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ABSTRACT

In today’s modeling tools, the graphical user interfaces are required to be accurate and intuitive to use. Most tools therefor rely
on additional 3D-widgets (e.g., arrows or circles) that enable the user to operate towards a desired modeling result. Inthis paper
we present, for the first time, a method that makes these widgets obsolete. We propose to use simple geometric primitives such
as planes or spheres as low-dimensional subspaces, so called target spaces for the interaction. Instead of operating towards a
modeling result, the user then directly steers the result. The target spaces suffice to be indicated to the user just as additional
visual information. We verify by means of a user study that with our method it is now possible to develop accurate single-view
GUIs without 3D-widgets that are highly intuitive to use.

Keywords: Graphical user interface, human computer interaction, interactivity, computer geometries, 3D interaction, graphics
applications.

1 INTRODUCTION

Today’s modeling applications are in general used for
the task to position or deform complex objects or parts
thereof. Common examples are the modeling of human
characters or complex moving objects (e.g., parts of a
car engine). In both examples objects are defined by
a transformation hierarchy. For example, the pose of
a human right hand depends on the pose of the right
arm, whose pose is dependent of the current pose of the
torso. The termpose defines the current position and
rotation of an object. A pose is defined by six degrees
of freedom (DOF).

The object’s transformation hierarchy is determined
by a kinematic chain (i.e., the assembly of several kine-
matic pairs connecting rigid body elements). Often
this combination of kinematic pairs, with 6 DOF each,
leaves the user even for simple models with a parame-
ter space of high dimensionality. This high-dimensional
parameter space poses a challenge for the user to inter-
act with the model in an intuitive way.

Some applications enable the user to specify the
translation or rotation of a rigid body numerically.
They may be most accurate but modeling tasks become
very time-consuming and unintuitive. Others present

Permission to make digital or hard copies of all or part of this
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that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
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Copyright UNION Agency – Science Press

an interface to manipulate the pose of each rigid body
in a kinematic chain separately. Mostly authors show
projections of an object on the three coordinate planes
and a fourth viewport, where the user can freely choose
the camera position. In general the free-viewpoint
viewport contributes only little to the accuracy of the
modeling results. Altogether, user interactions are
commonly performed by using projections in some
coordinate planes.

In this paper we present a new method that allows for
intuitive modeling operations within a single viewport
without any additional 3D widgets. By constraining the
interaction space for a given operation in a 3D scene
to subspaces defined by geometric primitives, the user
succeeds in transforming the object or its subparts ac-
curately and in a highly intuitive way.

The paper is organized as follows: After giving an
overview of related work in the area of interactivity
methods for object modeling in Section 2, we define
the core idea of subspace interactivity in Section 3 and
contrast it to state-of-the-art modeling software. After-
wards in Section 4, a set of geometric primitives used
for subspace interactivity is introduced. The usability of
our method is evaluated in a case study with a motion
capturing software in Section 5, before we conclude in
Section 6.

2 RELATED WORK
For a brief overview on research in graphical user
interfaces for object manipulation, see Myers et al.
[MHC+96]. The interaction process from a user’s
point of view is described by Wright [WFH00]. Our
method is related to the following work, where each

WSCG 2010 Communication Papers 1



technique is focusing on certain aspects of interactivity:

Widgets and Input Mapping

Wu et al. [WATB03] present a toolkit which ex-
haustively usespicking, the method to determine
the corresponding 3D-object for a selected 2D-pixel.
A focus on 3D-widgets for transforming complex
geometrical objects is provided by Conner et al.
[CSH+92], who give an introduction to state defini-
tions for typical widget operations (e.g., 3D-rotation).
3D-widgets became famous in the OpenInventor

(a) Rotation

(b) Transposition

Figure 1: A typical object transformation based on 3D
widgets. A rotation (a) around an certain axis is per-
formed by dragging the corresponding circle; a trans-
position (b) is performed by dragging an axis-aligned
arrow. Screenshots reproduced from [Aut09].

framework [SWH+05]. Another paper by Dollner
et al. examines 3D-widgets as deformation handlers
for geometrical objects [DH98]. 3D-sliders as a type
of 3D-widgets and enhancement of 2D-sliders are
described by Beckenridge et al. [BHMO01] and Stotts
[Sto02].

Surface modeling

Schmidt et al. [SKKS09] present a surface modeling
system based on enhanced 2D views. A complex
surface is depicted by equidistant lines. The lines are
colored in shades of gray according to their distance
from the viewpoint. Thus the user can easily select and
change surface parts within a single viewport by ad-
justing particular lines. Another system, ILoveSketch
[BBS08], allows for 3D spline sketching in a single
viewport by exploiting visual cues (e.g., vanishing
points).

Human motion modeling

Buttussi et al. [BCN06] developed a tool to adjust the
pose of a humanoid model. They use a single viewport
to select joints and drag them fronto-parallely, but
they depend on a set of sliders in a second window to
provide for accurate positioning. Popular modeling
tools, such as Blender [Fou09] or 3D Studio Max
[Aut09] employ 3D-widgets to transform nodes of the
body’s kinematic chain.

In 3D Studio Max, for example, an axis aligned trans-
position of a right hand is performed by dragging one
of three displayed arrows towards the desired direction,
Fig. 1 (b).

Our method, instead, introduces 1D- and 2D-
subspaces for object transformation operations (e.g.,
rotation and transposition) and is thus independent of
additional widgets, such as arrows, to be drawn in the
scene. The deformation of body surfaces, however, is
done by adjusting 3D sliders aligned to local coordinate
axes. In the following we will mainly contrast the
concepts of 3D Studio Max [Aut09], representing
state-of-the-art modeling tools, to our method.

3 INPUT HANDLING WITH THE TAR-
GET SPACE

Our main goal at this point is to provide a versatile user
interface for modeling tasks which fulfills the following
constraints:

1. The user should be able to perform any task in a sin-
gle viewport.

2. The operation should be performed in a highly intu-
itive manner.

3. The result of the operation should be accurate com-
pared to the desired task.

WSCG 2010 Communication Papers 2



In state-of-the-art software, such as 3D Studio
Max [Aut09], the user is provided with one or many
3D-widgets to solve the modeling task in one viewport.
That means, additional objects, such as arrows or
curved lines, have to be drawn around the object to
be transformed. The user has to drag these objects in
specific directions in order to come closer to the desired
result for the object to be transformed. In general it can
be stated that the screen is filled with additional objects
to be handled. It is very likely that this may confuse a
user.

Our approach, instead, is to consider the modeling
task as a combination of lower-dimensional operations
within the 3D space. An object can be transformed, for
example, by a target translationt ∈ T or rotationr ∈ T
within a lower-dimensionaltarget space T ⊂ R

3. This
target space can be either 1D or 2D and is, thus, always
embedded in the scene.

When the user triggers a requested operation for a
rigid body [see Fig. 2 (a)], the target spaceT for this
operation is optionally indicated to the user [see Fig. 2
(b)], and the backprojectionΠ of the mouse position
pscreen to T [see Fig. 2 (c)] determines the desired target
positionpT within the target spaceT .

The backprojectionΠ can be written as

Π : pscreen ∈ R
2 7→ pT ∈ T ⊂ R

3 (1)

The key difference between the backprojectionΠ to pT

and a standard backprojection to the current scene is
that only the mouse positionpscreen is backprojected to
the target spaceT. That is, the backprojection is par-
taken in a second scene which consists only of the geo-
metric primitives which spanT. The camera parameters
remain constant in both scenes.

The advantage over state-of-the-art software, such as
3D Studio Max [Aut09], is now clearly that the user
is independent of additional widgets to achieve desired
object transformations. The user only sees the object
and optionally the indicated target space. The target
space may, for example, be shown as a grid to guide
the user. Any mouse movement on the target space is
directly interpreted as the new result state for the ob-
ject. The screen becomes less confusing and more ob-
vious, so that intuitivity increases, while accuracy stays
steady.

Any geometric primitive can serve asT, as long as it
is a true subset ofR3. This is necessary for the back-
projection, because otherwise the result would not be
well-defined. In our further considerations we focus on
thin lines, surfaces of spheres and planes for modeling
tasks, but any Bézier spline or surface is also suitable.
Once again we like to emphasize, that the indication of
the target space to the user [see Fig. 2 (b)] isoptional,
and that the user can employ the operation on the target
space also without any additional visual information.

(a) User selects object to be transformed

(b) Target spaceT is optionally indicated to user

(c) Mouse position is backprojected toT

Figure 2: Illustration of a transformation of a rigid
body. The blue cone (a) is considered as an operation
in the target spaceT. Its span is optionally indicated to
the user, for example by a grid; see (b). The operation
is done by backprojecting the mouse position into the
target spaceT; see the red surface in (c).

This is themain difference to the 3D widgets used in
state-of-the-art modeling tools.
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(a) User selects ob-
ject to be rotated

(b) User starts rota-
tion, target spaceT
indicated

(c) User rotates ob-
ject, target spaceT
indicated

(d) The target
space T with
backprojected
mouse position
Π(pscreen) = pT

(e) User stops rota-
tion

Figure 3: An object rotation with a sphere as geometric primitive for T . The object’s center of gravity determines
the sphere’s center while its distance to the backprojectedmouse position determines the radius. However, a larger
radius is possible in order to increase usability.

(a) User selects ob-
ject to be reshaped

(b) User starts defor-
mation, target space
T indicated

(c) User deforms
object shape, target
spaceT indicated

(d) The target
space T (line with
arbitrary thickness)
with backprojected
mouse position
Π(pscreen) = pT

(e) User stops defor-
mation

Figure 4: An object deformation with a line of arbitrary thickness as geometric primitive forT . The line is parallel
to the normal of the selected patch and intersects the objectat the backprojected mouse position.

4 GEOMETRIC PRIMITIVES IN THE
TARGET SPACE

In most modeling applications we face the following
basic transformation operations: transposition, rotation
and surface deformation. The transposition and rota-
tion operations have 3 DOF each; the DOF of a sur-
face deformation depends on its tessellation. However,
combining only few of those operations to a complex
task will lead to a parameter space of high dimension-
ality. Thus we exploit the geometric primitives as target
spaces for the elementary transformation tasks:

• A rotation of a rigid object is done on the surface of
a sphere of fixed radiusr with

pT (φ ,θ ) =





r ·cos(θ ) ·cos(φ)
r ·cos(θ ) ·sin(φ)

r ·sin(θ )



 (2)

whereφ andθ determine the longitude and latitude
angles. Thus, the transformation is performed in a
2D target space. The sphere center is mostly located

in the object’s center of gravity. The radius can be
determined by the distance to the selected point on
the object; see Fig. 3. However, a larger radius is
considerable in order to increase the usability

• A transposition of a rigid object is done on a plane
(e.g., axis-aligned on the XY-plane) in the coordi-
nate system of the object’s parent in the transforma-
tion hierarchy with

pT (u,v) =





u
v
0



 (3)

whereu andv determine the point on the plane. Thus
the transformation is performed in a 2D target space,
as well.

• A transposition of an object with a fixed distance to
a local or global center is done on the surface of a
sphere according to Eq. (2). Thus the transformation
is also performed in a 2D target space.

WSCG 2010 Communication Papers 4



• A parametrized surface deformation is done patch
by patch. For each parametrized patch, spanned by
tangent vectors~ru,~rv, the deformation is performed
on a line parallel to the patch normal

~pT (α) = α ·
~ru ×~rv

|~ru ×~rv|
(4)

Here,α determines the point on the line. The target
space in this case is only 1D, the user interacts with
the surface by moving it upwards or downwards that
line; see Fig. 4.

5 CASE STUDY: MOTION CAPTUR-
ING SYSTEMS

The main purpose of motion capturing applications is
to fit humanoid 3D-models to the input data captured
from one or many video cameras. Since in most cases
the input data show only the actor in front of a well-
distinguishable background, the application succeeds in
recognizing and modeling the intended pose of the ac-
tor.

However, sometimes the system can produce an erro-
neous guess for the pose due to lighting conditions or
ambiguous body constraints. Then it is very useful, if
the system provides an intuitive interface for the user
to correct the pose. Furthermore it is also useful for
the user to define new motion sequences independently
from input videos (e.g., to create new motions for an
already captured character). Here, an intuitive user in-
terface is inevitable.

In the following case study we apply the presented
target space approach to implement a GUI for an ex-
isting motion capturing software. Although single joint
positions can be adjusted numerically, motion captur-
ing software has not provided an intuitive interface for
a user so far. Main requirements for an interface are
that the user could literally drag the body entities of the
humanoid to desired poses and that he could deform
the shape of the body in one single viewport. The user
can rotate the camera around the captured scene like a
trackball.

From these requirements we deduce the basic trans-
formation operations of the application: While enti-
ties like hands or feet can be translated within a sphere
around the shoulders or hips, other entities like the torso
could be rotated in place. Furthermore the surface mesh
of each entity could be deformed (i.e., inflated or de-
flated).

For the basic transformation operations we identify a
suitable target space according to Section 4. Some en-
tities can be transformed in multiple target spaces (e.g.,
the hand of the humanoid model can be dragged on a
sphere around the shoulder or on a plane parallel to the
shoulder’s coordinate plane).

(a) Rotation of the knee,
target spaceT is indicated
to user

(b) Mouse position is back-
projected toT

Figure 5: A rotation (a) of the model’s knee is per-
formed with the target space method (b): In the back-
buffer the mouse position (small red sphere) is pro-
jected onto a simpler scene consisting of a sphere
(green), that is tangential to the knee, the foot and the
hip. A plane (pink) parallel to the viewing plane inter-
sects the sphere at its center and thus prohibits marginal
errors.

The user can pick an entity of the model by hovering
over it with the mouse pointer. If multiple transforma-
tion operations are available, the user can choose the
operation by pressing different keys.

A deformation of an entity’s mesh can be done by
moving the mouse parallel to the local surface normal.
A mouse motion away from the surface indicates an in-
flation; a mouse motion closer to the surface indicates a
deflation.

In the following, we briefly describe how the target
space approach is implemented for the different opera-
tions mentioned above.

5.1 Rotation of humanoid body parts
The rotation of body parts is modeled as a transforma-
tion with a sphere surface as target space. An axis in
the local coordinate system defines the rotation axis.
The magnitude of a rotation angle is determined rela-
tively from the difference of the backprojected mouse
position when the mouse button is pressed and the
backprojected mouse position when the mouse button
is released again. Figure 5 shows the rotation opera-
tion and the according target space, the green sphere.
The fronto-parallel pink plane intersects the sphere cen-
ter to avoid backprojection problems, when the mouse
pointer leaves the surface area of the sphere. The back-
projected pointp is then automatically evaluated as the
intersection between a ray from the sphere centerc to p
and the surface of the sphere.

5.2 Translation of humanoid body parts
The translation of a body part is modeled both as a
transformation with a plane as target space and with a
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(a) Translation, target
spaceT is indicated to user

(b) Mouse position is back-
projected toT

Figure 6: A translation (a) of the model’s arm is per-
formed with the same approach (b): In the backbuffer
the mouse position (small red sphere) is projected onto
a simpler scene consisting of a plane (green) intersect-
ing the arm’s origin.

(a) Translation on the front
hemisphere

(b) Translation on the back
hemisphere

Figure 7: When leaving the sphere’s surface with the
mouse (a), the system automatically cuts off the half-
sphere in front and enables the user to translate the joint
to the backside (b), which would not be visible or reach-
able in normal view.

sphere surface as target space. The resulting position of
the translated body part is evaluated absolutely by back-
projecting the mouse position to the target space. An
inverse kinematic chain [ZB94] is then computed for
the parent nodes of the body part to account for body
constraints (e.g. the flexion-extension range of a knee
or an elbow).

Figure 6 shows the translation of the left wrist on a
plane parallel to a coordinate plane of the shoulder’s
coordinate system and the corresponding target space,
a green plane. The backprojected mouse position on
the green plane determines the required position for the
wrist.

Figure 7 shows the same translation of the left wrist
with a sphere surface as target space. The sphere cen-
ter in the target space is again intersected by a fronto-
parallel plane. This time the plane is used to discrim-
inate between the visible front side of the sphere and
the invisible back side of the sphere. When the mouse
pointer leaves the sphere surface and is backprojected
on the plane, the system automatically cuts off the front
half of the sphere. The user is then able to move along
the inner surface of the sphere’s back half.

1 2 3 4 5
2

4

6

8

10

12

14

16

18

Task

#O
pe

ra
tio

ns
 p

er
 T

as
k

 

 

Proposed Method
Autodesk 3d Studio Max 2010

(a) Results for the modeling tasks
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(b) Results for the shaping tasks

Figure 8: The results of the user study. The users have
been assigned five modeling (a) and two shaping tasks
(b). For each task the mean number of necessary oper-
ations is plotted with variance. Note, that, on average,
the proposed method needs less operations per task than
the state-of-the-art tool.

5.3 Deformation of humanoid body parts

Each body part of the model, used in the system, con-
sists of a coherent mesh. The deformation state of the
mesh is defined by two fourth order polynomials of
its longitudinal axis along for each of the remaining
axes. The deformation parameters for each polynomial
are 1D. Thus, we employ the target space approach by
moving the selected patch in the mesh along a 1D-line,
which is parallel to the patch’s normal. Since the pa-
rameters are 1D, the thickness of the line is arbitrary.

5.4 Results - The User Study

The target space method has been implemented in an
existing motion capturing software as graphical user in-
terface. In a comparative user study with seven partic-
ipants, the applicability of the method has been evalu-
ated. Each user has been assigned five modeling tasks
and two shaping tasks. In each task the users have been
given an input model and a picture of a target pose (e.g.,
a man sitting, kicking, or lifting arms) or a target shape
(e.g., fat, or musculous).

Further information about these tasks is shown in the
Appendix. The users then had to change the pose or
shape of the input model so that it resembled the picture
of the target pose with as few modeling operations as
possible.
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(a) Task 1 (b) Task 2 (c) Task 3 (d) Task 4

(e) Task 5 (f) Task 6 (g) Task 7

Figure 9: The seven modeling tasks in the conducted user study. Tasks 1-5 depict the poses the users had to model
with both the proposed method and 3D Studio Max 2010 [Aut09].Tasks 6 and 7 depict the different shapes the
users had to give to the humanoid model.

In the first iteration the users modeled the pose with
the proposed method. In the second iteration they
used the commercial software Autodesk 3D Studio Max
2010. In both iterations, for each task the number of op-
erations that were necessary to model the desired pose
have been evaluated.

Figure 8 shows the mean number of necessary oper-
ations for each modeling (a) and shaping (b) task. The
plots show that the proposed method enables the user
to model desired poses and shapes with less necessary
operations than with the state-of-the-art modeling soft-
ware.

The users have also graded both modeling tools for
intuitivity, learnability and usability. In terms of in-
tuitivity and learnability, 71 % graded the proposed
method as good as, or even better than the commercial
tool. In terms of usability, 57 % graded the proposed
method as good as, or even better than the commercial
tool.

6 CONCLUSIONS

We presented a new approach for graphical user in-
terfaces in modeling applications, which is based on
lower-dimensional target spaces. The target spaces are
embedded into the 3D scene and thus allow for single

viewport interactivity. While standard modeling appli-
cations rely on fronto-parallel operations or operation
vectors that the user has to drag along the axes of a lo-
cal coordinate system, our approach enables the user to
transform the object in a very intuitive way, still achiev-
ing the desired accuracy.

We verified the applicability of the approach by a
case study, where a graphical user interface had to be
implemented for an existing motion capturing system.
In a comparative user study we found that with the
new approach users need less necessary operations for a
modeling task than with state-of-the-art modeling soft-
ware.

In the future we want to apply our approach to further
modeling applications beyond motion capturing. We
also want to exploit the constraints of kinematic chains
of arbitrary objects for the target space modeling, be-
cause this will enhance the intuitivity of modeling tasks
even more.

7 APPENDIX

In Fig. 9 we have listed the seven different modeling
tasks of the conducted user study. In Task 1 [see Fig. 9
(a)], the users had to reposition the model and rotate it
in an angle of 45◦.
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In Task 2 [see Fig. 9 (b)], the users had to lift the arms
and legs to emulate a jumping pose.

In Task 3 [see Fig. 9 (c)], the users had to lift one leg
and angle both arms to emulate a kicking pose.

In Task 4 [see Fig. 9 (d)], the users had to position the
left arm and angle it and had to rotate the head towards
the far left.

In Task 5 [see Fig. 9 (e)], the users had to model a
person sitting and drinking a glass of water. Not only
the arms, but also the hands had to be altered.

Tasks 6 and 7 regarded shaping operations. In Task
6 [see Fig. 9 (f)], the users had to give the humanoid
model a potbelly. In Task 7 [see Fig. 9 (g)], the users
had to shape the model like a body builder. In both
tasks, several meshes had to be selected and reshaped
in all three dimensions.
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ABSTRACT

This paper focuses on graphical shader programming, which is essential for real-time rendering. Opposite to classical low
level, structured languages, functional approach is used in this work and existing work is extended to cover geometry shader
programming. The compiler is able to transform the program in a way that is hard to achieve with classical languages. The
program is written for all pipeline stages at once and the compiler does the partitioning. This allows the programmer to focus
on program semantics and let the compiler take care of the efficient execution. First, this paper describes shader stages as
functions in a mathematical manner. The process of program partitioning and transformation to one of the classical languages
is described. Several examples show the differences between functional description and equivalent structured code.

Keywords: Rendering, Shaders, Functional Programming

1 INTRODUCTION

Graphical hardware has changed greatly since first
graphic accelerators. Its architecture evolved from
fixed function pipeline, which became more and more
configurable to today’s fully programmable SIMT
processors. However the programming is still low-
level. The graphical processors lack complex control
structures in exchange for raw computation power. The
three most used languages for shader programming
(GLSL [7], HLSL [8] and Cg [9]) mimic very closely
the structure of the rendering pipeline.

The number of programmable stages of the rendering
pipeline has risen from two to five in the latest acceler-
ators. This means that the programmer must maintain
even higher number of programs, executed at once on a
single primitive, and ensure their compatibility. The in-
terfaces between pipeline stages must be compatible not
only in types, which the compiler can check, but also in
passed values, which cannot be checked automatically.
Packing the shader programs into one effect file solves
this problem only partially. Effect files are only mul-
tiple shader programs, packed into one file with some
additional information. When the effect file contains
a code for multiple generations of graphical cards, the
dependencies are even harder to maintain. This paper
focuses on splitting one program to multiple parts and
automatic generation of interfaces between them. Ver-
tex, geometry and fragment shaders are the point of in-
terest. The next two - hull and domain shaders were
added for performance reasons only and might be ad-
dressed in future work.

Functional approach seems suitable for shader pro-
gramming. Shaders transform data without any side ef-
fects and run massively parallel. Functional programs
tend to be more abstract and allow the compiler to re-
organize the code more than imperative languages. Be-

cause functional programs are referentially transparent,
the order, in which the program is executed, does not
matter. Every program transformation that preserves
the output value is allowed. As shader programming
favors speed over code clarity, this can help readabil-
ity and maintainability without sacrificing performance.
Significant parts of shader programs could be generated
automatically.

Functional programming languages undergo a rapid
development in recent years. Functional languages
leave academic ground and slowly become well known
like Microsoft’s F#. Elements from functional lan-
guages like closures and lambdas are used in current
mainstream languages (Python, C#). Ideas from func-
tional programming like map-reduce [2] are used for
programming parallel algorithms. These successes sug-
gest that functional programming loses its reputation of
being slow and is used for computationally intensive
tasks. Because rendering is a computationally intensive
task of different type, this paper explores the usability
of functional programming for it.

Section 2 describes languages that were used as inspi-
ration for this work. Section 3 shows shaders as func-
tions from a mathematical point of view. Section 4 de-
scribes the transformation from functional program to
C-like representation that is compatible with common
shader languages. Section 5 summarizes the advantages
of this approach and discusses open issues for the fol-
lowing work.

2 RELATED WORK
One of the interesting functional languages for shader
programming is Vertigo [3], which was developed by
Conal Elliott at Microsoft Research. Vertigo is an em-
bedded language, focused on geometry and texture gen-
eration. Complex shapes are built from simple primi-
tives and transformations by function composition. A
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significant part of the optimization is done by rewrite
rules - common technique in functional programming,
which is generally not applicable in imperative lan-
guages due to the lack of the referential transparency.

Another unfinished and interesting language for
shader programming is Renaissance [1]. In this
language, vertex and fragment shaders are specified
as one program. The compiler splits the program and
generates an interface between the vertex and fragment
shader using simple rules that are based on expression
frequencies and function linearity.

Expression frequencies correspond to pipeline stages,
where the expression can be evaluated. Renaissance
uses four frequencies - fragment, vertex, uniform and
constant. Program is initially specified with fragment
frequency and compiler determines lower frequencies
for suitable expressions.

Function linearity is important for splitting vertex and
fragment shader. For linear functions like addition is
not important whether its input or output is interpolated
over the rasterized primitive. This means, if input of
linear function has vertex frequency, its output has ver-
tex frequency too, so it can be safely moved to the ver-
tex shader. Nonlinear functions like normalization can
not be interpolated, so they must remain in the frag-
ment shader. There exists another group of functions -
partially linear - like multiplication. Its output can be
interpolated if only one argument has vertex frequency
and all other have frequency lower.

3 SHADERS AS FUNCTIONS
In this section and the following ones, a simplified
Haskell [6] syntax will be used for program examples.
Function types will be written in mathematical manner.
For example A×B→ C means a function with a do-
mains A×B (with two parameters of the type A and B)
and a codomain C. Square brackets mean a list of val-
ues. It can be also an array, because the differences are
not important here.

If we consider rendering as a function, the type of this
function might be U × [A]→ [F ]. U denotes the uni-
form variables, textures and other rendering state, [A] is
the list of attributes of the rendered primitives and [F ]
is the list of resulting fragments. This means the ren-
dering takes the rendering state and the list of rendered
vertices and transforms it to the list of fragments. These
fragments are collected into the framebuffer. The ren-
dering function can be split to three parts, equivalent to
three pipeline stages.

The vertex shader does the transformation and light-
ing of all vertices. It has the type U × A→ V . Be-
cause all vertices are processed identically, this function
is simply mapped over input vertices. V is the vertex
shader output.

The geometry shader follows the primitive assembly
and takes one primitive consisting of one to six ver-

tices. It has type U× [V ]→ [[G]]. It takes one primitive,
which can be viewed as a list of vertices and outputs
several triangle (or line) strips. Each triangle strip is
simply a list of vertices, so the complete output is a list
of strips. [[G]] denotes the interface between geometry
and fragment shader.

The primitives from the geometry shader are assem-
bled, rasterized, values are interpolated over them and
used as input for the fragment shader. The fragment
shader has type U×G→ F .

Aside from the mentioned parts or frequencies of
computation (vertex, geometry, fragment), another two
frequencies exist. It is the constant and uniform fre-
quency. The expressions with constant frequency are
evaluated at compile time. The expressions with uni-
form frequency transform uniform variables before ren-
dering. For example HLSL preshaders have uniform
frequency.

These frequencies not only assign expressions to
pipeline stages. They also express relative cost of the
computation and their cost increases from constant
to fragment. Calculating expression at constant or
uniform frequency is beneficial always. The limit is
only the amount of constant and uniform registers.

The benefit of moving possible calculations from ge-
ometry to vertex shader is caused by Post Transform
Cache. This cache is located after vertex shader and
stores its outputs. In ideal case, each vertex has to
be transformed only once, but in reality, the capacity
of the cache is up to several tens of vertices. When
drawing single triangles, the vertex shader is executed
three times per triangle. When drawing triangle strips,
VS is executed once per triangle (plus two times per
strip). With indexed rendering of optimized meshes,
VS can be executed less than once per triangle [10].
This means, we can safely move to vertex shader even
calculations that could be performed on only one vertex
of the triangle.

Moving calculation from fragment to geometry
shader is beneficial in all cases, when interpolation is
less costly, than calculation.

3.1 Expression Splitting

As was mentioned in section 2, the program can be split
into stages automatically by the compiler. This sim-
plifies the programmer’s work as he does not need to
maintain the interfaces between stages manually. Aside
from simple splitting, some expressions can be auto-
matically moved into parts with lower frequencies. The
programmer can write calculations that logically belong
together at one place and let the compiler move them
apart to achieve more efficient execution.

This section describes the process of determining the
frequencies of program expressions. In the beginning,
only frequencies of shader inputs are known. Constants
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have constant frequency, uniform variables uniform fre-
quency and vertex attributes have vertex frequency.

Selection of expressions with constant and uniform
frequency is very similar. All function applications
(function calls in structured languages) with constant
frequency operands have constant frequency, too.
Function applications with constant and uniform
operands have uniform frequency. Listing 1 shows
an example of vertex transformation and listing 2
equivalent code without declarations after frequency
estimation and splitting.

un i fo rm m a t r i x 4 model , view , p r o j e c t i o n
a t t r i b u t e v e c t o r 3 p o s i t i o n

−− o r i g i n a l code
p o s i t i o n ’ = p r o j e c t i o n ∗view∗model∗ p o s i t i o n

Listing 1: Original code of Uniform and Vertex shader

−− u n i f o r m p a r t
tmp = p r o j e c t i o n ∗view∗model

−− v e r t e x p a r t
p o s i t i o n ’ = tmp∗ p o s i t i o n

Listing 2: Uniform and Vertex shader after splitting

Vertex and geometry shader can be split at the point,
where vertices of the input primitive are indexed. The
function at is used for this purpose. Before indexing,
the calculations are done for the complete stream of
vertices. The function at can be moved automatically
further into the geometry part. When all inputs of a
function use the same index, this function can be eval-
uated in the vertex shader and its output can be passed
into the geometry shader. All unary functions fulfill this
criterion trivially.

Example in listing 3 calculates the distance of one
vertex of each triangle from the camera (this can be
used for example for LOD selection). Because length
is an unary function, it can be moved into the vertex
shader safely. Multiplication with one uniform argu-
ment acts as an unary function, too. The transformed
program is shown in listng 4.

un i fo rm m a t r i x 4 modelView ;
a t t r i b u t e v e c t o r 3 p o s i t i o n ;

−− o r i g i n a l code
d i s t a n c e = l e n g t h ( modelView∗( a t p o s i t i o n 1 ) )

Listing 3: Original code of Vertex and Geometry shader

−− v e r t e x p a r t
tmp = l e n g t h ( modelView∗ p o s i t i o n )

−− geomet ry p a r t
d i s t a n c e = a t tmp 1

Listing 4: Vertex and Geometry shader after splitting

When the geometry shader is not present, vertex and
fragment shader can be partitioned fully automatically.
This approach was used in Renaissance [1], but has
some drawbacks. Because the program is practically

written as fragment shader, it is hard to express calcu-
lations such as Gouraud shading. Also new versions of
shaders provide multiple modes of value interpolation.
Because of these reasons, I propose another method.

The point of splitting is specified by one of three
functions - smooth, linear and flat. These names come
from three interpolation modes on graphical cards.
Functions smooth and linear can be moved further into
fragment part by the same manner as in Renaissance.
Calculations with all arguments with flat interpolation
mode can be always moved into geometry (or vertex)
shader, because no interpolation is performed. The
centroid option does not complicate the transformation,
so it is omitted here for simplicity.

The example in listing 5 shows a simplified calcula-
tion of specular lighting with phong shading. The ge-
ometry shader is omitted for simplicity. The transfor-
mation of the light vector is completely uniform. Multi-
plication is partially linear, so transformation of normal
vector can be done in the vertex shader. Normalization
is a nonlinear operation, so it must be left in the frag-
ment shader. The light vector can be normalized in the
uniform part, because it is not interpolated. The trans-
formed code is shown in listing 6.

un i fo rm m a t r i x 4 modelView , n o r m a l M a t r i x ;
un i fo rm v e c t o r 3 l i g h t V e c ;
a t t r i b u t e v e c t o r 3 normal ;

−− o r i g i n a l code
norm = n o r m a l i z e ( n o r m a l M a t r i x ∗( smooth normal ) )
l v e c = n o r m a l i z e ( modelView∗ l i g h t V e c )
c o l o r = norm ’ dot ’ l v e c

Listing 5: Original code of Vertex and Fragment shader

−− u n i f o r m p a r t
l v e c = n o r m a l i z e ( modelView∗ l i g h t V e c )

−− v e r t e x p a r t
tmp = n o r m a l M a t r i x∗normal

−− f r a g m e n t p a r t
norm = n o r m a l i z e ( smooth tmp )
c o l o r = norm ’ dot ’ tmp1

Listing 6: Vertex and Fragment shader after splitting

4 PROGRAM TRANSFORMATION
Automatic partitioning of the shader program is not
the only important difference between conventional and
functional approach. Very useful feature of functional
languages are closures, partial application and higher
order functions. Closures are nested functions with
some variables defined inside the outer function. Par-
tial application means that for example binary function
can take one argument and can be used as unary func-
tion afterwards. Higher order functions are functions
that take another function as a parameter or return it.

All these features significantly improve code expres-
siveness. Especially higher order functions offer the
possibility of sharing code structure, that is hard to
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achieve or even not possible in structured languages.
For complete implementation of these features, dy-
namic memory allocation is needed. Since the under-
lying hardware does not support it now, compiler must
convert these features into equivalent structured code.
The resulting code is often significantly less elegant, as
will be shown in an example. The hardware also limits
recursion, which must be limited to a form that can be
automatically converted into loops. Sum-types, some-
times called discriminated unions, are also forbidden.
Only product types - equivalent to C structures - are us-
able.

Enriched lambda calculus [5] can be used for pro-
gram representation. This does not differ from other
functional languages. The program is converted into a
list of definitions which is topologically sorted. A defi-
nition is simply a named expression.

Because shaders do not have capabilities to support
lazy evaluation, the program must be converted to an
equivalent strict form. Both Vertigo and Renaissance
solved this by complete substitution of all free variables
in expressions. This approach is simple, but in the re-
sult, all common sub-expressions are lost.

In this paper a slightly more complicated approach is
used. The program is lambda-lifted [4], so nested and
anonymous functions are converted into C-like global
functions. Substitution is done only to remove closures
and partial applications, not for all variables. Lastly, all
applications are merged into complete function calls.

Frequencies are estimated using rules from the previ-
ous section. For expressions without user-defined func-
tions, the splitting is trivial. When a user-defined func-
tion is present, the frequencies inside it are estimated
according to the parameter frequencies. Optionally, this
function is also split into parts. Because of this splitting,
library functions acting as one piece can be automati-
cally split into multiple parts. This allows the use of
library functions that silently cross the boundaries be-
tween shader stages and are both compact and effective.

Classical structured code can be now generated from
the vertex and fragment part. The geometry part has
one list of values for every output variable. To match
the structure of the geometry shader, its output must be
one list of structures containing every output variable.
This conversion is in functional languages done by the
function zip. This function takes multiple lists and con-
verts it to a single list of structures. The length of the
resulting list is the length of the shortest input list.

4.1 Larger example
This example illustrates the compilation of a more com-
plex shader program. The uniform variables are mod-
elView and normalMatrix. The vertex attributes are ver-
tex and normal. The required output variables are posi-
tion with frequency geometry and color with frequency
fragment. The source code without declaration of vari-

ables is shown in listing 7. This program transforms the
input vertices and normals, splits the triangles into four
parts as shown in figure 1 and calculates simple diffuse
lighting. The splitting is described by function gen.
This function is used for position, normal and light vec-
tor identically. A real program would add some modi-
fication after, but for this example, simple subdivision
will suffice; any such complication would not affect the
compilation process.

Figure 1: Subdivision of a triangle in the geometry
shader in listing 7. The input vertices i and generated
vertices m correspond to the list in the function gen.

t r _ p o s = modelView∗ v e r t e x
t r_norm = n o r m a l M a t r i x∗normal

gen i = [ [ i 0 , m 2 , m 0 , m 1 , i 1 ] , [ i 2 , m 1 , m 2 ] ]
where m x = ( i x + i ( x +1) %3) / 2

p o s i t i o n = gen ( a t f t r a n s f o r m )
l v e c = l i g h t P o s − ( smooth ( gen ( a t t r _ p o s ) ) )
norm = smooth ( gen ( a t t r_no rm ) )
c o l o r = ( n o r m a l i z e l v e c ) ’ dot ’ ( n o r m a l i z e norm )

Listing 7: Code for triangle transformation, subdivision
and simple shading

The definitions are already sorted, so no reordering
is needed. All expressions depend only on previous
definitions. Lambda lifting splits the function gen and
creates a new function gen_m. These two functions
are now C-like global functions. The resulting code is
shown in listing 8.

t r _ p o s = modelView∗ v e r t e x
t r_norm = n o r m a l M a t r i x∗normal

gen_m i x = ( i x + i ( x +1) %3) / 2

gen i = l e t m x = gen_m i x in [ [ i 0 , m 2 , m 0 , m
1 , i 1 ] , [ i 2 , m 1 , m 2 ] ]

p o s i t i o n = gen ( a t f t r a n s f o r m )
l v e c = l i g h t P o s − ( smooth ( gen ( a t t r _ p o s ) ) )
norm = smooth ( gen ( a t t r_no rm ) )
c o l o r = ( n o r m a l i z e l v e c ) ’ dot ’ ( n o r m a l i z e norm )

Listing 8: Shader after lambda-lifting. Only the
function gen differs from listing 7.
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Partial applications of functions like m in the func-
tion gen or usages of the function at are substituted to
places where the remaining arguments are applied. By
this substitution, specialized lists for variables position,
lvec, and norm are created. The function gen itself and
the lifted function gen_m are removed as a dead code.
The resulting code is shown in listing 9.

t r _ p o s = modelView∗ v e r t e x
t r_norm = n o r m a l M a t r i x∗normal

p o s i t i o n = [ [ a t f t r a n s f o r m 0 , ( ( a t f t r a n s f o r m 2) +
( a t f t r a n s f o r m ( 2 + 1 ) %3) ) / 2 . . .

l v e c = l i g h t P o s − ( smooth [ [ a t t r _ p o s 0 , . . .
norm = smooth [ [ a t t r_no rm 0 , . . .
c o l o r = ( n o r m a l i z e l v e c ) ’ dot ’ ( n o r m a l i z e norm )

Listing 9: Shader without partial applications and
closures

Expression frequencies are estimated, expressions
are split, constant expressions are evaluated and
common subexpression elimination is done. Vertex
and fragment parts are prepared for code generation.
Geometry part needs zipping together, which is trivial.
Listing 10 shows this situation.

−− v e r t e x f r e q u e n c y
t r _ p o s = modelView∗ p o s i t i o n
t r_norm = n o r m a l M a t r i x∗normal
tmp1 = f t r a n s f o r m
tmp2 = l i g h t P o s − t r _ p o s

−− geomet ry f r e q u e n c y
p o s i t i o n = [ [ a t tmp1 0 , ( ( a t tmp1 2) + ( a t tmp1

0) ) / 2 . . .
l v e c = [ [ a t tmp2 0 , ( ( a t tmp2 2) . . .
norm = [ [ a t t r_no rm 0 , . . .

−− f r a g m e n t f r e q u e n c y
c o l o r = ( n o r m a l i z e l v e c ) ’ dot ’ ( n o r m a l i z e norm )

Listing 10: Code parts for each stage of the rendering
pipeline

Listing 11 shows the generated code. The interface
between the vertex and geometry shader are the vari-
ables tr_norm, tmp1 and tmp2. The interface between
the geometry and fragment shader are the variables lvec
and norm.

/ / v e r t e x sh ad er
t r _ p o s = modelView∗ p o s i t i o n ;
t r_no rm = n o r m a l M a t r i x∗normal ;
tmp1 = f t r a n s f o r m ;
tmp2 = l i g h t P o s − t r _ p o s ;

/ / geome t ry sh ad er
p o s i t i o n = tmp1 [ 0 ] ;
l v e c = tmp2 [ 0 ] ;
norm = t r_norm [ 0 ] ;
e m i t V e r t e x ( ) ;
p o s i t i o n = ( tmp1 [ 2 ] + tmp1 [ 0 ] ) / 2 ;
l v e c = ( t p 2 [ 2 ] + tmp2 [ 0 ] ) / 2 ;
/ / . . . t o o long

/ / f r a g m e n t sh ad er
c o l o r = d o t ( n o r m a l i z e ( l v e c ) , n o r m a l i z e ( norm ) ) ;

Listing 11: Code equivalent to listing 7 in the target
structured language

The final code does not contain the interfaces be-
tween shader stages, because they are straightforward.
The code for the geometry shader was shortened, be-
cause all vertices are generated nearly identically. In
classical languages, the structure of generated vertices
cannot be shared, so the resulting code must be written
by hand or generated by some preprocessing tool.

5 CONCLUSION AND FUTURE
WORK

This paper presented a functional approach to the ge-
ometry shader programming. This approach has some
interesting properties that are hard to achieve in con-
ventional structured languages.

One program is written for all shader stages and the
compiler does the necessary partitioning and interface
generation. This simplifiers the programmer’s work, as
he can write the code, where it logically belongs and let
the compiler move it for an efficient execution.

Higher order functions allow the programmer to write
the code more abstract. Abstract code often tends to be
shorter and more readable. The code sharing is possi-
ble at a level that is hard to achieve by traditional lan-
guages.

Automatic partitioning of program also helps modu-
larity. Library functions can be viewed as single blocks
by the programmer, but parts of them can be executed
in different stages of the pipeline.

These properties significantly improve the shader
programming. However it is not likely that so massive
shift of used paradigm could occur. Because of that,
following work will focus on selecting useful parts that
could be used to extend existing languages.
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ABSTRACT 
One of the main challenges faced by object tracking and environment-modeling techniques is the frame-to-frame 
correspondence of the object of interest. False detections may lead to the tracking of wrong object thus 
misrepresenting information about the object location and its track. The tracking algorithm of the detected object 
should also be computationally inexpensive and suitable for real time applications. This paper discusses how 
GFV, a multidimensional entity encapsulating multiple feature parameters, can uniquely identify dominant 
features of an object, and increase the detection reliability due to its potential to function consistently in any kind 
of environment, uninfluenced by view point invariance or extrinsic factors, thus generating minimal false alarms. 
Further a method to determine the 3D position of the object is presented which works on uncalibrated camera 
images and can be successfully applied to online processes. Experimental analysis using a outdoor mobile robot 
have been carried out to establish the competence of the algorithm. A statistical approach to reject outlier data, if 
any, is applied while generating the trajectory of the mobile robot used for experiments 

Keywords 
Feature detection, trajectory identification, object tracking. 

1. INTRODUCTION 
The implementation of vision based automated 
systems in various fields like security, surveillance, 
robot navigation, remote environment sensing and 
medical diagnosis is in the continuous evolvement of 
research in tandem with the field of object tracking 
and environment modeling. The task of tracking 
encapsulates within it primary operations like image 
segmentation, object detection and extraction, depth 
estimation and finally, object trajectory estimation. 
The main challenge faced by the detection techniques 
lies in the frame-to-frame correspondence of the 
regions of interest; which becomes difficult for non-
rigid objects exhibiting complex motion, or in frames 
where the object is occluded, or when the scene 
illumination is extremely influenced by 
environmental conditions. Mainly two approaches are 
taken in the vision based correspondence problem 
solving.  These are area based and feature based 
techniques. Detection of feature from exteroceptive 

sensors has remained an important area of research 
for several reasons. Firstly it provides the unique 
opportunity to abstract and encapsulate the dominant 
and distinguishable characteristics of the environment 
or scene from the sensory data. Secondly it is a 
process of reducing the resource requirement and the 
associated complexity of handling large data sets in 
real-time. Often features are defined as geometric 
primitives such as point, line, arc segments or some 
form of derived entities from the amplitude return 
history such as color and texture for example. In 
general, features segregate “objects of interest”  from 
the raw sensory data. Various algorithms have been 
proposed by different researchers for object detection 
and depth recovery.  
The progress of research in the field of feature 
detection using vision can be mainly categorized into 
four distinguishable classes. In the initial stage 
researchers mainly concentrated on detecting 
geometric features like edge and corners of the image 
to identify objects of interest. A large amount of 
work has been undergone in this area [1, 2]. The 
problems of most of these algorithms lie in the fact 
that they are not invariant to affine transformations 
and are also viewpoint dependent. The second class 
of algorithms uses primitive geometrical shapes as 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 
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features. General methods for shape recognition are 
moment based, structure based and Fourier descriptor 
based [3]. The next class of algorithms models the 
object as probabilistic distributions. These 
distributions represent features such as color [4], 
texture [5] etc. Another variation to color and texture 
detection of a region is background modeling which 
is beneficial in detecting only moving objects [6]. For 
the fourth class of algorithms, the object shape and 
appearance are generated simultaneously. These 
models also encode different views of an object, 
removing the shortcoming of viewpoint dependencies 
of the previous methods [7]. Inspite of many 
uniqueness and advantages, most of these methods 
require large computational power and hence 
unsuitable for real-time navigation and tracking 
application. Another limitation is that many of these 
methods have been developed for a specific sensor 
suite and well-structured indoor environment for 
specific applications and consider camera calibration 
as a prerequisite rendering them unsuitable for 
outdoor and unstructured environment where 
extrinsic parameters are dominant rather than 
intrinsic. Present work extracts features by detecting 
and representing them in a generalized feature vector 
(GFV), which can be used to uniquely identify each 
of the dominant objects in an image. Once features 
are detected using GFV, the next important task lies 
in estimating the depth measurement of the object of 
interest. In the past few years several techniques for 
depth recovery and construction of depth maps have 
been developed. This area is still an active research 
area and development in this field is in continuous 
progress. The issue has been investigated by different 
researchers from different viewpoints but can be 
categorized mainly into six main classes. The first 
class includes all methods, which are based on depth 
measurement from two cameras. Finding 
corresponding points between the two images 
precedes depth calculation while using stereo [8]. 
The second class comprises of methods that use 
simple geometry to recover depth information [9]. 
The next class of algorithms are those that derive 
depth information of the targets from the velocity 
estimation of the targets [10]. The fourth class of 
algorithms consider calculation of depth from optical 
blur, defocusing techniques [11] .The next class uses 
interpolation functions for depth estimation [12] .The 
last class comprises of those methods which use 
auxiliary devices such as laser range finders or 
ultrasonic sensors to measure depth.  
As a significant departure, the work reported here 
uses the image magnification to estimate the depth 
and thereby compute the trajectory. The main 
interesting issue of this algorithm is that it “does not 
require”  explicit camera calibration “ for depth 

recovery” . The paper is organized in the following 
manner. Section 1 provides basic background of the 
problem. This section also includes an outline of 
various significant work carried out for consistent 
feature detection and depth estimation. Section 2 
defines the GFV framework and its comparison with 
other conventional approaches briefly, whereas 
Section 3 includes the position determination of the 
detected object for trajectory development. Section 4 
deals with results and performance analysis of 
experimental findings. Finally, discussion and 
conclusion of this work is presented in Section 5. 

2. THE GFV FRAMEWORK 
The basic idea of using GFV as a scene descriptor 
stems out of the fact that point features often require 
a secondary level of corroboration such as color and 
texture to make it invariant. The generalized feature 
vector (GFV) is considered to be a multidimensional 
entity, which can include multiple parameters like 
color, shape, energy, entropy, size ratios and many 
more. Some of these parameters may be orthogonal 
to the other. In principle GFV can include as many 
parameters as desired. Another uniqueness of GFV is 
that it can also accommodate “ feature parameters 
obtained from other co-located sensors” . There is no 
limit on how many feature parameters can be 
included in GFV.   Although inclusion of multiple 
parameters can improve the detection reliability it 
however may increase the computation cost. 
Therefore for optimal performance not more than 
three parameters should be used. However the actual 
number of parameters will depend on the application 
requirements and available computational resources. 
Figures 1 & 2 shown in the appendix at the end of the 
paper, further demonstrates the algorithmic flow of 
the GFV briefly using a sample image. The method 
mainly consists of two steps: - During first step a 
reference model of GFV is created which is then 
applied to the actual data in the second step. The 
details of the algorithm and its establishment have 
been discussed in the reference [13] and are beyond 
the scope of this paper.  
The suitability of GFV lies in the fact that even when 
any information about the environment of the object 
to be detected or presence of other objects in its 
surrounding is not known, the method will provide 
reasonably accurate results instantly without false 
alarms. The user need not have to decide which 
features are to be matched or in which order they are 
to be matched in order to get the best matching. Thus 
GFV is self-deciding and can operate independently 
in any environment without any prior knowledge 
about it. Failures of many object detection 
algorithms, mainly due to view point invariance; 
occlusion and influence of other extrinsic factors can 
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be successfully resolved by the GFV. GFV also 
responds very well even in outdoor environment. 
Similar objects can be identified from a sequence of 
images taken at different time in different 
environmental conditions. Since GFV is essentially a 
multi parametric matching method, it is more robust 
compared to any other step-by-step matching 
algorithm. 

3. POSITION CALCULATION 
Any camera image is a 2D projection of the 3D world 
using perspective transformation. As a result, 
estimation or recovery of object distance from the 
camera requires elaborate mathematical procedure. 
Various depth detection algorithms using monocular 
camera and their relative merits have been already 
mentioned in section 1. In this section an alternative 
technique using the thin lens equation and the image 
magnification factor (shown in equation 1 below) is 
used to calculate the depth. This technique is suitable 
for online processes and doesn’ t require large 
computational overhead. For computing the object 
depth for every image frame, the magnification ratio 
is estimated for each image frame from its object and 
image dimension ratio. This method has only one 
limitation i.e. object shape; size and approximate 
dimensions should be predefined. The image 
dimensions like area, perimeter, shape and size ratios 
are already computed while detecting the object as 
seen in section 2. Any of the above mentioned 
dimensions may be used but the choice should be 
kept fixed for all the image frames. The depth 
estimation procedure is further illustrated below: 
The thin lens equation gives  

fvu

111 =+                                (1)         

where u is the image distance, v is the object distance 
required to be calculated and f is the focal length of 
the lens. The magnification ratio m, is given by 

O

I

v

u
m ==                                 (2)          

Here, I and O give the image size and object size 
respectively. Substituting u as mv in equation 1, v can 
be written as 

m

fm
v

)1( +=                               (3) 

While computing the depth d n for each of the camera 
frames n using equation 3, there are two factors that 
should be resolved. Firstly obtaining the image size 
for computing the magnification factor should not 
consider the total surface of the extracted image. The 
part of the image to be considered for a particular 
frame is variable and depends on the viewpoint of the 
camera for that image frame. This fact is further 

explained using figure 3 and 4   and subsequently 
elaborated in the discussion. Secondly, the depth 
dimension is obtained relative to the camera frame 
and need not be considered as the actual object 
distance relative to a fixed world coordinate system. 
Reason behind this approach is that the camera may 
be positioned and maneuvered using pan and tilt 
angle hence making the camera plane rotated with 
respect to the world frame. Further this depth cannot 
be associated with the depth dimensions of the other 
camera frames for trajectory identification as each 
frame may have a different orientation i.e. different 
pan and tilt angles of the camera and hence each of 
the depth dimensions refers relative distance 
measurement with respect to different camera planes. 
To obtain the actual depth in the world frame, the 
calculated depth in each frame needs to be 
transformed to the world coordinate system. In order 
to carry out this transformation, the knowledge of the 
extrinsic camera parameters is necessary for each 
image frame, which can be obtained through camera 
calibration. However, for real time applications the 
procedure becomes complex and time taking. The 
following paragraphs explain how the problems 
mentioned above are addressed. 
 Initially an example is used to illustrate how the 
appearance of an image of any particular object 
changes along with the viewpoint or rotation angles 
of the camera. This further helps to point out how the 
calculation for the image magnification depends on 
the viewpoint of the camera. Figure 3 below depicts a 
rectangular box viewed by the camera from three 
positions identified as 1, 2 and 3 respectively. 

Position 1 assumes the camera to be perfectly aligned 
with the world frame therefore no rotation is 
considered. Positions (2) and (3) denote the same 
camera position however the camera angles are 
different. Position 2 considers a pan angle whereas 
position 3 assumes the camera frame to be rotated by 
both pan and tilt angles. The resulting image 
appearance for each of the camera positions is 
depicted in figure 4. For calculating the 
magnification ratio for figure 4a, the total surface of 
the image is to be considered; however for the 

 
Fig 3: A rectangular object seen from 

three different camera positions 1, 2 and 
3 are shown in the figure above 
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remaining two images (4b and 4c) of the figure or for 
any similar case where more than one of the side 
faces are visible, such a step would provide wrong 
results. Thus for correct magnification determination 
the surfaces needs to be separately identified in order 
to select the desired one among them. The GFV 
method discussed previously can easily separate out 
the region of interest of the object as it can detect all 
the outer corners of the image from which the 
boundary edges can be calculated. The selection of 
the corners to calculate the edge, which will denote 
the image size, depends on the shape of the object 
and will vary accordingly. In this particular case for 
different camera positions two bottom edges (bottom 
edges are used here just as an example, top or side 
edges can be used as well) may be detected. For 
example if figure 4c is considered, the two bottom 
edges detected are E’A’  and A’B’ . As the object 
dimensions are known, one of the detected edges can 
now be selected depending on their length, i.e. if the 
matching is to be done with object side AB, then the 
longer among the two detected edges (considering 
side AB > side EA) will be chosen or vice versa. This 
part is conferred in details while discussing trajectory 
identification case studies later in the paper. 

The next task is to compute the camera rotation 
angles relative to the first frame so that the trajectory 
can be identified. Before getting into the details of 
the rotation angle computation process, Figure 5 
depicts the rotation of the camera plane with respect 
to the world frame for camera position 3 of figure 3. 
This figure is used to establish the impact of the 

camera rotations on its corresponding image frames. 
The relation between the rotation angles of the 
camera plane and its resultant image frame is 
discussed in subsequent paragraphs. 

In figure 5 the world frame is depicted by XYZ plane 
and UVW depicts the camera plane. The 
corresponding image frame for the camera 
orientation in figure 5 is depicted in Figure 6. 
(PQRS) 1 here depicts image frame 1 and (PQRS) n 
depicts the nth frame. The first image frame is 
considered as the reference; hence it is assumed that 
the camera plane of the first frame is aligned with the 
world frame and all the other camera plane rotations 
are with respect to this reference frame. The 
consecutive camera plane rotations of figure 5, by 
angles 

�
1 and 

�
2, effects the x-axis and y-axis of its 

image frame (nth frame) to make 
�

1 and 
�

2 angles 
with the x and y axis of the first image plane 
respectively as shown in figure 6.  

Once these rotation angles are computed, the 
transformation from the nth frame to the first frame 
can be undergone. As the camera is aligned with the 
world frame in the first image frame i.e. the pan and 
tilt angles of the camera is zero hence the actual 
depth can be obtained after this transformation. The 

 
Figure 4: The image of the rectangular object 

formed for the three camera viewpoints 
depicted in figure 3 is seen above 

 
Figure 6: Camera frames PQRS1 and PQRSn 

and their alignment is shown above in order 
to compute the rotation angles 

 
Figure 5: The camera plane orientation for the 

camera position 3. 
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trajectory can still be generated even if the first frame 
is not aligned with the world plane as the relative 
rotations of all the frames with respect to the first one 
is computed and the transformation is carried out 
accordingly. But for such cases the actual depth 
cannot be determined.  
From figure 6, using parallel line properties, it can be 
seen that angle between side A’B’  and the 
perpendicular from point B’on PnSn equals 

�
1 and the 

angle between side B’C’  and the perpendicular from 
point B’  on PnQn equals 

�
2.  If the coordinates of A’ , 

B’  and C’  are given by (xna, yna), (xnb, ynb) and (xnc, 
ync) respectively the angles can be calculated from 
the figure using the following relations. 

 
Thus the camera angles can be determined for every 
image plane from the above relations once the points 
an, bn and cn for every frame is determined. This 
concept is further used to identify the object 
trajectory.  Two different cases of trajectory 
identification are discussed: 

a) path generated by an object in a situation 
where the camera is fixed throughout, 

b) path generated by a moving camera while 
tracking a fixed object. 
A detailed discussion of the two cases is further 
presented below. 

(a) Camera stationary, object moving 
The following steps are executed while identifying 
the object trajectory: 
1. The object of interest is extracted using the GFV 
algorithm discussed in section 2. The object is 
denoted in the image plane by its centoid position IO 
in every frame n  

IO = (xn , yn)                               (6) 
2. Five image corners (xnlb, ynlb) , (xnrb, ynrb) , (xnrt, 
yn rt) , (xnbl,ynbl) , (xnbr,ynbr)  are determined. These 
points are the leftmost bottom, rightmost bottom, 
rightmost top, bottom leftmost and bottom rightmost 
pixels coordinates of the detected object and are used 
to determine image size. An algorithm below presents 
how corners can be selected for calculating image 
size of a three dimensional rectangular box when 
camera rotations are unknown. 

if (xbl > xlb) && (xbl < xrb) 
corners[ ] = { xlb, xbl, xrb}  

else if (xbr > xlb) && (xbr < xrb) 
corners[ ] = { xlb, xbr, xrb}  
else  corners[ ] = { xlb, xrb}  

end 
if size(corners) > 2 

if(length(corners[1],corners[2]))> (length(corners[2],corners[3])) 
corners[3 ] = [] 

else 
corners[1 ] = [] 

end 
end 

From the algorithm, two corners (xn1, yn1) and (xn2, 
yn2) are selected based on the fact that the larger edge 
is used to calculate the magnification. The reverse 
can also be done if desired. The length of the edge 
formed by these corners can be used as the image 
size ISZnx for determining the magnification ratio, 3D 
position of the object (discussed in step 4) and 
rotation angles of the camera. (Rotation angles will 
not be required for this case as the camera is fixed for 
all the frames). The equation 7 is used to calculate 
the image sizes ISZnx and ISZny in pixels along the x 
and y axes respectively. 
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Magnification ratio can be calculated using the metric 
coordinates of the image size and the corresponding 
object side dimension. 
3. Depth d n is computed using equation 3. 
4. The 3D coordinates of the image point IO are 
given by the following equation: 
[X(n) Y(n) Z(n)] = [xn.SZx/ ISZnx     yn.SZy/ ISZny   dn]  (8)  
 where SZx and SZy are the object sizes along the x 
and y dimension respectively. The 3D point 
calculated lies in the camera plane.  
5.For graphical representation, the X and Z 
coordinates are used to denote the horizontal 
displacement and depth of the object respectively, the 
vertical displacement of the object i.e. the Y 
coordinate is not taken into consideration at present. 
Its utility will be later understood while discussing 
case (b). As the camera is fixed for all the image 
frames, all the n points (X (n), Z (n)) lie on the same 
XZ plane and thus can be plotted to identify the 
trajectory generated by the object. 

(b) Camera moving, object stationary 
When a moving camera captures a video of a fixed 
object then the displacements (change in centroid 
position) of the object observed in the image frames 
is due to the movement of the camera from frame to 
frame. This camera movement is calculated from 
these centroid displacements for identifying the 
trajectory generated by the camera. Initially the 
object is detected and the image sizes, depth and 3D  
Coordinates are calculated using equations 7, 3 and 8 
respectively. The 3D points calculated for each frame 
lies on a different camera plane as the camera is in 
constant motion. The camera is considered to be 
positioned at the origin of a fixed reference frame for 
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the first image frame. The 3D coordinates of the first 
and nth frame can be related by rotation and 
translation matrices as shown in equation 10, where 
the rotation matrix denotes the camera rotation of the 
nth frame relative to the first frame and the 
translation matrix denotes the translation of the 
camera from the fixed origin.  The experimental 
results given later in this paper use a set-up where the 
camera is fixed on a tripod mounted on a trolley. 
Thus only pan angle change is considered in the 
calculations. Using the selected corners (xn1, yn1) and 
(xn2, yn2) calculated in Step 2, the pan angle � can be 
calculated using equation 9. 

)12(
)12((tan1

nn

nn
xxabs

yyabs
−

−= −θ �������
The affine transformation of the camera from the 
fixed frame to the nth frame is given by: 
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 If ynlb <  ynrb then 
�
 is positive else it is negative. It 

is clear from equation 10 above that (xn’ ,yn’ ,zn’ ) is the 
translated origin of the camera plane in the nth frame 
and hence the required camera displacement. 
Equation 10 can be written as 

xn’= X(1) cos � – Z(1) sin � – X(n)  ,   
  zn’= X(1) sin � + Z(1) cos � – X(n)         (11) 

Once (xn’ , zn’ ) is calculated using equation 11, 
plotting it for all the n image frames gives the 
calculated camera trajectory. 

4. RESULTS AND PERFORMANCE 
ANALYSIS 
The trajectory generation for moving objects or 
moving camera has been accomplished using the 
proposed method and some of the results are shown.  

(i) Experiment 1: 
Figure 7 represents a scene where the object is fixed 
and the camera is in motion. 

 The generated plot shown in figure 8 is a smoothed 
plot using the best polynomial fit. The best fits of the 

plot are estimated using the norm of residuals of the 
fits and are again crosschecked by determining the R- 
Square values for each fit. The observed values are 
shown in Tables 1 and 2 respectively. 

TABLE 1: Norm of Residuals. 

 It is seen that the norm of residuals converges after 
the eighth order fit.  Coefficient calculation with 95% 
confidence bound and normalization by a mean of 
5.833 and StD of 5.753 gives the corresponding R-
square values.     

TYPE ORDER SSE R-SQUARE 
Poly  2 1249.9 0.9921 
Poly  4 741.81 0.9953 
Poly 6 646.75 0.9959 
Poly 8 452.557 0.9972 
Poly 10 449.553 0.9972 

TABLE 2: R-Squares values 

Though the SSE values and the standard deviation 
decreases as the order of the fit increase, but the 
goodness of the fit (judged by the R-Square value) 
remains same after the 8th order fit. Hence for both 
the best-fit estimation techniques the eighth order fit 
is the optimal fit for the curve.  

(ii) Experiment 2: 
The next case shows generated object trajectories 
when the camera tracks a moving object from a fixed 
position. 

TYPE ORDER NORM StD 
Poly  2 35.3552 2.2405 
Poly  4 27.24 1.72 
Poly 6 25.43 1.61 
Poly 8 21.2 1.34 
Poly 10 21.2 1.34 

�

Figure 7: White mark in the center shows 
the path followed by the camera mounted on 
a trolley. The track line was created using a 
white marker while pushing the trolley at an 

approximate constant speed. 

 
Figure 8: The calculated trajectory of the path 
shown in figure 7 using the present approach 

 
Figure 9: White circular path depicts the 

path followed by the red object 
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 Similar to the previous case, a moving average filter 
is used to smooth the plot. It is seen that the three 
point averaging filter gives the best fit. The fact is 
further demonstrated in table 3 . 

TABLE 3: Best-Fit Estimation 

It is observed that the residuals diverge from 3-5 
point averaging.  

(iii) Experiment 3: 
The following experiment was carried out with the 
All Terrain Robot developed at CMERI Durgapur 
during its testing on the grounds of the institute. The 
figures depict the identified trajectory (depicted by 
the blue colored plot) of the path traversed by the 
ATR. 
 

 
Figure 11a: Trajectory identified after rejecting 
outlier data using averaging window of 4� gate     

  
Figure 11b: Trajectory identified after rejecting 

outlier data using 6� gate 

 
Figure 11c: Trajectory identified after rejecting 
outlier data using averaging window of 4� gate 

 
Figure 11d:  No outlier detected 

 
The statistical cut-off values were selected after 
estimating the rejection percentage for a gate of 3� , 

4� , 5�  and 6�  for figures 11a,b and c. Table 4 shows 
the rejection rates for the figures. A 7% rejection was 
considered to be the maximum allowable rejection 
rate and choice of the cut-off was made accordingly. 
 

Figures/Gates 3 �  4 �  5 �  6 �  
11a 8.25 6.5 6 5.5 
11b 84.14 59.14 7.85 2.1 
11c 23.625 1.125 1 1 

TABLE 4: Rejection rates for different statistical 
cut-off gates  

5. DISCUSSIONS AND CONCLUSION 
This paper presents an odometric navigation using 
uncalibrated camera images. The proposed 
methodology relies on a simple but elegant approach 
for consistent feature detection using GFV method. 
These features are then used for generation of visual 
odometry of any mobile robot. The indoor and 
outdoor field experiments show that this is a more 
resilient and computationally efficient approach 
which can be used to resolve navigation problems. 
Work is in progress for online implementation of this 
methodology for autonomous navigation of an 
unmanned aerial robot project currently pursued by 
CMERI. 
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ABSTRACT 
 X-ray computed microtomography (CMT) is a non-destructive method of investigating internal 
structure of examined objects. During the reconstruction of CMT measurement data, large volume images are 
generated. Therefore, the image processing and analysis are very important steps in CMT data interpretation. 
 The first step in analyzing the rocks is image segmentation. The differences in density are shown on the 
reconstructed image as the differences in gray level of voxel, so the proper threshold operation must be carried 
out. As a result, the different mineral phases and pores can be separated at the image.  
 Segmented and binarized image is the base for further operations which depend on the aim of research. 
 Numerical analysis gives information about the pore shapes and volumes as well as connections 
between pores in the pore network. 
 The image may also be used in numerical physics simulation (for example fluid flow simulation), but 
before that it has to be filtered and resampled. These operations are very important, because if performed poorly, 
they may lead to rupture the pore network. 
 The aim of this paper is to present authors’ methodology of CMT image processing and analysis and to 
show problems occurring during these processes. The image processing of two rock samples CMT image will be 
presented. 

Keywords 
tomography, CMT, volume image, segmentation, image analysis 

1. INTRODUCTION 

1.1 X-ray Computed Microtomography 
The foundations of microtomography were 
developed shortly after discovering the X-rays by 
Wilhelm Röntgen. In 1917 Johann Radon proposed 
the theory of computed tomography (CT)[Hsi03, 

Rec08] - mathematical reconstruction of object’s 
internal structure based on infinite number of its X-
ray projections. On the basis of this theory EMI 
Scanner - the first medical CT scanner - was used to 
brain imaging in 1968. In 1970s medical scanners 
were used to rock cores imaging. Due to relatively 
low resolution (in order of mm) of these scanners, in 
1990s the computed microtomography (CMT, micro-
CT) systems were developed[Cnu06]. These systems, 
with resolution down to 0.4 µm, have a different 
geometry, with rotating examined object and 
stationary X-ray source-detector line. Additionally, 
the X-ray spot and detector pixel were reduced in 
order to increase resolution[Ket01, Kac08]. 
Scheme of CMT measurement and data processing 
was shown in figure 1[Fer07]. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 
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Every tomography measurement includes two steps: 
the data acquisition and the image reconstruction. 
During the data acquisition the set of 2D object’s 
projections are collected. The gray level of every 
point of projection is determined by the Beer’s law 
for complex materials[Ket01]: 

� � ���
�∑ ��	·�	�	 ,     (1.1) 

where the I0 is the initial X-ray intensity, I - beam 
intensity after passing the object, µi - linear 
attenuation coefficient and li - linear extent of i 
material. At the reconstruction step the internal 
structure of the examined object is calculated as a 
superposition of recorded projections. 
After reconstruction process, the 3D gray-scale 
structure of object is obtained. The gray level of each 
point is proportional to linear attenuation coefficient 
µi of the material and it is (in case of X-rays) 
proportional to the material’s density. The brighter 
voxel, the higher density of material in the volume 
element of object. 

 
Figure 1. Principle of CMT measurement and 

data processing [Fer07] 

1.2 Geophysical Aspect 
Porosity and permeability are important properties of 
reservoir rocks[Sal03]. Porosity (ε) is the percentage 
of the sample’s volume that is occupied by air (and 
may be occupied by some fluid): 


 �
��

��
�

��

�����
,     (1.2) 

where Va is a volume occupied by air, Vs - sample’s 
volume, and Vr - a volume occupied by a rock matrix. 
It is measured by gas absorption, mercury 
porosimetry or density measurements. Permeability 
(κ) is the ability of the material (e.g. rock) to 
transport fluids[Har00]. It is determined 
experimentally in the permeability test with use of 
Darcy’s law: 

� � �
�

�
��,    (1.3) 

where u is velocity field, η - dynamic viscosity of 
fluid, and  ∇p - the gradient of pressure at the 
examined sample. The permeability may also be 

calculated with the use of microscopic properties of 
the examined material as: 
� � � · ��,    (1.4) 
where C is the dimensionless constant describing 
pores geometry and d is the average effective pore 
diameter. 
Both properties may be calculated from CMT 
measurements[Nar09], but the acquired image has to 
be treated in specific way.  

1.3 Image Processing 
As a result of image reconstruction, the volume gray 
scale image is obtained. This is rather big data set 
(about 10 GB per every measurement), so every 
treatment which reduces its volume without loss of 
quality is desirable. In fact, the image processing 
depends on the aim of CMT imaging. 
The first and the most important step of CMT image 
analysis is image segmentation. The initial gray-scale 
image must be divided into different phases - e.g.  
pores and different rock phases in case of rock’s 
analysis. Three different segmentation techniques 
will be described later. 
Analysis of CMT image requires an image containing 
a large amount of details. Fortunately, image analysis 
is not CPU and memory consuming process and 
image simplification is not required. 
Dues to large volume of CMT data, for fluid flow 
simulation it is necessary to reduce the volume of 
reconstructed image. This may be done by pores’ 
extraction and image resampling. The problem is the 
loss of information during image simplification. In 
the extreme cases image processing may lead to the 
rupture of the pores’ connections, which results in 
producing false results of the simulation. 

1.4 Image Analysis 
One of CMT’s advantages is the ability to show the 
real pore’s shape and size (which is impossible with 
the use of conventional methods), so it is necessary 
to find the way of analyzing this features of the 
segmented image. 
Pore’s size may be easily described after its labeling. 
In this process every group of connected (in 
determined neighborhood) voxels (which is 
equivalent to pore) is labeled as another object and 
has a different gray level assigned. Then, properties 
of every object (as size or shape) may be easily 
described. 

1.4 Scope of research 
The aim of this article is to present CMT image 
processing and analysis. Analysis becomes a standard 
method of rock’s characterization during mine 
survey. Image processing is an important step of 

Aquisition

Reconstruction 

Image processing 

Projections 
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preparing CMT-based fluid flow simulation, which is 
the current topic of the authors’ studies. 

2. EXPERIMENTAL 

2.1 CMT Equipment 
The measurements were performed on X-Tek 
Benchtop CT-160Xi microtomograph. The current at 
Cu lamp was 60 µA and voltage was 110 kV. The 
Varian PaxScan 2520V detector was used. The rock 
samples were in the form of core with a diameter of 
10 mm. During every scan about 3000 projections 
were made with step about 0.12°. 

2.2 Examined samples 
To present the application of CMT measurements, 
two rock samples were chosen. The first one, sample 
1, was a rock core excavated from oil-bearing area 
and its porosity (calculated from density 
measurements) was 29,45 %. The second one, 
sample 2, was a rock core with porosity 4,90 %. 
Examined image size was 1000×1000×400 voxels in 
case of sample 1 and 556×951×552 voxels in case of 
sample 2. 

2.3 Data Processing 
The internal structure of the examined rocks was 
reconstructed with the use of Benchtop CT-Pro 
Client software with Feldkamp’s algorithm[Fel84] 
for cone-beam experiment. The voxel size of 
reconstructed image was 5.8×5.8×5.8 µm3. 
ImageJ[ImJ] was used for the histogram calculation. 
VSG Avizo 6[Avi] software was used for the image 
segmentation and visualizations. Images were filtered 
by unsharp masking, segmented with the use of the 
threshold tool, and then islands (up to 2 voxels, 25 
%) were removed. Before visualization, the images 
were resampled by factor 2. The surfaces were 
generated with constrained smoothing. 
MAVI 1.3.1[MAV] (Modular Algorithms for 
Volume Images) software was used for pores’ size 
analysis and pores extraction. The sample was 
binarized, labeled at neighborhood 26/8 and then the 
objects’ features were calculated. The image was also 
divided into 6 pore classes according to their volume 
(table 1). 

3. SEGMENTATION 

3.1 Thresholding Techniques 
Three different threshold techniques developed on 
the basis of [Mor00] were used. 
First, threshold along boundaries, was used for 
segmenting CMT picture into pore network and rock 
matrix. On the histogram the minimum was found 
and this gray value was marked as Thmin. Next, the 
points with gray value Thmin±5 were selected on the 
analyzed image (and the boundary between pore and 

rock was marked). In the neighborhood-8 of 10 of 
these points, points with gray value of Thmin+20 were 
selected. The average of averages of all the selected 
points gray levels was adopted as threshold value 
(ThB). 

class volume /voxels colour 
I 1-9 Yellow 

II 10-99 Blue 

III 100-999 Red 

IV 1000-9999 Green 

V 10000-99999 White 

VI > 100000 violet 

Table 1. Pore’s classes and colours of its 
visualization. 

The phase-mean threshold was used for phase 
location analysis. The number of phases on the image 
was estimated visually. Then 10 points from every 
phase was randomly selected and the Gphn were 
calculated as the average of gray value of the points 
belonging to the n-phase. The threshold Thij (i and j 
are phases numbers) between the phases was 
calculated as the average of Gphn’s for the phases 
with similar gray values. 
The histogram threshold was calculated (with 
Fityk[Fit] software) by fitting n Gaussian curves 
(where n is the number of rock’s phases + 1) to the 
histogram of the CMT image. Threshold value (Thh) 
was taken at the first curves intersection (figure 2). 

(a)  

(b)  

Figure 2. Histogram deconvolution (a) sample 1, 3 
Gaussian curves, (b) sample 2, 4 Gaussian curves. 

WSCG 2010 Communication Papers 25



Threshold values estimated with different methods 
was shown in table 2. 
 

sample threshold method threshold 

1 

boundary 40 

histogram 45 

phase-mean 35 

2 

boundary 40 

histogram 47 

phase-mean 39 

Table 2. Values of threshold between pore and 
rock phase while using different threshold 

techniques. 

The result of these three methods on image 
segmentation was shown in figures 3 and 4. 

 
Figure 3. Sample 1 - the pore’s border for three 
different threshold methods; yellow line - the 

threshold along boundaries, red - the histogram 
threshold, green - the phase-mean threshold. 

 
Figure 4. Sample 2 - the pore’s border for three 
different threshold methods; yellow line - the 

threshold along boundaries, red - the histogram 
threshold, green - the phase-mean threshold. 

As it was shown in figures 3 and 4, histogram 
threshold technique may result in shifting threshold 
(between pores and rock) gray value toward higher 
values.  

3.2 The effect of Segmentation on 
Porosity 
All of described thresholding techniques lead to 
calculate porosity of the examined sample as: 

� �
��

∑ �		
· 100%,    (3.1) 

where np is number of voxels assigned to pore layer 
and ni is number of voxels assigned to i-layer. 

Table 3 shows the porosity values of samples 1 and 2 
while using different threshold techniques. 
 

sample threshold method porosity /% 

1 

boundary 27.2 

histogram 31.2 

phase-mean 23.7 

2 

boundary 2.0 

histogram 2.6 

phase-mean 1.9 

Table 3. Porosity calculated with the use of 
equation (3.1) while using different threshold 

techniques. 

Porosity values estimated by CMT measurements are 
generally lower than porosity values calculated with 
density measurements (sample 1 - 29,45 %, sample 2 
- 4,90 %). This is due to the measurement resolution 
- while using CMT equipment it was impossible to 
notice pores with volume of less than 195 µm3. 
It is worth noticing that histogram thresholding in 
case of sample 1 gave the porosity value higher than 
real porosity of examined sample. It proves that using 
described simple histogram segmentation technique 
is not accurate for rock’s examining 
Two other thresholding techniques gave reliable 
porosity values. Thresholding along boundaries leads 
to higher values, closer to the real porosity. 
Therefore, this technique was recognized as the best 
for rock’s porosity evaluation. 

3.3 Phase Location Analysis 
The gray value of voxel on the reconstructed image is 
determined by attenuation coefficient of material and 
it is proportional to the material’s density. Therefore 
the voxel’s gray level may lead to phase-
segmentation of reconstructed image. Every 
separated phase has a significantly different density. 
These phases may (but need not) correspond to 
mineral phases present in the examined sample. 
The phase location analysis was performed only with 
the use of phase-mean thresholding. With the use of 
thresholding along boundaries it was impossible to 
determine more than two (pores and rock) phases. 
The histogram thresholding technique was rejected 
during porosity examining. 
In sample 1 three phases (pores and two rock phases) 
were recognized (figure 5). In sample 2 four phases 
were selected (figure 6). Used threshold values were 
shown in table 4. 
The volume fraction (fi) of each phase was calculated 
as: 

WSCG 2010 Communication Papers 26



#$ �
�	

∑ �%%
,    (3.2) 

where ni is number of voxels assigned to i-phase 
layer and nj is number of voxels assigned to j-phase (i 
and j refer to rock layers only). 

 
Figure 5.  Pores and two different rock phases 
recognized in sample 1. 

 
Figure 6.  Pores and three different rock phases 
recognized in sample 2. 

Sample phase gray value 

1 

pores < 35 

rock 1 35-78 

rock 2 > 78 

2 

pores < 39 

rock 1 40-72 

rock 2 72-84 

rock 3 > 84 

Table 4. The gray values for each recognized 
phase in samples 1 and 2. 

Figures 7 and 8 and table 5 present the results of 
phase location analysis of sample 1 and 2. 
As it was shown in figure 5 and in table 5, the most 
volume in sample 1 is occupied by a phase with 
lower density. Phase rock 2, with higher density, is 
located in the clusters scattered through the bulk of 
the sample. The pore space in sample 1 is uniformly 
distributed through the sample’s space. 
In sample 2, as it was presented in figure 8 and in 
table 5, the main phase (55 %) is rock phase 2 (with 
medium density).  It is uniformly distributed in 
sample’s space. The densest phase, rock 3, is located 
mainly at the top of the sample. The pore space in 

sample 2 is condensed in the crack in the middle of 
the sample. 

Sample phase volume fraction /% 

1 
rock 1 95.3 

rock 2 4.7 

2 

rock 1 28.2 

rock 2 55.1 

rock 3 16.7 

Table 5. Participation of rock phases of different 
density in sample’s rock skeleton.  

(a)  

(b)  

(c)  

(d)  
Figure 7. Phase location analysis of 

sample 1: (a) whole sample with 3 phases, 
(b) pore space, (c) rock 1 phase, (d) rock 2 

phase. Phase’s 1 density is higher than 
density of phase 2. 
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(a)  

(b)  

(c)  

(d)  

(e)  
Figure 8. Phase localization in sample 2: (a) whole 
sample, (b) pore space, (c) rock 1, (d) rock 2, (e) 
rock 3; the darker color, the denser rock phase. 

4. IMAGE ANALYSIS 
4.1 Pore Size Distribution 
The segmented (with the use of threshold along 
boundaries) image was saved as RAW data and the 
pores’ layer was labeled (with use of neighborhood 
26/8) in MAVI software. Then objects’ features were 
calculated and the pores were divided into classes 
according to their volume (table 1). Every class was 

saved in another RAW file and visualized. The 
objects’ features were exported to CSV file and the 
pore size distribution graph was plotted for every 
sample.  

 (a)  

(b)  

(c)  

Figure 9. Pore size distribution of sample 1 
(cropped to 500x500x400 voxels). (a) visualization 

of pores location, (b) pores quantitative 
distribution, (c) percentage (v/v) distribution. 

Sample 1, because of its volume, was cropped to 
500x500x400 voxels (selected region was located in 
the middle of sample). The pore’s size distribution 
analysis of sample 1 was presented in figure 9. The 
cropped fragment of sample 1 contained 14198 
objects (pores). As it was shown in figure 9a, they 
were uniformly distributed at whole sample volume. 
Figures 9b and 9c shown, that the cropped volume of 
sample 1 contains about 40 pores with volume above 
100000 voxels, but the higher contribution of pore 
space volume belongs to pore with volume 10000-
99999 voxels. 
Pore size distribution analysis of sample 2 was 
presented in figure 10. The distribution of pores’ size 
in sample 2 is quite different than in sample 1. 
Sample 2 contains only 1 pore with size beyond 

WSCG 2010 Communication Papers 28



100000 voxels, but it makes about 90 % of pore 
space volume. As it was written above, the pores are 
concentrated around the crack in the middle of the 
sample. 

 (a)  

(b)   

(c)  
Figure 10. Pore size distribution of sample 2. (a) 

visualization of pores location, (b) pores 
quantitative distribution, (c) percentage (v/v) 

distribution. 

5. PREPARING DATA FOR FLUID 
FLOW SIMULATION 
Tortuosity analysis proves that sample 1 has no 
connections in pore space between opposite sides of 
the sample. Sample 2 has a channels with average 
tortuosity 1.1 in y direction (green axis in figures) 
and 1.4 in z direction (blue axis). Therefore only 
sample 2 was taken into consideration for fluid flow 
simulation. 
In the fluid transport phenomena only pores with the 
highest volume participate, so the first step in image 
simplifying was pores extraction. A pore with 
volume of 5407370 voxels (the crack) was extracted 
from sample 2 and the image was saved in the RAW 
data file. Except this pore, sample 2 has no 

connections between pores, so the other pores do not 
participate in fluid transport in this sample. 
The extracted pore was labeled and visualized with 
the use of Avizo software. Next the labeled sample 
was linearly resampled by factor 2, 4, 6, 8, and 10. 
The results of resampling were shown in figure 11 
and 12. 

(a) (b)  

(c) (d)  

(e) (f)  

Figure 11. Crack seen in sample 2 (a) without 
resampling and resampled by factor (b) 2, (c) 4, 

(d) 6, (e) 8, (f) 10. 

Resampling has noticeable effect on pores 
connections. The tortuosity analysis proves that 
resampling by factor 10 resulted in breaking all 
connections in y direction. In figure 12 the input 
crack and the crack resampled by factor 8 were 
compared and the visible ruptures in the pore 
network were marked. 
It should be noticed that MAVI software takes 
account of neighborhood 26 of each voxel for 
tortuosity calculation. FEM calculation software 
COMSOL [Com] takes into account neighborhood 6. 
This means that the rupture of pore network during 
image resampling may have occurred earlier than it 
was detected in MAVI software. 
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Figure 12. Comparision of figure 11(a) and 11(e). 
The visible interruptions of pore network were 

marked. 

This example shows that preparing CMT image for 
fluid flow simulation is not a simple task. 
Connections between pores have a decisive impact 
on fluid flow in porous media, so they cannot be 
interrupted during the image processing.  

6. Conclusions 
CMT images of two rock samples with different 
porosity were processed and analyzed. 
Three threshold methods were tested. Threshold 
based on the histogram deconvolution was rejected 
because porosity estimated with this method was 
higher than physical porosity of the sample. The best 
of examined segmentation methods for rock’s 
porosity analysis was threshold along boundaries. 
Phase analysis of the samples was executed with the 
use of phase-mean threshold. The sample was 
divided into phases with different density. The 
development of this method provides a basis for 
detection of different mineral phases in the sample 
with the use of CMT method. 
While preparing sample to fluid flow simulation, the 
connections between pores were interrupted when the 
sample was resampled. Sample 2 after resampling by 
factor 10 has a dimensions 56×95×55 voxels. It is 
acceptable, but the simulation takes a long time on 
computer with 8-cores processor. Thus some better 
way of image processing should be sought. 
Optimization of image processing for simulation will 
be the aim of the further authors’ research. 
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ABSTRACT 
In this paper, we show the positive potential of verifying the offline handwritten signatures through discrete 
Radon transform (DRT), principle component analysis (PCA) and probabilistic neural network (PNN). 
Satisfactory results are obtained with 1.51%, 3.23%, and 13.07% equal error rate (EER) for random, casual, and 
skilled forgeries respectively on our independent database. 

Keywords 
Offline signature verification, discrete Radon transform, principle component analysis, probabilistic neural 
network. 

1. INTRODUCTION 
Offline signature verification has been the subject of 
considerable research for over 34 years. It is an old 
pattern classification problem of genuine and forgery 
2-D scanned signature images. There are three 
popular groups of forgery: casual forgery, random 
forgery and skilled forgery. Skilled forgery is 
produced by the professional forger that has 
unrestricted practice to the writer’s actual signatures. 
A casual forgery is produced by the forger who is 
familiar with the writer’s name, but never expose to a 
sample of the actual signature. Therefore, stylistic 
differences are prevalent in this case. A random 
forgery is any random scribble, a genuine signature or 
a high quality forgery for other writer. Skilled forgery 
detection emerged as the most challenging task even 
for expert document examiners.  
 

 

This paper’s main objective is to distinguish a 
genuine signature from the forged signature. The 
major challenge is to distinguish between the 
variations among genuine signatures and the true 
differences between a signature and a forgery. 
However, the differences between a genuine signature 
and a skillfully forged one always can be subtle.  

2. LITERATURE REVIEW 
Numerous methods and approaches done over two 
decades are summarized in a number of survey 
articles. The state of the art before 1989 was 
discussed by Plamondon and Lorrette [Pla89] and the 
period from 1989 to 1993 was covered by Leclerc 
and Plamondon [Lec94]. At 2000, Plamondon and 
Srihari [Pla00] published a survey which covered the 
state of the art from the period of 1993 to 2000. Guo 
et al. [Guo01] included an extensive overview of 
previous works as well. From the survey, we can see 
that earlier work on offline signature verification 
deals primarily with casual and random forgeries, 
where deceit is generally obvious. As signature 
databases become larger, researchers are moving 
toward to more difficult skilled forgery detection 
task, which is still an open research question. There 
are plenty of pattern recognition techniques being 
used in this field. However, we will primarily focus 
on the neural networks in this work. 
A neural network is a computing paradigm that is 
loosely modeled after cortical structures of the brain. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 
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It consists of interconnected processing elements 
(neurons) that work together to produce an output 
function. The output is relies on the cooperation of 
the individual neurons within the network to operate. 
Neural networks often process the information 
parallel rather than in series (or sequentially). Since it 
relies on its member neurons collectively to perform 
its function, a unique property of a neural network is 
that it can still perform its overall function even if 
some of the neurons are not functioning. Thus, they 
are very robust to error or failure. It has been 
extensively used in offline signature verification over 
the last two decades. Few relevant researches are 
summarized below; however, due to the lack of 
standard database available, all results reported are 
based on the researcher groups’ own independent 
database. 
Mighell, Wilkinson, and Goodman [Mig89] proposed 
a backpropagation learning algorithms to detect 
random forgeries. By training 10 genuine signatures 
and 10 forgeries respectively, which latter tested on 
70 genuine signatures and 56 forgeries, they reported 
a false rejection rate (FRR) of 1% with a false 
acceptance rate (FAR) of 4%. 
Abbas [Abb94] investigated the suitability of using 
multilayered feedforward neural networks for the task 
of offline verification. The input to the network is a 
binary bitmap of size 160 X 35 pixels. The 
performance is evaluated against their private 
database of 480 signatures. They concluded that the 
method is the best for the casual forgeries where able 
to achieve 0% FAR but its ability to deal with skilled 
forgeries was still limited with FAR ranging from 0% 
to 60%. 
Qi and Hunt [Qi95] proposed a multi-resolution 
approach to allocate the offline signature verification 
problem. The top-level representation of signatures is 
the global geometric features. A multi-resolution 
representation of signature is obtained using the 
wavelet transformation. By using a database of 450 
signatures from 25 signatories, the classification is 
done through a vector quantization (VQ) classifier 
and an artificial neural network classifier 
respectively. VQ classifier allows the use of a 
consistent procedure in processing feature vectors of 
different length or resolution, and it is easy to 
implement because its training and classification 
procedures are relatively simple. However, it can 
only partition the feature space using hyperspheres, 
and is incapable of drawing complicated, nonlinear 
class boundaries.  While, artificial neural network is 
capable of delineating arbitrarily complicated class 
boundaries, anyway, the performance is heavily 
depends on the network architecture and training 
method. The best VQ classification function is the 
accumulative, multi-resolution system which reported 

on FRR of 6.7%, FAR of 13.3% for skilled forgery 
and FAR of 0% for simple forgery. On the other 
hand, the multi-resolution network yields the lowest 
verification error rate when independent features are 
used, FRR of 4.0%. FAR of 9.3% for skilled forgery 
and FAR of 1.3% for simple forgery are reported. 
Kaewkongka, Chamnongthai, and Thipakorn [Kae99] 
proposed to use the Hough transform (general Radon 
transform) as the feature extractor. It extracts the 
parameterized Hough space from a signature skeleton 
as a unique characteristic feature of a signature. 
Evaluation is done through a backpropagation neural 
network. By using the dataset of 70 signatures, 
recognition rate of 95.24% is reported. 
Quek and Zhou [Que02] proposed a system which is 
constructed on the basis of a novel fuzzy neural 
network called the POPFNN-TVR, which has a five-
layer structure. Due to its characteristics, such as the 
learning ability, generalization ability, and high 
computational ability, it is very powerful to detect the 
skilled forgeries. After preprocessing, feature 
extraction is employed to reduce the image 
observation vector by measuring certain “properties” 
or “features” of the signature image. In this work, 
four kinds of features are extracted from the static 
image of the signature, which including reference 
pattern based features, global baseline, pressure 
features and slant features. All of them will be using 
as elements of the training vector. Two types of 
experiments are then conducted; first experiment is 
using the genuine signatures and forgeries as training 
data, while the second experiment is using only the 
genuine signatures as training data. Based on the 
signatures of 15 different signatories from 3 ethnic 
groups, the average of the individual EER, 22.4% is 
obtained for the first experiment. While for the 
second experiment, they claimed that comparable 
results are obtained. 
Piyush Shanker et al. [Piy07] proposed an offline 
signature verification by using Dynamic Time 
Warping (DTW). They extract the vertical projection 
feature from the signature images, and comparing the 
reference and probe feature templates using elastic 
matching. The method is tested against the original 
DTW and modified DTW. The modified DTW 
achieved EER 2% which outperformed the original 
DTW at 29%. 
Recently, Abdala Ali and Zhirkov [Abd09] proposed 
an offline signature verification comparing against 
Support Vector Machine (SVM) and K-Nearest 
Neighbor (KNN) classifiers. Their system achieves 
approximately 80% when using SVM, while 
approximately 70% for KNN. 
Bansal et al. [Ban09] proposed an offline signature 
verification using critical region matching. This work 
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is mainly focus on the extraction of critical regions 
which are more prone to mistakes and matching 
through a modular graph matching approach. They 
reported 10.81% EER for skilled forgery. 

3. OVERVIEW OF WORK 
Generally, an offline handwritten signature 
verification system includes preprocessing, feature 
extraction and encoding as well as matching as 
depicted in Fig. 1. These processes will be further 
discussed in the following sections. 

4. PREPROCESSING 
Any ordinary scanner with enough resolution can be 
used as an image acquisition device. However, the 
scanning hardware may introduce certain noises to a 
signature image. Another source of noise may be 
speckled paper background on which the signature is 
signed on. These noises on signature image may 
thwart the feature extraction process. We do not 
figure the real noise distribution, but we use the 
median filter, which better preserves edges, lines, and 
corners.  
After the smoothing, the images are converted into 
black-and-white images by using Adobe Photoshop. 
The threshold level is set to 100.  

5. FEATURE EXTRACTION 
Discrete Radon Transform (DRT) 
DRT [Coe04] is chosen to transform the signature 
images into a feature space. It is able to transform 
two dimensional images with lines into a domain of 
possible line parameters, where each line in the image 
will give a peak positioned at the corresponding line 
parameters. DRT has several advantages. Each 
signature is a static image and contains no dynamic 
information, thus by calculating projections at 
different angles, simulated time evolution is created 
from one feature vector to the next, where the angle 
represent the dynamic variable [Coe04]. DRT 

represents a projection (shadow) of the signature at 
different angle. A set of transform values is produced 
after the transformation. The DRT of an image can be 
calculated as follows. Assume that each signature 
image consists of N pixels in total, and that the 
intensity of the ith pixel is denoted by Ii, i = 1,…,N. 
The DRT is calculated using β non-overlapping 
beams per angle and Θ angles in total. The 
cumulative intensity of the pixels that lie within the 
jth beam is denoted by Rj , j = 1,…, βΘ. This is called 
the jth beam sum. In its discrete form, the Radon 
transform can therefore be expressed as 

∑
=

Θ==
N

i
iijj jIwR

1

,,...,2,1, β  where wij indicates the 

contribution of the ith pixel to the jth beam sum 
[Coe04]. The value of wij is determined by two-
dimensional interpolation. Each projection therefore 
contains the beam sums that are calculated at a given 
angle.  
Instead of Hough transform, we preferred DRT 
because it has a nice effect of attenuating the speckle 
noise in the images through summation, while the use 
of Hough transform is very delicate especially on 
noisy images. 

Principle Component Analysis (PCA) 
PCA has been widely used for dimensionality 
reduction in computer vision ([Lu03], [Tur91], and 
[Wan03]). It finds a set of orthogonal basis vectors 
which describe the major variations among the 
training images and with minimum reconstruction 
means square error. The successful implementation of 
PCA in various recognition tasks popularized the idea 
of matching images in the compressed subspaces. 
Since the number of transformed values after DRT is 
too huge, PCA is utilized here for feature data 
compression. In the PCA method, the average of K 
DRT features with M dimension is defined as Ravg.

 
Figure 1. Block diagram of an offline handwritten signature verification.
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Then, eigenvectors, vk and eigenvalues, λk with 
symmetric matrix C are calculated. vk determines the 
linear combination of K difference images with φ to 

form the EigenSignature, 
1

K

l lk k
k

U v
=

= ϕ∑  1l ,...,K= . 

Then, P(<K) EigenSignatures are chosen to 
correspond to the P highest eigenvalues, which imply 
that the P features are selected. An input DRT 
feature, Rk is transformed and projected into the 
EigenSignature space by the operation, ρk = Uk(Rk – 
Ravg), where k = 1,…,P.  

Probabilistic Neural Network 
Rather than ordinary matching approaches that are 
based on similarity matching concept, there is another 
popular method used for classification which the idea 
is to construct the decision boundaries directly by 
optimizing an error criterion. PNN which was first 
introduced by Specht ([Spe88], [Spe90]) is one such 
technique. It offers several advantages over 
backpropagation network. The rationale behind this is 
that, as a kernel-based approach to probability 
density function approximation, PNN posses the 
advantages to handle the complex, non-linear and 
imprecise problems such as signature verification. 
In general, a PNN consists of three layers – a pattern, 
summation and output layers (apart from the input 
layer) as illustrated in Fig. 2. The pattern layer 
contains one neuron for each input vector in the 
training set, while the summation layer contains one 
neuron for each user class to be recognized. The 
output layer merely holds the maximum value of the 
summation neurons to yield the final outcome 
(probability score). 

1x 2x xdinput

pattern

summation

output o1 o2 oc

21 3 n

 
Figure 2. Basic configuration of a probabilistic 

neural network. 
The network can simply be established by setting the 
weights of the network using the training set. The 
modifiable weights of the first layer are set by ωij = ρij 
where ωij denoting the weight between ith neuron of 
the input layer and jth neuron in the pattern layer, and 
ρij is the j element feature of ρi in the training set. The 
second layer weights are set by ωjk = Tjk, where ωjk is 
the weight between neuron j in pattern layer and 
neuron k of the output layer, and 1 is assigned to Tjk if 

pattern j of the training set belongs to user k and 0 
otherwise. After the network is trained, it can be used 
for classification task. The outcome of the pattern 

layer is defined as 
1

exp ( ) /
m

i ijoutω
=

 
= −  

 
∑ ρ σj
i

.Note 

that outj is the output of neuron j in pattern layer and 
σ is the smoothing parameter of the Gaussian kernel 
which is the only independent parameter that can be 
decided by the user. The input of the summation layer 

is calculated as 
1

n

k j jk
j

in out ω
=

= ×∑ where ink is the 

input of neuron k in output layer. The outputs of the 
summation layer are binary neurons that produce the 
classification decision, i.e 1 is assigned to outk if ink is 
larger than the input of others neurons and 0 
otherwise. 
The smoothing parameters (

1σ , 2σ ,…, and jσ ) need 
to be carefully determined in order to obtain an 
optimal network. This factor needs to be selected to 
cause a reasonable amount of overlap; too small 
deviations will cause a very spiky approximation 
which cannot generalize, while too large deviations 
smooth out detail. An appropriate figure is easily 
chosen by experiment, by selecting a number which 
produces a low selection error, and fortunately PNNs 
are not too sensitive to the precise choice of 
smoothing factor. For convenience sake, we use a 
straightforward procedure to select the best value 
forσ . Firstly, an arbitrary value of σ is chosen to 
train the network, and then test it on a test set. This 
procedure is repeated for otherσ ’s values and the 
σ  giving the least errors will be selected. 
The motivation of using a PNN is driven by the 
generalization property and simple training scheme 
(only one epoch of training is required) of PNN. 
However, the speed of training is achieved at the cost 
of increase in complexity and computational/ memory 
requirements. The time complexity for training is 
O(nP), where n denotes the number of training 
samples and P is the length of PCA feature data. In 
our context, the time complexity of PNN that depends 
on the P and n can be decreased notably due to the 
compressed feature data length. As such, the 
association of DRT and PNN is feasible in practical 
usage due to its high speed and accuracy 
performance. 

6. EXPERIMENTS & DISCUSSIONS 
Database and Setup 
Our independent database comprised of 1000 genuine 
signatures, 500 casual forgeries, and 500 skilled 
forgeries which were collected from 100 writers and 
10 forgers. Due to the non-repetitive nature of 
variation of the signatures, the signatures produced 
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will have certain variations among same writers. 
Thus, the data preparation was mainly divided into 
two stages. In the first stage, five sample signatures 
are registered per writer at a single contact session 
producing 500 samples. In the second stage, another 
set of five genuine signatures were supplied by the 
same writer during the contact sessions two weeks 
after the initial session, yielding another 500 samples. 
Thus, by recording the specific date, we can observe 
the variations among the same signature for a single 
session and different sessions. For the forgery part, 
the casual forgeries are obtained first; the forgers 
only allow viewing the writer’s name but did not have 
the access to the signatory’s signatures. The skilled 
forgeries are then obtained from the same group of 
forgers. We provided them with several samples of 
each signatory’s genuine signature and they are 
allowed ample opportunity to practice on it.  
The pen or pencil used by each writer is not 
prescribed but signatures are written within a pre-
drawn 5 x 2 grid on A4 paper. These signatures were 
scanned into the computer using a 24-bit millions of 
colors, 600 dot-per-inch resolutions. The individual 
images are extracted and labeled with both the writer 
names and the signature class number. 
We will evaluated the system based on false 
acceptance rate (FAR), false rejection rate (FRR), 
and equal error rate (EER).  

Performance Evaluations 
This method is evaluated by using random, casual 
and skilled forgeries from the mentioned independent 
database.  
Four samples of each person are sequentially selected 
for Eigen basis construction and the remaining six 
samples are used for testing. To investigate the 
performance of PCA against the DRT-extracted 
signature images as the dimensionality reduction 
agent, we use different number of principle 
components (or feature length), varying from 10 – 
200, as shown in Table 1. 
It is interesting to discover that longer feature length 
leads to better result. The performance peaks when 
100 principle components are used. However, this 
principle only holds to a certain point as the 
experimental results show that the result remains 
unchanged when the feature length is extended 
further. Thus, the PCA length is set to 100 for the 
following experiments. 
Next, we investigate the performance of DRT by 
using three different distance metrics, which are 
cosine angle distance, L1 (Manhattan) and L2 
(Euclidean) distance measure for random random 
(Fig. 3), casual (Fig. 4) and skilled (Fig. 5) forgeries 
respectively. DRT β is taken to be equal to the 

highest dimension of the image (300 X 200 pixels 
after smoothing and converted into black-and-white 
image), which is 300, and works on Θ = 128. 
From the experiment, the cosine angle distance is 
outperforming towards L1 (Manhattan) and L2 
(Euclidean) distances. This is because cosine angle 
distance usually gives a higher rank to vectors with 
larger variance (whereas applied to signature images) 
among its components.  
Number 
of PCA 
Feature 
Length 

Random 
Forgery 
(EER, %) 

Casual 
Forgery 
(EER, %) 

Skilled 
Forgery 
(EER, %) 

10 8.75 12.00 23.00 

30 8.33 11.65 22.45 

50 7.45 11.00 21.00 

80 7.11 10.20 20.22 

100 6.95 9.87 19.56 

120 6.95 9.87 19.56 

150 6.95 9.87 19.56 

180 6.95 9.87 19.56 

200 6.95 9.87 19.56 

Table 1. Equal error rates (EER, %) of using 
different number of principle components 

 
Figure 3. Receiving Operating Characteristic 

(ROC) curve of random forgery for three 
different distance metrics: cosine angle, L1 

(Manhattan) and L2 (Euclidean) respectively. 
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Figure 4. Receiving Operating Characteristic 

(ROC) curve of casual forgery for three different 
distance metrics: cosine angle, L1 (Manhattan) 

and L2 (Euclidean) respectively. 

 
Figure 5. Receiving Operating Characteristic 

(ROC) curve of skilled forgery for three different 
distance metrics: cosine angle, L1 (Manhattan) 

and L2 (Euclidean) respectively. 
However, it can be anticipated that the classification 
accuracy of the methods will improve when a more 
sophisticated classifier, PNN is used. In our system, 
10C4 = 210 runs are performed with different 
partitions between the training and testing sets by 
using a PNN smoothing parameter of σ = 10. 
From the ROC curve showing in Fig. 6, the 
performance is greatly improved especially for casual 
and skilled forgeries. Table 2 summarizes the 
performance of PNN towards random, casual and 
skilled forgeries. 
Besides, the experiment also shows that the 
computation time can be reduced significantly with 
just slight performance drop when only one template 
per user is used (as compared to the case of 4 training 
samples shown in Table 3 for skilled forgery). In this 
case, the time complexity of PNN that depends on the 
number of training samples, n and the length of PCA 
feature data, P can be decreased notably due to the 

compressed feature data length through PCA and 
single training sample per user settings. As such, the 
association of DRT, PCA and PNN is feasible in 
practical usage due to its high speed and accuracy 
performance. 

 
Figure 6. Receiving Operating Characteristic 
(ROC) curve for random, casual and skilled 

forgeries respectively when using: Eigen basis 
construction set = 4, principle component length = 

100 when classified through PNN. 

  FAR(%) FRR(%) EER(%) 
Random 
Forgery 1.50 1.52 1.51 
Casual 
Forgery 3.22 3.24 3.23 
Skilled 
Forgery 12.98 13.16 13.07 

Table 2. FAR, FRR and EER achievement (%) for 
random, casual and skilled forgeries respectively 

Training Samples 
Total time 
(minutes) EER (%) 

4 38.5 13.07 

1 14 14.20 
Table 3. Total time spent to run one course of 
experiment and the accuracy of PNN in skilled 

forgery context 

Comparison with Other Research 
Groups’ Techniques 
It is very difficult to compare the performance of 
different signature verification systems due to the fact 
that different systems are using different signature 
data sets. The lack of a standard international 
signature database is a big problem for performance 
comparison. 
However, few works that published in year 2009 
including Piyush Shanker et al. [Piy07] , Abdala Ali 
and Zhirkov [Abd09]  (we implement only on SVM) 
and Bansal et al. [Ban09]  algorithms have been 
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implemented and tested in our own independent 
database due to the close-similarity of our 
implementation details. 

 Piyush 
et al. 

Ali and 
Zhirkov 

Bansal 
et al. 

Our 
method 

Random 
Forgery 

1.45 1.13 1.23 1.51 

Casual 
Forgery 

3.21 2.43 3.15 3.23 

Skilled 
Forgery 

13.05 11.55 12.58 13.07 

Table 4. Equal error rates (EER, %) of 
implementing different approaches towards our 

independent database 
 Piyush 

et al. 
Ali and 
Zhirkov 

Bansal 
et al. 

Our 
method 

Random 
Forgery 

125.0 120.0 80.0 38.5 

Casual 
Forgery 

125.0 120.0 80.0 38.5 

Skilled 
Forgery 

125.0 120.0 80.0 38.5 

Table 5. Computation times (minutes) of different 
approaches towards our independent database 

Referring to Table 4, it can be concluded that their 
algorithms are slightly outperform our method. 
However, by referring to Table 5, we can say that our 
system is more favorable in real world application 
context due to its shortest computation time. Piyush 
Shanker et al.’s modified DTW is stable, but 
somehow it is still not particularly fast. Abdala Ali 
and Zhirkov’s SVM is powerful, but very time 
consuming to select the appropriate kernel functions 
and determining the belonging parameters during the 
development phase. Bansal et al.’s algorithm 
performs slightly better than ours, but required longer 
processing time.     

7. CONCLUSIONS 
This paper proposed an offline signature verification 
through DRT, PCA and PNN. The high accuracy is 
feasible to filter the forgery from the genuine 
signature, especially for skilled forgery; while the 
speed of the PNN is very favorable in real-world 
application. The results are encouraging and thus 
should motivating the research on skilled forgery 
detection especially for offline handwritten signature. 
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ABSTRACT
We present in this article an algorithm dedicated to the feature line detection on 3D triangulated outcrop meshes.
These lines corresponding to geological elements can be extracted by geometrical properties. Our approach uses
differential quantities and especially principal curvatures and their derivatives. The roots of these derivatives
describe particular lines called ridge lines for convex parts and ravine lines for concave parts. Then it is possible
to build a set of polylines matching with ridges and ravines. Finally we apply a directional filtering to keep
geological structures oriented in a particular direction. The proposed algorithm fits in a basis of a tool devoted to
assist geologists during the outcrop analysis and interpretation.

Keywords
geometric modeling, differential geometry, discrete curvatures, crest lines

1. INTRODUCTION
Many works dedicated to the crest line de-
tection have been proposed these last years
(e.g., [PKS+01, OBS04, YBS05]). Application
fields of these methods are wide and various: non-
photorealistic rendering [JDA07], mesh segmen-
tation [SF04], medical imaging [MAM95], and
geology [Nam08].

Since a few years, the LIDAR1 scanning technol-
ogy is used to capture cliffs or, more generally,
outcrops (i.e., formations of rock strata that crop out).
It generates a 3D point cloud which is afterwards
triangulated to obtain a surface corresponding to the
outcrop geometry. Combined with photo mapping
techniques, it is possible to construct 3D models called
DOMs2 [BKJ05]. From this point, we propose a
semi-automatic method devoted to the detection of
geological objects (i.e., fractures and stratigraphic
limits) from outcrop surfaces. This kind of elements is
characterized by differential properties explained in the
following. Therefore, the extraction is a problematic
similar to the crest line detection. However before
applying a method of crest line detection to outcrop sur-
faces, several particular constraints must be considered:

Outcrop rugosity
The intrinsic rugosity of observed outcrops makes

1 LIght Detection And Ranging
2 Digital Outcrop Model

the generated surfaces highly complex. As the crest
lines are characterized by curvature derivatives, this
extraction is noise-sensitive. It is then necessary to use
a noise-invariant and triangulation-invariant curvature
estimator.

Results matching with observations
The presented method aims at detecting geological
objects. Nevertheless, when applying traditional algo-
rithms of crest line detection, the extracted features do
not entirely correspond to elements with a geological
meaning. An a priori knowledge is then necessary to
realize a filtering to only extract targeted geological
structures.

Interactivity
An additional constraint is the computational time due
to the final application. The detection must be per-
formed in a few seconds in order to keep interactivity
with a real-time procedure. Moreover, this is partic-
ularly crucial as LIDAR scans often generate huge
data sets which are difficult to manipulate. Because of
this, we take great care to implement process with low
computational time.

To understand the crest line detection problem,
Section 2 describes the different criteria characterizing
the geological objects. We review in Section 3 the
related work established in the domains of curvature
estimation and crest line detection. Then we detail
each step of our approach in Section 4. Section 5
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finally presents the results obtained with our algorithm
applied on LIDAR data scans.

2. CHARACTERIZATION OF GEO-
LOGICAL OBJECTS

Fractures are like crevices more or less opened that
affect a rock mass. Stratigraphic limits of geological
bodies correspond to a change of rock type. Both
of these geological features are displayed along the
outcrop surface because of the erosion. It leads finally
to step-like or a gutter-like shapes at their location.
Figure 1 represents a diagram with the different
patterns of targeted geological objects. Moreover, this
pattern often varies along the same fracture or strata
limit. Given Figure 1, it is indeed possible to see that
the expected objects (depicted by the thick dashed
lines) are located in the highest concave parts of the
surface. These elements have a common geometrical
criterion: they define lines located in areas with high
curvature. Thus crest line algorithms can be applied to
achieve the detection of such objects.

ro
ck

ro
ck

ro
ck

ro
ck

Figure 1: Diagram showing the different patterns of ge-
ological objects. The thick dashed lines illustrate the
highest concave areas characterizing the expected fea-
tures.

Feature lines are then defined by curvature ex-
trema and then it corresponds to a zero-crossing of
curvature derivatives. However, the rough set of crest
lines extracted from a DOM does not represent the set
of targeted geological objects. This is due to several
factors, among which: (1) fractures often cut across
strata limits. Depending on the erosion effect, an
extracted crest line could then encompass features with
different geological meaning; (2) the intrinsic rugosity
of the rock or the variable direction of the outcrop
can generate salient lines which do not represent any
expected geological feature.

For these reasons, we suggest to add an a priori
knowledge (i.e., a global direction) to guide the extrac-
tion and filter feature lines. Our approach is dedicated
to the detection of slightly sinuous structures. It is
always the case for the fractures and very frequently
for the strata limits.

The proposed method then relies on the crest line
principle. It previously requires a per-vertex estimation

of differential quantities. Before describing each
algorithm step, the following section gives an overview
of existing crest line detection techniques.

3. RELATED WORK
3.1 Curvature Estimation
Differential properties characterize the local geometry
of meshes. The notion of curvature describes precisely
how the surface is locally bent. These geometrical
descriptors are then used since a few years and several
approaches have already been proposed in this domain.
Some of them are presented in the following (for
additional references see [MD02, GG06]).

Continuous methods
This type of methods tends to fit locally the surface with
simple primitives (e.g., plane, sphere or polynomial)
or parametric functions or even implicit functions.
These different techniques permit an analytical com-
putation of curvatures. For example, in [Ham93], the
authors proposed to approximate locally the surface
with quadratic polynomials. Alternatively in [GI04],
the fitting is performed via bi-cubic polynomials.
Bi-quadratic Bézier patches can also be used to fit the
surface such as in [RB05].

Discrete methods
To reduce the high computational time produced by
local fitting, differential operators have been proposed.
In [MDSB02], the authors suggested to use a curvature
estimation based on cotangent weights and Voronoï
areas. In another way, the dihedral angle (i.e., angle
between the normals of two adjacent faces) can be
used as a discriminant property to compute curva-
tures [CSM03]. Additionally, the curvature tensor
can be estimated by studying the per-vertex normal
variation such as in [Rus04, BW07].

3.2 Crest Line Detection
The properties of crest lines are widely used for
their efficiency as shape descriptors. This domain
has become a field of intensive researches since
the last decades and several approaches have been
then proposed. The first family of techniques is
based on extrema searching. It can be performed
either by thresholding [RKS00, SF03], curvature
derivatives [CP04, OBS04, YBS05], focal sur-
faces [LA98, WB01, YBYS07], or discretized
operators [HPW05].

The second kind of methods relies on other dif-
ferential properties. The dihedral angle can be used
to detect sharp features such as in [HG01, PSK+02].
Then in [GPHW05], the authors proposed to apply
active contour theory stemming from image processing
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domain to detect characteristic lines. In addition
in [LVJ05], Lee suggested to use a measure of a
regional importance named mesh saliency based on
contextual and visual criteria.

4. GEOLOGICAL FEATURE DETEC-
TION

On the one hand, DOMs represent natural surfaces.
These objects are characterized by an inherent noise
due to the acquisition technology and a high intrin-
sic rugosity because of the surface alteration. On the
other hand, due to their definition by high differen-
tial quantities, crest lines are very noise-sensitive. It
is then necessary to select a robust curvature estimator.
For these reasons, we chose to apply the method pro-
posed in [GI04] considering its quality, accuracy and
stable results (see [GG06]). Concerning the crest line
detection method, we opted for the criteria expressed
in [OBS04]. It relies on curvature derivatives and thus
is scale-invariant. It is then possible to extract geologi-
cal objects with different sizes.

4.1 Pre-processing Step
The inherent noise and rugosity of the data make the
detection of smooth and continuous lines difficult. We
then propose to use a pre-processing to increase these
continuity and smoothness. Among all existing tech-
niques, we chose to integrate a Laplacian smoothing
(cf. Equation 1) on surface coordinates:

p′ = p+λ
1
n

n

∑
i=1

(qi− p), (1)

where n is the number of adjacent vertices qi to the
vertex p and λ represents a step-size parameter.

Once the smoothing performed, the next step is
to compute the differential quantities in order to detect
the surface crest lines.

4.2 Estimation of Curvatures and their
Derivatives

Several techniques of curvature estimation have been
previously presented. The approach proposed in [GI04]
fits locally the surface with a bi-cubic polynomial in the
least-squares sense. Thus, the surface is expressed for
each vertex thanks to the following equation:

f (x,y) =
A
2

x2+Bxy+
C
2

y2+Dx3+Ex2y+Fxy2+Gy3.

(2)
The Weingarten matrix (i.e., the matrix of the second
fundamental form) of the surface is therefore composed
as:

W =

[
A B
B C

]
. (3)

The curvature values κmax and κmin (with
|κmax| > |κmin|) are defined by the eigenvalues of
W and the eigenvectors of W correspond to the prin-
cipal curvature directions ~tmax and ~tmin. To obtain
the curvature derivatives, it is possible to use the
coefficients D, E, F and G of Equation 2 as suggested
in [YBS05]:

e =
∂κ

∂~t
=

[
u2

v2

]T [D E
F G

][
u
v

]
(4)

where
~t = (u,v) (5)

can correspond to either~tmin or~tmax. Consequently, two
values called extremality coefficients (cf. [Thi96]) are
then defined by:

emax =
∂κmax

∂~tmax
emin =

∂κmin

∂~tmin
. (6)

These coefficients are the support for the crest line de-
tection, as described in the next section.

4.3 Crest Line Detection
The extremality coefficients describe curvature varia-
tions and crest lines are located where curvature ex-
trema are reached. Thus, the crest lines are character-
ized by:

emax =
∂κmax

∂~tmax
= 0,

∂emax

∂~tmax
< 0, κmax > |κmin| (7)

for the ridge lines (convex areas) and:

emin =
∂κmin

∂~tmin
= 0,

∂emin

∂~tmin
> 0, κmin <−|κmax| (8)

for the ravine lines (concave areas).

The curvature sign gives information about the locally
convexity or concavity of the surface. Ridges and
ravines are dual notions according to the surface ori-
entation: by flipping the surface orientation, convexity
and concavity are swapped as for ridge and ravine lines.

As previously mentioned, extremality coefficients
as derivatives, are highly sensitive to noise. For this
reason, the pre-processing of smoothing the surface
geometry is applied to compute the derivatives.
However, original coordinates are restored before
performing the detection. In this way, noise impact is
reduced and even several artifacts due to the intrinsic
surface rugosity are removed while maintaining the ac-
curacy about the locations of the extracted feature lines.

Crest line detection is performed by searching
crest vertices and curvature extrema (i.e., roots of
curvature derivatives). Let be ε an edge composed by
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the vertices v1 and v2. A vertex is considered as a crest
vertex since a set of conditions described in [OBS04]
is satisfied. For the sake of clarity and simplicity, only
the case of ridge vertices is explained below. As ridges
and ravines are dual notions, explained conditions can
be easily transposed from a ridge to a ravine detection
algorithm.

First, if the angle between principal directions
~tmax(v1) and ~tmax(v2) is obtuse, the vector ~tmax(v2) is
flipped as the sign of emax(v2). The second step is
to check if there is a zero-crossing of the curvature
derivative on the edge. It appears when the signs of
emax(v1) and emax(v2) are different:

emax(v1) · emax(v2)< 0. (9)

Curvature must also reach a local maxima which can be
verified by a derivative test:

emax(v1)
[
(v2− v1) ·~tmax(v1)

]
> 0. (10)

When Equations 9 and 10 are satisfied, the coordinates
of the ridge vertex are found by a linear interpolation
between v1 and v2:

vridge =
|emax(v2)|v1 + |emax(v1)|v2

|emax(v1)|+ |emax(v2)|
. (11)

This process is applied on each edge of the mesh to
obtain all the crest lines. These lines are defined by
polylines built from crest vertices. Figures 2 and 3
summarize the method of crest line extraction and
construction.

P1

P2

P4

P3

emax > 0

emax < 0

emax < 0

emax < 0Ridge vertex
emax = 0

Figure 2: Process of ridge vertex extraction.

The proposed algorithm does not aim at extract-
ing all crest lines but only geological feature lines.
Thus, particular conditions must be honored during the
feature extraction.

Figure 3: Construction of a feature line. On left, an
isolated crest vertex can not define a line. In the middle,
two crest vertices generate a straight line. Lastly, 3 crest
vertices produce a T-junction between the three vertices
and the triangle barycenter.

4.4 Directional Filtering
In order to keep only lines which have a geolog-
ical meaning and are roughly oriented in a same
user-defined direction ~D, an a priori knowledge is
integrated. It corresponds to a filtering process added
to the detection algorithm previously described.

First, as mentioned in Section 2, only concave parts
correspond to fractures or strata limits. Therefore only
ravine lines characterize relevant objects. Secondly,
geological structures are generally slightly sinuous.
Their detection can be guided via an user-defined
direction ~D, corresponding to the rough direction of a
family of targeted geological structures observed along
the outcrop.

Let S be a surface of R3 and p a point of S.
Principal directions of p are contained in a plane P
oriented according to ~Np (i.e., the normal vector of p).
As the shape of the geological objects can be locally
described as parabolic surfaces, the curvature vec-
tor~tmin tends to follow this shape as shown by Figure 4.

tmax

tminP
Figure 4: Principal curvature directions along a
parabolic shape.

It is thus possible to use the direction of ~tmin to
filter lines oriented in the same direction of ~D. How-
ever the direction ~D is set globally by the user on the
outcrop. The outcrop surface is not totally flat and
its direction can vary locally. Thus it is not ensured
that the vector ~D will be contained in the plane P .
Therefore, a rotation is applied to transform ~D into ~D′
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and to place this vector into the plane P . This rotation
has the following parameters:

−−→
axis = ~D× ~Np

angle = ~D · ~Np. (12)

Once the rotation is applied, ~D′ is contained in the
plane P . A projection of ~D onto P could not have
been considered as it may generate a null vector ~D′ as
soon as P is perpendicular to ~D.

Finally, on the edges containing a root of curva-
ture derivative, the absolute value s′ of the dot product
between ~D′ and ~tmin is computed. Therefore when
both ~tmin vectors of an edge are collinear to ~D′, the
line is preserved otherwise it is removed. This step is
illustrated by Figure 5.

D’

tmin

s’

Figure 5: Directional filtering according the vectors ~D′
and~tmin.

The direction ~D is specified globally by the user
and corresponds to the rough direction of the expected
structures. However the direction of these objects may
vary locally. Thus a threshold T , ranged from 0 to 1 is
applied on s′ as a tolerance factor: if T is equal to 1, the
vectors ~tmin and ~D′ must be strictly collinear to keep
the line and inversely if T equals 0, all the ravine lines
are kept.

5. RESULTS AND VALIDATION
The proposed approach devoted to the detection of
geological objects onto numerical outcrop surfaces is
composed of four main operations:
- a pre-processing smoothing;
- an estimation of curvatures and their derivatives;
- a crest line extraction;
- a directional filtering.

This algorithm is dedicated to the detection of
geological features (i.e., fractures and strata limits)

from 3D triangulated meshes built from LIDAR data
points. Figure 6 shows the results obtained with
different outcrop models. Figures 7 and 8 display the
impact of the direction ~D and the threshold T onto the
detection of targeted geological features.

These parameters have to be set up manually by
the user. They represent an a priori knowledge about
the targeted geological structures to interpret. The
direction ~D can be determined by the geologists
through the observation along the numerical outcrop.
It may be noticed that this parameter could be also
automatically deduced from a heuristic such as a
principal component analysis. However the primary
goal of the proposed approach is to assist the geologists
in the outcrop interpretation. Moreover, due to the
complexity of geological structure spatial organization,
the full automatization of the algorithm could easily
lead to several mismatch between geological reality
and extracted lines which should be in fact removed a
posteriori using manual or automated filtering. Then,
the tolerance threshold T is used to constraint more
or less the detection to the fixed orientation. It is set
up according to the aspect of the observed limits (i.e,
straight or slightly sinuous).

The results obtained with the presented approach
match with geological objects observed on outcrops
and manually modeled by geologists. We notice
however that some lines are incomplete or non-
significative. This is due to umbilical points (i.e.,
points locally spherical) without principal direction.

The computational time of our algorithm is low: it
only requires less than 5 seconds (in part due to the
computation of curvature values and their derivatives)
to detect geological features of a surface composed by
about 100k triangles (computed on an Intel Core 2 Duo
2.8 Ghz).

6. CONCLUSION
Several methods of crest line detection have been
proposed in the litterature. However none was directly
applicable to the context of geological feature extrac-
tion from 3D digital outcrop models. By relying on
existing methods, we thus present an algorithm devoted
to the feature line detection from LIDAR data scan
satisfying new constraints.

The proposed approach is based on the estimation
of curvature values and their derivatives. The extremal-
ity coefficients are computed from curvature derivatives
to obtain ridge and ravine lines. Finally, a directional
filtering is applied to preserve lines with geological
meaning and oriented in a particular direction.
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Feature lines corresponding to fractures and strata
limits are extracted. The proposed tool enables the
geologists to be assisted during the outcrop interpre-
tation stage. As mentioned previously, the obtained
results match with the elements manually modeled by
geologists.

This approach is promising and can be improved.
We plan to add post-processing to increase the quality
of results concerning, for instance, the connectivity
enhancement and the artifacts removal. In addition, ex-
tracted lines are slightly sinuous which concerns most
of the targeted geological objects. Though, some strata
limits are actually sinuous. This requires a pertinent
relaxation of the proposed directional filtering.

The feature extraction corresponding to geologi-
cal objects is a first step in the outcrop interpretation
workflow. The next step would be the construction,
from the extracted elements, of a graph to reproduce
the layout of observed geological structures.
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Figure 6: Application of our algorithm on LIDAR data scans without any filtering. On left, feature detection
performed on the Malaval section (' 60000 triangles). On right, extraction of lines of the Pas-Morta section
(' 20000 triangles).

Figure 7: Application of two directional filters. The strata limits are extracted with a horizontal direction (left
image) while the fractures are detected with a vertical direction (right image).

Figure 8: Influence of the tolerance threshold T with values of 0.85 (left image), 0.70 (middle image) and 0.55
(right image).
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ABSTRACT

In photorealistic image synthesis, the natural appearance of a scene is predicted by simulating the illumination using radiometric
values. Whenever the dynamic range of the simulated luminance values exceeds the capabilities of the display device, tone
reproduction is necessary to reduce the contrast of the image. Although a signi cant number of tone mapping operators have
been presented in the past, the reliability of the resulting low dynamic range images cannot be guaranteed. In the context of
product design, decision-makers rely on a trustworthy colorimetric and photometric appearance. We believe that in a particular
scenario a dedicated user-driven tone reproduction curve outperforms existing operators in terms of  e xibility, performance,
and quality. In this paper, we propose a method to manually generate a tone mapping operator. The user is guided to select a set
of simulated input luminance values and to map them to appropriate display luminance output quantities. These key mappings
are interpolated to a tone mapping curve. A module was developed for Qtpfsgui to de ne and apply the operator. We evaluated
the resulting low dynamic range images in a study with thirteen participants. The probands were asked to directly compare a
real with a virtual scene displayed on a low dynamic range device as well as to rate the results in comparison to popular tone
mapping operators. In addition to de ning a dedicated curve for a speci c scenario, another application of our approach is to
generate a standard observer tone reproduction curve by interpolating a set of user-driven functions.

Keywords: tone mapping, image reproduction, high dynamic range (HDR), reliability, colorimetry, photometry.

1 INTRODUCTION
The aim of photorealistic computer graphics is to sim-
ulate virtual images by computing a set of radiomet-
ric measurements and to reproduce them exactly on the
display device. The quality of both the simulation and
the reproduction can be evaluated by comparing mea-
surements of a real world scene with the respective
measurements of the simulated and reproduced two-
dimensional projection of the virtual scene on the dis-
play device. When the highest simulated luminance ex-
ceeds the maximum luminance of the output device, re-
producibility is no longer possible. The same holds true
for luminances below the black level of the display, re-
spectively. One solution is to mark the luminance val-
ues, which are not reproducible, with false colors. In
product design, a typical application  eld of photore-
alistic image synthesis, reliable rendering with natural
appearance and colors is necessary. To display the sim-
ulated luminance values, the high dynamic range has to
be reduced to  t the limited dynamic range of the output
device.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for pro t
or commercial advantage and that copies bear this notice and
the full citation on the  rst page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior speci c permission and/or a fee.

In the past, a considerable number of popular tone
mapping operators have been presented to address this
issue. The key problem with all these approaches is to
analyze to which extent the compressed image can be
trusted. Especially in product design it is vital to cre-
ate images decision-makers can rely on. In our opin-
ion there is no single tone mapping operator to produce
trustworthy results for each high dynamic range image
and every presentation setup. In consequence, an ex-
pert in image processing needs to choose and validate
a  tting operator for each setting and to adjust the in-
dividual parameters by hand. We strongly believe that
it is more intuitive and less time-consuming to provide
a highly  e xible and interactive tool for the expert to
create a dedicated tone reproduction curve for the given
setting.

Figure 1: Setup of our direct comparison experiment
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In this paper we present an approach of how to
generate a user-driven tone reproduction curve. The
user is guided to manually select a set of high dynamic
input luminance values and map them to appropriate
display luminances. These key mappings are interpo-
lated to a tone mapping curve. An example module
was developed for Qtpfsgui [12] to de ne and to apply
the operator. Another key contribution is the evaluation
of both our tool and the results of the user-generated
curves in a study with thirteen participants. The
reliability of the compressed images was validated by
directly comparing a real with a corresponding virtual
scene as well as by performing a benchmark test with
established tone mapping operators. Furthermore, we
generated a standard observer tone reproduction curve
by interpolating all thirteen user-de ned curves. This
operator was applied to our test scenario and compared
to popular tone mapping operators.

The remainder of the paper is organized as follows:
Section 2 outlines previous approaches to the tone
reproduction problem. Our solution is presented in
section 3, while the evaluation setup is described in
section 4. In section 5 we show the results of our
evaluation and section 6 concludes this paper.

2 RELATED WORK
The challenge to reproduce real world scenarios with
high contrast on media having limited capabilities can
be traced back to painting more than  ve centuries
ago. As justly emphasized by MacCann [11], the
Renaissance artists were the  rst to capture realistic
perspective and illumination in paintings using a
restricted color palette. MacCann also pointed out that
tone mapping has always been a challenging problem
of photography because of the low dynamic range of
print media. The importance of color reproduction in
both photography and television is clari ed in Hunt [8].

In computer graphics, the problem  rst arose when
physically based images were created using ray tracing
or radiosity. As opposed to scanline rendering with
arbitrary RGB color values, global illumination algo-
rithms tried to faithfully predict nature by simulating
real radiometric values exceeding the dynamic range of
the display devices. Tumblin and Rushmeier [16] re-
alized this issue and presented a brightness-preserving
operator as a solution in 1993. Operators aiming to
preserve brightness or contrast are also subsumed to
perceptual-match reproduction, whereon this paper is
focused. An early representative of contrast-preserving
tone mapping was introduced by Ward [17] in 1994,
which reduced computational costs while sustaining
just noticeable differences in contrast.

During the last years, a number of popular tone
reproduction operators with diverse foci, inspired by
 elds as photography or the human visual system have
been proposed. Reinhard et al. [14] adapted the pho-
tographic zone system to manually map the subjective
middle-grey of the scene to an appropriate display
luminance. The contrast can be enhanced locally with
a technique inspired by photographic dodging and
burning. Drago et al. [5] exploited the logarithmic
response of the human visual system to incoming
luminance. They showed how to handle a wide dy-
namic range by applying logarithmic compression with
individual bases of the logarithm to different picture
elements. Another operator, inspired by the response
of human photoreceptors, was introduced by Reinhard
and Devlin [13]. Based on electrophysiological studies,
they designed a sigmoidal function to closely resemble
the properties of the receptors. Comprehensive reviews
of the most important operators can be found in the
state of the art report by Devlin et al. [4] or in the
textbook High Dynamic Range Imaging [15].

The diversity of approaches to tone mapping neces-
sitates a systematic evaluation. Despite the problem
of how to analyze the quality and reliability of tone
mapping, a number of attempts are summarized in [19].
Relevantly to our work, Yoshida et al. [19] conducted a
psychophysical experiment with 14 human observers.
The probands had to compare a real world setting with
an HDR photograph of the same scene, compressed
and displayed on an LDR display. We chose to model
a virtual representation of our well-de ned real world
scene and simulated a photometrically and colorimet-
rically consistent ground-truth image. Opposed to the
HDR photography approach, our method eliminates
inaccuracies from the camera calibration.

Another innovative strategy has been introduced by
Mantiuk et al. [10],  tting a generic tone reproduction
operator to an HDR image and its LDR counterpart,
generated by an unknown existing tone mapping
algorithm. They showed that a very simple and
computationally inexpensive generic tone mapping
curve is often able to reproduce indistinguishable
results compared to the original complex algorithm.
Furthermore, Mantiuk et al. demonstrated how to use
their model to combine several popular operators to a
new tone mapping curve. Similarly, we believe that a
single tone mapping curve can outperform previously
proposed operators in a dedicated scenario. But in
contrast to choosing and combining operators by hand,
we provide the expert user with a  exible tool to
manually create the curve. In addition, we intentionally
support no local contrast adjustment and do not change
the chromaticities using saturation correction.
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3 APPROACH

3.1 Criteria for reliability
The primary purpose of our tone mapping operator
is to generate reliable output images. A reliable
image should be indistinguishable from the respective
real world scene for the human observer. In order
to evaluate this goal we need to de ne criteria for
reliability. Tone mapping operators aiming to create
realistic results assess those criteria differently than
operators trying to generate aesthetic images.  Cadík et
al. [3] proposed some important criteria: brightness,
contrast, reproduction of color, reproduction of details
and special attributes like artifacts. They say that the
overall image quality, often also called naturalness, de-
pends on several of those criteria. Furthermore, criteria
which affect the image globally, such as contrast, are
more important. Criteria like the local reproduction of
details are of less importance.  Cadík et al. conclude
that global tone mapping methods are better suited for
realistic images. Local tone mapping algorithms can
only compete if they have a strong global part.

Yoshida et al. [19] pointed out that global tone map-
ping can preserve contrast better than local methods,
but, on the other hand, local operators are better at
reproducing details. They also deduce that no single
criterion is solely accountable for the naturalness of the
image. In our evaluation we use the criteria brightness,
contrast, reproduction of details in shadows and in
highlights, and the overall image quality.

3.2 Selecting tone mapping benchmarks

Similarly to both studies mentioned before, we aimed
at conducting an evaluation with different tone map-
ping approaches. Hence, we considered a number of
popular operators as potential benchmark algorithms
and evaluated their ability to return a reliable LDR
image. Global tone mapping operators like Histogram
Adjustment by Ward [17], Drago’s Adaptive Loga-
rithmic Mapping [5] or the Photoreceptor Model by
Reinhard and Devlin [13] are based mainly on the
human visual system. Local tone mapping operators
like Photographic Tone Reproduction by Reinhard et
al. [14] or Ashikhmin’s Spatially Variant Operator [1]
have been considered as well. Operators working in
the frequency or gradient domain are also popular, for
example Durand’s Bilateral Filtering [6] or Gradient
Domain Compression by Fattal [7].

As a result we decided to use the Adaptive Logarith-
mic Mapping, Photoreceptor Model, and Photographic
Tone Reproduction in our evaluation. Both frequency
and gradient domain methods returned images which
are better suited for aesthetical purposes. Drago’s

Figure 2: GUI of the interactive tone mapping tool

method has been chosen because it is very popular
and a typical representative of the global operators.
Reinhard’s Photoreceptor Model bene ts speci cally
from the fundamentals of the human visual system
and separately computes a sigmoidal function on the
three RGB channels corresponding to the three cone
types on the retina of the human eye. At last, the Pho-
tographic Tone Reproduction represents a local tone
mapping operator with a different approach, namely
combining tone mapping with traditional methods used
in photography. To summarize, we chose three very
different operators, two global ones and a local one as
benchmarks.

3.3 Implementation and features
The idea behind our tone mapping operator is to give
an expert a tool at his disposal to create a speci c tone
mapping curve. Common image editing software like
Adobe R© Photoshop R© provide tools to edit a gradation
curve exactly. This well-known graph metaphor is
exploited in our implementation to easily, rapidly and
interactively adjust a tone mapping curve.

We used the open source software Qtpfsgui and the
Qt Widgets for Technical Applications 1 to implement
our curve tool. The main window, as seen in  gure 2,
shows a plot with the x-axis representing the real
log10 luminance values and the y-axis representing

1 http://qwt.sourceforge.net

WSCG 2010 Communication Papers 49



read EXR file

create Pfs-Channels in XYZ colorspace

transform colorspace from XYZ to Yxy

XYZ Pfs-Channels

create output RGB Pfs-Channels

do actual Tonemapping

transform colorspace from Yxy to XYZ

black correction

transform colorspace from XYZ to RGB

gamma correction

Reliable Tonemapper

transform colorspace to XYZ
RGB

XYZ

RGB Pfs-Channels

Figure 3: Activity diagram of the tone mapping pipeline

the relative display luminance. A display luminance
of 1.0 corresponds to the maximum luminance of the
display. The initial curve can be adjusted by setting
or deleting control points. The curve is interpolated
linearly between them. Holding the shift key restricts
the movement of the point to the y-direction in order
to avoid shifting the point and therefore changing a
different input luminance value.

Additionally, luminance quantities in the image can
be mapped precisely to a control point in the plot at
the corresponding luminance value. A simple click
inside the image creates the correct control point which
can be further adjusted. For better comparison, it is
possible to import tone mapping functions created by
the operators from Drago and Reinhard. Furthermore,
user-driven curves can be saved to or loaded from disc.
Hence, those curves can be applied to arbitrary images
by loading the control points absolutely or relatively.
The former method loads the points at the absolute
input luminance values regardless of their existence in

the new image. The latter option stretches or squeezes
the points relatively to the new luminance range.

Another important aspect of our approach to tone
mapping is the photometrically and colorimetrically
consistent implementation in order to evaluate cor-
rectly later on. Figure 3 illustrates the pipeline a high
dynamic range OpenEXR  le 2 has to pass before being
displayed: Three channels in the CIE XYZ color space
are created from the OpenEXR  le. Those channels are
transferred to the actual tone mapping algorithm which
transforms the color space to Yxy. The plot curve
is evaluated for every luminance value in the image,
returning the value on the y-axis between 0.0 and 1.0 at
the x-position of the requested input luminance. Only
the luminance channel Y is changed by multiplying
the looked-up y-value with the maximum display
luminance. The display was measured with an X-Rite
i1-pro spectroradiometer and the i1 Share software
beforehand and the generated ICC pro le was activated
for gamma calibration. After the plot look-up process
the color space is transformed back to XYZ and a
black correction is executed. Then the color space
is further transformed to RGB using the measured
color primaries of the speci c display. Finally, gamma
correction is applied.

4 EVALUATION

4.1 Scenarios
To validate the reliability of our user-driven tone
mapping operator, we conducted a relative comparison
to the selected benchmark operators from section 3.2.
Therefore, we generated an HDR photograph using ex-
posure bracketing with a Canon EOS D30 digital re e x
camera of a scene on our campus. The HDR image
has been calibrated with a Kodak CS100A luminance
measurement device and created by webHDR 3. The
campus scene is depicted on the left in  gure 4.

Besides this relative comparison, we conducted a
direct comparison between a real world scene and
a simulation of the same scene, displayed on a low
dynamic range device. We constructed a well-de ned
real world scene and modeled an exact virtual rep-
resentation. A ground-truth simulation of the virtual
scene was computed with path tracing using a spectral
ray tracing system and measured radiometric input
values for the light source and the materials. The sim-
ulated two-dimensional projection was displayed on
a colorimetrically characterized and gamma-corrected
device. In  gure 1, a photograph of the setup is shown.

2 http://www.openexr.com/
3 http://luxal.dachary.org/webhdr/
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Figure 4: Campus scene (left hand side) and the well-de ned box scene (right hand side), each reproduced with
Drago’s Adaptive Logarithmic Mapping (top left), Interactive tone mapping (top right), Reinhard and Devlin’s
Photoreceptor Model (bottom left), and Reinhard’s Photographic Tone Reproduction (bottom right)

The box measures 0.5m in all three dimensions.
The front side is left open for the observer. In the
center of the left side a square hole with 0.1m edge
length is spared for a calibrated NEC SpectraView
2690 as the light source. On the right, opposing the
light, a Munsell ColorChecker chart was placed. The
remainder of the interior of the box was wallpapered
with a diffuse white Canson Mi-Teintes Paper. The
spectral distributed radiance of the light source and the
spectral distributed re ectance of the materials were
measured with an X-Rite i1-pro spectroradiometer. An
exact virtual representation of this box was modeled.
We generated a ground-truth simulation using spectral
path tracing. An EIZO FlexScan S2000 displayed
the synthetic image using color calibration and black
correction. The simulation was validated for low
dynamic range images by comparing measurements
of the display device with measurements in the box to
grant trustworthy results. For our experiment, the light
source was calibrated to the maximum luminance of
300cd/m−2 and the display device to 100cd/m−2. The
box scenario is displayed on the right in  gure 4.

4.2 User study
We believe that an individually created tone reproduc-
tion curve excels every other tone mapping operator in
a speci c scenario. We wanted to evaluate whether tone
mapping curves created by our probands really deliver
a good result measured by the former mentioned
criteria and if there are concurrences between those
curves and curves of popular tone mapping operators.
We approached the question whether the users created
similar curves or if there is even a kind of standard
observer tone mapping curve. Finally, we checked how
the users rated the usability of the curve tool.

Thirteen participants aged 21 to 30 years created
curves and evaluated the resulting images. During
the whole evaluation process we were present to
help in case of operating problems or questions.
The main functions and keyboard shortcuts of the
interactive tool were explained. We pointed out
key areas in the images to support the test persons
when evaluating the reliability criteria. In a  rst
step, all thirteen participants were asked to  ll out a
general questionary. Level of knowledge, experience
with HDR software and existence of color de cien-
cies were some of the questions. One half of the test
persons had some experience with other HDR software.

The  rst experiment was a relative comparison
of the campus scene without direct reference. All
participants had to rate four pictures displayed on an
LDR device according to the criteria introduced in
section 3.1. The setting of the Adaptive Logarithmic
Mapping, Photoreceptor Model and Photographic Tone
Reproduction were set to the default values proposed in
their respective papers, with the following exceptions:
the sharpening parameter of the Photographic Tone
Reproduction was set to 1.6. The intensity parameter
of the Photoreceptor Model was set to -3, the chromatic
adaptation to 1.0, and the light adaptation to 0.0. We
created our dedicated tone mapping curve for the
interactive tone mapping without direct reference. The
probands were asked to rate the criteria on a scale with
 ve discrete steps, from too few/low to too many/high
and a possibility to rate accurate.

In the second experiment the probands had to create
their own tone mapping curve for the aforementioned
box scene. The  rst request was to ensure that the
grayscale of the colorchecker was reproduced correctly
on the screen. Then they adjusted the color patches
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ping (Langs), Reinhard2005 (R05), and Reinhard2002 (R02): the box shows the lower quartile, median, and upper
quartile values. The dashed lines (whiskers) extend from the maximum to the minimum values of the datasets

and the box itself. In addition, the test persons were
asked to rate the usability of the tone mapping interface
and the time needed to create a curve. The last task
was to compare the result of the own curve applied to
the box scene with the results of the selected popular
tone mapping methods. A grade was requested for the
overall quality of each result.

5 RESULTS

5.1 Campus scene

The  rst criterion to be evaluated was the brightness of
each image. Reinhard’s Photographic Tone Reproduc-
tion (henceforth referred to as Reinhard02) was rated
best, followed closely by the curve created with the
interactive tone mapping approach. Both results from
Drago’s Adaptive Logarithmic Mapping (Drago03)
and Reinhard and Devlin’s Photoreceptor Model
(Reinhard05) were rated too bright, probably because
the bag and chair areas were not displayed bright or
dark enough. The contrast was reproduced best by the
interactive tone mapping operator. Reinhard02 created
the second best contrast tending towards too little
contrast. Again, the results of Drago03 and Reinhard05
were not satisfying. Reproduction of detail in the
shadows was solved best by Reinhard02, followed by
the interactive curve. The grades of the test persons for
Drago03 were very scattered but tended to have too few
details. Reinhard05 did not deliver suf cient details
in the shadows. Details in highlights were preserved
best by the interactive operator. All the other tone
mapping algorithms retained too few details, according
to our test persons. To summarize, Reinhard02 and
the interactive operator performed equally well. Both
the Drago03 and Reinhard05 tone mapping could not
compete in our  rst scenario.

This observation is supported by the grades given
for the overall image quality. If we can assume, that
the grades are interval data, the interactive operator re-
ceived the average grade 1.2, Reinhard02 2.0, Drago03
3.5, and Reinhard05 3.9 where 1 is very good and 5 is
very bad. The Box-Whisker-Plots in  gure 5 show all
obtained data with median, upper and lower quartile
and maximum plus minimum values. Anyhow, we can
conclude that not a single criterion is important for the
overall image quality because otherwise the grades for
the interactive tone mapping operator and Reinhard02
grades would not differ so much. An expert curve
seems to provide the best overall image quality, but
needs to be created carefully beforehand for each scene.

5.2 Box scene

Fourteen curves have been created for the box scene
over the course of the evaluation, one of which we
created ourselves as a kind of expert curve. The created
curves are very different because the emphasis has been
set differently by the users: some only tried to map the
greyscale correctly; others mapped all colors on the
colorchecker precisely. Because of the latter outlier
points have been inserted making the resulting curve
bumpy and not monotonically increasing. This results
in some artifacts and those points have therefore been
erased from the dataset after the evaluation. In  gure 6
those normalized curves are depicted. In this context,
we thought of a standard observer curve averaged over
all curves. This curve is shown in  gure 6 on the right
hand side. The standard observer curve matches the
Drago03 curve for the box scene in a wide range of
input luminance values. Reinhard02’s curve for this
scene has a similar shape. This might be caused by the
box scene since the dynamic range (≈ 300:1) is close
to the dynamic range of the display (≈100:1).
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Figure 6: Tone mapping curves of the test persons (left hand side) and the standard observer curve (right hand side)

The participants needed between 5 and 24 control
points with an average of 13 to create a satisfying
curve. The linear interpolation seems to suf ce for a
reliable result. The probands required 15 minutes on
average to generate their curves, which was overall
rated as an acceptable time frame. Also, the users were
pleased with the usability of the curve tool. After a
short orientation time every participant was able to
create a curve with an outcome they found acceptable.

At last, another grade for overall image quality has
been given for the results of the individual curve and
the other three benchmark operators. On average, the
users were very con dent with their individual LDR
image (average grade 1.7) followed by the results of
Drago03 and Reinhard02 (2.3 and 2.4, respectively)
and Reinhard05 (3.8). This is not surprising since we
already concluded that the  rst three mentioned tone
mapping curves are quite similar. Still, a speci cally
created curve for a single selected scene yielded the
best perceived overall quality.

5.3 Comparison to other evaluations
Kuang et al. [9] compared six tone mapping algorithms
in their study, two global and four local ones. They
used HDR images without reference and some invariant
constructed scenes for a direct comparison. None of
the tone mapping operators performed well for every
image. Thus it is reasoned that there is a signi cant
dependency between the tone reproduction method
and the selected scenario. The Photographic Tone
Reproduction and the Bilateral Fast Filter by Durand
et al. [6], two of the four local operators, performed
best on average. Both global operators, the Sigmoid
Transformation [2] and Histogram Adjustment [18],
did not achieve good results overall.

Another work from Yoshida et al. [19] examined
seven tone mapping operators in direct comparison.
Several criteria had to be rated by the participants.

Most importantly they found out that global operators
achieved a higher contrast whereas local operators
retain details better. No single criterion was deemed
to exclusively contribute to the overall image quality.
The results of the Photographic Tone Reproduction,
Histogram Adjustment and Adaptive Logarithmic
Mapping [5] were rated best in the overall image
quality, the last two mentioned being global operators.

In fact,  Cadíks et al. suggest in their evaluation [3]
with fourteen tone mapping methods that global
operators perform better in terms of overall image
quality. Local ones can only compete if they have a
proper global part. Criteria, which apply to the whole
image, like contrast, are most important for the overall
quality. According to [3], this is why global operators
exhibit better results. An example of a good local
operator with a strong global part is the Photographic
Tone Reproduction once more.

Comparing those observations with our results yields
some conformity: Photographic Tone Reproduction
produces good results in every evaluation including
ours. Because our interactive tone mapping operator
even exceeds the results of the Reinhard02 operator, it
might be quite possible for our results to be reproduced
under different conditions, although accompanied by
a lot of work due to the need of a separate curve for
every scene. The global approach of our tone mapping
method can be reassured by the results of studies
revealing that a global tone mapping operator delivers a
better perceived overall image quality. A reliable result
for every scene was the goal of our implementation and
can be obtained by creating an individual curve.

6 CONCLUSION AND FUTURE
WORK

In this paper, we proposed to apply an interactive and
highly adjustable user-driven tone mapping function as
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a dedicated tone reproduction operator for individual
high dynamic range scenarios and speci c presentation
setups. This operator was designed and developed
for industrial product design as main  eld of appli-
cation, where decision-makers rely on trustworthy
colorimetric and photometric lighting simulation and
reproduction. The expert user is guided by our tool to
de ne and to apply a set of key mappings between the
scene luminance values and low dynamic range display
quantities. These two-dimensional control points are
interpolated to a tone reproduction curve that can be
stored, loaded or compared to other tone mapping
curves.

To validate our approach, we chose criteria for
reliability and popular tone mapping operators as
benchmarks. A user study with thirteen participants
and two very different scenarios was conducted. The
 rst experiment was based on a relative comparison of
a user-de ned expert curve and existing tone mapping
operators from literature without direct reference. In
the second experiment, the test persons were asked to
generate their own tone reproduction curves in a sce-
nario with direct reference to a well-de ned real world
setup and to compare the resulting display images with
other published operators. Our  ndings include that the
probands were able to create satisfying operators with a
small number of thirteen key mappings in an acceptable
time frame of  fteen minutes on average. The users
rated the reliability of the individual curves higher than
the results of existing tone mapping operators. Finally,
we presented a standard observer tone mapping curve,
generated by averaging the results of a number of test
persons for an individual scene and presentation setup.

We expect interesting results from future work
on evaluating similarities within groups of standard
observer operators from different sets of scenes and
presentation setups. Another future application of our
approach is to generate the tone mapping curve using
existing operators from literature and to use our tool for
manual  ne tuning. Lastly, we are looking forward to
the results of evaluating our user-driven tone mapping
operators in an industrial product design environment,
where our tool was designed for.
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ABSTRACT 
The main idea presented herein is to use a multiscale texture synthesis approach in order to both colourize and 

upscale greyscale textures. Such textures can be vintage photos to be used in archaeological or urban 3D 

visualizations and obviously the colour needs to be reconstructed some way.  Due to limited quality, walls etc in 

such 3D visualizations will appear either pixelized or blurry when the viewer approaches them on a close 

distance. The latter if some kind of interpolation technique is being used to reduce the pixelization. The low 

resolution greyscale texture and a high resolution coloured texture is used for the colourization and upscaling, 

which will produce a colour version of the greyscale texture with 4 times higher resolution in each upscale step. 

The novel idea is to use multiscale texture synthesis in HSV space for the first upscale in order to create a RGB 

colour image for subsequent upscaling, using either ordinary RGB multiscale texture synthesis or continue using 

HSV multiscale texture synthesis. These two main approaches will be compared and discussed. 

Keywords 
Multiscale Texture Synthesis, Colorization, Colour transfer, Greyscale Photos. 

1. INTRODUCTION 
In the process of 3D virtual reconstruction and 

visualization of buildings it is necessary to acquire 

textures of walls etc and often photographs are being 

used for obtaining the textures. However such walls 

and parts of buildings, especially for archaeological 

visualizations, might not exist anymore and it is 

therefore necessary to use old photos, often greyscale 

ones. There are hence two problems that must be 

solved. First of all the colour must be reconstructed, 

which might be a hard task unless we know at least 

something about the colours that were used when the 

building was still standing. Furthermore the quality 

must be improved because aliasing problems will 

occur when these textures are used for the 3D 

models. Usually different interpolation techniques are 

being used in order to minimize the aliasing effect 

when one moves close to the walls. One drawback 

with antialiasing [Fol97] is that it will make the 

texture look blurry, however this is preferred over 

having the pixels appear like big homogeneous 

square blocks, which makes the texture look 

pixelized. 

We propose a novel approach for the colourization of 

a greyscale textures and a subsequent upscaling in 

order to increase the resolution so that the blurriness 

of interpolation can be avoided, using a modified 

variant of multiscale texture synthesis. 

Multiscale Texture Synthesis 
This paper does not deal with ordinary texture 

synthesis in general, but a short introduction will be 

given before we explain the basics of multiscale 

texture synthesis. 

1.1.1 Texture Synthesis 
Texture synthesis (TS) is the process of taking one 

smaller texture and then make it larger in size, not by 

tiling, but by synthesizing it [Efr99, Wei00]. Several 

approaches exist and the hierarchical TS method 

[Hee95] builds a tree of the texture with different 

sizes very much like in the mipmapping method 

[Wil83]. The smallest texture (on the lowest level) is 

then used in the first step and texels are randomly 
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taken from it and randomly inserted into the new 

synthesized texture of corresponding size. Then 

follows a process where a mask with a specific shape 

[Har01] is scanning the synthesized texture in a 

scanline order fashion while copying texels from the 

original texture, which has the best matching 

neighbourhood [We02]. Generally the matching is 

computed as the sum of the squared differences of the 

RGB values within the masks. In the same time as the 

texture is synthesized on this level, another texture is 

synthesized on a higher level by copying a 2x2 

neighbourhood into that texture, which accordingly 

will be 4 times larger.  

1.1.2 Multiscale Texture Synthesis 
In multiscale texture synthesis [Lee08] (MSTS) there 

already exists a texture version available of the 

otherwise initially randomized and then synthesized 

texture, namely the target texture. Then a number of 

examplar textures are taken so that they will contain 

similar details like the target texture but on higher 

levels, and they can subsequently be used to build a 

more detailed version of the target texture. An 

examplar graph is built for this purpose where the 

target texture is placed in the root and textures with 

higher details are placed on the next levels depending 

on their resolution. One texture on one level can thus 

depend on several exemplar textures on other levels. 

Since the colours can differ on different levels it has 

been proposed to use a colour transfer function 

[Han08]. Another approach can be used when the 

colours in the target texture are substantially different 

from the examplar texture [Has09], i.e. when the 

matching is bad.  

1.1.3 HSV Multiscale Texture Synthesis 
The HSV colour space MSTS method takes a 

different approach using only one examplar image 

[Has09]. As an example: when 3D reconstruction of 

buildings is used by the proposed approach it is 

possible to use an image of the whole wall or large 

parts of a wall (see figure 1) using a high resolution 

camera.  

 

 

Figure 1.  The target texture (204x153 pixels) with 

a red rectangle showing what part that will be 

zoomed. 

The inserted details can be taken from an examplar 

image taken from the same wall. This image will be 

taken on a close range and will therefore cover a 

small part of the wall as shown in figure 2. Note that 

the texture to the left has been down sampled to fit in 

the paper. To the right is shown a small part, inside 

the red rectangle, in its actual resolution. It is obvious 

that the examplar texture has a high resolution 

compared to the target texture in figure 2, which is 

also shown in its actual resolution. 

 

 

Figure 2.  The examplar texture to the left, 

covering a smaller part of the wall. As shown to 

the right it has a high resolution (768x768 pixels) 

that will be used for the  upscaling. 

 

 The HSV method for MSTS (HSV-MSTS) can 

handle colour differences in the following way: Let 

us say that a single brick in a brick wall have a 

greenish tone in the otherwise red wall. Then this 

problem can be handled by converting the colours 

into the Hue, Saturation and Value (HSV) colour 

space [Son99]. The HSV colour model separates the 

colour into three channels, similar to the more 

common red, green and blue colour model (RGB) but 

instead it uses a measurement of hue, saturation and 

value also called brightness. This model of 

representing colours gives the ability to change the 

brightness independent of the other colour 

information in the picture. As the human perceptive 

system is more sensitive to brightness discrepancies, 

this potentially can give a perceptually better image. 

In figure 3 the original image to the left is compared 

to the resulting texture from ordinary MSTS in the 

middle and the image to the right shows the HSV-

MSTS. It is obvious that the colours are not 

represented correctly in the middle image. Converting 

to HSV space and synthesizing the V part while 

interpolating H and S, will give a much more accurate 

result. The problematic greenish brick (inside the red 

truiangle) is synthesized keeping the greenish tone, 

using the HSV approach, while the ordinary MSTS 

makes it more red than green.  
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It should be noted that the target texture was 

originally larger in size and then down sampled by 

averaging 4 pixels into one. In this way it was 

possible to compare how close to the real thing the 

synthesis process was, i.e. we have a ground truth to 

compare with. Hence the texture to the right in figure 

3 has a higher resolution than what was used in the 

process.  

 

 

Figure 3.  The high resolution  target image to the 

left and a synthesised version in the middle using 

ordinary MSTS yielding colours, which are far 

from correct compared to the right where the 

HSV approach is used. 

 

The synthesized textures on higher levels are 

constructed using the synthesized V elements and the 

H and S elements are taken from the target texture, 

which ensures that the original colours of the bricks 

are maintained. However it is important that the H 

and S elements are interpolated, e.g. bi-linearly (or 

using some other interpolation scheme [Gon93]), in 

the upscaling process, otherwise the colour will be 

visible as blocks.  

 

 

Figure 4. Top: pixelization. Middle: Interpolation: 

Bottom: Multiscale Texture Synthesis (HSV). 

In our approach a simple variant of bilinear 

interpolation was used taking into account only the 4-

neigbours [Son99]. The result is shown in figure 4. In 

the top it can be seen how the texture (within the red 

rectangle in figure 1) is magnified without 

interpolation and in the middle interpolation has been 

used. Nonetheless the result is far from appealing. 

The result of the previously explained HSV-MSTS 

approach is shown in the bottom. It is obvious that 

this approach inserts details, making the image 

looking much better than just using interpolation in 

order to get rid of the pixelization. 

Colourization of Greyscale Textures 
Greyscale texture and image colourization is applied 

for an example in greyscale photo editing and 

scientific illustrations.  The process of colourization 

increases the visual appeal of greyscale images and 

can perceptually enhance scientific illustrations 

[Che04]. It has also been used for colourization of 

classic movies, even though not all are that happy 

about that the visual experience is changed [Dan90].   

Region based colourization can be performed by 

combining greyscale image matting algorithms 

[Smi96] with colour transferring techniques [Wel04]. 

First objects with that will have different colours are 

extracted from the greyscale image. Then each object 

is colourized using colour transferring and then these 

colourized objects are seamlessly composited 

[Mor95, Por84]. 

Colourization can be either user guided [Lev04] or 

automatic. And there are also techniques that use a 

combination of these two [Iro05]. The user guided 

method requires the user to scribble the desired 

colours in the interiors of the various regions. On the 

other hand, automatic techniques like the one 

proposed by Welsh et al [Wel02] colorizes an image 

by matching small pixel neighbourhoods in the image 

to those in the examplar image, and transferring 

colours accordingly. Hence they propose to use a 

variant of texture synthesis since they are matching 

local pixel luminance statistics between colour 

example and target grey-scale image. 

The procedure according to Welsh et al [Wel02] and 

later used by Karthikeyani et al [Kar07] is as follows: 

first each image is converted into the lαβ-colour 

space [Rud98]. (Similarly Pan et al [Pan04] used this 

space to add colour to video and animation clips). 

Then jittered sampling is used to select a small subset 

of pixels in the colour image as samples. Next each 

texel in the greyscale image is traversed in scan-line 

order and the best matching is selected using 

neighbourhood statistics within in a 5x5 mask. The 

best match is determined by using a weighted average 

of texel luminance and the neighbourhood statistics. 

The chromaticity values (α,β channels) of the best 
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match are then transferred to the greyscale. In order 

to obtain a better correspondence in the luminance 

range between the two images, luminance remapping 

[Her02] is performed.  

2. COLOURIZING USING HSV-MSTS 
This paper proposes how textures like wall textures 

can be colourized and upscaled using a novel idea 

that differs from the idea proposed mainly by Welsh 

et al [Wel02]. First of all we show that HSV-MSTS 

can be used for the colour transfer. Secondly we 

show that the upscaling process can be integrated in 

the process.  

One of the reasons to use HSV-MSTS is that jittered 

samples would fail to find enough texels containing 

the mortar in the brick wall examples, unless the 

amount of samples is heavily increased. Furthermore 

we have found that the matching differences of the V 

value of each texel using a 3x3 mask is enough for a 

visually pleasing result, instead of a 5x5 mask 

matching neighbourhood statistics. 

The novel idea is to use the previously explained fact 

that texture synthesis can be performed in HSV using 

the V channel for matching, in order to colourize a 

greyscale photo. In fact, for a greyscale photo only 

the V channel contains any information since there is 

no colour that can be saturated or be defined by its 

hue. Figure 5 shows three target textures in greyscale 

that will be colourized by the proposed approach. 

The examplar texture will be the same as shown in 

figure 2, that is downscaled to a size that corresponds 

to the size of the target textures. However we will do 

the matching with one difference, we will use a 

greyscale version of that texture for matching. Then 

we can proceed in two ways. When a best match is 

found we can take the corresponding pixel from the 

colour version of the examplar texture, either on the 

same level to construct a coloured version of the 

texture. As an alternative we can go a head and take 

the four corresponding pixels from the texture on a 

higher level (4 times larger), and hence make one 

step of upscaling on-the-fly. 

Obtaining the Greyscale Examplar 
Anyhow, the greyscale examplar image must be 

obtained from the colour version and this can be done 

in many ways. Since this paper presents a proof of 

concept rather than being applied on any certain 

vintage photo, we computed the greyscale examplar 

in the same way as we computed the target image as 

it was originally a colour image too. 

Generally the greyscale value can be computed as a 

weighted sum of the RGB value: 

bgr wbwgwrg ***  (1) 

Here we have the opportunity to arrange the weights 

so that the proposed algorithm works in the best way, 

i.e. the grey level histograms of the two images 

should be made as similar as possible. 

 

Figure 5. The three walls (top left) are colourized 

with no upscale (bottom left) and one step of ‘on-

the-fly’ upscale to the right. 

3. DISCUSSION 
It should be noted that the target textures shown in 

figure 5 have a relatively low resolution, which is 

often the case for vintage photos. Nonetheless the 

algorithm works well despite the low resolution, but 

gives even better results if the resolution is higher. 

After the first colorization step we can proceed in 

another two ways, either we continue using the HSV 

variant or the RGB variant of MSTS. 

In figure 6 the result from the subsequent upscalings 

are shown. Here we have been using the HSV 

approach all along. It appears like the bottom texture 

has a more spotty appearance compared to the more 

homogenously coloured texture in the top. Obviously 

the on-the-fly uspcaling introduces a noisy behaviour 

and it is better to upscale a colourized texture twice. 

Besides that, the textures are quite equal in 

appearance. 
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Figure 6. Top: the colourized wall HSV upscaled 

twice. Bottom: the colourized and on-the-fly HSV 

upscaled wall is then HSV upscaled once. 

 

It should be noted that the V channel has been scaled 

with a small factor since the output was a bit darker 

compared to the original colour in the exemplar 

texture.  

Next we go on to examine what happens if we would 

use the RGB variant for the subsequent steps and the 

result is shown in figure 7. It is quite hard to tell any 

difference in quality within the bricks, however the 

bottom images seem to have a less tendency to smear 

out details so that bricks become connected when 

there is just one or two pixels containing the mortar 

or when the border between bricks is quite fuzzy due 

to the low resolution. Therefore it seams like on-the-

fly upscaling is to prefer when using the RGB-MSTS 

of the colorized textures but not for the HSV-MSTS. 

 

Figure 7. Top: the colourized wall upscaled twice. 

Bottom: the colourized and on the fly upscaled 

wall is upscaled once. 

 

Furthermore it can be noticed that the smearing out 

does not really occur at all when using the HSV-

MSTS all along. 

A close up of another target texture showing the edge 

of a brick arch, that has been upscaled so it is 16 

times larger is shown in figure 8.  

 
Figure 8. Left: the colourized wall upscaled twice. 

Middle: The original greyscale Right: The on-the-

fly upscaled wall is upscaled once. 
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Figure 9. Top: the colourized wall upscaled twice. 

Bottom: the colourized and on the fly upscaled 

wall is upscaled once. 

 

It is clear from the comparison that the on-the-fly 

upscaling generally gives a better result for greyscale 

textures with relatively low resolution as has been 

used in our tests. The same conclusion can be drawn 

from figure 9 and 10 where the other two test textures 

are shown (see also figure 5).  

It should be remembered that even of the bottom 

textures are better they are not perfect and that is due 

to the extremely low resolution of the target textures 

used in our tests in order to test if the algorithm 

works for extreme cases. And therefore using higher 

spatial resolution will give even better results. It 

should also be noted that artefacts to great extent 

come from the fact that the matching was bad in these 

areas. 

 

Figure 10. Top: the colourized wall upscaled 

twice. Bottom: the colourized and on the fly 

upscaled wall is upscaled once. 

 

This depends on too large differences in the image 

content between the target texture and the examplar. 

This could to great extent have been avoided using 

pre-processing of the images in order to normalize 

the intensities so that the impact of the flash etc is 

removed. 

The tests were all performed in software and as we 

used rather small images time was not an issue. 

However, as shown in [Has09] we have implemented 

a fast version on the GPU and a parallel 

implementation on a HPC cluster is on the way. This 

will allow us to develop the idea further and make 

more thorough tests on larger images. 
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4. CONCLUSIONS 
We have shown that colorization and upscaling of 

low resolution greyscale images can be performed 

using the recently published HSV-MSTS approach, 

using small masks like in our example a size of 3x3. 

Our tests also indicate that subsequent upscaling will 

become visually slightly better using RGB-MSTS and 

that on-the-fly upscaling is to prefer for this case. 

Future Work 
In the future we intend to develop the HSV-MSTS 

approach where one important task is to compare 

other colour spaces like the HSL and the lαβ-colour 

spaces. Another important task is to work on real 

vintage photos for colorization and upscaling. 
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ABSTRACT

Among navigation techniques in Virtual Environments (VEs) physical walking is most natural and intuitive. If we look at the
performance of users in a CAVE though, we notice that they almost never leave their starting point. In this paper we investigate
how walking can be stimulated for navigation in a CAVE. However, our goal is not merely to mimic walking as such – as in
most approaches – but rather to encourage users to take advantage of the entire tracking space at their disposal. We combine our
proposed walking elements with other components to create new metaphors for navigation in VEs and compile the evaluation
carried out during our thorough, informal test phase.

Keywords: interaction techniques, CAVE, navigation, travel task, walking

1 INTRODUCTION

Being one of the primary interactions in Virtual En-
vironments (VEs), navigation has been an area of in-
tensive research since the beginnings of virtual reality.
Hence a vast literature and many approaches for naviga-
tion in VEs exist. It is clearly true that physical walking
is one of the most natural and intuitive ways to navigate
(cf. the study by Ruddle et al. [11]). If we look at the
performance of users (expecially novices to the system)
in a CAVE however, we notice that they mostly seem
to be pinpointed to the ground, almost never leaving
their starting point even if the system offers an adequate
space to move in. In this paper we investigate walking
techniques that motivate the user to take advantage of
the entire tracking space at their disposal. We combine
these ideas with other navigation elements to create new
metaphors for navigation in VEs. Here we concentrate
on navigation in a CAVE with its easy and relatively
unimpeded possibility for physical movement tracking
(e.g. no cables or backpacks). The starting point for our
research was to design navigation techniques for the ex-
ploration of machine models in a CAVE, that are mod-
erately larger than the available physical volume. Dur-
ing our investigation we have developed a whole set of
navigation techniques suitable for different travel tasks
which we present here. Moreover we consider walk-
ing as a tool for building effective travel techniques and
encouraging this natural movement. Our contribution
consists in extending existing taxonomies by integrat-
ing the walking metaphor both in the theoretical con-
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cept as well as providing concrete practical travel tech-
niques.

It is important to have our technical setup in mind
since it is vital for our modes of navigation: We use a
five-sided CAVE (only back side is missing) with rect-
angular back projection and a resolution of 1600x1200
pixels on screens of 3.6 meter length and 2.4 meter
height each. This means, that the side walls exeed the
floor and the ceiling projection. The stereo effect is
achieved using the INFITEC filter technique. Tracking
of the user is done via an infrared camera setup from
ART with retroreflective markers on trackable objects.
Examples are the master INFITEC glasses for tracking
the main user’s head position and orientation (which
we take for the position of the user) or a flightstick –
a 6DOF device with additional buttons.

The remainder of this paper is organized as fol-
lows: first we give an overview of relevant existing
approaches concerning navigation in a CAVE and
classify our contribution. Next we recapitulate the
basic concepts of a taxonomy for navigation. After-
wards we describe our navigation elements separately,
combining them to whole navigation techniques in
the following section. Finally we give an overview of
user experience with the new navigation techniques,
summarize our contribution, and give an outlook to
future investigation.

2 RELATED WORK
Concerning navigation techniques, Anthes et al. [1] dis-
tinguish between movement vector and gaze orientation
and give a host of models for each one. Tan et al. [13]
propose a rather complex task-based taxonomy. Based
on what the user is supposed to do in the VE (task se-
lection) the designer develops an abstract solution to the
problem (travel control) within the boundaries of avail-
able hardware and similar restrictions (user interface).
In this paper we work the other way around, using the

WSCG 2010 Communication Papers 63



travel tasks described in [4] to evaluate our travel tech-
niques in the end (see section 3).

There has been extensive research into walking in-
terfaces, offering a multitude of different approaches in
order to overcome the physical limits of the restricted
space of interaction. However, all remain single stand-
ing solutions, none of them relating their technique to
a high level taxonomy. Moreover their goal generally
seems to be to mimic walking as closely as possible
within the confines of a small tracking space.

A common approach for building walking interfaces
is to introduce specialized hardware. Darken et al. [5]
proposed an omni-directional treadmill, using two per-
pendicular treadmills to allow travel in any direction.
Jiung-yao et al. [9] developed the gait sensing disc, an
’omni-directional ball-bearing disc locomotion device’.
The CirculaFloor by Iwata et al. [8] uses movable tiles
to achieve the same effect. None of these approaches
however work well in a CAVE environment: Since
here, in contrast to an HMD scenario, the user is still
aware of his real world surroundings, additional visible
hardware severely detracts from his sense of presence
while also blocking at least part of the floor projection.

Another solution is to let the user mimic walking
while actually staying in one place. Slater et al. [12] use
a neural network to determine when the user is walk-
ing in place. In this approach the direction of travel
is derived from the direction of the user’s gaze while
walking-in-place serves as the trigger for movement.
The study concludes that Walking-in-Place yields a
higher sense of presence than a pointing technique.
Still, a later study (Usoh et al. [14]) pointed out ’[...]
that real walking is significantly better than both virtual
walking and flying in ease (simplicity, straightforward-
ness, naturalness) as a mode of locomotion.’ We do not
think Walking-in-Place is particularly well suited for
CAVEs since it tends to anchor the user in one place dis-
couraging natural movement inside the projection space
– a fact that we explicitely address in this paper.

Another answer to the problem of limited tracking
space is the addition of translational or rotational gains
to the user’s movements in order to scale the virtual
space or redirect the path the user is taking through the
VE. Engel et al. [6] use a real-time controller to deter-
mine rotational gains on the fly and use these to redi-
rect the user. However, since a CAVE is much smaller
than the size of their tracking space (9x12 meters), this
approach is not feasible for us. Interrante et al. [7]
propose a metaphor of Seven League Boots similar to
one of our ideas. Here, the covered walking distance
is scaled in the VE but only in the direction the user
is intending to walk. This is done by a weighted sum
of gaze and walking direction. A study by Williams et
al. [15] investigated how different translational gains
affect performance for such techniques. They conluded

that even the highest tested gain (10:1) did not have a
significant effect on errors or latency.

An approach especially designed for the CAVE is
’Redirected Walking in Place’ by Razzaque et al. [10].
In order to avoid the user looking at the very often inex-
istent back wall and keep him turned towards the front,
the rotation of the VE is constantly changed to com-
pensate for the user’s movements. This approach relies
heavily on the user not making abrupt turns and not re-
alizing that he is being made to turn by the simulation.

3 BASIC TOOLS
Bowman et al. [3] presented a task decomposition con-
cept for the classification of travel techniques. Since it
is relevant for our contribution and – in our eyes – a
good starting point for designing interaction techniques
and analyzing them, we here state the main ideas of this
taxonomy. They divided the travel task into three sub-
tasks:

• Direction or target selection specifies how or
where the user moves,

• Velocity/acceleration selection specifies the speed
control,

• Condition of input specifies how the travel is
started, continued, and terminated.

In each subtask the developer can choose from a variety
of possible components to form a complete travel tech-
nique (see figure 1). All in all Bowman et al. present

Figure 1: Taxonomy of travel techniques with travel
subtasks (taken from [3]).

four different taxonomies to gain more complete un-
derstanding of the tasks and the techniques involved.
However, none of these should be considered ’the cor-
rect one’. The one we have chosen presents the view on
different components to form a whole technique.
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4 EXTENDING THE TAXONOMY
When developing their taxonomy Bowman et al. ex-
plicitly do not take physical motion into account. Con-
sequently we will describe in our first step how walking
could be used in each component of the above taxo-
nomy(for overview see figure 2).

Figure 2: Extended Taxonomy with suggestions for
walking interfaces

4.1 Direction/Target Selection
Generally speaking, there are two methods to determine
the direction of travel via walking – direct and indirect.

In indirect approaches walking is only the means to
reach certain key positions. The actual travel direction
or target depends on the position of the user. A simple
example are virtual transporter pads: if the user steps
onto one he is automatically flown or teleported to his
target. Of course this leaves him with little actual con-
trol. One might also assign certain directions of travel
to certain positions or regions in the tracking space.
In one of our techniques we assigned the direction of
travel to each edge of the CAVE, respectively.

The direct approach records the actual movement di-
rection of the user and applies it to the direction of
travel in the VE. This works well as long as there is
enough tracking space in the direction one wishes to
travel. However, if the user is standing right beside a
projection screen he will not be able to travel in this
direction without first correcting his position. On the
other hand, this approach allows for very natural rela-
tive travel (travel parallel to a reference point), because
the user can look around freely while moving in another
direction.

4.2 Velocity/Acceleration Selection
The first thought for a technique would be to use the
speed of the user’s movement to control the speed of
travel. But since it is hard to estimate your own veloc-
ity, especially while the virtual world is being moved
around you, we don’t think this idea holds much poten-
tial, especially inside the cramped tracking space of a
CAVE.

A more promising way to determine the speed of a
travel technique through walking is to measure the dis-
tance from a specific point of interest (starting/reference
point) to the actual position of the user. For example the
velocity might increase if the user walks away from the
center of the CAVE. Of course the starting point does
not need to be fixed. One can also take the position of
the user as a reference point when the technique is trig-
gered. However, the longer the technique is active the
higher the probality the user loses orientation and is un-
able to intuitively decelerate by walking back to where
he came from.

4.3 Input Conditions
Walking can be used directly or indirectly to start or
stop a travel technique. Indirectly by having the user
move to or stand on special trigger points in the tracking
space, and directly through movement itself. For exam-
ple, a travel technique might be initiated or aborted by
taking a step forward or backward respectively. How-
ever, since with this concept every movement would be
considered a potential trigger, it effectively anchors the
user in one spot – a problem we wanted to avoid. A
travel technique might also be active as long as the user
is actually walking around. For techniques that amplify
movement this is a naturally occuring input condition
(see our first proposed navigation technique in the next
section).

5 NAVIGATION TECHNIQUES FOR A
CAVE

Having expanded our toolbox with new walking ele-
ments, we now combine old and new elements of the
taxonomy to give examples for new navigation tech-
niques. These are intended to encourage users to move
around inside the tracking space of a CAVE, opening
the possibility for more intuitive navigation in a limited
space of interaction.

5.1 Seven-league boots
Our first navigation technique is an exaggerated move-
ment technique similar to the Seven League Boots pro-
posed by Interrante et al. [7]. The user travels by walk-
ing around but his tracked movement in the real world
is scaled to allow him to cover greater distances in the
VE. To this end, we simply multiply the difference be-
tween the user’s position in two successive frames by a
(variable) gain.

Concerning taxonomy in this case we use movement
direction to determine the direction of travel. Two input
conditions have to be met for the travel technique to be
active. First the user has to hold down a button while he
is using the technique. Secondly he has to move around
in order to get the desired effect. Of course one might
consider the user’s movement the only input condition
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Figure 3: Automatic calculation of gain using virtual and walkable distance in our Seven-league boots technique

but this would make normal or even downscaled preci-
sion movement (without gain / not pressing the button)
impossible (cf. exploration, search vs. maneuvering in
section 6).

In this technique the velocity of travel is directly de-
pendent on the user’s velocity and the gain used to scale
the movement. The easiest way to determine speed is
to just assign a fixed value to the gain. Of course with a
gain that is too small one constantly has to double back
inside the tracking space in order to travel a significant
distance in a specific direction. If the gain is too high
one risks reaching points far beyond the actual content,
making exact travel to a specific target nearly impos-
sible. One could try to give dynamic speed control to
the user via hand input (e.g. velocity scales with the
distance from the hand to the body) or even by taking
walking speed into accout. But since it is hard for users
to get a good feeling for distance and speed in VEs this
could easily overburden them.

Instead we propose to automatically calculate and set
the gain every time the technique is triggered. The goal
is to automatically allow the user to walk to every point
in the VE at every time no matter where his starting
position might be. To achieve this two variables have
to be taken into account (see figure 3). The first is the
distance from the user’s position to the ’edges’ of the
VE. Secondly one has to account for the user’s posi-
tion inside the CAVE itself i.e. the distance the user can
freely walk before hitting a projection screen. We now
take the ratio of virtual and walkable distance for every
direction as gain whenever the technique is triggered.
If the user is standing very close to a wall, the corre-
sponding direction is not considered because of the po-
tentially unnaturally high gain owing to a very small
trackable distance. Of course we also assumed that the
user does not intend to walk into a wall.

In particular for rooms or objects that are slightly
larger than the tracking space of the CAVE we think
this approach is very promising because the gains tend
to remain near the value one. For example, previewing
the design of a new car or construction machine can eas-
ily be accomplished with this technique even though its
dimensions are generally larger than the 3.6 x 2.4 me-
ters of our CAVE. We will report on users’ experience
in the next section.

5.2 Other techniques
While we think the Seven-league boots are the most
highly developed of our techniques, there are other
ideas that warrant further investigation.

In our scrolling technique we used walking solely as
the trigger for movement. Whenever the user steps near
a projection wall (e.g. less than one meter distance –
see figure 4) he starts to travel with constant speed in
the direction of the wall. Much like scrolling with the

Figure 4: Area the user has to stand in to initiate travel
in our scrolling technique
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mouse on a desktop (often applied in computer games)
the user can ’scroll’ the VE by stepping to the appro-
priate side. Unfortunately this can become tedious very
fast, especially if the speed of the travel technique is
high. If you overshoot your target you have to move to
the opposite side to reverse the direction. In case that
happens more than once the user gets tired or irritated
very quickly.

Hence we modified the above technique by using the
direction of his gaze as the travel direction. This ap-
proach has two advantages. Areas of the tracking space
that are otherwise rarely visited are assigned a practi-
cal use. Furthermore, the only input condition for this
technique is the position of the user, leaving hands and
possible input devices free for other actions. However,
one should somehow visualize the area (eg. on the floor
or as a virtual transparent curtain in space) that triggers
the technique to avoid having it triggered by accident.

The directed stepping technique also uses movement
to determine direction. However, it does not depend
on continuous input. By taking a step in any direction
while holding down a button the user can trigger tra-
velling in that direction with a constant speed (see fig-
ure 5). Whenever he steps in another direction while
the technique is active the direction of travel is changed
accordingly. This allows for very fast, albeit potentially
disconcerting course corrections. The user can instan-
taneously reverse direction by simply stepping in the
opposite direction.

Figure 5: directed stepping – a step in a direction trig-
gers movement in that direction

6 RESULTS
In order to analyze our results we again refer to Bow-
man et al. [4] who distinguish three main travel tasks:

• Exploration: Browsing the environment without a
goal, obtaining information about the objects and lo-
cations within the world. This task is typical for (but

not limited to) the beginning of an interaction with
an environment.

• Search: Travel to a specific target location.

• Maneuvering: Subtle positioning (e.g. of the view-
point) in a local area with precise movements in-
volved.

We here analyze our techniques in relation to these
three task types, while also taking into account factors
like size or structure of the VE.

Exploration of small to medium sized VEs was our
main goal when designing Seven-league boots. The
idea was to give a designer or mechanical engineer an
easy to use tool to examine models of cars or machines
in the CAVE that do not fit in the captured volume. To
that end the technique proved to be uniquely effective.
Generally it could be argued that this technique is well
suited for all three task types as long as the VE is rel-
atively small. Manoeuvering to exact locations is as
easy as literally walking there (with or without pressed
button, i.e. scaling gain). Since the technique is very
similar to a pure walking interface (like the one Ruddle
and Lessels [11] use) it stands to reason that searching
should be equally as effective. Moreover we have not
met problems with the scaling of the lateral movements
to result in excessive swaying, discomfiting feeling in
open space, and disastrous effects in case of closed
spaces reported in [7]. Some questions (in parts related
with the results in [7]) remain to be answered. One is
how well the performance of Seven-league boots scales
with the size of the VE. How high can the gain get be-
fore the technique becomes unusable? How does the
structure of the VE (e.g. object clutter) factor into this?

Our scrolling technique on the other hand is more
suited for travel in large VEs, especially if accuracy
and relative travel is not a concern. We observed that
most often the user walks to a trigger region in the di-
rection he wishes to travel even though he does not have
to since the determination of direction is based on gaze.
Since when starting travel he is generally looking at his
target this is still quite intuitive. However, we found
that actions like correcting the course after overshoot-
ing do not come naturally to most users. Furthermore
in our case, the user might have to stare at a projection
wall he is standing directly in front of, resulting in a
view of only a sea of pixels rather than a clear image.

Directed stepping is still work in progress and needs
further investigation. Especially with this technique,
the step length to change direction has to be chosen
carefully. If it is too short, small (unintentional) move-
ments of the body might render the technique unstable.
If it is too long starting travel at all might be virtually
impossible. Because this technique is much less de-
pendent on available tracking space it seems especially
suited for travel in larger VEs. Similar to pointing tech-
niques it allows for relative movement meaning the user
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can freely look around while travelling in any direction.
However it still has to be determined how this technique
performs for small course corrections during travel.

Finally we did not address the case of critical infor-
mation being located in the direction of the missing
back wall of the CAVE. We deliberately did not allow
for rotation of the VE in any of our techniques since we
wanted to keep them simple and not disorient the user.

In general we believe that navigation techniques
should be customized to the requirements of the
particular VE. We want to stress that walking should
not be overlooked in this design process, especially
when looking for a way to determine the direction of
travel (be it directly or indirectly). There is also some
potential for walking as an input condition. For now,
we did not find a satisfying way to use walking for
determining velocity and leave this open to further
research.

7 CONCLUSION AND FUTURE
WORK

We considered walking to be combined to new naviga-
tion techniques according to the taxonomy of Bowman
et al. [3]. We believe our extension of the taxonomy
can be a valid starting point for designing walking in-
terfaces. Especially in a CAVE such techniques allow
us to utilize the available tracking space as an addi-
tional input device. Of course the examples we gave for
the different components of the taxonomy are far from
complete. We still carry on with our research looking
at different ways walking can be used for navigation.

Moreover, the navigation techniques we proposed are
issue of further investigation. For the Seven-league
boots we plan to experiment with ways for segmenting
the VE into compartments to keep gains small while
using this technique. This might be done beforehand or
dynamically by the user. The scrolling technique might
work better with an alternative method for determining
direction. We also want to test different ways for rotat-
ing the VE (starting from the results of [10]) to make
up for the missing back wall of the CAVE.

After an informal testing phase in order to optimize
the techniques more generalized user tests for our dif-
ferent approaches have to be carried out to obtain more
objective results about their performance. By using
testbed evaluation as suggested by Bowman et al. [2]
we hope to gain important knowledge of how well our
navigation techniques work in relation to other options.
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ABSTRACT

We present a comparative study of ray tracing algorithms implemented on a GPU for three published papers using different
spatial data structures evaluated for performance on nine static scenes in walk-through animation. We compare the performance
for uniform grids, bounding volume hierarchies (BVHs), and kd-trees evaluated on a GPU for ray casting and Whitted-style ray
tracing. We show that performance of ray tracing with BVHs exceeds the performance of ray tracing with kd-trees for coherent
rays. Contrary, the ray tracing with kd-trees is faster than that with BVHs for incoherent rays. The performance of ray tracing
with uniform grids is slower than both ray tracing with BVHs and kd-trees except for uniformly populated scenes. We show
that the performance is highly sensitive to details of implementation on kd-trees.

Keywords: GPU programming, CUDA, performance study, ray tracing, uniform grids, kd-trees, bounding volume hierarchies.

1 INTRODUCTION

While modern graphics cards (GPUs) allow for gen-
eral computation in a parallel manner, one of the most
prominent applications for a GPU is image synthesis.
This is thanks to the inherent parallel nature of ray trac-
ing and other global illumination algorithms – the de-
composition of images into pixels provides a natural
way of creating individual tasks for many parallel pro-
cessors. Unlike the GPUs a few years ago, modern
ones allow us full programmability similar to general
CPUs, while the streaming computation model has its
own specific issues. This has to be taken into account
when adopting the data structures and traversal algo-
rithms for ray tracing on a GPU architecture.

In this paper we compare three formerly published
papers that implement ray tracing with spatial data
structures on a GPU. These are uniform grids [Pur02],
kd-trees [Hor07], and bounding volume hierar-
chies [Gün07]. While the algorithms were successfully
mapped to a GPU, their performance have not been
carefully compared on a current programmable GPU
architecture as a common implementation framework
was not available. In this paper we first present such
a comparison study dealing with efficiency of three
different data structures for ray tracing on a GPU. We
restrict ourselves to a static setting irrespective of the

construction time as the data structures are built offline
on a CPU for our tests. We show on a kd-tree that even
small changes to the implementation of traversal code
can lead to the significant change of performance.

This paper is further structured as follows. Section 2
summarizes the previous work of ray tracing on a GPU
and performance comparison of data structures for ray
tracing. Section 3 describes our choices for implemen-
tation. Section 4 shows the results from measurements
on two GPUs for a set of scenes. Further it discusses
the bottlenecks of a contemporary GPU architecture for
ray tracing algorithms. Section 5 concludes the paper
with possible prospectives for future work.

2 PREVIOUS WORK

In this section we review chronologically the most sig-
nificant papers that address mapping of spatial data
structures for ray tracing to a GPU. We discuss briefly
all three data structures of our interest: uniform grids,
kd-trees, and BVHs, while we avoid the discussion
of results on other computer architectures except for
a GPU as such surveys for CPU implementation have
been provided for example in [Wal07].

Uniform grids. The first ray tracing algorithm
mapped fully on a GPU has been published by Pur-
cell et al. [Pur02] and uses a uniform grid. Their
implementation mapped the computation by means
of shaders while their data resided in a texture. In
a concurrent work Carr et al. [Car02] present the
architecture of a software ray tracer on a GPU with a
focus on ray-triangle intersection with predefined BVH
hierarchy. The mapping of both mentioned approaches
had been influenced by architectural limitations.
Recently, Kalojanov and Slusallek [Kal09] presented

WSCG 2010 Communication Papers 69



the algorithm for parallel construction of uniform grids
on a GPU.

Kd-trees. A stack on a GPU with a low level of pro-
grammability was studied by Ernst et al. [Ern04] and
used for stack-based kd-tree traversal algorithm. Fo-
ley and Sugerman [Fol05] presented two algorithms
for kd-tree traversal without a stack. Their first algo-
rithm called kd-restart is in fact the algorithm published
by Kaplan [Kap85]. The second stack-less algorithm
called kd-backtrack requires the storage of the bound-
ing box and link nodes to its parent for every node of a
tree, which significantly increases the memory footprint
and hence it decreases performance. Both presented al-
gorithms increase the number of nodes traversed com-
pared to stack-based traversal algorithms. Another pa-
per by Horn et al. [Hor07] addresses the lack of lo-
cal memory to implement the stack much more effi-
ciently. They propose the use of a push-down and short
stack which can avoid most of the restarts of a traver-
sal from the root node. This is possible as ray tracing
with the kd-tree traverses only a few leaves on aver-
age. In concurrent work Popov et al. [Pop07] suggest
to use the augmentation of a data structure by neighbor
links among the nodes of a kd-tree. They even exceed
the performance of CPU-based ray tracers while they
achieve comparable performance as in [Hor07]. Fur-
ther, Zhou et al. [Zho08] proposed the algorithm for kd-
tree construction on a GPU. This method yields the per-
formance of kd-tree construction comparable to CPU-
based algorithms for kd-tree construction [She07]. This
can be used for dynamic scenes up to 200,000 triangles
to yield interactive performance.

Bounding Volume Hierarchies. Bounding volume
hierarchies (BVHs) were also successfully imple-
mented on a GPU. Thrane and Simonsen [Thr05] in
fact compare kd-trees, uniform grids, and bounding
volume hierarchies implemented on a GPU (hardware
of year 2005). They conclude the performance of
BVHs is low, however higher than the performance
of other two data structures when no ray packets are
used. Carr et al. [Car06] implemented a variant of
BVHs in combination with geometry images. Günther
et al. [Gün07] use ray packets and yield interactive
performance comparable or exceeding CPU-based
implementation, but only for primary and shadow
rays. Recently, Lauterbach et al. [Lau09] present
an algorithm for fast BVH construction on a GPU,
where they report performance comparable to kd-
trees [Zho08] only for one scene. Recently, Torres et
al. [Tor09] published an algorithm for stack-less BVH
traversal, where the use of stack is replaced by ropes
connecting the nodes of a BVH in a sibling order. Very
recently, Aila and Laine [Ail09] analyze the efficiency
of various CUDA kernels for ray tracing with BVH
(This paper is not included in our study as our research
was completed in January 2009 in [Zla09].).

Comparison. For algorithms on a CPU it is believed
that the hierarchical spatial data structures (both kd-
trees and BVHs) built up in a top-down fashion yield
similar performance. A decade old study by Havran et
al. [Hav00] provides thorough performance comparison
of twelve data structures implemented on a CPU. More
recently Havran [Hav07] discusses the similarities and
differences of top-down constructed spatial hierarchies
(kd-trees and BVHs) and uniform grids. He argues that
while kd-trees and BVHs have very similar properties
as they can be mutually emulated in a constant time and
space, uniform grids can outperform hierarchical data
structures only for uniform distribution of objects in the
scene.

To our best knowledge a proper recent experimental
comparison of different ray tracers on a modern pro-
grammable GPU (year 2008 and 2009) has not been
available. We would like fill the gap by our paper for a
current GPU architecture (CUDA) of NVidia for a static
scene setting (walk-through).

3 ALGORITHM IMPLEMENTATION

We have implemented a standalone compact program
that does not need the support by other 3rd party li-
braries. The program implements a parser for scene for-
mat PLY, format BART [Lex01], and subset of Open In-
ventor format. While the data structures are built offline
on a CPU, the created data structures are transferred to
a GPU and used for ray tracing algorithm entirely on
the GPU. To study the efficiency of shooting rays using
different data structures this methodology is sufficient.
The traversal algorithms and shading on the GPU were
implemented using NVidia CUDA [PRG08].

The geometry of a scene consisting solely of trian-
gles is represented by a list Lv of vertices and list of
materials Lm, where each triangle has a list of three in-
dices to Lv plus an index to the Lm. We tested also the
variant where each triangle is represented directly by
three vertices, however the memory consumption was
increased with the negative impact to the performance.
Shading is implemented via simple Phong model and is
included in timing. The program can run in two modes
- for measurement purposes and with GUI. Since we
released the source code to public, we do not discuss
many tiny but often relevant implementation details in
this paper. Our paper serves as the summary of the Mas-
ter Thesis [Zla09], where many details are stated, deci-
sion choices for that particular solution are discussed,
and several unsuccessful attempts to improve the effi-
ciency of algorithm implementations are described.

Below we describe the selected details of our imple-
mentation for uniform grids, kd-trees, and bounding-
volume hierarchies.
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3.1 Uniform Grids

The implementation of uniform grids loosely follows
the paper [Pur02], with the traversal algorithm de-
scribed in [Ama87]. The implementation is easier as
CUDA is used instead of shaders. To decrease the
number of registers we used a constant cache to store
the values that do not change such as the direction
and origin of the ray and precomputed values for 3D
DDA traversal. This allows us to save five registers and
get better occupancy [PRG08]. The threads have to
be synchronized to compute the intersection with the
triangles in the cells. The threads for the rays that do
not intersect any cell with triangles are idle.

We tried to optimize the traversal algorithm by shar-
ing the load of rays with many ray-triangle intersec-
tions with rays that do not need to compute many ray-
triangle intersections. This required the rescheduling of
the computation during the visit to the cell. However
the resulting algorithm was several times slower than a
simple algorithm, where some threads become inactive
either when the computation is finished or a ray inter-
sects an empty cell. Further, we also tried to imple-
ment packet tracing [Wal06] on a GPU. Although the
pilot implementation has a uniform access to the mem-
ory and common branching, it resulted in an increased
number of cells that were traversed. As a result, for
packet of size 8× 8 and for packets of size 4× 4 the
performance was substantially decreased compared to
the simple implementation.

3.2 Kd-Trees

Kd-trees were built with surface area heuristics accord-
ing to the sampling approach described in [She07].
Internally, each node of a kd-tree is represented by
8 Bytes, using the compact representation described
in [Wal01].

We have been experimenting with several traversal
algorithms and finally we decided to use a short stack
traversal [Hor07] with four entries to compromise be-
tween number of traversal steps and occupancy. The
stack is stored in shared memory. We aim at minimizing
the conflicts in the shared memory as the threads for the
rays are computed rather independently. We show the
performance of two versions of kd-tree traversal code
which illustrates the performance of very similar solu-
tions. Initially, we stored three values to the short stack
- “mint, maxt, and node address”. However, we can de-
crease the size of stack entry to only two values, as for
the farther node traversed the mint is equal to maxt for
the node we just traversed. This changes the occupancy
and performance as we show in Section 4. The traversal
algorithm referred to as kdt-3 stores three values to the
stack, while the algorithm kdt-2 stores only two values
to the stack.

3.3 Bounding Volume Hierarchies
The BVHs were built in top-down fashion with surface
area heuristics using the centroids of bounding boxes
for scene triangles, following the paper by Günther et
al. [Gün07]. As a BVH does not need to store the mint
and maxt values along the ray, only the node address
is saved to the stack. For packet traversal, the stack can
be shared by all the threads in a packet, which increases
the utilization of the resources. The stack does not need
to be shortened to only several entries, which minimizes
the number of traversal steps. The stack is similarly to
kd-trees stored in shared memory.

The order of traversal among several threads is re-
solved by a concurrent write to the shared memory,
where four memory entries are first initialized to zero.
Each thread then writes the preference to one of four en-
tries, value one for one of the four cases: traverse left,
traverse right, traverse both, traverse none. The serial-
ization of write operation may occur as threads record
their information.

When rays diverge, the traversal continues to the
node where most of the rays need to traverse. This
is implemented by parallel reduction using auxiliary
memory with one entry for each thread. Each thread
writes either -1 when a left child should be visited as
first, 0 for no preference, and 1 for the right child. The
decision which first node should be traversed is then re-
solved by parallel reduction – the most node wanting to
be traversed by most of the rays is visited as first while
the other node is stored to the stack. When a thread
does not need to visit any node, the node stores simply
0 as a preference. This is different from the algorithm
described in [Gün07] and this change increases the per-
formance for secondary rays by up to 20%. The disad-
vantage of BVH compared to kd-tree is the increased
memory space required by the BVH node representa-
tion, it is 32 Bytes, which is 4 times higher than for a
kd-tree node. However, it is compensated as the num-
ber of nodes and object references is strictly limited by
the number of objects, so the storage of the whole BVH
is typically smaller than the one for a kd-tree.

4 RESULTS
In this section we describe the results for measure-
ment on nine scenes. To provide more variability to
testing, we used three scenes of individual objects
courtesy of Stanford scene repository, three scenes
from BART [Lex01] (camera animated, objects not
animated), and three other general interior architectural
scenes. The rendered images of all scenes are shown
in Figures 3, 4, and 5. These scenes are frequently
used to test the performance of ray tracing and global
illumination algorithm, the BART scenes [Lex01]
scenes were designed for benchmarking of ray tracing.

To decrease the view dependence of results, we cre-
ated a static walk-through animation for each scene of
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length 400 frames. All the performance results in this
paper were measured on a GPU NVidia GeForce GTX
280 (June 2008), which has compute capability 1.3,
240 multi-threaded processor cores on 600 MHz, and
1 GByte of memory with a bandwidth of 141.7GB/sec.
We also measured the results on an older, low-level
GPU, an NVidia GeForce 8600GT (April 2007), where
we got between 1/10 and 1/6 of the performance for the
NVidia GeForce GTX 280.

The static properties of data structures for all nine
scenes are shown in Table 1. The average computa-
tion time for the animation for a frame is shown in
Table 2 for three settings: (1) shooting only primary
rays, (2) primary and shadow rays, and (3) Whitted-
style recursive ray tracing with two bounces for sec-
ondary rays. The occupancy for three scenes is shown
in Table 3 for different settings of compilation in depen-
dence on the number of registers where the maximum
rendering times are reported. The results demonstrate
that both the setting and the use of either three or two
values stored to the traversal stack for a kd-tree have
remarkable impact on performance. The dependence
on the resolution is shown in Figures 1 and 2 for scene
Dragon and Robots. More detailed results and eval-
uation can be found in [Zla09].
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Figure 1: The dependence of computation time[ms] on
resolution for scene Dragon for different resolutions.
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Figure 2: The dependence of computation time[ms] on
resolution for scene Robots for different resolutions.

Discussion
While an interested reader can draw his/her own con-
clusion from the numbers in tables, let us provide our

interpretation of the measured data. As we tested the
performance on two different architectures (G80 and
GT200), we can report: the progress of hardware was
the most beneficial for the performance increase of a ray
tracing with uniform grids. Similarly to the implemen-
tation on a CPU, the performance of uniform grids is
superior only for uniformly populated scenes (Bunny,
Dragon, and Buddha).

The (packet) ray tracing with BVH of incoherent
rays is memory bound but is relatively well masked
by switching threads. However, BVH has higher
performance for (coherent) primary and shadow rays.
This is in concordance with the results of Günther
et al. [Gün07]. For traversing individual diverging
(incoherent) rays such as secondary reflected rays in
path tracing, the performance of BVH significantly
deteriorates.

For diverging rays the kd-tree with its own short stack
for each ray (thread) is a more efficient solution. The
small size of each kd-tree node decreases the data traffic
between memory and the processor cores. The bottle-
neck for the kd-tree traversal is a lack of larger local and
fast memory for the stack implementation. The increase
of local memory should lead to higher performance for
upcoming GPU architecture(s).

As the performance of GPU ray tracing is depen-
dent on many details in the implementation, this
paper is accompanied by the source code available
at: http://dcgi.felk.cvut.cz/members/
havran/rtgpu2009/. We hope that the released
source code can be further utilized in rendering
applications and performance studies in future.

5 CONCLUSION AND FUTURE
WORK

In this paper that serves as a summary of [Zla09] we
have described a performance study comparing ray
tracing implemented with CUDA on modern GPU from
NVidia. We optimized the implementation for three
data structures and traversal algorithms for ray tracing
and compared the performance obtained from measure-
ments for nine scenes for shooting primary rays, ray
casting with shadow rays, and recursive Whitted-style
ray tracing. The performance differed for coherent
rays, where the bounding volume hierarchy is the
winner, and for incoherent rays, where kd-trees seem to
be more efficient on average when implemented using
the short-stack as suggested by Horn et al. [Hor07].
However, the performance of ray tracing algorithm on
a GPU is sensitive to many implementation details,
likely due to the relatively small local cache on GPU
architectures.

As future work, the implementation could be ex-
tended by several other data structures that can be ef-
ficiently mapped to a GPU architecture. The measure-
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scene grid kd-tree BVH
# # Grid size #refs size #trav. #int. #leaves #refs size #trav. #int. #leaves size #trav. #int.

triangles lights [MB] steps tests [×103] [MB] steps tests [×103] [MB] steps tests

Bunny 69451 1 83×82×64 3.7 8.3 47.4 37.2 154 5.5 9.2 54.0 12.3 23.0 2.84 52.1 8.0
Dragon 871414 1 273×193×122 3.1 103.1 117.3 45.5 978 2.3 58.5 68.8 10.4 295.0 35.8 114.1 28.0
Buddha 1087716 1 128×312×129 2.8 102.1 100.8 43.1 1265 2.5 76.5 64.3 8.8 389.0 44.7 130.9 30.9
Robots 71708 1 128×209×268 19.2 79.9 40.4 66.5 82 6.6 12.7 30.5 8.8 25.0 6.1 30.6 3.5
Museum 14380 2 71×43×106 9.5 5.1 60.2 33.6 26 4.5 2.0 19.2 6.7 4.6 0.9 40.1 3.9
Kitchen 110559 4 254×128×256 14.1 89.3 154.8 12.7 164 3.9 11.2 6.3 1.0 36.4 4.9 40.0 5.2
Theatre 53832 2 172×135×60 23.0 31.4 56.6 37.9 124 8.6 10.9 17.4 5.4 17.7 3.3 33.1 3.7
Office 36310 3 93×55×93 6.5 7.9 73.9 71.6 55 6.4 5.1 11.2 4.4 11.1 11.5 30.5 4.9
Conference R. 298866 2 387×246×93 10.3 121.3 165.7 31.5 338 8.7 51.6 14.3 4.8 97.9 14.5 34.6 5.9

Table 1: The properties of the test scenes and the spatial data structures built up for them. The general properties
include number of triangles and light sources. For each data structure we report the number of leaves/cells. #refs
corresponds the average number of references to objects in leaves. The storage for the data structure is given in
MBytes. The number of intersection tests and traversal steps are reported for primary and secondary rays, the other
results are in [Zla09].

primary rays primary and shadow rays primary, shadow, secondary rays
time[ms] time[ms] time[ms]

grid kdt-3 kdt-2 BVH grid kdt-3 kdt-2 BVH grid kdt-3 kdt-2 BVH

Bunny 16.0 41.6 31.5 13.8 27.4 61.7 52.1 27.0 — — —- —-
116% 301% 228% 100% 53% 118% 100% 52% — — — —

Dragon 40.2 55.9 42.3 39.0 73.3 86.0 73.4 80.0 — — —- —-
103% 143% 108% 100% 100% 117% 100% 109% — — — —

Buddha 34.6 45.6 34.2 36.8 69.1 73.5 62.9 81.8 — — —- —-
94% 124% 93% 100% 110% 117% 100% 130% — — — —

Robots 27.3 20.5 16.2 25.9 53.8 35.6 30.1 50.0 89.0 43.8 38.7 64.3
105% 79% 63% 100% 179% 118% 100% 166% 230% 113% 100% 166%

Museum 25.0 46.2 35.7 20.0 68.3 86.2 73.4 53.2 168.5 184.1 162.4 163.7
125% 231% 179% 100% 93% 117% 100% 72% 104% 113% 100% 101%

Kitchen 41.6 40.5 31.9 29.3 209.6 130.0 110.8 138.8 442.8 244.4 214.3 403.9
142% 138% 109% 100% 189% 117% 100% 125% 207% 114% 100% 188%

Theatre 43.1 42.3 33.1 34.3 119.7 87.3 74.3 93.6 379.7 201.6 177.5 292.1
126% 123% 97% 100% 161% 117% 100% 126% 214% 114% 100% 165%

Office 52.9 44.1 34.2 22.7 218.6 116.1 101.5 87.9 224.0 120.1 107.7 94.2
233% 194% 151% 100% 215% 114% 100% 87% 208% 112% 100% 87%

Conference 83.2 83.7 66.2 28.9 228.2 153.0 132.7 85.2 292.8 — — 114.1
Room 288% 290% 229% 100% 172% 115% 100% 64% (257%) — — (100%)

Average[%] 148% 181% 140% 100% 141% 117% 100% 104% 193% 113% 100% 142%

Table 2: Average computation time for a frame [ms] for three settings rendered in resolution 1024×1024 for
rendering 400 frames animations: (1) primary rays only (2) primary and shadow rays (ray casting) (3) primary,
shadow, and secondary rays for recursion depth two (one primary ray per pixel). For individual objects (Bunny,
Dragon, and Buddha) the setting (3) is meaningless. There was not enough memory for scene Conference
Room to compute the recursive ray tracing with kd-trees. Timing includes also shading by Phong model. kdt-
3/kdt-2 stands for storing 3 or 2 values to the stack during traversal.

ments and observations can provide interesting feed-
back to architects of graphics hardware in future.
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Figure 3: Stanford scenes: Bunny, Buddha, Dragon.

Figure 4: BART scenes: Robots, Museum, Kitchen.

Figure 5: MGF scenes: Theatre, Office, Conference Room.
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ABSTRACT 
This paper presents a novel seeding strategy for streamline visualization of 2D vector field. The main idea of our 

approach is to capture the spatial-varying features in a vector field. Generally speaking, we measure the 

difference between the inflow and the outflow to evaluate the local spatial-varying feature at a specified field 

point. A Difference-Contribution Matrix (DCM) is then calculated to describe the global appearance of the field. 

We draw streamlines by choosing the local extreme points in DCM as seeds. DCM is physics-related thus 

reflects intrinsic characteristics of the vector field. The strategy performs well in revealing features of the vector 

field even with relatively few streamlines. 

Keywords 
Seeding strategy, Streamline, Difference-Contribution Matrix 

1. INTRODUCTION 
Vector fields are commonly used in many scientific 

and engineering domains, such as astronomy, 

aeronautics, and meteorology. Visualization of vector 

fields is important for properties analysis. The most 

common approaches include geometry-based, 

texture-based, feature-based, and streamline-based 

approaches. 

Geometry-based approaches, such as arrow and 

hedgehog plots, give a visual perception of local flow 

feature. 

Texture-based methods give a dense representation 

of the vector field. However, they can‟t provide 

visual focuses on significant information of vector 

field and obtain visually pleasing images requires an 

intrinsically huge computational expense. 

Feature-based visualization approaches seek to 
compute a more abstract representation that already 

contains the important properties in a condensed 

form and suppresses superfluous information. 

Anyway, the feature is always not easy to be 

extracted. 

The most popular flow visualization method in use 

today is still streamlines and those derived from 

streamlines because they provide sparse visualization 

that focus on significant structures and can be 

combined with other visualization techniques. 
Furthermore, they are faster to compute and can be 

rendered at any resolution at interactive rates. 

The quality of visualization of the streamlines highly 

relies on the seeding strategy, which includes seed 

location and a length of each streamline. In other 

words, it‟s very important to select a set of 
streamlines to represent the vector fields 

comprehensibly and completely. On the one hand, 

placing too many streamlines can make the final 

images cluttered, and hence make it more difficult to 

understand the data. On the other hand, we may miss 

important flow features if too few streamlines placed. 

An ideal streamline seed placement algorithm should 

be able to generate visually pleasing and technically 
illustrative images.  

There are several seeding strategies developed in the 

past years, such as evenly-spaced streamlines 

algorithm [Liu06], and feature-guided algorithm. A 

criteria of seeding strategy is proposed by Verma et 
al. [Ver00]. Coverage, no important features of the 

vector field should be missed and the streamlines 

should cover the whole domain; Uniformity, the 

distribution of streamlines should be more or less 

uniform across the domain; Continuity, long 

continuous streamlines are preferred over short ones. 

In this paper, we define a Difference-Contribution 

Matrix (DCM) as a metric for flow features. We 

propose a novel 2D streamline seeding strategy 

according to the DCM. Suppose a region including 

inflow and outflow shown in Figure 1, there is cross 

interface between the flow and the region. If the area 

of inflow interface is not the same as that of outflow 
interface, changes happen in the region. The greater 
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profit or commercial advantage and that copies bear this 
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the difference between the inflow and the outflow, 

the greater the vector fields change. 

 

Figure 1. Inflow and outflow 

Compared to the past approaches, the strategy 

proposed in this paper give higher priority to the 

variation of the streamline than to the density of the 

streamlines. This is because the former represents 

more flow feature. In other words, if there is little 

variation in a region, the streamline is nearly evenly 
distributed in the region and they can be represented 

by fewer streamlines. If the variation is great in a 

region, more streamlines are needed to provide the 

detail. 

The seeding strategy in this paper is based on the 

DCM. Streamline starting points are seeded 
depending on the maxima of the matrix. Because 

DCM is defined by the physical meaning of the 

vector fields, our seeding strategy is able to 

qualitatively capture more important flow features 

with less streamlines, hence less clutter and 

occlusion. 

The advection of streamlines in the previous 

streamline placement algorithms can be terminated 

by explicit inter-streamline distance control. This 

may cause visual discontinuity of the flow pattern, 

especially when it is near the vicinity of critical 

points. Our seeding algorithm only determines 

complete streamlines which are integrated as long as 
possible until they leave the domain, reach a critical 

point, or generate a loop. Without abruptly stopping 

the streamlines, the flow patterns shown in the 

visualization are much easier to understand. 

2. RELATED WORK 
Overview of vector field visualization techniques can 

be found in [Lar04] and [Pos03]. We consider here 

the most relevant work in streamline visualization. A 

number of techniques with different objectives have 

been developed. We group the present seeding 

strategies into four categories: image based, direct, 

feature based and vector field property-based. 

Image-based method searches for an energy 

function‟s minimal value to place seeds, in which the 

energy function is defined in image space according 

to streamlines. In [Tur96], techniques for automated 

placing of seed points were developed to achieve a 

nearly uniform, dense distribution of streamlines for 
2D flow fields. Mao et al. [Mao98] extend this 

approach to 3D curved surfaces. For 3D flow fields, 

seeding strategies typically involve analysis of the 

underlying flow field to visualize certain features 

using sparse distributions. 

Direct methods place new streamlines with a certain 

heuristic rule without computing any global energy 

function. A seeding strategy for automated placing of 
seed points was developed to achieve a nearly 

uniform, dense distribution of streamlines for 2D 

flow field [Job97]. The technique is extended to 

unsteady flows in [Job00], and multi resolution flow 

visualization in [Job01]. By defining a 3D Euclidean 

distance metric, the strategy is directly extended to 

3D field [Mat03]. The seeding strategy presented by 

Mebarki et al. [Meb05] starts new streamlines in the 
center of the biggest remaining voids, and achieve 

good continuity and uniformity of the streamlines by 

a greedy algorithm. Liu et al. [Liu06] improves 

continuity by prioritizing streamline elongation over 

new streamline insertion. 

Feature-based flow visualization is concerned with 

the extraction of specific patterns of interest, or 

features. Verma et al. [Ver00] first proposed a 

feature-based strategy for 2D vector field 

visualization. The seeding strategy is extended to 3D 

vector fields by Ye et al. [Ye05]. 

Streamline similarity and streamlines density are 

both properties of vector field. They can be regarded 

as the criteria of adding new streamlines. Li et al. 

[Li07] proposed a 3D image-space streamline 

placement method. They control the seeding and 

generation of streamlines in image space to avoid 

visual cluttering. Schlemmer et al. [Sch07] defined 

the streamline density of a region as the ratio 
between the number of occupied pixels by 

streamlines and the total number of pixels in the 

region. 

3. DISTRIBUTION-BASED SEEDING 

STRATEGY 

3.1. In-out Contribution Matrix 
We first give some definitions about our idea. For a 

non-zero vector at any position in a vector field, there 

is a streamline passing through the position. A 

streamline is a Complete Streamline if either of the 

following conditions is satisfied: 

The ending point overlaps the starting point. In other 

words, the streamline is a closed curve. 

The endpoint is on the border of the vector field, or 

the vector at the endpoint is zero. 

First a set of Complete Streamlines are generated to 

cover the vector field domain, which is called as the 

Complete Streamline Set. The Complete Streamline 

Set can be generated uniformly or randomly. The 

former method is chosen in this paper: The vector 

field domain is evenly divided into m n  squares, 

and then streamlines are seeded at each square‟s 

center. If all the streamlines are regarded to be 
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different, we get a Complete Streamline Set with 

m n  Complete Streamlines. 

For a given point p  in the vector field, 
pc  is a 

circle of radius r  centered at p . We partition the 

circle 
pc  into congruent curve segment units 

uniformly. Each unit 
iu  has an outward-weight 

( )out iw u  and an inward-weight ( )in iw u , both of 

which are initialized with 0 and 0 , 1
in out

w w  . 

Given a Complete Streamline Set 
lineS , subset 

subS  

contains all streamlines in lineS  which have 

intersection with pc . For each streamline l  in 

subS , cp  is the intersection point of l  and pc , 

( )N p  is the number of all intersection points of 

subset subS  and pc . Let V  be the vector at the 

intersection point cp , if V  is outward to the circle 

pc , cp  is called as an outward intersection point, 

otherwise it is an inward intersection point. For every 

inward intersection point icp , we calculate its 

inward contribution inCon ( , )i jcp u  to every unit 

ju : 

 Con ( , ) F( ( , ))in i j i jcp u Dis cp u  

Con ( , ) F( ( , ))in i j i jcp u Dis cp u Where ( , )i jDis cp u  

is the distance between icp  and ju , and F( )  is a 

decreasing function. 

The weight of every unit ju  is updated by every 

inward intersection point icp : 

( ) ( ) ( , )

( ) 1, if ( ( ) 1)

in j in j in i j

in j in j

w u w u Con cp u

w u w u

 

 
 

The inward-contribution of point  is defined as  

Con ( ) ( )in j

j

p w u
 

And the outward-contribution is calculated the same 

as that of inward-contribution. 

Support points have been sampled uniformly in the 

vector field, for each sampling point ( , )p i j  we 

calculate its inward and outward contribution 

/Con ( )in out p . Then the Density Matrix densityMat , 

Out-Contribution Matrix outMat , In-Contribution 

Matrix inMat , Signed-Difference-Contribution 

Matrix sdeltaMat  and Difference-Contribution 

Matrix(DCM) delMat  can be defined as: 

.

 

(N( ( , ))

(Con ( ( , )))

(Con ( ( , )))

( )

p i j
density

p i j
out out

p i j
in in

sdelta in out

abs
del sdelta







 



Mat

Mat

Mat

Mat Mat Mat

Mat Mat

 

The following statements of DCM are obvious: 

1. For any element a  in 
inMat ，

outMat , 0a   

2. If ( , ) 0 and ( , ) 0in outi j i j Mat Mat , there exists 

convergent points around ( , )p i j . 

3. If ( , ) 0, ( , ) 0in outi j i j Mat Mat , there exists 

divergent points around ( , )p i j . 

4. If ( , ) 0
sdelta

i j Mat , ( , ) ( , )
in out

i j i jMat Mat , 

a flow will be “squeezed” when the flow p

passes through the region around ( , )P i j . 

5. If ( , ) 0sdelta i j Mat , ( , ) ( , )in outi j i jMat Mat , 

a flow will be “expanded” when the flow 

passes through the region around ( , )p i j . 

From above definition, DCM is somewhat like 

divergence. The divergence represents the volume 

density of the outward flux of a vector field from an 
infinitesimal volume around a given point. The 

divergence of the velocity field in that region would 

have a nonzero value only when the region is a 

source or sink. As shown in Figure 1, if there is no 

sink or source in the region, divergence is 0. On the 

contrary, the length variation between inflow 

interface and outflow interface is nozero, which is 

described by our DCM. 

  
(a) Icon based visualization (b) Streamlines distribution 

  

(c) DCM (d) Density matrix 

Figure 2. Vector field and its statistics matrix 
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Figure 2(a) shows icon based visualization result. 

Figure 2(b) shows the sample streamlines. Figure 2(c) 

shows DCM and Figure 2(d) shows the density 

matrix. Vector field variation is more enhanced in 

DCM than that in Density Matrix. The density of the 

consistent region may be very higher, while the value 

of DCM may be very little. 

3.2. DCM seeding strategy 
We try to sort the seeds according to the variation of 

the vector field. A seed with greater variation has 

higher priority.  

In this section, DCM defined in the past section is 

used to represent the variation the vector field. 

According to this DCM streamline start points are 

seeded mainly depending on the maxima of the 

matrix. The generation of each streamline lowers the 

matrix locally until the given condition is satisfied. 

3.2.1. Initialization 

To start our iterative seeding strategy, we need an 

initialization set of streamlines. The maxima of DCM 

can be regarded as the initial seed. As the streamlines 

vary greatly around the elements of big values in the 

DCM, and the feature are more evident. If there are 

several candidate seeds with the same value, we 
randomly get one from the candidates. Thus if we 

assume a constant DCM, start points are generated 

randomly and would not be picked in a raw.  

If there are some critical points in the vector field, the 

topology structure is an import property of the vector 
field. To discover the vector field‟s detail, seeds 

around the critical points are preferred. DCM 

captures sources or sinks nodes easily. On the other 

hand, streamline around a saddle are much less than 

around other positions. So seeds around saddle are 

placed firstly. The location and classification 

methods of critical points can be found in [Gre92] 

and [Hel89] [Hel91]. 

3.2.2 Iteration 

Each of the iteration consists of two major parts: 

1. Trace a new complete streamline in forward 
and backward direction and test for 
intersections. 

2. Update the DCM according to the new 
streamline. 

In step 1, new seed is picked by get the maxima of 

DCM. As described in the initial step, if there are 

several candidate seeds with the same value, we 

randomly get one from the candidates. 

The element priority of DCM around the new 

streamline is lowered after the streamline is added. If 

the DCM is not updated, the next candidate seed may 

be very close to the previous one and the generated 

streamlines are also very close to each other. So an 

update process is taken after a new complete 
streamline is added. 

Obviously the influence from the new streamline on 

the vector field‟s feature of a given region is related 

to the distance between the streamline and the region. 

For a given new streamline, we first get all 

streamlines‟ positions in DCM, which is denoted as a 

position set 
pS . All the elements of these positions 

are set to 0, which means that no streamline will be 

added more than once. The other elements in DCM 

are updated by their distances to the set 
pS . For a 

given position p , the value DCM(p)  is updated by 

a function F ()update
 as follows: 

( ) F ( , ( ))updateDCM p Dis DCM p  

Where Dis  is the distance between p  and set pS . 

For a given ( )DCM p , Dis  is non-negative. The 

longer Dis  is, the smaller ( )DCM p  is. In other 

words, the farther away from the region, the less 

influence the new streamline has on the region. 

If the distances between all position and the set SP  

are calculated during DCM update process, too many 

CPU resources will be consumed. Given a maximal 

distance maxd , if we have maxd d , then ( )DCM p  

is the same as the previous value. So we only update 

those values whose distances to set SP  are no more 

than maxd . Inspired by [Set99], a fast marching 

method is adopted in this paper. 

If seeds around the saddles are placed firstly, we 

update the DCM when all the streamlines from the 

saddle seeds are generated. 

3.2.3. Termination 

The algorithm terminates if either of the following 

happens. 

 The number of streamlines is greater than a 
given value. If the number is too small, some 
important detail may be missed. 

 DCM satisfies some conditions, such as the 
minimum of DCM is smaller than the given 
value, which means the most important feather 
is captured. 

4. RESULTS AND DISCUSSION 
We tested our approach for some analytical and 

computational data sets. The data sets are used to 
compare random seeding against DCM seeding. The 

quality of streamlines relays on the coverage, 

uniformity and continuity. For the continuity, all the 

streamlines generated by our method are complete 

streamline, which means the streamlines are the 

longest of all the streamlines passing through the 

same seeds. Because there are no standards to 

compare uniformity and continuity quantitatively, we 
compare the results with other methods visually. 

Our results have been generated on a Windows Vista 

ThinkPad T61p notebook equipped with an Intel 
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Core2 Duo T7500 2.2GHZ CPU, 3GB Ram, Nvidia 

Qurdro FX 570M 128M GPU. All the three tests cost 

no more than 10 seconds including the DCM 

calculation process which costs most of the time. 

Figure 3 shows the comparison with other methods. 
The vector field consists of 50*50 vectors. All 

method have almost the same results with more 

streamlines. The compared algorithm tends to 

produce short separated streamline and is much more 

obvious when using less streamlines. Our method 

does not require as much uniformity as others do, by 

which it can capture more features with less 

streamlines, which is shown in center and right of 

Figure 3(d).  

 

   

(a) Turk/Banks([Tur96]) 

   

(b) Jobard/Lefer([Job97]) 

   

(c) Mebarki et al.( [Meb05]) 

   

(d). Our method 

Figure 3 Comparison of streamline placement techniques 
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Figure 4 shows a slice of a 3D vector field. The 

vector field consists of 128*128 vectors, which 

comes from simulation of swirling jet entering fluid. 

Figure 4(a) and 4(b) show results of our method. The 
swirl of the vector field is well captured. On the other 

hand, Figure 4 (c) and (d) show the results of 

algorithm of Jobard/Lefer. The swirl is not so distinct, 

for the streamlines are not long enough to reveal the 

features. 

Figure 5 shows comparison with algorithm of Vermal 

et al. The vector field consists of 70*70 vectors. 

Figure 5(a) and 5(b) show results of algorithm of 

Verma. The algorithm does perform well in the 

critical regions. In other words, the critical regions 

can not be well represented, especially when fewer 

streamlines are used. Figure 5(c) and 5(d) show 

results of our method. Very few streamlines are 
produced in Figure 5(d), but the critical regions are 

very clear. 

Our algorithm only uses complete streamlines. The 

long streamlines are preferred in this paper, while 

discontinuities in the layout with shorter streamlines 

may impair the impression of a flow field. 

 

  

(a) (b) 

 
 

(c) (d) 

Figure 4 Swirling jet entering fluid at rest. 

Our seeding strategy picks position with the maxima 

of DCM. The greater difference-contribution the 

position has , the greater the variation is. The position 

with great variation is picked firstly, such as 
convergent point. And there are less streamlines in 

the region with lower difference-contribution, such as 

in Figure 4(b) while the streamlines in Figure 4(d) 

are still even almost everywhere. 

  

(a). (b). 

  

(c) (d) 

Figure 5. Comparison to feature-based technique 

5. CONCLUSION 
A DCM seeding strategy is proposed in this paper. 

We introduced inward and outward contribution of a 

position as variation measure of the vector field. 

Then DCM is defined. The streamline starting points 

are seeded mainly depending on the maxima of the 

DCM matrix. The generation of each streamline 

lowers the matrix locally until the given condition is 

satisfied.  

The new approach catches regions with great 

variation and the vector field can be represented by 

less streamlines. 
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ABSTRACT

Over the past years, Structure-from-Motion calibration algorithms have become widely popular for many applications in com-
puter graphics. From an unordered set of photographs, they manage to robustly estimate intrinsic and extrinsic camera parame-
ters for each image. One major drawback is the quadratic computation time of existing algorithms. This paper presents different
strategies to overcome this problem by only working on subsets of images and merging the results. A quantitative comparison
of these strategies reveals the trade-off between accuracyand computation time.

Keywords: Camera Calibration, Sparse Bundle Adjustment, Structure-from-Motion.

1 INTRODUCTION

Many of today’s vision and graphics applications
are based on well-calibrated cameras. The camera
calibration process has been widely explored in the past
years and many methods have been proposed - ranging
from classical checkerboard recordings to calibration
without a priori known patterns [PGV+04, SSS08].
These recent methods require the recorded images
only to obtain a multitude of feature points (e.g.
SIFT-features) for a properself-calibration. Especially
image-based modeling and rendering applications
benefit from the development: The camera setup can be
freely chosen and a calibration recording session has
become obselete. Furthermore, the camera steup does
not need to be fixed during the recording anymore.
Scenes recorded with multiple handheld cameras can
nowadays be reconstructed by employing the self-
calibration methods. The method most widely used
in the research community is the Sparse Bundle Ad-
justment, orBundler for short, introduced by Snavely
et al. [SSS08]. The recorded images are searched for
feature points, e.g. SIFT-features. Feature points, that
are shared between any two images are considered
as correspondence points. After an initial estimate of
camera parameters, these points are triangulated and
reprojected to the images. The reprojection error, i.e.
the euclidean distance between the original feature
locations and their reprojections on the image plane
is minimized during the so-called bundle adjustment.
Being considered as a milestone in the community,

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

this tool, however, has serious issues regarding the
computation time.

In this paper we examine the reasons for these is-
sues and propose new methods to significantly reduce
the computation time whilst keeping the reprojection
error minimal. The paper is outlined as follows. We
give a brief overview to recent advances in calibration
methods in Section 2, also focussing on Bundler’s run-
time issues. Afterwards, we introduce two strategies
to tackle these problems in Section 3. We justify our
methods with a quantitative analysis in Section 4 and
conclude in Section 5.

2 RELATED WORK

While our work mainly improves Bundler by Snavely
et al. [SSS08], a renowned tool for 3D object recon-
struction from uncalibrated multicamera footage used
by many other scientists [WMC04, Sna08, JB09], we
also relate to the following previous work in the field of
multicamera calibration.

A good overview of calibration algorithms can
be found in the paper by Triggs et al. [TMHF99].
The commercial toolBoujou [vic09] reconstructs 3D
models from moving uncalibrated cameras. Hasler
et al.[HRT+09, THWS08] calibrate multiple moving
unsynchronized cameras by first finding each camera’s
trajectory (using KLT-tracking and RANSAC-fitting).
An approach based on geometric dissimilarity mea-
surement is described by Denzler et al. [BBD09]. They
rely on a less restrictive matching method compared to
[SSS08].

However, most calibration approaches, including the
Sparse Bundle Adjustment [SSS08], suffer from long
computation times. Schwartz et al. [SK09] investigate
the preconditions of multicamera calibration and sug-
gest to merge connected components for an initial es-
timate to achieve computation speedup. Byrod et al.
suggest an iterative adjusting approach by solving the
problem with a conjugate gradient method. They pre-
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condition the matrix with a multiscale Gauss-Seidel ap-
proach. He et al. [HQH08] try to improve the com-
putation time by propagating matches between camera
pairs.

Our approaches, instead, address the computation
time problem by applying Bundler to a limited selec-
tion of images, and incorporating the other images at a
later stage.

2.1 Bundler: Sparse Bundle Adjustment
As our work is based on the work of Snavely et
al. [SSS08], we will give a brief introduction into
the Bundler Calibration pipeline. Bundler accepts an
unordered set of photographs as input, along with an
initial estimate of the focal lengths of the cameras that
took these images. A calibration of the images is the
output of the algorithm which provides the relative
rotationsR and translationst of all cameras along with
the intrinsic parameters (focal length and radial lens
distortion). The first part of the Pipeline is an image
feature extraction. Snavely et al. proposed to use SIFT
features [Low04] for this task. This step runs in linear
time. A pairwise feature matching phase matches the
key features of all images pairs. This step runs in
quadratic time. The two most promising images are
chosen for an initial calibration. After calibration, an
initial set of 3D points is obtained via triangulation of
the corresponding points. The bundle adjustment step
refines the calibration by minimizing the reprojection
errors of the obtained points. The remaining cameras
are added one by one: If at least six correspondences
to the already reconstructed 3D points are known,
an initial estimate of its parameters is calculated via
Direct Linear Transformation. A bundle adjustment
step refines the initial parameters of the camera, new
reconstructed 3D points may be added and a global
bundle adjustment step is performed. This final phase
runs in quadratic time. We can see that both the key
feature matching and the bundle adjustment run in
quadratic time with respect to the amountm of input
images. The overall computational complexity of
Bundler is thereforeO(m2).

3 SPEEDUP STRATEGIES
Data sets containing just a few hundred images may
lead to run-times of several days on a single CPU. In-
stead of focussing on algorithmic techniques to tackle
this problem, our approaches reduce the number of im-
ages used as an input to the sparse bundle adjustment.
We developed two different strategies that let Bundler
only run on subsets of images, thus decreasing the over-
all run-time.

3.1 Merge Images Approach
We partition the set of images inton subsets of equal
size. Given an (arbitrarily chosen) order of images, the

Figure 1: Merge Images Approach forn = 2 andk = 9.
Two subsets are created and separated independently
(blue and red boxes). All subsets contain a set of com-
mon images (yellow boxes). Both subsets are merged
via a Procrustes transformation.

first, then + 1st, the 2n + 1st, etc. . . image are put in
subsetN1. The second,n +2nd, 2n +2nd, etc. . . image
are placed in subsetN2 and so forth, see Fig. 1. After-
wards, we make sure that the image subsets also contain
some common images. We select eachkth image from
the original image set and add it to each subset if it is
not already present in that set. Each subset is calibrated
with Bundler independently. We are now faced with
the problem that we obtainedn calibrations of the same
scene. We arbitrarily pick the first subset to be our refer-
ence set and merge the other calibration results into this
reference system. The subset’s reference systems differ
in their locationzn, their rotationRn and their scalebn.
So, a Procrustes transformationΦ has to be obtained for
each subset to align it with the reference set. When this
transformation is know, new rotation matricesRnew and
translation vectorstwnew are obtained. We recall that the
positionp of a camera can be derived from its rotation
matrixR and its translation vectort.

p = −RT t. (1)

We can obtain a set of common points for all subsets
of images when we compute the camera positions for
the common images in each set. For each image sub-
set, we obtain the transformationφ that maps the set of
common camera locations to the one of the reference
calibration. We make use of the matlab implementation
of the Procrustes Analysis. The same transformation
can be used to obtain the camera locationspnew, the
rotation matricesRnew and the translation vectorstnew:
The new camera locations and rotation matrices can de-
rived by directly applyingφ . The translation vectors are
computed as follows:

tnew = −RT
new

−1
pnew (2)

The speedup caused by this strategy can be formal-
ized by a reduction of the complexity fromO(m2),
wherem is the total number of images, toO(n · (m/n +
m/k)2). As we will show in Section 4, an adequate se-

WSCG 2010 Communication Papers 86



Figure 2: Add Images approch withn = 4. Only each
nth image is used for the initial calibration (red boxes).
The other images are added using via Direct Linear
Transformtion.

Figure 3: A representative frame of the test sequence.

lection ofk andm can cause a dramatic speedup, while
preserving a high accuracy, i.e. a low reprojection error.

3.2 Add Images Approach

The original implementation of bundler provides the
opportunity to add images to an already calibrated set
of images. We exploit this feature and determine a
subset of images that is calibrated instead of the com-
plete set of images. We add everynth image into the
subset, calibrate the subset and add all remaining im-
ages via Bundler’sAdd Images feature, Fig 2. When
adding images to the calibrated set of images, no new
bundle adjustment iteration is performed. I.e., only the
optimal rotation matrix and translation vector for the
new image is determined, no new 3D points are in-
serted and no optimization of the camera parameters
is performed. Therefore, adding images runs in linear
time. Instead of the original computationl complexity
of O(m2), the Add Images Approach has a complexity
of O((m/n)2 + (m−m/n)), which is even faster than
the Merge Image Approach.

4 RESULTS

Our speedup strategies are tested on the graffiti im-
age sequence, Fig. 3. This test sequence contains the
recordings of 5 non-stationary camcorders, all pointed
towards a juggler in front of a highly textured wall.
Each camera recorded 40 video frames, resulting in a
total size of 200 images. The image size is 480px×
270px. We calibrate the set of 200 images with the orig-
inal bundler algorithm, the Merge Images Approach
and the Add Images Approach. Several calibration runs
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Figure 4: Runtimes for Bundler using both speedup
strategies with different parametersn and k. We ob-
tained results forn = 1,2,4,8,16,32 andk = 20,30,50.
Please note thatn = 1 is identic to a calibration without
speedup. Compared to the original Bundler calibration
(n = 1), a significant speedup can be achieved in all
cases.

with different parameters quantitatively determine the
tradeoff between computation time and accuracy.

As an error measure, we use the reprojection er-
ror of the reconstructed 3D points. In order to make
all speedup scenarios comparable, we have to make a
slight alteration to the Add Image approach. When us-
ing this approach, the reconstructed point sets tend to
be much smaller with increasingn. Because not all im-
ages are used for Bundle Adjustment, less reconstructed
points are added. It is also quite likely that only these
points will be incorporated into that set that have a low
reprojection error: Bundler either optimizes or discards
points. Therefore, we store a list of reconstructed 3D
points and their image locations when running Bundler
without a speedup strategy. When evaluating the repro-
jection error with the Add Images method, we recon-
struct the full set of 3D points by triangulation of the
previously stored image locations. We then measure the
reprojection error of the full set of 3D points. For both
speedup methods, we calibrate withn = 2,4,8,16,32.
In the case of the Merge Images method, we did indi-
vidual test runs for each differentn with k = 20,30,50.

The computation times, Fig. 4, reveal that the Add
Images Approach outperforms the Merge Images Ap-
proach in terms of speed. Forn = 32 it takes just 6 in-
stead of 120 minutes to perform the calibration. This is
not surprising, as the Merge Images method does runn
separate calibrations instead of only a single one. With
computation times as low as 22 minutes, the Merge Im-
ages method still achieves a remarkable result. When
choosingk > n, the runtimes start to increase again, as
a lot of redundant frames are incorporated into the cal-
ibrations. All calibration runs are performed on a 2.66
Ghz Intel CPU using a single core. In defense of the
Merge Images method one must admit that the Merge
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Figure 5: Average reprojection error for both the Add
Images and the Merge Images approach. Please note
thatn = 1 is identic to a calibration without speedup.

Images method can be easily parallelized. In contrast,
the Add Images approach runs a consecutive algorithm.

When we look at the reprojection error, one can see
that for low k (k = 20,30) values, the Merge Images
Method achieves much better results, Fig. 5. With
higherk (k = 50) the merging of data sets seems to be-
come unstable. The Add Images method’s reprojection
error increases linear withn. Although, forn = 32 the
mean error still stays below 0.8 px.

When we look at the mean deviation of the error, we
see that it keeps low in all scenarios where the Merge
Approach is used, Fig. 6. On the other hand, the devi-
ation of the error climbs up to a value of 1.6 px when
using the Add Images Approach. This can be explained
by the fact that many of these points were not consid-
ered for bundle adjustment and that a few large outliers
exist. The shown quantitative results lead to the inter-
pretation that both approaches succeed in their task to
speed up the computation while maintaining a low re-
projection error. When a very high speedup is required,
the Add Images apporach is the first choice, especially
for high values ofn, drastic speedups are achieved.
When accuracy is crucial, the Merge Images approach
is the more advisable choice. One should pickn < k
when using the Merge Images method, otherwise the
speedup will significantly diminish.

5 CONCLUSION

We introduced two methods, i.e., the Merge Images and
the Add Images approach, to speed up the computation
in the camera calibration tool Bundler. We found that
both methods achieve comparably fair results, i.e. min-
imal reprojection error.

In the future we want to examine, if clustering of im-
ages will lead to further speedup. I.e., if instead of pick-
ing images arbitrarily for our calibrtion subsets, a more
considerate preselection of images can be used to fur-
ther improve the accuracy of the calibration.
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Figure 6: Standard deviation of the reprojection error
for both speedup strategies.
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ABSTRACT

We present a new supplementary method for reduction of animated 3D polygonal models. The method is applicable mainly in
animation of human faces and it is based on intelligent merging of visemes represented by key polygonal meshes. It is useful
for devices with limited CPU and memory resources like mobile phones or other embedded devices. Using this approach we
can reduce operation memory needs and time to load the model from storage. We describe the algorithm for viseme merging
and we prove that our method is optimal for selected metrics. Finally we validate method performance on an example and
compare with the case when only traditional methods for 3D models reduction are used.

Keywords: animation, model, reduction, viseme

1 INTRODUCTION
Modern technology devices like personal computers
and mobile phones are becoming more and more pow-
erful and complicated. Many people have difficulties
controlling miscellaneous computer systems and appli-
cations [17]. Computer graphics and designers of com-
puter programs look for new kinds of interfaces to con-
trol still more complex computer programs. Talking-
head interface seems to be a promising alternative to
traditional menu/windows/icons interface for sophisti-
cated applications. Such interface has proven to be use-
ful as a virtual news reader [1], blog enhancement [11]
and in many other cases.

So far talking-head interface has been applied mostly
on desktop PCs. However, recent small electronic
equipment, such as mobile phones, pocket computers
and embedded devices possess enough CPU power to
offer the talking-head interface as well.

Current smartphones and pocket computers usually
have 128MB or 256 MB of RAM. Most of this memory
is occupied by the operating system(OS) itself or by OS
extensions like HTC TouchFLO or Samsung TouchWiz
(formerly pocket computers had only 16 or 32 MB of
operation memory, but the OS was stored in read-only
memory rather than in RAM). The lack of memory is a
bottleneck for animations computed by interpolation of
polygonal meshes, because it requires a lot of possibly
large polygonal meshes loaded in memory.

To achieve the lowest memory requirements, we have
decided to reduce both the amount of polygons in the
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Figure 1: A talking head keyframe model articulating
the phoneme "f" (left) is similar to a keyframe model
articulating the phoneme "th" (right). Our algorithm
detects such similarity and replaces both models with
one merged model (down).

mesh and the number of key meshes (see figure 1). We
propose a dissimilarity metric to detect similar models
and a technique to merge them. We prove that our merg-
ing technique is optimal for the given dissimilarity met-
ric.
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2 RELATED WORK
Traditional methods for polygonal reduction are suffi-
ciently covered in [10] and [15]. Specific aspects about
geometric rendering and model reduction on mobile
phones and embedded devices were presented by Pulli
et al. [16].

An interesting way for speeding up morphing anima-
tion on embedded devices was proposed by Berner [5].
It is based on optimization strategies by omitting less
important polygonal meshes during the animation.

In our research we aim to develop software compat-
ible with the Xface animation framework [2, 3] that
is open-source and widely used in academia. There
are also more advanced animation frameworks that
use skeleton-muscle [18] animation model instead of
MPEG-4 standard. The best known of them is Greta
[13]. A method of anatomical musculature modeling
to achieve realistic and real-time figure animation was
proposed by Zuo Li et al. [12].

However none of the works above focuses on reduc-
ing the number of visemes (as our work does).

3 FACE ANIMATION PRINCIPLES
3.1 Phonemes and visemes
When using face animation in talking-head applica-
tions, we have to consider both visual and audio ef-
fects. They are described by visemes and phonemes.
A phoneme is an element of spoken language similarly
like a letter is an element of written language. A viseme
is an element of facial animation. It describes the partic-
ular facial position when pronouncing a phoneme. Usu-
ally one phoneme corresponds to one viseme, but some-
times multiple phonemes share the same viseme. This
happens when facial position of two or more phonemes
differs only by position of non-displayed body parts like
vocal cords or a tongue.

The frequencies of occurrence of phonemes and
visemes depend on spoken language, there are also
differencies e.g. between frequencies in British and
American English. English has 40 different phonemes.

For our algorithm we need to know the frequen-
cies of phonemes and visemes. The frequencies of
phonemes can be determined by converting a long text
(at least several pages) using a phonetic transcription
software and then by counting the phoneme frequen-
cies in the transcribed text. Such process is usually
part of text-to-speech-engine pre-processing of text in-
put for voice synthesis. There is also a free transcription
engine available together with typical frequencies of
American English phonemes [6]. Having the frequen-
cies of phonemes one can determine the frequencies of
visemes using phoneme-to-viseme mapping function.

For our experiments we use the FaceGen facial edi-
tor [19] to generate human head visemes. This editor
generates 16 different visemes.

Figure 2: A subset of feature points (FP) defined in
MPEG-4 facial animation standard [8]

3.2 MPEG-4 animation
The most widely accepted standard for human face an-
imation is the ISO standard MPEG-4 released by the
Moving Pictures Experts Group in 1999 [7, 8].

In this standard 84 feature points (FPs) are specified
on human face (see figure 2). The facial animation is
controlled by 68 parameters called Facial Animation
Parameters (FAPs).

The MPEG-4 standard allows two ways of facial an-
imation. The first one manipulates the feature points
individually and can achieve various range of facial ex-
pressions. The second one is based on interpolating be-
tween two keyframe models. This interpolation can be
done either linearly or with cubic interpolation func-
tion.

In this paper we focus on the keyframe facial ani-
mation. This approach is less CPU intensive and the
visual results of this animation are sufficient for mobile
phones and embedded devices.

4 DEFINITIONS

4.1 Polygonal model
For purposes of this paper, the polygonal model is a
triplet (V, E, P) of vertices V, edges E, and polygons P.
To avoid rendering problems with general polygons af-
ter geometric transformations, we triangulate all poly-
gons in advance.

Fully triangulated models allow us use a specific met-
ric for model comparison (see section 4.3). They also
fit very well into commonly used graphics libraries for
mobile phones and embedded devices like OpenGL ES
(OpenGL for Embedded Systems) [9] which are opti-
mized for processing triangles only.

4.2 Interpolable set of models
We call polygon models interpolable if they differ only
in coordinates of their vertices. Interpolable models
have the same topology and the same number of ver-
tices, edges and polygons. There must also be given a
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bijection function that matches the corresponding ver-
tices/edges/polygons.

4.3 Polygonal model dissimilarity
We define the polygonal model dissimilarity as a metric
(distance function) ρ for two interpolable models.

ρ(A,B) :=
∥V∥

∑
k=1

w(vk)∥vA,k − vB,k∥2 (1)

where
A and B are the polygonal models.
w(v) is the weight of the vertex v. It represent an im-
portancy of the vertex in the model. The author of the
model can set higher weights for vertices important for
human perception.

For models with unspecified weights, we have con-
sidered two general metrics:

ρ1(A,B) :=
∥V∥

∑
k=1

∥

∥vA,k − vB,k
∥

∥

2 (2)

ρ2(A,B) :=
∥V∥

∑
k=1

S(vN)
∥

∥vA,k − vB,k
∥

∥

2 (3)

where
S(vN,k) is a sum of surfaces of triangles incident with
vertex vN,k. Since the triangle surface may differ for
individual visemes, we work with polygon surfaces in
the neutral expression of the model N = (VN ,EN ,PN).

The first metric assumes that more important areas
are tessellated more densely. The weight of a face part
is given by a number of its vertices.

The second metric can be used if each part of the
model surface is equally important for the animation.
If we use this metric it is necessary to split all polygons
to triangles first as mentioned in section 4.1. We have
proven that both metrics give the same results if applied
in our reduction algorithm. Thus the real implementa-
tion can utilize the first and more simple metric only.

4.4 Dissimilarity for sets of polygonal
models

Let A = {A1,A2, . . . ,An}, B = {B1,B2, . . . ,Bm} are two
sets of polygonal models that represents visemes. Let
f (A1), f (A2), . . . , f (An) are frequencies of visemes in
A. If we have a dissimilarity metric for polygonal mod-
els ρ(A,B), we can define dissimilarity for two sets of
polygonal models ρ f (A,B) as:

ρ f (A,B) =
n

∑
i=1

f (Ai) min
j=1...m

ρ(Ai,B j) (4)

It is the sum of distances from each model from A to
its most similar models in B. Note that dissimilarity
function for sets of polygonal models is not a metric
because it is not symmetrical.

4.5 Problem definition
We describe an algorithm for the following problem:
Input:
Set of polygonal models A = {A1,A2, . . . ,An}. These
models represent visemes of a human face that have
frequencies f (A1), f (A2), . . . , f (An). An integer num-
ber m; m < n
Task:
Find a set of new polygonal models with m elements
B = {B1,B2, . . . ,Bm} that is the most similar to A.
(ρ f (A,B) is minimal for all such sets of polygonal
models)

5 FINDING OPTIMAL SOLUTION
The solution for the problem is described in two steps:
Firstly, we describe how to solve the extreme case when
m = ∥B∥ = 1. Then we describe the solution for arbi-
trary value of ∥B∥.

5.1 Case ∥B∥= m = 1
We have to find such a set of polygonal models B= (B)
with one element for which the expression in equation
(4) is minimal.

B = argmin
B ;∥B∥=1

(ρ f (A,B)) (5)

We the definition of the dissimilarity for sets (see equa-
tion (4)):

B = argmin
B ;∥B∥=1

(
n

∑
i=1

f (Ai) min
j=1...m

ρ(Ai,B j)) (6)

Because m = 1 we can leave out the second minimum.

B = argmin
B

(
n

∑
i=1

f (Ai)ρ(Ai,B)) (7)

Now we use the definition of model dissimilarity
metric (see equation (1)).

B = argmin
B

(
n

∑
i=1

f (Ai)
∥V∥

∑
k=1

w(vk)∥vAi,k − vB,k∥2) (8)

We swap the summations.

B = argmin
B

(
∥V∥

∑
k=1

n

∑
i=1

f (Ai)w(vk)∥vAi,k − vB,k∥2) (9)

Since the vertices of model B are mutually independent,
we can calculate each of them individually.

VB,k = argmin
VB,k

(
n

∑
i=1

f (Ai)w(vk)∥vAi,k − vB,k∥2) (10)

WSCG 2010 Communication Papers 91



The vertex weight w(vk) remains constant for indi-
vidual vertex. Thus it does not affect the argmin ex-
pression. We can leave it out.

VB,k = argmin
VB,k

(
n

∑
i=1

f (Ai)∥vAi,k − vB,k∥2) (11)

We use the definition of the Euclidian distance. vAi,k =
[xAi,k,yAi,k,zAi,k], vB,k = [xB,k,yB,k,zB,k]

VB,k = argmin
[xB,k,yB,k,zB,k]

n

∑
i=1

f (Ai)(xAi,k − xB,k)
2 + (12)

+ f (Ai)(yAi,k − yB,k)
2 + f (Ai)(zAi,k − zB,k)

2

We can determine individual coordinates separately, be-
cause they are independent on each other. Let us con-
sider the x-coordinate only:

xB,k = argmin
xB,k

n

∑
i=1

f (Ai)(xAi,k − xB,k)
2 (13)

We expand the expression.

xB,k = argmin
xB,k

n

∑
i=1

f (Ai)(x2
Ai,k −2xAi,kxB,k + x2

B,k) (14)

In order to find the minimum, we find where the deriva-
tion is equal to 0.

0 =
∂

∂xB,k

n

∑
i=1

f (Ai)(x2
Ai,k −2xAi,kxB,k + x2

B,k) (15)

After the derivation we get:

0 =
n

∑
i=1

f (Ai)(−2xAi,k +2xB,k) (16)

The second derivation is equal to 2∑n
i=1 f (Ai). This

is greater than 0 because all of the frequencies are pos-
itive. Thus this is a minimum. We express the xB,k.

xB,k =
∑n

i=1 f (Ai)xAi,k

∑n
i=1 f (Ai)

(17)

We express the vertex vB,k:

vB,k =
∑n

i=1 f (Ai)vAi,k

∑n
i=1 f (Ai)

(18)

We finally express the model B:

B =
∑n

i=1 f (Ai)Ai

∑n
i=1 f (Ai)

(19)

5.2 Case ∥B∥= m > 1
We have to find such a set of polygonal models B =
(B1,B2, . . . ,Bm) with m elements for which the expres-
sion in formula 4 is minimal.

B = argmin
B ;∥B∥=m

(ρ f (A,B)) (20)

We use a dynamic programming approach:
Let minDis[T, p] is an array of real numbers indexed by
a subset T ⊂ A and an integer p ∈ {1 . . .m} defined as:

minDis[T, p] := min
U ;∥U∥=p

(ρ f (T,U)) (21)

This array represents the distance for all subsets of A

to its optimal reductions of size p. If we are able to fill
the array, we can find the answer to our problem in the
field minDis[A,m]. We describe an algorithm to fill the
array minDis[T, p] with values. For p = 1 we can use
the equation (19).

minDis[T,1] = ρ f (T,{
∑n

i=1 f (Ti)Ti

∑n
i=1 f (Ti)

}) (22)

Now we can increase the value of p step-by-step and
compute the values of remaining fields of the array
minDis. We try to find a subset V⊂T that is reduced to
a single mesh during the optimal reduction. The reduc-
tion is optimal if the sum of reduction of V to one mesh
and reduction of T\V to p−1 meshes is minimal.

minDis[T, p] = min
V⊂T

(minDis[V,1]+minDis[T\V, p−1])

(23)
Using the algorithm above we can compute the dissim-
ilarity during the optimal reduction. We can find the
set B itself easily by making notes about the performed
reductions (found sets V) during the algorithm.

The time complexity of the algorithm is
O(n2n∥V∥ + 4nm). The spacial complexity of the
algorithm is O(n∥V∥+ 2nm). The algorithm is expo-
nential to n. It is not a principal drawback because the
values of n and m are small (e.g. n = 16, m = 10) and
we use this reduction only once for each set of models.

6 IMPLEMENTATION
We have implemented the algorithm in Java. For our

measurement we used a computer with Intel Core Duo
processor T8300 2.4GHz with 2 GB of RAM. (Our im-
plementation is single thread only.) We measured the
time needed to reduce 16 visemes to 10 visemes. Each
of these visemes was represented by a polygonal model
with 3000 triangles. Initial reductions for the case p= 1
took 2 minutes and 43 seconds. Dynamic programming
reductions for the case p > 1 took 2 minutes and 23
seconds. Input/output operations took 12 seconds. The
total time was 5 minutes and 18 seconds.
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input A
input f (A1), f (A2) . . . f (An)
input m
for T ⊂ A do

minDis[T, 1] := ρ f (T,
∑n

i=1 f (Ti)Ti
∑n

i=1 f (Ti)
)

for p := 2 to m do
for T ⊂ A do

currentMinDistance := ∞
for V ⊂ T do

distance := minDis[V,1] +
minDis[T\V, p−1]

if distance < currentMinDistance then
currentMinDistance := distance

minDis[T, p] := currentMinDistance
output minDis[A,m]

Algorithm 1: Algorithm for optimal mesh reduction

We use VRML (Virtual Reality Markup Language)
as our input and output format for polygonal meshes.
The output from our application is compatible with
XFaceEd face editor proposed by Balci in [3].

7 PERFORMANCE VALIDATION
We have compared animation of a head with unreduced
set of 16 visemes and the same head with reduced set of
10 visemes. We used a textured head model with 3000
triangles exported from FaceGen [19] for our measure-
ments and Windows Mobile phone HTC Touch Pro
with OpenGL ES[9] support. An application with unre-
duced model required 18 seconds for startup, an ap-
plication with the reduced model required only 8 sec-
onds for startup. The speed of the model animation
was 5.4 FPS for the unreduced and 12.2 FPS for the
reduced version. The unreduced version was likely
slowed down by memory swapping. The animation of
the reduced version appeared much more smooth.

8 CONCLUSION AND FUTURE
WORK

The presented method primary focusses on the head an-
imation but it is general enough for use in other ani-
mation techniques using polygonal mesh interpolation
(e.g. body, animals). In our work, we intend to investi-
gate further reduction techniques as part of our ongoing
effort of designing an open platform for development of
talking-head applications on mobile phones (using the
XFace framework developed by Balci [2, 4]).
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ABSTRACT 
Ray tracing is an inherently parallel visualization algorithm. However to achieve good performance, at 
interactive frame rates, an acceleration structure to decrease the number of per ray primitive intersections is 
required. Grid acceleration structures have some of the fastest build times, with O(N) complexity, but 
traditionally achieved this at a high memory cost. Recent research has reduced the memory footprint by 
employing compression for one-level grids. Render time performance can be improved using multi-level grids. 
We describe two methods for building such multi-level grids. In the first method we employ a recursive 
compressed grid in which grid cells are adaptively subdivided in a variable fashion.  The second method uses a 
finely divided compressed grid, with a lower resolution macrocell overlay to speed up traversal. We analyze the 
performance of these new algorithms, which enable improved render times, versus existing solutions.  

Keywords 
Ray tracing, spatial subdivision, grid. 

1. INTRODUCTION 
Realtime ray tracing is an active area of research 
[Wal07]. Even traditionally skeptical hardware 
vendors have recently demonstrated, or made 
available, realtime ray tracing solutions [Sei08]. Ray 
tracing is desirable for several reasons, namely per 
pixel accurate shadows, reflections and refractions. It 
can also be used as a base for other global 
illumination algorithms such as path tracing, and 
photon mapping, to add more effects such as caustics 
and diffuse interreflections. 
In the naive ray tracing algorithm, it is necessary to 
search the nearest intersected primitive for each ray. 
Without an acceleration structure, the complexity for 
such an algorithm is O(N), where N is the number of 
primitives in the scene. Hence to enable realtime ray 
tracing for complex scenes, with many primitives, 
acceleration structures are used. These acceleration 
structures can theoretically reduce per ray complexity 
to O(log N). 

 

Ideally an acceleration structure should be fast to 
build and use as little memory space as possible, 
while still delivering good render time performance. 
This work describes our efforts to combine the 
desirable traits of multi-level grid [Jev89,Wal06] 
render time performance, with the low build time and 
memory consumption characteristics of row 
displacement compression [Lag08]. 
Existing related work in this area is surveyed in 
Section 2. Section 3 describes the proposed multi-
level grid construction methods. The performance 
results of these methods are analyzed in Section 4. 
Finally conclusions are presented in Section 5.  

2. RELATED WORK 
Grid acceleration structures for ray tracing were first 
described by Fujimoto et al. [Fuj89]. These 
acceleration structures subdivide 3D space in near 
cubical cells. It was found that grids, by eliminating 
vertical traversal time costs present in other 
acceleration structures popular at the time, had 
increased overall render time performance. 3DDA, a 
3D extension of the raster line drawing algorithm, 
was employed for ray grid traversal. 
An improved grid traversal algorithm was later near 
simultaneously devised by several researchers 
[Woo87,Cle88]. This algorithm is still employed 
today. The historical grid ray tracing acceleration 
structures around this period are described by Havran 
et al. [Hav99]. Grid dimensions (Mx × My × Mz) are 
determined based on heuristics related to the number 
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this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
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of scene primitives, scene bounding box, and certain 
constant factors. 
Recently Lagae and Dutré [Lag08] employed grid 
row displacement compression (i.e. hashing) to 
reduce the memory footprint of this kind of 
acceleration structure. It does this by compressing 
empty cells. By allocating all memory, before 
inserting primitives into the data structure, build time 
performance was also improved. The render time 
performance of this one-level grid algorithm is 
however inferior to non-compressed multi-level 
algorithms, such as the rgrid used by the Manta ray 
tracer [Big06], as shall be seen in Section 4.  
Kim et al. [Kim09] have created compressed versions 
of the bounding volume hierarchy (BVH) 
acceleration structure, one of the acceleration 
structures first used in ray tracing. Kim et al. also 
compress the triangle mesh and page data to the disk 
providing increased memory savings.  
BVH acceleration structures have higher construction 
time complexity than grids. BVH construction 
complexity is O(N log N) versus a grid construction 
complexity of O(N). 
More recent, faster to build, grid acceleration 
structures have many advantages. However further 
work is necessary to improve their render time 
performance. This work aims at filling this gap. 

3. METHODS 
The classification of multi-level grid construction 
methods employed here is based on that of Jevans 
and Wyvill [Jev89]. 
Variable construction methods recursively subdivide 
the grid, by employing subgrids in each cell. Subgrid 
dimensions are chosen using a similar heuristic to 
that employed for the first cell division level. 
Memory consumption is hard to predict, usually 
leading to the use of dynamic memory allocation 
along the construction method. 
Fixed construction methods use a fixed ratio, finer 
subdivision than a regular one-level grid would 
employ. Since the total size of a grid acceleration 
structure can be known in advance, all memory 
allocation can be done before the method is 
employed. A fixed construction grid can be build 
using macrocells for the lower resolution levels. 
Fixed construction methods have good performance 
for uniformly distributed scenes, such as laser 
scanned models. Variable construction methods 
adapt more easily to varying scene primitive 
distribution but at increased memory consumption 
and build time costs.  
The following heuristic, attributed to Woo, is 
employed to determine grid dimensions: 

 
Equation 1. Woo’s heuristic. Si is the scene 

bounding box size in dimension i, ρ is 4. 
Via profiling we noticed some characteristics in the 
existing algorithms [Lag08,Big06] described at 
Section 2. Grid traversal dominates render time, and 
one-level grids spend a lot more time doing 
ray/triangle intersections than multi-level grids. In 
attempting to improve render-time performance we 
posed the following hypothesis: we can reduce the 
number of ray/triangle intersections by using smaller 
cells, with fewer triangles per cell. To reduce 
traversal time we can employ a multi-level structure 
to skip empty cells in larger steps.  

3.1. Multi-Level Variable Hashed Grid 
This subsection describes the multi-level variable 
hashed grid implementation. It is a recursive grid, 
with the top level grid and subgrids using the hashed 
grid [Lag08] algorithm. This grid has a maximum 
grid depth size of 2.  
First the top level hashed grid is built using the 
algorithm described by Lagae et al. [Lag08] but 
using the heuristic from Equation 1. We selected a 
grid density ρ of 4 since it empirically provided good 
render time performance. Each cell of this top level 
grid is then subdivided using the same algorithm, 
creating a new subgrid, for each cell containing more 
than a certain number of primitives. 

3.2. Multi-Level Fixed Hashed Grid 
In this subsection a multi-level fixed hashed grid is 
described. It is a high resolution hashed grid [Lag08] 
with multi-level macrocells [Wal06] to speedup 
traversal. 

 
Figure 1. Timings for the Buddha scene according 

to grid density. 
First a finely divided one-level hashed grid is built in 
a similar fashion to that of Lagae et al. [Lag08], but 
using the grid heuristic described in Equation 1 with 
a high grid density parameter to reduce cell size. 
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Bunny Dragon Buddha 
 

Asian Dragon 
 

Thai Statue 

Scene statistics 
# triangles 69.45K 871.41K 1.09 M 7.22 M 10 M 
memory 1.2MB 15.0MB 18.7MB 123.9MB 171.7MB 

Manta recursive grid [Big06] 
Primitive intersections/ray 1.58 1.58 1.56 0.91 1.17 
Cell traversals/ray 4.73 5.80 4.95 6.44 7.00 
Grid traversals/ray 1.38 1.28 1.17 0.72 0.82 

Build Time (s) 0.47 3.46 4.50 20.44 29.59 
Render Time (s) 0.30 0.52 0.34 0.36 0.58 
Time to Image (s) 0.78 3.98 4.84 20.80 30.17 

One-level hashed grid [Lag08] 
Primitive intersections/ray 8.35 9.87 9.53 13.15 12.67 
Cell traversals/ray 14.53 35.23 26.93 93.14 100.76 
Grid traversals/ray 0.00 0.00 0.00 0.00 0.00 

Build Time (s) 0.02 0.22 0.26 1.48 2.07 
Render Time (s) 0.58 0.89 0.78 1.60 1.80 
Time to Image (s) 0.60 1.11 1.04 3.09 3.88 

Multi-level variable hashed grid 
Primitive intersections/ray 3.99 3.83 3.92 1.93 2.63 
Cell traversals/ray 15.12 26.05 17.21 68.31 69.38 
Grid traversals/ray 0.54 0.53 0.53 0.27 0.36 

Build Time (s) 0.09 0.75 0.81 4.09 6.29 
Render Time (s) 0.51 0.64 0.55 1.00 1.11 
Time to Image (s) 0.60 1.39 1.36 5.10 7.39 

Multi-level fixed hashed grid 
Primitive intersections/ray 6.14 8.26 10.06 8.74 9.06 
Cell traversals/ray 14.04 17.86 13.10 29.97 27.31 
Grid traversals/ray 0.57 0.47 0.45 0.24 0.25 

Build Time (s) 0.04 0.39 0.29 3.09 3.45 
Render Time (s) 0.57 0.68 0.67 0.79 0.82 
Time to Image (s) 0.61 1.07 0.97 3.88 4.27 

Table 1. Scene triangle mesh statistics, render time profile results, timings for the studied grid 
acceleration structures. 

We empirically chose the grid density parameter by 
analyzing the behavior for the Buddha scene as can 
be seen in Figure 1. We selected a grid density ρ of 
32 since it features adequate render time without 
having a severe impact on time to image. 
Next multi-level macrocells [Wal06], are built to skip 
empty cells in larger steps during traversal. 
Macrocells overlay a coarser grid over the finely 
divided grid. The macrocells for each level consist of 
a 3D bit array with information if a region of space is 
empty of not. To speed up this construction step 
macrocells are downscaled by a factor S of 6 on each 
extent. We arrived at this value by empirically 
analyzing algorithm behavior for the tested scenes. 
Wald et al. [Wal06] reached the same value with a 

different heuristic and test scenes. Macrocell 
downscaling can be done with a quick 3D bitmap 
scaling operation. 

4. PERFORMANCE AND RESULTS 
This section evaluates the performance of the grid 
construction methods. 
All tests were performed on a single Intel Core 2 
Duo processor at 3 GHz. The machine has 4GB of 
RAM running the Linux operating system. The 
algorithms were implemented in C++ using STL and 
Boost without use of assembly or intrinsics. 
Only a single thread was used, with one ray per pixel 
and diffuse shading, at 1024×1024 resolution. A 
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Figure 2. From bottom right clockwise: memory consumption; build time; render time; time to image 
acceleration structure statistics for the tested scenes.

variety of models from the Stanford 3D Scanning 
Repository were used for the evaluation. 
The top of Table 1 shows scene statistics such as 
number of triangles, memory used by the triangles. 
These scenes were chosen because the system is 
expected to support visualization of laser scanned 
architectural models. Scene memory usage is 
computed by using 12 bytes per triangle to store 
vertex index information (three machine words for 
each vertex index), plus 12 bytes per vertex (three 
floating point numbers for each coordinate). This 
provides reduced memory usage in an expedient 
fashion. Ray/triangle intersection was done using the 
Möller-Trumbore [Mol05] intersection algorithm 
because of its low memory requirements. 
For performance comparison purposes with existing 
published algorithms the recursive grid from the 
Manta interactive ray tracer [Big06] was tested. An 
implementation of the hashed grid algorithm by 
Lagae and Dutré [Lag08] was added to the system to 
serve as the one-level compressed grid baseline. 
The multi-level hashed grid structures feature 
improved render time performance compared to the 
one-level hashed grid. This is markedly so for the 
larger scenes where over twice the render time 
performance is achieved. Of the multi-level hashed 
grid methods, the fixed hashed grid is better for the 
larger scenes, as can be seen at top left in Figure 2. 
Fixed grid features improved render times, versus the 
variable grid, due to several factors: the fixed grid 
has a smaller memory footprint (and increased 

memory coherence); the cells of the top hierarchical 
level of the fixed grid have a larger volume, skipping 
empty regions of space faster, this is reflected in the 
cell traversals/ray. 
The recursive grid from Manta has even better render 
time performance, although the performance 
difference varies according to the tested scene. 
These performance results required a more in depth 
examination by profiling the acceleration structures 
in terms of number of primitive intersections, 
horizontal cell traversals and vertical grid traversals. 
Profiling, seen in Table 1, shows improved Manta 
render time performance is due to the lower number 
of ray/primitive intersections and horizontal cell 
traversals used by the recursive grid to display the 
same scene. 
Manta employs a deeper variable grid structure with 
maximum depth of 3 and has a modified heuristic. 
This enables improved render time performance but 
comes at a big build time penalty. It takes six times 
longer to build the acceleration structure for the Thai 
Statue scene for example as can be seen at the bottom 
left of Figure 2. 
Memory usage paints a similar picture to the build 
time statistics. The Thai Statue scene uses around ten 
times more memory in the non-compressed Manta 
multi-level acceleration structure versus the fastest 
compressed multi-level acceleration structure we 
implemented. 
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The compressed multi-level grid acceleration 
methods of note feature much improved performance 
on the figures of merit. Time to first image in 
particular is much improved versus the times 
achieved by Manta using algorithms of the same 
class. The multi-level fixed hashed grid has a 
similarly low time to image compared to the one-
level hashed grid. This makes it the best option 
among the multi-level grids for the tested scenes. 

5. CONCLUSION 
Multi-level compressed grid methods achieve best of 
class performance by combining the desirable traits 
from existing algorithms: low memory requirements, 
fast build and render times. The algorithms presented 
here could still use some work in the heuristics, as 
the multi-level heuristic from Manta has quicker 
render times. There is also room for expansion in 
improving the number of cell traversals and primitive 
intersections per ray. Alternative methods for 
speeding up traversal time by skipping empty voxels, 
not studied in this work, include proximity clouds 
[Coh94], macro-regions [Dev89], and similar 
directional techniques [Sem97]. 
We would also like to implement these algorithms on 
GPUs to investigate the performance characteristics 
of compressed structures on that hardware class.  

6. ACKNOWNLEDGEMENTS 
It would not have been possible to make the tests in 
this work without the models from the Stanford 3D 
Scanning Repository. 
This work was supported by the Portuguese 
Foundation for Science and Technology project 
VIZIR (PTDC/EIA/66655/2006). 

7. REFERENCES 
[Big06] J. Bigler, A. Stephens and S. G. Parker 

Design for Parallel Interactive Ray Tracing 
Systems Proceedings of the IEEE Symposium on 
Interactive Ray Tracing, 2006. 

[Coh94] D. Cohen, and Z. Sheffer. Proximity clouds 
- an acceleration technique for 3D grid traversal. 
The Visual Computer, 11(1): 27–38, 1994. 

[Cle88] J. Cleary and G. Wyvill. Analysis of an 
algorithm for fast ray tracing using uniform space 
subdivision. The Visual Computer, 4(2):65–83, 
1988. 

[Dev89] O. Devillers. The macro-regions: an 
efficient space subdivision structure for ray 
tracing. In Eurographics ’89, pages 27–38, 1989. 

[Fuj89] A. Fujimoto, T. Tanaka, and K. Iwata. Arts: 
Accelerated ray-tracing system. Computer 
Graphics and Applications, IEEE, 6(4):16–26, 
1986. 

[Jev89] D. Jevans and B. Wyvill. Adaptive voxel 
subdivision for ray tracing. In Graphics Interface 
’89, pages 164–172, June 1989. 

[Hav99] V. Havran, F. Sixta, and S. Databases. 
Comparison of hierarchical grids. Ray Tracing 
News, 12(1):1–4, 1999. 

[Lag08] A. Lagae and P. Dutré. Compact, fast and 
robust grids for ray tracing. Computer Graphics 
Forum (Proceedings of the 19th Eurographics 
Symposium on Rendering), 27(8), 2008. 

[Kim09] Tae-Joon Kim, Bochang Moon, Duksu 
Kim, Sung-Eui Yoon. RACBVHs: Random-
Accessible Compressed Bounding Volume 
Hierarchies. IEEE Transactions on Visualization 
and Computer Graphics, 17 Jun. 2009. 

[Mol05] T. Möller and B. Trumbore. Fast, minimum 
storage ray/triangle intersection. In International 
Conference on Computer Graphics and 
Interactive Techniques. ACM Press New York, 
NY, USA, 2005. 

[Sei08]   L. Seiler, D. Carmean, E. Sprangle, T. 
Forsyth, M. Abrash, P. Dubey, S. Junkins, A. 
Lake, J. Sugerman, R. Cavin, R. Espasa, E. 
Grochowski, T. Juan, and P. Hanrahan. Larrabee: 
a many-core x86 architecture for visual 
computing. ACM SIGGRAPH, 2008. 

[Sem97] S.K. Semwal, and H. Kvanstrom. Directed 
Safe Zones and the Dual Extent Algorithms for 
Efficient Grid Traversal during Ray Tracing. In 
Graphics Interface ’97, pages 76-87, May 1997.  

[Wal06] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. 
Parker. Ray tracing animated scenes using 
coherent grid traversal. In International 
Conference on Computer Graphics and 
Interactive Techniques, pages 485–493. ACM 
Press New York, NY, USA, 2006. 

[Wal07] I. Wald, W. Mark, J. Gunther, S. Boulos, T. 
Ize, W. Hunt, S. Parker, P. Shirley. State of the 
art in ray tracing animated scenes Eurographics 
2007 State of the Art Reports, 2007. 

[Woo87] J. Amanatides and A. Woo. A fast voxel 
traversal algorithm for ray tracing. In 
Eurographics ’87, pages 3-10, 1987. 

 

 

 
 

WSCG 2010 Communication Papers 99



      

WSCG 2010 Communication Papers 100



Interactive Image-space Point Cloud Rendering with

Transparency and Shadows

Petar Dobrev Paul Rosenthal Lars Linsen

Jacobs University, Bremen, Germany

{p.dobrev, p.rosenthal, l.linsen}@jacobs-university.de

ABSTRACT

Point-based rendering methods have proven to be effective for the display of large point cloud surface models. For a realistic

visualization of the models, transparency and shadows are essential features. We propose a method for point cloud rendering

with transparency and shadows at interactive rates. Our approach does not require any global or local surface reconstruction

method, but operates directly on the point cloud. All passes are executed in image space and no pre-computation steps are

required. The underlying technique for our approach is a depth peeling method for point cloud surface representations. Having

detected a sorted sequence of surface layers, they can be blended front to back with given opacity values to obtain renderings

with transparency. These computation steps achieve interactive frame rates. For renderings with shadows, we determine a point

cloud shadow texture that stores for each point of a point cloud whether it is lit by a given light source. The extraction of the

layer of lit points is obtained using the depth peeling technique, again. For the shadow texture computation, we also apply a

Monte-Carlo integration method to approximate light from an area light source, leading to soft shadows. Shadow computations

for point light sources are executed at interactive frame rates. Shadow computations for area light sources are performed at

interactive or near-interactive frame rates depending on the approximation quality.

Keywords: point-based rendering, shadows, transparency

1 INTRODUCTION

Ever since the emergence of 3D scanning devices, sur-

face representation and rendering of the scanned ob-

jects has been an active area of research. Acquiring

consistent renderings of the surfaces is not trivial as

the output of the scanning processes are point clouds

with no information about the connectivity between

the points. Several techniques have been developed

to remedy this problem, ranging from global and lo-

cal surface reconstruction to methods entirely operat-

ing in image space. Traditional approaches involve the

generation of a triangular mesh from the point cloud,

e.g. [3],which represents a (typically closed) manifold,

and the subsequent application of standard mesh ren-

dering techniques for display. Such global surface re-

construction approaches, however, scale superlinearly

in the number of points and are slow when applied to

the large datasets that can be obtained by modern scan-

ning devices.

This observation led to the idea of using local sur-

face reconstruction methods instead. Local surface re-

construction methods compute for each point a subset

of neighboring points and extend the point to a local

surface representation based on plane or surface fitting

to its neighborhood [1]. The point cloud rendering is,

then, obtained by displaying the (blended) extensions.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The local surface reconstruction itself is linear in the

number of points, but it relies on a fast and appropri-

ate computation of a neighborhood for each point in

a pre-computation step. The speed and quality of the

approach depends heavily on the choice of the neigh-

borhood.

As the number of points increases, the surface el-

ements tend to shrink and when projected to the im-

age plane have nearly pixel size. This observation

was already made by Grossman and Dally [6], who

presented an approach just using points as rendering

primitives and some image-space considerations to ob-

tain surface renderings without holes. Recently, this

image-space technique has been re-considered and im-

proved [8, 11, 13]. This method has the advantage

that no surface reconstruction is required and that all

image-space operations can efficiently be implemented

on the GPU, utilizing its speed and parallelism. It only

assumes points (and a surface normal for appropriate

illumination). Our approach builds upon the ideas of

Rosenthal and Linsen [11]. The image-space opera-

tions for transforming a projected point cloud to a sur-

face rendering include image filters to fill holes in the

projected surface, which originate from pixels that ex-

hibit background information or occluded/hidden sur-

face parts, and smoothing filters. The contribution of

this paper is to provide transparency and shadow capa-

bilities for such point cloud renderings at high frame

rates using a depth peeling technique.

Depth peeling is a multi-pass technique used to ex-

tract (or “peel”) layers of surfaces with respect to a
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given viewpoint from a scene with multiple surface

layers. While standard depth testing in image space

provides the nearest fragments of the scene (i.e., the

closest layer), depth peeling with n passes extracts n

such layers. We describe our depth peeling approach

for point cloud surface representations in Section 3.

The information extracted by the depth peeling ap-

proach can be put to different applications. We exploit

this information for enhancing the capabilities of in-

teractive point cloud renderings with transparency and

(soft) shadows. To achieve the first goal, we developed

a method for order-independent transparency compu-

tation described in Section 4. Once the depth peel-

ing approach has acquired the surface layers, they are

blended with object-specific opacity values in the order

of their acquisition. This approach allows for render-

ing of multiple surfaces in one scene using different

opacity values for each.

Our second goal was the shadow computation in

scenes with point cloud surface representations and the

interactive rendering of such scenes. To determine

lit and unlit regions of the scene, one has to deter-

mine, which points are visible from the light source

and which are not. This can be done by rendering the

scene with the viewpoint being the position of the light

source. In this setting, all those points that are visi-

ble can be marked as lit. This approach assumes that

we apply the image-space rendering approach with the

filters that remove occluded surface parts. The result

can be stored in form of a point cloud shadow texture.

However, since the scene is typically composed of a

large number of points, it is more than likely that mul-

tiple visible points project to the same pixel such that

marking only one of those points as lit would result in

an inconsistent shadow texture. To extract and mark

multiple lit points that project to the same pixel, we

apply the depth peeling technique, again. Once all lit

points have been marked, the scene is rendered from

the viewpoint of the observer, where the unlit points

are rendered without diffuse or specular lighting, i.e.,

only using ambient light. To create soft shadows and

alleviate aliasing artifacts, we use a Monte-Carlo inte-

gration method to approximate light intensity from an

area light source. Details are given in Section 5.

The GPU implementation of the algorithms allows

us to achieve interactive rates for layer extraction,

transparent renderings, and renderings of scenes with

(soft) shadows. Results of all steps are presented in

Section 6.

2 RELATED WORK

An effective way to incorporate transparency and/or

shadows to point-based rendering is the use of ray

tracing methods as introduced by Schaufler and

Jensen [12]. However, such approaches are typically

far from achieving interactive frame rates. The only

interactive ray tracing algorithm of point-based models

was introduced by Wald and Seidel [14], but they

restricted themselves to scenes with shadows, i.e.,

transparency is not supported. The original EWA

splatting paper [16] presents a method for trans-

parency utilizing a software multi-layered framebuffer

with fixed number of layers per pixel. Zhang and

Pajarola [15] introduced the deferred blending ap-

proach, which requires only one geometry pass for

both visibility culling and blending. They also propose

an extension how to use this approach to achieve

order-independent transparency with one geometry

pass.

An approach to incorporate shadows into inter-

active point-based rendering can be obtained in a

straight-forward manner when first reconstructing

the surface from the point cloud (globally or locally)

and subsequently apply standard shadow mapping

techniques [4]. Botsch et al. [2] applied shadow

maps to EWA splatting using GPU implementation to

achieve interactive rates. Guennebaud and Gross [7]

presented another local surface reconstruction tech-

nique, employing moving least squares fitting of

algebraic spheres, and also applied shadow mapping

to it.

The shadow computation in our approach is simi-

lar to irradiance textures (also known as “pre-baked”

lighting) in mesh-based rendering [10, 9]. Lit surfaces

are determined and stored in a texture by rendering the

scene with the viewpoint being the position of the light

source. In the rendering pass this information is used to

determine which surfaces should be drawn in shadow,

and which not.

3 DEPTH PEELING

Depth peeling was introduced by Everitt [5] and is a

technique to partition a static 3D scene into sorted lay-

ers of geometry. As the name suggests, the layers are

extracted in an iterative fashion by “peeling” off one

layer after another. The sorting is induced by the given

viewpoint. Hence, in each iteration the fragments of

the projected visible scene are determined, stored as

a representation of the current layer, and removed to

compute the subsequent layers. Figure 1 illustrates the

depth peeling idea. The depth peeling technique is im-

screen

1 2 3 4

Figure 1: 2D illustration of depth peeling: visible lay-

ers of geometry are extracted from front to back. First

layer is shown in blue, second in red, third in green,

and fourth in yellow.
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plemented in a multi-pass algorithm, i.e., to extract n

layers the whole scene has to be rendered n times. Each

rendering pass is performed with enabled depth test-

ing such that the points closest to the viewpoint and

their distances to the viewer are recorded. For the sec-

ond up to the nth pass, only those points are rendered,

whose distance to the viewer is greater than the dis-

tance recorded in the preceding pass.

As we want to avoid any (global or local) object-

space surface reconstruction, we apply the depth peel-

ing technique to scenes consisting of points only. Con-

sequently, each layer is represented as a set of projected

points. Depending on the sampling rate that has been

used to acquire the surface, the screen resolution, and

the distance to the viewer, it may happen that the points

projected to the image plane do not cover all the screen

pixels that a reconstructed surface would. Hence, the

surface layer may exhibit holes where the background

or points of hidden surface layers become visible. Fig-

ure 2 illustrates this effect for a 2D scene that is pro-

jected to a 1D screen consisting of five pixels. The

projection of the first surface layer (blue points) should

cover the entire screen. However, there are pixels to

which no blue point is mapped. Instead, the second

surface layer (red color) or even the background of the

scene (grey color) is visible. These gaps in the surface

representation of the first layer need to be filled appro-

priately. Of course, the same issue may arise for all

other extracted layers. Hence, in each rendering pass,

we apply image-space operations to the extracted layer

to fill the gaps in the surface. The image-space opera-

screen first layer hidden layers

Figure 2: When projecting first layer (blue) in point

cloud representation to the screen, the layer exhibits

holes such that hidden layers (red) or the background

(grey) become visible.

tions are executed on the rendering texture using depth

information stored in the depth buffer. The operations

are executed in four steps: filling surface gaps in form

of background pixels (grey pixel in Figure 2), filling

surface gaps in form of occluded pixels (red pixel in

Figure 2), smoothing the image for an improved ren-

dering quality of the extracted layer, and anti-aliasing

applied to the silhouettes and feature lines in the result-

ing image.

To fill holes caused by pixels exposing background

information, one has to identify which background pix-

els represent holes in the surface layer and which do

not. To determine reliably which pixels are to be filled

and which not, we apply a filter that checks the 3× 3

neighborhood of each background pixel against the set

of masks shown in Figure 3. In Figure 3, the framed

pixel is the candidate to be filled and the bright ones

are neighboring background pixels. The dark pixels

may be background or non-background pixels. If the

neighborhood matches any of the configurations, the

pixel is not filled. Otherwise, its color and depth infor-

mation is replaced by the color and depth information

of the pixel with smallest depth within the stencil of the

mask, i.e., within the 3×3 neighborhood. The filters in

Figure 3 have been proposed by Rosenthal and Linsen

for image-space point cloud rendering. For a detailed

discussion of the filters and their application, we refer

to the literature [11]. The application of the gap fill-

ing step may have to be iterated to fill larger gaps. The

operations are always executed on both the rendering

texture and the depth texture simultaneously.

Figure 3: Masks of size 3× 3 for detecting pixels ex-

hibiting holes in the projected point cloud surface rep-

resentation.

To fill pixels that exhibit occluded surface layers, we

need to be able to distinguish between pixels from dif-

ferent surface layers. In order to decide whether two

pixels belong to the same surface layer, we introduce

a parameter dmin denoting the minimum distance be-

tween two consecutive layers. The parameter depends

on the dataset and is typically determined empirically.

The occluded pixel filling operation is analogous to the

background pixel filling operation. The neighborhood

of the candidate pixel is also checked against the masks

in Figure 3, only that the bright and the dark pixels in

the masks have a different meaning. If the candidate

pixel’s depth is d, bright pixels correspond to points

that have depth values greater than d +dmin. Dark pix-

els may have any depth. If the neighborhood satisfies

any of the masks, the pixel is not changed. Otherwise,

its color and depth information is replaced by the color

and depth information of the pixel with smallest depth

within the stencil of the mask. Also this second gap

filling step may have to be iterated.

To improve the quality of the surface rendering, two

additional steps may be applied. The two gap filling

steps always replace the gap with the information from

the pixel closest to the viewer. A weighted average of

the information of those neighboring pixels that belong

to the same surface layer would have been preferable.

As it would have been too cumbersome to detect all

those neighbors, a more efficient way to obtain a simi-
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lar result is to apply a subsequent smoothing filter. We

apply a Gaussian filter of size 3× 3. This smoothing

step may be iterated.

However, the smoothing step does not smooth across

the silhouette of the projected surface. The silhouettes

and feature lines are treated in a separate step that has

explicitly been introduced for anti-aliasing purposes.

From the depth image, we can easily detect silhouettes

and feature lines by checking the depth difference of

neighboring pixels against parameter dmin (edge de-

tection filtering). All those pixels whose neighbor-

hood exhibit a significant jump in the depth values

are marked as contributing to a feature line. To all

these pixels, we apply a smoothing that reduces alias-

ing along the feature lines.

A result of the described pipeline may be seen in Fig-

ure 4. We used the Turbine Blade dataset (Data cour-

tesy of Visualization Toolkit) and extracted the first

three surface layers. The results have been obtained

by applying in each depth peeling pass one iteration

of the background pixel filling, occluded pixel filling,

Gaussian smoothing, and anti-aliasing.

(a) (b)

(c) (d)

Figure 4: Depth peeling applied to the Blade dataset

to extract the (a) first, (b) second, and (c) third layer.

The layers are represented as point clouds.The gaps

between projected points have been filled using only

image-space operations. Blending the layers allows for

transparent surface renderings (d).

4 TRANSPARENT SURFACES

Rendering of transparent surfaces is a direct applica-

tion of depth peeling. It only requires to blend the ac-

quired layers in the order of extraction. However, since

point clouds are typically dense, it frequently happens

that two or more adjacent points of one surface layer

project to the same fragment. Without taking special

care of this case, they would be recorded in separate

layers by the depth peeling technique such that con-

secutive layers contain points that should belong to the

same surface layer. Figure 5(a) illustrates this problem

in the 2D case. Points of the first surface layer are de-

picted in blue and of the second surface layer in red.

Multiple blue points are mapped to one pixel of the

screen.

(a) screen first layer second layer

(b) screen second layerdmin

Figure 5: Depth peeling for transparent rendering: (a)

first rendering pass records closest points and their

depths; b) second rendering pass again records the

closest points and their depths, but ignores points less

than dmin away from the reference depths obtained in

the preceding run.

We tackle this problem by using, again, parameter

dmin, i.e., the minimum distance between two surface

layers, to perform ε-z culling: in each rendering pass,

depth peeling records the color of the closest point p

for each pixel along with its depth d that serves as a

reference for the next run. All points that project to

the same pixel as point p and have a depth less than

d + dmin must belong to the same surface layer as p.

Figure 5(b) illustrates this idea for the example from

Figure 5(a). The green boxes of width dmin indicate

the area that is considered as one surface layer. Hence,

the second depth peeling pass discards all points with

depth less than d + dmin and correctly detects only

points belonging to the second (red) surface layer, see

Figure 5(b).

This procedure of skipping points within depth range

[d,d+dmin] has already been used to generate the three

layers of the Blade dataset shown in Figure 4. All that

is left to do for point cloud rendering with transparency

is to blend the layers front to back with an application-

specific opacity value α . The result can be seen in Fig-

ure 4(d). The opacity value used for all layers was

α = 0.5.

5 SHADOW TEXTURES

Point cloud shadow textures are basically Boolean ar-

rays that store which points are lit and which not. Once

the shadow texture is determined, lit points are drawn
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properly illuminated with ambient, diffuse, and spec-

ular reflection components using Phong’s illumination

model, while unlit points are only drawn using the am-

bient reflection component. This illumination creates

the effect of shadows, as only those points are marked

unlit where the light source is occluded by other sur-

face parts.

To determine which points are visible from the light

source, we render the scene with the light source’s po-

sition being the viewpoint with depth testing enabled.

All visible points are marked in an array. However,

as in Section 4 we observe that, due to the high point

density, it is not unusual that several adjacent points of

one surface layer project to the same fragment position.

The suggested procedure would only mark the closest

point for each fragment as lit, which would lead to an

inconsistent shadow textures. Figure 6 illustrates the

problem for a scene with only one surface layer and

no occlusion. The points of the entire surface should

be marked as lit. However, due to the described issue,

only the closest points (red) are marked as lit, while the

others (blue) remain unlit. When observing the scene

from a position different from the position of the light

source, the unlit points become visible and the render-

ing exhibits strange shadow patterns.

 light
source

observer

Figure 6: Inconsistent shadow texture in case of high

point density: marking only the closest points to the

light source as lit, leaves unlit points on the same sur-

face part. The unlit points become visible when posi-

tions of observer and light source do not coincide.

Again, depth peeling is the key to solve this problem,

but we apply it differently. While for transparent sur-

face rendering our goal was to extract different surface

layers, now we want to find all the points that belong

to a single surface layer, namely the closest one.

To decide, which points belong to one layer, we con-

sider again parameter dmin, i.e., the minimum distance

between two surface layers. We render the point cloud

from the position of the light source. Let d be the depth

of the closest point p for a given pixel. Then, we con-

sider all points that project to that pixel and have depth

values less than d +dmin as belonging to the same sur-

face layer as p. Therefore, we mark them as lit.

However, since depth is measured as the distance to

the viewing plane, applying the same offset dmin for all

points would result in an inconsistent shadow texture.

The reason is that the depth of the lit layer should al-

ways be taken perpendicularly to the surface, and not

along the viewing direction. In order to account for

the change in the offset, we scale dmin by a factor that

depends on the surface normal. Let v be the viewing di-

rection and n be the surface normal in the light source

domain. Then, the offset is given by ∆d = dmin
<v,n>

.

Given that the viewing direction in the light source do-

main is (0,0,−1), we obtain that < v,n >= −nz. To

avoid division by zero, this factor is truncated at some

maximum value.

As a first step of the algorithm, we obtain the shadow

map for the light source, i.e., we record the depth of the

closest points as viewed from the light source. As some

of the recorded depths might correspond to occluded

surface parts, we apply the occluded pixel hole-filling

filter on the shadow map. This way pixels, which be-

long to an occluded surface, will be overwritten in the

shadow map and, hence, remain in shadow.

Then, we project all points from the dataset to the

light domain and compare their depth values to the

ones stored in the shadow map. The points, whose

depth is less than the reference depth plus threshold

∆d, are recorded as lit in the shadow texture. The rest

are left unlit. This operation can very efficiently be im-

plemented on the GPU by using a shader, which takes

an array (a texture) of all point positions as input and

outputs a boolean array of the same size. The values

in the boolean array determine whether the respective

point from the input array is lit or not. The shader reads

the position of each point from the input texture and

projects it in the light domain. Then it compares its

depth with the one stored in the shadow map and out-

puts the result of the comparison to the same texture

position as in the input texture.

Figure 7(a) shows a point cloud rendering with shad-

ows applied to the Blade surface shown in Figure 4.

It can be observed that the binary marking whether a

point is lit or not results in hard shadows with crisp,

sharp edges. To create more appealing renderings with

softer shadows, we approximate the complex compu-

tation of illumination by an area light source using

Monte-Carlo integration methods. A number of ran-

domly chosen sample points, lying in the plane perpen-

dicular to the light direction and within the area of the

light source, are used as point light sources. A sepa-

rate shadow texture is computed for each of them. The

resulting binary decision values are averaged. The re-

sulting shadow texture is the average of all the shadow

textures for the different sample points. It contains no

longer just zeros or ones, but floating-point numbers

out of the interval [0,1]. These numbers determine to

what extent the diffuse and specular components are

taken into account.

Let ka, kd , and ks denote the ambient, diffuse, and

specular components of the illuminated surface at a

specific point. Moreover, let m ∈ [0,1] be the value

in the shadow texture stored for that particular point.
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Then, the surface color at that point is computed as:

c = ka + m · (kd + ks). Figure 7(b) shows the result

of point cloud rendering with soft shadows using

Monte-Carlo integration methods for the scene that

has been shown in Figure 7(a). We have used 30

samples to compute the shadow texture. In the lower

left of both figures, we provide a zoomed view into

a shadow/no-shadow transition region. The shadows

appear much softer in Figure 7(b) and their edges are

much smoother.

(a) (b)

Figure 7: Point cloud rendering with shadows for the

Blade dataset: (a) hard shadows using one point light

source; (b) soft shadows using Monte-Carlo integration

methods with 30 samples to compute the point cloud

shadow texture.

6 RESULTS & DISCUSSION

We applied our approach to three types of point cloud

data: The model of the Turbine Blade (883k points),

given as an example throughout the paper, is from the

category of scanned 3D objects. Other datasets from

the same category that we have tested our approach on

are the Dragon (437k points) and Happy Buddha (543k

points) models1. Although polygonal representations

of these objects exist, any information beside the point

cloud was not considered. A synthetical dataset we

applied our algorithm to is a set of three nested tori

(each 2M points). Finally, we tested our method on two

point clouds obtained from isosurface extraction: one

from an electron spatial probability distribution field

referred to as “Neghip”2 (128k points) and the other

from a hydrogen molecule field3 (535k points for 3

nested isosurfaces).

All results have been generated on an Intel XEON

3.20GHz processor with an NVIDIA GeForce

GTX260 graphics card. The algorithms were imple-

mented in C++ with OpenGL and OpenGL Shading

Language for shader programming. All images

provided as examples or results in the paper have been

captured from a 1024× 1024 viewport. One iteration

of each of the image-space operations described in

Section 3, i.e., background pixels filling, occluded

pixels filling, smoothing, and anti-aliasing, was used

1 Data courtesy of Stanford University Computer Graphics Lab
2 Data courtesy of VolVis distribution of SUNY Stony Brook
3 Data courtesy of SFB 382 of the German Research Council

when producing each rendering. A detailed list of

computation times for different datasets, number of

layers, number of samples, and resolutions is given in

Table 1.

The frame rates for point cloud rendering with local

Phong illumination are between 102 fps and 7.8 fps for

datasets of sizes between 128k and 6M points and a

1024×1024 viewport. The computation times exhibit

a linear behavior in the number of points and a sub-

linear behavior in the number of pixels. There is no

pre-computation such as local surface reconstruction

necessary. All methods directly operate on the point

cloud. All operations are done in image space.

For rendering with transparency, the computation

times depend linearly on the number of transparent lay-

ers. For three transparent surface layers, we obtained

frame rates ranging from 28 fps to 2.7 fps. No pre-

computations are required. Zhang and Pajarola [15]

report better performance for their deferred blending

approach than depth peeling, but it is only applicable to

locally reconstructed surfaces using splats and requires

pre-computations. Moreover, it relies on an approx-

imate solution to compute transparency. The frame

rates they achieve on an NVidia GeForce 7800GTX

GPU are around 37fps for a 303k points dataset and

23 fps for a 1.1M points dataset. As a comparison, our

approach renders a 437k points model with 3 layers of

transparency at 35fps and a 883k points one at 17.6.

Unfortunately, no information about the resolution of

the view port used to capture their results is stated to

be able to perform a fully adequate comparison.

Figure 8(a) shows a transparent rendering of three

nested tori, each drawn with a different color and hav-

ing a different opacity value. The required number of

layers to achieve this kind of rendering is six, such

that all surface parts of all three tori are captured and

blended. When rendering all six layers of this 6M point

dataset, the frame rate drops to 1.3 fps. During naviga-

tion it may, therefore, be preferable to render just the

first layer.

Figures 8(b) and (c) show examples of how our ap-

proach can be applied in the context of scientific visu-

alization. When a scalar field is only known at unstruc-

tured points in space, an isosurface can be computed by

interpolating between neighboring points. The result is

given in form of an unstructured set of points on the

isosurface, i.e., a point cloud. The datasets we used

actually represent scalar fields defined over a struc-

tured grid, but for a proof of concept we re-sampled

the datasets at uniform randomly distributed points in

space. In Figure 8(b), we extracted an isosurface with

many components and 128k points, whereas in Fig-

ure 8(c) we used three isovalues to extract multiple

nested isosurfaces with a total of 535k points. Some

surface parts are completely occluded by others. A

transparent rendering helps the user to fully observe
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Dataset Blade Happy Buddha Dragon 3 nested tori Neghip Hydrogen

# points 883k 543k 437k 3 × 2M 128k 535k in total

Resolution 5122 10242 5122 10242 5122 10242 5122 10242 5122 10242 5122 10242

Local illumination 52 52 83 64 103 68 8 8 235 82 72 48

Transparency (3 layers) 17.6 17.5 28 22 35 23 2.7 2.7 83 27 24 15

Transparency (6 layers) 8.8 8.8 14 11 18 12 1.4 1.4 43 14 12 8

Shadows (1 sample) 26 25 40 39 50 49 4 3.7 145 64 40 31

Shadows (5 samples) 9 9 14 14 18 17 1.3 1.1 62 35 14 14

Shadows (10 samples) 5 5 7 7 9.6 9 0.6 0.6 35 22 8 7.5

Table 1: Frame rates in frames per second (fps) for rendering of point clouds with local illumination only, with

transparency (using 3 and 6 blending layers), and with shadows computed with 1, 5, and 10 samples used for

approximation of an area light source. One step for each hole filling filter was applied. No pre-computations are

necessary.

(a) (b) (c)

Figure 8: Image-space point cloud rendering with transparency: (a) Transparent rendering of three nested tori (2M

points each) with six blended layers. Each of the tori is drawn in a different color (blue, green, brown) and with

a different opacities (α = 0.3,0.5,1.0). (b) Point cloud with 128k points obtained by isosurface extraction of the

volumetric scalar field “Neghip” is rendered with transparency (α = 0.7) at 25 fps. (c) Three nested isosurfaces

are extracted from a hydrogen molecule scalar field in form of point clouds with a total of 535k points. The

visualization (at 9.8 fps) with semi-transparently rendered surfaces (α = 0.3,0.5,1.0) allows the user to observe

surfaces that are entirely occluded by others.

the isosurface extraction results. The transparent point

cloud renderings use four and six surface layers, re-

spectively, and run at frame rates of 25 fps and 9.8 fps.

The frame rates for generating renderings with shad-

ows by first computing a shadow texture are also pre-

sented in Table 1. For low number of samples for

Monte-Carlo integration, we achieve interactive rates

for most tested models. For comparable models, our

frame rates are higher than what has been reported for

interactive ray tracing on splats [14] and similar to the

ones reported for using shadow maps on splats [2].

These approaches, however, require a local surface re-

construction from the point cloud representation in a

pre-processing step. For large datasets such local sur-

face reconstructions can have a substantial computa-

tion time. Wald and Seidel [14] report performance

of about 5 frames per second for comparable models

with shadows and Phong shading, using a view port

of 512x512 on a 2.4GHz dual-Opteron PC. On mod-

ern day hardware their approach would still be slower

than what we have achieved (26 fps), since it utilizes

only the CPU. The GPU accelerated EWA splatting

approach of Botsch et al. [2] achieved a frame rate

of about 23 fps on a GeForce 6800 Ultra GPU for

rendering a model of 655k points with shadows. For

comparison, our approach renders a 543k points model

at 40 fps with one sample for shadows computation.

On today’s GPUs, their approach would achieve sim-

ilar performance, but it still requires a pre-processing

step to compute the splats. Moreover, for objects and

light sources that do not change their relative position

our approach also allows the shadow texture to be pre-

computed and loaded along the point cloud. This way

soft shadows, computed with lots of samples, can be

rendered at highly interactive rates, imposing almost

no load on the rendering pipeline.

A limitation of our approach comes from the reso-

lution of the shadow map used to generate the shadow

texture. If the resolution is chosen high, it is likely

that the shadow texture will contain more “holes” and

hence require more steps of the hole-filling filter to be

applied. If the resolution is chosen lower, such that

a couple of steps suffice, the edges of the shadow ap-

pear crisp and jaggy. This problem can be alleviated

by using more samples for the area light source inte-

gration, which will provide soft anti-aliased shadows.

If the scene cannot be rendered with multiple samples

at interactive rates, an interactive rendering mode can

be used: while navigating through the scene, i.e., rotat-

ing, translating or zooming, only one sample is used for

shadow computation to provide high responsiveness.

When not interacting, soft shadows are computed with

a given number of samples.

A rendering of the Dragon dataset with shadows is

shown in Figure 9. Ten samples were used for the

shadow texture computation. The frame rate for that
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rendering is 9.6 fps, which allows for smooth interac-

tion.

Figure 9: Interactive rendering of the Dragon point

cloud model with soft shadows at 9.6 fps. 10 samples

are taken for the Monte-Carlo integration over the area

light source.

Although all operations were executed without any

computations in object space, we only introduced one

intuitive parameter, namely the minimum distance dmin

between two consecutive surface layers. This param-

eter was used at multiple points within our rendering

pipeline. An improper choice of this parameter can

produce severe rendering artifacts. For many datasets

there is a wide range of values from which a suitable

value for dmin can be chosen. Only when consecutive

layers happen to get close to each other as, for example,

for the Blade dataset, one has to choose dmin carefully.

However, as the impact of the choice becomes imme-

diately visible, an empirical choice was quickly made

for all our examples.

7 CONCLUSION

We presented an approach for interactive rendering

of surfaces in point cloud representation that supports

transparency and shadows. Our approach operates en-

tirely in image space. In particular, no object-space

surface reconstructions are required. Rendering with

transparency is achieved by blending surface layers

that have been computed by a depth peeling algorithm.

The depth peeling approach is also applied to compute

point cloud shadow textures. A Monte-Carlo integra-

tion step was applied to create soft shadows. We have

demonstrated the potential of our approach to achieve

high frame rates for large point clouds. To our knowl-

edge, this is the first approach that computes point

cloud rendering with transparency and shadows with-

out local surface reconstruction.
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ABSTRACT 
In this paper we present a new approach to the processing of molecule dynamics. The method performs the 
tracking of a channel in a sequence of molecule snapshots which represent atom positions in the molecule in 
certain time intervals. The centerline of the tracked channel is refined using the Delaunay triangulation from the 
actual snapshot resulting in a new optimized centerline. This method allows us easily to animate the behaviour of 
the channel in the sequence. The method can also be used to detect the channel geometry in snapshots, where 
recent methods are not able to find this channel. In addition, the method yields information about channel 
parameters which vary over time. We can evaluate opening and closing of the input channel. 

Keywords 
channel, protein dynamics, tracking, Voronoi diagram, Delaunay triangulation 

1. INTRODUCTION 
Biochemists usually want to observe the behaviour of 
a protein in a particular part of the molecule, e.g. to 
observe the exit route of a substrate. Channels as 
defined in [Med07] can be used to visualize this 
information. A channel which leads through an empty 
space in the molecule can for example be wide for a 
significant period of time or the substrate might 
initiate the opening of a narrow channel when passing 
by. This information helps chemists to predict the 
behaviour of a molecule before performing real 
experiments. 
Most of the methods of channel computation are 
designed to process a single static protein molecule. 
There are only a few methods for analysing the 
dynamics of protein molecules. Since the dynamics of 
a protein molecule is a continuous movement, it is 
sampled into a sequence of snapshots representing 
atom positions in given time intervals. The snapshots 

are usually aligned so that the global position and 
rotation of the molecule is fixed in all snapshots and 
the snapshots only represent local movement of 
atoms.    
Recent methods typically process each of these 
snapshots separately as static molecules and cluster 
obtained results at the end of the computation. 
Therefore, none of these methods is specialized for 
tracking a certain channel throughout the whole 
sequence. The visualization of this information can 
improve the process of protein analysis significantly. 
The method proposed in this paper is able to detect a 
particular channel in each snapshot of the dynamics 
and the resulting channels are spatially close to each 
other. This allows us to animate the progress of a 
channel over time easily.  
We can use also this method to compute a channel in 
the snapshots, where the classic approaches are not 
able to detect this channel since they compute only 
limited number of channels in each snapshot. 
However, there are situations where we need to know 
the channel geometry in each snapshot. Using the 
proposed method, the missing channel can be 
computed from the surrounding snapshots where the 
channel geometry is known.  
The main advantage of the proposed method is not 
only to improve the visualization of channel progress 
over time. As demonstrated in the results section, the 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 
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overall evaluation of channels computed by this 
method can also bring new information about 
molecule and channel behaviour.  

2. RELATED WORK 
For the computation of channels in static molecules 
there have been many different methods proposed. 
All these methods process the molecule as a 
geometric model where each atom corresponds to a 
sphere with given position and radius in the three-
dimensional space. Other biochemical properties are 
not considered. A channel in the molecule (also 
referred to as tunnel) is defined as a centerline and 
the volume ([Med07], Fig. 1). A centerline is a 
continuous curve and the volume is formed by the 
union of spheres inserted at each point of the 
centerline. The radius of all these inserted spheres is 
maximal so that it does not intersect any other atom 
in the molecule. 
An approach introduced in [Pet06] is based on space 
rasterisation. This approach suffers from several 
disadvantages resulting from discrete sampling.  
Other methods [Med07, Pet07, Yaf08] are based on 
the Delaunay triangulation (DT) and the Voronoi 
Diagram (VD) computed for the molecule. These 
methods are faster, more precise and more efficient 
than rastering solutions. However, they are designed 
to process a single static molecule and so they are not 
able to return information about channel properties 
varying across snapshots (such as the progress of the 
width of a channel over time). Nevertheless, the 
channels and their trajectories in the static snapshots 
can be used as an input for the tracking method 
proposed in this paper. 

A method which is able to determine the progress of 
channels in protein molecules over time is called 
molecular dynamics (MD) [Ald59]. A small molecule 
(substrate) is positioned inside the protein molecule 
and a physical simulation starts. Random forces are 
applied to the substrate during the simulation and 
collisions and interactions of the substrate with the 
protein are evaluated. It is probable that the substrate 
molecule reaches the protein surface. This method is 
able to find certain exit route of a substrate leading 
from a given position inside the protein, so called 
active site, to the protein surface. Note that this 
method does not require the whole dynamics to be 
computed before starting the simulation (actually, it 
computes the dynamics itself in a run-time 
simulation). The movements of atoms are computed 
continuously during the simulation according to the 
result of force interactions. The method is immensely 
time consuming (one simulation takes hours to days 
to evaluate). Due to the application of random forces, 
it is not guaranteed that a channel is found. If a 
channel is not detected, it does not mean that this 
channel does not exist. 
The complex approach proposed in [Ben09] requires 
a sequence of snapshots to be known in advance, 
either from some real screening or existing 
simulation. It computes channels in snapshots 
separately using any method for the computation of 
channels in a static molecule and clusters them 
afterwards for the whole dynamics. Each cluster 
represents the progress of a particular channel 
throughout the dynamics. Since the methods for the 
computation of channels in a single snapshot produce 
only a limited number of channels, it is probable that 

Figure 1. (a) Demonstration of a channel. This channel is ideal, i.e. its centerline leads along Voronoi 
edges. (b) Channels computed in a real static molecule and visualized using pyMol software. 
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some clusters will not cover the whole sequence. We 
can consider a dynamic channel to be closed in the 
snapshots, where the cluster provides no information 
about the geometry of this dynamic channel. 
However, this complicates the visualization of the 

channel dynamics. 

3. PROPOSED METHOD 
The method proposed in this paper is able to track the 
progress of a specific part of the protein molecule 
over time. The specific part is described by a channel. 
Its centerline is referred to as initial trajectory for 
further tracking.  
The initial trajectory can be the centerline of an 
already known important channel or it can also be an 
exit route of a substrate computed by molecular 
dynamics.  

Algorithm 
In each snapshot, we optimize the initial trajectory so 
that the channel formed by this trajectory has the 
maximal possible volume. If we do not optimize the 
trajectory, the channel can be very narrow or it can 
even have zero or negative width (see Fig. 2a). The 
optimized trajectory follows edges of a Voronoi 
diagram of the protein molecule (Fig. 2b) and thus the 
resulting channel can be much wider (see Fig. 2c).  
The algorithm utilizes the duality between VD and 
DT. The initial trajectory is mapped onto a sequence 
of tetrahedra in the DT. This sequence can be 
converted to Voronoi edges easily. 
The initial trajectory is represented as a polyline with 
vertices p1,...,pn. These input points define n-1 line 
segments. For each of the segments <pi, pi+1> 
(i=1,...,n-1) the tetrahedron Tactual containing pi is 
located and marked as actual. Then we determine the 
tetrahedron side s which intersects the ray between pi 
and pi+1. As the next step we move into the 
tetrahedron Tnew which shares the side s with actual 
tetrahedron Tactual. Finally, Tnew is marked as actual. 
The process is depicted in Fig. 3. The line segment 

Input:  initial trajectory t = p1..pn, 
        tetras of DT for the actual  
        snapshot 
Output: optimized trajectory 

for each <pi, pi+1>, i ∈ 1..n-1 
{ 
  Tactual = tetra containing pi; 
  while (Tactual not contains pi+1) 
  { 
     s = side of Tactual intersected  
         by <pi, pi+1>; 
     Tnew = tetra sharing s with Tactual; 
     // function c(T) returns center 
     // of gravity for tetrahedron T 
     output(<c(Tactual),c(Tnew)>); 
     Tactual = Tnew;    
  } 
} 

Algorithm 1. The optimization of an initial 
trajectory in a single snapshot of a molecule. 

Figure 2. (a) Initial trajectory (dashed polyline) and the corresponding channel, (b) Voronoi diagram 
with optimized trajectory emphasized, (c) Channel defined by optimized trajectory 

Figure 3. The demonstration of the algorithm 
for the segment <pi, pi+1> 
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<pi, pi+1> is substituted by the polyline which is 
formed by Voronoi edges adjacent to the tetrahedra in 
the DT which were traversed during the above 
procedure. The procedure is summarized in Alg. 1. 
Note that the implementation of Delaunay 
triangulation enables to determine all neighbours of a 
given tetrahedra in constant time. In addition, the 
geometry test required for each processed tetrahedron 
is the calculation of the intersection of a line segment 
and a triangle (tetrahedron side) in three dimensions, 
which is fast and simple. 
Since each segment <pi, pi+1> is replaced by the 
Voronoi edges dual to the tetrahedra intersected by 
<pi, pi+1>, the spatial distance between initial and 
optimized trajectory is the minimal possible.   
Notice that also the approach presented in [Med07] 
with minor changes could be used to get the widest 
channel between each two segment endpoints. 
Nevertheless, the computation would be more time 
consuming as the Dijkstra's algorithm would be used 
instead of fast following the ray-tetrahedra 
intersections in the DT. In addition, the channel might 
be much longer and its centerline might lead far from 
the initial trajectory. This fact would certainly 
complicate the smooth and continuous animation of a 
channel over time.  

Time complexity 
The time required to compute the Delaunay 
triangulation is quadratic with respect to the number 

of atoms in the molecule [Pre85]. The subsequent 
tracking of an input trajectory is linear with respect to 
the number of atoms. The overall complexity is 
O(k*n2) where n is the number of atoms and k is the 
number of molecule snapshots. 
The computation time can be reduced by computing 
only a subset of Delaunay triangulation which would 
be located near the input trajectory. If a trajectory 
covers only a small part of the molecule the 
computation time can be reduced significantly. 

4. RESULTS 
The first dynamics analysed by the proposed method 
is the protein molecule 1mj5 consisting of 50 
snapshots. This sequence was achieved by MD 
simulation of the molecule and substrate. Therefore, 
the exit route of the substrate is known in this case. 
This exit route is used as the initial trajectory in the 
computation. When we visualize the results of the 
analysis, we can observe the substrate initiates 
opening of the channel, i.e. the channel gets wider in 
places where the substrate passes.  
Different types of visualization of these results are 
depicted in Fig. 4. Five snapshots (1-5) are chosen 
from the dynamics to illustrate the progress over time. 
The results are visualized in different ways (a-d). The 
first of them (a) shows the exit route of a substrate 
and the trajectory of this route. The others show the 
resulting channel with a centerline located on the 
optimized trajectories in different snapshots displayed 

Figure 4. (a) The exit path of the substrate molecule in time (1-5) in 1mj5. This path was used as the 
initial trajectory. (b-d) Different types of visualization of a channel dynamics in certain snapshots (1-5). 
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as a set of spheres (b) or a surface (c).  In (d), the 
whole scene is clipped using the front clipping plane 
approximately in the middle of the channel. In this 
case we can observe the substrate molecule passing 
through the channel. 
Notice that the previous example demonstrates a 
possible use of this method on dynamics where an 
exit route is known before. If such route is not 
known, chemists have to define the initial trajectory 
they want to observe. The definition can be done by 
hand or the widest channel from a single snapshot of 
the dynamics can be used.  
The behaviour of the channel in the analysis indicates 
whether a certain substrate would be able to pass 
through this channel. 
The second data set consisted of a set of nine 
molecules of type rdcl, which were structurally 
similar. They were mutants of the same protein 
molecule (only a few residues were different in each 
of the mutants). The dynamics of each mutant 
consisted of 400 snapshots. We tracked the same 
initial trajectory in all dynamic sequences. 

The behaviour of resulting channels was analyzed in 
ten uniformly distributed points along their 
centerlines. The first point refers to the channel 
endpoint in the active site and the tenth point is the 
channel endpoint located near the molecule surface.  
For each dynamics, statistics about the pulsing of a 
channel in each of these segments were computed. 
The statistic for selected molecules is shown in Fig. 
5. The average width, minimal width and maximal 
width (y-axis) are shown for each of the ten points on 
the x-axis. One of the possible interpretations of the 
data in these charts is the following. All channels tend 
to be more stable near the active site whereas certain 
opening and closing of a channel happens near the 
molecule surface. It can be seen that in case of 
wt_rdcl (Fig. 5, wt_rdcl) the first half of a channel 
remained open during the whole sequence with radius 
varying from 0.8Å1 to 2.6Å whereas the radii in the 
second half varied more significantly. 
This information helps chemists to estimate which of 
the mutants is the most suitable for a certain substrate 
molecule to penetrate into the protein.  
The visualizations in Fig. 4 were created using pyMol 
software [DeL02]. 
As a third test case, we have analysed the width of a 
channel in the sequence of 250 snapshots of 
21_rdcl.cl using the clustering  method [Ben09] and 
the proposed method. In Fig. 6, it can be seen that 
both methods provide similar results. In the case of 
clustering method (Fig. 6a) the width of a channel is 
usually slightly larger. However, there are snapshots 
in which the channel is not detected. On the contrary, 
the proposed method (Fig. 6b) detects the channel in 
all snapshots. Therefore we can use results of this 
method to add the missing channel data. 
We have also evaluated the distances between 
channels in all consecutive snapshots according to the 
distance function defined in [Ben09]. In comparison 
with the graph cutting clustering method, the distance 
                                                           
1 1 Å = 10-10 m 

Figure 6. The analysis of the width of a channel 
in the sequence of 250 snapshots using 

(a) the clustering method, (b) the proposed 
method. The dashed green line denotes the 

biochemically important value 1.4Å 

Figure 5. Charts depicting channel statistics for selected protein dynamic sequences. The x-axis denotes 
uniformly distributed points on a centerline and the y-axis denotes the variation of channel width in 
these points throughout the dynamics: maximum width, minimum width and average width in the 

whole sequence. 
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between channels computed using the proposed 
method is much smaller. The example for the 
sequence 21_rdcl.cl can be seen in Fig. 7. The 
average distance for the proposed tracking method 
was 0.77Å whereas the average distance for the 
clustering method was 2.03Å. Due to the fact that the 
average distance is small, the progress of a channel 
over time can be easily animated. 

5. CONCLUSION 
The proposed method allows tracking an initial 
trajectory in the dynamics. The method is based on 
computational geometry and is fast and robust. 
Except for computation of the Delaunay triangulation, 
it uses only basic geometry tests.  
We have also presented several applications of this 
method. The optimization is of key importance when 
performing smooth animation of channel progress 
across snapshots over time.  
The properties of resulting optimized trajectories can 
provide useful information about the protein 
molecule. The possible interpretation of such results 
has been suggested. The presented method can also 
be used in snapshots where recent methods are not 
capable of detecting the channel geometry. 
As for the future work, we plan to integrate this 
method within the complex software application 
Caver Viewer (http://loschmidt.chemi.muni.cz/caver/) 

which is designed for the visualization and analysis of 
protein molecules.  
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ABSTRACT
In this paper, we present a user-assisted sketch-based
framework to extract hi-level primitives (e.g. columns
or staircases) from scanned3D models of an architec-
tural complex. The framework offers a unified level
of representation of the hi-level primitives, so that new
types of primitives can be easily added as plug-ins to the
main engine. Primitives are fitted with a user-assisted
procedure: the user suggests the approximate location
of the primitive by means of simple mouse gestures,
sketched over a rendering of the model. The viewpoint
that was selected prior to the sketching is also taken in
consideration as hints on the orientation and size of the
primitive. The engine performs a GPU assisted fitting
and the result is shown in real time to the user. Ad-hoc
gestures cause the system to add and fit groups of prim-
itive in one go (e.g. a column complex, or a sequence
of windows).
Keywords: 3D segmentation, fitting geometric prim-
itives

1 INTRODUCTION
Before the advent of scanning devices, 3D digital mod-
els of architectural buildings were mainly obtained via
manual modeling. This operation is typically guided
by 2D data, like sections and prospects. A modeler
usually proceeds by decomposing the structure in a set
of primitives, then “builds" the model by adding the
primitives.
The increasing availability of 3D range scanning
devices, the development of software increasingly
efficient and user-friendly for the creation and manip-
ulation of complex 3D digital models and the drop of
the scanning technology costs, are the main reasons
of the recent fast proliferation of scanning campaigns
for the acquisition of the shape of real world objects.
Along with other application fields, 3D range scanning
[CM02] is increasingly used in architecture.
The result that can be obtained using 3D scanning,
organized as clouds of points or as triangle meshes,
is a far more accurate description of the actual shape
of the building or the faćade then the one obtained
with manual modeling, but it does does not carry any

information on what the object or its parts are.
The possibility to decompose an architectural model in
a set of higher level primitives (which are very often
repeated on the same faćade) is extremely important for
a number of possible applications: analysis, archival,
comparison with other models. This would combine
the flexibility of direct 3D modeling to the accuracy
of 3D scanning. The primitive extraction can also be
applied to different approaches aimed at recovering the
3D information of buildings [BSZF99, SB03].
In this paper we present a framework for a user-assisted
extraction of geometric primitives. The intervention of
the user is limited to a few sketches over a rendering of
the low-level model. The sketches roughly define the
size, orientation and position of the intended primitive.
The approach is robust with respect to incomplete
geometry, and is also capable automatically identifying
and extract repeated instances of a single primitive. As
a result, the user can decompose a complex 3D models
in a few minutes, without the need of picking accurate
positions, and obtain good results.
The next subsections will briefly review several state-
of-the-art automatic and semi-automatic approaches
for primitive fitting. Then, the proposed framework
will be shown. A discussion on the obtained result will
be presented before the conclusions.

2 RELATED WORK
The literature on reverse engineering from 3D data is
vast. In this section we will only give a brief overview
of the approches more closely related to our domain.
We will subdivide the approaches in segmentation ap-
proaches and fitting approaches. In the first class we
put the approaches for finding low level features, such
as lines, planar regions or high curvature points in the
3D dataset. These methods do not aim to give the in-
formation about the nature of an object, instead they
try to convert a raw geometric description (i.e. a point
cloud or a triangles mesh) into a more abstract descrip-
tion. Usually these techniques rely on on discrete local
curvature operators to detect features [OBS04, WB01,
HHW05, CSAD04], the biggest challenge being mak-
ing the algorithm robust to geometrical noise. Extract-

1
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ing features from an irregular 3D point cloud or from
triangle mesh produced by 3D scanning is made dif-
ficult by the inherent ambiguities of the task as well
as by the presence of geometrical noise, holes in the
model, and other inconsistencies. Once basic geomet-
ric features such as lines and planes have been found,
they can grouped to describe higher level structures.
In [SWWK07] this is done by creating a graph of re-
lations where sub parts of the graph define structural
elements and arcs describe the constraint between ele-
ments. In the class of fitting approaches we place those
methods which use parametrized description of higher
level primitives and try to ”place“ them in subparts of
raw data by means of minimizing an error function.
The function being minimized can be defined ad hoc
for a given type of primitive (e.g. planes, cones, cylin-
ders) [MLM01, Ben02]. In the general case, however,
it consists in some form of distance between the sur-
face of the primitive being fitted and the real model.
In [USF08] the authors give a GML parametric de-
scription for the model being fitted and the minimiza-
tion performs the fitting using the given parameters.
In [PMW∗08] the case of repeated regular structure in
manufactures or natural objects is studied, such as a se-
ries of windows or a snow flake. The approach uses
a sequence of operation consisting of partitioning the
object, finding a set of transformations between parts
and clustering them to extract geometric relations in the
model.

3 OUR FRAMEWORK
Our framework falls in the group of fitting approaches.
Rather than trying a fully automatic approach, we aim
at reducing user intervention down to few mouse ges-
tures. The gestures are used to reduce the search do-
main the the minimization required by the fitting pro-
cess, so to avoid the most computationally demanding
phase which is often carried out with RANSAC based
algorithms. Figure 1 shows the steps required for the
user to identify and fit a set of 5 columns. The user
selects a view of the 3D raw dataset by manipulating
a mouse-controlled trackball. Then he perform a sign
over the current rendering with the mouse, as shown in
Figure 1-(a). With this information a column shape (in
this case, a trunk of cone) is fitted over the 3D dataset
– the surface shaded in red in Figure 1-(b); once the
first column has been fitted the user may perform a sec-
ond gesture to indicate that there is a series of similar
columns, as shown Figure 1-(c); those columns are au-
tomatically fit (also see attached video).

Our main concern is to make the system easily ex-
tendable, so that the process of adding new types of
primitives is easy and the system is not tied to a prede-
fined set of primitive types. The fitting problem is ap-
proached as a generic minimization problem. All prim-
itive types are defined likewise as a parametric shape

function Sh, which takes as input a variable amount of
intrinsic and extrinsic parameters, and returns in output
a set of 3D points. More precisely, Sh(x1, . . .xn,RT ) =
{p1, . . . , pm}, where m is the number of produced sam-
ples on the surface, and n is the number of scalar in-
trinsic parameters, and RT is a roto-translation matrix,
or extrinsic parameters, which specify the location in
space of the shape. Specification of a primitive type
also include an interval for each intrinsic parameter.
Note that choosing to express the shape as a parametric
point set does not allow to exploit non geometric infor-
mation that we may know about the primitive. On the
other hand it gives generalization of the primitive de-
scription and allow us to write a extendable framework.

While any primitive type has the same extrinsic pa-
rameters, the intrinsic parameters vary from type to
type, both in number and in range of values.

For example the primitive type Column is defined by
the shape function:

Column(rbottom,rtop, len,RT )

where rbottom and rtop are the two radii of trunked cone
with length len.

The minimization problem can now be defined inde-
pendently of the type of the primitive being fitted:

min Err(Sh(x1..xn,RT ),M)
xi ∈Constr(i) (1)

where Err is a measure of the difference between the
primitive and the scanned model and Constr(i) is the
constraint defined for the parameter i (for example in
the case of the column we have 0 < rbottom,rtop, len).

Figure 2 show a scheme of the whole process. The
user select a shape and perform a mouse gesture so pro-
viding the input for the module that computes a first
estimation of the parameters. Then the minimization
process start by sampling the surface generated by the
parameters, computing its distance from the model and
updating the parameters to decrement the error, until a
satisfactory fitting is found.

Being that our method relies also on user interven-
tion, it may reminds to many user assisted techniques
for segmentation of medical datasets for which a vast
literature is available (see [PXP00] for a recent survey).
However there are important distinctions both in finali-
ties and in adopted strategies. The first difference is that
for architectural manufactures we do not need a tool for
supporting the recognition of a shape, as usually is for
medical images, but only a tool for converting a raw
description (a point cloud) in a structured one (union
of architectural elements). Many techniques in medical
segmentation are based on energy minimization meth-
ods but the exploitation of a known parameterization of
the object to segment brings less advantages than in our
case for the simple reason that human organs are much
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Figure 1: application example of fitting of 5 columns.

more difficult to parametrize than architectural build-
ings.

3.1 From gesture to parameters estima-
tion.

The goal of using the mouse gesture is to reduce the
search space for in the minimization process. However,
in order to be effective, the gesture must be simple to do
and not necessarily precise. The first task is to interpret
a 2D mouse gesture in a selection of a 3D subpart of the
original 3D data (mesh or point-cloud).

Figure 3.(a) shows the example of the column where
the sign of the mouse is partly over the column (shaded
in red) and partly over the background (shaded in
green). In Figure 3 we see how the selected points are
distributed in space.

We compute the distribution of the distance of these
points from the viewer and use it to remove what we
consider to be outliers (see Figure 3.(c)), in the assump-
tion that the majority of points will be coherently on
the part of the dataset that corresponds to the primitive
being fitted. Then we take the bounding box of these
points to infer an initial estimation of parameters for the
shape. In the most general case, i.e. with no assump-
tion neither on the type of dataset nor on the type of
primitive, the only information that we could use from
the bounding box is its volume, so we can solve a min-
imization problem:

min ‖Volume(Sh(X0, . . . ,xn,RT )−Volume(BBox)‖

and use the solution as the initial estimation for the
problem 1. The computation of a solution is made less
computationally intensive by taking in account the view
transformation that was chosen by the user in order to
have a suitable view of the intended feature:

• the view transformation selected by the user before
he performs a mouse gesture is assumed to be such
that the feature has a natural orientation (e.g. the col-
umn is not upside down in screen space);

• similarly, the intended instance of the primitive is
oriented, in view-space, as facing the camera.

taking advantage of these reasonable assumptions, we
infer a correspondence between the frame centered in
the center of the bounding box and oriented with its
sides, and the frame where the shape is defined for the
initial to obtain the parameters estimation.

3.2 Minimization
At a first glance, we could take the function to min-
imize, referred as Err in the problem 1 as the sums
of Euclidean distance between the primitive and the
model. Unfortunately this is not enough, because we
may have architectural elements which subparts are
also instances of the same type of element. For exam-
ple a portion of a plane is also a plane and a portion
of a column is also shaped as a column. Of course
this also depends on the definition of the primitive
types. Consider for example how a column including
a basement and the capital we would not have these
ambiguities (however that primitive type could not be
fitted, for example, over a 3D point cloud featuring a
broken column, a case for which we would need an ad
hoc primitive).

For these reasons, we aim at the maximal portion of
dataset that matches with the primitive. Therefore we
redefine our error function as:

Err(Sh,M)=
1

Area(Sh)

j<k bArea(Sh)c

∑
j=0

max(t,wi D(si,M))2

(2)
where si, i = 0 . . .k is a sampling of the surface of the
primitive, D(si,M) is a measure of the distance from
si to the model M, t is the minimum error that is as-
signed to each sample to smooth out the contribution
due to the the noise of the scanned model and wi is a
[0,1] weight associated with the ith sample that is used
to discard outliers that are created is the model misses
portion of surface that are represented in the shape (e.g.
a column with a missing piece). Essentially Err takes
into account the distance between the primitive and the
model and the area of the shape and decreases both if
the distance decreases and if the area grows. Note that
the distance measure is squared in order to express both
parts of the fraction in the same scale, and that the num-
ber of samples is proportional to the area so that each
sample accounts approximately for a constant area.
Computing D(si,M). We can define the distance func-
tion as the Euclidean distance to the closest point on M,
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Figure 2: A scheme of the fitting framework

Figure 3: From mouse gesture to initial parameters.

just like in classic IPC algorithm [BM92] D. However,
since we have an estimation of the normals both for the
shape and for the model, we can achieve better results
including the normals in the estimation and defining the
distance as:

D(si,M) = min D(si, pi), pi ∈M (3)

where:

D(si, pi) = E(si, pi)+
α (1− ~n1 ~n2)2β

E(si, pi)+1
(4)

the function D is simply the Euclidean distance E plus
a positive bounded contribution En (the right part of
the sum) which accounts for the normals in the distance
computation. The expression is formulated so that the
weight of the normal only comes into play where the
two points are close to each other and the magnitude of
their contribution is proportional to the angle between
them. It can be easily seen that the maximum contri-
bution ( found when E(si, pi) = 0 and ~n1 ~n2 = −1) is
α 22β . We can set β to determine how fast the con-
tribution of this term grows and α to relate the term to
the density of the dataset. The value of α is important
because the contribution of the term must be propor-
tioned to the density of the sampling to affect the min-
imization. Typically a good choice is to set it to the
average inter point distance. So if, say, β = 2 and the
average inter point distance is 0.5, we will have a term
that may increase the distance estimation from the Eu-
clidean value at most by 0.5 22 2 = 8, when points with

Figure 4: A plot of the distance function for β = 2,
α = 0.5 and several values of angle between the points’
normal.

opposite normals coincide. Figure 4 shows a plot of
En for different values of the product ~n1 ~n2 and β = 2
where this behavior can be observed.

Al thought the distance function En is a 5D function,
the closest point on M with respect to En can be found
using only data 3D space indexing data structures for
Euclidean distance by:

1. finding the closest point pi with respect to the metric
E

2. taking the closest point with respect to D among
those which euclidean distance is less than D(si, pi).

It is easy to see that the algorithm returns the closest
point w.r.t. D, because

E(si, p′)> D(si, pi)→D(si, p′)= E(si, p′)+En(si, p′)> D(si, pi)

Minimization cycle. At this point we have defined
both the parameters and the function to minimize and
may apply any non linear minimization algorithm to
find a hopefully optima solution. However, we exploit
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the knowledge of a closed form solution for the extrin-
sic parameters alone [BM92] and decompose the mini-
mization cycle in three steps:

1 for each sample in the shape Sh, find the closest
point in the model

2 find the rototranslation that minimizes the squared
distances between all the pairs (only explicit param-
eters involved)

3 iterate a non linear minimization procedure (only
implicit parameters involved)

- if Err(Sh,M) is under a user selected threshold re-
turn, otherwise goto 1

We used both Levemberg-Marquardt [Lou09] and
Newuoa [Pow08], with similar results.

4 EXTENDING TO MULTIPLE IN-
STANCES

When an architectural element has been fitted, it is
likely that other similar elements (i.e. of the same type
and size) are present. Examples are the columns, the
steps of a stair of a series of window. Therefore we
wanted to spare to the user to repeat the same mouse
gesture for all the elements an simply make a single
gesture which says here there are other elements of this
type. As shown in Figure 1.(c), the gesture required is
two mouse clicks to define a line segment. From this
gesture the initial parameters for all the other columns
are find and the minimization process just described is
launched on each instance.

4.1 From gesture to parameters estima-
tion.

Since we have fitted the first element, we already have
the estimation of the initial implicit parameters for the
other instances of the same type of element. The user
may define a segment (seg(t)x,seg(t)y to indicate where
these other instances are, as shown in Figure 6. There-
fore the information we need to extract is how many
other elements there are and, for each one of them, an
estimation of the extrinsic parameters. Furthermore we
can exploit the fact the in architectural manufactures re-
peated elements usually differ by a translation but are
oriented in the same way and reduce the missing ex-
trinsic parameters to a translation.

In principle we could sample the segment and, for
each sample, launch the optimization taking the projec-
tion of the sample onto the scene as a starting point for
translation. Unfortunately the minimization process re-
quires few seconds to complete and therefore we need
to reduce the set of candidates translations.

We harness the rasterization process in order to
quickly reduce the candidate translations. More pre-
cisely we exploit the z-fighting artifact. The z-fighting

Figure 5: A schematic representation of z-fighting
quantification

is the rendering artifact that happens when the depth
values of the rasterization of different polygons falls
in a range of values close or under the precision of
the z-buffer, so that the pixel are evenly written by the
conflicting polygons.

The idea is that if we consider the 3D point
(seg(t ′)x,seg(t ′)y,seg(t ′)z) where (seg(t ′)x,seg(t ′)y are
2D points belonging to the segment and seg(t ′)z is the
projection on the model and render an instance of the
shape translated by seg(t ′) together with the scene, the
presence of z-fighting indicates a superimposition of
the rendered shape with the model, at least from the
view used to draw the segment.

Normally the z-fighting is a symptom of a weakness
of the geometric representation or of the rendering al-
gorithm, therefore if not quantified but only, possibly,
avoided. In our approach, however, the z-fighting is an
estimation of matching between a shape and the model
and therefore we are interested in quantifying it.

Figure 5.(a) shows a schematic example representing
the section of a column in the model (shaded in blue)
and a section of the shape being fitted (shaded in red).
Since they are perfectly superimposed, we see part of
the pixels red and part blue, in the proportion which is
essentially random and cannot be used directly to quan-
tify the superimposition. However, if we apply a small
displacement of the shape towards the viewer we see
that all the pixels are red and, vice versa, displacing
the shape away from the viewer the pixels will all be
blue. In other words, the more the shape and the model
are superimposed, the more the two renderings with the
displaced shape will be different. Therefore we quan-
tify the z-fighting as:

Z f ight(Sh,M,Ti) =
‖FSh(+ε)−FSh(−ε)‖

FSh

where FSh(+/− ε) is the number of fragments belonging
to the shape when is displaced by +/− ε and FSh is the
number of fragments of the shape Sh alone. The upper
half of Figure 6 shows two examples of a fitted shape,
a column and a step, and the segments defined by the
user, while in the lower part are shown the plots ob-
tained by setting t (the parameter of the segment with
range [0,1]) as ascissa and (Sh,M, t), so (Sh,M,0.5) is
the value of the z-fighting when the shape is placed
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Figure 6: Example of estimation of extrinsic parame-
ters from mouse gestures for a series of columns and a
stairs.

on the projection of the middle point of the segment.
Quantifying the z-fighting is very efficient because it
requires only one rendering of the model and two ren-
derings of the shape for each pixel of the segment,
while the number of fragment for the displaced shape
are counted by means of the hardware occlusion query.

Note that, being based on the rasterization, this tech-
nique is dependent on the window resolution, therefore
it will be generally more effective with higer resolu-
tions, simply because more translations are evaluated.
It should be clear that the resolution to which we per-
form the zfighting computation can be different (higher)
that the resolution used by the application for rendering.

5 DEFINING NEW PRIMITIVE TYPES
As stated in Section 3, our framework is not restricted to
a given set of primitives but uses an abstraction layer the
sees a primitive as a sampling of its surface dependent
on a set of implicit parameters. Therefore a developer
user may add new type of primitive by deriving from a
base class Primitive and implementing two methods:

s t r u c t MyPrimitiveType : p u b l i c Primitive{
i n t N_params ( ) ; / / r e t u r n s t h e number o f t h e i m p l i c i t p a r a m e t e r s o f t h e←↩

p r i m i t i v e

points Samples ( f l o a t * params ) ; / / r e t u r n s a s a m p l i n g of t h e s u r f a c e ←↩
wi th t h e p a s s e d p a r a m e t e r s

} ;

6 RESULTS AND DISCUSSION.
We tested our framework implementing a few types of
primitives, summarized in Table 1.
We fitted the primitives to a scanned model of the Dome
of Pisa and reported the timing for various runs in Ta-
ble 2. Some of the runs are related to the figures we

Name . n.params. meaning
Column 3 bot. rad., top rad., len.
SquareColumn 3 width, depth, leng.
Stap 3 width, depth, length
Arch 3 radius, angle, depth
Window 3 width, height,depth

Table 1: A few primitives defined to test the framework.

fig n. pts nI nM extr.(s) intr.(s) tot.
2M 1 1 53 4.9 58.7

1 1.5M 5 1+1 132 18.5 1.51m
309K 3 3 21.4 16.3 37.82
122K 1 1 1.4 0.34 1.78
226K 1 1 1.7 0.6 2.39

7(up) 730K 5 1+1 57.7 4.7 62.5
7(bt) 200K 4 4 12.4 0.43 12.8

Table 2: Time for fitting the primitives. n. pts: num-
ber of points of the model included in the user hint, nI:
number of primitives fitted,nM: numbers of mouse ges-
tures, extr. intr. time spent for minimization of ex-
trinsic and intrinsic parameters, respectively, tot.: total
time

used in the paper, in which case a reference is reported
in the first column of the table. The second columns re-
ports the size of the portion of the model hinted by the
user with the gesture and the third the number of prim-
itives found with the run. The last three columns re-
port the computation time. Note that the time for mak-
ing the gestures are not reported in this table, since the
experiments have been run only by an expert user and
therefore not very meaningful. We took the number of
mouse gestures as a measure of the user effort.

The table says that, thanks to the replication gesture,
5 architectural elements have been found with 2 ges-
tures (second and sixth row), while where the replica-
tion is not used we need a mouse gesture per element,
as for the arches refered in the last row. Conversely, in-
dicating manually each and every element gives better
starting points for the minimization and therefore the
computation time are lower.

Since we performed minimization by alternating
minimization of extrinsic parameters, for which we
have a closed form solution, and extrinsic parameters,
the time spent on each one is reported separately. The
result may appear surprising at first, because the easiest
side of the problem, i.e. finding the rototranslation
between two sets of points, is actually the most expen-
sive, in some cases almost by an order of magnitude.
On the other hand, we must consider that the extrinsic
step is performed many more times, in that we solve
a mesh alignment problem for each iteration. It goes
without saying that tweaking the thresholds of the
minimization algorithms we may obtain different ratios
between the two timings, we simply tuned their values
to have robust fitting in reasonable time. The time for
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Figure 7: Above: example of selection of stair steps:
(a) mouse gesture for the first step (b) fitting (c) mouse
gesture for replicating the fitting (d) result. Below: final
results for a set of arcs.

the analysis of the mouse gestures are not reported
explicitly since they amount to few milliseconds both
for the single primitives than for replication with the
z-fighting computation.

Figure 8: Fitting of columns and arches. (a) results
from [USF08] (b) results of our framework on a sim-
ilar model.

7 CONCLUSIONS
In this paper we presented a framework for user assisted
fitting of geometric primitives on scanned architectural
models. The main advantage of our framework is the
generalized description of the primitive to fit that allows
to include new type of primitive with minimal effort.
We also devised efficient and practical solutions for en-
abling the user to hint the approximate position of the
primitives, for improving the assessment of primitive
models distance with a novel measure and for quan-
tifying the superimposition of primitive and model by
exploiting the rasterization hardware. Although requir-
ing user assistance is in general a drawback, we made
this choice motivated by two facts: 1) For a human it is
very easy to indicate where an architectural component
is, while is much more difficult to manually superim-
pose the CAD model of a component on the raw data;
conversely, the analysis of raw data to locate architec-
tural components is computationally time consuming
while the minimization for finding the exact placement
is an efficient process. 2) The process to digitize and
entire building still take many man-hours and the re-
verse engineering is done once for all in a fraction of the
time required for the rest of the scanning pipeline. In
other words the little interaction used in this approach
is hardly the bottleneck of the whole process.

From the work carried out so far, we can envisage at
least two independent improvements.
The first one is to exploit more deeply the z-fight quan-
tification to define a faster minimization algorithm only
based on the rendering and therefore taking advantage
of the rasterization hardware.
The second one is to derive the parametric primitive di-
rectly from a known model, that would allow a non-
developer to define new type of primitives. The idea
is that the user could provide a sample of the primitive
as a geometric model (from a CAD or 3D scanning)
and we should derive a parametric description of it, ei-
ther automatically or providing a tool to do it. In this
manner we could include complex shapes for which to
find a parameterization is too complicated. With some
approximation this would allow to include artifacts as
statues when if they are copies of statues for which the
digital counterpart is available.
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ABSTRACT 
This paper presents an accurate real time collision detection algorithm for interactively animated virtual 

characters using sphere-trees as Bounding Volume Hierarchies. We build upon a fast mathematical method for 

on-demand sphere refitting during the animation and improve it for being applicable to any object, without 

dependency on its geometrical level of detail or its dynamic/static behavior. It uses sphere-plane intersection test 

as the exact test in the collision detection algorithm instead of the usual triangle-triangle one. Corner-trees, a 

special hierarchy that ensures the utilization of the plane-sphere intersection test is right, are also presented. In 

the worst case, the optimization decreases in 25% the time needed to process a frame in extreme conditions. The 

algorithm has been successfully tested on a real time and collaborative 3D virtual world. 

Keywords 
Real-time Collision Detection, Bounding Volume Hierarchies, Virtual Character Animation. 

1. INTRODUCTION 
Collision detection (CD) is a key issue in almost all 

fields of computer graphics. Real time virtual objects 

and virtual characters’ animation are not exceptions. 

In most of cases they need to have realistic behaviors 

that imply CD, i.e. not to penetrate other objects. 

Therefore, many algorithms have been proposed in 

recent years.  

Accurate algorithms are usually very expensive 

computationally speaking. Then, applications that 

make use of collision detection algorithms have to 

balance between preciseness of the detection and 

velocity of the algorithm.  

For instance, a very fast performance of the collision 

detection algorithm is needed in Massively 

Multiplayer Online Games (MMOGs) and a very 

precise detection is crucial in serious games and 

virtual prototyping. On the other hand, continuous 

collision detection (CCD) was presented to solve the 

main problem that discrete algorithms presented, the 

tunneling effect, i.e. the miss of some collisions. 

However, the velocity of the algorithm obtained was 

not appropriate for real time purposes. 

Although the problem has been widely studied for 

rigid bodies, there is a lot to do regarding CD for real 

time deformable objects such as clothes, interactive 

virtual humans, etc. The problem increases in case of 

collaborative virtual worlds, with lot of avatars 

interacting among themselves and with objects at the 

same time. It is usual to see very fast but imprecise 

CD algorithms. 

Therefore, in this article, we focus on real time 

humanlike animation in collaborative virtual worlds 

and propose an algorithm to obtain a fast and precise 

CD for interactive virtual characters of high level of 

detail. In order to be used in both, virtual worlds and 

precise simulations, the algorithm is based on these 

features: 

- A fast update of the spheres in the Bounding 

Volume Hierarchy. 

- Utilization of the sphere-plane intersection 

test instead of the slower triangle-triangle 

test. 

- Implementation of the corner-trees, a novel 

hierarchy for the correct and fast 

performance of the algorithm. 

The paper is structured as follows. In section 2 we 

summarize the related work. In section 3 we describe 

our virtual character animation platform and its 

collision detection algorithm. In section 4 we analyze 

the major problem we found for a fast performance 

of the algorithm and in section 5 we describe two 
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methods to solve it. In section 6 we present and 

compare the obtained results and finally, in section 7, 

we analyze future extensions to improve the 

performance of our CD algorithm. 

2. RELATED WORK 
When detecting collision detection between a virtual 

character and its environment, first, the character’s 

movement has to be computed, i.e. the new position 

of the avatar’s vertices has to be calculated. And 

then, the second stage will be the CD itself, taking 

into account the new positions of the vertices. 

Sections below deal with related work in each of 

these stages. 

Virtual Character Animation 
Virtual character animation has been widely studied 

in computer graphics. In this research field, one of 

the main goals is the realistic simulation of human 

movements. Especially in 3D animation, many 

efforts have been done in recent years. Although 

there are some methods such as Blend Shape 

Deformation [Moh03a] and Free-Form Deformation 

[Sed86], skeletal animation systems are the most 

used. The primitives that form the virtual character 

are transformed depending on the movements of a 

skeleton. We can classify these methods by the way 

they skeleton affects the primitives. Linear Blend 

Skinning [Moh03b] manipulates the triangle-mesh 

associating each vertex to a group of joints of the 

skeleton and giving a weight for each joint (the sum 

of the weights is one). Then, the transformation of 

the vertex is a linear combination of the joints’ 

transformations. Spherical Blend Skinning [Kav05a] 

works similarly, but the relation between joints’ 

transformations and vertices’ transformations is not 

linear. It is based on Spherical Linear Interpolation. 

Collision Detection 
When detecting collisions between two objects, 

testing each primitive-couple is too costly. Detecting 

collisions between two objects with  and  

primitives would cost  operations, where  

is the number of basic operations needed in an 

intersection test between primitives. Therefore, a 

method that detects which primitives are more likely 

to be colliding (broad phase) is used before executing 

the exact test between primitives (narrow phase) 

[Mol97, Tro05]. 

Usually, Bounding Volume Hierarchies (BVHs), i.e., 

sets of volumes that bound the object getting 

different levels of tightness, are used in the broad 

phase. During the collision detection, the volumes in 

the hierarchies of the objects are tested to be 

colliding. If they don’t collide, all the primitives 

inside the volumes don’t collide, but if they do 

collide, next levels of tightness are checked. Once the 

algorithm finds two colliding leaf-nodes, i.e. volumes 

that enclose only one primitive, the exact intersection 

test between primitives is called. 

The number of operations needed to detect collisions 

between bounding volumes is much lower than 

between primitives. For instance, a collision test 

between spheres consists of 10 operations and the 

best collision test between triangles consists of 96 

operations. 

We can sort these methods by the type of volume 

they use:  

 Spheres [Qui94, Hub96] 

 Axis-Aligned Bounding Boxes (AABBs) 

[Van98] 

 Oriented Bounding Boxes (OBBs) [Got96], 

  k-Discrete Orientation Polytopes (k-DOPs) 

[Klo98] 

Most of these methods were presented for collision 

detection between rigid objects. Nevertheless, CD for 

deformable objects also makes use of BVHs. Once 

again, different types of BVHs appear such as 

spheres [Bro01] and AABBs [Lar01, Zac06]. 

Regarding collision detection for avatars, i.e. virtual 

characters, there have been different approaches in 

recent years.  Kavan et al. use spheres to create the 

BVH. They refit the sphere-tree for bodies that are 

moved based on a skeleton. They proposed collision 

detection methods for Linear Blend Skinning 

[Kav05b] and Spherical Blend Skinning [Kav06]. 

All the results shown so far are discrete, i.e. they 

sample objects’ motions. As opposed to these 

methods, continuous collision detection (CCD) 

methods compute the first time of contact during the 

collision detection. Six different approaches to CCD 

have been presented in the literature: algebraic 

equation-solving [Cho06], swept volumes [Abd02], 

adaptive bisection [Red02], kinetic data structures 

(KDS) [Aga01], the configuration space approach 

[Van04], and conservative advancement [Cou06] 

However, these methods performance is not as fast as 

is required. 

There are also some continuous collision detection 

results for avatars. Zhang et al. [Zha07] use OBB-

trees and create AABBs during the motion 

interpolation using Taylor Models, i.e. a 

generalization of interval arithmetic. Instead, Redon 

et al. [Red04] use swept volumes (SV) for CCD in 

scenes with a simple articulated avatar. 

 

3. ALGORITHM OVERVIEW 
The developed collision detection algorithm is a 

discrete collision detection method and works with 

spheres as bounding volumes. Spheres were chosen 

because of the fast performance of the sphere-sphere 
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intersection test and the low space needed to store the 

data. 

Virtual Character Animation 
Regarding the animation stage, in our system, the 

vertices are associated to a unique joint and the 

transformation of a vertex is obtained computing the 

product of the transformations of all joints upon the 

associated joint in the skeleton-tree and the weighted 

transformation of the associated joint.  

 

 

where  is the group of joints upon the associated 

joint in the skeleton-tree,  the transformation of the 

vertex, s the transformations of the joints in ,  

the transformation of the associated joint and  the 

weight associated to the vertex. This way of 

animation provides an adequate balance between 

performance and realism for its use in collaborative 

virtual worlds. 

Collision detection 
The collision detection algorithm begins with the 

sphere-tree construction. This construction of the 

sphere-tree is based on Quinlan’s work [Qui94]. First 

a binary tree is constructed: in each step, the triangles 

of a sphere are divided in two groups and two 

spheres are constructed enclosing each group 

[Gae99]. In this case, to make the division, the 

triangles are ordered depending on their position in 

one of the axes, so as to get two spheres as far as 

possible one from the other. Moreover, the axis is 

chosen to be the one where the spheres are most 

spread. As in [Kav05b], the binary tree is turned into 

a n-ary tree eliminating the spheres the radius of 

which is similar to their parent’s radius. This way, 

when testing for collision, tests between similar 

spheres are avoided. 

Since each vertex is associated to a single joint in our 

platform, instead of creating a unique tree, a tree is 

constructed for the group of vertices associated to 

each joint, so as to prevent the algorithm having 

spheres affected by no-adjacent-joints. To merge all 

the trees, an enclosing sphere for all vertices is 

computed as the root of the main tree and a sphere 

for each extremity to form the second level are 

created. 

Sphere update 
The sphere update of our algorithm is inspired by the 

main contribution of Kavan and Zara [Kav05b]. In 

the preprocess, all the vertices of a sphere are visited 

to compute the minimum and maximum weights for 

each joint affecting this sphere.  

Then, during the animation, when a joint is visited to 

update the vertices associated to it, the spheres 

containing vertices associated to this joint are also 

visited. For each visited sphere, two new spheres 

(one if maximum and minimum weights are the 

same) are created applying the same transformation 

as to the vertices to the center of the sphere but using 

the maximum and minimum weights. The radii are 

the same as the original sphere. 

 

 

 

where  is the center of the sphere,  and  

are the new centers and  and  are the 

precomputed maximum and minimum. 

Finally, the enclosing sphere of the new spheres is 

created, ensuring that all the vertices are inside the 

new sphere. 

 

 

where  and are the center and the radius of the 

final updated sphere and  and  are the centers and 

the radii of the spheres obtained with all the 

maximum and minimum weights. 

Narrow phase 
During the collision detection, when two spheres in 

the lowest level of the hierarchies are colliding, an 

exact collision test between the triangles enclosed by 

those spheres is called. We use the fast algorithm 

presented by Tropp et al. [Tro05]. When detecting 

intersection between edges of a triangle and the other 

triangle, all the redundant operations to calculate 

determinants are discarded. 

 

4. OPTIMIZATION 
Since we want our platform to cope with virtual 

characters containing more than 40000 vertices, the 

algorithm needs some optimization. It has to be able 

to handle the big amount of spheres generated with 

this number of vertices. 

In order to reduce the number of triangles that take 

part in the collision detection algorithm, we 

implemented an optimization proposed by Curtis et 

al. [Cur08]. They realized that many collision tests 
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between primitives are made more than once and 

developed a method to avoid these duplications. In 

our case, we assume that each edge of the triangle-

mesh has to be tested once. Then, taking into account 

a triangle surrounded by three triangles that have 

already been taken into account is not necessary (see 

Figure 1). Therefore, we assume this triangle doesn’t 

exist for the collision detection. One may think that 

some collision may be skipped this way. In fact, the 

penetration of a smaller triangle in a “not existing” 

triangle without touching its edges wouldn’t be 

detected, but we have seen that in practice, this 

extreme case doesn’t occur with avatars of so high 

level of detail. After implementing the optimization, 

the number of triangles used for the collision 

detection decreased 40%. 

 

Figure 1 The triangle among the other 3 triangles 

is not taken into account in the CD algorithm. 

 

Big triangles, a problem 
When an avatar is walking in an environment, 

usually the triangles that compose the environment 

(walls, tables, windows, etc.) are much bigger than 

the ones that compose the avatar. This fact is a 

serious drawback when trying to get a fast 

performance of the collision detection system. 

The leaf-node of the sphere-tree that corresponds to a 

big triangle is a big sphere. So, when the avatar is 

near a big triangle, it’s possible that all the spheres in 

the BVH of the avatar are inside the big enclosing 

sphere of the triangle. This leads to a huge number of 

collision tests between spheres and a huge number of 

exact collision tests between triangles, since all the 

leaf-nodes of the avatar hierarchy are inside the leaf-

node of the environment. We have checked that the 

algorithm can’t cope with this number of operations, 

especially because of exact tests. 

 

5. SOLVING BIG TRIANGLES’ 

PROBLEM 
A solution for the problem with big triangles could 

be just to divide big triangles in smaller triangles. 

Nevertheless, it is not always possible to manipulate 

the model received and dividing all big triangles until 

the leaf-nodes are small enough can increase the 

weight of the model drastically. 

From now on, we denote the small triangle in the 

avatar’s triangle mesh that takes part in an exact 

intersection test as  and the big triangle of the object 

in the environment as . We denote their enclosing 

spheres, i.e. their leaf-nodes in the sphere-tree as  

and  respectively. 

Sphere Division 
Although the division of the model’s vertices may be 

impossible to carry out, a similar approach can be 

applied. 

We want the avatar not to be inside . So, we create 

a hierarchy inside the enclosing sphere of the big 

triangle to ensure that when exact test is called the 

primitives are really close. When the triangle is too 

big (we use a border value for the lengths of the 

edges), the triangle is divided in four new triangles 

joining the intermediate points of the edges and four 

new enclosing spheres are created to form the next 

level in the hierarchy (see Figure 2). The division 

finishes when the triangles are smaller than the 

threshold.  

 

Figure 2 The enclosing sphere (black) of a 

triangle. The triangle divided in four triangles and 

their enclosing spheres (red). 

During the animation, the collision detection 

algorithm runs as before, calling the spheres of the 

lower levels if the ones in upper levels collide, but in 

this case, the leaf-nodes doesn’t enclose a triangle. 

They point to the big triangle . 
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This way, when the avatar is not really close to , 

only intersection tests between spheres are called. So 

the algorithm’s performance is much faster. 

Moreover, when the avatar is close to the object that 

contains , the exact collision test is only called for 

those triangles that are really close, avoiding the huge 

number of exact intersection test we had before. 

The results obtained with this implementation were 

satisfactory, but we saw that a better performance 

could be obtained. Results will be shown in section 6. 

Plane-Sphere intersection test 
Virtual characters with high level of detail are 

composed by very small triangles comparing with the 

triangles that compose some objects of the 

environment. When the enclosing sphere , of the 

small triangle, , is colliding with a big triangle, ,  

is colliding with  or it is very near. Therefore, 

testing  and  and testing  and  are nearly the 

same.  

If the intersection test between a triangle and a sphere 

is not very costly, it is worth to use it instead of the 

exact test between two triangles. Nevertheless, we 

can see in [Eri05] that the sphere-triangle test is quite 

costly.  

However, a simple and very efficient collision test 

between spheres and planes is presented in [Eri05] 

(see Algorithm 1) and it seems that  can be 

considered as a plane when testing with . That way, 

the biggest bottle-neck in our algorithm would be 

solved due to the substitution of the exact test 

between triangles.  

 

The problem of this substitution is that it is usual to 

find a leaf-node in the hierarchy of the avatar inside 

 which is not colliding with , but colliding with 

the plane defined by . This leads to a not existing 

collision detection.  

So, before calling the plane-sphere collision test, we 

have to ensure that the sphere  is in front of the 

triangle  and it is not in the part of the enclosing 

sphere that the triangle doesn’t occupy. 

Working as in the latest subsection, we can create a 

quaternary tree inside the enclosing sphere . Then, 

when the collision detection algorithm reaches leaf-

nodes and calls the plane-sphere test, we can be sure 

that the sphere is in front of  and we can consider it 

as a plane. 

Besides, a smaller tree than the quaternary-tree can 

be used without losing any property. For instance, 

when dividing the triangle in four smaller triangles, 

we can assume that if  is colliding with the 

enclosing sphere of the central triangle it is in front 

of .  

So, in the algorithm that recursively creates the 

hierarchy inside , only triangles that have an edge 

that matches one of  ’s edges are divided into four 

new triangles again. We call the new hierarchy 

Corner-tree (see figure 3).  

One may think that it is better to continue dividing 

the central triangles, because of the higher cost of the 

plane-sphere test. Nevertheless, it is less costly one 

plane-sphere test (30 operations) than four sphere-

sphere tests (4x10 operations). 

 

Figure 3 Division of a triangle to create the 

corner-tree. 

Moreover, the number of the spheres in the hierarchy 

decreases drastically with this new algorithm. If  is 

the number of levels of the hierarchy, in the 

quaternary-tree the number of spheres in the th level 

is . A huge number comparing to the new 

algorithm, which creates spheres in 

each level (see table 1). 

 

Level 1 2 3 4 5 6 7 

Corner-tree 1 4 12 36 84 180 372 

Quaternary 1 4 16 64 256 1024 4096 

Table 1 Number of spheres in the th level in the 

Corner-tree and in the quaternary-tree 

 

bool SpherePlaneTest(sphere s, triangle t){ 

        edge1 = t.v1 – t.v0; 

        edge2 = t.v2 – t.v0; 

        p = edge1  edge2; 

        n = s.center – t.v0; 

        return ( |p · n| < s.radius * ||p|| ); 

} 

Algorithm 1 Plane-sphere intersection test for 

sphere S and tirangle t 
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6. RESULTS 
The collision detection algorithm has been applied in 

our platform for the animation of virtual characters in 

collaborative virtual worlds successfully [Oya07] 

(see Figure 4). 

We have checked our algorithm with an avatar 

composed by 44345 vertices in two different 

scenarios: a virtual museum with 9482 vertices and 

virtual living-room with 133139 vertices.  

Both virtual worlds have triangles that are bigger 

than the avatar and we have checked the performance 

of the algorithm in extreme conditions, i.e. when the 

avatar is very close to these triangles without 

colliding. Moreover, the collision detection algorithm 

was run without any optimization and with the sphere 

division optimization to compare them with the latest 

version. All the tests were made with an Intel Core 2 

Duo CPU at 2.20 GHz. 

 

Figure 4 A virtual character in a virtual living-

room. 

First, we counted the basic operations (sum and 

multiplication) needed in each basic collision test: 10 

operations in the sphere-sphere test, 96 in the 

triangle-triangle test [Tro05] and 30 in the plane-

sphere test. Then, we ran the animation platform 

counting the number of these basic tests per frame so 

as to obtain the maximum number of operations 

made in a frame. 

Table 2 and table 3 show the results obtained. The 

space needed to store sphere hierarchies, maximum 

times the intersection tests are called in one frame, 

the sum of basic operations in those maxima and the 

duration of the frame in the case of maximum 

operation.  

In both cases, the space to store the information 

about the sphere hierarchies is much bigger when the 

algorithm has an optimization. Nevertheless, the 

space needed is not big enough to be a problem. As 

we stated before, we can see that the corner-tree is 

smaller than the quaternary-tree. 

 

Virtual 

Museum 

Original Sphere 

Division 

Plane-

Sphere 

Data 548 KB 65 MB 24 MB 

Sph-Sph tests 200000 15000 5000 

Tri-Tri tests 150000 150  

Pla-Sph tests   2000 

Operations 17000000 165000 110000 

Table 2 Results obtained for the animation in the 

virtual museum. 

Living-room Original Sphere 

Division 

Plane-

Sphere 

Data 3.21 MB 49.2 MB 37.5 MB 

Sph-Sph tests 80000 80000 8000 

Tri-Tri tests 70000 50000  

Pla-Sph tests   275 

Operations 7000000 5000000 90000 

Table 3. Results obtained for the animation in the 

virtual living-room. 

As wished, sphere division optimization decreases 

the number of exact tests, especially in the virtual 

museum. This leads to a decrease in the duration of a 

frame.  

Moreover, the plane-sphere optimization decreases 

the number of tests made in both the broad phase and 

the narrow phase. Combining this with the lower 

complexity of the plane-sphere collision test, we 

obtain a very fast performance. 

In conclusion, we can see in the tables that increasing 

the stored data, i.e. creating bigger sphere 

hierarchies, we can decrease the time spent detecting 

collisions. In the virtual museum, the difference 

between the optimizations is not considerable, but in 

the living room, the time gained with the plane-

sphere optimization is twice as the time gained with 

the sphere division optimization. 

 

7. CONCLUSIONS AND FUTURE 

WORK 
This article presents a fast and precise collision 

detection algorithm for real-time virtual character 

animation.  

The utilization of the intersection test between a 

sphere and a plane instead of the triangle-triangle test 

resulted in a much faster performance of the 

algorithm.. We also presented the corner-tree, a novel 

sphere hierarchy that makes the algorithm detect 

collisions correctly. 
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We implemented the algorithm in a virtual world 

composed of several interactive avatars of high level 

of detail and objects of different levels of detail. The 

velocity obtained is fast and the collision detection is 

precise enough. We also implemented the collision 

detection for an online version of our platform. 

Since discrete collision detection methods sometimes 

miss collisions (tunneling effect), continuous 

collision detection is becoming an important topic of 

research. Most of the new CCD methods are based 

on discrete methods, so it seems natural to try to 

convert our contribution into a CCD algorithm. 

In recent years, the utilization of the GPUs has 

become very important when accelerating 

algorithms’ performance. Since collision detection is 

one of the most important bottle-neck in animation, it 

is important to study how GPUs can accelerate the 

collision detection. 
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ABSTRACT 
We present a novel GPU-based method for accelerating the visibility function computation of the lighting 
equation in dynamic scenes composed of rigid objects. The method pre-computes, for each object in the scene, 
the visibility and normal information, as seen from the environment, onto the bounding sphere surrounding the 
object and encodes it into maps. The visibility function is encoded by a four-dimensional visibility field that 
describes the distance of the object in each direction for all positional samples on a sphere around the object. In 
addition, the normal vectors of each object are computed and stored in corresponding fields for the same 
positional samples for use in the computation of reflection in ray-tracing. Thus we are able to speed up the 
calculation of most algorithms that trace rays to real-time frame rates. The pre-computation time of our method 
is relatively small. The space requirements amount to 1 byte per ray direction for the computation of ambient 
occlusion and soft shadows and 4 bytes per ray direction for the computation of reflection in ray-tracing. We 
present the acceleration results of our method and show its application to two different intersection intensive 
domains, ambient occlusion computation and stochastic ray tracing on the GPU.  

Keywords 
indirect lighting, pre-computed visibility, uniform distribution, hemisphere, tracing rays. 

1. INTRODUCTION 
The acceleration of the computation of the lighting 
equation in real-time on the GPU and especially the 
visibility term, one of the most intensive parts of the 
computation, is still a very active field of research. 
Ambient occlusion computation and real-time ray 
tracing are just two of the fields where the fast 
computation of the visibility queries is very 
important.  
Ambient occlusion is defined as the attenuation of 
ambient light due to the occlusion of nearby 
geometry. It gives perceptual clues of depth, 
curvature, and spatial proximity and thus is important 
for realistic rendering. It is a technique that 

approximates the effect of indirect global 
illumination without trying to simulate the interplay 
of incident and reflected light.  
Ray tracing is a general and versatile algorithm that 
performs image synthesis by shooting rays through 
each pixel, finding the closest intersection with the 
scene geometric entities. The generic backwards ray 
tracing algorithm is capable of capturing both local 
illumination and basic indirect specular effects such 
as mirror-like reflections and refraction.  
In this paper we improve and expand the method 
proposed by Gaitatzes et al. [Gai08] by moving the 
implementation to the GPU, taking advantage of the 
shader units parallelism and demonstrating 
significant performance gains. While the core of the 
visibility queries mechanism remains the same, the 
paper shows how the method is adapted to both 
interoperate with a generic ray tracing system and 
accelerate the generation of high quality ambient 
occlusion. First, at pre-processing time, we construct 
the visibility field (Figure 1). It stores the intersection 
distances of a hemisphere of rays originating from 
sample points on the bounding sphere of an object 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee.  
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and directed towards the model itself. We construct 
one map for each sample point (see Section 3.1). 
After the construction of the visibility field maps, we 
compactly fit them in one volume texture (see 
Section 4.1) for easy access on the GPU. In addition, 
all mesh information (i.e. coordinates, normals and 
materials) are stored in maps and passed on to the 
GPU. Then, at run time, when a ray from the 
environment towards an object (or vise versa) 
intersects its bounding sphere, we perform a simple 
ray-sphere intersection test and recover from the pre-
computed maps the rest of the ray distance for the 
ray-object intersection test.  
The advantage of the method described in Gaitatzes 
et al. [Gai08] is that the bulk of the computation is 
moved to a pre-processing stage. The results are 
stored in compact gray-scale textures; 1 byte per ray 
direction for the computation of ambient occlusion 

and soft shadows and 4 bytes per ray direction for the 
computation of reflection in ray-tracing, providing 
for each object a constant size of additional 
information, independent of the complexity of the 
original model. Then the real-time algorithm 
performs a simple intersection test with the bounding 
sphere of the object and a constant-time map lookup 
(see Section 3.2).  
For dynamic scenes with rigidly moving objects, 
visibility fields accelerate the computation of the 
approximation of the indirect lighting term of the 
rendering equation to real-time frame rates as well as 
the computation of soft shadows and reflection in 
ray-tracing. The performance of this approach does 
not depend on the polygon count to a large extent; 
instead, it is directly related to the number of visible 
pixels shaded by the GPU. This is a significant 
advantage over existing approaches. In addition, our 
acceleration structure is flat by nature and thus more 
suited to the GPU architecture.  
In Section 2 we give an overview of the previous 
work, followed by a description of our method in 
greater detail in Section 3. In Section 4 we discuss 
the GPU implementation and in Section 5 our results 
from the application of the visibility fields method in 
ray tracing and especially the benefit of shadow rays 
and secondary rays as well as secondary diffuse 
illumination (termed ambient occlusion).  

2. BACKGROUND AND PREVIOUS 
WORK  
We distinguish the previous work in two areas that 
both share the computation of the visibility function; 
the acceleration of the computation of ambient 
occlusion on the GPU and the acceleration of 
stochastic ray tracing algorithms on the GPU. Note 
that we apply our method only to a GPU-based ray 
tracing algorithm in order to compare timings with 
the fastest approach.  

2.1 Ambient Occlusion on the GPU  
In ambient occlusion the indirect component can be 
computed as:  

( ) ( ) ⋅⎢ ⎥⎣ ⎦∫x n x no o oΩ

1
A ,  =   V ,ω ω dω  

π
 

Where ( )oV ,ωx  is an empirical function that maps 
distance from surface point x to the closest surface 
along direction οω  to visibility values between 0 (no 
occlusion) and 1 (full occlusion).  
By tracing rays outward from a given surface point x 
over the hemisphere around the normal n , ambient 
occlusion measures the amount that a point is 
obscured from light. This average occlusion factor is 
used to simulate soft-shadowing.  

 
Figure 1: A hemisphere of rays emanating from 
the bounding sphere towards the object is pre-

computed for a large number of sample points on 
the sphere. Bottom: Volume texture of the 

visibility field. Row by row each map is placed 
into a slice of the volume texture thus minimizing 
the volume space requirements. As a result a 5123 

volume will hold four 2562 maps per slice. 
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Ambient occlusion (AO) computation on the GPU 
was first used by Bunnell [Bun05], who 
approximates the AO by modelling the receiver 
surface as disk-based occluders and evaluates the 
ambient occlusion caused by the disks using an 
analytic method. He uses a heuristic method to 
combine the shadows cast from multiple disks into a 
noise free image but requires high tessellation of 
scene geometry and a big pre-computation step.  
Shanmugam et al. [Sha07] compute ambient 
occlusion as a post-processing pass based on a depth 
buffer from the eye’s point of view. They split the 
AO computation into two phases, one for high 
frequency near detail, and another phase for low 
frequency detail with a wider search. The second 
phase allows large objects to inter-occlude as they 
pass next to each other. Their approach requires no 
scene-dependent pre-computations. On the downside, 
over occlusion artefacts might show up when 
multiple neighbouring spheres contribute occlusion 
to the same pixel.  
Mittring [Mit07] does a full screen post-processing 
pass where z-buffer data is sampled around each 
pixel and an AO value is computed based on depth 
differences. Sampling occurs randomly in a sphere 
around each pixel, and AO is proportional to the 
number of sampled occluders. Like other screen 
space techniques, such as [Bav09], this view-
dependent approach is fast, requires minimal or no 
pre-calculation, but cannot model AO correctly, 
because depth discontinuities, such as object edges 
and buffer boundaries, produce popping effects.  

2.2 Real-time Ray Tracing on the GPU  
Most GPU ray-tracing methods accelerate already 
established mechanisms for limiting the number of 
intersection tests. On the other hand, our approach 
provides an alternative and fast ray-surface 
intersection test, while it can certainly take advantage 
of the mentioned methods, to further improve final 
performance.  
Carr et al. [Car02], Purcell et al. [Pur02], [Pur04], 
Karlsson et al. [Kar04] and Christen et al. [Chr05] 
implemented a streaming ray-triangle kernel on the 
GPU, fed by buckets of coherent rays and proximate 
geometry organized by a CPU process. However, 
there was a frequent communication of results from 
the GPU to the CPU over a narrow bus, negating 
much of the performance gained from the GPU 
kernel. Streaming geometry to the GPU became 
quickly the bottleneck.  
To improve the performance of the GPU ray tracing, 
different acceleration structures have been widely 
adopted, such as the incorporation of kd-trees by 
Havran [Hav00] and Ernst et al. [Ern04]. However, 
these approaches had limited performance; by far not 

reaching the frame rates of the CPU based ray 
tracers. The main problem was the limited GPU 
architecture. Only small kernels without branching 
were supported. In addition a stack was usually 
required, which was poorly supported on GPUs. 
Foley et al. [Fol05] presented two implementations 
of a stack-less kd-tree traversal algorithm for the 
GPU, namely kd-restart by Kaplan [Kap85] and kd-
backtrack. Foley showed, that on graphics hardware, 
there are scenes for which a kd-tree yields far better 
performance than a uniform grid. Although better 
suited for the GPU, the high number of redundant 
traversal steps led to relative low performance.  
Besides grids and kd-trees there are also several 
other approaches that use a BVH as an acceleration 
structure on the GPU. Carr et al. [Car06] 
implemented a limited ray tracer on the GPU that 
was based on geometry images but it required careful 
parameterization of the geometry. It could only 
support a single triangle mesh without sharp edges. 
The acceleration structure was a predefined bounding 
volume hierarchy which could not adapt to the 
topology of the object. To alleviate the need for a 
stack Thrane et al. [Thr05] presented stack-less 
traversal algorithms for a BVH. They conclude that 
on the GPU, the bounding volume hierarchy traversal 
method is up to 9 times faster than that of a uniform 
grid and a kd-tree. Also, the technique proves the 
simplest to implement and the most memory 
efficient.  
Horn et al. [Hor07] reduced the number of redundant 
traversal steps of kd-restart by adding a short stack. 
With their implementation on modern GPU hardware 
they achieved a high performance of 15–18M rays/s 
for moderately complex scenes. At the same time, 
Popov et al. [Pop07] presented a parallel, stack-less 
kd-tree traversal algorithm without the redundant 
traversal steps of kd-restart but with a poor GPU 
utilization of below 33%. With over 16M rays/s, 
their GPU ray tracer achieved similar performance as 
CPU based ray tracers. However, both GPU ray 
tracing implementations demonstrated only medium-
sized, static scenes. Günther et al. [Gün07] presented 
a BVH based GPU ray tracing method for large 
models achieving close to real time rates using hard 
shadows.  

3. APPROXIMATE VISIBILITY 
COMPUTATION  
The computation of exact visibility is a time 
consuming task even for the new GPU architectures. 
We briefly describe here the visibility field 
acceleration method that follows that of Gaitatzes et 
al. [Gai08] but emphasizing the GPU architecture.  
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3.1 Visibility Field Computation  
The main idea of encoding visibility fields into maps 
is as follows. Consider a rigid object possibly 
moving through a scene. At a pre-processing step, 
from a discrete set of sample points on the objects 
bounding sphere, described as spherical coordinates 
(u, v), a hemisphere of rays is cast around the inward 
normal direction (Figure 1). For each ray (u, v, θ, φ), 
the closest distance between the bounding volume 
and the model surface is found and recorded as a 
compact integer value after being normalized by 
twice the sphere radius. Thus, for each sample point 
(u, v) a visibility gray-scale map is obtained that 
represents the distance travelled along the ray in the 
direction (θ, φ) before hitting the model surface. We 
define the visibility field of the object to be the 
collection of all visibility maps generated from all 
sample points on the bounding sphere of the object.  

3.2 Visibility Field Indexing  
During the real-time part of the execution an incident 
ray to the object intersects its bounding sphere and 
the distance between the ray origin and the 
intersection point is recorded. The intersection point 
q is transformed into the object coordinate system: 

1 ,−′ = ⋅  q M q where M is the transformation matrix 
with respect to the reference frame of the ray. We 
need to acquire the closest point (u, v) on the sphere 
for which we have a visibility map and therefore the 
index of the corresponding visibility map. In addition 
we need to transform the corresponding (θ, φ) of the 
incident ray into a visibility map cell coordinates. 
The indexing is performed following the 
methodology proposed in Gaitatzes et al. [Gai08]. 
We can now index into the visibility field for the 

given ray (u, v, θ, φ) and extract the distance 
information which is then added to the intersection 
distance above and this is our approximated distance 
value of the ray origin from the object’s surface.  
A special case arises when the rays originate from 
the object being queried for visibility. As we can see 
in Figure 2, when a ray originates on the object at 
point p0, the distance d1 in direction 0 1p p  is 
computed and compared to distance d2 in direction 

1 0p p  which is extracted from the visibility map at 
point p1. If d1 is greater than d2 then point p0 is 
occluded.  

4. Visibility Fields on the GPU  

4.1 Ambient Occlusion  
Directional ray samples on a reference hemisphere 
aligned with the z-axis are pre-computed and stored 
in a texture for passing to the GPU. In the fragment 
shader (Algorithm 1), the pre-computed ray 
directions are transformed according to the local 
normal vector and intersected with the bounding 
sphere of each occluder. We are able to handle both 
rays originating outside and inside the bounding 
sphere for inter-object and intra-object occlusion 
respectively. The only difference in the computation 
is the respective step to compute the final ray-object 
intersection distance at line 7 of Algorithm 1.  
The indexing of the visibility fields is executed 
entirely on the GPU as is the Monte Carlo ray casting 
to evaluate the resulting ambient occlusion. The 
visibility maps are compacted and stored into a single 
3D texture as slices, as shown in Figure 1. As the 
number of positional samples (i.e. visibility maps) 
can exceed the maximum volume texture dimension 
supported by the hardware, we compact as many 
visibility maps on each 2D slice of the volume as the 
texture hardware permits.  

4.2 Ray tracing  
For our proof-of-concept case study, we wanted to 
further improve ray-tracing timings of an already fast 
ray tracer. We used the method of Amit Ben-David 
et al. [Ami07] that implemented both a CPU and a 
fast GPU ray tracer by exploiting a BVH acceleration 
structure that has been proven to work better in some 
cases [Gün07] and is better suited for dynamic 
scenes. We did not replace the primary ray 
intersection tests because the regularity of the ray 
distribution emphasized the sampling pattern on the 
bounding sphere. Furthermore GPU rasterization 
provides better timings for the primary rays pass. In 
conjunction with the fact that for complex (and 
therefore time consuming) scenes with elaborate 
materials, most time is spend on secondary rays, we 
applied the visibility fields method only to secondary 

 
Figure 2: Visibility computation for intra-

object occlusion.  

1: for all emanating rays do  
2: if ray intersects bounding sphere of occluder object 
3: discretize intersection point (u, v)  
4: discretize ray (φ, θ)  
5: access distance in visibility field volume  
6: end  
7: use distance for occlusion approximation  
8: end  
9: compute occlusion at pixel x  

Algorithm 1: Pseudo code of shader algorithm 
for AO rendering, using visibility fields. 
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rays, including shadow rays. To capture the intricate 
reflection effects of non-perfect reflection surfaces 
and to highlight the advantage of our method when 
intersection tests increase significantly, we extended 
the implementation to stochastic ray-tracing.  
As in the case of the ambient occlusion computation, 
the rays are stored in a 2D map but this time are re-
computed for each running pass. For the ray-object 
intersection the visibility maps are used in a fragment 
shader on the GPU (similar to Section 4.1) along 

with the additional pre-computed maps of normals. 
The generated fragments correspond to intersection 
test results and the fragment shader returns the 
intersection point and distance to the actual surface 
as extracted from the visibility field. These results 
are used for shading or for spawning secondary rays 
for the next ray-tracing iteration.  

5. Tests and Results  
We implemented the real-time part of the above 
algorithm using the OpenGL® Shading Language 
[Kes06] on a 32bit Intel Core 2 Quad Q6600 at 2.4 
GHz CPU and 4GB of main memory equipped with a 
GeForce 8800 GTS GPU with 512MB of texture 
memory. The window size was set to 512x512 for a 
total of 262144 pixels.  

5.1 Ambient Occlusion  
For most of the test runs the active pixels were about 
200000 as only 75% of the window was rendered 
(the rest being black).  
To acquire a reference image against which to 
compare our acceleration method in speed but mainly 
in image quality, we implemented ambient occlusion 
on the GPU using the uniform grid acceleration 
structure (see Figure 3 bottom-right).  
We observe (in Figure 3) that the RMS error of the 
images compared to the reference image of the 
bunny, is very low and the achievable draw time, 
even for large models, is real-time. Based on the 
RMS error using 4226 64x64, visibility maps gives 
the same results as using maps of size 16642 32x32. 
We also infer from Figure 4 that the draw time is 
unaffected by the number of maps used thus the 
space required for the visibility maps depends only 
on the image quality that we would like to achieve.  
 In Figure 5 the visibility fields were used for the 
generation of intra-object occlusion but because the 
ray sphere intersection algorithm always succeeds at 
finding an intersection (worst case since we are 
inside the bounding sphere of the object) the 
rendering times are up to 4 times slower than the 
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Figure 3: Inter-object AO of a bunny model 
using the visibility fields method with 256 rays 
per pixel implemented on the GPU. We report 

the draw time and the RMS error. On the 
bottom right the reference image rendered on 
the GPU using 256 rays per pixel in 7126 ms. 

The model itself is rendered using fixed-pipeline 
direct rendering. 

 
Figure 4: The draw time of the bunny model 

(39000 tris) plotted against different rays/pixel 
versus the size of the visibility maps.  
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inter-object occlusion case. Still the performance rate 
is above the one reported by Horn et al. [Hor07]. We 
also observe that more visibility maps are required in 
this case in order to render a believable image. We 
attribute this to the fact that multiple rays, with small 
angular differentiation, originating on close points on 
the object, hit the same sample point on the objects 
bounding sphere. Thus the same visibility map is 
used and the occlusion result looks grainy. When 
more maps are used the problem is alleviated.  
In Figure 6 we show the Sponza Atrium rendered 
with several large polygon models inside it. The 

resulting draw time is contributed to the rendering 
method that uses one pass for each caster model. Just 
before each caster model is drawn, we enable 
subtractive blending (with OpenGL blend equation 
GL_FUNC_REVERSE_SUBTRACT), in effect, 
removing colour from the image. The poor draw time 
is also attributed to the fact that non-visible pixels 
(the Sponza Atrium has a lot of non-visible 
geometry) are not culled before the fragment shader 
is executed on the GPU.  
Even though the visibility fields method is only an 
approximation, it does a very good job at preserving 
image quality given the low memory requirements 
and achieved draw time.  

5.2 Ray tracing  
In Figure 7 we show a close-up of the bunny ears of 
using the visibility-fields method. We show that very 
good results of soft shadows can be achieved while 
using 20 shadow ray samples along with 4226 64x64 
visibility maps (i.e. 16.51MB of memory).  
In Figure 8 we render a slightly more complex scene 
using 3 light sources of radius 2. As in the previous 
cases, the rendering time is almost completely 
affected by the primary rays which perform triangle 
intersection tests. Our method completes the 
rendering in 3268 ms, of which 70% is for the 
shadow rays. It produces a very good approximation 
of soft shadows using 20 shadow rays per pixel. For 
the total of 11,838,600 shadow rays, this corresponds 
to 1.9323 10-4 ms per shadow ray which is a very 
encouraging result. In the corresponding BVH GPU 
method to produce sharp shadows using just 1 
shadow ray per pixel, the draw time is 48047 ms to 
compute the final image. Of that time 70% is used 
for the 591930 shadow rays yielding 5.682 10-2 ms 
per shadow ray.  
In Figure 9 we use the visibility fields algorithm to 
render non-perfect-mirror reflections. The polished 
reference image is rendered with 4 rays for each 
reflective pixel leading to slower rendering times. 
However, we notice from the images and the RMS 
factor that the reflected sub region of our method is 
much closer to the result of the brushed metal 
reference image than the perfect mirror reference 
image. This strengthens our position that the 
proposed method is suitable for stochastic ray-
tracing, as the quality of the rendered image is 
comparable to the reference image. Furthermore, the 
rendering time, even using 4 rays per reflective pixel, 
is very close to ray-casting without secondary rays.  

6. Limitations of the Visibility Fields  
The visibility fields method is not very well suited for 
elongated models. The occlusion produced, even 
when using 16642 maps is pretty grainy. In addition 

  
Igea 67170 tris 

202 ms - 119.80 M rays/s 
Santa 75777 tris 

183 ms - 132.24 M rays/s 

  
Elephant 157160 tris 

400 ms - 60.5 M rays/s 
Super Shape 261120 tris 
330 ms - 73.33 M rays/s 

Figure 5: Intra object ambient occlusion 
rendered on the GPU using 16642 64x64 

visibility maps requiring 65 MB of space and 
121 rays per pixel.  

Figure 6: A scene of the Sponza Atrium with a 
bunny (38889 tris), a cow (92864 tris) and an 

elephant (157160 tris) rendered in three passes 
(one per object) with the visibility fields 
algorithm using 4226x64x64 maps and 

rendering in 2.5 frames per second.  
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models that are highly concave would fail to produce 
accurate visibility maps as it would not be possible to 
record all of the tight concavities of the model.  

7. Conclusions  
We have presented the visibility fields, a 
discretization of the visibility around an object, 
implemented on the GPU. We have shown how it 
can be used for an interactive inter-object ambient 
occlusion approximation computation. For the intra-
object occlusion case the number of required maps is 
large and the draw time needs improvement when the 
model covers a lot of pixels on the screen. But in a 

game environment where several models exist on the 
screen and their coverage is not very big, the intra-
object occlusion method can be used even for high 
triangle count models.  
The method especially favours large model data sets, 
where we maintain a constant computation time, 
independent of the model complexity. Our method is 
robust, has a relatively small memory footprint 
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Close-up of the bunny ears from 
the reference image.  

 

 
Figure 7: Close-up of the bunny ears rendered 
using the visibility fields for the generation of 
soft shadows using 3 lights and 20 shadow ray 
samples on the GPU. We report the required 

time, the RMS error and the total space 
requirements. Bottom: Reference image 

rendered using the BVH method with 3 lights 
and 256 rays per pixel taking 913,210 ms on the 

GPU. 

Figure 8: Close-up of a more complex scene 
using 3 point lights and 20 shadow ray samples 
rendered in 3268 ms using the visibility fields 

method. The BVH GPU method for sharp 
shadows takes 48047 ms. 

 
Reference image  
 GPU: 5530 ms  

Reference Image  
GPU: 112910 ms  

 
(top) 4226 64x64 maps 

441 ms, 4.480 RMS error, 
66.031 MB used  

 
(bottom) 4226 32x32 maps 
440 ms, 4.555 RMS error, 

16.508 MB used  

(left) 4226 64x64 maps 
1900 ms, 8.137 RMS error, 

66.031 MB used  
 

(right) 4226 32x32 maps 
1897 ms, 9.392 RMS error, 

16.508 MB used  

Figure 9: Polished reflection of the elephant 
(157160 tris) and the bunny (39000 tris) using 4 
rays per reflective pixel. First row: Reference 

images using the BVH method (GPU draw 
times). Second row: Close-up view of our 

visibility fields GPU method where we report 
the draw time, the RMS error and the space 

requirements.  
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against comparable existing methods and the time 
required to generate the visibility maps depends only 
on the complexity of the occluder geometry. In 
addition, the number and resolution of the maps used 
in the visibility fields can be adjusted depending on 
the required accuracy and the available memory. The 
same maps can be used for both inter and intra-object 
ambient occlusion computation.  
Furthermore, our algorithm can be applied to ray 
tracing calculations where exact ray hits are not 
critical, for example for shadow and secondary ray 
intersection tests, such as soft shadow rays and 
Monte Carlo ray tracing.  
We have shown that in the above mentioned cases 
the production of the desired image is accelerated 
while the results remain close to the reference 
images. The hybrid method we propose favours large 
model data sets as in ambient occlusion. This result is 
expected as all triangle intersection tests for shadow 
and secondary rays are replaced with constant time 
operations. In this way rendering time is affected 
mostly by the primary rays that give us the visibility 
of the scene.  
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ABSTRACT 
This paper presents the use of Augmented Reality system for visualizing a distributed parcel’s information in a 
mobile device using wireless network. Our system offers useful information (number of parcel, name of the 
owner, agronomic structure, juridical state, and adequate plant) related to each parcel geo-referenced according 
to the user's position and orientation. This information augmented the live images of the real environment 
surrounding the user. For receiving these live images, we used two kinds of camera: webcam for an Ultra 
Mobile Personal Computer and notebook, and SD camera for Pocket Pc hardware. We used inertial sensor MTi 
and Global Positioning System receiver to achieve user’s position and orientation. Internet Communication 
Engine, an object-oriented middleware is used to ensure the connection between database servers and clients.  
The users can interact with the images of surrounding environment using classic interaction tools (stylus, buttons 
...). 

Keywords 
Distributed Augmented Reality, Visualization of GIS data, Interaction with GIS data, Ubiquitous system. 

1. INTRODUCTION 
In Human Computer Interaction, quality of user 
interface is important. Augmented Reality (AR) is 
among of the technique used to perform an user 
interface for ubiquitous application. AR presents 
information in its context within a 3D environment. 
The goal is to create the impression that the virtual 
objects are part of the real environment. 
Geographical Information System (GIS) database 
takes an important place for an outdoor AR system. 
Most of previews researches [Höl99][Käh06] 
[Rei07] used GIS database corresponding for 
building, streets in order to enhance the experiences 
of users (e.g. tourists, visitors). These systems 
overlaid digital information (such as building name, 
road name) on the real world in order to perceive 
remote or local geographical information.  
 

 
Instead, the system presented here talks about 
visualization of parcel’s characteristic depending on 
location and context. As GIS database stores 
numerous data, retrieving information from it is 
among of one critical point in a distributed AR 
system because it may generate latency during 
exchange. To overcome this problem, we show in 
detail our approach about retrieving information 
related to a Parcel from GIS database, and the 
adequate metaphor of visualization and interaction of 
them.  
For receiving live images of real environment, we 
used two kinds of camera: webcam for an Ultra 
Mobile Personal Computer (UMPC) and notebook, 
and SD camera for Pocket Pc hardware.  
In this paper, section 2 reviews the related work. 
After that, we describe in detail our ARGisUbiq 
system in Section 3. Finally, we conclude and 
provide possible perspectives for future 
investigations. 

Permission to make digital or hard copies of all or part 
of this work for personal or classroom use is granted 
without fee provided that copies are not made or 
distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first 
page. To copy otherwise, or republish, to post on 
servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 

2. RELATED WORK 
Outdoor AR systems have traditionally been reserved 
to use GIS databases related to buildings and streets 
in order to provide help to users. Several systems are 
presented hereafter. 
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First, Mars (Mobile Augmented Reality Systems) 
project [Höl99] presented in 1999 by Columbia 
University was one of the first truly mobile 
augmented reality setups which allowed the user to 
freely walk around while having all necessary 
equipment mounted onto his back. It allowed user to 
arrange the multimedia information according to 
chronological order. This system used a campus 
database to overlay labels on buildings seen through 
a tracked head-worn display. Users was able to 
request additional overlaid information, such as the 
names of a building departments, and to view related 
information, such as a department web page, on a 
hand-held display. 
Archeoguide project [Gle06] was designed to 
increase real images of user’s environment with 
virtual story information related to them. 
Next, in [Lia05], the authors presented a prototype of 
an interactive visualization framework specifically 
designed for presenting geographical information in 
both indoor and outdoor environments. They used 
ESRI Shapefiles as input of their system. They 
represented 3D building geometry and others 
attributes. Participants can visualize 3D 
reconstructions of geographical information in real-
time based on two visualization clients: a mobile VR 
interface and a tangible AR interface.  
Then, ARscouting system [Rei07] introduces an 
outdoor AR system witch has run on UMPC using a 
camera and a GPS receiver to collect information 
about the environment. Mobile system has been used 
as a thin client. While exploring the environment, the 
scout takes several images for instance of a target 
building. These images are automatically annotated 
by current positioning data. The enriched data are 
then transmitted to a custom database (multimedia 
database) store. Whenever a new image is stored in 
the database, the reconstruction engine gets a 
notification and triggers the reconstruction process. 
The engine requires at least three different views in 
order to generate an initial 3D model. Each further 
image is added in an iterative way and updates the 
model accordingly within seconds. Once the 
reconstruction task is over, the server stores the 
virtual object and transmits it to the mobile client 
(scout) in order to increase user interface. The last 
one is based on the Studierstube platform. 
The claimed MARA [Käh06] system implements 
hand-held, video-see through Augmented Reality for 
Nokia S60 mobile imaging devices equipped with 
additional sensors like a GPS receiver, 
accelerometers and a tilt compensated magnetometer. 
The system allows users to interact with their 
surrounding environment using the standard mobile 
device inputs. It allowed users to place hyperlink at 
their current location in order to give information 

about an object. The users could share or exchange 
all data with others connected users. 
The following Section expands our ARGisUbiq 
platform. 

3. ARGISUBIQ SYSTEM 
ARGisUbiq system is an improved version of 
[And08] which runs on Windows Vista, Windows 
mobile XP and Windows CE dedicated for desktop 
PC or notebook, UMPC and Pocket Pc hardware 
devices. [And08] was a new architecture for a 
multiplatform AR which allowed the users to change 
in dynamic way their virtual workspace. The work 
plan is augmented by the virtual workspace. Each 
virtual workspace relied to several virtual objects. 
For adding virtual objects, we used a virtual menu 
inspired by the metaphor of forward and next 
buttons.  
The main goal of ARGisUbiq system is to propose a 
new application AR GIS in agronomic domain that 
shows all information about a parcel according to the 
user’s location. In our knowledge, this is the first AR 
system using parcel’s information to enhance user’s 
visualization interface.  
  

 
 
 

Figure 1. The UMPC visualization tool 

 
 

 
Figure 2. The software architecture  
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We added some module in the software architecture 
of [And08] in order to enhance its functionalities (see 
Figure 2): 

• Communication module ensures the 
exchange between clients and servers, and 
between all modules. 

• LoaderShapeDbf module is responsible of 
parcel’s information loading from the Data 
module using the database’s structure (see 
Figure 3). 

• Position module and orientation module 
retrieve information from GPS receiver 
and MTi inertial sensor. 

Our system is made of two modules: server module 
and client module (see Figure 5). About 90% of the 
task was run on the client part. Visualization module 
and communication module are the two main 
modules of the client. Data module may be available 
on the client and/or on the server module. The 
servers are used as database servers. 

3.1 Information source 
In the following section we present our database 
structure and explain the information’s selection 
mode. 

3.1.1 Database’s structure 
Like others outdoor AR systems, ARGisUbiq system 
uses GIS data as data source. As parcel’s information 
related to agronomic and type of plant is unavailable 
on producer’s map, we create our own database 
inspired from parcel database (using a vector format 
formed by shape files, index one and dbf one) (see 
Figure 3). In the Figure 3:  

• Parcel’s table stores information about 
parcel in the public register of lands. It has 
five attributes: the numParcel indicates the 
parcel’s number, numFeuille designates the 
number of page, numeSection is the number 
of section, codeCom signify common’s code 
and nomCom is the name of common. 

• JuridicalState’s table stores data related to 
the juridical state of parcel. Num_Situat and 
libelle are its attributes: the first one is 
number of the juridical state and the second 
one designates the label of the juridical 
state. 

• AgronomicalState table is designed to stock 
data associate to the state agronomic. The 
attribute Num_prte_a is the number of the 
agronomical state. Type_sol indicates the 
structure of the parcel and ph is the ph of 
the land. 

• Adequateplant table stores data related of all 
type of tilling. It has three attributes: id_cult 
indicates the identity of the tilling, libelle is 

the name of the tilling and detail relates to 
the detail of the tilling’s feature. 

 

 
 
 

Figure 3. The database’s structure 

We can note that this database may be available on 
the clients and/or on several replica servers. The 
clients establish a connection to the servers using the 
communication module based on Internet 
Communication Engine (Ice) [hen03] when local 
database is unavailable. This later case occurred 
while the device have not enough space disk (UMPC 
or notebook) or space memory (Pocket Pc) for 
storing the database or  it is deleted. 

3.1.2 Information’s selection mode 
Information retrieval procedure occurs when the 
camera’s orientation turns to the ground. GPS 
receiver (TomTom wireless GPS receiver) and MTi 
inertial sensor are used for tracking the camera’s 
position and orientation. The GPS receiver 
exchanges information with the client using a 
BlueTooth connection whereas the connection 
between client and MTi sensor is established by a 
serial communication. Orientation values provide by 
MTi relate to the orientation of its coordinate system 
S(x, y, z) according to the fixed global coordinate 
system G(X, Y, Z) (see Figure 4). 
 

 
 
 Figure 4. The coordinate system of the MTi 
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Each polygon in the shapefile is delimited by a 
bounding box. In order to know the existence of 
parcel according to user’s location, we check if 
user’s position is in the bounding box of its record. 
When his location is included in the limit, we save 
the number of row and bounding box of all 
corresponding record. Whether the record number is 
more than one, we take account only the record 
(polygon) having its barycenter nearby the camera’s 
position. After that, we use the row number related to 
the selected parcel for searching others information 
(agronomical state, adequate plant, juridical state …) 
in the associated tables. While the user’s location is 
always in the bounding box, we work (research a 
new nearest barycenter of polygons) with these 
existing number rows and bounding box values of 
each record. We made it in order to reduce the 
amount of requests to the database which produce 
latency indeed for lightweight hardware devices. 

3.2 Distributed architecture 
As we describe above, ARGisUbiq system is 
composed of two modules: client module and server 
module which use geo-referenced GIS database. The 
Clients connect to the servers using WLAN network. 
Our framework uses Internet Communication Engine 
(ICE) and IceE (Ice Embedded: a lightweight version 
of Ice for mobile devices) to ensure the connection 
between the clients and the servers.    
With the aim of having flexible data distribution, we 
duplicate on several servers our database and IceGrid 
services is used to establish load balancing between 
the client and all replica servers. It provides a 
convenient way to distribute an application to a set of 
computers, without the need for a shared file system 
or complicated scripts. Each server may have one 
registry which control one or several node’s 
activities. Registry implements locator service and 
the locator object is available on the registry client 
endpoints (IP address or hostname and port number). 
A Node monitors the load of their computers 
(servers) and reports this information to the registry. 
This one uses this information to decide which 
endpoints of the object adapters to return to a client. 
In general, the server selects one or a set of endpoints 
which have the least-load statistics.  
In presence of several Ice servers, one which have 
master registry is the master server and others one 
are slaves.  Slave or master server property is 
specified in their configuration files. A first locate 
request activates the application server automatically 
(starting the Ice server process). Activation usually 
occurs as a side effect of indirect binding, and is 
completely transparent to the client. Node is 
responsible of this activation task when it receives 
registry’s order. Node sends responses to a registry 

according to its configuration file (the replica’s 
number to include in the registry’s response is 
specified in this file). 
 

 
 
 
 

Figure 5. The distributed architecture 

Selected application server uses object adapter in 
order to obtain information about an object (parcel) 
requested by a proxy client. Then, object adapter 
attempts requests to a servant which is a direct 
responsible of one or more objects. 
Notice that multithreading is supported by Ice server. 
In fact, this property allows more clients to establish 
connections in the same time. 
The master replica knows all of its slaves, but the 
slaves are not in contact with the others. If the master 
replica fails, the slaves can perform several vital 
functions that should keep most applications running 
without interruption. Eventually, however, a new 
master replica must be started to restore full registry 
functionalities. For a slave replica to become the 
master, the slave must be restarted. 
Client module uses Ice/IceE in order to retrieve 
parcel’s information from the replica server when a 
local database is unavailable. We deactivate proxy 
cache (that contains all information about previous 
server) and set a timeout to cache locator in order to 
make load balancing. IceGrid’s load balancing 
capability assists the client in obtaining an initial set 
of endpoints for the purpose of establishing a 
connection. Before attempting locate request to a 
server location, client checks its cache locator. We 
randomize selection of object adapter’s endpoints 
used by proxy client to establish connection in order 
to collect all object’s information. One Client’s 
request is formed by endpoint and object id.   
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As these properties are unavailable on IceE, in fact, 
to simulate the functionality of load balancing, we set 
a timeout for an established connection and close it 
in order to establish another one to other endpoints 
when the timeout is expired.  

3.3 Visualization metaphors 
With the aim of seeing augmented view, users must 
hold account information’s selection principle. Once 
this one is respected, users saw real video augmented 
by parcel map, juridical situation, agronomical state 
and adequate kind of tilling related to the user’s 
location. To achieve it, we propose two 
visualizations metaphors: textview mode and 
hybridview mode. In the textview mode, the scene is 
augmented by virtual text and aural information 
related to a parcel and the position of user. In the 
hybridview metaphor, user interface is enhanced by 
virtual text, parcel map and audio information. The 
blue point on the map is the user’s position. 
 

 
 

 
 
 
 
We combine landscape and portrait mode with 
textview and hybridview when users use lightweight 
hardware as visualization tools. The transition 

between the two metaphors depends on the way 
which the user holds his PDA. 
 

 

Figure 8: The landscape 
hybridview mode 

Figure 9: The  portrait 
hybridview mode 

 

 
 
 

Figure 10. The landscape Textview mode 

The hybridview is the default visualization metaphor 
for UMPC and PC notebook, and the textview 
metaphor is for PDA. 

Figure 6. The hybridview mode 3.4 Interaction metaphor 
We propose a possibility for user to choose 
visualization metaphor using textview and hybridview 
menus. We decide to use classical interaction tools 
like menu, stylus, and button because these are 
available on each device that we use as visualization 
tools. When the user selects one of both menus using 
his stylus, the user interface changes according to the 
menu item selected. After that, the menu item 
changes to another one.  
As described above, when using a PDA, the 
transition between the two metaphors depends on 
how the user holds his PDA and the value of pitch 
angle (Ө) from the inertial sensor MTi (Ө value 
between -5.0° and 0.0° for portrait mode and 
landscape mode for others values). 

Figure 7. The hybridview mode on the UMPC 

If the user needs additional information related to the 
kind of tilling, he selects “more info” and listens the 
aural information. 
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4. Experimentation and Results 
This first prototype was tested with three users: the 
first client has used Q1 Samsung with 800 Mhz 
Celeron M ULV processor, 256 Mo RAM and the 
two other clients have used a Pocket PC dell axim 
x51v with 624Mhz Intel xscale processor, 64Mo 
RAM. We have used a database of common formed 
by 180,000 parcels and each parcel is formed by 10 
up to 20 vertices. We have tested two different 
scenarios: first, we have used a local database: as we 
have loaded the database in the memory at the first 
time, the Q1 client has run after 5s of the database 
loading and 22s for the two PDA clients. After this 
step, the Q1 client was able to achieve 25-30 fps 
(frame per second) and 17-20fps for the PDA clients 
during the exchange with the data in memory. In the 
second test, the database is duplicated on three 
replica servers. One master registry and two slave 
registries. Each slave registry has had its own node 
which monitors two applications servers. The locate 
request from the client to the registry has spent 0.3s 
for Q1 client and 0.7s for PDAs clients. After that, 
the Q1 client was able to 23-28fps and 15–20fps for 
the PDAs clients during the exchange with the 
replica server.  
After these tests, we asked the users about ergonomic 
of user interface and about the visualization 
hardware device: 80% of the users are satisfied about 
user interface but 50% only for hardware device. 

5. Discussion 
As we saw, the difference between the results using 
the local database and replicate database was small. 
It’s not surprising because we have added to the 
client a functionality to reduce the number of 
exchange with the replica server (see section 3.1.2). 
It’s also due to the performance of our replica 
servers. 50% of users only are satisfied for hardware 
device ergonomic because most of users prefer using 
wireless inertial sensor instead of using MTi. It is 
easy to use. 
From these results we can deduce designs guidelines 
for choose of hardware device in future AR 
application. 

6. Conclusion and future work 
In this paper, we addressed the problem of enhancing 
user’s contextual perception of the real word using 
GIS data on several hardware and software platform. 
To tackle this, we have proposed the ARGISUbiq 
multiplatform architecture which exploits Mobile 
Augmented Reality principles to improve 
user’sinteraction with GIS data.  As we use 
specifically built GIS data, we described our 

database’s structure and how to select appropriate 
information related to user’s position. Our distributed 
application is based on Internet Communication 
Engine, an object-oriented middleware, used to 
ensure the connection between database servers and 
clients.  To avoid eventual problem with database 
server, we duplicate our database on several servers 
and we use Icegrid services to provide load balancing 
between all servers. Some clients are able to access 
concurrently to a selected server.  
We are entirely satisfied with our first results. In the 
future work, instead using MTi sensor we plan to use 
low cost or embedded inertial sensor and image based 
techniques to compute the user’s orientation 
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ABSTRACT

Heterogeneous fogs are often modeled with several layers of different density or using particle systems. However, layers
are limited to vertical variations and using particles can involve a long computation time with large outdoor scenes. In this
article we present a simple method to render heterogeneous fog in real-time. The extinction function of our fog, related to
its density, is first modeled in a B-Spline function basis. Then, a wavelet transform is applied on this function to obtain a
decomposition in both space and frequency domains. A grid traversal is used to render the fog in real time using the GPU.
Since no precomputation is required concerning the position of the camera or the fog, we can freely navigate or move the fog
into the scene.

Keywords: Participating medium, Fog, Rendering, GPU.

1 INTRODUCTION
Fog is massively used in rendering both for aesthetic
purposes and to increase performances by providing an
efficient way to cull surfaces that are far from the cam-
era. Simple fog models are straightforward to imple-
ment but, like OpenGL’s fog model, only allow a ba-
sic representation of homogeneous fog as can be seen
on figure 1. Most of the time, these models are barely
convincing visually, as we know that natural fogs never
reach such perfect homogeneity. Considering latest ad-
vances in GPU programming, design of heterogeneous
fog should be simple, and its rendering reachable in
real-time.

The fog phenomenon is due to small particles of wa-
ter in suspension. Because it interacts with light rays,
fog is considered as a participating medium in computer
graphics. Fog effects take into account attenuation,
caused by absorption and out-scattering, and also con-
sider multiple scattering of light as isotropic and con-
stant over the scene. If we consider an homogeneous
fog in its simplest form, equations are simple enough
to allow an analytical integration of its effects along a
view ray. When rendering heterogeneous fog, the den-
sity of water particles is varying across the scene, thus
dramatically complexifying the model, involving local
changes in physical properties of the fog, such as its ex-
tinction coefficient. Therefore, in order to compute the
light-fog interaction, we have no other choice than per-

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Figure 1: Comparison between OpenGL’s homoge-
neous fog (left) and our heterogeneous fog (right)

forming the integration of the density along each view
ray from the eye to the nearest object.

Considerable work has been achieved in the devel-
opment of real time solutions to handle participating
media. Physical simulations taken aside [12, 14, 7,
11, 6], which do not reach realtime, researchers have
been working on rendering complex exchanges of light
within the medium, dealing, for example, with single
scattering. They also considered simpler forms of fogs,
with a density either varying along horizontal layers,
defined by Perlin noise, or using particles. But few tried
a direct and continuous mathematical representation of
its density.

In this paper, we present a new method helping to
shape and render complex heterogeneous fog in large
outdoor scenes, lighted by a single light source (the
sun). First, the fog is modeled in a B-Spline function
basis, which allows a simple and efficient construction
of its extinction function. As a preparation before ren-
dering, Mallat’s wavelet decomposition is applied on
the extinction function in order to automatically gen-
erate different resolutions, enabling an optimized real-
time rendering using the GPU. The use of wavelets of-
fers several advantages :
• An easy modelization leading to a smooth and con-

tinuous fog density by opposition to particles ap-
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proaches that are discrete. Analytical representation
compresses data more efficiently and are, for exam-
ple, easier to animate.

• Wavelet modelization is generic. It includes natu-
rally, using Haar wavelets, discrete approaches like
quad tree or octree representation.

• Wavelet decomposition leads to sparse data that can
be used to improve rendering time.

Therefore the contribution of this paper is :
• Establishing a wavelet framework for the definition

and modelization of an heterogeneous fog.
• Rendering the fog in real time using this represen-

tation without precomputation involving camera or
fog position.

• Allowing a tradeoff between correctness and speed
using the multiresolution offered by the wavelet de-
composition.

In the next section, we review previous methods to
render, in real time, the effects of participating media in
a scene. Then, we briefly introduce the wavelet theory
along with the equation of transfer inside a participat-
ing medium. Section 4 presents our modeling scheme
and our implementation for rendering. In section 5, we
expose and discuss our results.

2 PREVIOUS WORK
Rendering participating media such as fog in real-time
has been well studied. We will not consider global il-
lumination algorithms concerning participating media.
For more information on this subject, the readers should
refer to the excellent survey of Cerezo et al. [2]. Algo-
rithms dealing with single scattering, including volume
based approaches [17] or direct representation [1], also
handle fog naturally but due to complexity problems
these techniques only consider homogeneous mediums
(except [19] discussed bellow). Therefore, we limit our
overview to other real time approaches for heteroge-
neous fog which can roughly be divided in, on the one
hand, particle approaches and, on the other hand, lay-
ered or bounded approaches.

Particles provide a natural way to handle heteroge-
neous fog. They have been used efficiently in numerous
works [4, 15, 9, 3]. The idea is to consider particles as
groups of water drops, allowing real time rendering of
effects like smoke or physically based simulation. But
is not well adapted to large scale fog recovering a whole
scene. Moreover, animating all particles in a large scene
is computer time consuming. The same drawbacks hold
for the hybrid approach of Zhou et al. [19] which han-
dles single scattering in a heterogeneous participating
medium combining particles and spherical harmonics.
We can also cite the work of Zdrojewska [18] which
uses Perlin noise to alter the homogeneous density of
the fog. Despite this good idea, the use of 3D random
noise forbids any animation of this fog.

The idea behind layered or bounded approaches is
to enclose fog density variations into layers [8, 5] or
bounded volumes [10]. These works consider homoge-
neous fog enclosed in volume, inducing a discontinuous
density function and creating artifacts on the border of
these volumes. Moreover, intuitive or physically based
animations of this kind of representation could be dif-
ficult to handle. Despite these limitations, it is often
the kind of solution we can find in common graphic
engines, along with particle rendering. Nevertheless,
none of the previous methods offers a simple and effi-
cient mathematical representation of heterogeneous fog
adapted for both animation and rendering.

3 THEORETICAL BACKGROUND
3.1 Fog’s illumination model
Our main goal is to render our fog in real-time, using
conventional graphics cards. Although performances
of GPUs have never been increasing so fast, we have
to slightly simplify our fog model. Between points O
and P, fog induces an attenuation (due to out-scattering
and absorption) of the luminance L of P and an increase
(in-scattering and emission) of light along the ray ~OP.
We start directly with the integral transfer equation,
see [13] :

L(O) = τ(O,P)L(P)+
∫ P

O
τ(O,u)Kt(u)J(u, ~ω)du (1)

L(O) being the radiance received by the observer,
J(u, ~ω) being the incoming radiance along the ray, Kt
the extinction coefficient and τ(u,v) the transmittance
of the fog along the ray going from u to v :

τ(u,v) = e−
∫ v

u Kt (s)ds (2)

First, when daylight passes through fog, it is immedi-
ately scattered such that light in-scattering can be sim-
plified by a constant amount Lfog. Moreover, if we con-
sider that the light emitted by the fog itself can be ne-
glected, the incoming radiance J(u, ~ω) equals Lfog, and
then equation (1) becomes :

L(O) = τ(O,P)L(P)+
∫ P

O
τ(O,u)Kt(u)Lfogdu (3)

Figure 2: View ray ~OP through a participating medium.
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The second part of equation (3) can be analytically
integrated to obtain :

L(O) = τ(O,P)L(P)+Lfog(1− τ(O,P)) (4)

3.2 Wavelets
From equation (3), we can see that the density vari-
ation could be represented efficiently by the extinc-
tion function. Therefore, Kt will be modeled using the
wavelet framework whom principal used characteristics
are detailed in this section. More details on the wavelet
framework can be found in [16].
The wavelet framework. In a multiresolution analysis,
data is represented using several approximation spaces.
Different functions bases are used to represent a single
signal, and each functions basis corresponds to a dif-
ferent resolution. Moreover, all basis functions are ob-
tained by translating and scaling a single original pat-
tern function f ∈ L2(R), in other words :

f j,k(x) = f (2 jx− k), with j ∈ N,k ∈ Z (5)

where f j,k represents the basis functions and j the reso-
lution level. If we define Fj as the closed subspace of L2

using basis functions { f j,k}k∈N, the closure of
⋃

j∈N Fj

is the space L2 and represent all square integrable func-
tions.

The wavelet framework uses, to build basis functions
of spaces Fj, a particular function called scaling func-
tion and often denoted by φ . It verifies equation (5) and
generates a φ jk family, j ∈ N,k ∈ Z. This function φ

also presents the property of being written as a linear
combination of k/2 translated and 1/2 scaled versions
of itself. It is the scaling relation of the scaling func-
tion, given by :

φ(x) =
∞

∑
k=−∞

pk×φ(2x− k) (6)

where {pk} are the coefficients of the scaling sequence
of φ . Note that each subspace Fj, j ∈ N will in fact use
the same and unique function φ translated and scaled.

The particularity of the wavelet framework is its abil-
ity to decompose a function of Fj+1 using several func-
tions of Fj and of its orthogonal complement G j. There-
fore, if J is the maximum resolution level, the FJ space
can be written :

FJ = F0∪
J−1⋃
j=0

G j (7)

This equation means that a function (up to a resolu-
tion J) can be described using only one scaling function
(space F0) and several functions of spaces G j. The ba-
sis functions of spaces G j are called wavelet function
and verify equation (5). They can also be built using

the scaling relation for wavelets, which we will call the
wavelet relation :

ψ(x) =
∞

∑
k=−∞

qk×φ(2x− k) (8)

where {qk} are the coefficients of the wavelet sequence
of ψ . Note that, similarly to Fj, each subspace G j uses
the same and unique function ψ translated and scaled.
Decomposition and multiresolution using wavelets.
The advantage of the wavelet framework is that it pro-
vides an efficient way to decompose a function into
multiresolution spaces. The fast decomposition can be
assured by the Mallat’s wavelet transform which uses,
as entry data, coefficients of the function modeled di-
rectly in the maximum resolution level. Therefore, our
fog extinction function will be modeled using scaling
function.

Mallat’s algorithm takes advantage of equation (7)
and consists, for each step, in extracting from the ap-
proximation at level n (represented in a scaling func-
tions basis) first the approximation at level n−1 (Fn−1
which is twice less precise), and then the corresponding
layer of details (Gn−1 represented by a wavelet basis).
We simply repeat this process until we obtain the ap-
proximation at level 0. Mallat’s transform is lossless,
therefore when we simply sum up the coarsest approxi-
mation with all layers of details, we recover the original
signal untouched.
Wavelets in two dimensions. Now that we know how
to build scaling functions and wavelets in one dimen-
sion, going 2D will actually be quite straightforward.
In a nutshell, it simply consists in assigning the cor-
responding 1D function to each axis, and the result is
given by the product of these two 1D functions. Basi-
cally :

φφ(x,y) = φ(x)φ(y) (9)

where φφ is a 2D scaling function and φ is the corre-
sponding 1D scaling function. Things go exactly the
same way with wavelet functions.

Obtaining a 2D wavelet transform is slightly harder
and requires to process rows and columns separately.
There are two different decomposition methods : the
standard decomposition and the nonstandard decompo-
sition. These two types of decomposition output exactly
the same kind of result :

• A single coarse approximation at level 0, modeled
with 2D scaling functions φφ(x,y) = φ(x)φ(y).

• J−1 layers of vertical details, modeled with hybrid
functions φψ(x,y) = φ(x)ψ(y).

• J− 1 layers of horizontal details, modeled with hy-
brid functions ψφ(x,y) = ψ(x)φ(y).

• J−1 layers of 2D details, modeled with 2D wavelets
ψψ(x,y) = ψ(x)ψ(y).
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For example, our fog’s extinction function can be
written as :

Kt = ∑
i j

αi jφφi j + (10)

J−1

∑
n=1

[
∑
i j

β
n
i jφψ

n
i j +δ

n
i jψφ

n
i j + γ

n
i jψψ

n
i j

]

4 OUR METHOD
4.1 Modeling the fog
The two-dimensional framework. Unlike other types
of participating media from the same family, fog almost
always appears in large outdoor scenes as a horizontal
layer of varying thickness. This is quite different from
smoke, which can evolve indifferently in all directions
in terms of shape and movement, and thus really need
to be defined with the same precision along all three
dimensions.

For this reason, and in order to ease the shape defini-
tion as much as possible and, later, the rendering step,
we have chosen to restrict our main framework to two
dimensions. The optical properties of our fog, simi-
larly to most other participating media rendering tech-
niques, are proportional to its density, which depends
itself on its extinction function. Therefore, the fog’s
main shape will actually be modeled as horizontal lay-
ers containing horizontal extinction function projected
in a two-dimensional function basis. Further parame-
ters, starting with a vertical extinction coefficient, will
then thicken the fog vertically and give its final appear-
ance.
Designing the fog’s shape. Horizontal variations of
our fog’s density are modeled by specifying the value of
each coefficient in the extinction function basis. These
coefficients can be adjusted by hand, or be, for exam-
ple, the result of a simulation, which was exported as a
fogmap (see figure 3), i.e. a greyscale image, and then
loaded back in our implementation.

Compared with other techniques such as RBF
or particle-based methods, shaping our fog using a
grayscale image is straightforward. The fogmap rep-
resents, in some extent, a direct preview of its aspect,
what can be interesting for some applications where
great intuition is needed. To ease the manual setting of

Figure 3: Left : snapshot of our modeling tool. Right
: greyscale image representing the highest resolution
coefficients

Figure 4: Shape of Haar, Linear and Quadratic B-
Splines.

the coefficients, we also developed a small application
where the values of the density can be directly adjusted
using a drag-and-drop interface.
Choosing the basis functions. The appearance of the
fog’s density is a key criteria to choose our basis func-
tion. It is clear that abrupt changes in density would not
look natural, so we would ideally like continuous func-
tions to design smooth fogs using as few coefficients as
possible. In order to avoid border effects, the scaling
function must tend to zero on both sides of its support,
which eliminates, for example, Legendre scaling func-
tions.

For design and optimisation purposes, our rendering
algorithm also needs the scaling function never to os-
cillate under zero. Whatever the trajectory of the ray
within the function in 2D, and more generally within
the fog, we would like to be sure that the sum of
the density it intersects can only increase as it tra-
verses the fog from the observer to the nearest object.
Daubechies wavelets, which, by the way, are not sym-
metrical, might not be the way to go.

Finally, we have to consider the fact that, as will be
discussed in the next section, the cost of using a partic-
ular type of wavelet is quadratically proportional to the
support of the scaling function in one dimension.

According to their shape, the most adapted candi-
dates seem the linear or quadratic B-Splines, which are
shaped like a hill (see figure 4), and have a relatively
compact support.

Although we are limited to wavelet scaling functions
for the fog’s representation, our method is not reduced
to a particular type of wavelet. Our implementation
specifically handles all degrees of B-Spline wavelets,
but can be extended to other families, as long as they
are compatible with Mallat’s decomposition.

4.2 Preparing data for rendering
Generating multiple resolutions. One of our main
goals is to take profit of multiresolution. Indeed, mul-
tiresolution helps to omit details that could be expen-
sive to render, while being of limited visual impor-
tance. Therefore, perform a wavelet decomposition on
our fog, which generate multiple level of details (i.e.
multiple resolutions) from the original extinction func-
tion, and use them at the rendering phase. The most
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adapted solution seems Mallat’s fast wavelet transform,
which is lossless, but requires data to be modeled in a
scaling functions basis of the same type as the wavelets
used for the decomposition. Therefore, each pixel of
the fogmap will represent the coefficient of a scaling
wavelet function.
Computing textures. From the fogmap we gener-
ate four multiple-level function bases : the approxi-
mation on a single level (i.e. a single 2D grid of val-
ues), and three different kinds of details for each level
which was decomposed. All details bases have the same
depth, which corresponds to the number of decompo-
sition steps that were executed, value which must be
decided by the user, depending on how much details
can be omitted. Coefficients from the approximation
and details basis will be stored in packed textures, and
transmitted to the GPU under this form.

4.3 Rendering the fog
Overview. The purpose of our algorithm is to alter the
original color of each pixel of the image using equa-
tion (3), blending L(P), the color of the object behind
the fog, and the fog color to obtain L(O) the new color
to compute.

For each pixel, we perform a ray-marching from the
camera to the nearest surface, in which we integrate
over the fog’s extinction function to obtain the trans-
mittance τ(O,P) along the view ray ~OP.
The grid. As a result from the wavelet decomposition,
the fog’s density is scattered in several multiple-level
function bases, having their own vector space and def-
inition domain in 2D. Each single level can be assimi-
lated to a rectangular grid, each cell being associated to
both a coefficient and a basis function. Since all bases
have the same definition domain, grids from different
bases match at a given level.

Since our fog is only modeled in two dimensions, we
do not take into account vertical variations and consider
the fog as homogeneous on that direction. However, a
vertical extinction coefficient taken as parameter allows
to fade the fog out while its vertical distance from the
viewer increases. But note that this is only a quick ap-
proximation over the exact equations.
Integration along the ray. The algorithm is itera-
tive, but instead of advancing regularly along the ray,
we move cell by cell. Each step corresponds to a new
intersection between the ray and the grid, thus we al-
ways integrate between two intersections, i.e. between
two positions on the perimeter of a square cell. This is
a brute-force method, and some optimisations will be
discussed in the next section.

We start by transposing both positions of the camera
and the object from the scene to the fog’s vector space.
Our algorithm performs the entire integration level by
level, and then, for each single function basis level, cell
by cell.

Figure 5: Ray-marching through a single level, de-
signed with linear B-Splines scaling functions (sup-
port=2).

To initiate the integration on a given level, we first
determine both entry and exit points of our integra-
tion on the grid. The entry point corresponds to either
the nearest intersection between the ray and the current
level’s bounding box, or the viewer’s position in case
he stands within the fog. Similarly, the exit point corre-
sponds to the intersection with either the farthest plane
of the bounding box, or with the nearest object if situ-
ated within the fog.

When integrating a given level, the contribution of
each single cell can be obtained by the product of both
the function basis coefficient and the integral of the ba-
sis function associated to that cell along the view ray.

Mathematically, considering each cell c intersected
by OP and using the extinction function decomposition
of (10), we have :

τ(O,P) = ∑
cell:c

∫
c∩OP

Kt = ∑
c

[∫
c∩OP

αcφφc+ (11)

J−1

∑
n=0

∫
c∩OP

β
n
c φψ

n
c +δ

n
c ψφ

n
c + γ

n
c ψψ

n
c

]

J being the maximum decomposition level of our fog.
Thanks to multiresolution analysis, each function in-
dexed by cell c and level n is indeed a translated and
scaled version of φφ , φψ , ψφ or ψψ .

Therefore, we can precompute on the CPU a bunch of
integrals for a set of sampled paths (complete or partial)
within 1× 1 squares on each function’s definition do-
main, so that these values are directly available at run-
time, transmitted on the GPU in packed textures. Inte-
gration on partial paths allow handling particular cases
when the ray either starts and/or ends at the center of a
cell within the fog’s bounding box.

Figure 5 shows ray ~OP traversing a single level’s grid
from entry point S to exit point E. Integration steps
(i.e. intersections with the grid) are shown in red. The
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basis function (in this example : linear B-Spline scaling
function) associated to the orange cell’s coefficient c is
shown in blue.

When using basis functions which are supported
on an 1× 1 square (e.g. Haar scaling functions and
wavelets), their contribution area matches exactly that
of the cell it is attached to, therefore we know that the
cells which contribute to the pixel being rendered are
exactly those traversed by the ray.

When the functions are supported on a domain larger
than 1× 1, part of the contribution of each cell gets
superimposed on that of its neighbouring cells, thus
also contributing to rays which do not necessarily pass
through those cells themselves. Actually, a ray passing
through a cell must take into account the contribution
of that cell, plus the contributions of the dx− 1 previ-
ous cells on the X axis, times the dy−1 previous cells
on the Y axis, where dx and dy are the dimensions of
the basis function’s definition domain.

When the ray encounters a new function, we only in-
tegrate the density on the portion of that function which
overlays the current cell, and then resume the integra-
tion for another 1×1 square of the same function when
the ray traverses the next cell. If we directly integrate
on the whole function’s support at once, we omit the
contributions of the functions attached to cells which
are not encountered by the ray.

When the ending point has been reached, the whole
process must be repeated with each level of each
wavelet basis that was generated by Mallat’s wavelet
transform.

4.4 Optimizations & multiresolution
Our idea consists in omitting an increasing quantity of
details from layers whom resolution is above a thresh-
old which decreases as the observer moves away from
the fog. When integrating the fog’s density from the ob-
server O to point P, the maximum integration distance
dmaxl on level l ∈ N is given by :

dmaxl ( ~OP) = ‖OP‖×µ
l (12)

where µ ∈ [0,1] is the optimization coefficient. When
µ = 1, the integration is performed entirely on all levels
; on the contrary, when µ = 0, only the upper level of
the basis is rendered.

As seen previously, when using scaling functions that
are defined on more than an 1×1 square, the integration
cost is no longer proportional to the fog’s size, since
more than each single particular cell traversed by the
ray brings a contribution on these cell’s area. That’s
why although the total number of coefficients model-
ing the fog stays almost unchanged, the rendering cost
increases dramatically after the wavelet decomposition,
since B-Spline wavelets always have a larger support
than their scaling function.

Algorithm 1 Pseudo code of the shader
for each pixel do

sum = 0
for l = 0 to nb_levels do

compute 2D entry point on grid
compute 2D exit point on grid
while pos 6= exit do

inter = compute next intersection with grid
if (l = 0) then

coef = get cell coef on approx basis
approx = integrate on φφ between pos &
inter
sum += coef*approx

end if
coef = get cell coef on details1 basis
det1 = integrate on φψ between pos & inter
sum += coef*det1
coef = get cell coef on details2 basis
det2 = integrate on ψφ between pos & inter
sum += coef*det2
coef = get cell coef on details3 basis
det3 = integrate on ψψ between pos & inter
sum += coef*det3
pos = inter

end while
end for
pixel color=sum*obj color + (1-sum)*fog color

end for

When using such basis functions, for example lin-
ear or quadratic B-Splines, it can be interesting to use
the two-scale relation for wavelets 8 to deconstruct the
three wavelet bases. This turns them back into scaling
function bases, which can then be merged (i.e. added)
together. When using scaling functions with a large
support, this operation, performed on the CPU just af-
ter the decomposition, can reduce the rendering cost
by up to 2, while keeping the multi-resolution aspect
brought by the decomposition. Moreover, if we per-
form a deconstruction, we can stop the integration as
soon as the sum reaches a particular threshold, close
to a great opacity. Deconstruction is important since it
assures than each new cell will only add opacity.

5 RESULTS AND DISCUSSION
This algorithm has been implemented using GLSL,
an Intel Core 2 Quad 2.8Ghz processor and a NVidia
GeForce GTX 280 graphics card. Screen resolution is
800x600.

5.1 Performance
Table 1 show FPS results obtained when using our ray-
marching alone to directly render raw Haar, linear or
quadratic fogmaps, without any decomposition. Note
also that a classical numerical integration along the ray,
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Fog resolution Haar Linear Quadratic
16×16 199 142 71
32×32 124 83 31
64×64 90 45 15

Table 1: FPS results with our ray-marching without op-
timizations.

PPPPPPPPNb levels
µ

1 0.8 0.6 0.4 0.2 0

0 45 - - - - -
1 35 39 47 55 66 83
2 31 45 55 71 90 124
3 27 39 66 76 99 166

Table 2: FPS results with our optimization, using a 64×
64 linear B-Spline fogmap.

with 256 samples, runs at 99 FPS and suffers from se-
vere aliasing artifacts. This is clearly outperformed by
our method : Haar without decomposition gives 124
FPS and we can achieve similar FPS using a linear
base. Each type of basis functions is defined on an area
which size is increasing linearly in 1D, which involves
a quadratically increasing number of neighbouring cells
contributing to the density on each 1× 1 square on the
grid.

Table 2 show FPS results obtained when rendering
a 64× 64 linear B-Spline fog using our details drop-
ping optimization, for different values of the tolerance
parameter µ . With µ = 1, no details are dropped, and
we are performing a simple ray-marching. If, in addi-
tion, we do not apply any decomposition step, we are
directly rendering the fogmap, like in table 1, therefore
this value stands for the threshold above which we have
a substential acceleration.

In table 3 we show, with arrows, the performance
gain induced by our optimisations.

Figure 6: Quality difference when removing all layers
of details (bottom left) from an Haar 32x32 (top left).
Difference image (right) is shown (x25).

Nb levels 1 2 3
Linear 16x16 58→ 111 47→ 99 35→ 83
Linear 32x32 20→ 62 15→ 55 13→ 49
Quad. 32x32 7→ 23 5→ 20 5→ 18

Table 3: FPS improvement when turning back into scal-
ing function bases the four b-spline/wavelet generated
by the decomposition (before→ after).

5.2 Visual quality
The higher the degree of the B-Spline wavelet is,
the smoother each basis function looks. With Haar
wavelets, we can see, in figure 7.B, that the visual result
is a bit unsatisfactory, with abrupt changes in density
which betray the discontinuity of Haar functions. With
linear B-Spline wavelets (figure 7.C) the framerate
decreases but the visual result is a lot smoother and
artifacts and peaks are now practically imperceptible.
Finally, with quadratic B-Spline wavelets (figure 7.D),
we loose in performance but this time, the quality gain
is relatively low compared to linear B-Spline wavelets.

5.3 Discussion
Linear B-Spline seems a good trade-off between speed
and quality but Haar could be used if rendering time
is an issue. The advantage of using wavelets, beside
their property of good data compression, is to have a
mathematical representation of heterogeneous fog from
physical simulation to rendering. Indeed, animating
such fogs is easy, since wavelet decomposition can be
performed in real-time. Moreover, unless previous ap-
proaches, we perform a precise numerical integration
of density along the view ray, without any approxima-
tion. In comparison to particle approaches like [19], our
method is more adapted to large outdoor scenes when
camera is moving in the fog, and the modelling is far
more intuitive than using particles.

6 CONCLUSION AND FUTURE
WORK

In this paper, we presented a new method for model-
ing heterogeneous fog using wavelet scaling functions.
Rendering is performed through a simple decomposi-
tion scheme of the fog density function represented in a
scaling function basis leading to sparse data. Wavelets
and scaling functions allow and ease a certain num-
ber of precomputations, such as the integrals of the
wavelets along each ray. A brute force rendering al-
gorithm using the GPU has been presented allowing
real-time rendering for moderated complex fog along
with an optimized version taking profit of the sparcity
of data induced by the wavelet decomposition. We have
shown that our method outperforms brute force integra-
tion and allows exact computation of the effects of fog,
without exotic approximations. Moreover, our method
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Figure 7: Quality difference with a large 30x30 fog. Fog taken from above (A), and the associated fogmap (E).
Zoom on the red part when using Haar (B), Linear (C) and Quadratic (D) wavelets.

do not depends on the position of either the light or the
fog, allowing simple transformations of the fog.

The use of wavelets opens the door to other major
optimisations for our method. Mainly, the rendering al-
gorithm can be improved by focusing only on the grid’s
cells which actually contain a non-negligible value, in
order to be able to directly jump to the interesting zones
of the fog when performing the integration along the
ray. For this purpose, we aim at designing a simple
GPU traversal of the graph generated by the wavelet de-
composition. Since wavelets can be used to solve fluids
equations, we also plan to link our rendering algorithm
to a physical simulation involving wavelets, allowing a
real-time physical animation and rendering of hetero-
geneous fog. Finally, we plan to add single scattering
and volumetric shadows in our model.
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Abstract

Most algorithms that reconstruct surface from sample points rely on computationally demanding operations to derive the re-
construction, beside this, most of the classical algorithm use a kind of three-dimensional structure to derive a two-dimensional
one. In this paper we introduce an innovative approach for generating two-dimensional piecewise linear approximations from
sample points in R3 that simplify significantly the numerical calculation and the memory usage in the reconstruction process.
The approach proposed here is an advancing front approach that uses rigid movements in the three-dimensional space and a
bidimensional Delaunay triangulation as the main tools for the algorithm. The principal idea is to use a combination of rota-
tions and translations in order to simplify the calculations and avoid the three-dimensional structure used by the most of the
algorithms. Avoiding those structures, this approach can reduce the computational cost and numerical instabilities typically
associated with the classical algorithm reconstructions.

Keywords: Algorithm, Reocnstruction, Rigid Movements, three-dimensional structures, Delaunay triangulation.

1 INTRODUCTION

Given a set of samples P extracted from a smooth
closed surface S in R3, the reconstruction problem con-
sists in reconstruct F , a piecewise linear approximation
of S, using the points of P. The surface F must be
equivalent to S topologically and as close as possible
to S.

In the last decades, surface reconstructions have been
focus of extensive investigation not only because the
number of practical applications in engineer and vir-
tual museums but also by the challenges that need to
be faced. In general only the three-dimensional coordi-
nates of the points are known. Despite of lack of infor-
mation about the topology and geometry, several algo-
rithms has been proposed to solve this problem [8, 7, 9].
Some of the existing methods can even ensure a correct
reconstruction as long as an adequate sampling rate is
employed, such as those by Amenta et al. [2, 3]. How-
ever, in spite of considerable theoretical advances many
algorithms fail to accomplish a successful reconstruc-
tion in practical situations.

In general, algorithms in literature use three-
dimensional structures as Delaunay triangulations,
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or a kind of "immersion" three-dimensional space to
derive a two-dimensional reconstruction. This paper
introduces an advancing front approach, called LDT
(Local Delaunay Triangulations) which runs entirely
in two-dimensions. The main idea is to start from a
boundary edge e and use the n nearest neighbors of one
of end points of e to build a two-dimensional Delaunay
triangulation in order to choose the better triangle
to be glued in e. Avoiding those three-dimensional
structures, not only the calculations are simplified,
but also the amount of memory used is considerably
reduced.

Prior to introducing the LDT algorithm, this work
discuss related work in Section 2 and introduce some
mathematical fundamentals required to lay out the pro-
posed approach in Section 3. In Section 4 the recon-
struction algorithm is described. Reconstruction results
with LTD are given in Section 5. Finally, conclusions
and further work are addressed in Section 6.

2 RELATED WORK
Surface reconstruction from sample points has de-
served considerable attention from researchers in both
Computer Graphics and Computational Geometry. The
problem became popular after the paper by Hoppe et
al. [23], who presented an algorithm for reconstructing
the surface as the zero set of a signed distance function.
However, that approach is unable to capture fine surface
details. A related algorithm was developed by Curless
and Levoy [14] that is more effective in capturing
surface details; nevertheless, it relies on additional
information than just the sample points. An alternative
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Figure 1: Models reconstructed with LDT algorithm

approaches for reconstructing a surface from the zero
set of a distance function have been proposed. Carr et
al. [13], for example, employ radial basis functions
to approximate the signed distance. Their algorithm,
though computationally expensive, can handle gaps
and capture fine model details. Ohtake et al. [29] and
Alexa et al. [1] use local fitting by employing partition
of unit and moving least-squares approximation to
estimate the approximating surface. The ability of
handling large data sets is a major strength of such
implicit approaches. However, the surfaces produced
do not interpolate the given samples, which may be
undesirable in some applications.

Researchers in Computational Geometry adopted a
different approach towards the problem, some of them
have proposing reconstruction algorithms based on a
Delaunay complex generated from the sample points.
The rationale behind such algorithms is to sculpt the
surface from the Delaunay complex; others have pro-
posed advancing fronts approaches. Boissonnat [11]
proposed the first Delaunay based reconstruction algo-
rithm, which operates by removing tetrahedral and tri-
angles that violate certain geometrical conditions. Un-
fortunately, it is applicable only to surfaces of genus
zero. The α-shape algorithm [17] starts with the De-
launay tessellation of the sample points and removes
all simplices that are not contained in an empty ball of
radius 1

α
. The α-shape is simple to implement, but it

works properly only on evenly sampled point sets, as
a single α value applies to the whole data set. Teich-
mann and Capps [33] introduced a density scaled α-
shape to handle this problem. Nonetheless, their ap-

proach requires the normal vectors at the sample points.
The Crust, by Amenta and Bern [2], is the first three-
dimensional algorithm with theoretical guarantees of
reconstruction. For a suitably sampled object it com-
putes a piecewise linear surface approximation that is
homeomorphic and geometrically close to the original
one. The Crust handles non-evenly sampled point sets
and requires little user intervention during reconstruc-
tion. A drawback is that the geometrical calculations
required to compute the Voronoi vertices introduce nu-
merical instabilities. Furthermore, the algorithm has
high computational cost because it builds two Delaunay
tessellations, one to compute the Voronoi vertices and
a second one to generate the Crust. The Cocone algo-
rithm, by Amenta et al. [4], is an elegant and fast sim-
plification of the Crust that holds the same theoretical
guarantees. However, in practical applications it gen-
erates undesirable holes in the reconstructed surface.
This problem has been solved by Dey and Goswami in
the Tight Cocone algorithm [15]. Nonetheless, unlike
its predecessor Tight Cocone does not capture internal
components. Moreover, it requires pole estimates, cell
labeling and, in some cases, triangle size estimates are
also necessary. Power Crust [5] also improves on the
Crust algorithm. It computes a piecewise linear ap-
proximation of a smooth surface employing a weighted
Voronoi diagram called Power Diagram. Power Crust
is also theoretically guaranteed to generate a correct re-
construction under proper conditions, and its computa-
tional performance is superior to that of the Crust. But it
still faces numerical instability problems due to the ge-
ometrical calculations required to construct the Power
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Diagram. Kolluri et al. [25] introduced the Eight Crust
algorithm for reconstructing a watertight surface from
noisy point cloud data. Starting from the Delaunay tes-
sellation it uses a variant of spectral graph partitioning
to decide whether each tetrahedron is inside or outside
the original object. The reconstructed surface consists
of the set of triangular faces shared by both internal and
external tetrahedral. The spectral partition makes lo-
cal decisions based on a global view of the model and
therefore the algorithm can ignore outliers, patch holes
and under-sampled regions. The high computational
cost is still a major disadvantage.

The ball pivoting algorithm by Bernardini et al. [9] is
very simple and fast. Three points form a triangle if a
ball of user-specified radius touches them without con-
taining any other point. Starting from a seed triangle,
the ball pivots around an edge – i.e., it revolves around
the edge while keeping in contact with the edge’s end-
points until it touches another point, forming another
triangle. The process proceeds until all reachable edges
have been tried, and then it starts over from another seed
triangle, stopping when all points have been conside-
red. The process can be repeated with a ball of larger
radius to handle uneven sampling densities. A major
advantage of ball pivoting is that it does not compute
the Delaunay tessellation of the sample points. On the
other hand, it is user-dependent and needs the normals
at the samples. Advancing front strategies have been
employed in reconstruction algorithms by several au-
thors, such as Schreiner et al. [30] and [31], but com-
putational implementation of such methods can be quite
intricate.

Edelsbrunner [16] derived an algorithm for fitting a
surface to a set of sample points that relies on classi-
cal Morse theory. Although it relies on a topological
background, topology is employed just to deduce the
geometrical calculations. Another approach that uses
Morse theory, in its discrete version is the work of Bís-
caro et al. [10] which uses a discrete Morse function de-
fined in a three-dimensional Delaunay triangulation to
guide the reconstruction process. Also, the main draw-
back of this work is the three-dimensional structure re-
quired to extract a two-dimensional one.

Finally, Gopi et al.[20] has proposed a similar ap-
proach that uses a local Delaunay triangulation. How-
ever, their approach selects a set of candidate points
which might be possible neighbors of a vertex in the
final triangulation using a kind of sample criteria. They
also compute the local Delaunay triangulation in the
tangent plane without using any kind of simplification
in its computation.

In fact, most of the classical algorithms derive the
reconstruction from a subset of the three-dimensional
Delaunay tessellation. This approach avoid to con-
struct a three-dimensional structure to derive a two-
dimensional piecewise linear approximation of the sur-

face. Avoiding this immersion space, the algorithm
presented here reduces the amount of ram memory
used in the process as well as number of geometrical
calculations. Another advantage of avoiding a three-
dimensional Delaunay triangulation is absence of sliver
tetrahedrons, which is a classical problem in three-
dimensional triangulations.

3 BASIC CONCEPTS
This Section introduces the basic concepts and the ter-
minology used in the remainder of the text.

A Delaunay triangulation for a set P of points in Rn

is a triangulation of DT (P) such that no point in P is
inside the circumsphere of any simplex in DT (P). In
the plane, each vertex has on average six surrounding
triangles; also, this triangulation maximizes the mini-
mum angle. Compared to any other triangulation of the
points, the smallest angle in the Delaunay triangulation
is at least as large as the smallest angle in any other
[21, 18].

Let S be a smooth closed surface in R3, i.e., S is C1-
continuous and divides R3 into open solids. A ball B is
said to be empty (with respect to S) if its interior con-
tains no point of S. The set of centers of the maximal
empty balls touching S in at least two points make up
the medial axis of S. The local feature size of a point s
in S, denoted l f s(s), is the distance from s to the me-
dial axis of S. An important property of l f s(·) is that
l f s(p) ≤ l f s(q)+ |pq|, where |pq| is the distance be-
tween p and q. A set of points P⊂ S is an r-sample of S
if the distance from any point s ∈ S to the closest point
in P is at most r× l f s(s). In this case S is said to be r-
sampled; in general, good results in reconstructions are
achieved for r ≤ 0.1.

Quaternions (four numbers) are a kind of number sys-
tem that extends the complex numbers. A quaternion
number q=(w,x,y,z), or correspondingly, w+ ix+ jy+
kz, where hold the following identities; i2 = j2 = k2 =
−1, i j = k− i j and w,x,y,z ∈R [22]. They also provide
a useful mathematical notation for representing and ro-
tations of objects in three dimensions. When compared
to Euler angles, they are simpler to compose and have
an advantage of not present the problem of "gimbal
lock". Also, they are more numerically stable a more
efficient than rotations matrices. To represent a rotation
of an angle θ around the axe n, a unit vector, is enough
to define the quaternion q = (cos( θ

2 ),sin( θ

2 )n).
This work also need an efficient and effective way

of find the n nearest neighbors of a three-dimensional
point p. To accomplish this, the work of Lin and Yang
[27] was used. Their work offer a high accuracy near-
est neighbor search by their ANN-Tree (Approximate
Nearest Neighbor Tree) which is a tree based structure
that works for arbitrary dimension.

Another important calculation present in this work is
the angles between two vectors. According to Jonathan
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Shewchuck [32], given two vectors with the same ori-
gin r and s, the best way of calculate the angle between
r and s is to use the formula tan(θ) = 2A f

〈r,s〉 , where A f is
the area of the triangle with sides r and s. The compu-
tation of A f can be done making A f =

|r×s|
2 , where r×s

is the cross product of r and s.
This paper uses the Hausdorff distance to compare

the meshes generated by the LDT algorithm and the
meshes of the classical algorithms. Hausdorff distance
is a generic technique that defines a distance between
two nonempty sets; and has been used as an efficient
tool to evaluate distances between three-dimensional
meshes [6].

In next section, this paper presents details of the al-
gorithm developed in this work.

4 ALGORITHM
The algorithm LDT uses the normal vector at each sam-
ple point. There are several strategies to estimate this
vector, but is important to include, in such estimation,
the impact of the point’s distance. The influence of the
sample points must be inversely proportional to its dis-
tance. This work uses weighted principal component
analysis (WPCA). The weight average of a point p∈R3

is given as follow:

M (p) =
n

∑
i=1

wp (pi) pi
n
∑

i=1
wp (pi)

(1)

where n is the number of the nearest neighbors of p,
the function wp(x) specifies the influence of the point x
in point p. According to Levin [26], a good choice is

wp (x) = e
‖x−p‖

H2 , where H estimates the local density in

p, H =
n
∑

i=1

‖pi−p‖
n . The 3×3 covariance matrix C for a

point p if given by:

C =


p1−M (p)
p2−M (p)

...
pn−1−M (p)
pn−M (p)


T 

p1−M (p)
p2−M (p)

...
pn−1−M (p)
pn−M (p)

 (2)

Let λ1 ≤ λ2 ≤ λ3 be the three eigenvalues of C, and
α1,α2 and α3 the three associated eigenvectors. Jol-
liffe, in his work [24] establish that α3 is the direction
of greatest variance in a neighborhood of p, α2 repre-
sents the direction of second greatest variance and α1
the direction that minimizes the variance. As the set
of points P is a subset of the surface S, the geometric
interpretation is that α2 and α3 approximates the main
directions of the tangent plane at p and α1 approximates
the normal direction.

Data: A set of samples P⊂ R3

1 for each p ∈ P do
2 Approximate the normal vector in p
3 end
4 Find a initial triangulation F ;
5 Store in E the boundary edges of F ;
6 while E 6= /0 do
7 Remove e from E;
8 if e still is a boundary edge then
9 f ← FindNewFace(e);

10 F ← F ∪{ f};
11 Add to E the boundary edges of f ;
12 end
13 end
14 return F
Algorithm 1: Algorithm LDT - Local Delaunay
Triangulation

The main idea in the LDT algorithm is to execute an
advancing front approach to achieve the reconstruction.
This advancing front technique uses a two-dimensional
Delaunay to get the next triangle from a boundary edge.
The pseudo-cod 1 shows the main loop of the algorithm
developed here. In the step 2, the weighted principal
component analysis is used to approximate the normal
vectors in the samples points. The initial triangulation
(step 4 in the algorithm 1) is acquire choosing an ini-
tial point p, projecting its n nearest neighbors in its tan-
gent plane, computing the Delaunay triangulation in the
plane and re-projecting the triangulation in the surface.
The two-dimensional Delaunay triangulation was im-
plemented using the only the first and the second coor-
dinates of the samples. Considering this, the algorithm
must rotate p and its neighbors such that the tangent
plane in p coincide with the XY plane. By doing this
rotation, the projection operation is expressively sim-
plified. The Figure 2 illustrates this initial step, show-
ing a normal vector in an initial point of a paraboloid,
the blue points are the nearest neighbors of the initial
point and the orange plane is the tangent plane where
the neighbors are projected.

The set E store the boundary edges of the triangula-
tion F and can be interpreted as a list of active edges
that guide the reconstruction process. The main loop of
the algorithm is repeated while E is not an empty set.
It is worth to mention that when an edge e is removed
from E, it is possible that e is not a boundary edge any-
more. Also is possible that a new face f returned in the
step 9 of the algorithm 1 has no boundary edges.

The pseudo-code 2 illustrates the procedure to ex-
pand the frontier of F , and is a variation of the proce-
dure to achieve the initial triangulation. The idea is also
to project the neighbors in the tangent plane π , execute
a two-dimensional Delaunay DT triangulation with the
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a) b)

Figure 2: a) Set of samples of a 3D object b) Zoon view
of the initial point.

Data: A boundary edge e.
1 Let p be one of the end points of e;
2 Rotate p and its n nearest neighbours to align the

normal in p whith the Z axe and the edge e with
Y axe ;

3 Find pe, the opposite vertex to e;
4 Project in the tangent plane only the vertex pi

such that pex ∗ pix ≤ 0;
5 Find DT , a two-dimensional Delaunay

triangulation with the projected vertices ;
6 Find f , the triangle of DT that contain e as a

boundary edge ;
7 return f

Algorithm 2: Algorithm FindNewFace

project points, to choose from DT , the face f that has e
as boundary edge, and re-project f in the surface.

To ensure that the projection of e appear in the local
triangulation, consider fe ⊂ F the face of F contain-
ing e, and pe the vertex of fe opposite to e. When the
vertex p, which is one of the end points of e, and its
nearest neighbors are rotate to align the edge e with the
Y axe, the x coordinate of pe is either positive or nega-
tive depending of its relative position. After that, only
the neighbors that has x coordinate with opposite signal
when compared with pe are projected in π . This proce-
dure is enough to ensure that the projection of e appear
in the boundary of the Delaunay triangulation DT . It
is worth to mention that at this point of the algorithm
(step 4 of the algorithm 2), only the boundary vertex in
the neighborhood of p or vertices that are not contained
in a face are considered to be projected in the tangent
plane π .

Two steps of a paraboloid reconstruction can be seen
in the Figure 3 a) and b). The distinct face represents
the last face glued in the mesh and the wider edge rep-
resents the first edge in the list E of active edges. In
the Figure 3 c) the complete reconstruction is showed.
The figure 4 exhibit a local Delaunay triangulation’s ex-
ample for a set of sample points, and again, the distin-
guished face is the one captured to be re-projected in
the surface.

Although this algorithm does not need to handle
sliver tetrahedral, which is a very common problem in
sculpturing techniques, it is possible that the algorithm

a) b)

c)
Figure 3: Two steps in the reconstruction of a
paraboloid

Figure 4: Local Delaunay triangulation to a set of sam-
ple points

a) b)
Figure 5: Small dihedral angles

glue faces with small dihedral angles as is showed in
the Figure 5 The Figure presents two consecutive steps
of the paraboloid reconstruction. However, according
to the work of Mederos et al. [28], the dihedral angle
between two adjacent faces approximates to π when
the sample rate increases. To avoid this problem,
a dihedral angle calculation, given by the work of
Jonathan Shewchuck [32], must be done before glue a
new face in the mesh.
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4.1 Discussions
There are some crucial points in the LDT algorithm.
The estimation of normal vectors in the samples points
for instance, plays a crucial role in all reconstruction
process (algorithm 1 step 2). Of course that the LDT
algorithm does not have intention of reconstructs arbi-
trary surfaces with arbitrary sampling rate. In order to
achieve a good normal estimation in all samples; is ac-
ceptable that a minimum sampling rate be respected.
However, this is a theoretical study that will be sub-
ject of a future work. Another consideration, is about
the projection effect over the algorithm’s results. Ac-
cording to Amenta’s work [3], for an adequate sample
rate, in general, a r−sampled surface with r ≤ 0.1, the
correct reconstructions lies in a subset of the Delaunay
complex of the samples points. Therefore, respecting
this sampling condition, for an arbitrary sample point
p, its neighbors must lie close to the tangent plane in p;
not causing ample movements in the projection opera-
tion as well.

It is also worth to mention that in the initial triangula-
tion (cod:algorithm step 4) no glue operation is needed.
Therefore, the Delaunay triangulation computed I this
step can be re-projected directly in the output surface.

The next section presents some of results obtain with
the LDT algorithm.

5 RESULTS
This section shows some examples of models recon-
structed with LDT algorithm as well as some compari-
sons with classical algorithms in the literature. For the
comparisons was used in-house implementations, based
on CGAL [12], of the Crust and Power Crust developed
as part of a master dissertation project [19]; the TSR im-
plementation was part of a previous work [10] and the
original implementations of Cocone and Tight Cocone
were kindly provided by Tamal Dey. The reconstruc-
tions were performed on a dual Pentium 4 with 3 GHz
and 1GB RAM.

The figure 6 give an idea of the quality of the mesh
generated by the algorithm LDT in a reconstruction of
a bitorus. The Figures 7 and 8 show additional recon-
structions examples, the dragon model is rendered with
a jade texture and the hand model with a stone texture,
and the Figure 10 shows the Lucy model reconstructed
from a large data set (921085 points).

In the table 1 the usage of memory, in Kbytes, of
some classical algorithm is exhibit. The algorithms are
Crust, Power Crust, Cocone Tight Cocone, TSR and
that of LDT, for a set of standard sample sets, identi-
fied in the top Table line (models shown were gener-
ated with LDT). The Crust and the Power Crust Algo-
rithm produces no output to the Isis model, the fourth in
the table. The Figure 9 represents the running times, in
seconds, of three traditional reconstruction algorithms,

Figure 6: Mesh generated with LDT algorithm

Figure 7: Dragon Model generated with LDT algorithm
and rendered with a jade texture

Figure 8: hand Model generated with LDT algorithm
and rendered with a stone texture

Cocone, Tight Cocone , TSR and LDT. As the table 1
reveal, the LDT algorithm, due its optimizations and its
advancing front approach, lean to use less memory than
the others. One observes that the running times were
improved, particularly when the models are bigger than
50,000 points. One can see in Figure 9 that the LDT al-
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gorithm is faster than the classical algorithms compared
with it, especially when reconstruct larges data sets.

9697 pts 35947 pts 54707 pts 187644 pts

Cr 21.90 53.13 72.21 No output

PC 41.94 79.50 110.54 No output

Co 15.10 51.24 78.98 265.32
TC 19.20 66.10 101.68 343.50
TSR 20.65 71.28 111.72 376.19
LDT 12.48 38.75 59.17 192.22

Table 1: Usage of memory in k bytes to reconstruct the
models shown Legend: Cr - Crust; PC - Power Crust;
Co - Cocone; TC - Tight Cocone; TSR - Topological
Surface Reconstructor; LDT - Local Delaunay Trian-
gulation

The table 2 exhibits the Hausdorf distances between
the LDT’ meshes and meshes generated by other clas-
sical algorithms (cocone, Tight-cocone and TSR). The
distances are quite small; suggesting that the output
meshes are very similar.

9697 pts 35947 pts 54707 pts 187644 pts

Co 0.003235 0.001485 0.213477 0.000561
TC 0.002139 0.001181 0.446078 0.000525
TSR 0.002480 0.001018 0.006002 0.000074

Table 2: Hausdorff distance between the meshes gen-
erated with LDT algorithm and the follow ones : Co -
Cocone; TC - Tight Cocone; TSR - Topological Surface
Reconstructor

6 CONCLUSION AND FUTURE
WORK

This work introduces an innovative approach, called
LDT - Local Delaunay Triangulation, to reconstructing
piecewise linear approximations of surfaces in R3 that
are defined by set of samples. The approach present
here is an advancing front approach which make use of
a two-dimensional Delaunay triangulation to choose the
adequate triangle to be glued in the mesh. The main ad-
vantage of this kind of technique is to avoid the use of
three-dimensional structures when the goal is to derive
a two-dimensional one. Principal component analysis
is used to estimate the normal vector in the samples
points, and rigid movements are used to optimize the
projections operations.

By avoiding those three-dimensional structures, the
LDT algorithm improves not only the running times,

Figure 9: Running time in seconds to reconstruct the
models shown Legend: Co - Cocone; TC - Tight Co-
cone; TSR - Topological Surface Reconstructor; LDT -
Local Delaunay Triangulation

Figure 10: Lucy model reconstructed with LDT

but also the amount of memory used in the reconstruc-
tion process, which enable it to reconstruct models with
considerable quantity of points, as showed in the lucy
model (Figure 10).

Unfortunately, was not possible to compare the LDT
algorithm with the one developed by Gopi et al.[20],
which is another two-dimensional approach that uses
Delaunay triangulation. Basically, the Gopi’ approach
uses a sample criteria to select the candidate points in
computation of the Delaunay triangulation. The com-
parison of the two techniques must be subject of a fu-
ture work.

Another step to be analyzed is the possibility of sub-
stitute the two-dimensional Delaunay triangulation by
another kind of calculation, which cam makes this algo-
rithm even faster. Another possibility for future work is
to produce theoretical guarantees of the reconstruction,
that is, to investigate for which value of r the LDT pro-
duces a correct reconstruction of a r−sampled surface.
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ABSTRACT

Interacting with volumetric models via a haptic device presents an effective way of perceiving details concerning
the models internal structures. Approaches to facilitate this range from interacting directly with the volume data
to interacting with a polygonal surface derived from the data. Previous approaches have utilised a force field
to provide continuous forces such as the Force-Map method which assigns a force vector at any position in the
virtual environment. Nevertheless, the Force-Map method is still limited in simulating fast moving drilling due to
the fact that there are no forces inside the volume. It suffers from a pop through problem when the virtual drill
quickly moves against the volume object. To circumvent this problem, the work presented in this paper introduces
a Level-Box method to improve the Force-Map method by encoding the object’s internal area into a number of
levels which not only enables the user to touch the volume object by using a Force-Map, but also accelerates the
Force-Map update procedure when drilling. Users can select from a variety of virtual tools to gain continuous and
smooth force feedback during the drilling of volumetric data which increases the applicability of the approach.

Keywords

Volume haptics, Marching cubes, Force-Map haptic rendering, Level-Box,

1 INTRODUCTION

The potential for the use of volumetric data in medi-
cal applications has been well established. Recent de-
velopments in graphics accelerator cards have enabled
systems to render large and complex volumetric data
sets in a variety of different rendering styles, aiding the
observer’s perception of the data. Previous work in in-
teractive simulation of volumetric data has focused pri-
marily on visualization. By integrating haptic technol-
ogy, an important emerging area related to volumetric
visualization has developed to build up a visual hap-
tic system which enables the user to interact with the
volume data via a haptic feedback device. The visual-
izations that were linked with haptic feedback devices
to enable the user to touch the volumetric data were in-
troduced in 1993 by Iwata and Noma. They used their
approach for the haptic interaction of data produced in

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Computational Fluid Dynamics. In this case a force
could be mapped to the velocity and torque mapped to
the vorticity [5]. Virtual Sculpting systems linked to
haptic feedback devices have been available for many
years; however, these often do not ensure the modi-
fied data remains faithful to the characteristics of the
original volumetric data. In this paper, a Level-Box
approach to improve the Force-Map haptic rendering
method for drilling into surfaces based on the volumet-
ric data is presented.

Figure 1: The visual-haptic system illustrating drilling
into a volumetric object constructed from CT data.

The major objective for the design of the visual hap-
tic system is to gain a fast haptic and graphic refresh
rate at which the calculations must be efficiently per-
formed. Based on the results of analyzing human fac-
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tors, an update rate of 1KHz is required in order for a
user to perceive stable and smooth haptic feedback from
the visual haptic system. This is in contrast to the visu-
alization which must update at approximately 30Hz to
ensure the graphic scene is perceived as a smooth and
continuous animation. If the haptic update frequency
is lower than 1KHz, an obvious vibration can be felt
from the haptic device. One objective of this work is
to create a system which can accurately render volume
data at sufficient rates for both the visualization and the
haptics. For the field to move beyond today’s state of
the art, researchers must surmount a number of techno-
logical barriers. Firstly, the volume data updating algo-
rithm must be fast, especially considering the fact that
the surface representation of the volume data may be
constructed from millions of triangles. Secondly, the
haptic feedback should be rendered such that when the
probe point is moving across the voxel boundaries a
continuous force is returned to the user. Lastly, since
the haptics and visualization calculations will be per-
formed in separate threads, mechanisms are required to
ensure that each thread can be updated in a safe manner.

2 PREVIOUS WORK
A large proportion of the previous volume haptic ren-
dering approaches have concentrated on the use of a
surface-based haptic rendering technique. An interme-
diate surface can easily be extracted using Marching
Cubes to enable forces to be calculated utilizing a stan-
dard constraint-based method [15, 4]. However, this
suffers from stability problems which occur when the
surface is updated. This motivates researchers to de-
velop algorithms which directly haptically render the
isosurface extracted from the volumetric data. The di-
rect volume haptic rendering approach is capable of
providing a way to generate force feedback directly
from the volume data without extracting an intermedi-
ate representation. Even though it is able to represent
the force at any position in the volume data, the haptic
feedback generated by this method suffers from force
instabilities since it is difficult to properly decide the
rendering parameters in the force function. This is es-
pecially the case when the function is changing during
the process, such as when drilling or milling, in real
applications. Moreover, forces may vary significantly
in strength and direction which sometimes can not be
represented by a simple mapping method.

Morris et al. [12] simplifies the computations for
drilling through the use of another point-shell method to
compute haptic interactions and bone erosion for spher-
ical drill bits. In contrast to the work of Pflesser et al.
[13], Morris et al. use the data within the spherical tool
to perform bone removal as opposed to sampling points
on the tool’s surface. Both of these approaches limit
the user to drilling with a spherical drill. Eriksson et al.
[2] proposed a haptic milling surgery simulator using a

localized Marching Cubes algorithm for the visualiza-
tion. To improve the stability they employed a direct
haptic rendering method with mechanisms to remove
fall-through issues. The data inside the virtual drill is
set to a vector pointing to the centre of the voxel. The
output force is the sum of all those vectors. This ap-
proach works well when the drilling tool moves in a
small area, but a "kicking" would result when the hap-
tic test points move across the cubes’ boundaries.

A Force-Map method is proposed by Liu and Lay-
cock [6] to solve these problems which encode the
whole virtual 3D space in an invisible map for haptic
rendering and is able to generate smooth force feed-
back. It allows arbitrary shapes of drilling tools. But
simulators are still limited to haptic rendering methods
which use the surface based haptic rendering approach
for touching the object. What is more, the force calcu-
lation suffers from the pop through problem due to the
Force-Map only being calculated near to the surface.
This is particularly likely to occur when the operation
is performed by a fast moving drilling tool. In order to
alleviate these issues, the work presented in this paper
introduces a Level-Box method to improve the Force-
Map haptic rendering algorithm which enables the vi-
sual haptic system to use a single approach to rendering
for the standard interaction and also when drilling. Ad-
ditionally, it can more efficiently update the Force-Map
to gain smooth and stable force feedback during drilling
into the volume data.

McNeely et al [10] proposed a distance field method
to give an advance warning of any potential contacts
between the tool and the objects. They extend the vox-
elization of an object beyond its surface into free space
surrounding the polygonal object, marking free-space
voxels with different integer values that represent a con-
servative estimate of distance-to-surface expressed in
units of voxel size. The work presented in this paper
uses a similar distance field idea to encode the non-
surface free-space voxels into a number of layers ac-
cording to the Euclidean distance to the surface. In con-
trast to McNeely’s work, we encode the internal voxels
of the volume object in this work with our Level-Box
approach. The method is described in detail in Sec-
tion 5.

Yau et al [14] also proposed a visual haptic system for
training dental students by using surfel models. They
use an octree based box to define the internal area of
the teeth, when the drilling changes the shape of the
teeth models, the internal boxes are dynamically up-
dated which increases the octree level to create a modi-
fied surface. In spite of the advantages of using variable
shapes of drilling tools, the haptic rendering update oc-
curs under 1 kHz which does not meet the requirement
of a stable haptic rendering system.
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3 VOLUME DATA MODIFICATION
The volume-based representation is a natural choice for
rendering a collection of digital images produced by
medical scanning technologies such as Magnetic Reso-
nance Imaging (MRI) or Computed Tomography (CT).
There are a variety of graphical rendering techniques
for visualizing the three dimensional data, often with
options to display the material properties such as den-
sity and viscosity within the voxels. This has the poten-
tial to greatly enhance a user’s performance in medical
and scientific three dimensional data exploration.

When using the Marching Cubes algorithm [8], a vol-
ume can be interpreted by generating polygons repre-
senting the surface, typically constrained to a specified
value of the data. But extracting the global iso-surfaces
from the volume data based on Marching Cubes can
be time consuming especially when the volume data
is derived from many high resolution digital images.
However, in this work a local Marching Cubes algo-
rithm is employed to enable the surface to be updated
efficiently. The values of the volume data surrounding
the haptic stylus can be adjusted to less than a surface
threshold value depending on the application. By con-
sidering the material properties of the data contained
within a voxel the rate at which the data is removed can
be adjusted. Once the data has been updated, the lo-
cal Marching Cubes approach recomputes the surface
surrounding the stylus. The volume that is updated
depends on the resolution of the volume data and the
shape of the tool used for the interaction.

(a) (b)
Figure 2: (a) Octree data structure, (b) Pelvis data con-
struction using Octree data structure.

To handle large data sets, an Octree based structure
[3] is employed which enables the data to be changed
dynamically in an efficient manner. The Octree based
structure uses a hierarchical representation of the data
to efficiently detect and update localized changes to the
data [11]. Each node in the octree represents a cell
which contains triangles. Initially paths in the octree
from the root to a leaf (voxel) will only be created if
triangles forming the surface reside in the voxel, Fig-
ure 2. If the haptic stylus reaches a region and edits the
data where no surface triangles are present then a new
surface is likely to result. At this point the octree is up-
dated by traversing from the root to the leaf containing
the modified data, creating any new cells for the octree
that do not previously exist. If the data changes such

that an octree cell no longer contains triangles on the
surface, then the triangles and octree cells are removed
from the structure.

The efficiency of the approach is affected by the cho-
sen depth of the octree. There is a trade-off between
the quality of the visualization and the efficiency of the
approach. If a small octree depth is used fewer vox-
els containing large triangles will result, which can of-
ten exhibit undesirable edge aliasing. Conversely, too
many voxels caused by higher octree depths will in-
crease the computational load of updating the surface
during tool-object intersection. The Octree depth se-
lection also depends on the size of the volume data. If
the grid is too small then the visualization is more com-
plex when dealing with a huge number or a large area
of volume data.

4 SURFACE EXTRACTION AND MOD-
IFICATION

The visual haptic system presented in this paper is able
to function with an arbitrarily shaped drilling tool com-
posed of polygons. This extension strives further than
other work which only employs simplistic objects, such
as single spheres or cylinders as the drilling tools rep-
resented by implicit functions.

(a) (b)
Figure 3: (a) Original Polygonal tool, (b) Identification
of internal boxes via flood fill.

A grid of cells is constructed to encompass the whole
object. Then a flood fill algorithm can be used to de-
termine the cells that are inside the virtual tool. This
method starts by choosing a cell known to be inside the
tool object. Subsequently, it iteratively checks the 26
surrounding boxes until the boundary ones are reached.
The approach results in all the interior boxes being la-
belled as interior. Figure 3 shows the steps for voxelis-
ing the internal volume of an arbitrary polygonal tool.
The scale of the tool may also be easily adjusted to sat-
isfy the specific requirements of a given application.

During the running of the program the polygonal tool
interacts with the object derived from the volume data.
To be able to effectively modify the data whilst drilling
the volume, data points within the tool’s bounding box
are tested to determine if they are inside the tool’s vol-
ume. Firstly, each data point must be checked with the
three dimensional grid of cells to detect if the point is
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Figure 4: Polygonal tool and object interaction.

either in a boundary or interior cell. If a data point is lo-
cated in a boundary cell, then it will be further checked
against the tool’s surface triangles located in the cell.
After these steps, the values of all the data points in-
side the tool will be modified. After the data has been
changed, the bounding box volume around the modified
data points can be utilised to perform a local March-
ing Cubes algorithm to generate a new surface from the
modified volume data.

The efficiency of the method discussed above largely
depends on the size of the tool. The larger the tool used
to interact with the data, the more voxels that need to
be updated and recalculated by the Marching Cubes ap-
proach. This limits the use of the complicated tool im-
plementation. Typically the haptic stylus moves slowly
during drilling, especially when the tool interacts with
rigid objects such as bones. The volume of data that
must be changed between the adjacent graphic frames
may differ by only a small amount, or indeed maybe
exactly the same when the drilling tool does not move
across a small voxel.

(a) (b)
Figure 5: The red outlines represent the tools between
two adjacent graphic frames when drilling. The dotted
outline represents the drill tool at the previous frame,
whilst the solid outline represents the drill at the cur-
rent frame. The blue boxes represent areas that need
to be calculated by the Marching Cubes algorithm. (a)
represents the full updata, whilst (b) illustrates our ap-
proach.

In this situation, it is not necessary to update the
whole bounding box in each graphic frame because of
the largely overlapping area. Alternatively, the update
step can only consider the new area compared to the
data area in the previous frame, as shown in Figure 5(b),
which avoids calculating the overlapping voxels twice

in two frames. By using this method, the computation
of the tool-object interaction is dramatically improved
even when dealing with large polygonal tools. First of
all, the modified data is detected for later use. Then
the voxels containing the modified data are chosen to
regenerate the new surface, as shown in Figure 5(b).

5 HAPTIC RENDERING

5.1 Force-Map Algorithm
The haptic rendering method described by Eriksson et
al. [Eri05] suffers from force discontinuities when the
tool moves between the encoded cubes. Sample points
in this work are tested for contact with the volume data.
Given a sample point position, a vector calculated from
the occupancy force-map can be output. By using this
method, the force feedback is stable and smooth even
though it has a similar force cube encoding system. The
force vectors stored in the data are calculated based on
the local surface, which also benefits from the advan-
tages of the surface based haptic rendering approach.
The synchronisation of updating the graphic and hap-
tic loops enhances the fidelity of the virtual visual-
haptic system when applied to real applications. The
following steps outline the Force-Map haptic rendering
method adopted for a surface representation of dynam-
ically changing voxel data.

Initially all the normals of the triangles contained in
each octree leaf node (voxel) are averaged to result in
a single force vector representing the data in the voxel.
The larger the voxel is, the more volume data points lie
within it. Additionally, only the data inside the voxel is
assigned to a force vector while others are set to none.
After this initialisation step, all the data near to the sur-
face is set to a force vector which approximately equals
the closest surface normal.

When the surface is updated in the haptics thread the
data points that are found to lie inside the new voxel
are set to a force value based on the triangle’s face nor-
mal. If there is more than one triangle in the voxel, the
averaged face normal will be used. Some force values
in the old surface might also need to be updated since
the triangles forming the surface in the voxel may have
changed.

The force vectors stored in the data must be com-
bined appropriately before being returned to the haptic
device. When the virtual drilling tool moves into the
volume data, a haptic test point checks the surrounding
eight data values in the three dimensional space. These
eight data values are referred to as the force cube in
this work. The corners of the force cube contain the
force vectors stored in the data. Tri-linear interpola-
tion is employed here to enable an interpolated force
vector to be calculated for any position inside the force
cube. Another advantage of using the tri-linear inter-
polation method is that the haptic test point can be
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(a) (b)
Figure 6: Force-Map haptic rendering, the red arrows
represent the force vector. (a) The yellow square indi-
cates one force cube displayed in two dimensions. (b)
The same single force cube in three dimensions.

smoothly moved from one force cube to another with-
out any force discontinuities occurring between them.

5.2 Level-Box Method
In our previous work [7], two different haptic rendering
methods are employed depending on the user interac-
tion with the volume data. When touching, a surface
based method is employed. The Force-Map method is
only used for the drilling. The system needs to switch
between two totally different haptic rendering methods
which can cause problems with regard to the consis-
tency of the forces. Previously the Force-Map method
only set force vectors close to the surface, preventing
it from being employed when the user is touching the
surface. If the user quickly pushes the tool toward the
volume object, it will pop through the Force-Map.

In order to overcome this problem and enable the sys-
tem to use one haptic rendering method, this paper in-
troduces a new Level-Box method as an enhancement
to the Force-Map approach. The area inside the volume
will be partitioned into different layers. The data points
in each layer will be assigned a force vector. The deeper
the layer is, the larger the force vector will be set to the
data in that layer. Firstly, the whole volume is parti-
tioned into small boxes which are called Level-Boxes
in this paper. The size of each Level-Box matches the
size of the Octree leaf used to construct it.

5.2.1 Level-Box Construction

The Level-Boxes outside the volume object are labelled
as level -1, as shown by the empty boxes in Figure 7.
The boxes with the surface triangles are then labelled
as level 0, as shown by the yellow boxes. After that, the
neighbouring boxes of level 0 are set to level 1(repre-
sented by green boxes). This step is repeated a number
of times, until the level box reaches the centre of the
volume and every box has been assigned to a level.

The next step is to assign a force vector to each data
point. Basically, the data in the high level boxes will
be set to a larger force vector. Figure 8 (a) shows one
corner of the whole volume. Figure 8(b) shows the data
position which is also the Force-Map corner position in
2D. The data in the higher level is set to a force vector

Figure 7: Level-Box construction.

with the direction of the average of the neighbouring
lower level boxes. As shown in Figure 8(c), the yellow
box (level 1) has one data point inside. The force vector
direction will be decided by the neighbouring yellow
boxes but with larger scale. Then the data in level 2 is
decided by level 1. Following this logic, the centre data
has the greatest force vector.

(a) (b)

(c)
Figure 8: . Level-Box construction. (a) A small area of
the level boxes, (b) The data position in the level boxes,
the black points represent the data, (c) The force in the
high level green box is decided by the force in low level
yellow boxes.

When the Level-Boxes are constructed, the tool is
able to gain the correct force feedback. The deeper it
goes into the volume object, the larger the force will
be which is sent to the haptic device. The Force-Map
makes sure that the force is continuous and smooth.

5.2.2 Level-Box Updating

In the Level-Box construction step, the system also
sets up a link between adjacent lower and higher level
boxes. The force vectors in the higher level boxes are
decided by the lower level ones, thus any changes in
the lower box will affect the Force-Map in the neigh-
bouring higher level box. In this circumstance, if the
drilling tools modify the surface level boxes, the inte-
rior high level boxes get updated correspondingly. This
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link helps the low level boxes to quickly find the high
level box related to it.

Figure 9: Level-Box link between high level and low
level boxes. The arrows represent the links between a
level 0 box and its neighbouring level 1 boxes.

When the tool moves towards the volume object dur-
ing drilling, the surface will be recalculated based on
the position of the sphere. If there is no surface in the
level boxes anymore, they are changed to level -1, while
the surface boxes are set to level 0. By using the link,
the neighbouring ones will reduce the level because it
is closer to the surface. Since the level numbers are
updated, the scalar of the force vectors inside is also
changed based on which level they are located in. The
user is able to detect the difference of the surface after
the drilling.

(a) (b)
Figure 10: Level-Box updating. (a) The tool drills into
the volume object. The dotted sphere represents the
previous position of the drilling tool, while the solid one
represents the current position, (b) The surface is up-
dated and the level 0 boxes are changed. Consequently,
the high level boxes are affected.

5.3 Multi-point Haptic Rendering
For any real application, drilling with a single point
does not lead to a realistic result. An approach involv-
ing multiple test points approximating the drilling tool
is usually preferred. In this work, a number of hapic
points are distributed approximately around the surface
of the drilling tool. At each time step, each haptic point
is tested in the constructed Force-Map to calculate the
contribution to the overall haptic force.

5.4 Arbitrary Tool Haptic Rendering
Pflesser et al. [13] proposed a haptic system for virtual
temporal bone surgery which uses a modified version

(a) (b)

(c)
Figure 11: Arbitrary tool haptic rendering. (a) Peter-
sik’s et al. [13], (b) Morris et al. [1], (c) Arbitrary tool
for changing data. Red points represent the haptic test
points. Yellow points represent the data removed by the
of drilling tool.

of the Voxmap-Pointshell algorithm [9]. Their ap-
proaches sample the surface of the drilling instrument
and then generate appropriate forces at each sampled
point. A number of samples are distributed around the
drill and a ray-tracing approach is then employed to cal-
culate the force vectors towards the tool centre, which
can subsequently be combined to generate the overall
force returned to the haptic feedback device. The ray
tracing algorithm has the potential to miss voxel data lo-
cated between two rays due to an insufficient sampling
as Figure 11(a) shows. Morris et al. [1] also present
a method which calculates the force by counting the
data points inside the tool. The force direction points to
the centre of the drilling tool. Unfortunately, the hap-
tic rendering method only allows sphere drilling (Fig-
ure 11(b)). In this work, the multiple points are located
on the surface of the tool to calculate the force in the
Force-Map respectively. All the force vectors inside the
drilling tool are set to none and when the tool touches
and drills the volume the next time, the user can detect
the previously modified area.

5.5 Multi-Layer Rendering
In many applications, the properties of the simulated
materials differ depending on the location being drilled.
This is particularly the case in medical and dental ap-
plications where the material properties of each voxel
must be considered. For example drilling through soft
tissue should be very different to drilling through rigid
bone. We demonstrate that the Force-Map haptic ren-
dering method can be extended to use Multi-Layer vol-
ume data so that the trainee can feel underlying struc-
tures and material properties, such as teeth and bones.
In detail, the Force-Map method can easily incorporate
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this issue by simply setting a scaled force vector where
the scaling factor is related to the neighbouring voxel
data.

Figure 12: Multi-Layer haptic rendering.

5.6 Tangent Force Rendering
In order to enhance the force fidelity, this work also im-
plements the tangential force on tools which is an im-
portant property of the drilling application by using the
Force-Map haptic rendering algorithm. The direction
of the tangent force is opposite to the tools rotation di-
rection on the surface of the volume object.

Figure 13: Tangent force implementation.

The tangent force also depends on the drilling speed
of the tool and the properties of the drilling material.
This haptic system allows users to choose a range of
the haptic drilling speed from 200000 R/min to 400000
R/min. A faster speed will result in a greater tan-
gent drilling force in the tangent direction of the tool-
surface-contact points. Different material properties
also affect the tangent force. This work allows multi-
layer applications; the tangent force differs when the
drilling tool moves through different materials.

6 RESULTS
Figure 14 illustrates a procedurally generated sphere
along side a surface representation of a human pelvis.
The surface was extracted from 87 CT slices obtained
at the Norfolk and Norwich University Hospital, UK.

The work has been tested on a Two Quad Core
2.26 GHz processor PC with a NVIDIA Quadro
FX580 graphics card. To provide haptic feedback
a PHANToM Omni device, produced by SensAble
Technologies has been employed. By using the system,

Figure 14: The left sphere-like object is created proce-
durally whilst the right hand image was extracted from
87 CT image slices. Each slice contains 256 X 256 pix-
els.

a user can drill into rigid objects using arbitrary types
of tools constructed from polygons.

Figure 15: A graph presenting the time taken to update
the surface during drilling with a polygonal tool. The
blue line shows the result which uses octree level 5. The
red line shows the result which uses octree level 4.

The volume of the tooth has been calculated from a
data set. This data has been sampled to create a trian-
gular surface mesh. Figure 15 shows the time required
to perform the surface modification and Force-Map up-
dates during rendering, which allows users to efficiently
obtain visual cues. The Force-Map can be sampled at a
higher rate in the haptic feedback loop to obtain stable
force feedback. In Figure 15 the blue line shows that if
the octree depth is five, the display has higher resolution
but this increases the update time.

7 CONCLUSION

In this paper a Level-Box method is introduced for
assisting a Force-Map haptic rendering algorithm to
achieve real-time drilling of volumetric objects. In or-
der to gain more realistic force feedback for drilling
applications, arbitrary tool model selection has been
implemented in this work, for tools based on implicit
equations.

This paper addresses some of those challenges,
specifically in the context of simulating stable and
smooth force feedback. To further ensure that the
fidelity of the simulator is at an acceptable level, the
future work will involve the integration of drilling
sound and drilling dust simulation.
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A video demonstrating the program can
be downloaded from the following link.
http://www.urbanmodellinggroup.co.uk/drilling.wmv.
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ABSTRACT
Most of the physically based techniques for rendering
translucent objects use the diffusion theory of light scat-
tering in turbid media. The widely used dipole diffu-
sion model [JMLH01] applies the diffusion-theory for-
mula derived for the planar surface to objects of arbi-
trary shapes. The purpose of this communication paper
is to present the very first results of our investigation
of how surface curvature affects the diffuse reflectance
from translucent materials.

1 INTRODUCTION
Translucent materials, such as human skin, marble,
wax, fruits, more scatter light than absorb it. There-
fore, when a photon enters such a material, it under-
goes many scattering events under the surface before it
leaves the material. Such a light behavior is well de-
scribed by the Bidirectional Surface Scattering Distri-
bution Function (BSSRDF) [NRH+77]. Based on the
light diffusion theory, Jensen et al. [JMLH01] sug-
gested the dipole diffusion model for BSSRDF. This
model applies an expression for reflectance from a tur-
bid half-space to arbitrarily shaped objects. The mul-
tipole [DJ05, DJ06] and quadpole [DJ08] models have
been suggested to describe more complicated geome-
tries - a multilayered slab (or half-space) and a right-
angle corner, respectively. Jensen et al. [DJ08] showed
that a big variety of shapes can be rendered by combin-
ing photon tracing and a scheme for interpolating be-
tween dipole and quadpole and between quadpole and
multipole models wherever appropriate. However, they
do not focus on how the BSSDRF itself changes as a
flat surface is replaced with a curved one. It is difficult
to devise how their interpolation scheme can be used
with approaches that do not use photon tracing - for ex-
ample, the curvature-based method [Kol07]. Our goal
is to investigate how inclusion of curvature may change
the diffusion BSSRDF model. A BSSRDF model that
includes curvature effects could be easily incorporated
into many existing approaches for rendering translucent
materials. We present here preliminary results of our
study.

2 DIFFUSION EQUATION
Under the assumption that light scattering in a turbid
medium dominates absorption, light transport in it is

well described with the diffusion theory [Far92]. The
fluence rate Ψ(r) obeys the modified Helmholtz equa-
tion [Far92]

∆Ψ−σ
2
trΨ =−D−1

δ (r− r0) (1)

where σtr =
√

3σa(σ ′s +σa) is the effective transport
coefficient, σ ′s is the reduced scattering coefficient, σa is
the absorption coefficient, D = 1

3(σ ′s+σa) is the diffusion
coefficient. We refer the reader to [JMLH01, Far92] for
explanation of the physical meaning of the quanitities.
In the above equation, we assume that there is a single
source in the medium, and it is located at a point r0.

Let us first consider the case of translucent mate-
rial occupying the half-space z > 0. The point source
is at r0 = (0,0,z0). Farrell et al. [Far92] showed
that quite an accurate solution can be obtained by us-
ing the boundary condition Ψ|z=−zb = 0 and putting
the image source at the point r0 = (0,0,−z0 − 2zb),
where zb = 2AD, and A is calculated as described in
[JMLH01, Far92]. The resulting fluence is

R(ρ,z0) =
1

4πD
[
e−σtrr1

r1
+

e−σtrr2

r2
],

where r1 and r2 are the distances to the source and im-
age source, respectively; that is,

r1 = [(z− z0)2 +ρ
2]1/2 (2)

r2 = [(z+ z0 +2zb)2 +ρ
2]1/2 (3)

The reflectance is calculated from the fluence using
the formula

R =−D∇Ψ (4)

where the gradient is evaluated at the interface. In the
planar case, this gives

R(ρ,z0) =
1

4π
[z0(σtr +

1
r1

)
e−σtrr1

r2
1

+

+(z0 +2zb)(σtr +
1
r2

2
)

e−σtrr2

r2
2

] (5)

where r1 and r2 are calculated for z = 0.
The dipole diffusion model [JMLH01] applies the

above formula to an arbitrary shaped air-material in-
terface by calculating r1 and r2 as the distance from
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a point being shaded to the source and image source,
respectively.

3 EXACT SOLUTION FOR A SPHERE
Suppose the turbid medium is confined within a sphere
having the radius R0 and the center at z = R0. In addi-
tion to Cartesian coordinates, we will also use the polar
system of coordinates with r counted from the sphere
center and θcounted from the z axis. We assume that
R0is much bigger than the mean free path for photons
scattered in the medium, we can use the same bound-
ary condition as in the planar case - namely, the fluence
rate vanishes at a distance of zb from the sphere sur-
face. In other words, Ψ is zero at a sphere of the radius
R = R0 + zb. We will solve eq. (1) with the boundary
condition Ψ|r=R = 0 following the method described in
[Mat71]. The solution of the modified Helmholtz equa-
tion 1with the zero boundary condition on the sphere
r = R can be written as

Ψ(r,θ) =


∑

∞
m=0 Am

Im+1/2(σtrr)
√

r Pm(cosθ) , r < r′

∑
∞
m=0 Bm

1√
r [Im+1/2(σtrr)×

×Km+1/2(σtrR)−Km+1/2(σtrr)×
×I(σtrR)]Pm(cosθ) , r > r′

(6)

where r′ is the distance of the point source from the
sphere center; that is, we suppose thatr0 has the polar
coordinates r = r′ and θ = 0. The functions Iv(r) and
Kν(r) are the modified Bessel functions [MA70]. The
constants Amand Bm are determined by stitching the so-
lutions 6 at the sphere r = r′. The function Ψ is con-
tinuous, but its derivative is not. In a manner similar
to that used in [Mat71], we integrate eq. 1 over an in-
finitisemally thin region confined by parts of spherical
surfaces with radiuses r = r′+ε and r = r′−ε and con-
taining the pointr0. We utilize the Gauss theorem and
get

(
∂Ψ

∂ r
|r′+ε −

∂Ψ

∂ r
|r′−ε) =

1
r′2

δ (Ω) (7)

where Ω is the solid angle variable. The delta func-
tion δ (Ω) can be decomposed in terms of the Legendre
polynomials as [Mat71]

δ (Ω) =
∞

∑
m=0

(2m+1)
4π

Pm(cosθ) (8)

Substituting eq. (8) into eq. (7) and calculating the
derivatives from eq. (6), we arrive at an equation for
Amand Bm. One more equation for them is obtained by
requiring continuity of Ψ at r = r′. Solving the resulting
system of two equations, we get

Ψ(r,θ) =
1

4πD
[

∞

∑
m=0

(2m+1)√
rr′

Im+1/2(σtrr′)×

×Im+1/2(σtrr)
Km+1/2(σtrR)
Im+1/2(σtrR)

Pm(cosθ)− e−σtr r̃

r̃
]

where

r̃ = [r2 + r′2−2rr′ cosθ ]1/2,

and we used equality 10.2.35 from [MA70].
To find the reflectance, we choose r′ = R0− z0, apply

eq. 4 and set r = R0 and get

R(r,θ) =
1

4π
σtr{

∞

∑
m=0

(2m+1)√
R0r′

Im+1/2(σtrr′)×

×I′m+1/2(σtrR0)
Km+1/2(σtrR)
Im+1/2(σtrR)

Pm(cosθ)+

+[z0 cosθ −R0(cosθ −1)](σtr +
1
r1

)
e−σtrr1

r2
1
}

4 RESULTS

Figure 1: A spherical potato (left) and a marble sphere
(right) illuminated with a stencil beam, which enters at
the image center, normally to the image plane. Each
of the spheres is rendered using the exact solution pro-
posed (left part of a sphere) and the dipole diffusion
model (right part of a sphere).

We calculated the reflectance from translucent spheres
of various radiuses. The incident light is a pencil beam
entering a sphere at x = 0,y=0 . Ideally, we should con-
sider a line of sources situated along the z axis. But
it was shown in [Far92] that they all can be replaced
with a single source located z = 1/(σ ′s+σa). The plot
below shows how the reflectance depends on the dis-
tance from the point of light entrance measured along
the surface (that is, the length of a geodesic connect-
ing the entrance point and the point of interest). The
calculations were done for the scattering coefficient
σ ′s = 1mm−1and absorption coefficient σa = 0.01mm−1

(note that in [Far92], the same quantities are designated
as µ ′s and µa, respectively). These values of the scat-
tering and absorption coefficients are typical for hu-
man tissue (see [JMLH01]). It can be seen that in this
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case, the difference between the exactly computed re-
flectance and that found by the dipole diffusion model
becomes noticable only when the radius approaches 1
cm.

Figure 1 above shows visualization of light reflection
from spheres having a radius of 1 cm in two cases -
a potato, on the left, and marble, on the right. As for
the plot given below, we assume that a sphere is lit up
by a stencil beam entering the sphere at the center of
the image. The left part of each of the image corre-
sponds to the exact calculation we describe above. The
right part is computed using the diffuse dipole approx-
imation. We used the measured values σ ′s and σa re-
ported in [JMLH01]. Because the amount of reflected
light decays with distance from the entrance point very
rapidly, we applied the tone mapping operator to a cal-
culated HDR image. We chose the logarithmic mapping
operator[DMAC03], as it is simple and robust, and a
source code for its implementation is available on the
web.

As we could anticipate in advance, the diffuse dipole
model underestimate the reflectance. However, our
investigation shows that this underestimation is small
when curvature radiuses are of the scale of several cen-
timeters and more for such materials as marble, potato,
human tissue.

The program for computing the solution given by the
last formula of the previous section was written using
CUDA [NVI], which allowed a roughly 10x speed-up
as compared to a CPU implementation.
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5 FUTURE WORK
The investigation presented here definitely lacks com-
parison of analytical results with Monte-Carlo simula-
tions. We are working on this and plan to report them
elsewhere when the work is complete. Also, we would
like to consider the case of arbatrarily curved surfaces.
It would be interesting to try to build a phenomenolog-
ical model for reflectance from a translucent material
with an arbitrary surface. It can be sought as a function
of principal curvatures at the point of light entrance. An
approximate solution for slightly curved surfaces can
serve as a base in attempts to construct a phenomeno-
logical model. Monte-Carlo simulations can be used
for validation of such a model. A big potential of the
phenomenological approach to constructing BSSRDF

models has been proven by successfull development of
an empirical BSSRDF model described in [DLR+09].
A BSSRDF model including surface curvature could be
incorporated into the curvature-based method [Kol07].
It could be used for investigating perceptional effects,
such as color shift at the terminator line [Gre04].
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ABSTRACT 
In this paper we introduce a novel method of fingerprint alignment that uses the intrinsic geometric properties of 
minutiae-based triangles combined with the geometric invariant. The minutiae points are extracted from the 
fingerprint image and a Delaunay (DL) triangulation is constructed from these minutiae points resulting in a 
series of triangles. Corresponding minutiae points are established using local affine invariants constructed from 
the local minutia-based triangles. Triangles that are distorted by noise or have no counter part on the query are 
discarded. We rely only on “strong” matches that are reliable and present, for example, where the error metric 
between the local absolute invariants is below a set threshold. The correspondences of such matches are then 
used to estimate transformation parameters.  The performance of our method is represented by computing the 
distance map error between a template and a query fingerprint after undoing the transformation, computed from 
the ridge structures of the two fingerprints. In conclusion, the proposed method can be used to find the 
corresponding minutiae and align any fingerprints considered into affine transformation, in the presence of noise 
including the partial occlusion. 

Keywords 
Fingerprint Alignment, Geometric Invariant, Delaunay Triangulation 

1. INTRODUCTION 
Biometric recognition based on distinctive 
anatomical and behavioral characteristics is used to 
recognize an individual in terms of verification and 
identification purposes. The biometric systems are 
applied to building access systems, authenticating 
person to access facilities, electronic access control 
including forensic identification. Commonly used 
biometric identifiers are human’s face, fingerprint, 
iris, signature, and voice. The fingerprint is one of 
the most widely used biometric identifiers because of 
its uniqueness and immutability. The most evident 
structural characteristic of a fingerprint is a pattern of 
interleaved ridges and valleys.  

 

Fingerprint matching can be categorized into 3 main 
approaches [Mal09] which are (i) correlation-based 
matching; (ii) minutiae-based matching; and (iii) 
non-minutiae feature-based matching. Correlation-
based fingerprint matching is the simplest and 
earliest method. In the matching scheme, two 
fingerprint images consisting of template and query 
are superimposed in order to estimate the correlation 
between the corresponding pixels of the two images. 
For example, the differential matching rate based on 
the cyclic structure in the local area of fingerprint 
pattern was used to calculate the correlation value in 
the fingerprint verification algorithm [Hat02a]. 
Additionally, the correlation-based technique was 
applied based on coherence of the orientation field to 
match the fingerprints scanned from high resolution 
and touchless sensors [Lin09a]. Consequently, this 
technique was developed to the correlation filters 
tolerated to distorted fingerprints [Ven03a]. The 
performance of the correlation-based technique 
significantly relies on the alignment accuracy, which 
can be quite sensitive to transformation changes. 
Minutiae-based matching is the technique for 
fingerprint matching to find the alignment of 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 
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minutiae feature sets between the template and the 
query fingerprint images. These minutiae, ridge 
endings and bifurcation, are characterized by their 
attributes such as location, orientation, and minutiae 
types. The local minutiae matching [Mal09] can be 
classified according to the local structures which are 
nearest neighbor-based structures [Jea05a], [Chi06a], 
fixed radius-based structures [Che06a], [Fen08a], 
minutiae triangles [Tan03a], [Che06b] and texture-
based local structures [Tic03a], [Ben07a]. For the 
non-minutiae feature-based matching, due to the 
complexity of minutiae extraction in quite low-
quality fingerprint images, other features of the 
fingerprints are extracted from the ridge pattern, for 
instance, local ridge orientation [Yag05a], [Liu06a] 
and frequency, shape, texture information [Jai00a], 
and sweat pores. 
From these three approaches of fingerprint matching, 
the local minutiae-based matching is the most widely 
used technique. Moreover, many of minutiae-based 
matching construct Delaunay triangles from the 
minutia set and extract various features from these 
triangles. In [Beb99a], the ratio of side of triangle 
and cosine of the angle between the smallest two 
sides were used as the invariant features for the 
fingerprint indexing. The relative position and 
orientation of each minutia with respect to its 
neighbor of triangle structure were utilized in the 
fingerprint minutiae-matching algorithm [Par04a]. 
The invariant feature vectors consisting of the 
distance between the two minutiae and the relative 
radial angle between directions of each two minutiae 
were obtained from the minutia triangle and were 
then used together with the growing and fusing 
region of minutiae structures to match the 
fingerprints [Xu07a]. In addition, the minutiae type, 
the minimum and median angles, the length of the 
longest edge of the triangle including the difference 
between angles of two edges and orientation field at 
any minutiae were determined from the low-order 
Delaunay triangles to find the corresponding 
triangles for the fingerprint identification [Lia07a].  
In this paper we introduce a novel method of 
fingerprint alignment that uses the intrinsic geometric 
properties of triangles constructed from minutia 
triplet to align minutiae points on the query and the 
template. Finding correspondences using invariants 
allows a fast non-iterative procedure for alignment, 
additionally, it is robust to noisy or missing data 
since these invariants are based on the local triangles 
constructed from the minutiae points. Triangles that 
are distorted by noise or have no counter part on the 
query are discarded. We rely only on “strong” 
matches that are reliable and present, for example, 
where the error metric between the local absolute 
invariants is below a set threshold. The 

correspondences of such matches are then used to 
estimate transformation parameters.  
This paper is organized as follows. Section 2 is 
related to Delaunay triangulation. Section 3 describes 
minutiae-based matching in the presence of affine 
transformation including estimation of linear 
transformation. Section 4 shows experimental results 
on the proposed algorithm. Discussion and 
conclusion are given in Section 5. 

2. DELAUNAY TRIANGULATION OF 
MINUTIAE SET 
Given a set ℜ of minutiae points N21 m,...,m,m , a 
Voronoi diagram divides the region into sub-region 
about each point im  such that all points around im  
are closer to im  than any other minutiae point. By 
connecting an edge between each pair of centers in 
the Voronoi diagram, a Delaunay triangulation is 
formed. A Delaunay Triangulation possesses 
attractive properties that make them very suitable for 
fingerprint matching [Beb99a]. The following 
properties in particular are extremely relevant to 
fingerprint matching:  
(i) Affine invariance: A Delaunay Triangulation 
constructed from minutiae subjected to an affine 
transformation is still a Delaunay Triangulation 
whose minutiae points are obtained by subjecting the 
original minutiae points to that affine transformation.  
(ii) Local shape controllability: Any local 
deformation of minutiae is locally confined. This is 
very important when trying to deal with fingerprint 
identification in the presence of missing parts or 
noise.  
(iii) Uniqueness: A Delaunay Triangulation is 
unique. The same set of minutiae always generates 
the same Delaunay Triangulation.  
(iv) Robustness: A Delaunay Triangulation is 
immune to noise. Any disturbance to the vertex does 
not significantly affect the triangulation pattern. 
(v) Linear computational time complexity: This 
makes the algorithm suitable for on-line fingerprint 
matching system. 

3. MINUTIAE-BASED MATCHING 
An overview of fingerprint alignment using 
minutiae-based matching is shown in Figure 1. A 
Delaunay triangulation is constructed from the 
minutiae sets resulting in series of triangles. Then, 
the corresponding minutiae are established prior to 
determine transformation parameters and align the 
two fingerprint images. 
In this paper, we present the fingerprint matching in 
the case of the fingerprint derived from a different 
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scanner and with a different shear on the query 
sample. It is considered into an affine transformation 
rather than a rigid transformation. Therefore, finding 
the matched triangle will be done based on absolute 
affine invariant. 
From a relative invariant, the areas of the two 
corresponding triangles are related to each other 
through the determinant of linear transformation 
matrix as shown in Equation 1. From the equation, 
A(k) are the area patches of sequence of triangles on 
the template and Aa(k) are those of triangles on the 
query. 

nkkA
aa
aa

kAa ,...,2,1),()(
2221

1211 ==  (1) 

By taking the ratio of the consecutive area of the 
sequence, absolute invariants are obtained. These 
absolute invariants are applied to find the matched 
triangles between the two fingerprints according to 
following algorithm: 
(i) Obtain the set of triangles for the template and the 
query fingerprint using the Delaunay triangulation 
process.  
(ii) Find the list of triangles having the minutiae as a 
vertex and order their sequence in a counter-
clockwise direction. 
(iii) Compute the absolute invariant by taking the 
ratio of the consecutive area of ordering triangles. 
(iv) Search for the longest string of absolute invariant 
that matched between the template and the query. 
Given one minutia in the unknown, searching the 
matched criterion between each pair of absolute 
invariant, says invariant ith and jth, is defined by 
Equation 2. 
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(v) Circular shift of the absolute invariant is 
performed both in each sequence of triangles 
corresponding to a vertex and the list of triangles 
having the minutiae as a vertex. 
(vi) Declare the match on the longest string (N) of 
triangles that yields minimum averaged error of 

N
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Eventually, the matched triangles are obtained from 
the algorithm described above. The vertices of the 
matched triangles are considered as the 
corresponding minutiae.  The corresponding 
minutiae between template and query fingerprint are 
used to compute the transformation matrix. The 

matrix is estimated in a least square sense, from 
normal equation as shown in Equation 3. 
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and where F and G are the sets of corresponding 
minutiae between template and inquiry fingerprint. 

4. EXPERIMENT AND RESULTS 
Two fingerprints of thumb of the same individual 
shown in Figure 2 were scanned with a fingerprint 
scanner of L SCAN 100R. The resolution of the 
scanner is 500 pixels per inch (ppi). Prior to the 
computation of DL triangulation, the pre-process was 
performed including Gaussian blurring, Gabor 
filtering, thinning and minutia detection. Only two 
types of minutia were interested including ridge 
ending and bifurcation as represented in Figure 3. 
The DL triangulation of minutiae of the two 
fingerprints is shown in Figure 4. 
As a result, according to the algorithm described in 
Section 3, the matched triangles of the two 
fingerprint images were found as shown in Figure 5. 
The vertices of the corresponding triangles were used 
as to estimate transformation parameters. The two 
fingerprint images before and after the alignment are 
shown in Figure 6a and 6b, respectively. Since the 
true correspondences of the scanned ridge points are 
not known, we elect to use the distance map that 
displays the distance between any point of one ridge 
coordinate and the closest point on the other image 
after undoing the transformation to the second image. 
The average distance map before and after the 
alignment are 39.8519 and 23.1273 pixels, 
respectively. The alignment errors on average before 
and after the alignment are 10.71% and 6.22% of the 
size of the finger, respectively. 
Moreover, the results of fingerprint matching in the 
presence of noise are shown in Figure 7. The two 
fingerprint images before and after alignment are 
shown in Figure 8. The average distance map before 
and after the alignment are 2.0424 and 1.2852 pixels, 
respectively. The alignment errors on average before 
and after the alignment are 0.55 % and 0.35% of the 
size of the finger, respectively. 
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Figure 1. An overview of fingerprint alignment 

using minutiae-based matching. 

  
a) b) 

Figure 2. Template (a) and query (b) fingerprints 
 

  
a) b) 

Figure 3. Minutiae position of template (a) and query 
(b) fingerprints. Cross signs indicate ridge endings 

and circle signs indicate ridge bifurcations. 
 

 
a) b) 

Figure 4. DL triangulation constructed from the 
minutiae of the template (a) and the query (b). 

  
a) b) 

Figure 5. Matched triangles of the template (a) and 
the query (b) derived from the minutia-based 

matching 
 

 

a) b) 
Figure 6. Two fingerprints before (a) and after (b) 

alignment. 
 

  
a) b) 

Figure 7. Matched triangles of the template (a) and 
the query (b) fingerprints in the presence of noise 

 

a) b) 
Figure 8. Two fingerprints in the presence of noise 

before (a) and after (b) alignment 
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5. DISCUSSION AND CONCLUSION 
In this paper, we introduced a geometric-based 
method to perform shape matching by aligning 
fingerprint image. For the 2D-to-2D alignment, a set 
of minutia points are extracted. The fiducial points 
were local and hence are well suited to deal with the 
partial alignment problem (occlusion). This is sharp 
contrast to other geometric invariant methods like 
moments and Fourier descriptors that are global in 
nature. To find correspondences between the minutia 
points on the two fingerprint images, a set of 
geometric invariants were determined based on the 
triangles constructed from sets of the minutia point 
triplets. After the correspondences were established, 
the parameters of a relevant transformation were 
estimated and the two images were aligned. The 
performance of our method is demonstrated by the 
ability to register the fingerprint image scanned 
under a host of shape transformations. In conclusion, 
the proposed method can be used to find the 
corresponding minutiae and align any fingerprints in 
case considered as the affine transformation, the 
presence of noise including the partial occlusion. 
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ABSTRACT 
A plausible rendering of metallic effects on a computer display is of high importance for 3D representations—as 

used in advertising and sales—and for pre-visualizing print designs that include special inks such as gold and/or 

silver. A human viewer recognizes these materials by their specific reflection properties. Hence, simulating them 

requires taking the illumination from the environment and the position of the viewer’s head into account. We 

demonstrate that this can be achieved in a Web-based application that leverages the webcam installed on the 

user’s computer. Thus, metallic color effects can be made available almost ubiquitously, in particular in Web 

shops. 

Keywords 
Lighting-sensitive displays, head-tracking, virtual reality, Web-based applications 

1. INTRODUCTION 

A car manufacturer’s Web site may show the newest 

model of that brand as an almost photorealistically 

rendered 3D object. Typically, a canned environment 

map is employed to simulate the look of parts made 

of chrome. The rendered image does not depend, 

however, on the viewer’s position so that the illusion 

breaks down when the user moves his or her head. 

The reproduction of metallic effects has been ad-

dressed even less in prepress applications, that is: 

applications that deal with simulating the look of a 

printed sheet of paper. Color management systems 

have been employed for more than a decade to ensure 

the optimal simulation of matte color prints on com-

puter displays. Current color management systems do 

not, however, simulate metallic printing inks. 

With 3D catalogs and 2D prepress as two fields of 

application in mind we have developed a Web-based 

system (see Figure 1) to address these issues in the 

reproduction of metallic colors. The system reads 

data from the user’s webcam, leveraging the fact that 

webcams have become household items and mostly 

are already integrated in the screen bezels of note-

book computers. Thus, the method cannot solely be 

used in software locally installed on the computer. 

Rather, it is also available to electronic product cata-

logs as used by Web shops and to online print ser-

vices that want to show the effect of non-standard 

printing inks in advance. The contributions of this 

work to the state of the art comprise 

• the use of the webcam to track the position 

of the viewer’s head—in addition to captur-

ing the illumination—and 

• the integration of all components into a 

Web-based application. 

This paper is structured as follows: Section 2 outlines 

relevant related work on displays for virtual and aug-

mented reality and on color reproduction. Section 3 

describes the architecture of the prototype system, the 

implementation of which is covered by Section 4. 

Section 5 reports the results achieved; and Section 6 

concludes the paper, indicating directions for future 

research. 

2. RELATED WORK 

Displays that react to their environment have been 

proposed at highly different levels of complexity: 

Ropinski et al. [Rop04] create an environment map 

from the camera image to improve the look of 3D 

objects inserted into augmented reality displays, a 

Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 

fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this 

notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to 

redistribute to lists, requires prior specific permission 

and/or a fee. 

WSCG 2010 Communication Papers 179



technique that was already outlined by Miller 

[Mil95]. Daniel [Dan05a] employs a camera with a 

fisheye lens to capture an environment map and illu-

minate 3D objects displayed on the screen through 

pre-computed radiance transfer. This is limited to 

diffuse lighting. The exposure time of the camera 

alternates between a long and a short setting to syn-

thesize a higher dynamic range. Nayar et al. [Nay04a] 

describe a display that makes similar use of a fisheye 

lens but employs a large data-compressed collection 

of pre-rendered or pre-captured images for full re-

lighting including specular highlights. 

Fuchs et al. [Fuc08a] discuss options to build passive 

reflectance field displays, that is: displays that react 

to illumination—in this case illumination from be-

hind. Using microlens arrays and LC display panels 

in a similar fashion, Koike and Naemura [Koi08a] 

demonstrate a “BRDF display,” in which the direc-

tional response to the incoming illumination can be 

controlled digitally. Reproducing metallic effects 

with such a system would, however, require a huge 

angular resolution to produce appropriately sharp 

reflections. 

In a patent application [Ker09] that has been pub-

lished after the submission of this paper, Kerr and 

King of Apple, Inc., propose to track the user’s 

head—for instance through a camera—to simulate 

3D effects on a 2D screen. The user may for instance 

“look around” the edges of window in the foreground 

to see what is behind; including reflections of the 

environment is mentioned, too. Mannerheim and Nel-

son [Man08] propose using a camera to track the 

location of the user’s head in order to adjust a binau-

ral audio signal presented through loudspeakers. 

Many goggle-free (i.e., autostereoscopic) 3D virtual 

reality displays employ head-tracking to project the 

left and right partial images onto the respective eye of 

the user; for an example, see [San05a]. The data thus 

gained can in principle be employed to render specu-

lar and mirroring reflections based on the actual posi-

tion of the viewer. 

Color management systems [Sto04a] are a standard 

amenity of current computer operating systems. They 

operate on the basic principle of converting colors 

from device-dependent spaces such as RGB and 

CMYK to device-independent spaces such as XYZ or 

CIELAB. This conversion is described through pro-

files for each input and output device such as camera, 

scanner, display, or printer. Current color manage-

ment systems only support perfectly diffuse reflection 

        

Figure 1. The system takes the position of the viewer’s head (two positions shown) and the illumination 

into account to simulate metallic effects. 
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Figure 3. The environment cube map is built from 

the camera’s input through cropping, the repeti-

tion of the final rows and columns, and feathering. 

models. Whereas color models for metallic inks have 

been researched into [Her03a], they have not yet 

found their way into off-the-shelf prepress software 

solutions. 

3. ARCHITECTURE 

This work focuses on rendering a sheet of paper or a 

single view of an object and trying to create as lean 

and hence Web-compliant a system as possible. 

Hence, we confine ourselves to working with two-

dimensional maps instead of operating on complete 

three-dimensional meshes as has been done in former 

work on Mixed Reality. The input to the system con-

sists of several maps, which typically are stored on 

the server side: the color data for diffuse reflection (a 

standard RGB image), a normal map (encoded as 

RGB image), and a specularity map (encoded as 

grayscale image) that defines the blend between matte 

and metallic behavior per pixel. 

The non-metallic part of the model is rendered with 

the Lambertian model [Bli77]. The metallic part em-

ploys the Cook-Torrance model [Coo82] with fully 

editable parameters. In the software prototype, these 

are offered as controls on the graphical user interface. 

In an actual application, however, they would be set 

and frozen during the authoring phase and then be 

stored as part of the media file or in a configuration 

file. 

To adapt the sharpness of the reflected environment 

to the selected sharpness of the highlights, the envi-

ronment map can be sampled down by an adjustable 

power of two. Figure 2 shows the overall architec-

ture. 

To provide a system that works over the Web with a 

typical computer on the client side we elected to em-

ploy a standard webcam image instead of an image 

shot through a fisheye lens. The image taken by the 

webcam is used for three purposes: 

First, a cube map of a plausible environment is build 

from the image. The front face of the cube is formed 

by the camera image as such, cropped from both the 

left and right side by the eighth part of its width. The 

remaining parts on the left and right are put into the 

left and right faces of the cube map and extended 

through repetition of the last pixel column. The bot-

tom and the top face of the cube map are formed 

through repetition of the first row or the last row of 

the camera image, respectively. To partially hide the 

repetitions, the lateral faces are feathered toward 

black at their ends, see Figure 3. 

Second, a coarse-grained version of the camera image 

is searched for the brightest spot. For the rendering, a 

light source with this color is placed accordingly. 

Thus, one strong specular reflection is taken into ac-

count without high dynamic range imaging and with-

out complex rendering algorithms, see Figure 4. 

Third, the user’s head is found in the camera image 

using an existing software library (see Section 4). The 

center of the head is used to define the view direction 

for the rendering, see Figure 5. In case no webcam is 

available—for example, out of privacy concerns—, 

the user can choose to steer the viewing position 

Figure 2. The system reads three two-dimensional 

maps and the image stream from the webcam to 

feed the pixel shader used for rendering. 
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Figure 5. A point slightly above the centroid of the 

largest rectangle returned by the face detector 

controls the view direction of the lighting model. 

 

Figure 4. To determine a position for a single 

dominant light source, the camera image (left) is 

sampled down to large blocks (right). 

 

through the mouse and apply one of several environ-

ment maps included with the software. 

4. IMPLEMENTATION 

The prototype has been developed in ActionScript 3 

using the Adobe Flex Builder 3 development envi-

ronment based on the Flex software development kit 

3.4 targeting Adobe Flash Player version 10 or 

newer. 

The face-tracking component employs the “Marilena” 

port [Mas09a] of the face detection in the OpenCV 

library. This detector [Vio01] employs a cascade of 

simple classifiers that use the contrast between aver-

ages over rectangular parts of the image. These aver-

ages can be computed quickly through a summed-

area table. Consequently, the features being detected 

resemble Haar wavelets. The training data that has 

been generated upfront is based on a variant of the 

AdaBoost. In this case, during training the best fea-

tures (that is: sets of rectangles) are found and the 

classifiers are adjusted, whereas a classical AdaBoost 

would only concern the latter step. 

The rendering has been realized through a shader 

routine developed with Adobe’s Pixel Bender Toolkit 

1.5 [Ado09a]. PixelBender comprises of a basic in-

teractive development environment to build image 

processing routines (called “kernels”) in a program-

ming language resembling the OpenGL Shading Lan-

guage GLSL. The range of available functions corre-

sponds to a pixel shader in standard GPU program-

ming. The kernels thus created can be connected into 

dataflow graphs and can be compiled to byte-code to 

be loaded and executed in Flash Player 10. 

As the Pixel Bender Toolkit as such offers GPU ac-

celeration for the kernels, it is foreseeable that future 

versions of Flash Player also execute kernels on the 

GPU instead of running them on the CPU as the cur-

rent version does. Then a vital part of the acceleration 

offered by the graphics processor can be leveraged 

even in this Web-based software. The circumstance 

that Pixel Bender only targets pixel processing but 

not mesh processing fits nicely to the scope of our 

application. 

5. RESULTS 

We measured the performance of the system on an 

Apple MacBook computer, which runs Mac OS X 

10.5.8., is equipped with an Intel Core 2 Duo proces-

sor running at 2.2 GHz and an integrated webcam, It 

does not contain a dedicated graphics chip but uses 

the Intel GMA X3100 chipset graphics instead. 

At an image size of 512 x 384 pixels, the software 

prototype with all functions applied runs at 15 frames 

per second; at an image size of 615 x 461 pixels, this 

rate decreases to 8 frames per seconds. With all cam-

era functions switched off, the rendering alone easily 

achieves 30 frames or more per second. This shows 

that the processing of the camera image is the step 

that limits the performance. 

One may hope that future application frameworks 

grant direct access to head-tracking data and thus 

relieve the application from such computations. Most 

popular webcams already come with robust and com-

putationally lean integrated head-tracking to add 3D 

items such as hats or sunglasses to the user’s face. 

Currently, however, there is no official way to access 

these head-tracking data from other software. 

The .swf file that is transferred to the client computer 

and contains the complete code of the application 

possesses a size of 260 KB. The three maps (diffuse 

WSCG 2010 Communication Papers 182



color, normal, specularity) add to this size; their byte 

count depends heavily on the compression used. 

The pixel repetitions used to build the environment 

cube map (see Figure 3) may become visible in ex-

treme situations, namely if large, flat and perfectly 

mirroring surfaces are viewed from head positions 

that are strongly off-center. In all other cases, the 

details of the texture and specularity maps and/or the 

blurriness of the reflection hide these artifacts. This 

becomes apparent in Figure 6, which also demon-

strates the use of our system with two-dimensional 

normal maps of three-dimensional meshes: Even 

though the object does not rotate, the look of polished 

metal is reproduced faithfully. 

For speed and simplicity, the color computations are 

executed in RGB space and employ the automatic 

clamping of the RGB components. Thus, bright high-

lights—as they are more or less required for metallic 

effects—appear color-shifted toward white. For in-

stance, the internally computed color (1.9, 1.5, 0.9) 

does not appear on the display screen as reddish or-

ange but as (1.0, 1.0, 0.9), which is a slightly yellow-

ish white. Even though this effect is only apparent to 

the trained eye, a color clamping that restricts the hue 

of the color to its original value could suppress it, at 

the cost of less brighter highlights. 

6. CONCLUSION AND OUTLOOK 

We have demonstrated a system that plausibly simu-

lates of metallic colors but remains inexpensive in 

terms of computer hardware and computational ef-

fort. In particular, the system leverages standard In-

ternet technology and can thus be employed in Web 

shops, electronic advertisements, etc. 

Future developments can target the precision of the 

simulation of the lighting, possibly turning the plau-

sible result into an almost visually exact one. Doing 

so would require dealing with camera calibration, 

generating environment maps with a high dynamic 

range from a standard camera [Dan05a], and creating 

cheap but precise ancillary lenses to turn a standard 

webcam into a fisheye camera. The reproduction of 

perfectly mirrored reflections on extended flat sur-

faces could be improved through replacing the pixel 

repetition in the cube map by a synthesized texture. 

Strong highlights would benefit from bloom effects 

based on high-dynamic range computations of the 

colors. 

An integration of 3D meshes looks straightforward 

from the algorithmic side. In terms of performance, 

however, Adobe Flash—running on the computer’s 

CPU—may be overcharged with such a task. In fu-

ture, a more general approach that requires no 

browser plug-in may become possible through the 

advent of WebGL [Mar09]. 

A second avenue of development would be to focus 

on strengthening the connection to color management 

systems in their present form. A standard color man-

agement system could handle the diffuse illumination 

and a system similar to the prototype we have de-

scribed could add gloss and mirror effects. 
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Figure 6. In addition to visualizing two-dimensional relief prints on paper, the system can also plausibly 

convey the look of metallic 3D objects as described through a 2D normal map. In this image sequence, the 

user’s head has moved from left to right. For demonstration, a specularity map with less metallicity below 

the diagonal has been applied. (Stanford Bunny courtesy of http://graphics.stanford.edu/data/3Dscanrep/) 
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ABSTRACT

We present a novel approach to handling frictional contacts for deformable body simulations. Our contact model allows to sep-
arate the contact area into a set of detached contact regions. For each of them a separate mixed linear complementarity problem
(MLCP) is formulated. Parallel processing of these independent contact regions may considerably improve the performance of
the contact handling routine. Moreover, the proposed contact model results in sparse matrix formulation of the corresponding
MLCP in the individual contact regions. For solving the MLCPs we propose an iterative method which combines the projected
conjugate gradient approach and the projected Gauss-Seidel method.

Keywords

Linear complementarity problem, contact force, deformable object.

1 INTRODUCTION
Contact handling of interacting solid objects is a com-
mon research topic, for instance in computer animation
or surgical simulation. Physically plausible responses
to collisions and contacts potentially enrich the anima-
tion, especially if frictional effects are taken into ac-
count. Contact response methods aim at computing a
set of contact forces that prevent the simulated objects
from interpenetrating, while taking into account fric-
tion.

Several approaches have been proposed in the field of
computer graphics and simulations to handle contacts.
The majority of these can be split into two classes:
penalty-based and constraint methods (note that fur-
ther approaches exist, e.g. impulse methods). Penalty
methods compute virtual spring forces that drive the
interacting objects apart. The values of these forces
are usually considered to be proportional to a geomet-
rical measure of the interpenetration of the interact-
ing bodies [HTK∗04, KMH∗04, HVS∗09]. Therefore,
penalty based methods not only allow interpenetrations
but essentially depend on them. Despite the lack of
physical plausibility caused by this simplified contact

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

model, they are still widely used because of the sim-
plicity of their implementation and high computational
efficiency.

In contrast, constraint methods aim at following the
geometrical restrictions of non-penetration of the inter-
acting objects based on their relative position and ori-
entation [Bar89, DAK04, PPG04, Erl07]. The resulting
system of equations can be solved by a large variety
of methods among which the most preferable are fast
iterative procedures. However, for complex systems
which consist of many interacting objects the computa-
tion time of this approach becomes quickly prohibitive.
Therefore, much effort is made to develop efficient al-
gorithms [Bar96, GBF03, KEP05, KSJP08, OTSG09,
HVS∗09].

Contributions. We propose a new approach to re-
solving contacts for deformable objects by splitting the
contact area into separate, independent regions. The
deformation model together with the time-integration
scheme we use allows the separate treatment of de-
tached contact regions. Handling a number of local
contacts instead of a single global contact system gives
a significant gain in performance even without using
parallel computation techniques. The proposed contact
model results in a simple diagonal mass matrix as well
as sparse constraint matrices.

In addition, we propose a novel iterative scheme
for the mixed contact linear complementarity problems
which combines a projected conjugate gradient method
with the widely used projected Gauss-Seidel method.
Although, the performance in our current implementa-
tion is not better than for the normal projected Gauss-
Seidel method, our scheme demonstrated more stable
convergence behavior and therefore was more reliable.
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2 RELATED WORK

Constraint methods are widely used in computer
graphics as well as in computational mechanics due
to their physical correctness. The theoretical basis
of the underlying mechanics and related contact
problems are thoroughly discussed by Stronge [Str90]
and Wriggers[Wri02]. Classical works in con-
straint based dynamics in computer graphics are by
Baraff [Bar89, BW92] and Witkin [Wit97].

Constraint based approaches for contact problems
usually employ Signorini’s law [WP99] of unilateral
contact resulting in the formulation of the contact lin-
ear complementarity problem (LCP) [AP97]. Lagrange
multipliers belong to the most widely used solution ap-
proaches for this kind of problems [WP99]. The LCP
formulation in contact handling is used for obtaining
contact responses between rigid bodies [Cat05, Erl07]
or deformable objects [DAK04, DDKA06, OG07], as
well as in cloth simulations [VMT97, VT00, HB00].

General approaches to the LCP solution can be
split into two classes: direct and iterative meth-
ods [CPS92]. Although direct methods,e.g. Lemke’s
algorithm, Danzig’s method, and other pivoting
techniques [Cot90, CPS92, Mur88] are designed
to give precise solutions, they are computationally
demanding and slow. Therefore, in computer graphics
applications almost exclusively iterative methods are
used. Iterative methods for the LCP follow the scheme
similar to the one used to solve a linear system of
equations [CPS92, Mur88]. Therefore, projected
versions of well-known iterative methods such as
Jacobi, successive overrelaxation, and its special
case – Gauss-Seidel – are used [Cat05, Erl07]. They
work very well for rigid body simulations, however,
applied to deformable body collisions they become
computationally very expensive. Attempts to find a
compromise were presented in [PPG04, DDKA06].

Many researchers are working on optimization and
improvement of the performance of these basic itera-
tive methods in different application areas. Exploit-
ing the sparsity of the matrices involved in computa-
tions is one of the basic optimization approaches which
works for almost any underlying model of simulated
objects [GL89]. Other more sophisticated algorithms
consider the LCP formulation tightly linked with the
dynamical model. Baraff and Witkin employed im-
plicit integration methods for large time step simula-
tions of cloth [BW98]. Otaduy et al. [OTSG09] pro-
posed an iterative solver that includes two nested relax-
ation loops (based on the constraint anticipation intro-
duced in [Bar96]).

Using the conjugate gradient method for general LCP
was proposed by researchers in the area of computa-
tional mechanics, like Renouf and Alart [RA05], and
Li et al. [LNZL08]. We explore the combination of

the projected conjugate gradient approach with the pro-
jected Gauss-Seidel method.

3 DEFORMABLE CONTACT MODEL
AND MLCP FORMULATION

In simulations of scenes with many interacting de-
formable objects, numerous pairs of objects or parts of
the same object may be simultaneously in contact. The
deformable nature of the simulated material provides
non-instantaneous spreading of the contact forces from
the contact area into the physical body. Therefore,
simultaneous but spatially separated contacts may be
considered independently as their effect spreads over
the objects in contact during future simulation time
steps. This is in contrast to rigid body simulations
where all contacts have to be taken into account to
correctly compute the reaction of the object. Following
this reasoning we take advantage of considering spa-
tially separated contacts between deformable objects
independently. This should speed up the contact
response computations in the simulations.

In our simulations deformable objects are repre-
sented as tetrahedralized meshes with mass points
located in the nodes. Each object has a triangulated
surface and contacts are treated between basic sur-
face elements: point-triangle and edge-edge pairs.
Point-edge and point-point contacts are treated as
special cases of point-triangle contacts. For the sake
of simplicity we omit edge-edge contacts and consider
only point-triangle pairs in the further discussion.

Constraints Formulation

In the absence of friction the only constraint for the
point-triangle collision is that contact points cannot
penetrate planes of the corresponding contact triangles.
Mathematically this can be described by the condition
of non-negativity of the functionC(p0,p1,p2,p3) of the
coordinates of the corresponding mass points.

C(p0,p1,p2,p3) =−((p1−p0)× (p2−p0)) · (p3−p0)
(1)

The time derivative of this function gives the Jacobian
matrix of the normal contact constraints.

Ċ(p0,p1,p2,p3) = Jn ·u (2)

whereu =
[
vT

0 vT
1 vT

2 vT
3
]T is a generalized velocity vec-

tor of the corresponding points.
The principle of virtual work requires orthogonality

of the constraint force and the constraint. Therefore, in
the frictionless case for our model the constraint force
is defined as

fn = JT
n ·λn (3)

where the Lagrange multiplierλn is to be found.
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According to Signorini’s contact law [WP99] at a
unilateral contact the following compementarity condi-
tions have to be satisfied.

wn = Jn ·u≥ 0, λn≥ 0, wn ·λn = 0 (4)

The conditions (4) pose a linear complementarity
problem (LCP) for a frictionless unilateral contact.

In general, ifN mass-points are involved in contacts
with K constraints, the Jacobian of the whole system is
easily assembled from the Jacobians of each individual
constraint. Therefore, the global Jacobian consists ofK
lines of blocksJ0

q, J1
q, J2

q andJ3
q, whereq = 1, . . . ,K.

Note, that in each line only the entries corresponding
to the mass-points involved in theq-th contact are non-
zero. This way the Jacobian of the contact system has
the dimensionK×3N.

Separation of the Contact Regions
The time integration scheme of the simulations uses the
net force of the internal, global (e.g.gravitational), and
contact forces to compute position and velocity of each
simulated contact point at the next time step. Thus, a
force applied to a particular mass point in the current
time step will influence its neighbors only in the next
time step through internal deformation.

The nature of the time-integration scheme and the
discretized model of simulated objects allows us to sep-
arate two contact areas if they do not have any common
simulated mass points simultaneously involved in con-
straint equations of both contacts. As will be shown
later, this way the amount of computations becomes
significantly smaller and the convergence rate for each
individual contact problem increases.

The separation of the contact areas is performed by
analysis of the constraint matrixJn which consists of
the rows related to the normal contact constraints only.
The elementjki of the matrix is non-zero if and only
if the i-th mass point is involved in thek-th constraint.
Therefore, the area separating algorithm efficiently ex-
tracts sets of rows such that each pair of the sets does
not have any non-zero elements in the same columns
simultaneously. In terms of the contact graph of the
current configuration which is encoded by the Jacobian,
the region separation algorithm aims at finding a set of
disconnected subgraphs.

Currently, a basic sequential algorithm is used to as-
sign each contact to a contact region. Contacts corre-
sponding to a line of the JacobianJn are assigned to
a particular region, such that any two different con-
tact regions do not have contacts that share a simulated
mass point. Thus, contacts that involve the same mass
point belong to the same contact region. The outline
of the contact region separation is presented in Algo-
rithm 1. Here,Contact[i][ j] contains the index of the
j-th point on thei-th contact,i = 1, . . . ,K, j = 1, . . . ,4
and{Contact[i]} is the set of points that belong to the

i-th contact.Area[i] contains the index of the detached
region to which the pointi belongs. Note that more
advanced,e.g. parallel, algorithms could be applied in
this stage. Moreover, it should be mentioned that we
consider contacts of deformable objects which usually
are maintained over a number of successive simulation
time steps, even in dynamic scenes. Thus, information
about contact regions could be stored and updated on
successive time steps as required.

Algorithm 1 Contact region separation

nextIndex← 1
CheckedPointSet⇐ /0
for i = 1 toK do

if Area[i] not assignedthen
Area[i]← nextIndex++
CheckedPointSet⇐{Contact[i]}
for j = i +1 toK do

if Area[ j] is assignedthen
continue

endif
if {Contact[ j]}∩{Area[i]} 6= /0 then

Area[ j] = Area[i]
endif

endfor
else

for l = 1 to 4do
if Contact[i][l ] /∈CheckedPointSetthen

for j = i +1 toK do
if Area[ j] > 0 then

continue
endif
if {Contact[ j]} ∩ {Area[i]} 6= /0
then

Area[ j] = Area[i]
endif

endfor
CheckedPointSet⇒Contact[ j][l ]

endif
endfor

endif
endfor

Including Frictional Contact
Classically the frictional part of the contact force lying
in the plane of the contact triangle is introduced having
two components along two orthogonal vectorse1 and
e2 [Bar94]. In the frame of our contact model the part
of the Jacobian responsible for friction is[

Je1
Je2

]
=

[
−eT

1 α eT
1 β eT

1 γ eT
1

−eT
2 α eT

2 β eT
2 γ eT

2

]
(5)

where(α,β ,γ) are barycentric coordinates of the con-
tact point at the time of collision.
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Coulomb’s friction model is often approx-
imated by a 4-sided [Bar94] (in general,k-
sided [KEP05, DDKA06]) pyramid with faces
parallel to the orthogonal vectorse1 and e2. This
friction model leads to the following conditions to be
satisfied at the contact.

Jei ·u > 0 ⇒ λei =−µλn

Jei ·u < 0 ⇒ λei = µλn

Jei ·u = 0 ⇒ λei ∈ [−µλn; µλn]
(6)

wherei = 1, 2 andµ is the friction coefficient.
In addition, we also tested a friction cone model

which more precisely follows Coulomb’s law. We
project the solution onto the friction cone domain. If
the tangential component of the contact force is larger
than µλn then we scale the friction components to fit
the friction cone without changing the direction of the
friction force.

||λe1e1 +λe2e2||> µλn⇒

 λe1←
λe1 ·µλn

||λe1e1+λe2e2||

λe2←
λe2 ·µλn

||λe1e1+λe2e2||
(7)

For a single point-triangle frictional contact the com-
plementary conditions (4) together with (6) or (7) have
to be satisfied. The general Jacobian of the system is
built in the same way as in the frictionless case. The
dimension of the matrix is 3K×3N.

Dynamics Formulation
After separating the contact area into detached contact
regions we formulate and solve the dynamic equations
for each of the regions independently. In the following
discussion we consider a part of the simulated system
which corresponds to a particular contact regionC. This
part consists of the mass points involved in the contacts
of that specific region. The simulated system obeys the
following equation of motion.

MC ·uC = JT
C ·λC + fC (8)

where MC is the mass matrix of the system,
λC = (λn, j1 λe1, j1 λe1, j1 . . .λn, jk λe1, jk λe1, jk)

T – the
generalized vector of contact forces for the region,
and fC = (fT

1 fT
2 . . . fT

l )T – the generalized vector of
non-contact forces acting on each mass point.k and l
are the number of constraints and mass points of the
contact regionC, respectively.

We employ the forward Euler integration scheme to
relate the unknown general velocity at timet + ∆t to
the known velocity at the previous time stept. For de-
formable object collisions we employ Newton’s rule for
changes of the normal component of velocity after the
collision [Str90],i.e.

vre f lected
vincident

= κ.

uC(t +∆t) = (1+κ)uC(t)+M−1
C JT

C ·λC∆t +M−1
C · fC

(9)

By pre-multiplying (9) withJC we connect the dy-
namics equation with the complementarity conditions
(4) and (6) discussed above.

wC = JC ·uC(t +∆t) = A ·λC +b (10)

where

A = JCM−1
C JT

C (11)

b = (1+κ)J ·uC(t)+JC ·M−1
C · fC (12)

Note, that we included the factor∆t into λC and there-
fore λC is no longer the force but the impulse vector.

The above equations (11) and (12) together with gen-
eral complementarity condition (6) or (7) constitute the
MLCP that has to be solved for the values of the contact
force componentsλC.

Unlike the usual formulation of the dynamics equa-
tions we explicitly consider only mass-points involved
in each contact. Therefore, the generalized velocity
vector does not include the angular velocity of the con-
tact triangle and the mass matrix does not include 3×3
blocks corresponding to inertia tensors. This formula-
tion provides a strictly diagonal form of the matrixM
allowing optimized matrix multiplications.

Each line of the constraint matrixJC consists of four
3×3 blocks. However, if the matrixJC is stored in a
suitable reduced format [GL89, Cat05], the calculations
of JCM−1

C JT
C can be done very efficiently in linear time.

4 ITERATIVE METHODS FOR LCP
Here, we leave aside the underlying dynamics and con-
sider iterative methods for solution of the LCP(A,b)

A ·λ −b > 0
λ > 0

(A ·λ −b) ·λ = 0
(13)

Projected Gauss-Seidel Iterative Method
A general splitting scheme for iterative LCP solving is
described in [CPS92]. By splitting the matrixA of the
LCP(A,b) in different ways, iterative schemes similar to
those for systems of linear equations are obtained. The
projected Gauss-Seidel method is derived by splitting
A = L +D+U, whereL , D andU are the strictly lower,
diagonal, and strictly upper matrix components ofA.

According to the iterative scheme for solving the
LCP(A,b) [CPS92] each iteration cycle consists of two
steps. In the first a new approximation of the solution is
found

λk+ 1
2

= (L +D)−1 · (b−U ·λk) (14)

In the second step this approximation is projected
onto the set of feasible solutions.

λk+1 = max
{

0, λk+ 1
2

}
(15)
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Although, the projected Gauss-Seidel method
demonstrates only first-order convergence, its compu-
tational efficiency and implementation simplicity have
made it a common choice for many constraint based
collision response methods in computer animation,
e.g.[Cat05, DDKA06, Erl07, OTSG09].

Projected Conjugate Gradient Method
The conjugate gradient method [She94] can also be
adapted for solving the LCP(A,b) [RA05]. The orig-
inal conjugate gradient method has been widely used
for optimization problems as well as for the solution of
systems of linear and non-linear equations. For a linear
system the method converges after at mostn iterations,
wheren is the order of the system. If the method is
applied to a non-linear system it gives successive ap-
proximations and is stopped if a particular condition is
fulfilled, e.g. the residualr i+1 is less than some prede-
fined threshold. The general scheme of the conjugated
gradient method as well as its detailed analysis can be
found in [She94]. Nevertheless, some specific remarks
related to the application to LCP are given below.

The expression for calculating the conjugate direc-
tion

di+1 = r i+1 +βi+1di (16)

usually takes the value of the coefficientβi+1 from
Fletcher-Reeves’ formula.

βi+1 =
rT

i+1r i+1

rT
i r i

(17)

However, another possible approach is to calculateβi+1
using Polak-Ribiere’s formula.

βi+1 =
rT

i+1(r i+1− r i)
rT

i r i
(18)

Analysis of both approaches in our computations
showed that the Fletcher-Reeves method converged if
the initial approximation was sufficiently close to the
solution, whereas the Polak-Ribiere method sometimes
resulted in an infinite loop. However, the latter often
converged faster.

To adapt the conjugate-gradient algorithm to our spe-
cific MLCP(A,b) formulation, we add an additional
projection step (15) to the general scheme. Another im-
portant modification we introduce concerns the resid-
ual. Given the current solutionλi+1 of the MLCP(A,b)
we denote the set of feasiblew = A ·λ −b asW(λi+1).
Since we are interested only in solutions lying in the
feasible domain, we modify the intermediate residualr̃
by projecting its value onto the setW(λi+1).

r i+1 = Proj(r̃ i+1,W(λi+1)) (19)

This way, the direction for searching the solution on the
current iteration step is lying in the feasible domain.

Moreover, if the current solution is close to the real so-
lution then the projected residualr i+1 is close to zero,
which may not be the case forr̃ i+1.

We did not carry out a rigorous theoretical investiga-
tion of the convergence of the obtained projected con-
jugate gradient-like method, but we thoroughly tested
it experimentally. The complete algorithm for the pro-
jected conjugate gradient method is summarized in Al-
gorithm 2.

Algorithm 2 Projected conjugate gradient algorithm

d0← b−A ·λ0
r0← b−A ·λ0
for i = 0 to imax do

αi ←
rT
i r i

diAd i

λ̃i+1← λi +αiλi

r̃ i+1← r i−αi ·A ·di

λi+1← Projcontact(λ̃i+1)
r i+1← Proj(r̃ i+1,W(λi+1))
if error is small1 then

exit
endif
if Polak-Ribierethen

βi+1←
rT
i+1(r i+1−r i)

rT
i r i

else
βi+1←

rT
i+1r i+1
rT
i r i

endif
di+1← r i+1 +βi+1di

endfor

Combined Iterative Method and Termina-
tion Criteria
In order to improve the iterative search for the solu-
tion of the MLCP(A,b) we combine the projected con-
jugate gradient and the projected Gauss-Seidel meth-
ods. One of the advantages of using the projected con-
jugate gradient is its fast convergence rate during the
first iteration steps. The conjugate direction is chosen
for optimal convergence, and therefore this method has
a clear advantage over the projected Gauss-Seidel ap-
proach at this stage. However, the convergence rate
decreases while approaching the solution and the pro-
jected Gauss-Seidel method becomes more preferable.
Following this consideration we perform several steps
of the projected conjugate gradient method and then use
the resulting solution as the initial approximation of the
projected Gauss-Seidel algorithm.

As termination criteria of the iterative loops we check
the values of the successive approximations of the so-
lution ||λi+1−λi || as well as the value of the projected
residual||r i+1||. If either||λi+1−λi || ≤ ε or ||r i+1|| ≤ δ

1 The details of the exit criterion are discussed in the following section.
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is fulfilled then the corresponding iterative loop is ter-
minated. The error thresholdsεcg, δcg andεgs, δgs for
the conjugate gradient and Gauss-Seidel iterative loops
respectively can be set to different values (obviously,
εcg≥ εgs andδcg≥ δgs).

Taking into account the physical meaning of the solu-
tion λ – in our case this is the contact impulse or force
– it is reasonable to require a certain precision for each
component ofλ which is related to the accuracy of the
computer simulation. Therefore, along with above cri-
teria we also use

||λi+1−λi ||∞ ≤ ε∞ (20)

as well as
||r i+1||∞ ≤ δ∞ (21)

In some cases the convergence rate of both iterative
methods is slow. This is presumably a consequence of
the numerical properties of the matrixA and the lim-
ited numerical accuracy. For instance, for the projected
Gauss-Seidel the convergence rate is small if||L + D||
is close to 1 [CPS92, Mur88]. In such cases the suc-
cessive approximations of the solution may oscillate or
even diverge. In order to prevent infinite loops we re-
strict the number of iteration within both phases of the
combined method. The termination of the projected
conjugate gradient loop is enforced after 2n iterations,
wheren is the size of the system in consideration, and
the projected Gauss-Seidel loop is halted after a prede-
fined number ofNmax iterations.

In order to improve the precision in cases of forced
termination we store the best solution approximation
showing the smallest residualr . The value is used as
the outcome of the corresponding phase of the method,
if it is better then the last approximation. Thus, we guar-
antee that the best approximation obtained in the conju-
gate gradient phase is taken for initializing the Gauss-
Seidel phase. The final solution will correspond to the
smallest residual among all of the obtained approxima-
tions. It should also be noted that according to the ex-
perimental results the portion of the cases with poor
convergence,i.e. cases for which the iterative process
did not terminate within the maximum number of iter-
ations, is quite small – ranging from 0 to 0.9%. On the
contrary, using a pure projected Gauss-Seidel method
for the same simulating scenarios gave up to 3% cases
with poor convergence.

5 RESULTS
In order to compare the performance of the proposed
method for separated and non-separated contact treat-
ment, several scenes were simulated.

Separated vs. Non-Separated Contact Re-
gion Handling
A scene of balls breaking a pyramid of bowling skit-
tles with friction was used to test methods in a dynamic

Figure 1: Static scene: Number of contacts K vs. com-
putation time for separate (above) and non-separate (be-
low) contact handling (the latter plot can be omitted)

simulation without any resting states because of the ab-
sence of gravity. A scene of balls stacking in a bucket
under gravity was used to test the methods in mostly
static conditions. The number of contacts varies from 1
to ∼ 45 for the dynamic scene and from 1 to∼ 80 for
the static scene. Note that all objects in the simulations
are (slightly) deformable.

The advantage of the separation of the contact area
into independent regions becomes apparent for MLCPs
with larger numbers of contacts. The benefit is even
present if the processing of the independent regions
is performed sequentially for a method of complexity
O(n2). The average total computation time is∼ 2.5 – 3
times less for the dynamic, and∼ 7 – 8 times less for
the static scene.

Figure 1 shows the dependency of the computation
time on the number of contacts. In case of non-
separated contact handling the time increases much
faster than for separated contact handling. Moreover,
since the independent contact regions in the latter
approach have similar sizes, an almost linear growth
is obtained. Note that a further possible improvement
could be achieved by processing the detached contact
regions in parallel.
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Friction Handling
Simple static scenes of deformable objects placed on an
inclined plane were used to verify the correctness of the
friction handling. Experiments showed that the critical
inclination angle of the plane corresponds to the friction
coefficient between objects and the plane with high ac-
curacy. Moreover, the number of separate contact areas
between objects and the plane had no influence on the
result. It was the same for global and separated contact
area handling.

Figure 2: A table on the inclined plane

When simulating the sliding of a deformable plas-
tic table on a plane (Figure 2), even a typical behav-
ior found in reality could be reproduced. If the friction
coefficient exceeds the critical value for the given in-
clination, a deformable table still can move downwards
with its legs sliding in turns (i.e. the front legs slide
while the back ones remain still, then the front legs
stop and the deformation tension transfers to the back
legs which start to slide until the opposite deformation
tension cause them to stop and the cycle repeats). This
phenomenon is a distinctive feature of certain objects
made of plastic and can be easily observed in reality.
It also has been described in related work dealing with
contact friction [KSJP08].

Finally, both friction models were tested in more
complex scenes – the 4-sided pyramid and the friction
cone. The combined MLCP solving method demon-
strated a considerably better performance when using
the friction cone model – the convergence time de-
creased by∼ 20−40%.

6 DISCUSSION AND CONCLUSION
We have presented an algorithm for the separation of
detached contact regions in a simulated scene consist-
ing of deformable objects. The experimental results
demonstrated considerable gain in performance by us-
ing this approach. Moreover, the separate handling of
the contact regions allows further acceleration by paral-
lelization.

The presented contact model is based on simple con-
straint conditions and directly considers the mass points
of the discretized deformable objects. This approach
provides a simple diagonal mass matrix of the system
which does not contain blocks related to the inertia ten-
sors unlike most of previously proposed models. The

simplicity of the mass matrix combined with the spar-
sity of the constraint matrix potentially allows efficient
implementation of matrix computations by employing
known patterns ofM and J. Therefore, no auxiliary
routines or modifications,e.g. iterative constraint antic-
ipation [OTSG09], are needed.

We also presented an iterative method for the so-
lution of the contact MLCP which combines the pro-
jected conjugate gradient and the widely used projected
Gauss-Seidel methods.
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ABSTRACT 
Non-photorealistic rendering has been attracting attention in the field of computer graphics. A common approach 
to artistic rendering is using a shape model which utilizes mesh data. In recent years, the use of point clouds as 
shape models has increased due to the rapid development of 3D-scanners used to create them. Correspondingly, 
there has been an increase in the research on point clouds. We propose a stipple rendering method as a type of 
artistic rendering for point clouds, based on a hybrid image/object space. First, we eliminate hidden points based 
on an image space. Next, we apply a novel shading method to the visible points based on an image space. Lastly, 
we apply the above two results to the input point cloud. We implement the proposed method using a graphics 
processing unit to accomplish the interactive rendering. The experimental results show that we can achieve 
shading and shadowing interactively. 

Keywords 
Computer graphics, non-photorealistic rendering, stippling, point cloud, and graphics processing unit. 

1. INTRODUCTION 
Non-photorealistic rendering (NPR) has become a 
major focus for research in the field of computer 
graphics, because it is an effective conveyor of 
geometric features. Considerable artistic rendering 
has been proposed using a 3D-shape model utilizing 
mesh model [Zan04][Sat04][Lak00][Say06]. A mesh 
model is suggested because it has a topological data 
structure that can be used to extract features. 
However, the mesh model must first be constructed 
from point clouds before any suggested methods can 
be applied to it. 
Over the past few years, point clouds have attracted 
attention as a new shape model, because they can be 
easily created using 3D-scanners, which have seen 
rapid development lately. Correspondingly, there has 
been an increase in the research on point clouds 
[Pau03][Pfi00] including NPR studies.  
For example, Zakaria [Zak04] proposed a hybrid 

image/object space method of interactive silhouette 
rendering. It can also do stipple rendering or user-
drawn strokes on point set surfaces. Runions [Run07] 
proposed a novel rendering method for point clouds. 

photorealistic or non-photorealistic representations. 
Furthermore, it achieves NPR interactive silhouette 
rendering utilizing ribbons only. Rosenthal [Ros08] 
proposed an image space rendering method using a 
graphics processing unit (GPU). It is mainly used for 
photorealistic representations, and optionally for non-
photorealistic representations. In addition, it can 
render silhouettes on photorealistic representations, 
and accordingly enables conspicuous representation. 
In this paper, we propose an NPR method of stippling 
using a point cloud without normal vectors. We 
selected stippling because it is suitable for point 
clouds, which consist of points only. First, we 
eliminate the hidden points based on the image space. 
Next, we apply a new shading method to the visible 
points based on the image space; moreover, we can 
control the degree of shading. In addition, we 
implement all of the methods using a GPU to 
accomplish interactive rendering. 

2. STIPPLE RENDERING 
Stippling is an artistic rendering method which uses 
points only, and achieves shading by changing the 
density of the points. To get results for stippling 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 
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using a point cloud, we limit the background color to 
white and color all the points black. The input point 
cloud our method uses is evenly distributed without 
normal vectors and insufficiency. 
Figure 1 shows the results of applying general 
shading to the mesh model. Figure 1(b) is the result 
of applying diffuse reflection to Figure 1(a). Figure 
1(c) is the result of applying specular reflection to 
Figure 1(b). Typically, there are two steps to general 
shading; diffuse and specular reflection. Therefore, 
we apply our method, which also consists of diffuse 
and specular reflection, to the input point cloud. To 
get an effect similar to diffuse reflection, we thin out 
some of the points from Figure 2(a) as shown in 
Figure 2(b). In addition, we omit some local points 
for specular reflection as shown in Figure 2(c). 

   
(a) (b) (c) 

Figure 1.  Shading; (a) original; (b) diffuse; (c) 
specular. 

 

   
(a) (b) (c) 

Figure 2.  Shading using our proposed method. 
Our method consists of four steps, which are outlined 
in Figure 3, and we implement all the methods using 
a GPU to accomplish interactive rendering. 
Step 1) Creating a texture to eliminate the hidden 
points from the point set surfaces. 
Step 2, 3) Creating textures for diffuse and specular 
reflections so that we can obtain similar effects. 
Step 4) Applying the three textures applied to a point 
cloud and obtain the result.  
 
2.1 Hidden points texture 
In general, if we use the mesh data as input shapes, 
the back faces are eliminated from the front faces 
utilizing a Z-buffer. However, point clouds have 
points only, so the points on the back faces are not 
eliminated even if we apply a Z-buffer. Therefore, we 
apply following method so that we can apply the Z-
buffer to eliminate the hidden points. 
First, we place a texture plane at a viewpoint on the 
GPU at a size greater than the screen resolution. All 
points are then projected onto the texture plane. In 
Figure 4(a), the depth value of point A is 2, point B  

 
Figure 3.  Outline of our method. 

is 4, and point C is 3. So, each pixel has the smallest 
depth value of all the points which are points 
projected onto it. Next, as shown in Figure 4(b), in 
order to eliminate the hidden points in the texture 
plane, we store each depth value into the neighboring 
pixels, which also have the smallest depth value. 
After that, we apply the results of the texture plane to 
the point cloud; see Section 2.4. 
However, there are cases where the hidden points on 
the back faces are not eliminated from the texture 
plane by the above process. In such cases, we repeat 
the above process until the hidden points are 
eliminated from the texture plane. 
When B (Figure 4(b)) is eliminated from the texture 
plane, other points in high density parts of the texture 
plane also tend to be eliminated. As a result, too 
many points are eliminated from a high-density point 
cloud. 

 
Figure 4(a).  Projection onto a texture plane. 

 
Figure 4(b).  Storing the depth values into 8 

neighboring pixels. 

Display 

GPU 

Point Cloud 

Determining drawing points 
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Hence, instead of storing the same depth value into 
the surrounding pixels, we store a slightly larger 
depth value, as shown Figure 5, so as to avoid cases 
where extra points are eliminated. In fact, if we 
assume that the maximum norm in all points is 1.0, 
we set the larger depth value is 0.05, which value was 
defined by our implementation. The final result of the 
hidden points texture is shown in Figure 6. 

  
(a) Before changing. (b) After changing. 

Figure 5. The centered pixel is projected by a 
point with depth value 3. In (a), the other pixels 
have the same depth value: 3. In (b), the other 
pixels have a slightly larger depth value of 6. 
 

 
Figure 6.  Improvement of storage. 

 

2.2 Diffuse reflection texture 
As shown in Figure 2(b), we thin out some points to 
represent diffuse reflection, and control the degree by 
changing the number of hidden points. In particular, 
we control the degree by changing the density of the 
points; a high-density part is low degree and a low-
density part is high degree. 
First, we place a texture plane at an illuminant on the 
GPU as a diffuse reflection texture. Next, all points 
are projected onto the texture plane as shown at the 
top of Figure 7. The density distribution of all the 
projected points on the texture plane is shown at the 
bottom of Figure 7. As a result of this, the lowest 
density part has the highest degree of diffuse 
reflection. Therefore, it is possible to achieve the 
effect of diffuse reflection by all points are projected 
only onto the texture plane. Additionally, we control 
the degree of diffuse reflection by changing the 
number of drawing points. 
The idea is that each pixel on a texture has a hidden 
point, and we control the degree of diffuse reflection 
by changing texture size. In particular, after all 
visible points are projected onto the texture plane, 
each pixel has a minimum depth value, similar to the 

hidden points texture. The texture consists of multi- 
resolution textures so that we can control the degree 
of diffuse reflection, as shown in Figure 8(a). Then 
we define a full quadtree, with LEVELS 0-n. 

 
Figure 7.  Density of projected points. 

If we select a LEVEL, all stored points on the texture 
of the selected LEVEL are hidden. Moreover, the full 
quadtree is maintained on a texture so that we can 
effectively hold the textures on the GPU. In our 
method, we create the diffuse reflection texture, sized 

nn 22 1 , and store each LEVEL as shown in Figure 
8(b). So, a pixel on LEVEL 1 has the minimum depth 
value of four pixels on LEVEL 2. Similarly, a pixel 
on LEVEL 2 has the minimum depth value of four 
pixels on LEVEL 3. Thus, all LEVELS can be 
created based on the texture of LEVEL n . 
In particular, after the projection of all visible points 
onto the texture of LEVEL n , all of the other 
resolution textures are created in descending order,  

 
(a) Multi-resolution texture. 

 
(b) On a texture. 

Figure 8.  Full quadtree. 
based on the texture of LEVEL n . So, e.g., a pixel 

),( yx  on the texture of LEVEL 1l  has the 
minimum depth value in )','( yx  which is calculated 
by Formula (1), )',1'( yx , )1','( yx  , )1',1'( yx . 
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2.3 Specular reflection texture 
We refer to the Phong reflection model that is 
typically applied to a shape model. The degree of 
specular reflection is determined by the angle 
between the ray and normal vector of the surface. 
However, the input point cloud does not include 
normal vectors; therefore, instead of using normal 
vectors, we create parameter similar to the above 
angle. 
First, we place a texture plane at an illuminant on the 
GPU as a specular reflection texture. Next, all points 
are projected onto the texture plane. Then, assume 
that all points have normal vectors as shown at the 
top of Figure 9. The angle between each normal 
vector and ray vector has the angle distribution 
shown at the bottom of Figure 9.  
Note that the density distributions of the projected 
points in Figure 9 have a similar distribution to those 
in Figure 7. Therefore, we compare their distribution 
to achieve shading without a normal vector. In 
particular, we regard each of the density distributions 
on the projected plane to be the angle between a 
normal and ray vector. Similarly, if we replace the 
ray vector with the eye vector in Figure 9, we can 
regard the density distributions of each projected 
point with the angle between the normal and eye 
vector. Consequently, the differences of their 
distributions indicate the angle between the eye and 
ray vector. 
In Figure 6, note that the depths based on point A 
were stored into 8 pixels; point C has 9 pixels. We 
have found that their numbers are almost proportional 
to the distributions on the hidden points texture. 
Thus, we create a hidden points texture at an 
illuminant as a specular reflection texture on the GPU. 
Then, we determine the drawing points by referring 
to specular reflection texture and the hidden points 
texture; see the next section. 

 
Figure 9. Angle between two vectors. 

2.4 Determining drawing points 
We determine the drawing points by utilizing all three 
textures. First, we determine the visible points by 
applying the results of the hidden points texture to the 
point cloud. Next, we apply the results of the diffuse 

reflection texture and specular reflection texture to 
the visible points. 

2.4.1 Eliminating hidden points 
To eliminate the hidden points, all points are 
projected again onto the hidden points texture, as 
shown in Figure 10, where the depth value of point A 
is 2, point B is 4, point C is 3, and point D is 7. It 
shows that point A is projected onto a pixel whose 
depth value is 2, and each adjacent pixel has a depth 
value of 4-5. Then, since there is a larger depth value 

 
However, point D is projected onto a pixel whose 
depth value is 6, and each adjacent pixel has a depth 
value of 3-6. Then, since there is no larger depth 

drawn. Using this process, all points are projected 
onto the hidden points texture to determine whether 
they should be eliminated or not. 

 
Figure 10.  A result of hidden points texture. 

2.4.2 Hiding points for diffuse reflection 
We hide some of the points to represent diffuse 
reflection. This process is illustrated using Figure 11, 
where we can select any of the four hidden LEVEL 
(0-3). 
We start by selecting hidden LEVEL 3. All visible 
points are projected onto the diffuse reflection texture 
of LEVEL 3, so as to represent the diffuse reflection 
with LEVEL 3. For example, if a point with depth 
value 4 is projected onto the pixel shaded with 
diagonal lines, the point is not drawn because it has 
the same depth value as that of the pixel. In contrast, 
when a point with depth value 5 is projected onto the 
same pixel, the point is drawn. 
Next, when we select hidden LEVEL 2, all visible 
points are projected onto the diffuse reflection texture 
of LEVEL 3. For example, if a point with depth value 
4 is projected onto the pixel shaded with diagonal 
lines, the pixel is related to a pixel such as the bold 
pixel in LEVEL 2 of Figure 11. Since, the bold pixel 
in LEVEL 2 has the depth value of 2, the point is 
drawn because its depth value is different from that of 
the pixel. 

depth 

Projected plane 

Ray vector 

Normal vector 

Small            Large            Small 
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In case of selecting hidden LEVEL  l , all points are 
first projected onto the location of LEVEL n . After 
that, when a point is projected onto a pixel yx, , we 
refer to the pixel as ',' yx , computed by Formula (2). 
If the depth in the referring pixel is equal to the 

 

 
Figure 11. An example of diffuse reflection 
texture. (The numbers represent the depth value 
of each pixel.) 
 

ln
ln

yx

yx
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lk
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2.4.3 Hiding points for specular reflection 
We hide some points to represent specular reflection 
in addition to diffuse reflection. First, all visible 
points are projected onto a specular reflection texture 
and a hidden points texture. As noted in Section 2.2, 
we count the pixels in each texture and calculate the 
difference between them. Then, we define a threshold 

 to the difference so that we can control the degree 
of specular reflection;  is the ratio of the difference 
to the number of pixels. The first iteration count is 9 
and the second iteration count is 25. Next, all visible 
points that have a difference greater than  are 
hidden. 

3. RESULTS 
We conducted experiments and verified our method. 
We tested our method as shown in Table 1. The size 
of the diffuse reflection texture is 2048 × 1024; the 
hidden points texture and specular reflection texture 
are 1024 × 1024 each. Additionally, we adopted Cg 
for implementing our method on GPU, and assign 
coordinate value XYZ of all points to color value 
RGB in all three textures. 

CPU Core2 Duo 2.66 GHz  
RAM 2.0 GB  
GPU GeForce 8800GTX  

VRAM 768 MB  
 

Table 1.  Experimental environment. 

Figure 12 shows the results of eliminating hidden 
points with 72,027 (Bunny). This indicates that we 
can eliminate the hidden points by repeating the  

process, if we cannot eliminate the hidden points the 
first time. 
Figure 13 shows the results of applying diffuse 
reflection to two point clouds: (a) and (b) are 542,199 
(Oil pump); (c) and (d) are 152,807 (Chinese dragon). 
They indicate that we can achieve diffuse reflection 
as shown in Figure 2(b) and adjust the diffuse 
reflection by changing the LEVEL. Figure 14 shows 
the results of specular reflection on the shapes shown 
in Figure 13. It shows that the high-light of specular 
reflection, as shown in Figure 2(c), appears locally by 
using our shading method. Furthermore, they indicate 
that we can adjust the specular reflection by changing 

. Therefore, they indicate that we achieve shading 
by stippling. 
Figure 15 shows another result of shading with 
172,974(Armadillo). This indicates that our method 
can achieve shadowing as shown in the circle in 
Figure 15. Due to containing the eliminated hidden 
points in our shading method, our shading method 
has not been applied to the part in the shadow. 
Figure 16 shows the results of processing speed. We 
have compared the implementation on a CPU against 
a GPU. It shows that on a GPU, the speed is 11 to 17 
times faster than on a CPU. The reason is that our 
method can be implemented with an image space, and 
the GPU can perform in parallel with an image space. 
Thus, our method can achieve interactive rendering. 

4. CONCLUSION 
In this paper, we proposed a NPR method with 
stippling using point cloud without normal vectors.  
First, we eliminated hidden points. Next, we applied a 
novel shading method consists of specular reflection 
and diffuse reflection. In addition, we implemented 
our method on GPU to accomplish interactive 
rendering. 
In the future, we will refine our method so it can be 
applied to an unorganized point cloud. 

  
(a) once (b) twice 

Figure 12. Eliminating hidden points. 
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Figure 15. A result of shadowing. 

 

 
Figure 16. Processing speed. 

 

  
(a) (b) 

  
(c) (d) 

Figure 13.  Results of after applying diffuse 
reflection.The hidden LEVEL of (a) and (c) are 7; 

(b) and (d) are 9. 

  
(a) (b) 

  
(c) (d) 

Figure 14.  Results of applying specular 
reflection.  of (a) and (c) is 0.3; (b) and (d) is 0.2. 
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ABSTRACT 
 

In this paper, we present two methods to compress colored 3D triangular meshes in a progressive way. Although 

many progressive algorithms exist for efficient encoding of connectivity and geometry, none of these techniques 

consider the color data in spite of its considerable size. Based on the powerful progressive algorithm from Alliez 

and Desbrun [All01a], we propose two extensions for progressive encoding and reconstruction of vertex colors: a 

prediction-based method and a mapping table method. In the first one, after transforming the initial RGB space 

into the Lab space, each vertex color is predicted by a specific scheme using information of its neighboring 

vertices. The second method considers a mapping table with reduced number of possible colors in order to 

improve the rate-distortion tradeoff. Results show that the prediction method produces quite good results even in 

low resolutions, while the mapping table method delivers similar visual results but with a fewer amount of bits 

transmitted depending on the color complexity of the model. 

Keywords: Progressive compression; Colored 3D mesh. 
 

 

1. INTRODUCTION 
 

Nowadays, 3D models are widely used in many 

applications such as virtual reality, entertainment, 

Computer-Aided Design, scientific simulation and e-

commerce. Among the various existing 

representations, 3D triangular meshes are particularly 

appropriate to represent these models due to their 

algebraic simplicity so that the most part of 

manipulations can be processed by the graphic 

hardware. The increasing popularity and the 

increasing size of 3D meshes to respond to the needs 

of representing objects or scenes with more and more 

realism have become a critical issue, especially for 

the end-users with limited bandwidth and storage 

capacity. In this context, compression is a good 

solution for this task; two different classes of 

techniques exist: single-rate and progressive. Single-

rate techniques compress the mesh information as a 

whole and the visualization is possible only when the 

entire compressed file is received at the user-side. 

These techniques often have advantages in terms of 

compression ratio. On the other hand, progressive 

techniques are more flexible by providing the 

possibility of early visualization of the coarse version 

with very few bits transmitted and then more refined 

models can be rendered when more bits are received. 

This property of progressive reconstruction is useful 

especially for large models and for Internet-based 

applications. 

A typical 3D mesh is composed by its geometry, 

connectivity and attribute data. Geometry data 

determine vertex positions in the 3D space. 

Connectivity data describe how these vertices are 

connected together and attribute data specify colors, 

surface normals or texture information for instance. 
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Among these mesh elements, attribute data is not 

often considered by the state-of-the-art mesh 

compression algorithms in spite of their visual 

importance and their considerable size, especially for 

the progressive algorithms.  

In this paper, we propose two approaches to encode 

efficiently color data in a progressive manner. Our 

work can be seen as an extension of the progressive 

mesh compression algorithm from [All01a] which 

encodes only the connectivity and the geometry. We 

have chosen this algorithm, since it is the best state-

of-the-art connectivity-driven algorithm. As it was 

observed in [Lee09], even the most efficient 

geometry-guided algorithm [Pen05] produces a poor 

visual quality at low and medium bit rate, due to the 

stair-like effects. Moreover, Alliez and Desbrun’s 

algorithm which is based on the vertex removal 

allows a better prediction using more neighboring 

vertices than algorithms based on edge-contraction 

[Hop96] [Paj00] [Tau98a] [Kar02], leading to the 

better compression of  the color data. 

 

Related work 
Single-rate techniques have been firstly studied by 

many researchers in order to reduce compactly the 

mesh data [Tau98b] [Tou98] [Gum98] [Baj99] 

[Ros99] [All01b]. 

Later on, research on progressive compression 

techniques have been introduced with the increasing 

popularity of web-based applications. The first 

progressive algorithm was proposed by Hoppe 

[Hop96]. This new mesh representation, progressive 

mesh, simplifies a given mesh by applying 

successively edge contraction operations. At each 

step, the edge to be contracted is properly chosen in 

order to reduce the approximation error as much as 

possible. At the decompression stage, the 

reconstruction is achieved by the inverse operation, 

vertex split. This method has been extended by 

several researchers to improve the compression 

efficiency and also the rate-distortion trade-off 

[Paj00] [Tau98a] [Kar02]. In their work, Cohen-Or et 

al. [Coh99] proposed the patch coloring algorithm for 

progressive transmission. This algorithm removes 

iteratively an independent vertex set – any two 

vertices of this set are not connected by an edge – 

using vertex decimation. Then, each hole left by 

vertex decimation is re-triangulated in a deterministic 

way. The set of these new triangles is called a patch. 

The authors applied 2-coloring and 4-coloring 

methods to the patches in order to permit the decoder 

to identify correctly each patch. This algorithm 

encodes the connectivity with an average of 6 bits-

per-vertex (bpv).  Alliez and Desbrun [All01a] 

extended the existing valence-driven single-rate 

approaches [Tou98] [All01b] for progressive mesh 

encoding. Their algorithm, which is also based on 

vertex decimation, consists of two conquests: 

decimation and cleansing. The decimation conquest is 

successively applied alternating with cleansing 

conquest, building different levels of details. This 

algorithm encodes the connectivity with an average of 

3.7 bpv.  

All the progressive algorithms described above are 

connectivity-driven algorithms, meaning that the 

priority is given to the connectivity coding. 

Observing that the amount of geometry data in the 

compressed file is often larger than connectivity data, 

Gandoin and Devillers [Gan02] proposed the first 

geometry-driven approach based on the kd-tree space 

subdivision. In terms of lossless compression ratio, 

this algorithm outperforms connectivity-driven 

algorithms. Peng and Kuo [Pen05] proposed a more 

efficient geometry-guided technique by using the 

octree cell subdivision. An improvement is achieved 

by using efficient prediction methods for both 

connectivity and geometry. These geometry-driven 

algorithms give very impressive results in terms of 

lossless compression ratio, however they provide 

quite poor results at low resolutions, hence they are 

not fully efficient for progressive transmission.  In 

[Lee08], the authors proposed key-frame based 

technique for the efficient transmission of animating 

meshes. 

Up to present, the compression of the mesh attribute 

data such as colors, normals or texture coordinates 

plays a secondary role. Among the well-known 

single-rate techniques, only [Dee95] [Baj99] 

[Tau98b] proposed a method to encode vertex-bind 

color information in the RGB color space. However, 

the prediction and the quantization used for the color 

encoding are the same as for the geometry encoding 

regardless of its different nature. More recently, Ahn 

et al. [Ahn06] and Yoon et al. [Yoo07] proposed new 

methods for the efficient encoding of color data. Ahn 

et al. [Ahn06] used a mapping table based on the 

vertex layer traversal algorithm. Instead of encoding 

color coordinates of each vertex, they encode the 

index of the vertex color in the mapping table. A 

color value in the mapping table is encoded when it 

appears for the first time during the traversal. In other 

words, they have to encode the index of each vertex 

and the corresponding color coordinates in the 

mapping table. To further improve the efficiency, 

they also used a delta coding for color index 

encoding. Yoon et al. [Yoo07] introduces a 

prediction method using connectivity and geometry 

information of neighboring vertices. They consider 

different weights for the neighboring vertices using 

angle analysis. Then the color value of the current 
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vertex is predicted from weighted averaged color 

values.  

Geometry images [Gu02] [Yao08] permit to represent 

compactly the colored geometric models using 2D 

images. There exist also some algorithms which 

allow the simplifying the mesh taking the color 

information into account [Hop99] [Gar98] [Roy05]. 

However, these algorithms do not provide a way to 

reconstruct the original mesh. To our knowledge, 

there is no progressive mesh coder allowing the 

encoding of color information.  

 

2. DESCRIPTION OF BASE 

ALGORITHM 
 

Our color compression scheme is based on the 

valence-driven progressive approach proposed by 

Alliez and Desbrun [All01a]. This algorithm uses the 

good statistical property of the native distribution of 

vertex valences for the mesh connectivity encoding. 

This approach iteratively decimates a set of vertices 

by combining decimation and cleansing conquests to 

get different levels of details (LOD). Decimation 

conquest consists in traversing the mesh patch by 

patch using a gate-based traversal; the front vertex of 

the current gate is removed only when its valence is 

below 7, in order to preserve compactly the vertex 

valence distribution. The hole left is then re-

triangulated. The boundary edges of the actual patch 

are pushed into a FIFO list. The decimation conquest 

continues with the next available gate in the FIFO list, 

performing a breadth first traversal. Similarly, 

cleansing conquest removes only vertex of valence 3.  

Fig.1 illustrates this mechanism: a regular input mesh 

(Fig.1.a) is simplified by decimation conquest 

(Fig.1.b). A set of independent vertices (red vertices) 

is removed and patches are re-triangulated. After 

performing cleansing conquest (Fig.1.c), vertices of 

valence 3 (blue vertices) are removed. We can see 

that as the input mesh is regular, the simplified mesh 

is also regular. Even for irregular meshes, this 

algorithm delivers better triangulation at coarse levels 

than the work of Cohen-Or et al. [Coh99]. During the 

compression stage, valences of removed vertices and 

additional null codes (in case of irregular mesh) are 

encoded for the connectivity.  

For the geometry coding, Alliez and Desbrun first 

applied a global and uniform quantization to the 

coordinates of the mesh vertices. Then, they used 

both the barycentric prediction and the approximate 

Frenet coordinate frame, separating normal and 

tangential components to further optimize the bit rate. 

The base vectors of the local frame are built from the 

current gate (one of the boundary edges of the patch) 

and the approximated patch normal. The barycenter is 

obtained by averaging positions of neighboring 

vertices. The difference between the position of the 

vertex to be removed and the barycenter is then 

encoded in the local frame. 

 

Figure 1.  An example of decimation (b) and 

cleansing conquests (c) applied on a regular mesh 

(a). 

Recently, Lee et al. [Lee09] proposed an improved 

geometric coder using a discrete bijection. They 

adopted the bijection method of Cartens et al. 

[Car99] and optimized the coding efficiency by 

providing an angle minimization. They also proposed 

a framework to improve the rate-distortion (R-D) 

trade-off by using adaptive quantization during the 

mesh simplification process.  

In the following of this paper, we use the mesh 

traversal and the connectivity encoding techniques of 

[All01a] and the geometry coder of [Lee09]. 

 

3. COLOR COMPRESSION 
 

The amount of color data associated to the mesh can 

be as large as or even larger than connectivity and 

geometry without an adaptive compression method. 

Therefore, a specific technique is required to reduce 

efficiently these data.  

We propose in this section two methods which permit 

to encode the color data associated with mesh 

vertices, in a progressive manner. 

 

Color space transform 
Before to compress any color data, all colors 

expressed in the RGB space are transformed into the 

Lab space. The Lab space is the luminance-

chrominance representation which describes more 

closely the human perception system. Moreover, this 

representation is more decorrelated than the RGB 

space. Thus, the Lab space is more appropriate to the 
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data compression. After this transformation, each 

color is represented using 8 bits for L, a and b color 

components as in the initial RGB space. 

Prediction-based method 
Since we consider the connectivity reduction of 

Alliez and Desbrun [All01a], the simplest method to 

predict the color value of the current vertex to decode 

is to use the average color of neighbors, like the 

prediction used for geometry encoding as illustrated 

in Fig. 2. 

 

Encoding

Decoding

 

Figure 2. A vertex is removed (resp. inserted) 

during the encoding (resp. decoding) process. Its 

position is predicted from the averaged position of 

the neighboring vertices. 

 

However, this prediction is not very efficient because 

the color data own a different behavior than geometry.  

In the case of quite regular meshes, the difference of 

positions (geometrical distance) between two vertices 

connected by an edge is relatively small, hence the 

barycentric prediction, explained in Section 2, can be 

performed efficiently. However, the color difference 

between two adjacent vertices can be very important, 

especially in the case of a vertex located in a color 

boundary, resulting that the averaging prediction is 

quite ineffective. 

We can observe that the color value of a vertex is 

generally very close to at least one of its neighboring 

vertices’ colors. Based on this observation, we 

propose a method which selects the proper color 

among the colors of the neighboring vertices so as to 

predict more efficiently. To perform this color 

selection, we first calculate the average values, Lmean, 

amean and bmean of the neighbor colors. Then, for each 

component, we select the one which is the closest to 

the corresponding average component among the 

neighboring vertices’ colors. The difference between 

the original and the selected color component values 

is then entropy coded to allow the decoder to 

reconstruct the exact color value. During the 

decompression process, after an insertion of new 

vertex, the corresponding color data is added to the 

vertex, allowing the progressive reconstruction.  

 

Mapping table method 
As each vertex color is represented using 24 bits, 

there exist 2
24

 possible colors. Yet, the human visual 

perception system cannot distinguish relatively small 

change of colors. Hence, we propose a method to 

reduce the bit rate needed for color encoding by 

reducing the number of colors to encode.  

Our method first applies a clustering algorithm to the 

input mesh in order to reduce the number of possible 

colors without seriously affecting the visual distortion. 

Then, we use a mapping table method as in [Ahn06], 

based on the observation that this method is 

particularly useful when there is small number of 

colors. Fig.3 illustrates the diagram of our method in 

the case of the compression process.  

Transformation 
into Lab space

Reducing of 
number of colors

Mapping table Color index

Entropy coder

Triangle mesh with 
vertex color

Bitstream

Prediction

 

Figure 3. Diagram of the encoding process of our 

second algorithm. 

The clustering method is widely used for 2D image 

compression [Sal98]. It consists in finding a set of 

representatives (Look Up Table) and in mapping each 

vertex color to its nearest representative. To generate 

a correct mapping table by minimizing the color 

distortion as much as possible, we use the well-

known K-means clustering algorithm.  

1. K initial seeds colors are selected from the 

mesh color data set.  

2. K clusters are created by associating each 

color to the nearest seed.  

3. The centroids of each cluster are used as 

new seeds and the new clusters are created.  

The algorithm repeats step 2 and 3 until the all seeds 

are unchanged. Since the efficiency of the clustering 

algorithm depends on the initial condition of the 

seeds, we use as initial seeds the K more frequent 

colors of the input mesh in order to strengthen the 

approximation. After finding K representatives, each 

vertex color is replaced by its closest representative. 

WSCG 2010 Communication Papers 202



A result of this clustering algorithm is illustrated in 

Fig.4 with the Globe model containing initially 5030 

colors. Although the number of possible colors is 

reduced to 256 colors, one can hardly distinguish the 

color distortion.  

 

 

Figure 4. Color reduction based on clustering 

for the Globe model. 

 

To encode the color data, we use the mapping table 

containing the final representatives obtained by the 

clustering algorithm. At the compression stage, when 

removing a vertex, the color index corresponding to 

its color in the mapping table is encoded.  

To further enhance the rate-distortion performance 

and also to reduce additionally the coding cost, all 

color values contained in the mapping table are 

encoded in a progressive way. When the resolution 

level is augmented (when the mesh is refined to one 

higher level), the information of new colors are sent, 

enlarging the size of the mapping table. Fig. 5 

illustrates an example of the progressive decoding of 

the mapping table. For a given resolution level, the 

mapping table contains 4 colors (C0 to C3). When a 

new vertex is inserted, and if the decoder identifies 

that the associated color is not present in the current 

mapping table then the new color value is added to it.  

Furthermore, we try to reduce the coding cost needed 

for the encoding of the mapping table. In Ahn et al.’s 

work [Ahn06], they encode each color values in the 

mapping table using 24 bits. We reduce this coding 

cost by using our prediction-based method. During 

the compression process, we use our prediction 

method when removing each vertex. And we store 

only the difference between the original color value 

and the predicted color of the last encountered vertex 

for each color of the mapping table. So, during the 

mesh reconstruction, when a vertex is inserted and its 

color is revealed for the first time, we use information 

of the neighbors to acquire the correct color value of 

the corresponding color in the mapping table.  

Even when the full resolution of the geometry has 

been reached, there still exist some differences of 

colors between the reconstructed color mesh and the 

original one, due to the color number reduction step 

(i.e. the clustering). However, depending on the 

needs, the original vertex colors can be restored, by 

encoding the difference of color between the initial 

color value of each vertex and its representative 

during the clustering phase. These differences are 

sent at the end of the decompression process. 

 

Figure 5. An example of progressive decoding of 

the mapping table. Initial mapping table (a) is 

enlarged when a new color, C4, appears (b). 

 

4. EXPERIMENTAL RESULTS 
 

Fig. 6 shows the 3D models used in our experiments. 

Each coordinate of vertices of these models is 

quantized using 10 bits.  

 

 

Figure 6 : Models used for compression. 
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Lossless compression 
Table 1 shows lossless compression results for the 

test models using our methods. The bit rates needed 

for compression of the color information and those of 

the mesh connectivity and the geometry (C+G) are 

given in bits-per-vertex (bpv). As most of the well-

known state-of-the-art progressive algorithms do not 

consider color data, the efficiency of our prediction 

method is compared with the prediction scheme used 

in Yoon et al.’s work [Yoo07] and the averaging 

prediction. The method of Yoon et al. was originally 

applied in a single-rate way in their work. We have 

adapted their prediction method based on angle 

analysis for the mesh traversal technique of [All01a]. 

We can observe that the performance of these 

prediction schemes is similar for each model and 

better compression rates are obtained for the models 

containing large surface of smooth color variation, 

such as GIST-Monkey and Swirl models. For all test 

models, our method outperforms those of [Yoo07] 

and the averaging prediction method, especially for 

the Swirl model which contains many color boundary 

vertices and for those the color difference on the 

boundary is important.  

Results of lossless compression of our mapping table 

method are also given. Different numbers of seeds, K, 

are used during the color number reduction step. We 

can see that the more the number of initial seeds 

increases, the more the coding rates decreases. This is 

because the cost of the original color restitution 

applied after reaching the finest geometry resolution 

level increases rapidly when the value of K becomes 

smaller. As a consequence, the result of the mapping 

table is better than our prediction method when the 

value of K is superior to 256.  

 

Progressive compression 
Fig. 7 illustrates some intermediates meshes with 

respective coding rates. All the rates presented in this 

figure include the amount of connectivity, geometry 

and color data. Our two methods produce 

intermediates results with a quite good visual quality 

both for the geometry and the color even for low bit 

rates (< 5 bpv).  

In this figure, the GIST-Monkey model is used to 

compare the efficiency of our two methods: 

prediction method (d–f) and mapping table method 

(g–i). As expected, the mapping table method 

produces intermediate meshes of similar visual 

quality with less bit rates. Even though the number of 

colors has been severely reduced, from 6669 to 32, 

one can hardly sense the discrepancy comparing to 

the results of the prediction method. 

 

 

5. CONCLUSION 
 

In this paper, we have presented two methods for 

progressive encoding of colored meshes. To our 

knowledge the proposed methods are the first ones 

which consider the effective color coding in the field 

of 3D progressive compression. Our first algorithm 

based on the prediction is easily implementable and 

produces quite good results even for low bit rates. 

The second algorithm combining the mapping table 

with the clustering delivers intermediate meshes of 

almost equal visual quality with fewer bits, enhancing 

the rate-distortion trade-off. 

As future work, we will investigate a reliable metric 

permitting to measure the global distortion between 

two meshes taking mesh geometry and also color into 

account, in order to evaluate the rate-distortion 

performance. 
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Table 1. Compression rates of test models in bits-per-vertex. 

Models # V # Color C + G 
Prediction  Mapping table 

Average Yoon Our K = 64 K = 256 K = 1024 

Globe 36866 5030 4.61 16.43 16.17 15.37 15.81 13.81 12.65 

GIST-Monkey 50503 6669 13.5 6.49 6.49 5.95 8.52 8.33 7.23 

Swirl 9216 138 4.12 9.97 10.16 6.62 3.04 - - 
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Figure 7. Result of progressive decoding of the test models. The model Globe (a – c) and the model GIST-

Monkey (d – f) are progressively reconstructed using our prediction method. Intermediates meshes of the 

models GIST-Monkey (g – i) and Swirl (j – l) are given by our mapping table method. For both models, 

the number of possible colors are reduced, using K = 32 seeds in the clustering step. The bit rates include 

the connectivity, the geometry and the color information. 
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ABSTRACT

Although modern graphics hardware provides up to 1.5 gigabytes of memory, methods for effective texture com-
pression are still required since there is always demand for more detailed and realistic images. In this paper, we
present a method for the effective compression of large images and textures based on a quadratic B-Spline wavelet.
The transformation is followed by a tree-compaction algorithm, which achieves high compression ratio at good
image quality.

Keywords
Texture Compression, Wavelets.

1 INTRODUCTION

Compression of large textures and images is of crucial
interest in many fields in computer graphics. The pro-
grammability of modern GPU allows texture and image
compression and decompression algorithms to exploit
the full parallel processing power and streaming capa-
bility. However, one considerable obstacle is yet the
limited support and capacity for general purpose data
storage on the graphics card: Though provided with up
to 1.5 gigabytes of memory, modern GPU’s texture size
is still limited to currently 8192x8192 pixels.

Wavelet encoding has proven to be an appropriate
tool for image compression, as in JPEG2000 [15]. Ad-
vantages are that it is easily implemented in software
and can be adapted to hardware for improved perfor-
mance [16]. There are several benefits arising from
wavelet compression. First, the encoding itself leads to
a straightforward lossy compression scheme by quan-
tizing the coefficients. By encoding the wavelet coef-
ficients into a quadtree, some memory can be saved by
removing subtrees containing only zero coefficients af-
ter quantization. This means that textures will require
less memory for storage, allowing them to fit into the
limited texture size of the graphics card without the use
of tiling. This way a shader program can be used for
decompression and filtering.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

Based on these observations, we present a compact
tree-coding algorithm for the efficient high-quality
compression of two-dimensional image data and a
real-time random access decompression algorithm
running on the GPU. Our approach is easily extensible
to multidimensional data and to non-linear HDR data.

2 RELATED WORK
The S3 Inc. introduced five simple lossy block-
decomposition-based compression schemes with
compression rates of 4:1 and 8:1 [10] for 8-Bit RGBA
images, which have been adopted by the Microsoft
DirectX framework. Based on the observation that
large textures, as required for terrain rendering, are
not supported by graphics cards, Tanner et al. [14]
proposed the clipmapping algorithm, which subdivides
a huge texture into small tiles which fit into the texture
memory.

For the compression of images the JPEG2000
standard [15, 2] supports the use of the LeGall and the
Cohen-Daubechies-Feauveau 7/5 wavelet, superseding
the discrete cosine transform used in regular JPEG
compression. Wavelet-based compression schemes
have proven to be more flexible, providing higher
compression rates while yielding higher quality.
Compared to other algorithms, they demand a higher
decompression complexity. Therefore, recent work
aimed at the use of modern graphics-hardware to yield
interactive frame rates.

Beers et al. [1] introduced a vector-quantization-
based technique that uses a precomputed codebook and
stores a smaller texture of indices into this codebook.
The size of the codebook determines the level of
compression. More recently, Fenney [4] described a
way to store a compressed texture so that decompres-
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sion needs one lookup per sample only. Schneider et
al. [12] introduced a compression scheme for static and
time-varying volumetric datasets. This algorithm is
based on a vector quantization with a fixed bit-rate. To
initialize the compression they use a codebook, which
is obtained using a splitting technique. The number
of generated entries is confined to the bit-rate of the
quantization. The compression rate is nearly 20:1.

Shaprio [13] presents the embedded zerotree wavelet
algorithm (EZW), which is based on a discrete wavelet
transform and a zerotree coding to store a compact mul-
tiresolution representation of significance maps, which
contains the positions of the significant wavelet coef-
ficients. This method can provide good performance
with very low complexity. The disadvantage of the
EZW procedure is, that all values are classifed by an
certain threshold. Coefficients below this threshold are
simply omitted. As an result of this it will remove noise
in uniform regions but also it generates blurry artifacts
in the reconstructed image. DiVerdi et al. [3], proposed
a method to implement the EZW algorithm for decod-
ing on graphics hardware using the Haar wavelet. The
wavelet coefficients are arranged in a tree with a zero
node, where all child pointers of the leaves and nodes,
which contain coefficients equal to zero, point to the
zero node. While they achieve good compression rates,
noisy images are problematic since too few wavelet co-
efficients are sufficiently close to zero for an imperceiv-
able difference.

3 WAVELET-TRANSFORMATION
Wavelet transformation in general has been well studied
in literature so we will not discuss it in detail. The most
important property of the wavelet transformation is that
it decomposes the image into perceptually meaningful
subbands that can afterwards be compressed more effi-
ciently than the original image.

Before the wavelet transformation the gamma correc-
tion is applied for linearization of the intensity values.
This step needs to be replaced by a log-mapping in the
case of HDR data. In both cases, the RGB color space is
converted to the Y ′PbPr color space, where a luminance
value and two differential color values are stored to con-
sider the human visual system, which is more sensitive
to changes in luminance than in color.

The choice of the wavelet basis is crucial for the
wavelet compression. The two major characteristics of
a basis are the width of support and the compression
it can provide. A wider support yields better compres-
sion results, but is computational more expensive. We
implemented three different wavelet bases in order to
compare their benefits and disadvantages.

Our first implementation is the Haar wavelet, which
has the most compact support. This simplicity makes it
optimal for decoding performance. Disadvantages are,
however, that it is neither continuous nor differentiable.

This results in highly visible block artifacts in the com-
pressed image.

The LeGall biorthogonal wavelet, which is also
described in the JPEG2000 specification [15, 2], is
continuous, but not differentiable. Compared to the
Haar wavelet, it represents local changes in frequency
smoother and thus produces more appealing compres-
sion results. As shown in Figure 1, its support is three
times as wide as the Haar wavelet.

Figure 1: Haar, LeGall and quadratic B-Spline mother
wavelet.

The quadratic B-Spline wavelet [11] is both continu-
ous and differentiable. It therefore should achieve the
best compression results compared to the two previous
bases. It has the same support width as the Le Gall
wavelet so the decompression performance is equiva-
lent. The associated coefficients of the analysis and
synthesis filter are shown in Table 1.

4 TREE-BASED COMPRESSION

Unfortunately, an entropy-based coding of the quan-
tized wavelet coefficients as in image compressions al-
gorithms like JPEG2000 is not suitable for real-time de-
compression on the GPU. Instead we first build a tree
data structure from the wavelet decomposed image and
then exploit redundancy in this tree by converting it into
a general directed graph. In this procedure, identical
or similar nodes are iteratively combined into a single
node until a desired compression ratio is achieved.

Analysis Filter Synthesis Filter
Coefficients Coefficients

i Lowpass Highpass Lowpass Highpass
Filter Filter Filter Filter

-1 1/4 1/4 -1/4 -1/4
0 3/4 3/4 3/4 3/4
1 3/4 -3/4 3/4 -3/4
2 1/4 -1/4 -1/4 1/4

Table 1: Coefficients of the quadratic B-Spline analysis
and synthesis filter.
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4.1 Wavelet tree
Based on the dyadic decomposition a natural tree struc-
ture for the wavelet coefficients is to store the LH, HL,
and HH coefficients of a single pixel in the current level
together with four pointers to the next finer level. The
LL coefficient for the root level then needs to be stored
outside the tree. This way the coefficients required to
reconstruct a single pixel can be collected by traversing
the tree from the root node to the leaf containing the
highest resolution coefficients for that pixel. The major
drawback is that for storing the quantized coefficients
only 9 bytes are required, while the pointers require 12
bytes, when using up to 24 Bits which allows up to 16
MB for the compressed representation.

Figure 2: Dyadic decomposition and derived tree data
structure.

In our approach we reduce the pointer overhead by
grouping the wavelet coefficients of a two by two pixel
block on each level. This way, only four pointers are
required per 12 quantized YCC coefficients. Thus, the
overhead is only 12 bytes per 36 bytes of data or in other
words roughly 33%. Since the lowest resolution level
only contains one coefficient of each type, four coeffi-
cients need to be stored outside the tree instead of only
one. As these must be considered seperately anyways,
we stop the wavelet decomposition at two by two pix-
els and store all of them as LL coefficients. Figure 2
shows the dyadic decomposition and the resulting tree
data structure.

4.2 Tree compression
After the tree data structure is generated, redundant
nodes are iteratively removed. Since combining two
nodes also joins their subtrees, only nodes with the
same children are candidates for such a collapse op-
eration. The final data structure now is a general di-
rected graph with the addition of a specifically marked
root node (see Figure 3). As a collapse operation might
introduce an approximation error the ordering of col-
lapses as well as the choice which two nodes are col-
lapsed at each step determine the quality of the decom-
pressed result.

We use a priority queue to perform the node collapse
operations in an optimal order on the directed graph. To
minimize the total mean square error (MSE), the key

Figure 3: Uncompressed (left) and compressed (right)
directed graph data structure. The colors depict identi-
cal coefficients stored in the tree nodes.

by which the operations are sorted needs to be propor-
tional to the sum of squared differences (SSD) of all
nodes collapsed together by this operation, i.e. all orig-
inal nodes collapsed into the two candidates i and j.
As the coefficients of each node are the average coeffi-
cients of all contained original nodes, this error ε(i, j)
can be computed by summing up the SSD of both nodes
(εi and ε j) with the appropriately weighted SSD when
collapsing the coefficients of the two candidates:

ε(i, j) = εi + ε j +d2(i, j)
wiw j

wi +w j
,

where d2(i, j) is the sum of squared differences of the
coefficients of node i and j and wi/ j is the sum of
the weights of all original nodes collapsed to i and j,
respectively. For the computation of the new coeffi-
cients, those of node i and j are simply multiplied by
the weight stored in each of these nodes and divided by
the new weight which is the sum wi and w j.

Since each node is always collapsed with the one for
which the collapse has the lowest cost, we only need to
find the closest node ci for each node i and store this
pair in the priority queue. This problem is similar to the
nearest neighbor search in high dimensional spaces as
our coefficient vector has a dimensionality of 36. The
only exception is that the distance beween two nodes
with different child nodes must be set to infinite to pre-
vent collapsing them. Section 4.2 discusses the nearest
neighbor search algorithm we use in more detail.

When a collapse is performed, some of the queue en-
tries become invalid and need to be recomputed. As-
suming that the new nearest neighbor of those nodes
introduces a higher SSD we can postpone the recom-
putation until that collapse is fetched from the prior-
ity queue. The only nodes for which we need to im-
mediately find the nearest neighbor are the newly con-
structed node and all nodes that had one of the two col-
lapsed nodes as immediate children. The latter is nec-
essary as these nodes might now have a closer neighbor
than the one that was previously found. Another prop-
erty we used to speed up the initial filling of the priority
queue is that inner nodes cannot be collapsed before the
first few leaf nodes were removed since they cannot ini-
tially have the same child nodes.

Zerotree coding In addition to the optimizations de-
scribed above we can also remove all leaf nodes for
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which their coefficients are all quantized to zero by in-
troducing a zero node similar to [3]. Since the zerotree
coding does not need a nearest neighbor search or a pri-
ority queue, those parts of the wavelet tree that do not
contain any information can be quickly removed. In
contrast to [3] we do, however, not collapse nodes con-
taining near-zero coefficients although these might be
collapsed with the zero node at a later time if the intro-
duced SSD is the lowest one.

As this step reduces the total number of nodes be-
fore the first neighbor search and the maximum number
of collapse operations in the priority queue it can sig-
nificantly reduce the total runtime. This is especially
important for images that required a padding before the
wavelet transformation.

Nearest neighbor search As mentioned above the
coefficient vector for which we need to find the nearest
collapse candidate is 36-dimensional. Thus we require
an efficient method to search the nearest neighbor in
this 36-dimensional space. Since each collapse implies
removing two and adding one point to the candidate set,
a spatial acceleration data structure like the r-tree [6]
cannot be used and we need to restrict ourselves to a
linear ordering based on some sort of key value.

Fortunately, we can exploit the fact that most coeffi-
cient vectors will be centered around the origin with a
more or less gaussian distribution. Therefore, we chose
our hash function to be the distance to the origin and
only need to search those node with a similar distance.
As soon as we find the first candidate, we can thus ef-
ficiently stop searching in one of the two directions if
points farther away or closer to zero cannot introduce a
lower error.

5 IMPLEMENTATION
To achieve real-time decompression, we had to meet
some contraints that are given by the graphics hard-
ware. First the coefficient values have to be quantized
to the range 0−255 using a global scaling to the range
[0,1] when storing them in a 24 bit RGB texture. After
this, all values are simply scaled by the factor 255. The
quantization also restricts us to textures of size 256 in
each dimension since the color value is to be directly
used as texture coordinate. Therefore, we use a three-
dimensional texture to encode the tree. The size of this
texture is 2562 × 2n, where 0 ≤ n ≤ 8 and each pixel
uses 24 bit in the regular RGB format.

As shown in figure 5 we encode blocks in pairs of
4× 4 pixels. In each block, the upper left four pixels
contain pointers to the children of the current node. In
each pointer pixel, the color values contain the texture
coordinates of the child nodes upper left pixel. With
this scheme, we can encode 64× 64 = 4096 nodes in
each layer of the texture so we can store up to one mil-
lion nodes or 36 million unique coefficients.

Figure 4: Part of the compressed wavelet data stored in
the 3D-texture. Since the image is taken from depth 0,
the root node is visible in the upper left corner.

5.1 Parallel decompression
For parallel decompression on the GPU, all wavelet
functions contributing to the current pixel need to be
evaluated and multiplied with the corresponding coeffi-
cients. The number of coefficients per pixel depends on
the width of the mother wavelet and is one for Haar and
three for LeGall und quadratic B-Spline in each dimen-
sion. This yields a total of 3 or 27 coefficients per level
for Haar and LeGall/quadractic B-Spline, respectively.
To extract these coefficients, one (Haar) or four nodes
(both others) have to be visited per level. This sums up
to 5 texture lookups per level for the Haar wavelet and
31 for the other two wavelets. Note, that since the child
nodes are not queried at the leaf level, the total number
of lookups if 4l − 1 for the Haar wavelet and 31l − 4
for both others, where l is the number of levels in the
coefficient tree.

Although the number of lookups for the more com-
plex wavelets might seem rather high, the Haar wavelet
only allows nearest neighbor interpolation and thus pro-
duces inferior quality when zooming. To achieve bilin-
ear interpolation the number of lookups for the Haar
wavelet is quadrupled. This yields a total of 16l − 4
which is approximately half than that of the other two
wavelets. Due to the smoother wavelet functions how-
ever, these produce better quality images at the same
compression rate and thus the higher number of texture
lookups is tolerable.

6 RESULTS
To evaluate our proposed algorithm and compare it to
existing approaches, we mainly used images from the
image compression benchmark [5] (Figure 6 and 7).

A quality comparison of the three implemented
wavelet transformations is shown in Figure 5. The
Haar wavelet shows significant block artifacts, which
neither appear using the LeGall nor the quadratic
B-Spline wavelet. Since the LeGall scaling function is
a linear filter, it tends to produce star-shaped artifacts.
The quadratic B-Spline wavelet reproduces sligthly
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Figure 5: From left to right: Haar-, LeGall- and B-
Spline wavelet.

more detail than the LeGall wavelet. In addition, the
biquadratic interpolation that comes for free with the
B-Spline wavelet generates smoother results when
magnifying the image. The PSNR is similar for all
three wavelets, where the Haar wavelet has the lowest
(41.7 dB) and LeGall (45.4 dB) and quadratic B-Spline
(42.9 dB) are slightly better.

Figure 6: Compression results with embedded zero tree
coding (left) and with our approach (right).

Figure 6 shows the differences between embedded
zero tree coding [13] (35.4 dB) and our method
(37.6 dB). Both were compressed at a rate of 23:1.
One disadvantage of the zero tree coding is, that all
values below a certain threshold are simply omitted.
While this removes noise in uniform regions, it cannot
compress data in images containing high frequencies.
In these cases the threshold needs to be significantly
increased to achieve a desired compression ratio and
thus the quality of the reconstructed image is degraded.
In contrast to this, our clustering approach can also
exploit similarities in high frequency regions and thus
much fewer nodes need to be collapsed with the zero
node. This greatly improves the visual quality when
compressing this type of images.

Figure 7: Comparison between S3TC (middle) and our
approach with same compression ratio (top, no visual
difference to original) and same quality (bottom).

In Figure 7 a comparison between S3TC (DXT1) and
our approach is shown. The upper two images are both
encoded with a compression ratio of 6:1 (8:1 for RGBA
images) at 55.1 dB. Note, that our approach yields a
significant higher quality (60.7 dB) at slightly smaller
texture size (1.5 MB compared to 1.6 for DXT1). With
four times the compression rate (26:1) the visual quality
of our method (still 57.1 dB) is equivalent to S3TC, as
shown in the lower image. Figure 8 shows an aerial
image with a resolution of 3000×3000 compressed at a
rate of 34:1 with 36.4 dB. Despite the high compression
rate, important features are still preserved.

The decoding was performed in a pixel shader run-
ning on an nVidia GeForce GTX 295 in real-time. The
performance for a 4096×4096 texture is approximately
400 Mpixels per second using the Haar wavelet and
nearest neighbor filtering (100 Mpixels with bilinear
filtering) and roughly 55 Mpixels per second with the
LeGall and quadratic B-Spline wavelet. For smaller or
larger images, the runtime is almost linear in the num-
ber of levels of the wavelet decomposition. E.g. for a
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Figure 8: Drastic compression (34:1) of a 3000×3000
pixel aerial image. The marked area is magnified below
the full image.

16k×16k texture we still achieve 46 Mpixels per sec-
ond.

7 CONCLUSION AND LIMITATIONS
We presented an effective method for the compres-
sion of large textures and images based on the linear
LeGall and quadratic B-Spline wavelet. With our tree-
compaction algorithm, we achieve high compression
ratios while still preserving high visual quality. The de-
compression is implemented as a pixel shader on a GPU
and runs in real-time on current graphics hardware. Our
approach has shown to be superior to simple zero-tree
removal.

In the future we want to improve the compression
time, which is currently 30 minutes for a 67 Mpixel im-
age (8192×8192 pixel) and thus still rather slow. In ad-

dition, we want to extend our method to high dynamic
range images and multi-dimensional datasets.
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ABSTRACT 
This paper presents a physical user interface intended to help the user (or multiple simultaneous users) to 
achieve an intuitive movement inside a 3D environment without using common interaction devices such as 
mouse or keyboard, while stressing the aspect of reducing financial investments. After exposing an analysis of 
current solutions and implementations of related topics, we argument our implementation and give detailed 
aspects of hardware and software architecture of the system, as well as a comprehensive efficiency study and 
explore the use cases with people with motor impairment. As future work, we intend to extend the usability of 
the system and release it under the GNU General Public License (GPL) for free use and further development by 
other parties. 

Keywords 
Virtual Reality, 3D navigation, user interface for physically disabled individuals. 

1. INTRODUCTION 
Regardless of the quality of simulated 3D worlds, 
people are still conscious of the barrier between them 
and what they see; this is because they only benefit 
from a keyboard, mouse or other common input 
devices. This paper presents a system through which 
we try to whittle this barrier and give users a natural 
interaction tool which they can intuitively use to 
navigate at will with natural body movements. The 
concept was also designed to be easily configurable 
"at home" and to be a low-cost solution. Structure, 
efficiency and the possible uses as an enhancement 
for physically disabled individuals are explored in 
this paper. 

 

2. MOTIVATION 
The system discussed in this paper is an 
improvement of the IIUBAR setup (acronym for 
Interactive Informative Unit Based on Augmented 
Reality) described in [Pop08]. It refines the hardware 
setup used by its previous version, and uses Virtual 
Reality instead of Augmented Reality; this makes its 
uses slightly different: user immersion instead of 
fixed-point informational unit. 
The goal of this paper is to extend the possible use 
cases of this system architecture and to exhibit its 
advantages and drawbacks compared to specialized 
hardware. This system has been developed with 
respect to product quality and reduced financial 
investments. Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 
Copyright UNION Agency – Science Press, Plzen, Czech 
Republic. 

3. RELATED WORK 
Throughout the history of user interfaces there have 
been many metaphors for addressing visualization 
and navigation inside three dimensional virtual 
worlds. Because of the impossibility of fully 
recreating a three dimensional space on a two 
dimensional display system, the ideas that were 
developed in this domain can be split into two main 
categories (Figure 1): fixed display metaphors with 
interaction devices such as mouse, keyboard, space 
mouse, etc, and mobile spatially aware systems. 
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Figure 1. Interaction devices categories 

The oldest member of the fixed displays is 
represented by the classic desktop environment on 
which 3D applications can run and the user can 
“move” inside them by pressing keys or by dragging 
the mouse. Display sizes and image quality have 
grown in direct dependence with technology, and 
today a wide variety is available for purchase; this 
technological advancement came to enhance the 
experience of 3D navigation by enlarging the user’s 
field of view and therefore contributing to a higher 
level of immersion inside the virtual environment. 
Famous examples of this technique include 
connecting multiple screens to form a panoramic 
display around the user, a similar metaphor that uses 
projections which materialized as the CAVE system 
[Cru93], wide panoramic screens [Bau05], spherical 
display systems, and other means of extending the 
field of view as much as possible. Unfortunately, as 
marvelous as they prove to be, extra technology 
comes with extra costs, and may not be easily 
accessible for the usual user and even for educational 
institutions because of the lack of funds. The 
category of fixed display devices can be further split 
into two scenarios depending on the user’s mobility 
and the lack of it; the CAVE system allows users to 
move freely in a designated space and reacts to 
his/her movements. The latter, although it allows the 
implication of multiple users, cannot give each user a 
personalized viewpoint but only a group-oriented 
interaction. So far we’ve identified some key 
advantages of this category: extended field of view, 
multiple users and high level of immersion. The 
inversion of the fixed display concept takes us to 
explore devices that use their own spatial position to 
transmit visual data to the user. These devices range 
from personal digital assistants (PDA) to head 
mounted displays (HMD) which come in a wide 
variety of designs. This category also consists of 
hardware that is specialized for performing precise 

tasks which, through the prism of virtual reality, 
consist of binding the navigation to the user’s view 
point; this way the user can specify the desired focus 
in the environment either by pointing the device or 
using a pen also known as the peephole display 
concept [Yee03], or in the case of the HMD by tilting 
the head in direction. An example from this category 
is represented by the use of a palm computer for 
interacting with a virtual environment [Pig08]. This 
feature gives the great advantage of user mobility, 
being only constrained by the physical space 
available to move into. There are several drawbacks 
to these methods: hand-held devices can only display 
a small portion of the visualized virtual world and the 
HMD type devices should allow the user to be aware 
of the surrounding real environment to prevent 
accidental collisions while moving around. The latter 
is achievable through augmented reality but another 
impediment arises due to the low video resolution 
relative to natural sight; this can be overcome by 
using see-through lens technology, but again we 
stumble into cost issues. From this category, we can 
derive two new advantages: mobility and user-bound 
viewpoint. 
After this analysis we propose the following 
question: is it possible to achieve similar 
performances with relatively basic cost-wise 
accessible hardware? One of the most used input 
devices used today is video. In 2004, Microsoft 
reckoned more than 18.5 million webcam users only 
with instant messaging applications [Web09a], and 
the number is ever growing. Webcams have become 
an accessible and necessary possession for internet 
users, and they can be used with a wide range of 
applications and operating systems. Using webcams 
as input devices is cost-efficient, but require a greater 
effort to create software capable of interpreting the 
input data; fortunately, open-source frameworks are 
freely available which do most of the work. 
Navigating inside a three dimensional environment 
requires linear view-point movement and the ability 
to rotate. In this paper we propose a model through 
which we try to absorb the mentioned advantages 
using low-cost equipment. Our solution consists of a 
fixed but rotatable display that interprets the user’s 
turning movements and level of approach for 
navigation. To navigate inside a three dimensional 
environment the basic requirements are speed and 
rotation, which can be achieved by determining the 
angle of rotation relative to a point of reference, and 
using the distance to the face of the user as 
directional speed input. In the following sections we 
describe the architecture of this system, its use cases 
and efficiency evaluation results. 

WSCG 2010 Communication Papers 214



4. SYSTEM ARCHITECTURE AND 
USE CASES 
Considering the available technology previously 
analyzed, we decided that the best method of 
reducing the cost of the system is to recreate the 
functionalities of the specialized hardware through 
the means of software. This way the equipment 
requirements can be reduced, but we must emphasize 
the used software solution. Another aspect of the 
system is that any user with minimum knowledge on 
software installation and basic experience with 
material carving (for the special support table) can 
create a replica of the system at home without 
significant investments; we like to believe this can be 
a motivational factor through the satisfaction of 
building it. In the following subsections we present 
the aspects of the hardware and software used, 
followed by the exhibition of an official use of the 
system within an ongoing project, and finally we 
describe the multiuser support and the possibility of 
creating networks with multiple implementations of 
the system. 

Hardware architecture 
The system is composed of two simple webcams 
connected to a laptop placed on a rotatable support 
like illustrated in Figure 2. The purpose of the tripod 
table is to allow the hidden camera to look down on a 
cardboard marker which is needed by the software to 
extract rotation coordinates. When in use, the top 
camera is always directed toward the user(s). Each 
component is adjusted to fit the others, thus making 
the system stable for user interaction. 

 
Figure 2. System schematic 

Our implementation uses a laptop, a rotating laptop 
stand, two low-cost webcams and a hand-made 
tripod table, although any similar hardware can be 
properly used for which drivers, if required, are 
compatible with the utilized operating system. 

Software 
The application is developed in C++ and runs on 
UNIX (our implementation uses Ubuntu [Web09b]). 
It combines three open-source frameworks as 
follows:  

• AReVi (Atelier de Realite Virtuelle) 
[Web09c] for virtual environment representation. 
AReVi is a powerful agent-based library that 
provides services for multi agent systems and 3D 
graphics. 
• OpenCV (Open Computer Vision library) 

[Web09d] for face detection support. Visual 
algorithms play an important role in deciding 
how far away a user is from a camera. To 
advance or retreat in the virtual environment we 
chose to use the distance of the user relative to 
the top camera. Achieving this effect resides in 
detecting the user’s face; the difference in face 
size from different positions give away the 
distance, i.e. if the image of the face appears 
larger implies that the user is closer to the camera 
and vice-versa. A basic threshold based noise 
reduction algorithm is used to prevent the 
navigation speed from trebling. 
• ARToolkit (Augmented Reality Toolkit) 

[Web09e] for viewpoint orientation. Similarly to 
OpenCV, ARToolkit uses image processing 
algorithms to extract position and rotation 
information from a physical cardboard marker 
and returns a rotation matrix. For rotation in the 
horizontal plane, we only need one rotation angle 
(around the z axis); we can calculate this angle 
with Equation 1, where R = Rx*Ry*Rz (a 3 by 3 
matrix), and Rx, Ry and Rz are defined in 
[Fol93]. This way, the resulting angle is applied 
to the viewpoint inside the 3D environment and 
the effect of rotation is achieved. 

 
Equation 1. Rotation angle calculation 

The main application works by reading data from 
OpenCV and ARToolkit through a local shared 
memory mechanism (Figure 3); this concept is not 
new, but makes individual builds independent from 
each other, and enhances simplicity of the code and 
extensibility of the software. 
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Figure 3. Communication between components 

Demonstrating the system’s features 
For testing the system we developed two 
applications: a game entitled “Crystal Island” in 
which players enroll to solve quests by collecting 
crystals of different colors and bringing them to the 
totems which required them, and an interactive 
lesson about the solar system entitled “UFO Driver” 
in which the user controls a flying saucer and 
navigates through our solar system to discover the 
planets, our sun, and the asteroid belt (Figure 4). 

 
Figure 4. Applications of the system 

This lesson about the solar system was created with 
respect to the real dimensions of the planets, to give 
scholars a feel of the great distances between 
celestial bodies and to help them grasp this 
information in an entertaining and intuitive way. 

Virtual tour of archeological sites 
Today, a lot of emphasis is put on virtually 
reconstructing lost cultures from different times in 
the history of mankind and even before. History 
lessons have evolved into interactive game-like 
experiences in which users can explore 3D replicas 
of ancient artifacts, buildings and even people. The 
immersion of the user in these environments can give 
visual, auditory or haptic feedback which helps to 
better grasp the details that were specific to a certain 
time in the past. 
In this sense, apart from the games that we developed 
to evaluate the system, we also integrated the system 
in the TOMIS project which aims to virtually 
reconstruct the ancient Roman Edifice with Mosaic 
from Constanta, Romania, through designing, 
implementing, experimenting and demonstrating an 
interactive and collaborative multi-sensorial system 
based on VR/AR technologies. Although not yet 
complete, the reconstruction of the site has been 
integrated with the system and allows users to walk 
through the edifice like it was between the years 46 
AD and 610 AD (Figure 5). The starting point of the 
virtual tour corresponds to the system’s location so 
users can grasp the feel of orientation, and presence 
in the Tomis colony during the Roman period. The 
reconstruction has a hypothetical approach as the 
archeological information from the colony is not 
entirely complete. This enhancement to the project 
aims at promoting culture and tourism in the region. 

 
Figure 5. Using the system in the Roman Edifice 

with Mosaic from Constanta, Romania 
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Multiuser interactivity 
Having more than one system can be used to create a 
network of interactive “3D browsers” through which 
users can compete in games or explore virtual sites. 
The networks can be either local, using a wireless 
router for increased mobility, or distributed over the 
internet, or both local and wide area networks 
connected through a server located on one of the 
machines. 
Along with the network possibility, the system 
supports multiuser on the same machine (Figure 6). 
In this situation, the control of the unit or avatar is 
distributed to each user participating in the 
interaction. To allow other people to observe without 
disturbing the users, adjustments have been made to 
this feature so that people who are more than 
approximately 1.5 meters away from the system (the 
limit of physically maneuvering the device) cannot 
influence the acceleration. 

 
Figure 6. Illustration of multi-user support: 

average of the face positions is computed 
(magnified at bottom of picture) 

When more users engage in interaction with the 
system, an average of the users’ positions is made 
and requires them to work in a team to achieve the 
desired result. Hence to move forward in the 3D 
environment all users must lean forward and if one of 
them leans backwards the average acceleration 
would decrease and cause inefficient movement. 

5. EFFICIENCY STUDY 
With the occasion of the “Laval Virtual” contest that 
took place in Laval, France in 2009 [Web10] where 
we participated with the system under the name of 

“Navoramique” (which stands for Navigation 
Panoramique), we took the opportunity to test its 
efficiency with the help of the people who tried it 
(Figure 7). In this section we discuss the results of 
the survey, and some of the suggestions received 
from our users. 

 
Figure 7. An user testing the system at Laval 

Virtual 
A survey was prepared which contained six 
questions about the system, as follows: 

• Q1: “I think Navoramique is intuitive and 
easy to use.” 

• Q2: “Using Navoramique is more appealing 
than using a keyboard and a mouse to 
navigate.” 

• Q3: “I easily learnt how to control my 
movements with Navoramique.” 

• Q4: “I think ‘UFO Driver’ is an interesting 
lesson about the Solar System.” 

• Q5: “I found ‘Crystal Island’ to be an 
attractive quest game.” 

• Q6: “I would like to have a version of this 
system at home.” 

The possible answer choices were: “Totally 
disagree”, “Disagree”, “Neutral”, “Agree” and 
“Totally agree”. We made the surveys available both 
on paper and online within an application, but most 
users preferred the paper forms because they were 
faster to fill in, and more persons could submit them 
simultaneously (we only had one computer available 
for this task). Figure 8 shows the comparative results 
for this survey on a number of 112 users of all ages, 
and different nationalities. 
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Figure 8. Answers for the evaluation survey 

From the results we learnt that an average of 81% of 
the users gave a positive answer for the first three 
form items while 18 users expressed the wish for 
their own version of the system. As not all users 
played the two available games, the positive answer 
average was 89.91% of the people who did try the 
games (Q4, Q5). There were 59.5% people who tried 
the games from the total who submitted a survey. 
As an additional note, in the case of “Crystal Island”, 
the player’s performance was measured by keeping 
the score; the score was calculated with respect to the 
time that the user needed to complete the tasks of the 
game. The users also had visual feedback of their 
current score and about their position in the top 
scores and after completing the game. The observed 
results were that while some users managed to 
achieve a top score from the first try, the others learnt 
quickly and were able to improve their scores after 
playing several times. 
Some of the users also submitted comments about the 
system which helped us identify some weak and 
strong points. 
One user pointed out that the table should be 
adjustable for each person’s height. Unfortunately 
we underestimated the possibility of the difference in 
height; most tall users had problems with the system 
because the laptop monitor did not permit a very 
wide angle of inclination, and therefore they could 
not adopt a comfortable position while testing. The 
best results appeared when the line between the 
user’s face and the top camera was close to the 
horizontal. 
Another drawback would be the energy necessary to 
physically rotate around the table. We also 
encountered issues with the lighting in the room 
which caused problems with the face detection when 
the user stood between the camera and the light 
source. 
The idea was better accepted by children who 
enjoyed the games and the fact that they had to move 
around to navigate, and by people who were not 
comfortable with navigating with the mouse and 

keyboard. One user mentioned that “as a learning 
tool it would be enhanced if students have to search 
for information”; this underlines the factor of 
motivation in learning. 
To conclude the statistics, the system can benefit 
from small comfort-related improvements, and can 
serve as an efficient interactive learning tool for 
primary school pupils and for students. It can also be 
used as a navigation tool, complementary to the 
standard input devices. 

6. AIDING PERSONS WITH MOTOR 
DISABILITY 
While at the Laval exposition, we were most moved 
when two persons in wheelchairs asked us if they can 
try the system (Figure 9). We discussed the 
possibility of adapting the mechanism to minimize 
the effort needed for navigation, and one of them 
suggested that the facial recognition could be also 
used for turning, so they can only use the head 
movements. Another solution which we discussed 
was to allow left-right navigation without having to 
make a whole turn, but only to slightly rotate the 
stand; this would give similar feedback effect and 
would be a lot more convenient in this case. As noted 
in [Hol06], the weaknesses of one modality are offset 
by the strengths of another, and by modality the 
means of interaction is implied. Slight changes to the 
system like the ones previously mentioned can 
substitute for the impairment of lower body 
movements. 

 
Figure 9. Users with motor disability 

Although we had not foreseen this use case, we were 
deeply moved by the fact that their impression was a 
positive one, and we hope we will collaborate with 
the asylum in Laval to share the technology. 
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7. RESULTS 
The main aspect which we tried to demonstrate is 
that using innovative ideas together with common 
and accessible hardware and software resources, one 
can achieve efficient low-cost solutions to enhance 
human-computer interaction either for gaming, 
learning or aiding persons with disabilities. The 
presented system has been used for educational, 
entertainment and aiding purposes. It also represents 
a method for museums to exhibit a new, modern 
point of view to the visitors. 
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Abstract

In this paper, we propose a hybrid method for lip segmentation based on normalized green-color histogram splitting and Active

Shape Models (ASM). A new adaptive method for histogram splitting is applied in two steps. First, after defining a region of

interest for mouth segmentation, a rough adaptive threshold selects a histogram region assuring that all pixels in that region are

skin pixels. Second, based on these pixels, we build a Gaussian model which represents the skin pixels distribution and is used

to obtain a refined optimal threshold for lip pixel classification. This process is used to refine the normalized green channel

image for the elimination of inner distortions and gradients inside the lip region, which can misguide active contours (i.e. ASM)

in the last step of the hybrid segmentation process. In the results, we present that the proposed method performed better than

conventional ASM on unrefined color enhanced images or pure color-histogram based mouth segmentation.

Keywords: Feature extraction, Segmentation, Image processing, Application.

1 INTRODUCTION

The segmentation of mouth and lips is a fundamental

problem in facial image analysis and is important for

various applications. It can be utilized for lip read-

ing, supporting speech recognition or expression analy-

sis (i.e. facial expression, estimation of emotional state,

pain recognition). Each application has its own limi-

tation concerning speed, accuracy and robustness. The

requirements for facial expression recognition can be

very different depending on application context.

Often initially a color transformation is performed to

exploit the different chromaticity of lips from skin. Ba-

sically, the segmentation approaches can be classified

into two groups. The first group, Histogram based

approaches, is a consequent continuation of the ini-

tial color transformation. The mouth region of inter-

est (ROI) is binarized into lip and non-lip pixels, where

non-lip pixels are mainly skin pixels. The crucial point

in histogram based algorithms is the estimation of that

particular threshold. A very easy approach, mostly used

for first rough mouth segmentation is a fixed threshold,

found by statistical average of numerous samples [8].

A more adaptive approach sets up a watershed like rule,

which defines 15 percent of the darkest pixels in their

color transformed mouth ROI as lip pixels[9]. Other

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

works [5] assume a certain topology in the histogram.

Following this idea they seek for a local minimum be-

tween a lip and a skin heap in the histogram and define

the threshold here.

The second group, is focusing on detection of lip edges

in the mouth ROI [4, 2]. They apply Active Contour

Models (e.g. [4]) or deformable templates [2] to the

mouth’s ROI. Some approaches [7, 1] stabilize their Ac-

tive Contours using support tracking points. The gen-

eral assumption of edge based algorithm is, that the lips

generate prominent edges at the skin-lip crossing. In

monochrome images only a simple shadow casting can

already cause serious problems. A hybrid of color and

edge information is the usage of color images and their

mouth-highlighting transformed representation (e.g as

used in [4, 2]). This can suppress some issues like

shadow casting. But still there is no guarantee the edges

of the lips create significant edges here. This might hap-

pen for many cases. For people having Asian skin tone

for example this rule holds true. However, for Euro-

pean/Caucasian this rule does not hold for all cases any-

more, since the transition from skin to lip pixels does

not form rough edges here for all subjects and condi-

tions. Another usage of color and edge information is to

align deformable templates or active contours using an

energy minimization function, which refers to edge in-

formation and average color intensity inside of the tem-

plate (or contour) as proposed in [2, 3].

In the proposed approach the advantages of both classes

of algorithms (pure color based, and shape/edge based)

shall be combined in another way. We chose Active

Shape Models (ASM), introduced by Tim Cootes [6], as

representative for the edge/shape based algorithms. The

idea is, that a color based approach can contribute to an 
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Figure 1: Flow chart of the proposed algorithm

edge and model based approach (ASM here) to improve

its performance more than a simple prior transforma-

tion of color space, as most hybrid approaches do so

far. In this context we propose a novel adaptive method

for color based mouth segmentation. The rest of the pa-

per is organized as follows. Section 2 describes the idea

of combining histogram based thresholding and shape

based extraction for mouth segmentation. The results of

the proposed methods are presented in section 3. Sec-

tion 4 gives a short summery and outlook.

2 MOUTH SEGMENTATION

The process chain is shown in Figure 1. All successive

steps will be described in the following sub sections.

2.1 Locating Face and Mouth ROI

Object detection in image processing is always the

search for a delimited area in which the targeted pattern

is fitting. A general solution for this task has been

developed by Viola and Jones [13]. They developed an

algorithm, where a cascade of weak Haar-like features

(see Fig. 2) is utilized to model image objects appear-

ance. A Haar-like feature describes the difference of

pixel intensities within similar sized sub regions of one

rectangular region in an image. The most advantage,

compared to other feature descriptors, is the fact, that

they can be computed very fast using integral images.

Once calculated, an integral image can provide the

average intensity of any rectangular region of any size

by one addition and two subtraction operations. This

property is very important in context of applications,

where speed issues are relevant. Another acceleration

is provided by the cascaded structure of the classifier.

During the search process not the whole classifier

needs to be used at each potential position. Once one

cascade step fails all successive cascade steps can be

discarded, the current target region can be rejected and

the search continues in the next potential region.

An implementation of the algorithm as well as face de-

tection models can be found in the OpenCV c/c++ li-

brary, which are widely used. Also in this work, the

available face models were used for face detection. Fur-

Figure 2: Left: base features for the cascade classifier

and their cascadation. Middle: the face region, a result

of the face detector is the search area for single facial

features. Right: single weak features in their local ar-

rangement forming a strong classifier.

ther two models for detection of mouth corners in fa-

cial regions were trained in order to define a region of

interest (ROI) for further mouth segmentation process-

ing. Database for the training was the FGnet Database

from the Technical University of Munich [15]. To train

the classificator 400 positive and negative samples were

chosen. Positive samples were sub images where mouth

corners were directly in center of sub images. Negative

samples were chosen from randomly selected sub im-

ages where the mouth corner were not centred. [12].

2.2 Color Transformation

In common a color transformation is chosen converting

the RGB from R
3 to R

1 exploiting the difference of lip

and skin pixel colorness. Using the ground truth of our

database, a comparative statistic was made to analyze

their ability to separate lip from non-lip pixels, based

on color information only. In result the green channel

from normalized rg was superior to all others, which is

defined by nG = R/(R+G+B). We will refer to this in

further context as nG color channel. The worst results

were achieved by the YCbCr based color transforma-

tions. Qualitative results of this prior study are given in

table 1. The percentage is relative to the histogram of

the complete ROI and outlines the false classified pixels

using an optimal, FPR minimizing threshold found by

the ground truth. Under advantageous conditions lips

and skin pixel form two well noticeable bell curves in

the histogram with a noticeable local minimum in be-

tween (Fig. 3 left). This can motivate approaches like

[5], searching for this minor local minimum. However,

these optimal cases cannot be assumed in general. The

general structure of the histogram can vary in differ-

ent scenarios (Fig. 3). More complex situations can

create numerous minor local minima instead of only

one major minimum. In other cases the smaller bell

curve related to the lip pixels can be directly attached

to the larger bell which represents the skin pixels with-

out producing any local minimum (Fig. 3 middle). This

multiple behavior can be observed independently from

the chosen color transformation. Intersection of skin

and lip color in the mouth ROI with respect to differen
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Figure 3: (Top Row): Histograms. The real his-

togram is the fat black line. The colored lines rep-

resent skin/teeth (no-lip) and lips. These informa-

tion are only gathered by ground truth here and are

a-priori unknown in application case, (Bottom Row):

ground truth. The three samples show three states

normal mouth state(left), open mouth with appearing

teeth (middle), pressed lips with almost none lip pixels

left(bottom).

Used in Transf. With teeth No Teeth

[2] u(Luv) 4.61 % 3.16%

[10] G/B 5.97 % 2.59%

[3] G/R 2.30 % 1.45%

[4] Cr2 11.75 % 10.97%

[4] Cr/Cb 13.08 % 11.16%

[9] R/(R+G) 2.36 % 1.48%

not found nG 0.09% 0.38%

Table 1: Intersection for different color transformations

color transformations was analyzed with and without

teeth appearance. However, the appearance of the teeth

had just a minor impact to the separability (see Table 1)

using a histogram threshold.

2.3 Active Shape Model

Active Shape Models (ASM) combine assumptions

about specific shape behaviour and image signal

response at the model points of the shape. Base of

the ASM is a set of model points forming one or

more contours, which are stored in the mean shape

m. The modelized shape variance is stored in a vector

matrix S. A weighting vector −→w applies the different

shape variations to the mean shape. The fitting process

alternates two steps until convergence:

(0) initialize mean shape

near the object.

do

{

(1) search for special image

signal near model points

(gradients, pattern)

(2) find a shape, based on S,

fitting best to the (image

signal based) model points,

found in step 1.

}

until(convergence)

Step (2) in the algorithm results in the final shape m, by

applying the following equation

m = T (m+S−→w ) (1)

where m is the mean shape of the mouth (a vector con-

taining all x- and,y-coordinates of the shape points one

below the other), S is the matrix of column wise aligned

shape variation vectors, −→w is the vector, containing the

weights for each shape variation of S, and T is a affine

transformation including x- and y-translation, scaling

and rotation. The unknown −→w and T are estimated by

solving

δ = S−→w (2)

with

δ = T−1(m∗)−m (3)

where m∗ are the associated landmark points based on

any measurement in the image data. The estimation of

T is described in [6].

The used shape model for the mouth consists of 22 con-

tour points (see Fig. 4). Only the outline of the mouth

will be addressed here. The mean shape m was found

by average of 20 samples. Classical ASM as introduced

in [6] define the shape variation matrix S by calculating

eigenvectors from the covariance matrix based on size

normalized samples. This method has some drawbacks.

It demands very exactly and equidistantly picked land-

marks for all samples. Further a few number of sam-

ples with less variations can cause wrong mutual depen-

dencies. To resolve semantically and technically clean

modes, the shape modifier vectors for S were created

manually with expert knowledge. Five different modes

were defined (see Fig. 4).

The edge fitting has two main parameters. a) the

method of edge detection and b) the range of edge

detection. Cootes [6] suggests statistical patterns here.

In case of mouth shape this results, more or less, in

a kind of gradient detection. The manifold of profile

structures is considerable. Only the lineup of all 57

Figure 4: The five mouth modi and their behaviour. The

red dots show the mean shape m. The two stacked im-

ages of a mode show the impact of negative (lower row)

or positive (upper row) weighting. Each mode repre-

sents one column of S. 
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Figure 5: Red lines are the profiles taken during the

edge fitting process. Blue dots mark the starting points

from the last model-aligned instance respective the ini-

tial mouth model. The green dots represent that point

in the profile, where the largest gradient is found.

samples does not show some special pattern, different

from gradients, which could be fitted in a definite

pattern. For edge fitting a profile Pi of the normal to

the shape boundary is collected for each model point.

The normals are defined by the neighbour points in the

contour (Fig. 5). The profile contains the information

of interpolated sub-pixels along the profile line. A

simple concatenation of full pixels along a Bresenham

based line was distorting. Profiles always are collected

with a width of three pixels, where outer pixels got

lower weight than inner pixels. As feature for model

point detection gradient function was used, which is

defined as follows:

p∗i = argmax
t

(

t

∑
j=0

pi, j −
k

∑
j=t+1

pi, j

)

(4)

where p∗i is the found point to profile Pi with maximum

gradient. The length of the profiles is an important pa-

rameter here. In the current version a length of 30% of

mouth width is used (in average 30 pixels for the used

samples). All Points p∗i build the next instance of m∗.

2.4 Adaptive Lip Pixel Enhancement

Color enhancement for application of Active Contours

in general (e.g. Snakes, Active Shape Models etc.) has

been introduced already in previous works. But the

lips of the subjects not always have uniform color. So

inside of the lip itself distortions (causing gradients)

can occur, which are more prominent than the outer

(targeted) edge. These gradients can attract the con-

tours falsely and thus misguide the whole active con-

tour. To avoid this an in-between-step is suggested,

which is performed after color transformation but be-

fore the application of ASM. The idea of the Lip-

Pixel-Refinement is to flatten the lip pixels, in order to

weaken the edges inside the lips. Therefore an adap-

tive histogram based algorithm (which is a consider-

able segmentation method itself already) will determine

a threshold to define the lip pixels class in the ROI. This

Figure 6: Model Assumption. There are more skin than

lip pixels. Lip pixels have lower intensity than skin pix-

els. Unknown is their exact centering, scattering, distri-

bution and intersection.

pre-segmentation is used to equalize and flatten distor-

tions inside the (so far known) lip segment.

2.4.1 ACT: Adaptive Color Threshold

Basically the ROI contains two classes of pixels: Lip-

Pixels and Non-Lip-Pixels. A general description of

a statistically based model for lip or skin pixel distri-

butions is not reliable, due large variance among sub-

jects and illumination conditions. Thus an adaptive his-

togram based approach was developed to separate skin

from lip pixels. As color transformation for lip pixel

enhancement the green channel of the rg has been cho-

sen (in further context referred as nG). The approach

makes following assumptions:

• Skin pixels are Gaussian distributed in the histogram

• Lip pixels have lower intensities than Skin pixels (in

nG)

Skin pixels and lip pixels can be mixed in the histogram

(see Fig. 6), thus there is not always a perfect threshold

to separate skin pixels by color information only. The

algorithm prefers wrong positive skin pixels rather than

wrong positive lip pixels. Latter case produces a kind

of flow out which causes more damage to the segmen-

tation than lip pixels which are classified as skin pix-

els. Wrong positive lip pixels are caused by a threshold

greater than the optimum, with respect to the chosen nG

transformation. With increasing intensity of nG also the

probability of adding a high amount of pixels to the lip

pixel class in one single step is increasing (see Fig. 7).

Knowledge about the skin pixel distribution can pro-

vide a threshold that most likely avoids wrong positive

lip pixels (see Fig. 6). The target threshold should be

the foot-point of the skin pixel distribution, in order to

avoid wrong positive lip pixels.

Basically a Gaussian distribution is estimated by a set

of samples, calculating σ and µ , which are represented

by single skin pixels here. A-Priori it’s unknow which
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approximation of skin pixel distribution

pixels belong to skin and to lip class. The idea is to

select a part of the skin pixels, which can be assumed

to be ’safely’ part of skin pixel class. The condition is

made simply by its number of occurrence in histogram.

In other words, it is an ’initial guess’ avoiding partici-

pation of lip pixels.

Let h(x) be the value to the xth slot of the and hmax

be the global maximum of the histogram. To calculate

σs and µs in first step σ
∗ is calculated for all pixels

satisfying following condition:

h(x) > ε (5)

x > mediannG (6)

Condition in Eq.(5) represents an expected maximum

ratio of mouth size to ROI, where ε is adjusted using a

parameter α (1 ) with ε = hmax/α . Additionally a me-

dian constraint, relative to all occurring intensity values

in nG, was introduced to avoid disturbances from peaks

of very low intensities in the histogram. Both very

conservative conditions formulate a reasonable ’initial

guess’. However, only the median constraint itself is

a decent classification, which can compete with classic

watershed method (See 3.2, Fig. 12).

The Gaussian distribution has scatters less than the

original skin pixel distribution. However there is a cor-

relation between α and the ratio of σ
∗/σs. The un-

known σs can be approximated following equation

σs = σ
∗ ·

(

1+
1

α

)

(7)

The larger α , the smaller the part left out from the his-

togram. This will raise the quality of approximation. If

1 In the current experiments a value of 3 was chosen. Basically values

between 2 and 4 gave good results.

α → ∞ the whole histogram is used. But in case of ap-

plication the lower intensity edge parts of skin pixel dis-

tribution is mixed with lip pixels. Therefore the choice

of α is a trade off between approximation accuracy and

risk to include lip pixels to the initial guess. Estima-

tion of the threshold is done using the cumulative dis-

tribution function of N (σs,µs) applying a low border

(λ = 0.01).

th = argmax
x∈R

(λ < F(x)) (8)

with

F(x) = P(X ≤ x) (9)

where x is the intensity value of possible thresholds in

nG.

2.4.2 Combining ACT and Active Shape Models

The result from section 2.4 contribute in three ways to

the problem of ASM fitting:

1. more accurate initialization

2. fixing corner points of the model

3. better gradient fitting due refined base image (distor-

tion reduction)

As seen in the ASM algorithm in section 2.3 the ASM

need to be initialized near by the image object. The

quality of initialization can effect the result enormously.

For initialization the mean shape m needs only a affine

transformation Ttx,ty,scaling,rotation. The result BLOB ob-

tained in section 2.4.1 provides such corner points,

which are more accurate than the points provided by

the method outlined in section 2.1. Furthermore the

BLOB can be used to derive the weighting of the first

shape mode (mouth opening-closing). Thus the ASM

can be initialized very close and in appropriate scaling

and shape to the image.

Naturally ASM suffer problems, when model points

correspond to object corners with acute angles. Mouth

corners represent such special case. Once the analyzed

profile does not hit the narrow object, the gradient oper-

ator will not find any reasonable gradient. An additional

problem appears since this weak model points represent

in case of the mouth model the only forces drawing or

pushing the whole model in horizontal direction. Re-

placing the sensor function for this model points can

counteract this issue. Instead applying gradient opera-

tors the model points for mouth corners are set to the

corner points found by BLOB using the ACT algorithm

in section 2.4.1. These points will not change anymore

during the fitting process, so they can be seen as fixed.
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Figure 8: Sample28, impact of Adaptive Color Thresh-

old. Left: the original nG converted image. Right:

The ACT fixed image. Blue Pixels represent the ini-

tialization of the ASM. The red dots are the edge fit-

ting points. The red line is the resulting ASM. (RE-

MARK:BILDER LIEGEN IN ORDNER ’asmExtended/asm/’

Figure 9: Scheme of fusing ACT result and nG trans-

formed image

Figure 10: Combining Binary image information and

ASM. Top Left: RGB, Top Right: binary result from

ACT, Bottom Left: nG, Bottom Right: Fusion

One more application of the ACT is the elimination of

inner gradients and distortions in the lip segment, in or-

der to optimize the ASM algorithm. The threshold ob-

tained in Eq. 8 which is used to refine the nG ASM

work channel (See Fig.9) by applying following equa-

tion

I∗x,y =

{

th , Ix,y < th

Ix,y , Ix,y ≥ th
(10)

The fusion of binary image and original transformed

nG channel has some advantage. As outlined in sec-

tion 2.4.1 the method of ACT prefers a minimization of

false positive lip pixels. To it is most likely it is missing

a part of the mouth. Therefore in case of incompletely

allocated lip pixels the soft edges at lip borders still re-

main, where in the binary image no border could be

found there (see Fig. 10). This of course can also cause

inner gradients, but have significantly smaller impact.

3 EXPERIMENTAL RESULTS

In the experiments the algorithm was tested on 57 im-

ages partially from the Faces Database from CIT [11]

and partially from own recored data covering a wide

range of illumination and saturation (see Table 2). The

resulting mouth ROI had a size range of approximately

160x80 pixels. The mouth sizes varied in width be-

tween 120 and 150 pixels. The mouth height varied

between 20 and 70 pixels. The higher variance is due to

the opening of the mouth as greater impact to the height

than the e.g. smiling has impact to the width. For each

of the 57 images a ground truth was created consisting

of a binary blob for lip pixels and a contour (which is

equal to the outline of the binary blob).

The following sub sections will present the results and

quality of the single process steps (Mouth corner point

detection, lip pixel classification using ACT and Mouth

contour detection using ASM).

Channel[Range] H[0,360] S[0,1] I[0,1]

Mean 129.6 0.37 0.53

Variance 3666.5 0.02 0.04

Max 70.9 0.19 0.24

Min 247.6 0.72 0.91

Table 2: Image Conditions (in ROI), H=Hue, S= Satu-

ration, I=Intensity

3.1 Detection Rate of Feature Points

Deviation for measuring detection quality of single fea-

ture points inside the face (mouth corners in this work)

is given in relation to inter-ocular distance of the per-

son (distance of both eye centers). Though this value,

in relation to the face size, suffers inter-individual vari-

ations it is commonly used in shortage of better alter-

natives. We provide the results relative and additionally

as pixel error (normal and squared) in table 3. The re-

sults with an accuracy of less than 10% relative error

are good compared to other works [14]). Since the de-

tection points are primary used to determine the ROI it

was important to detect the mouth corners at all with

sufficient accuracy.

Error Type Left Right Overall

Relative 7.0% 6.5% 6.8%

Pixel Error 7.05px 6.41px 6.73px

Sqr Pixel Error 100.04px2 86.32px2 93.17px2

Table 3: Error of mouth corner detection using method

described in section 2.1 
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Figure 11: The cross on the left marks the quality of

our proposed algorithm. The curves represent the ROC

plots for different watershed percentages ranging from

10 to 30% in different color spaces. It’s obvious here,

that our adaptive threhsold is superior to threhsolds se-

lected by a general watershed percentage. This is in-

dependent from the choosen color space or the choosen

percentages for the watershed

3.2 Quality of ACT

The accuracy of the lip pixel classification is crucial for

the idea of the proposed method. To show the good

performance the results were put in context to an Wa-

tershed classification method (e.g. used in [9]), which

is adaptive to the coloring but not to the ratio of mouth

size to ROI size. Referring to the binary blob of the

ground truth the adaptive classification of lip pixels, us-

ing the method proposed in in section 2.4.1, reaches

a hitrate of 80.24% (True Positives - TP). However,

this is no perfect result. When selecting a threshold

from ground truth the rate is only insignificantly bet-

ter (81.75%) (see Table 4). This is the best available

hitrate aiming on low False Acceptence Rate (a max-

imum FAR of 5% was defined when selecting thresh-

olds using groud truth) and False Rejection Rate. As

mentioned in section 2.4.1 the primary aim is to avoid

falsely accepted lip pixels (FAR). The optimal results in

Table 4 represent results for thresholds which were cho-

sen with respect to the ground truth and a ROC-Plot.

3.3 Improvement of ASM

In section 2.4.2 several improvements of the classical

ASM algorithm were introduced. This subsection de-

scribes the impact of the different improvements. In

first stage each of the three improvements were applied

independent from each other, to analyze their individual

impact to the algorithm. The error is calculated as av-

erage of all model-points. Ground truth was the outline

of the ground truth blobs (See Fig. 3). So to each point

of the ASM the distance to the closest point of the out-

line was calculated. The results are listed as normal and

square error in Table 5. The algorithm is parametrized

as outline in section 2.3. However, the second improve-

Figure 12: Results of different illumination and mouth

poses.

ment of height fixing before ASM initialization is based

on the information of the ACT generated blob. To mea-

sure the impact of this improvement the ASM was ini-

tialized using ACT but applied than to the unfixed nG

image. The best refinement of the results is achieved by

the initial height fixing. This finding should be consid-

ered in context of the chosen profile length in the ASM

algorithm. Longer profiles could supersede the height

initialization. On the other hand the ASM could get at-

tracted by far objects like nose or eventually even by the

chin (longer profiles of course would demand larger re-

gions of interest). In non frontal views too long profiles

also could touch regions outside the face, with unpre-

dictable behavior. To avoid this, the algorithm would

need a (likely on skin color based) good face segmenta-

tion. The ACT refinement and fixing of the ASM at the

initialization points have only little but noticeable effect

to the results.

When the ASM is initialized there are two options

to chose the initialization points: a) the corner points

which were the base for the ROI, found by the method

outlined in section 2.3; b) the corner points, based on

the blobs found by the adaptive threshold defined in

2.4.1. To measure the impact of different sources for

initialization of ASM both available options a) and b)

were exploited and additionally c) a run utilizing the

ground truth points for mouth corners. These runs were

done using all optimization methods listed above (ACT

Refinement, Anchored Corners and ACT based height

refinement). Apparently the start points taken by ACT

result in a similar quality as the points chosen by ground

truth in average. The facial feature points found by the

AdaBoost trained Haar-Like features are sufficient to

define a ROI. For the further steps if ASM initialization

they lead to less accuracy.

4 SUMMARY AND CONCLUSION

In this paper new modifications for Active Shape Mod-

els based on an adaptive color based method for lip 
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Result Base TP-µ TP-σ2 FAR-µ FAR-σ2

Optimal (by ground truth) 81.75% 3.88% 2.262% 0.002%

Proposed 80.24% 2.55% 2.200% 0.031%

Table 4: Results for Lip Pixel Classification (Histogram based using ACT)

Method Error Square Error

Classic ASM 3.21px 18.24px2

(1) ACT Refinement 2.88px 19.40px2

(2) Height Fix 2.08px 10.19px2

(3) Anchored 2.89px 19.86px2

Table 5: Impact of separately introduced improvements

to ASM Algorithm

Init Method Error Square Error

Haar-Like 2.75px 18.24px2

ACT 2.10px 10.17px2

Groundtruth 2.08px 9.06px2

Table 6: Impact of different ASM Initialization

Figure 13: Image wise squared error of the proposed

algorithm compared to classical method.

pixel classification were introduced. In contrast to other

methods using color emphasizing of lip pixels, this

method incorporates a refinement step. This refinement

step eliminates edges inside the lip pixel segments,

which can mislead the borders during the edge fitting

step. The refining of nG image for edge fitting mainly

helps to detect the lower mouth border. In this areas the

crossover from skin to lip pixels often does not create

a significant edge (for women this occurs more rarely

due usage of lipsticks). Further the lip pixel classifica-

tion creates a rough mouth blob. Based on this blob the

shape model can be initialized better and closer to the

real shape. The lip pixel classification performs good

and is adaptive to various image conditions and skin

tones. This skin vs lip color model assumption is de-

signed and limited for Caucasian, European and Asian

skin types. Further this method will suffer problems for

very dark colored subjects respectively less illuminated

scenes. Also the problem of bearded people was not

addressed here. The more the beard color is different

from general skin tone(light-gray, black) the greater the

chance that this method fails. But this problem remains

to all so far known methods and need further investiga-

tions and other solutions. Compared to classical shape

models the presented method performs more accurate.

In future works we will try to incorporate more shape

modes and add a inner contour for opened mouth.
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ABSTRACT

Users spend much time organizing photos into small groups as part of photo management. Selecting good quality photos and
organizing them is burdensome, as photographers amass large number of photos. This paper presents a new photo layout system
with representative photos considering multiple features. Our approach consists of three steps to deal with hundreds of photos.
First, we construct photo clusters by user-adapted criteria: temporal context, the number of faces, blur and luminance metrics.
Then, we construct a bipartite graph that consists of photo nodes in a partite set and the constructed cluster nodes in other
partite set. The representative photos of each cluster are selected by a maximal matching algorithm based on user-controlled
multiple criteria. Finally, our system places the selected representative photos on a 2D grid using the placement algorithm of
PHOTOLAND. Other photos in each cluster are displayed in an upper layer of a screen when the user clicks the representative
photo. We conducted an experiment based on a user study; it used nine photo sets taken on a trip. The experiment showed that
our system conveniently managed hundreds of photos, summarizing and visualizing them.

Keywords: digital photo, photo layout, maximal matching.

1 INTRODUCTION

The digital camera has become an indispensable com-
modity for people. The low price of memory encour-
ages people to take a large number of photos. Since
a digital camera is convenient and does not need extra
cost to take photos, except for memory space, which is
getting cheaper, people tend to take more photos than
when using an analogue camera [3, 9]. Therefore, it is
usual for users to take hundreds of pictures. Moreover,
several users can take photos concurrently at the same
event. These digital photo files can be easily exchanged
by various means, such as flash memory, e-mail, ftp,
and messenger. The number of photos is more increas-
ing. People have to spend much more time organizing
and browsing them.

We face several issues in managing digital photo col-
lections due to the acquisition of large number of pho-
tos. These include:

• Poor accessibility - Low efficiency in selecting a
photo in the current layout scheme. It is hard to find
a specific photo amongst massive data.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2010 conference proceedings,
WSCG’2010, February 1 – 4, 2010
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

• Classification of photos - We need to classify input
photos based on user preference, e.g., date, event or
persons in a photo.

• Preference of clustering criteria - Photos are increas-
ing in volume and variety, since memory is cheap.
Photos can be clustered using various criteria.

Photo browsing and clustering are crucial features to
manage and organize many photos. Most users find
what they want through a browser interface, and they
spend most of their time classifying the photos into
meaningful sets. In this sense, the interface to manage
a large number of photos has been emphasized in re-
cent studies. Most photo browsing systems present the
images as a grid of thumbnails that the user can scroll
through with a scroll bar; they can see the original ver-
sion of the selected photo [8].

Meanwhile, many redundant or low quality photos
occupy much space in the display area. This makes it
difficult to understand the overall content of the photos.
These low-priority photos do not need to be preserved
in the original form. We introduce a method to select
representative photos from the user’s unrefined input
photos based on customizable categories and visualize
classified photos in a smart layout.

2 PREVIOUS WORK
Many studies related to photo management have been
undertaken recently. Many useful applications have
been developed to manage a large number of photos.
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Table 1: Previous work and systems for digital photo management and visualization

Method (reference) Layout Main features Extra info. Spatial info.
ACDSee [1] Grid Viewing only EXIF None
Agrafo [2] Grid Grouping and browsing EXIF Use (hybrid)
PhotoMesa [3] Grid Viewing (quantum treemap) Directory info. None
Kang [11] Grid Viewing (simple search) Annotation None
Picasa [17] Grid Viewing only EXIF None
Incremental board [18] Grid Viewing (similarity-based) None External input
Rodden [21] Grid Similarity-based arrangement Annotation Use
PhotoTOC [9] Hierarchical Clustering by temporal info. timestamp None
Kustanowitz [12, 13] Hierarchical Layout scheme User input None
Chen & Chu [4, 5] Slide Slideshow with layout [13] EXIF Use
Photo Navigator [10] Slide Slideshow for tracing scenes Creation time Use (3D)
Moghaddam [14] Non-Grid Layout for image retrieval Annotation Use
MediaGLOW [8] Graph Zoomable interface EXIF Use (graph)
Naaman [15, 16] Geometric Clustering based on place GPS Use
Quack [20] Geometric Community photo mining GPS+annotation Use

The most popular layout scheme of visualization sys-
tems is the grid layout to visualize a massive number of
photos.

Many image application including ACDSee, Picasa
and others use thumbnails of photos on grid layout [1,
17]. Generally, a user selects a specific photo on a grid,
and then the original size photo is shown on the full
screen. It is a very simple but useful method to show
photos when there are less than several hundred photos.
However, grid view has problems when there are too
many photos. Redundant photos may occupy much of
the display area. A long scroll bar is needed to explore
the entire photo set.

Some enhanced grid layout schemes were proposed
to overcome defects. Bederson introduced the section
based grid view, PhotoMesa. It can show each directory
as a section of layout [3]. PhotoMesa displays hierar-
chically organized photo clusters based on a file system
using treemaps. It uses a simple layout for image clus-
ters called bubblemaps. PhotoMesa emphasizes pre-
senting large numbers of photos on a limited screen.
At the top level view, photos of a specific directory are
shown as tiny thumbnails. Zoomed photos with larger
space are shown by selecting a section. Pinho proposed
grid-based incremental board [18]. This uses an infi-
nite grid by attaching tiny image thumbnails. Using a
pre-processed photo similarity, an identical photo is lo-
cated in close position to similar existing photos. It can
visualize abundant photos on the screen at low cost by
attaching many tiny photos to grid view. However, it is
too small to see each photo, so this is not an efficient
way to understand the content of input photos.

A hierarchical layout using uniform thumbnails was
proposed for convenient recognition in visualizing pho-
tos. Kustanowitz proposed an organized layout scheme

with different image sizes [12, 13]. The most impor-
tant image, which shows the concept of the photo set,
is located at the center of display area. The other pho-
tos surround the center photo aligned according to the
classification. However, the method requires identify-
ing photos by users. In addition, it is practically limited
to one sheet of display screen due to the center image.
Thus, it is not suitable to use the scroll bar or to show a
massive number of images. Chen & Chu applied the
method on their slideshow method [4, 5]. Photos in
each slide are arranged using a hierarchical layout.

Graham exploits Calendar and Hierarchical image
browsers to allocate the time-intensive annotation for
the photo groups [9]. He exploits the timing infor-
mation to construct the collections and to automati-
cally generate meaningful summaries. These studies
help the user give a more practical structure to the pho-
tos, but they cannot provide implicit browsing regard-
ing temporal and spatial information simultaneously. A
graph-based photo layout system, MediaGLOW, uses
the spring model to determine a layout in which the
spring system is in a state of minimal energy [8] . This
graph-based interface determines the distance between
each photo node according to a variety of distance mea-
sures, such as temporal, geographic, and visual distance
(tagged data). It can also deal with lots of user interac-
tion. This interface is very useful to organize photos.
Table 1 summarizes representative studies.

3 CLUSTERING WITH MULTIPLE
FEATURES

In digital life, people want to cluster photos using sev-
eral features; they also want to browse the correspond-
ing summarized view with each feature. For example,
let us assume the following case. Users grouped pho-
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(a) (b)

(c)

(d)

Figure 1: Result of clustering by multiple features. For convenience, we randomly pick 33 photos from the photo
set. The total number of clusters with multiple features is 23. (a) Temporal clustering by time [6]. |CT | = 10. (b)
Clustering by the number of faces (We use cvHaarDetectOb jects function of OpenCV library to detect the face in
a photo). |CF | = 4.(c) Clustering by blur metric[7]. |CB| = 4. (d) Clustering by luminance in Lab color space. |CL|
= 5.

tos by time taken. Then, after some time has passed,
they wish to find the corresponding photos that sat-
isfy the following conditions: 1) Photos taken with
his two friends, 2) A good quality photo without blur,
3) The light atmosphere of photos. In this case, he
spends much time to find the corresponding photos hav-
ing these conditions (Users compare the selected photo
with most of the photos in each cluster). Besides,
when the photos to be arranged are getting numerous,
these tasks become burdensome. A user-adaptive photo
browser that can provide a summarized view by multi-
ple user clustering criteria would be very useful in this
case.

We deal with a variety of similarity measures to over-
come these problems. These include time photo taken,
the number of faces, blur and luminance metrics. In this
section, we discuss with how to cluster each photo. For
discussion, let us define the following notation:

• U : U =< P0,P1, ...,Pn > denotes a sequence of pho-
tos taken, where Pi is each photo image.

• f ace(Pi) : the number of faces in Pi.

• blur(Pi) : a perceptual blur metric of Pi [7]. (0 ≤
blur(Pi)≤ 1.0)

• lumi(Pi) : a luminance metric in Lab color space for
Pi. (0≤ lumi(Pi)≤ 1.0)

• time(Pi) : a timestamp extracted from EXIF of Pi.

The first criterion is temporal context. We use
Cooper’s clustering method to evaluate the similarity
of each photo, as below [6] :

If K increases, we can get a coarser clustering result
of the photos’ timestamps. For smaller K, finer dissim-
ilarities between groups of timestamps become appar-
ent.

The second criterion of content based clustering is
the number of faces in a photo. In the photo, we can
grasp the number of faces using the OpenCV face de-
tection algorithm based on a Harr transform. Our sys-
tem simply classifies photos into small groups based on
the number of faces. We use the similarity of face fea-
ture as below:

SimF(Pi,Pj) = 1− | f ace(Pi)− f ace(Pj)|
max
Pk∈U

{ f ace(Pk)}
(1)

We construct a classified photo group considering
some visual features such as blur and luminance met-
rics. The similarity of blur metrics is determined by
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Frederique’s method [7]. The key idea of his method
is to blur the initial image and to analyze the behavior
of the neighboring pixels variation. We also consider
the luminance features, which are calculated from the
average of L values in Lab color space. These two met-
rics are normalized in a defined range from 0 to 1, their
similarity measures are given below:

SimB(Pi,Pj) = 1−|blur(Pi)−blur(Pj)| (2)

SimL(Pi,Pj) = 1−|lumi(Pi)− lumi(Pj)| (3)

Figure 1 shows the result of clustering by four fea-
tures. The input photos are selected from our past pho-
tos taken on a trip without any special intent. For con-
venience, we randomly select 33 photos from the photo
set in this study, since most photo sets have hundreds of
photos. As a result of this clustering, we can get sev-
eral small groups, C(k)

x , where x∈ T,F,B,L classify four
features (Temporal, Number of Faces, Blur metric and
Luminance in Lab color space):

1. C(k)
T denotes the k-th photo cluster using Cooper’s

algorithm [6].

2. C(k)
F = {Pj | f ace(Pj) = k}

3. C(k)
B denotes the k-th photo cluster in terms of the

blur metric.

4. C(k)
L denotes the k-th photo cluster in terms of lumi-

nance value.

4 SELECTING REPRESENTATIVE
PHOTOS

Now, we have many small groups clustered by multiple
features. We select each representative photo to sum-
marize each photo clusters. In this paper, we present a
selection method of representative photos using a max-
imal matching graph algorithm. First, we construct a
bipartite graph, whose node consists of the photos in a
partite set, and the created photo clusters of section 3,
in another partite set, as shown in Figure 2.

The cluster nodes on the right hand side of this graph
can have multiple edges, since the photos are assigned
into clusters through multiple features. However, since
each cluster has just one representative photo, we have
to determine which photos are assigned into which clus-
ters in this graph. We use the maximal matching algo-
rithm to select the representative photos of each cluster
to satisfy user’s clustering preference as much as possi-
ble.

Let us consider a bipartite graph G(V,E), as shown in
Figure 2. Placing weight w(Pi,C

( j)
x ) on edge e(Pi,C

( j)
x ),

(Pi ∈ V , e ∈ E, V and E are the set of all vertices and
edges in this graph, respectively) gives us a weighted
bipartite graph with partite sets Photos = {P0,P1, ...,
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Figure 2: Maximal matching process for a selection of
representative photos.

Pn} and Clusters = {C(0)
T , C(1)

T , ..., C(0)
F , C(1)

F , ..., C(0)
B ,

C(1)
B , ..., C(0)

L , C(1)
L , ... }. The weights of each edge are

given below:

w(Pi,C
( j)
F ) =

1

|E(C j
F)|

· ∑
Px∈C j

F

(ux ·Simx(Pi,Px)) (4)

, where Simx(Pi,Px) is the similarity function for
each clustering feature, {SimT (Pi,Px), SimF(Pi,Px),
SimB(Pi,Px), SimL(Pi,Px)}, defined as Section 3.
ux = {ut ,u f ,ub,ul} is one of the user-defined parame-
ters to control each clustering feature.

A maximal matching M of a graph G is maximal, if
every edge in G has a non-empty intersection with at
least one edge in M. Our system selects each represen-
tative photo of clustered groups based on the relation-
ships of these matching M. The maximal matching of
this graph means the most similar relations globally be-
tween clusters and photos, when we consider the user’s
intent.

Figure 3 shows a portion of the relationships between
several representative photos (P15, P23, P31) and their
corresponding clusters in Figure 1. In this figure, if we
consider the number of faces, three photos are respec-
tively clustered into different clusters (bold red edges
in the Figure). At the same time, they are also clus-
tered into different clusters considering the luminance
of photos (bold blue edges in the Figure). In this case,
the user can control which features are used to select
the representative photos using ux in Equation 4. If the
user sets u f = 1.0 and other features are less than 0.1,
then our system selects the red edges for the represen-
tative photos of each cluster in this Figure. If the user

WSCG 2010 Communication Papers 232



Photos Clusters

)1(
BC

)3(
BC

)3(
LC

,...},...{..., 2315 PP

)1(
LC

31P

15P

3||   },,,{ )3(
31248 =BCPPP

5||   },{..., )1(
31 =LCP

18||   , )1(
=BC

11||   },,...,{... )3(
3223 =LCPP

23P

)1(
FC ,...}{..., 23P 11||   , )1(

=FC

)2(
FC },...,  

,,{

30

151312

P
PPP 7||   , )2(

=FC

)3(
FC

)4(
LC

}, ,,{ 32312421 PPPP 4||   , )3(
=FC

5||   },,,,,{ )4(
17161598 =LCPPPPP

Figure 3: A portion of the graph constructed from the
clusters in Figure 1. The user can control which fea-
tures are used to select the representative photos us-
ing ux in Equation 4. Bold red edges depict maximal
matchings when we consider the number of faces. Bold
blue edges depict maximal matchings when we con-
sider the luminance value of each photo.
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Figure 4: Corresponding result with photos selected in
Figure 1. We set parameters as ut = 0.9, u f = 0.7, ub
=0.6, ul = 0.6.

also sets ul = 1.0 and other features are less than 0.1,
likewise our system selects the blue edges for their rep-
resentative photos.

Figure 4 shows the result of representative photo se-
lection based on each cluster in Figure 1. We im-
plements this maximal matching algorithm using the
LEDA library.

Figure 5: Result of placement for representative photos
in Figure 4. We consider only the temporal context of
selected representative photos in placing them.

5 LAYOUT FOR PHOTO VISUALIZA-
TION

Our earlier paper on PHOTOLAND outlined a system
that visualizes hundreds of photos on a 2D grid space
to help users manage their photos [22]. This system
considers spatial and temporal context simultaneously
when photos are placed on a grid. We used a similar
placement algorithm to visualize photos. This paper
summarized the placement algorithm as below:

1. PHOTOLAND places the first photo in the center of
a 2D grid.

2. It places the next photo considering temporal infor-
mation and spatial context :

S(Pi,Pj) = (tα ·ST (Pi,Pj)+(1−tα) ·SC(Pi,Pj)) (5)

,where tα is a user-defined parameter to control spa-
tial and temporal weight, it ranges from 0 to 1.0. ST
and SC denote the temporal and spatial similarity, re-
spectively.

3. It also considers global geometric constraints, such
as center of weight for placed photos and aspect ratio
for a screen.

4. The temporal similarity is calculated by the logistic
function of the time gap between two photos.

We use two hierarchical layers that display the rep-
resentative photos and the clustered photos related to
them in order to display photos. First, we consider
only temporal context to place the representative pho-
tos. As mentioned before, since it is related to the user’s
event, the temporal context has to be considered as be-
ing most important. Figure 5 shows the result of place-
ment for representative photos in Figure 4. Then, the
user can click on a representative photo; our system
displays other photos related to it in an upper layer, as
shown in Figure 6. When the clustered detail photos are
displayed, we rendered a semi-transparent gray back-
ground on the lower layer for representative photos.
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Figure 6: Other photos related to the selected repre-
sentative photos in a upper layer. We rendered a semi-
transparent gray background on the lower layer for rep-
resentative photos.

Figure 7: Photo placement result of another representa-
tive photo. Input photo set is one of the type ‘C’ sets.
There are 66 clusters. They consist of 457 photos taken
in Banff, Canada. We set parameters as ut = 0.5, u f =
0.7, ub =0.7, ul = 0.5.

Figure 7 shows the result of placement for represen-
tative photos selected from one of the type ‘C’ photos
taken in Banff. There are 66 clusters. The blue arrows
near the grid cell depict their temporal sequence. Spa-
tial similarity between their neighboring photos is pre-
sented by the gray line border. The thicker line depicts
that the photos have colors that are more similar in 25
perceptual colors [19].

6 EXPERIMENT
We conducted three consecutive experiments to evalu-
ate the usability of our system. These user studies were
designed to understand the user’s subjective reaction to
our system. Our user studies deal with the following
three perspectives:

1. How much time can we save using our system in
photo clustering?

2. How nice is the representative photo selection algo-
rithm compared to random selection?

3. How quickly can users find the desired photos in
each photo sets?

Sixteen people participated in our experimental ses-
sions. The participants were six beginners, seven ex-
perts and three evaluators. We define a beginner as a
user whose major is not related to computer engineer-
ing. The beginner group does not deal with computers
in everyday life (Ages ranged from 25 to 36). In con-
trast to the beginner, the expert group consists of users
whose major is related to computer engineering. The fi-
nal group of participants (evaluators) consists of people
who take each photo set directly.

The input data consisted of three levels of photo sets,
A, B, and C based on the number of photos, described
in Table 2. Each photo sets consists of evaluator’s pho-
tos taken during a trip without any special intent. We
classified photos into several categories with the person
who took each photo set before the experiment to com-
pare the result of clustering. Then, these categories are
embedded in the custom field of their EXIF (“On the
mountain” and “Number of Face 3”). The clustering
features considered were temporal context, the number
of faces and luminance in Lab color space.

Table 2: Description of the input photos, A, B and C.
depicts the evaluator for each photo set

Type # of # of # of
Photos Evaluator photo sets

A 80 ∼ 100 3 4
B 150 ∼ 180 2 3
C 420 ∼ 460 3 2

Experiment 1. We investigated the clustering task
completion time. We compared our system to a tradi-
tional scrolling interface based on a 2D grid, ACDSee
Photo manager, as a benchmark [1]. The photo sets
were classified by evaluators in advance to construct
the true sets for this experiment. We determined the
true cluster information to be the number of clusters,
the number of photos in each cluster, the categories of
each cluster. We term this as “cluster information”.

We organized the new tester group for experiment 1
from the sixteen participants in the experiment. Since
clustering is very subjective, we want to pick out the
person who shares the memory of each photo set with
the evaluator as testers, to investigate the satisfaction
with the clustering results impartially. In this exper-
iment, they consisted of the photographer’s traveling
companions. We computed the satisfaction level of
clustering results comparing the file names of photos
in clustering folder to the cluster category label.

The precision indicates the proportion of true posi-
tives clustered as below:

Ep =
|{true photo sets}⋂{user-clustered photo sets}|

|{user-clustered photo sets}|
(6)
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Figure 8: Average completion time to classify each
cluster. The input photo sets are A, B and C as de-
scribed in Table 2.

The recall measure is the number of correct results di-
vided by the number of all relevant results. It measures
the proportion of true clustered photos :

Er =
|{true photo sets}⋂{user-clustered photo sets}|

|{all of relevant truth photo sets}|
(7)

We use an average of precision and recall that was re-
spectively measured as more than 0.4 in this experiment
to decide if it is sufficient to satisfy the clustering result.

Now we wrapped up preparation for experiment 1.
First, each tester selects one photo set from every type
of photo set described in Table 2. Then, we gave the
testers the cluster information of the selected set with a
simple program that can divide photos into groups by
a constant time gap. They were asked to divide each
photo set already by the evaluator. During the exper-
iment, the testers can know the corresponding satis-
faction level of their clustering results by clicking the
‘evaluation’ button on the program we presented them.
This simple program can report how much the current
photo clustering satisfies the evaluator’s clustering re-
sults, considering precision and recall. We iterate the
above steps until the clustering results can be recog-
nized as reaching the satisfaction level to compare the
completion time.

Figure 8 shows the average completion time for clus-
tering satisfaction, the satisfaction levels are 0.7 and
0.8. It shows that the layout of our system is useful
to classify hundreds of photos compared to ACDSee
Photo manager.

Experiment 2. We compare the representative pho-
tos selected by our system to randomly selected photos
from each cluster. These selected photos are given to
the evaluators. Then, evaluators were asked to score
the satisfaction of each selection. Each experiment was
iterated ten times per the photo set randomly selected
from sets (A, B and C, respectively), for generality.
The scores ranged from 4 to 10. The average score for
Experiment 2 is shown in Figure 9. We excluded the

blurred features, since it is difficult to identify with the
unaided eyes on a document.
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Figure 9: Result of experiment 2. Average scores of
participants evaluation.

Experiment 3. The participants were asked to find
each corresponding similar photo to the given images
when four images were given. We had already selected
photos for the correct answer based on its similar im-
ages, as a true set. We investigate the number of trials
in which that they select all correct answers. Figure 10
shows the average number of trials to find the objective
photos. Since the gap of trial results between beginners
and experts in Experiment 3 is small, our system can be
easily used by Beginners.

A B C0
1
2
3
4
5
6
7
8
9

10
11
12
13

Input photo sets

Sc
or

es

Result of Experiment 3 
(The number of trials)

 

 

Our system, expert
Our system, beginner
Random Selection

Figure 10: Result of experiment 3. Average number of
trials to find all desired photos.

7 CONCLUSION
The digital camera has become an indispensable com-
modity for people. Tasks related to photo manage-
ment, such as classification, filtering of a bad quality
of photos and their construction, are increasingly part
of daily life. The low price of memory allows people
to take more and a greater variety of photos. The task
of organizing these becomes boring and burdensome.
Thus, we propose a representative photo layout system
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that provides a clustering function for photo collections
based on user preference.

Our clustering process used four criteria. First, our
system clusters photos into small groups using multiple
criteria. Then, we select the representative photo, from
each classified photo groups, using a maximal match-
ing graph algorithm. The selected photos are placed on
a 2D grid using a similar placement algorithm to PHO-
TOLAND. The other photos corresponding to the rep-
resentative photos in the same group are displayed on
the upper layer when the user clicks the placed photos
in a lower layer. Conclusively, let us summarize the
notable contributions of this paper:

1. Our maximal matching algorithm is very useful and
efficient in selecting the representative photo.

2. We apply four criteria, such as temporal context, the
number of face, blur metric and luminance value in
Lab color space, to cluster photos into meaningful
groups. Other clustering features can be adopted if
that feature is normalized between 0.0 and 1.0.

3. Our system uses two hierarchical layer structure to
visualize photo groups based on its representative
photos using a method similar to PHOTOLAND’s
placement algorithm.

The system proposed in this paper was positively re-
ceived by the participants. They evaluated our system
as being an intuitive photo clustering interface. How-
ever, the clustered group may at times not be able to find
its representative photo. If the edge weight between the
group node and its photo node is weak, the pairs are not
selected in the process of maximal matching. In this
case, we can not display the other photos without the
representative photo. We have to develop the solution
to this problem.
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ABSTRACT 
 Recently, virtual space design with high quality three-dimensional CG has become possible due to a rapid 
improvement in computer performance. In order to give a CG character the  movement of its own, it is necessary 
to apply the motion data to the character after getting them with a motion capture device or by hand work.  
Production costs have increased because this is complicated work for an animator. In general, the character 
movement depends on the objects which it holds. Our idea is that the character does not have motion data of its 
own, but we give the character motion to the objects that it holds. We have developed a method for automatically 
generating the character motion data by giving motion information to the objects. Thus, each object includes the 
motion data that cause the character to act. In addition, we give multiple motion data appropriate for the 
situations to the objects and define the relationship between objects in a virtual space. By using this relation, we 
can generate a variety of motion data according to the object which the character holds. The proposed method 
reduces the number of character motion data which should be prepared beforehand. 
Keywords 
Motion data, animation, movement, virtual reality 
 

1. INTRODUCTION 
Recently, virtual environment design with high 
quality three-dimensional CG has become possible by 
a rapid development of the computing power. CG 
characters have existed in three-dimensional virtual 
space to realize the space where looks just like reality. 
In general, we make use of motion capture data to let 
the CG characters act [Alb00]. We have to prepare 
many scenes to construct various kinds of virtual 
space. In addition, it is necessary to prepare many 
motion data of CG characters. It forces animators to 
enormous work. Whenever the scene is changed, they 
have to prepare many motion data. It is necessary that 
they acquire motion data again or revises it. 
Therefore, a method to automatically generate motion 
data has been required and several methods have 
been proposed [Kan06] [Mar99].  

However, these approaches have the restriction that 
only limited motion data can be generated or one CG 
character maintains only one motion data. Kan et al. 
showed that automatic generation can be achieved by 
using building blocks, called motion patches with 
motion data. Each patches is annotated with simple 
movements such as   walk  or stand up  .  
However, we need to prepare a lot of motion patches 
when we make complicated motion data. 
We propose a method to solve these problems. In our 
method, the character does not have the motion data 
of its own. Instead, the objects that the character 
operates preserve movement information of the 
character. We can give several movement data to the 
object when it is necessary. In addition, the 
movement to the object varies depending on the 
movement to other object by giving the relation 
between two objects. The data that the object 
maintains include motion information of the character 
and start position to be carried out for the object and 
its geometry data.  This kind of approach is known in 
the field of robotics, but has not been used generally 
in character animation . 

 

2. PROPOSED METHOD 
The object has three kinds of information to give the 
character some sort of action. We generate entire 
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motion data of the character by synthesizing the 
following information and walking motion data. 

2.1 Information that object maintains 
The information includes display information, 
movement information and relation information. 
1) Display information 
This is shape geometry data to display an object in 
three-dimensional virtual space. We can change the 
appearance of the object easily by changing these 
data. 
2) Movement information 
This data is the information to generate the movement 
of the character. The information includes the 
movement to be applied to the character, the start 
position of the movement and occupation area of the 
object in the virtual space. 
Put another way, the movement information is the 
motion data to be carried out for the object. 
For instance, a chair preserves the movement of sit  
and a ball preserves the movement of throw . 
This movement information is basic data that we 
acquire with a motion capture device in advance. 
The character recognizes the movement that it should 
perform without distinguishing objects because each 
object has the movement for the character. 
The start position of the movement is the position 
where the character starts the movement for the 
object. The occupation area is a convex polygon 
surrounding the object. 
When the character advances toward a target object, 
an avoidance path is generated utilizing the convex 
polygon so that the character does not collide to other 
objects. We describe the method in detail in section 
2.2. 
3) Relation information 
The character sometimes operates several objects, as 
follows: 
a) Hammer + Nail Drive a nail with a hammer 
b) Postcard + Mailbox Drop a postcard into a 

mailbox 
c) Ball + Locker Put a ball into a locker 
In these cases, the character operates an object 
holding with other object. 
For example, the character will do the action that it 
r  However, 

it is expected that the character drops the postcard 
into a mailbox when it holds the postcard in front of 
the mailbox. 
In order to achieve above-mentioned mechanism, we 
need to define the relation between the postcard and 
the mailbox and add these two objects the 
information that the character drops the postcard into 
the mailbox. The object holds three kinds of 
identifiers, as shown in Figure 1. 

 

 
Figure 1.   Relation information 

 
Identifier A (Active) means the movement that the 
character performs. Identifier P (Passive) means the 
movement that the character performs in the state of 
holding an object with identifier A.  
Identifier I (Independent) means the movement that 
the character performs independently. 
Figure 2 shows the relations among three objects, a 
mailbox, a postcard and a trash bin.  
 

Figure 2.  Relations among three objects 
 
The postcard and the mailbox have the relation 1 
each other and the trash bin and the postcard have the 
relation 2 each other. The character can drop the 
postcard into the mailbox when it holds the postcard 
by relation 1. On the other hand, the character does 
not drop into the mailbox without the postcard, but 
checks the collection time of mails. Furthermore, the 
character can throw the postcard away into the trash 
bin when it holds the postcard by relation 2. If the 
character does not hold the postcard, it will look in 
the trash bin. 
 

2.2 Motion data generation 
The motion data of the character is determined by 
using the movement information and the relation 
information. The final motion data are generated by 
synthesizing the movement to be applied and walking 
movement. 
1) Outline of generation of movement 

Object 
A-movement name 
P-movement name 
I-movement name 

 

A: Active 
P: Passive 
I: Independent 

Mail box Trash bin 

Postcard 

A-drop into 
A-throw away 

I-read 

P-throw away 
I-look in 

 

P-drop into 
I-check the 
collection time 

Relation 1 Relation 2 
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Figure 3 shows the situation that a character and a 
chair are placed in the virtual space. 

      
 

Ph: Start position of a character 
Pa: Position of the movement to be applied 
P0: Position where an object is put on 
h1: Initial direction vector of a character 
h2: Vector from Ph to Pa 
h3: Vector from Pa to P0 

: Angle between h1 and h2 
: Angle between h2 and h3 

Figure 3.  Motion data generation 
 

First, the character turns  degrees to the direction h2 
and walking motion is allocated for the character. 
When the character arrives at the position Pa, it turns 
 degrees. 

Next, the avoidance path is generated by using 
walking motion in the case that obstacles exist in the 
direction which the character is moving in. 
The movement which the chair has is applied to the 
character. As a result, the motion data are generated 
from walking motion to the motion which the 
character performs for the object. In the case that 
plural objects are placed in the virtual space, the 
process mentioned above is repeated until the 
character completes the movement that all objects 
have.  
2) Generation of avoidance pass  
When the character goes straight on toward a target 
object, there is the case that it collides with an object 
which blocks the chara
4. We generate the avoidance pass by using the 
occupation area of the object, as shown in Figure 5. 

Figure 4.  Collision of object with character 

 

 
Figure 5.  Avoidance path generation 

 
However, the movement of the character becomes 
unnatural at those vertices of the convex polygon to 
surround the object because the generated pass is a 
set of lines through those vertices. Therefore, we 
interpolate the generated pass with a curve, as shown 
in Figure 6. Ps is a start point and Pe is an end point 
of the path. P1 and P2 are the vertices of the convex 
polygon. First, three points Ps1, P12 and P2e are 
inserted in the middle point of these three lines. Next, 
two quadratic Bezier curves are generated by using 
Ps1, P1, P12 and P12, P2, P2e. The final path 
consists of the line Ps-Ps1, the quadratic Bezier curve 
Ps1-P12, the quadratic Bezier curve P12-P2e and the 
line P2e-Pe. 

 
Figure 6. Curve interpolation of avoidance path 

 
3) Generation of the movement to walk 
The movement to be applied starts at the position of 
the movement in the state that the character stands 
upright. When the character arrives at the position of 
the movement to be applied, the posture must be 
standing straight. In order to meet this requirement, 
we prepare seven kinds of walk movement for the 
half period in Figure 7 in order to join the walk 
movement and the movement to be applied smoothly. 

Ps Pe 
P2e 

P2 P12 P1 

Ps1 

:Convex polygon to surround object 
:Polygonal line path before interpolating 
:Final path 

Target object 
Object 

Generated path 

Convex polygon to surround object 

Position of the movement 

Target object 
Object 

Walking path 

Collision position 

Position of the movement 
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Figure 7.  Walk movement for half period 
We choose several walk movements among seven 
kinds of walk movement and connect those 
movements so that the final posture becomes standing 
straight. For instance, the walk movement is 
generated in Figure 8(b) when five walk movements 
are connected in numerical order, as shown in Figure 
8(a).  
4) Motion transition 
In general, the posture becomes unnatural at the 
potion where we just connect motion data A to B, as 
shown in Figure 9.  
 

 

 

(a) An example of 
connection 

(b) Generated walk movement  

Figure 8. An example of walk movement generation 
 

 
 

Figure 9.  Unnatural motion to be connected 

 
Therefore, we insert transition frames so that the 
posture PA gradually resembles posture PB, as shown 
in Figure 10. The motion data is modified so that the 

posture changes from motion A to B naturally by 
inserting intermediate motion data between those two 
motions. The posture of the character is expressed by 
Euler angle of each joint. Interpolation between two 
postures becomes unnatural if we use the 
interpolation of Euler angle [Jam90]. We use 
spherical linear interpolation to avoid Gimbal Lock 
problem. Two Euler angles to be interpolated are 
transformed to two quaternions and those are 
interpolated by using spherical linear interpolation 
[Tom06].  
 

 
 Transition frames 

Figure 10.  Interpolated postures 

 

3. EXPERIMENTS AND RESULTS 
1) Placement of two objects with the relation, as 
shown in Figure 11. 
Table 1 shows two objects and the movement to be 
applied. 
 
No. Objects Movement to be applied 
1 Hammer Pick up 
2 Wood Drive nail 

Table 1.   Allocated objects and the movements 

First, we put a character and two objects which have 
the relation data in a virtual space.  
Figure 12 shows the result of the movement. The 
number under each figure shows the frame number.  
The wood has no movements for the character 
directly after placement of the character and the 
objects, as shown in Figure 13(a). After we select the 
movement pick up  in Figure 13(b), the movement 
drive nail  can be selected, as shown in Figure 13(c) 

because the hammer and the wood have the relation 
each other. 
 

 

Long step 

Medium step 

Short step 

Upright stance 

t 

frame 

Posture Posture 

Long step 
Medium step 
Short step 

Long Short Short Medium 
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Figure 11.  Placement of two objects and 

 a character 
 

  
(a) frame #30 (b)frame #64 

  
(c)frame #136 (d) frame #234 

  
(e)frame#272 (f)frame#334 

Figure 12. Result of motion data generation to 
two objects with relation 

 

         
(a) Before picking hammer 

       
        (b)  Selection of Pick up  
 

 

        
     (c) Appearance of the movement Drive 

nail  
Figure 13. Selection of the movement to be applied 
 
2) Placement of five objects (illuminator, television, 
post card, door and mailbox) and a character in a 
virtual space in Figure 14. 

 

 

Figure 14.  Three dimensional virtual space 

 
 Table 2 shows the movement to be applied to five 
objects. First, we set the character and five objects in 
the virtual space. Next, we select the movement to be 
applied to five objects in the movement order of the 
character. 

 
Figure 15 shows the result of the movement. The 
result shows that the motion data of the character is 
generated by the order in Table 2. 
 
 

No. Objects Movement to be applied 

1 Illuminator Turn on 

2 Television Switch on 

3 Post card Pick up 

4 Door Open and pass through 

5 Mailbox Drop into 

Table 2.  Allocated objects and movements 

Character 
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(a) frame #67 (b) frame #68 

  

(c) frame #342 ( d) frame #524 

  

(e) frame #810 (f) frame #1030 

Figure 15.  Result of motion data generation 

 
 The last movement of Drop into mailbox  is 
generated by using the relation between the post card 

p the card 
into the mailbox in case that it does not hold the post 
card. The relation information enables generation of 
variety of motions. When the television is replaced by 
an electric fan, as shown in Figure 16, we can also 
generate another objective movement by only 
replacing those objects. The movement of the 
character in Figure 16(b) is different from the 
movement in Figure 16(a) obviously. 
 

        
(a)Placement of a television (b) Placement of a fan 

Figure 16.  Scene modification 
 

Even if the modification of the scene results from the 
change of objects, it is unnecessary to capture motion 
data afresh. This method produces reduction of 
motion generation cost.  
 
4. CONCLUSION  
In this paper, we proposed an automatic generation 
method of character behavior by only objects 
placement. We achieved this motion generation by 
giving the movement of the character to objects. The 
relation information between the objects enables 
generation of various motions depending on the 
object that the character operates. Experimental 
results showed that our method is effective. 
There are some directions for future works. For 
instance, unnatural walking motion may be generated 
when the character changes a direction to walk. This 
problem is caused by using only seven kinds of 
walking movement, as shown in Figure 7. In order to 
solve this problem, we could also improve walking 
motion by introducing Motion Graphs [Kov02]  that 
is widely used to generate natural walking motion. In 
addition, another future work will focus on adding the 
function that a character acts in corporation with 
other characters when several characters exist in three 
dimensional virtual space. 
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ABSTRACT 
 
Most visualization systems employ a data flow approach in order to create visual representations of data. The 
data flows along a directed graph through the different components, gets filtered, extracted, analyzed, and finally 
converted into an image. Most visualization systems use one graphic toolkit or library to create the image. These 
toolkits and libraries are not created equally; some are better suited than others to solve given problems. Being 
able to pick and choose would often generate a better result. Within the Spiegel framework any toolkit, which 
can be used in a Java environment, can be employed to create the image. In this paper, we explain the Spiegel 
framework and how Pixar's PhotoRealistic RenderMan® can be used to visualize scientific data. 

Keywords 
Visualization Framework, RenderMan®, Data Flow Languages.

1. INTRODUCTION 
Most visualization systems employ a data flow 
approach along a directed graph to filter, extract, 
analyze, and finally convert data into an image.  They 
generally use one specific, unchangeable graphic 
toolkit or library to create images. The features of 
these toolkits and libraries vary significantly; some 
are better suited than others to solve given problems. 
Simply changing from one toolkit or library to 
another often produces strikingly different results. 
Additionally, visualization systems run on different 
hardware platforms, which use different drivers to 
access the graphics card. For example, OpenGL 
running on two different platforms, Mac OS X and 
Windows, using the same NVIDIA GeForce 9400 
graphics processor will not execute all shaders in the 
same manner. As a result, the images generated from 
the same program may differ in quality. 
Within the Spiegel framework [Bis05], any toolkit 
that can be used in a Java environment can be 
employed in order to create the best possible image.  
In this paper, we explain the Spiegel framework and 
how Pixar's PhotoRealistic RenderMan® can be used 
to visualize scientific data. 
The rest of the paper is structured as follows: section 
2 discusses general visualization principles; section 3 
presents an overview of how a data flow architecture 
can be used for creating visualizations; a brief survey 
of related work is presented in section 4; Our 
approach for incorporating RenderMan® into the 

existing Spiegel visualization framework is described 
in sections 5, 6, 7, and 8. Finally, results and future 
work are presented in sections 9 and 10 respectively.  

2. VISUALIZATIONS 
Spiegel was designed as a visualization tool for the 
Center for Computational Relativity and Gravitation 
(CCRG) at Rochester Institute of Technology. 
Spiegel has been used mainly to visualize simulations 
of galactic events like black hole mergers, 
gravitational waves, and galaxy mergers. However, it 
can be used to visualize any type of data. For CCRG, 
the visualizations created by Spiegel are used to help 
debug and understand the simulations from which 
they are generated, as well as explain the science to 
the general public.  
Certain galactic events like black hole mergers 
cannot be observed in practice. Therefore, a 
visualization of a black hole merger cannot be 
compared to a photograph. This makes it relatively 
easy to generate visualizations because it is not 
bound to a specific pre-conceived image. On the 
other hand the Hubble Space Telescope took images 
of nebulas like the one shown in Figure 2. It is 
difficult to accurately generate this scene in 3D on a 
computer. 
A typical simulation writes the current state of the 
model into a file at discrete moments in time. The 
visualization of scientific data always follows the 
same rules. The state at successive time steps of the 
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simulation data is read and subsequently converted to 
a visual representation.  
This can be done for all time steps in parallel if the 
data of each time step is complete and independent of 
other time steps. If this is not the case, the data can 
always be pre-processed. Because of this, 
visualization systems are excellent candidates for 
execution on a cluster. The Spiegel framework is no 
exception. As shown in Figure 1, individual frames 
of the visualization can be generated in parallel thus 
reducing execution time. 
 

 
Figure 1: Overview of the Spiegel framework. 
Data is extracted from one or more file severs and 
distributed to a cluster of computers. Each 
processing unit in the cluster generates one (or 
more) frames of the complete visualization 
sequence in parallel. These frames are then 
combined to create a video. 
 
Prior to this work, the Spiegel framework utilized 
only Java3D or JOGL to create 3D images. However, 
these libraries were limited to rendering simplistic 
models, which in some cases, results in unattractive 
images for a general audience.  Java3D and JOGL 
cannot be pushed to render extremely difficult visual 
scenes. For example, it is impossible with either 
library to generate an impressive looking nebula, like 
the Cat’s Eye Nebula shown in Figure 2.  The authors 
do not argue that an image like the Cat’s Eye Nebula 
cannot be generated on a computer, but they argue 
that Java3D or JOGL are not the right tools with 
which to solve this problem. 

 
Figure 2: Cat’s Eye Nebula. Courtesy of NASA 
and the European Space Agency. Image generated 
by the Hubble Space Telescope. 

Pixar's PhotoRealistic RenderMan® has been widely 
used in the computer graphics community for over 
two decades to create stunning computer generated 
imagery. RenderMan’s reputation has grown over the 
years and it is still used today to render scenes in 
many big-budget Hollywood films. Because of its 
power, huge benefits can be gained by incorporating 
RenderMan® into existing visualization systems. 

3. DATA FLOW ARCHITECTURE 
Most current visualization systems utilize a data flow 
architecture [Bis09]. Components have 
communication endpoints, which can be connected to 
form a visualization program. When the program is 
executed, data is passed from one component to 
another. Each component performs specific 
operations that contribute to the final result. 
 

 
Figure 3: Example of a program created in 
Spiegel that illustrates the data flow architecture. 
 
Figure 3 shows an example of a program created in 
Spiegel using its graphical interface. The node Stars 
reads the file named sim.dat specified as an argument 
and sends the data to the node Stars3D, and from 
there the data is sent to the last node in the graph, 
Camera3D. The Stars, Stars3D, and Camera3D 
components are simply small programs, which 
perform specific operations on the data.  
Most visualization frameworks, like Iris Explorer, the 
grandfather of all visualization systems [Fou95], do 
not expose this functionality to the user. Vish 
[Ben07] and Spiegel [Bis09] are frameworks that 
expose this functionality to the user; consequently, 
they are very easy to extend. 
The Unix operating system [Rit74] allows one to 
create a data flow architecture using pipes.  This 
allows for the connection of multiple simple 
programs to create powerful systems. But more than 
this, it fosters the reuse of existing components. This 
increases the productivity of a developer.  A Unix 
program like: 

sort file | uniq | sort –n  head -5 

will print out the 5 most often occurrences of the 
same line in file.  
Vish and Spiegel follow the same philosophy as 
Unix. In the end, this allows for the use of any 
tool/library that can convert data into an image.  
The authors explored OpenGL, JOGL, and 
PhotoRealistic RenderMan® within the Spiegel 
visualization framework. 
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4. RELATED WORK 
Other options besides RenderMan® exist for 
rendering realistic images. These include OpenGL 
with GLSL shaders and DirectX. Because Spiegel 
was designed to be platform independent, DirectX 
was an impractical choice because it is not fully 
supported on all platforms. Additionally, not every 
extension in OpenGL is supported on all graphics 
cards. These factors led us to consider RenderMan®.  
Due to the intuitive shading language and film-
quality rendering, RenderMan® is superior to 
OpenGL.  Even though it takes more time to render 
an image, the quality is significantly better and 
appeals to a general audience.  The RenderMan® 
Interface is well documented and its reputation has 
been proven in the field for over twenty years. 
RenderMan® automatically performs many 
calculations that need to be performed manually in 
OpenGL.  For example, with lighting enabled, the 
normal and view vectors are automatically 
calculated. Furthermore, setting up the camera and 
the scene is easier compared to OpenGL. The 
RenderMan® standard defines five types of shaders: 
surface, light, volume, imager and displacement; on 
the other hand, GLSL only supports vertex and 
fragment shaders.  RenderMan's shaders have a very 
modular design; therefore, it is possible to edit 
certain parts of the pipeline without affecting other 
aspects. It is also possible to have multiple variations 
of a base shader, which facilitates the evaluation of 
the effects.  Scene setup is also easier in 
RenderMan® as parameters can be added to a RIB 
(RenderMan® Interface Bytestream) file to guide 
scene generation as opposed to explicitly defining the 
scene in OpenGL. 

5. RENDERMAN® 
As stated previously, part of RenderMan’s appeal is 
its modular design and multiple shader types.  They 
can also be layered together to create unique textures.  
Once a shader is compiled, it can be used in any 
RenderMan® Interface Bytestream (RIB) file.  A 
RIB file describes the environment and the various 
objects within a scene.  RIB files can reference other 
RIB files in order to add existing objects to other 
scenes. 
In many cases, the data set requires much processing 
time to produce a movie.  The processing time 
increases drastically when rendering high-quality, 
photorealistic scenes. The Spiegel framework allows 
for distribution over a cluster, as shown in Figure 1, 
to generate the images in parallel, which reduces 
execution time. 
Spiegel splits the RenderMan® interface into several 
components.  These components include lighting, 
shader extractor, RIB generator, and camera settings.  
Because RenderMan® is very flexible, it is possible 

to have multiple instances of most of the 
components.  As data flows through each component, 
a RIB file depicting the scene is generated and 
ultimately processed by the PhotoRealistic 
RenderMan® renderer to produce the desired image. 

6. ARCHITECTURE 
A modeling application is used to create and compile 
the RIB file.  During compilation, the modeling 
application will parse each line of the RIB file and 
call the corresponding RenderMan® Interface (RI) 
routine.  Once all of the information is gathered, 
RenderMan® will then bound and split each 
primitive. Figure 4 illustrates all the phases involved 
in the architecture. 
During the bound and split phase, each primitive is 
checked whether or not it is within the bounding box.  
The bounding box is the viewing area in which the 
scene will be depicted. It is based on the current 
location of the camera and the size of the screen.  If 
an entire primitive is not within the bounding box, 
then it is discarded; however, if a primitive is 
partially in the bounding box, then it is split.  When a 
primitive is split this means that it is made into 
smaller polygons until a single one can fit into the 
bounding area.  This can be seen in Figure 5 when a 
sphere is split into smaller polygons that create the 
whole sphere.  Once the smaller polygons of the 
primitive fit into the bounding box, the polygons that 
are still not within the bounding box are discarded. 
Once each primitive is bound and split, they are 
diced into a grid of micro-polygons.  These micro-
polygons will be small enough to approximately 
represent a pixel on the screen.  As seen in Figure 5, 
these grids will allow for the shaders to manipulate 
the primitives.  The first shader applied, if one is 
specified, is the displacement shader.  These shaders 
need to be applied first because they manipulate the 
vertices' data, such as the position or normals, and 
this information is a basis for other shaders.  Once 
the displacement shader is applied, the surface 
shaders are used next to manipulate the surface of the 
primitive.  In order to apply the surface shaders, the 
lighting also needs to be taken into account to 
produce appropriate shadows.  The location of the 
lights also needs to be considered, because if a light 
is directed towards a primitive, then the surface 
shader needs to adjust the color according to the type 
of surface and make that area brighter than the rest of 
the object's surface.  Last, the atmosphere shader is 
applied in order to make changes to the primitive's 
color along with its opacity.  After the objects are 
bounded and split, diced, and shaded, the image is 
rendered and displayed onto the screen. 
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Figure 4: The stages involved in the RenderMan® 
architecture. 
 

7. RENDERMAN® PROGRAM 
Consider the example of trying to render stars in a 
galaxy. The following snippet of code shows part of 
the RIB file that is generated: 
 

... 
TransformBegin 
   Translate -0.1 0.6 -0.3 
   Scale 0.1 0.1 0.1 
   Color [0.46 0.46 0.4] 
   Surface "glow" 
"attenuation" "2" 
   Sphere 1 -1 1 360 
TransformEnd 
TransformBegin 
  Translate 0.1 -0.3 0.4 
  Scale 0.2 0.2 0.2 
  Color [0.0, 0.0, 0.0] 
  Sphere 1 -1 1 360 
TransformEnd 
... 
 

 

 
Figure 5: Illustration of a sphere being split, 
diced, and shaded. Image adapted from 
renderman.pixar.com [Pix09]. 

 
The first piece of information, between the first 
TransformBegin/End, describes the characteristics of 
one star within the image.  The surface of a star is 
described by using a shader called “glow”; this can 
be seen on the “Surface” line.  The second piece of 
information is for a black hole. The scale of a black 
hole is slightly larger than the stars and the color is 
black. 
 

8. SHADERS 
The key to generating realistic images from 
RenderMan® is shaders.  A shader is a function 
written in the RenderMan® shading language that 
calculates the color and position of a point on the 
surface of the object.  The RenderMan® plug-in for 
Spiegel allows the user to select the shader from a 
file.  The program will parse the header of the shader 
file to determine the parameters it takes.  It will then 
dynamically add an input to Spiegel’s shader module 
for each of these parameters.  This module contains 
the name of the shader and a list of variables with 
their values. The camera module generates the main 
RIB file. It imports the previously generated RIB file 
that contains the models. After generating the RIB 
file, the RenderMan® renderer (prman) is invoked to 
produce an image. This process is illustrated in 
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Figure 6. The module gets the camera position, 
image size, and the render quality in as parameters.  
It also has parameters for information about the 
interpolation and the motion blur.  To create an 
interpolated movie, the program reads each time step 
until it has four time steps, it will then render all of 
the frames that should go in between these four time 
steps. 
 

 
Figure 6: Illustration of how the main RIB file is 
built and used. 
 
There are several Spiegel modules for RenderMan® 
lighting.  These modules add support for ambient, 
distant, spot, and point lights.  To add a light, connect 
the light module to the RenderMan® camera module.  
The “lights” input supports the connection of 
multiple lights at the same time.  The parameters of 
the lights can be changed via Spiegel's interface.  
These parameters include light intensity and color 
along with others depending on the type of light.  It is 
important to note that some shaders, do not use 
lighting to determine how to render the objects.  This 
means that, when using these shaders, adding lights 
will have no effect on the final image. 

9. RESULTS 
The Spiegel framework was used to create video 
clips of black hole mergers for the show “The 
Universe: Cosmic Holes” which aired on the History 
Channel in 2008. The videos were rendered using 
OpenGL and depicted black holes as simple Gouraud 
shaded spheres against a static texture mapped 
background. Figure 7 (left) shows a single frame of a 
three black hole merger that was rendered using the 
old Spiegel/OpenGL approach. Figure 7 (right) 
shows an image that was rendered using the new 
Spiegel/RenderMan framework. In this case, the 
individual stars surrounding the central black hole are 
rendered using a shader which gives a more realistic 
glowing effect. 
We generated images based on a simulation of a 
three-galaxy merger. Figure 8 shows one frame of the 
merger viewed from the side and Figure 9 shows the 
merger viewed from the top. For these images, a 
different shader which emphasizes the appearance of 
the back holes was used. 
 

10. FUTURE WORK 
RenderMan has been successfully incorporated into 
the Spiegel visualization framework and has been 
used to create visualizations of galactic events such 
as black hole mergers. The new framework allows 
for distribution over a cluster. This was successfully 
verified for a small cluster. In the future, we will 
have access to Blue Waters [NCS09]. Blue Waters 
will consist of 100,000 nodes and the peak 
performance will be in the Peta-flop range. The 
Spiegel framework will be ported to this cluster and 
its scalability will be analyzed.  
Sonification [Her05], the art of representing data by 
using sound, is a rapidly evolving area of research.  
We plan to explore various approaches for using 
sonification models to further enhance our 
visualizations. 
Many visualization algorithms are designed to 
visualize a very specialized problem. Unfortunately 
these algorithms cannot be used outside the tool in 
which they are implemented. A language named 
Sprache is used to describe a visualization program 
in Spiegel [Bis05]. However, it is not well suited for 
working with data that is distributed over multiple 
servers. We plan to redesign this language to handle 
distributed data and distributed rendering for the new 
Spiegel/RenderMan framework. 
Finally, one of the major limitations of our project 
was the time it took to render images. The use of a 
cluster to render individual frames in parallel helps to 
reduce the overall rendering time for a video 
sequence, however each individual frame could 
potentially take a long time. Although PhotoRealistic 
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RenderMan is an efficient software renderer, it is still 
subject to long processing times for complex scenes. 
We plan to explore the use of multi-core GPUs to 
speed up the rendering time. 
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Figure 7: Image rendered using old Spiegel/OpenGL framework (left). Image rendered using new 

Spiegel/RenderMan® framework using shaders. 
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Figure 8: One frame from a three-galaxy merger viewed from the side. Image created by the Spiegel 

Visualization System using RenderMan®. 
 

 
Figure 9: One frame from a three-galaxy merger viewed from the top. Image created by the Spiegel 

Visualization System using RenderMan®. 
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ABSTRACT 
The rapid growth of  efficient tools, which   generate and edit  digital images demands effective methods for 
assuring integrity of images. A semi-fragile block-based image authentication technique is proposed which can 
not only localize the alteration detections but also recover the missing contents. The proposed technique  
distinguishes content-preserving  manipulations from the content alterations using secure image hashing instead 
of cryptographic hashing. The original image is divided into large blocks (sub-images) which are also divided 
into 8×8 blocks. Secure image hashing is utilized  to generate the sub-image hash (signature) which may slightly 
change when the content-preserving  manipulations are applied. Furthermore, the sub-image code is generated 
using the JPEG compression scheme.  Then, two sub-image hash copies and the sub-image code are embedded 
into relatively-distant sub-images using a doubly linked chain which prevents the vector quantization attack. The 
hash  and code bits are robustly embedded in chosen discrete cosine transform (DCT) coefficients exploiting a 
property of DCT coefficients which is invariant before and after JPEG compression. The experimental results 
show that the proposed technique can successfully both localize and compensate the content alterations.  
Furthermore, it can effectively thwart many attacks such as vector quantization attacks. 

Keywords 
Cryptographic hashing, image authentication, image hashing, watermarking. 

1. INTRODUCTION 
The current advances in information technology, the 
widespread multimedia applications and wireless 
services require efficient methods for guaranteeing 
privacy, security, protection and integrity of the 
assorted multimedia data categories. Since many 
recently developed devices and efficient software 
products offer consumers worldwide capabilities of 
flexibly creating, manipulating, and exchanging 
multimedia data, considerable efforts and  
contributions have been lately made on digital 
watermarking that inserts a piece of information (the 
watermark) into multimedia (host/cover) data for 
many purposes such as [Has04, Has07, Won01]: 

image authentication, copyright protection, 
fingerprinting, broadcast monitoring and data hiding. 
For example, in medical archiving and e-commerce, 
we strongly desire to be sure that the images are 
genuine and in the news reporting, it is important that 
the image truthfully reflects the real view at the time 
of capture [Lan99, Won01]. For image authentication 
purposes, it is required that the watermarking 
algorithm is blind, secure and so sensitive that slight 
modifications to the image content are detected and 
precisely localized [Lin99,Yeu97]. Fragile [Won98, 
Bar02, Cel02], semi-fragile [Eki04, Lin00, Lin01a, 
Lin07, Mae06], self-recovery/embedding [Fri99b, 
Lin01b, Lue08, Wan08] watermarking schemes have 
recently been presented for image authentication. 
Fragile image authentication schemes are so sensitive 
to pixel changes where their watermarks are easily 
damaged even in case of harmless changes in the 
image data due to content-preserving manipulations 
that do not affect the content [Lin99]. Hence, fragile  
image authentication is applicable and of interest only 
in case of lossless environment, i.e., coding, storage, 
transmission (of the watermarked image). The 
fundamental objective of the attacker facing such 
fragile watermark is to keep a watermark that makes 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 
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his/her altered or completely forged image, “pass” the 
verification test as authentic [Has04, Has07, Lue08]. 
Block-based fragile/semi-fragile image authentication 
schemes provide attack localization but they are 
vulnerable to vector quantization (VQ) attacks 
[Hol00], relying on that the watermark 
embedding/verification processes are run on 
independent blocks. Once an attacker has a table of 
authenticated blocks (with the same security 
parameters), he/she can use the best-authenticated 
approximation of an un-authenticated block without 
having the verification process detecting his/her 
alterations. This type of attack principally differs from 
the attacks against copyright protection and 
information hiding where the attacker may mainly 
want to significantly distort or remove the watermark 
with imperceptible alterations in the image [Kut00, 
Kir02].  

Various global and block-based (sized down to pixel-
wise) fragile image authentication methods have been 
developed. A simple fragile scheme simply replaces 
the least significant bits (LSBs) of the image of 
interest with the checksum (i.e., modulo-2 addition) 
bits of a long word of some most significant bits 
(MSBs) [Lin99]. In [Yeu97], the use of a user-defined 
color look-up tables (LUTs) guided pixel-wise 
adjustment to embed the watermark is proposed. 
Wong’s block-based method [Won97] and its public-
key modified versions [Won98, Won01] replace the 
LSBs of each block with a signature of its MSBs, 
with the image size, image index and/or block index, 
xor-ed with its corresponding watermark block.  

On the other hand, semi-fragile image authentication 
techniques  embed watermarks so robustly to survive 
(to some, application dependent, extend) various 
kinds of typical image processing manipulations such 
as lossy compression as long as the image contents 
are preserved. At the same time, embedded 
watermarks must detect malicious alterations such as 
deleting or adding an object. In many semi-fragile 
schemes, the relations between pairs of discrete 
cosine transform (DCT) coefficients in a block are 
used as the block  signature. Then, the signatures 
(watermarks) are robustly embedded in low frequency 
coefficients [Lin00, Lin01a]. In [Mae06], the authors 
introduce two methods to generate the signatures 
using the discrete wavelet transform (DWT). In the 
first method, random values are added to the 
difference between two coefficients before the 
difference is encoded to generate the signature bit. 
The second method proposes the use of a multiple 
nonuniform quantizer  to encode the coefficient 
difference in each  pair. Lin et. al. use the differences 
of DCT coefficients as signatures and modify other 
DCT coefficients to match the signatures [Lin07].   

Furthermore, to not only localize altered regions but 
also compensate for the damage, self-recovery/  
embedding image authentication techniques have 

been presented that embed an image approximation 
into the image itself in a fragile [Lue08, Wan08] or 
semi-fragile [Has07, Fri99a] way using various 
techniques. 

An original self-recovery/embedding image 
authentication technique based on JPEG compression 
has been introduced in [Fri99b]. A JPEG compressed 
version of each block  is inserted into the LSBs of 
the block 

B

PB
v

+ , where P
v

 is a vector of length 
approximately 1/3 of the image size, with a randomly 
chosen direction. The algorithm limitations and 
possible attacks are addressed in [Fri99c, Lue08]. In 
[Lin01b], Lin and Chang  have proposed  an 
algorithm using quantized coefficients of the DCT of 
the image blocks as a watermark and modifying the 
coefficients differences to match the quantized 
coefficients (watermark). The attacker can easy 
defeat the verification process  applying the same 
algorithm into a fake image. Instead of using a JPEG 
compression version as an image approximation, 
Wang and Tsai  have used  fractal codes of a ROI 
(region of interest), which is chosen as the important 
object in the host image [Wan08]. On the other hand, 
Lue et al. proposed a technique that uses a halftone 
version of the host image as an approximation image 
[Lue08].  

In this paper, image hashing technology,  which will 
be described in the next sections in details  is utilized 
to generate the sub-image signature. A code of the 
approximated sub-image is computed using the 
principals of JPEG compression. Then, the sub-image 
signature copies and the sub-image code are robustly 
embedded into DCT coefficients of  two relatively-
distant sub-images making a doubly linked chain.  

The remainder of this paper is organized as follows: 
cryptographic hashing, which is mostly used to 
generate image/block signature in fragile algorithms, 
and image hashing, which  we adopt to generate the 
proposed signatures, are described in Section 2. In 
Section 3, existing image hashing schemes are 
presented. The proposed technique is introduced in 
Section 4. Experimental results are shown in Section 
5. In Section 6, the conclusion is presented. 

2. CRYPTOGRAPHIC HASHING AND 
IMAGE HASHING  
The cryptographic hash functions such as MD4, 
MD5, and SHA  [Men01, Sch96] map the input data 
to a short fixed length  string. For the hash function 
Hc and the input data d, it should be easy to compute 
the hash hc=Hc(d). For this type of functions, called 
one-way-functions, it is too hard to estimate the input 
data d from the hash hc.  Hash functions have, at least, 
the following  additional properties  [Men01, Sch96]: 
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 Given the hash hc, it is computationally infeasible 
to find an input which hashes to that output, i.e. it 
is hard to find d such that Hc(d)=hc. 

 Given the data d, it is hard to find another input 
data d0 which hashes to the same output, i.e. it is 
hard to find Hc(d)=Hc(d0). 

 It is computationally infeasible to find any two 
inputs d0 and d1 which have the same output (i.e., 
satisfying collision resistance). 

It is clear that the cryptographic hash  is so sensitive 
to changes in the input data where small changes, 
even a single bit, dramatically change (~50%) the 
output. To secure the hash, it may be encrypted by an 
encryption algorithm. The cryptographic hash is 
mostly used for digital signatures and fragile image 
authentication. 
On the other hand, the image (visual) hash function  
H  maps the input image (or sub-image) to an output 
h=H(I) that is invariant under perceptually 
insignificant  image changes with the following main 
properties[Fri00, Mih01, Swa06, Ven00, Tan08]: 

 It is hard to find two different images having the 
same or very close hash  value(s) (collision 
resistance). 

 Given h, perceptual changes to an image I  lead 
to a different hash  H(I') ≠ H(I). 

 The hash is key dependent, for security reasons, 
so that different keys give significantly different 
hash values. 

The main difference between image (visual) and 
cryptographic hashing is that image hashing accepts  
perceptually insignificant changes in the input image 
with  small hash changes; but small changes in the 
input data lead to very significant changes in the 
cryptographic hash. 

3. IMAGE HASHING SCHEMES 
In [Fri00], The image hash is generated by projecting 
the  input image onto patterns which are generated 
using a zero-mean uniform distributed  key random 
generator. The resulting hash is resilient to many 
normal operations but it is not collision free [Swa06]. 
Venkatesan et al. have introduced an image hashing 
algorithm that uses the discrete wavelet transform 
(DWT) of an image. Statistics of each subband block 
are calculated, randomly quantized and encoded to 
generate the final hash value [Ven00]. Unfortunately, 
the algorithm does not work  well for object insertion. 
In [Mih01], the DWT is employed to capture the 
image hash based on threshoding and iterative 
filtering. Swaminathan et al. [Swa06] have exploited 
the Fourier-Mellin transform to generate  image 
features. In the polar coordinate, the summation of 
image values alone angle axis  at equal distant points 
for a specific radius is an image feature. The image 
features for radii are represented as the image hash.  

In [Tan08], a robust image hash algorithm uses a non-
negative matrix factorization (NMF) scheme for 
generating the image hash. First, the image undergoes 
preprocessing as a sequence of image resizing, color 
space conversion and low-pass filtering.  The 
preprocessed image is then divided into unequal 
blocks. Next, each block is rescaled to a fixed size 
and put as a vector in a matrix that is undergone 
NMF. The elements of the NMF coefficient matrix 
are quantized and encoded to generate the image 
hash. We use this algorithm to generate the sub-image 
signature in our proposed image authentication 
technique. So, we describe it in more details in the 
rest of this section. The scheme is composed of the 
following four main steps:  
 

First step: Image preprocessing 
a- The image is  resized to q×q using bi-linear 

interpolation. 
b- The color space of q×q image is converted to 

YCbCr. 
c- The Y plane is passed through a low-pass filter. 

Second step: Building the secondary image 
a- The preprocessed image U is randomly 

divided into t strips, and each strip is again 
divided into t blocks with varied sizes, 
resulting in t2=Nb blocks in total. 

b- Each block is resized to k×k using bi-linear 
interpolation. 

c- Each k×k block is stacked to construct a k2×1 
vector v. 

d- Each vector v is used as a column in a pseudo-
random order to form the m×n matrix V, 
where m=k2. V is called the secondary image. 

Third step: Data reduction 
a- V undergoes NMV giving the  coefficient 

matrix C  (see the appendix). 
b- C entries are quantized to generate a binary 

matrix Cb as follow: 
 

  (1) 
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where cl,j denotes the entry of C in the lth row and the 
jth column , and cl,n+1 = cl,1. 
Final step: Hash security 

a- Cb entries are concatenated to form a binary 
string. 

b- The binary string is interleaved using a  key to 
produce a key-dependent image hash h. 

4. PROPOSED TECHNIQUE 
Image hashing is employed to generate the sub-
images' hashes (signatures) which are used to check 
the authenticity of an image. Two signature copies of 
each sub-image are robustly embedded into two 

WSCG 2010 Communication Papers 253



relatively distant sub-images which are pseudo- 
randomly  chosen  using a doubly  linked chain in low  
frequency DCT coefficients. In the proposed 
technique,  the  image  of interest  is divided  into sub- 
images. The sub-image hash (signature) is computed 
using the secure image  hashing algorithm [Tan08] 
and the sub-image code, which represents the 
approximated sub-image is generated using the JPEG 
compression principles. Then, the sub-image hash 
copies and the sub-image code are robustly inserted 
into relatively distant sub-images. In the next 
subsections, the embedding and the verification 
processes are described  in details. 

Embedding Process 
The original M×N image I is divided into m'×n' sub-
images as follows: 

 

⎡ ⎤ ⎡ ⎤{ }'' /,/2,21,22,11,1 ...,,,...,,, nNmMSISISISISII =  (2) 

where m' mod 8=0 and n' mod 8=0,  is the floor of 
x. For each sub-image SIi,j, the sub-image hash hi,j is 
computed using the  secure image hashing algorithm 
[Tan08] such that: 

⎡ ⎤x

 

  (3) )( ,, jiji SIHh =
 

To compute the sub-image code  , the sub-image 
SIi,j is resized to 8×8. Then, the resized sub-image is 
undergone the DCT. The DCT coefficients are 
quantized using the quantization table which 
corresponds to 50% quality JPEG compression. Then, 
the quantized coefficients are encoded using a fixed 
bit allocation table to generate the sub-image code. 

S
jiC ,

Each sub-image is divided into 8×8 blocks  as follow: 
 

 { }ji
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jiji
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Two hash copies and the code of each sub-image are 
robustly inserted  and spread into two relatively 
distant sub-images generating a doubly linked chain. 
In the color images, we use the Y channel of the 
YCbCr color space for embedding the hash copies and 
codes. The choice of the two relatively distant sub-
images depends on the sub-image index and it is 
controlled by secret keys as follows: 

[ ] [[ ]3/2,3/)(,1mod))(( 111 ssksk MMjGMjGii ∈ ]++=   

[ ] [[ ]3/2,3/)(,1mod))(( 12121 ssksk NNiGNiGjj ∈ ]++=   
[ ] [[ ]3/2,3/)(,1mod))(( 332 ssksk MMjGMjGii ∈ ]++=

[ ] [[ ]3/2,3/)(,1mod))(( 24242 ssksk NNiGNiGjj ∈ ]++=

                                                                                (5) 
 

where Gk1, Gk2, Gk3  and Gk4 are key seed random 
generators with   keys k1, k2, k3 and k4. Ms and Ns 
are the number of sub-images per column and row, 
respectively.  
Fig. 1 illustrates an example of the indices of the first 
relatively distant sub-image  for each sub-image after 
Gk1(j)  column-wise circular shifts followed by Gk2(i1) 

row-wise circular shifts.   
Then, each block of distant sub-images is transformed 
to the frequency domain using the DCT. We robustly 
embed two hash copies of the sub-image and the sub-
image code (sub-image approximation) into the two 
relatively distant sub-images. One copy is embedded 
into the first distant sub-image blocks and the other 
copy into the second distant sub-image blocks. 
Furthermore, we divide the sub-image code into two 
groups which are embedded into the two distance 
sub-images. For embedding a bit of a sub-image hash 
copy or a bit of a sub-image code, we use a proved 
theorem given in [Lin00]. The theorem explains that 
if a DCT coefficient is quantized by Qqf(v) (qf refers 
to the compression quality factor), this coefficient can 
be reconstructed after JPEG compression with qf1>qf. 
Depending on this theorem, we can embed a bit into a 
DCT coefficient using an arbitrary quantization step 
and we can also recover this bit even if JPEG 
compression is applied with a quality factor greater 
than the quality factor, which is used  in the 
embedding operation. Therefore, if we arrange the 
DCT coefficients of a block in zigzag order , the 
chosen coefficient of the block , which has an 
index (u,v) in the sub-image SI
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,

i,j, is modified as 
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where  is the modified block, Qm is the  specific 
quantization table, [x] is the round of x, l is the chosen 
middle frequency  coefficient index, t is the  hash 
index, sign(x) is equal 1 if x is a positive value and it 
is -1 if x is a negative value. Using (6), we can embed 
the bits of the hash and also the bits of the code  into 
low frequency coefficients, which have pre-specific 
indices. A sub-image hash copy and the first group of 
the code are embedded into chosen coefficients of the 

ji
vumb ,

,

        Gk1(j) 3 2 4 2 4 3 2 4  Gk2(i1)         
1 2 3 4 5 6 7 8  25 34 19 36 21 30 39 24  2 30 39 24 25 34 19 36 21
9 10 11 12 13 14 15 16  33 42 27 44 29 38 47 32  3 29 38 47 32 33 42 27 44
17 18 19 20 21 22 23 24  41 50 35 52 37 46 55 40  4 52 37 46 55 40 41 50 35
25 26 27 28 29 30 31 32  49 2 43 4 45 54 7 48  2 54 7 48 49 2 43 4 45
33 34 35 36 37 38 39 40  1 10 51 12 53 6 15 56  4 12 53 6 15 56 1 10 51
41 42 43 44 45 46 47 48  9 18 3 20 5 14 23 8  3 5 14 23 8 9 18 3 20
49 50 51 52 53 54 55 56  17 26 11 28 13 22 31 16  2 22 31 16 17 26 11 28 13

(a)                           (b)                              (c) 
Figure 1. Example of the proposed scheme for 

choosing relatively-distant sub-images.            
 (a) Original sub-images.  (b) Sub-images after 

Gk1(j) column-wise circular shifts. (c) Sub-images 
after Gk2(i1) row-wise circular shifts. 
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first distant sub image blocks. This operation is 
repeated for embedding another copy of the sub-
image hash and the second group of the code into  
other chosen coefficients of the second distant sub-
image blocks.  After embedding the hashes and codes 
of all sub-images, the DCT coefficients are converted 
back to pixel integer domain. There is a possibility for 
losing some embedded bits by the rounding and 
truncation which are used for converting to the pixel 
domain.  Therefore, we use an iteration procedure to  
assure the embedded bits are exactly extracted from 
the authenticated image. 
 

Verification Process 
In the verification process, the alterations that may 
occur on an authenticated image are not only detected 
and localized but also repaired.  In the verification 
process, the test image I' is divided into sub-images 
and each sub-image hash  h'i,j is computed. For each 
sub-image SI'i,j, the corresponding distant sub-images 
indices are computed using (5). The embedded hash 
copy he1

i,j  and the first group of the sub-image code 
are extracted from the first distant sub-image SI'i1,j1. A 
bit is  extracted as follows: 
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where   is the block, which has an index (u,v), in 
the sub-image SI'

1,1'
,

ji
vub

i1,j1, and Qm(l) is the quantization 
step. The other hash copy he2

i,j  and the second group 
of the code are  extracted by the same method from 
the second distant sub-image SI'i2,j2. The two groups 
of the code are combined together to be the extracted  
code Ce

i,j of the sub-image SI'i,j.  To evaluate the 
match of hashes, the normalized Hamming distance is 
used which is defined as: 
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where L is the length of the  hash string. For each sub-
image, we compute the normalized Hamming distance 
between the computed and extracted hashes. The 
status of the sub-image STi,j (altered sub-image or not) 
is evaluated as follows:  
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where T is  a threshold, STi,j=0 if the sub-image SI'i,j is 
considered as an altered sub-image, otherwise STi,j=1. 
For each altered sub-image, the approximated original 
sub-image can be recovered if the two distance sub-
images of the concerned sub-image are not altered. 
Therefore, the reconstructed sub-image  is rebuilt 
as follows: 
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where LOST is a sub-image that is  marked as a lost 
sub-image, dec is a sub-image decoding method. 

5. EXPERIMENTAL RESULTS 
To examine the robustness of the proposed technique, 
we consider the performance of it to JPEG 
compression and additive noise. The proposed system 
has been tested using  50 512×512 images. We firstly 
study the effects of JPEG compression with a range of 
quality factors. Then, the additive Gaussian noise 
effects are addressed. The size of the used sub-image 
is 32×32. To calculate the sub-image hash, the 
parameters are r=8, t=2  and k= 16. Thus, the hash 
length is 32 bits.  In the robustness tests of the 
proposed technique, the quantization table of 50% 
quality JPEG compression is used  as a predefined 
quantization table Qm. The chosen coefficients' 
indices of the first distant sub-image blocks are 
{(1,4),(4,1)} for embedding the hash copy and {(2,3), 
(3,2)} for embedding the first group of the code. For 
the second distant sub-image blocks, the chosen 
coefficients' indices are {(2,4),(4,2)} for the second 
hash copy and {(1,3),(3,1)} for the second group of 
the code. 
 

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

50 55 60 65 70 75 80 85 90 95 100

JPEG Quality

H
am

m
in

g 
D

is
ta

nc
e

First distance sub-image 
Second distance sub-image

 
 

 
 

Figure 2. Average Hamming distance between 
the computed and extracted hashes for various 

JPEG compression quality factors.
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 Figure 3. Average Hamming distance between 
the computed and extracted hashes for various 

Gaussian noise variances. 
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Fig. 2  illustrates that the average Hamming distance 
between the computed sub-image hash and extracted 
hashes recovered from the first distant sub-image and 
the second distant sub-image, respectively for various 
JPEG compression quality factors. 

The effects of the additive zero-mean Gaussian noise 
have also been tested. Fig. 3 shows  the average 
Hamming distance between the computed  sub-image 
hash and extracted hashes which are extracted from 
the first distant sub-image and the second distant sub-
image, respectively for various noise variances. From 
these figures, we observe that the normalized 
Hamming distance values are less than 9%. Thus, we 
can use this value as a threshold T.  

To validate the proposed technique, we test it to check 
its capability of detecting local malicious 
manipulations mixed with  JPEG compression. Fig. 4 
is the original image and the approximated image, 
which represents the codes of all sub-images is shown 
in Fig. 5. The correlation coefficient between the 
original (grayscale version) and approximated images 
is 0.9198 and the peak signal to noise ratio PSNR of 
the approximated image relative to original image is 
26.07 dB. The original image is authenticated using 
the proposed technique with the used quantization 
table  Qm of  70% quality JPEG compression to yield  
the image of Fig. 6. The correlation coefficient 
between the original and authenticated images is 
0.9982 and the PSNR of the authenticated image 
relative to the original image is 42.47 dB.  The 
authenticated image is altered by a local malicious 
attack. Then, it is undergone  80% quality JPEG 
compression to yield the image of Fig. 7. In Fig. 8, the 
proposed technique efficiently detects and localizes 
the content alterations. The proposed technique can 
not only localize the alteration detection but also 
successfully recover the missing contents as shown in 
Fig. 9. 

6. CONCLUSION 
A self-recovery semi-fragile image authentication 
technique is proposed which uses secure image 

hashing with improved localization. Using image 
hashing in the proposed technique to generate  
the signatures gives the proposed technique 
the capability to be robust against the normal 
operations such as JPEG compression and  
additive noise. To thwart the vector quantization 
attack, two sub-image hash copies and the sub-image 
code are securely embedded into two relatively distant 
sub-images. The experiment results explain 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Approximated image, correlation 
coefficient=0.9198, PSNR=26.07dB. 

Figure 6.  Authenticated image, correlation 
coefficient=0.9982, PSNR=42.47dB. 

 

Figure 7.  Altered version of the 
authenticated image. 

Figure 4.  Original image. 
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 that the proposed technique successfully 
distinguishes the normal manipulations such as JPEG 
compression  from malicious operations and precisely 
localizes the alteration detections. Moreover, the 
proposed technique can successfully compensate the 
missing contents. 
 

 
 

Figure 8. Verification result marking the altered 
regions.  
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8. APPENDIX  
Non-negative matrix factorization  NMF  

In NMF, a non-negative matrix V  is factorized 
into  two matrices, B and C: 

 

  (11) CBV ≈
 

where B and C  are called  the base matrix and the 
coefficient matrix respectively. The factors C and B 
must be non-negative. 
If the size of V is m×n, the sizes of B and C are m×r 
and r×n, respectively. If r is chosen as less than m 
and n, NMF may be used for dimensionality 
reduction. 
To compute B and C, the following updating rules are 
applied [Tan08]: 
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where i =1,2,...,m ;  j=1,2,...,n; l=1,2,...,r. 
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ABSTRACT

Communication in general incorporates technologies with increasing number of communication modes. Special applications
are developed in the area of virtual reality, multimedia communications and others where combinations of audio, video, 3D data
are sent between two (or more) distant users which can commonly interact with these data. A form of so exchanged information
usually requires, among others, special forms of presentation. Thus stereoscopic and virtual reality visualization devices are
used to present intricately structured information in multi-modal form.
There are situations where the presented information is to be rendered in real-time and transmitted to the remote user in form
of a video-stream. In this case, the content is presented on a local visualization device (e.g. CAVE) being simultaneously sent
to a remote device. Thus a method how to obtain rendered data from graphics hardware in real-time is necessary.
The problem is, how to obtain the rendered data for transmission with minimal impact on the rendering and visualization
process. In this paper, we present a method how to retrieve video stream from an arbitrary running OpenGL application,
capturing every frame with minimal impact on performance.

Keywords: OpenGL, real-time video grabber, streaming video, streamcast

1 INTRODUCTION

With the rise of 3D digital media, stereoscopic movies
and upcoming 3D television, the need for a new sources
of stereoscopic signal emerges. The usual sources of
such a signal are cameras in stereoscopic setups or pre-
rendered video sequences. There are many applications
rendering 3D images, some of them even stereoscopic
ones. Those could be great source for such a stream,
but they usually does not support producing an video
that could be directly used as a source of video signal
for stream nor support saving video to a file.
In order to use such an application we need to be able

to retrieve output of the running application in real-time
(see fig. 1). From other point of view, we may simply
want to record output of running application and store
it locally for later, offline use. In order to get those, we
could alter the application itself to produce such a video
stream or file. We can also use some screen grabbing
application (streamcast) or have a hardware solution.
As the graphics hardware and software technologies

changes over the time, the problem is still actual and
new approaches appear. The main problem is related to
the cost of the grabbing process because the data source
(typically a graphical subsystem) produces content in

Permission  to make digital or hard copies of all or part
of  this  work  for  personal  or  classroom use  is  granted
without   fee  provided   that  copies  are  not  made or
distributed for  profit or commercial  advantage  and  that
copies bear this notice and the full citation on the first  page.
To copy otherwise, or republish, to post on servers or to 
redistribute  to  lists,  requires  prior  specific  permission
and/or a fee.

real time. Thus the grabber should obtain pictures with
minimal impact on the rendering process.
We first describe known methods of the video grab-

bing which appeared during a period of the last decade.
These methods are evaluated according to our criteria
based on modification that needs to be done to the
application itself, impact on performance of the appli-
cation and possibility of grabbing stereoscopic images
from quad buffer. We evaluate the performance loss
formulti-core/multi-CPU systems. Next, our own asyn-
chronous wrapper is described and compared with the
already implemented solutions. Finally, some applica-
tions of the described wrapper are presented.

2 STATE OF THE ART

There exist several approaches to the solution of how to
acquire a stream of graphical data from an application
running on the system. These approaches are then of-
ten implemented for various purposes. We can classify
them into four basic groups:

• alteration of the application which is the source of
the data

• screen grabbing

• combination of previous two methods

• capturing output of the graphics hardware

These methods are know explained and compared in
the next paragraphs.
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Figure 1: A general scheme of grabber.

2.1 Altering an Application
The method of altering an existing application has an
obvious drawback in a need to have source codes for
the application and also alteration of every application
we use. This basically limits the usability of it to ap-
plications where we have source code (typically open-
source). The solution is also complicated when we use
many different applications.
Aside from that, this method has an advantage in

knowing everything about the application to have full
control over the grabbing process. Thus it can grab the
images synchronously with the rendering speed. Also,
for an application rendering stereoscopic images into
quad-buffer, this method can grab images for both eyes.
The implementation is specific to every application as
well as the performance loss. This solution can be
therefore seen in special applications (e.g., applications
working as real-time video content generators for net-
work projects or art performances).

2.2 Screen Grabber
The screen grabbing represent a next approach where
the graphical information is obtained independently on
the application code. Using a standalone screen grabber
does not require any alteration of the application, but
on many systems it has problems on accelerated win-
dows. It won’t be synchronized with the speed of an
application as it does not have any information about
architecture of the application. Asynchronous grabbing
can introduce image distortions when the frame buffer
is changed during read, it can miss frames when the
application renders faster than the grabber grabs and
can unnecessarily grab the same image multiple times,
when the application stalls or is just slower than the
grabber. Furthermore, this method would fail for quad-
buffer stereo.
As an example of such an approach, there are appli-

cations like scrot and xsnap realized in GNU/Linux en-
vironment. The code of the grabber runs outside the

context of the application, so the impact on the render-
ing speed should be quite small.

2.3 Combined Solution
Another solution would be combination of above men-
tioned two methods. Here, a separate grabber without
modifying the application is used. This can be done us-
ing an wrapper to rendering library, i.e. OpenGL,which
would inject some code to proper place of the render-
ing process and execute it there. Provided our code
could get enough information about rendering window,
we can grab the exact window, adjust the area being
grabbed when the application window changes and we
can start the grabbing exactly once per frame.
There is an opensource project captury using this so-

lution. In this project, the code is executed in context of
rendering thread of the application, effectively slowing
down the rendering of every frame by grabbing, com-
pressing and saving every frame, before it the buffers
gets swapped.

2.4 Hardware Solution
A hardware solution means plugging some device into
output of graphics card and process it on other com-
puter or in the device itself. This solution needs sepa-
rate hardware, it is quite expensive, and is not synchro-
nized with the application’s speed. The output signal
needs to be cropped when rendering only into an win-
dow. In addition, the captured signal has given param-
eters, like resolution, which are not easily controllable
during the grabbing process. On the other hand, it has
absolutely no impact on the application itself, as there’s
no processing on the rendering machine.
As the acquisition of the video from graphics hard-

ware in real-time is an interesting problem new so-
lutions implemented directly in the graphics boards
rises. In August 2009, nVIDIA released solution to
record/output SDI uncompressed video directly to/from
Quadro GPU’s memory. As this information is too
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much new, we had no chance to test it before submis-
sion of this paper.

3 MULTI-THREADED REAL-TIME
VIDEO GRABBER

The solution we propose is a modifie approach to
wrapping rendering library’s calls and injecting our
code there.
The key is in using a wrapper, that “hooks” onto few

library calls in order to retrieve information about ap-
plication’s window and to grab the window in a right
time.
The grabbing itself is done in the context of the ren-

dering thread using standard methods to retrieve the
content of framebuffer. This directly implies that, when
rendering in quad-buffer mode for active stereoscopy,
we can easily get both images as we can control the
flow of the code. After getting the frame we send it to
an other thread to next process. This ensures that the
impact will be as small as possible, provided the ma-
chine has multi-core CPU or multiple CPUs. The pro-
cessing itself can be done in multiple threads also, to
use more available cores more effectively. In the pro-
cessing threads, we can save the video to the local stor-
age or stream it over network and optionally compress
it.
The implementation we present was done under

GNU/Linux environment, using an OpenGL applica-
tions and nVIDIA QUADRO FX cards to render active
stereoscopic images in quad-buffered mode.

3.1 Wrapping

Thewrapping is done by utilizing linux dynamic loader,
which takes care of loading libraries and resolving sym-
bols. Using LD_PRELOAD environmental variable rec-
ognized by the loader, we tell it to preload a shared ob-
ject before an application and use it for symbol resolv-
ing with higher priority. In the shared object we pro-
vide hooks on few function that inject our code before
the real call to the library function.
Namely we “hook” onto glViewport in order to

get information about the window size and it’s changes.
We also use this as a point to initialize the processing
threads. We also hook onto framework specific func-
tions in order to swap buffers (glxSwapBuffers,
SDL_GL_SwapBuffers). When the application
calls swap buffers, it signalizes it has finished rendering
the frame, so it’s the right place for us to grab it and
send it to the next process. It is also the place where we
can drop frames if the application is rendering too fast.
Our implementation also wraps dlsym call to catch
symbol resolving done in real-time and not by dynamic
loader.

3.2 Grabbing

During a rendering process the rendered images are
stored in two (or four in case of stereoscopic output)
frame buffers which are periodically swapped. On prin-
ciple, there are two types of frame buffer reading:

• asynchronous – based on so called Pixel Buffer Ob-
jects [Biermann et al., 2004]

• synchronous – direct buffer reading

First, retrieving the image is the done by calling
glReadPixel with correctly set read buffer in
OpenGL context, optionally on initialized Pixel Buffer
Object (PBO). PBO approach moves the reading into
background so it does not block the rendering thread.
But it introduces a delay of 1 frame, because we get the
data on the next buffer swap.
The direct approach introduces delay into the render-

ing thread, which means a slowdown of the application,
but we get the data sooner. We support both methods.
By changing actual buffer and repeating the read, we
can retrieve data for the other eye, if we have quad-
buffer stereo.

3.3 Processing

The processing threads are doing color space conver-
sions and re-sampling. Other threads can take care of
possible video compression and others can stream it
or save it locally. Processing of stereoscopic signals
is done by pairs of threads to improve multi-threaded
performance.

3.4 Summary

A scheme of the process is shown on figure 2. Original
application is wrapped in it’s call to Swap Buffers (usu-
ally glxSwapBuffers) is intercepted and instead of
it, our code is executed. Content of the framebuffer
is then grabbed as described in 3.2 and sent for pro-
cessing to other threads. Then original SwapBuffers
method is called and control is returned to the applica-
tion. Meanwhile the data from framebuffer are being
processed in other threads and eventually streamed out
(or recorded).
The whole grabbing process is done in the context

of the rendering thread, but the rest of the processing
is done in other threads, not directly affecting the ap-
plication’s performance. So the impact to application
is mostly defined by the slowdown that takes place in
the grabbing functions. Of course, in case the applica-
tion would do some CPU intensive operation the video
(i.e. compression), it may place load to the CPU and
indirectly slowing down the application.
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Figure 2: Scheme of the wrapped grabber

4 APPLICATIONS
The possibility to capture rendered video in real-time
has lot of applications in wide area. As the problem
described in this paper is part of another project, we
can mention some applications which already use our
grabber.

4.1 Project C2C
Described method is successfully used in project
Cave2Cave (C2C) [Berka et al., 2009] to stream a
stereoscopic video signal from applications running
in CAVE-like system [Cruz-Neira et al., 1992] and to
present it on remote site (see fig 3).
We use the the multi-threaded grabber to get

video of the application, scale it, optionally com-
press it and stream it using standard protocol RTP
[Schulzrinne et al., 1996]. The grabber also creates
RTSP [Schulzrinne et al., 1998] server to provide SDP
descriptions [Arkko et al., 2006] of the streams. This
way we can (and we do) present applications from our
CAVE system to distant viewers. The use of standard
streaming protocols allows us to partially preserve
possibility of receiving data by standard players used
by remote user.

4.2 Prerendering
Another use of the method is to allow prerenderingwith
applications that does not support it natively. For ex-
ample, application rendering complex model which can
not be rendered in real-time could be used to render it
as fast as it could while having it’s whole run recorded.
Then we simply playback the recorded video at the

requested speed. This allows us to present output of
any application even in cases, when the application it-
self can not do it in real-time. We successfully used
this method for presenting walks through very complex
VRML models to public.

4.3 Industrial Applications
As the grabber can wrap theoretically any OpenGL ap-
plication (it depend on correctness of application imple-
mentation in relation to OpenGL library), it offers itself
in such situations where some industrial product (like
an architectural model or model of a car) is to be, prob-
ably interactively, presented to a remote user without
necessity to send these data to his/her computer. It is
important when there is not possible to move real data
or software, e.g. due to license limitations. Using sys-
tems like CAVE, running our grabber on each wall, as
a source of content, an application then allows to me-
diate immersive environment remotely using standards
described in already referenced RFC documents.

5 CONCLUSION
The proposed method allows real-time retrieval of ren-
dered stereoscopic images from arbitrary OpenGL ap-
plication without a need to modify the application itself.
It can be used as base for a system to record an output
of an application to local storage for offline use or to
stream the content over network in real-time.
The solution has potentially lot of applications in

wide area of remote visualizations also on immersive
devices or in the area of collaborative environments.
As it has been already mentioned above the problem
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Figure 3: Scheme of the multi-projection screen based configuration. A scene rendered in the resource device with
3 projection walls is grabbed and the resulting video is transmitted to the remote device where it is presented on
remote projection wall.

with grabbing methods is in continuous development
and follows possibilities of contemporary technologies.
For know, we can expect that the support of hardware
solutions will be probably accessible for wider area of
applications.
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ABSTRACT
In this paper we propose a novel anisotropic smoothing scheme based on Markov Random Fields (MRF). Our
scheme is formulated as two coupled processes. A vertex process is used to smooth the mesh by displacing the
vertices according to a MRF smoothness prior, while an independent edge process labels mesh edges according
to a feature detecting prior. Since we should not smooth across a sharp feature, we use edge labels to control the
vertex process. In a Bayesian framework, MRF priors are combined with the likelihood function related to the
mesh formation method. The output of our algorithm is a piecewise smooth mesh with explicit labelling of edges
belonging to the sharp features.

Keywords: Mesh, smoothing, Markov Random Fields.

1 INTRODUCTION
Markov Random Fields (MRF) have been used ex-
tensively for solving Image Analysis problems at all
levels. The local property of MRF makes them very
convenient for modeling dependencies of image pix-
els, and the MRF-Gibbs equivalence theorem provides
a joint probability in a simple form, making MRF the-
ory useful for statistical Image Analysis. While some
examples are mentioned below, MRF have rarely been
used for mesh processing. One reason could be that
MRF are usually defined on regular grids, but this is
by no means required.

In this paper we demonstrate that feature preserving
mesh smoothing may conveniently be cast in terms
of MRF theory. Using this theory we can explic-
itly model our knowledge of properties of the surface
(prior knowledge, e.g. how smooth the surface should
be, which sharp features should it contain) and our
knowledge of the noise (likelihood, e.g. how far do we
believe the measured position of a vertex is likely to
be from the true position). The central element of the
MRF formulation is that we use Bayes rule to express
the probability of any mesh configuration by defining

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this no-
tice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.

its of prior and likelihood independently. This division
of responsibilities often turns out to be a benefit.

For instance, a big advantage of the MRF formulation
is that we can use the likelihood to keep the mesh fairly
close to the input, avoiding the shrinkage associated
with many other schemes. Unlike [Hildebrandt and
Polthier, 2007] we do not obtain a hard constraint, but
meshes far from the input can be made arbitrarily un-
likely by choosing an appropriate likelihood function.

We investigate the use of MRF for formulating pri-
ors on 3D surfaces in a number of different ways.
The smoothness prior encodes the belief that a smooth
surface (according to some fairness criterion) is more
probable than a noisy surface. In particular, we show
how we can use one MRF to perform explicit labelling
of edges according to how sharp they are, and another
MRF to find optimal vertex positions according to the
smoothness prior. Using our edge labelling from the
first MRF to control the vertex smoothing, we are able
to recapture very subtle sharp features on the noisy
mesh.

2 RELATED WORK

Mesh-smoothing algorithms have a long history in the
field of geometry processing since the early work of
[Taubin, 1995], which demonstrated the connection
between various explicit linear methods using the so
called umbrella operator and low pass filtering. In
[Desbrun et al., 1999] a discrete Laplace Beltrami
operator was introduced and the connection between
smoothing and mean curvature flow was explained.
Both techniques are efficient, but fail to distinguish
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between the noise and the features of the underlying
object.

To address this problem, anisotropic diffusion [Des-
brun et al., 2000] and diffusion smoothing of the nor-
mal field [Tasdizen et al., 2002] were proposed. The
results are impressive, but the computation complex-
ity puts a limit on the size of the model. More ef-
ficient methods were also developed, such as non-
iterative feature-preserving smoothing [Jones et al.,
2003] based on robust statistics, and an adaptation of
bilateral filtering to surface meshes [Fleishman et al.,
2003].

Another feature preserving smoothing method, fuzzy
vector median smoothing [Shen and Barner, 2004], is
a two-step smoothing procedure. In the first step face
normals are smoothed using a robust method which
employs distance to median normal as smoothing
weight. In the next step vertex positions are updated
accordingly. More recently, in [Diebel et al., 2006]
a Bayesian approach was proposed. This method
uses a smoothness prior and the conjugate gradient
method for optimization. It is feature-preserving, but
without an explicit feature detection scheme. Similar
to [Diebel et al., 2006], we use a Bayesian approach,
but unlike that method we obtain feature preservation
by explicitly detecting the set of chosen features. Our
method is also more flexible, allowing us to use a
variety of priors and likelihood potentials.

The method for recovering feature edges proposed in
[Attene et al., 2005] is based on the dual process of
sharpening and straightening feature edges. Vertex-
based feature detection using an extension of the fun-
damental quadric is utilized in a smoothing method de-
scribed by [Jiao and Alexander, 2005].

Comprehensive study on the use of MRF theory for
solving Image Analysis problems can be found in
books [Li, 2001; Winkler, 2003]. MRF theory is
convenient for addressing the problem of piecewise
smooth structures. In [Geman and Geman, 1984] a
foundation for the use of MRF in Image Analysis
problems is presented in an algorithm for restoration
of piecewise smooth images, where gray-level process
and line processes are used. Another application of
MRF for problems involving reconstruction of piece-
wise smooth structures is [Diebel and Thrun, 2005],
where high-resolution range-sensing images are re-
constructed using weights obtained from a regular im-
age.

There are some previous examples of using MRF the-
ory to 3D meshes, but the applications are somewhat
different. In [Willis et al., 2004] MRF are used in
the context of surface sculpting with the deforma-
tion of the surface controlled by MRF potentials mod-

elling elasticity and plasticity. MRF was also used for
mesh analysis and segmentation in [Lavoué and Wolf,
2008].

Our work investigates the possibility of formulating
surface priors in terms of MRF, and using those pri-
ors for reconstructing the surface from the noisy date.
Unlike most other mesh smoothing algorithms, our ap-
proach does not only preserve sharp ridge features, but
also explicitly detects the ridges.

The method described here is not automatic and re-
quires an estimation of a considerable set of param-
eters. However, this allows a great control over the
performance of the priors.

3 MESH SMOOTHING USING MRF
Markov Random Fields is a powerful framework for
expressing statistical models originating in computa-
tional physics, and it has proven highly successful in
Image Analysis [Li, 2001; Winkler, 2003]. A MRF
is, essentially, a set of sites with associated labels and
edges connecting every site to its neighbors. The la-
bels are the values which we wish to assign (e.g. pixel
color, vertex position or edge label), and it is a central
idea in MRF theory that the label at a given site must
only depend on the labels of its neighbors. This frame-
work lends itself well to mesh based surfaces, where
the neighborhood of a vertex can be naturally defined
via its connecting edges.

Apart from a well developed mathematical framework
one of the main advantages of MRF is that its Marko-
vianity (local property) makes is quite clear what the
objective function is and what a MRF based algorithm
aims at achieving. Exponential distributions are often
used, and the joint probability distribution function of
given configuration f (e.g. combined vertex location)
is given by

P( f ) ∝ e−∑U( f ) ,

where the U( f ) can be seen as energy terms or poten-
tials defined on neighborhoods. In order to find the
most likely configuration f , we need to obtain

min
f

∑U( f ) . (1)

In our proposed framework, we wish to smooth a given
mesh. Some of the U( f ) in (1) are thus data (likeli-
hood) terms penalizing the displacement of the ver-
tices in the smoothed mesh relative to the original
mesh. Other terms would be prior terms which express
how likely a surface is a priori, i.e. without making
reference to how far removed it is from the data.

3.1 Likelihood
We want the output of the smoothing to relate to the
input mesh, which has an underlying true surface cor-
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Figure 1: Left: A neighborhood structure for the
smoothness prior. The neighbors of the vertex v are
marked red. When we move vertex v, we only need
to look at its neighboring vertices to calculate the
change in the joint smoothness potential. Right:
A collection of 4 vertices, expressing two adjacent

faces.

rupted by the noise of the data-acquisition device. As-
suming isotropic and Gaussian measurement noise we
choose quadratic function for the likelihood energy

UL(v) = α‖v0−v‖2

where v0 and v denote the initial and the current po-
sition of the vertex v. The constant α is used as the
weight determining how much faith one has in the
data.

There is always a possibility of plugging in a differ-
ent likelihood function in our model, e.g. a volume
preserving likelihood function or likelihood utilizing
some specific knowledge about data acquisition pro-
cess.

3.2 Smoothing Potential
Alongside the data term we also have some a pri-
ori terms expressing our assumptions about how
a smoothed mesh should look. Firstly, we have a
smoothing potential, which is basically a penalty
function, ρ , based on the difference between the
normals of adjacent faces, see Figure 1

Us (v1,v2,v3,v4) = ρ(n123−n243) , (2)

where n123 and n243 are the normals of the two adja-
cent faces. The suitable MRF neighborhood for above
formulation is defined as follows: two different ver-
tices are neighbors if they belong to the adjacent faces.
In this smoothing scheme the label of each mesh ver-
tex is its spatial position, which is adjusted to mini-
mize the chosen energy function.

The choice of the smoothness potential can greatly
influence the feature preserving property of the
smoothing. On the one side, there is a over-smoothing
quadratic potential developed by [Szeliski and
Tonnesen, 1992]

ρ(x) = ‖x‖2 ,

e e1 e2

θ12

Figure 2: Left: A neighborhood structure for the
edge support prior. The neighbors of the edge e are
marked red. The neighboring edges support each
other if they lie along the same line. Right: A pair of
edges. The support for the edges e1 and e2 depends

on the size of the angle θ12.

on the other side, there is a feature preserving square
root potential developed by [Diebel et al., 2006]

ρ(x) = ‖x‖ .

In our case, feature preservation will be handled by the
explicit edge labelling, which allows us to use the ag-
gressive quadratic potential for smooth regions, with-
out thinking about its feature preservation properties.

3.3 Edge Labelling
In many mesh smoothing tasks the presence of clear
ridge features in the result is part of our a priori ex-
pectation. This is included in our MRF model where
we, as an integral part of the smoothing process, label
mesh edges as being ridge edges or not. Edge label
ε is a number from the interval [0,1] which indicates
how probable it is that the given edge is a part of a
sharp ridge feature. Those labels will later be used to
introduce discontinuities in the smoothing process.

Edge labelling is in itself based on a MRF model con-
sisting of two terms, edge sharpness term UE1, and the
neighborhood support term UE2.

The larger the dihedral angle φe, of a mesh edge is, the
more probable it is that the edge lies along the surface
ridge. The first term is thus given by

UE1(e) = (φ0−φe)ε , (3)

where φ0 is a ridge sharpness threshold, and ε is the
label assigned to the edge e.

The second term of the edge labelling is the neighbor-
hood support, i.e. the presence of other ridge edges
along the same ridge line. We assign a support energy
to all pairs of edges, see Figure 2. A measure of paral-
lelism between the edges is used in the formulation of
the support potential

UE2(e1,e2) =−cos(θ12)ε1ε2 , (4)

where θ12 is the angle between the edges e1 and e2,
and ε1 and ε2 are the labels assigned to e1 and e2. Fea-
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ture edges lying on a straight line will have a max-
imum support, the orthogonal edges do not support
each other, and feature edges meeting at a sharp an-
gle are discouraged.

There are additional constrains one can use to define
ridge edges, like e.g. dihedral angle changing slowly
along the ridge line, or the expectation that the ridge
edge itself is smooth.

3.4 The Coupled Model
The smoothing potential and the edge labelling
are coupled in a feature preserving scheme, which
smoothes the mesh, but not over the edges labelled
as sharp. This is obtained by using edge labels as
weights for the smoothing potential, which is now, for
the setting as in Figure 1

Us (v1,v2,v3,v4) = (1− ε23)ρ(n123−n243) .

The edges labelled as sharp with will not contribute
to the smoothness potential, and the smoothed surface
will be allowed to form a ridge along those edges.

In total, we are minimizing the sum of three terms:
the likelihood term, (weighted) smoothing potential,
and the edge labelling potential, which in turn consists
of the edge sharpness term and neighborhood support
term.

3.5 Optimization
At present we use the Metropolis sampler [Winkler,
2003] with simulated annealing for the optimization,
i.e. computing a solution to (1). This is a some-
what cumbersome but flexible method, allowing for
widespread experimentation with different objective
functions. The clear advantage of this approach is that
we do not make any assumptions about the potentials.

The Metropolis sampler is a random sampling algo-
rithm, which generates a sequence of configurations
from a probability distribution using a Monte Carlo
procedure. The sampling scheme consists of randomly
choosing a new label for a single site, and replacing
the old label with the probability which is controlled
by the current temperature. For an initially high tem-
perature, the new configuration can be accepted even
if it has a smaller probability that the old one. This al-
lows the algorithm to leave local energy minima. The
temperature then gradually decreases and the system
converges.

In our case, a new label is either a new vertex posi-
tion (randomly sampled in the vicinity of the present
position), or a new edge label for the ridge detection.
Instead of optimizing simultaneously over all defined
potentials, we have in each iteration of the optimiza-
tion process first detected the feature edges (consider-

Figure 3: Smoothing fandisk model using our fea-
ture preserving method with explicit edge labelling.
Left: Fandisk model corrupted with the Gaussian
noise. Edges are initially labelled based only on the
sharpness of the dihedral angle. Right: The result-
ing smooth mesh and the resulting edge labelling.

ing vertex positions to be fixed), and than displaced the
vertices (considering edge labels to be fixed).

More specialized and efficient algorithms have been
developed for many kind of MRF problems e.g. via
filtering, belief propagation and graph cuts (in case of
discrete labels). After showing that MRF is a good for-
mulation of the mesh smoothing problem, the search
for faster optimization method is part of our ongoing
work. A conjugate gradient method would probably
provide sufficiently good results in a more efficient
way.

4 RESULTS
The results of our experiments prove the feasibility
and versatility of using MRF on triangular meshes.
Explicit edge labelling when smoothing models with
sharp ridge features is shown it the Figure 3. In an ini-
tial noisy mesh it is impossible to detect feature edges
based only on the local information. However, our
algorithm converges to a configuration where all the
ridges get correctly labelled and even the subtle fea-
ture edges get detected. Correct edge labelling allows
us to choose aggressive smoothing prior and obtain re-
sults superior to using only a single feature preserving
prior, as demonstrated in the Figure 4. Note that, un-
like the fuzzy vector median smoothing (which is gen-
erally very successful in preserving edges and smooth
regions), our method detects and preserves a subtle
ridge in the front of the model, and is partly preserving
a disappearing ridge close to models back. The most
other smoothing methods will either miss those subtle
ridges, or will not remove the low frequency noise.

5 DISCUSSION
There are many alternative ways of using MRF on tri-
angle meshes. Instead of labelling vertices with spa-
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Figure 4: Smoothing fandisk model using the dif-
ferent feature preserving methods. Top row: Origi-
nal model and the model corrupted with the Gaus-
sian noise. The two subtle ridges are circled in the
original model. Middle row: Results of fuzzy vec-
tor median smoothing and MRF smoothing using
only the feature preserving square root potential.
Bottom row: Results of MRF smoothing using the
quadratic potential and the explicit edge labelling.

Note the preserved subtle ridges.

tial positions, vertex labels can also be used to classify
vertices into smooth segments. Furthermore, vertex
labels could be used to detect features, classifying the
vertices into those that are a part of the smooth surface,
those that are on the ridge and vertices that are a cor-
ner, in a manner similar to [Lavoué and Wolf, 2008].
MRF can also be defined on mesh faces, either for seg-
mentation or aligning face normals.

Having enough prior knowledge of the problem at
hand, one can tailor the surface potentials to obtain the
desired result. By including the curvature information

Figure 5: Obtaining curvature clamping by pro-
viding curvature information to edge detection pro-
cess. Left: Initial mesh. Right: The result of clamp-
ing the curvature to discourage the concave sharp

ridges.

in the edge labelling process we can detect only certain
ridges, while skipping the others, obtaining curvature
clamping behavior mentioned in [Botsch et al., 2008]
and being the focus of the recent article [Eigensatz et
al., 2008], see Figure 5. Extending the size of the ver-
tex neighborhood it is possible to formulate the prior
for piecewise quadratic surfaces and also model the
ridge behavior more precisely.

To demonstrate the great flexibility and versatility of
the MRF formulation we include another example of
mesh smoothing. Inspired by a two-step smoothing
method [Shen and Barner, 2004], we used MRF to
obtain the smooth normal field, which is then used
for reconstructing vertex positions. Now we have the
mesh faces as the sites of the MRF, with the MRF
labels being the normal direction of the faces. The
vertex update step is taken directly from [Shen and
Barner, 2004], which in turn uses a method developed
by [Taubin, 2001] where the system of equations gets
solved in a least squares sense to obtain the vertex po-
sitions update.

One of the important differences between the vertex
based smoothing and face based smoothing is the pos-
sibility to preform smoothing of the normals without
changing the geometry of the mesh, which makes this
approach more effective. The disadvantage is that it is
not so straightforward to include displacement-based
likelihood function. The results of using this method
can be seen on the Figure 6.
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ABSTRACT

In this paper we present an interactive GPU-based, GUI client, working with rendering server employing ray tracing based
global illumination. The client is designed to guarantee interactivity (namely 1/60sec response time) no matter how slow
the rendering server is. The client dynamically adjusts image resolution to match the server performance and complexity of
the rendered scene. When the scene is modified, the image may appear out of focus and noisy, depending on the machine
computational power, but usually is readable. With no interrupt from the client, the image is progressively improved with new
data from the server. The system expliots hybrid programming model – CPU for the server and GPU for the client.

Keywords: Real-time global illumination, quasi-Monte Carlo ray tracing, hybrid CPU and GPU programming.

1 INTRODUCTION

Many contemporary approaches to ray tracing based
global illumination rely on computational power of
graphics hardware, eg. [25]. Unfortunately, true,
unrestricted, global illumination algorithms, which
solve the Rendering Equation [9], are not well suited
for GPU architecture. Such implementation is possible,
as has been shown numerous times, but is severely
restricted when compared with classic multi-core CPU
solutions, since GPUs cannot process irregular data
structures effectively [7].

Our renderer, based on significantly modified Bidi-
rectional Path Tracing [22] and Photon Mapping [8]
with quasi-Monte-Carlo (QMC) approach [12] is de-
signed for flexibility of CPUs. It allows rendering, in
full spectrum, of arbitrary scene primitives, arbitrary
materials, textures, and more. The only restriction is, in
fact, a computer memory size. Such, traditionally CPU
based, algorithms are rather difficult to port to GPUs.
When, despite all problems, they are ported eventually,
performance benefits of GPUs over multicore CPUs are
often questionable [7].

This paper presents a different approach to obtain in-
teractivity. Pure ray tracing algorithms are based on
point sampling scene primitives, not using scan line ras-
terization at all. This gives much freedom in the way
how samples are chosen, however QMC ray tracing al-
gorithms produce a huge number of samples, which do
not fit in raster RGB grid. Converting these data to
3x8bit integer based RGB image at interactive frame

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

rates may be impossible even for multi-core CPUs, es-
pecially when dynamic image resolution has to be ad-
justed to the server rendering speed and scene com-
plexity, with some non-trivial post-processing added.
As we will show, conversion of ray tracing output to
a displayable image and many post-processing effects
can be expressed purely by rasterization operations, in
which GPUs excel. The main idea behind the presented
approach is therefore the usage of the best suitable pro-
cessor for a given algorithm, instead of porting every-
thing to GPUs.

2 RELATED WORK
The concept of ray tracing is not new [27]. Because it
can produce much better image than hardware rasteri-
zation, for several years there has been a lot of research
dedicated to run it in real time, despite its high compu-
tational cost [15]. Ray tracing based global illumina-
tion is even more expensive. However, for some time
now real time global illumination algorithms are being
developed also [23].

Just after the appearance of first programmable Di-
rectX 9 class graphics processors there were first at-
tempts to use it for ray tracing [17]. Nowadays, vast
majority of contemporary real time global illumination
algorithms are based on computational power of mod-
ern GPUs, e.g. [11, 25]. Unfortunately, they still put re-
strictions, often quite severe, on scene content (limited
range of material and geometry representation), scene
size, and illumination phenomena which are possible to
capture.

However, this is not the only way to obtain interactiv-
ity – nowadays multi-CPU Intel workstations can per-
form interactive ray tracing [16], yet true global illu-
mination is still unachievable. Interactivity can also be
obtained using clusters of machines with CPU render-
ing [2].

On the other hand, approach presented here is sub-
stantially different from those above – placing abso-
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lutely no restrictions on scene and illumination effects.
It uses GPU just to display and postprocess image made
from CPU ray traced point samples, in resolution dy-
namically adjusted for real time performance.

3 REQUIRED SERVER OUTPUT

In general the server may run any point sampling algo-
rithm, but in this project we rely on QMC ray tracing.
The visualization client assumes the specific format of
the server’s output. In the following subsections we de-
scribe in detail the conditions which should be fulfilled
to make the client work properly. We also show how to
convert Photon Mapping to meet these assumptions.

The server should provide stream of color values
scattered uniformly at random locations in the screen
space. The uniformity of sampling ensures acceptable
image quality even at low sampling rates, which is typ-
ical due to high computational cost of ray tracing.

Additionally, the output stream should be generated
roughly uniformly in time. Otherwise the client might
fail to maintain interactive refresh rates.

3.1 Bidirectional Algorithms

Some most advanced ray tracing algorithms trace rays
in both directions – from the camera towards lights
(camera rays), and in the opposite one (light rays). Such
approaches produce two kind of samples, which must
be processed differently in order to produce displayable
images [22].

The client accepts two input streams. The format of
samples is identical in both streams: ([u,v], [x,y,z,w]),
where [u,v] are screen space coordinates, in [0,1]2

range, or, perhaps, with slight overscan to avoid post-
process filtering edge artifacts, x,y,z is sample color
value in CIE standard [6], and w is sample weight.

The two streams differ only in interpretation of sam-
ple density. The pixels of image from camera rays are
evaluated by averaging local samples using any suitable
filter – sum of weighted samples is divided by sum of
weights. On the other hand, pixels of light image are
formed using a suitable density estimation technique –
samples are filtered and summed, but not divided by
sum of weights. Therefore, a sample density affects
only quality of camera image, while it affects both qual-
ity and brightness of light image. The final, displayable,
image is a sum of both camera and light images, the lat-
ter divided by a number of traced paths.

Obviously, not all ray tracing algorithms need both
– camera and light – output streams. For example,
Path Tracing [9] and Photon Mapping [8] produce cam-
era samples only, while Particle Tracing [1] needs only
light image. Therefore, the visualization client em-
ploys an obvious optimization – it skips processing of a
stream given that no samples were generated into it.

3.2 Coherent vs. Non-Coherent Rays
For some time now it is often claimed that it is benefical
to trace camera rays in a coherent way, because it can
significantly accelerate rendering [24, 2]. This is true,
but only for primary rays (sent directly from camera or
light source). Unfortunately, rays, which are scattered
through the scene, do not follow any coherent pattern
and caching does not help much. Since true global il-
lumination algorithms typically trace paths of several
rays, these algorithms do not benefit much from coher-
ent ray tracing.

What is more, coherent ray tracing tends to provide
new image data in tiles, which make progressive im-
provement of image quality difficult. On the other hand,
we have chosen to spread even primary rays as evenly
as possible, using carefully designed Niederreiter-Xing
QMC sequence [13] as the source of pseudorandom
numbers. Therefore, it can be expected that very few
traced rays provide reasonable estimate of colour of the
entire image, and subsequently traced rays improve im-
age quality evenly.

3.3 Full Spectral Rendering
Having in mind further processing, it may be useful
to output full spectral images [5, 18]. However, full
spectral representation requires huge amount of mem-
ory. For example, full HD spectral image in 16bit
floating precision and with 3nm wavelength sampling
from 400nm to 700nm needs as much as 1920×1080×
100× 2B ≈ 400MB, while RGB one requires 1920×
1080×3×2B≈ 12MB.

The standard CIE XYZ space seems to be the best
option instead, since an RGB space, which depends on
a particular display hardware, is not a plausible choice.
For this reason our client accepts CIE XYZ color sam-
ples. The presented server natively generates full spec-
tral data and converts it internally from full spectrum to
the three component color space.

3.4 One-pass Photon Mapping
Original Photon Mapping [8] is a two pass technique.
This obviously violates the requirement of steady sam-
ple stream – during photon tracing there are no samples
generated, causing high latency before image starts to
appear. We have found that Photon Mapping actually
can be done in one pass, with only minor loses in effi-
ciency compared to the original approach. The new al-
gorithm uses a linear function of number of image sam-
ples (n) to estimate minimal necessary photon count in
photon map to obtain image with quality determined by
n. Therefore, the photon map is no more static structure
– new photons are added while new image samples are
rendered.

Immediately two issues have to be solved – synchro-
nization of read and write accesses to the photon map
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structure in parallel photon mapping and balancing kd-
tree. Synchronization can be performed with simple
read-write locks (classic readers-writers problem).

On the other hand, kd-tree balancing requires signif-
icant algorithm modification. We have chosen to bal-
ance the scene space instead of photons. The origi-
nal algorithm starts with bounding box of all photons
(unknown in our approach) and in each iteration places
splitting plane at a position such that half of the photons
remains on the one side of the plane. Otherwise, our al-
gorithm starts with bounding box of the entire scene,
and in each iteration it splits it in half across dimension
in which the box is the longest. Splitting stops when all
nodes contain less photons than a certain threshold (5-6
seems to be optimal) or a maximum recursion depth is
reached. Adding new photons require just splitting of
some of the nodes, where there happens to be too many
photons.

The idea is somehow similar to Irradiance Caching
algorithm [26]. Similarly as in this method, our ap-
proach starts with empty structure and fills it through
rendering. However, Irradiance Caching calculates ir-
radiance samples when they are needed by camera rays,
while our modified Photon Mapping traces photons in
a view independent manner.

Strictly speaking, the new approach does not generate
batches of samples in roughly uniform time. Due to kd-
tree lookup computational complexity as well as linear
dependence between number of photons in kd-tree and
number of samples computed, the average time to cal-
culate nth sample is the order of O(logn), where n is the
sample number. Logarithm, however, changes slowly,
and the client is designed to adjust to slow changes of
rendering speed by modifying size of batch of samples.

4 CLIENT AND SERVER ALGO-
RITHMS

Finally, a GPU task is to convert point samples into
a raster image. The conversion is done with resolu-
tion dynamically adjusted to the number and variance
of point samples. In the image, a color conversion from
XYZ to RGB space of current monitor, together with
gamut mapping, tone mapping, gamma correction and
other post-processing effects are performed.

As a target platform we have chosen a GPU compat-
ible with OpenGL 3.x [19] and GLSL 1.5 [10]. Ma-
jor part of algorithm is coded as a GLSL shader, which
suits our needs very well. Recent technologies, such as
Nvidia CUDA, ATI Stream, or currently being devel-
oped OpenCL are not necessary for this kind of algo-
rithm.

The rendering task is split into two processes (or
threads in one process, if a single application is used as
a client and server) running in parallel: a server wrap-
per process and visualization process. The rendering

process may be further split into independent threads,
if multicore CPUs or multiple CPU machines are used.

4.1 Server Wrapper Process
Ray tracing can produce virtually unlimited number of
samples, being limited only theoretically by machine
numerical precision (our implementation can generate
as many as 264 samples before sample locations even-
tually start overlap). Therefore, ray tracing process is
reset only immediately after user input, which modifies
the scene. Otherwise, it runs indefinitely, progressively
improving image quality.

The server wrapper runs on a separate thread, pro-
cessing commands. The wrapper recognizes three com-
mands: term, abort, and render. The term command
causes wrapper to exit its command loop, and is used
to terminate the application. The abort commad aborts
current rendering, and is used to reset server to the new
user input (for example, camera position change).

The render command orders server to perform ren-
dering. The rendering is aborted when either abort or
term command is issued. Maximum time to abort ren-
dering is a time necessary to generate just one sample.
Any algorithm capable of generating the specified out-
put (see Section 3) can be used. In our server imple-
mentation, rendering is performed in parallel on multi-
core CPUs.

The wrapper allows registering asynchronous f inish
event. This event is generated when rendering is fin-
ished (either a prespecified number of samples was gen-
erated or abort was issued). The event can be used
to synchronize client with server. Apart from send-
ing asynchronous messages, the wrapper can be queried
synchronically for already rendered samples. Since this
query just copies the data to the provided buffer, server
blocking due to synchronization takes little time.

4.2 Client Process
Client is responsible for visualizing samples generated
by server, and additionally it processes GUI window
system messages. Client stores its internal data in the
four screen-aligned textures, in the IEEE 32bit float-
ing point format. A 4-channel [X ,Y,Z,W ] texture and a
single component variance [Var] texture are stored for
camera and light input streams. Therefore, client stores
40 bytes of data per screen pixel, apart from standard in-
teger front and back buffers. The details of client main
loop are presented in Figure 1.

When all GUI messages are processed, client raster-
izes new samples, generated by the server, into its in-
ternal textures. This task is performed by the render-
to-texture feature of Framebuffer Object (FBO). The
client sets an empty vertex program, which only passes
through data, and a geometry program which is equiva-
lent to rendering textured point sprites fixed function-
ality. The input is a stream of two elements – two
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process input

rasterize samples
repaint back buffer

swap buffers with vsync

get new samples

start

quit

Figure 1: Main loop of visualization client process.

component screen position (u,v) and four component
color (x,y,z,w). Input is placed in Vertex Buffer Object
(VBO), and is then rendered with GL ’render points’
command. Points are rendered in blending mode set to
perform addition, ensuring that all samples add up in-
stead of overwriting previous texture content.

Additional input is a monochromatic HDR filter tex-
ture, used to draw point sprites. The texture is normal-
ized (all the texel values add up to one) and the texture
border value is set to zero. The filter texture is applied
without rescaling and with bilinear filtering, thus pre-
serving filter normalization, which is crucial for algo-
rithm correctness. We have found that 5x5 texel win-
dowed Gaussian blur gives good results.

The rendering is performed in two passes. First,
color textures are updated. In the second pass, us-
ing already up-to-date color textures, variance textures
are updated. In both passes, the same samples are
rendered. The variance is updated using the formula
Vj = Vj−1 +∑i (Yi−Y j)

2, for jth batch of i samples.
The formula does not give the best theoretically pos-
sible results, since the mean Y is approximated using
only already evaluated samples. The alternative for-
mula Vj = Y 2 j −Y 2

j , Y 2 j = Y 2 j−1 +∑i Y 2
i , which re-

quires storing sum of squares (Y 2) instead of variance,
should be avoided due to poor numerical stability (even
negative variance results are possible). In both formulas
the division by n−1 factor, where n is the total number
of samples in a given stream, is omitted. This division is
performed when variance data is read from its texture.

The sample rasterization algorithm works as follows:

1. The content of client sample buffer (pairs
[u,v], [x,y,z,w]) is loaded into VBO, interpreted as
2D point coordinates and 4D color. There is one
buffer for both streams. Samples which come from
light stream are encoded with negative weights.

Stream separation is performed further in the
fragment program.

2. Monochromatic float texture with filter image is se-
lected and point draw command is issued. The tex-
ture is used as a texture sprite for emulated point
sprites. Fragment program performs multiplication
of ’color’ attribute by the texture value [X ,Y,Z, |W |].
The output is saved to the color texture of camera
stream if W ≥ 0 or light stream otherwise.

3. After rasterization, textures are detached from FBO,
GPU MIP-map build command is issued.

4. Texture LoDs (used by ’repaint back buffer’ pro-
cessing) for both streams are evaluated as LoDi =
log4(P/Si)), where P is number of pixels on the
screen and Si is the number of samples from ith
stream computed so forth.

5. Second draw is issued, with variance textures as out-
put this time. The variance is evaluated only for
luminance (Y ) component, since three component
variance typically do not help much and substan-
tially complicates algorithm. Variance output for
each stream is (Yavg−Y )2, where Yavg is read from
previously generated color texture, and Y is lumi-
nance of currently processed sample, multiplied by
filter texture.

6. Similarly to color textures, variance textures are de-
tached from FBO, GPU MIP-map build command is
issued.

In order to repaint back buffer, client draws a screen-
sized quad, using the four textures as an input. The
screen is filled with custom fragment program. The
program accepts following control parameters: level of
detail (LoD) for both streams, light image weight (Lw),
image brightness (B), contrast (C), gamma (G), color
profile matrix (P), and variance masking strength (V m).
Level of detail (LoD) is already evaluated during ras-
terization. Now, the LoD values are used by fragment
program to blur texture data if not enough samples are
computed. Light image weight is got from the server
along with samples, and its value is equal to the num-
ber of paths traced from light sources. This parameter
is used to scale light image texture appropriately, such
that the texture can be summed with camera image tex-
ture.

Image brightness, contrast, gamma and color profile
are set by the user, and their values adjust the image ap-
pearance. Additionally, the visualization client is able
to add a glare effect as an additional post-process, im-
plemented as a convolution with a HDR glare texture,
generated according to [20]. However, sufficiently large
glare filters are far beyond computational power of con-
temporary GPUs for real-time screen refresh rate. Since
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these parameters are defined only for client, and do not
affect server rendering at all, their values can be mod-
ified freely without resetting the server rendering pro-
cess.

Variance of samples is estimated only for luminance
(CIE Y channel), using the standard variance estima-
tor (V ≈ 1

N−1 ∑(E(Y )−Yi)
2, where N is the number

of samples, Yi are luminance values, and E(Y ) is the
luminance value estimated from samples computed so
far. The client is able to increase blurriness according to
the local changes in estimated variance, hence slightly
masking noise produced by stochastic ray tracing. The
noise to blurriness ratio can be controlled by V m pa-
rameter.

The blurriness is created by low pass filter or bilat-
eral filtering [14] guided by variance estimation, which
potentially can be much better in preserving image fea-
tures than a simple low pass filter. However, bilateral
filtering works correctly only if noise is less intense
than image features. When image is heavily undersam-
pled, this assumption may not be satisfied, and a low
pass filter remains the only viable option. For exam-
ple, in Figure 3, the two leftmost images cannot be en-
chanced by bilateral filtering. On the other hand, this
technique does a good job improving the quality of mid-
dle image from Figure 5.

Unfortunately, the noise masking feature can hide
only the random error which is the result of variance.
It cannot hide (in fact, it cannot even detect) other kind
of error resulting from bias. The variance is the only
source of error in Bidirectional Path Tracing, while
Photon Mapping error is dominated by bias.

The algorithm processes its input as follows:

1. The program reads data from both variance
maps, using requested LoDs through hardware
MIP-mapping.

2. LoDs for both streams are evaluated according to
initial LoDs, the variance and V m, for ith stream:
LoD′i← LoDi +V m log4([Var]).

3. [X ,Y,Z,W ] textures of both streams are sampled,
this time using just evaluated LoD′ and custom fil-
tering technique (hardware MIP-mapping produces
very poor results, see section 4.3 for more detailed
discussion).

4. Texture samples for both streams are normalized,
i.e. [X ,Y,Z,W ]→ [X/W,Y/W,Z/W,1] (if W = 0,
then sample is considered to be [0,0,0,1]). Then,
light texture sample, divided by Lw, is added to cam-
era texture sample, producing single result for fur-
ther processing.

5. Optionally, glare effect is applied here. Our glare
texture is generated to be applied in XYZ color
space instead of RGB one.

6. Tone mapping of luminance (Y ) is performed, us-
ing very simple yet effective procedure: Y ′ ← 1−
exp(−(B ∗ Y )C), while X and Z components are
scaled by Y/Y ′ ratio. If Y = 0 it means that image is
black at that point and X ′Y ′Z′← (0,0,0) is used.

7. Resulting X ′Y ′Z′ is multiplied by matrix P, and a
basic gamut mapping is performed. We do not use
elaborated algorithms here – simple desaturation of
out-of-gamut colors, just to keep mapped luminance
unmodified, works reasonably well. Now output is
in RGB format, normalized to [0,1] range.

8. Finally, gamma correction using G is performed.

Next, client swaps front and back buffers, in syn-
chronization with screen refresh period. This guaran-
tees constant frame rate (typically 60Hz for common
LCDs).1 Finally, client reads new samples from the
server. The reading is performed with synchronization,
blocking the server for a moment. However, client does
not display samples immediately, blocking server just
for copying this portion of data to its internal buffer for
later processing.

4.3 MIP-mapping Issues
Images produced by rasterizing ray traced samples are
created as screen-sized textures. Should enough sam-
ples be generated, these images could be used imme-
diately without any resampling. Unfortunately, con-
temporary CPUs are far too slow to generate at least
#screen_pixels of such samples in, say, 1/30sec, which
is required for real time performance. Therefore, some
kind of blurring texture data, according to fraction of
necessary samples generated and the local sample vari-
ance, have to be performed.

While MIP-mapping is reasonably good in filtering
out texture details which would otherwise cause alias-
ing, it cannot be used reliably to blur the texture im-
age. Blurring by using LoD bias parameter of texture
sampling function produces extremely conspicuous and
distracting square pattern, with severe bilinear filtering
artifacts (see Figure 2 for details). This is not surpris-
ing, since a GPU uses box filter to generate MIP-maps
and linear interpolation between texels to evaluate tex-
ture value at sampled point. Moreover, MIP-mapping
with polynomial reconstruction instead of linear one
fails as well. We have used custom texture sampling
with Catmull-Rom spline interpolation for this purpose.

1 GPU class must be properly selected for a monitor resolution. If GPU
is too poor, interactivity is not obtained. We found that best contem-
porary single processor GPU (Nvidia GTX 285, at the time of testing)
is enough for refresh rate of 30Hz in full HD. Such issue, however,
does not slow down the server – the same number of samples is still
rendered in the same amount of time, they are just displayed more
rarely, in larger batches.
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Visually good results can be obtained by using Gaus-
sian blur:

I(u,v) =
∑i ∑ j Ti jgi j(u,v)

∑i ∑ j gi j(u,v)
.

The I is texture sample, u,v is the sample position, T
are texel values, and gi j = exp(−σd2

i j) is the filter ker-
nel, with σ controlling blurriness, and di j is the dis-
tance between the u,v position and texel Ti j. Unfortu-
nately, direct implementation of Gaussian blur requires
sampling an entire texture for evaluation of any texture
sample, which is far beyond computational capabilities
of contemporary GPUs. The weight of Gaussian filter,
however, quickly drops to zero with increasing distance
from evaluated sample. Truncating the filter to a fixed
size window containing limited number of samples is a
commonly used practice.

The simple truncation is not always optimal, since
quality of truncated Gaussian filter depends strongly on
the σ parameter – to obtain similar quality with dif-
ferent sigmas, an O(σ−1) number of texels have to be
summed. That is, if a Gaussian filter is truncated too
much, it starts to resemble a box filter. In our case, σ

varies substantially, and therefore more advanced tech-
nique should be used. We may notice that decreasing a
resolution of the original image twice, and increasing σ

four times, approximates the original filter on the orig-
inal image. Eventually, the following algorithm is em-
ployed: initial MIP-map level is set to zero, and while
σ is smaller than a threshold t, the σ is multiplied by
four, and MIP-map level is increased by one.

The threshold t and number of summed texels have
been adjusted empirically to balance the blur quality
and computational cost. First we have found that trun-
cation range R of roughly 2.5 is a maximum value
which ensures reasonable performance. For such trun-
cation, setting t ≈ 1 is reasonable. Additionally, it is
better to use a product of g and smooth windowing
function w instead of original g if truncation is used.
The w = 1− smoothstep(0,R,d)E , where E controls
how quickly w drops to zero with distance, works quite
well. The value E = 8 yields good results.

What is more, the transition between MIP-map levels
is noticeable and decreases image quality. This is espe-
cially distracting if σ varies across the image, which is
the case because blur is adjusted to the locally estimated
variance. Therefore, similarly as in trilinear filtering,
the Gaussian blur is performed on two most appropri-
ate MIP-map levels, and the results are linearly inter-
polated, avoiding sudden pops when MIP-map level
changes. Therefore, truncation to range 2.5 cause blur-
ring to use 2[(2 ·2.5)2] = 50 texture fetches on average,
which is costly, yet acceptable on contemporary GPUs.

The sophisticated filtering scheme is used only for
[X ,Y,Z,W ] textures. Variance [Var] textures, not being
displayed directly, do not have to be sampled with any-

thing more complicated that basic MIP-mapping. This
saves some computational power of a GPU, yet does
not produce noticeable visual artifacts.

5 RESULTS
The quality of rendered images obviously mostly de-
pends on the rendering algorithm used. We have tested
the visualization client in cooperation with Path Trac-
ing (Figure 3) and Photon Mapping (Figure 4). Both
figures present initial image rendered after 1/30sec and
show the speed of image quality improvement. All the
tests were performed on Intel Core i7 CPU and Nvidia
9800 GT GPU, in 512x512 resolution.

The client is responsible merely for visualization and
postprocessing, assuming that it is provided with stream
of point samples, scattered roughly evenly through en-
tire image. The only algorithm for image quality im-
provement is noise reduction based on variance analy-
sis. The error due to variance (seen as high frequency
noise) is much more prominent in results of Path Trac-
ing than in Photon Mapping, so the noise reduction has
been tested on the first algorithm. The results are pre-
sented in Figure 5.

When multiple processors are used in the same ap-
plication, good load balancing is important. While it
is well known how to load balance ray tracing work be-
tween multiple CPUs, in our application it is impossible
to balance loads between visualization client and ray
tracing server. The subtasks performed by CPUs and
GPU are substantially different and suited for different
architectures of these two processors, so work cannot
be moved to the less busy unit as needed. In fact, on
contemporary machines rendering server is always at
full load, and GPU can be not fully utilized, especially
when low resolution images are displayed. However, it
is good to have some reserve in GPU power to ensure
real time client response.

6 CONCLUSION
We have presented an interactive GUI visualization
client for displaying ray traced images online, written
mainly in GLSL. Apart from visualization, the client
can hide noise of input data by means of variance anal-
ysis. Additionally, the client can apply glare effect as
a postprocessing technique, which is performed quite
efficiently on GPU.

The client is able to obtain interactivity regardless
of the ray tracing speed. However, the price to pay is
blurriness of images rendered at interactive rate. Nev-
ertheless, the image quality improves quickly with time
whenever rendered scene is not changed.

Our approach scales well with increasing number of
CPU cores for ray-tracing, as well as with increas-
ing number of shader processors on a GPU. Moreover,
the program never reads results from the GPU, so it
does not cause synchronization bottlenecks, and should
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Figure 2: Comparison of MIP-mapping and custom filtering based blur quality. From left: reference image,
hardware mipmapping, custom reconstruction based on Catmull-Rom polynomials, windowed Gaussian blur.

Figure 3: Results of Path Tracing (from left: after 1/30sec, 1/3sec, 3sec, 30sec). The Path Tracing error appears as
noise, blur in the first two images is caused by undersampling (far less than 1 sample per pixel were evaluated).

Figure 4: Results of Photon Mapping (from left: after 1/30sec, 1/3sec, 3sec, 30sec). Photon Mapping does not
produce much noise, but due to overhead caused by photon tracing and final gathering, less image samples than
with Path Tracing were computed, which cause some blurriness.

be friendly with multi-GPU technologies like SLI or
Crossfire.

Additionally, we have modified the Photon Mapping
algorithm to be a one-pass technique, with the pho-
ton map being updated interactively during the whole
rendering process. This enables using Photon Map-
ping with the presented visualization client, which then
could ensure progressive image quality improvement,
without any latencies resulting from construction of
photon map structure.

Our visualization client has a lot of potential for fu-
ture upgrades. The adaptive filtering technique [21]
seems to be good approach to significantly reduce im-
age noise on the side of the visualization client. More-
over the client can be extended to support frameless
rendering [3, 4]. This very interesting and promising
technique can improve image quality substantially us-

ing samples from previous frames, provided that subse-
quent images do not differ too much.

In future we plan to introduce to our client stereo ca-
pability, using OpenGL quad-buffered stereo technol-
ogy. Ray tracing algorithms can easily be converted
to render images from two cameras at once, and a lot
of them can do this even more efficiently than render-
ing two images sequentially (for example, Photon Map-
ping can employ one photon map for both cameras, and
similarly, Bidirectional Path Tracing can generate one
light subpath for two camera subpaths). Unfortunately,
stereo rendering doubles the load on the GPU shaders,
as well as on the GPU memory. However, it seems that
interactive stereo can be obtained by slight decrease of
custom texture filtering quality.
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Figure 5: Noise reduction based on variance analysis of Path Tracing image (from left: no noise reduction, with
noise reduction, variance image). The difference is noticeable especially in shadowed area beneath the sphere and
on the indirectly illuminated ceiling.
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ABSTRACT 
The paper proposes a novel image transformation called Image Local Response (ILR) that can be used for 
solving complex image mapping problems. The proposed transformation brings together two approaches based 
on the pixel value distribution and image features. Image local response is defined as the average value of the 
difference between the transformed and the original copies of the same image whereby the transformation is 
small, i.e., the components of the corresponding parameter vector have sufficiently small unit values. The 
response has a few interesting properties useful in image mapping. The validity of the proposed image 
transformation is shown on sample complex image mapping problems formulated as the multi-objective piece-
wise imaging optimization problem. 

Keywords 
Image mapping, response analysis, imaging optimization, evolutionary algorithm. 

1. INTRODUCTION 
Many tasks related to digital image processing deal 
with comparing (i.e., matching or mapping) images 
of different types and sizes. Examples of such tasks 
include e.g., image registration, object or target 
recognition, and pattern matching. These tasks, in 
turn, play a pivotal role in many important real world 
applications like remote sensing, security systems, 
robotics, computer vision, medical imaging, 
information fusion, and industrial control. 
The approaches that can be used for comparing the 
images can be divided into two main groups. 
1. The first group of methods compares the 
distributions of the pixel values in the images, either 
explicitly or implicitly. One of the problems 
associated with this approach is related to the 
changing light conditions between the images. In this 
case, the comparison of the pixel values becomes 
difficult since no matching pixels can be found. 

Moreover, the comparison of the different types of 
imagery, e.g., infrared and real visual images 
obtained from the different types of sensors (as in 
multi-sensor image fusion) becomes virtually 
impossible using this approach. 
2. Methods in the second group attempt to find a 
set of salient characteristics, i.e., features that are 
common for the compared images. Choosing the 
appropriate features is by no means a trivial task. It 
becomes even more difficult if the images are 
simultaneously misaligned and distorted by some sort 
of complex geometric transformation, e.g., affine or 
perspective. 
The proposed in the paper image transformation uses 
the combination of the both abovementioned 
approaches; the transformation is called Image Local 
Response (ILR). The concept of ILR is somewhat 
related to image neighborhood and block operations 
[Seu00a], [Pit00a], [Ima06a], as well as to the node 
and edge functions proposed in [Muc98a], although 
it is based on a fundamentally different idea rooted in 
Green’s functions [Bar89a] and response analysis 
[Ger02]. 
The paper is organized as follows. Section 2 gives 
the definition of Image local response and describes 
its useful properties. Section 3 discusses sample 
experimental results of object mapping in the case of 
geometrically distorted images. Section 4 concludes 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 
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the paper with the summary of the proposed 
approach. 

2. DEFINITION AND PROPERTIES 
OF IMAGE LOCAL RESPONSE 
In digital image processing, solving image mapping 
(matching) problem means finding an adequate 
vector V of parameters defining the unknown 
transformation A between the images. In its most 
general form, the sought transformation A can be a 
fairly complex one, although in many cases it can be 
represented or approximated with some suitable 
general affine transformation. 
The concept of Image Local Response (ILR) is based 
on a fairly simple and rational idea: since the 
mapping problem searches for the unknown 
transformation A, it seems logical to explore the 
response of the image to this particular type of 
transformation. This task can be accomplished by 
mapping a transformed image Img´ onto self (i.e., 
onto the original image Img), with a sufficiently 
small transformation vector Vu. In accordance with 
this idea, Image local response RP at a point P is 
defined as the value of the difference F between the 
transformed, Img´ and the original, Img copies of the 
same image.  Here, the transformation Au at the point 
P is small, i.e., the components of the parameter 
vector Vu have sufficiently small unit values.  
The simplest way of defining the image difference F 
is to compute a squared difference of the pixel gray 
values over some area ωR, in the following way: 
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where g(x,y) and g(x’,y’) are the gray values of the 
image Img in the area ωR before and after the 
transformation, correspondingly [Bro98a]. 
Making the area ωR sufficiently small has two 
important implications. 
1. The general affine transformation fairly accurately 
approximates other interesting and plausible image 
transformations (e.g., perspective) that can be found 
in real world applications [Ros76a]. This means that 
one can compute ILR once, i.e., for the affine 
transformation, and then use the computed values in 
image mapping with some other, even more complex 
transformations.   
2. The difficulty of mapping images with different 
pixel value distributions can be significantly 
mitigated when using ILR since the later maps a 
particular image onto itself (i.e., onto the same pixel 
value distribution) within a small area. 

Here, the area ωR is called “response area”. For 
convenience and without loss of generality, a square 
box r × r can be chosen as the response area, where r 
is called “response radius”. In the case of the general 
affine transformation, image response has to be 
computed for the vector Vu defined by nine 
parameters: the translations DX and DY along the x- 
and y-axes; the rotation θ in the xy-plane; the non-
isotropic scaling factors SX and SY along the x- and 
y-axes; the shear SHX and SHY along the x- and y-
axes; and the reflections RX and RY about the x- and 
y- axes. The shaded subarea in Figure 1 shows what 
part of the small response area near the point P will 
be changing during the unit transformation, in the 
case of translation, rotation, and scaling.  
 

 
Figure 1. Computing local response at point P for 

translation, rotation, and scaling.  
 
Computing Image local response according to 
Formula (1) with the chosen small values of ωR and r 
is similar to computing Green’s functions extensively 
used in mathematical physics and engineering 
[Bar89a]. It can be easily shown that, as in the case 
of Green’s function, the response value RP rapidly 
decreases as the distance from the point P (i.e., the 
value of r) increases. 
 
 
 
 
 
 
 
 

Figure 2. Algorithm for computing Image local 
response. 

 
The foregoing definition of the ILR suggests the 
algorithm shown in Figure 2. In the algorithm, the 
value of the difference F is computed for each of the 
N components of the vector Vu. In the case of the 
general affine transformation, N = 9. Finally, the 
response value RP at the point P is computed as the 
averaged sum of all N differences Fi (i = 1,…, N). In 

foreach pixel P, do 
foreach component of Vu, do 

  compute (1)  
endforeach component 

 compute response 
N

F
R

N

i
i

P

∑
== 1   

endforeach pixel 
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order to compute the response values for the border 
pixels, the image can be appropriately padded.  
The values of image response can be represented in a 
graphical form - see Figure 3. As one can see, Image 
local response has a dual nature. On the one hand, 
ILR is defined in the form of a matrix computed from 
the pixel value distribution, as Formula 1 suggests. 
On the other hand, ILR represents the image feature 
in the form of the contours of the objects that are 
present in the image. The duality of ILR allows one 
to transfer the search for the proper image 
transformation A in image mapping problem from 
the actual image space I into the response space R. In 
this case, the difference between two images Img1 
and Img2 can be evaluated as a squared difference of 
the response values over the area Ω of the overlap of 
the both images, in the following way: 
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where R1(x,y) and R2(x’,y’) are the response values of 
the reference image Img1 and the transformed image 
Img2, correspondingly. 
 
 

 

 
Figure 3. Original image of a scene (top) and its 

response representation (bottom). 
 

The different types of imagery are shown in Figure 4 
whereby a wireframe and a principal model of the 
same object expose different pixel values 
distributions. That makes the mutual mapping of the 
images with the direct comparison of their gray 
values impossible. On the other hand, the response 
images computed according to (1) and shown in 
Figure 5 exhibit clear definition of the common 
contours of the both objects, i.e., their main feature. 
 

 
Figure 4. Original images of an object: the 

wireframe (left) and the principal (right) model.  
 

 
Figure 5. Image local response of the wireframe 

(left) and the principal (right) model.  
 
Image local response has a few interesting and 
helpful properties that can be effectively used in 
computationally intensive image mapping problems. 
1. As mentioned before, Image response preserves 
the main image feature, the contours of the objects in 
the scene. 
2. Using the matrix of the response values 
significantly reduces the amount of information that 
has to be processed during the search for the proper 
transformation A. Only the higher response values 
would participate in the image mapping 
computations provided the sparse response matrices 
of the images are represented using efficient data 
structures.  
3. The algorithm for computing ILR shown in Figure 
2 can be easily parallelized, so all pixels comprising 
the image would be processed concurrently on a 
modern GPU, thus making the computational 
complexity of the algorithm equal to O(1). 
4. Image mapping can be formulated as an 
optimization problem whereby the image difference 
plays the role of the objective function that has to be 
minimized. In this case, ILR provides a smooth bell-
shaped fitness landscape very well suited, e.g., for 
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the evolutionary search where the selection of the 
successful partial solutions drives the search towards 
the complete optimal solution [Ash06a].  
5. In some cases, the model of Image local response 
can be effectively used to control local search when 
image mapping is formulated as an optimization 
problem. In particular, the value of the vector α = 
{α1, α2, α3, α4} of the coefficients in the Downhill 
simplex method can be adjusted to the landscape of 
the objective function thus accelerating the search 
[Mas05a]. This particular property of ILR is based 
on the fact that in the close vicinity of the optimal 
solution, ILR fairly well approximates the objective 
function, i.e., the global difference between the 
images. 

3. COMPUTATIONAL 
EXPERIMENTS WITH IMAGE 
MAPPING AND IMAGE LOCAL 
RESPONSE 
The proposed image transformation in the form of 
Image local response was tested on a few image 
mapping problems [Mas08b]. A sample set of three 
2D grayscale images is shown in Figure 6. The 
300×300-pixel reference image Img0 contains an 
object arbitrarily rotated in the 3D coordinate system. 
Two template images are a 178×195-pixel top view 
Img1 and a 185×66-pixel left view Img2 of the same 
object. The corresponding image responses 
computed in accordance with the algorithm given in 
section 2 are shown in Figure 7. 
The search for the proper mapping from the template 
images onto the reference image is formulated here 
as an imaging optimization problem solved with a 
hybrid evolutionary algorithm [Mas08b]. The 
following conditions are present that complicate the 
problem: 
• two or more template images are used to 

represent the different views of the same object; 
• the object of the mapping undergoes significant 

distortion caused, e.g., by an arbitrary rotation in 
the 3D space; such a mapping cannot be defined 
with a single transformation vector; 

• the difference between the images cannot be 
formulated as a single fitness function; 
consequently, the search has to deal with the 
multiple objectives of the optimization. 

In accordance with the proposed approach, the search 
is conducted in the response space R, as opposed to 
the actual image space I. In order to accommodate 
the multiple template images, an advanced 
computational model is used. The model includes the 
multiple populations, so that every template is 
represented by its own independent population. Since 
the template objects can undergo significant 

distortion, every template object is divided into k 
sections, so each section can have its own 
transformation vector Vk. This approach corresponds 
to a piece-wise approximation of the actual image 
transformation A(V).  
 

 
Figure 6. A sample set of three 2D grayscale 

images: reference image (left) and two template 
images (right). 

 

 
Figure 7. Response images of the sample test set. 

 
The computational algorithm further assumes that 
every object in the image has some prominent basic 
feature in the form of a trunk to which all other parts 
of the object are attached. Here, such a feature is 
called a “hull”. The transformation of the hull can be 
defined by the main vector VA of the general affine 
transformation and a complementary vector VD of 
elastic deformations. The latter vector describes the 
deviation of the actual hull transformation from the 
main vector VA. 
In its most general form, the entire algorithm works 
as two relatively independent phases implementing 
the global search and the local correction. The global 
search phase attempts to find the optimal solution for 
the hull transformation, i.e., the best mapping 
between the template hulls and the reference hull. 
The local corrections phase attempts to find the 
optimal piece-wise approximation of the actual 
image transformation using the hull transformation as 
its initial approximation. Because of the complex 
composite structure of the template model and a two-
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phase search algorithm, one expression for fitness 
function is not sufficient. The search is conducted in 
the multi-objective space using the different 
expressions for the fitness function at the different 
stages of the algorithm. 
 

   
Figure 8. Intermediate results at the different 

stages of the piece-wise mapping. 
 

 
Figure 9. Result of the piece-wise mapping of the 

template objects onto the reference image. 
 
Figure 8 shows some intermediate stages of the 
piece-wise mapping of the different object sections 
onto the reference image.  Figure 9 shows the final 
result of the image mapping. As one can see, the 
template images were successfully mapped onto the 
reference image using the piece-wise transformations 
of the original template objects in the response space.  
Another interesting and important image mapping 
problem is medical image registration. Here, 
different slice images obtained with the CT or MR 
scan have to be put into the same framework by 
computing their mutual transformations. Figure 10 
presents two sample MR images of different slices. 
The transformation has to be found that maps the 

template image Img1 (Figure 10, right) onto the 
reference image Img0 (Figure 10, left). 
 

 
Figure 10. A sample set of MR images: reference 

(left) and template (right). 
 
The search for the optimal mapping is conducted 
using the proposed approach, in the same manner as 
the search for the solution of the previous problem. 
Figure 11 shows the response matrices of the both 
images, and Figure 12 presents the final result of the 
mapping. As one can see, the algorithm was able to 
find a fairly good mapping of the template onto the 
reference image. Further improvement of the solution 
can be achieved with the usage of the adaptive 
division of images into sections. That would help 
remove certain roughness and discontinuities in the 
resulting image transformations.  
 

 
Figure 11. Responses of the MR images. 

 

 
Figure 12. Result of the piece-wise mapping of the 

template (right) onto the reference image (left). 
 
The results of the computational experiments 
presented in this section validate the proposed 
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approach in the form of Image local response and its 
applicability to solving complex image mapping 
problems. 

4. CONCLUSION 
The paper proposes a novel image transformation in 
the form of Image Local Response (ILR) that can be 
used for solving complex image mapping problems. 
The proposed transformation brings together two 
approaches based on the pixel value distribution and 
image features. 
Image local response is defined as the average value 
of the difference between the transformed and the 
original copies of the same image. Here, the 
transformation is small, i.e., the components of the 
corresponding parameter vector have sufficiently 
small unit values.  
The response has a few interesting properties useful 
in image mapping: 
 it significantly reduces the amount of 

information that has to be processed during the 
search for the correct mapping parameters, 

 it retains the main features of the object shape, 
its contour, 

 the algorithm for computing response values is 
inherently parallel, 

 response provides  a bell-shaped fitness 
landscape very well suited for solving image 
mapping problem with the evolutionary search,  

 the ILR model can be used to effectively control 
and accelerate the search for the proper 
mapping. 

The validity of the proposed image transformation is 
shown on complex image mapping problems 
formulated as multi-objective piece-wise imaging 
optimization problem. 
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