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ABSTRACT

We present a robust feature matching approach that considers features from more than two images during matching. Tradi-

tionally, corners or feature points are matched between pairs of images. Starting from one image, corresponding features are

searched in the other image. Yet, often this two-image matching is only a subproblem and actually robust matches over mul-

tiple views and/ or images acquired at several instants in time are required. In our feature matching approach we consider the

multi-view video data modality and find matches that are consistent in three images. Requiring neither calibrated nor synchro-

nized cameras, we are able to reduce the percentage of wrongly matched features considerably. We evaluate the approach for

different feature detectors and their natural descriptors and show an application of our improved matching approach for optical

flow calculation on unsynchronized stereo sequences.

Keywords: Keypoint matching, motion estimation, multi-view video.

1 INTRODUCTION

In recent years the increased availability of high qual-

ity video cameras together with readily available stor-

age space and fast data transfer has led to a grow-

ing interest in stereoscopic or, more general, multiple

view video. Although multi-view video data actually

is highly redundant, many algorithms in the processing

pipeline consider only pairs of images. One important

processing step is establishing feature point correspon-

dences that are used, e.g. as low-level starting point for

motion estimation [SLW+10, BWSS09, BBM09]. De-

termination of robust feature points and corresponding

feature point descriptions has been an intensely investi-

gated area of research for decades [MTS+05, MS05].

In spite of great advances, wrongly matched corre-

spondences are still commonly encountered. If addi-

tional information on the images is provided, e.g. by

calibration, synchronization or assumption of constant

rigid motion, this information can be used to eliminate

wrongly matched correspondences [HZ03]. Unfortu-

nately, in practical applications additional information

is not always available as, for instance, multiple cam-

eras are hard to synchronize in an outdoor environment

and usually images of independently moving objects

are recorded.

The goal of our work is to develop a versatile, robust

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

feature point matching method that is generally appli-

cable, e.g. also in the unconstrained multi-view video

setup. Our basic idea is to exploit the redundancy in

the data of multi-view video sequences with a common

field of view. We use it to establish more reliable cor-

respondences to ensure high-quality matches. Feature

points are matched by considering loops of images. We

introduce three image consistent matching and evaluate

it by means of the percentage of wrong matches.

Additionally, we show how a stereo-video optical

flow algorithm [SLM10] can benefit from incorporat-

ing our robustly matched features. Recent research

has shown that optical flow can be improved if

ideas from feature matching are included into the

approach, [BBM09, XJM10]. In contrast to variational

based optical flow algorithms that require an iterative

approach to cope with large distances [BBPW04], fea-

tures can be matched independently from their position

in the image and thus deal with arbitrary distances,

as long as their descriptor is sufficiently robust to

the corresponding changes in perspective or object

deformations. For the inclusion of feature matching,

optical flow approaches pay careful attention to outier

matches as these are able to prevent convergence to

the desired motion fields. In this work we show that

our robust loop matching strategy which exploits the

data modality given for multi-view video is able to

improve optical flow estimations without further outlier

treatment.

2 RELATEDWORK

Usually features are matched between two images from

synchronized cameras and spurious matches can be

discarded using epipolar geometry [SZ02, HZ03]. Gen-

erally, the assumption of global affine motion between

Journal of WSCG 1 ISSN 1213-6972



I1 I2

I3

Figure 1: Three images with detected features (SIFT)

of a multi-view video sequence: our algorithm ac-

cepts three images with some common field of view

acquired by one or several unsynchronized and uncali-

brated cameras. By requiring consistency of matches

on a loop of three images, false matches are elimi-

nated and correspondences between images can be es-

tablished robustly.

two images can be used to validate matches [BGPS07].

But also game theoretic approaches exploiting local

similarity transforms are used to establish reliable

matchings between two images [ART10].

If several independent objects move in a monocular

sequence, e.g. for person or object tracking [YJS06],

feature locations from previous frames can also be

used to estimate feature locations in the current frame

[Zha94]. Assuming that features have at most one

correct match in each frame, disjoint tracks of features

over multiple frames can be considered to improve

correspondences [VRB03, SS05, SSS06]. Thereby,

the tracks provide a regularization of the matches

over time, but no feedback for the correctness of the

tracking is provided.

For static scenes, the trifocal tensor [TZ97] can be

used to consider consistency of the matching between

more than two images [BTZ96]. Yao and Cham first

verify and add matches between image pairs to sat-

isfy the epipolar constraint, before the matches are ex-

tended to image triples and the trifocal tensor is com-

puted [YC07]. In contrast, Zach et al. first deter-

mine global, invertible transformations between im-

age pairs before they detect wrong transformations on

multi-image loops and discard them [ZKP10], enabling

more robust multi-image static 3D reconstruction.

If a dynamic scene is recorded by multiple, unsyn-

chronized cameras Ho and Pong work with high den-

sity feature points and use assignments of neighboring

pixel in a relaxation labeling framework to obtain con-

sistent matchings [HP96]. In the same setup, Ferrari et

al. perform consistency checks on loops of images, but

require an additional similarity measure that is different

from the measure used to establish preliminary match-

ings [FTV03].

Mathematically the problem of finding consistent

correspondences on three sets of equal, finite car-

dinality is well studied [Spi00] and approximation

algorithms to the NP-hard problem have been proposed

by several authors [CS92, BCS94].

In Sect. 3 we will adapt these approximation schemes

to sets of different sizes. In Sect. 4 we evaluate the

results of this new algorithm. We incorporate our con-

sistent matches into a three image spatio-temporal op-

tical flow algorithm, Sect. 5 and show how consistency

of flow and features can improve dense correspondence

estimation.

3 THREE IMAGE-FEATURE MATCH-

ING

Let I1 :Ω1 → R, I2 :Ω2 → R and I3 :Ω3 → R be three

images of a multi-view video sequence that have some

common field of view on a dynamic scene. In contrast

to previous robust matching methods, we do not require

epipolar geometry between images to be applicable, nor

do we assume a temporal ordering, i.e. the three im-

ages can be acquired by one, two or three unsynchro-

nized cameras, Fig. 1. For each image Ii, i ∈ {1,2,3} a

feature detector determines features fi,k,k ∈ {1, . . . ,Ni}
with corresponding descriptors si,k. We denote the de-

scriptor distance function with d(si,k,s j,m). In our ex-

periments, Sect. 4, we evaluate the algorithm for sev-

eral detector/ descriptor variants, so we keep the de-

scription general in this section.

Usually, after detection the features are matched be-

tween two images at a time. Authors of different de-

scriptors propose slightly different matching methods.

To keep the results comparable, we follow the approach

of [MS05] and use nearest neighbor matching (NN) for

all two-matching steps.

A more elaborate two-matching strategy (NNDR)

compares the distance of the nearest neighbor to the dis-

tance of the second nearest neighbor and only accepts

a match if their ratio is below a threshold [Low04]. We

also include this matching strategy into our evaluation.

If more than two images are considered, inconsis-

tencies in the matches such as ( f1,k, f2,m), ( f1,k, f3,n)
and ( f2,m, f3,p), p 6= n become obvious. In multi-view

video, corresponding feature points are supposed to be-

long to one single scene point, so inconsistent matches

indicate false matches. A straightforward approach to

reduce the number of false matches is to filter out any

match that is not consistent on a three image circle. To

eliminate inconsistent matches already during the as-

signment we formulate the matching problem in a dif-

ferent way.

In our approach we look for triples ( f1,k, f2,m, f3,n)
such that each fi, j is present in at most one triple. To

each of the triples we assign a cost d̃ that is the sum of

Journal of WSCG 2 ISSN 1213-6972



the distances of all three descriptors d̃(s1,k,s2,m,s3,n) =
d(s1,k,s2,m) + d(s1,k,s3,n) + d(s2,m,s3,n), i.e. the dis-

tance between each pair of features is considered in the

cost function, which therefore is independent of the or-

dering of the images. In contrast to previous approaches

this formulation requires the matches in all images to

be similar and thus closes the loop between the images,

providing a feedback to the matching and avoiding the

drift commonly encountered in considering ordered set

of images. If all features were present in all three im-

ages this is an instance of the classical three-matching

problem with decomposable cost-function, a NP hard

problem which can be solved approximately with the

following algorithm [CS92]:

i. Match the features in I1 and I2, e.g. using the Hun-

garian algorithm, (see [PS98]).

ii. Merge the sets of features on the basis of

the matching in (i.) such that the new cost

function between features in I1 and I3 is

d̂(s1,k,s3,n) = d̃(s1,k,s2,m,s3,n).

iii. Match the features in I1 and I3 with the new distance

function.

iv. Sum up all distances present in the matching.

v. Interchange the role of I1, I2, I3 and restart at (i.).

vi. Of the three matchings thus obtained, return the one

with the smallest sum of distances.

Note that step (ii.) enforces the third feature in the triple

to be close both to the feature in I1 and the feature in

I2. Enforcing this condition simultaneously provides

the means to transport the information of the other im-

ages to the bilateral matching.

The three-match returned by this algorithm can be

proved to lie within a certain distance to the actual best

solution and in practice it often turns out to be the best

solution [BCS94].

Yet, working with real images, we have to deal with

occluded and non-detected features as well as with non-

distinctive descriptors. We therefore adjust the above

algorithm. In step (i.) we use NN matching or option-

ally NNDR matching. Additionally we match feature

points only if they are mutual nearest neighbors. Thus

the processing is independent from the ordering of the

images and the feature points. For step (ii.) we remove

all features from both images that are not matched in the

previous step. We are only interested in feature points

that can be matched consistently in three images. As

the number of feature points differ in every image and

we do not require all feature points to be matched, the

sum of all matchings is no longer a reliable quality mea-

sure and step (iv.) is skipped. Correspondingly, for step

(vi.) we do not return the match with the smallest over-

all cost, as this is dependent on the number of feature

points actually matched. Instead we merge the three

matches and only return those triples that are found

in all three matching directions. Though this last step

might seem rather restrictive, in our setup we opt for

less matches with high quality instead of a higher num-

ber of matches with more questionable quality. This

proceeding is in accordance with considering d̃ in (iii.)

that enforces the matches to be mutual neighbors. In

summary our algorithm looks as follows:

1. (a) Match the features in I1 and I2, using NNmatch-

ing, optionally with distance check to the second

nearest neighbor.

(b) Match the features in I2 and I1, using NNmatch-

ing, optionally with distance check to the second

nearest neighbor.

(c) Accept only symmetrically matched features.

2. Remove unmatched features in I1 and merge the re-

maining features on the basis of the matching in (1.)

such that the new cost function between matched

features in I1 and features in I3 is d̂(s1,k,s3,n) =
d̃(s1,k,s2,m,s3,n).

3. (a) Match the features in I1 and I3 with the new dis-

tance function using NN matching.

(b) Match the features in I3 and I1 with the new dis-

tance function using NN matching.

(c) Accept only symmetrically matched features.

4. Interchange the role of I1, I2, I3 and restart at (1.).

5. Merge the three matchings and return only those

matches that are assigned in all three matching di-

rections.

4 EVALUATION OF THREE IMAGE-

FEATURE MATCHING

A great number of feature detectors [MTS+05] and

feature descriptors [MS05] exist in literature. For a

comparison of those we refer the reader to these sur-

veys. The aim of our work is to evaluate the im-

pact of three-image matching and so we chose four

widely used detector/ descriptor combinations for our

evaluations: SIFT [Low04] and SURF [BETV08] are

both scale invariant detectors for blob-like structures

and with their natural descriptors also invariant to ro-

tation and changes in illumination. We also evalu-

ate our matching algorithm on Harris-corners [HS88]

and the more recent accelerated corner detector FAST

[RD06] and combine both with the normalized cross

correlation (NCC) on a 9× 9 window. We transform

the normalized cross-correlation to a cost function via

d(si,k,s j,m) = 1−NCC( fi,k, f j,m) to obtain a descriptor

distance as used in Sect. 3. Using rather advanced and

robust detectors as well as rather low level detectors we

Journal of WSCG 3 ISSN 1213-6972



SIFT NN SURF NN Harris NN FAST NN SIFT NNDR

# M %WM # M %WM # M %WM # M %WM # M %WM

art
2IM 1444 53.39 616 64.45 93 49.46 474 45.57 674 10.53

3IM 603 11.28 177 20.90 44 13.64 220 13.64 506 2.57

books
2IM 1786 15.58 713 38.85 364 21.98 914 27.02 1506 2.52

3IM 1373 2.26 318 8.81 200 9.00 517 8.70 1315 0.84

dolls
2IM 2206 23.75 809 35.60 134 18.66 812 19.33 1583 2.21

3IM 1545 4.27 434 7.60 102 2.94 528 4.17 1367 1.02

laundry
2IM 1112 49.64 675 68.89 158 80.38 420 55.58 627 19.94

3IM 550 15.82 193 28.50 32 40.63 174 17.24 457 7.66

moebius
2IM 1634 24.24 475 38.95 77 20.78 317 35.65 1211 4.54

3IM 115 5.02 254 14.96 50 4.00 160 6.88 1011 2.47

reindeer
2IM 943 27.78 428 43.69 49 20.78 290 33.79 683 6.88

3IM 664 7.08 200 14.50 37 8.11 143 11.89 578 2.77

waving
2IM 4345 11.12 1314 24.20 196 26.53 353 19.97 3804 1.26

3IM 3995 4.76 1069 12.16 156 19.23 135 9.43 3720 0.70

stonemill
2IM 628 34.71 251 62.55 225 49.78 763 49.15 366 2.73

3IM 427 13.11 114 35.96 133 27.82 452 22.79 324 0.62

RubberW.
2IM 2077 3.85 236 16.53 48 0.00 255 6.67 1975 0.56

3IM 1585 0.32 107 5.61 25 0.00 153 1.31 1510 0.20

Hydr.
2IM 1111 16.56 432 20.88 176 25.57 576 22.74 853 1.52

3IM 254 2.76 56 8.93 20 15.00 70 8.57 136 0.74

wall
2IM 7776 25.44 2365 49.26 1693 28.53 6733 33.71 5327 0.56

3IM 5363 2.50 686 5.10 906 1.21 2892 1.87 4714 0.19

graffiti
2IM 2057 62.52 1385 77.98 265 90.68 822 91.12 689 25.83

3IM 626 11.50 140 33.57 8 87.50 39 78.95 338 4.14

Table 1: As three image matches (3IM) have to satisfy stricter requirements than two image matches (2IM),

the total number of matches is reduced while the quality of the matching is increased as the percentage of wrong

matches (%WM) is considerably decreased no matter which of the feature detectors (SIFT, SURF, Harris or FAST)

or matching strategy (nearest neighbor(NN) or nearest neighbor with threshold on the distance ratio (NNDR) ) is

used.

want to evaluate our matching scheme independently

from the detector used.

For reason of comparison, in our experiments we

apply nearest neighbor (NN) matching in all cases

[MS05]. Additionally we apply the more advanced

NNDR matching that was proposed for SIFT-features,

using a threshold of 0.8 on the distance ratio [Low04].

We apply the thresholding step accordingly in the

matching step (1.), but found it to have no impact in the

matching step (3.) as the combined matching already is

sufficiently distinguishing. We therefore do not apply

the distance check in (3.).

Using a naïve MATLAB implementation on a

2.66GHz processor, three image consistent matching

of 975 FAST features with 81 dimensional descriptors

in I1, 944 features in I2 and 860 features in I3 for

the art scene requires 736ms. With the same setup,

independent two-matchings between I1 and I2, I1 and

I3 and I2 and I3 last together 126ms.

In our experiments we determine the number of

matches and the percentage of matches outside a

5 pixel circle around the ground-truth location in

different scenes. The scenes art, books, dolls, laundry,

moebius and reindeer are rectified multiple view

images of a static scene with known disparity [SP07].

The scenes waving [SLM10] and stonemill [LLM10]

are synthetic, unsynchronized stereo sequences of a

moving scene with known ground-truth correspon-

dence fields. The scenes RubberWhale and Hydrangea

are the only monocular sequences of more than two

Journal of WSCG 4 ISSN 1213-6972



(a) (b)

Figure 2: The two image-based matching approach (a)

results in more outliers (red circles) and a lower rela-

tive amount of inliers (yellow crosses) than our three

image based-matching (b). From top to bottom: scene

art with SIFT features, RubberWhale with SURF fea-

tures, stonemillwith Harris corners, laundrywith FAST

features, all using nearest neighbor matching.

images with independently moving objects and known

ground-truth motion from the Middlebury optical

flow data set [BSL+07]. In contrast, the scenes wall

and graffiti describe a viewpoint change for a static,

mostly planar scene [MS05]. The number of matches

and percentage of outliers are shown in Tab. 1, some

examples are given in Fig. 2. As expected the number

of matches is reduced with our stricter three-matching

strategy. But at the same time the percentage of outliers

among the assigned matches is also considerably

reduced.

We also apply our algorithm to the real multi-video

recordings scenes market, 421 × 452 pixel, and

capoeira, 817× 578 pixel, which are recorded using

unsynchronized, uncalibrated cameras with automatic

gain, while in the scene outside, 270 × 480 pixel,

cameras are additionally hand-held. The algorithm is

performed on the entire images with all features points

found, but for visibility reasons, Fig. 3 shows the results

only for 100 randomly selected SIFT-features: matched

features are marked with a white x and connected

via a yellow line to the location of the corresponding

(a) (b) (c)

Figure 3: For three real world scenes market, capoeira

and outside (a) we compare different matching strate-

gies. Two-image matches (b) provides a larger num-

ber of matches but many outliers among them. Three-

image matches (c) reduce the number of outliers con-

siderably. For better visibility here 100 features are ran-

domly selected and connected with the location of their

matched features by a yellow line if such a feature is

found.

feature. As features are only matched if they are likely

correspondences in three images, the three matching

algorithm obviously decreases the number of matches

as compared to the algorithm that matches features

based on two images. But our algorithm renounces to

match many inconsistent features so that the percentage

of outliers is greatly decreased. As we will show in

the subsequent sections, this reduction of the relative

amount of outliers allows matching based algorithms

to start off much better.

5 APPLICATION TO STEREO-VIDEO

CONSISTENT OPTICAL FLOW

Recent optical flow algorithms started to include fea-

ture matches into the dense correspondence estima-

tion to faithfully detect large motion also of small ob-

jects. More specifically, Xu et al. consider motion

vectors of matched features to possibly assign them to

pixels all over the image [XJM10], whereas Brox et

al. [BBM09] include matched regions as prior into their

optical flow algorithm. We adopt the latter idea here

and include matched features into the state-of-the-art

optical flow for stereo sequences [SLM10]. This opti-

cal flow approach is derived from an optical flow algo-

rithm [WTP+09] classified on the Middlebury bench-

mark [BSL+07]. It considers symmetry and consis-

tency on a three image loop and therefore provides a

suitable mean to evaluate the three image based match-

ing. While in the approach of Brox et al. [WTP+09]

Journal of WSCG 5 ISSN 1213-6972



(a) (b) (c) (d)

Figure 4: For the scenes art, laundry, waving, stonemill, Rubber Whale and Hydrangea (a) dense ground-truth

motion fields are given (b). Compared to the motion fields of the loop-consistent TV-L2 algorithm of [SLM10], (c)

the inclusion of our three-image match as prior results in motion fields with better motion detail (d).

several matches are considered to make sure that the

correct correspondence is among them, we incorpo-

rate our matched features in their one-to-one fashion.

Adopting the notation of wr
i, j for the current estimate

of the motion field between image Ii and I j we simply

replace the point-wise energy Eq in [SLM10] with

E f = Eq +δ f ‖Wi, j−wr
i, j−dwi, j‖

2
2 (1)

where for matches ( fi,k, f j,n, fh,m) and [ fi,k] the nearest
integer position to the feature location

Wi, j :Ωi → R
2
, Wi, j(x) =

{

f j,n− fi,k if x = [ fi,k]

0 else

(2)

is a function that describes the matching of the features,

µ ,c > 0 constants and

δ f (x) = µ

{

1− arctan
d̃(si,k,s j,n)

c2π if x = [ fi,k]

0 else
(3)

Journal of WSCG 6 ISSN 1213-6972



a function that assigns values depending on the match-

ing costs or 0 to each point in Ωi. This new energy is

still a quadratic function in the update dwi, j, so the up-

dating scheme of [SLM10] is maintained. Note that for

all experiments we fix µ = 103 and c = 1
5

To speed up calculations and assist the determina-

tion of large flows, loop consistent flow estimation is

performed on a factor 0.5 image pyramid. Similar to

[BBM09] we down-sample the prior Wi, j by consider-

ing the 2× 2 pixels that are represented by one single

pixel in the next coarser level. From the four pixels

in the finer level we only pass on to the next coarser

level half the motion and the weight of the pixel with

the highest weight δ f (x). Thus, if no other matches are

found in the vicinity, the original match is propagated to

the next coarser level or else the match with the smallest

cost is used. Having thus established a matching-based

prior on all levels of a scale pyramid, we initialize the

dense flows on the coarsest level with zero and perform

10 iterations of the updating scheme before proceeding

to the next finer level. We use the upscaled flow field

from the previous level as initialization on the finer level

and thus proceed till the original resolution is reached.

5.1 Evaluation

To evaluate the impact of three image-consistent match-

ing on optical flow estimation, we use all the data sets

with known ground-truth motion from Sect. 4 except

for the scenes graffiti and wall which only contain cam-

era motion around a planar scene and are therefore of

no interest for dense motion field estimation. We mea-

sure the average angular error (AAE) and average end-

point error (AEE) [BSL+07] between the computed and

the ground-truth displacement fields. For comparison,

we also calculate flow fields with a two-image TV-L2

approach [SLM10] incorporating standard two image-

feature matching as prior and the three image-loop con-

sistent optical flow algorithm [SLM10] without prior.

As SURF features provide the best cover of our test

scenes with feature points, we here only show the re-

sults obtained with SURF. Flow fields incorporating

priors obtained with other descriptors behave qualita-

tively in the same way:

If only two image matches and forward flow are con-

sidered, wrong matches have a strong impact and lead

to results with high error, Tab. 2. In [SLM10] Sell-

ent et al. show that loop consistent flow improves the

results of the TV-L2 approach. Incorporating feature

points that are likewise consistent on three images is

able to further improve the results. An improvement is

also visible in the flow field, Fig. 4, as small structures

such as e.g. the hand in the waving scene are better

preserved than without the prior matches.

6 CONCLUSIONS AND FUTURE

WORK

In our article we show that even in the absence of cam-

era calibration and synchronization, feature points can

be matched more robustly if three images are consid-

ered simultaneously. By requiring that features are con-

sistent in three images, the quality of the matching im-

proves as the percentage of wrong matches is consider-

ably reduced.

We also combine three-image matching with three

image-loop consistent optical flow estimation and ob-

tain dense flow fields that have a smaller error and better

preserved motion details than either the loop-consistent

flow or basic flow with non-robustly matched features.

In this work we extend the traditional two image ap-

proach to three images and obtain more robust results.

Future work in this direction compromises to evaluate

whether this trend can be continued if four or more im-

ages are used and whether there is an optimal number

of images to be used.
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ABSTRACT

Using multi-camera matching techniques for 3d reconstruction there is usually the trade-off between the quality of the computed
depth map and the speed of the computations. Whereas high quality matching methods take several seconds to several minutes
to compute a depth map for one set of images, real-time methods achieve only low quality results. In this paper we present a
multi-camera matching method that runs in real-time and yields high resolution depth maps.
Our method is based on a novel multi-level combination of normalized cross correlation, deformed matching windows based
on the multi-level depth map information, and sub-pixel precise disparity maps. The whole process is implemented completely
on the GPU. With this approach we can process four 0.7 megapixel images in 129 milliseconds to a full resolution 3d depth
map. Our technique is tailored for the recognition of non-technical shapes, because our target application is face recognition.

Keywords
Stereo-matching, multi-camera, real-time, gpu, computer vision.

1 INTRODUCTION
Stereo matching is a technique to compute depth infor-
mation of a captured object or environment from two
or more 2d camera images. Many applications ranging
from remote sensing to robotics, archeology, cultural
heritage, reverse engineering, and 3d face recognition
[15, 17, 10, 26] use stereo matching. It is the only
passive method to generate depth information. This
means there is no artificial interaction with the object
that might do any harm and only natural light is used
for the data acquisition.

The main challenge of stereo matching is the trade-
off between the quality of the depth map and the com-
putation time to compute the depth map. For some
applications a real-time computation is not important.
So many stereo- and multi-view-matching methods fo-
cus on high quality results instead of fast computation
times. These high quality methods need at least sev-
eral seconds to compute a single depth map from one
set of images [9]. However, for robotics faster compu-
tation times are more important than the quality of the
depth map. This led to the development of GPU based
real-time matching methods [28, 27].

Our target application is 3d face recognition. For face
recognition the requirements are somewhere between
these fields. A trade-off between a high depth map qual-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ity and an acceptable speed must be found. The whole
reconstruction and recognition needs to be done in less
than half a second. A longer delay is not acceptable
for the captured person. Nevertheless, the quality of
the reconstructed surface needs to be high enough for a
reliable recognition of the person.

1.1 Overview and contribution
In order to classify our approach for the subsequent
related work section we give here a brief layout of
our system. It is based on weighted normalized cross-
correlation for all matching windows of a reference im-
age to a set of additional images from different perspec-
tives. This cross-correlation yields a score for every
matching window position and the maximal score in-
dicates the best matching position. This best matching
position corresponds to a disparity of the matching win-
dows and thus to the depth information. These steps
will be described in Sections 3 - 4. Our contribution
in this process is the GPU optimized use of weighted
normalized cross-correlations, the combination of mul-
tiple cameras to a total score for simultaneously moved
matching window, a projection-free depth-map-based
deformation of the matching windows, and a sub-pixel
precise disparity estimation. These techniques account
for the quality of the generated depth maps. To compute
the depth maps in real-time our process is implemented
on the GPU. This is described in Section 5 and has not
be done in such a consequent form before.

2 RELATED WORK
Our method may be classified between two very dif-
ferent classes of stereo matching methods. On the one
hand, the high quality methods with long computation
time to achieve excellent results. On the other hand,
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the fast GPU methods using much simpler algorithms.
Therefore, we will contrast our approach to both classes
of stereo matching methods.

2.1 High quality methods
High quality stereo matching methods have been devel-
oped based on various techniques. The quality of such
methods is compared at [19, 21, 25]. Newer bench-
mark results are available on the associated websites
[20, 22, 24].

One of the earliest methods in this class is the adap-
tive least squares correlation of [6]. In this approach
local affine transformations are estimated using a least
squares approximation. Although, this method theoreti-
cally converges to an optimal solution, the convergence
is too slow and the computation too costly due to the
size of the linear systems.

Today, best reconstruction quality is achieved by re-
gion growing algorithms, e.g. [5, 9]. These methods
are typical for high quality matching algorithms, where
a set of good matches is generated using a sparse set of
interesting features. Then, these good matches are ex-
tended with a growing strategy. The growing operations
are iterated in combination with filter operations to con-
trol the quality of the matches. Because the growing
process is based on an optimization of complex objec-
tive functions, these methods do not allow a fast GPU
implementation.

A novel alternative is the phase only correlation of
[23]. Here, the disparity of matching windows is es-
timated by the phase difference of the image signal
along epipolar lines. This requires the computation of a
Fourier transformation, which is difficult to implement
on the GPU [14]. This is particularly problematic if the
Fourier transform must be evaluated for every pixel of
the captured image.

Global optimization of a Markov Random Field
(MRF) is used in [1]. For each pixel multiple depth hy-
potheses are stored and the best is picked by the MRF
optimization. The solution of this NP-hard problem
is approximated using a sequential tree re-weighted
message passing algorithm [11]. Although the GPU is
used to solve several steps of the algorithm, the global
optimization makes it much slower than typical GPU
methods.

A particle cloud optimization is used by [8] to gener-
ate depth representations for each camera image. The
particles are aware of depth discontinuous silhouettes
and use a special volumetric view space parametriza-
tion instead of the usual image-based parametrization
of matching windows. Then, these depth representa-
tions are combined and rendered in real-time using the
GPU.

Approaches based on dynamic programming, e.g.
[12, 18], are relatively similar to our approach. For
these methods fields of matching scores are computed

for every epipolar line. Within these fields an optimal
path is computed using dynamic programming. The
computations of the optimal path can either be done on
the CPU or on the GPU requiring significant amount of
memory.

Our approach is also based on matching scores along
epipolar lines, but the computations are local and sim-
ple to allow an implementation on the GPU.

2.2 GPU methods
Much faster methods implement the stereo-matching
algorithm on the GPU using hardware features of the
graphics card like mip-mapping.

A typical example for this class of methods is de-
scribed in [27]. This approach consists of a set of indi-
vidual steps of the overall stereo-matching process im-
plemented on the GPU. For the matching score either
the sum of squared differences or the sum of absolute
differences are used. These matching scores are easily
implemented on the GPU, but yield only low quality
disparity maps. To exploit the capabilities of the mip-
map a pyramidal matching kernel is used, which does
not allow for an independent movement of the individ-
ual levels in the pyramid. In both aspects our approach
improves this method. Some other aspects of [27], like
cross-checking and feature aligned matching windows,
could easily be integrated to our system.

A different approach of the same first author is [28].
Here five calibrated cameras are matched at once. Us-
ing the same technique with a reconfigurable array of
48 cameras is described in [30]. For this technique the
matching window covers only one pixel to simplify the
computations on the GPUs. This local approach is not
stable but very fast and avoids all disadvantages of large
matching windows.

Another technique for a large number of images is
[29]. It is not as fast as the other GPU methods, but
includes a volumetric reconstruction of the objects. A
plane sweep method is used for depth estimation on
non-rectified images.

The method from [2] uses the pyramidal matching
kernel and mip-mapping from [27] and adds a fore-
ground/background separation on the GPU. This addi-
tional step avoids typical artifacts of the pyramidal ker-
nel like wrong depth estimates for regions with low tex-
ture details usually found in the background. Our im-
proved multi-level approach does not show such prob-
lems.

3 THE CAMERA SYSTEMS
We built a system of four USB Logitech R© QuickCam R©

Pro 9000 cameras, see Figure 1(a). Each camera is used
at a resolution of 960× 720 at five frames per second.
The cameras could yield a much higher resolution, but
the bandwidth of the USB 2.0 controllers is limited.
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To improve the quality for later face recognition,
we built a second camera system of four Point Grey
Flea R©2 FireWire 800 cameras, see Figure 1(b). These
cameras synchronously capture images at a resolution
of 1392× 1032 at 15 fps. For synchronization we use
all four cameras on a single FireWire 800 Bus. Thus,
in RGB mode only a frame rate of 3.75 fps is possible.
This can be improved by de-mosaicking on the GPU
and transferring the data in eight bit raw mode. This
allows for 11.25 fps.

Our experiments showed that a Y-constellation of
four cameras as shown in Figure 1 gives the best re-
sults. The image of the central camera is used as refer-
ence image for matching and texturing. Each possible
image pair has a different angle. Otherwise preferred
directions of the camera constellation could deteriorate
the detection of features along these directions, e.g. an
image containing horizontal stripes causes problems for
horizontal camera arrangements.

Independently of the used hardware system, our
method can be adapted to other camera constellations.
This adaption is much easier for camera systems where
all cameras are mounted on a plane perpendicular to
the viewing direction. The individual camera images
are rectified using a lens correction similar to [4].

4 MATCHING
The overall matching process consists of several nested
loops shown in Figure 3. We describe this process from
the inner to the outer loop.

4.1 Stereo matching
The aim of stereo matching is to find corresponding
points in two images. Usually two square regions,
called matching windows are compared. These win-
dows are moved over the images to find the best match-
ing position. To identify the best position, a score
is computed, that rates the similarity of two matching
windows. Similar to [13] we use a weighted normal-
ized cross-correlation on RGB color values. First the
weighted average color f i of the matching window Wi
in the i-th image is computed

f i = ∑
(x,y)∈Wi

w(x,y) f (x,y). (1)

Here w(x,y) = cos2 (πx/a) · cos2 (πy/a) is a weight
function that smooths the result to emphasize pixels
at the center of the matching window over pixels at
the border, and a denotes the matching window size in
pixels. Then the weighted auto-correlation αi of each
matching window with itself is computed as

αi = ∑
x,y

w(x,y)
[

fi(x,y)− f i
]2
. (2)

To evaluate the similarity of two matching windows Wi
and Wj the weighted cross-correlation βi, j is computed

βi, j = ∑
x,y

w(x,y)
[

fi(x,y)− f i
]
·
[

f j(x,y)− f j
]
. (3)

The weighted normalized score γi, j is computed as the
weighted cross-correlation normalized by the geomet-
ric mean of the respective weighted auto-correlations

γi, j = βi, j/
√

αi ·α j. (4)

4.2 Multi-camera matching
Stereo matching evaluates the similarity of two match-
ing windows. We extend this score to a set of n cameras
and matching windows by summing up the weighted
normalized scores of all possible image pairs. Thus, we
need n(n− 1)/2 stereo matching operations. To com-
pute a total score we compute a camera score

γi = ∑
j 6=i

γi j (5)

and a total score

γ = ∑
i

γi−2min
i

γi. (6)

This eliminates all scores from the worst matching cam-
era to improve robustness to occlusion on one of the
cameras. The total score is used to evaluate the similar-
ity of matching windows of multiple cameras simulta-
neously.

4.3 Moving the matching windows
Between the images a disparity estimation is computed
to get the depth information. Therefore, the matching
windows are moved simultaneously over all images. A
total score of each position and the best matching win-
dow position with the highest total score are computed.
Since the evaluation of all possible positions is too ex-
pensive, the movement of the matching window is lim-
ited to the epipolar lines projected by the center point
of the matching window of the reference image. The
image of the central camera is used as reference im-
age, i.e. the matching window on the central image is
fixed. Figure 2 shows the simultaneous movement of
the matching windows in the other images along the
epipolar lines. These movements along the epipolar
line have a step size of one pixel for our camera config-
uration. For other camera configurations the step size
depends linearly on the distance to the central camera.
We test 3≤ k≤ 35 different positions for each matching
window, see Section 4.5. Note that the color values for
the score computations are bi-linearly interpolated to
allow an exact movement along the epipolar line. The
best similarity of the matching windows is marked by
the matching window position with the highest score
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(a) USB camera system. (b) FireWire camera system.

Figure 1: For our experiments we use two systems of four cameras arranged in an upside down Y-constellation.

Figure 2: Moving the matching windows (solid
squares) in all images (dashed rectangles) along epipo-
lar lines (arrows) simultaneously.

sbest. From the position on the epipolar line, the dispar-
ity dbest of the best match is estimated. The real depth
can be computed by reverse projection using the posi-
tion of the reference camera, the distances to the other
cameras, and the disparity.

4.4 Sub-pixel matching
To achieve sub-pixel precision for the disparity map we
use a method similar to sub-pixel accurate edge detec-
tion of [3]. The best disparity is achieved at a local max-
imum of the total score, i.e. both neighboring scores
sleft and sright are smaller or at most one of them is equal
to sbest

sleft ≤ sbest > sright or sleft < sbest ≥ sright. (7)

Interpolating these three total scores with a quadratic
polynomial yields a best sub-pixel score at the global
maximum of the quadratic polynomial. This maximum
is achieved within half the distance to the neighbor po-
sitions. The position of this maximum is the interpo-
lated sub-pixel disparity dsub.

4.5 Multi-level matching
Our method generates disparity data for one image at a
fixed resolution. To allow large disparities, many possi-

ble matching window positions must be evaluated. Be-
cause this is computationally expensive, we use a real
multi-level approach that can reduce the effort for large
disparities. A similar approach in [27] uses a matching
pyramid. In contrast to our method, the windows on
different detail levels cannot be moved independently.

Independent levels allow us to re-use high level in-
formation to get a much faster low level disparity com-
putation. The graphics card stores the lens corrected
image in a mip-map at eight different resolutions. Each
level has half the horizontal and vertical resolution of
the one below. All matching windows have a fixed size
of 7× 7 pixels. A smaller window size increases the
noise while a larger size blurs sharp features. Start-
ing on the coarsest resolution level l = 7, the dispari-
ties of all pixels in the reference images are computed
at the same coarse resolution. The matching windows
are evaluated at k = 35 different positions. Then the
image resolution is doubled and the same process starts
again, while k = 1+ 2b1.5+ l2/3c is reduced quadrat-
ically. As starting position for the matching windows
on lower levels, the bi-linearly interpolated disparities
of the next coarser level are used. Thus, the matching
window moves k pixels around the best position of the
previous level.

4.6 Deformed matching windows
Square matching windows can only yield good results,
if the captured object surface is parallel to the image
plane. Every surface not parallel to the image plane
generates imprecision. To avoid this the matching win-
dows are deformed to fit the perspective deformation of
the object surface. The idea is based on [7], but we use
the multi-level depth information and a projection free
computation.

To estimate the deformation we use the disparity map
of the previous multi-level step. First nine disparity val-
ues at the corners, the edge midpoints, and the center of
the matching window are interpolated. This gives a dis-
parity estimate for every pixel in the actual matching
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Figure 3: Overview of our matching process.

window. Subtracting the disparity at the center of the
matching window yields a local displacement for every
pixel. This displacement is added to the pixel coordi-
nates before the color values are read. This results in
a matching window adapted to the perspective of the
previous level without computing any perspective pro-
jections. Note, that for planar object surfaces this ap-
proach is almost equivalent to the projections used by
[7]. The difference is that it is based on disparity instead
of depth.

4.7 Measuring the matching quality
For each resolution level a complete disparity map is
computed. So, for each pixel of this map the best to-
tal score computed is also stored. Averaging these to-
tal scores over multiple resolution levels gives a quality
measure for each pixel of the full resolution depth map,
see Figure 4(b). Pixels with low quality measures can
be masked for rendering or subsequent computations of
the user application.

The quality measure is also used to improve the per-
formance of the multi-level matching. A low quality
measure on a coarse matching step usually causes the
finer level matches in this region to fail too. Matching
calculations are skipped if the quality measure on the
next coarser level is too low.

5 IMPLEMENTATION ON THE GPU
The method described so far uses images and generates
a depth image as result. Therefore, we use GLSL frag-
ment shaders for the GPU implementation. A fragment

shader is a program that runs in parallel on the GPU and
processes one or multiple texture images into one result
image. For our shader operations we need GPUs which
support at least shader model 4.0. The required amount
of computations in a single shader run is not feasible on
older GPUs.

5.1 GPU lens correction
Our input data are multiple raw camera images. Each
raw image is corrected by a shader implementing a lens
correction similar to [4]. The resulting corrected im-
ages are rendered into separate textures. Each of these
textures is then transformed into a mip-map. These
mip-maps of the corrected images are used by all sub-
sequent shaders of our system.

5.2 GPU optimized matching
A single pixel shader run usually computes the color
values for one result image, each pixel separately. More
complex computations require the combination of mul-
tiple shader runs. Three fragment shader programs are
used for each step of our multi-level matching.

The first shader takes the corrected image mip-map
and computes the weighted average color of the pix-
els of a matching window at the actual resolution level.
These averages are rendered to separate average tex-
tures. This shader is invoked once for every image.

The second shader takes the corrected image mip-
map and the average texture and computes the weighted
auto-correlation for the same matching window. Again
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(a) The four captured sample images.

(b) Result textures. Disparity map (left) and quality measure (right).

(c) Reconstructed 3d model.

Figure 4: Example from our USB camera system.

the result is rendered to a separate auto-correlation tex-
ture and the shader is invoked once for every image.

The third shader takes the average and auto-
correlation textures and performs all matching
operations, i.e. it moves the deformed matching
windows, computes the total score, and finds the best
sub-pixel score. The result is rendered as the disparity
map, the best total score of the finest resolution and
the quality measure to the three color channels of a
separate texture. These three shaders are invoked once
per resolution level.

Most important strategies used to improve the GPU
performance are the pre-calculation of weighted aver-
age and weighted auto-correlation just described and
the multi-level matching described in Section 4.5.

6 RESULTS

Our target application is face recognition. We present
our results in that area. For easier comparison with
other algorithms we also applied our algorithm to a well
known benchmark for stereo matching.

(a) The four captured sample images.

(b) Result textures. Disparity map (left) and quality measure (right).

(c) Reconstructed 3d model.

Figure 5: Example from our FireWire camera system.

6.1 Face reconstruction

We took some example images with our USB camera
system shown in Figure 4(a). The disparities between
these images are very large. The result texture of the
fragment shaders holds the disparity map, the best to-
tal score of the finest resolution level, and the quality
measure encoded in the color channels, see Figure 4(b).

After transformation of the disparities to depth val-
ues, the data can be rendered as 3d model, see Fig-
ure 4(c). The low quality regions are masked and ig-
nored in this rendering.

A typical problem of stereo matching can be seen at
the highlights on the forehead generating small dents,
because the reflection is further away from the cameras
than the forehead. More diffuse lighting could avoid
this problem. The computation for the example im-
ages takes an average processing time of 129 ms on an
NVidia GeForce GTX 285 GPU. This allows real-time
frame rates of 7.5 fps.

A higher resolution of 1392× 1032 is achieved by
the FireWire camera system. An example image set is
shown in Figure 5(a). Figure 5(b) shows the result tex-
tures and Figure 5(c) a 3d model of the resulting depth
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map. The higher camera resolution yields a better shape
quality at the most important regions of the face. Espe-
cially the reconstruction of the eye and mouth regions
is much more precise.

For this example an average processing time of 263
ms is needed on the same GPU. For images of 30 dif-
ferent persons we get an average processing time of
254 ms. In most of these images the face region is
smaller than in the displayed examples, so the compu-
tations are a bit faster. In comparison to the first exam-
ple, the computation time grows almost linearly with
the number of pixels p. This conforms to a runtime
of O(p log p) for our multi-level algorithm: The match-
ing window size, the stretch of the window movement,
and the count of image pairs are constant. So the worst
case costs for the computations in each depth map pixel
is constant. The pixels of the resulting depth map, or
smaller versions of it, are computed once for each of
the log2(width)∈O(log p) multi-level steps. Hence the
overall count of pixel calculations and the complexity
of the algorithm is within O(p log p).

6.2 Stereo vision benchmarks
Several benchmarks can be used to compare the qual-
ity of stereo matching algorithms [19, 21, 25]. Our al-
gorithm is tailored to face reconstruction and contains
simplifications that require a planar camera configura-
tion. Thus, it is not comparable to the benchmark [25].
Furthermore, our algorithm is also tailored to large dis-
parities between the images and achieves a much bet-
ter reconstruction quality using more than two cameras.
So, only a comparison with the results of the extended
datasets of the Middlebury stereo benchmark [20] is rel-
atively fair. However, this benchmark does not provide
an official score.

Compared to the algorithms providing results and
timings for these benchmark our algorithm works much
faster. At the same time the quality of our result is com-
parable to the quality of these algorithms. However, for
this comparison we have to adapt our algorithm.

For the Middlebury stereo evaluation [20], we in-
tegrated a modified local version of Multi Hypothe-
sis Matching [1] to improve the sharpness of edges in
our algorithm. The movement range of the matching
windows is extended to the depth extrema of the local
neighborhood on the last detail level. Instead of evalu-
ating only the best matching score, the eight best match-
ing scores are stored. A post-processing step re-weights
these scores based on the values and depth distances to
the best scores in the direct pixel neighborhood. The re-
weighting is repeated two times without any global op-
timization as in [1]. This multi hypothesis matching is
implemented as an post-processing fragment shader on
the GPU. The additional shader and the increased range
for the matching windows cause a large performance
loss. Processing our example images at a resolution of

960× 720 pixels takes 900 ms. This is still faster than
the other algorithms in [20], but not fast enough for our
target application.

Figure 6 shows our algorithm applied to the extended
Tsukuba dataset from [20, 16]. The two images in Fig-
ure 6(b) show the results from all five input images
without and with the additional edge improvement.

7 CONCLUSION AND FUTURE
WORK

The quality of the resulting surface model is sufficient
and the processing times are more than sufficient for
our target application 3d face recognition. Additional
methods like cross-checking that can be implemented
on the GPU could further improve our results. Further-
more, for an application of our method in a face recog-
nition system, a simple method to guide persons to the
optimal distance from the camera system is required.

For the future we plan to record synchronous video
sequences with the FireWire camera system. Similar to
multi-level matching, the matching information of an
earlier video frame could be used to improve the per-
formance.
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ABSTRACT

Molecular surfaces often exhibit a complicated interior structure that is not fully visible from exterior viewpoints due to occlu-
sion. In many cases this interior cavity is the most important feature of the surface. Applying standard blended transparency can
reveal some of the hidden structure, but often results in confusion due to impaired surface-shape perception. We present am-
bient occlusion opacity mapping (AOOM), a novel visualization technique developed to improve understanding of the interior
of molecular structures. Ambient occlusion is a shading method used in computer graphics that approximates complex shad-
ows from an ambient light source by rendering objects darker when surrounded by other objects. Although ambient occlusion
has previously been applied in molecular visualization to better understand surface shape, we instead use ambient occlusion
information to determine a variable opacity at each point on the molecular surface. In this manner, AOOM enables render-
ing interior structures more opaque than outer structures, displaying the inner surface of interest more effectively than with
constant-opacity blending. Furthermore, AOOM works for cases not handled by previous cavity-extraction techniques. This
work has been driven by collaborators studying enzyme-ligand interactions, in which the active site of the enzyme is typically
formed as a cavity in the molecular surface. In this paper we describe the AOOM technique and extensions, using visualization
of the active site of enzymes as the driving problem.

Keywords: Molecular visualization, ambient occlusion, transparent surfaces

1 INTRODUCTION
Visualization has become an essential tool for many
scientists working with molecular data. Ball-and-stick,
ribbon, and surface renderings are all visualization
techniques that enable improved understanding of
molecular structures [10, 23, 30, 40]. Our collaborators
use visualization techniques such as these to study
enzyme-ligand interactions.

Enzymes are proteins that catalyze the transforma-
tion of a substrate molecule into a product. The sub-
strate/product is often referred to as the “ligand” with
which the enzyme binds. Our collaborators use molec-
ular surface renderings to understand the shape of the
active site of the enzyme and its spatial relationship to
the ligand during binding. The active site is typically a
complicated internal cavity that is largely hidden from
exterior viewpoints due to occlusion (Figure 2). Two
tools commonly used for viewing occluded structures
are transparency and clipping planes.

Applying standard blended transparency to the
surface reveals some of the internal structure, but
often results in impaired surface-shape perception [24].
Clipping planes can also reveal internal structure, but
are typically insufficient for displaying complicated

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Figure 1: Standard transparency on the left versus am-
bient occlusion opacity mapping (AOOM) on the right.
The structure of the inner cavity, and its context within
the outer surface, is easier to understand with AOOM.

non-planar surfaces such as enzyme active sites.
Another potential technique that might be used is
applying depth-peeling to remove the closest surface to
the viewpoint. Such a technique would be inaccurate
for this application, however, as the visible portions of
the cavity would be removed, and the second surface
may not correspond to the cavity in areas of folds
and bumps of the outer surface. To enable improved
visualization of the active sites of enzymes, we have
developed a technique that uses ambient occlusion
information to identify and emphasize these hidden
structures.

Ambient occlusion is a shading method used in
computer graphics that approximates complex shadows
from an ambient light source. Surfaces surrounded
by objects that block ambient light are rendered
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darker than those open to the environment, so ambient
occlusion is therefore a measure of the “hiddenness”
of an object. Ambient occlusion has been successfully
used in molecular visualization to help understand
surface shape and identify the locations of cavities
in molecular surfaces [39]. Instead of using ambient
occlusion information solely for enhancing surface
shading, ambient occlusion opacity mapping (AOOM)
uses ambient occlusion to calculate a variable opacity at
each point on the molecular surface. Because ambient
occlusion is a measure of the hiddenness of an object,
AOOM can render outer structures more transparent
and inner structures more opaque, displaying the inner
surface of interest more effectively than with standard
transparency (Figure 1). In this paper we apply AOOM
to the visualization of enzyme active sites and describe
various extensions to the core AOOM technique driven
by collaboration with biochemists.

The paper is organized as follows: Section 2 pro-
vides background information on the biochemistry our
collaborators are studying. Section 3 provides related
work in the areas of molecular surface visualization, oc-
clusion and transparency in visualization, and ambient
occlusion. Section 4 describes the AOOM implemen-
tation, extensions, and supplemental visualization tech-
niques. Section 5 concludes and provides future work.

2 SCIENTIFIC BACKGROUND

Our collaborators study the architecture of the active
sites of enzymes involved in the tetrapyrrole biosynthe-
sis pathway. The enzymes in this pathway catalyze re-
actions involving ligands that are necessary for the for-
mation of various molecules such as hemoglobin, vi-
tamin coenzyme B12, and chlorophyll. Of interest are
how different enzyme active-site architectures interact
with their respective ligands.

PyMOL, an open-source molecular visualization sys-
tem (www.pymol.org), is used by our collaborators to
visualize ligands bound in the enzyme active sites, with
crystallographic data taken from the Protein Data Bank
(www.pdb.org). Understanding the active site where the
ligand binds with the enzyme is especially important
for answering questions such as: a) How much space is
available for the ligand within the volume occupied by
the protein? b) How does the ligand access the active
site cavity? c) How completely is the active site cavity
filled by the ligand? and d) Which residues in the cavity
are close enough to the ligand to provide the anchoring
interactions that bind it in place?

Each of these questions involves understanding the
shape of the active site cavity, which can be problem-
atic due to self-occlusion of the inner cavity by the outer
surface (Figure 2). Dealing with occluded surfaces has
long been an area of research in visualization. The next
section provides previous work on molecular surface vi-

Figure 2: The surface cavity forming the active site of
the PGB deaminase enzyme is circled. Much of the
cavity is occluded by the outer surface.

sualization, visualizing occluded surfaces, and ambient
occlusion.

3 PREVIOUS WORK

3.1 Molecular Surface Visualization
Molecular surfaces are a common visualization
technique for studying molecular structures. The
solvent-excluded molecular surface is formed by
rolling a spherical probe over spheres representing
the atoms of the molecule [34]. It represents areas
accessible by molecules of a given probe radius.
Connolly described methods for generating these
surfaces [8, 9]. Methods improving the efficiency
and quality of computing these surfaces have also
been described [1, 6, 36, 41]. While such methods
for producing molecular surfaces are necessary for
the visualizations produced in this paper, they do not
address the problem of visualizing the occluded interior
structure of the generated surfaces.

The problem of visualizing protein docking using
surfaces has been addressed [27]. This approach com-
putes the intermolecular negative volume of two docked
proteins to determine the amount of intersection be-
tween the two surfaces, with the purpose of enhanc-
ing drug-design by testing different potential confor-
mations. While effective for such work, this approach
is not directly applicable to the biochemistry presented
in this paper, which involves data with known structure
and no surface intersection.

Methods for analytically extracting pockets and cav-
ities using computational geometry techniques also ex-
ist. CASTp uses the weighted Delaunay triangulation
and alpha complex to identify and measure the area and
volume of pockets and cavities [17], and is available as
a PyMOL plugin. The ability to extract measurements
of pockets and cavities is very useful, however compar-
ison with an AOOM rendering demonstrates that im-
portant features of the cavity may be missed, such as
the circled portion of the cavity on the left and the cir-
cled access tunnel on the right in Figure 3, Bottom Left
(Bottom Right includes a Focal Region technique dis-
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Figure 3: CASTp cavity extraction (bottom left, ren-
dered using PyMOL) does not extract the entire cav-
ity, and does not conform to the original molecular sur-
face (missing circled regions). A focal-region approach
(bottom right) based on distance from the center is less
effective than AOOM (top), as it occludes portions of
the inner cavity (circled access tunnel on the right) and
erodes regions of the outer surface that otherwise pro-
vide visual context.

cussed in Section 3.2), because the cavity is not calcu-
lated from the full molecular surface, but instead from
the extracted atoms that form the cavity. Also, there are
a number of structures for which CASTp fails, whereas
AOOM will work for any molecular surface (Figure 4).
Future work will include augmenting AOOM with the
types of analytical capabilities provided by CASTp. A
promising step in this direction involves extracting the
cavity by thresholding based on ambient occlusion in-
formation, followed by connected components analysis
to remove smaller pockets in the surface (Figure 4, Bot-
tom).

Recent work has resulted in techniques for producing
simplified abstractions of complicated molecular sur-
faces [7]. While this technique does not directly address
revealing hidden internal structure, it may prove bene-
ficial to combine AOOM with such abstracted surfaces,
as AOOM will work with any surface-based represen-
tation. Furthermore, AOOM could be applied to other
representations, such as ball-and-stick and ribbon ren-
derings.

3.2 Occlusion and Transparency
Occlusion is the most powerful of all depth cues [43].
However, occlusion can be problematic when visualiz-
ing 3D data, as objects of interest can be hidden from
view. Applying transparency to occluding objects can

Figure 4: A molecular structure [35] (top left) for which
CASTp fails, that reveals a long tube-like cavity struc-
ture when rendered using AOOM (top right). If desired,
the cavity can be extracted by thresholding on ambient
occlusion information followed by connected compo-
nents analysis (bottom).

make hidden objects visible, but simple transparent sur-
faces do a poor job of conveying surface shape [24].
Various techniques have therefore been developed to
enable more effective visualization of occluding and oc-
cluded surfaces.
Illustrative Techniques Illustrative techniques in-
clude a surface-rendering technique for view-dependent
tranparency that aims to automatically produce trans-
parent surfaces similar to technical illustrations [15].
Later work describes techniques for automatically pro-
ducing breakaway and cutaway illustrations of nested
surfaces [16]. These techniques are useful for nested
surfaces, but do not address a single self-occluding sur-
face. Similar work has been applied to isosurfaces ex-
tracted from volumetric data [19], which is useful for
objects within the volume of the isosurface, but not for
a single self-occluding surface.
Focus-and-Context Techniques A class of direct
volume rendering techniques has been developed to
reveal the inner structure of volumes while retaining
some outer structure to maintain context. Importance-
driven volume rendering highlights presegmented re-
gions based on user-supplied importance criteria [42].
Opacity reduction of occluding volumes by finding vol-
umetric features indicating a separation between areas
with similar voxel intensities has been described [2, 3].
Selective opacity reduction of regions using a function
of shading intensity, gradient magnitude, distance to
the eye point, and previously accumulated opacity has
also been described [5]. Opacity-peeling can be used
to remove some fixed number of fully-opaque layers
of material [32]. These focus-and-context techniques
use various features of the volumetric data to modu-
late opacity and reveal hidden structure, and therefore
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do not apply directly to molecular surface rendering.
A depth-dependent focal region can also be used for
opacity modulation [29]. However, applying a similar
technique to our data shows that it is insufficient by it-
self due to the irregular geometries formed by molecu-
lar surfaces, even for a relatively round and centralized
cavity (Figure 3, Bottom Right). The work of [11] is
closest to that described in this paper, as ambient occlu-
sion is also used for modulating opacity. However, their
work focuses on volumetric data, and does not perform
the smoothing process described in 4.2 (Figure 6 shows
AOOM without smoothing).

3.3 Ambient Occlusion
For the techniques listed above, some method of deter-
mining the object or volume of interest is necessary, ei-
ther via distinct and separate surfaces or via functions of
the underlying volume. For displaying the inner cavity
of a molecular surface, we need a means to determine
which portions of the surface constitute the inner cavity
of interest. To do so we calculate ambient occlusion for
the surface.

Ambient occlusion [4, 26] is a shading method used
in computer graphics that approximates complex shad-
ows from an ambient light source by rendering objects
darker when surrounded by other objects (Figure 5,
Left). The basic algorithm involves casting a number
of rays at various angles from each point on a surface,
keeping track of the number of rays that intersect an-
other (or the same) surface. Recent work has focused
on real-time ambient-occlusion calculation for dynamic
scenes [20, 25, 37, 38], but for our static surfaces it is
sufficient to use a pre-calculated ray-tracing approach
and store the ambient occlusion per-vertex. The ambi-
ent occlusion term Op at a point p on a surface with
normal N can be computed by integrating the visibility
function Vp over the hemisphere Ω with respect to the
projected solid angle:

Op =
1
π

∫
Ω

Vp(~ω)(N ·~ω)dω, (1)

where Vp(~ω) is zero if p is occluded in the direction
~ω , and one otherwise. The dot product N · ~ω results
in a cosine-weighting across the hemisphere. Using a
cosine-weighted distribution of rays therefore removes
the need for this cosine factor, resulting in a simple ratio
of the number of rays that intersect a surface ri and the
number of total rays rt :

Op =
ri

rt
. (2)

Areas of the surface that are largely occluded will there-
fore have a high Op value.

Ambient occlusion rendering was developed to en-
hance realism in computer graphics by replacing the
standard ambient term by 1 − Op to darken objects

blocked from ambient light. Ambient occlusion has
also proven useful for scientific visualization. For ex-
ample, with molecular surface rendering, the locations
of cavities in the molecular surface become more ap-
parent (Figure 5, Left). Because ambient occlusion
is a measure of the “hiddenness” of a particular point
on a surface, we can use ambient occlusion informa-
tion to identify hidden structures and render them more
opaquely to provide visual emphasis.

4 AMBIENT OCCLUSION OPACITY
MAPPING

Ambient occlusion opacity mapping (AOOM) uses am-
bient occlusion information to modulate the opacity of
the molecular surface. Areas with high ambient occlu-
sion that would typically be rendered dark, are instead
rendered more opaque than areas with low ambient oc-
clusion. The color of the surface can also be adjusted
based on ambient occlusion to enhance perception of
the inner cavity versus the outer surface. This section
describes the implemenation details of AOOM, exten-
sions to the core AOOM technique enabling enhanced
opacity control, and supplemental visualization tech-
niques used with AOOM to visualize enzyme-ligand in-
teractions.

4.1 Implementation Details
The examples shown here use surfaces exported from
PyMOL. A molecular surface with a probe size of 1.4 Å
(≈ radius of water) is used. For most of the examples in
this paper, we show PBG deaminase [28] for consistent
comparison. Figures 4 and 12 show AOOM applied to
other molecules.

We have implemented AOOM via extensions to the
Visualization Toolkit (VTK) (www.vtk.org). Surfaces
exported from PyMOL are loaded in OBJ or VRML
format. Ambient occlusion is pre-computed on the
CPU for each vertex on the input via a ray-casting ap-
proach, and stored as scalar point data. As with other
ray-tracing techniques, calculating per-vertex ambient
occlusion is embarrassingly parallel, so we accelerate
computation by distributing computation across pro-
cessing units. Results are typically stored in one of
VTK’s polygonal file formats so that computation is
only necessary once. Because the ambient occlusion
is pre-computed, there is a neglible decrease in perfor-
mance when rendering with AOOM.

Depth sorting is performed to obtain correct blend-
ing, which can affect performance for large surfaces,
however this is also the case for standard transparency.
A depth-peeling approach could also be used to achieve
order-independent transparency [14, 18]. Because the
Op term constitutes a scalar field mapped to the surface,
a full range of color and opacity functions can be ap-
plied, typically in the same fragment program used for
lighting and shading. In the simplest case, the opacity
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Figure 5: Ambient occlusion (left) vs. smoothed ambi-
ent occlusion (right). Using smoothed ambient occlu-
sion for opacity enables filtering of small-scale concav-
ities in the surface.

is set equal to the Op ambient occlusion term, α = Op,
via a linear lookup table, and a constant color is used
(Figure 6, Left). A double-ended color map that sepa-
rates high and low ambient occlusion values can also be
applied to help viewers distinguish interior and exterior
structures (Figure 6, Right). For the examples in this
paper we apply a color map from orange (low ambient
occlusion) to green (high ambient occlusion).

This approach is more effective than standard trans-
parency (Figure 1, Left) in revealing the structure of the
inner cavity, but can be improved upon with additional
opacity controls.

4.2 Smoothed Ambient Occlusion
Although Figure 6 demonstrates an improvement over
standard transparency techniques, there are still areas
of the outer surface that occlude the interior cavity, due
to small concave pockets formed on the surface. To
deemphasize these pockets, we smooth the ambient oc-
clusion data over the surface. Smoothing the ambient
occlusion filters out small-scale features, while retain-
ing the larger cavity (Figure 5). We smooth the ambi-
ent occlusion data directly on the surface by iteratively
solving the diffusion partial differential equation:

∂u
∂ t

= D ∇
2u, (3)

where D is a constant controlling the amount of dif-
fusion per time step (= 1 in the general case). This
approach is equivalent to smoothing using a Gaussian
filter, with more iterations equal to a Gaussian with a
larger standard deviation. We solve the diffusion equa-
tion rather than performing direct convolution with a
Gaussian because solving the diffusion equation itera-
tively only requires sampling immediate neighbors in
the polygonal mesh. In practice we have found that 100
iterations works well for our data, and has been used for
all images. The smoothing is typically performed once
at run-time, upon loading the data.

Although smoothed ambient occlusion is useful for
selecting the scale of features that are rendered more

Figure 6: The simplest implementation of AOOM, in
which ambient occlusion is directly mapped to opac-
ity. The image on the left uses a constant color, and the
image on the right applies a color map to the ambient
occlusion.

opaquely, we also provide the ability to use the original
ambient occlusion for color to retain detail (Figure 8).

4.3 Opacity Control
Arbitrary functions can be used to map the smoothed
ambient occlusion values to opacity, however we de-
sire a mapping that maintains the opacity of the inner
cavity while providing control over the opacity of the
outer surface. We experimented with functions such as
smoothstep, however the following equation was deter-
mined via visual inspection to produce better results:

α =

(
Op

τ

)ρ

, (4)

where α is clamped to [0,1]. The τ parameter provides
a threshold such that an Op >= τ gives an α of 1. A τ of
0.7 is used for all images in this paper (other than Figure
6, which uses a simple linear ramp). The ρ parameter
controls the shape of the curve as an exponential, and in
practice is allowed to vary over [0,10]. For a τ value of
1, a ρ value of 1 will give the same result as the simple
linear opacity mapping decribed in section 4.1. Increas-
ing ρ from 1 will reduce the opacity of the outer surface
to a greater degree than the inner surface. Decreasing ρ

from 1 will increase the overall opacity until ρ reaches
0, resulting in a constant α of 1 and a fully opaque sur-
face. A graphical representation of Equation 4 is shown
in Figure 7. The effect of changing ρ is shown in Figure
8, and is typically adjusted interactively by the user.

4.4 Supplementary Visualization Tech-
niques

We also apply a number of supplementary visualization
techniques to enable improved understanding of the en-
zyme active site cavity and ligand.
Silhouette-Edge Highlighting To maintain contextual
information of the outer surface while rendering the in-
terior surface more visible, silhouette-edge highlighting
can optionally be applied:

α = αin
(N̂·Ê+1), (5)
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Figure 7: Example AOOM opacity functions.

Figure 8: Result of changing the ρ parameter to adjust
outer opacity while maintaining the opacity of the inner
cavity.

Figure 9: AOOM example without (left) and with
(right) silhouette-edge highlighting.

where αin is the opacity after applying Equation 4, and
N̂ · Ê is the dot product of the surface normal and the
eye vector. This equation selectively reduces the opac-
ity of areas on the surface with low opacity that face
the viewer. Areas of high opacity are less affected, and
areas of full opacity are unaffected. The calculation is
performed in the same fragment program used for light-
ing and AOOM. Other edge highlighting techniques,
such as suggestive contours [12, 13], could also be ap-
plied. Figure 9 shows the result of applying silhouette-
edge highlighting.
Colored Surfaces To better understand the chem-
istry occuring in the active site, it can be useful to
color the molecular surface by atom type. A nominal
color coding is employed, with charged residues col-
ored blue for cationic (positive) species and red for an-
ionic (negative) species. The carbon backbone is col-
ored green in our examples (coloring of specific groups,

Figure 10: Colored molecular surface (left), along with
AOOM renderings without (middle) and with (right)
silhouette-edge highlighting.

such as yellow sulfur groups, are also used). Because
the molecular surface color conveys information, color
mapping as described in Section 4.1 is not desirable in
this case, as the nominal color encoding will be dis-
torted. The silhouette-edge highlighting described in
above can therefore be especially helpful when using
such a color coding (Figure 10).
Enclosed Region Removal Sometimes fully-enclosed
regions are formed during the molecular surface calcu-
lation. These regions are not accessible from positions
exterior to the enzyme (for molecules with a radius >=
the surface probe radius) and can add visual clutter to
the scene. These regions can be automatically removed
by computing connected components on the molecular
surface and rendering only the largest connected com-
ponent, which will be the main molecular surface (Fig-
ure 1, Right vs. Figure 3, Top).
Textured Surfaces Textured surfaces can help im-
prove surface-shape perception [21, 22]. We therefore
apply an optional Perlin noise solid texture [31] to the
molecular surface. This can be especially helpful when
zoomed in close to the cavity surface (Figure 11).
Ligand Visualization To understand the interaction be-
tween enzymes and ligands, it can be useful to display
the ligand within the active site of the enzyme. Figure
11 shows comparison views incorporating stick models
of the ligand within the surface cavity, as well as speci-
fied enzyme residues of interest. The carbon backbones
are colored grey. Other representations of the ligand
and residues, such as spheres or van der Waals surfaces,
could also be used.
Backface Opacity Modulation When displaying the
ligand within the cavity, portions of the ligand can be
obscured within small pockets of the cavity. To enable
visualization of the ligand in these areas, further opac-
ity modulation can be applied to render back-facing
polygons more transparent (Figure 11). The opacity of
back-facing polygons is modulated as:

α = αin ∗
(
1.0− (N̂ · Ê)∗C

)
, (6)

where αin is the opacity after Equation 4 and option-
ally Equation 5 are applied, N̂ · Ê is the dot product
of the surface normal and the eye vector, and C con-
trols the overall opacity reduction. This equation selec-
tively reduces the opacity of back-facing surfaces more
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Figure 11: The top views show AOOM renderings of
a closeup of the inner cavity. The image on the left
shows the back-facing surface with full opacity, and the
image on the right shows the back-facing surface ren-
dered with a view-dependent opacity to reveal the lig-
and within. The bottom image shows the same view-
point using standard transparency.

where the surface faces the viewer, providing subtle
edge highlighting of the back-facing surface. For fu-
ture work, it may be interesting to apply texture-based
transparency methods to back-facing polygons to en-
able improved perception of the outer and inner sur-
faces of these pockets [24, 33, 44].

5 CONCLUSION AND FUTURE
WORK

We have presented ambient occlusion opacity mapping
(AOOM), a novel technique for viewing inner molec-
ular surface structure. AOOM uses ambient occlusion
information, a measure of the “hiddenness” of a par-
ticular point on a surface, to render occluded areas of a
surface more opaque than non-occluded areas. We have
shown the application of AOOM to the specific prob-
lem of visualizing the active sites of enzymes, as our
collaborators have successfully used AOOM to better
understand the structure of this inner cavity. Smoothing
the ambient occlusion information over the surface en-
ables control over the scale of the cavities to highlight.
Color and opacity controls, including silhouette-edge
highlighting, have also proven useful in highlighting the
inner cavity of interest. AOOM is more effective than
techniques such as transparency, clipping planes, and
focal regions, and works for cases where cavity extrac-
tion techniques such as CASTp fail.

We have implemented AOOM via extensions to the
Visualization Toolkit (VTK), and have created a test

Figure 12: Various enzymes rendered using AOOM
(bottom) to enable better perception of inner structure
than with standard transparency (top right).

application using this code. Future work includes in-
corporating AOOM into existing molecular visualiza-
tion packages, such as PyMOL, to take advantage of
features, including measurements and ribbon-style ren-
dering, that our collaborators already find useful.

It may also prove useful to apply AOOM in fields
other than molecular visualization. Specifically, med-
ical visualization and oil and gas visualization could
benefit from AOOM, as both fields often work with data
sets exhibiting inner structures of interest that may be
occluded.
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Interactive Volume Rendering Aurora on the GPU

Orion Sky Lawlor∗ Jon Genetti†

Department of Computer Science, University of Alaska Fairbanks

Figure 1: Our rendered aurora, 60km above Finland.

ABSTRACT
We present a combination of techniques to render the
aurora borealis in real time on a modern graphics pro-
cessing unit (GPU). Unlike the general 3D volume ren-
dering problem, an auroral display is emissive and can
be factored into a height-dependent energy deposition
function, and a 2D electron flux map. We also present
a GPU-friendly atmosphere model, which includes an
integrable analytic approximation of the atmosphere’s
density along a ray. Together, these techniques enable
a modern consumer graphics card to realistically render
the aurora at 20–80fps, from any point of view either
inside or outside the atmosphere.
Keywords: Volume rendering, aurora borealis, atmo-
spheric scattering.

1 THE AURORA
The aurora borealis and aurora australis are beautiful
phenomena that have fascinated viewers in Earth’s po-
lar regions for centuries. Aurora are generated when
charged particles trapped by a planet’s magnetic field
collide with and excite gas in the upper atmosphere.
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Figure 2: Global progress of a typical auroral substorm.

On Earth, these charged particles rarely penetrate be-
low 50 kilometers altitude, and the aurora become dif-
ficult to discern above 500 kilometers due to the thin
atmosphere.

The charged particle fluxes visible as auroral displays
are driven by magnetohydrodynamics that are complex
and the details are poorly understood, but the effects can
be qualitatively described. As is typical in magnetohy-
drodynamics, magnetic effects expel currents from the
body of a conductive plasma, compressing the charged
particle currents flowing through the magnetosphere
into thin sheets around one kilometer thick. As these
current sheets are bent along magnetic field lines and
intersect the atmosphere, they become visible as auro-
ral “curtains," long linear stripe-like features. Depend-
ing on the activity level of the aurora, curtains can be
nearly featureless greenish blur, or an extremely com-
plex and jagged path.

A typical “auroral substorm” [Aka64] begins with
simple, smooth curtains. These then grow and be-
gin to fold over during substorm onset, resulting in
many overlapping and interacting curtains, which be-
come more and more complex and fragmentary as the
substorm breaks up, and finally substorm recovery gives
dim pulsating aurora. Recent work by Nishimura et
al. [Nis10] has linked ground observations of pulsating
aurora to space-based observations of electromagnetic
waves deep in Earth’s magnetotail, using the THEMIS
satellites.

Because the detailed interactions of the charged par-
ticles and magnetic fields that drive auroral substorms
are poorly understood, for rendering purposes we ap-
proximate their effect. We represent an auroral curtain’s
path using a time-dependant 2D spline curve “foot-
print,” which are animated by hand to match the broad
global outlines of an auroral substorm as it moves over
the surface of the planet as shown in Figure 2.
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1.1 Algorithm Overview
In this paper, we present a combination of techniques
to interactively render the aurora on modern graphics
hardware. To summarize our interactive GPU rendering
algorithm:

1. We begin with aurora curtain footprints, described
in Section 2, stored as 2D splines curving along the
planet’s surface.

2. We add 2D complexity to those curtain footprints
by wrapping a long thin fluid dynamics simulation
along them as described in Section 2.

3. We preprocess the curtain footprints into a 2D dis-
tance field described in Section 3.2, and stored in
another GPU 2D texture and used to accelerate ren-
dering.

4. We stretch the curtains into 3D using an atmospheric
electron deposition function, as described in Sec-
tion 2.1. The deposition function is expensive and
constant, so it is stored as a GPU texture lookup ta-
ble.

5. For each frame, we shoot rays from the camera
through each pixel onscreen. Any camera model
may be used.

6. For each ray, we determine the portion of the ray
that intersects the aurora layer and atmosphere, and
determine the layer compositing order as described
in Section 3.1.

7. To intersect a ray with an aurora layer, we step along
the ray at conservative distances read from the dis-
tance field, as described in Section 3.2. At each 3D
sample point, we sum up the auroral emission as the
product of the 2D curtain footprint and the vertical
deposition function.

8. To intersect a ray with the lower atmosphere, we
evaluate a closed-form airmass approximation as de-
scribed in Appendix A.

9. Final displayed pixels are produced by compositing
together the resulting aurora, atmosphere, and planet
colors followed by an sRGB gamma correction, as
described in Section 3.3.

Section 4 describes the performance of our algorithm
on various graphics hardware.

2 MODELING THE AURORA IN 3D
Because curtains become fragmented and complex dur-
ing the highly excited periods of an auroral substorm,
splines alone do not convey the complexity of real cur-
tains, as illustrated in Figures 3 and 4. Several ap-
proaches have been used to simulate this complexity,

Figure 3: Photograph of auroral curtains during a mod-
erate substorm. The shutter was open for four seconds.

Figure 4: High-speed video of a portion of a very active
curtain. Field of view is 4km wide.

Figure 5: Portions of the 2D fluid dynamics simulations
we use to model small-scale curtain complexity, and the
resulting 3D auroral curtains.

such as raycasting caustics, but we find the phenomena
are better matched by a fluid dynamics simulation.

To simulate aurora curtain footprint complexity, we
use an simple 2D Stam-type [Sta99] fluid advection
simulator. We use a multigrid divergence correction
approach for the Poisson step, which is both asymp-
totically faster than an FFT or conjugate gradient ap-
proach, and makes the simulator amenable to a graph-
ics hardware implementation. The simulator is solving
a Kelvin-Helmholtz instability problem, with the fluid
shear zone lying along the flux center of the auroral cur-
tain, as illustrated in Figure 5. We perform the simula-
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Figure 6: MSIS atmosphere as a function of altitude.

tion in a long vertical domain with periodic boundary
conditions, so we could replicate the same simulation
along an arbitrarily long spline. The resulting simu-
lated auroral curtain is stretched along the spline that
defines the center line of the curtain. For quiet early pe-
riods during the substorm, we use the initial steps of the
simulation, before substantial turbulence has distorted
the smooth initial conditions; later more chaotic cur-
tains are represented using later steps in the simulation,
when the simulation’s fluid turbulence results in a very
complex electron flux pattern. The magnetosphere’s ac-
tual plasma dynamics are of course very different from
simple Navier-Stokes fluids, but this simulation seems
to approximate the final turbulent appearance of the au-
rora reasonably well.

2.1 Aurora Vertical Deposition
We use splines to impose the global location of the au-
roral curtains, and fluid dynamics to approximate the
small-scale variations in brightness, but both of these
give only an electron flux footprint on the surface of
the planet, in 2D. To create a full 3D volume model of
the aurora, we must specify how the electrons are de-
posited through the atmosphere, via an electron deposi-
tion function.

The depth that charged particles penetrate the atmo-
sphere depends on both the velocity of the charged par-
ticles and the atmosphere’s state. However, the state
of the upper atmosphere is not constant, due to variable
energy input from solar radiation, ground-based upward
travelling radiation, and even variable auroral energy
deposition itself. Since the auroral energy deposition
profile depends on a variety of factors, including feed-
back due to auroral heating, an exact deposition model
would require us to simulate the spatial and temporal
variations in the upper atmosphere’s density, tempera-
ture, and chemistry. Software exists to do this, such as
NCAR’s thermospheric general circulation model, but
it is not amenable to either the GPU or to realtime inter-
active simulation. Instead, we begin with the standard
MSIS-E-90 atmosphere [Hed91], as shown in Figure 6.
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Figure 7: Auroral energy as a function of altitude.

We then apply the Lazarev charged particle energy
deposition model [Lum92], which is still the definitive
model for low-energy auroral electrons [Fan08]. The
inputs to the Lazarev model are the particle energy E
and the atmosphere’s mass Mz and density Dz at the
desired height z, and the output is the auroral energy
deposition rate Az:

E Initial energy of incoming particles, in thousands
of electron-volts [keV]. For aurora, this is 1–30keV
[Fan08]. These equations work well below 32keV.

z Altitude above surface to evaluate deposition.

Dz Atmosphere’s density at altitude z [g/cm3]. This is
listed directly in the MSIS data.

Mz =
∫

∞

z Dz′dz′ Atmosphere’s total shielding mass above
altitude z [g/cm2].

ME = 4.6×10−6 E1.65 Characteristic shielding mass for
particles of energy E [g/cm2]

r = Mz/ME Relative penetration depth [unitless]

L = 4.2r e−r2−r +0.48e−17.4r1.37
Lazarev’s unscaled in-

teraction rate [unitless]

Az = L E (Dz/ME) Aurora energy deposition rate at al-
titude z.

The result of the Lazarev deposition model is shown
in Figure 7 for several discrete input energies, as well
as a sum over energies from 1keV to 20keV. Vari-
ous parameterizations of this deposition function exist,
such as the popular Thermospheric General Circulation
Model [Rob87], which assumes a Maxwellian distri-
bution of electron energies. TGCM is actually simple
enough to evaluate per pixel at runtime, as we explore in
Section 4. However, both the Lazarev or TGCM mod-
els need an atmosphere model as input, and the ther-
mosphere’s density profile Dz is complex, as shown in
Figure 6. Since we will need a lookup table to store
the atmosphere’s shielding mass and density, we sim-
ply pre-evaluate the deposition function for various en-
ergies and store the result in a table.

Journal of WSCG 27 ISSN 1213-6972



2.2 Prior Work in Aurora Modeling
We extend the excellent and rigorous aurora rendering
work of Baranoski et al. [Bar00] in several ways. First,
this prior work forward maps aurora curtain points on-
screen followed by a guassian blur, while our renderer
walks backward along camera rays accumulating visi-
ble energy. Our raytracing approach allows us to ren-
der to arbitrary resolutions and produce sharp rendered
images. Second, we provide an interactive GPU imple-
mentation which includes the effect of the lower atmo-
sphere on the aurora and allows us to render the aurora
from any point inside or outside the atmosphere. In the
prior work, electron-atmosphere impacts are simulated
explicitly, while we simply look up their well known
altitude dependent statistical energy deposition func-
tion. Finally, the prior work’s curtains are constructed
from a combination of sine wave with phase shift os-
cillations and a caustic-type electron beam deflection
model; while our curtains begin as splines, with smaller
turbulent deflections applied via a fluid dynamics sim-
ulation.

The later work of Baranoski et al. [Bar05] presents a
detailed physically plausible model of the magnetohy-
drodynamics of a charge sheet’s path through the mag-
netosphere prior to becoming visible as an auroral cur-
tain. There appears to be an almost exact analogy be-
tween this work and our fluid dynamics simulation of
curtain dynamics: electric charges with inertia interact
via an electrostatic field, while fluid parcels with iner-
tia interact via a pressure field. Both electrodynamic
and fluid dynamic simulations use a multigrid Poisson
solver to control field divergence, and the results ap-
pear roughly similar as well. One difference is we have
not yet attempted to specialize our initial conditions to
generate the spiral structures visible as auroral surges.

3 GPU RAYTRACING THE AURORA
Raytracing is a rendering technique that finds a scene’s
color along a ray by intersecting the ray with the scene
geometry. Raytracing is computationally demanding,
and the first interactive raytracers used a combination of
carefully constructed scenes (such as a set of spheres)
and massive parallel computing horsepower. Univer-
sity of Utah researchers [Par98] used a large shared-
memory machine for this, while John Stone’s Tachyon
[Sto98] used a network of distributed-memory work-
stations. GPU raytracing is such a natural fit that ini-
tial work in this area [Pur02] actually preceded fully
programmable GPU hardware, and an abundance of
modern work exists. Similarly, volume rendering via
raytracing is a venerable and well known technique
[Kaj84].

3.1 Aurora rendering geometry
The aurora are almost perfectly emissive phenomena,
since the degree of absorption and scattering by the at-

mosphere is vanishingly small around 100km altitude.
Even at sea level air’s optical properties are reasonably
close to that of vacuum, and at 100km altitude the air’s
density is a millionfold smaller. The isotropic emis-
sions, and lack of absorption and scattering, simplifies
Kajiya’s rendering equation [Kaj84] for the aurora layer
into a single integral along the path of the ray.

Since aurora only appear in the upper layers of the at-
mosphere, we can treat them as a separate purely emis-
sive “aurora layer.” Below 80km is the bulk of the
lower atmosphere, which both absorbs and scatters light
as discussed in Appendix A. Underneath all of this
is the planet’s surface. Because the lower atmosphere
includes scattering, implemented using alpha blending,
we must composite the layers in the correct order.

A general-purpose raytracer typically uses recursion
to resolve the depth order of multiple layers of translu-
cent geometry that intersect a ray, but this general solu-
tion is not appropriate in our case. First, GPU hardware
that directly supports recursion was only introduced in
2010 with the NVIDIA Fermi line, and most current
cards do not directly support recursion. Second, even
where it is supported this recursive search for geometry
is expensive, typically requiring O(n2) intersection tests
to determine the depth order of n translucent layers, and
we find the many branches required can become a lim-
iting factor in a high performance GPU raytracer.

Thus instead of a recursive search, for each ray we
programmatically determine the correct compositing
order of the intersected geometry, as summarized in
Figure 8. The easy case is 8(a), where the ray misses
all geometry and heads out into deep space. Case 8(b)
is a ray that enters the aurora layer, accumulates some
emitted energy, and exits. The most complex case is
8(c), where the aurora layer is entered twice: once be-
fore the atmosphere, then some aurora light is scattered
out by the atmosphere, and finally a disjoint stretch of
aurora layer emits more light into the ray. Finally, case
8(d) begins on the planet’s surface, whose light is atten-
uated by the atmosphere, and then some aurora light is
picked up before reaching the viewer. The same cases
apply for a viewer inside the aurora layer. For a viewer
inside the lower atmosphere, the only two compositing
possibilities are atmosphere then planet, or atmosphere
then aurora.

One limitation of our explicit ray compositing order
is we do not support atmospheric refraction. However,
Earth’s atmosphere only very gently refracts rays, re-
sulting in a maximum curvature near the horizon which
is less than 1/6 of the planet’s curvature, so we feel it is
acceptable to ignore atmospheric refraction.

Given a portion of a ray that intersects the aurora
layer, in principle we step through the layer accumu-
lating aurora energy, at each step sampling the aurora
curtain footprint in 2D and multiplying it by the height-
dependent energy deposition function. The step size is
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Figure 8: Possible ray/geometry intersection paths for camera rays originating outside the atmosphere.

Figure 9: Naive ray stepping, left, is inefficient when
curtains are sparse. Using a distance field, as shown on
the right, allows the raytracer to take much larger steps
in the empty spaces between curtains.

Figure 10: On the left, aurora curtain footprints. On the
right, the distance field to accelerate raytracing those
curtains.

a tunable parameter, with finer steps giving more aurora
detail but as we show in Section 4, taking more time to
compute. The step size is limited by the resolution of
the aurora footprint texture: an 8192x8192 aurora foot-
print stretched across a 12742km diameter planet gives
pixels that are 1.55km along the coordinate axes, and
2.2km diagonally. We find a 2km step size gives a rea-
sonable quality image, but with naive sampling is quite
slow. In the next section, we show how to accelerate the
aurora sampling process.

3.2 Acceleration via a Distance Field
The auroral layer is hundreds of kilometers high, and
wraps around a planet thousands of kilometers in di-
ameter. Yet auroral curtains are only a few kilometers
thick, so as we step along a ray we must sample the au-
rora layer at least every few kilometers to avoid missing
curtains. Even modern GPU hardware cannot support
thousands of such 3D samples per pixel in real time,
since there are millions of onscreen pixels.

However, most of the auroral layer does not actually
contain curtains, so if we could skip over the empty
space between curtains, we could dramatically improve
our overall performance. Figure 9 illustrates the prob-
lem, and the solution we use: a distance field [Coh94].
This field stores the distance to the nearest geometry,
which allows the raytracer to take much larger steps
through empty space.

The distance field is stored as a 2D texture, with a
slightly lower resolution than the aurora curtain image.
As we step along a ray, we read the step size from the
distance field, so we step at a fine 2km/step rate while
inside curtains; yet can take much longer steps far from
curtains, up to 1000km/step, without ever skipping over
a curtain. In pseudocode, our sampling loop through the
aurora is as follows.

float t = ray.start;
while (t < ray.end) {

vec3 P = ray.origin + ray.dir*t;
t += distance_field(P);
aurora += sample_aurora(P);

}

One surprising aspect of the GPU branch hardware is
that it is actually a performance loss to skip the aurora
sampling when distant from a curtain. We found it to
be at least 18% slower to do the following “optimized”
sampling; our other attempts at similar optimizations
have been up to sevenfold slower!

float t = ray.start;
while (t < ray.end) {

vec3 P = ray.origin + ray.dir*t;
float d = distance_field(P);
t += d;
if (d<ε) /* inside curtain */

aurora += sample_aurora(P);
}

The performance problem in this sort of loop is branch
divergence, when some GPU threads take the distance-
dependent branch and sample the curtain while others
do not. The large GPU branch divergence penalty ex-
ceeds the savings from avoided samples, which makes
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it faster to simply sample everywhere than to carefully
decide whether to sample or not.

We generate the distance field from the curtain image
on the GPU, but as a preprocess before rendering. We
use a clever constant-time algorithm known as “jump
flooding” [Ron06], which takes distance propagation
steps at power of two distances to fill the distance field
across the 2D image.

3.3 Coloring the Aurora
On short timescales, the upper layers of the aurora are
green, while the lower layers have a purple tinge. We
use the Baranoski et al. [Bar00] approach to convert the
auroral emissions’ isolated spectral color peaks to CIE
XYZ and then a linear sRGB colorspace.

More difficult are numerical problems encountered
while summing thousands of dim samples. In Bara-
noski et al., aurora samples are forward mapped and
summed in a framebuffer, while we step along camera
rays in a loop on the GPU. Because the GPU registers
are floating-point, and floating-point framebuffers are
expensive, a raytracer can more efficiently sum aurora
samples in a high precision and high dynamic range lin-
ear colorspace. We then convert to the standard sRGB
gamma of 2.2 using the following function, which out-
puts a color with vector magnitude equal to the old
magnitude raised to the 1/2.2 power.

float brightness=length(color);
return color*pow(brightness,1/2.2-1);

4 PERFORMANCE ANALYSIS
We use the standard OpenGL Shading Language, GLSL,
to implement our GPU aurora raytracer. Unlike the
general-purpose GPU languages CUDA and OpenCL,
the older GLSL is specialized for rendering tasks, so
it directly supports graphics hardware features such as
anisotropic mipmapping. Recent work on VOREEN
[Men10] showed CUDA only improves performance
when volume samples overlap, such as in gradient cal-
culations. Table 1 compares the performance of our
GPU aurora rendering algorithm across various GPU
families, and a C++ OpenMP multicore CPU version
of the algorithm. Even using four cores and nearest-
neighbor texture sampling, the CPU runs about a hun-
dred times slower than the GPU versions.

Table 2 lists the performance impact of various al-
gorithm and parameter modifications. This is a list of
alternatives not chosen for the current implementation,
although many of these could still be useful.

Our raytracer acceleration distance field results in
rather dramatic per-pixel performance variations, as
shown in Figure 11. The corresponding frame is shown
in Figure 1. Where multiple curtains cross camera rays
the rendering cost can be hundreds of nanoseconds per
pixel, while empty regions of space require less than

GPU FPS
NVIDIA GeForce GTX 280 60fps

NVIDIA GeForce 8800M GTS 38fps
ATI Radeon HD 4830 23fps

Intel Q6600 2.4GHz Quad-Core CPU 0.4fps
Table 1: Comparing renderer performance across hard-
ware. Resolution is 720p: 1280x720.

Modified Rendering Method Cost
No distance field, use naive stepping +350%
Make aurora layer 100km thicker +32%
Take 1km steps through aurora, not 2km +60%
Take 4km steps through aurora, not 2km -33%
No table, use TGCM deposition function +55%
No decibel map, linear deposition table -10%
No deposition function, constant value -14%
No curtain footprint image lookup -14%
No exponential atmosphere -15%
No planet texture -0.6%
No sRGB gamma correction -0.5%

Table 2: Performance impact of various alternatives.
Positive time cost lowers framerate.

Figure 11: Measured rendering time per pixel: black
represents 10ns/pixel, white represents 200ns/pixel.

ten nanoseconds per pixel. This experiment was run
on the NVIDIA GeForce 8800M GTS; timings on dif-
ferent cards vary, but the ratios are similar. This fig-
ure is somewhat blurred due to the nature of GPU per-
formance analysis: GPU hardware provides no means
to time individual pixels, and in fact extensive GPU
pipelining makes per-pixel timing difficult to even de-
fine, so instead we time overlapping blocks of 64x64
pixels. After several repetitions, the median per-block
times are converted to per-pixel times by subtracting off
the per-block overhead and dividing by the number of
pixels. The remaining sampling jitter due to OS and
driver overhead is approximately σ = 2ns/pixel.

4.1 GPU Aurora on a Powerwall
We used the parallelizing library MPIglut [Law08] to
port our sequential OpenGL/GLUT aurora rendering
application to a twenty-screen powerwall, as shown in
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Figure 12: Interactive aurora rendering on a powerwall
cluster with ten GPUs and twenty screens at 29fps.

# GPUs Resolution FPS Speedup
1 1680x2100 35 1
2 3360x2100 30 1.6
4 6720x2100 27 3.0
8 6720x4200 29 6.5

10 8400x4200 29 8.2
Table 3: Parallel aurora rendering via MPIglut.

Figure 12. This was a surprisingly straightforward pro-
cess, involving recompiling the rendering application
with MPIglut instead of glut, and running the result-
ing binary. Scalability as shown in Table 3 is rea-
sonably good, although view-dependent load imbalance
becomes large when some screens must draw complex
curtains and other screens only empty space; for the
benchmark this impacts the two and four GPU val-
ues somewhat. The aggregate rendering rate on ten
NVIDIA GeForce GTX 280 cards is a little over 29
frames per second at 8400x4200 resolution, or just over
a billion finished pixels per second.

5 CONCLUSIONS
With only moderate programming effort, modern graph-
ics hardware is capable of truly incredible amounts of
computation. We have harnessed that power to render
the aurora at interactive rates, but much work remains.

At the moment, our raytracer implementation stands
alone, and includes no polygonal geometry. It would be
relatively straightforward to extend this to a hybrid ray-
tracer, where ordinary polygon-based geometry is first
rasterized to a typical depth buffer, and these depth val-
ues are then used to limit the extent of each ray [Sch05].
This extension would allow the techniques described
in this paper to add atmospheric and aurora effects to
a scene that includes terrain, vegetation, spacecraft, or
other geometry.

We currently render a single instantaneous snapshot
of the aurora; the viewer is free to move, but the cur-
tains are stationary. It should be straightforward to ex-
tend this to animating curtains, and we have done so
offline, but image I/O and texture upload rate becomes
an issue when rendering in realtime. Similarly, we cur-
rently do not integrate the curtains across the minutes-
long timescale that gives high red aurora. This should
be a simple change to our input curtain footprint im-
ages. Both changes should allow a detailed compari-
son with the widespread seconds-long-exposure photo-
graphic images of the aurora.

Since aurora are purely emissive phenomena, our at-
mospheric airmass model currently ignores clouds and
the interesting multiple scattering effects of sunlight on
the air. Incorporating these effects would allow us to
simulate aurora at sunrise, or aurora rising over a thun-
derhead. More ambitiously, implementing a global il-
lumination algorithm such as photon mapping or path
tracing could allow aurora to cast light onto complex
geometry, such as a mountainside or spacecraft.

Aurora are visible on many planets, and often display
curtains and dynamics similar to those on Earth. How-
ever, the dynamics of aurora on planets without a single
dominant magnetic field, such as Venus or Mars, can be
quite different, and simulations would be beneficial for
studying these fascinating phenomena.
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A CALCULATING AIRMASS
The integral of atmospheric density along a ray, known
as “airmass,” is widely used in astronomy, and we use
it to approximate both the aurora light lost to the at-
mosphere, and night sky light added. A gravitationally
bound atmosphere of uniform temperature and compo-
sition falls off in density at an exponential rate with
height: D(z) = e−z/H , with the exponential constant H
known as the atmosphere’s “scale height.” The airmass
integral along a ray parameterized by t is then:

A =
∫ te

ts
D(z(t))dt =

∫ te

ts
e−z(t)/Hdt

Even assuming a spherical planet, height varies non-
linearly along the ray path: z(t) =length(~S+ t~D)− r =√

a+bt + ct2− r, so:

A =
∫ te

ts
e−
√

a+bt+ct2−r
H dt

This integral cannot be solved in closed form. A
trigonometric substitution [You69] allows high-order
terms to be discarded, giving an integral that is easy to
evaluate at the surface of the planet or at infinity, but a
general raytracer requires arbitrary start and end points.
We do this by approximating z(t)/H with a quadratic
m + l t + kt2. We can eliminate the linear term l by
translating the ray parameter t to t ′, leaving m as the
height of closest approach of the ray to the planet, and
k as the quadratic slope of that approach, both measured
in scale height units.

A≈
∫ t ′e

t ′s
e−m−kt2

dt

This integral can be evaluated exactly using the error
function “erf”:

A≈ e−m
√

π

4k

(
erf(
√

kt ′e)− erf(
√

kt ′s)
)

Some GPU languages like GLSL do not have a built-in
erf, so we use the Winitzki approximation:

erf(x)≈

√
1− e−x2

4
π +0.147x2

1+0.147x2

Despite the plentiful transcendentals, this performs quite
well on the graphics card at runtime. Despite the stacked
approximations, accuracy appears quite good as well,
except where numerical roundoff causes the erf differ-
ence to approach zero. This case can be handled by
either falling back to a linear approximation of z(t), or
by interpreting the finite difference of erf values as a
scaled derivative of erf: e−kt2

.
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Abstract

This paper presents a highly optimized algorithm for fast feature detection in 3D volumes. Rapid detection of structures and
landmarks in medical 3D image data is a key component for many medical applications. To obtain a fast and memory efficient
classifier, we introduce probabilistic boosting trees (PBT) with partial cascading and classifier sorting. The extended PBT
is integrated into a multiresolution scheme, in order to improve performance and works on block cache data structure which
optimizes the memory footprint. We tested our framework on real world clinical datasets and showed that classical PBT can be
significantly speeded up even in an environment with limited memory resources using the proposed optimizations.

Keywords: Feature Detection, Machine Learning, Decision Trees

1 INTRODUCTION

In the past years various methods for automatic pro-
cessing and understanding of medical 3D image data
have been developed. One important building block is
the automatic detection of anatomical landmarks. De-
tection of these features stands often at the beginning
of the processing pipeline: it transforms the dense vol-
ume representation into a sparse set of possible land-
mark locations, allowing a significant acceleration of
subsequent high level segmentation methods.

However, making the transition from pure research
algorithms which focus often solely on detection per-
formance to real world radiology applications brings a
number of additional requirements into consideration.
The algorithm has to be able to deal with possibly lim-
ited technical resources - not all workstations in a hos-
pital might be equipped with the newest hardware, and
the algorithm shall run in the context of radiology work-
station software which already occupies resources. Ex-
cellent time performance is required because automatic
algorithms often substitute manual workflows while the
result must be authorized and/or adjusted by the radiol-
ogist. In this case an automatic algorithm will only be
used if the execution time of the algorithm is consider-
ably shorter than the manual approach would be.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

This work presents a highly optimized general pur-
pose feature detection framework for the effective re-
duction of possible feature candidate positions in 3D
image data as preprocessing step for more expensive
object detection methods. Referring to the clinical ap-
plication context, we designed our method according to
the following requirements:

1. Time Performance: The result must be calculated in
relatively short time (e.g. within seconds) in order
to be usable in a clinical environment.

2. Memory Performance: The algorithm must also ex-
ecute on standard PCs with limited technical re-
sources.

Thus, the focus of the proposed algorithm and its im-
plementation is on a small adaptable memory footprint
while retaining as much execution speed as possible.

2 RELATED WORK
Object recognition, and local feature detection as a sub-
discipline of it, are since many years core topics of com-
puter vision research.

Point based methods beginning with the Harris cor-
ner detector [HS88] try to automatically extract points
of interest from an image. Exact control of which points
are extracted is not supported, therefore recognition of
complex structures/areas is done by combining sets of
feature points. The most prominent point detector is
the SIFT algorithm [Low99] which overcomes the lim-
itations of previous solutions by being scale, rotation
and perspective invariant. However, translating SIFT,
which is aimed for 2D images, to 3D volumes suffers
from dramatic performance problems. Niemeijer et al.
report in [NGL+09] that SIFT feature extraction on a
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200×200×1024 volume downscaled by 50% takes 10
minutes to compute.

Machine learning based approaches use a (learned)
classifier to decide if a specific region of an image be-
longs to an object. A prominent example for this class
of algorithms is the method for real time face detection
presented by Viola and Jones [VJ01] that uses a cascade
of boosted weak classifiers. A more general approach
has been proposed by Tu et al. [Tu05] by introducing
Probabilistic Boosting Trees (PBT). PBTs are decision
trees which use boosted learners as classifiers in each
tree node. Violas boosted classifier cascades are a spe-
cial case of a PBT. An alternative to PBTs is the pop-
ular d-tree forests method [MDUA07] which produces
higher detection rates, but with the drawback of much
higher execution costs [LK08].

PBTs have been successfully applied on tissue classi-
fication on medical images: Militzer and Vega-Higura
[MV09] use PBT for bone removal in CT angiography.
The volume is first split into segments using the wa-
tershed algorithm, then each segment is classified with
PBT.

Fast preselection of feature candidates for more ex-
pensive high level methods is the topic of the paper of
Langer and Kuhnert [LK08]. They integrate classical
decision trees with simple color based features and a
multiresolution scheme for candidate computation for
the expensive SIFT feature detection.

The problem of the large memory footprint of vol-
ume data is often discussed in context of volume ren-
dering. LaMar et al. [LHJ99] use an octree structure
with blocks containing different resolutions, where only
the needed subvolume is downloaded to graphics hard-
ware. However, the whole volume data still has to fit
into main memory. This has been improved by Guthe
et al. [GWGS02] who proposed to hold the data 30:1
wavelet compressed in memory and extract needed data
on demand block-wise and cache the data as long as
possible.

The purpose of our feature detection method is sim-
ilar to that of Langer and Kuhnert [LK08] since we
also aim to reduce the list of possible candidate posi-
tion as much as possible for later more expensive meth-
ods. Langer and Kuhnert tailored their algorithm es-
pecially for pre-filtering for SIFT feature computation.
In difference to them we decided to use the more gen-
eral PBT [Tu05]. This has several advantages: first,
it is independent from SIFT features and easily adapt-
able to any kind of landmark/structure. Second, deci-
sion tree methods can capture large image variabilities
while only need to execute logn weak classifiers. Third,
they are robust against over-fitting unlike classic deci-
sion algorithms.
Our contribution. To satisfy the high performance re-
quirements to the algorithm in a clinical environment,
we extend the original PBT by integrating cascading

tree nodes into normal tree building and introduce the
concept of classifier sorting (Section 3.1). Both result
in higher execution speed of the classifier. A second
performance optimization is achieved by integrating the
PBT into a multiresolution classification scheme (Sec-
tion 3.2). An effective postprocessing step is intro-
duced that applies particle filters to compute probability
maps for candidate features for outlier detection (Sec-
tion 3.3). The memory footprint of our feature detection
framework is optimized by the introduction of a mul-
tiresolution, multi-derivative block cache data structure
(Section 4). The performance of our method has been
evaluated on a real world clinical usecase (Section 5).

3 ALGORITHM
In the following we explain in detail the classifier and
our extensions on it (Section 3.1), the multiresolution
feature detection framework (Section 3.2) and the post-
processing step based on candidate probability (Section
3.3).

3.1 Probabilistic Boosting Tree with Par-
tial Cascading and Classifier Sorting

Probabilistic Boosting Trees. A PBT [Tu05] is a spe-
cial kind of decision tree which holds at each tree node a
boosted classifier. PBTs are trained top down. Based on
a set of positive and negative samples a boosted classi-
fier with a limited number of weak classifiers is trained
for each tree node. On each recursion level the sam-
ple set is split using the generated classifier and the
new subsets are used to train positive and negative child
branches. Although multi-class classifiers are possible,
we limited our implementation to the simple two-class
model.
Classical Cascading. If the boosted classifier in each
tree node is trained in a way that it does not produce
false negative results, the resulting decision tree con-
sists of positive child nodes only. Traversing this tree
has only one sequential path and degenerates to the cas-
cade of boosted classifiers of Viola and Jones [VJ01]
(see figure 1 left). Cascading improves execution speed.
It allows the classifier to early terminate and reduces

Cascading Tree Node Default Tree Node

false

true

false

false

false true

false

true

false

false

Cascaded Boosting Classifier Boosting Tree with one Cascading Step

Figure 1: Probabilistic Boosting Tree. Left, tree with
cascading nodes only. Right, one cascading node at the
tree root followed by a default PBT.
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in this way the number of classification tests, but it re-
duces also the flexibility of the original PBT to capture
a high variability of features.
PBT with Partial Cascading. We observed that a high
number of samples can be classified as false by execut-
ing only one boosted classifier (see section 5.2). This
allows to combine the speed-up of cascading with the
flexibilty of the PBT by placing one cascaded classi-
fier in front of the PBT: Our tree model contains one
cascading node at the root level. A negative outcome
stops the classification immediately, a positive outcome
is further processed using the full PBT (figure 1 right).
Classifier Sorting. We also observed that a high
amount of samples can be early terminated with a cheap
and fast performing classifier (see section 5.2) and that
it is advantageous to use expensive classifiers only in
places which are executed less often. In our model the
most visited place is the cascading node at the root of
the tree which can discard a large amount of samples
as false. The rest of the tree is visited less frequently.
Hence, we sort the expensive classifiers into the later
tree nodes while the first node can only use fast execut-
ing classifiers.
Image Features. The classifier decides on a per voxel
basis if the current voxel belongs to the searched struc-
ture or not. Since PBT is a so called ensemble classi-
fier, basically every possible classification method can
be integrated. However, the selection of image features
has influence on detection performance and execution
speed.

In the current work we integrated classifiers which
make decisions based on five different image features.

1. Haar-like features with different patterns and sizes.

2. Image intensity

3. Gradients and principal curvatures

4. Region histograms based on image intensity and
derivatives with different sampling resolutions and
sizes.

5. Structure tensors

Haar-like features and image intensities are the fea-
tures with the lowest computational costs and are there-
fore used for building the cascaded root. Gradients need
to be computed by filtering as well as principal curva-
tures which need an additional Hessian analysis step.
Region histogram classification multiplies the cost by
the number of samples. Structure Tensors require the
convolution of the gradient image with a Gaussian ker-
nel and subsequent eigenanalysis of the structure tensor
matrix. These three types of classifiers are exclusively
used for the non-cascaded part of our PBT.

The chosen weak classifiers are scale variant which
is adequate for our application scenario because we ex-
pect anatomical structures to have a specific size (small

Level 0

Level 1

Level 2

Not evaluated Evaluated but
not accepted

Evaluated and 
accepted

Figure 2: Multiresolution Algorithm

variations in size should be accepted anyway, larger
variations because of age or gender can be covered with
different detectors and pre-classification based on pa-
tient background data).

3.2 Multiresolution Feature Detection
The PBT with Partial Cascading is embedded into a
multiresolution scheme based on a power of two Gaus-
sian image pyramid [AAB+84] to further reduce the
number of voxels to be processed.

A separate classifier Ci is trained for each resolution
level. Multiresolution classification starts at the lowest
resolution level n by applying classificator Cn on image
In. Classification results in a set positively marked vox-
els (p+,n

0 , ..., p+,n
m ). These voxels are propagated into

the next higher resolution level n− 1 where each posi-
tive lower resolution voxel marks the voxels within the
corresponding filter kernel in level n−1 as candidates.
Classification of the current level is only computed on
the remaining candidate voxel. The propagation is re-
peated until the original resolution (level 0) is reached.
Figure 2 depicts the algorithm with a 1D example. Note
that most of the high resolution voxels do not need to
be checked using this scheme.

In the case of overlapping kernels some higher reso-
lution voxels have two or more parent voxels and it can
happen that a voxel is marked as positive and negative.
In this case the positive mark is kept. This leads to a
slight over-segmentation, but on the other hand the ef-
fect of false negative samples might be reduced, which
is a wanted effect.

3.3 Filtering of Results Using Fast Proba-
bility Computation

The direct result of our feature detection algorithm is a
bit mask of candidates which still might contain false
positives. One method to reduce the number of false
positives is to assign a probability to each candidate that
reflects the confidence in its classification. The result-
ing probability map can then be further processed by
thresholding which effectively removes outliers and/or
non-maximum-suppression which only leaves the can-
didates which are at the center of the expected shape.
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Figure 3: Datastructure: Only the base intensity volume
is kept completely in memory. All other data, derivative
and lower resolution volumes are computed block wise
on demand.

Probabilistic boosting trees can deliver such a proba-
bilistic classification. Drawback of this straight forward
approach is the low time performance.

We observed that the result of feature detection form
clusters at the feature location resembling already the
searched structure (e.g. the intervertebral discs in figure
9). Thus, we propose to assign probabilities to candi-
dates by comparing the shape of its surrounding cluster
with the searched shape.

A fast option to compute this are shape particle filters
which are applied in our framework. The likelihood that
a candidate belongs to the searched structure is com-
puted by applying a shape approximating the structure
of interest around each candidate and by measuring the
ratio of overlap of neighborhood and shape.

4 IMPLEMENTATION

4.1 Data Preprocessing

The spatial resolution of medical 3D images in a clin-
ical environment is generally highly anisotropic. Es-
pecially the slice distances show high variability from
modality to modality, from scanner to scanner depend-
ing on the used imaging protocol. The scale variant
nature of the image features described in section 3.1 re-
quires the same spatial resolution of all images to be
processed.

Thus, training data as well as unseen data is prepro-
cessed by resampling the original volume data to an
isotropic voxel size that is selected based on the targeted
anatomical landmark. The current implementation uses
bilinear interpolation for resampling.

The resampled volume (in the following denoted as
"base volume") is the basis for all following computa-
tions and the original data can be discarded at this point.

4.2 Data Management and Derivative
Computation

The data management component is responsible for ef-
ficiently providing the necessary data to compute the
requested weak classifiers on all resolution levels while
keeping the memory footprint small and flexible.

The supported weak classifiers require intensity,
gradient and principal curvature data for all positively
marked voxel positions on the different levels of
resolution. It is obvious that the performance of the
weak classifiers decides on the performance of the
whole PBT.

It is well known that filtering volume data with sep-
arated filters for derivative computation is much faster
than applying a three dimensional filters per voxel in-
dividually. We currently use a 3× 3× 3 Sobel for gra-
dient computation, which can be replaced by any other
appropriate separable filter. However, applying a sepa-
rable filter for derivative computation requires to keep
the whole filtered volume in memory, which might be
problematic having our initial requirements in mind.

To overcome this limitation and to make the memory
footprint manageable also in an environment with lim-
ited resources, we introduce a cached block structure
(see Figure 3). The intensity base volume is entirely
located in memory. Lower resolution volumes, gradi-
ents, structure tensors and principal curvature are or-
ganized into smaller blocks that are only computed on
request. After computation, block data remains cached
in memory. If the memory for allocation of new blocks
gets low, the cache is partially cleaned by removing data
which was accessed the longest time ago.

For fast computation of Haar-like features an addi-
tional data structure, an integral volume, is needed.
This data is currently computed as a whole and kept in
memory. This is due to the more complicated genera-
tion method of this data which makes it hard to compute
the value block-wise on demand.

4.3 Optimized Classifier Execution
Generally each voxel can be classified individually by
executing the whole boosting tree starting from the low-
est resolution. However, having in mind that one voxel
in a lower resolution volume has influence on a num-
ber of voxels in the higher resolution and that the data
is arranged in a cached block structure, it is worth to
consider a optimal execution order.

Detection of features on the whole volume or of a sub
volume follows two strategies. First, feature detection
is done in resolution level order. This means that the
PBT for one level is executed on the whole region of
interest and then all positive classified voxels are prop-
agated to the next higher level.

Second, all per level classification is performed block
wise. In this way only a small number of data blocks
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must be in cache. Any other execution order (for ex-
ample line wise) would cause a lot of cache misses and
would likely lead to often re-computation of block data.
If multiple classifiers must be applied on the same vol-
ume all classifiers are executed on each block sequen-
tially. After the first classifier is executed the block
cache remains in (partially) filled state. Data which is
already cached must not be computed if the next clas-
sifier tries to access this data. Parallelization is imple-
mented using a worker thread-pool. Classification of
one block is fed into a job queue which distributes the
work to the worker threads.

5 EXPERIMENTS
Our multiresolution PBT framework was tested in a
real world scenario as preprocessing part for a semi-
automatic annotation algorithm for the vertebral col-
umn. The task was to preselect appropriate candidates
for the location of the intervertebral discs and the spinal
canal.

For the intervertebral discs, three different detectors
were trained to cover the different appearance of lum-
bar, thoracic, and cervical disks. The spinal canal could
be detected by using only one detector.

5.1 Setup and Training
The algorithm has been trained and evaluated on 19 CT
datasets (13 for training 6 for evaluation only) contain-
ing different parts of the vertebral column. The datasets
have up to 1112 axial slices with a slice resolution of
512× 512 and a slice distance between 0.62 mm and
3.0 mm. Some of the data contains pathologies (bro-
ken vertebrae, collapsed disc, scoliotic spines) as well
as one cervical dataset from a child.

Experiments have shown that the thinnest interver-
tebral discs in the cervical section can still be distin-
guished if the slice distance is at least 1.5 mm. We
therefore fixed the base volume voxel scale for this ex-
periment as 1.5 mm isotropic and the datasets were re-
sampled accordingly.

In all datasets position and location of the interver-
tebral discs and the spinal column have been manually
labeled. Based on the given annotation, positive sam-
ples have been generated randomly inside the interver-
tebral disc and the spinal column. Negative samples
have been generated randomly all over the volume with
the constraint to have a minimal distance to positive
samples of 10 mm.

5.2 Performance Evaluation
Time performance of the algorithm has been assessed
based on a set of eleven CT volumes (six evaluation
and five training datasets). The properties of the data,
its original and normalized size is listed in table 1. The
classifier is trained using one cascading step and al-
low only intensity and Haar-like features in the cascade

Volume original size normalized size
1 512×512×202 106×106×134
2 512×512×163 113×113×108
3 512×512×361 144×144×168
4 512×512×222 89×89×148
5 512×512×249 170×170×166
6 512×512×152 91×91×101
7 512×512×277 245×245×184
8 512×512×260 244×244×179
9 512×512×1112 274×274×370

10 512×512×228 176×176×228
11 512×512×945 244×244×630

Table 1: Properties of volumes for performance evalua-
tion.
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Figure 4: Memory Limits

node. Influence of the different optimizations is mea-
sured against this default. Detection performance was
measured based on 8 datasets containing the 6 evalua-
tion datasets.
Limited Memory The data structure is designed to
cope with limited resources. However, reaching the
bounds of memory provokes clearance of cache blocks
that might have to be recomputed at a later stage of
the algorithm. Figure 4 illustrates the time performance
over different cache memory bounds for datasets 4−7
and show a clear threshold (∼ 25 MB) for all four
datasets where the performance/memory ratio changes
dramatically. This memory limit is slightly different for
each dataset and depends on the dataset size. If the
available memory falls below that threshold computa-
tion time rises heavily whereas performance remains
stable if enough memory is available. The threshold
marks the point where data blocks need to be frequently
recomputed. As long as enough memory is available
deletion of block data from the cache and occasional re-
computation has almost no influence on performance.
Multithreading. We tested the multithreading per-
formance of our algorithm on an Intel quad core CPU
with 2.4 Ghz and hyperthreading. Figure 5 plots the
computation speed over the number of threads again on
datasets 4−7. Time drops until 4 threads are used. For
more threads no significant speed-up (but also no sig-
nificant slowdown) can be monitored.
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Figure 5: Plot computation time against number of
threads. Tested on a quad-core with Hyperthreading.

Figure 6: Detection speed comparison between PBT
with (blue) and without (green) cascading on eleven dif-
ferent datasets.

The scaling with the number of threads below four is
not linear. This is caused by the current locking strat-
egy that prohibits accessing one block if it is currently
computed by another thread. This situation mainly oc-
curs if 2nd derivatives have to be computed that require
accessing also neighboring first derivative blocks. If
another thread is classifying one of these neighboring
blocks at the same time it has to wait until the lock is re-
leased. This kind of collision happens more frequently
as more threads are used. We expect therefore a loga-
rithmic scaling of time performance with the number of
cores as long as the locking behavior is not improved.
Cascading Speed-up. The impact of cascading on
detection speed has been measured by comparing the
time performance of our default detectors with detec-
tors which are trained without including a cascading
step. The result is plotted in figure 6. Over eleven
datasets we measured a speed-up of 1.45−2.67 for de-
tectors including a cascading step.
Classifier Sorting Speed-up. The impact of classi-
fier sorting is plotted in figure 7. We compare the time
performance of our default detector including cascad-
ing and sorting with detectors which are allowed to use
all classifiers in the cascading node. Classifier sorting
results in a speed-up up to 1.65 for detectors which use
sorting.
Multiresolution Speed-up. To measure the impact
of multiresolution feature detection we compared de-

Figure 7: Detection speed comparison between PBT
with (blue) and without (green) classifier sorting on
eleven different datasets.

Figure 8: Detection speed comparison between mul-
tiresolution vs. one resolution.

tectors using three levels of resolution against detectors
using only one level. The results are plotted in figure 8.
The measured speed-up ranges between 3.44 and 17.51.

Detection Performance. Two feature detection results
are depicted in Figure 9. The first row shows the detec-
tion of intervertebral discs in the lumbar section of the
spine, the second row the detection of the spinal canal
on a whole spine. The detection progress from lowest
to highest resolution level is depicted from left to right.

The images illustrate well the effectiveness of the
multiresolution scheme since already at the lowest res-
olution level the major part of the volume is excluded
from higher resolution analysis.

The selected voxels (blue) reproduce the shape of the
searched anatomical parts to a large extend. However
outliers can be observed, for example inside the verte-
bral body (first row) or at the ventral side of the ribcage
(second row). Moreover missing features can be ob-
served as well (first row, ventral side of the topmost
disc).

This observation is also reflected in recall and 1-
precision plots (figure 10). Recall denotes the ratio be-
tween selected voxels within the ground truth and all
possible ground truth voxels. 1-precision stays for se-
lected voxels outside the ground truth divided by all
the voxels which were selected by the feature detection
(also the falsely selected ones). The evaluated data in-
volves healthy spines (1, 2, 3, 6, 7 in figure 10) and
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Figure 9: Coronal and sagittal images of detection results for the intervertebral disc (first row) and the spinal
column (second row). Three levels of resolution document the detection process, lowest resolution left to highest
resolution right.

Figure 10: Recall and 1-Precision Plots

spines with diseases like scoliosis and broken vertebrae
(4, 5, 8 in figure 10).

The first and the third graph show results after feature
detection without any postprocessing where the high re-
call rates give information about good detection results
of structures of interest (discs and spinal canal). How-
ever, besides the high recall rates there are also high
rates of 1-precisions because of the occurrence of out-
liers (i.e. spongy bone within vertebrae with similar
features to discs). The high 1-precision rates can be
reduced by postprocessing steps such as particle filters
which are visible in the second and fourth graph of fig-
ure 10. The recall rates remain fairly the same, minor
reductions are due to moving towards the center voxels
of the discs by particle filtering.

An example for postprocessing of the resulting fea-
ture mask is depicted in figure 11. First probabilities are
computed by applying a box shape particle filter with
the dimensions 9× 9× 60mm3. The box approximates
elongated shape of the spinal canal. Second, the feature

Figure 11: Feature mask (blue) post processed with par-
ticle filtering, non-maximum suppression and thresh-
olding (yellow).

points are reduced by non-maximum suppression of the
probabilities. Third, outliers are removed by threshold-
ing the probability. The threshold is defined at t = 0.15.

6 DISCUSSION AND CONCLUSION
We have presented a method for time and memory ef-
ficient feature detection on medical 3D volume data.
The goals and requirements formulated at the end of
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Section 1 have been reached by selecting a classifica-
tion based approach based on a Probabilistic Boosting
Tree classifier. The classification method was improved
by combining the decision tree with one cascading step
and the introduction of classifier sorting. This classi-
fier was embedded into a multiresolution framework.
We could show that all optimizations together result in
a huge time performance gain with an approximated
speed-up factor of 20.

Multithread performance was measured to scale non
linear (almost logarithmic) which is due to internal data
locking. The speed-up is for state of the art quad core
CPUs still significant. But to benefit from more paral-
lelism, improvements have to be done in this section.
However it is likely that more sophisticated access pat-
terns and locking schemes can help to overcome this
problem.

The behavior of the block cache data structure was
evaluated in section 5.2. It is noticeable that even larger
datasets require only ∼ 25MB for the block cache to run
almost unhindered. However even under circumstances
where less memory is available the algorithm will just
perform slower.

Detection rate of this feature detector is not as good
as it could be. We believe that other image features and
filtering techniques, a finer bases scale and also a dif-
ferent kind of classifier could result in better detection
performance. However, trading detection performance
against execution speed was a conscious design deci-
sion. The results are good enough to use this method to
reduce the search space for more specialized and more
expensive image processing methods.
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