei| 6= 0 for i =
1, . . . , |E|; if | ? ei|/|ei| > 0 for i = 1, . . . , |E| it is also
positive definite. The length |e| of an edge is obviously
always positive. For the length |?e| of the dual 1-cell of
an edge e this is possibly not the case. Of course, if we
assume that the circumcenter of each t ∈ T is contained
in t, as in the previous section, the length of ?e is the
sum of the lengths of the two line segments connect-
ing the circumcenters of the two triangles adjacent to e
with the midpoint of e and thus positive. But this is not
a viable assumption in applications. One can solve this
problem in the following way: Let t be a triangle adja-
cent to e. If t and the circumcenter of t lie on different
sides of the line containing e, then the according line
segment counts negative. Thus the length |?e| of a dual
1-cell ?e can be negative; this is the case if and only if
this edge violates the local Delaunay property and con-
sequently the entries of ∗DEC are only nonnegative if
K is an (intrinsic) Delaunay triangulation, see [2] for
details on Delaunay triangulations of triangle meshes.
Since it is a very strong condition to assume that K is a
Delaunay triangulation and moreover not sufficient for
positive definiteness of ∗DEC, only positive semidefi-
niteness, we cannot assume that ∗DEC

1 is invertible or
even positive definite.

Similarly ∗DEC
0 is positive definite if | ? vi| > 0 for

i = 1, . . . , |V |. The computation of the area | ? v| of a
dual 2-cell ?v is shown in Figure 1, for details we refer
the reader to [11]. Note that |?v| can be positive even if
K is not a Delaunay triangulation; |?v| is only negative
for rather degenerate meshes. Thus we can assume that
∗DEC

0 is positive definite and thus invertible. Finally,
∗DEC

2 is obviously positive definite.

Journal of WSCG 97 ISSN 1213-6972

Figure 1: Primal and dual meshes. The left mesh is
Delaunay, whereas the other meshes are not Delaunay.
The middle mesh shows a dual 0-cell whose area is
given by the blue area minus the red area. The red
line in the right mesh shows a dual 1-cell with negative
length.

The positive definiteness of ∗Whit
r follows from the

fact that αT ∗Whit
r β is the L2-inner product of the Whit-

ney interpolants I α and I β of two discrete r-forms
α,β , thus

α
T ∗Whit

r α > 0

for any r-form α 6= 0. Consequently ∗Whit
r is also in-

vertible, but unfortunately we cannot use the inverse of
∗Whit

r . The reason for this is that ∗Whit
k is not diagonal

(unless r = 2) and thus the inverse is in general not a
sparse matrix which is a mandatory condition for large
meshes.

As a consequence, to solve the generalized eigen-
value problem for ∆1, we have to use (∗DEC

0)−1 and
∗Whit

1 on the right hand side. For ∗1 on the left hand
side we can choose either ∗DEC

1 or ∗Whit
1 , both work

properly as the numerical tests in [11] show. For ∗2
there is nothing to choose, since ∗DEC

2 = ∗Whit
2 .

We now discuss the computation of the matrix repre-
sentation of k1(t, p, p) from the eigenvalues and eigen-
forms of ∆1 using the formula

k1(t, p, p)(·, ·) = ∑
i

e−λitαi(p)(·)αi(p)(·) .

One difficulty is to compute the product of the eigen-
forms αi of ∆1. The αi are only available as discrete
1-forms, but unfortunately DEC does not provide such
a product. To overcome this problem we interpolate
the discrete 1-forms using Whitney forms. The result-
ing smooth forms can be multiplied easily. Though, as
noted in the previous subsection, the Whitney forms are
only continuous within the triangles, thus it is not pos-
sible to evaluate the resulting tensors on the vertices.
Instead, we evaluate the tensors on the barycenters of
the triangles.

We proceed with a detailed description of the com-
putation of the matrix representation of k1(t, p, p). Let
t = [viv jvk] be a triangle, while the orientation of the
edges is given by ei = [v jvk], e j = [vkvi] and ek = [viv j].
Using the orthonormal basis

e1 =
v j− vi

‖v j− vi‖
, e2 =

(vk− vi)−〈vk− vi ,e1〉e1

‖(vk− vi)−〈vk− vi ,e1〉e1‖

and choosing vi as origin we obtain

vi =

(
0
0

)
, v j =

(
x j
0

)
, vk =

(
xk
yk

)
,

where x j =
〈
v j ,e1

〉
, xk = 〈vk ,e1〉, yk = 〈vk ,e2〉. Now

easy calculations show for the hat functions φvi ,φv j ,φvk
that

(dφi)
] =

(
− 1

x j
xk

x jyk
− 1

yk

)
,

(dφ j)
] =

(
1
x j

− xk
x jyk

)
,

(dφk)
] =

(
0
1
yk

)
,

where we used the sharp operator to identify 1-forms
with vectorfields. Let now α be an eigenform of ∆1,
then the Whitney interpolant I β at the barycenter p of
T is given by

(I α)(p) =
1
3
(α(ek)(dφv j −dφvi)

+α(ei)(dφvk −dφv j)+α(ev j)(dφvi −dφvk)) .

The matrix representaion of I α(p)(·)I α(p)(·) is
now given by(

(I α)](p)
)(

(I α)](p)
)T

,

and the matrix representation of k1(t, p, p) by

∑
i

e−λit
(
(I αi)

](p)
)(

(I αi)
](p)

)T
. (2)

6 RESULTS
In this section we visualize our point signatures with
colormaps; small values are represented by blue and
high values by red. The surfaces we investigate are
the trim-star model, the armadillo model and the Caesar
model, provided by the AIM@SHAPE Shape Reposi-
tory, a surface representing a mandible produced by M.
Zinser, Universitätsklinik Köln, and a square. Plots of
the point signatures for these surfaces are given for dif-
ferent time values and compared with the Heat Kernel
Signature.

We approximate the sum in equation 2 by the first
100 summands, i. e. we have to compute the 100 small-
est eigenvalues and the corresponding eigenvectors of
∆1. The number of summands needed depends on the
surface. In our examples more summands show no sig-
nificant improvement. The computation of the eigen-
values and eigenvectors of ∆1, for which we use Mat-
lab, needs most time, everything else can be done in-
teractively. Timings are shown in Table 1; for compar-
ison we also give timings for the computation of 100

Journal of WSCG 98 ISSN 1213-6972

Model Vertices ∆1 ∆0
Mandible 11495 39.9 8.9
Trim-star 5192 17.2 7.6
Square 4096 13.4 3.4
Caesar 4717 15.0 3.0

Table 1: Timings in seconds for the computation of 100
eigenvalues and eigenvectors of ∆1 and ∆0.

eigenvalues and eigenvectors of ∆0, which are needed
to compute the HKS.

To avoid readjusting the colormap for different values
of t we plot the function

tr
(
k1(t, p, p)

)∫
M tr(k1(t, p, p)) d p

,

rather than tr
(
k1(t, p, p)

)
, and analogously for other in-

variants. Such a normalization is also used in [10] to en-
sure that different values of t contribute approximately
equally when comparing two signatures.

In the case of a closed surface the smaller and the
larger eigenvalue of k1(t, p, p) have very similar val-
ues for all p ∈ M and all t > 0. The behavior of
tr
(
k1(t, p, p)

)
and det

(
k1(t, p, p)

)
corresponds to this

observation. Thus, whichever invariant we use, we
obtain nearly the same information from the resulting
point signature. A comparison of tr

(
k1(t, p, p)

)
and the

Heat Kernel Signature is shown in Figures 2 and 3. De-
spite the fact that the Heat Kernel Signature has high
values where tr

(
e1(t, p, p)

)
has low values and vice

versa, both point signatures show a similar behavior for
small values of t. In contrast, for large values of t their
behavior is very different.

We should note here that ∆0 has a single zero eigen-
value and the corresponding eigenfunction is constant.
Thus we have

lim
t→∞

k0(t, p, p) = lim
t→∞

∑
i

e−λitφi(p)φi(p) = φ
2
0 (p) ,

i. e. the Heat Kernel Signature converges to a constant
function which is different to zero. In contrast, ∆1 has
2g eigenforms to the eigenvalue zero, where g is the
genus of the surface. Now the limit

lim
t→∞

k1(t, p,q)(·, ·) = lim
t→∞

∑
i

e−λitαi(p)(·)αi(p)(·)

is zero for surfaces with g = 0 and nonzero for surfaces
with g > 0.

Thus, for the mandible model in Figure 2
tr
(
k1(t, p, p)

)
converges to zero, while it does not

converge to zero for the trim-star in Figure 3. However,
as a consequence of our normalization, the limit zero is
not visible in Figure 2, we rather see how tr

(
k1(t, p, p)

)
approaches zero.

To demonstrate the isometry invariance of k1(t, p, p)
Figure 4 shows tr

(
k1(t, p, p)

)
for different poses of the

armadillo modell.

In contrast to closed surfaces the smaller and
the larger eigenvalue of k1(t, p, p) behave differ-
ently for surfaces with boundary. Consequently we
also have a different behavior of tr

(
k1(t, p, p)

)
and

det
(
k1(t, p, p)

)
, see Figure 5 for a square and Figure

6 for a model of the head of Julius Caesar. While
tr
(
k1(t, p, p)

)
and the Heat Kernel Signature show a

similar behavior for small t in the case of a closed
surface, for surfaces with boundary this is only true
away from the boundary, see again Figures 5 and 6.
The Heat Kernel Signature seems to be much more in-
fluenced by the boundary as tr

(
k1(t, p, p)

)
. We should

note here that we used for the computation of the Heat
Kernel Signature eigenfunctions satisfying Neumann
boundary conditions, i. e. for any eigenfunction φ we
have

∂φ

∂n
(p) = 0 , p ∈ ∂M ,

where ∂M denotes the boundary of M and n denotes
the normal to the boundary. If we would use Dirichlet
boundary conditions instead, i. e.

φ(p) = 0 , p ∈ ∂M ,

the influence of the boundary to the Heat Kernel Signa-
ture would be even bigger.

Figure 2: tr(k1(t, p, p)) (top) and Heat Kernel Signature
(bottom) for increasing values of t.

Figure 3: tr(k1(t, p, p)) (top) and Heat Kernel Signature
(bottom) for increasing values of t.

7 CONCLUSION
In this work we derived new point signatures from the
heat kernel for 1-forms. We imitated the way in which

Journal of WSCG 99 ISSN 1213-6972

Figure 4: tr(k1(t, p, p)) of the armadillo modell in dif-
ferent poses.

Figure 5: from top to bottom: smaller eigen-
value of k1(t, p, p), larger eigenvalue of k1(t, p, p),
tr(k1(t, p, p)), det(k1(t, p, p)) and Heat Kernel signa-
ture for increasing values of t.

the Heat Kernel Signature is derived from the Heat Ker-
nel of 0-forms. Since this yields a time-dependent ten-
sor field of second order, we obtain several point sig-
natures by considering tensor invariants like the eigen-
values, the trace and the determinant. In the case of
surfaces without boundary both eigenvalues have very
similar values; the trace and the determinant behave ac-
cordingly. For small time values the behavior of both
eigenvalues is quite similar to the Heat Kernel Signa-
ture, but it differs for large time values. In contrast to
this, the behavior of the eigenvalues is very different
for surfaces with boundary, even for small time values.
Thus all considered tensor invariants differ significantly
from the Heat Kernel Signature. This property might
bring improvements for the analysis of surfaces with
boundary, compared to the Heat Kernel Signature with

Figure 6: from top to bottom: tr(k1(t, p, p)),
det(k1(t, p, p)) and Heat Kernel Signature for increas-
ing values of t.

Dirichlet or Neumann boundary conditions; a further
examination is left for future work.

REFERENCES
[1] R. Abraham, J.E. Marsden, and T. Ratiu. Manifolds, Tensor

Analysis, and Applications. Addison-Wesley, 1983.

[2] A.I. Bobenko and B.A. Springborn. A discrete laplace–beltrami
operator for simplicial surfaces. Discrete and Computational
Geometry, 38(4):740–756, 2007.

[3] A.M. Bronstein, M.M. Bronstein, B. Bustos, U. Castellani,
M. Crisani, B. Falcidieno, L.J. Guibas, I. Kokkinos, V. Murino,
M. Ovsjanikov, et al. SHREC 2010: robust feature detection
and description benchmark. Proc. 3DOR, 2010.

[4] A.M. Bronstein, M.M. Bronstein, U. Castellani, B. Falcidieno,
A. Fusiello, A. Godil, L.J. Guibas, I. Kokkinos, Z. Lian,
M. Ovsjanikov, et al. SHREC 2010: robust large-scale shape
retrieval benchmark. In Eurographics Workshop on 3D Object
Retrieval, To appear, 2010.

[5] Mathieu Desbrun, Eva Kanso, and Yiying Tong. Discrete differ-
ential forms for computational modeling. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Courses, pages 39–54, New York, NY,
USA, 2006. ACM.

[6] A. Gillette. Notes on discrete exterior calculus. 2009.

[7] A.N. Hirani. Discrete exterior calculus. PhD thesis, Citeseer,
2003.

[8] M. Reuter, F.E. Wolter, and N. Peinecke. Laplace–beltrami
spectra as ‘shape-dna’of surfaces and solids. Computer-Aided
Design, 38(4):342–366, 2006.

[9] S. Rosenberg. The Laplacian on a Riemannian manifold: an in-
troduction to analysis on manifolds. Cambridge Univ Pr, 1997.

[10] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and prov-
ably informative multi-scale signature based on heat diffusion.
In Proc. Eurographics Symposium on Geometry Processing
(SGP), 2009.

[11] Valentin Zobel. Spectral Analysis of the Hodge Laplacian on
Discrete Manifolds. Master Thesis, 2010.

Journal of WSCG 100 ISSN 1213-6972

Plausible and Realtime Rendering of Scratched Metal by
Deforming MDF of Normal Mapped Anisotropic Surface

Young-Min Kang
Tongmyong University

ymkang@tu.ac.kr

Hwan-Gue Cho
Pusan National University

hgcho@pusan.ac.kr

Sung-Soo Kim
ETRI

sungsoo@etri.re.kr

ABSTRACT

An effective method to render realistic metallic surface in realtime application is proposed. The proposed method perturbs
the normal vectors on the metallic surface to represent small scratches. General approach to the normal vector perturbation
is to use bump map or normal map. However, the bumps generated with those methods do not show plausible reflectance
when the surface is modeled with a microfacet-based anisotropic BRDF. Because the microfacet-based anisotropic BRDFs
are generally employed in order to express metallic surface, the limitation of the simple normal mapping or other normal
vector perturbation techniques make it difficult to render realistic metallic object with various scratches. The proposed method
employs not only normal perturbation but also deformation of the microfacet distribution function (MDF) that determines the
reflectance properties on the surface. The MDF deformation enables more realistic rendering of metallic surface. The proposed
method can be easily implemented with GPU programs, and works well in realtime environments.

Keywords: Realtime rendering, anisotropic reflectance, metal rendering, MDF deformation

1 INTRODUCTION
In this paper, we propose a procedural method that
efficiently renders plausible metallic surfaces as shown
in Fig.1. Anisotropic reflectance models have been
widely employed to represent the metallic surface.
However, realistic representation of small scratches
shown in Fig.1 were not main concern of those
methods.

Torrance and Sparrow proposed microfacet-based
rendering model where the surface to be rendered was
assumed as a collection of very small facets[12]. Each
facet has its own orientation and reflects like a mirror.
The reflectance property of this surface model is
determined by microfacet distribution function(MDF).

Many researchers improved the microfacet-based
rendering model to represent various materials. Meth-
ods that can control the roughness of the surface
were introduced[4, 3], and those methods were also
improved by Cook and Torrence[5].

A smooth metallic surface reflects the environ-
ments like a mirror. However, the most metal objects
have brushed scratches or random scratches. Theses
scratches make the reflectance on an actual metallic
surface different from that on the perfect mirror
surface. The peculiar reflectance on metallic surface
is determined by the direction of the scratches, and

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Figure 1: Realtime rendering with proposed method.

in most cases, has anisotropic appearance. There
have been various techniques for representing the
anisotropic reflectance[8, 14, 11].

Ashikhmin and Shirley proposed an anisotropic re-
flection model with intuitive control parameters[1, 2].
Their model is successfully utilized to express the sur-
face with brushed scratches.

Wang et al. proposed a method that approximates the
measured BRDF(bidirectional reflectance distribution
function) with multiple spherical lobes[13]. Although
this method is capable of reproduce various materials
including metallic surface, it has a serious disadvantage
in that expensive measured BRDF is required. More-
over, it is still impossible to accurately render small
scratches and light scattering with camera close up to
the surface.

Journal of WSCG 101 ISSN 1213-6972

Although there have been many approaches to repre-
sentation of metallic surface [15], relatively little atten-
tion has been given to the representation of the small
scratches on the surface and the reflectance disturbance
caused by the scratches. In most cases, only the re-
flectance anisotropy caused by the scratches was mod-
eled. An efficient and accurate computation of spec-
ular reflection has been also introduced for realtime
applications[9]. However, it cannot be applied to nor-
mal mapped surface because the method is based on
vertex geometry.

In this paper, we propose a procedural method
that does not require any measured data. The pro-
posed method efficiently and plausibly renders the
small scratches and its light scattering on anisotropic
reflectance surfaces.

2 REALISTIC METAL RENDERING
In this section, a procedural approach to metallic sur-
face rendering is proposed. The proposed method is
based on microfacet model, and the small scratches on
the surface are represented with normal vector pertur-
bation. In order to increase the realism, we also deform
the MDF according to the perturbation of the normal
vector.

2.1 MDF for Anisotropic Reflectance
The reflectance property of microfacet-based surface
model is determined by the microfacet distribution
function(MDF) D(ωh) which gives the probability that
a microfacet is oriented to the direction ωh. Ashikhmin
et al. proposed an anisotropic reflectance model with
the following MDF:

D(ωh) =

√
(ex +1)(ey +1)

2π
(ωh ·n)ex cos2 φ+ey sin2 φ (1)

, where n is the normal vector at the point to be
rendered. The actual parameter ωh in the MDF is the
half way vector between the incident light direction
and outgoing viewing direction. ex and ey are param-
eters that control the anisotropy of the reflection, and
φ is the azimuthal angle. ωh is a unit vector which is
sufficiently represented with only two components as
(ωh.x,ωh.y,

√
1−ωh.x2 −ωh.y2). Therefore,the MDF

is also defined in 2D space as shown in Fig.2.
Fig.2 shows an example of anisotropic MDF using

Eq.1 with different ex and ey. As shown in Fig.2,
the incoming light energy is scattered differently in
x(tangent) and y(binormal) axes of tangent space. Such
anisotropic reflectance is appropriate for metal render-
ing. In this paper, we assume that metallic surfaces re-
flect light energy according to the anisotropic model de-
scribed in Eq.1

Fig.3 shows the rendering results by changing the pa-
rameters ex and ey of Eq.1. As shown in the figure, the

Figure 2: MDF in 2D space

(a) ex,ey : 20,20 (b) ex,ey : 200,10 (c) ex,ey : 10,200
Figure 3: Surfaces rendered with Eq.1: (a) isotropic,
(b)&(c) anisotropic reflectance.

anisotropic reflectance on metallic surface can be easily
controlled. However, this method is not capable of cap-
turing the small scratches and the light scattering in de-
tails when the camera is moved close to the surface. A
simple approach to this problem is to perturb the normal
vectors on the surface, but the perturbed normal vectors
on anisotropic reflection surface may introduce another
problem. The limitation of simple normal perturbation
is described in the next subsection.

2.2 Limitation of Normal Perturbation
There have been continuous efforts to represent higher
geometric complexity with simple mesh by perturbing
the normal vectors[10, 6, 7]. Bump mapping is well
known in graphics literature, normal mapping is an im-
proved method which does not compute normal vectors
during the rendering phase[10].

In this paper, we are interested in representing the
light scattering by the small scratches on the anisotropic
reflection surface. In order to represent the scratches we
employed the well-known normal map approach. Fig.4
shows the scratch maps (essentially normal maps), and
the expected rendering results. The scratch maps are
seamless textures and procedurally generated.

Heidrich and Seidel applied Blinn-Phong shading to
the normal mapped geometry[6]. Their method is suc-
cessful only when the reflection is isotropic. However,
the normal mapping on anisotropic reflection surface,
unfortunately, cannot reproduce the original anisotropic
reflectance on the distorted surface. Other normal per-
turbation methods such as displacement mapping also
suffer from the same problem. Fig.5 shows the un-

Journal of WSCG 102 ISSN 1213-6972

Figure 4: Scratch maps and expected rendering results:
(top row) scratch maps and (bottom row) expected re-
sults.

(a) original surface (b) normal mapped surface
Figure 5: Normal vector perturbation on an anisotropic
reflection surface: (a) original surface and (b) normal
mapped surface.

satisfactory rendering results when the simple normal
mapping is applied to an anisotropic reflection surface
with MDF function shown in Eq.1. As shown in the
figure, the anisotropic reflectance on the original sur-
face (a) is not preserved in the normal mapped surface
(b). The reflectance on the area where normal vectors
are perturbed is rather isotropic. Moreover we can ob-
serve some artifacts that specular reflection is severely
distorted at the left lower region.

The problem shown in Fig.5 is because the normal
mapping or other normal vector perturbation methods
only change the normal vector n. However, the MDF
D(ωh) is dependent not only on n but also on ωh. In
Eq.1, the only argument was ωh because the normal
vector is constant in tangent space. However, the nor-
mal vector should be another argument when normal
perturbation is applied. Let us denote the perturbed
normal vector as ñ. The MDF can then be rewritten
as follows:

Figure 6: MDF with perturbed normal vectors: (top
row) perturbation with isotropic MDF and (bottom row)
perturbation with anisotropic MDF.

D(ωh, ñ) =

√
(ex +1)(ey +1)

2π
(ωh · ñ)ex cos2 φ+ey sin2 φ (2)

Heidrich and Seidel computed the dot product of half
way vector and the perturbed normal vector to calcu-
late the specular reflection on the normal mapped sur-
face. Eq.2 also computes the dot product. However,
this method does not work well for anisotropic reflec-
tion surface. Fig.6 shows the MDF computed with Eq.2
and perturbed normal vectors. The cross mark in the
figure indicates the perturbed normal. The top row of
Fig.6 shows isotropic MDF when the normal vector is
perturbed. As shown in the figure, Eq.2 produces rea-
sonable deformed MDF for the isotropic MDF. How-
ever, the simple normal perturbation is not successful
with anisotropic MDFs. The bottom row of fig.6 shows
the results when we employed an anisotropic MDF. The
results show that simple normal perturbation approach
is hopelessly unsuccessful to preserve the original re-
flection property.

2.3 MDF Deformation
In order to overcome the limitation of the simple
normal mapping on anisotropic reflection surface, the
MDF should be properly deformed with the original
anisotropic property maintained. Fig.7 shows the MDF
deformation concept. Fig.7 (a) shows an example of
anisotropic MDF, and (c) shows the deformed MDF
in accordance with the normal vector perturbation
amount of (∆x,∆y) in tangent space. Let us denote
the deformed MDF as D′(ωh). We can easily derive
D′(ωh) with the deformation concept shown in Fig.7
(b). A certain point p in the domain of the original
MDF D(ωh) must move to another location p′ in the
domain of the deformed MDF D′(ωh). The direction
and magnitude of the movement are determined by
the movement from the center of the original MDF
space (C) to that of the deformed MDF space (C′). The
movement of the center is in fact the perturbation of the
normal vector, and can be denoted as (∆x,∆y). Let us
denote the transformation that move a point from p to
p′ in accordance with the normal perturbation (∆x,∆y)
as T (p,∆x,∆y). The transformation T (p,∆x,∆y)
can be easily derived with R, the intersection of the

Journal of WSCG 103 ISSN 1213-6972

(a) original MDF (b) deformation (c) deformed MDF
Figure 7: MDF deformation concept and corresponding
points.

Figure 8: MDF deformation examples: (top row) linear
interpolation results and (bottom row) smooth interpo-
lation results.

circumference of the MDF space and the ray from the
center through the point p.

The simple approach shown in Fig.7 move the point
p in the same direction with the center movement, and
the magnitude of the movement is linearly interpolated.
Therefore, the transformation can be expressed as fol-
lows:

T (p,∆x,∆y) = p+
| ~Rp|
| ~RC|

(∆x,∆y) (3)

Although the transformation shown in Eq.3 deforms
the MDF in accordance with the normal vector per-
turbation, the bending of the deformed anisotropic re-
flectance is excessive at the moved center as shown in
Fig.7 (c). In order to obtain more smooth interpolation,
we used the following transformation:

T (p,∆x,∆y) = p+

√
| ~Rp|
| ~RC|

(∆x,∆y) (4)

Fig.8 compares the MDF deformation results with the
linear (Eq.3) and the smooth (Eq.4) interpolations. The
top row shows the linear version while the bottom row
shows the smooth version. As shown in the figure, the
smooth interpolation version looks more natural.

It is obvious that computing the deformed MDF
at each sampling point on the surface is extremely
inefficient. Explicit deformation of the MDF is
only conceptual process. In the actual rendering
process, we never compute D′(ωh). Only the original
MDF D(ωh) is used with the inverse transformation
T −1(p′,∆x,∆y). In other words, we conceptually

employ D′(ωh) for the normal mapped surface, but
actually use D(T −1(ωh,∆x,∆y)) which has the
equivalent value.

The inverse transformation of Eq.4 can be easily ob-
tained as follows:

T −1(p′,∆x,∆y) = p′−

√
| ~Rp′|
| ~RC′|

(∆x,∆y) (5)

Now we can simply calculate D(T −1(ωh,∆x,∆y))
to compute the MDF at the point where the normal
vector is perturbed with (∆x,∆y). Because ∆x and ∆y
are the x and y components of the perturbed normal
vector, D(T −1(ωh,∆x,∆y)) can be also rewritten as
D(T −1(ωh, ñ)).

It should be noted that the MDF with the inverse
transformation, i.e., D(T −1(ωh, ñ)), still remain in the
original MDF space. The normal vector is always
(0,0,1) in tangent space. Therefore, the dot product of
any vector v and the normal vector n (i.e., v ·n) is sim-
ply the z component of the vector, v.z, and the actual
MDF we used is as follows:

D′(ωh, ñ) = (6)

D(T −1(ωh, ñ),n) =
√

(ex+1)(ey+1)
2π

T −1(ωh, ñ).zε

,where the exponent ε is ex cos2 φ + ey sin2
φ .

Fig.9 shows the effect of the MDF deformation
by comparing the specular reflections on the illusory
bumps. The bumpy illusion on the surface shown
in Fig.9 (a) is generated only with normal mapping
method while the result shown in Fig.9 (b) is generated
with MDF deformation techniques. The original
surface has anisotropic reflection property. However,
as shown in the figure, the original MDF does not
reproduce the anisotropic reflectance on the bumps.
Even worse, the shapes of the specular reflection areas
are weirdly distorted on some bumps. The deformed
MDF removes such disadvantages as shown in Fig.9
(b). The anisotropic reflectance is well preserved on
each illusory bump, and no weird shapes are found.

2.4 Scratch Map Generation
As mentioned earlier, we represent the natural metallic
appearance by engraving small scratches on the surface.
Those scratches are expressed with perturbed normal
vectors, and some example normal maps were already
shown in Fig.4.

The scratch maps can be generated with various tech-
niques, but it can be easily and efficiently created in a
procedural manner. In order to devise a scratch map
generation method, we employed engraving a hemi-
sphere as a basic operation. The normal vectors on the
engraved hemispherical surface can be easily computed

Journal of WSCG 104 ISSN 1213-6972

(a) Normal mapped surface without MDF deformation

(b) Normal mapped surface with deformed MDF
Figure 9: Effect of MDF deformation on anisotropic
reflection surface: normal mapping (a) without MDF
deformation and (b) with additional MDF deformation
applied.

(a) basic pit (b) moved pit

(c) random direction (d) directional tendency
Figure 10: Concept of scratch map generation

in tangent space. Fig.10 (a) shows the basic scratch tex-
ture with one engraved hemisphere. The center of the
hemisphere can freely move within the texture space.
We made our texture seamless as shown in Fig.10 (b).
We can also scale the hemisphere and stretch in any di-
rection, and arbitrarily increase the number of engraved
pits. The depth of the engraved scratch can be also ar-
bitrarily changed. Fig.10 (c) and (d) show the scratch
maps generated by stretching the engraved pits in ran-
dom direction and in a certain range of directions re-
spectively.

Tech Gouraud Aniso N-Map MDF
Cost 1 1.28 1.44 1.46

Figure 11: Rendering performance of the proposed
method compared with other realtime methods.

3 EXPERIMENTS

The techniques proposed in this paper was implemented
with OpenGL shading language, and the computing
environments were Mac OS X operating system with
2.26 GHz Intel core 2 CPU, 2 G DDR3 RAM and
NVIDIA 256M VRAM GeForce 9400M. Fig.11 is the
performance analysis of the proposed method com-
pared with previous traditional approaches. The label
’Aniso’ means Ashikhmin-Shirley anisotropic reflec-
tion model, ’N-map’ represents normal mapping, and
’MDF’ indicates the proposed MDF deformation tech-
niques. The computational cost of Gouraud shading
is taken as a unit cost, and other rendering techniques
were compared with the unit cost. As shown in the fig-
ure, the proposed method with deformed MDF is just
slightly more expensive than usual normal mapping (la-
beled as N-Map in the figure) which works very well in
realtime environments.

Fig.12 compares the light scattering on normal
mapped anisotropic reflection surface. Fig.12 (a)
shows the rendering results where normal mapping is
applied without deforming the MDF while (b) shows
results rendered with additional MDF deformation.
The normal map image in the right bottom corner is
the scratch map applied. As shown in the figure, the
scratches represented by simple normal mapping do
not plausibly scatter the light. However, the results
with the proposed method in (b) show realistic light
scattering along the rim of the specular reflection area.

Fig.13 shows the effect of the MDF deformation
when environments are mapped on the surface. The
reflection on the surface is modeled with Ashikhmin
and Shirley BRDF model. The left column of the
Fig.13 shows the result without the environment map-
ping while the right column shows the rendering results
with environment mapping. The first row in the fig-
ure shows the original anisotropic reflection surface of
Ashikhmin and Shirley’s model with the scratch map
texture in the right bottom corner. The middle row

Journal of WSCG 105 ISSN 1213-6972

(a) normal mapping (b) MDF deformation
Figure 12: Comparison of light scattering on (a) simple normal mapped surface and (b) normal mapped surface
with additional MDF deformation.

shows the results only with the simple normal mapping,
and the bottom row shows the result when the proposed
MDF deformation is additionally applied. As shown in
the figure, the additional MDF deformation increases
the rendering quality, and reproduces the light scatter-
ing by the scratches.

Although, in this paper, we employed Ashikhmin
and Shirley BRDF for modeling the anisotropic re-
flection surface, the proposed method works with any
anisotropic reflection surface. For example, our method
works better with Ward BRDF model. The Ward BRDF
is also an anisotropic reflection model[14].

Fig.14 shows the effect of the proposed method
when the surface is model with Ward anisotropic
BRDF. The reflection on the surface is modeled with
Ward anisotropic BRDF model. The left column of
the Fig.14 shows the result without the environments
mapping while the right column shows the rendering

results with environments mapping. The first row in
the figure shows the original anisotropic reflection
surface of Ward BRDF model. The middle row shows
the results only with the simple normal mapping, and
the bottom row shows the results when the proposed
MDF deformation is additionally applied. As shown in
the figure, the simple normal mapping on Ward BRDF
surface does not provide plausible light scattering. In
fact, the effect of the perturbed normal vector can be
hardly observed without environment mapping. Only
when the proposed method is applied, we can obtain
plausible light scattering on the scratched surface as
shown in the bottom row.

Fig.15 shows the close-up comparison of light scat-
tering effects of simple normal mapping and the pro-
posed method. The results shown in (a) and (b) were
rendered with Ward BRDF for anisotropic reflection on
the surface while Ashikhmin and Shirley BRDF model

Journal of WSCG 106 ISSN 1213-6972

(a) Anisotropic reflection (Ashikhmin-Shirley model) (b) Anisotropic reflection with environments

(c) Normal mapping (d) Normal mapping with environments

(e) MDF deformation (f) MDF deformation with environments
Figure 13: The effect of the propose method on Ashikhmin and Shirley model: (left column) no environment map-
ping, (right column) environment mapping, (top row) original anisotropic reflection surface, (b) normal mapping,
and (c) normal mapping with MDF deformation.

Journal of WSCG 107 ISSN 1213-6972

(a) Anisotropic reflection (Ward model) (b) Anisotropic reflection with environments

(c) Normal mapping (d) Normal mapping with environments

(e) MDF deformation (f) MDF deformation with environments
Figure 14: The effect of the propose method on Ward’s model: (left column) no environment mapping, (right
column) environment mapping, (top row) original anisotropic reflection surface, (b) normal mapping, and (c)
normal mapping with MDF deformation.

Journal of WSCG 108 ISSN 1213-6972

(a) Normal mapping on Ward BRDF surface (b) MDF deformation on the Ward surface

(c) Normal mapping on Ashikhmin-Shirley BRDF surface (d) MDF deformation on the Ashikhmin-Shirley surface
Figure 15: Close-up comparison of light scattering: (a) simple normal mapping on a surface with Ward anisotropic
reflection model, (b) additional MDF deformation applied on the Ward model, (c) simple normal mapping on
Ashikhmin-Shirley BRDF surface, and (d) MDF deformation effect on the Ashikhmin-Shirley surface.

is employed for those shown in (c) and (d). Fig.15 (a)
and (c) show the results only with the normal map-
ping while (b) and (d) are results generated with the
proposed MDF deformation method. As shown in the
figure, normal mapping with deformed MDF shows su-
perior rendering quality to the simple normal mapping
approach.

4 CONCLUSION
In this paper, we proposed an effective and efficient
method that improves the normal mapping to be suc-
cessfully applied to anisotropic reflection surfaces. The
proposed method is appropriate for rendering metal-
lic surfaces with small scratches in realtime. We have

shown in this paper that the simple normal mapping or
other normal perturbation techniques cannot be applied
to anisotropic reflection surfaces. In order to enable
normal perturbation to better illusory bumps on sur-
face, we introduced MDF deformation concept. The
experimental results show that the proposed method
achieves far better rendering quality than simple nor-
mal mapping method does. Moreover, the computa-
tional cost additionally required for MDF deformation
is small enough for realtime environments. The only
difference between the proposed method and the tradi-
tional anisotropic BRDF models is that ωh given to the
MDF is adjusted. Therefore, the proposed method is
easily implemented as GPU program and works well in

Journal of WSCG 109 ISSN 1213-6972

realtime environments. The proposed method can be
successfully utilized in games or virtual reality systems
for rendering high-quality metallic surfaces.

ACKNOWLEDGEMENTS
This work was supported in part by the SW comput-
ing R&D program of MKE/KEIT [10035184], "Game
Service Technology Based on Realtime Streaming".

REFERENCES
[1] M. Ashikhmin, S. Premoze, and P. Shirley. A microfacet-based

brdf generator. In Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive Techniques, pages 65–
74, 2000.

[2] M. Ashikhmin and P. Shirley. An anisotropic phong brdf model.
Journal of Graphics Tools, 5(2):25–32, 2002.

[3] J. Blinn. Models of light reflection for computer synthe-
sized pictures. Proceedings of the 4th annual conference on
Computer graphics and interactive techniques, pages 192–198,
1977.

[4] J. Blinn and M. Newell. Texture and reflection in computer
generated images. Communication of ACM, 19(10):542–547,
1976.

[5] R. L. Cook and K. E Torrance. A reflectance model for com-
puter graphics. Computer Graphics (ACM Siggraph ’81 Con-
ference Proceedings), 15(3):307–316, 1981.

[6] W. Heidrich and H.-P. Seidel. Realistic, hardware-accelerated
shading and lighting. In Proceedings of the 26th Annual Confer-
ence on Computer Graphics and Interactive Techniques, pages
171–178, 1999.

[7] M. Pharr and G. Humphreys. In Physically-based Rendering.
Elsevier (Morgan Kaufman Publishers), 2004.

[8] M. Poulin and A. Founier. A model for anisotropic reflection.
Computer Graphics (ACM Siggraph ’90 Conference Proceed-
ings), 23(4):273–282, 1990.

[9] D Roger and N. Holzschuh. Accurate specular reflections in
real-time. Computer Graphics Forum, 25(3):293–302, 2006.

[10] H. Rushmeier, G. Taubin, and A. Gueziec. Applying shapes
from lighting variation to bump map capture. In Proceedings of
Eurographics Rendering Workshop ’97, pages 35–44, 1997.

[11] C. Schilick. A customizable reflectance model for everyday
rendering. In Proceedings of the 4th Eurographics Workshop
on Rendering, pages 73–84, 1993.

[12] K. E. Torrance and E. M. Sparrow. Theory for off-specular re-
flection from roughened surfaces. Journal of Optical Society of
America, 57(9), 1967.

[13] J. Wang, P. Ren, M. Gong, J. Snyder, and B. Guo. All-frequency
rendering of dynamic, spatially-varying reflectance. In Pro-
ceedings of ACM Siggraph Asia 2009, pages 1–10, 2009.

[14] G. Ward. Measuring and modeling anisotropic reflection. Com-
puter Graphics (ACM Siggraph ’92 Conference Proceedings),
26(2):265–272, 1992.

[15] L zirmay Kalos, T. Umenhoffer, Gustavo Patow, L. Szecsi, and
M Sbert. Specular effects on the gpu: State of the art. Computer
Graphics Forum, 28(6):1586–1617, 2009.

Journal of WSCG 110 ISSN 1213-6972

Multiscale Visualization of 3D Geovirtual Environments Using
View-Dependent Multi-Perspective Views

Sebastian Pasewaldt Matthias Trapp Jürgen Döllner
Hasso-Plattner-Institut, University of Potsdam, Germany

{sebastian.pasewaldt|matthias.trapp|juergen.doellner}@hpi.uni-potsdam.de

ABSTRACT

3D geovirtual environments (GeoVEs), such as virtual 3D city models or landscape models, are essential visualization tools for
effectively communicating complex spatial information. In this paper, we discuss how these environments can be visualized using
multi-perspective projections [10, 13] based on view-dependent global deformations. Multi-perspective projections enable 3D
visualization similar to panoramic maps, increasing overview and information density in depictions of 3D GeoVEs. To make
multi-perspective views an effective medium, they must adjust to the orientation of the virtual camera controlled by the user and
constrained by the environment. Thus, changing multi-perspective camera configurations typically require the user to manually
adapt the global deformation — an error prone, non-intuitive, and often time-consuming task. Our main contribution comprises
a concept for the automatic and view-dependent interpolation of different global deformation preset configurations (Fig. 1).
Applications and systems that implement such view-dependent global deformations, allow users to smoothly and steadily interact
with and navigate through multi-perspective 3D GeoVEs.

Keywords: multi-perspective views, view-dependence, global space deformation, realtime rendering, virtual 3D environments,
geovisualization.

1 INTRODUCTION

3D GeoVEs, such as virtual 3D city and landscape mod-
els, represent efficient tools for fields such as geogra-
phy or cartography, in particular if their visualization
and knowledge can be transferred to the 3D visualiza-
tion domain [9]. Previous work has shown that global
deformation applied to such environments can be used
to assist wayfinding and navigation by making effective
use of the available image space [10,13] and by reducing
occlusions [18]. Grabler et al. [2009] demonstrate that
the usage of multi-perspective views in combination with
cartographic generalization techniques such as simplifi-
cation and deformation is suitable to convey important
information with in 3D tourist maps.

In the context of interactive global deformations
and multi-perspective views, existing visualization
techniques and systems are most effective for specific
settings of a virtual camera, i.e., Fig. 2. The virtual
camera must be near the ground (pedestrian view) or at
a certain height (birds-eye view), in order to exploit the
full potential of these visualization techniques. Usually,
in a 3D GeoVE the user wants to interact and navigate
freely. This would require the manual adaptation of
the visualization parameters during interaction and

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Figure 1: Conceptional sketch of the interpolation of
global deformations and different geometric representa-
tions based on the viewing angle of the virtual camera.

navigation. In general, this task is complex, error-prone,
and time-consuming. In this paper we develop a concept
that delivers a suitable visualization for a camera setting
via automatic view-dependent interpolation of global
deformations that are represented by parametric curves.

Further, a drawback of 3D GeoVEs are the multiple
geometric scales [9], introduced by the perspective pro-
jection of the camera, because they lead to small scales
in the more distant parts of the scene. Consequently,
the depiction of objects only have limited image space
(e.g. only one pixel) and cannot be distinguished by a
viewer (pixel noise). To overcome this problem in the do-
main of paper maps, cartographers apply generalization
techniques to minimize visual complexity and to improve
comprehension. A similar concept is used in most of the
current multi-perspective techniques. Instead of using a
photo-realistic style, a map-based style is applied to re-
gions of small scales. We generalize the style concept

Journal of WSCG 111 ISSN 1213-6972

Figure 2: Exemplary results of our visualization system that enables the view-dependent interpolation of the de-
picted scenes: progressive perspective (A), degressive perspective (B), and a hybrid perspective (C) using different
generalization levels of a 3D virtual city model of Berlin.

by letting the user define multiple geometric representa-
tions, e.g., obtained from cell-based generalization [8],
to sections of the curve (Fig. 2). Further, these ex-
plicit geometric representations enable more design free-
dom then automatically derived style variations such as
in [10]. Jobst and Döllner (2008) further suggest to sub-
divide the visualization into zones where a constant scal-
ing and thus a constant generalization is applied per zone.
An exemplary visualization can be seen in Fig. 7.

Möser et al. [13] generalize the concept introduced
in [10] by using Hermite curves for the parameterization
of global deformations, which can be easily manipulated
by the user. However, the application of standard param-
eterized curves for such a visualization introduces addi-
tional geometric distortions. We compensate these by an
arc-length parameterization [14].

In this work we present a concept and system that
addresses the above challenges with respect to realtime
raster-based graphics synthesis. To summarize, this work
makes the following contribution:

1. It describes a concept for the automated and view-
dependent interpolation of global deformations based
on the viewing angle of the user’s virtual camera with
respect to a reference plane.

2. It further presents an extension to global deformations
that enables a user to define different geometric rep-
resentations for different sections along a deformation
curve and enables their image-based interpolation.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses related work. Section 3 introduces the
concept of view-dependent global deformations. Section
4 describes steps to prepare the visualization. Section 5
outlines how to implement the concept as a realtime ren-
dering technique. Section 6 consists of a performance
evaluation, a preliminary user study, discusses problems
and limitations, and presents ideas for future work. Sec-
tion 7 concludes this paper.

2 RELATED WORK
Panoramic Imaging
Panoramic maps were introduced by H.C. Berann [3].
He combined handcrafted geographic with terrestrial de-
pictions and different projection techniques to generate

a new kind of map, which assists the user in the orien-
tation task. This work was time-consuming and tedious.
Premoze introduced a framework for the computer aided
generation of panoramic maps [17]. It offers tools to as-
sist the map-maker in the work flow of the hand-tailored
maps. A semi-automatic approach to generate panoramic
maps, which relies on global deformations, is presented
in [24]. Falk et al. introduced a semi-automatic tech-
nique based on a force field that is extracted from the ter-
rain surface [7]. Degener & Klein concentrate on param-
eters like occlusion and feature visibility in their auto-
matic generation of panoramic maps [6]. All approaches
combine non-linear perspectives in one final image, but
rely on different techniques.

Non-linear Perspectives

Non-linear Perspectives can be achieved with different
techniques: (1) Using non-standard, non-linear projec-
tion to produce a non-linear perspective image, or com-
bine several images taken from different perspectives
([1], [23]). (2) Reflection on non planar surfaces and (3)
Local or global space deformation [26]. The combina-
tion of different images to one final image as used in [1]
and [23] can also be expressed by a space-deformation
as introduced in [2]. The Single Camera Flexible Pro-
jection Framework of [4] is capable of combining linear,
non-linear and handmade projections in realtime. The
projections are described by a deformed viewing volume.
Similar to free-form deformation (FFD [22]), the view
frustum serves as lattice. Objects or viewing rays are de-
formed according to the deformation of the lattice. For
the occlusion free visualization of driving routes Taka-
hashi et al. rely on global space deformation [25].

On the one hand the mentioned techniques offer a
broad and flexible definition of the projections, which
enables the user to control nearly every facet of the final
perspective. On the other hand a large number of non-
intuitive parameters have to be controlled. Brosz et al.
[2007] abstracts from these parameter by using a lattice.
Similarly, we rely on a 2D B-Spline curve to control the
3D curve-based deformation.

Journal of WSCG 112 ISSN 1213-6972

Global Deformations

The work of Lorenz et al. [10] uses global deformation
to generate non-linear perspectives. The geometry is
mapped on two different planes, which are connected by
a Bézier surface. The planes may vary in tilt, allowing
for a combination of two different perspectives. Simi-
lar to panoramic maps, a mixture of cartographic maps
and aerial images is used. The different stylization are
seamlessly blended in the transition between the planes.
Möser et al. [2008] extend this idea by using a more flex-
ible Hermite curve to control the deformation. They also
rely on a combination of aerial and cartographic images
to apply a kind of generalization in the more distant parts
of the scene.

Our approach is based on parametric curves, too. In-
stead of using a Hermite curve, we decided to use a B-
Spline curve, because it offers more flexibility without
the need of combining several curves. Furthermore, an
arbitrary number of stylizations can be defined, which
are not restricted to textures. Instead, we exploit the pos-
sibility of blending between different geometric repre-
sentations generated by the generalization of 3D virtual
city models as introduced in [8]. We introduce a view-
dependent variation based on the work of Rademacher
[19]. He defines key-deformation with associated key
viewing points. Depending on the current viewpoint the
key-deformations are interpolated. A similar approach is
used by [5] for interactive stylized camera control. An-
other view-dependent variation of deformations is dis-
cussed in [12]. Here the global deformation is modified
by a view or distant-dependent control function that can
depend on a virtual camera.

3 VIEW-DEPENDENT GLOBAL
DEFORMATIONS

Our approach consists of two main phases: (1) Rigging
Visualization Presets: The user prepares discrete presets
of the visualization. One visualization preset includes
a deformation curve, the assignment of geometric rep-
resentations to curve sections (tagging), and the defini-
tion of a viewing angle for which the preset is valid. (2)
Realtime Visualization: During runtime the presets are
interpolated using the camera parameters, which are ma-
nipulated during navigation or interaction with the 3D
GeoVE.

3.1 Preliminaries
For our visualization we assume that a 3D GeoVE can
be approximated by a 3D reference plane R = (N,O) ∈
R3×R3 defined by a normal vector N and a position vec-
tor O. Thus, and because of the isotropy of the global
deformation variants used in this paper, a view setting
for a virtual camera can be described by a viewing angle
φ = cos(90−CD ·N) (Fig. 4).

To implement progressive or degressive perspectives
[10] or hybrid forms [13], our approach uses B-Splines

curves [20] instead of Hermite curves. In our experi-
ments we use cubic B-Splines curves (k = 4) with four or
six control points. In [9] it is argued that a smaller tran-
sition zone and linear segments would benefit the com-
prehension of such a visualization. This specific con-
figuration is hard to implement using a single Hermite
curve, but can be easily achieved using B-Splines curves
with six control points, by setting two consecutive con-
trol points to the same position (Fig. 7).

R
RS

RC

RE

s e

V'

N(t)

V''C
P

t

V'T

z
V

L

CD

Figure 3: The reference plane R is separated by the pa-
rameter s and e into three sections: RS, RS and RC. Based
on the depth zV ′ of the vertex V along the camera direc-
tion CD, the vertex is deformed onto one of the sections.

3.2 Application of Deformation Curves
We apply a global space deformation based on paramet-
ric curves, where the curve defines the deformation be-
havior. Therefore, R is subdivided into three sections
(Fig. 3): (1) the curve-controlled section RC, (2) a planar
extension at the start RS, and (3) a second planar exten-
sion at the end RE . The deformation of RC is controlled
by a B-Spline curve C(t) with a static open knot vec-
tor. Assuming that the control points Bi are fixed for
a specific B-Spline, the position vector in curve-space
C(t) ∈ [0,1]× [1,−1] only depends on the parameter t.
To deform an input vertex V = (x,y,z,w) ∈ R4 we need
to establish a mapping between V and t.

To establish the mapping, we first aligned V along the
z-axis of the camera space V ′ = V ·RA. RA rotates V
around O by φ . After the rotation, every vertex is aligned
along the viewing direction CD of the virtual camera. The
depth of V ′ is linearized between the user defined scalars
for the start s and end e of the curve in camera space to
compute t ∈ [0,1]. To account to the varying arc length L
of the B-Spline curve in curve space, we perform a sec-
ond normalization of t by L (Fig. 3). The rotation during
the mapping is necessary, since otherwise a change of φ

would lead to a different depth value of V and thus to
a different mapping between V and t. Finally, the de-
formed vertex V ′′ is computed as follows:

V ′′ =


V ′ ·MS t < 0
V ′ ·ME t > L
V ′ ·MC(t) otherwise

t =
zV ′ − s
e− s

· 1
L

The deformation matrix MC(t) consists of two separate
translations TC(t) and DC(t), which are applied to V ′ se-

Journal of WSCG 113 ISSN 1213-6972

quentially. TC(t) translates the vertex according to its po-
sition on the curve: Based on t a position vector C(t) in
curve space is computed. C(t) is mapped back to camera
space and used to translate V ′ onto RC, yielding V ′T . Af-
terwards DC(t) translates the vertex along the normal of
the curve as follows: Based on the bi-normal Bx and the
tangent C′(t) the normal N(t) =C′(t)×Bx is computed.
V ′T is translated along N(t) by a distance d. Here, d de-
notes the distance of V ′ to its projection onto R. We just
translate the position of the input vertex, because our de-
formation is a space deformation only. Operations which
depends on vertex attributes, e.g. normals, are applied to
the undeformed scene.

Figure 4: Exemplary parameterization of a deformation
curve preset using four tag points (ui).

To handle the cases of t /∈ [0,1] the deformation ma-
trices MS and ME are applied accordingly to transform
V ′ on RS or RE : If the extension plane is parallel to R
the matrix is a translation matrix. Otherwise the matrix
rotates V ′ on RS or RE . RS is defined by the normal and
position vector of the last B-Spline pont (C(1)) and RE
by the first point (C(0)).

Depending on the distribution of the control vertices
and the knot vector of a B-Spline curve, a sampling with
equidistant values t1, t2 and t3 may not yield an equidis-
tant distribution of points P(t1), P(t2) and P(t3), because
a B-Spline curve is not arc-length preserving. This is dis-
tracting, since it will lead to a scaling error introduced by
a straining or stretching of the geometric representation.

To guarantee a correct deformation behavior the curves
must be re-parameterized. The approaches of [21] and
[15] are not suited for our purposes because they either
globally distribute the scaling error or are computational
expensive. Instead, we decided to re-parameterize the
parameter t similar to the method described in [14]. We
sample the B-Spline curve in equidistant intervals and
compute the arc-length of these segments. Based on the
sampled length L and the according parameter t, the arc-
length preserving parameter t ′ is computed by linear in-
terpolation and stored in a lookup table.

3.3 Visualization Presets
Before we describe the tagging and interpolation of de-
formation curves, it is necessary to introduce the concep-
tual term visualization preset. As a preset we consider

a single perspective (e.g., degressive or progressive). A
preset P consists of the following components:

P = (C(t),T ,G ,φ ,τ,s,e,a,b)

The set of all presets is denoted as P , with |P| = m.
Besides a B-Spline curve C(t) that is used to modify
the global deformation, it contains an ordered list of tag
points T , a list of geometric representations G and the
following scalar parameters (Fig. 4):

• φ : a camera angle, defined through the virtual camera
and the reference plane R.

• τ: an angle interval around φ , where a preset is valid,
i.e., no interpolation of the preset will occur.

• s,e: start and end of the deformation in eye-space.
The interval is used to widen or narrow the curve-
spaced deformation in camera-direction.

• a,b ∈ [0,1]: start and end of the geometry interpola-
tion. This enables the user to define the geometry in-
terpolation independent from the interpolation of the
multi-perspective view.

3.4 Tagging of Deformation Curves
Our system enables the user to associate curve sections
with different geometric representations. This can be
useful for increasing or decreasing the visual complexity
with respect to parts of the visualization. In [10], this was
implied by blending between different type of textures
within the transition zone and by omitting unimportant
buildings. We extend this idea by blending between 3D
geometry assigned to consecutive sections of a deforma-
tion curve (see Section 5.2). In our examples (Fig. 2 and
7) we use different levels of abstraction (LoA) automati-
cally derived from the virtual city model of Berlin [8].

We can partition a deformation curve C(t) into a num-
ber l ≥ 2 of consecutive styling sections as part of the
global set of sections S :

Si = (Ti,Ti+1,G), Si ∈S G ∈ G

Here, i = 0, . . . , l− 1 represents an index into the list of
tag-points T = T0, . . . ,Tl assigned to every preset P. The
geometric representation for a section is denoted as G. A
tag point Ti is further defined as follows:

Ti = (u,δ) u,δ ∈ [0,1], i = 0, . . . , l Ti ∈T

The position of the tag point on the curve is controlled
via the parameter u. δ describes the length of the transi-
tion zone between two consecutive sections and is used
for blending (see Section 5.2). We assume implicit fixed
start and end tag points T0 = (0,0) at the curves start and
Tl = (1,0) at the curves end. Fig. 5 shows the different
variants of a terrain model of the grand canyon and the
associated active curve preset (inset).

Journal of WSCG 114 ISSN 1213-6972

Figure 5: Styling section of a deformation curve with different models of the grand canyon. The inset shows the
associated tag point and sections of the curve: The control points are depicted in red and the tag points are depicted
green. The grid overlay was added to illustrate the deformation.

3.5 View-Dependent Curve Interpolation

The view-dependent curve interpolation, based on the
camera angle φ , consists of two main steps: the preset
selection and the preset interpolation. Given the view-
ing angle of the current virtual camera φa and the set of
all presets P , a selection function s(P,φa) = (PS,PT)
delivers two presets as follows:

s(P,φa)= (PS,PT)=

 (Pi,Pi+1) φa ≥ φi∧φa < φi+1
(P1,P2) φa ≤ φ1

(Pm−1,Pm) φa > φm

for all i = 1, . . . ,m. This requires an ascending ordering
of P by φ performed at the end of the rigging process.
Given the viewing angle φa of the virtual camera and two
presets PS and PT , the weighting factor σ is calculated as
follows:

σ = clamp
(

φa−φS

φT −φS
,0,1

)
Given σ ∈ [0,1], the source PS and target preset PT , the
interpolation PI = p(PS,PT ,σ) of the current preset PI is
performed by a linear interpolation of all control points:
Bi,I = Bi,PS +σ · (Bi,PT −Bi,PS) as well as the respective
tag points: Ti,I = Ti,PS +σ · (Ti,PT −Ti,PS).

Beside interpolating the curve related parameters, the
geometric representations must also be interpolated.
First the geometric representations of PS and PT are
rendered into two texture-arrays, which are later blended
according a factor β ∈ [0,1], which is calculated as
follows:

β = clamp
(

σ −aPS

bPS −aPS

,0,1
)

The interval
[
aPS ,bPS

]
defines in which section of the

curve interpolation the geometric representations should
be blended.

4 AUTHORING WORKFLOW

Our system supports interactive editing of the complete
deformation curve parameterization and preset configu-
ration at run time. To create a visualization, the user has
to perform two steps: 1) adjust global settings required
for every preset and 2) create or modify presets. Ac-
cording to Section 3.3 the user is required to select the
number of control points and set the global number of
tag points l, which are equally distributed over the length
of the curve initially. This defines the number of styling
sections implicitly.

After the global settings are defined, the user can mod-
ify the position and orientation of the virtual camera (φ)
using standard interaction metaphors and edit the defor-
mation curve parameters using direct manipulation of
the curve control points. Further, the tag points can be
moved along the deformation curve (which alters u) and
the size of transition zone between two sections can be
adjusted by altering δ . The user directly manipulates the
tag points and the B-Spline control points using an in-
teractive 2D widget (inset in Fig. 5). The scene models
G can be loaded and assigned to the respective styling
sections by dragging a geometric representation instance
G to a respective styling section S. If the geometric rep-
resentations of the different presets should not be inter-
polated over the complete interpolation interval, the user
can adjust the parameters a and b. Finally, the start s and
the end e parameters may be adjusted. These steps are
then repeated for every preset.

Once all presets are prepared, the user can fine tune
φ and τ to achieve the desired transitions. In terms of
authoring effort, none of the depicted visualizations took
more than three minutes to prepare. In all cases, the most
time-consuming steps were the fine-tuning of the tran-
sition behavior and the modulation of the blending be-
tween the styling sections.

Journal of WSCG 115 ISSN 1213-6972

5 INTERACTIVE RENDERING

Our interactive visualization prototype is based on multi-
pass rendering using OpenGL and OpenGL Shading lan-
guage (GLSL). During multi-pass rendering, for each
section the global space deformation is applied in the ver-
tex shader. Each deformed geometric representation is
written to an off-screen buffer, using Render-To-Texture
(RTT) [16]. Finally the textures are composed. Details
on the implementation are given in this section.

5.1 Global Deformation Computation

As described in Section 3.2 the deformation can be sub-
divided into two steps. First, every vertex V is aligned
parallel to the camera viewing angle φa. To achieve this
the viewing angle is recomputed on a per frame basis and
the according rotation matrix RA is passed to the vertex
shader. Multiplying V with RA yields V ′, which is pro-
jected on the reference plane R. Its initial distance d is
stored in a shader variable. Second, the control point and
tangent vector of the B-Spline curve is evaluated per ver-
tex, to setup MC(t). One possibility is to evaluate the B-
Spline in the vertex shader. This implies, that the specific
formulas to evaluate the parametric curves are known at
compilation time and are fixed in the vertex shader code.
A change of the parametric curve would lead to a change
of the shader code. Instead, we decided to compute the
position and tangent vector of the B-Spline curve off-line
on the CPU. Thus, the B-Spline curve must be evaluated
once a frame instead of once a vertex.

As mentioned in Section 3.2 the B-Spline must be arc-
length parametrized. The lookup table is precomputed
on the CPU and passed to the vertex shader, for the com-
position of styling sections, using a 32bit luminance tex-
ture. The texture lookup is performed by the parameter t,
yielding the arc-length corrected values. The quality of
the arc-length approximation depends on the number of
precomputed samples. The bilinear interpolation during
texture filtering provides a second parameter interpola-
tion. This enables us to reduce the number of samples,
without loosing precision. Experiments have shown that
2000 samples are sufficient for an arc-length preserving
parametrization.

During the algorithm for arc-length parameterization
we further compute the corrected position and tangent
vectors of the B-Spline curve on the CPU. These values
are stored in a texture that is later used as a lookup ta-
ble in the vertex shader. The 2D-vectors C(t) and C′(t)
are encoded in a 32-bit RGBA texture. The lookup table
must be recomputed, if the setup of the parametric curve,
e.g. the number or the position of the control points,
changes. Thus, for a static curve setup, e.g. the user
does not change the viewing angle of the virtual camera,
no overhead is introduced. During view-dependent pre-
set interpolation, the lookup table may be updated once
per frame.

5.2 Compositing of Styling Sections
The composition consists of two steps: (1) Multipass
RTT and (2) image-based composition in the fragment
shader. To compose the potential different geometric
representations of PS and PT , we choose an image-based
compositing method, because it is generic and does not
require knowledge of the underlying geometric represen-
tation. Every styling section of the presets is rendered
into separate textures using RTT. Each texture contains
RGBA information at viewport resolution. During ren-
dering, a fragment shader adjust the α-value of a frag-
ment according to the styling section boundaries defined
by Ti and Ti+1, so that:

α =


1 uTi +δTi ≤ t ≤ uTi+1 −δTi+1

(uTi+1+δTi+1)−t
2·δTi+1

uTi+1 −δTi+1 < t ≤ uTi+1 +δTi+1

0 otherwise

After RTT is performed, the 2 · (l−1) textures (l−1 tex-
tures per preset) are blended into the frame buffer. The
blending of the layers is performed as follows: The first
(l − 1) textures, encoding PS, are blended based on α

starting with the most distant styling section. The result-
ing fragment color is temporally stored. This procedure
is repeated for the styling sections of PE . Finally the two
colors are blended based on β (see Section 3.5).

In addition thereto, Fig. 6 shows an application ex-
amples of the used stylization algorithms. In a prepro-
cessing step, we compute light maps (ambient occlusion
term only) for the complete model. At runtime, during
the compositing step, we apply edge-detection based on
normal and depth information of a fragment and we fur-
ther unsharp-mask the depth buffer [11] to improve the
perception of complex scenes by introducing additional
depth cues.

6 RESULTS & DISCUSSION

6.1 Application Examples
We have tested our visualizations using different data
sets. Besides photo realistic 3D city models, our ap-

A B

Figure 6: Comparison of applied stylization techniques
for generalized virtual city models. A: Directional light-
ing and edge-enhancement. B: Precomputed ambient oc-
clusion and edge-enhancement.

Journal of WSCG 116 ISSN 1213-6972

A B C

Figure 7: Exemplary visualization using B-Spline curves with six control points to enable hard transitions between
three planar regions.

proach is in particular suitable for the depiction of dif-
ferent versions of generalized city models [8] (Fig. 2,
Fig. 7). Despite the reduction of geometric complexity,
the cell-based generalization also reduces the cognitive
load of the user by displaying higher levels of abstrac-
tion. In comparison to the map-based stylization (Fig.
5), the generalized geometry is less expressive. The ge-
ometry must be enhanced, e.g., with labels, or textures, to
communicate additional information to the user. Further,
we use two model versions of the Grand Canyon with
524,288 triangles each. The first version uses a height-
map as well as an aerial image, while the second version
represents a flat terrain with a tourist map applied. Fig. 5
shows the application of the model with a grid applied to
emphasize the deformation.

During our experiments, we observed that the usage of
more than three styling sections is rather distracting than
informative to the user. A high number of sections also
reduces the available space for each section. Thus, the
amount of objects that can be visualized within a single
section decreases. A similar effect arises if the transition
zone between two sections (controlled by δ) is chosen
to large. Further, the interval [aPS ,bPS], which control
the blending of the geometric representations of PS and
PT , should be set to initiate the blending briefly after the
beginning or before the end of the curve interpolation.

To have a good control over the view-dependent be-
havior of the global deformation three visualization pre-
sets are sufficient, e.g., for a low, a medium and a high
viewing angle. To gain more control or to fine tune the
interpolation behavior we recommend to use more visu-
alization presets.

6.2 Preliminary User Evaluation
We performed a preliminary user evaluation with 44 par-
ticipants. The task is to navigate along a route with the
help of a static image from a mobile navigation device.
Therefore, we prepared 10 routes with a different com-
plexity that partially contained landmarks. For each route
we generated 4 visualizations using different perspec-
tives: (1) orthographic (2D), (2) central (3D),(3) pro-
gressive and (4) degressive perspective. We presented
the participants 26 image pairs. Each pair depicted the
same route using two different perspectives. The user
were asked which visualization they favor.

The results show that 80,7% of the participants favor
the orthographic perspective instead of a central perspec-
tive. This is reasonable since a 2D map is a very estab-
lished mean for navigation. Furthermore we observed
that 76,1% prefer the degressive perspective instead of a
central perspective. This indicates a demand for multi-
perspective views for navigation. With our technique it
becomes possible to combine the progressive perspective
for a low viewing angle with the orthographic perspective
for large viewing angles and thus provide the benefits of
both visualization in one navigation tool.

6.3 Performance Evaluation

The performance tests are conducted using a NVIDIA
GeForce GTX 285 GPU with 2048 MB video RAM on
a Intel Xeon CPU with 2.33 GHz and 3 GB of main
memory. The tests are performed at a viewport resolu-
tion of 1600× 1200 pixels. Table 1 shows the results of
our performance evaluation. All models are rendered us-
ing in-core rendering techniques with 8 × anti-aliasing.
The performance mainly depends on the number of tag

Table 1: Comparative performance evaluation for differ-
ent test scenes (in frames-per-second). The abbreviation
LoA 0/1 names the configuration of a preset with two
different models (LoA 0 and LoA 1) assigned to the two
styling sections.

Preset config. #Vertex #Face FPS

LoA 0/1 1,219,884 477,437 21
LoA 1/2 380,689 364,500 39

LoA 0/1/2 1,443,895 720,587 17

sections, thus the number of required rendering passes,
and the geometrical complexity of the scenes attached to
them. Due to the heavy usage of render-to-texture in the
compositing steps, the performance also depends on the
size of viewport. Here, the additional amount of graphics
memory O(l) required for a number of global styling sec-
tion l can be estimated by: O(l) = 2 · l ·w ·h ·4 · p bytes.
Our prototype uses a precision p = 2 byte per channel,
which is sufficient for post-processing stylization.

Journal of WSCG 117 ISSN 1213-6972

6.4 Limitations and Future Work
The presented approach implies a number of conceptual
limitations. First, the number of control and tag points
must be the same for each preset in a visualization. Fur-
ther the visual quality of our approach relies on a suf-
ficient vertex density of the geometric representations.
We strive towards the application of hardware tessella-
tion shader units to ensure this property for general scene
geometry. Furthermore, the rendering concept is not op-
timized. At the moment each styling sections requires
a single rendering pass. If two or more styling sections
contain the same geometric representation, they can be
treated as one single styling section reducing the number
of rendering passes. The same applies for the geometry
interpolation. The number of vertices can be further re-
duced by a culling algorithm based on the boundaries of
the styling sections.

7 CONCLUSIONS
This paper presents a concept and interactive rendering
technique for view-dependent global deformations that
can be used for the effective visualization of 3D geovir-
tual environments, such as virtual 3D city and landscape
models. It presents an approach for a view-dependent
parameterization and interpolation of global deforma-
tions based on B-Spline curves. The application of such
parametrized curves offers the possibility to customize
or extend traditional perspectives, e.g. degressive or pro-
gressive perspectives, in a comprehensible and flexible
way. Further, the definition of camera-dependent presets
and their automatic interpolation overcomes the restric-
tion of existing multi-perspective visualization. In ad-
dition, we provide a concept for assigning different ge-
ometric representations to specific sections of a curve,
which offers more freedom of design. We further present
a prototypical implementation that enables hardware-
accelerated realtime image synthesis as discussed in our
performance evaluation.

ACKNOWLEDGMENTS
This work has been funded by the German Federal Min-
istry of Education and Research (BMBF) as part of the
InnoProfile research group "3D Geoinformation". The
authors like to thank Tassilo Glander for providing the
data sets of the generalized city model of Berlin and Haik
Lorenz for his support and critical comments.

REFERENCES
[1] Maneesh Agrawala, Denis Zorin, and Tamara Munzner. Artis-

tic multiprojection rendering. In Proc. of the EG Workshop on
Rendering Techniques, pages 125–136, 2000.

[2] Alan H. Barr. Global and local deformations of solid primitives.
In SIGGRAPH ’84, pages 21–30, New York, NY, USA, 1984.
ACM.

[3] Heinrich Caesar Berann. The world of h.c. berann. web site.

[4] John Brosz, Faramarz F. Samavati, M. T. Carpendale Sheelagh,
and Mario Costa Sousa. Single camera flexible projection. In
NPAR ’07, pages 33–42, New York, NY, USA, 2007. ACM.

[5] Nicholas Burtnyk, Azam Khan, George Fitzmaurice, Ravin Bal-
akrishnan, and Gordon Kurtenbach. Stylecam: interactive styl-
ized 3d navigation using integrated spatial & temporal controls.
In UIST ’02, pages 101–110, New York, NY, USA, 2002. ACM.

[6] Patrick Degener and Reinhard Klein. A variational approach for
automatic generation of panoramic maps. ACM Trans. Graph.,
28(1):1–14, 2009.

[7] Martin Falk, Tobias Schafhitzel, Daniel Weiskopf, and Thomas
Ertl. Panorama maps with non-linear ray tracing. In GRAPHITE
’07, pages 9–16, New York, NY, USA, 2007. ACM.

[8] Tassilo Glander and Jürgen Döllner. Abstract representations for
interactive visualization of virtual 3d city models. Computers,
Environment and Urban Systems, 33(5):375 – 387, 2009.

[9] Markus Jobst and Jürgen Döllner. Better perception of 3d-spatial
relations by viewport variations. In VISUAL ’08, pages 7–18,
Berlin, Heidelberg, 2008. Springer-Verlag.

[10] Haik Lorenz, Matthias Trapp, Jürgen Döllner, and Markus Jobst.
Interactive multi-perspective views of virtual 3d landscape and
city models. In AGILE Conf., pages 301–321, 2008.

[11] Thomas Luft, Carsten Colditz, and Oliver Deussen. Image en-
hancement by unsharp masking the depth buffer. ACM Trans.
Graph., 25(3):1206–1213, 2006.

[12] D. Martín, S. García, and J. C. Torres. Observer dependent de-
formations in illustration. In NPAR ’00, pages 75–82, New York,
NY, USA, 2000. ACM.

[13] Sebastian Möser, Patrick Degener, Roland Wahl, and Reinhard
Klein. Context aware terrain visualization for wayfinding and
navigation. Computer Graphics Forum, 27(7):1853–1860, 2008.

[14] Qunsheng Peng, Xiaogang Jin, and Jieqing Feng. Arc-length-
based axial deformation and length preserved animation. In CA
’97, page 86, Washington, DC, USA, 1997.

[15] John W. Peterson. Abstract arc length parameterization of spline
curves.

[16] Matt Pharr and Randima Fernando. GPU Gems 2. Addison-
Wesley Professional, 2005.

[17] Simon Premoze. Computer generated panorama maps. In ICA
Mountain Cartography Workshop, 2002.

[18] Huamin Qu, Haomian Wang, Weiwei Cui, Yingcai Wu, and
Ming-Yuen Chan. Focus+context route zooming and informa-
tion overlay in 3d urban environments. IEEE TVCG, 15(6):1547–
1554, 2009.

[19] Paul Rademacher. View-dependent geometry. In SIGGRAPH
’99, pages 439–446, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[20] Richard Franklin Riesenfeld. Applications of b-spline approxi-
mation to geometric problems of computer-aided design. PhD
thesis, Syracuse, NY, USA, 1973.

[21] David F. Rogers. An Introduction to NURBS: With Historical
Perspective. Morgan Kaufmann, 2000.

[22] Thomas W. Sederberg and Scott R. Parry. Free-form deformation
of solid geometric models. SIGGRAPH, 20(4):151–160, 1986.

[23] Karan Singh. A fresh perspective. In Proc. Graphics Interface,
pages 17–24, May 2002.

[24] Shigeo Takahashi, Naoya Ohta, Hiroko Nakamura, Yuriko
Takeshima, and Issei Fujishiro. Modeling surperspective projec-
tion of landscapes for geographical guidemap generation. Com-
puter Graphics Forum, 21:2002, 2002.

[25] Shigeo Takahashi, Kenichi Yoshida, Kenji Shimada, and To-
moyuki Nishita. Occlusion-free animation of driving routes for
car navigation systems. IEEE TVCG, 12:1141–1148, 2006.

[26] Scott Vallance and Paul Calder. Multi-perspective images for vi-
sualisation. In VIP ’01, pages 69–76, Darlinghurst, Australia,
Australia, 2001. Australian Computer Society, Inc.

Journal of WSCG 118 ISSN 1213-6972

A caching approach to real-time procedural generation of
cities from GIS data

Brian Cullen
Trinity College Dublin
cullenb4@cs.tcd.ie

Carol O’Sullivan
Trinity College Dublin

Carol.OSullivan@cs.tcd.ie

ABSTRACT

This paper presents a method for real-time generation of detailed procedural cities. Buildings are generated as
needed from real GIS data, using modern techniques that can generate realistic content and without having a huge
impact on the rendering system. The system uses a client-server approach allowing multiple clients to generate
any part of the city the user wishes without requiring the full data-set, or any pre-generated models. The paper
introduces the use of object oriented shape grammars to reduce redundant code and presents a parallel cache to
allow real-time generation of detailed cities.

Keywords: Procedural Modelling, GIS Data, Buildings, Cities, Real-Time Rendering.

1 INTRODUCTION
Procedural modelling of urban environments has be-
come an important topic in computer graphics. With
the ever increasing demand for larger and more real-
istic content in games and movies, the time and cost
to model urban content by hand is becoming unfeasi-
ble. Apart from the entertainment industry, large urban
models are also desired for urban planning applications
and emergency response training.

We present a client-server system capable of generat-
ing huge cities of any size without requiring the client
to download large 3d geometrical data sets. Our main
contributions are as follows:

1. We propose the use of object oriented shape gram-
mars to combat redundancies when creating build-
ings with multiple different styles.

2. We introduce a multi-state parallel cache that pro-
cedurally generates the city’s geometry before it
becomes visible. We will demonstrate frame-rate
improvements over a system that simply generates
buildings as they are needed.

While many cache based approaches have been pro-
posed for rendering large terrains, the use of such tech-
niques has not been explored for procedural generation
of urban models. Numerous problems occur as render-
ing the buildings takes much less time than generating
them. We aim to tackle this problem with a simple solu-
tion that can be used with existing techniques for terrain
paging.

After an overview of our system and how we can
utilise GIS data to model real cities (Section 3), we

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

then introduce the idea of object oriented shape gram-
mars (Section 4) demonstrating how they can be used to
make simple changes to a building without creating re-
dundant code. In Sections 5 and 6 we present our cache
based system that can generate huge cities in real-time
with interactive frame-rates and evaluate it. Example
code of object oriented shape grammars is listed in the
Appendix for the interested reader.

2 RELATED WORK
This section will review current techniques for the pro-
cedural generation of 3d building models. We will
mainly review systems that employ production systems
as they have been the most successful at generating re-
alistic content. Other approaches based on stochastic
texture synthesis ideas are touched upon briefly.

Detailed architectural models can be created using
production systems (a set of symbols that are iteratively
replaced according to a well defined grammar) but re-
quire a modeller to manually write rules. Their strength
lies in the ability to provide detailed descriptions and
yet randomness in a structured way.

Parish et al. [24] introduced the idea of using L-
Systems [26] to model architectural content. L-Systems
are production systems that use the parallel replacement
of symbols in a string to simulate a growth process.
L-Systems have previously achieved a lot of success
in modelling trees and plants [27, 23], but have limi-
tations in modelling buildings (since a building struc-
ture is more spatially constrained and does not reflect a
growth process).

Stiny pioneered the idea of shape grammars [33, 31,
32] which can be used for generating complex shapes
within a given spatial area. Shape grammars have been
used for the construction and analysis of architectural
designs [5, 8, 34, 12]. However, Stiny’s original shape
grammar operates on sets of labelled points and lines

Journal of WSCG 119 ISSN 1213-6972

and is difficult to implement on a machine because of
the number of transformations that must be searched
before a rule can be selected and applied.

Wonka et al. [37] modify the idea of shape grammars
to better represent building facades. They use a split
grammar in which building facade is derived using a
sequence of split and repeat commands to subdivide a
planar shape.

Müller et al. [21] expand on this idea by develop-
ing the CGA shape grammar. This grammar includes
environmental parameters that allow a shape (a part of
a derived facade) to query if it is occluded by some-
thing else in the city, thereby aiding the placement of
windows and doors. CGA shape is continually being
improved and has even been used to reconstruct arche-
ological sites [22] and is used in commercial products
like CityEngine [1].

Recently Kracklau et al. [13] presented a new gener-
alised language based on Python. They can create pow-
erful descriptions by passing non-terminals as parame-
ters, thus enabling abstract templates to be defined.

Shape grammars alone are not sufficient to gener-
ate realistic roofs on buildings. Laycock et al. [14]
demonstrate a technique to generate roof models in dif-
ferent styles from a building footprint. They modify
the straight skeleton algorithm proposed in [7] to gen-
erate different roof types. Soon [30] describes an algo-
rithm capable of modelling roofs common to east Asian
buildings, like temples and pagodas.

A completely different approach to production gram-
mars takes concepts from texture synthesis and applies
them to 3D models. Texture synthesis traditionally ex-
trapolates image data by incrementally adding bits of
the image that best match a small neighbourhood. This
can produce very convincing results [35, 6, 15].

Merrell and Manoch [18, 19, 20] present a method
that takes an example model as input and can produce
larger models that resemble it. Output models are still
very random and lack the fine control that production
systems provide. Synthesis based approaches to gener-
ating new models are still very slow and are thus not
applicable for interactive applications.

Layout generation concerns the automatic layout of
roads and placement of urban content that is crucial for
generating an entire city. Urban planning applications
require the possibility to view changes to city layouts
and to see the effect a proposed road network would
have on traffic congestion. Using procedural tech-
niques, such changes can be made interactively which
is a great improvement over manual systems.

Parish et al. [24] introduce the use of L-Systems to
grow road networks in a similar way to branches on a
tree. This was one of the corner-stone papers in the area
of procedural cities. However, it is difficult to fine tune
the results because the variables do not give enough
control over the road layout.

Chen et al. [4] introduce the use of tensor fields to
guide road network generation. The user edits the ten-
sor fields using interactive techniques discussed in [38].
Users can then interactively edit individual roads in a
quick and easy manner.

Aliaga et al. [3] take a different approach to recon-
figuring road networks. Using vector data of roads they
form a graph to represent road intersections and parcels
of land. Then, using k-means clustering [17], user-
deformed parcels are replaced with similar parcels from
elsewhere in the city. In [2] they improve on this sys-
tem to allow the synthesis of completely new areas of
the city. Cities with different road structures can then
be blended together.

Grueter et al. [9] use a lazy generation technique
to construct a potentially infinitely large city. Build-
ings are constructed when they are visible in the view
frustum. The system seeds a random number generator
based on the building’s coordinates, thereby allowing
each building to maintain a persistent style. Whelan
et al. [36] present a system that allows real-time in-
teraction in modifying roads and tweaking parameters.
The user provides a height map and lays the roads, af-
ter which the system automatically places buildings and
other details. The buildings are simple extrusions with
texture and bump maps. Recently Haegler et al. [10]
presented a system capable of generating detailed cities
in real-time by carrying out procedural generation on
the GPU.

Cache based techniques have been used extensively
in real-time rendering. Paging is a popular technique
for rendering large terrains [28, 16, 39]. Slater et al.
[29] present a caching system that exploits temporal co-
herency to accelerate view culling. Akenine-Möller et
al. [11] discuss many modern real-time rendering tech-
niques including level of detail, batch processing and
imposters.

3 SYSTEM OVERVIEW
In this section we present a system that can produce
large detailed virtual cities in real-time using GIS data.
Previous approaches discussed in Section 2 focus on ei-
ther pre-generating large cities or are limited to simple
grid layouts and building geometry with random styles.
The system presented continuously updates the city by
streaming GIS data from a server along with style de-
scriptions for every building, without interrupting the
rendering system.

Urban GIS is preprocessed and stored in a database
along with style descriptions for every building for
quick referencing. This preprocessing step is explained
in section 3.1. Style sheets that control the facade gen-
eration are loaded at run-time and are stored in a hash-
table on the client’s system. The geometry cache up-
dates itself based on the camera’s position in the en-
vironment, downloading the surrounding environment

Journal of WSCG 120 ISSN 1213-6972

data from the GIS database. This includes the position
and shape of building footprints and style parameters
(such as texture id, height and style id) used for gener-
ating the buildings. This allows persistent generation of
the city. The cache controls what geometry is procedu-
rally generated based on its distance from the camera.
Meshes for the roads and buildings are then batched to-
gether for efficient rendering and sent to the render sys-
tem. This process is described in detail in Section 5.

3.1 Data Extraction from GIS
The GIS data recorded contains detailed urban planning
information, which is stored in different semantic layers
that make it easy to access the building layouts. How-
ever, since the data is simply represented by a set of
poly-lines, it is necessary to determine which lines be-
long to the same buildings. Figure 1 illustrates this pro-
cess. The following algorithm describes how to extract
the building layouts:

1. Create a graph representing all the vertices and edges.
2. Start at the bottom left node which contains two or

more edges.
3. Follow the least interior angle edges until the start-

ing node is reached again, thus creating a cycle.
4. Decrement the degree of every node along the cycle.
5. Repeat from Step 2 until no nodes with a degree

greater than one remain.

A similar approach was taken by Pina et al. [25],
however, individual buildings are extracted as opposed
to urban blocks. The extracted building footprints are
then loaded into a database for quick referencing by the
system. A similar technique is used to extract the roads
and insert the road network graph into a database.

4 BUILDING GENERATION
Buildings are procedurally generated using split gram-
mar rules based on [21]. The rules compose of subdiv,
repeat, insert, extrude, detrude and comp commands,
which can subdivide and decompose shapes into new
ones.

Comp
Breaks a shape down into the lower dimensional
shapes it is composed of. For example, a building
is broken down into its composing facades;

Subdiv
Subdivides a shape along a given axis;

Repeat
Subdivides a planar shape several times to fit many
new shapes of a given width;

Insert
Replaces a planar shape with an external model;

Extrude
Extrudes a planar shape, thereby creating a new vol-
umetric shape;

Detrude
Detrudes a planar shape, thereby creating a new vol-
umetric shape.

Combinations of these simple commands can produce
complex architectural geometry, while building roofs
are generated using the approach described in [14]. The
rules are specified using a script with a parameterised
L-System style syntax:

Pred : Exp ;Command(params){Successor} : Prob

If the Boolean Expression evaluates to true then
Command is carried out on the shape with ID Predecessor
and the resulting output shapes are given the ID Successor.
Multiple rules can be specified for the same Predecessor
and one is chosen at random based on its Probability
value. This allows some variability among generated
shapes.

A simple compiler was built to parse the scripts at
runtime and generate a hash table of C++ function ob-
jects. This allows the script to be applied extremely
quickly to new buildings but also allows parameters to
be changed at runtime.

4.1 Object Oriented Buildings
The production system presented in [21] contains a lot
of redundant code between different building scripts. It
is very cumbersome to rewrite entire building specifica-
tions just to make a specific change.

We propose the use of object oriented buildings as a
solution to this problem. Figure 2 illustrates this idea.
Buildings inherit everything from more abstract styles
and only respecify certain aspects of the style. This
is achieved by encapsulating semantically relevant pro-
duction rules in labelled blocks. Each block is given a
list of variables that can be changed at runtime or re-
specified by a child style. Code listings to generate the
buildings in Figure 2 can be found in the Appendix.
Buildings also inherit their parents’ elements (i.e., 3D
models that are imported and used to replace certain
terminal symbols) and can add or remove from their
parents’ element set. We allow multiple meshes to be
specified, corresponding to different levels of detail for
the rendering system. Meshes are swapped with differ-
ent level of detail meshes depending on their distance
to the camera. In this implementation of the system the
Ogre rendering engine was utilised to manage level of
detail swapping and rendering of the scene. The use of
object oriented building styles can simplify the writing
of new styles and can link building styles together in a
meaningful way.

Journal of WSCG 121 ISSN 1213-6972

Figure 1: Extracting building footprints from GIS data (left). Layer containing buildings is first chosen by the user (middle),
while buildings are then extracted by finding loops in the data (right).

Figure 2: Building2 inherits from Building1, specifying how
windowsills should be added. Building3 also inherits from
Building1, adding a ledge to each floor. Code listings are
provided in the Appendix.

5 REAL-TIME GENERATION
In this section we present our process for generating
procedural cities in real-time.

5.1 Parallel Geometry Cache
In order to maintain a constant and high frame rate,
building generation should not interrupt the rendering
system. We achieve this by introducing a multi-state
cache that stores geometry that is currently being gen-
erated. The system is based on the idea of paging ge-
ometry for rendering large terrains. The world is split
into a regular grid as illustrated in Figure 4. The data in
the cache has the following three states:

State 1 Geometry descriptions are downloaded from
the database and the area is procedurally generated.
(Outer white area in Figure 4).

State 2 Meshes are constructed and sent to the graph-
ics card but are not yet rendered (Middle blue area
in Figure 4).

State 3 Meshes currently being rendered (Inner green
area in Figure 4).

Depending on the camera motion, grid squares that
are likely to become visible in the near future are loaded.
Geometry descriptions are downloaded from the GIS
database, procedurally generated and inserted into the
cache. This is done in a separate thread from the ren-
dering system. Only squares that are close to the cam-
era are rendered. If a square is not yet generated, the
rendering thread will put it on the end of a queue and
try to retrieve the next square.

5.2 Parallel Building Generation
With the trend in computing power drifting towards
multi-processor architectures, it is desirable to take ad-
vantage of parallel computation. It is possible to pro-
cedurally generate multiple buildings at the same time
by utilizing parallel processing techniques. Algorithm
3 presents a simple algorithm that can speed up building
generation on multiprocessor systems.

w h i l e NewPage = getPageFromQueue ()
NumBldPerThd = NewPage . NumBlds / NumProc
f o r x = 0 t o numProccesors−1

Thread [x] = ForkThread ()
Thread [x] . MemoryPool = new MemoryPool
Thread [x] . B u i l d i n g L i s t = d i s t B u i l d i n g s (NumBldPerThd)
Thread [x] . G e n e r a t e B u i l d i n g s ()
NewPage . s e t B u i l d i n g M e s h e s (Thread [x])

end f o r
S y n c h r o n i s e T h r e a d s ()

end w h i l e
NewPage . BatchMeshes ()

Algorithm 3: Algorithm for procedurally generating buildings
in parallel.

Each thread maintains a memory pool that is reused
for every building it generates, which reduces mem-
ory allocation bottlenecks. Threads must synchronise
before writing to the cache so that buildings can be
batched together for fast rendering.

6 RESULTS
To test the system, we conducted two separate bench-
mark, which were performed on a machine with the fol-
lowing specifications:

CPU Intel(R) Core(TM)2 Duo CPU E8500 @ 3.16GHZ
RAM 4GB
GPU NVIDIA GeForce 9800GT

First, a frame rate analysis of the system was taken
while the camera was moved between two preset points,

Journal of WSCG 122 ISSN 1213-6972

Figure 4: As the camera moves towards the geometry, new
pages must be loaded. The pages are organised into a queue
and processed in order of their distance to the camera. The
buildings within each page should be shared among parallel
executing threads.

both with and without the parallel geometry cache (Sec-
tion 5.1). The results are given in Figure 5. While the
camera travelled a distance of 800m in the scene, ex-
actly 2,038 buildings were created. This had a signifi-
cant effect on the frame rate of the system without a par-
allel cache. The sudden drops in frame rate correspond
with new geometry pages being loaded and cause a jerk
in the camera motion. In the system with the parallel
cache there is much less jerking when pages are loaded
and the overall frame rate stays within acceptable lev-
els.

The second experiment performed was a multi-threaded
processing benchmark. Four pages were generated con-
sisting of 10, 100, 1000 and 10,000 buildings respec-
tively. Processing time was logged for each of the pages
with building generation distributed over different num-
ber of threads. The average results over ten repetitions
are shown in Figure 6. A configuration with two threads
running in parallel yielded the best performance on the
dual core machine. Running the experiment with more
threads than processors led to worse results because of
the overhead of thread switching. However, this result
suggests better performance could be achieved with a
greater number of processing cores. Better results were
obtained using larger page sizes with 10,000 buildings
leading to a 27.48% increase in performance (We sus-
pect that this is due the initial memory pool allocation
assigned to each thread). Table 1 shows the number
of buildings generated per second for the 10,000 build-
ing page test. Each building was set to be strictly the
same shape, contained an average of 980 vertices and
required 610 shape operations to generate.

Figure 7 demonstrates the type of architecture and
scale of the city generated in the tests.

Figure 5: A comparison of results with and without the cache
described in Section 5.1. The system with the cache has a
much higher frame rate and less jerky movements of the cam-
era. There was an average of 1,922 buildings in the scene at
any time with 2,038 buildings created and destroyed over the
distance.

(a) 10 Buildings (b) 100 Buildings

(c) 1000 Buildings (d) 10000 Buildings

Figure 6: Time in seconds to generate buildings with differ-
ent levels of multithreading. On the dual core machine two
threads yielded the best performance.

Bld/Sec Ops/Sec Percent Increase
1 Thread 255.56 15,586.34
2 Threads 325.78 19,868.86 27.48%
3 Threads 277.47 16,922.73 8.57%

Table 1: Benchmark of multi-threaded processing on the
10,000 building data set. Results are shown for the number
of buildings generated per second, the number of shape oper-
ations (discussed in Section 4) performed per second and the
percentage performance boost over a single threaded config-
uration.

Journal of WSCG 123 ISSN 1213-6972

Figure 7: Output of the system

7 CONCLUSION
We have presented a system that can generate large vir-
tual cities with detailed buildings in real-time. The sys-
tem can be run over a network while allowing multi-
ple clients with only one data set. We introduced the
idea of object oriented building styles that can help re-
duce code redundancies and make it easier to specify
multiple building styles. We also presented a set of
benchmarking statistics calculated with different con-
figurations of the system. The results showed that our
parallel cache offers superior performance to that of a
system that simply generates the buildings as they are
needed. We also showed a performance benefit when
utilising parallel generation on multi-core processors.

Regarding limitations, currently the system only gen-
erates buildings within a single page in parallel. The
results from our experiment suggest that improved per-
formance could be achieved by generating sets of pages
in parallel, thus handling more buildings per thread and
requiring less thread synchronisation. Rendering of
the system could improved by implementing occlusion
culling and better LOD techniques. In this implementa-
tion, different level of details are provided for a build-
ing’s elements but not the shape of the building itself.

A SHAPE GRAMMAR SYNTAX
In this appendix we present the syntax of our object ori-
ented shape grammar.

The listings correspond to the buildings shown in Fig-
ure 2. Semantically relevant production rules can be
combined into meaningful blocks. Each block can have
its own list of variables that may be changed at run-
time. A child class inherits everything from its parents
and may redefine a block of rules and its variables. In
addition to defining a block of production rules, a class

can also define a set of building elements (Listing 9).
These elements correspond to terminal symbols in the
production system, which should be replaced with ex-
ternal models. A series of meshes can be given to each
element specifying a different level of detail. In our sys-
tem, the distance at which to change a mesh is the same
for each element and is specified by the cache system.
As with the production rules, probabilities are given for
the replacement of terminal symbols with 3D meshes.

c l a s s B u i l d i n g 1 : ElementPack
{

F o o t p r i n t {
FOOTPRINT ;

e x t r u d e (BUILDING_HEIGHT) { Bui ld ingVol } : 1
B u i l d i n g V o l ;

comp (" f a c a d e s ") { FACADE } : 1
}

Facade {
v a r Gro und F lo o rH e ig h t 1

FACADE : H > (Gro und F lo o rH e ig h t + 1) ;

s u b d i v ("Y" , GroundFloorHe igh t , 1 r)
{ GROUND_FLOOR | UPPER_FLOORS } : 1

}

Ground_Floor {
v a r En t r anceWid th 0 . 7 5
v a r DoorDepth 0 . 1

GROUND_FLOOR: W > (En t r anceWid th +1) ;

s u b d i v ("X" ,1 r , En t ranceWid th , 0 . 1)
{ FLOOR | E n t r a n c e P a n e l |WALL } : 0 . 3

GROUND_FLOOR: W > (En t r anceWid th +1) ;

s u b d i v ("X" ,1 r , En t ranceWid th , 1 r)
{ FLOOR | E n t r a n c e P a n e l | FLOOR } : 0 . 4 4

GROUND_FLOOR: W > (En t r anceWid th +1) ;

s u b d i v ("X" , 0 . 1 , En t ranceWid th , 1 r)
{ WALL | E n t r a n c e P a n e l | FLOOR } : 0 . 3

E n t r a n c e P a n e l ; s u b d i v ("Y" , 0 . 0 2 , 1 r)
{ WALL | E n t r a n c e }

E n t r a n c e ; d e t r u d e (DoorDepth)
{ DOOR |WALL } : 1

}

U p p e r _ F l o o r s {
v a r F l o o r H e i g h t 1 . 0

UPPER_FLOORS ; r e p e a t ("Y" , F l o o r H e i g h t) {FLOOR} : 1
}

F l o o r {
v a r T i l e W i d t h 1 . 1

FLOOR ; r e p e a t ("X" , T i l e W i d t h) { TILE} : 1
}

T i l e {
v a r WindowDepth 0 . 1
v a r WindowWidth 0 . 7 5
v a r WindowHeight 0 . 5

TILE ; s u b d i v ("X" ,1 r , WindowWidth , 1 r)
{ WALL | T i l e | WALL } : 1

Ti l eC ; s u b d i v ("Y" ,1 r , WindowHeight , 1 r)
{ WALL | WindowPlane | WALL } : 1

WindowPlane ; d e t r u d e (WindowDepth)
{ WINDOW | WALL } : 1

}
}

Listing 8: Listing for simple building

Journal of WSCG 124 ISSN 1213-6972

c l a s s ElementPack
{

Elemen t s {
WINDOW:

"window1LOD1 . mesh " "window1LOD2 . mesh " : 0 . 5
"window2LOD1 . mesh " "window2LOD2 . mesh " : 0 . 5

DOOR:
" door1 . mesh " : 0 . 2
" door2LOD1 . mesh " " door2LOD2 . mesh " : 0 . 8

LEDGE:
" windowLedge1LOD1 . mesh " " windowLedge1LOD2 . mesh " : 1

}
}

Listing 9: Listing for elements

c l a s s B u i l d i n g 2 : B u i l d i n g 1
{

T i l e {
v a r LedgeHeigh t 0 .075
v a r WLedgeHeight (WindowHeight+ LedgeHeigh t)

TILE ; s u b d i v ("X" ,1 r , WindowWidth , 1 r)
{ WALL | T i l eC | WALL } : 1

Ti l eC ; s u b d i v ("Y" ,1 r , WLedgeHeight , 1 r)
{ WALL | WindowPlane | WALL } : 1

WindowPlane ; d e t r u d e (WindowDepth)
{ WindowPlaneInner | WALL } : 1

WindowPlaneInner ; s u b d i v ("Y" , LedgeHeight , 1 r)
{ LEDGE | WINDOW } : 1

}
}

Listing 10: Building2 inherits everything from Building1 but
specifies how windowsills should be added.

c l a s s B u i l d i n g 3 : B u i l d i n g 1
{

f l o o r {
v a r T i l e W i d t h 1
v a r LedgeHeigh t 0 .075

FLOOR ; s u b d i v ("Y" , LedgeHeight , 1 r)
{LEDGE | FloorU } : 1

FloorU ; r e p e a t ("X" , T i l e W i d t h) { TILE} : 1
}

}

Listing 11: Building3 inherits everything from Building1
adding a ledge to each floor.

REFERENCES
[1] Procedural inc. - 3D modeling software for urban

environments. http://www.procedural.com/.

[2] D. G. Aliaga, B. Beneš, C. A. Vanegas, and
N. Andrysco. Interactive reconfiguration of urban
layouts. IEEE Comput. Graph. Appl., 28(3):38–
47, 2008.

[3] D. G. Aliaga, C. A. Vanegas, and B. Beneš. In-
teractive example-based urban layout synthesis.
ACM Trans. Graph., 27(5):1–10, 2008.

[4] G. Chen, G. Esch, P. Wonka, P. Müller, and
E. Zhang. Interactive procedural street modeling.
ACM Trans. Graph., 27(3):1–10, 2008.

[5] J. Duarte. Malagueira Grammar - towards a
tool for customizing Alvaro Siza’s mass houses at
Malagueira. PhD thesis, MIT School of Architec-
ture and Planning, 2002.

[6] C. Eisenacher, S. Lefebvre, and M. Stamminger.
Texture synthesis from photographs. CGF: Euro-
graphics, 27(2):419–428, 2008.

[7] P. Felkel and S. Obdrzálek. Straight skeleton im-
plementation. In SCCG: Spring Conference on
Computer Graphics, page 210–218, 1998.

[8] U. Flemming. More than the sum of parts: the
grammar of queen anne houses. Environment and
Planning B: Planning and Design, 14(3):323–
350, 1987.

[9] S. Greuter, J. Parker, N. Stewart, and G. Leach.
Real-time procedural generation of ‘pseudo infi-
nite’ cities. In GRAPHITE: Computer Graph-
ics and Interactive Techniques, page 87–ff, New
York, NY, USA, 2003. ACM.

[10] S. Haegler, P. Wonka, S. M. Arisona, L. V. Gool,
and P. Müller. Grammar-based encoding of fa-
cades. CGF: Eurographics, 29(4):1479–1487,
2010.

[11] J. Hasselgren and T. Akenine-Möller. PCU: the
programmable culling unit. ACM Trans. Graph.,
26(3):92, 2007.

[12] H. Koning and J. Eizenberg. The language of the
prairie: Frank lloyd wright’s prairie houses. En-
vironment and Planning B: Planning and Design,
8(3):295–323, 1981.

[13] L. Krecklau, D. Pavic, and L. Kobbelt. General-
ized use of Non-Terminal symbols for procedural
modeling. CGF: Eurographics (to appear 2010),
2010.

[14] R. G. Laycock and A. M. Day. Automatically gen-
erating roof models from building footprints. In
Journal of WSCG, 2003.

[15] S. Lefebvre and H. Hoppe. Appearance-space tex-
ture synthesis. In ACM Trans. Graph., pages 541–
548, Boston, Massachusetts, 2006. ACM.

[16] Y. Livny, Z. Kogan, and J. El-Sana. Seamless
patches for GPU-based terrain rendering. Vis.
Comput., 25(3):197–208, 2009.

[17] J. B. MacQueen. Some methods for classifica-
tion and analysis of multivariate observations. In
5th Berkeley Symposium on Mathematical Statis-
tics and Probability, pages 281–297, 1967.

[18] P. Merrell. Example-based model synthesis. In
I3D: Symposium on Interactive 3D Graphics and
Games, page 105–112, New York, NY, USA,
2007. ACM.

Journal of WSCG 125 ISSN 1213-6972

[19] P. Merrell and D. Manocha. Continuous model
synthesis. ACM Trans. Graph., 27(5):1–7, 2008.

[20] P. Merrell and D. Manocha. Constraint-based
model synthesis. In SPM ’09: SIAM/ACM Joint
Conference on Geometric and Physical Modeling,
page 101–111, New York, NY, USA, 2009. ACM.

[21] P. Müller, T. Vereenooghe, P. Wonka, I. Paap, and
L. V. Gool. Procedural 3D reconstruction of puuc
buildings in xkipché. In VAST: Symposium on Vir-
tual Reality, Archaeology and Intelligent Cultural
Heritage, page 139–146, 2006.

[22] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and
L. V. Gool. Procedural modeling of buildings.
ACM Trans. Graph., 25(3):614–623, 2006.

[23] R. Měch and P. Prusinkiewicz. Visual models of
plants interacting with their environment. In SIG-
GRAPH ’96: Computer Graphics and interactive
techniques, page 397–410, New York, NY, USA,
1996. ACM.

[24] Y. I. H. Parish and P. Müller. Procedural model-
ing of cities. In Proceedings of the 28th annual
conference on Computer graphics and interactive
techniques, pages 301–308. ACM, 2001.

[25] J. L. Pina, F. J. Serón, and E. Cerezo. Building and
rendering 3d navigable digital cities. In GI_forum,
pages 167–176, Salzburg, Austria, 2009.

[26] P. Prusinkiewicz and A. Lindenmayer. The al-
gorithmic beauty of plants. Springer-Verlag New
York, Inc., 1990.

[27] P. Prusinkiewicz, L. Mündermann, R. Karwowski,
and B. Lane. The use of positional information in
the modeling of plants. In SIGGRAPH ’01: Com-
puter Graphics and Interactive Techniques, pages
289–300. ACM, 2001.

[28] J. Schneider and R. Westermann. GPU-Friendly
High-Quality terrain rendering. Journal of WSCG,
14(1-3):49–56, 2006.

[29] M. Slater and Y. Chrysanthou. View volume
culling using a probabilistic caching scheme. In
Department of Computer Science, University Col-
lege London, pages 71–78. ACM Press, 1997.

[30] T. T. Soon. Generalized descriptions for the pro-
cedural modeling of ancient east asian buildings.
In Symposium on Computational Aesthetics in
Graphics, Visualization, and Imaging(CAE’09),
2009.

[31] G. Stiny. Introduction to shape and shape gram-
mars. Environment and Planning B: Planning and
Design, 7(3):343 – 351, 1980.

[32] G. Stiny. Spatial relations and grammars. Envi-
ronment and Planning B, 9(1):113–114, 1982.

[33] G. Stiny and J. Gips. Shape grammars and the
generative specification of painting and sculpture.
In C. V. Friedman, editor, Information Processing
’71, page 1460–1465, Amsterdam, 1972.

[34] G. Stiny and W. J. Mitchell. The palladian gram-
mar. Environment and Planning B: Planning and
Design, 5(1):5 – 18, 1978.

[35] L. Wei, S. Lefebvre, V. Kwatra, and G. Turk. State
of the art in example-based texture synthesis. In
Eurographics 2009, State of the Art Reports, EG-
STAR. Eurographics Association, 2009.

[36] G. Whelan, G. Kelly, and H. McCabe. Roll
your own city. In Digital Interactive Media in
Entertainment and Arts, pages 534–535, Athens,
Greece, 2008. ACM.

[37] P. Wonka, M. Wimmer, F. Sillion, and W. Rib-
arsky. Instant architecture. ACM Trans. Graph.,
22(3):669–677, 2003.

[38] E. Zhang, J. Hays, and G. Turk. Interactive tensor
field design and visualization on surfaces. IEEE
TVCG: Transactions on Visualization and Com-
puter Graphics, 13(1):94–107, 2007.

[39] Z. Zhou, B. Cai, D. Zhang, and X. Zhang. Paged
cache based massive terrain dataset Real-Time
rendering algorithm. In ICIECS: Information
Engineering and Computer Science, pages 1–4,
2009.

Journal of WSCG 126 ISSN 1213-6972

	H03-full.pdf
	H07-full.pdf
	H17-full.pdf
	H41-full.pdf
	H79-full.pdf
	H83-full.pdf
	I37-full.pdf
	I79-full.pdf
	I83-full.pdf
	J41-full.pdf
	J71-full.pdf
	J97-full.pdf
	K05-full.pdf
	K13-full.pdf
	K29-full.pdf

