

ISSN 1213-6972 Volume 19, Number 3, 2011

Journal of
WSCG

An international journal of algorithms, data structures and techniques for
computer graphics and visualization, surface meshing and modeling, global
illumination, computer vision, image processing and pattern recognition,
computational geometry, visual human interaction and virtual reality,
animation, multimedia systems and applications in parallel, distributed and
mobile environment.

EDITOR – IN – CHIEF

Václav Skala

Vaclav Skala – Union Agency

Journal of WSCG

Editor-in-Chief: Vaclav Skala
 c/o University of West Bohemia, Univerzitni 8
 306 14 Plzen
 Czech Republic
 skala@kiv.zcu.cz

Managing Editor: Vaclav Skala

Published and printed by Printed and Published by:

 Vaclav Skala - Union Agency
 Na Mazinach 9
 CZ 322 00 Plzen
 Czech Republic

Hardcopy: ISSN 1213 – 6972
CD ROM: ISSN 1213 – 6980
On-line: ISSN 1213 – 6964

Journal of WSCG

Editor-in-Chief

Vaclav Skala, University of West Bohemia

Centre for Computer Graphics and Visualization
Univerzitni 8, CZ 306 14 Plzen, Czech Republic

skala@kiv.zcu.cz http://herakles.zcu.cz
Journal of WSCG: URL: http://wscg.zcu.cz/jwscg

Direct Tel. +420-37-763-2473
Direct Fax. +420-37-763-2457

Fax Department: +420-37-763-2402

Editorial Advisory Board
MEMBERS

Baranoski,G. (Canada)
Bartz,D. (Germany)
Benes,B. (United States)
Biri,V. (France)
Bouatouch,K. (France)
Coquillart,S. (France)
Csebfalvi,B. (Hungary)
Cunningham,S. (United States)
Davis,L. (United States)
Debelov,V. (Russia)
Deussen,O. (Germany)
Ferguson,S. (United Kingdom)
Goebel,M. (Germany)
Groeller,E. (Austria)
Chen,M. (United Kingdom)
Chrysanthou,Y. (Cyprus)
Jansen,F. (The Netherlands)
Jorge,J. (Portugal)
Klosowski,J. (United States)
Lee,T. (Taiwan)
Magnor,M. (Germany)

Myszkowski,K. (Germany)
Pasko,A. (United Kingdom)
Peroche,B. (France)
Puppo,E. (Italy)
Purgathofer,W. (Austria)
Rokita,P. (Poland)
Rosenhahn,B. (Germany)
Rossignac,J. (United States)
Rudomin,I. (Mexico)
Sbert,M. (Spain)
Shamir,A. (Israel)
Schumann,H. (Germany)
Teschner,M. (Germany)
Theoharis,T. (Greece)
Triantafyllidis,G. (Greece)
Veltkamp,R. (Netherlands)
Weiskopf,D. (Canada)
Weiss,G. (Germany)
Wu,S. (Brazil)
Zara,J. (Czech Republic)
Zemcik,P. (Czech Republic)

WSCG 2011

Board of Reviewers

Akleman, E. (United States)

Ariu, D. (Italy)

Assarsson, U. (Sweden)

Aveneau, L. (France)

Balcisoy, S. (Turkey)

Battiato, S. (Italy)

Benes, B. (United States)

Benoit, C. (France)

Biasotti, S. (Italy)

Bilbao, J. (Spain)

Biri, V. (France)

Bittner, J. (Czech Republic)

Bosch, C. (France)

Bouatouch, K. (France)

Boukaz, S. (France)

Bouville, C. (France)

Bruni, V. (Italy)

Buehler, K. (Austria)

Cakmak, H. (Germany)

Camahort, E. (Spain)

Capek, M. (Czech Republic)

CarmenJuan-Lizandra, M. (Spain)

Casciola, G. (Italy)

Coquillart, S. (France)

Correa, C. (United States)

Cosker, D. (United Kingdom)

Daniel, M. (France)

de Amicis, r. (Italy)

de Geus, K. (Brazil)

Debelov, V. (Russia)

Domonkos, B. (Hungary)

Drechsler, K. (Germany)

Duke, D. (United Kingdom)

Dupont, F. (France)

Durikovic, R. (Slovakia)

Eisemann, M. (Germany)

Erbacher, R. (United States)

Erleben, K. (Denmark)

Farrugia, J. (France)

Feito, F. (Spain)

Ferguson, S. (United Kingdom)

Fernandes, A. (Portugal)

Flaquer, J. (Spain)

Fontana, M. (Italy)

Fuenfzig, C. (France)

Gallo, G. (Italy)

Galo, M. (Brazil)

Garcia Hernandez, R. (Spain)

Garcia-Alonso, A. (Spain)

Gavrilova, M. (Canada)

Giannini, F. (Italy)

Gonzalez, P. (Spain)

Grau, S. (Spain)

Gudukbay, U. (Turkey)

Guggeri, F. (Italy)

Gutierrez, D. (Spain)

Habel, R. (Austria)

Hall, P. (United Kingdom)

Hansford, D. (United States)

Haro, A. (United States)

Hasler, N. (New Zealand)

Havemann, S. (Austria)

Havran, V. (Czech Republic)

Hernandez, B. (Mexico)

Herout, A. (Czech Republic)

Horain, P. (France)

House, D. (United States)

Chaine, R. (France)

Chaudhuri, D. (India)

Chmielewski, L. (Poland)

Chover, M. (Spain)

Iwasaki, K. (Japan)

Jansen, F. (Netherlands)

Jeschke, S. (Austria)

Jones, M. (United Kingdom)

Jones, M. (United States)

Juettler, B. (Austria)

Kheddar, A. (Japan)

Kim, H. (Korea)

Klosowski, J. (United States)

Kohout, J. (Czech Republic)

Kurillo, G. (United States)

Kyratzi, S. (Greece)

Lanquetin, S. (France)

Lay Herrera, T. (Germany)

Lee, T. (Taiwan)

Lee, S. (Korea)

Leitao, M. (Portugal)

Liu, D. (Taiwan)

Liu, S. (China)

Lutteroth, C. (New Zealand)

Madeiras Pereira, J. (Portugal)

Maierhofer, S. (Austria)

Manzke, M. (Ireland)

Marras, S. (Italy)

Maslov, O. (Russia)

Matey, L. (Spain)

Matkovic, K. (Austria)

Max, N. (United States)

Meng, W. (China)

Mestre, D. (France)

Michoud, B. (France)

Mokhtari, M. (Canada)

Molla Vaya, R. (Spain)

Montrucchio, B. (Italy)

Muehler, K. (Germany)

Murtagh, F. (Ireland)

Nishio, K. (Japan)

OliveiraJunior, P. (Brazil)

Oyarzun Laura, C. (Germany)

Pan, R. (China)

Papaioannou, G. (Greece)

Pasko, A. (United Kingdom)

Pasko, G. (Cyprus)

Patane, G. (Italy)

Patow, G. (Spain)

Pedrini, H. (Brazil)

Peters, J. (United States)

Pina, J. (Spain)

Platis, N. (Greece)

Puig, A. (Spain)

Puppo, E. (Italy)

Purgathofer, W. (Austria)

Reshetov, A. (United States)

Richardson, J. (United States)

Richir, S. (France)

Rojas-Sola, J. (Spain)

Rokita, P. (Poland)

Rosenhahn, B. (Germany)

Rudomin, I. (Mexico)

Sakas, G. (Germany)

Salvetti, O. (Italy)

Sanna, A. (Italy)

Segura, R. (Spain)

Sellent, A. (Germany)

Shesh, A. (United States)

Schultz, T. (United States)

Schumann, H. (Germany)

Sirakov, N. (United States)

Skala, V. (Czech Republic)

Slavik, P. (Czech Republic)

Sochor, J. (Czech Republic)

Sousa, A. (Portugal)

Srubar, S. (Czech Republic)

Stroud, I. (Switzerland)

Subsol, G. (France)

Sundstedt, V. (Sweden)

Tang, M. (China)

Tavares, J. (Portugal)

Teschner, M. (Germany)

Theoharis, T. (Greece)

Theussl, T. (Saudi Arabia)

Tokuta, A. (United States)

Tomori, Z. (Slovakia)

Torrens, F. (Spain)

Trapp, M. (Germany)

Umlauf, G. (Germany)

Vazques, P. ()

Vergeest, J. (Netherlands)

Vitulano, D. (Italy)

Vosinakis, S. (Greece)

Walczak, K. (Poland)

Weber, A. (Germany)

Wu, S. (Brazil)

Wuensche, B. (New Zealand)

Wuethrich, C. (Germany)

Yoshizawa, S. (Japan)

Yue, Y. (Japan)

Zara, J. (Czech Republic)

Zemcik, P. (Czech Republic)

Zhu, Y. (United States)

Zhu, J. (United States)

Zitova, B. (Czech Republic)

Journal of WSCG

Contents

Vol. 19, No. 3

• Yusov,E., Shevtsov,M.: High‐Performance Terrain Rendering Using Hardware
Tessellation

 85

• Zobel,V., Reininghaus,J., Hotz,I.: Generalized Heat Kernel Signatures 93
• Kang,Y.‐M., Cho,H.‐G.: Plausible and Realtime Rendering of Scratched Metal by

Deforming MDF of Normal Mapped Anisotropic Surface
 101

• Pasewaldt,S., Trapp,M., Doellner,J.: Multiscale Visualization of 3D Geovirtual
Environments Using View‐Dependent Multi‐Perspective Views

 111

• Cullen,B., O'Sullivan,C.: A caching approach to real‐time procedural generation of
cities from GIS data

 119

High-Performance Terrain Rendering Using

Hardware Tessellation

Egor Yusov

Intel Corporation
30 Turgeneva street,

603024, Russia, Nizhny Novgorod

egor.a.yusov@intel.com

Maxim Shevtsov

Intel Corporation
30 Turgeneva street,

603024, Russia, Nizhny Novgorod

maxim.y.shevtsov@intel.com

ABSTRACT
In this paper, we present a new terrain rendering approach, with adaptive triangulation performed entirely on the

GPU via tessellation unit available on the DX11-class graphics hardware. The proposed approach avoids

encoding of the triangulation topology thus reducing the CPU burden significantly. It also minimizes the data

transfer overhead between host and GPU memory, which also improves rendering performance. During the

preprocessing, we construct a multiresolution terrain height map representation that is encoded by the robust

compression technique enabling direct error control. The technique is efficiently accelerated by the GPU and

allows the trade-off between speed and compression performance. At run time, an adaptive triangulation is

constructed in two stages: a coarse and a fine-grain one. At the first stage, rendering algorithm selects the

coarsest level patches that satisfy the given error threshold. At the second stage, each patch is subdivided into

smaller blocks which are then tessellated on the GPU in the way that guarantees seamless triangulation.

Keywords
Terrain rendering, DX11, GPU, adaptive tessellation, compression, level of detail.

1. INTRODUCTION
Despite the rapid advances in the graphics hardware,

high geometric fidelity and real-time large scale

terrain visualization is still an active research area.

The primary reason is that the size and resolution of

digital terrain models grow at a significantly higher

rate than the graphics hardware can manage. Even the

modest height map can easily exceed the available

memory of today’s highest-end graphics platforms.

So it is still important to dynamically control the

triangulation complexity and reduce the height map

size to fit the hardware limitations and meet real-time

constraints.

To effectively render large terrains, a number of

dynamic multiresolution approaches as well as data

compression techniques have been developed in the

last years. These algorithms typically adapt the

terrain tessellation using local surface roughness

criteria together with the view parameters. This

allows dramatic reduction of the model complexity

without significant loss of visual accuracy. Brief

overview of different terrain rendering approaches is

given in the following section. In the previous

methods, the adaptive triangulation was usually

constructed by the CPU and then transferred to the

GPU for rendering. New capabilities of DX11-class

graphics hardware enable new approach, when

adaptive terrain tessellation is built entirely on the

GPU. This reduces the memory storage requirements

together with the CPU load. It also reduces the

amount of data to be transferred from the main

memory to the GPU that again results in a higher

rendering performance.

2. RELATED WORK
Many research papers about adaptive view-dependent

triangulation construction methods were published in

the last years. Refer to a nice survey by R. Pajarola

and E. Gobbetti [PG07].

Early approaches construct triangulated irregular

networks (TINs). Exploiting progressive meshes for

terrain simplification [Hop98] is one specific

example. Though TIN-based methods do minimize

the amount of triangles to be rendered for a given

error bound, they are too computationally and storage

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

Journal of WSCG 85 ISSN 1213-6972

demanding. More regular triangulations such as

bintree hierarchies [LKR+96, DWS+97] or restricted

quad trees [Paj98] are faster and easier to implement

for the price of slightly more redundant triangulation.

Recent approaches are based on techniques that fully

exploit the power of modern graphics hardware.

CABTT algorithm [Lev02] by J. Levenberg as well

as BDAM [CGG+03a] and P-BDAM [CGG+03b]

methods by Cignoni et al exploit bintree hierarchies

of pre-computed triangulations or batches instead of

individual triangles. Geometry clipmaps approach

[LH04] renders the terrain as a set of nested regular

grids centered about the viewer, allowing efficient

GPU utilization. The method exploits regular grid

pyramid data structure in conjunction with the lossy

image compression technique [Mal00] to

dramatically reduce the storage requirements.

However, the algorithm completely ignores local

surface features of the terrain and provides no

guarantees for the error bound, which becomes

especially apparent on high-variation terrains.

Next, C-BDAM method, an extension of BDAM and

P-BDAM algorithms, was presented by Gobbetti et al

in [GMC+06]. The method exploits a wavelet-based

two stage near-lossless compression technique to

efficiently encode the height map data. In C-BDAM,

uniform batch triangulations are used which do not

adapt to local surface features. Regular triangulations

typically generate significantly more triangles and

unreasonably increase the GPU load.

Terrain rendering method presented by Schneider and

Westermann [SW06] partitions the terrain into square

tiles and builds for each tile a discrete set of LODs

using a nested mesh hierarchy. Following this

approach, Dick et al proposed the method for tile

triangulations encoding that enables efficient GPU-

based decoding [DSW09].

All these methods either completely ignore local

terrain surface features (like [LC03, LH04,

GMC+06]) for the sake of efficient GPU utilization,

or pre-compute the triangulations off-line and then

just load them during rendering [CGG+03a,

CGG+03b]. For the case of compressed data, GPU

can also be used for geometry decompressing as well

[SW06, DSW09].

By the best of our knowledge, none of the previous

methods take an advantage of the tessellation unit

exposed by the latest DX11-class graphics hardware

for precise yet adaptive (view-dependent) terrain

tessellation.

3. CONTRIBUTION
The main contribution is a novel terrain rendering

approach, which combines efficiency of the chunk-

based terrain rendering with the accuracy of fine-

grain triangulation construction methods. In contrast

to the previous approaches, our adaptive view-

dependent triangulation is constructed entirely on the

GPU using hardware-supported tessellation. This

offloads computations from the CPU while also

reduces expensive CPU-GPU data transfers. We also

propose fast and simple GPU-accelerated

compression technique for progressively encoding

multiresolution hierarchy that enables direct control

of a reconstruction precision.

Algorithm Overview
To achieve real-time rendering and meet the

hardware limitations, we exploit the LOD technique.

To create various levels of detail, during the

preprocessing, a multiresolution hierarchy is

constructed by recursively downsampling the initial

data and subdividing it into overlapping patches. In

order to reduce the memory requirements, the

resulting hierarchy is then encoded using simple and

efficient compression algorithm described in

section 4.

Constructing adaptive terrain model to be rendered is

a two-stage process. The first stage is the coarse per-

patch LOD selection: the rendering algorithm selects

the coarsest level patches that tolerate the given

screen-space error. They are cached in a GPU

memory and due to the frame-to-frame coherence are

re-used for a number of successive frames. On the

second stage, a fine-grain LOD selection is

performed: each patch is seamlessly triangulated

using hardware. For this purpose, each patch is

subdivided into the equal-sized smaller blocks that

are independently triangulated by the GPU-supported

tessellation unit, as described in section 5.

Experimental results are given in section 6. Section 7

concludes the paper.

4. BUILDING COMPRESSED

MULTIRESOLUTION TERRAIN

REPRESENTATION

Patch Quad Tree
The core structure of the proposed multiresolution

model is a quad tree of square blocks (hereinafter

referred to as patches). This structure is commonly

used in real-time terrain rendering systems [Ulr00,

DSW09].

The patch quad tree is constructed at the preprocess

stage. At the first step, a series of coarser height maps

is built. Each height map is the downsampled version

of the previous one (fig. 1). At the next step, the

patch quad tree itself is constructed by subdividing

each level into)12()12( nn square blocks

(65x65, 129x129, 257x257 etc.), refer to fig. 2.

Journal of WSCG 86 ISSN 1213-6972

Each patch in the quad tree hierarchy approximates

the same area as its four children but with lower

accuracy. To eliminate cracks, each patch shares one-

sample boundary with its neighbors (hence 12 n

size).

The hierarchy is progressively encoded in a top-down

order such that each patch’s reconstruction error in
L metric is bounded by the given error tolerance.

Quantizing Height Maps
Let’s denote a sample in the l-th level located at the

(i, j) position by)(

,

l

jih . Note that since level l-1 is

simply the downsampled version of the level l, the

following relation is always true:)(

2,2

)1(

,

l

ji

l

ji hh  .

During the compression process, each level l of the

hierarchy is quantized using a uniform quantizer with

a dead zone (see fig. 3) as follows:

  lll

l

ji

l

ji hh  2)2/()(ˆ)(

,

)(

, 

where  x is rounding to the largest integer that is

less than or equal to x,)(

,
ˆ l

jih is the quantized value,

)(0

0
2

ll

ll


  is the maximum reconstruction error

for the level l; l0 is the finest resolution level number

and 0
0
l is the user-defined error tolerance for the

finest level. Since our compression scheme is lossy,

we assume that 0
0
l .

Quantized (integer) values)()(

,

)(

,

l

jil

l

ji hQq  where

 )2/()()(lll hhQ  are lossless encoded as

described below. The decoder reconstructs values as:

)(

,

)(

, 2ˆ l

jil

l

ji qh 

This quantization rule assures that for the l-th level,

the maximum error is bounded by the l :

l

l

ji

l

ji
ji

hh  |ˆ|max)(

,

)(

,
,

The quantized values }{)0(

, jiq of the coarsest patch

(located at the level 0) are encoded using adaptive

arithmetic coding [WNC87]. The remaining patches

are then progressively encoded as described in the

following subsection.

Progressively Encoding Quantized Height

Maps
Let us consider a patch’s quantized height map

)1(ˆ l

PH at the level l-1, and its 4 children joined height

map)(ˆ l

CH at the level l. Note that the first height map

is)12()12( nn in size, while the second one is

)122()122( nn , both covering the same area.

As it can be seen from fig. 1 and 2 (see also fig. 4),
)(ˆ l

CH shares the samples located at the even positions

((0,0), (0,2), (2,0) and so on) with)1(ˆ l

PH . That is, the

reconstructed sample)1(

,
ˆ l

jih from the parent patch’s

height map)1(ˆ l

PH corresponds to the sample)(

2,2
ˆ l

jih in

the)(ˆ l

CH . However)1(

,
ˆ l

jih approximates the original

(exact) value with the 2x lower accuracy than)(

2,2
ˆ l

jih

should approximate and thus needs to be refined:

ll

l

ji

l

ji hh  2|ˆ| 1

)1(

,

)1(

,  



l

l

ji

l

ji hh  |ˆ|)(

2,2

)(

2,2

Recall that)(

2,2

)1(

,

l

ji

l

ji hh  .

Our compression scheme consists of two steps. At the

first step, we refine common samples of)(ˆ l

CH and

)1(ˆ l

PH (filled circles in fig. 4) to the required

accuracy l . At the second step, we encode the

remaining samples (dotted circles in fig. 4) by

interpolating the refined samples and encoding the

prediction errors. Let’s denote R to be the set of

refined samples positions from)(ˆ l

CH and I to be the

set of interpolated samples positions:

},,2,2ˆˆ:),{()()(

, ZtstjsiHhjiR l

C

l

ji 

Figure 2. Patch quad tree.

Level 1

Level 0

Level 2= 0l

Level 2= 0l Level 0 Level 1

Figure 1. Downsampling initial height map.

0 1 2 3 4 5 6 7 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 4 8 12 16

Journal of WSCG 87 ISSN 1213-6972

}),(ˆˆ:),{()()(

, RjiHhjiI l

C

l

ji 

To refine samples from R, we exploit the following

observation: the refined sample)(

2,2
ˆ l

jih (from)(ˆ l

CH)

corresponding to the sample)1(

,
ˆ l

jih (from)1(ˆ l

PH) can

only take one of the following 3 values (see fig. 3):

}2ˆ,ˆ,2ˆ{ˆ)1(

,

)1(

,

)1(

,

)(

2,2 l

l

ji

l

jil

l

ji

l

ji hhhh    .

This also means that if)1(

,
ˆ l

jih is encoded by the

quantized value)1(

,

l

jiq , then corresponding)(

2,2

l

jiq can

only take one of the following 3 values:

}12,2,12{)1(

,

)1(

,

)1(

,

)(

2,2   l

ji

l

ji

l

ji

l

ji qqqq

Since)1(

,

l

jiq is known, encoding the)(

2,2

l

jiq requires

only 3 symbols: 1 , 0 or 1 . These symbols are

encoded using adaptive arithmetic coding [WNC87].

At the second step, we encode the remaining samples

located at positions from I in)(ˆ l

CH (dotted circles in

fig. 4). This is done by predicting the sample’s value

from the refined samples and by encoding the

prediction error.

For the sake of GPU-acceleration, we exploit bilinear

predictor)ˆ()(

,

l

jiR hP that calculates predicted value of

)(

,
ˆ l

jih as a weighted sum of 4 refined samples located

at the neighboring positions in R. We then calculate

the prediction error as follows:

)(

,

)(

,

)(

,))ˆ((l

ji

l

jiRl

l

ji qhPQd  , Iji ),(

Magnitudes and signs of the resulting prediction

errors)(

,

l

jid are then separately encoded using

adaptive arithmetic coding.

As it was already discussed, symbols being used

during described compression process are encoded

with the technique described in [WNC87]. We

exploit adaptive approach that learns the statistical

properties of the input symbol stream on the fly. This

is implemented as a histogram which counts

corresponding symbol frequencies (see [WNC87] for

details). Note that simple context modeling can

improve the compression performance with minimal

algorithmic complexity increase.

During the preprocessing, the whole hierarchy is

recursively traversed starting from the root (level 0)

and the proposed encoding process is repeated for

each patch.

The proposed compression scheme enables direct

control of the reconstruction precision in L error

metric: it assures that the maximum reconstruction

error of a terrain block at level l of the hierarchy is no

more than l . For comparison, compression method

[Mal00] used in geometry clipmaps [LH04] does not

provide a guaranteed error bound in L metric. C-

BDAM [GMC+06] exploits sophisticated two-stage

compression scheme to assure the given error

tolerance. This provides higher compression ratios

but is more computationally expensive than the

presented scheme. Moreover, as we will show in the

next section, our technique can be efficiently

accelerated using the GPU.

Calculating Guaranteed Patch Error

Bound
During the quad tree construction, each patch in the

hierarchy is assigned a world space approximation

error. It conservatively estimates the maximum

geometric deviation of the patch’s reconstructed

height map from the underlying original full-detail

height map. This value is required at the run time to

estimate the screen-space error and to construct the

patch-based adaptive model, which approximates the

terrain with the specified screen-space error.

Let’s denote the patch located at the level l of the

quad tree at the (m, n) position by the)(

,

l

nmP and its

upper error bound by the)()(

,

l

nmPErr . To calculate

)()(

,

l

nmPErr , we first calculate approximation error

)()(

,

l

nmAppr PErr , which is the upper bound of the

maximum distance from the patch’s precise height

map to the samples of the underlying full-detail (level

0

0

l

Figure 3. Quantizing two successive levels.

l
l2 l2 l3 l3

l2

0

0

1 l
1l 12 l 12  l 13 l 13  l

12  l 12 l

l4
l5

l6 l4
l5

l6

l4 l2
l4)(

2,2
ˆ l

jih

0 1 -1

0 1 2 3 -1 -2 -3)(

2,2

l

jiq

)1(

,
ˆ l

jih
)1(

,

l

jiq

Interpolated samples (I)
Refined samples (R)

Figure 4. Refined and interpolated samples of

the child patches joined height map
)(ˆ l

CH .

Journal of WSCG 88 ISSN 1213-6972

0l) height map. It is recursively calculated using the

same method as used in ROAM [DWS+97] to

calculate the nested wedgie thickness:

0)(
)(

,
0 
l

nmAppr PErr

})({max)()()1(

2,2
1,

)(

,

)(

,






 l

tnsmAppr
ts

l

nmInt

l

nmAppr PErrPErrPErr ,

0,...10  ll

where)()(

,

l

nmInt PErr is the maximum geometric

deviation of the linearly interpolated patch’s height

map from its children height maps. Two-dimensional

illustration for determining)()(

,

l

nmInt PErr is given in

fig. 5.

Since for the patch)(

,

l

nmP , the reconstructed height

map deviates from the exact height map by at most

l , the final patch’s upper error bound is given by:

l

l

nmAppr

l

nm PErrPErr )()()(

,

)(

,

5. CONSTRUCTING VIEW-

DEPENDENT ADAPTIVE MODEL
The proposed level-of-detail selection process

consists of two stages. The first stage is the coarse

LOD selection which is done on a per-patch level: an

unbalanced patch quad tree is constructed with the

leaf patches satisfying the given error tolerance. On

the second stage, the fine-grain LOD selection is

performed, at which each patch is precisely

triangulated using the hardware tessellation unit.

Coarse Level of Detail Selection
The coarse LOD selection is performed similar to

other quad tree-based terrain rendering methods. For

this purpose, an unbalanced patch quad tree is

maintained. It defines the block-based adaptive

model, which approximates the terrain with the

specified screen-space error.

The unbalanced quad tree is cached in a GPU

memory and is updated according to the results of

comparing patch’s screen-space error estimation

)()(

,

l

nmScr PErr with the user-defined error threshold  .

Since we already have the maximum geometric error

for the vertices within a patch,)()(

,

l

nmScr PErr can be

calculated using standard LOD formula for

conservatively determining the maximum screen-

space vertex error (see [Ulr00, Lev02]):

),(

)(
)(

)(

,

)(

,)(

, l

nm

l

nml

nmScr
Vc

PErr
PErr




where))2/(),2/(max(
2
1

vvhh ctgRctgR   , hR

and vR are horizontal and vertical resolutions of the

view port, h and v are the horizontal and vertical

camera fields of view, and),()(

,

l

nmVc is the distance

from the camera position c to the closest point on the

patch’s bounding box)(

,

l

nmV .

Tessellation Blocks
During the fine-grain LOD selection, each patch in

the unbalanced patch quad tree is adaptively

triangulated using the GPU. For this purpose, each

patch is subdivided into the small equal-sized blocks

that we call tessellation blocks. For instance, a 65×65

patch can be subdivided into the 4×4 grid of 17×17

tessellation blocks or into the 8×8 grid of 9×9 blocks

etc. Detail level for each tessellation block is

determined independently by the hull shader: the

block can be rendered in the full resolution (fig. 6,

left) or in the resolution reduced by a factor of d2 ,

d = 1,2,… (fig. 6, center, right).

To determine the degree of simplification for each

block, we calculate a series of block errors. These

errors represent the deviation of the block’s

simplified triangulation from the patch’s height map

samples, covered by the block but not included into

the simplified triangulation (dotted circles in fig. 6).

Let’s denote the error of the tessellation block located

at the (r, s) position in the patch, whose triangulation

is simplified by a factor of d2 by
)(

,

d

sr . The

tessellation block errors
)(

,

d

sr are computed as

follows:

),(max)(

,

)(

,)(
,

d

sr
Tv

d

sr Tv
d
sr




 , d = 1,2,…

Child patches’ (level l) height map samples

Parent patch’s (level l-1) height map samples

)()(

,

l

nmInt PErr

)()(

,

l

nmInt PErr

Figure 5. Patch’s height map interpolation error.

Figure 6. Triangulations of a 9×9 tessellation

block.

)1(

,sr
)2(

,sr 0)0(

, sr

d=0 d=1 d=2

Journal of WSCG 89 ISSN 1213-6972

where)(

,

d

srT is the tessellation block (r,s) triangulation

simplified by a factor of d2 and),()(

,

d

srTv is the

vertical distance from the vertex v to the triangulation
)(

,

d

srT . Two and four times simplified triangulations as

well as these samples (dotted circles) of the patch’s

height map that are used to calculate)1(

,sr and)2(

,sr

are shown in fig. 6 (center and right images

correspondingly).

To get the final error bound for the tessellation block,

it is necessary to take into account the patch’s error

bound. This final error bound hereinafter is referred

to as)(

,

d

sr and is calculated as follows:

)()(

,

)(

,

)(

,

l

nm

d

sr

d

sr PErr 

In our particular implementation, we calculate errors

for 4 simplification levels such that tessellation block

triangulation can be simplified by a maximum factor

of 256)2(24  . This enables us to store the

tessellation block errors as a 4-component vector.

Fine-Grain Level of Detail Selection
When the patch is to be rendered, it’s necessary to

estimate how much its tessellation blocks’

triangulations can be simplified without introducing

unacceptable error. This is done using the current

frame’s world-view-projection matrix. Each

tessellation block is processed independently and for

each block’s edge, a tessellation factor is determined.

To eliminate cracks, tessellation factors for shared

edges of neighboring blocks must be computed in the

same way. The tessellation factors are then passed to

the tessellation stage of the graphics pipeline, which

generates final triangulation.

Tessellation factors for all edges are determined

identically. Let’s consider some edge and denote its

center by ce . Let’s define edge errors
)(d

ec
 as the

maximum error of the tessellation blocks sharing this

edge. For example, block (r, s) left edge’s errors are

calculated as follows:

),max()(

,

)(

,1

)(d

sr

d

sr

d

ec
  , d = 1,2,…

Next let’s define a series of segments in a world

space specified by theirs end points ),(d

ce and ),(d

ce

determined as follows:

z

d

ec

d

c eee
c

 2/)(),(

z

d

ec

d

c eee
c

 2/)(),(

where ze is the world space z (up) axis unit vector.

Thus ),(d

ce and ),(d

ce define a segment of length

)(d

ec
 directed along the z axis such that the edge

centre ce is located in the segment’s middle.

If we project this segment onto the viewing plane

using the world-view-projection matrix, we will get

the edge screen space error estimation (fig. 7) given

that the neighboring tessellation blocks are simplified

by a factor of d2 . We can then select the maximum

simplification level d for the edge that does not lead

to unacceptable error as follows:

 ),(maxarg),(),(d

c

d

c
d

eeprojd

The same selection process is done for each edge.

Tessellation factor for the block interior is then

defined as the minimum of its edge tessellation

factors. This method assures that tessellation factors

for shared edges of neighboring blocks are computed

equally and guarantees seamless patch triangulation.

An example of a patch triangulation is given in fig. 8.

To hide gaps between neighboring patches, we

exploit “vertical skirts” around the perimeter of each

patch as proposed by T. Ulrich [Ulr00]. The top of

the skirt matches the patch’s edge and the skirt height

is selected such that it hides all possible cracks.

Note that in contrast to all previous terrain

simplification methods, all operations required to

triangulate the patch are performed entirely on the

GPU and does not involve any CPU computations.

Figure 7. Calculating edge screen space error.

),(d

ce

),(d

ce

),(),(),( d

c

d

c eeproj

ce

0

0

1

1

Figure 8. Seamlessly triangulated patch’s

tessellation blocks.

Journal of WSCG 90 ISSN 1213-6972

Implementation Details
The presented algorithm was implemented with the

C++ in an MS Visual Studio .NET environment.

In our system, the CPU decodes the bit stream in

parallel to the rendering thread and all other tasks are

done on the GPU. To facilitate GPU-accelerated

decompression, we support several temporary

textures. The first one is)12()12( nn 8-bit

texture RT that is populated with the parent patch’s

refinement labels (1 , 0 or 1) from R. The second

one is)122()122( nn 8-bit texture IT

storing prediction errors)(

,

l

jid for samples from I.

GPU-part of the decompression is done in two steps:

 At the first step, parent patch height map is

refined by rendering to the temporary texture PT .

 At the second step, child patch height maps are

rendered.

During the second step, PT is filtered using

hardware-supported bilinear filtering, interpolation

errors are loaded from IT and added to the

interpolated samples from PT .

Patch’s height and normal maps as well as the

tessellation block errors are stored as texture arrays.

A list of unused subresources is supported. When

patch is created, we find unused subresource in the

list and release it when the patch is destroyed.

Tessellation block errors as well as normal maps are

computed on the GPU when the patch is created by

rendering to the appropriate texture array element.

Exploiting texture arrays enables the whole terrain

rendering using single draw call with instancing. The

per-instance data contains patch location, level in the

hierarchy and the texture index. Patch rendering hull

shader calculates tessellation factor for each edge and

passes the data to the tessellator. Tessellator

generates topology and domain coordinates that are

passed to the domain shader. Domain shader

calculates world space position for each vertex and

fetches the height map value from the appropriate

texture array element. The resulting triangles then

pass in a conventional way via rasterizer.

6. EXPERIMENTAL RESULTS AND

DISCUSSION
To test our system, we used 16385×16385 height

map of the Puget Sound sampled at 10 meter spacing,

which is used as the common benchmark and is

available at [PS]. The raw data size (16 bps) is 512

MB. The compression and run-time experiments were

done on a workstation with the following hardware

configuration: single Intel Core i7 @2.67; 6.0 GB

RAM; NVidia GTX480.

The data set was compressed to 46.8 MB (11:1) with

1 meter error tolerance. For comparison, C-BDAM

method, which exploits much more sophisticated

approach, compressed the same data set to 19.2 MB

(26:1) [GMC+06]. Note that in contrast to C-BDAM,

our method enables hardware-based decompression.

Note also that in practice we compress extended

)32()32( nn height map for each patch for the

sake of seamless normal map generation. As opposed

to compressing conventional diffuse textures, height

maps usually require less space. That is why we

believe that provided 11x compression rate is a good

justification for the quality of our algorithm.

During our run-time experiments, the Puget Sound

data set was rendered with 2 pixels screen space error

tolerance at 1920x1200 resolution (fig. 10). We

compared the rendering performance of our method

with our implementation of the chunked LOD

approach [Ulr00]. As fig. 10 shows, the data set was

rendered at 607 fps on average with minimum at 465

fps with the proposed method. When the same terrain

was rendered with our method but without exploiting

instancing and texture arrays described previously,

the frame rate was almost 2x lower. As fig. 10 shows,

our method is more than 3.5x faster than the chunked

LOD approach.

Chunked LOD

H/W Tessellation

H/W tess + tex
array & instancing

0

200

400

600

800

1000

1200

F
P

S

Chunked LOD H/W Tessellation H/W tess + tex array & instancing

Figure 10. Rendering performance at 1920×1200

resolution.

Our experiments showed that the optimal tessellation

block size that provides the best performance is 8×8.

Other interesting statistics for this rendering

experiment is that approximately 1024 of 128×128

patches were kept in GPU memory (only ~200 of

them were rendered per frame on average). Each

height map was stored with 16 bit precision. All

patches demanded just 32 MB of the GPU memory.

We also exploited normal map compressed using

BC5, which required additional 16 MB of data.

Diffuse maps are not taken into account because

special algorithms that are behind the scope of this

work are designed to compress them. However, the

same quad tree-based subdivision scheme can be

integrated with our method to handle diffuse texture.

Since our method enables using small screen space

error threshold (2 pixels or less), we did not observe

any popping artifacts during our experiments even

Journal of WSCG 91 ISSN 1213-6972

though there is no morph between successive LODs

in our current implementation.

In all our experiments, the whole compressed

hierarchy easily fitted into the main memory.

However, our approach can be easily extended for the

out-of-core rendering of arbitrary large terrains. In

this case, the whole compressed multiresolution

representation would be kept in a repository on the

disk or a network server, as for example in the

geometry clipmaps. This would allow on-demand

extraction from the repository rather accessing the

data directly in the memory.

7. CONCLUSION AND FUTURE

WORK
We presented a new real-time large-scale terrain

rendering technique, which is based on the

exploitation of the hardware-supported tessellation

available in modern GPUs. Since triangulation is

performed entirely on the GPU, there is no need to

encode the triangulation topology. Moreover, the

triangulation is precisely adapted to each camera

position. To reduce the data storage requirements, we

use robust compression technique that enables direct

control over the reconstruction precision and is also

accelerated by the GPU.

We consider support for dynamic terrain

modifications as a future work topic. Since the

triangulation topology is constructed entirely on the

GPU, it would require only updating the tessellation

block errors, and the triangulation will be updated

accordingly. Another possible direction is to extend

the presented algorithm for rendering arbitrary high-

detailed 2D-parameterized surfaces.

8. REFERENCES
[CGG+03a] Cignoni, P., Ganovelli, F., Gobbetti, E.,

Marton, F., Ponchio, F., and Scopigno, R.

BDAM – batched dynamic adaptive meshes for

high performance terrain visualization. Computer

Graphics Forum, Vol. 22, No. 3, pp. 505–514,

2003.

[CGG+03b] Cignoni, P., Ganovelli, F., Gobbetti, E.,

Marton, F., Ponchio, F., and Scopigno, R. Planet-

sized batched dynamic adaptive meshes (P-

BDAM). In Proc. IEEE Visualization, pp. 147–

154, 2003.

[DSW09] Dick, C., Schneider, J., and Westermann,

R. Efficient Geometry Compression for GPU-

based Decoding in Realtime Terrain Rendering.

In Computer Graphics Forum, Vol. 28, No 1, pp.

67–83, 2009.

[DWS+97] Duchaineau, M., Wolinsky, M., Sigeti,

D.E., Miller, M.C., Aldrich, C., and Mineev-

Weinstein, M.B. ROAMing terrain: Real-time

optimally adapting meshes. In Proc. IEEE

Visualization, pp. 81–88, 1997.

[GMC+06] Gobbetti, E., Marton, F., Cignoni, P.,

Di Benedetto, M., and Ganovelli, F. C-BDAM –

compressed batched dynamic adaptive meshes for

terrain rendering. Computer Graphics Forum,

Vol. 25, No. 3, pp. 333–342, 2006.

[Hop98] Hoppe, H. Smooth view-dependent level-of-

detail control and its application to terrain

rendering. In Proc. IEEE Visualization, pp. 35–

42, 1998.

[LC03] Larsen, B.D., and Christensen, N.J. Real-time

Terrain Rendering using Smooth Hardware

Optimized Level of Detail. Journal of WSCG,

Vol. 11, No. 2, pp. 282–289, 2003.

[Lev02] Levenberg, J. Fast view-dependent level-of-

detail rendering using cached geometry. In Proc.

IEEE Visualization, pp. 259–265, 2002.

[LKR+96] Lindstrom, P., Koller, D., Ribarsky, W.,

Hodges, L.F., Faust, N., and Turner, G.A. Real-

time, continuous level of detail rendering of

height fields. In Proc. ACM SIGGRAPH, pp.

109–118, 1996.

[LH04] Losasso, F., and Hoppe, H. Geometry

clipmaps: Terrain rendering using nested regular

grids. In Proc. ACM SIGGRAPH, pp. 769–776,

2004.

[Mal00] Malvar, H. Fast Progressive Image Coding

without Wavelets. In Proceedings of Data

Compression Conference (DCC ’00), Snowbird,

UT, USA, pp. 243–252, 28-30 March 2000.

[Paj98] Pajarola, R. Large scale terrain visualization

using the restricted quadtree triangulation. In

Proc. IEEE Visualization, pp. 19–26, 1998.

[PG07] Pajarola, R., and Gobbetti, E. Survey on

semi-regular multiresolution models for

interactive terrain rendering. The Visual

Computer, Vol. 23, No. 8, pp. 583–605, 2007.

[PS] Puget Sound elevation data set is available at

http://www.cc.gatech.edu/projects/large_models/p

s.html

[SW06] Schneider, J., and Westermann, R. GPU-

Friendly High-Quality Terrain Rendering. Journal

of WSCG, Vol. 14, pp. 49–56, 2006.

[Ulr00] Ulrich, T. Rendering massive terrains using

chunked level of detail. ACM SIGGraph Course

“Super-size it! Scaling up to Massive Virtual

Worlds”, 2000.

[WNC87] Witten, I.H., Neal, R.M., and Cleary J.G.,

Arithmetic coding for data compression. Comm.

ACM, Vol. 30, No. 6, pp. 520–540, June 1987.

Journal of WSCG 92 ISSN 1213-6972

http://www.cc.gatech.edu/projects/large_models/ps.html
http://www.cc.gatech.edu/projects/large_models/ps.html

Generalized Heat Kernel Signatures

Valentin Zobel
Zuse-Institut Berlin, Germany

zobel@zib.de

Jan Reininghaus
Zuse-Institut Berlin, Germany

reininghaus@zib.de

Ingrid Hotz
Zuse-Institut Berlin, Germany

hotz@zib.de

ABSTRACT

In this work we propose a generalization of the Heat Kernel Signature (HKS). The HKS is a point signature derived from
the heat kernel of the Laplace-Beltrami operator of a surface. In the theory of exterior calculus on a Riemannian manifold,
the Laplace-Beltrami operator of a surface is a special case of the Hodge Laplacian which acts on r-forms, i. e. the Hodge
Laplacian on 0-forms (functions) is the Laplace-Beltrami operator. We investigate the usefulness of the heat kernel of the
Hodge Laplacian on 1-forms (which can be seen as the vector Laplacian) to derive new point signatures which are invariant
under isometric mappings. A similar approach used to obtain the HKS yields a symmetric tensor field of second order; for
easier comparability we consider several scalar tensor invariants. Computed examples show that these new point signatures are
especially interesting for surfaces with boundary.

Keywords: Shape analysis, Hodge Laplacian, heat kernel, discrete exterior calculus

1 INTRODUCTION
The identification of similarly shaped surfaces or parts
of surfaces, represented as triangle meshes, is an im-
portant task in computational geometry. In this paper,
we consider two surfaces as being similar if there is an
isometry between them. For example, all meshes de-
scribing different poses of an animal are considered to
be similar.

One approach to solve this problem makes use of
spectral analysis of the Laplace-Beltrami operator ∆0
of the surface. The Laplace-Beltrami operator ∆0 de-
scribes diffusion processes, is by definition invariant
under isometries, and is known to reveal many geomet-
ric properties of the surface.

In [8] the eigenvalues of the Laplace-Beltrami oper-
ator are proposed as a ’Shape-DNA’. If two surfaces
are isometric, then the eigenvalues of the respective
Laplace-Beltrami operators coincide. While one can
construct counter examples to the converse of this state-
ment, this does not seem to pose a problem in practice.

In contrast to this global characterization of surfaces,
in [10] the eigenvalues and eigenfunctions of the
Laplace-Beltrami operator are used to compute a point
signature. This point signature is a function on the
surface containing a scale parameter, and is called Heat
Kernel Signature. For benchmarks evaluating the Heat
Kernel Signature and other methods we refer the reader
to [3], [4].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

In this work we propose and investigate a general-
ization of the Heat Kernel Signature. The Laplace-
Beltrami operator ∆0 of a surface can be generalized
to the Hodge Laplacian ∆r which is an operator acting
on r-forms. This operator is defined in the setting of ex-
terior calculus in Section 2 and its heat kernel is intro-
duced in Section 3. We can then derive a new isometry
invariant point signature from the Hodge-Laplacian on
1-forms ∆1 in Section 4. This yields a symmetric tensor
field of second order containing a scale parameter. As
it is difficult to compare and quantify such tensor fields,
we consider several scalar valued tensor invariants for
the purpose of surface analysis. To increase the repro-
ducibility of the results shown in Section 6, we give
some details about our implementation of this method
in Section 5. For our discretization of ∆1 we use the
theory of discrete exterior calculus (DEC) which mim-
ics the theory of exterior calculus on a discrete level.

2 MATHEMATICAL BACKGROUND
To generalize the Laplace-Beltrami operator and the
heat kernel to r-forms it is beneficial to employ the the-
ory of exterior calculus on a Riemannian manifold. We
will give a short introduction to this topic in this sec-
tion. An extensive introduction to exterior calculus can
be found for example in the textbook [1].

For simplicity we restrict ourselves to a Riemannian
manifold (M,g) of dimension 2. Readers who are not
familiar with Riemannian manifolds may think of M
being a surface embedded in R3. In this case the Rie-
mannian metric g is given by the first fundamental form,
i. e. gp is the scalar product on the tangent space Tp(M)
at p which is induced by the standard scalar product on
R3.

The set of r-forms on M is denoted by
∧r(M), where

r = 0 . . .2. A 0-form on M is a smooth function from
M to R, consequently

∧0(M) = C∞(M). A 1-form on

Journal of WSCG 93 ISSN 1213-6972

M is a smooth map which assigns each p ∈M a linear
map from Tp(M) to R, i. e. an element of the dual space
(Tp(M))∗ of Tp(M). A 2-form α on M is a smooth map
which assigns each p ∈ M a bilinear form on Tp(M)
which is skew-symmetric, that is for each p ∈ M and
v,w ∈ Tp(M) we have αp(v,w) = −αp(w,v). We will
later see that a 1-form can be identified with a vector
field while a 2-form can be interpreted as a function on
the manifold.

The Hodge-Laplace operator will now be de-
fined in terms of local coordinates. Let (U,φ)
be a chart with coordinate functions (x1,x2), i. e.
φ(p) = (x1(p),x2(p)) ∈ R2. The tangent vectors to
the coordinate lines which are denoted by ∂

∂x1
, ∂

∂x2
, or

shorter ∂1,∂2, form a frame on U , i. e. (∂1)p,(∂2)p
is a basis of Tp(M) for each p ∈ U . The differentials
dx1,dx2 of x1 and x2 form a coframe on U , i. e.
(dx1)p,(dx2)p is a basis of (Tp(M))∗, and we have
dxi(∂ j) = δ i

j . Thus, for any 1-form α ∈
∧1(M) there

are functions f1, f2 ∈ C∞(U) such that

α|U = f1 dx1 + f2 dx2 ,

where f1 = α(∂1), f2 = α(∂2).
The wedge prodcut ∧ of two 1-forms α,β is defined

pointwise at each p ∈M by

(αp∧βp)(v,w) = αp(v)βp(w)−βp(v)αp(w)

for all v,w ∈ Tp(M). A two form α ∈
∧2(M) can

thereby be represented by α|U = f dx1 ∧ dx2 , where
f = α(∂1,∂2) ∈C∞(M).

There is an isomorphism between vector fields and
1-forms on M which is called flat operator and denoted
by [. For a vector field v it is defined by v[p(·) = g(vp, ·)
at each p ∈ M. Its inverse is the sharp operator].
If e1,e2 is an orthonormal basis of Tp(M) and ε1,ε2

its dual basis we have (λ1e1 + λ2e2)
[= λ1ε1 + λ2ε2 ,

where λ1,λ2 ∈ R.
The differential d takes a function f on M to the 1-

form

d0 f =
∂ f
∂x1

dx1 =
∂ f
∂x2

dx2 ,

i. e. d0 maps 0-forms to 1-forms. One may think of d0
as ∇. We will denote d also by d0 and define the map
d1 taking 1-forms to 2-forms by

d1 (f1 dx1 + f2 dx2) =

(
∂ f2

∂x1
− ∂ f1

∂x2

)
dx1∧dx2 .

d1 can be interpreted as ∇×. The maps d0 and d1 are
referred to as exterior derivative.

Next we will define the maps δ1 and δ2 which take 1-
forms to 0-forms and 2-forms to 1-forms, respectively,
and are also called codifferential. These maps depend,
in contrast to d0 and d1, on the metric of M. We set
gi j = g

(
∂

∂xi
, ∂

∂x j

)
and G =

√
det[gi j]. For simplicity

we use orthogonal coordinates, that is [gi j] is a diagonal
matrix. This is not a restriction, since any point p∈M is
contained in a chart with this property. The Hodge star
operator ∗r is a map taking r-forms to (2− r)-forms,
r = 0, . . . ,2, defined by

∗0 f = G f dx∧dy ,

∗1(f1 dx1 + f2 dx1) =−g22G f2 dx1 +g11G f1 dx2 ,

∗2(f dx1∧dx2) =
f
G

.

Now δ1 and δ2 are defined by

δ1 =−∗2 d1∗1 , δ2 =−∗1 d0∗2 ,

which can be rewritten to

δ1 (f1 dx1 + f2 dx2) =−
1
G

(
∂g11G f1

∂x1
+

∂g22G f2

∂x2

)
,

δ2(f dx1∧dx2) = g22G
∂

f
G

∂x2
dx1−g11G

∂
f
G

∂x1
dx2 .

One may think of −δ1 as ∇· and −δ1 as ∇⊥.
The Hodge Laplacian ∆r :

∧r(M)→
∧r(M), where

r = 0, . . . ,2, is now defined by

∆0 = δ1d0 ,

∆1 = δ2d1 +d0δ1 ,

∆2 = d1δ2 .

Sometimes ∆r is also called Laplace-de Rham oper-
ator or just Laplacian, where ∆0 is also referred to as
Laplace-Beltrami operator. If M = R2 with standard
coordinates we have g11 = g22 = G = 1, thus −∆0 co-
incides with the well-known definition of the Laplacian
on R2, i. e. ∆0 =

∂ 2

∂ 2x1
+ ∂ 2

∂ 2x2
.

3 HEAT KERNEL
The basic properties of heat diffusion on a Riemannian
manifold will be introduced in this section. Of special
interest for us is the heat kernel and its generalization
to 1-forms. In Section 4 we will derive point signatures
from the heat kernel for 1-forms in a similar way as the
Heat Kernel Signature is derived from the heat kernel
for functions. For details on the heat kernel for r-forms
see [9].

Let (M,g) be a 2-dimensional, compact, oriented
Riemannian manifold. Given an initial heat distribution
f (p) = f (0, p) ∈ C∞(M) on M, considered to be per-
fectly insulated, the heat distribution f (t, p) ∈ C∞(M)
at time t is governed by the heat equation

(∂t +∆0) f (t, p) = 0 .

The function k0(t, p,q) ∈ C∞ (R+×M×M) such that
for all f ∈C∞(M)

(∂t +(∆0)p)k0(t, p,q) = 0 ,

lim
t→0

∫
k0(t, p,q) f (q)dq = f (p) ,

Journal of WSCG 94 ISSN 1213-6972

is called heat kernel. (∆0)p denotes the Laplacian act-
ing in the p variable. Using the heat kernel one can
define the heat operator Ht for t > 0 by

Ht f (p) =
∫

M
k0(t, p,q) f (q)dq .

One can show that f (t, p) = Ht f (p) solves the Heat
equation, thus Ht maps an initial heat distribution to
the heat distribution at time t. The heat kernel can be
computed from the eigenvalues λi and the correspond-
ing eigenfunctions φi of ∆0 by the formula

k0(t, p,q) = ∑
i

e−λitφi(p)φi(q) .

Next we will generalize the heat kernel to 1-forms
which results in a so-called double 1-form. A double
1-form is a smooth map which assigns each (p,q) ∈
M×M a bilinear map TpM×TqM→R . Consequently,
if β is a double form on M, v∈ Tp(M), w∈ Tq(M), then
q 7→ β (p,q)(v, ·) and p 7→ β (p,q)(·,w) are 1-forms on
M. The heat kernel for 1-forms is now a double form
k1(t, p,q) depending smoothly on an additional param-
eter t, which satisfies for each α ∈

∧k(M)

(∂t +(∆1)p)k1(t, p,q) = 0 ,

lim
t→0

∫
M

k1(t, p,q)
(
· ,α](q)

)
dq = α(p)(·) .

Note that, given α ∈
∧1(M) and p,q∈M we obtain a

bilinear map Tp(M)×Tq(M)→R by multiplying α(p)
and α(q); thus

(p,q) 7→ α(p)(·)α(q)(·)

is a double form. Similarly to the heat kernel for func-
tions, we can compute the heat kernel for 1-forms from
the eigenvalues λi and the eigenforms αi of ∆1 by

k1(t, p,q)(·, ·) = ∑
i

e−λitαi(p)(·)αi(q)(·) .

4 POINT SIGNATURES FROM THE
HEAT KERNEL FOR 1-FORMS

In this section we will derive new point signatures from
the heat kernel of 1-forms. This is done in a similar way
as the Heat Kernel Signature is derived from the heat
kernel for functions (0-forms). The main difference is
that this approach does not result in a time-dependent
function for the heat kernel of 1-forms, instead we ob-
tain a time-dependent tensor field. Thus, to obtain com-
parable values, we consider scalar tensor invariants. In
this way we obtain several point signatures which are
especially interesting for manifolds with boundary, as
we will see in Section 6.

The Heat Kernel Signature at p is defined by

t 7→ k0(t, p, p) ,

i. e. a function R+ → R is assigned to each point
p ∈ M. It is shown in [10] that two points p,q have
similar shaped neighborhoods if {k(t, p, p)}t>0 and
{k(t,q,q)}t>0 coincide.

The analogous definition for the heat kernel for 1-
forms,

t 7→ k1(t, p, p) ,

assigns each point p ∈ M a bilinear form on Tp(M)
or equivalently a symmetric covariant tensor of sec-
ond order. Comparing covariant tensors of second or-
der on Tp(M) and Tq(M) is not possible unless we
have a meaningful map between Tp(M) and Tq(M).
It is therefore difficult to compare {k1(t, p, p)}t>0 and
{k1(t,q,q)}t>0 directly. However, we can consider
scalar tensor invariants which are independent of the
chosen orthonormal basis of the tangent space.

If e1,e2 is an orthonormal basis of Tp(M) we can as-
sign to each bilinear form β a matrix B = (bi j), where
bi j = β (ei,e j), i, j = 1,2. Now B is the matrix represen-
tation of β with respect to the orthonormal basis e1,e2
and the eigenvalues of β are defined to be the eigen-
values of B. If ẽ1, ẽ2 is another orthonormal basis and
S the orthogonal matrix satisfying ẽ1 = Se1, ẽ2 = Se2,
then the corresponding matrix representation B̃ of α is
given by B̃ = SBST , and with that the definition of the
eigenvalues of β is independent of a certain orthonor-
mal basis. Consequently, if λ1 is the larger and λ2 the
smaller eigenvalue of β , quantities like λ1 or λ2 or com-
binations of it like the trace tr(β) = tr(B) = λ1 +λ2 or
the determinant det(β) = det(B) = λ1λ2 are scalar ten-
sor invariants. Using such tensor invariants we obtain
point signatures like {tr(k1(t, p, p))}t>0 which can be
compared similarly as the Heat Kernel Signature, see
[10] for details.

5 NUMERICAL REALIZATION
To compute our point signatures we need a matrix rep-
resentation of the bilinear forms k1(t, p, p). We will use
the equation

k1(t, p, p)(·, ·) = ∑
i

e−λitαi(p)(·)αi(p)(·) , (1)

where λi and αi are the eigenvalues and eigenforms of
∆1. For the computation of the eigenvalues and eigen-
forms we use the theory of discrete exterior calculus
(DEC), which mimics the theory of exterior calculus on
surfaces approximated as triangle meshes. A short in-
troduction to DEC is given in Subsection 5.1.

Unfortunately the computation of the eigenvalues and
eigenforms of ∆1 using DEC is not straightforward.
The common definitions work only for very special tri-
angulations. We propose a solution to this problem in
Subsection 5.2. Moreover we explain a way to realize
the product αi(p)(·)αi(p)(·) of two eigenforms which
is not obvious for discrete r-forms.

Journal of WSCG 95 ISSN 1213-6972

5.1 Discrete Exterior Calculus
DEC deals with discrete forms which are defined on
on a triangle mesh as an approximation of a surface.
Additionally counterparts of operators like the exterior
derivative and the Hodge star operator are defined for
discrete forms. This enables us to define a discrete
Hodge Laplacian. Thus DEC mimics the theory of
smooth r-forms on surfaces. For details on DEC we re-
fer the reader to [7], which is the most extensive source,
as well as to [5] and [6].

Let K be a triangle mesh with vertex set V = {vi},
edge set E = {ei} and triangle set T = {ti}. We assume
that all triangles and edges have a fixed orientation. The
orientation of a vertex is always positive; the orientation
of an edge ei is given by an order of vertices e = [viv j];
the orientation of a triangle t is given by a cyclic order
of vertices t = [viv jvk]. If v is a vertex of the edge e =
[viv j], the orientations of v and e are said to agree if
v = v j and disagree if v = vi. Similarly, given an edge
e of a triangle t, the orientations of e and t are said to
agree (disagree) if the vertices of e occur in the same
(opposite) order in t.

Discrete 0-forms, 1-forms and 2-forms are defined to
be functions from V , E and T to R, respectively. The
function values should be understood as the integral of
a continuous 0-form, 1-form or 2-form over a vertex,
edge or triangle, respectively. Note that reversing the
orientation of vertices, edges or triangles changes the
sign of the associated integral values, thus the same
holds for discrete r-forms. Of course, this definition of
discrete r-forms does not allow a point-wise evaluation.

However, it is possible to interpolate discrete r-forms
by Whitney forms which are piecewise linear r-forms
on the triangles. Whitney 0-forms are the so-called hat
functions, i. e. φvi is the piecewise linear function with
φvi(v j) = δ i

j. For an edge e = [vi,v j] the Whitney 1-
form φe is supported on the triangles adjacent to e and
given by φe = φvi dφv j−φv j dφvi . Note that φe is piece-
wise linear on each triangle, but discontinuous on the
edge. However, the integral of both parts of φe over e
is 1. We also have that the integral of φe is 0 over each
edge different from e. There is a similar definition for
Whitney 2-forms which we omit here. The Whitney in-
terpolant I α of a discrete 0-form α is now given by

I α = ∑
i=1,...,|V |

α(vi)φvi .

The Whitney interpolant for discrete 1-forms and
2-forms is defined analogously.

0-forms, 1-forms and 2-forms can be seen as vectors
in R|V |, R|E| and R|T |. Thus operators like the exterior
derivative, the hodge star operator and the codifferential
are defined as matrices. To define the discrete exterior
derivate we need to define the boundary operator first.

The boundary operator ∂1 is given by the matrix of di-
mension |V |× |E| with the entries

(∂1)i j =

{
1 , orientations of vi and e j agree ,

−1 , orientations of vi and e j disagree ,

if vi is a vertex of the edge e j and zero otherwise. The
boundary operator ∂2 is now defined analogously by

(∂1)i j =

{
1 , orientations of ei and t j agree ,

−1 , orientations of ei and t j disagree ,

if the e j is an edge of the triangle t j and zero otherwise.
The discrete exterior derivate is now defined to be the
transpose of the boundary operator, i. e.

d0 = (∂1)
T , d1 = (∂2)

T .

Thus, as for smooth r-forms we have that d0 maps 0-
forms to 1-forms, and d1 maps 1-forms to 2-forms.

While the hodge star operator ∗r in the continuous
case maps r-forms to (2− r)-forms, the discrete hodge
star operator maps a discrete r-form to a so-called dual
(2− r)-form which is defined on the dual mesh. We
assume for the moment that every triangle t ∈ T con-
tains its circumcenter. Then the (circumcentric) dual
mesh is a cell decomposition of K where the cells are
constructed as follows: The dual 0-cell ?t of a triangle
t ∈ T is the circumcenter of t. The dual 1-cell ?e of an
edge e∈ E consists of the two line segments connecting
the circumcenters of the triangles adjacent to e and the
midpoint of e. The dual 2-cell ?v of a vertex v ∈ V is
the area around v which is bounded by the dual 1-cells
of the edges adjacent to v. Note that the dual mesh co-
incides with the Voronoi tesselation of K corresponding
to the vertex set V , see [2] for details.

A dual r-form is now a map which assigns each dual
r-cell a real number. Thus dual 0-forms, 1-forms and
2-forms can be represented as vectors in R|T |, R|E| and
R|V |. The exterior derivative on dual 0-forms and dual
1-forms is defined by the matrices

dDual
0 = dT

1 = ∂2 , dDual
1 =−dT

0 =−∂1 .

The discrete Hodge star operator ∗r which maps r-
forms to dual 2− r forms is given by square matrices

∗0 ∈ R|V |×|V | , ∗1 ∈ R|E|×|E| , ∗2 ∈ R|T |×|T | .

Unfortunately there is no unique way to define the en-
tries of these matrices. A possible choice for ∗0, ∗1 and
∗2 are diagonal matrices with entries given by

(∗0)ii =
|? vi|
|vi|

, (∗1)ii =
|? ei|
|ei|

, (∗2)ii =
|? ti|
|ti|

,

where |v|= 1, |e| is the length of e, |t| is the area of t and
analogously for dual cells. Since this is the common

Journal of WSCG 96 ISSN 1213-6972

definition in DEC, see [7] and [5] for example, we also
denote this Hodge star by ∗DEC

r .
Another possible definition, suggested in [6], is to de-

fine (∗0)i j as the the L2-inner product of the Whitney 0-
forms φvi and φv j , and analogously for ∗1 and ∗2 using
Whitney 1-forms and 2-forms corresponding to edges
and triangles, respectively. For more details and an ex-
plicit computation of the entries of ∗Whit

r we refer to
[11]. We denote this Hodge star operator also by ∗Whit

r
in allusion to the use of Whitney forms. The advantages
and disadvantages of ∗DEC and ∗Whit in view of spectral
analysis of the Hodge Laplacian will be discussed in
Subsection 5.2.

To map dual (2− r)-forms to discrete r-forms we
need an inverse Hodge star operator ∗Dual

2−r . An obvi-
ous choice would be ∗−1 but in this case the property
∗r ∗2−r α = (−1)r(2−r)α which we have for a smooth
r-form α would not hold. Instead ∗Dual

2−r is defined by

∗Dual
2−r = (−1)r(2−r)(∗r)

−1 .

Now, similarly as for smooth r-forms, we define the
discrete codifferential which maps discrete r-forms to
discrete (r−1)-forms for r = 1,2 by

δ1 =−∗Dual
2 dDual

1 ∗1 ,

δ2 =−∗Dual
1 dDual

0 ∗2 .

This enables us to define the discrete Hodge Laplacian
∆r just the same way as in the smooth case by

∆0 = δ1d0 ,

∆1 = δ2d1 +d0δ1 ,

∆2 = d1δ2 .

Thus ∆r can be assembled from the boundary operator
and the discrete Hodge star operator by

∆0 = ∗−1
0 ∂1 ∗1 ∂

T
1 ,

∆1 = ∗−1
1 ∂2 ∗2 ∂

T
2 +∂

T
1 ∗−1

0 ∂1∗1 ,

∆2 = ∂
T
2 ∗−1

1 ∂2 ∗2 .

5.2 Numerical Computation of the Point
Signatures

To compute k1(t, p, p) using the formula (1) we need
to compute the eigenvalues and eigenforms of ∆1 in
a first step. We will see that we need certain com-
binations of the Hodge star operators ∗DEC

r and ∗Whit
r

to accomplish this. In a second step we need to com-
pute the products of two eigenforms αi(p)(·)αi(p)(·).
Since DEC does not provide such a product, we use
Whitney forms to interpolate smooth r-forms from dis-
crete r-forms. This results in matrix representations of
αi(p)(·)αi(p)(·) which can be summed easily.

To compute the eigenvalues of ∆1 we need to solve
the eigenvalue problem

∆1α =
(
∗−1

1 ∂2 ∗2 ∂
T
2 +∂

T
1 ∗−1

0 ∂1∗1
)

α = λα ,

or alternatively the generalized eigenvalue problem(
∂2 ∗2 ∂

T
2 +∗1∂

T
1 ∗−1

0 ∂1∗1
)

α = λ ∗1 α .

The advantage of the generalized eigenvalue problem is
that one does not need the inverse of ∗1, but only needs
the inverse of ∗0. However, to solve such a generalized
eigenvalue problem with usual numerical methods, e. g.
by using the command eigs in Matlab, the matrix on
the right hand side, i. e. ∗1, must be symmetric positive
definite. Moreover we need to compute the inverse of
∗0. So, which of the matrices ∗DEC

r , ∗Whit
r , r = 0, . . . ,2,

are invertible, which are also symmetric positive defi-
nite?

Since ∗DEC
1 is a diagonal matrix with diagonal entries

given by

(∗1)ii =
|? ei|
|ei|

,

it is invertible if and only if | ? ei|/|ei| 6= 0 for i =
1, . . . , |E|; if | ? ei|/|ei| > 0 for i = 1, . . . , |E| it is also
positive definite. The length |e| of an edge is obviously
always positive. For the length |?e| of the dual 1-cell of
an edge e this is possibly not the case. Of course, if we
assume that the circumcenter of each t ∈ T is contained
in t, as in the previous section, the length of ?e is the
sum of the lengths of the two line segments connect-
ing the circumcenters of the two triangles adjacent to e
with the midpoint of e and thus positive. But this is not
a viable assumption in applications. One can solve this
problem in the following way: Let t be a triangle adja-
cent to e. If t and the circumcenter of t lie on different
sides of the line containing e, then the according line
segment counts negative. Thus the length |?e| of a dual
1-cell ?e can be negative; this is the case if and only if
this edge violates the local Delaunay property and con-
sequently the entries of ∗DEC are only nonnegative if
K is an (intrinsic) Delaunay triangulation, see [2] for
details on Delaunay triangulations of triangle meshes.
Since it is a very strong condition to assume that K is a
Delaunay triangulation and moreover not sufficient for
positive definiteness of ∗DEC, only positive semidefi-
niteness, we cannot assume that ∗DEC

1 is invertible or
even positive definite.

Similarly ∗DEC
0 is positive definite if | ? vi| > 0 for

i = 1, . . . , |V |. The computation of the area | ? v| of a
dual 2-cell ?v is shown in Figure 1, for details we refer
the reader to [11]. Note that |?v| can be positive even if
K is not a Delaunay triangulation; |?v| is only negative
for rather degenerate meshes. Thus we can assume that
∗DEC

0 is positive definite and thus invertible. Finally,
∗DEC

2 is obviously positive definite.

Journal of WSCG 97 ISSN 1213-6972

Figure 1: Primal and dual meshes. The left mesh is
Delaunay, whereas the other meshes are not Delaunay.
The middle mesh shows a dual 0-cell whose area is
given by the blue area minus the red area. The red
line in the right mesh shows a dual 1-cell with negative
length.

The positive definiteness of ∗Whit
r follows from the

fact that αT ∗Whit
r β is the L2-inner product of the Whit-

ney interpolants I α and I β of two discrete r-forms
α,β , thus

α
T ∗Whit

r α > 0

for any r-form α 6= 0. Consequently ∗Whit
r is also in-

vertible, but unfortunately we cannot use the inverse of
∗Whit

r . The reason for this is that ∗Whit
k is not diagonal

(unless r = 2) and thus the inverse is in general not a
sparse matrix which is a mandatory condition for large
meshes.

As a consequence, to solve the generalized eigen-
value problem for ∆1, we have to use (∗DEC

0)−1 and
∗Whit

1 on the right hand side. For ∗1 on the left hand
side we can choose either ∗DEC

1 or ∗Whit
1 , both work

properly as the numerical tests in [11] show. For ∗2
there is nothing to choose, since ∗DEC

2 = ∗Whit
2 .

We now discuss the computation of the matrix repre-
sentation of k1(t, p, p) from the eigenvalues and eigen-
forms of ∆1 using the formula

k1(t, p, p)(·, ·) = ∑
i

e−λitαi(p)(·)αi(p)(·) .

One difficulty is to compute the product of the eigen-
forms αi of ∆1. The αi are only available as discrete
1-forms, but unfortunately DEC does not provide such
a product. To overcome this problem we interpolate
the discrete 1-forms using Whitney forms. The result-
ing smooth forms can be multiplied easily. Though, as
noted in the previous subsection, the Whitney forms are
only continuous within the triangles, thus it is not pos-
sible to evaluate the resulting tensors on the vertices.
Instead, we evaluate the tensors on the barycenters of
the triangles.

We proceed with a detailed description of the com-
putation of the matrix representation of k1(t, p, p). Let
t = [viv jvk] be a triangle, while the orientation of the
edges is given by ei = [v jvk], e j = [vkvi] and ek = [viv j].
Using the orthonormal basis

e1 =
v j− vi

‖v j− vi‖
, e2 =

(vk− vi)−〈vk− vi ,e1〉e1

‖(vk− vi)−〈vk− vi ,e1〉e1‖

and choosing vi as origin we obtain

vi =

(
0
0

)
, v j =

(
x j
0

)
, vk =

(
xk
yk

)
,

where x j =
〈
v j ,e1

〉
, xk = 〈vk ,e1〉, yk = 〈vk ,e2〉. Now

easy calculations show for the hat functions φvi ,φv j ,φvk
that

(dφi)
] =

(
− 1

x j
xk

x jyk
− 1

yk

)
,

(dφ j)
] =

(
1
x j

− xk
x jyk

)
,

(dφk)
] =

(
0
1
yk

)
,

where we used the sharp operator to identify 1-forms
with vectorfields. Let now α be an eigenform of ∆1,
then the Whitney interpolant I β at the barycenter p of
T is given by

(I α)(p) =
1
3
(α(ek)(dφv j −dφvi)

+α(ei)(dφvk −dφv j)+α(ev j)(dφvi −dφvk)) .

The matrix representaion of I α(p)(·)I α(p)(·) is
now given by(

(I α)](p)
)(

(I α)](p)
)T

,

and the matrix representation of k1(t, p, p) by

∑
i

e−λit
(
(I αi)

](p)
)(

(I αi)
](p)

)T
. (2)

6 RESULTS
In this section we visualize our point signatures with
colormaps; small values are represented by blue and
high values by red. The surfaces we investigate are
the trim-star model, the armadillo model and the Caesar
model, provided by the AIM@SHAPE Shape Reposi-
tory, a surface representing a mandible produced by M.
Zinser, Universitätsklinik Köln, and a square. Plots of
the point signatures for these surfaces are given for dif-
ferent time values and compared with the Heat Kernel
Signature.

We approximate the sum in equation 2 by the first
100 summands, i. e. we have to compute the 100 small-
est eigenvalues and the corresponding eigenvectors of
∆1. The number of summands needed depends on the
surface. In our examples more summands show no sig-
nificant improvement. The computation of the eigen-
values and eigenvectors of ∆1, for which we use Mat-
lab, needs most time, everything else can be done in-
teractively. Timings are shown in Table 1; for compar-
ison we also give timings for the computation of 100

Journal of WSCG 98 ISSN 1213-6972

Model Vertices ∆1 ∆0
Mandible 11495 39.9 8.9
Trim-star 5192 17.2 7.6
Square 4096 13.4 3.4
Caesar 4717 15.0 3.0

Table 1: Timings in seconds for the computation of 100
eigenvalues and eigenvectors of ∆1 and ∆0.

eigenvalues and eigenvectors of ∆0, which are needed
to compute the HKS.

To avoid readjusting the colormap for different values
of t we plot the function

tr
(
k1(t, p, p)

)∫
M tr(k1(t, p, p)) d p

,

rather than tr
(
k1(t, p, p)

)
, and analogously for other in-

variants. Such a normalization is also used in [10] to en-
sure that different values of t contribute approximately
equally when comparing two signatures.

In the case of a closed surface the smaller and the
larger eigenvalue of k1(t, p, p) have very similar val-
ues for all p ∈ M and all t > 0. The behavior of
tr
(
k1(t, p, p)

)
and det

(
k1(t, p, p)

)
corresponds to this

observation. Thus, whichever invariant we use, we
obtain nearly the same information from the resulting
point signature. A comparison of tr

(
k1(t, p, p)

)
and the

Heat Kernel Signature is shown in Figures 2 and 3. De-
spite the fact that the Heat Kernel Signature has high
values where tr

(
e1(t, p, p)

)
has low values and vice

versa, both point signatures show a similar behavior for
small values of t. In contrast, for large values of t their
behavior is very different.

We should note here that ∆0 has a single zero eigen-
value and the corresponding eigenfunction is constant.
Thus we have

lim
t→∞

k0(t, p, p) = lim
t→∞

∑
i

e−λitφi(p)φi(p) = φ
2
0 (p) ,

i. e. the Heat Kernel Signature converges to a constant
function which is different to zero. In contrast, ∆1 has
2g eigenforms to the eigenvalue zero, where g is the
genus of the surface. Now the limit

lim
t→∞

k1(t, p,q)(·, ·) = lim
t→∞

∑
i

e−λitαi(p)(·)αi(p)(·)

is zero for surfaces with g = 0 and nonzero for surfaces
with g > 0.

Thus, for the mandible model in Figure 2
tr
(
k1(t, p, p)

)
converges to zero, while it does not

converge to zero for the trim-star in Figure 3. However,
as a consequence of our normalization, the limit zero is
not visible in Figure 2, we rather see how tr

(
k1(t, p, p)

)
approaches zero.

To demonstrate the isometry invariance of k1(t, p, p)
Figure 4 shows tr

(
k1(t, p, p)

)
for different poses of the

armadillo modell.

In contrast to closed surfaces the smaller and
the larger eigenvalue of k1(t, p, p) behave differ-
ently for surfaces with boundary. Consequently we
also have a different behavior of tr

(
k1(t, p, p)

)
and

det
(
k1(t, p, p)

)
, see Figure 5 for a square and Figure

6 for a model of the head of Julius Caesar. While
tr
(
k1(t, p, p)

)
and the Heat Kernel Signature show a

similar behavior for small t in the case of a closed
surface, for surfaces with boundary this is only true
away from the boundary, see again Figures 5 and 6.
The Heat Kernel Signature seems to be much more in-
fluenced by the boundary as tr

(
k1(t, p, p)

)
. We should

note here that we used for the computation of the Heat
Kernel Signature eigenfunctions satisfying Neumann
boundary conditions, i. e. for any eigenfunction φ we
have

∂φ

∂n
(p) = 0 , p ∈ ∂M ,

where ∂M denotes the boundary of M and n denotes
the normal to the boundary. If we would use Dirichlet
boundary conditions instead, i. e.

φ(p) = 0 , p ∈ ∂M ,

the influence of the boundary to the Heat Kernel Signa-
ture would be even bigger.

Figure 2: tr(k1(t, p, p)) (top) and Heat Kernel Signature
(bottom) for increasing values of t.

Figure 3: tr(k1(t, p, p)) (top) and Heat Kernel Signature
(bottom) for increasing values of t.

7 CONCLUSION
In this work we derived new point signatures from the
heat kernel for 1-forms. We imitated the way in which

Journal of WSCG 99 ISSN 1213-6972

Figure 4: tr(k1(t, p, p)) of the armadillo modell in dif-
ferent poses.

Figure 5: from top to bottom: smaller eigen-
value of k1(t, p, p), larger eigenvalue of k1(t, p, p),
tr(k1(t, p, p)), det(k1(t, p, p)) and Heat Kernel signa-
ture for increasing values of t.

the Heat Kernel Signature is derived from the Heat Ker-
nel of 0-forms. Since this yields a time-dependent ten-
sor field of second order, we obtain several point sig-
natures by considering tensor invariants like the eigen-
values, the trace and the determinant. In the case of
surfaces without boundary both eigenvalues have very
similar values; the trace and the determinant behave ac-
cordingly. For small time values the behavior of both
eigenvalues is quite similar to the Heat Kernel Signa-
ture, but it differs for large time values. In contrast to
this, the behavior of the eigenvalues is very different
for surfaces with boundary, even for small time values.
Thus all considered tensor invariants differ significantly
from the Heat Kernel Signature. This property might
bring improvements for the analysis of surfaces with
boundary, compared to the Heat Kernel Signature with

Figure 6: from top to bottom: tr(k1(t, p, p)),
det(k1(t, p, p)) and Heat Kernel Signature for increas-
ing values of t.

Dirichlet or Neumann boundary conditions; a further
examination is left for future work.

REFERENCES
[1] R. Abraham, J.E. Marsden, and T. Ratiu. Manifolds, Tensor

Analysis, and Applications. Addison-Wesley, 1983.

[2] A.I. Bobenko and B.A. Springborn. A discrete laplace–beltrami
operator for simplicial surfaces. Discrete and Computational
Geometry, 38(4):740–756, 2007.

[3] A.M. Bronstein, M.M. Bronstein, B. Bustos, U. Castellani,
M. Crisani, B. Falcidieno, L.J. Guibas, I. Kokkinos, V. Murino,
M. Ovsjanikov, et al. SHREC 2010: robust feature detection
and description benchmark. Proc. 3DOR, 2010.

[4] A.M. Bronstein, M.M. Bronstein, U. Castellani, B. Falcidieno,
A. Fusiello, A. Godil, L.J. Guibas, I. Kokkinos, Z. Lian,
M. Ovsjanikov, et al. SHREC 2010: robust large-scale shape
retrieval benchmark. In Eurographics Workshop on 3D Object
Retrieval, To appear, 2010.

[5] Mathieu Desbrun, Eva Kanso, and Yiying Tong. Discrete differ-
ential forms for computational modeling. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Courses, pages 39–54, New York, NY,
USA, 2006. ACM.

[6] A. Gillette. Notes on discrete exterior calculus. 2009.

[7] A.N. Hirani. Discrete exterior calculus. PhD thesis, Citeseer,
2003.

[8] M. Reuter, F.E. Wolter, and N. Peinecke. Laplace–beltrami
spectra as ‘shape-dna’of surfaces and solids. Computer-Aided
Design, 38(4):342–366, 2006.

[9] S. Rosenberg. The Laplacian on a Riemannian manifold: an in-
troduction to analysis on manifolds. Cambridge Univ Pr, 1997.

[10] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and prov-
ably informative multi-scale signature based on heat diffusion.
In Proc. Eurographics Symposium on Geometry Processing
(SGP), 2009.

[11] Valentin Zobel. Spectral Analysis of the Hodge Laplacian on
Discrete Manifolds. Master Thesis, 2010.

Journal of WSCG 100 ISSN 1213-6972

Plausible and Realtime Rendering of Scratched Metal by
Deforming MDF of Normal Mapped Anisotropic Surface

Young-Min Kang
Tongmyong University

ymkang@tu.ac.kr

Hwan-Gue Cho
Pusan National University

hgcho@pusan.ac.kr

Sung-Soo Kim
ETRI

sungsoo@etri.re.kr

ABSTRACT

An effective method to render realistic metallic surface in realtime application is proposed. The proposed method perturbs
the normal vectors on the metallic surface to represent small scratches. General approach to the normal vector perturbation
is to use bump map or normal map. However, the bumps generated with those methods do not show plausible reflectance
when the surface is modeled with a microfacet-based anisotropic BRDF. Because the microfacet-based anisotropic BRDFs
are generally employed in order to express metallic surface, the limitation of the simple normal mapping or other normal
vector perturbation techniques make it difficult to render realistic metallic object with various scratches. The proposed method
employs not only normal perturbation but also deformation of the microfacet distribution function (MDF) that determines the
reflectance properties on the surface. The MDF deformation enables more realistic rendering of metallic surface. The proposed
method can be easily implemented with GPU programs, and works well in realtime environments.

Keywords: Realtime rendering, anisotropic reflectance, metal rendering, MDF deformation

1 INTRODUCTION
In this paper, we propose a procedural method that
efficiently renders plausible metallic surfaces as shown
in Fig.1. Anisotropic reflectance models have been
widely employed to represent the metallic surface.
However, realistic representation of small scratches
shown in Fig.1 were not main concern of those
methods.

Torrance and Sparrow proposed microfacet-based
rendering model where the surface to be rendered was
assumed as a collection of very small facets[12]. Each
facet has its own orientation and reflects like a mirror.
The reflectance property of this surface model is
determined by microfacet distribution function(MDF).

Many researchers improved the microfacet-based
rendering model to represent various materials. Meth-
ods that can control the roughness of the surface
were introduced[4, 3], and those methods were also
improved by Cook and Torrence[5].

A smooth metallic surface reflects the environ-
ments like a mirror. However, the most metal objects
have brushed scratches or random scratches. Theses
scratches make the reflectance on an actual metallic
surface different from that on the perfect mirror
surface. The peculiar reflectance on metallic surface
is determined by the direction of the scratches, and

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Figure 1: Realtime rendering with proposed method.

in most cases, has anisotropic appearance. There
have been various techniques for representing the
anisotropic reflectance[8, 14, 11].

Ashikhmin and Shirley proposed an anisotropic re-
flection model with intuitive control parameters[1, 2].
Their model is successfully utilized to express the sur-
face with brushed scratches.

Wang et al. proposed a method that approximates the
measured BRDF(bidirectional reflectance distribution
function) with multiple spherical lobes[13]. Although
this method is capable of reproduce various materials
including metallic surface, it has a serious disadvantage
in that expensive measured BRDF is required. More-
over, it is still impossible to accurately render small
scratches and light scattering with camera close up to
the surface.

Journal of WSCG 101 ISSN 1213-6972

Although there have been many approaches to repre-
sentation of metallic surface [15], relatively little atten-
tion has been given to the representation of the small
scratches on the surface and the reflectance disturbance
caused by the scratches. In most cases, only the re-
flectance anisotropy caused by the scratches was mod-
eled. An efficient and accurate computation of spec-
ular reflection has been also introduced for realtime
applications[9]. However, it cannot be applied to nor-
mal mapped surface because the method is based on
vertex geometry.

In this paper, we propose a procedural method
that does not require any measured data. The pro-
posed method efficiently and plausibly renders the
small scratches and its light scattering on anisotropic
reflectance surfaces.

2 REALISTIC METAL RENDERING
In this section, a procedural approach to metallic sur-
face rendering is proposed. The proposed method is
based on microfacet model, and the small scratches on
the surface are represented with normal vector pertur-
bation. In order to increase the realism, we also deform
the MDF according to the perturbation of the normal
vector.

2.1 MDF for Anisotropic Reflectance
The reflectance property of microfacet-based surface
model is determined by the microfacet distribution
function(MDF) D(ωh) which gives the probability that
a microfacet is oriented to the direction ωh. Ashikhmin
et al. proposed an anisotropic reflectance model with
the following MDF:

D(ωh) =

√
(ex +1)(ey +1)

2π
(ωh ·n)ex cos2 φ+ey sin2 φ (1)

, where n is the normal vector at the point to be
rendered. The actual parameter ωh in the MDF is the
half way vector between the incident light direction
and outgoing viewing direction. ex and ey are param-
eters that control the anisotropy of the reflection, and
φ is the azimuthal angle. ωh is a unit vector which is
sufficiently represented with only two components as
(ωh.x,ωh.y,

√
1−ωh.x2 −ωh.y2). Therefore,the MDF

is also defined in 2D space as shown in Fig.2.
Fig.2 shows an example of anisotropic MDF using

Eq.1 with different ex and ey. As shown in Fig.2,
the incoming light energy is scattered differently in
x(tangent) and y(binormal) axes of tangent space. Such
anisotropic reflectance is appropriate for metal render-
ing. In this paper, we assume that metallic surfaces re-
flect light energy according to the anisotropic model de-
scribed in Eq.1

Fig.3 shows the rendering results by changing the pa-
rameters ex and ey of Eq.1. As shown in the figure, the

Figure 2: MDF in 2D space

(a) ex,ey : 20,20 (b) ex,ey : 200,10 (c) ex,ey : 10,200
Figure 3: Surfaces rendered with Eq.1: (a) isotropic,
(b)&(c) anisotropic reflectance.

anisotropic reflectance on metallic surface can be easily
controlled. However, this method is not capable of cap-
turing the small scratches and the light scattering in de-
tails when the camera is moved close to the surface. A
simple approach to this problem is to perturb the normal
vectors on the surface, but the perturbed normal vectors
on anisotropic reflection surface may introduce another
problem. The limitation of simple normal perturbation
is described in the next subsection.

2.2 Limitation of Normal Perturbation
There have been continuous efforts to represent higher
geometric complexity with simple mesh by perturbing
the normal vectors[10, 6, 7]. Bump mapping is well
known in graphics literature, normal mapping is an im-
proved method which does not compute normal vectors
during the rendering phase[10].

In this paper, we are interested in representing the
light scattering by the small scratches on the anisotropic
reflection surface. In order to represent the scratches we
employed the well-known normal map approach. Fig.4
shows the scratch maps (essentially normal maps), and
the expected rendering results. The scratch maps are
seamless textures and procedurally generated.

Heidrich and Seidel applied Blinn-Phong shading to
the normal mapped geometry[6]. Their method is suc-
cessful only when the reflection is isotropic. However,
the normal mapping on anisotropic reflection surface,
unfortunately, cannot reproduce the original anisotropic
reflectance on the distorted surface. Other normal per-
turbation methods such as displacement mapping also
suffer from the same problem. Fig.5 shows the un-

Journal of WSCG 102 ISSN 1213-6972

Figure 4: Scratch maps and expected rendering results:
(top row) scratch maps and (bottom row) expected re-
sults.

(a) original surface (b) normal mapped surface
Figure 5: Normal vector perturbation on an anisotropic
reflection surface: (a) original surface and (b) normal
mapped surface.

satisfactory rendering results when the simple normal
mapping is applied to an anisotropic reflection surface
with MDF function shown in Eq.1. As shown in the
figure, the anisotropic reflectance on the original sur-
face (a) is not preserved in the normal mapped surface
(b). The reflectance on the area where normal vectors
are perturbed is rather isotropic. Moreover we can ob-
serve some artifacts that specular reflection is severely
distorted at the left lower region.

The problem shown in Fig.5 is because the normal
mapping or other normal vector perturbation methods
only change the normal vector n. However, the MDF
D(ωh) is dependent not only on n but also on ωh. In
Eq.1, the only argument was ωh because the normal
vector is constant in tangent space. However, the nor-
mal vector should be another argument when normal
perturbation is applied. Let us denote the perturbed
normal vector as ñ. The MDF can then be rewritten
as follows:

Figure 6: MDF with perturbed normal vectors: (top
row) perturbation with isotropic MDF and (bottom row)
perturbation with anisotropic MDF.

D(ωh, ñ) =

√
(ex +1)(ey +1)

2π
(ωh · ñ)ex cos2 φ+ey sin2 φ (2)

Heidrich and Seidel computed the dot product of half
way vector and the perturbed normal vector to calcu-
late the specular reflection on the normal mapped sur-
face. Eq.2 also computes the dot product. However,
this method does not work well for anisotropic reflec-
tion surface. Fig.6 shows the MDF computed with Eq.2
and perturbed normal vectors. The cross mark in the
figure indicates the perturbed normal. The top row of
Fig.6 shows isotropic MDF when the normal vector is
perturbed. As shown in the figure, Eq.2 produces rea-
sonable deformed MDF for the isotropic MDF. How-
ever, the simple normal perturbation is not successful
with anisotropic MDFs. The bottom row of fig.6 shows
the results when we employed an anisotropic MDF. The
results show that simple normal perturbation approach
is hopelessly unsuccessful to preserve the original re-
flection property.

2.3 MDF Deformation
In order to overcome the limitation of the simple
normal mapping on anisotropic reflection surface, the
MDF should be properly deformed with the original
anisotropic property maintained. Fig.7 shows the MDF
deformation concept. Fig.7 (a) shows an example of
anisotropic MDF, and (c) shows the deformed MDF
in accordance with the normal vector perturbation
amount of (∆x,∆y) in tangent space. Let us denote
the deformed MDF as D′(ωh). We can easily derive
D′(ωh) with the deformation concept shown in Fig.7
(b). A certain point p in the domain of the original
MDF D(ωh) must move to another location p′ in the
domain of the deformed MDF D′(ωh). The direction
and magnitude of the movement are determined by
the movement from the center of the original MDF
space (C) to that of the deformed MDF space (C′). The
movement of the center is in fact the perturbation of the
normal vector, and can be denoted as (∆x,∆y). Let us
denote the transformation that move a point from p to
p′ in accordance with the normal perturbation (∆x,∆y)
as T (p,∆x,∆y). The transformation T (p,∆x,∆y)
can be easily derived with R, the intersection of the

Journal of WSCG 103 ISSN 1213-6972

(a) original MDF (b) deformation (c) deformed MDF
Figure 7: MDF deformation concept and corresponding
points.

Figure 8: MDF deformation examples: (top row) linear
interpolation results and (bottom row) smooth interpo-
lation results.

circumference of the MDF space and the ray from the
center through the point p.

The simple approach shown in Fig.7 move the point
p in the same direction with the center movement, and
the magnitude of the movement is linearly interpolated.
Therefore, the transformation can be expressed as fol-
lows:

T (p,∆x,∆y) = p+
| ~Rp|
| ~RC|

(∆x,∆y) (3)

Although the transformation shown in Eq.3 deforms
the MDF in accordance with the normal vector per-
turbation, the bending of the deformed anisotropic re-
flectance is excessive at the moved center as shown in
Fig.7 (c). In order to obtain more smooth interpolation,
we used the following transformation:

T (p,∆x,∆y) = p+

√
| ~Rp|
| ~RC|

(∆x,∆y) (4)

Fig.8 compares the MDF deformation results with the
linear (Eq.3) and the smooth (Eq.4) interpolations. The
top row shows the linear version while the bottom row
shows the smooth version. As shown in the figure, the
smooth interpolation version looks more natural.

It is obvious that computing the deformed MDF
at each sampling point on the surface is extremely
inefficient. Explicit deformation of the MDF is
only conceptual process. In the actual rendering
process, we never compute D′(ωh). Only the original
MDF D(ωh) is used with the inverse transformation
T −1(p′,∆x,∆y). In other words, we conceptually

employ D′(ωh) for the normal mapped surface, but
actually use D(T −1(ωh,∆x,∆y)) which has the
equivalent value.

The inverse transformation of Eq.4 can be easily ob-
tained as follows:

T −1(p′,∆x,∆y) = p′−

√
| ~Rp′|
| ~RC′|

(∆x,∆y) (5)

Now we can simply calculate D(T −1(ωh,∆x,∆y))
to compute the MDF at the point where the normal
vector is perturbed with (∆x,∆y). Because ∆x and ∆y
are the x and y components of the perturbed normal
vector, D(T −1(ωh,∆x,∆y)) can be also rewritten as
D(T −1(ωh, ñ)).

It should be noted that the MDF with the inverse
transformation, i.e., D(T −1(ωh, ñ)), still remain in the
original MDF space. The normal vector is always
(0,0,1) in tangent space. Therefore, the dot product of
any vector v and the normal vector n (i.e., v ·n) is sim-
ply the z component of the vector, v.z, and the actual
MDF we used is as follows:

D′(ωh, ñ) = (6)

D(T −1(ωh, ñ),n) =
√

(ex+1)(ey+1)
2π

T −1(ωh, ñ).zε

,where the exponent ε is ex cos2 φ + ey sin2
φ .

Fig.9 shows the effect of the MDF deformation
by comparing the specular reflections on the illusory
bumps. The bumpy illusion on the surface shown
in Fig.9 (a) is generated only with normal mapping
method while the result shown in Fig.9 (b) is generated
with MDF deformation techniques. The original
surface has anisotropic reflection property. However,
as shown in the figure, the original MDF does not
reproduce the anisotropic reflectance on the bumps.
Even worse, the shapes of the specular reflection areas
are weirdly distorted on some bumps. The deformed
MDF removes such disadvantages as shown in Fig.9
(b). The anisotropic reflectance is well preserved on
each illusory bump, and no weird shapes are found.

2.4 Scratch Map Generation
As mentioned earlier, we represent the natural metallic
appearance by engraving small scratches on the surface.
Those scratches are expressed with perturbed normal
vectors, and some example normal maps were already
shown in Fig.4.

The scratch maps can be generated with various tech-
niques, but it can be easily and efficiently created in a
procedural manner. In order to devise a scratch map
generation method, we employed engraving a hemi-
sphere as a basic operation. The normal vectors on the
engraved hemispherical surface can be easily computed

Journal of WSCG 104 ISSN 1213-6972

(a) Normal mapped surface without MDF deformation

(b) Normal mapped surface with deformed MDF
Figure 9: Effect of MDF deformation on anisotropic
reflection surface: normal mapping (a) without MDF
deformation and (b) with additional MDF deformation
applied.

(a) basic pit (b) moved pit

(c) random direction (d) directional tendency
Figure 10: Concept of scratch map generation

in tangent space. Fig.10 (a) shows the basic scratch tex-
ture with one engraved hemisphere. The center of the
hemisphere can freely move within the texture space.
We made our texture seamless as shown in Fig.10 (b).
We can also scale the hemisphere and stretch in any di-
rection, and arbitrarily increase the number of engraved
pits. The depth of the engraved scratch can be also ar-
bitrarily changed. Fig.10 (c) and (d) show the scratch
maps generated by stretching the engraved pits in ran-
dom direction and in a certain range of directions re-
spectively.

Tech Gouraud Aniso N-Map MDF
Cost 1 1.28 1.44 1.46

Figure 11: Rendering performance of the proposed
method compared with other realtime methods.

3 EXPERIMENTS

The techniques proposed in this paper was implemented
with OpenGL shading language, and the computing
environments were Mac OS X operating system with
2.26 GHz Intel core 2 CPU, 2 G DDR3 RAM and
NVIDIA 256M VRAM GeForce 9400M. Fig.11 is the
performance analysis of the proposed method com-
pared with previous traditional approaches. The label
’Aniso’ means Ashikhmin-Shirley anisotropic reflec-
tion model, ’N-map’ represents normal mapping, and
’MDF’ indicates the proposed MDF deformation tech-
niques. The computational cost of Gouraud shading
is taken as a unit cost, and other rendering techniques
were compared with the unit cost. As shown in the fig-
ure, the proposed method with deformed MDF is just
slightly more expensive than usual normal mapping (la-
beled as N-Map in the figure) which works very well in
realtime environments.

Fig.12 compares the light scattering on normal
mapped anisotropic reflection surface. Fig.12 (a)
shows the rendering results where normal mapping is
applied without deforming the MDF while (b) shows
results rendered with additional MDF deformation.
The normal map image in the right bottom corner is
the scratch map applied. As shown in the figure, the
scratches represented by simple normal mapping do
not plausibly scatter the light. However, the results
with the proposed method in (b) show realistic light
scattering along the rim of the specular reflection area.

Fig.13 shows the effect of the MDF deformation
when environments are mapped on the surface. The
reflection on the surface is modeled with Ashikhmin
and Shirley BRDF model. The left column of the
Fig.13 shows the result without the environment map-
ping while the right column shows the rendering results
with environment mapping. The first row in the fig-
ure shows the original anisotropic reflection surface of
Ashikhmin and Shirley’s model with the scratch map
texture in the right bottom corner. The middle row

Journal of WSCG 105 ISSN 1213-6972

(a) normal mapping (b) MDF deformation
Figure 12: Comparison of light scattering on (a) simple normal mapped surface and (b) normal mapped surface
with additional MDF deformation.

shows the results only with the simple normal mapping,
and the bottom row shows the result when the proposed
MDF deformation is additionally applied. As shown in
the figure, the additional MDF deformation increases
the rendering quality, and reproduces the light scatter-
ing by the scratches.

Although, in this paper, we employed Ashikhmin
and Shirley BRDF for modeling the anisotropic re-
flection surface, the proposed method works with any
anisotropic reflection surface. For example, our method
works better with Ward BRDF model. The Ward BRDF
is also an anisotropic reflection model[14].

Fig.14 shows the effect of the proposed method
when the surface is model with Ward anisotropic
BRDF. The reflection on the surface is modeled with
Ward anisotropic BRDF model. The left column of
the Fig.14 shows the result without the environments
mapping while the right column shows the rendering

results with environments mapping. The first row in
the figure shows the original anisotropic reflection
surface of Ward BRDF model. The middle row shows
the results only with the simple normal mapping, and
the bottom row shows the results when the proposed
MDF deformation is additionally applied. As shown in
the figure, the simple normal mapping on Ward BRDF
surface does not provide plausible light scattering. In
fact, the effect of the perturbed normal vector can be
hardly observed without environment mapping. Only
when the proposed method is applied, we can obtain
plausible light scattering on the scratched surface as
shown in the bottom row.

Fig.15 shows the close-up comparison of light scat-
tering effects of simple normal mapping and the pro-
posed method. The results shown in (a) and (b) were
rendered with Ward BRDF for anisotropic reflection on
the surface while Ashikhmin and Shirley BRDF model

Journal of WSCG 106 ISSN 1213-6972

(a) Anisotropic reflection (Ashikhmin-Shirley model) (b) Anisotropic reflection with environments

(c) Normal mapping (d) Normal mapping with environments

(e) MDF deformation (f) MDF deformation with environments
Figure 13: The effect of the propose method on Ashikhmin and Shirley model: (left column) no environment map-
ping, (right column) environment mapping, (top row) original anisotropic reflection surface, (b) normal mapping,
and (c) normal mapping with MDF deformation.

Journal of WSCG 107 ISSN 1213-6972

(a) Anisotropic reflection (Ward model) (b) Anisotropic reflection with environments

(c) Normal mapping (d) Normal mapping with environments

(e) MDF deformation (f) MDF deformation with environments
Figure 14: The effect of the propose method on Ward’s model: (left column) no environment mapping, (right
column) environment mapping, (top row) original anisotropic reflection surface, (b) normal mapping, and (c)
normal mapping with MDF deformation.

Journal of WSCG 108 ISSN 1213-6972

(a) Normal mapping on Ward BRDF surface (b) MDF deformation on the Ward surface

(c) Normal mapping on Ashikhmin-Shirley BRDF surface (d) MDF deformation on the Ashikhmin-Shirley surface
Figure 15: Close-up comparison of light scattering: (a) simple normal mapping on a surface with Ward anisotropic
reflection model, (b) additional MDF deformation applied on the Ward model, (c) simple normal mapping on
Ashikhmin-Shirley BRDF surface, and (d) MDF deformation effect on the Ashikhmin-Shirley surface.

is employed for those shown in (c) and (d). Fig.15 (a)
and (c) show the results only with the normal map-
ping while (b) and (d) are results generated with the
proposed MDF deformation method. As shown in the
figure, normal mapping with deformed MDF shows su-
perior rendering quality to the simple normal mapping
approach.

4 CONCLUSION
In this paper, we proposed an effective and efficient
method that improves the normal mapping to be suc-
cessfully applied to anisotropic reflection surfaces. The
proposed method is appropriate for rendering metal-
lic surfaces with small scratches in realtime. We have

shown in this paper that the simple normal mapping or
other normal perturbation techniques cannot be applied
to anisotropic reflection surfaces. In order to enable
normal perturbation to better illusory bumps on sur-
face, we introduced MDF deformation concept. The
experimental results show that the proposed method
achieves far better rendering quality than simple nor-
mal mapping method does. Moreover, the computa-
tional cost additionally required for MDF deformation
is small enough for realtime environments. The only
difference between the proposed method and the tradi-
tional anisotropic BRDF models is that ωh given to the
MDF is adjusted. Therefore, the proposed method is
easily implemented as GPU program and works well in

Journal of WSCG 109 ISSN 1213-6972

realtime environments. The proposed method can be
successfully utilized in games or virtual reality systems
for rendering high-quality metallic surfaces.

ACKNOWLEDGEMENTS
This work was supported in part by the SW comput-
ing R&D program of MKE/KEIT [10035184], "Game
Service Technology Based on Realtime Streaming".

REFERENCES
[1] M. Ashikhmin, S. Premoze, and P. Shirley. A microfacet-based

brdf generator. In Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive Techniques, pages 65–
74, 2000.

[2] M. Ashikhmin and P. Shirley. An anisotropic phong brdf model.
Journal of Graphics Tools, 5(2):25–32, 2002.

[3] J. Blinn. Models of light reflection for computer synthe-
sized pictures. Proceedings of the 4th annual conference on
Computer graphics and interactive techniques, pages 192–198,
1977.

[4] J. Blinn and M. Newell. Texture and reflection in computer
generated images. Communication of ACM, 19(10):542–547,
1976.

[5] R. L. Cook and K. E Torrance. A reflectance model for com-
puter graphics. Computer Graphics (ACM Siggraph ’81 Con-
ference Proceedings), 15(3):307–316, 1981.

[6] W. Heidrich and H.-P. Seidel. Realistic, hardware-accelerated
shading and lighting. In Proceedings of the 26th Annual Confer-
ence on Computer Graphics and Interactive Techniques, pages
171–178, 1999.

[7] M. Pharr and G. Humphreys. In Physically-based Rendering.
Elsevier (Morgan Kaufman Publishers), 2004.

[8] M. Poulin and A. Founier. A model for anisotropic reflection.
Computer Graphics (ACM Siggraph ’90 Conference Proceed-
ings), 23(4):273–282, 1990.

[9] D Roger and N. Holzschuh. Accurate specular reflections in
real-time. Computer Graphics Forum, 25(3):293–302, 2006.

[10] H. Rushmeier, G. Taubin, and A. Gueziec. Applying shapes
from lighting variation to bump map capture. In Proceedings of
Eurographics Rendering Workshop ’97, pages 35–44, 1997.

[11] C. Schilick. A customizable reflectance model for everyday
rendering. In Proceedings of the 4th Eurographics Workshop
on Rendering, pages 73–84, 1993.

[12] K. E. Torrance and E. M. Sparrow. Theory for off-specular re-
flection from roughened surfaces. Journal of Optical Society of
America, 57(9), 1967.

[13] J. Wang, P. Ren, M. Gong, J. Snyder, and B. Guo. All-frequency
rendering of dynamic, spatially-varying reflectance. In Pro-
ceedings of ACM Siggraph Asia 2009, pages 1–10, 2009.

[14] G. Ward. Measuring and modeling anisotropic reflection. Com-
puter Graphics (ACM Siggraph ’92 Conference Proceedings),
26(2):265–272, 1992.

[15] L zirmay Kalos, T. Umenhoffer, Gustavo Patow, L. Szecsi, and
M Sbert. Specular effects on the gpu: State of the art. Computer
Graphics Forum, 28(6):1586–1617, 2009.

Journal of WSCG 110 ISSN 1213-6972

Multiscale Visualization of 3D Geovirtual Environments Using
View-Dependent Multi-Perspective Views

Sebastian Pasewaldt Matthias Trapp Jürgen Döllner
Hasso-Plattner-Institut, University of Potsdam, Germany

{sebastian.pasewaldt|matthias.trapp|juergen.doellner}@hpi.uni-potsdam.de

ABSTRACT

3D geovirtual environments (GeoVEs), such as virtual 3D city models or landscape models, are essential visualization tools for
effectively communicating complex spatial information. In this paper, we discuss how these environments can be visualized using
multi-perspective projections [10, 13] based on view-dependent global deformations. Multi-perspective projections enable 3D
visualization similar to panoramic maps, increasing overview and information density in depictions of 3D GeoVEs. To make
multi-perspective views an effective medium, they must adjust to the orientation of the virtual camera controlled by the user and
constrained by the environment. Thus, changing multi-perspective camera configurations typically require the user to manually
adapt the global deformation — an error prone, non-intuitive, and often time-consuming task. Our main contribution comprises
a concept for the automatic and view-dependent interpolation of different global deformation preset configurations (Fig. 1).
Applications and systems that implement such view-dependent global deformations, allow users to smoothly and steadily interact
with and navigate through multi-perspective 3D GeoVEs.

Keywords: multi-perspective views, view-dependence, global space deformation, realtime rendering, virtual 3D environments,
geovisualization.

1 INTRODUCTION

3D GeoVEs, such as virtual 3D city and landscape mod-
els, represent efficient tools for fields such as geogra-
phy or cartography, in particular if their visualization
and knowledge can be transferred to the 3D visualiza-
tion domain [9]. Previous work has shown that global
deformation applied to such environments can be used
to assist wayfinding and navigation by making effective
use of the available image space [10,13] and by reducing
occlusions [18]. Grabler et al. [2009] demonstrate that
the usage of multi-perspective views in combination with
cartographic generalization techniques such as simplifi-
cation and deformation is suitable to convey important
information with in 3D tourist maps.

In the context of interactive global deformations
and multi-perspective views, existing visualization
techniques and systems are most effective for specific
settings of a virtual camera, i.e., Fig. 2. The virtual
camera must be near the ground (pedestrian view) or at
a certain height (birds-eye view), in order to exploit the
full potential of these visualization techniques. Usually,
in a 3D GeoVE the user wants to interact and navigate
freely. This would require the manual adaptation of
the visualization parameters during interaction and

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Figure 1: Conceptional sketch of the interpolation of
global deformations and different geometric representa-
tions based on the viewing angle of the virtual camera.

navigation. In general, this task is complex, error-prone,
and time-consuming. In this paper we develop a concept
that delivers a suitable visualization for a camera setting
via automatic view-dependent interpolation of global
deformations that are represented by parametric curves.

Further, a drawback of 3D GeoVEs are the multiple
geometric scales [9], introduced by the perspective pro-
jection of the camera, because they lead to small scales
in the more distant parts of the scene. Consequently,
the depiction of objects only have limited image space
(e.g. only one pixel) and cannot be distinguished by a
viewer (pixel noise). To overcome this problem in the do-
main of paper maps, cartographers apply generalization
techniques to minimize visual complexity and to improve
comprehension. A similar concept is used in most of the
current multi-perspective techniques. Instead of using a
photo-realistic style, a map-based style is applied to re-
gions of small scales. We generalize the style concept

Journal of WSCG 111 ISSN 1213-6972

Figure 2: Exemplary results of our visualization system that enables the view-dependent interpolation of the de-
picted scenes: progressive perspective (A), degressive perspective (B), and a hybrid perspective (C) using different
generalization levels of a 3D virtual city model of Berlin.

by letting the user define multiple geometric representa-
tions, e.g., obtained from cell-based generalization [8],
to sections of the curve (Fig. 2). Further, these ex-
plicit geometric representations enable more design free-
dom then automatically derived style variations such as
in [10]. Jobst and Döllner (2008) further suggest to sub-
divide the visualization into zones where a constant scal-
ing and thus a constant generalization is applied per zone.
An exemplary visualization can be seen in Fig. 7.

Möser et al. [13] generalize the concept introduced
in [10] by using Hermite curves for the parameterization
of global deformations, which can be easily manipulated
by the user. However, the application of standard param-
eterized curves for such a visualization introduces addi-
tional geometric distortions. We compensate these by an
arc-length parameterization [14].

In this work we present a concept and system that
addresses the above challenges with respect to realtime
raster-based graphics synthesis. To summarize, this work
makes the following contribution:

1. It describes a concept for the automated and view-
dependent interpolation of global deformations based
on the viewing angle of the user’s virtual camera with
respect to a reference plane.

2. It further presents an extension to global deformations
that enables a user to define different geometric rep-
resentations for different sections along a deformation
curve and enables their image-based interpolation.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses related work. Section 3 introduces the
concept of view-dependent global deformations. Section
4 describes steps to prepare the visualization. Section 5
outlines how to implement the concept as a realtime ren-
dering technique. Section 6 consists of a performance
evaluation, a preliminary user study, discusses problems
and limitations, and presents ideas for future work. Sec-
tion 7 concludes this paper.

2 RELATED WORK
Panoramic Imaging
Panoramic maps were introduced by H.C. Berann [3].
He combined handcrafted geographic with terrestrial de-
pictions and different projection techniques to generate

a new kind of map, which assists the user in the orien-
tation task. This work was time-consuming and tedious.
Premoze introduced a framework for the computer aided
generation of panoramic maps [17]. It offers tools to as-
sist the map-maker in the work flow of the hand-tailored
maps. A semi-automatic approach to generate panoramic
maps, which relies on global deformations, is presented
in [24]. Falk et al. introduced a semi-automatic tech-
nique based on a force field that is extracted from the ter-
rain surface [7]. Degener & Klein concentrate on param-
eters like occlusion and feature visibility in their auto-
matic generation of panoramic maps [6]. All approaches
combine non-linear perspectives in one final image, but
rely on different techniques.

Non-linear Perspectives

Non-linear Perspectives can be achieved with different
techniques: (1) Using non-standard, non-linear projec-
tion to produce a non-linear perspective image, or com-
bine several images taken from different perspectives
([1], [23]). (2) Reflection on non planar surfaces and (3)
Local or global space deformation [26]. The combina-
tion of different images to one final image as used in [1]
and [23] can also be expressed by a space-deformation
as introduced in [2]. The Single Camera Flexible Pro-
jection Framework of [4] is capable of combining linear,
non-linear and handmade projections in realtime. The
projections are described by a deformed viewing volume.
Similar to free-form deformation (FFD [22]), the view
frustum serves as lattice. Objects or viewing rays are de-
formed according to the deformation of the lattice. For
the occlusion free visualization of driving routes Taka-
hashi et al. rely on global space deformation [25].

On the one hand the mentioned techniques offer a
broad and flexible definition of the projections, which
enables the user to control nearly every facet of the final
perspective. On the other hand a large number of non-
intuitive parameters have to be controlled. Brosz et al.
[2007] abstracts from these parameter by using a lattice.
Similarly, we rely on a 2D B-Spline curve to control the
3D curve-based deformation.

Journal of WSCG 112 ISSN 1213-6972

Global Deformations

The work of Lorenz et al. [10] uses global deformation
to generate non-linear perspectives. The geometry is
mapped on two different planes, which are connected by
a Bézier surface. The planes may vary in tilt, allowing
for a combination of two different perspectives. Simi-
lar to panoramic maps, a mixture of cartographic maps
and aerial images is used. The different stylization are
seamlessly blended in the transition between the planes.
Möser et al. [2008] extend this idea by using a more flex-
ible Hermite curve to control the deformation. They also
rely on a combination of aerial and cartographic images
to apply a kind of generalization in the more distant parts
of the scene.

Our approach is based on parametric curves, too. In-
stead of using a Hermite curve, we decided to use a B-
Spline curve, because it offers more flexibility without
the need of combining several curves. Furthermore, an
arbitrary number of stylizations can be defined, which
are not restricted to textures. Instead, we exploit the pos-
sibility of blending between different geometric repre-
sentations generated by the generalization of 3D virtual
city models as introduced in [8]. We introduce a view-
dependent variation based on the work of Rademacher
[19]. He defines key-deformation with associated key
viewing points. Depending on the current viewpoint the
key-deformations are interpolated. A similar approach is
used by [5] for interactive stylized camera control. An-
other view-dependent variation of deformations is dis-
cussed in [12]. Here the global deformation is modified
by a view or distant-dependent control function that can
depend on a virtual camera.

3 VIEW-DEPENDENT GLOBAL
DEFORMATIONS

Our approach consists of two main phases: (1) Rigging
Visualization Presets: The user prepares discrete presets
of the visualization. One visualization preset includes
a deformation curve, the assignment of geometric rep-
resentations to curve sections (tagging), and the defini-
tion of a viewing angle for which the preset is valid. (2)
Realtime Visualization: During runtime the presets are
interpolated using the camera parameters, which are ma-
nipulated during navigation or interaction with the 3D
GeoVE.

3.1 Preliminaries
For our visualization we assume that a 3D GeoVE can
be approximated by a 3D reference plane R = (N,O) ∈
R3×R3 defined by a normal vector N and a position vec-
tor O. Thus, and because of the isotropy of the global
deformation variants used in this paper, a view setting
for a virtual camera can be described by a viewing angle
φ = cos(90−CD ·N) (Fig. 4).

To implement progressive or degressive perspectives
[10] or hybrid forms [13], our approach uses B-Splines

curves [20] instead of Hermite curves. In our experi-
ments we use cubic B-Splines curves (k = 4) with four or
six control points. In [9] it is argued that a smaller tran-
sition zone and linear segments would benefit the com-
prehension of such a visualization. This specific con-
figuration is hard to implement using a single Hermite
curve, but can be easily achieved using B-Splines curves
with six control points, by setting two consecutive con-
trol points to the same position (Fig. 7).

R
RS

RC

RE

s e

V'

N(t)

V''C
P

t

V'T

z
V

L

CD

Figure 3: The reference plane R is separated by the pa-
rameter s and e into three sections: RS, RS and RC. Based
on the depth zV ′ of the vertex V along the camera direc-
tion CD, the vertex is deformed onto one of the sections.

3.2 Application of Deformation Curves
We apply a global space deformation based on paramet-
ric curves, where the curve defines the deformation be-
havior. Therefore, R is subdivided into three sections
(Fig. 3): (1) the curve-controlled section RC, (2) a planar
extension at the start RS, and (3) a second planar exten-
sion at the end RE . The deformation of RC is controlled
by a B-Spline curve C(t) with a static open knot vec-
tor. Assuming that the control points Bi are fixed for
a specific B-Spline, the position vector in curve-space
C(t) ∈ [0,1]× [1,−1] only depends on the parameter t.
To deform an input vertex V = (x,y,z,w) ∈ R4 we need
to establish a mapping between V and t.

To establish the mapping, we first aligned V along the
z-axis of the camera space V ′ = V ·RA. RA rotates V
around O by φ . After the rotation, every vertex is aligned
along the viewing direction CD of the virtual camera. The
depth of V ′ is linearized between the user defined scalars
for the start s and end e of the curve in camera space to
compute t ∈ [0,1]. To account to the varying arc length L
of the B-Spline curve in curve space, we perform a sec-
ond normalization of t by L (Fig. 3). The rotation during
the mapping is necessary, since otherwise a change of φ

would lead to a different depth value of V and thus to
a different mapping between V and t. Finally, the de-
formed vertex V ′′ is computed as follows:

V ′′ =


V ′ ·MS t < 0
V ′ ·ME t > L
V ′ ·MC(t) otherwise

t =
zV ′ − s
e− s

· 1
L

The deformation matrix MC(t) consists of two separate
translations TC(t) and DC(t), which are applied to V ′ se-

Journal of WSCG 113 ISSN 1213-6972

quentially. TC(t) translates the vertex according to its po-
sition on the curve: Based on t a position vector C(t) in
curve space is computed. C(t) is mapped back to camera
space and used to translate V ′ onto RC, yielding V ′T . Af-
terwards DC(t) translates the vertex along the normal of
the curve as follows: Based on the bi-normal Bx and the
tangent C′(t) the normal N(t) =C′(t)×Bx is computed.
V ′T is translated along N(t) by a distance d. Here, d de-
notes the distance of V ′ to its projection onto R. We just
translate the position of the input vertex, because our de-
formation is a space deformation only. Operations which
depends on vertex attributes, e.g. normals, are applied to
the undeformed scene.

Figure 4: Exemplary parameterization of a deformation
curve preset using four tag points (ui).

To handle the cases of t /∈ [0,1] the deformation ma-
trices MS and ME are applied accordingly to transform
V ′ on RS or RE : If the extension plane is parallel to R
the matrix is a translation matrix. Otherwise the matrix
rotates V ′ on RS or RE . RS is defined by the normal and
position vector of the last B-Spline pont (C(1)) and RE
by the first point (C(0)).

Depending on the distribution of the control vertices
and the knot vector of a B-Spline curve, a sampling with
equidistant values t1, t2 and t3 may not yield an equidis-
tant distribution of points P(t1), P(t2) and P(t3), because
a B-Spline curve is not arc-length preserving. This is dis-
tracting, since it will lead to a scaling error introduced by
a straining or stretching of the geometric representation.

To guarantee a correct deformation behavior the curves
must be re-parameterized. The approaches of [21] and
[15] are not suited for our purposes because they either
globally distribute the scaling error or are computational
expensive. Instead, we decided to re-parameterize the
parameter t similar to the method described in [14]. We
sample the B-Spline curve in equidistant intervals and
compute the arc-length of these segments. Based on the
sampled length L and the according parameter t, the arc-
length preserving parameter t ′ is computed by linear in-
terpolation and stored in a lookup table.

3.3 Visualization Presets
Before we describe the tagging and interpolation of de-
formation curves, it is necessary to introduce the concep-
tual term visualization preset. As a preset we consider

a single perspective (e.g., degressive or progressive). A
preset P consists of the following components:

P = (C(t),T ,G ,φ ,τ,s,e,a,b)

The set of all presets is denoted as P , with |P| = m.
Besides a B-Spline curve C(t) that is used to modify
the global deformation, it contains an ordered list of tag
points T , a list of geometric representations G and the
following scalar parameters (Fig. 4):

• φ : a camera angle, defined through the virtual camera
and the reference plane R.

• τ: an angle interval around φ , where a preset is valid,
i.e., no interpolation of the preset will occur.

• s,e: start and end of the deformation in eye-space.
The interval is used to widen or narrow the curve-
spaced deformation in camera-direction.

• a,b ∈ [0,1]: start and end of the geometry interpola-
tion. This enables the user to define the geometry in-
terpolation independent from the interpolation of the
multi-perspective view.

3.4 Tagging of Deformation Curves
Our system enables the user to associate curve sections
with different geometric representations. This can be
useful for increasing or decreasing the visual complexity
with respect to parts of the visualization. In [10], this was
implied by blending between different type of textures
within the transition zone and by omitting unimportant
buildings. We extend this idea by blending between 3D
geometry assigned to consecutive sections of a deforma-
tion curve (see Section 5.2). In our examples (Fig. 2 and
7) we use different levels of abstraction (LoA) automati-
cally derived from the virtual city model of Berlin [8].

We can partition a deformation curve C(t) into a num-
ber l ≥ 2 of consecutive styling sections as part of the
global set of sections S :

Si = (Ti,Ti+1,G), Si ∈S G ∈ G

Here, i = 0, . . . , l− 1 represents an index into the list of
tag-points T = T0, . . . ,Tl assigned to every preset P. The
geometric representation for a section is denoted as G. A
tag point Ti is further defined as follows:

Ti = (u,δ) u,δ ∈ [0,1], i = 0, . . . , l Ti ∈T

The position of the tag point on the curve is controlled
via the parameter u. δ describes the length of the transi-
tion zone between two consecutive sections and is used
for blending (see Section 5.2). We assume implicit fixed
start and end tag points T0 = (0,0) at the curves start and
Tl = (1,0) at the curves end. Fig. 5 shows the different
variants of a terrain model of the grand canyon and the
associated active curve preset (inset).

Journal of WSCG 114 ISSN 1213-6972

Figure 5: Styling section of a deformation curve with different models of the grand canyon. The inset shows the
associated tag point and sections of the curve: The control points are depicted in red and the tag points are depicted
green. The grid overlay was added to illustrate the deformation.

3.5 View-Dependent Curve Interpolation

The view-dependent curve interpolation, based on the
camera angle φ , consists of two main steps: the preset
selection and the preset interpolation. Given the view-
ing angle of the current virtual camera φa and the set of
all presets P , a selection function s(P,φa) = (PS,PT)
delivers two presets as follows:

s(P,φa)= (PS,PT)=

 (Pi,Pi+1) φa ≥ φi∧φa < φi+1
(P1,P2) φa ≤ φ1

(Pm−1,Pm) φa > φm

for all i = 1, . . . ,m. This requires an ascending ordering
of P by φ performed at the end of the rigging process.
Given the viewing angle φa of the virtual camera and two
presets PS and PT , the weighting factor σ is calculated as
follows:

σ = clamp
(

φa−φS

φT −φS
,0,1

)
Given σ ∈ [0,1], the source PS and target preset PT , the
interpolation PI = p(PS,PT ,σ) of the current preset PI is
performed by a linear interpolation of all control points:
Bi,I = Bi,PS +σ · (Bi,PT −Bi,PS) as well as the respective
tag points: Ti,I = Ti,PS +σ · (Ti,PT −Ti,PS).

Beside interpolating the curve related parameters, the
geometric representations must also be interpolated.
First the geometric representations of PS and PT are
rendered into two texture-arrays, which are later blended
according a factor β ∈ [0,1], which is calculated as
follows:

β = clamp
(

σ −aPS

bPS −aPS

,0,1
)

The interval
[
aPS ,bPS

]
defines in which section of the

curve interpolation the geometric representations should
be blended.

4 AUTHORING WORKFLOW

Our system supports interactive editing of the complete
deformation curve parameterization and preset configu-
ration at run time. To create a visualization, the user has
to perform two steps: 1) adjust global settings required
for every preset and 2) create or modify presets. Ac-
cording to Section 3.3 the user is required to select the
number of control points and set the global number of
tag points l, which are equally distributed over the length
of the curve initially. This defines the number of styling
sections implicitly.

After the global settings are defined, the user can mod-
ify the position and orientation of the virtual camera (φ)
using standard interaction metaphors and edit the defor-
mation curve parameters using direct manipulation of
the curve control points. Further, the tag points can be
moved along the deformation curve (which alters u) and
the size of transition zone between two sections can be
adjusted by altering δ . The user directly manipulates the
tag points and the B-Spline control points using an in-
teractive 2D widget (inset in Fig. 5). The scene models
G can be loaded and assigned to the respective styling
sections by dragging a geometric representation instance
G to a respective styling section S. If the geometric rep-
resentations of the different presets should not be inter-
polated over the complete interpolation interval, the user
can adjust the parameters a and b. Finally, the start s and
the end e parameters may be adjusted. These steps are
then repeated for every preset.

Once all presets are prepared, the user can fine tune
φ and τ to achieve the desired transitions. In terms of
authoring effort, none of the depicted visualizations took
more than three minutes to prepare. In all cases, the most
time-consuming steps were the fine-tuning of the tran-
sition behavior and the modulation of the blending be-
tween the styling sections.

Journal of WSCG 115 ISSN 1213-6972

5 INTERACTIVE RENDERING

Our interactive visualization prototype is based on multi-
pass rendering using OpenGL and OpenGL Shading lan-
guage (GLSL). During multi-pass rendering, for each
section the global space deformation is applied in the ver-
tex shader. Each deformed geometric representation is
written to an off-screen buffer, using Render-To-Texture
(RTT) [16]. Finally the textures are composed. Details
on the implementation are given in this section.

5.1 Global Deformation Computation

As described in Section 3.2 the deformation can be sub-
divided into two steps. First, every vertex V is aligned
parallel to the camera viewing angle φa. To achieve this
the viewing angle is recomputed on a per frame basis and
the according rotation matrix RA is passed to the vertex
shader. Multiplying V with RA yields V ′, which is pro-
jected on the reference plane R. Its initial distance d is
stored in a shader variable. Second, the control point and
tangent vector of the B-Spline curve is evaluated per ver-
tex, to setup MC(t). One possibility is to evaluate the B-
Spline in the vertex shader. This implies, that the specific
formulas to evaluate the parametric curves are known at
compilation time and are fixed in the vertex shader code.
A change of the parametric curve would lead to a change
of the shader code. Instead, we decided to compute the
position and tangent vector of the B-Spline curve off-line
on the CPU. Thus, the B-Spline curve must be evaluated
once a frame instead of once a vertex.

As mentioned in Section 3.2 the B-Spline must be arc-
length parametrized. The lookup table is precomputed
on the CPU and passed to the vertex shader, for the com-
position of styling sections, using a 32bit luminance tex-
ture. The texture lookup is performed by the parameter t,
yielding the arc-length corrected values. The quality of
the arc-length approximation depends on the number of
precomputed samples. The bilinear interpolation during
texture filtering provides a second parameter interpola-
tion. This enables us to reduce the number of samples,
without loosing precision. Experiments have shown that
2000 samples are sufficient for an arc-length preserving
parametrization.

During the algorithm for arc-length parameterization
we further compute the corrected position and tangent
vectors of the B-Spline curve on the CPU. These values
are stored in a texture that is later used as a lookup ta-
ble in the vertex shader. The 2D-vectors C(t) and C′(t)
are encoded in a 32-bit RGBA texture. The lookup table
must be recomputed, if the setup of the parametric curve,
e.g. the number or the position of the control points,
changes. Thus, for a static curve setup, e.g. the user
does not change the viewing angle of the virtual camera,
no overhead is introduced. During view-dependent pre-
set interpolation, the lookup table may be updated once
per frame.

5.2 Compositing of Styling Sections
The composition consists of two steps: (1) Multipass
RTT and (2) image-based composition in the fragment
shader. To compose the potential different geometric
representations of PS and PT , we choose an image-based
compositing method, because it is generic and does not
require knowledge of the underlying geometric represen-
tation. Every styling section of the presets is rendered
into separate textures using RTT. Each texture contains
RGBA information at viewport resolution. During ren-
dering, a fragment shader adjust the α-value of a frag-
ment according to the styling section boundaries defined
by Ti and Ti+1, so that:

α =


1 uTi +δTi ≤ t ≤ uTi+1 −δTi+1

(uTi+1+δTi+1)−t
2·δTi+1

uTi+1 −δTi+1 < t ≤ uTi+1 +δTi+1

0 otherwise

After RTT is performed, the 2 · (l−1) textures (l−1 tex-
tures per preset) are blended into the frame buffer. The
blending of the layers is performed as follows: The first
(l − 1) textures, encoding PS, are blended based on α

starting with the most distant styling section. The result-
ing fragment color is temporally stored. This procedure
is repeated for the styling sections of PE . Finally the two
colors are blended based on β (see Section 3.5).

In addition thereto, Fig. 6 shows an application ex-
amples of the used stylization algorithms. In a prepro-
cessing step, we compute light maps (ambient occlusion
term only) for the complete model. At runtime, during
the compositing step, we apply edge-detection based on
normal and depth information of a fragment and we fur-
ther unsharp-mask the depth buffer [11] to improve the
perception of complex scenes by introducing additional
depth cues.

6 RESULTS & DISCUSSION

6.1 Application Examples
We have tested our visualizations using different data
sets. Besides photo realistic 3D city models, our ap-

A B

Figure 6: Comparison of applied stylization techniques
for generalized virtual city models. A: Directional light-
ing and edge-enhancement. B: Precomputed ambient oc-
clusion and edge-enhancement.

Journal of WSCG 116 ISSN 1213-6972

A B C

Figure 7: Exemplary visualization using B-Spline curves with six control points to enable hard transitions between
three planar regions.

proach is in particular suitable for the depiction of dif-
ferent versions of generalized city models [8] (Fig. 2,
Fig. 7). Despite the reduction of geometric complexity,
the cell-based generalization also reduces the cognitive
load of the user by displaying higher levels of abstrac-
tion. In comparison to the map-based stylization (Fig.
5), the generalized geometry is less expressive. The ge-
ometry must be enhanced, e.g., with labels, or textures, to
communicate additional information to the user. Further,
we use two model versions of the Grand Canyon with
524,288 triangles each. The first version uses a height-
map as well as an aerial image, while the second version
represents a flat terrain with a tourist map applied. Fig. 5
shows the application of the model with a grid applied to
emphasize the deformation.

During our experiments, we observed that the usage of
more than three styling sections is rather distracting than
informative to the user. A high number of sections also
reduces the available space for each section. Thus, the
amount of objects that can be visualized within a single
section decreases. A similar effect arises if the transition
zone between two sections (controlled by δ) is chosen
to large. Further, the interval [aPS ,bPS], which control
the blending of the geometric representations of PS and
PT , should be set to initiate the blending briefly after the
beginning or before the end of the curve interpolation.

To have a good control over the view-dependent be-
havior of the global deformation three visualization pre-
sets are sufficient, e.g., for a low, a medium and a high
viewing angle. To gain more control or to fine tune the
interpolation behavior we recommend to use more visu-
alization presets.

6.2 Preliminary User Evaluation
We performed a preliminary user evaluation with 44 par-
ticipants. The task is to navigate along a route with the
help of a static image from a mobile navigation device.
Therefore, we prepared 10 routes with a different com-
plexity that partially contained landmarks. For each route
we generated 4 visualizations using different perspec-
tives: (1) orthographic (2D), (2) central (3D),(3) pro-
gressive and (4) degressive perspective. We presented
the participants 26 image pairs. Each pair depicted the
same route using two different perspectives. The user
were asked which visualization they favor.

The results show that 80,7% of the participants favor
the orthographic perspective instead of a central perspec-
tive. This is reasonable since a 2D map is a very estab-
lished mean for navigation. Furthermore we observed
that 76,1% prefer the degressive perspective instead of a
central perspective. This indicates a demand for multi-
perspective views for navigation. With our technique it
becomes possible to combine the progressive perspective
for a low viewing angle with the orthographic perspective
for large viewing angles and thus provide the benefits of
both visualization in one navigation tool.

6.3 Performance Evaluation

The performance tests are conducted using a NVIDIA
GeForce GTX 285 GPU with 2048 MB video RAM on
a Intel Xeon CPU with 2.33 GHz and 3 GB of main
memory. The tests are performed at a viewport resolu-
tion of 1600× 1200 pixels. Table 1 shows the results of
our performance evaluation. All models are rendered us-
ing in-core rendering techniques with 8 × anti-aliasing.
The performance mainly depends on the number of tag

Table 1: Comparative performance evaluation for differ-
ent test scenes (in frames-per-second). The abbreviation
LoA 0/1 names the configuration of a preset with two
different models (LoA 0 and LoA 1) assigned to the two
styling sections.

Preset config. #Vertex #Face FPS

LoA 0/1 1,219,884 477,437 21
LoA 1/2 380,689 364,500 39

LoA 0/1/2 1,443,895 720,587 17

sections, thus the number of required rendering passes,
and the geometrical complexity of the scenes attached to
them. Due to the heavy usage of render-to-texture in the
compositing steps, the performance also depends on the
size of viewport. Here, the additional amount of graphics
memory O(l) required for a number of global styling sec-
tion l can be estimated by: O(l) = 2 · l ·w ·h ·4 · p bytes.
Our prototype uses a precision p = 2 byte per channel,
which is sufficient for post-processing stylization.

Journal of WSCG 117 ISSN 1213-6972

6.4 Limitations and Future Work
The presented approach implies a number of conceptual
limitations. First, the number of control and tag points
must be the same for each preset in a visualization. Fur-
ther the visual quality of our approach relies on a suf-
ficient vertex density of the geometric representations.
We strive towards the application of hardware tessella-
tion shader units to ensure this property for general scene
geometry. Furthermore, the rendering concept is not op-
timized. At the moment each styling sections requires
a single rendering pass. If two or more styling sections
contain the same geometric representation, they can be
treated as one single styling section reducing the number
of rendering passes. The same applies for the geometry
interpolation. The number of vertices can be further re-
duced by a culling algorithm based on the boundaries of
the styling sections.

7 CONCLUSIONS
This paper presents a concept and interactive rendering
technique for view-dependent global deformations that
can be used for the effective visualization of 3D geovir-
tual environments, such as virtual 3D city and landscape
models. It presents an approach for a view-dependent
parameterization and interpolation of global deforma-
tions based on B-Spline curves. The application of such
parametrized curves offers the possibility to customize
or extend traditional perspectives, e.g. degressive or pro-
gressive perspectives, in a comprehensible and flexible
way. Further, the definition of camera-dependent presets
and their automatic interpolation overcomes the restric-
tion of existing multi-perspective visualization. In ad-
dition, we provide a concept for assigning different ge-
ometric representations to specific sections of a curve,
which offers more freedom of design. We further present
a prototypical implementation that enables hardware-
accelerated realtime image synthesis as discussed in our
performance evaluation.

ACKNOWLEDGMENTS
This work has been funded by the German Federal Min-
istry of Education and Research (BMBF) as part of the
InnoProfile research group "3D Geoinformation". The
authors like to thank Tassilo Glander for providing the
data sets of the generalized city model of Berlin and Haik
Lorenz for his support and critical comments.

REFERENCES
[1] Maneesh Agrawala, Denis Zorin, and Tamara Munzner. Artis-

tic multiprojection rendering. In Proc. of the EG Workshop on
Rendering Techniques, pages 125–136, 2000.

[2] Alan H. Barr. Global and local deformations of solid primitives.
In SIGGRAPH ’84, pages 21–30, New York, NY, USA, 1984.
ACM.

[3] Heinrich Caesar Berann. The world of h.c. berann. web site.

[4] John Brosz, Faramarz F. Samavati, M. T. Carpendale Sheelagh,
and Mario Costa Sousa. Single camera flexible projection. In
NPAR ’07, pages 33–42, New York, NY, USA, 2007. ACM.

[5] Nicholas Burtnyk, Azam Khan, George Fitzmaurice, Ravin Bal-
akrishnan, and Gordon Kurtenbach. Stylecam: interactive styl-
ized 3d navigation using integrated spatial & temporal controls.
In UIST ’02, pages 101–110, New York, NY, USA, 2002. ACM.

[6] Patrick Degener and Reinhard Klein. A variational approach for
automatic generation of panoramic maps. ACM Trans. Graph.,
28(1):1–14, 2009.

[7] Martin Falk, Tobias Schafhitzel, Daniel Weiskopf, and Thomas
Ertl. Panorama maps with non-linear ray tracing. In GRAPHITE
’07, pages 9–16, New York, NY, USA, 2007. ACM.

[8] Tassilo Glander and Jürgen Döllner. Abstract representations for
interactive visualization of virtual 3d city models. Computers,
Environment and Urban Systems, 33(5):375 – 387, 2009.

[9] Markus Jobst and Jürgen Döllner. Better perception of 3d-spatial
relations by viewport variations. In VISUAL ’08, pages 7–18,
Berlin, Heidelberg, 2008. Springer-Verlag.

[10] Haik Lorenz, Matthias Trapp, Jürgen Döllner, and Markus Jobst.
Interactive multi-perspective views of virtual 3d landscape and
city models. In AGILE Conf., pages 301–321, 2008.

[11] Thomas Luft, Carsten Colditz, and Oliver Deussen. Image en-
hancement by unsharp masking the depth buffer. ACM Trans.
Graph., 25(3):1206–1213, 2006.

[12] D. Martín, S. García, and J. C. Torres. Observer dependent de-
formations in illustration. In NPAR ’00, pages 75–82, New York,
NY, USA, 2000. ACM.

[13] Sebastian Möser, Patrick Degener, Roland Wahl, and Reinhard
Klein. Context aware terrain visualization for wayfinding and
navigation. Computer Graphics Forum, 27(7):1853–1860, 2008.

[14] Qunsheng Peng, Xiaogang Jin, and Jieqing Feng. Arc-length-
based axial deformation and length preserved animation. In CA
’97, page 86, Washington, DC, USA, 1997.

[15] John W. Peterson. Abstract arc length parameterization of spline
curves.

[16] Matt Pharr and Randima Fernando. GPU Gems 2. Addison-
Wesley Professional, 2005.

[17] Simon Premoze. Computer generated panorama maps. In ICA
Mountain Cartography Workshop, 2002.

[18] Huamin Qu, Haomian Wang, Weiwei Cui, Yingcai Wu, and
Ming-Yuen Chan. Focus+context route zooming and informa-
tion overlay in 3d urban environments. IEEE TVCG, 15(6):1547–
1554, 2009.

[19] Paul Rademacher. View-dependent geometry. In SIGGRAPH
’99, pages 439–446, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[20] Richard Franklin Riesenfeld. Applications of b-spline approxi-
mation to geometric problems of computer-aided design. PhD
thesis, Syracuse, NY, USA, 1973.

[21] David F. Rogers. An Introduction to NURBS: With Historical
Perspective. Morgan Kaufmann, 2000.

[22] Thomas W. Sederberg and Scott R. Parry. Free-form deformation
of solid geometric models. SIGGRAPH, 20(4):151–160, 1986.

[23] Karan Singh. A fresh perspective. In Proc. Graphics Interface,
pages 17–24, May 2002.

[24] Shigeo Takahashi, Naoya Ohta, Hiroko Nakamura, Yuriko
Takeshima, and Issei Fujishiro. Modeling surperspective projec-
tion of landscapes for geographical guidemap generation. Com-
puter Graphics Forum, 21:2002, 2002.

[25] Shigeo Takahashi, Kenichi Yoshida, Kenji Shimada, and To-
moyuki Nishita. Occlusion-free animation of driving routes for
car navigation systems. IEEE TVCG, 12:1141–1148, 2006.

[26] Scott Vallance and Paul Calder. Multi-perspective images for vi-
sualisation. In VIP ’01, pages 69–76, Darlinghurst, Australia,
Australia, 2001. Australian Computer Society, Inc.

Journal of WSCG 118 ISSN 1213-6972

A caching approach to real-time procedural generation of
cities from GIS data

Brian Cullen
Trinity College Dublin
cullenb4@cs.tcd.ie

Carol O’Sullivan
Trinity College Dublin

Carol.OSullivan@cs.tcd.ie

ABSTRACT

This paper presents a method for real-time generation of detailed procedural cities. Buildings are generated as
needed from real GIS data, using modern techniques that can generate realistic content and without having a huge
impact on the rendering system. The system uses a client-server approach allowing multiple clients to generate
any part of the city the user wishes without requiring the full data-set, or any pre-generated models. The paper
introduces the use of object oriented shape grammars to reduce redundant code and presents a parallel cache to
allow real-time generation of detailed cities.

Keywords: Procedural Modelling, GIS Data, Buildings, Cities, Real-Time Rendering.

1 INTRODUCTION
Procedural modelling of urban environments has be-
come an important topic in computer graphics. With
the ever increasing demand for larger and more real-
istic content in games and movies, the time and cost
to model urban content by hand is becoming unfeasi-
ble. Apart from the entertainment industry, large urban
models are also desired for urban planning applications
and emergency response training.

We present a client-server system capable of generat-
ing huge cities of any size without requiring the client
to download large 3d geometrical data sets. Our main
contributions are as follows:

1. We propose the use of object oriented shape gram-
mars to combat redundancies when creating build-
ings with multiple different styles.

2. We introduce a multi-state parallel cache that pro-
cedurally generates the city’s geometry before it
becomes visible. We will demonstrate frame-rate
improvements over a system that simply generates
buildings as they are needed.

While many cache based approaches have been pro-
posed for rendering large terrains, the use of such tech-
niques has not been explored for procedural generation
of urban models. Numerous problems occur as render-
ing the buildings takes much less time than generating
them. We aim to tackle this problem with a simple solu-
tion that can be used with existing techniques for terrain
paging.

After an overview of our system and how we can
utilise GIS data to model real cities (Section 3), we

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

then introduce the idea of object oriented shape gram-
mars (Section 4) demonstrating how they can be used to
make simple changes to a building without creating re-
dundant code. In Sections 5 and 6 we present our cache
based system that can generate huge cities in real-time
with interactive frame-rates and evaluate it. Example
code of object oriented shape grammars is listed in the
Appendix for the interested reader.

2 RELATED WORK
This section will review current techniques for the pro-
cedural generation of 3d building models. We will
mainly review systems that employ production systems
as they have been the most successful at generating re-
alistic content. Other approaches based on stochastic
texture synthesis ideas are touched upon briefly.

Detailed architectural models can be created using
production systems (a set of symbols that are iteratively
replaced according to a well defined grammar) but re-
quire a modeller to manually write rules. Their strength
lies in the ability to provide detailed descriptions and
yet randomness in a structured way.

Parish et al. [24] introduced the idea of using L-
Systems [26] to model architectural content. L-Systems
are production systems that use the parallel replacement
of symbols in a string to simulate a growth process.
L-Systems have previously achieved a lot of success
in modelling trees and plants [27, 23], but have limi-
tations in modelling buildings (since a building struc-
ture is more spatially constrained and does not reflect a
growth process).

Stiny pioneered the idea of shape grammars [33, 31,
32] which can be used for generating complex shapes
within a given spatial area. Shape grammars have been
used for the construction and analysis of architectural
designs [5, 8, 34, 12]. However, Stiny’s original shape
grammar operates on sets of labelled points and lines

Journal of WSCG 119 ISSN 1213-6972

and is difficult to implement on a machine because of
the number of transformations that must be searched
before a rule can be selected and applied.

Wonka et al. [37] modify the idea of shape grammars
to better represent building facades. They use a split
grammar in which building facade is derived using a
sequence of split and repeat commands to subdivide a
planar shape.

Müller et al. [21] expand on this idea by develop-
ing the CGA shape grammar. This grammar includes
environmental parameters that allow a shape (a part of
a derived facade) to query if it is occluded by some-
thing else in the city, thereby aiding the placement of
windows and doors. CGA shape is continually being
improved and has even been used to reconstruct arche-
ological sites [22] and is used in commercial products
like CityEngine [1].

Recently Kracklau et al. [13] presented a new gener-
alised language based on Python. They can create pow-
erful descriptions by passing non-terminals as parame-
ters, thus enabling abstract templates to be defined.

Shape grammars alone are not sufficient to gener-
ate realistic roofs on buildings. Laycock et al. [14]
demonstrate a technique to generate roof models in dif-
ferent styles from a building footprint. They modify
the straight skeleton algorithm proposed in [7] to gen-
erate different roof types. Soon [30] describes an algo-
rithm capable of modelling roofs common to east Asian
buildings, like temples and pagodas.

A completely different approach to production gram-
mars takes concepts from texture synthesis and applies
them to 3D models. Texture synthesis traditionally ex-
trapolates image data by incrementally adding bits of
the image that best match a small neighbourhood. This
can produce very convincing results [35, 6, 15].

Merrell and Manoch [18, 19, 20] present a method
that takes an example model as input and can produce
larger models that resemble it. Output models are still
very random and lack the fine control that production
systems provide. Synthesis based approaches to gener-
ating new models are still very slow and are thus not
applicable for interactive applications.

Layout generation concerns the automatic layout of
roads and placement of urban content that is crucial for
generating an entire city. Urban planning applications
require the possibility to view changes to city layouts
and to see the effect a proposed road network would
have on traffic congestion. Using procedural tech-
niques, such changes can be made interactively which
is a great improvement over manual systems.

Parish et al. [24] introduce the use of L-Systems to
grow road networks in a similar way to branches on a
tree. This was one of the corner-stone papers in the area
of procedural cities. However, it is difficult to fine tune
the results because the variables do not give enough
control over the road layout.

Chen et al. [4] introduce the use of tensor fields to
guide road network generation. The user edits the ten-
sor fields using interactive techniques discussed in [38].
Users can then interactively edit individual roads in a
quick and easy manner.

Aliaga et al. [3] take a different approach to recon-
figuring road networks. Using vector data of roads they
form a graph to represent road intersections and parcels
of land. Then, using k-means clustering [17], user-
deformed parcels are replaced with similar parcels from
elsewhere in the city. In [2] they improve on this sys-
tem to allow the synthesis of completely new areas of
the city. Cities with different road structures can then
be blended together.

Grueter et al. [9] use a lazy generation technique
to construct a potentially infinitely large city. Build-
ings are constructed when they are visible in the view
frustum. The system seeds a random number generator
based on the building’s coordinates, thereby allowing
each building to maintain a persistent style. Whelan
et al. [36] present a system that allows real-time in-
teraction in modifying roads and tweaking parameters.
The user provides a height map and lays the roads, af-
ter which the system automatically places buildings and
other details. The buildings are simple extrusions with
texture and bump maps. Recently Haegler et al. [10]
presented a system capable of generating detailed cities
in real-time by carrying out procedural generation on
the GPU.

Cache based techniques have been used extensively
in real-time rendering. Paging is a popular technique
for rendering large terrains [28, 16, 39]. Slater et al.
[29] present a caching system that exploits temporal co-
herency to accelerate view culling. Akenine-Möller et
al. [11] discuss many modern real-time rendering tech-
niques including level of detail, batch processing and
imposters.

3 SYSTEM OVERVIEW
In this section we present a system that can produce
large detailed virtual cities in real-time using GIS data.
Previous approaches discussed in Section 2 focus on ei-
ther pre-generating large cities or are limited to simple
grid layouts and building geometry with random styles.
The system presented continuously updates the city by
streaming GIS data from a server along with style de-
scriptions for every building, without interrupting the
rendering system.

Urban GIS is preprocessed and stored in a database
along with style descriptions for every building for
quick referencing. This preprocessing step is explained
in section 3.1. Style sheets that control the facade gen-
eration are loaded at run-time and are stored in a hash-
table on the client’s system. The geometry cache up-
dates itself based on the camera’s position in the en-
vironment, downloading the surrounding environment

Journal of WSCG 120 ISSN 1213-6972

data from the GIS database. This includes the position
and shape of building footprints and style parameters
(such as texture id, height and style id) used for gener-
ating the buildings. This allows persistent generation of
the city. The cache controls what geometry is procedu-
rally generated based on its distance from the camera.
Meshes for the roads and buildings are then batched to-
gether for efficient rendering and sent to the render sys-
tem. This process is described in detail in Section 5.

3.1 Data Extraction from GIS
The GIS data recorded contains detailed urban planning
information, which is stored in different semantic layers
that make it easy to access the building layouts. How-
ever, since the data is simply represented by a set of
poly-lines, it is necessary to determine which lines be-
long to the same buildings. Figure 1 illustrates this pro-
cess. The following algorithm describes how to extract
the building layouts:

1. Create a graph representing all the vertices and edges.
2. Start at the bottom left node which contains two or

more edges.
3. Follow the least interior angle edges until the start-

ing node is reached again, thus creating a cycle.
4. Decrement the degree of every node along the cycle.
5. Repeat from Step 2 until no nodes with a degree

greater than one remain.

A similar approach was taken by Pina et al. [25],
however, individual buildings are extracted as opposed
to urban blocks. The extracted building footprints are
then loaded into a database for quick referencing by the
system. A similar technique is used to extract the roads
and insert the road network graph into a database.

4 BUILDING GENERATION
Buildings are procedurally generated using split gram-
mar rules based on [21]. The rules compose of subdiv,
repeat, insert, extrude, detrude and comp commands,
which can subdivide and decompose shapes into new
ones.

Comp
Breaks a shape down into the lower dimensional
shapes it is composed of. For example, a building
is broken down into its composing facades;

Subdiv
Subdivides a shape along a given axis;

Repeat
Subdivides a planar shape several times to fit many
new shapes of a given width;

Insert
Replaces a planar shape with an external model;

Extrude
Extrudes a planar shape, thereby creating a new vol-
umetric shape;

Detrude
Detrudes a planar shape, thereby creating a new vol-
umetric shape.

Combinations of these simple commands can produce
complex architectural geometry, while building roofs
are generated using the approach described in [14]. The
rules are specified using a script with a parameterised
L-System style syntax:

Pred : Exp ;Command(params){Successor} : Prob

If the Boolean Expression evaluates to true then
Command is carried out on the shape with ID Predecessor
and the resulting output shapes are given the ID Successor.
Multiple rules can be specified for the same Predecessor
and one is chosen at random based on its Probability
value. This allows some variability among generated
shapes.

A simple compiler was built to parse the scripts at
runtime and generate a hash table of C++ function ob-
jects. This allows the script to be applied extremely
quickly to new buildings but also allows parameters to
be changed at runtime.

4.1 Object Oriented Buildings
The production system presented in [21] contains a lot
of redundant code between different building scripts. It
is very cumbersome to rewrite entire building specifica-
tions just to make a specific change.

We propose the use of object oriented buildings as a
solution to this problem. Figure 2 illustrates this idea.
Buildings inherit everything from more abstract styles
and only respecify certain aspects of the style. This
is achieved by encapsulating semantically relevant pro-
duction rules in labelled blocks. Each block is given a
list of variables that can be changed at runtime or re-
specified by a child style. Code listings to generate the
buildings in Figure 2 can be found in the Appendix.
Buildings also inherit their parents’ elements (i.e., 3D
models that are imported and used to replace certain
terminal symbols) and can add or remove from their
parents’ element set. We allow multiple meshes to be
specified, corresponding to different levels of detail for
the rendering system. Meshes are swapped with differ-
ent level of detail meshes depending on their distance
to the camera. In this implementation of the system the
Ogre rendering engine was utilised to manage level of
detail swapping and rendering of the scene. The use of
object oriented building styles can simplify the writing
of new styles and can link building styles together in a
meaningful way.

Journal of WSCG 121 ISSN 1213-6972

Figure 1: Extracting building footprints from GIS data (left). Layer containing buildings is first chosen by the user (middle),
while buildings are then extracted by finding loops in the data (right).

Figure 2: Building2 inherits from Building1, specifying how
windowsills should be added. Building3 also inherits from
Building1, adding a ledge to each floor. Code listings are
provided in the Appendix.

5 REAL-TIME GENERATION
In this section we present our process for generating
procedural cities in real-time.

5.1 Parallel Geometry Cache
In order to maintain a constant and high frame rate,
building generation should not interrupt the rendering
system. We achieve this by introducing a multi-state
cache that stores geometry that is currently being gen-
erated. The system is based on the idea of paging ge-
ometry for rendering large terrains. The world is split
into a regular grid as illustrated in Figure 4. The data in
the cache has the following three states:

State 1 Geometry descriptions are downloaded from
the database and the area is procedurally generated.
(Outer white area in Figure 4).

State 2 Meshes are constructed and sent to the graph-
ics card but are not yet rendered (Middle blue area
in Figure 4).

State 3 Meshes currently being rendered (Inner green
area in Figure 4).

Depending on the camera motion, grid squares that
are likely to become visible in the near future are loaded.
Geometry descriptions are downloaded from the GIS
database, procedurally generated and inserted into the
cache. This is done in a separate thread from the ren-
dering system. Only squares that are close to the cam-
era are rendered. If a square is not yet generated, the
rendering thread will put it on the end of a queue and
try to retrieve the next square.

5.2 Parallel Building Generation
With the trend in computing power drifting towards
multi-processor architectures, it is desirable to take ad-
vantage of parallel computation. It is possible to pro-
cedurally generate multiple buildings at the same time
by utilizing parallel processing techniques. Algorithm
3 presents a simple algorithm that can speed up building
generation on multiprocessor systems.

w h i l e NewPage = getPageFromQueue ()
NumBldPerThd = NewPage . NumBlds / NumProc
f o r x = 0 t o numProccesors−1

Thread [x] = ForkThread ()
Thread [x] . MemoryPool = new MemoryPool
Thread [x] . B u i l d i n g L i s t = d i s t B u i l d i n g s (NumBldPerThd)
Thread [x] . G e n e r a t e B u i l d i n g s ()
NewPage . s e t B u i l d i n g M e s h e s (Thread [x])

end f o r
S y n c h r o n i s e T h r e a d s ()

end w h i l e
NewPage . BatchMeshes ()

Algorithm 3: Algorithm for procedurally generating buildings
in parallel.

Each thread maintains a memory pool that is reused
for every building it generates, which reduces mem-
ory allocation bottlenecks. Threads must synchronise
before writing to the cache so that buildings can be
batched together for fast rendering.

6 RESULTS
To test the system, we conducted two separate bench-
mark, which were performed on a machine with the fol-
lowing specifications:

CPU Intel(R) Core(TM)2 Duo CPU E8500 @ 3.16GHZ
RAM 4GB
GPU NVIDIA GeForce 9800GT

First, a frame rate analysis of the system was taken
while the camera was moved between two preset points,

Journal of WSCG 122 ISSN 1213-6972

Figure 4: As the camera moves towards the geometry, new
pages must be loaded. The pages are organised into a queue
and processed in order of their distance to the camera. The
buildings within each page should be shared among parallel
executing threads.

both with and without the parallel geometry cache (Sec-
tion 5.1). The results are given in Figure 5. While the
camera travelled a distance of 800m in the scene, ex-
actly 2,038 buildings were created. This had a signifi-
cant effect on the frame rate of the system without a par-
allel cache. The sudden drops in frame rate correspond
with new geometry pages being loaded and cause a jerk
in the camera motion. In the system with the parallel
cache there is much less jerking when pages are loaded
and the overall frame rate stays within acceptable lev-
els.

The second experiment performed was a multi-threaded
processing benchmark. Four pages were generated con-
sisting of 10, 100, 1000 and 10,000 buildings respec-
tively. Processing time was logged for each of the pages
with building generation distributed over different num-
ber of threads. The average results over ten repetitions
are shown in Figure 6. A configuration with two threads
running in parallel yielded the best performance on the
dual core machine. Running the experiment with more
threads than processors led to worse results because of
the overhead of thread switching. However, this result
suggests better performance could be achieved with a
greater number of processing cores. Better results were
obtained using larger page sizes with 10,000 buildings
leading to a 27.48% increase in performance (We sus-
pect that this is due the initial memory pool allocation
assigned to each thread). Table 1 shows the number
of buildings generated per second for the 10,000 build-
ing page test. Each building was set to be strictly the
same shape, contained an average of 980 vertices and
required 610 shape operations to generate.

Figure 7 demonstrates the type of architecture and
scale of the city generated in the tests.

Figure 5: A comparison of results with and without the cache
described in Section 5.1. The system with the cache has a
much higher frame rate and less jerky movements of the cam-
era. There was an average of 1,922 buildings in the scene at
any time with 2,038 buildings created and destroyed over the
distance.

(a) 10 Buildings (b) 100 Buildings

(c) 1000 Buildings (d) 10000 Buildings

Figure 6: Time in seconds to generate buildings with differ-
ent levels of multithreading. On the dual core machine two
threads yielded the best performance.

Bld/Sec Ops/Sec Percent Increase
1 Thread 255.56 15,586.34
2 Threads 325.78 19,868.86 27.48%
3 Threads 277.47 16,922.73 8.57%

Table 1: Benchmark of multi-threaded processing on the
10,000 building data set. Results are shown for the number
of buildings generated per second, the number of shape oper-
ations (discussed in Section 4) performed per second and the
percentage performance boost over a single threaded config-
uration.

Journal of WSCG 123 ISSN 1213-6972

Figure 7: Output of the system

7 CONCLUSION
We have presented a system that can generate large vir-
tual cities with detailed buildings in real-time. The sys-
tem can be run over a network while allowing multi-
ple clients with only one data set. We introduced the
idea of object oriented building styles that can help re-
duce code redundancies and make it easier to specify
multiple building styles. We also presented a set of
benchmarking statistics calculated with different con-
figurations of the system. The results showed that our
parallel cache offers superior performance to that of a
system that simply generates the buildings as they are
needed. We also showed a performance benefit when
utilising parallel generation on multi-core processors.

Regarding limitations, currently the system only gen-
erates buildings within a single page in parallel. The
results from our experiment suggest that improved per-
formance could be achieved by generating sets of pages
in parallel, thus handling more buildings per thread and
requiring less thread synchronisation. Rendering of
the system could improved by implementing occlusion
culling and better LOD techniques. In this implementa-
tion, different level of details are provided for a build-
ing’s elements but not the shape of the building itself.

A SHAPE GRAMMAR SYNTAX
In this appendix we present the syntax of our object ori-
ented shape grammar.

The listings correspond to the buildings shown in Fig-
ure 2. Semantically relevant production rules can be
combined into meaningful blocks. Each block can have
its own list of variables that may be changed at run-
time. A child class inherits everything from its parents
and may redefine a block of rules and its variables. In
addition to defining a block of production rules, a class

can also define a set of building elements (Listing 9).
These elements correspond to terminal symbols in the
production system, which should be replaced with ex-
ternal models. A series of meshes can be given to each
element specifying a different level of detail. In our sys-
tem, the distance at which to change a mesh is the same
for each element and is specified by the cache system.
As with the production rules, probabilities are given for
the replacement of terminal symbols with 3D meshes.

c l a s s B u i l d i n g 1 : ElementPack
{

F o o t p r i n t {
FOOTPRINT ;

e x t r u d e (BUILDING_HEIGHT) { Bui ld ingVol } : 1
B u i l d i n g V o l ;

comp (" f a c a d e s ") { FACADE } : 1
}

Facade {
v a r Gro und F lo o rH e ig h t 1

FACADE : H > (Gro und F lo o rH e ig h t + 1) ;

s u b d i v ("Y" , GroundFloorHe igh t , 1 r)
{ GROUND_FLOOR | UPPER_FLOORS } : 1

}

Ground_Floor {
v a r En t r anceWid th 0 . 7 5
v a r DoorDepth 0 . 1

GROUND_FLOOR: W > (En t r anceWid th +1) ;

s u b d i v ("X" ,1 r , En t ranceWid th , 0 . 1)
{ FLOOR | E n t r a n c e P a n e l |WALL } : 0 . 3

GROUND_FLOOR: W > (En t r anceWid th +1) ;

s u b d i v ("X" ,1 r , En t ranceWid th , 1 r)
{ FLOOR | E n t r a n c e P a n e l | FLOOR } : 0 . 4 4

GROUND_FLOOR: W > (En t r anceWid th +1) ;

s u b d i v ("X" , 0 . 1 , En t ranceWid th , 1 r)
{ WALL | E n t r a n c e P a n e l | FLOOR } : 0 . 3

E n t r a n c e P a n e l ; s u b d i v ("Y" , 0 . 0 2 , 1 r)
{ WALL | E n t r a n c e }

E n t r a n c e ; d e t r u d e (DoorDepth)
{ DOOR |WALL } : 1

}

U p p e r _ F l o o r s {
v a r F l o o r H e i g h t 1 . 0

UPPER_FLOORS ; r e p e a t ("Y" , F l o o r H e i g h t) {FLOOR} : 1
}

F l o o r {
v a r T i l e W i d t h 1 . 1

FLOOR ; r e p e a t ("X" , T i l e W i d t h) { TILE} : 1
}

T i l e {
v a r WindowDepth 0 . 1
v a r WindowWidth 0 . 7 5
v a r WindowHeight 0 . 5

TILE ; s u b d i v ("X" ,1 r , WindowWidth , 1 r)
{ WALL | T i l e | WALL } : 1

Ti l eC ; s u b d i v ("Y" ,1 r , WindowHeight , 1 r)
{ WALL | WindowPlane | WALL } : 1

WindowPlane ; d e t r u d e (WindowDepth)
{ WINDOW | WALL } : 1

}
}

Listing 8: Listing for simple building

Journal of WSCG 124 ISSN 1213-6972

c l a s s ElementPack
{

Elemen t s {
WINDOW:

"window1LOD1 . mesh " "window1LOD2 . mesh " : 0 . 5
"window2LOD1 . mesh " "window2LOD2 . mesh " : 0 . 5

DOOR:
" door1 . mesh " : 0 . 2
" door2LOD1 . mesh " " door2LOD2 . mesh " : 0 . 8

LEDGE:
" windowLedge1LOD1 . mesh " " windowLedge1LOD2 . mesh " : 1

}
}

Listing 9: Listing for elements

c l a s s B u i l d i n g 2 : B u i l d i n g 1
{

T i l e {
v a r LedgeHeigh t 0 .075
v a r WLedgeHeight (WindowHeight+ LedgeHeigh t)

TILE ; s u b d i v ("X" ,1 r , WindowWidth , 1 r)
{ WALL | T i l eC | WALL } : 1

Ti l eC ; s u b d i v ("Y" ,1 r , WLedgeHeight , 1 r)
{ WALL | WindowPlane | WALL } : 1

WindowPlane ; d e t r u d e (WindowDepth)
{ WindowPlaneInner | WALL } : 1

WindowPlaneInner ; s u b d i v ("Y" , LedgeHeight , 1 r)
{ LEDGE | WINDOW } : 1

}
}

Listing 10: Building2 inherits everything from Building1 but
specifies how windowsills should be added.

c l a s s B u i l d i n g 3 : B u i l d i n g 1
{

f l o o r {
v a r T i l e W i d t h 1
v a r LedgeHeigh t 0 .075

FLOOR ; s u b d i v ("Y" , LedgeHeight , 1 r)
{LEDGE | FloorU } : 1

FloorU ; r e p e a t ("X" , T i l e W i d t h) { TILE} : 1
}

}

Listing 11: Building3 inherits everything from Building1
adding a ledge to each floor.

REFERENCES
[1] Procedural inc. - 3D modeling software for urban

environments. http://www.procedural.com/.

[2] D. G. Aliaga, B. Beneš, C. A. Vanegas, and
N. Andrysco. Interactive reconfiguration of urban
layouts. IEEE Comput. Graph. Appl., 28(3):38–
47, 2008.

[3] D. G. Aliaga, C. A. Vanegas, and B. Beneš. In-
teractive example-based urban layout synthesis.
ACM Trans. Graph., 27(5):1–10, 2008.

[4] G. Chen, G. Esch, P. Wonka, P. Müller, and
E. Zhang. Interactive procedural street modeling.
ACM Trans. Graph., 27(3):1–10, 2008.

[5] J. Duarte. Malagueira Grammar - towards a
tool for customizing Alvaro Siza’s mass houses at
Malagueira. PhD thesis, MIT School of Architec-
ture and Planning, 2002.

[6] C. Eisenacher, S. Lefebvre, and M. Stamminger.
Texture synthesis from photographs. CGF: Euro-
graphics, 27(2):419–428, 2008.

[7] P. Felkel and S. Obdrzálek. Straight skeleton im-
plementation. In SCCG: Spring Conference on
Computer Graphics, page 210–218, 1998.

[8] U. Flemming. More than the sum of parts: the
grammar of queen anne houses. Environment and
Planning B: Planning and Design, 14(3):323–
350, 1987.

[9] S. Greuter, J. Parker, N. Stewart, and G. Leach.
Real-time procedural generation of ‘pseudo infi-
nite’ cities. In GRAPHITE: Computer Graph-
ics and Interactive Techniques, page 87–ff, New
York, NY, USA, 2003. ACM.

[10] S. Haegler, P. Wonka, S. M. Arisona, L. V. Gool,
and P. Müller. Grammar-based encoding of fa-
cades. CGF: Eurographics, 29(4):1479–1487,
2010.

[11] J. Hasselgren and T. Akenine-Möller. PCU: the
programmable culling unit. ACM Trans. Graph.,
26(3):92, 2007.

[12] H. Koning and J. Eizenberg. The language of the
prairie: Frank lloyd wright’s prairie houses. En-
vironment and Planning B: Planning and Design,
8(3):295–323, 1981.

[13] L. Krecklau, D. Pavic, and L. Kobbelt. General-
ized use of Non-Terminal symbols for procedural
modeling. CGF: Eurographics (to appear 2010),
2010.

[14] R. G. Laycock and A. M. Day. Automatically gen-
erating roof models from building footprints. In
Journal of WSCG, 2003.

[15] S. Lefebvre and H. Hoppe. Appearance-space tex-
ture synthesis. In ACM Trans. Graph., pages 541–
548, Boston, Massachusetts, 2006. ACM.

[16] Y. Livny, Z. Kogan, and J. El-Sana. Seamless
patches for GPU-based terrain rendering. Vis.
Comput., 25(3):197–208, 2009.

[17] J. B. MacQueen. Some methods for classifica-
tion and analysis of multivariate observations. In
5th Berkeley Symposium on Mathematical Statis-
tics and Probability, pages 281–297, 1967.

[18] P. Merrell. Example-based model synthesis. In
I3D: Symposium on Interactive 3D Graphics and
Games, page 105–112, New York, NY, USA,
2007. ACM.

Journal of WSCG 125 ISSN 1213-6972

[19] P. Merrell and D. Manocha. Continuous model
synthesis. ACM Trans. Graph., 27(5):1–7, 2008.

[20] P. Merrell and D. Manocha. Constraint-based
model synthesis. In SPM ’09: SIAM/ACM Joint
Conference on Geometric and Physical Modeling,
page 101–111, New York, NY, USA, 2009. ACM.

[21] P. Müller, T. Vereenooghe, P. Wonka, I. Paap, and
L. V. Gool. Procedural 3D reconstruction of puuc
buildings in xkipché. In VAST: Symposium on Vir-
tual Reality, Archaeology and Intelligent Cultural
Heritage, page 139–146, 2006.

[22] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and
L. V. Gool. Procedural modeling of buildings.
ACM Trans. Graph., 25(3):614–623, 2006.

[23] R. Měch and P. Prusinkiewicz. Visual models of
plants interacting with their environment. In SIG-
GRAPH ’96: Computer Graphics and interactive
techniques, page 397–410, New York, NY, USA,
1996. ACM.

[24] Y. I. H. Parish and P. Müller. Procedural model-
ing of cities. In Proceedings of the 28th annual
conference on Computer graphics and interactive
techniques, pages 301–308. ACM, 2001.

[25] J. L. Pina, F. J. Serón, and E. Cerezo. Building and
rendering 3d navigable digital cities. In GI_forum,
pages 167–176, Salzburg, Austria, 2009.

[26] P. Prusinkiewicz and A. Lindenmayer. The al-
gorithmic beauty of plants. Springer-Verlag New
York, Inc., 1990.

[27] P. Prusinkiewicz, L. Mündermann, R. Karwowski,
and B. Lane. The use of positional information in
the modeling of plants. In SIGGRAPH ’01: Com-
puter Graphics and Interactive Techniques, pages
289–300. ACM, 2001.

[28] J. Schneider and R. Westermann. GPU-Friendly
High-Quality terrain rendering. Journal of WSCG,
14(1-3):49–56, 2006.

[29] M. Slater and Y. Chrysanthou. View volume
culling using a probabilistic caching scheme. In
Department of Computer Science, University Col-
lege London, pages 71–78. ACM Press, 1997.

[30] T. T. Soon. Generalized descriptions for the pro-
cedural modeling of ancient east asian buildings.
In Symposium on Computational Aesthetics in
Graphics, Visualization, and Imaging(CAE’09),
2009.

[31] G. Stiny. Introduction to shape and shape gram-
mars. Environment and Planning B: Planning and
Design, 7(3):343 – 351, 1980.

[32] G. Stiny. Spatial relations and grammars. Envi-
ronment and Planning B, 9(1):113–114, 1982.

[33] G. Stiny and J. Gips. Shape grammars and the
generative specification of painting and sculpture.
In C. V. Friedman, editor, Information Processing
’71, page 1460–1465, Amsterdam, 1972.

[34] G. Stiny and W. J. Mitchell. The palladian gram-
mar. Environment and Planning B: Planning and
Design, 5(1):5 – 18, 1978.

[35] L. Wei, S. Lefebvre, V. Kwatra, and G. Turk. State
of the art in example-based texture synthesis. In
Eurographics 2009, State of the Art Reports, EG-
STAR. Eurographics Association, 2009.

[36] G. Whelan, G. Kelly, and H. McCabe. Roll
your own city. In Digital Interactive Media in
Entertainment and Arts, pages 534–535, Athens,
Greece, 2008. ACM.

[37] P. Wonka, M. Wimmer, F. Sillion, and W. Rib-
arsky. Instant architecture. ACM Trans. Graph.,
22(3):669–677, 2003.

[38] E. Zhang, J. Hays, and G. Turk. Interactive tensor
field design and visualization on surfaces. IEEE
TVCG: Transactions on Visualization and Com-
puter Graphics, 13(1):94–107, 2007.

[39] Z. Zhou, B. Cai, D. Zhang, and X. Zhang. Paged
cache based massive terrain dataset Real-Time
rendering algorithm. In ICIECS: Information
Engineering and Computer Science, pages 1–4,
2009.

Journal of WSCG 126 ISSN 1213-6972

	J71-full.pdf
	J97-full.pdf
	K05-full.pdf
	K13-full.pdf
	K29-full.pdf

