

18th International Conference in Central Europe

on
Computer Graphics, Visualization and Computer Vision

in co-operation with

EUROGRAPHICS

WSCG 2010

Communication Papers Proceedings

Edited by

Vaclav Skala, University of West Bohemia, Czech Republic

18th International Conference in Central Europe
on

Computer Graphics, Visualization and Computer Vision

in co-operation with

EUROGRAPHICS

WSCG 2010

Communication Papers Proceedings

Edited by

Vaclav Skala, University of West Bohemia, Czech Republic

Vaclav Skala – Union Agency

WSCG 2010 – Communication Papers Proceedings

Editor: Vaclav Skala
c/o University of West Bohemia, Univerzitni 8
CZ 306 14 Plzen
Czech Republic
skala@kiv.zcu.cz

Managing Editor: Vaclav Skala

Published and printed by:
Vaclav Skala – Union Agency
Na Mazinách 9
CZ 322 00 Plzen
Czech Republic

Hardcopy: ISBN 978-80-86943-87-9

WSCG 2010

Program Committee members

Adzhiev,V. (U.K.)

Balcisoy,S. (Turkey)

Benes,B. (USA)

Bengtsson,E. (Sweden)

Biri,V. (France)

Bittner,J. (Czech Republic)

Bouatouch,K. (France)

Brodlie,K. (U.K.)

Buehler,K. (Austria)

Csebfalvi,B. (Hungary)

Daniel,M. (France)

Davis,L. (USA)

de Geus,K. (Brazil)

Debelov,V. (Russia)

Ferguson,S. (U.K.)

Flaquer,J. (Spain)

Gavrilova,M. (Canada)

Gudukbay,U. (Turkey)

Gutierrez,D. (Spain)

Havran,V. (Czech Republic)

Chover,M. (Spain)

Jansen,F. (Netherlands)

Kruijff,E. (Austria)

Lee,B. (Korea)

Lee,T. (Taiwan)

Magnor,M. (Germany)

Mollá Vayá,R. (Spain)

Muller,H. (Germany)

Murtagh,F. (Ireland)

Pedrini,H. (Brazil)

Platis,N. (Greece)

Puppo,E. (Italy)

Purgathofer,W. (Austria)

Rojas-Sola,J. (Spain)

Rosenhahn,B. (Germany)

Rudomin,I. (Mexico)

Sakas,G. (Germany)

Sbert,M. (Spain)

Segura,R. (Spain)

Schumann,H. (Germany)

Sochor,J. (Czech Republic)

Stroud,I. (Switzerland)

Teschner,M. (Germany)

Theoharis,T. (Greece)

Tokuta,A. (USA)

Vergeest,J. (Netherlands)

Weiss,G. (Germany)

Zach,C. (Switzerland)

Zara,J. (Czech Republic)

Zemcik,P. (Czech Republic)

Zitova,B. (Czech Republic)

WSCG 2010

Board of Reviewers

Abas,M. (Malaysia)

Adzhiev,V. (United Kingdom)

Akleman,E. (United States)

Aveneau,L. (France)

Balcisoy,S. (Turkey)

Battiato,S. (Italy)

Benes,B. (United States)

Bengtsson,E. (Sweden)

Biri,V. (France)

Bittner,J. (Czech Republic)

Bouatouch,K. (France)

Bourdin,J. (France)

Bouville,C. (France)

Brodlie,K. (United Kingdom)

Bruni,V. (Italy)

Buehler,K. (Austria)

Buriol,T. (Brazil)

Camahort,E. (Spain)

CarmenJuan-Lizandra,M. (Spain)

Casciola,G. (Italy)

Csebfalvi,B. (Hungary)

Daniel,M. (France)

Davis,L. (United States)

de Geus,K. (Brazil)

Debelov,V. (Russia)

du Buf,H. (Portugal)

Durikovic,R. (Slovakia)

Erbacher,R. (United States)

Erleben,K. (Denmark)

Feng,J. (China)

Ferguson,S. (United Kingdom)

Ferko,A. (Slovakia)

Fernandes,A. (Portugal)

Flaquer,J. (Spain)

Galo,M. (Brazil)

Ganovelli,F. (Italy)

Garcia-Alonso,A. (Spain)

Gavrilova,M. (Canada)

Giannini,F. (Italy)

Gonzalez,P. (Spain)

Gudukbay,U. (Turkey)

Guérin,E. (France)

Gutierrez,D. (Spain)

Habel,R. (Austria)

Hanak,I. (Czech Republic)

Haro,A. (United States)

Hasler,N. (Germany)

Havran,V. (Czech Republic)

Hernández,B. (Mexico)

Herout,A. (Czech Republic)

Horain,P. (France)

House,D. (United States)

Chaudhuri,D. (India)

Chover,M. (Spain)

Jansen,F. (Netherlands)

Joan-Arinyo,R. (Spain)

Kohout,J. (Czech Republic)

Kruijff,E. (Austria)

Lanquetin,S. (France)

Lee,B. (Korea)

Lee,T. (Taiwan)

Liu,S. (China)

Liu,D. (Taiwan)

Maciel,A. (Brazil)

Magnor,M. (Germany)

Mandl,T. (Germany)

Matkovic,K. (Austria)

Mawussi,K. (France)

McMenemy,K. (Ireland)

Michoud,B. (France)

Mokhtari,M. (Canada)

Mollá Vayá,R. (Spain)

Montrucchio,B. (Italy)

Muller,H. (Germany)

Murtagh,F. (Ireland)

Pan,R. (China)

Papaioannou,G. (Greece)

Patane,G. (Italy)

Pedrini,H. (Brazil)

Pina,J. (Spain)

Platis,N. (Greece)

Plemenos,D. (France)

Post,F. (Netherlands)

Pratikakis,I. (Greece)

Puig,A. (Spain)

Puppo,E. (Italy)

Purgathofer,W. (Austria)

Renaud,c. (France)

Richardson,J. (United States)

Ripolles,O. (Spain)

Ritschel,T. (Germany)

Rojas-Sola,J. (Spain)

Rosenhahn,B. (Germany)

Rudomin,I. (Mexico)

Sakas,G. (Germany)

Sanna,A. (Italy)

Sbert,M. (Spain)

Segura,R. (Spain)

Sellent,A. (Germany)

Schneider,B. (United States)

Schumann,H. (Germany)

Sirakov,N. (United States)

Sochor,J. (Czech Republic)

Solis,A. (Mexico)

Sousa,A. (Portugal)

Steinicke,F. (Germany)

Stroud,I. (Switzerland)

Svoboda,T. (Czech Republic)

Teschner,M. (Germany)

Theoharis,T. (Greece)

Theußl,T. (Austria)

Tokuta,A. (United States)

Torrens,F. (Spain)

Tytkowski,K. (Poland)

Vanecek,P. (Czech Republic)

Vasa,L. (Czech Republic)

Veiga,L. (Portugal)

Vergeest,J. (Netherlands)

Vitulano,D. (Italy)

Weiss,G. (Germany)

Wu,S. (Brazil)

Yencharis,L. (United States)

Zach,C. (Switzerland)

Zachmann,G. (Germany)

Zalik,B. (Slovenia)

Zara,J. (Czech Republic)

Zemcik,P. (Czech Republic)

Zhu,Y. (United States)

Zitova,B. (Czech Republic)

Communication papers

Title

Page

Berger,K., Lipski,Ch., Magnor,M.: Target Space Interactivity - The end of 3D
widgets

 1

Havel,J.: Functional Programming of Geometry Shaders

 9

Bhattacharya,J., Majumder,S.: Visual Odometric Navigation: the GFV Way.

 15

Kaczmarczyk,J, Dohnalik,M., Cnudde,V., Zalewska,J.: The interpretation of X-ray
Computed Microtomography images of rocks as an application of volume
image processing and analysis

 23

Yin,O.-S., Jin,A.T.B., Yan,H.B., Han,P.Y.: Offline Signature Verification through
Probabilistic Neural Network

 31

Kudelski,D., Mari,J.-L., Viseur,S.: Feature Line Detection on Triangulated
Meshes: A Geological Application

 39

Langs,A.,Bärz,J.: Confidence in Tone Mapping Applying a User-Driven Operator

 47

Hast,A., Seipel,S., Ericsson,M.: Multiscale Texture Synthesis and Colorization of
Greyscale Textures

 55

Wacker,M., Wegner,M.: Making people move - walking techniques in a CAVE

 63

Zlatuška,M., Havran,V.: Ray Tracing on a GPU with CUDA -- Comparative Study
of Three Algorithms

 69

Wang,S.,You,R., Chen,Y., Li,S., Wang,G.: Difference-Contribution Strategy for
Seeding 2D Streamlines

 77

Lipski,C., Bose,D., Eisemann,M., Berger,K., Magnor,M.: Sparse Bundle
Adjustment Speedup Strategies

 85

Danihelka,J., Kencl,L., Zara,J.: Reduction of Animated Models for Embedded
Devices

 89

Costa,V., Pereira,J., Jorge,J.: Multi-Level Hashed Grid Construction Methods

 95

Dobrev,P., Rosenthal,P., Linsen,L.: Interactive Image-Space Point Cloud
Rendering with Transparency and Shadows

 101

Benes,P., Medek,P., Sochor,J.: Tracking single channel in protein dynamics

 109

Portelli,D., Ganovelli,F., Tarini,M, Cignoni,P., Dellepiane,M., Scopigno,R.:
A framework for Sketch Based User Assisted Fitting of Geometric Primitives

 115

Mujika,A., Oyarzun,D., Arrieta,A., Carretero,M.P.: Real time accurate collision
detection for virtual characters

 123

Gaitatzes,A., Andreadis,A., Papaioannou,G., Chrysanthou,Y.: Fast Approximate
Visibility on the GPU Using Precomputed 4D Visibility Fields

 131

Rahajaniaina,A., Jessel,J.-P.: Parcel's information visualization on mobile Device

 139

Giroud,A., Biri,V.: Modeling and rendering heterogeneous fog using wavelets 145

Bíscaro,H.H.: Efficient Reconstruction From Scattered Points

 153

Liu,Y., Laycock,S.D.: Creating Continuous Force Feedback for Haptic Interaction
of Volume Data Sets

 161

Kolchin,K.: Surface Curvature Effects on Reflectance from Translucent Materials

 169

Pintavirooj,Ch., Cohen,F.S., Iampa,W.: Fingerprint Alignment Based on Local
Feature Combined with Affine Geometric Invariant

 173

Wucharz, J., Loviscach,J.: Chrome, Gold and Silver on the Screen

 179

Lazarevych,O., Szekely,G., Harders,M.: Decomposing the Linear
Complementarity Problem into Separate Contact Regions

 185

Awano,N., Nishio,K., Kobori,K.: Interactive Stipple Rendering for Point Clouds

 193

Lee,H., Lavoué,G., Dupont,F.: New methods for progressive compression of
colored 3D Mesh

 199

Grund,N., Menzel,N., Guthe,M.: High-Quality Wavelet Compressed Textures for
Real-time Rendering

 207

Polceanu,M., Popovici,A., Popovici,D.M.: A system for panoramic navigation
inside a 3D environment

 213

Panning,A., Al-Hamadi,A., Michaelis,B.: Active Shape Models on adaptively
refined mouth emphasizing color images

 221

Ryu,D.-S., Jang,Ch.-J., Cho,H.G.: A User-Adaptive Image Browsing System with
Summarization Layout for the Personal Photo Collections

 229

Kobori,K., Hirose,K., Nishio,K.: Automatic Generation of Character Behavior by
the Placement of Objects with Motion Data

 237

Espinal,J., Allen,V., Amable,K., Bailey,R., Bischof,H.-P.: RenderMan's Power to
Visualization's Rescue

 243

Hassan,A.M., Al-Hamadi,A., Hasan,Y.M.Y., Wahab,M.A.A., Michaelis,B.: Image
Authentication using Robust Image Hashing with Localization and Self-
Recovery

 251

Trávníček,Z., Berka,R.: Multi-Threaded Real-Time Video Grabber

 259

Andrsen,V., Aanæs,H., Bærentzen,A., Nielsen,M.: Markov Random Fields on
Triangle Meshes

 265

Radziszewski,M., Alda,W., Boryczko,K.: Interactive Ray Tracing Client

 271

Maslov,I.V., Detkova,Y.D., Gertner,I.: A Novel Image Transformation for Solving
Complex Image Mapping Problems

 279

Target Space Modeling - The End of 3D Widgets

Kai Berger
TU Braunschweig

Germany
berger@cg.tu-bs.de

Christian Linz
TU Braunschweig

Germany
linz@cg.tu-bs.de

Christian Lipski
TU Braunschweig

Germany
lipski@cg.tu-bs.de

Tobi Vaudrey
University of Auckland

New Zealand
t.vaudrey@auckland.ac.nz

Reinhard Klette
University of Auckland

New Zealand
r.klette@auckland.ac.nz

Marcus Magnor
TU Braunschweig

Germany
magnor@cg.tu-bs.de

ABSTRACT

In today’s modeling tools, the graphical user interfaces are required to be accurate and intuitive to use. Most tools therefor rely
on additional 3D-widgets (e.g., arrows or circles) that enable the user to operate towards a desired modeling result. Inthis paper
we present, for the first time, a method that makes these widgets obsolete. We propose to use simple geometric primitives such
as planes or spheres as low-dimensional subspaces, so called target spaces for the interaction. Instead of operating towards a
modeling result, the user then directly steers the result. The target spaces suffice to be indicated to the user just as additional
visual information. We verify by means of a user study that with our method it is now possible to develop accurate single-view
GUIs without 3D-widgets that are highly intuitive to use.

Keywords: Graphical user interface, human computer interaction, interactivity, computer geometries, 3D interaction, graphics
applications.

1 INTRODUCTION

Today’s modeling applications are in general used for
the task to position or deform complex objects or parts
thereof. Common examples are the modeling of human
characters or complex moving objects (e.g., parts of a
car engine). In both examples objects are defined by
a transformation hierarchy. For example, the pose of
a human right hand depends on the pose of the right
arm, whose pose is dependent of the current pose of the
torso. The termpose defines the current position and
rotation of an object. A pose is defined by six degrees
of freedom (DOF).

The object’s transformation hierarchy is determined
by a kinematic chain (i.e., the assembly of several kine-
matic pairs connecting rigid body elements). Often
this combination of kinematic pairs, with 6 DOF each,
leaves the user even for simple models with a parame-
ter space of high dimensionality. This high-dimensional
parameter space poses a challenge for the user to inter-
act with the model in an intuitive way.

Some applications enable the user to specify the
translation or rotation of a rigid body numerically.
They may be most accurate but modeling tasks become
very time-consuming and unintuitive. Others present

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2010 conference proceedings,
WSCG’2010, February 1 - 4, 2010
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

an interface to manipulate the pose of each rigid body
in a kinematic chain separately. Mostly authors show
projections of an object on the three coordinate planes
and a fourth viewport, where the user can freely choose
the camera position. In general the free-viewpoint
viewport contributes only little to the accuracy of the
modeling results. Altogether, user interactions are
commonly performed by using projections in some
coordinate planes.

In this paper we present a new method that allows for
intuitive modeling operations within a single viewport
without any additional 3D widgets. By constraining the
interaction space for a given operation in a 3D scene
to subspaces defined by geometric primitives, the user
succeeds in transforming the object or its subparts ac-
curately and in a highly intuitive way.

The paper is organized as follows: After giving an
overview of related work in the area of interactivity
methods for object modeling in Section 2, we define
the core idea of subspace interactivity in Section 3 and
contrast it to state-of-the-art modeling software. After-
wards in Section 4, a set of geometric primitives used
for subspace interactivity is introduced. The usability of
our method is evaluated in a case study with a motion
capturing software in Section 5, before we conclude in
Section 6.

2 RELATED WORK
For a brief overview on research in graphical user
interfaces for object manipulation, see Myers et al.
[MHC+96]. The interaction process from a user’s
point of view is described by Wright [WFH00]. Our
method is related to the following work, where each

WSCG 2010 Communication Papers 1

technique is focusing on certain aspects of interactivity:

Widgets and Input Mapping

Wu et al. [WATB03] present a toolkit which ex-
haustively usespicking, the method to determine
the corresponding 3D-object for a selected 2D-pixel.
A focus on 3D-widgets for transforming complex
geometrical objects is provided by Conner et al.
[CSH+92], who give an introduction to state defini-
tions for typical widget operations (e.g., 3D-rotation).
3D-widgets became famous in the OpenInventor

(a) Rotation

(b) Transposition

Figure 1: A typical object transformation based on 3D
widgets. A rotation (a) around an certain axis is per-
formed by dragging the corresponding circle; a trans-
position (b) is performed by dragging an axis-aligned
arrow. Screenshots reproduced from [Aut09].

framework [SWH+05]. Another paper by Dollner
et al. examines 3D-widgets as deformation handlers
for geometrical objects [DH98]. 3D-sliders as a type
of 3D-widgets and enhancement of 2D-sliders are
described by Beckenridge et al. [BHMO01] and Stotts
[Sto02].

Surface modeling

Schmidt et al. [SKKS09] present a surface modeling
system based on enhanced 2D views. A complex
surface is depicted by equidistant lines. The lines are
colored in shades of gray according to their distance
from the viewpoint. Thus the user can easily select and
change surface parts within a single viewport by ad-
justing particular lines. Another system, ILoveSketch
[BBS08], allows for 3D spline sketching in a single
viewport by exploiting visual cues (e.g., vanishing
points).

Human motion modeling

Buttussi et al. [BCN06] developed a tool to adjust the
pose of a humanoid model. They use a single viewport
to select joints and drag them fronto-parallely, but
they depend on a set of sliders in a second window to
provide for accurate positioning. Popular modeling
tools, such as Blender [Fou09] or 3D Studio Max
[Aut09] employ 3D-widgets to transform nodes of the
body’s kinematic chain.

In 3D Studio Max, for example, an axis aligned trans-
position of a right hand is performed by dragging one
of three displayed arrows towards the desired direction,
Fig. 1 (b).

Our method, instead, introduces 1D- and 2D-
subspaces for object transformation operations (e.g.,
rotation and transposition) and is thus independent of
additional widgets, such as arrows, to be drawn in the
scene. The deformation of body surfaces, however, is
done by adjusting 3D sliders aligned to local coordinate
axes. In the following we will mainly contrast the
concepts of 3D Studio Max [Aut09], representing
state-of-the-art modeling tools, to our method.

3 INPUT HANDLING WITH THE TAR-
GET SPACE

Our main goal at this point is to provide a versatile user
interface for modeling tasks which fulfills the following
constraints:

1. The user should be able to perform any task in a sin-
gle viewport.

2. The operation should be performed in a highly intu-
itive manner.

3. The result of the operation should be accurate com-
pared to the desired task.

WSCG 2010 Communication Papers 2

In state-of-the-art software, such as 3D Studio
Max [Aut09], the user is provided with one or many
3D-widgets to solve the modeling task in one viewport.
That means, additional objects, such as arrows or
curved lines, have to be drawn around the object to
be transformed. The user has to drag these objects in
specific directions in order to come closer to the desired
result for the object to be transformed. In general it can
be stated that the screen is filled with additional objects
to be handled. It is very likely that this may confuse a
user.

Our approach, instead, is to consider the modeling
task as a combination of lower-dimensional operations
within the 3D space. An object can be transformed, for
example, by a target translationt ∈ T or rotationr ∈ T
within a lower-dimensionaltarget space T ⊂ R

3. This
target space can be either 1D or 2D and is, thus, always
embedded in the scene.

When the user triggers a requested operation for a
rigid body [see Fig. 2 (a)], the target spaceT for this
operation is optionally indicated to the user [see Fig. 2
(b)], and the backprojectionΠ of the mouse position
pscreen to T [see Fig. 2 (c)] determines the desired target
positionpT within the target spaceT .

The backprojectionΠ can be written as

Π : pscreen ∈ R
2 7→ pT ∈ T ⊂ R

3 (1)

The key difference between the backprojectionΠ to pT

and a standard backprojection to the current scene is
that only the mouse positionpscreen is backprojected to
the target spaceT. That is, the backprojection is par-
taken in a second scene which consists only of the geo-
metric primitives which spanT. The camera parameters
remain constant in both scenes.

The advantage over state-of-the-art software, such as
3D Studio Max [Aut09], is now clearly that the user
is independent of additional widgets to achieve desired
object transformations. The user only sees the object
and optionally the indicated target space. The target
space may, for example, be shown as a grid to guide
the user. Any mouse movement on the target space is
directly interpreted as the new result state for the ob-
ject. The screen becomes less confusing and more ob-
vious, so that intuitivity increases, while accuracy stays
steady.

Any geometric primitive can serve asT, as long as it
is a true subset ofR3. This is necessary for the back-
projection, because otherwise the result would not be
well-defined. In our further considerations we focus on
thin lines, surfaces of spheres and planes for modeling
tasks, but any Bézier spline or surface is also suitable.
Once again we like to emphasize, that the indication of
the target space to the user [see Fig. 2 (b)] isoptional,
and that the user can employ the operation on the target
space also without any additional visual information.

(a) User selects object to be transformed

(b) Target spaceT is optionally indicated to user

(c) Mouse position is backprojected toT

Figure 2: Illustration of a transformation of a rigid
body. The blue cone (a) is considered as an operation
in the target spaceT. Its span is optionally indicated to
the user, for example by a grid; see (b). The operation
is done by backprojecting the mouse position into the
target spaceT; see the red surface in (c).

This is themain difference to the 3D widgets used in
state-of-the-art modeling tools.

WSCG 2010 Communication Papers 3

(a) User selects ob-
ject to be rotated

(b) User starts rota-
tion, target spaceT
indicated

(c) User rotates ob-
ject, target spaceT
indicated

(d) The target
space T with
backprojected
mouse position
Π(pscreen) = pT

(e) User stops rota-
tion

Figure 3: An object rotation with a sphere as geometric primitive for T . The object’s center of gravity determines
the sphere’s center while its distance to the backprojectedmouse position determines the radius. However, a larger
radius is possible in order to increase usability.

(a) User selects ob-
ject to be reshaped

(b) User starts defor-
mation, target space
T indicated

(c) User deforms
object shape, target
spaceT indicated

(d) The target
space T (line with
arbitrary thickness)
with backprojected
mouse position
Π(pscreen) = pT

(e) User stops defor-
mation

Figure 4: An object deformation with a line of arbitrary thickness as geometric primitive forT . The line is parallel
to the normal of the selected patch and intersects the objectat the backprojected mouse position.

4 GEOMETRIC PRIMITIVES IN THE
TARGET SPACE

In most modeling applications we face the following
basic transformation operations: transposition, rotation
and surface deformation. The transposition and rota-
tion operations have 3 DOF each; the DOF of a sur-
face deformation depends on its tessellation. However,
combining only few of those operations to a complex
task will lead to a parameter space of high dimension-
ality. Thus we exploit the geometric primitives as target
spaces for the elementary transformation tasks:

• A rotation of a rigid object is done on the surface of
a sphere of fixed radiusr with

pT (φ ,θ) =





r ·cos(θ) ·cos(φ)
r ·cos(θ) ·sin(φ)

r ·sin(θ)



 (2)

whereφ andθ determine the longitude and latitude
angles. Thus, the transformation is performed in a
2D target space. The sphere center is mostly located

in the object’s center of gravity. The radius can be
determined by the distance to the selected point on
the object; see Fig. 3. However, a larger radius is
considerable in order to increase the usability

• A transposition of a rigid object is done on a plane
(e.g., axis-aligned on the XY-plane) in the coordi-
nate system of the object’s parent in the transforma-
tion hierarchy with

pT (u,v) =





u
v
0



 (3)

whereu andv determine the point on the plane. Thus
the transformation is performed in a 2D target space,
as well.

• A transposition of an object with a fixed distance to
a local or global center is done on the surface of a
sphere according to Eq. (2). Thus the transformation
is also performed in a 2D target space.

WSCG 2010 Communication Papers 4

• A parametrized surface deformation is done patch
by patch. For each parametrized patch, spanned by
tangent vectors~ru,~rv, the deformation is performed
on a line parallel to the patch normal

~pT (α) = α ·
~ru ×~rv

|~ru ×~rv|
(4)

Here,α determines the point on the line. The target
space in this case is only 1D, the user interacts with
the surface by moving it upwards or downwards that
line; see Fig. 4.

5 CASE STUDY: MOTION CAPTUR-
ING SYSTEMS

The main purpose of motion capturing applications is
to fit humanoid 3D-models to the input data captured
from one or many video cameras. Since in most cases
the input data show only the actor in front of a well-
distinguishable background, the application succeeds in
recognizing and modeling the intended pose of the ac-
tor.

However, sometimes the system can produce an erro-
neous guess for the pose due to lighting conditions or
ambiguous body constraints. Then it is very useful, if
the system provides an intuitive interface for the user
to correct the pose. Furthermore it is also useful for
the user to define new motion sequences independently
from input videos (e.g., to create new motions for an
already captured character). Here, an intuitive user in-
terface is inevitable.

In the following case study we apply the presented
target space approach to implement a GUI for an ex-
isting motion capturing software. Although single joint
positions can be adjusted numerically, motion captur-
ing software has not provided an intuitive interface for
a user so far. Main requirements for an interface are
that the user could literally drag the body entities of the
humanoid to desired poses and that he could deform
the shape of the body in one single viewport. The user
can rotate the camera around the captured scene like a
trackball.

From these requirements we deduce the basic trans-
formation operations of the application: While enti-
ties like hands or feet can be translated within a sphere
around the shoulders or hips, other entities like the torso
could be rotated in place. Furthermore the surface mesh
of each entity could be deformed (i.e., inflated or de-
flated).

For the basic transformation operations we identify a
suitable target space according to Section 4. Some en-
tities can be transformed in multiple target spaces (e.g.,
the hand of the humanoid model can be dragged on a
sphere around the shoulder or on a plane parallel to the
shoulder’s coordinate plane).

(a) Rotation of the knee,
target spaceT is indicated
to user

(b) Mouse position is back-
projected toT

Figure 5: A rotation (a) of the model’s knee is per-
formed with the target space method (b): In the back-
buffer the mouse position (small red sphere) is pro-
jected onto a simpler scene consisting of a sphere
(green), that is tangential to the knee, the foot and the
hip. A plane (pink) parallel to the viewing plane inter-
sects the sphere at its center and thus prohibits marginal
errors.

The user can pick an entity of the model by hovering
over it with the mouse pointer. If multiple transforma-
tion operations are available, the user can choose the
operation by pressing different keys.

A deformation of an entity’s mesh can be done by
moving the mouse parallel to the local surface normal.
A mouse motion away from the surface indicates an in-
flation; a mouse motion closer to the surface indicates a
deflation.

In the following, we briefly describe how the target
space approach is implemented for the different opera-
tions mentioned above.

5.1 Rotation of humanoid body parts
The rotation of body parts is modeled as a transforma-
tion with a sphere surface as target space. An axis in
the local coordinate system defines the rotation axis.
The magnitude of a rotation angle is determined rela-
tively from the difference of the backprojected mouse
position when the mouse button is pressed and the
backprojected mouse position when the mouse button
is released again. Figure 5 shows the rotation opera-
tion and the according target space, the green sphere.
The fronto-parallel pink plane intersects the sphere cen-
ter to avoid backprojection problems, when the mouse
pointer leaves the surface area of the sphere. The back-
projected pointp is then automatically evaluated as the
intersection between a ray from the sphere centerc to p
and the surface of the sphere.

5.2 Translation of humanoid body parts
The translation of a body part is modeled both as a
transformation with a plane as target space and with a

WSCG 2010 Communication Papers 5

(a) Translation, target
spaceT is indicated to user

(b) Mouse position is back-
projected toT

Figure 6: A translation (a) of the model’s arm is per-
formed with the same approach (b): In the backbuffer
the mouse position (small red sphere) is projected onto
a simpler scene consisting of a plane (green) intersect-
ing the arm’s origin.

(a) Translation on the front
hemisphere

(b) Translation on the back
hemisphere

Figure 7: When leaving the sphere’s surface with the
mouse (a), the system automatically cuts off the half-
sphere in front and enables the user to translate the joint
to the backside (b), which would not be visible or reach-
able in normal view.

sphere surface as target space. The resulting position of
the translated body part is evaluated absolutely by back-
projecting the mouse position to the target space. An
inverse kinematic chain [ZB94] is then computed for
the parent nodes of the body part to account for body
constraints (e.g. the flexion-extension range of a knee
or an elbow).

Figure 6 shows the translation of the left wrist on a
plane parallel to a coordinate plane of the shoulder’s
coordinate system and the corresponding target space,
a green plane. The backprojected mouse position on
the green plane determines the required position for the
wrist.

Figure 7 shows the same translation of the left wrist
with a sphere surface as target space. The sphere cen-
ter in the target space is again intersected by a fronto-
parallel plane. This time the plane is used to discrim-
inate between the visible front side of the sphere and
the invisible back side of the sphere. When the mouse
pointer leaves the sphere surface and is backprojected
on the plane, the system automatically cuts off the front
half of the sphere. The user is then able to move along
the inner surface of the sphere’s back half.

1 2 3 4 5
2

4

6

8

10

12

14

16

18

Task

#O
pe

ra
tio

ns
 p

er
 T

as
k

Proposed Method
Autodesk 3d Studio Max 2010

(a) Results for the modeling tasks

6 7
6

7

8

9

10

11

12

13

14

15

16

Task
#O

pe
ra

tio
ns

 p
er

 T
as

k

Proposed Method
Autodesk 3d Studio Max 2010

(b) Results for the shaping tasks

Figure 8: The results of the user study. The users have
been assigned five modeling (a) and two shaping tasks
(b). For each task the mean number of necessary oper-
ations is plotted with variance. Note, that, on average,
the proposed method needs less operations per task than
the state-of-the-art tool.

5.3 Deformation of humanoid body parts

Each body part of the model, used in the system, con-
sists of a coherent mesh. The deformation state of the
mesh is defined by two fourth order polynomials of
its longitudinal axis along for each of the remaining
axes. The deformation parameters for each polynomial
are 1D. Thus, we employ the target space approach by
moving the selected patch in the mesh along a 1D-line,
which is parallel to the patch’s normal. Since the pa-
rameters are 1D, the thickness of the line is arbitrary.

5.4 Results - The User Study

The target space method has been implemented in an
existing motion capturing software as graphical user in-
terface. In a comparative user study with seven partic-
ipants, the applicability of the method has been evalu-
ated. Each user has been assigned five modeling tasks
and two shaping tasks. In each task the users have been
given an input model and a picture of a target pose (e.g.,
a man sitting, kicking, or lifting arms) or a target shape
(e.g., fat, or musculous).

Further information about these tasks is shown in the
Appendix. The users then had to change the pose or
shape of the input model so that it resembled the picture
of the target pose with as few modeling operations as
possible.

WSCG 2010 Communication Papers 6

(a) Task 1 (b) Task 2 (c) Task 3 (d) Task 4

(e) Task 5 (f) Task 6 (g) Task 7

Figure 9: The seven modeling tasks in the conducted user study. Tasks 1-5 depict the poses the users had to model
with both the proposed method and 3D Studio Max 2010 [Aut09].Tasks 6 and 7 depict the different shapes the
users had to give to the humanoid model.

In the first iteration the users modeled the pose with
the proposed method. In the second iteration they
used the commercial software Autodesk 3D Studio Max
2010. In both iterations, for each task the number of op-
erations that were necessary to model the desired pose
have been evaluated.

Figure 8 shows the mean number of necessary oper-
ations for each modeling (a) and shaping (b) task. The
plots show that the proposed method enables the user
to model desired poses and shapes with less necessary
operations than with the state-of-the-art modeling soft-
ware.

The users have also graded both modeling tools for
intuitivity, learnability and usability. In terms of in-
tuitivity and learnability, 71 % graded the proposed
method as good as, or even better than the commercial
tool. In terms of usability, 57 % graded the proposed
method as good as, or even better than the commercial
tool.

6 CONCLUSIONS

We presented a new approach for graphical user in-
terfaces in modeling applications, which is based on
lower-dimensional target spaces. The target spaces are
embedded into the 3D scene and thus allow for single

viewport interactivity. While standard modeling appli-
cations rely on fronto-parallel operations or operation
vectors that the user has to drag along the axes of a lo-
cal coordinate system, our approach enables the user to
transform the object in a very intuitive way, still achiev-
ing the desired accuracy.

We verified the applicability of the approach by a
case study, where a graphical user interface had to be
implemented for an existing motion capturing system.
In a comparative user study we found that with the
new approach users need less necessary operations for a
modeling task than with state-of-the-art modeling soft-
ware.

In the future we want to apply our approach to further
modeling applications beyond motion capturing. We
also want to exploit the constraints of kinematic chains
of arbitrary objects for the target space modeling, be-
cause this will enhance the intuitivity of modeling tasks
even more.

7 APPENDIX

In Fig. 9 we have listed the seven different modeling
tasks of the conducted user study. In Task 1 [see Fig. 9
(a)], the users had to reposition the model and rotate it
in an angle of 45◦.

WSCG 2010 Communication Papers 7

In Task 2 [see Fig. 9 (b)], the users had to lift the arms
and legs to emulate a jumping pose.

In Task 3 [see Fig. 9 (c)], the users had to lift one leg
and angle both arms to emulate a kicking pose.

In Task 4 [see Fig. 9 (d)], the users had to position the
left arm and angle it and had to rotate the head towards
the far left.

In Task 5 [see Fig. 9 (e)], the users had to model a
person sitting and drinking a glass of water. Not only
the arms, but also the hands had to be altered.

Tasks 6 and 7 regarded shaping operations. In Task
6 [see Fig. 9 (f)], the users had to give the humanoid
model a potbelly. In Task 7 [see Fig. 9 (g)], the users
had to shape the model like a body builder. In both
tasks, several meshes had to be selected and reshaped
in all three dimensions.

REFERENCES

[Aut09] Autodesk. 3D Studio Max 2010.http:
//www.autodesk.de/, 2009.

[BBS08] S.H. Bae, R. Balakrishnan, and K. Singh.
ILoveSketch: as-natural-as-possible
sketching system for creating 3d curve
models. InProceedings of the 21st an-
nual ACM symposium on User interface
software and technology, pages 151–160.
ACM New York, NY, USA, 2008.

[BCN06] F. Buttussi, L. Chittaro, and D. Nadalutti.
H-animator: a visual tool for modeling,
reuse and sharing of X3D humanoid ani-
mations. InProceedings of the eleventh in-
ternational conference on 3D web technol-
ogy, pages 109–117. ACM New York, NY,
USA, 2006.

[BHMO01] A. Breckenridge, B. Hamlet, D. Mehlhorn,
and K. Oishi. A Dynamic Design Strategy
for Visual and Haptic Development.Proc.
of the PHANTOM Users Group Workshop,
pages 31–37, 2001.

[CSH+92] B. D. Conner, S. S. Snibbe, K. P. Herndon,
D. C. Robbins, R. C. Zeleznik, and A. van
Dam. Three-dimensional widgets.Proc. of
the symposium on Interactive 3D graphics,
pages 183–188, 1992.

[DH98] J. Döllner and K. Hinrichs. Interactive, An-
imated 3D Widgets. Computer Graphics
International 1998, pages 278–286, 1998.

[Fou09] Blender Foundation. Blender.http://
www.blender.org/, 2009.

[MHC+96] B. Myers, J. Hollan, I. Cruz, et al. Strategic
Directions in Human-Computer Interac-
tion. ACM Computing Surveys, 28(4):794–
809, 1996.

[SKKS09] R. Schmidt, A. Khan, G. Kurtenbach,
and K. Singh. On expert performance
in 3D curve-drawing tasks. InProceed-
ings of the 6th Eurographics Symposium
on Sketch-Based Interfaces and Modeling,
pages 133–140. ACM, 2009.

[Sto02] D. Stotts. 3D Sliders: Programming Uses
for 3D Object Warping in Collaborative
Virtual Environments. Technical report,
University of North Carolina at Chapel
Hill, 2002.

[SWH+05] D. Stalling, M. Westerhoff, H.C. Hege,
et al. Amira: A highly interactive system
for visual data analysis.The Visualization
Handbook, 38:749–67, 2005.

[WATB03] S. T. Wu, M. Abrantes, D. Tost, and
HC Batagelo. Picking and snapping for
3D input devices.Brazilian Symposium on
Computer Graphics and Image Processing,
pages 140–147, 2003.

[WFH00] P. C. Wright, R. E. Fields, and M. D. Har-
rison. Analyzing Human-Computer Inter-
action as Distributed Cognition: The Re-
sources Model.Human-Computer Interac-
tion, 15(1):1–41, 2000.

[ZB94] J. Zhao and N.I. Badler. Inverse kinematics
positioning using nonlinear programming
for highly articulated figures.ACM Trans-
actions on Graphics (TOG), 13(4):313–
336, 1994.

WSCG 2010 Communication Papers 8

Functional Programming of Geometry Shaders
Jiří Havel

Faculty of Information Technology

Brno University of Technology

ihavel@fit.vutbr.cz

ABSTRACT

This paper focuses on graphical shader programming, which is essential for real-time rendering. Opposite to classical low
level, structured languages, functional approach is used in this work and existing work is extended to cover geometry shader
programming. The compiler is able to transform the program in a way that is hard to achieve with classical languages. The
program is written for all pipeline stages at once and the compiler does the partitioning. This allows the programmer to focus
on program semantics and let the compiler take care of the efficient execution. First, this paper describes shader stages as
functions in a mathematical manner. The process of program partitioning and transformation to one of the classical languages
is described. Several examples show the differences between functional description and equivalent structured code.

Keywords: Rendering, Shaders, Functional Programming

1 INTRODUCTION

Graphical hardware has changed greatly since first
graphic accelerators. Its architecture evolved from
fixed function pipeline, which became more and more
configurable to today’s fully programmable SIMT
processors. However the programming is still low-
level. The graphical processors lack complex control
structures in exchange for raw computation power. The
three most used languages for shader programming
(GLSL [7], HLSL [8] and Cg [9]) mimic very closely
the structure of the rendering pipeline.

The number of programmable stages of the rendering
pipeline has risen from two to five in the latest acceler-
ators. This means that the programmer must maintain
even higher number of programs, executed at once on a
single primitive, and ensure their compatibility. The in-
terfaces between pipeline stages must be compatible not
only in types, which the compiler can check, but also in
passed values, which cannot be checked automatically.
Packing the shader programs into one effect file solves
this problem only partially. Effect files are only mul-
tiple shader programs, packed into one file with some
additional information. When the effect file contains
a code for multiple generations of graphical cards, the
dependencies are even harder to maintain. This paper
focuses on splitting one program to multiple parts and
automatic generation of interfaces between them. Ver-
tex, geometry and fragment shaders are the point of in-
terest. The next two - hull and domain shaders were
added for performance reasons only and might be ad-
dressed in future work.

Functional approach seems suitable for shader pro-
gramming. Shaders transform data without any side ef-
fects and run massively parallel. Functional programs
tend to be more abstract and allow the compiler to re-
organize the code more than imperative languages. Be-

cause functional programs are referentially transparent,
the order, in which the program is executed, does not
matter. Every program transformation that preserves
the output value is allowed. As shader programming
favors speed over code clarity, this can help readabil-
ity and maintainability without sacrificing performance.
Significant parts of shader programs could be generated
automatically.

Functional programming languages undergo a rapid
development in recent years. Functional languages
leave academic ground and slowly become well known
like Microsoft’s F#. Elements from functional lan-
guages like closures and lambdas are used in current
mainstream languages (Python, C#). Ideas from func-
tional programming like map-reduce [2] are used for
programming parallel algorithms. These successes sug-
gest that functional programming loses its reputation of
being slow and is used for computationally intensive
tasks. Because rendering is a computationally intensive
task of different type, this paper explores the usability
of functional programming for it.

Section 2 describes languages that were used as inspi-
ration for this work. Section 3 shows shaders as func-
tions from a mathematical point of view. Section 4 de-
scribes the transformation from functional program to
C-like representation that is compatible with common
shader languages. Section 5 summarizes the advantages
of this approach and discusses open issues for the fol-
lowing work.

2 RELATED WORK
One of the interesting functional languages for shader
programming is Vertigo [3], which was developed by
Conal Elliott at Microsoft Research. Vertigo is an em-
bedded language, focused on geometry and texture gen-
eration. Complex shapes are built from simple primi-
tives and transformations by function composition. A

WSCG 2010 Communication Papers 9

significant part of the optimization is done by rewrite
rules - common technique in functional programming,
which is generally not applicable in imperative lan-
guages due to the lack of the referential transparency.

Another unfinished and interesting language for
shader programming is Renaissance [1]. In this
language, vertex and fragment shaders are specified
as one program. The compiler splits the program and
generates an interface between the vertex and fragment
shader using simple rules that are based on expression
frequencies and function linearity.

Expression frequencies correspond to pipeline stages,
where the expression can be evaluated. Renaissance
uses four frequencies - fragment, vertex, uniform and
constant. Program is initially specified with fragment
frequency and compiler determines lower frequencies
for suitable expressions.

Function linearity is important for splitting vertex and
fragment shader. For linear functions like addition is
not important whether its input or output is interpolated
over the rasterized primitive. This means, if input of
linear function has vertex frequency, its output has ver-
tex frequency too, so it can be safely moved to the ver-
tex shader. Nonlinear functions like normalization can
not be interpolated, so they must remain in the frag-
ment shader. There exists another group of functions -
partially linear - like multiplication. Its output can be
interpolated if only one argument has vertex frequency
and all other have frequency lower.

3 SHADERS AS FUNCTIONS
In this section and the following ones, a simplified
Haskell [6] syntax will be used for program examples.
Function types will be written in mathematical manner.
For example A×B→ C means a function with a do-
mains A×B (with two parameters of the type A and B)
and a codomain C. Square brackets mean a list of val-
ues. It can be also an array, because the differences are
not important here.

If we consider rendering as a function, the type of this
function might be U × [A]→ [F]. U denotes the uni-
form variables, textures and other rendering state, [A] is
the list of attributes of the rendered primitives and [F]
is the list of resulting fragments. This means the ren-
dering takes the rendering state and the list of rendered
vertices and transforms it to the list of fragments. These
fragments are collected into the framebuffer. The ren-
dering function can be split to three parts, equivalent to
three pipeline stages.

The vertex shader does the transformation and light-
ing of all vertices. It has the type U × A→ V . Be-
cause all vertices are processed identically, this function
is simply mapped over input vertices. V is the vertex
shader output.

The geometry shader follows the primitive assembly
and takes one primitive consisting of one to six ver-

tices. It has type U× [V]→ [[G]]. It takes one primitive,
which can be viewed as a list of vertices and outputs
several triangle (or line) strips. Each triangle strip is
simply a list of vertices, so the complete output is a list
of strips. [[G]] denotes the interface between geometry
and fragment shader.

The primitives from the geometry shader are assem-
bled, rasterized, values are interpolated over them and
used as input for the fragment shader. The fragment
shader has type U×G→ F .

Aside from the mentioned parts or frequencies of
computation (vertex, geometry, fragment), another two
frequencies exist. It is the constant and uniform fre-
quency. The expressions with constant frequency are
evaluated at compile time. The expressions with uni-
form frequency transform uniform variables before ren-
dering. For example HLSL preshaders have uniform
frequency.

These frequencies not only assign expressions to
pipeline stages. They also express relative cost of the
computation and their cost increases from constant
to fragment. Calculating expression at constant or
uniform frequency is beneficial always. The limit is
only the amount of constant and uniform registers.

The benefit of moving possible calculations from ge-
ometry to vertex shader is caused by Post Transform
Cache. This cache is located after vertex shader and
stores its outputs. In ideal case, each vertex has to
be transformed only once, but in reality, the capacity
of the cache is up to several tens of vertices. When
drawing single triangles, the vertex shader is executed
three times per triangle. When drawing triangle strips,
VS is executed once per triangle (plus two times per
strip). With indexed rendering of optimized meshes,
VS can be executed less than once per triangle [10].
This means, we can safely move to vertex shader even
calculations that could be performed on only one vertex
of the triangle.

Moving calculation from fragment to geometry
shader is beneficial in all cases, when interpolation is
less costly, than calculation.

3.1 Expression Splitting

As was mentioned in section 2, the program can be split
into stages automatically by the compiler. This sim-
plifies the programmer’s work as he does not need to
maintain the interfaces between stages manually. Aside
from simple splitting, some expressions can be auto-
matically moved into parts with lower frequencies. The
programmer can write calculations that logically belong
together at one place and let the compiler move them
apart to achieve more efficient execution.

This section describes the process of determining the
frequencies of program expressions. In the beginning,
only frequencies of shader inputs are known. Constants

WSCG 2010 Communication Papers 10

have constant frequency, uniform variables uniform fre-
quency and vertex attributes have vertex frequency.

Selection of expressions with constant and uniform
frequency is very similar. All function applications
(function calls in structured languages) with constant
frequency operands have constant frequency, too.
Function applications with constant and uniform
operands have uniform frequency. Listing 1 shows
an example of vertex transformation and listing 2
equivalent code without declarations after frequency
estimation and splitting.

un i fo rm m a t r i x 4 model , view , p r o j e c t i o n
a t t r i b u t e v e c t o r 3 p o s i t i o n

−− o r i g i n a l code
p o s i t i o n ’ = p r o j e c t i o n ∗view∗model∗ p o s i t i o n

Listing 1: Original code of Uniform and Vertex shader

−− u n i f o r m p a r t
tmp = p r o j e c t i o n ∗view∗model

−− v e r t e x p a r t
p o s i t i o n ’ = tmp∗ p o s i t i o n

Listing 2: Uniform and Vertex shader after splitting

Vertex and geometry shader can be split at the point,
where vertices of the input primitive are indexed. The
function at is used for this purpose. Before indexing,
the calculations are done for the complete stream of
vertices. The function at can be moved automatically
further into the geometry part. When all inputs of a
function use the same index, this function can be eval-
uated in the vertex shader and its output can be passed
into the geometry shader. All unary functions fulfill this
criterion trivially.

Example in listing 3 calculates the distance of one
vertex of each triangle from the camera (this can be
used for example for LOD selection). Because length
is an unary function, it can be moved into the vertex
shader safely. Multiplication with one uniform argu-
ment acts as an unary function, too. The transformed
program is shown in listng 4.

un i fo rm m a t r i x 4 modelView ;
a t t r i b u t e v e c t o r 3 p o s i t i o n ;

−− o r i g i n a l code
d i s t a n c e = l e n g t h (modelView∗(a t p o s i t i o n 1))

Listing 3: Original code of Vertex and Geometry shader

−− v e r t e x p a r t
tmp = l e n g t h (modelView∗ p o s i t i o n)

−− geomet ry p a r t
d i s t a n c e = a t tmp 1

Listing 4: Vertex and Geometry shader after splitting

When the geometry shader is not present, vertex and
fragment shader can be partitioned fully automatically.
This approach was used in Renaissance [1], but has
some drawbacks. Because the program is practically

written as fragment shader, it is hard to express calcu-
lations such as Gouraud shading. Also new versions of
shaders provide multiple modes of value interpolation.
Because of these reasons, I propose another method.

The point of splitting is specified by one of three
functions - smooth, linear and flat. These names come
from three interpolation modes on graphical cards.
Functions smooth and linear can be moved further into
fragment part by the same manner as in Renaissance.
Calculations with all arguments with flat interpolation
mode can be always moved into geometry (or vertex)
shader, because no interpolation is performed. The
centroid option does not complicate the transformation,
so it is omitted here for simplicity.

The example in listing 5 shows a simplified calcula-
tion of specular lighting with phong shading. The ge-
ometry shader is omitted for simplicity. The transfor-
mation of the light vector is completely uniform. Multi-
plication is partially linear, so transformation of normal
vector can be done in the vertex shader. Normalization
is a nonlinear operation, so it must be left in the frag-
ment shader. The light vector can be normalized in the
uniform part, because it is not interpolated. The trans-
formed code is shown in listing 6.

un i fo rm m a t r i x 4 modelView , n o r m a l M a t r i x ;
un i fo rm v e c t o r 3 l i g h t V e c ;
a t t r i b u t e v e c t o r 3 normal ;

−− o r i g i n a l code
norm = n o r m a l i z e (n o r m a l M a t r i x ∗(smooth normal))
l v e c = n o r m a l i z e (modelView∗ l i g h t V e c)
c o l o r = norm ’ dot ’ l v e c

Listing 5: Original code of Vertex and Fragment shader

−− u n i f o r m p a r t
l v e c = n o r m a l i z e (modelView∗ l i g h t V e c)

−− v e r t e x p a r t
tmp = n o r m a l M a t r i x∗normal

−− f r a g m e n t p a r t
norm = n o r m a l i z e (smooth tmp)
c o l o r = norm ’ dot ’ tmp1

Listing 6: Vertex and Fragment shader after splitting

4 PROGRAM TRANSFORMATION
Automatic partitioning of the shader program is not
the only important difference between conventional and
functional approach. Very useful feature of functional
languages are closures, partial application and higher
order functions. Closures are nested functions with
some variables defined inside the outer function. Par-
tial application means that for example binary function
can take one argument and can be used as unary func-
tion afterwards. Higher order functions are functions
that take another function as a parameter or return it.

All these features significantly improve code expres-
siveness. Especially higher order functions offer the
possibility of sharing code structure, that is hard to

WSCG 2010 Communication Papers 11

achieve or even not possible in structured languages.
For complete implementation of these features, dy-
namic memory allocation is needed. Since the under-
lying hardware does not support it now, compiler must
convert these features into equivalent structured code.
The resulting code is often significantly less elegant, as
will be shown in an example. The hardware also limits
recursion, which must be limited to a form that can be
automatically converted into loops. Sum-types, some-
times called discriminated unions, are also forbidden.
Only product types - equivalent to C structures - are us-
able.

Enriched lambda calculus [5] can be used for pro-
gram representation. This does not differ from other
functional languages. The program is converted into a
list of definitions which is topologically sorted. A defi-
nition is simply a named expression.

Because shaders do not have capabilities to support
lazy evaluation, the program must be converted to an
equivalent strict form. Both Vertigo and Renaissance
solved this by complete substitution of all free variables
in expressions. This approach is simple, but in the re-
sult, all common sub-expressions are lost.

In this paper a slightly more complicated approach is
used. The program is lambda-lifted [4], so nested and
anonymous functions are converted into C-like global
functions. Substitution is done only to remove closures
and partial applications, not for all variables. Lastly, all
applications are merged into complete function calls.

Frequencies are estimated using rules from the previ-
ous section. For expressions without user-defined func-
tions, the splitting is trivial. When a user-defined func-
tion is present, the frequencies inside it are estimated
according to the parameter frequencies. Optionally, this
function is also split into parts. Because of this splitting,
library functions acting as one piece can be automati-
cally split into multiple parts. This allows the use of
library functions that silently cross the boundaries be-
tween shader stages and are both compact and effective.

Classical structured code can be now generated from
the vertex and fragment part. The geometry part has
one list of values for every output variable. To match
the structure of the geometry shader, its output must be
one list of structures containing every output variable.
This conversion is in functional languages done by the
function zip. This function takes multiple lists and con-
verts it to a single list of structures. The length of the
resulting list is the length of the shortest input list.

4.1 Larger example
This example illustrates the compilation of a more com-
plex shader program. The uniform variables are mod-
elView and normalMatrix. The vertex attributes are ver-
tex and normal. The required output variables are posi-
tion with frequency geometry and color with frequency
fragment. The source code without declaration of vari-

ables is shown in listing 7. This program transforms the
input vertices and normals, splits the triangles into four
parts as shown in figure 1 and calculates simple diffuse
lighting. The splitting is described by function gen.
This function is used for position, normal and light vec-
tor identically. A real program would add some modi-
fication after, but for this example, simple subdivision
will suffice; any such complication would not affect the
compilation process.

Figure 1: Subdivision of a triangle in the geometry
shader in listing 7. The input vertices i and generated
vertices m correspond to the list in the function gen.

t r _ p o s = modelView∗ v e r t e x
t r_norm = n o r m a l M a t r i x∗normal

gen i = [[i 0 , m 2 , m 0 , m 1 , i 1] , [i 2 , m 1 , m 2]]
where m x = (i x + i (x +1) %3) / 2

p o s i t i o n = gen (a t f t r a n s f o r m)
l v e c = l i g h t P o s − (smooth (gen (a t t r _ p o s)))
norm = smooth (gen (a t t r_no rm))
c o l o r = (n o r m a l i z e l v e c) ’ dot ’ (n o r m a l i z e norm)

Listing 7: Code for triangle transformation, subdivision
and simple shading

The definitions are already sorted, so no reordering
is needed. All expressions depend only on previous
definitions. Lambda lifting splits the function gen and
creates a new function gen_m. These two functions
are now C-like global functions. The resulting code is
shown in listing 8.

t r _ p o s = modelView∗ v e r t e x
t r_norm = n o r m a l M a t r i x∗normal

gen_m i x = (i x + i (x +1) %3) / 2

gen i = l e t m x = gen_m i x in [[i 0 , m 2 , m 0 , m
1 , i 1] , [i 2 , m 1 , m 2]]

p o s i t i o n = gen (a t f t r a n s f o r m)
l v e c = l i g h t P o s − (smooth (gen (a t t r _ p o s)))
norm = smooth (gen (a t t r_no rm))
c o l o r = (n o r m a l i z e l v e c) ’ dot ’ (n o r m a l i z e norm)

Listing 8: Shader after lambda-lifting. Only the
function gen differs from listing 7.

WSCG 2010 Communication Papers 12

Partial applications of functions like m in the func-
tion gen or usages of the function at are substituted to
places where the remaining arguments are applied. By
this substitution, specialized lists for variables position,
lvec, and norm are created. The function gen itself and
the lifted function gen_m are removed as a dead code.
The resulting code is shown in listing 9.

t r _ p o s = modelView∗ v e r t e x
t r_norm = n o r m a l M a t r i x∗normal

p o s i t i o n = [[a t f t r a n s f o r m 0 , ((a t f t r a n s f o r m 2) +
(a t f t r a n s f o r m (2 + 1) %3)) / 2 . . .

l v e c = l i g h t P o s − (smooth [[a t t r _ p o s 0 , . . .
norm = smooth [[a t t r_no rm 0 , . . .
c o l o r = (n o r m a l i z e l v e c) ’ dot ’ (n o r m a l i z e norm)

Listing 9: Shader without partial applications and
closures

Expression frequencies are estimated, expressions
are split, constant expressions are evaluated and
common subexpression elimination is done. Vertex
and fragment parts are prepared for code generation.
Geometry part needs zipping together, which is trivial.
Listing 10 shows this situation.

−− v e r t e x f r e q u e n c y
t r _ p o s = modelView∗ p o s i t i o n
t r_norm = n o r m a l M a t r i x∗normal
tmp1 = f t r a n s f o r m
tmp2 = l i g h t P o s − t r _ p o s

−− geomet ry f r e q u e n c y
p o s i t i o n = [[a t tmp1 0 , ((a t tmp1 2) + (a t tmp1

0)) / 2 . . .
l v e c = [[a t tmp2 0 , ((a t tmp2 2) . . .
norm = [[a t t r_no rm 0 , . . .

−− f r a g m e n t f r e q u e n c y
c o l o r = (n o r m a l i z e l v e c) ’ dot ’ (n o r m a l i z e norm)

Listing 10: Code parts for each stage of the rendering
pipeline

Listing 11 shows the generated code. The interface
between the vertex and geometry shader are the vari-
ables tr_norm, tmp1 and tmp2. The interface between
the geometry and fragment shader are the variables lvec
and norm.

/ / v e r t e x sh ad er
t r _ p o s = modelView∗ p o s i t i o n ;
t r_no rm = n o r m a l M a t r i x∗normal ;
tmp1 = f t r a n s f o r m ;
tmp2 = l i g h t P o s − t r _ p o s ;

/ / geome t ry sh ad er
p o s i t i o n = tmp1 [0] ;
l v e c = tmp2 [0] ;
norm = t r_norm [0] ;
e m i t V e r t e x () ;
p o s i t i o n = (tmp1 [2] + tmp1 [0]) / 2 ;
l v e c = (t p 2 [2] + tmp2 [0]) / 2 ;
/ / . . . t o o long

/ / f r a g m e n t sh ad er
c o l o r = d o t (n o r m a l i z e (l v e c) , n o r m a l i z e (norm)) ;

Listing 11: Code equivalent to listing 7 in the target
structured language

The final code does not contain the interfaces be-
tween shader stages, because they are straightforward.
The code for the geometry shader was shortened, be-
cause all vertices are generated nearly identically. In
classical languages, the structure of generated vertices
cannot be shared, so the resulting code must be written
by hand or generated by some preprocessing tool.

5 CONCLUSION AND FUTURE
WORK

This paper presented a functional approach to the ge-
ometry shader programming. This approach has some
interesting properties that are hard to achieve in con-
ventional structured languages.

One program is written for all shader stages and the
compiler does the necessary partitioning and interface
generation. This simplifiers the programmer’s work, as
he can write the code, where it logically belongs and let
the compiler move it for an efficient execution.

Higher order functions allow the programmer to write
the code more abstract. Abstract code often tends to be
shorter and more readable. The code sharing is possi-
ble at a level that is hard to achieve by traditional lan-
guages.

Automatic partitioning of program also helps modu-
larity. Library functions can be viewed as single blocks
by the programmer, but parts of them can be executed
in different stages of the pipeline.

These properties significantly improve the shader
programming. However it is not likely that so massive
shift of used paradigm could occur. Because of that,
following work will focus on selecting useful parts that
could be used to extend existing languages.

REFERENCES
[1] Chad Austin and Dirk Reiners. Renaissance : A functional

shading language. Graphics Hardware, 2005.

[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified
data processing on large clusters. OSDI’04: Sixth Symposium
on Operating System Design and Implementation, December
2004.

[3] Conal Elliott. Programming graphics processors functionally.
In Proceedings of the 2004 Haskell Workshop. ACM Press,
2004.

[4] Thomas Johnsson. Lambda lifting: Transforming programs to
recursive equations. pages 190–203. Springer-Verlag, 1985.

[5] Simon Peyton Jones. The Implementation of Functional Pro-
gramming Languages. Prentice Hall, 1987.

[6] Simon Peyton Jones. Haskell 98 language and libraries: The
revised report, 2003.

[7] Khrohos Group. OpenGL API and Shading Language Specifi-
cation, August 2009.

[8] Microsoft Corporation. DirectX Reference, 2009.

[9] NVIDIA Corporation. NVIDIA GPU Programming Guide, May
2009.

[10] Pedro V. Sander, Diego Nehab, and Joshua Barczak. Fast trian-
gle reordering for vertex locality and reduced overdraw. ACM
Transactions on Graphics (Proc. SIGGRAPH), 26(3), August
2007.

WSCG 2010 Communication Papers 13

WSCG 2010 Communication Papers 14

Visual Odometric Navigation: the Generalized
Feature Vector way

J.Bhattacharya

CMERI
Mahatma Gandhi Avenue

India 713209,Durgapur,West Bengal

bjhilik@cmeri.res.in

S.Majumder

CMERI
Mahatma Gandhi Avenue

India 713209,Durgapur,West Bengal

sjm@cmeri.res.in

ABSTRACT
One of the main challenges faced by object tracking and environment-modeling techniques is the frame-to-frame
correspondence of the object of interest. False detections may lead to the tracking of wrong object thus
misrepresenting information about the object location and its track. The tracking algorithm of the detected object
should also be computationally inexpensive and suitable for real time applications. This paper discusses how
GFV, a multidimensional entity encapsulating multiple feature parameters, can uniquely identify dominant
features of an object, and increase the detection reliability due to its potential to function consistently in any kind
of environment, uninfluenced by view point invariance or extrinsic factors, thus generating minimal false alarms.
Further a method to determine the 3D position of the object is presented which works on uncalibrated camera
images and can be successfully applied to online processes. Experimental analysis using a outdoor mobile robot
have been carried out to establish the competence of the algorithm. A statistical approach to reject outlier data, if
any, is applied while generating the trajectory of the mobile robot used for experiments

Keywords
Feature detection, trajectory identification, object tracking.

1. INTRODUCTION
The implementation of vision based automated
systems in various fields like security, surveillance,
robot navigation, remote environment sensing and
medical diagnosis is in the continuous evolvement of
research in tandem with the field of object tracking
and environment modeling. The task of tracking
encapsulates within it primary operations like image
segmentation, object detection and extraction, depth
estimation and finally, object trajectory estimation.
The main challenge faced by the detection techniques
lies in the frame-to-frame correspondence of the
regions of interest; which becomes difficult for non-
rigid objects exhibiting complex motion, or in frames
where the object is occluded, or when the scene
illumination is extremely influenced by
environmental conditions. Mainly two approaches are
taken in the vision based correspondence problem
solving. These are area based and feature based
techniques. Detection of feature from exteroceptive

sensors has remained an important area of research
for several reasons. Firstly it provides the unique
opportunity to abstract and encapsulate the dominant
and distinguishable characteristics of the environment
or scene from the sensory data. Secondly it is a
process of reducing the resource requirement and the
associated complexity of handling large data sets in
real-time. Often features are defined as geometric
primitives such as point, line, arc segments or some
form of derived entities from the amplitude return
history such as color and texture for example. In
general, features segregate “objects of interest” from
the raw sensory data. Various algorithms have been
proposed by different researchers for object detection
and depth recovery.
The progress of research in the field of feature
detection using vision can be mainly categorized into
four distinguishable classes. In the initial stage
researchers mainly concentrated on detecting
geometric features like edge and corners of the image
to identify objects of interest. A large amount of
work has been undergone in this area [1, 2]. The
problems of most of these algorithms lie in the fact
that they are not invariant to affine transformations
and are also viewpoint dependent. The second class
of algorithms uses primitive geometrical shapes as

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2010 Communication Papers 15

features. General methods for shape recognition are
moment based, structure based and Fourier descriptor
based [3]. The next class of algorithms models the
object as probabilistic distributions. These
distributions represent features such as color [4],
texture [5] etc. Another variation to color and texture
detection of a region is background modeling which
is beneficial in detecting only moving objects [6]. For
the fourth class of algorithms, the object shape and
appearance are generated simultaneously. These
models also encode different views of an object,
removing the shortcoming of viewpoint dependencies
of the previous methods [7]. Inspite of many
uniqueness and advantages, most of these methods
require large computational power and hence
unsuitable for real-time navigation and tracking
application. Another limitation is that many of these
methods have been developed for a specific sensor
suite and well-structured indoor environment for
specific applications and consider camera calibration
as a prerequisite rendering them unsuitable for
outdoor and unstructured environment where
extrinsic parameters are dominant rather than
intrinsic. Present work extracts features by detecting
and representing them in a generalized feature vector
(GFV), which can be used to uniquely identify each
of the dominant objects in an image. Once features
are detected using GFV, the next important task lies
in estimating the depth measurement of the object of
interest. In the past few years several techniques for
depth recovery and construction of depth maps have
been developed. This area is still an active research
area and development in this field is in continuous
progress. The issue has been investigated by different
researchers from different viewpoints but can be
categorized mainly into six main classes. The first
class includes all methods, which are based on depth
measurement from two cameras. Finding
corresponding points between the two images
precedes depth calculation while using stereo [8].
The second class comprises of methods that use
simple geometry to recover depth information [9].
The next class of algorithms are those that derive
depth information of the targets from the velocity
estimation of the targets [10]. The fourth class of
algorithms consider calculation of depth from optical
blur, defocusing techniques [11] .The next class uses
interpolation functions for depth estimation [12] .The
last class comprises of those methods which use
auxiliary devices such as laser range finders or
ultrasonic sensors to measure depth.
As a significant departure, the work reported here
uses the image magnification to estimate the depth
and thereby compute the trajectory. The main
interesting issue of this algorithm is that it “does not
require” explicit camera calibration “ for depth

recovery” . The paper is organized in the following
manner. Section 1 provides basic background of the
problem. This section also includes an outline of
various significant work carried out for consistent
feature detection and depth estimation. Section 2
defines the GFV framework and its comparison with
other conventional approaches briefly, whereas
Section 3 includes the position determination of the
detected object for trajectory development. Section 4
deals with results and performance analysis of
experimental findings. Finally, discussion and
conclusion of this work is presented in Section 5.

2. THE GFV FRAMEWORK
The basic idea of using GFV as a scene descriptor
stems out of the fact that point features often require
a secondary level of corroboration such as color and
texture to make it invariant. The generalized feature
vector (GFV) is considered to be a multidimensional
entity, which can include multiple parameters like
color, shape, energy, entropy, size ratios and many
more. Some of these parameters may be orthogonal
to the other. In principle GFV can include as many
parameters as desired. Another uniqueness of GFV is
that it can also accommodate “ feature parameters
obtained from other co-located sensors” . There is no
limit on how many feature parameters can be
included in GFV. Although inclusion of multiple
parameters can improve the detection reliability it
however may increase the computation cost.
Therefore for optimal performance not more than
three parameters should be used. However the actual
number of parameters will depend on the application
requirements and available computational resources.
Figures 1 & 2 shown in the appendix at the end of the
paper, further demonstrates the algorithmic flow of
the GFV briefly using a sample image. The method
mainly consists of two steps: - During first step a
reference model of GFV is created which is then
applied to the actual data in the second step. The
details of the algorithm and its establishment have
been discussed in the reference [13] and are beyond
the scope of this paper.
The suitability of GFV lies in the fact that even when
any information about the environment of the object
to be detected or presence of other objects in its
surrounding is not known, the method will provide
reasonably accurate results instantly without false
alarms. The user need not have to decide which
features are to be matched or in which order they are
to be matched in order to get the best matching. Thus
GFV is self-deciding and can operate independently
in any environment without any prior knowledge
about it. Failures of many object detection
algorithms, mainly due to view point invariance;
occlusion and influence of other extrinsic factors can

WSCG 2010 Communication Papers 16

be successfully resolved by the GFV. GFV also
responds very well even in outdoor environment.
Similar objects can be identified from a sequence of
images taken at different time in different
environmental conditions. Since GFV is essentially a
multi parametric matching method, it is more robust
compared to any other step-by-step matching
algorithm.

3. POSITION CALCULATION
Any camera image is a 2D projection of the 3D world
using perspective transformation. As a result,
estimation or recovery of object distance from the
camera requires elaborate mathematical procedure.
Various depth detection algorithms using monocular
camera and their relative merits have been already
mentioned in section 1. In this section an alternative
technique using the thin lens equation and the image
magnification factor (shown in equation 1 below) is
used to calculate the depth. This technique is suitable
for online processes and doesn’ t require large
computational overhead. For computing the object
depth for every image frame, the magnification ratio
is estimated for each image frame from its object and
image dimension ratio. This method has only one
limitation i.e. object shape; size and approximate
dimensions should be predefined. The image
dimensions like area, perimeter, shape and size ratios
are already computed while detecting the object as
seen in section 2. Any of the above mentioned
dimensions may be used but the choice should be
kept fixed for all the image frames. The depth
estimation procedure is further illustrated below:
The thin lens equation gives

fvu

111 =+ (1)

where u is the image distance, v is the object distance
required to be calculated and f is the focal length of
the lens. The magnification ratio m, is given by

O

I

v

u
m == (2)

Here, I and O give the image size and object size
respectively. Substituting u as mv in equation 1, v can
be written as

m

fm
v

)1(+= (3)

While computing the depth d n for each of the camera
frames n using equation 3, there are two factors that
should be resolved. Firstly obtaining the image size
for computing the magnification factor should not
consider the total surface of the extracted image. The
part of the image to be considered for a particular
frame is variable and depends on the viewpoint of the
camera for that image frame. This fact is further

explained using figure 3 and 4 and subsequently
elaborated in the discussion. Secondly, the depth
dimension is obtained relative to the camera frame
and need not be considered as the actual object
distance relative to a fixed world coordinate system.
Reason behind this approach is that the camera may
be positioned and maneuvered using pan and tilt
angle hence making the camera plane rotated with
respect to the world frame. Further this depth cannot
be associated with the depth dimensions of the other
camera frames for trajectory identification as each
frame may have a different orientation i.e. different
pan and tilt angles of the camera and hence each of
the depth dimensions refers relative distance
measurement with respect to different camera planes.
To obtain the actual depth in the world frame, the
calculated depth in each frame needs to be
transformed to the world coordinate system. In order
to carry out this transformation, the knowledge of the
extrinsic camera parameters is necessary for each
image frame, which can be obtained through camera
calibration. However, for real time applications the
procedure becomes complex and time taking. The
following paragraphs explain how the problems
mentioned above are addressed.
 Initially an example is used to illustrate how the
appearance of an image of any particular object
changes along with the viewpoint or rotation angles
of the camera. This further helps to point out how the
calculation for the image magnification depends on
the viewpoint of the camera. Figure 3 below depicts a
rectangular box viewed by the camera from three
positions identified as 1, 2 and 3 respectively.

Position 1 assumes the camera to be perfectly aligned
with the world frame therefore no rotation is
considered. Positions (2) and (3) denote the same
camera position however the camera angles are
different. Position 2 considers a pan angle whereas
position 3 assumes the camera frame to be rotated by
both pan and tilt angles. The resulting image
appearance for each of the camera positions is
depicted in figure 4. For calculating the
magnification ratio for figure 4a, the total surface of
the image is to be considered; however for the

Fig 3: A rectangular object seen from

three different camera positions 1, 2 and
3 are shown in the figure above

WSCG 2010 Communication Papers 17

remaining two images (4b and 4c) of the figure or for
any similar case where more than one of the side
faces are visible, such a step would provide wrong
results. Thus for correct magnification determination
the surfaces needs to be separately identified in order
to select the desired one among them. The GFV
method discussed previously can easily separate out
the region of interest of the object as it can detect all
the outer corners of the image from which the
boundary edges can be calculated. The selection of
the corners to calculate the edge, which will denote
the image size, depends on the shape of the object
and will vary accordingly. In this particular case for
different camera positions two bottom edges (bottom
edges are used here just as an example, top or side
edges can be used as well) may be detected. For
example if figure 4c is considered, the two bottom
edges detected are E’A’ and A’B’ . As the object
dimensions are known, one of the detected edges can
now be selected depending on their length, i.e. if the
matching is to be done with object side AB, then the
longer among the two detected edges (considering
side AB > side EA) will be chosen or vice versa. This
part is conferred in details while discussing trajectory
identification case studies later in the paper.

The next task is to compute the camera rotation
angles relative to the first frame so that the trajectory
can be identified. Before getting into the details of
the rotation angle computation process, Figure 5
depicts the rotation of the camera plane with respect
to the world frame for camera position 3 of figure 3.
This figure is used to establish the impact of the

camera rotations on its corresponding image frames.
The relation between the rotation angles of the
camera plane and its resultant image frame is
discussed in subsequent paragraphs.

In figure 5 the world frame is depicted by XYZ plane
and UVW depicts the camera plane. The
corresponding image frame for the camera
orientation in figure 5 is depicted in Figure 6.
(PQRS) 1 here depicts image frame 1 and (PQRS) n
depicts the nth frame. The first image frame is
considered as the reference; hence it is assumed that
the camera plane of the first frame is aligned with the
world frame and all the other camera plane rotations
are with respect to this reference frame. The
consecutive camera plane rotations of figure 5, by
angles

�
1 and

�
2, effects the x-axis and y-axis of its

image frame (nth frame) to make
�

1 and
�

2 angles
with the x and y axis of the first image plane
respectively as shown in figure 6.

Once these rotation angles are computed, the
transformation from the nth frame to the first frame
can be undergone. As the camera is aligned with the
world frame in the first image frame i.e. the pan and
tilt angles of the camera is zero hence the actual
depth can be obtained after this transformation. The

Figure 4: The image of the rectangular object

formed for the three camera viewpoints
depicted in figure 3 is seen above

Figure 6: Camera frames PQRS1 and PQRSn

and their alignment is shown above in order
to compute the rotation angles

Figure 5: The camera plane orientation for the

camera position 3.

WSCG 2010 Communication Papers 18

trajectory can still be generated even if the first frame
is not aligned with the world plane as the relative
rotations of all the frames with respect to the first one
is computed and the transformation is carried out
accordingly. But for such cases the actual depth
cannot be determined.
From figure 6, using parallel line properties, it can be
seen that angle between side A’B’ and the
perpendicular from point B’on PnSn equals

�
1 and the

angle between side B’C’ and the perpendicular from
point B’ on PnQn equals

�
2. If the coordinates of A’ ,

B’ and C’ are given by (xna, yna), (xnb, ynb) and (xnc,
ync) respectively the angles can be calculated from
the figure using the following relations.

Thus the camera angles can be determined for every
image plane from the above relations once the points
an, bn and cn for every frame is determined. This
concept is further used to identify the object
trajectory. Two different cases of trajectory
identification are discussed:

a) path generated by an object in a situation
where the camera is fixed throughout,

b) path generated by a moving camera while
tracking a fixed object.
A detailed discussion of the two cases is further
presented below.

(a) Camera stationary, object moving
The following steps are executed while identifying
the object trajectory:
1. The object of interest is extracted using the GFV
algorithm discussed in section 2. The object is
denoted in the image plane by its centoid position IO
in every frame n

IO = (xn , yn) (6)
2. Five image corners (xnlb, ynlb) , (xnrb, ynrb) , (xnrt,
yn rt) , (xnbl,ynbl) , (xnbr,ynbr) are determined. These
points are the leftmost bottom, rightmost bottom,
rightmost top, bottom leftmost and bottom rightmost
pixels coordinates of the detected object and are used
to determine image size. An algorithm below presents
how corners can be selected for calculating image
size of a three dimensional rectangular box when
camera rotations are unknown.

if (xbl > xlb) && (xbl < xrb)
corners[] = { xlb, xbl, xrb}

else if (xbr > xlb) && (xbr < xrb)
corners[] = { xlb, xbr, xrb}
else corners[] = { xlb, xrb}

end
if size(corners) > 2

if(length(corners[1],corners[2]))> (length(corners[2],corners[3]))
corners[3] = []

else
corners[1] = []

end
end

From the algorithm, two corners (xn1, yn1) and (xn2,
yn2) are selected based on the fact that the larger edge
is used to calculate the magnification. The reverse
can also be done if desired. The length of the edge
formed by these corners can be used as the image
size ISZnx for determining the magnification ratio, 3D
position of the object (discussed in step 4) and
rotation angles of the camera. (Rotation angles will
not be required for this case as the camera is fixed for
all the frames). The equation 7 is used to calculate
the image sizes ISZnx and ISZny in pixels along the x
and y axes respectively.

22

n
I

22
n

I

)()(ySZ

)21()21(xSZ

rbxrtxrbyrty

xxyy

nnnn

nnnn

−+−=

−+−=
 (7)

Magnification ratio can be calculated using the metric
coordinates of the image size and the corresponding
object side dimension.
3. Depth d n is computed using equation 3.
4. The 3D coordinates of the image point IO are
given by the following equation:
[X(n) Y(n) Z(n)] = [xn.SZx/ ISZnx yn.SZy/ ISZny dn] (8)
 where SZx and SZy are the object sizes along the x
and y dimension respectively. The 3D point
calculated lies in the camera plane.
5.For graphical representation, the X and Z
coordinates are used to denote the horizontal
displacement and depth of the object respectively, the
vertical displacement of the object i.e. the Y
coordinate is not taken into consideration at present.
Its utility will be later understood while discussing
case (b). As the camera is fixed for all the image
frames, all the n points (X (n), Z (n)) lie on the same
XZ plane and thus can be plotted to identify the
trajectory generated by the object.

(b) Camera moving, object stationary
When a moving camera captures a video of a fixed
object then the displacements (change in centroid
position) of the object observed in the image frames
is due to the movement of the camera from frame to
frame. This camera movement is calculated from
these centroid displacements for identifying the
trajectory generated by the camera. Initially the
object is detected and the image sizes, depth and 3D
Coordinates are calculated using equations 7, 3 and 8
respectively. The 3D points calculated for each frame
lies on a different camera plane as the camera is in
constant motion. The camera is considered to be
positioned at the origin of a fixed reference frame for

)5).....()(
)((tan 1

2 bycyabs
bxcxabs

nn
nn

−
−= −θ

)4).....()(
)((tan 1

1 bxaxabs
byayabs

nn

nn
−

−= −θ

WSCG 2010 Communication Papers 19

the first image frame. The 3D coordinates of the first
and nth frame can be related by rotation and
translation matrices as shown in equation 10, where
the rotation matrix denotes the camera rotation of the
nth frame relative to the first frame and the
translation matrix denotes the translation of the
camera from the fixed origin. The experimental
results given later in this paper use a set-up where the
camera is fixed on a tripod mounted on a trolley.
Thus only pan angle change is considered in the
calculations. Using the selected corners (xn1, yn1) and
(xn2, yn2) calculated in Step 2, the pan angle � can be
calculated using equation 9.

)12(
)12((tan1

nn

nn
xxabs

yyabs
−

−= −θ �������
The affine transformation of the camera from the
fixed frame to the nth frame is given by:

�
�
�

�

�

�
�
�

�

�

−
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

� −
=

�
�
�

�

�

�
�
�

�

�

)('
)('
)('

)1(
)1(
)1(

cos0sin
010

sin0cos

)(
)(
)(

nz

ny

nx

Z

Y

X

nZ

nY

nX

θθ

θθ
 (10)

 If ynlb < ynrb then
�
 is positive else it is negative. It

is clear from equation 10 above that (xn’ ,yn’ ,zn’) is the
translated origin of the camera plane in the nth frame
and hence the required camera displacement.
Equation 10 can be written as

xn’= X(1) cos � – Z(1) sin � – X(n) ,
 zn’= X(1) sin � + Z(1) cos � – X(n) (11)

Once (xn’ , zn’) is calculated using equation 11,
plotting it for all the n image frames gives the
calculated camera trajectory.

4. RESULTS AND PERFORMANCE
ANALYSIS
The trajectory generation for moving objects or
moving camera has been accomplished using the
proposed method and some of the results are shown.

(i) Experiment 1:
Figure 7 represents a scene where the object is fixed
and the camera is in motion.

 The generated plot shown in figure 8 is a smoothed
plot using the best polynomial fit. The best fits of the

plot are estimated using the norm of residuals of the
fits and are again crosschecked by determining the R-
Square values for each fit. The observed values are
shown in Tables 1 and 2 respectively.

TABLE 1: Norm of Residuals.

 It is seen that the norm of residuals converges after
the eighth order fit. Coefficient calculation with 95%
confidence bound and normalization by a mean of
5.833 and StD of 5.753 gives the corresponding R-
square values.

TYPE ORDER SSE R-SQUARE
Poly 2 1249.9 0.9921
Poly 4 741.81 0.9953
Poly 6 646.75 0.9959
Poly 8 452.557 0.9972
Poly 10 449.553 0.9972

TABLE 2: R-Squares values

Though the SSE values and the standard deviation
decreases as the order of the fit increase, but the
goodness of the fit (judged by the R-Square value)
remains same after the 8th order fit. Hence for both
the best-fit estimation techniques the eighth order fit
is the optimal fit for the curve.

(ii) Experiment 2:
The next case shows generated object trajectories
when the camera tracks a moving object from a fixed
position.

TYPE ORDER NORM StD
Poly 2 35.3552 2.2405
Poly 4 27.24 1.72
Poly 6 25.43 1.61
Poly 8 21.2 1.34
Poly 10 21.2 1.34

�

Figure 7: White mark in the center shows
the path followed by the camera mounted on
a trolley. The track line was created using a
white marker while pushing the trolley at an

approximate constant speed.

Figure 8: The calculated trajectory of the path
shown in figure 7 using the present approach

Figure 9: White circular path depicts the

path followed by the red object

WSCG 2010 Communication Papers 20

 Similar to the previous case, a moving average filter
is used to smooth the plot. It is seen that the three
point averaging filter gives the best fit. The fact is
further demonstrated in table 3 .

TABLE 3: Best-Fit Estimation

It is observed that the residuals diverge from 3-5
point averaging.

(iii) Experiment 3:
The following experiment was carried out with the
All Terrain Robot developed at CMERI Durgapur
during its testing on the grounds of the institute. The
figures depict the identified trajectory (depicted by
the blue colored plot) of the path traversed by the
ATR.

Figure 11a: Trajectory identified after rejecting
outlier data using averaging window of 4� gate

Figure 11b: Trajectory identified after rejecting

outlier data using 6� gate

Figure 11c: Trajectory identified after rejecting
outlier data using averaging window of 4� gate

Figure 11d: No outlier detected

The statistical cut-off values were selected after
estimating the rejection percentage for a gate of 3� ,

4� , 5� and 6� for figures 11a,b and c. Table 4 shows
the rejection rates for the figures. A 7% rejection was
considered to be the maximum allowable rejection
rate and choice of the cut-off was made accordingly.

Figures/Gates 3 � 4 � 5 � 6 �
11a 8.25 6.5 6 5.5
11b 84.14 59.14 7.85 2.1
11c 23.625 1.125 1 1

TABLE 4: Rejection rates for different statistical
cut-off gates

5. DISCUSSIONS AND CONCLUSION
This paper presents an odometric navigation using
uncalibrated camera images. The proposed
methodology relies on a simple but elegant approach
for consistent feature detection using GFV method.
These features are then used for generation of visual
odometry of any mobile robot. The indoor and
outdoor field experiments show that this is a more
resilient and computationally efficient approach
which can be used to resolve navigation problems.
Work is in progress for online implementation of this
methodology for autonomous navigation of an
unmanned aerial robot project currently pursued by
CMERI.

6. REFERENCES
1. H. Moravec , Visual Mapping By A Robot Rover, In

Proceedings Of The International Joint Conference
On Artificial Intelligence (Ijcai) 1979, 598–600.

2. Canny, A Computational Approach To Edge Detector,
IEEE Transactions On Pami, 1986, Pp679-698,

3. D. Cremers, and C. Schnorr, Statistical Shape
Knowledge In Variational Motion
Segmentation,,Israel Nent. Cap. J, 2003, 21, 77–86.

4. Withagen, Klamer Schutte1and Frans Groen,
Likelihood Based Object Detection and Object
Tracking Using Color Histograms, Proc. Icip2002,
September 22-25, Rochester, New York

5. M. J. Nassiri, A. Vafaei, and A. Monadjemi, Pwaset ,
Texture Feature Extraction Using Slant-Hadamard
Transform ,Volume 17 December 2006 Issn 1307-
6884

6. C. Wren, A. Azarbayejani, and A. Pentland, 1997.
Real-Time Tracking Of The Human Body, Pfinder
IEEE Trans. Patt. Analy. Mach. Intell. 19, 7, 780–785

7. S.Park, and J.K Aggarwal, A Hierarchical Bayesian
Network For Event Recognition Of Human Actions
And Interactions. Multimedia System,2004, Volume-
10,Issue- 2,Pages 164–179

8. Stan Birchfield and Carlo Tomasi, Depth
Discontinuities by Pixel-to-Pixel Stereo, International
Journal of Computer Vision, Volume 35 , Issue 3,
December 1999,Pages: 269 – 293,ISSN:0920-5691.

9. Y. L. Murphey, J. Chen, J. Crossman, J. Zhang, P.
Richardson,and L. Sieh, .Depth_nder, A Real-time
Depth Detection System for Aided Driving, IEEE

TYPE NORM StD SSE R-
SQUARE

3 point 50.73 4.15 2574.5 0.9971
5 point 64.92 5.31 4215 0.9952

Figure 10: The generated trajectory of

the path in fig 9

WSCG 2010 Communication Papers 21

Intelligent Vehicles Symposium Proceedings,October
2000.

10. Wietske I. Meyerind, Marco A. Gutierrez, Skrgio S.
Furui, Marina S. Rebelo, Chdido P. Melo,
Spatiotemporal-Frequency Analysis Applied to
Motion Detection Proceedings of the 22"d Annual
EMBS International Conference, July 23-28,2000,
1720-1723.

11. Murali Subbarao,Tai Choi,Arman Nikzad , Focusing
Techniques, OE/Technology SPIE Conference

12. Mirzabaki Mahdi, A New Method for Depth
Detection Using Interpolation Functions, WSCG
posters proceedings, February 2-6, 2004, Plzen,
Czech Republic

13. .J. Bhattacharya and S. Majumder ,The Generalized
Feature Vector (GFV): A New Approach for Vision
Based Navigation of Outdoor Mobile Robot, 14th
National conference on Machines and
Mechanisms(NaCoMM-2009), NIT Durgapur ,India,
December 17-18, 2009

APPENDIX

Figure 1: Reference model creation

Figure 2: Application of GFV to experimental dataset �

WSCG 2010 Communication Papers 22

The interpretation of X-ray Computed
Microtomography images of rocks as an

application of volume image processing and
analysis

Kaczmarczyk J., Dohnalik M., Zalewska J.

Oil and Gas Institute

Well Logging Department

ul. Lubicz 25 A

Poland, 31-503 Kraków

jan.kaczmarczyk@inig.pl

Cnudde, V.

The Center for X-Ray Tomography

Department of Geology and Soil Science

Ghent University

Krigslaan 281, S8

Belgium,9000 Ghent

ABSTRACT
 X-ray computed microtomography (CMT) is a non-destructive method of investigating internal
structure of examined objects. During the reconstruction of CMT measurement data, large volume images are
generated. Therefore, the image processing and analysis are very important steps in CMT data interpretation.
 The first step in analyzing the rocks is image segmentation. The differences in density are shown on the
reconstructed image as the differences in gray level of voxel, so the proper threshold operation must be carried
out. As a result, the different mineral phases and pores can be separated at the image.
 Segmented and binarized image is the base for further operations which depend on the aim of research.
 Numerical analysis gives information about the pore shapes and volumes as well as connections
between pores in the pore network.
 The image may also be used in numerical physics simulation (for example fluid flow simulation), but
before that it has to be filtered and resampled. These operations are very important, because if performed poorly,
they may lead to rupture the pore network.
 The aim of this paper is to present authors’ methodology of CMT image processing and analysis and to
show problems occurring during these processes. The image processing of two rock samples CMT image will be
presented.

Keywords
tomography, CMT, volume image, segmentation, image analysis

1. INTRODUCTION

1.1 X-ray Computed Microtomography
The foundations of microtomography were
developed shortly after discovering the X-rays by
Wilhelm Röntgen. In 1917 Johann Radon proposed
the theory of computed tomography (CT)[Hsi03,

Rec08] - mathematical reconstruction of object’s
internal structure based on infinite number of its X-
ray projections. On the basis of this theory EMI
Scanner - the first medical CT scanner - was used to
brain imaging in 1968. In 1970s medical scanners
were used to rock cores imaging. Due to relatively
low resolution (in order of mm) of these scanners, in
1990s the computed microtomography (CMT, micro-
CT) systems were developed[Cnu06]. These systems,
with resolution down to 0.4 µm, have a different
geometry, with rotating examined object and
stationary X-ray source-detector line. Additionally,
the X-ray spot and detector pixel were reduced in
order to increase resolution[Ket01, Kac08].
Scheme of CMT measurement and data processing
was shown in figure 1[Fer07].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2010 Communication Papers 23

Every tomography measurement includes two steps:
the data acquisition and the image reconstruction.
During the data acquisition the set of 2D object’s
projections are collected. The gray level of every
point of projection is determined by the Beer’s law
for complex materials[Ket01]:

� � ���
�∑ ��	·�	�	 , (1.1)

where the I0 is the initial X-ray intensity, I - beam
intensity after passing the object, µi - linear
attenuation coefficient and li - linear extent of i
material. At the reconstruction step the internal
structure of the examined object is calculated as a
superposition of recorded projections.
After reconstruction process, the 3D gray-scale
structure of object is obtained. The gray level of each
point is proportional to linear attenuation coefficient
µi of the material and it is (in case of X-rays)
proportional to the material’s density. The brighter
voxel, the higher density of material in the volume
element of object.

Figure 1. Principle of CMT measurement and

data processing [Fer07]

1.2 Geophysical Aspect
Porosity and permeability are important properties of
reservoir rocks[Sal03]. Porosity (ε) is the percentage
of the sample’s volume that is occupied by air (and
may be occupied by some fluid):

 �
��

��
�

��

�����
, (1.2)

where Va is a volume occupied by air, Vs - sample’s
volume, and Vr - a volume occupied by a rock matrix.
It is measured by gas absorption, mercury
porosimetry or density measurements. Permeability
(κ) is the ability of the material (e.g. rock) to
transport fluids[Har00]. It is determined
experimentally in the permeability test with use of
Darcy’s law:

� � �
�

�
��, (1.3)

where u is velocity field, η - dynamic viscosity of
fluid, and ∇p - the gradient of pressure at the
examined sample. The permeability may also be

calculated with the use of microscopic properties of
the examined material as:
� � � · ��, (1.4)
where C is the dimensionless constant describing
pores geometry and d is the average effective pore
diameter.
Both properties may be calculated from CMT
measurements[Nar09], but the acquired image has to
be treated in specific way.

1.3 Image Processing
As a result of image reconstruction, the volume gray
scale image is obtained. This is rather big data set
(about 10 GB per every measurement), so every
treatment which reduces its volume without loss of
quality is desirable. In fact, the image processing
depends on the aim of CMT imaging.
The first and the most important step of CMT image
analysis is image segmentation. The initial gray-scale
image must be divided into different phases - e.g.
pores and different rock phases in case of rock’s
analysis. Three different segmentation techniques
will be described later.
Analysis of CMT image requires an image containing
a large amount of details. Fortunately, image analysis
is not CPU and memory consuming process and
image simplification is not required.
Dues to large volume of CMT data, for fluid flow
simulation it is necessary to reduce the volume of
reconstructed image. This may be done by pores’
extraction and image resampling. The problem is the
loss of information during image simplification. In
the extreme cases image processing may lead to the
rupture of the pores’ connections, which results in
producing false results of the simulation.

1.4 Image Analysis
One of CMT’s advantages is the ability to show the
real pore’s shape and size (which is impossible with
the use of conventional methods), so it is necessary
to find the way of analyzing this features of the
segmented image.
Pore’s size may be easily described after its labeling.
In this process every group of connected (in
determined neighborhood) voxels (which is
equivalent to pore) is labeled as another object and
has a different gray level assigned. Then, properties
of every object (as size or shape) may be easily
described.

1.4 Scope of research
The aim of this article is to present CMT image
processing and analysis. Analysis becomes a standard
method of rock’s characterization during mine
survey. Image processing is an important step of

Aquisition

Reconstruction

Image processing

Projections

WSCG 2010 Communication Papers 24

preparing CMT-based fluid flow simulation, which is
the current topic of the authors’ studies.

2. EXPERIMENTAL

2.1 CMT Equipment
The measurements were performed on X-Tek
Benchtop CT-160Xi microtomograph. The current at
Cu lamp was 60 µA and voltage was 110 kV. The
Varian PaxScan 2520V detector was used. The rock
samples were in the form of core with a diameter of
10 mm. During every scan about 3000 projections
were made with step about 0.12°.

2.2 Examined samples
To present the application of CMT measurements,
two rock samples were chosen. The first one, sample
1, was a rock core excavated from oil-bearing area
and its porosity (calculated from density
measurements) was 29,45 %. The second one,
sample 2, was a rock core with porosity 4,90 %.
Examined image size was 1000×1000×400 voxels in
case of sample 1 and 556×951×552 voxels in case of
sample 2.

2.3 Data Processing
The internal structure of the examined rocks was
reconstructed with the use of Benchtop CT-Pro
Client software with Feldkamp’s algorithm[Fel84]
for cone-beam experiment. The voxel size of
reconstructed image was 5.8×5.8×5.8 µm3.
ImageJ[ImJ] was used for the histogram calculation.
VSG Avizo 6[Avi] software was used for the image
segmentation and visualizations. Images were filtered
by unsharp masking, segmented with the use of the
threshold tool, and then islands (up to 2 voxels, 25
%) were removed. Before visualization, the images
were resampled by factor 2. The surfaces were
generated with constrained smoothing.
MAVI 1.3.1[MAV] (Modular Algorithms for
Volume Images) software was used for pores’ size
analysis and pores extraction. The sample was
binarized, labeled at neighborhood 26/8 and then the
objects’ features were calculated. The image was also
divided into 6 pore classes according to their volume
(table 1).

3. SEGMENTATION

3.1 Thresholding Techniques
Three different threshold techniques developed on
the basis of [Mor00] were used.
First, threshold along boundaries, was used for
segmenting CMT picture into pore network and rock
matrix. On the histogram the minimum was found
and this gray value was marked as Thmin. Next, the
points with gray value Thmin±5 were selected on the
analyzed image (and the boundary between pore and

rock was marked). In the neighborhood-8 of 10 of
these points, points with gray value of Thmin+20 were
selected. The average of averages of all the selected
points gray levels was adopted as threshold value
(ThB).

class volume /voxels colour
I 1-9 Yellow

II 10-99 Blue

III 100-999 Red

IV 1000-9999 Green

V 10000-99999 White

VI > 100000 violet

Table 1. Pore’s classes and colours of its
visualization.

The phase-mean threshold was used for phase
location analysis. The number of phases on the image
was estimated visually. Then 10 points from every
phase was randomly selected and the Gphn were
calculated as the average of gray value of the points
belonging to the n-phase. The threshold Thij (i and j
are phases numbers) between the phases was
calculated as the average of Gphn’s for the phases
with similar gray values.
The histogram threshold was calculated (with
Fityk[Fit] software) by fitting n Gaussian curves
(where n is the number of rock’s phases + 1) to the
histogram of the CMT image. Threshold value (Thh)
was taken at the first curves intersection (figure 2).

(a)

(b)

Figure 2. Histogram deconvolution (a) sample 1, 3
Gaussian curves, (b) sample 2, 4 Gaussian curves.

WSCG 2010 Communication Papers 25

Threshold values estimated with different methods
was shown in table 2.

sample threshold method threshold

1

boundary 40

histogram 45

phase-mean 35

2

boundary 40

histogram 47

phase-mean 39

Table 2. Values of threshold between pore and
rock phase while using different threshold

techniques.

The result of these three methods on image
segmentation was shown in figures 3 and 4.

Figure 3. Sample 1 - the pore’s border for three
different threshold methods; yellow line - the

threshold along boundaries, red - the histogram
threshold, green - the phase-mean threshold.

Figure 4. Sample 2 - the pore’s border for three
different threshold methods; yellow line - the

threshold along boundaries, red - the histogram
threshold, green - the phase-mean threshold.

As it was shown in figures 3 and 4, histogram
threshold technique may result in shifting threshold
(between pores and rock) gray value toward higher
values.

3.2 The effect of Segmentation on
Porosity
All of described thresholding techniques lead to
calculate porosity of the examined sample as:

� �
��

∑ �		
· 100%, (3.1)

where np is number of voxels assigned to pore layer
and ni is number of voxels assigned to i-layer.

Table 3 shows the porosity values of samples 1 and 2
while using different threshold techniques.

sample threshold method porosity /%

1

boundary 27.2

histogram 31.2

phase-mean 23.7

2

boundary 2.0

histogram 2.6

phase-mean 1.9

Table 3. Porosity calculated with the use of
equation (3.1) while using different threshold

techniques.

Porosity values estimated by CMT measurements are
generally lower than porosity values calculated with
density measurements (sample 1 - 29,45 %, sample 2
- 4,90 %). This is due to the measurement resolution
- while using CMT equipment it was impossible to
notice pores with volume of less than 195 µm3.
It is worth noticing that histogram thresholding in
case of sample 1 gave the porosity value higher than
real porosity of examined sample. It proves that using
described simple histogram segmentation technique
is not accurate for rock’s examining
Two other thresholding techniques gave reliable
porosity values. Thresholding along boundaries leads
to higher values, closer to the real porosity.
Therefore, this technique was recognized as the best
for rock’s porosity evaluation.

3.3 Phase Location Analysis
The gray value of voxel on the reconstructed image is
determined by attenuation coefficient of material and
it is proportional to the material’s density. Therefore
the voxel’s gray level may lead to phase-
segmentation of reconstructed image. Every
separated phase has a significantly different density.
These phases may (but need not) correspond to
mineral phases present in the examined sample.
The phase location analysis was performed only with
the use of phase-mean thresholding. With the use of
thresholding along boundaries it was impossible to
determine more than two (pores and rock) phases.
The histogram thresholding technique was rejected
during porosity examining.
In sample 1 three phases (pores and two rock phases)
were recognized (figure 5). In sample 2 four phases
were selected (figure 6). Used threshold values were
shown in table 4.
The volume fraction (fi) of each phase was calculated
as:

WSCG 2010 Communication Papers 26

#$ �
�	

∑ �%%
, (3.2)

where ni is number of voxels assigned to i-phase
layer and nj is number of voxels assigned to j-phase (i
and j refer to rock layers only).

Figure 5. Pores and two different rock phases
recognized in sample 1.

Figure 6. Pores and three different rock phases
recognized in sample 2.

Sample phase gray value

1

pores < 35

rock 1 35-78

rock 2 > 78

2

pores < 39

rock 1 40-72

rock 2 72-84

rock 3 > 84

Table 4. The gray values for each recognized
phase in samples 1 and 2.

Figures 7 and 8 and table 5 present the results of
phase location analysis of sample 1 and 2.
As it was shown in figure 5 and in table 5, the most
volume in sample 1 is occupied by a phase with
lower density. Phase rock 2, with higher density, is
located in the clusters scattered through the bulk of
the sample. The pore space in sample 1 is uniformly
distributed through the sample’s space.
In sample 2, as it was presented in figure 8 and in
table 5, the main phase (55 %) is rock phase 2 (with
medium density). It is uniformly distributed in
sample’s space. The densest phase, rock 3, is located
mainly at the top of the sample. The pore space in

sample 2 is condensed in the crack in the middle of
the sample.

Sample phase volume fraction /%

1
rock 1 95.3

rock 2 4.7

2

rock 1 28.2

rock 2 55.1

rock 3 16.7

Table 5. Participation of rock phases of different
density in sample’s rock skeleton.

(a)

(b)

(c)

(d)
Figure 7. Phase location analysis of

sample 1: (a) whole sample with 3 phases,
(b) pore space, (c) rock 1 phase, (d) rock 2

phase. Phase’s 1 density is higher than
density of phase 2.

WSCG 2010 Communication Papers 27

(a)

(b)

(c)

(d)

(e)
Figure 8. Phase localization in sample 2: (a) whole
sample, (b) pore space, (c) rock 1, (d) rock 2, (e)
rock 3; the darker color, the denser rock phase.

4. IMAGE ANALYSIS
4.1 Pore Size Distribution
The segmented (with the use of threshold along
boundaries) image was saved as RAW data and the
pores’ layer was labeled (with use of neighborhood
26/8) in MAVI software. Then objects’ features were
calculated and the pores were divided into classes
according to their volume (table 1). Every class was

saved in another RAW file and visualized. The
objects’ features were exported to CSV file and the
pore size distribution graph was plotted for every
sample.

 (a)

(b)

(c)

Figure 9. Pore size distribution of sample 1
(cropped to 500x500x400 voxels). (a) visualization

of pores location, (b) pores quantitative
distribution, (c) percentage (v/v) distribution.

Sample 1, because of its volume, was cropped to
500x500x400 voxels (selected region was located in
the middle of sample). The pore’s size distribution
analysis of sample 1 was presented in figure 9. The
cropped fragment of sample 1 contained 14198
objects (pores). As it was shown in figure 9a, they
were uniformly distributed at whole sample volume.
Figures 9b and 9c shown, that the cropped volume of
sample 1 contains about 40 pores with volume above
100000 voxels, but the higher contribution of pore
space volume belongs to pore with volume 10000-
99999 voxels.
Pore size distribution analysis of sample 2 was
presented in figure 10. The distribution of pores’ size
in sample 2 is quite different than in sample 1.
Sample 2 contains only 1 pore with size beyond

WSCG 2010 Communication Papers 28

100000 voxels, but it makes about 90 % of pore
space volume. As it was written above, the pores are
concentrated around the crack in the middle of the
sample.

 (a)

(b)

(c)
Figure 10. Pore size distribution of sample 2. (a)

visualization of pores location, (b) pores
quantitative distribution, (c) percentage (v/v)

distribution.

5. PREPARING DATA FOR FLUID
FLOW SIMULATION
Tortuosity analysis proves that sample 1 has no
connections in pore space between opposite sides of
the sample. Sample 2 has a channels with average
tortuosity 1.1 in y direction (green axis in figures)
and 1.4 in z direction (blue axis). Therefore only
sample 2 was taken into consideration for fluid flow
simulation.
In the fluid transport phenomena only pores with the
highest volume participate, so the first step in image
simplifying was pores extraction. A pore with
volume of 5407370 voxels (the crack) was extracted
from sample 2 and the image was saved in the RAW
data file. Except this pore, sample 2 has no

connections between pores, so the other pores do not
participate in fluid transport in this sample.
The extracted pore was labeled and visualized with
the use of Avizo software. Next the labeled sample
was linearly resampled by factor 2, 4, 6, 8, and 10.
The results of resampling were shown in figure 11
and 12.

(a) (b)

(c) (d)

(e) (f)

Figure 11. Crack seen in sample 2 (a) without
resampling and resampled by factor (b) 2, (c) 4,

(d) 6, (e) 8, (f) 10.

Resampling has noticeable effect on pores
connections. The tortuosity analysis proves that
resampling by factor 10 resulted in breaking all
connections in y direction. In figure 12 the input
crack and the crack resampled by factor 8 were
compared and the visible ruptures in the pore
network were marked.
It should be noticed that MAVI software takes
account of neighborhood 26 of each voxel for
tortuosity calculation. FEM calculation software
COMSOL [Com] takes into account neighborhood 6.
This means that the rupture of pore network during
image resampling may have occurred earlier than it
was detected in MAVI software.

WSCG 2010 Communication Papers 29

Figure 12. Comparision of figure 11(a) and 11(e).
The visible interruptions of pore network were

marked.

This example shows that preparing CMT image for
fluid flow simulation is not a simple task.
Connections between pores have a decisive impact
on fluid flow in porous media, so they cannot be
interrupted during the image processing.

6. Conclusions
CMT images of two rock samples with different
porosity were processed and analyzed.
Three threshold methods were tested. Threshold
based on the histogram deconvolution was rejected
because porosity estimated with this method was
higher than physical porosity of the sample. The best
of examined segmentation methods for rock’s
porosity analysis was threshold along boundaries.
Phase analysis of the samples was executed with the
use of phase-mean threshold. The sample was
divided into phases with different density. The
development of this method provides a basis for
detection of different mineral phases in the sample
with the use of CMT method.
While preparing sample to fluid flow simulation, the
connections between pores were interrupted when the
sample was resampled. Sample 2 after resampling by
factor 10 has a dimensions 56×95×55 voxels. It is
acceptable, but the simulation takes a long time on
computer with 8-cores processor. Thus some better
way of image processing should be sought.
Optimization of image processing for simulation will
be the aim of the further authors’ research.

7. REFERENCES
[Avi] VSG Avizo 6.1,

http://www.vsg3d.com/vsg_prod_avizo_overview
.php

[Cnu06] Cnuddle V., Masschaele B., Dierick M.,
Vlassenbroeck J., Van Hoorebeke L., Jacobs P.,

Recent progress in X-ray CT as a geosciences
tool, App. Geochem. 21, pp. 826-832, 2006.

[COM] COMSOL Multiphysics 3.5a,
http://www.comsol.com/products/multiphysics/

 [Fel84] Feldkamp L. A., Davic L. C., Kress J. W.,
Practical cone-beam algorithm, . Opt. Soc. Am. A
Vol. 1 No. 6, pp. 612-619, 1984.

[Fer07] Fernandes J. S., Appoloni C. R., Moreira A.
C., Fernandes C. P., Porosity and pore size
distribution determination of tumblagooda
formation sandstone by X-Ray Microtomography,
2007 International Nuclear Atlantic Conference
INAC 2007.

[Fit] Fityk 0.8.9, http://www.unipress.waw.pl/fityk/
[Har00] Harrison J., Hudson J., Engineering Rock

Mechanism, Part 2, chapter 9: Porosity, pp.141-
159, Elsevier 2000.

[Hsi03] Hsieh J., Computed Tomography: Principles,
Design, Artifacts and Recent Advances, SPIE
2003, p. 7.

[ImJ] ImageJ 1.42q, http://rsbweb.nih.gov/ij/
[Kac08] Kachelrieß M., Micro-CT, Molecular

Imaging I, Handbook of Experimental
Pharmacology 185/I, pp.32-34, Springer, 2008.

[Ket01] Ketcham R., Carlson W., Acquisition,
optimization and interpretation of X-ray
computed tomographic imaginery: applications to
the geosciences, Comp. Geosc. 27, pp. 381-400,
2001.

[MAV] Fraunhofer ITWM MAVI 1.3.1,
http://www.itwm.fhg.de/bv/projects/MAVI/index
_en.php

[Mor00] Morse B., Brigham Young University
lecture,
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOC
AL_COPIES/MORSE/threshold.pdf, 2000.

[Nar09] Narsilio G., Buzzi O., Fityus S., Yun T. S.,
Smith D., Upscaling of Navier-Stokes equations
in porous media: Theoretical, numerical and
experimental approach, Comp. Geotechnics 39,
pp. 1200-1206, Elsevier, 2009.

[Rec08] Recur B., Desbarats P., Domenger J.-P.,
Radon and Mojette Projections Equivalence for
Tomographic Reconstrucion Linear Systems,
WCSG’s 2008.

[Sal03] Salvato J., Nemerow N., Agardy F.,
Enviromental Engineering, chapter Water
Quantity and Quality, pp. 267-269, John Wiley &
Sons, 2003.

WSCG 2010 Communication Papers 30

Offline Signature Verification through Probabilistic

Neural Network

Ooi Shih Yin1, Andrew Teoh Beng Jin2, Hiew Bee Yan1, Pang Ying Han1
1Faculty of Information Science and Technology

Multimedia University,
Jalan Ayer Keroh Lama,
75450 Melaka, Malaysia.

{syooi, byhiew, yhpang}@mmu.edu.my

2School of Electrical and Electronic Engineering,
Yonsei University, Seoul,

South Korea.
bjteoh@yonsei.ac.kr

ABSTRACT
In this paper, we show the positive potential of verifying the offline handwritten signatures through discrete
Radon transform (DRT), principle component analysis (PCA) and probabilistic neural network (PNN).
Satisfactory results are obtained with 1.51%, 3.23%, and 13.07% equal error rate (EER) for random, casual, and
skilled forgeries respectively on our independent database.

Keywords
Offline signature verification, discrete Radon transform, principle component analysis, probabilistic neural
network.

1. INTRODUCTION
Offline signature verification has been the subject of
considerable research for over 34 years. It is an old
pattern classification problem of genuine and forgery
2-D scanned signature images. There are three
popular groups of forgery: casual forgery, random
forgery and skilled forgery. Skilled forgery is
produced by the professional forger that has
unrestricted practice to the writer’s actual signatures.
A casual forgery is produced by the forger who is
familiar with the writer’s name, but never expose to a
sample of the actual signature. Therefore, stylistic
differences are prevalent in this case. A random
forgery is any random scribble, a genuine signature or
a high quality forgery for other writer. Skilled forgery
detection emerged as the most challenging task even
for expert document examiners.

This paper’s main objective is to distinguish a
genuine signature from the forged signature. The
major challenge is to distinguish between the
variations among genuine signatures and the true
differences between a signature and a forgery.
However, the differences between a genuine signature
and a skillfully forged one always can be subtle.

2. LITERATURE REVIEW
Numerous methods and approaches done over two
decades are summarized in a number of survey
articles. The state of the art before 1989 was
discussed by Plamondon and Lorrette [Pla89] and the
period from 1989 to 1993 was covered by Leclerc
and Plamondon [Lec94]. At 2000, Plamondon and
Srihari [Pla00] published a survey which covered the
state of the art from the period of 1993 to 2000. Guo
et al. [Guo01] included an extensive overview of
previous works as well. From the survey, we can see
that earlier work on offline signature verification
deals primarily with casual and random forgeries,
where deceit is generally obvious. As signature
databases become larger, researchers are moving
toward to more difficult skilled forgery detection
task, which is still an open research question. There
are plenty of pattern recognition techniques being
used in this field. However, we will primarily focus
on the neural networks in this work.
A neural network is a computing paradigm that is
loosely modeled after cortical structures of the brain.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2010 Communication Papers 31

It consists of interconnected processing elements
(neurons) that work together to produce an output
function. The output is relies on the cooperation of
the individual neurons within the network to operate.
Neural networks often process the information
parallel rather than in series (or sequentially). Since it
relies on its member neurons collectively to perform
its function, a unique property of a neural network is
that it can still perform its overall function even if
some of the neurons are not functioning. Thus, they
are very robust to error or failure. It has been
extensively used in offline signature verification over
the last two decades. Few relevant researches are
summarized below; however, due to the lack of
standard database available, all results reported are
based on the researcher groups’ own independent
database.
Mighell, Wilkinson, and Goodman [Mig89] proposed
a backpropagation learning algorithms to detect
random forgeries. By training 10 genuine signatures
and 10 forgeries respectively, which latter tested on
70 genuine signatures and 56 forgeries, they reported
a false rejection rate (FRR) of 1% with a false
acceptance rate (FAR) of 4%.
Abbas [Abb94] investigated the suitability of using
multilayered feedforward neural networks for the task
of offline verification. The input to the network is a
binary bitmap of size 160 X 35 pixels. The
performance is evaluated against their private
database of 480 signatures. They concluded that the
method is the best for the casual forgeries where able
to achieve 0% FAR but its ability to deal with skilled
forgeries was still limited with FAR ranging from 0%
to 60%.
Qi and Hunt [Qi95] proposed a multi-resolution
approach to allocate the offline signature verification
problem. The top-level representation of signatures is
the global geometric features. A multi-resolution
representation of signature is obtained using the
wavelet transformation. By using a database of 450
signatures from 25 signatories, the classification is
done through a vector quantization (VQ) classifier
and an artificial neural network classifier
respectively. VQ classifier allows the use of a
consistent procedure in processing feature vectors of
different length or resolution, and it is easy to
implement because its training and classification
procedures are relatively simple. However, it can
only partition the feature space using hyperspheres,
and is incapable of drawing complicated, nonlinear
class boundaries. While, artificial neural network is
capable of delineating arbitrarily complicated class
boundaries, anyway, the performance is heavily
depends on the network architecture and training
method. The best VQ classification function is the
accumulative, multi-resolution system which reported

on FRR of 6.7%, FAR of 13.3% for skilled forgery
and FAR of 0% for simple forgery. On the other
hand, the multi-resolution network yields the lowest
verification error rate when independent features are
used, FRR of 4.0%. FAR of 9.3% for skilled forgery
and FAR of 1.3% for simple forgery are reported.
Kaewkongka, Chamnongthai, and Thipakorn [Kae99]
proposed to use the Hough transform (general Radon
transform) as the feature extractor. It extracts the
parameterized Hough space from a signature skeleton
as a unique characteristic feature of a signature.
Evaluation is done through a backpropagation neural
network. By using the dataset of 70 signatures,
recognition rate of 95.24% is reported.
Quek and Zhou [Que02] proposed a system which is
constructed on the basis of a novel fuzzy neural
network called the POPFNN-TVR, which has a five-
layer structure. Due to its characteristics, such as the
learning ability, generalization ability, and high
computational ability, it is very powerful to detect the
skilled forgeries. After preprocessing, feature
extraction is employed to reduce the image
observation vector by measuring certain “properties”
or “features” of the signature image. In this work,
four kinds of features are extracted from the static
image of the signature, which including reference
pattern based features, global baseline, pressure
features and slant features. All of them will be using
as elements of the training vector. Two types of
experiments are then conducted; first experiment is
using the genuine signatures and forgeries as training
data, while the second experiment is using only the
genuine signatures as training data. Based on the
signatures of 15 different signatories from 3 ethnic
groups, the average of the individual EER, 22.4% is
obtained for the first experiment. While for the
second experiment, they claimed that comparable
results are obtained.
Piyush Shanker et al. [Piy07] proposed an offline
signature verification by using Dynamic Time
Warping (DTW). They extract the vertical projection
feature from the signature images, and comparing the
reference and probe feature templates using elastic
matching. The method is tested against the original
DTW and modified DTW. The modified DTW
achieved EER 2% which outperformed the original
DTW at 29%.
Recently, Abdala Ali and Zhirkov [Abd09] proposed
an offline signature verification comparing against
Support Vector Machine (SVM) and K-Nearest
Neighbor (KNN) classifiers. Their system achieves
approximately 80% when using SVM, while
approximately 70% for KNN.
Bansal et al. [Ban09] proposed an offline signature
verification using critical region matching. This work

WSCG 2010 Communication Papers 32

is mainly focus on the extraction of critical regions
which are more prone to mistakes and matching
through a modular graph matching approach. They
reported 10.81% EER for skilled forgery.

3. OVERVIEW OF WORK
Generally, an offline handwritten signature
verification system includes preprocessing, feature
extraction and encoding as well as matching as
depicted in Fig. 1. These processes will be further
discussed in the following sections.

4. PREPROCESSING
Any ordinary scanner with enough resolution can be
used as an image acquisition device. However, the
scanning hardware may introduce certain noises to a
signature image. Another source of noise may be
speckled paper background on which the signature is
signed on. These noises on signature image may
thwart the feature extraction process. We do not
figure the real noise distribution, but we use the
median filter, which better preserves edges, lines, and
corners.
After the smoothing, the images are converted into
black-and-white images by using Adobe Photoshop.
The threshold level is set to 100.

5. FEATURE EXTRACTION
Discrete Radon Transform (DRT)
DRT [Coe04] is chosen to transform the signature
images into a feature space. It is able to transform
two dimensional images with lines into a domain of
possible line parameters, where each line in the image
will give a peak positioned at the corresponding line
parameters. DRT has several advantages. Each
signature is a static image and contains no dynamic
information, thus by calculating projections at
different angles, simulated time evolution is created
from one feature vector to the next, where the angle
represent the dynamic variable [Coe04]. DRT

represents a projection (shadow) of the signature at
different angle. A set of transform values is produced
after the transformation. The DRT of an image can be
calculated as follows. Assume that each signature
image consists of N pixels in total, and that the
intensity of the ith pixel is denoted by Ii, i = 1,…,N.
The DRT is calculated using β non-overlapping
beams per angle and Θ angles in total. The
cumulative intensity of the pixels that lie within the
jth beam is denoted by Rj , j = 1,…, βΘ. This is called
the jth beam sum. In its discrete form, the Radon
transform can therefore be expressed as

∑
=

Θ==
N

i
iijj jIwR

1

,,...,2,1, β where wij indicates the

contribution of the ith pixel to the jth beam sum
[Coe04]. The value of wij is determined by two-
dimensional interpolation. Each projection therefore
contains the beam sums that are calculated at a given
angle.
Instead of Hough transform, we preferred DRT
because it has a nice effect of attenuating the speckle
noise in the images through summation, while the use
of Hough transform is very delicate especially on
noisy images.

Principle Component Analysis (PCA)
PCA has been widely used for dimensionality
reduction in computer vision ([Lu03], [Tur91], and
[Wan03]). It finds a set of orthogonal basis vectors
which describe the major variations among the
training images and with minimum reconstruction
means square error. The successful implementation of
PCA in various recognition tasks popularized the idea
of matching images in the compressed subspaces.
Since the number of transformed values after DRT is
too huge, PCA is utilized here for feature data
compression. In the PCA method, the average of K
DRT features with M dimension is defined as Ravg.

Figure 1. Block diagram of an offline handwritten signature verification.

WSCG 2010 Communication Papers 33

Then, eigenvectors, vk and eigenvalues, λk with
symmetric matrix C are calculated. vk determines the
linear combination of K difference images with φ to

form the EigenSignature,
1

K

l lk k
k

U v
=

= ϕ∑  1l ,...,K= .

Then, P(<K) EigenSignatures are chosen to
correspond to the P highest eigenvalues, which imply
that the P features are selected. An input DRT
feature, Rk is transformed and projected into the
EigenSignature space by the operation, ρk = Uk(Rk –
Ravg), where k = 1,…,P.

Probabilistic Neural Network
Rather than ordinary matching approaches that are
based on similarity matching concept, there is another
popular method used for classification which the idea
is to construct the decision boundaries directly by
optimizing an error criterion. PNN which was first
introduced by Specht ([Spe88], [Spe90]) is one such
technique. It offers several advantages over
backpropagation network. The rationale behind this is
that, as a kernel-based approach to probability
density function approximation, PNN posses the
advantages to handle the complex, non-linear and
imprecise problems such as signature verification.
In general, a PNN consists of three layers – a pattern,
summation and output layers (apart from the input
layer) as illustrated in Fig. 2. The pattern layer
contains one neuron for each input vector in the
training set, while the summation layer contains one
neuron for each user class to be recognized. The
output layer merely holds the maximum value of the
summation neurons to yield the final outcome
(probability score).

1x 2x xdinput

pattern

summation

output o1 o2 oc

21 3 n

Figure 2. Basic configuration of a probabilistic

neural network.
The network can simply be established by setting the
weights of the network using the training set. The
modifiable weights of the first layer are set by ωij = ρij
where ωij denoting the weight between ith neuron of
the input layer and jth neuron in the pattern layer, and
ρij is the j element feature of ρi in the training set. The
second layer weights are set by ωjk = Tjk, where ωjk is
the weight between neuron j in pattern layer and
neuron k of the output layer, and 1 is assigned to Tjk if

pattern j of the training set belongs to user k and 0
otherwise. After the network is trained, it can be used
for classification task. The outcome of the pattern

layer is defined as
1

exp () /
m

i ijoutω
=

 
= −  

 
∑ ρ σj
i

.Note

that outj is the output of neuron j in pattern layer and
σ is the smoothing parameter of the Gaussian kernel
which is the only independent parameter that can be
decided by the user. The input of the summation layer

is calculated as
1

n

k j jk
j

in out ω
=

= ×∑ where ink is the

input of neuron k in output layer. The outputs of the
summation layer are binary neurons that produce the
classification decision, i.e 1 is assigned to outk if ink is
larger than the input of others neurons and 0
otherwise.
The smoothing parameters (

1σ , 2σ ,…, and jσ) need
to be carefully determined in order to obtain an
optimal network. This factor needs to be selected to
cause a reasonable amount of overlap; too small
deviations will cause a very spiky approximation
which cannot generalize, while too large deviations
smooth out detail. An appropriate figure is easily
chosen by experiment, by selecting a number which
produces a low selection error, and fortunately PNNs
are not too sensitive to the precise choice of
smoothing factor. For convenience sake, we use a
straightforward procedure to select the best value
forσ . Firstly, an arbitrary value of σ is chosen to
train the network, and then test it on a test set. This
procedure is repeated for otherσ ’s values and the
σ giving the least errors will be selected.
The motivation of using a PNN is driven by the
generalization property and simple training scheme
(only one epoch of training is required) of PNN.
However, the speed of training is achieved at the cost
of increase in complexity and computational/ memory
requirements. The time complexity for training is
O(nP), where n denotes the number of training
samples and P is the length of PCA feature data. In
our context, the time complexity of PNN that depends
on the P and n can be decreased notably due to the
compressed feature data length. As such, the
association of DRT and PNN is feasible in practical
usage due to its high speed and accuracy
performance.

6. EXPERIMENTS & DISCUSSIONS
Database and Setup
Our independent database comprised of 1000 genuine
signatures, 500 casual forgeries, and 500 skilled
forgeries which were collected from 100 writers and
10 forgers. Due to the non-repetitive nature of
variation of the signatures, the signatures produced

WSCG 2010 Communication Papers 34

will have certain variations among same writers.
Thus, the data preparation was mainly divided into
two stages. In the first stage, five sample signatures
are registered per writer at a single contact session
producing 500 samples. In the second stage, another
set of five genuine signatures were supplied by the
same writer during the contact sessions two weeks
after the initial session, yielding another 500 samples.
Thus, by recording the specific date, we can observe
the variations among the same signature for a single
session and different sessions. For the forgery part,
the casual forgeries are obtained first; the forgers
only allow viewing the writer’s name but did not have
the access to the signatory’s signatures. The skilled
forgeries are then obtained from the same group of
forgers. We provided them with several samples of
each signatory’s genuine signature and they are
allowed ample opportunity to practice on it.
The pen or pencil used by each writer is not
prescribed but signatures are written within a pre-
drawn 5 x 2 grid on A4 paper. These signatures were
scanned into the computer using a 24-bit millions of
colors, 600 dot-per-inch resolutions. The individual
images are extracted and labeled with both the writer
names and the signature class number.
We will evaluated the system based on false
acceptance rate (FAR), false rejection rate (FRR),
and equal error rate (EER).

Performance Evaluations
This method is evaluated by using random, casual
and skilled forgeries from the mentioned independent
database.
Four samples of each person are sequentially selected
for Eigen basis construction and the remaining six
samples are used for testing. To investigate the
performance of PCA against the DRT-extracted
signature images as the dimensionality reduction
agent, we use different number of principle
components (or feature length), varying from 10 –
200, as shown in Table 1.
It is interesting to discover that longer feature length
leads to better result. The performance peaks when
100 principle components are used. However, this
principle only holds to a certain point as the
experimental results show that the result remains
unchanged when the feature length is extended
further. Thus, the PCA length is set to 100 for the
following experiments.
Next, we investigate the performance of DRT by
using three different distance metrics, which are
cosine angle distance, L1 (Manhattan) and L2
(Euclidean) distance measure for random random
(Fig. 3), casual (Fig. 4) and skilled (Fig. 5) forgeries
respectively. DRT β is taken to be equal to the

highest dimension of the image (300 X 200 pixels
after smoothing and converted into black-and-white
image), which is 300, and works on Θ = 128.
From the experiment, the cosine angle distance is
outperforming towards L1 (Manhattan) and L2
(Euclidean) distances. This is because cosine angle
distance usually gives a higher rank to vectors with
larger variance (whereas applied to signature images)
among its components.
Number
of PCA
Feature
Length

Random
Forgery
(EER, %)

Casual
Forgery
(EER, %)

Skilled
Forgery
(EER, %)

10 8.75 12.00 23.00

30 8.33 11.65 22.45

50 7.45 11.00 21.00

80 7.11 10.20 20.22

100 6.95 9.87 19.56

120 6.95 9.87 19.56

150 6.95 9.87 19.56

180 6.95 9.87 19.56

200 6.95 9.87 19.56

Table 1. Equal error rates (EER, %) of using
different number of principle components

Figure 3. Receiving Operating Characteristic

(ROC) curve of random forgery for three
different distance metrics: cosine angle, L1

(Manhattan) and L2 (Euclidean) respectively.

WSCG 2010 Communication Papers 35

Figure 4. Receiving Operating Characteristic

(ROC) curve of casual forgery for three different
distance metrics: cosine angle, L1 (Manhattan)

and L2 (Euclidean) respectively.

Figure 5. Receiving Operating Characteristic

(ROC) curve of skilled forgery for three different
distance metrics: cosine angle, L1 (Manhattan)

and L2 (Euclidean) respectively.
However, it can be anticipated that the classification
accuracy of the methods will improve when a more
sophisticated classifier, PNN is used. In our system,
10C4 = 210 runs are performed with different
partitions between the training and testing sets by
using a PNN smoothing parameter of σ = 10.
From the ROC curve showing in Fig. 6, the
performance is greatly improved especially for casual
and skilled forgeries. Table 2 summarizes the
performance of PNN towards random, casual and
skilled forgeries.
Besides, the experiment also shows that the
computation time can be reduced significantly with
just slight performance drop when only one template
per user is used (as compared to the case of 4 training
samples shown in Table 3 for skilled forgery). In this
case, the time complexity of PNN that depends on the
number of training samples, n and the length of PCA
feature data, P can be decreased notably due to the

compressed feature data length through PCA and
single training sample per user settings. As such, the
association of DRT, PCA and PNN is feasible in
practical usage due to its high speed and accuracy
performance.

Figure 6. Receiving Operating Characteristic
(ROC) curve for random, casual and skilled

forgeries respectively when using: Eigen basis
construction set = 4, principle component length =

100 when classified through PNN.

 FAR(%) FRR(%) EER(%)
Random
Forgery 1.50 1.52 1.51
Casual
Forgery 3.22 3.24 3.23
Skilled
Forgery 12.98 13.16 13.07

Table 2. FAR, FRR and EER achievement (%) for
random, casual and skilled forgeries respectively

Training Samples
Total time
(minutes) EER (%)

4 38.5 13.07

1 14 14.20
Table 3. Total time spent to run one course of
experiment and the accuracy of PNN in skilled

forgery context

Comparison with Other Research
Groups’ Techniques
It is very difficult to compare the performance of
different signature verification systems due to the fact
that different systems are using different signature
data sets. The lack of a standard international
signature database is a big problem for performance
comparison.
However, few works that published in year 2009
including Piyush Shanker et al. [Piy07] , Abdala Ali
and Zhirkov [Abd09] (we implement only on SVM)
and Bansal et al. [Ban09] algorithms have been

WSCG 2010 Communication Papers 36

implemented and tested in our own independent
database due to the close-similarity of our
implementation details.

 Piyush
et al.

Ali and
Zhirkov

Bansal
et al.

Our
method

Random
Forgery

1.45 1.13 1.23 1.51

Casual
Forgery

3.21 2.43 3.15 3.23

Skilled
Forgery

13.05 11.55 12.58 13.07

Table 4. Equal error rates (EER, %) of
implementing different approaches towards our

independent database
 Piyush

et al.
Ali and
Zhirkov

Bansal
et al.

Our
method

Random
Forgery

125.0 120.0 80.0 38.5

Casual
Forgery

125.0 120.0 80.0 38.5

Skilled
Forgery

125.0 120.0 80.0 38.5

Table 5. Computation times (minutes) of different
approaches towards our independent database

Referring to Table 4, it can be concluded that their
algorithms are slightly outperform our method.
However, by referring to Table 5, we can say that our
system is more favorable in real world application
context due to its shortest computation time. Piyush
Shanker et al.’s modified DTW is stable, but
somehow it is still not particularly fast. Abdala Ali
and Zhirkov’s SVM is powerful, but very time
consuming to select the appropriate kernel functions
and determining the belonging parameters during the
development phase. Bansal et al.’s algorithm
performs slightly better than ours, but required longer
processing time.

7. CONCLUSIONS
This paper proposed an offline signature verification
through DRT, PCA and PNN. The high accuracy is
feasible to filter the forgery from the genuine
signature, especially for skilled forgery; while the
speed of the PNN is very favorable in real-world
application. The results are encouraging and thus
should motivating the research on skilled forgery
detection especially for offline handwritten signature.

8. ACKNOWLEDGMENTS
Our thanks and appreciations to those referred work
listed in literature.

9. REFERENCES
[Abb94] Abbas, R. A prototype system for offline

signature verification using multilayered
feedforward neural networks. Minor Thesis, 1994.

[Abd09] Abdala Ali, A.A., and Zhirkov, V.F. Offline
signature verification using Radon transform and
SVM/KNN classifiers. Transactions of Tambov
State Technical University, no.1, pp.62-69, 2009.

[Ban09] Bansal, A., Gupta, B., Khandelwal, G., and
Chakraverty, S. Offline signature verification
using critical region matching. International
Journal of Signal Processing, Image Procesing
and Pattern, vol.2, no.1, 2009.

[Coe04] Coetzer, J., Herbst, B.M., and du Preez, J.A.
Offline signature verification using the discrete
Radon transform and a hidden Markov model.
EURASIP Journal on Applied Signal Processing,
vol.4, pp.559-571, 2004.

[Guo01] Guo, J.K., Doermann, D., and Rosefeld, A.
Forgery detection by local correspondence.
International Journal of Pattern Recognition and
Artificial Intelligence, vol.15, no.4, pp.579-641,
2001.

[Kae99] Kaewkongka, T., Chamnongthai, K., and
Thipakorn, B. Offline signature recognition using
parameterized Hough transform. Proceedings of
the Fifth International Symposium on Signal
Processing and Its Applications, 1999.

[Lec94] Leclerc, F., and Plamondon, R. Automatic
signature verification: the state of the art, 1989-
1993. International Journal of Pattern Recognition
and Artificial Intelligence, vol.8, no.3, pp.643-
660, 1994.

[Lu03] Lu, G., Zhang, D., and Wang, K. Palmprint
recognition using Eigenpalms features. Pattern
Recognition Letters, vol.24, no.9-10, pp.1473-
1477, 2003.

[Mig89] Mighell, D.A., Wilkinson, T.S., and
Goodman, J.W. Backpropagation and its
application to handwritten signature verification.
Advances in Neural Information Processing
Systems, vol.1, pp.340-347, 1989.

[Piy07] Piyush Shanker, A., and Rajagopalan, A.N.
Offline signature verification using dynamic time
warping. Pattern Recognition Letters, vol.28,
no.12, pp.1407-1414, 2007.

[Pla89] Plamondon, R., and Lorette, G. Automatic
signature verification and writer identification –
the state of the art. Pattern Recognition, vol.22,
no.2, pp.107-131, 1989.

[Pla00] Plamondon, R., and Srihari, S.N. Online and
offline handwritten recognition: a comprehensive
survey. IEEE Transaction on Pattern Analysis and

WSCG 2010 Communication Papers 37

Machine Intelligence, vol.22, no.1, pp.63-84,
2000.

 [Qi95] Qi, Y.Y., and Hunt, B.R. A multiresolution
approach to computer verification of handwritten
signatures. IEEE Transactions on Image
Processing, vol.4, no.6, 1995.

[Que02] Quek, C., and Zhou, R.W. Antiforgery: a
novel pseudo-outer product based fuzzy neural
network driven signature verification system.
Pattern Recognition Letters, vol.23, no.14,
pp.1795-1816, 2002.

[Spe88] Specht, D.F. Probabilistic neural networks
for classification, mapping, or associative
memory. Proceeding of the IEEE International

Conference Neural Networks, vol.1, no.2, pp.525-
532, 1988.

[Spe90] Specht, D.F. Probabilistic neural networks
(original contribution). Neural Networks, vol.3,
no.1, pp.109-118, 1990.

[Tur91] Turk, M.A., and Pentland, A.P. Eigenfaces
for recognition. Journal of Cognitive
NeuroScience, vol.3, no.1, pp.71-86, 1991.

[Wan03] Wang, X., and Kuldip, K.P. Feature
extraction and dimensionality reduction
algorithms and their applications in vowel
recognition. Pattern Recognition, vol.36, no.10,
pp.2429-2439, 2003.

WSCG 2010 Communication Papers 38

Feature Line Detection on Triangulated Meshes
A Geological Application

Dimitri Kudelski
LSIS, UMR CNRS 6168

Campus de Luminy
Case 925

France, 13288 Marseille cedex 9
kudelski@univmed.fr

Jean-Luc Mari
LSIS, UMR CNRS 6168

Campus de Luminy
Case 925

France, 13288 Marseille cedex 9
mari@univmed.fr

Sophie Viseur
GSRC, EA 4234

Université de Provence
Case 67

France, 13331 Marseille cedex 3
sophie.viseur@univ-provence.fr

ABSTRACT
We present in this article an algorithm dedicated to the feature line detection on 3D triangulated outcrop meshes.
These lines corresponding to geological elements can be extracted by geometrical properties. Our approach uses
differential quantities and especially principal curvatures and their derivatives. The roots of these derivatives
describe particular lines called ridge lines for convex parts and ravine lines for concave parts. Then it is possible
to build a set of polylines matching with ridges and ravines. Finally we apply a directional filtering to keep
geological structures oriented in a particular direction. The proposed algorithm fits in a basis of a tool devoted to
assist geologists during the outcrop analysis and interpretation.

Keywords
geometric modeling, differential geometry, discrete curvatures, crest lines

1. INTRODUCTION
Many works dedicated to the crest line de-
tection have been proposed these last years
(e.g., [PKS+01, OBS04, YBS05]). Application
fields of these methods are wide and various: non-
photorealistic rendering [JDA07], mesh segmen-
tation [SF04], medical imaging [MAM95], and
geology [Nam08].

Since a few years, the LIDAR1 scanning technol-
ogy is used to capture cliffs or, more generally,
outcrops (i.e., formations of rock strata that crop out).
It generates a 3D point cloud which is afterwards
triangulated to obtain a surface corresponding to the
outcrop geometry. Combined with photo mapping
techniques, it is possible to construct 3D models called
DOMs2 [BKJ05]. From this point, we propose a
semi-automatic method devoted to the detection of
geological objects (i.e., fractures and stratigraphic
limits) from outcrop surfaces. This kind of elements is
characterized by differential properties explained in the
following. Therefore, the extraction is a problematic
similar to the crest line detection. However before
applying a method of crest line detection to outcrop sur-
faces, several particular constraints must be considered:

Outcrop rugosity
The intrinsic rugosity of observed outcrops makes

1 LIght Detection And Ranging
2 Digital Outcrop Model

the generated surfaces highly complex. As the crest
lines are characterized by curvature derivatives, this
extraction is noise-sensitive. It is then necessary to use
a noise-invariant and triangulation-invariant curvature
estimator.

Results matching with observations
The presented method aims at detecting geological
objects. Nevertheless, when applying traditional algo-
rithms of crest line detection, the extracted features do
not entirely correspond to elements with a geological
meaning. An a priori knowledge is then necessary to
realize a filtering to only extract targeted geological
structures.

Interactivity
An additional constraint is the computational time due
to the final application. The detection must be per-
formed in a few seconds in order to keep interactivity
with a real-time procedure. Moreover, this is partic-
ularly crucial as LIDAR scans often generate huge
data sets which are difficult to manipulate. Because of
this, we take great care to implement process with low
computational time.

To understand the crest line detection problem,
Section 2 describes the different criteria characterizing
the geological objects. We review in Section 3 the
related work established in the domains of curvature
estimation and crest line detection. Then we detail
each step of our approach in Section 4. Section 5

WSCG 2010 Communication Papers 39

finally presents the results obtained with our algorithm
applied on LIDAR data scans.

2. CHARACTERIZATION OF GEO-
LOGICAL OBJECTS

Fractures are like crevices more or less opened that
affect a rock mass. Stratigraphic limits of geological
bodies correspond to a change of rock type. Both
of these geological features are displayed along the
outcrop surface because of the erosion. It leads finally
to step-like or a gutter-like shapes at their location.
Figure 1 represents a diagram with the different
patterns of targeted geological objects. Moreover, this
pattern often varies along the same fracture or strata
limit. Given Figure 1, it is indeed possible to see that
the expected objects (depicted by the thick dashed
lines) are located in the highest concave parts of the
surface. These elements have a common geometrical
criterion: they define lines located in areas with high
curvature. Thus crest line algorithms can be applied to
achieve the detection of such objects.

ro
ck

ro
ck

ro
ck

ro
ck

Figure 1: Diagram showing the different patterns of ge-
ological objects. The thick dashed lines illustrate the
highest concave areas characterizing the expected fea-
tures.

Feature lines are then defined by curvature ex-
trema and then it corresponds to a zero-crossing of
curvature derivatives. However, the rough set of crest
lines extracted from a DOM does not represent the set
of targeted geological objects. This is due to several
factors, among which: (1) fractures often cut across
strata limits. Depending on the erosion effect, an
extracted crest line could then encompass features with
different geological meaning; (2) the intrinsic rugosity
of the rock or the variable direction of the outcrop
can generate salient lines which do not represent any
expected geological feature.

For these reasons, we suggest to add an a priori
knowledge (i.e., a global direction) to guide the extrac-
tion and filter feature lines. Our approach is dedicated
to the detection of slightly sinuous structures. It is
always the case for the fractures and very frequently
for the strata limits.

The proposed method then relies on the crest line
principle. It previously requires a per-vertex estimation

of differential quantities. Before describing each
algorithm step, the following section gives an overview
of existing crest line detection techniques.

3. RELATED WORK
3.1 Curvature Estimation
Differential properties characterize the local geometry
of meshes. The notion of curvature describes precisely
how the surface is locally bent. These geometrical
descriptors are then used since a few years and several
approaches have already been proposed in this domain.
Some of them are presented in the following (for
additional references see [MD02, GG06]).

Continuous methods
This type of methods tends to fit locally the surface with
simple primitives (e.g., plane, sphere or polynomial)
or parametric functions or even implicit functions.
These different techniques permit an analytical com-
putation of curvatures. For example, in [Ham93], the
authors proposed to approximate locally the surface
with quadratic polynomials. Alternatively in [GI04],
the fitting is performed via bi-cubic polynomials.
Bi-quadratic Bézier patches can also be used to fit the
surface such as in [RB05].

Discrete methods
To reduce the high computational time produced by
local fitting, differential operators have been proposed.
In [MDSB02], the authors suggested to use a curvature
estimation based on cotangent weights and Voronoï
areas. In another way, the dihedral angle (i.e., angle
between the normals of two adjacent faces) can be
used as a discriminant property to compute curva-
tures [CSM03]. Additionally, the curvature tensor
can be estimated by studying the per-vertex normal
variation such as in [Rus04, BW07].

3.2 Crest Line Detection
The properties of crest lines are widely used for
their efficiency as shape descriptors. This domain
has become a field of intensive researches since
the last decades and several approaches have been
then proposed. The first family of techniques is
based on extrema searching. It can be performed
either by thresholding [RKS00, SF03], curvature
derivatives [CP04, OBS04, YBS05], focal sur-
faces [LA98, WB01, YBYS07], or discretized
operators [HPW05].

The second kind of methods relies on other dif-
ferential properties. The dihedral angle can be used
to detect sharp features such as in [HG01, PSK+02].
Then in [GPHW05], the authors proposed to apply
active contour theory stemming from image processing

WSCG 2010 Communication Papers 40

domain to detect characteristic lines. In addition
in [LVJ05], Lee suggested to use a measure of a
regional importance named mesh saliency based on
contextual and visual criteria.

4. GEOLOGICAL FEATURE DETEC-
TION

On the one hand, DOMs represent natural surfaces.
These objects are characterized by an inherent noise
due to the acquisition technology and a high intrin-
sic rugosity because of the surface alteration. On the
other hand, due to their definition by high differen-
tial quantities, crest lines are very noise-sensitive. It
is then necessary to select a robust curvature estimator.
For these reasons, we chose to apply the method pro-
posed in [GI04] considering its quality, accuracy and
stable results (see [GG06]). Concerning the crest line
detection method, we opted for the criteria expressed
in [OBS04]. It relies on curvature derivatives and thus
is scale-invariant. It is then possible to extract geologi-
cal objects with different sizes.

4.1 Pre-processing Step
The inherent noise and rugosity of the data make the
detection of smooth and continuous lines difficult. We
then propose to use a pre-processing to increase these
continuity and smoothness. Among all existing tech-
niques, we chose to integrate a Laplacian smoothing
(cf. Equation 1) on surface coordinates:

p′ = p+λ
1
n

n

∑
i=1

(qi− p), (1)

where n is the number of adjacent vertices qi to the
vertex p and λ represents a step-size parameter.

Once the smoothing performed, the next step is
to compute the differential quantities in order to detect
the surface crest lines.

4.2 Estimation of Curvatures and their
Derivatives

Several techniques of curvature estimation have been
previously presented. The approach proposed in [GI04]
fits locally the surface with a bi-cubic polynomial in the
least-squares sense. Thus, the surface is expressed for
each vertex thanks to the following equation:

f (x,y) =
A
2

x2+Bxy+
C
2

y2+Dx3+Ex2y+Fxy2+Gy3.

(2)
The Weingarten matrix (i.e., the matrix of the second
fundamental form) of the surface is therefore composed
as:

W =

[
A B
B C

]
. (3)

The curvature values κmax and κmin (with
|κmax| > |κmin|) are defined by the eigenvalues of
W and the eigenvectors of W correspond to the prin-
cipal curvature directions ~tmax and ~tmin. To obtain
the curvature derivatives, it is possible to use the
coefficients D, E, F and G of Equation 2 as suggested
in [YBS05]:

e =
∂κ

∂~t
=

[
u2

v2

]T [D E
F G

][
u
v

]
(4)

where
~t = (u,v) (5)

can correspond to either~tmin or~tmax. Consequently, two
values called extremality coefficients (cf. [Thi96]) are
then defined by:

emax =
∂κmax

∂~tmax
emin =

∂κmin

∂~tmin
. (6)

These coefficients are the support for the crest line de-
tection, as described in the next section.

4.3 Crest Line Detection
The extremality coefficients describe curvature varia-
tions and crest lines are located where curvature ex-
trema are reached. Thus, the crest lines are character-
ized by:

emax =
∂κmax

∂~tmax
= 0,

∂emax

∂~tmax
< 0, κmax > |κmin| (7)

for the ridge lines (convex areas) and:

emin =
∂κmin

∂~tmin
= 0,

∂emin

∂~tmin
> 0, κmin <−|κmax| (8)

for the ravine lines (concave areas).

The curvature sign gives information about the locally
convexity or concavity of the surface. Ridges and
ravines are dual notions according to the surface ori-
entation: by flipping the surface orientation, convexity
and concavity are swapped as for ridge and ravine lines.

As previously mentioned, extremality coefficients
as derivatives, are highly sensitive to noise. For this
reason, the pre-processing of smoothing the surface
geometry is applied to compute the derivatives.
However, original coordinates are restored before
performing the detection. In this way, noise impact is
reduced and even several artifacts due to the intrinsic
surface rugosity are removed while maintaining the ac-
curacy about the locations of the extracted feature lines.

Crest line detection is performed by searching
crest vertices and curvature extrema (i.e., roots of
curvature derivatives). Let be ε an edge composed by

WSCG 2010 Communication Papers 41

the vertices v1 and v2. A vertex is considered as a crest
vertex since a set of conditions described in [OBS04]
is satisfied. For the sake of clarity and simplicity, only
the case of ridge vertices is explained below. As ridges
and ravines are dual notions, explained conditions can
be easily transposed from a ridge to a ravine detection
algorithm.

First, if the angle between principal directions
~tmax(v1) and ~tmax(v2) is obtuse, the vector ~tmax(v2) is
flipped as the sign of emax(v2). The second step is
to check if there is a zero-crossing of the curvature
derivative on the edge. It appears when the signs of
emax(v1) and emax(v2) are different:

emax(v1) · emax(v2)< 0. (9)

Curvature must also reach a local maxima which can be
verified by a derivative test:

emax(v1)
[
(v2− v1) ·~tmax(v1)

]
> 0. (10)

When Equations 9 and 10 are satisfied, the coordinates
of the ridge vertex are found by a linear interpolation
between v1 and v2:

vridge =
|emax(v2)|v1 + |emax(v1)|v2

|emax(v1)|+ |emax(v2)|
. (11)

This process is applied on each edge of the mesh to
obtain all the crest lines. These lines are defined by
polylines built from crest vertices. Figures 2 and 3
summarize the method of crest line extraction and
construction.

P1

P2

P4

P3

emax > 0

emax < 0

emax < 0

emax < 0Ridge vertex
emax = 0

Figure 2: Process of ridge vertex extraction.

The proposed algorithm does not aim at extract-
ing all crest lines but only geological feature lines.
Thus, particular conditions must be honored during the
feature extraction.

Figure 3: Construction of a feature line. On left, an
isolated crest vertex can not define a line. In the middle,
two crest vertices generate a straight line. Lastly, 3 crest
vertices produce a T-junction between the three vertices
and the triangle barycenter.

4.4 Directional Filtering
In order to keep only lines which have a geolog-
ical meaning and are roughly oriented in a same
user-defined direction ~D, an a priori knowledge is
integrated. It corresponds to a filtering process added
to the detection algorithm previously described.

First, as mentioned in Section 2, only concave parts
correspond to fractures or strata limits. Therefore only
ravine lines characterize relevant objects. Secondly,
geological structures are generally slightly sinuous.
Their detection can be guided via an user-defined
direction ~D, corresponding to the rough direction of a
family of targeted geological structures observed along
the outcrop.

Let S be a surface of R3 and p a point of S.
Principal directions of p are contained in a plane P
oriented according to ~Np (i.e., the normal vector of p).
As the shape of the geological objects can be locally
described as parabolic surfaces, the curvature vec-
tor~tmin tends to follow this shape as shown by Figure 4.

tmax

tminP
Figure 4: Principal curvature directions along a
parabolic shape.

It is thus possible to use the direction of ~tmin to
filter lines oriented in the same direction of ~D. How-
ever the direction ~D is set globally by the user on the
outcrop. The outcrop surface is not totally flat and
its direction can vary locally. Thus it is not ensured
that the vector ~D will be contained in the plane P .
Therefore, a rotation is applied to transform ~D into ~D′

WSCG 2010 Communication Papers 42

and to place this vector into the plane P . This rotation
has the following parameters:

−−→
axis = ~D× ~Np

angle = ~D · ~Np. (12)

Once the rotation is applied, ~D′ is contained in the
plane P . A projection of ~D onto P could not have
been considered as it may generate a null vector ~D′ as
soon as P is perpendicular to ~D.

Finally, on the edges containing a root of curva-
ture derivative, the absolute value s′ of the dot product
between ~D′ and ~tmin is computed. Therefore when
both ~tmin vectors of an edge are collinear to ~D′, the
line is preserved otherwise it is removed. This step is
illustrated by Figure 5.

D’

tmin

s’

Figure 5: Directional filtering according the vectors ~D′
and~tmin.

The direction ~D is specified globally by the user
and corresponds to the rough direction of the expected
structures. However the direction of these objects may
vary locally. Thus a threshold T , ranged from 0 to 1 is
applied on s′ as a tolerance factor: if T is equal to 1, the
vectors ~tmin and ~D′ must be strictly collinear to keep
the line and inversely if T equals 0, all the ravine lines
are kept.

5. RESULTS AND VALIDATION
The proposed approach devoted to the detection of
geological objects onto numerical outcrop surfaces is
composed of four main operations:
- a pre-processing smoothing;
- an estimation of curvatures and their derivatives;
- a crest line extraction;
- a directional filtering.

This algorithm is dedicated to the detection of
geological features (i.e., fractures and strata limits)

from 3D triangulated meshes built from LIDAR data
points. Figure 6 shows the results obtained with
different outcrop models. Figures 7 and 8 display the
impact of the direction ~D and the threshold T onto the
detection of targeted geological features.

These parameters have to be set up manually by
the user. They represent an a priori knowledge about
the targeted geological structures to interpret. The
direction ~D can be determined by the geologists
through the observation along the numerical outcrop.
It may be noticed that this parameter could be also
automatically deduced from a heuristic such as a
principal component analysis. However the primary
goal of the proposed approach is to assist the geologists
in the outcrop interpretation. Moreover, due to the
complexity of geological structure spatial organization,
the full automatization of the algorithm could easily
lead to several mismatch between geological reality
and extracted lines which should be in fact removed a
posteriori using manual or automated filtering. Then,
the tolerance threshold T is used to constraint more
or less the detection to the fixed orientation. It is set
up according to the aspect of the observed limits (i.e,
straight or slightly sinuous).

The results obtained with the presented approach
match with geological objects observed on outcrops
and manually modeled by geologists. We notice
however that some lines are incomplete or non-
significative. This is due to umbilical points (i.e.,
points locally spherical) without principal direction.

The computational time of our algorithm is low: it
only requires less than 5 seconds (in part due to the
computation of curvature values and their derivatives)
to detect geological features of a surface composed by
about 100k triangles (computed on an Intel Core 2 Duo
2.8 Ghz).

6. CONCLUSION
Several methods of crest line detection have been
proposed in the litterature. However none was directly
applicable to the context of geological feature extrac-
tion from 3D digital outcrop models. By relying on
existing methods, we thus present an algorithm devoted
to the feature line detection from LIDAR data scan
satisfying new constraints.

The proposed approach is based on the estimation
of curvature values and their derivatives. The extremal-
ity coefficients are computed from curvature derivatives
to obtain ridge and ravine lines. Finally, a directional
filtering is applied to preserve lines with geological
meaning and oriented in a particular direction.

WSCG 2010 Communication Papers 43

Feature lines corresponding to fractures and strata
limits are extracted. The proposed tool enables the
geologists to be assisted during the outcrop interpre-
tation stage. As mentioned previously, the obtained
results match with the elements manually modeled by
geologists.

This approach is promising and can be improved.
We plan to add post-processing to increase the quality
of results concerning, for instance, the connectivity
enhancement and the artifacts removal. In addition, ex-
tracted lines are slightly sinuous which concerns most
of the targeted geological objects. Though, some strata
limits are actually sinuous. This requires a pertinent
relaxation of the proposed directional filtering.

The feature extraction corresponding to geologi-
cal objects is a first step in the outcrop interpretation
workflow. The next step would be the construction,
from the extracted elements, of a graph to reproduce
the layout of observed geological structures.

ACKNOWLEDGMENTS
The authors would like to thank ENI S.p.A. to support
this research.

REFERENCES
[BKJ05] Jerome A. Bellian, Charles Kerans, and

David C. Jennette. Digital outcrop mod-
els; applications of terrestrial scanning
lidar technology in stratigraphic model-
ing. Journal of Sedimentary Research,
75(2):166–176, 2005.

[BW07] Harlen Costa Batagelo and Shin-Ting Wu.
Estimating curvatures and their derivatives
on meshes of arbitrary topology from sam-
pling directions. Vis. Comput., 23(9):803–
812, 2007.

[CP04] Frédéric Cazals and Marc Pouget. Ridges
and umbilics of a sampled smooth surface:
a complete picture gearing toward topo-
logical coherence. Research Report 5294,
INRIA, 2004.

[CSM03] David Cohen-Steiner and Jean-Marie
Morvan. Restricted delaunay triangu-
lations and normal cycle. In SCG ’03:
Proceedings of the nineteenth annual
symposium on Computational geometry,
pages 312–321, New York, NY, USA,
2003. ACM.

[GG06] Timothy Gatzke and Cindy M. Grimm. Es-
timating curvature on triangular meshes.
International Journal of Shape Modeling,
12(1):1–28, 2006.

[GI04] Jack Goldfeather and Victoria Interrante.
A novel cubic-order algorithm for approx-
imating principal direction vectors. ACM
Trans. Graph., 23(1):45–63, 2004.

[GPHW05] Y.W. Guo, Q.S. Peng, G.F. Hu, and
J. Wang. Smooth feature line detection
for meshes. Journal of Zhejiang Univer-
sity Science, pages 460–468, 2005.

[Ham93] B. Hamann. Curvature approximation for
triangulated surfaces. Springer Computing
Supplementum, pages 139–153, 1993.

[HG01] Andreas Hubeli and Markus Gross. Mul-
tiresolution feature extraction for unstruc-
tured meshes. In VIS ’01: Proceedings of
the conference on Visualization ’01, pages
287–294, Washington, DC, USA, 2001.
IEEE Computer Society.

[HPW05] Klaus Hildebrandt, Konrad Polthier, and
Max Wardetzky. Smooth feature lines on
surface meshes. In SGP ’05: Proceed-
ings of the third Eurographics symposium
on Geometry processing, page 85, Aire-la-
Ville, Switzerland, Switzerland, 2005. Eu-
rographics Association.

[JDA07] Tilke Judd, Frédo Durand, and Edward H.
Adelson. Apparent ridges for line drawing.
ACM Trans. Graph., 26(3):19, 2007.

[LA98] Gábor Lukács and László Andor. Com-
puting natural division lines on free-form
surfaces based on measured data. In Pro-
ceedings of the international conference
on Mathematical methods for curves and
surfaces II Lillehammer, 1997, pages 319–
326, Nashville, TN, USA, 1998. Vander-
bilt University.

[LVJ05] Chang Ha Lee, Amitabh Varshney, and
David W. Jacobs. Mesh saliency. ACM
Trans. Graph., 24(3):659–666, 2005.

[MAM95] O. Monga, N. Armande, and P. Mon-
tesinos. Thin nets and crest lines: applica-
tion to satellite data and medical images.
In ICIP ’95: Proceedings of the 1995 In-
ternational Conference on Image Process-
ing (Vol.2)-Volume 2, page 2468, Washing-
ton, DC, USA, 1995. IEEE Computer So-
ciety.

[MD02] J.-L. Maltret and M. Daniel. Discrete
curvatures and applications : a survey.
Rapport de recherche LSIS.RR.2002.002,
Laboratoire des Sciences de l’Information
et des Systèmes, 2002.

[MDSB02] M. Meyer, M. Desbrun, P. Schroder, and
A.H. Barr. Discrete differential-geometry
operators for triangulated 2-manifolds. Vi-

WSCG 2010 Communication Papers 44

sualization and mathematics, 3:35–57,
2002.

[Nam08] Van Tran Nam. Traitement de surfaces tri-
angulées pour la construction de modèles
géologiques structuraux. PhD thesis, Uni-
versité de la Méditerranée, 2008.

[OBS04] Yutaka Ohtake, Alexander Belyaev, and
Hans-Peter Seidel. Ridge-valley lines on
meshes via implicit surface fitting. In
SIGGRAPH ’04: ACM SIGGRAPH 2004
Papers, pages 609–612, New York, NY,
USA, 2004. ACM.

[PKS+01] D. L. Page, A. Koschan, Y. Sun, J. Paik,
and M. A. Abidi. Robust crease detec-
tion and curvature estimation of piece-
wise smooth surfaces from triangle mesh
approximations using normal voting. In
Conference on Computer Vision and Pat-
tern Recognition, volume 1, page 162, Los
Alamitos, CA, USA, 2001. IEEE Com-
puter Society.

[PSK+02] DL Page, Y. Sun, AF Koschan, J. Paik,
and MA Abidi. Normal vector voting:
Crease detection and curvature estimation
on large, noisy meshes. Graphical Models,
64:199–229, 2002.

[RB05] Anshuman Razdan and MyungSoo Bae.
Curvature estimation scheme for triangle
meshes using biquadratic bézier patches.
Computer-Aided Design, 37(14):1481–
1491, 2005.

[RKS00] Christian Rössl, Christian, Leif Kobbelt,
and Hans-Peter Seidel. Extraction of
feature lines on triangulated surfaces us-
ing morphological operators. In An-
dreas Butz, Antonio Krüger, and Patrick
Olivier, editors, Smart Graphics (AAAI
Spring Symposium-00), volume 00-04 of
Technical Report / SS / American Associ-
ation for Artificial Intelligence, pages 71–
75, Stanford, USA, 2000. American As-
sociation for Artificial Intelligence, AAAI
Press.

[Rus04] Szymon Rusinkiewicz. Estimating cur-
vatures and their derivatives on triangle
meshes. In Symposium on 3D Data Pro-
cessing, Visualization, and Transmission,
Sept 2004.

[SF03] G. Stylianou and G. Farin. Crest lines ex-
traction from 3D triangulated meshes. Hi-
erarchical and geometrical methods in sci-
entific visualization, pages 269–281, 2003.

[SF04] Georgios Stylianou and Gerald Farin.
Crest lines for surface segmentation

and flattening. IEEE Transactions on
Visualization and Computer Graphics,
10(5):536–544, 2004.

[Thi96] Jean-Philippe Thirion. The extremal mesh
and the understanding of 3d surfaces. Int.
J. Comput. Vision, 19(2):115–128, 1996.

[WB01] Kouki Watanabe and Alexander G.
Belyaev. Detection of salient curvature
features on polygonal surfaces. Comput.
Graph. Forum, 20(3), 2001.

[YBS05] Shin Yoshizawa, Alexander Belyaev, and
Hans-Peter Seidel. Fast and robust de-
tection of crest lines on meshes. In SPM
’05: Proceedings of the 2005 ACM sym-
posium on Solid and physical modeling,
pages 227–232, New York, NY, USA,
2005. ACM.

[YBYS07] Shin Yoshizawa, Alexander Belyaev,
Hideo Yokota, and Hans-Peter Seidel.
Fast and faithful geometric algorithm
for detecting crest lines on meshes. In
PG ’07: Proceedings of the 15th Pacific
Conference on Computer Graphics and
Applications, pages 231–237, Washing-
ton, DC, USA, 2007. IEEE Computer
Society.

WSCG 2010 Communication Papers 45

Figure 6: Application of our algorithm on LIDAR data scans without any filtering. On left, feature detection
performed on the Malaval section (' 60000 triangles). On right, extraction of lines of the Pas-Morta section
(' 20000 triangles).

Figure 7: Application of two directional filters. The strata limits are extracted with a horizontal direction (left
image) while the fractures are detected with a vertical direction (right image).

Figure 8: Influence of the tolerance threshold T with values of 0.85 (left image), 0.70 (middle image) and 0.55
(right image).

WSCG 2010 Communication Papers 46

Confidence in Tone Mapping Applying a User-Driven
Operator

Annabell Langs

University of Koblenz
Germany

allangs@uni-koblenz.de

Jakob Bärz

University of Koblenz
Germany

jbaerz@uni-koblenz.de

ABSTRACT

In photorealistic image synthesis, the natural appearance of a scene is predicted by simulating the illumination using radiometric
values. Whenever the dynamic range of the simulated luminance values exceeds the capabilities of the display device, tone
reproduction is necessary to reduce the contrast of the image. Although a signi cant number of tone mapping operators have
been presented in the past, the reliability of the resulting low dynamic range images cannot be guaranteed. In the context of
product design, decision-makers rely on a trustworthy colorimetric and photometric appearance. We believe that in a particular
scenario a dedicated user-driven tone reproduction curve outperforms existing operators in terms of e xibility, performance,
and quality. In this paper, we propose a method to manually generate a tone mapping operator. The user is guided to select a set
of simulated input luminance values and to map them to appropriate display luminance output quantities. These key mappings
are interpolated to a tone mapping curve. A module was developed for Qtpfsgui to de ne and apply the operator. We evaluated
the resulting low dynamic range images in a study with thirteen participants. The probands were asked to directly compare a
real with a virtual scene displayed on a low dynamic range device as well as to rate the results in comparison to popular tone
mapping operators. In addition to de ning a dedicated curve for a speci c scenario, another application of our approach is to
generate a standard observer tone reproduction curve by interpolating a set of user-driven functions.

Keywords: tone mapping, image reproduction, high dynamic range (HDR), reliability, colorimetry, photometry.

1 INTRODUCTION
The aim of photorealistic computer graphics is to sim-
ulate virtual images by computing a set of radiomet-
ric measurements and to reproduce them exactly on the
display device. The quality of both the simulation and
the reproduction can be evaluated by comparing mea-
surements of a real world scene with the respective
measurements of the simulated and reproduced two-
dimensional projection of the virtual scene on the dis-
play device. When the highest simulated luminance ex-
ceeds the maximum luminance of the output device, re-
producibility is no longer possible. The same holds true
for luminances below the black level of the display, re-
spectively. One solution is to mark the luminance val-
ues, which are not reproducible, with false colors. In
product design, a typical application eld of photore-
alistic image synthesis, reliable rendering with natural
appearance and colors is necessary. To display the sim-
ulated luminance values, the high dynamic range has to
be reduced to t the limited dynamic range of the output
device.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for pro t
or commercial advantage and that copies bear this notice and
the full citation on the rst page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior speci c permission and/or a fee.

In the past, a considerable number of popular tone
mapping operators have been presented to address this
issue. The key problem with all these approaches is to
analyze to which extent the compressed image can be
trusted. Especially in product design it is vital to cre-
ate images decision-makers can rely on. In our opin-
ion there is no single tone mapping operator to produce
trustworthy results for each high dynamic range image
and every presentation setup. In consequence, an ex-
pert in image processing needs to choose and validate
a tting operator for each setting and to adjust the in-
dividual parameters by hand. We strongly believe that
it is more intuitive and less time-consuming to provide
a highly e xible and interactive tool for the expert to
create a dedicated tone reproduction curve for the given
setting.

Figure 1: Setup of our direct comparison experiment

WSCG 2010 Communication Papers 47

In this paper we present an approach of how to
generate a user-driven tone reproduction curve. The
user is guided to manually select a set of high dynamic
input luminance values and map them to appropriate
display luminances. These key mappings are interpo-
lated to a tone mapping curve. An example module
was developed for Qtpfsgui [12] to de ne and to apply
the operator. Another key contribution is the evaluation
of both our tool and the results of the user-generated
curves in a study with thirteen participants. The
reliability of the compressed images was validated by
directly comparing a real with a corresponding virtual
scene as well as by performing a benchmark test with
established tone mapping operators. Furthermore, we
generated a standard observer tone reproduction curve
by interpolating all thirteen user-de ned curves. This
operator was applied to our test scenario and compared
to popular tone mapping operators.

The remainder of the paper is organized as follows:
Section 2 outlines previous approaches to the tone
reproduction problem. Our solution is presented in
section 3, while the evaluation setup is described in
section 4. In section 5 we show the results of our
evaluation and section 6 concludes this paper.

2 RELATED WORK
The challenge to reproduce real world scenarios with
high contrast on media having limited capabilities can
be traced back to painting more than ve centuries
ago. As justly emphasized by MacCann [11], the
Renaissance artists were the rst to capture realistic
perspective and illumination in paintings using a
restricted color palette. MacCann also pointed out that
tone mapping has always been a challenging problem
of photography because of the low dynamic range of
print media. The importance of color reproduction in
both photography and television is clari ed in Hunt [8].

In computer graphics, the problem rst arose when
physically based images were created using ray tracing
or radiosity. As opposed to scanline rendering with
arbitrary RGB color values, global illumination algo-
rithms tried to faithfully predict nature by simulating
real radiometric values exceeding the dynamic range of
the display devices. Tumblin and Rushmeier [16] re-
alized this issue and presented a brightness-preserving
operator as a solution in 1993. Operators aiming to
preserve brightness or contrast are also subsumed to
perceptual-match reproduction, whereon this paper is
focused. An early representative of contrast-preserving
tone mapping was introduced by Ward [17] in 1994,
which reduced computational costs while sustaining
just noticeable differences in contrast.

During the last years, a number of popular tone
reproduction operators with diverse foci, inspired by
 elds as photography or the human visual system have
been proposed. Reinhard et al. [14] adapted the pho-
tographic zone system to manually map the subjective
middle-grey of the scene to an appropriate display
luminance. The contrast can be enhanced locally with
a technique inspired by photographic dodging and
burning. Drago et al. [5] exploited the logarithmic
response of the human visual system to incoming
luminance. They showed how to handle a wide dy-
namic range by applying logarithmic compression with
individual bases of the logarithm to different picture
elements. Another operator, inspired by the response
of human photoreceptors, was introduced by Reinhard
and Devlin [13]. Based on electrophysiological studies,
they designed a sigmoidal function to closely resemble
the properties of the receptors. Comprehensive reviews
of the most important operators can be found in the
state of the art report by Devlin et al. [4] or in the
textbook High Dynamic Range Imaging [15].

The diversity of approaches to tone mapping neces-
sitates a systematic evaluation. Despite the problem
of how to analyze the quality and reliability of tone
mapping, a number of attempts are summarized in [19].
Relevantly to our work, Yoshida et al. [19] conducted a
psychophysical experiment with 14 human observers.
The probands had to compare a real world setting with
an HDR photograph of the same scene, compressed
and displayed on an LDR display. We chose to model
a virtual representation of our well-de ned real world
scene and simulated a photometrically and colorimet-
rically consistent ground-truth image. Opposed to the
HDR photography approach, our method eliminates
inaccuracies from the camera calibration.

Another innovative strategy has been introduced by
Mantiuk et al. [10], tting a generic tone reproduction
operator to an HDR image and its LDR counterpart,
generated by an unknown existing tone mapping
algorithm. They showed that a very simple and
computationally inexpensive generic tone mapping
curve is often able to reproduce indistinguishable
results compared to the original complex algorithm.
Furthermore, Mantiuk et al. demonstrated how to use
their model to combine several popular operators to a
new tone mapping curve. Similarly, we believe that a
single tone mapping curve can outperform previously
proposed operators in a dedicated scenario. But in
contrast to choosing and combining operators by hand,
we provide the expert user with a exible tool to
manually create the curve. In addition, we intentionally
support no local contrast adjustment and do not change
the chromaticities using saturation correction.

WSCG 2010 Communication Papers 48

3 APPROACH

3.1 Criteria for reliability
The primary purpose of our tone mapping operator
is to generate reliable output images. A reliable
image should be indistinguishable from the respective
real world scene for the human observer. In order
to evaluate this goal we need to de ne criteria for
reliability. Tone mapping operators aiming to create
realistic results assess those criteria differently than
operators trying to generate aesthetic images. Cadík et
al. [3] proposed some important criteria: brightness,
contrast, reproduction of color, reproduction of details
and special attributes like artifacts. They say that the
overall image quality, often also called naturalness, de-
pends on several of those criteria. Furthermore, criteria
which affect the image globally, such as contrast, are
more important. Criteria like the local reproduction of
details are of less importance. Cadík et al. conclude
that global tone mapping methods are better suited for
realistic images. Local tone mapping algorithms can
only compete if they have a strong global part.

Yoshida et al. [19] pointed out that global tone map-
ping can preserve contrast better than local methods,
but, on the other hand, local operators are better at
reproducing details. They also deduce that no single
criterion is solely accountable for the naturalness of the
image. In our evaluation we use the criteria brightness,
contrast, reproduction of details in shadows and in
highlights, and the overall image quality.

3.2 Selecting tone mapping benchmarks

Similarly to both studies mentioned before, we aimed
at conducting an evaluation with different tone map-
ping approaches. Hence, we considered a number of
popular operators as potential benchmark algorithms
and evaluated their ability to return a reliable LDR
image. Global tone mapping operators like Histogram
Adjustment by Ward [17], Drago’s Adaptive Loga-
rithmic Mapping [5] or the Photoreceptor Model by
Reinhard and Devlin [13] are based mainly on the
human visual system. Local tone mapping operators
like Photographic Tone Reproduction by Reinhard et
al. [14] or Ashikhmin’s Spatially Variant Operator [1]
have been considered as well. Operators working in
the frequency or gradient domain are also popular, for
example Durand’s Bilateral Filtering [6] or Gradient
Domain Compression by Fattal [7].

As a result we decided to use the Adaptive Logarith-
mic Mapping, Photoreceptor Model, and Photographic
Tone Reproduction in our evaluation. Both frequency
and gradient domain methods returned images which
are better suited for aesthetical purposes. Drago’s

Figure 2: GUI of the interactive tone mapping tool

method has been chosen because it is very popular
and a typical representative of the global operators.
Reinhard’s Photoreceptor Model bene ts speci cally
from the fundamentals of the human visual system
and separately computes a sigmoidal function on the
three RGB channels corresponding to the three cone
types on the retina of the human eye. At last, the Pho-
tographic Tone Reproduction represents a local tone
mapping operator with a different approach, namely
combining tone mapping with traditional methods used
in photography. To summarize, we chose three very
different operators, two global ones and a local one as
benchmarks.

3.3 Implementation and features
The idea behind our tone mapping operator is to give
an expert a tool at his disposal to create a speci c tone
mapping curve. Common image editing software like
Adobe R© Photoshop R© provide tools to edit a gradation
curve exactly. This well-known graph metaphor is
exploited in our implementation to easily, rapidly and
interactively adjust a tone mapping curve.

We used the open source software Qtpfsgui and the
Qt Widgets for Technical Applications 1 to implement
our curve tool. The main window, as seen in gure 2,
shows a plot with the x-axis representing the real
log10 luminance values and the y-axis representing

1 http://qwt.sourceforge.net

WSCG 2010 Communication Papers 49

read EXR file

create Pfs-Channels in XYZ colorspace

transform colorspace from XYZ to Yxy

XYZ Pfs-Channels

create output RGB Pfs-Channels

do actual Tonemapping

transform colorspace from Yxy to XYZ

black correction

transform colorspace from XYZ to RGB

gamma correction

Reliable Tonemapper

transform colorspace to XYZ
RGB

XYZ

RGB Pfs-Channels

Figure 3: Activity diagram of the tone mapping pipeline

the relative display luminance. A display luminance
of 1.0 corresponds to the maximum luminance of the
display. The initial curve can be adjusted by setting
or deleting control points. The curve is interpolated
linearly between them. Holding the shift key restricts
the movement of the point to the y-direction in order
to avoid shifting the point and therefore changing a
different input luminance value.

Additionally, luminance quantities in the image can
be mapped precisely to a control point in the plot at
the corresponding luminance value. A simple click
inside the image creates the correct control point which
can be further adjusted. For better comparison, it is
possible to import tone mapping functions created by
the operators from Drago and Reinhard. Furthermore,
user-driven curves can be saved to or loaded from disc.
Hence, those curves can be applied to arbitrary images
by loading the control points absolutely or relatively.
The former method loads the points at the absolute
input luminance values regardless of their existence in

the new image. The latter option stretches or squeezes
the points relatively to the new luminance range.

Another important aspect of our approach to tone
mapping is the photometrically and colorimetrically
consistent implementation in order to evaluate cor-
rectly later on. Figure 3 illustrates the pipeline a high
dynamic range OpenEXR le 2 has to pass before being
displayed: Three channels in the CIE XYZ color space
are created from the OpenEXR le. Those channels are
transferred to the actual tone mapping algorithm which
transforms the color space to Yxy. The plot curve
is evaluated for every luminance value in the image,
returning the value on the y-axis between 0.0 and 1.0 at
the x-position of the requested input luminance. Only
the luminance channel Y is changed by multiplying
the looked-up y-value with the maximum display
luminance. The display was measured with an X-Rite
i1-pro spectroradiometer and the i1 Share software
beforehand and the generated ICC pro le was activated
for gamma calibration. After the plot look-up process
the color space is transformed back to XYZ and a
black correction is executed. Then the color space
is further transformed to RGB using the measured
color primaries of the speci c display. Finally, gamma
correction is applied.

4 EVALUATION

4.1 Scenarios
To validate the reliability of our user-driven tone
mapping operator, we conducted a relative comparison
to the selected benchmark operators from section 3.2.
Therefore, we generated an HDR photograph using ex-
posure bracketing with a Canon EOS D30 digital re e x
camera of a scene on our campus. The HDR image
has been calibrated with a Kodak CS100A luminance
measurement device and created by webHDR 3. The
campus scene is depicted on the left in gure 4.

Besides this relative comparison, we conducted a
direct comparison between a real world scene and
a simulation of the same scene, displayed on a low
dynamic range device. We constructed a well-de ned
real world scene and modeled an exact virtual rep-
resentation. A ground-truth simulation of the virtual
scene was computed with path tracing using a spectral
ray tracing system and measured radiometric input
values for the light source and the materials. The sim-
ulated two-dimensional projection was displayed on
a colorimetrically characterized and gamma-corrected
device. In gure 1, a photograph of the setup is shown.

2 http://www.openexr.com/
3 http://luxal.dachary.org/webhdr/

WSCG 2010 Communication Papers 50

Figure 4: Campus scene (left hand side) and the well-de ned box scene (right hand side), each reproduced with
Drago’s Adaptive Logarithmic Mapping (top left), Interactive tone mapping (top right), Reinhard and Devlin’s
Photoreceptor Model (bottom left), and Reinhard’s Photographic Tone Reproduction (bottom right)

The box measures 0.5m in all three dimensions.
The front side is left open for the observer. In the
center of the left side a square hole with 0.1m edge
length is spared for a calibrated NEC SpectraView
2690 as the light source. On the right, opposing the
light, a Munsell ColorChecker chart was placed. The
remainder of the interior of the box was wallpapered
with a diffuse white Canson Mi-Teintes Paper. The
spectral distributed radiance of the light source and the
spectral distributed re ectance of the materials were
measured with an X-Rite i1-pro spectroradiometer. An
exact virtual representation of this box was modeled.
We generated a ground-truth simulation using spectral
path tracing. An EIZO FlexScan S2000 displayed
the synthetic image using color calibration and black
correction. The simulation was validated for low
dynamic range images by comparing measurements
of the display device with measurements in the box to
grant trustworthy results. For our experiment, the light
source was calibrated to the maximum luminance of
300cd/m−2 and the display device to 100cd/m−2. The
box scenario is displayed on the right in gure 4.

4.2 User study
We believe that an individually created tone reproduc-
tion curve excels every other tone mapping operator in
a speci c scenario. We wanted to evaluate whether tone
mapping curves created by our probands really deliver
a good result measured by the former mentioned
criteria and if there are concurrences between those
curves and curves of popular tone mapping operators.
We approached the question whether the users created
similar curves or if there is even a kind of standard
observer tone mapping curve. Finally, we checked how
the users rated the usability of the curve tool.

Thirteen participants aged 21 to 30 years created
curves and evaluated the resulting images. During
the whole evaluation process we were present to
help in case of operating problems or questions.
The main functions and keyboard shortcuts of the
interactive tool were explained. We pointed out
key areas in the images to support the test persons
when evaluating the reliability criteria. In a rst
step, all thirteen participants were asked to ll out a
general questionary. Level of knowledge, experience
with HDR software and existence of color de cien-
cies were some of the questions. One half of the test
persons had some experience with other HDR software.

The rst experiment was a relative comparison
of the campus scene without direct reference. All
participants had to rate four pictures displayed on an
LDR device according to the criteria introduced in
section 3.1. The setting of the Adaptive Logarithmic
Mapping, Photoreceptor Model and Photographic Tone
Reproduction were set to the default values proposed in
their respective papers, with the following exceptions:
the sharpening parameter of the Photographic Tone
Reproduction was set to 1.6. The intensity parameter
of the Photoreceptor Model was set to -3, the chromatic
adaptation to 1.0, and the light adaptation to 0.0. We
created our dedicated tone mapping curve for the
interactive tone mapping without direct reference. The
probands were asked to rate the criteria on a scale with
 ve discrete steps, from too few/low to too many/high
and a possibility to rate accurate.

In the second experiment the probands had to create
their own tone mapping curve for the aforementioned
box scene. The rst request was to ensure that the
grayscale of the colorchecker was reproduced correctly
on the screen. Then they adjusted the color patches

WSCG 2010 Communication Papers 51

0

1

2

-1

-2

Brightness

Drago Langs R05 R02

too low

too high

Contrast

0

1

2

-1

-2

Detail reproduction in
the shadows

too few

too many

Detail reproduction in
the highlights

3

4

5

2

1

Campus scene
Overall image quality

good

bad

Box scene
Overall image quality

Drago Langs R05 R02 Drago Langs R05 R02 Drago Langs R05 R02 Drago Langs R05 R02 Drago Langs R05 R02

Figure 5: Tone mapping criteria evaluation. The operators are labeled as Drago2003 (Drago), Interactive Tonemap-
ping (Langs), Reinhard2005 (R05), and Reinhard2002 (R02): the box shows the lower quartile, median, and upper
quartile values. The dashed lines (whiskers) extend from the maximum to the minimum values of the datasets

and the box itself. In addition, the test persons were
asked to rate the usability of the tone mapping interface
and the time needed to create a curve. The last task
was to compare the result of the own curve applied to
the box scene with the results of the selected popular
tone mapping methods. A grade was requested for the
overall quality of each result.

5 RESULTS

5.1 Campus scene

The rst criterion to be evaluated was the brightness of
each image. Reinhard’s Photographic Tone Reproduc-
tion (henceforth referred to as Reinhard02) was rated
best, followed closely by the curve created with the
interactive tone mapping approach. Both results from
Drago’s Adaptive Logarithmic Mapping (Drago03)
and Reinhard and Devlin’s Photoreceptor Model
(Reinhard05) were rated too bright, probably because
the bag and chair areas were not displayed bright or
dark enough. The contrast was reproduced best by the
interactive tone mapping operator. Reinhard02 created
the second best contrast tending towards too little
contrast. Again, the results of Drago03 and Reinhard05
were not satisfying. Reproduction of detail in the
shadows was solved best by Reinhard02, followed by
the interactive curve. The grades of the test persons for
Drago03 were very scattered but tended to have too few
details. Reinhard05 did not deliver suf cient details
in the shadows. Details in highlights were preserved
best by the interactive operator. All the other tone
mapping algorithms retained too few details, according
to our test persons. To summarize, Reinhard02 and
the interactive operator performed equally well. Both
the Drago03 and Reinhard05 tone mapping could not
compete in our rst scenario.

This observation is supported by the grades given
for the overall image quality. If we can assume, that
the grades are interval data, the interactive operator re-
ceived the average grade 1.2, Reinhard02 2.0, Drago03
3.5, and Reinhard05 3.9 where 1 is very good and 5 is
very bad. The Box-Whisker-Plots in gure 5 show all
obtained data with median, upper and lower quartile
and maximum plus minimum values. Anyhow, we can
conclude that not a single criterion is important for the
overall image quality because otherwise the grades for
the interactive tone mapping operator and Reinhard02
grades would not differ so much. An expert curve
seems to provide the best overall image quality, but
needs to be created carefully beforehand for each scene.

5.2 Box scene

Fourteen curves have been created for the box scene
over the course of the evaluation, one of which we
created ourselves as a kind of expert curve. The created
curves are very different because the emphasis has been
set differently by the users: some only tried to map the
greyscale correctly; others mapped all colors on the
colorchecker precisely. Because of the latter outlier
points have been inserted making the resulting curve
bumpy and not monotonically increasing. This results
in some artifacts and those points have therefore been
erased from the dataset after the evaluation. In gure 6
those normalized curves are depicted. In this context,
we thought of a standard observer curve averaged over
all curves. This curve is shown in gure 6 on the right
hand side. The standard observer curve matches the
Drago03 curve for the box scene in a wide range of
input luminance values. Reinhard02’s curve for this
scene has a similar shape. This might be caused by the
box scene since the dynamic range (≈ 300:1) is close
to the dynamic range of the display (≈100:1).

WSCG 2010 Communication Papers 52

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1 0 1 2 3

re
la

tiv
e

di
sp

la
y

lu
m

in
an

ce

real log10 luminance

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1 0 1 2 3

re
la

tiv
e

di
sp

la
y

lu
m

in
an

ce

real log10 luminance

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1 0 1 2 3

re
la

tiv
e

di
sp

la
y

lu
m

in
an

ce

real log10 luminance

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1 0 1 2 3

re
la

tiv
e

di
sp

la
y

lu
m

in
an

ce

real log10 luminance

Figure 6: Tone mapping curves of the test persons (left hand side) and the standard observer curve (right hand side)

The participants needed between 5 and 24 control
points with an average of 13 to create a satisfying
curve. The linear interpolation seems to suf ce for a
reliable result. The probands required 15 minutes on
average to generate their curves, which was overall
rated as an acceptable time frame. Also, the users were
pleased with the usability of the curve tool. After a
short orientation time every participant was able to
create a curve with an outcome they found acceptable.

At last, another grade for overall image quality has
been given for the results of the individual curve and
the other three benchmark operators. On average, the
users were very con dent with their individual LDR
image (average grade 1.7) followed by the results of
Drago03 and Reinhard02 (2.3 and 2.4, respectively)
and Reinhard05 (3.8). This is not surprising since we
already concluded that the rst three mentioned tone
mapping curves are quite similar. Still, a speci cally
created curve for a single selected scene yielded the
best perceived overall quality.

5.3 Comparison to other evaluations
Kuang et al. [9] compared six tone mapping algorithms
in their study, two global and four local ones. They
used HDR images without reference and some invariant
constructed scenes for a direct comparison. None of
the tone mapping operators performed well for every
image. Thus it is reasoned that there is a signi cant
dependency between the tone reproduction method
and the selected scenario. The Photographic Tone
Reproduction and the Bilateral Fast Filter by Durand
et al. [6], two of the four local operators, performed
best on average. Both global operators, the Sigmoid
Transformation [2] and Histogram Adjustment [18],
did not achieve good results overall.

Another work from Yoshida et al. [19] examined
seven tone mapping operators in direct comparison.
Several criteria had to be rated by the participants.

Most importantly they found out that global operators
achieved a higher contrast whereas local operators
retain details better. No single criterion was deemed
to exclusively contribute to the overall image quality.
The results of the Photographic Tone Reproduction,
Histogram Adjustment and Adaptive Logarithmic
Mapping [5] were rated best in the overall image
quality, the last two mentioned being global operators.

In fact, Cadíks et al. suggest in their evaluation [3]
with fourteen tone mapping methods that global
operators perform better in terms of overall image
quality. Local ones can only compete if they have a
proper global part. Criteria, which apply to the whole
image, like contrast, are most important for the overall
quality. According to [3], this is why global operators
exhibit better results. An example of a good local
operator with a strong global part is the Photographic
Tone Reproduction once more.

Comparing those observations with our results yields
some conformity: Photographic Tone Reproduction
produces good results in every evaluation including
ours. Because our interactive tone mapping operator
even exceeds the results of the Reinhard02 operator, it
might be quite possible for our results to be reproduced
under different conditions, although accompanied by
a lot of work due to the need of a separate curve for
every scene. The global approach of our tone mapping
method can be reassured by the results of studies
revealing that a global tone mapping operator delivers a
better perceived overall image quality. A reliable result
for every scene was the goal of our implementation and
can be obtained by creating an individual curve.

6 CONCLUSION AND FUTURE
WORK

In this paper, we proposed to apply an interactive and
highly adjustable user-driven tone mapping function as

WSCG 2010 Communication Papers 53

a dedicated tone reproduction operator for individual
high dynamic range scenarios and speci c presentation
setups. This operator was designed and developed
for industrial product design as main eld of appli-
cation, where decision-makers rely on trustworthy
colorimetric and photometric lighting simulation and
reproduction. The expert user is guided by our tool to
de ne and to apply a set of key mappings between the
scene luminance values and low dynamic range display
quantities. These two-dimensional control points are
interpolated to a tone reproduction curve that can be
stored, loaded or compared to other tone mapping
curves.

To validate our approach, we chose criteria for
reliability and popular tone mapping operators as
benchmarks. A user study with thirteen participants
and two very different scenarios was conducted. The
 rst experiment was based on a relative comparison of
a user-de ned expert curve and existing tone mapping
operators from literature without direct reference. In
the second experiment, the test persons were asked to
generate their own tone reproduction curves in a sce-
nario with direct reference to a well-de ned real world
setup and to compare the resulting display images with
other published operators. Our ndings include that the
probands were able to create satisfying operators with a
small number of thirteen key mappings in an acceptable
time frame of fteen minutes on average. The users
rated the reliability of the individual curves higher than
the results of existing tone mapping operators. Finally,
we presented a standard observer tone mapping curve,
generated by averaging the results of a number of test
persons for an individual scene and presentation setup.

We expect interesting results from future work
on evaluating similarities within groups of standard
observer operators from different sets of scenes and
presentation setups. Another future application of our
approach is to generate the tone mapping curve using
existing operators from literature and to use our tool for
manual ne tuning. Lastly, we are looking forward to
the results of evaluating our user-driven tone mapping
operators in an industrial product design environment,
where our tool was designed for.

REFERENCES
[1] Michael Ashikhmin. A tone mapping algorithm for high con-

trast images. In P. Debevec and S. Gibson, editors, 13th Eu-
rographics Workshop on Rendering, pages 145–155. The Euro-
graphics Association, 2002.

[2] G.J. Braun and M.D. Fairchild. Image lightness rescaling using
Sigmoidal contrast enhancement functions. IS&T/SPIE Elec-
tronic Imaging ’99, Color Imaging: Device Independent Color,
Color Hardcopy, and Graphic Arts IV:96–105, 1999.

[3] Martin Cadík, Michael Wimmer, Laszlo Neumann, and
Alessandro Artusi. Evaluation of HDR tone mapping methods

using essential perceptual attributes. Computers & Graphics,
32:330–349, 2008.

[4] K. Devlin, A. Chalmers, Alexander Wilkie, and Werner Pur-
gathofer. Star report on tone reproduction and physically based
spectral rendering. In Eurographics 2002. Eurographics Asso-
ciation, 2002.

[5] F. Drago, K. Myszkowski, T. Annen, and N. Chiba. Adaptive
logarithmic mapping for displaying high contrast scenes. Com-
puter Graphics Forum, 22:419–426, 2003.

[6] F. Durand and J. Dorsey. Fast bilateral ltering for the dis-
play of high-dynamic-range images. In Proceedings of ACM
SIGGRAPH 2002, Annual Conference Series, pages 257–266,
2002.

[7] Raanan Fattal, Dani Lischinski, and Michael Werman. Gradient
domain high dynamic range compression. In SIGGRAPH ’02:
Proceedings of the 29th annual conference on Computer graph-
ics and interactive techniques, pages 249–256, New York, NY,
USA, 2002. ACM.

[8] R.W.G. Hunt. The Reproduction of Colour in Photography,
Printing and Television. Fountain Press, Tolworth, 5th edition,
1995.

[9] Jiangtao Kuang, Hiroshi Yamaguchi, Changmeng Liu, Gar-
rett M. Johnson, and Mark D. Fairchild. Evaluating
hdr rendering algorithms. http://www.cis.rit.edu/
fairchild/PDFs/PAP24.pdf, 2006.

[10] Rafal Mantiuk and Hans-Peter Seidel. Modeling a generic tone-
mapping operator. Computer Graphics Forum (Proc. EURO-
GRAPHICS), 27(2):699–708, 2008.

[11] John J. McCann. Art, science, and appearance in hdr images. In
Journal of the Society for Information Display, volume 15 (9),
pages 709–719, September 2007.

[12] QTPFSGUI. Open source graphical user interface application
that aims to provide a work o w for hdr imaging. http://
qtpfsgui.sourceforge.net/.

[13] Erik Reinhard and Kate Devlin. Dynamic range reduction in-
spired by photoreceptor physiology. IEEE Transactions on Vi-
sualization and Computer Graphics, 11(1):13–24, 2005.

[14] Erik Reinhard, Michael Stark, Peter Shirley, and James Ferw-
erda. Photographic tone reproduction for digital images. ACM
Trans. Graph., 21(3):267–276, 2002.

[15] Erik Reinhard, Greg Ward, Sumanta Pattanaik, and Paul De-
bevec. High Dynamic Range Imaging: Acquisition, Display,
and Image-Based Lighting (The Morgan Kaufmann Series in
Computer Graphics). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005.

[16] Jack Tumblin and Holly Rushmeier. Tone reproduction for real-
istic images. IEEE Comput. Graph. Appl., 13(6):42–48, 1993.

[17] Greg Ward. A contrast-based scalefactor for luminance display.
In Paul Heckbert, editor, Graphics gems IV, pages 415–421.
Academic Press Professional, Inc., San Diego, CA, USA, 1994.

[18] Gregory Ward Larson, Holly Rushmeier, and Christine Piatko.
A visibility matching tone reproduction operator for high dy-
namic range scenes. In SIGGRAPH ’97: ACM SIGGRAPH 97
Visual Proceedings: The art and interdisciplinary programs of
SIGGRAPH ’97, page 155, New York, NY, USA, 1997. ACM.

[19] Akiko Yoshida, Volker Blanz, Karol Myszkowski, and Hans-
Peter Seidel. Perceptual evaluation of tone mapping operators
with real-world scenes. In Bernice E. Rogowitz, Thrasyvou-
los N. Pappas, and Scott J. Daly, editors, Human Vision and
Electronic Imaging X, IS&T/SPIE’s 17th Annual Symposium on
Electronic Imaging (2005), volume 5666 of SPIE Proceedings
Series, pages 192–203, San Jose, USA, January 2005. SPIE.

WSCG 2010 Communication Papers 54

Multiscale Texture Synthesis and Colourization of

Greyscale Textures

Anders Hast

Creative Media Lab
University of Gävle

Kungsbäcksvägen 47
 SE-801 76, Gävle, Sweden

aht@hig.se

Martin Ericsson

UPPMAX
Uppsala University
Lägerhyddsvägen 2

SE-751 05, Uppsala, Sweden

martin.ericsson@it.uu.se

Stefan Seipel

GraphiX Center
University of Gävle

Kungsbäcksvägen 47
SE-801 76, Gävle, Sweden

ssl@hig.se

ABSTRACT
The main idea presented herein is to use a multiscale texture synthesis approach in order to both colourize and

upscale greyscale textures. Such textures can be vintage photos to be used in archaeological or urban 3D

visualizations and obviously the colour needs to be reconstructed some way. Due to limited quality, walls etc in

such 3D visualizations will appear either pixelized or blurry when the viewer approaches them on a close

distance. The latter if some kind of interpolation technique is being used to reduce the pixelization. The low

resolution greyscale texture and a high resolution coloured texture is used for the colourization and upscaling,

which will produce a colour version of the greyscale texture with 4 times higher resolution in each upscale step.

The novel idea is to use multiscale texture synthesis in HSV space for the first upscale in order to create a RGB

colour image for subsequent upscaling, using either ordinary RGB multiscale texture synthesis or continue using

HSV multiscale texture synthesis. These two main approaches will be compared and discussed.

Keywords
Multiscale Texture Synthesis, Colorization, Colour transfer, Greyscale Photos.

1. INTRODUCTION
In the process of 3D virtual reconstruction and

visualization of buildings it is necessary to acquire

textures of walls etc and often photographs are being

used for obtaining the textures. However such walls

and parts of buildings, especially for archaeological

visualizations, might not exist anymore and it is

therefore necessary to use old photos, often greyscale

ones. There are hence two problems that must be

solved. First of all the colour must be reconstructed,

which might be a hard task unless we know at least

something about the colours that were used when the

building was still standing. Furthermore the quality

must be improved because aliasing problems will

occur when these textures are used for the 3D

models. Usually different interpolation techniques are

being used in order to minimize the aliasing effect

when one moves close to the walls. One drawback

with antialiasing [Fol97] is that it will make the

texture look blurry, however this is preferred over

having the pixels appear like big homogeneous

square blocks, which makes the texture look

pixelized.

We propose a novel approach for the colourization of

a greyscale textures and a subsequent upscaling in

order to increase the resolution so that the blurriness

of interpolation can be avoided, using a modified

variant of multiscale texture synthesis.

Multiscale Texture Synthesis
This paper does not deal with ordinary texture

synthesis in general, but a short introduction will be

given before we explain the basics of multiscale

texture synthesis.

1.1.1 Texture Synthesis
Texture synthesis (TS) is the process of taking one

smaller texture and then make it larger in size, not by

tiling, but by synthesizing it [Efr99, Wei00]. Several

approaches exist and the hierarchical TS method

[Hee95] builds a tree of the texture with different

sizes very much like in the mipmapping method

[Wil83]. The smallest texture (on the lowest level) is

then used in the first step and texels are randomly

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2010 Communication Papers 55

taken from it and randomly inserted into the new

synthesized texture of corresponding size. Then

follows a process where a mask with a specific shape

[Har01] is scanning the synthesized texture in a

scanline order fashion while copying texels from the

original texture, which has the best matching

neighbourhood [We02]. Generally the matching is

computed as the sum of the squared differences of the

RGB values within the masks. In the same time as the

texture is synthesized on this level, another texture is

synthesized on a higher level by copying a 2x2

neighbourhood into that texture, which accordingly

will be 4 times larger.

1.1.2 Multiscale Texture Synthesis
In multiscale texture synthesis [Lee08] (MSTS) there

already exists a texture version available of the

otherwise initially randomized and then synthesized

texture, namely the target texture. Then a number of

examplar textures are taken so that they will contain

similar details like the target texture but on higher

levels, and they can subsequently be used to build a

more detailed version of the target texture. An

examplar graph is built for this purpose where the

target texture is placed in the root and textures with

higher details are placed on the next levels depending

on their resolution. One texture on one level can thus

depend on several exemplar textures on other levels.

Since the colours can differ on different levels it has

been proposed to use a colour transfer function

[Han08]. Another approach can be used when the

colours in the target texture are substantially different

from the examplar texture [Has09], i.e. when the

matching is bad.

1.1.3 HSV Multiscale Texture Synthesis
The HSV colour space MSTS method takes a

different approach using only one examplar image

[Has09]. As an example: when 3D reconstruction of

buildings is used by the proposed approach it is

possible to use an image of the whole wall or large

parts of a wall (see figure 1) using a high resolution

camera.

Figure 1. The target texture (204x153 pixels) with

a red rectangle showing what part that will be

zoomed.

The inserted details can be taken from an examplar

image taken from the same wall. This image will be

taken on a close range and will therefore cover a

small part of the wall as shown in figure 2. Note that

the texture to the left has been down sampled to fit in

the paper. To the right is shown a small part, inside

the red rectangle, in its actual resolution. It is obvious

that the examplar texture has a high resolution

compared to the target texture in figure 2, which is

also shown in its actual resolution.

Figure 2. The examplar texture to the left,

covering a smaller part of the wall. As shown to

the right it has a high resolution (768x768 pixels)

that will be used for the upscaling.

 The HSV method for MSTS (HSV-MSTS) can

handle colour differences in the following way: Let

us say that a single brick in a brick wall have a

greenish tone in the otherwise red wall. Then this

problem can be handled by converting the colours

into the Hue, Saturation and Value (HSV) colour

space [Son99]. The HSV colour model separates the

colour into three channels, similar to the more

common red, green and blue colour model (RGB) but

instead it uses a measurement of hue, saturation and

value also called brightness. This model of

representing colours gives the ability to change the

brightness independent of the other colour

information in the picture. As the human perceptive

system is more sensitive to brightness discrepancies,

this potentially can give a perceptually better image.

In figure 3 the original image to the left is compared

to the resulting texture from ordinary MSTS in the

middle and the image to the right shows the HSV-

MSTS. It is obvious that the colours are not

represented correctly in the middle image. Converting

to HSV space and synthesizing the V part while

interpolating H and S, will give a much more accurate

result. The problematic greenish brick (inside the red

truiangle) is synthesized keeping the greenish tone,

using the HSV approach, while the ordinary MSTS

makes it more red than green.

WSCG 2010 Communication Papers 56

It should be noted that the target texture was

originally larger in size and then down sampled by

averaging 4 pixels into one. In this way it was

possible to compare how close to the real thing the

synthesis process was, i.e. we have a ground truth to

compare with. Hence the texture to the right in figure

3 has a higher resolution than what was used in the

process.

Figure 3. The high resolution target image to the

left and a synthesised version in the middle using

ordinary MSTS yielding colours, which are far

from correct compared to the right where the

HSV approach is used.

The synthesized textures on higher levels are

constructed using the synthesized V elements and the

H and S elements are taken from the target texture,

which ensures that the original colours of the bricks

are maintained. However it is important that the H

and S elements are interpolated, e.g. bi-linearly (or

using some other interpolation scheme [Gon93]), in

the upscaling process, otherwise the colour will be

visible as blocks.

Figure 4. Top: pixelization. Middle: Interpolation:

Bottom: Multiscale Texture Synthesis (HSV).

In our approach a simple variant of bilinear

interpolation was used taking into account only the 4-

neigbours [Son99]. The result is shown in figure 4. In

the top it can be seen how the texture (within the red

rectangle in figure 1) is magnified without

interpolation and in the middle interpolation has been

used. Nonetheless the result is far from appealing.

The result of the previously explained HSV-MSTS

approach is shown in the bottom. It is obvious that

this approach inserts details, making the image

looking much better than just using interpolation in

order to get rid of the pixelization.

Colourization of Greyscale Textures
Greyscale texture and image colourization is applied

for an example in greyscale photo editing and

scientific illustrations. The process of colourization

increases the visual appeal of greyscale images and

can perceptually enhance scientific illustrations

[Che04]. It has also been used for colourization of

classic movies, even though not all are that happy

about that the visual experience is changed [Dan90].

Region based colourization can be performed by

combining greyscale image matting algorithms

[Smi96] with colour transferring techniques [Wel04].

First objects with that will have different colours are

extracted from the greyscale image. Then each object

is colourized using colour transferring and then these

colourized objects are seamlessly composited

[Mor95, Por84].

Colourization can be either user guided [Lev04] or

automatic. And there are also techniques that use a

combination of these two [Iro05]. The user guided

method requires the user to scribble the desired

colours in the interiors of the various regions. On the

other hand, automatic techniques like the one

proposed by Welsh et al [Wel02] colorizes an image

by matching small pixel neighbourhoods in the image

to those in the examplar image, and transferring

colours accordingly. Hence they propose to use a

variant of texture synthesis since they are matching

local pixel luminance statistics between colour

example and target grey-scale image.

The procedure according to Welsh et al [Wel02] and

later used by Karthikeyani et al [Kar07] is as follows:

first each image is converted into the lαβ-colour

space [Rud98]. (Similarly Pan et al [Pan04] used this

space to add colour to video and animation clips).

Then jittered sampling is used to select a small subset

of pixels in the colour image as samples. Next each

texel in the greyscale image is traversed in scan-line

order and the best matching is selected using

neighbourhood statistics within in a 5x5 mask. The

best match is determined by using a weighted average

of texel luminance and the neighbourhood statistics.

The chromaticity values (α,β channels) of the best

WSCG 2010 Communication Papers 57

match are then transferred to the greyscale. In order

to obtain a better correspondence in the luminance

range between the two images, luminance remapping

[Her02] is performed.

2. COLOURIZING USING HSV-MSTS
This paper proposes how textures like wall textures

can be colourized and upscaled using a novel idea

that differs from the idea proposed mainly by Welsh

et al [Wel02]. First of all we show that HSV-MSTS

can be used for the colour transfer. Secondly we

show that the upscaling process can be integrated in

the process.

One of the reasons to use HSV-MSTS is that jittered

samples would fail to find enough texels containing

the mortar in the brick wall examples, unless the

amount of samples is heavily increased. Furthermore

we have found that the matching differences of the V

value of each texel using a 3x3 mask is enough for a

visually pleasing result, instead of a 5x5 mask

matching neighbourhood statistics.

The novel idea is to use the previously explained fact

that texture synthesis can be performed in HSV using

the V channel for matching, in order to colourize a

greyscale photo. In fact, for a greyscale photo only

the V channel contains any information since there is

no colour that can be saturated or be defined by its

hue. Figure 5 shows three target textures in greyscale

that will be colourized by the proposed approach.

The examplar texture will be the same as shown in

figure 2, that is downscaled to a size that corresponds

to the size of the target textures. However we will do

the matching with one difference, we will use a

greyscale version of that texture for matching. Then

we can proceed in two ways. When a best match is

found we can take the corresponding pixel from the

colour version of the examplar texture, either on the

same level to construct a coloured version of the

texture. As an alternative we can go a head and take

the four corresponding pixels from the texture on a

higher level (4 times larger), and hence make one

step of upscaling on-the-fly.

Obtaining the Greyscale Examplar
Anyhow, the greyscale examplar image must be

obtained from the colour version and this can be done

in many ways. Since this paper presents a proof of

concept rather than being applied on any certain

vintage photo, we computed the greyscale examplar

in the same way as we computed the target image as

it was originally a colour image too.

Generally the greyscale value can be computed as a

weighted sum of the RGB value:

bgr wbwgwrg *** (1)

Here we have the opportunity to arrange the weights

so that the proposed algorithm works in the best way,

i.e. the grey level histograms of the two images

should be made as similar as possible.

Figure 5. The three walls (top left) are colourized

with no upscale (bottom left) and one step of ‘on-

the-fly’ upscale to the right.

3. DISCUSSION
It should be noted that the target textures shown in

figure 5 have a relatively low resolution, which is

often the case for vintage photos. Nonetheless the

algorithm works well despite the low resolution, but

gives even better results if the resolution is higher.

After the first colorization step we can proceed in

another two ways, either we continue using the HSV

variant or the RGB variant of MSTS.

In figure 6 the result from the subsequent upscalings

are shown. Here we have been using the HSV

approach all along. It appears like the bottom texture

has a more spotty appearance compared to the more

homogenously coloured texture in the top. Obviously

the on-the-fly uspcaling introduces a noisy behaviour

and it is better to upscale a colourized texture twice.

Besides that, the textures are quite equal in

appearance.

WSCG 2010 Communication Papers 58

Figure 6. Top: the colourized wall HSV upscaled

twice. Bottom: the colourized and on-the-fly HSV

upscaled wall is then HSV upscaled once.

It should be noted that the V channel has been scaled

with a small factor since the output was a bit darker

compared to the original colour in the exemplar

texture.

Next we go on to examine what happens if we would

use the RGB variant for the subsequent steps and the

result is shown in figure 7. It is quite hard to tell any

difference in quality within the bricks, however the

bottom images seem to have a less tendency to smear

out details so that bricks become connected when

there is just one or two pixels containing the mortar

or when the border between bricks is quite fuzzy due

to the low resolution. Therefore it seams like on-the-

fly upscaling is to prefer when using the RGB-MSTS

of the colorized textures but not for the HSV-MSTS.

Figure 7. Top: the colourized wall upscaled twice.

Bottom: the colourized and on the fly upscaled

wall is upscaled once.

Furthermore it can be noticed that the smearing out

does not really occur at all when using the HSV-

MSTS all along.

A close up of another target texture showing the edge

of a brick arch, that has been upscaled so it is 16

times larger is shown in figure 8.

Figure 8. Left: the colourized wall upscaled twice.

Middle: The original greyscale Right: The on-the-

fly upscaled wall is upscaled once.

WSCG 2010 Communication Papers 59

Figure 9. Top: the colourized wall upscaled twice.

Bottom: the colourized and on the fly upscaled

wall is upscaled once.

It is clear from the comparison that the on-the-fly

upscaling generally gives a better result for greyscale

textures with relatively low resolution as has been

used in our tests. The same conclusion can be drawn

from figure 9 and 10 where the other two test textures

are shown (see also figure 5).

It should be remembered that even of the bottom

textures are better they are not perfect and that is due

to the extremely low resolution of the target textures

used in our tests in order to test if the algorithm

works for extreme cases. And therefore using higher

spatial resolution will give even better results. It

should also be noted that artefacts to great extent

come from the fact that the matching was bad in these

areas.

Figure 10. Top: the colourized wall upscaled

twice. Bottom: the colourized and on the fly

upscaled wall is upscaled once.

This depends on too large differences in the image

content between the target texture and the examplar.

This could to great extent have been avoided using

pre-processing of the images in order to normalize

the intensities so that the impact of the flash etc is

removed.

The tests were all performed in software and as we

used rather small images time was not an issue.

However, as shown in [Has09] we have implemented

a fast version on the GPU and a parallel

implementation on a HPC cluster is on the way. This

will allow us to develop the idea further and make

more thorough tests on larger images.

WSCG 2010 Communication Papers 60

4. CONCLUSIONS
We have shown that colorization and upscaling of

low resolution greyscale images can be performed

using the recently published HSV-MSTS approach,

using small masks like in our example a size of 3x3.

Our tests also indicate that subsequent upscaling will

become visually slightly better using RGB-MSTS and

that on-the-fly upscaling is to prefer for this case.

Future Work
In the future we intend to develop the HSV-MSTS

approach where one important task is to compare

other colour spaces like the HSL and the lαβ-colour

spaces. Another important task is to work on real

vintage photos for colorization and upscaling.

5. REFERENCES
 [Ale99] Alexei A. Efros and Thomas K. Leung.

Texture Synthesis by Non-parametric Sampling,

In Proceedings of ICCV 99, pp 1033-1038. 1999.

[Che04] T. Chen, Y. Wang, V. Schillings, and C.

Meinel, Greyscale Image Matting and

Colourization, Proceedings of Asian Conference

on Computer Vision, pp. 1164-1169, 2004.

[Dan90] C. B. Daniels, Note on Colourization, The

British Journal of Aesthetics, 30(1), pp68-70,

1990.

[Fol97] Foley, J. D., van Dam, A., Feiner, S. K.,

Hughes, J. F. Computer Graphics - Principles and

Practice, Addison-Wesley, pp. 617-646. 1997.

[Gon93] Gonzales, R. C., Woods, R. E. Digital

Image Processing, Addison-Wesley, pp. 300-302.

1993.

[Han08] Han, C., Risser, E., Ramamoorthi, R. and

Grinspun, E., Multiscale Texture Synthesis. ACM

Transactions on Graphics (Proceedings of

SIGGRAPH 2008), 27(3) pp. 51. 2008.

[Har01] P. Harrison, A non-hierarchical procedure

for re-synthesis of complex textures. In

proceedings of the WSCG'01, pp 190-197, 2001.

[Has09] A. Hast, M. Ericsson, T. Reiner, Improved

Textures for 3D Virtual Reconstruction and

Visualization by a Modified Multiscale Texture

Synthesis Approach, ARCH-3D, pp. 1-6, 2009.

[Hee95] Heeger, D. and Bergen, J. Pyramid-Based

Texture Analysis / Synthesis. SIGGRAPH pp.

229-238. 1995.

[Her02] A. Hertzmann, , C. Jacobs, N. Oliver, B.

Curless, D. Salesin, 2001. Image Analogies, In

Proceedings of ACM SIGGRAPH, pp. 341-346.

2002.

[Kar07] V. Karthikeyani, K.Duraiswamy, P.

Kamalakkannan, Conversion of Grey-scale image

to Color Image with and without Texture

Synthesis IJCSNS International Journal of

Computer Science and Network Security, VOL.7

No.4, April 2007.

[Lee08] Lee, S-H., Park, H-W., Lee, J. and Kim, C-

H. Multi-scale Texture Synthesis. Journal of

KCGS (The Korea Computer Graphics Society),

14(2). 2008.

[Lev04] A. Levin, D. Lischinski, and Y. Weiss,

Colorization using Optimization, Proceedings of

ACM SIGGRAPH, pp. 689-694, 2004.

[Mor95] E. N. Mortensen and W. A. Barrett,

Intelligent scissors for image composition, in

Proceedings of ACM SIGGRAPH, pp. 191–198,

1995.

[Pan04] Z. Pan, Z. Dong, M. Zhang, A New

Algorithm for Adding Color to Video or

Animation Clips, WSCG, pp.515-519, 2004.

[Por84] T. Porter and T. Duff, Compositing digital

images, in Proceedings of SIGGRAPH, pp. 253–

259. 1984.

 [Rud98] D. L. Rudermann., T. W. Cronin and C. C.

Chiao, Statistics of Cone Responses to Natural

Images: Implications for Visual Coding, J.

Optical Soc. Of America, vol 15, no. 8, pp. 2036-

2045, 1998.

[Wei00] Li-Yi Wei, Marc Levoy. Fast Texture

Synthesis using Tree-structured Vector

Quantization, Proceedings of Siggraph, pp 479-

488. 2000.

[Wei02] Li-Yi Wei. Texture synthesis by fixed

neighborhood searching. PhD Thesis, Stanford

University, Palo Alto, CA, USA, 2002.

[Wel02] T. Welsh, M. Ashikhmin, and K. Mueller,

Transferring colour to greyscale images, ACM

TOG, vol. 20, no. 3, pp. 277–280, 2002.

[Wil83] Lance Williams, Pyramidal Parametrics,

Computer Graphics, 17(3) pp.1-11. 1983

[Son99] Sonka, M., Hlavac, V. and Boyle, R. Image

Processing, Analysis, and Machine Vision.

Thomson Learning, USA. pp.28, 38. 1999.

[Smi96] A. R. Smith and J. F. Blinn, Blue screen

matting, in Proceedings of ACM SIGGRAPH, pp.

259–268. 1996.

WSCG 2010 Communication Papers 61

http://www.cs.berkeley.edu/~efros/research/EfrosLeung.html

WSCG 2010 Communication Papers 62

Making People Move – Walking Techniques in a CAVE

Michael Wegner
University of Applied Sciences

Dresden, Germany
michael.wegner@informatik.htw-

dresden.de

Markus Wacker
University of Applied Sciences

Dresden, Germany
wacker@informatik.htw-

dresden.de

ABSTRACT

Among navigation techniques in Virtual Environments (VEs) physical walking is most natural and intuitive. If we look at the
performance of users in a CAVE though, we notice that they almost never leave their starting point. In this paper we investigate
how walking can be stimulated for navigation in a CAVE. However, our goal is not merely to mimic walking as such – as in
most approaches – but rather to encourage users to take advantage of the entire tracking space at their disposal. We combine our
proposed walking elements with other components to create new metaphors for navigation in VEs and compile the evaluation
carried out during our thorough, informal test phase.

Keywords: interaction techniques, CAVE, navigation, travel task, walking

1 INTRODUCTION

Being one of the primary interactions in Virtual En-
vironments (VEs), navigation has been an area of in-
tensive research since the beginnings of virtual reality.
Hence a vast literature and many approaches for naviga-
tion in VEs exist. It is clearly true that physical walking
is one of the most natural and intuitive ways to navigate
(cf. the study by Ruddle et al. [11]). If we look at the
performance of users (expecially novices to the system)
in a CAVE however, we notice that they mostly seem
to be pinpointed to the ground, almost never leaving
their starting point even if the system offers an adequate
space to move in. In this paper we investigate walking
techniques that motivate the user to take advantage of
the entire tracking space at their disposal. We combine
these ideas with other navigation elements to create new
metaphors for navigation in VEs. Here we concentrate
on navigation in a CAVE with its easy and relatively
unimpeded possibility for physical movement tracking
(e.g. no cables or backpacks). The starting point for our
research was to design navigation techniques for the ex-
ploration of machine models in a CAVE, that are mod-
erately larger than the available physical volume. Dur-
ing our investigation we have developed a whole set of
navigation techniques suitable for different travel tasks
which we present here. Moreover we consider walk-
ing as a tool for building effective travel techniques and
encouraging this natural movement. Our contribution
consists in extending existing taxonomies by integrat-
ing the walking metaphor both in the theoretical con-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

cept as well as providing concrete practical travel tech-
niques.

It is important to have our technical setup in mind
since it is vital for our modes of navigation: We use a
five-sided CAVE (only back side is missing) with rect-
angular back projection and a resolution of 1600x1200
pixels on screens of 3.6 meter length and 2.4 meter
height each. This means, that the side walls exeed the
floor and the ceiling projection. The stereo effect is
achieved using the INFITEC filter technique. Tracking
of the user is done via an infrared camera setup from
ART with retroreflective markers on trackable objects.
Examples are the master INFITEC glasses for tracking
the main user’s head position and orientation (which
we take for the position of the user) or a flightstick –
a 6DOF device with additional buttons.

The remainder of this paper is organized as fol-
lows: first we give an overview of relevant existing
approaches concerning navigation in a CAVE and
classify our contribution. Next we recapitulate the
basic concepts of a taxonomy for navigation. After-
wards we describe our navigation elements separately,
combining them to whole navigation techniques in
the following section. Finally we give an overview of
user experience with the new navigation techniques,
summarize our contribution, and give an outlook to
future investigation.

2 RELATED WORK
Concerning navigation techniques, Anthes et al. [1] dis-
tinguish between movement vector and gaze orientation
and give a host of models for each one. Tan et al. [13]
propose a rather complex task-based taxonomy. Based
on what the user is supposed to do in the VE (task se-
lection) the designer develops an abstract solution to the
problem (travel control) within the boundaries of avail-
able hardware and similar restrictions (user interface).
In this paper we work the other way around, using the

WSCG 2010 Communication Papers 63

travel tasks described in [4] to evaluate our travel tech-
niques in the end (see section 3).

There has been extensive research into walking in-
terfaces, offering a multitude of different approaches in
order to overcome the physical limits of the restricted
space of interaction. However, all remain single stand-
ing solutions, none of them relating their technique to
a high level taxonomy. Moreover their goal generally
seems to be to mimic walking as closely as possible
within the confines of a small tracking space.

A common approach for building walking interfaces
is to introduce specialized hardware. Darken et al. [5]
proposed an omni-directional treadmill, using two per-
pendicular treadmills to allow travel in any direction.
Jiung-yao et al. [9] developed the gait sensing disc, an
’omni-directional ball-bearing disc locomotion device’.
The CirculaFloor by Iwata et al. [8] uses movable tiles
to achieve the same effect. None of these approaches
however work well in a CAVE environment: Since
here, in contrast to an HMD scenario, the user is still
aware of his real world surroundings, additional visible
hardware severely detracts from his sense of presence
while also blocking at least part of the floor projection.

Another solution is to let the user mimic walking
while actually staying in one place. Slater et al. [12] use
a neural network to determine when the user is walk-
ing in place. In this approach the direction of travel
is derived from the direction of the user’s gaze while
walking-in-place serves as the trigger for movement.
The study concludes that Walking-in-Place yields a
higher sense of presence than a pointing technique.
Still, a later study (Usoh et al. [14]) pointed out ’[...]
that real walking is significantly better than both virtual
walking and flying in ease (simplicity, straightforward-
ness, naturalness) as a mode of locomotion.’ We do not
think Walking-in-Place is particularly well suited for
CAVEs since it tends to anchor the user in one place dis-
couraging natural movement inside the projection space
– a fact that we explicitely address in this paper.

Another answer to the problem of limited tracking
space is the addition of translational or rotational gains
to the user’s movements in order to scale the virtual
space or redirect the path the user is taking through the
VE. Engel et al. [6] use a real-time controller to deter-
mine rotational gains on the fly and use these to redi-
rect the user. However, since a CAVE is much smaller
than the size of their tracking space (9x12 meters), this
approach is not feasible for us. Interrante et al. [7]
propose a metaphor of Seven League Boots similar to
one of our ideas. Here, the covered walking distance
is scaled in the VE but only in the direction the user
is intending to walk. This is done by a weighted sum
of gaze and walking direction. A study by Williams et
al. [15] investigated how different translational gains
affect performance for such techniques. They conluded

that even the highest tested gain (10:1) did not have a
significant effect on errors or latency.

An approach especially designed for the CAVE is
’Redirected Walking in Place’ by Razzaque et al. [10].
In order to avoid the user looking at the very often inex-
istent back wall and keep him turned towards the front,
the rotation of the VE is constantly changed to com-
pensate for the user’s movements. This approach relies
heavily on the user not making abrupt turns and not re-
alizing that he is being made to turn by the simulation.

3 BASIC TOOLS
Bowman et al. [3] presented a task decomposition con-
cept for the classification of travel techniques. Since it
is relevant for our contribution and – in our eyes – a
good starting point for designing interaction techniques
and analyzing them, we here state the main ideas of this
taxonomy. They divided the travel task into three sub-
tasks:

• Direction or target selection specifies how or
where the user moves,

• Velocity/acceleration selection specifies the speed
control,

• Condition of input specifies how the travel is
started, continued, and terminated.

In each subtask the developer can choose from a variety
of possible components to form a complete travel tech-
nique (see figure 1). All in all Bowman et al. present

Figure 1: Taxonomy of travel techniques with travel
subtasks (taken from [3]).

four different taxonomies to gain more complete un-
derstanding of the tasks and the techniques involved.
However, none of these should be considered ’the cor-
rect one’. The one we have chosen presents the view on
different components to form a whole technique.

WSCG 2010 Communication Papers 64

4 EXTENDING THE TAXONOMY
When developing their taxonomy Bowman et al. ex-
plicitly do not take physical motion into account. Con-
sequently we will describe in our first step how walking
could be used in each component of the above taxo-
nomy(for overview see figure 2).

Figure 2: Extended Taxonomy with suggestions for
walking interfaces

4.1 Direction/Target Selection
Generally speaking, there are two methods to determine
the direction of travel via walking – direct and indirect.

In indirect approaches walking is only the means to
reach certain key positions. The actual travel direction
or target depends on the position of the user. A simple
example are virtual transporter pads: if the user steps
onto one he is automatically flown or teleported to his
target. Of course this leaves him with little actual con-
trol. One might also assign certain directions of travel
to certain positions or regions in the tracking space.
In one of our techniques we assigned the direction of
travel to each edge of the CAVE, respectively.

The direct approach records the actual movement di-
rection of the user and applies it to the direction of
travel in the VE. This works well as long as there is
enough tracking space in the direction one wishes to
travel. However, if the user is standing right beside a
projection screen he will not be able to travel in this
direction without first correcting his position. On the
other hand, this approach allows for very natural rela-
tive travel (travel parallel to a reference point), because
the user can look around freely while moving in another
direction.

4.2 Velocity/Acceleration Selection
The first thought for a technique would be to use the
speed of the user’s movement to control the speed of
travel. But since it is hard to estimate your own veloc-
ity, especially while the virtual world is being moved
around you, we don’t think this idea holds much poten-
tial, especially inside the cramped tracking space of a
CAVE.

A more promising way to determine the speed of a
travel technique through walking is to measure the dis-
tance from a specific point of interest (starting/reference
point) to the actual position of the user. For example the
velocity might increase if the user walks away from the
center of the CAVE. Of course the starting point does
not need to be fixed. One can also take the position of
the user as a reference point when the technique is trig-
gered. However, the longer the technique is active the
higher the probality the user loses orientation and is un-
able to intuitively decelerate by walking back to where
he came from.

4.3 Input Conditions
Walking can be used directly or indirectly to start or
stop a travel technique. Indirectly by having the user
move to or stand on special trigger points in the tracking
space, and directly through movement itself. For exam-
ple, a travel technique might be initiated or aborted by
taking a step forward or backward respectively. How-
ever, since with this concept every movement would be
considered a potential trigger, it effectively anchors the
user in one spot – a problem we wanted to avoid. A
travel technique might also be active as long as the user
is actually walking around. For techniques that amplify
movement this is a naturally occuring input condition
(see our first proposed navigation technique in the next
section).

5 NAVIGATION TECHNIQUES FOR A
CAVE

Having expanded our toolbox with new walking ele-
ments, we now combine old and new elements of the
taxonomy to give examples for new navigation tech-
niques. These are intended to encourage users to move
around inside the tracking space of a CAVE, opening
the possibility for more intuitive navigation in a limited
space of interaction.

5.1 Seven-league boots
Our first navigation technique is an exaggerated move-
ment technique similar to the Seven League Boots pro-
posed by Interrante et al. [7]. The user travels by walk-
ing around but his tracked movement in the real world
is scaled to allow him to cover greater distances in the
VE. To this end, we simply multiply the difference be-
tween the user’s position in two successive frames by a
(variable) gain.

Concerning taxonomy in this case we use movement
direction to determine the direction of travel. Two input
conditions have to be met for the travel technique to be
active. First the user has to hold down a button while he
is using the technique. Secondly he has to move around
in order to get the desired effect. Of course one might
consider the user’s movement the only input condition

WSCG 2010 Communication Papers 65

Figure 3: Automatic calculation of gain using virtual and walkable distance in our Seven-league boots technique

but this would make normal or even downscaled preci-
sion movement (without gain / not pressing the button)
impossible (cf. exploration, search vs. maneuvering in
section 6).

In this technique the velocity of travel is directly de-
pendent on the user’s velocity and the gain used to scale
the movement. The easiest way to determine speed is
to just assign a fixed value to the gain. Of course with a
gain that is too small one constantly has to double back
inside the tracking space in order to travel a significant
distance in a specific direction. If the gain is too high
one risks reaching points far beyond the actual content,
making exact travel to a specific target nearly impos-
sible. One could try to give dynamic speed control to
the user via hand input (e.g. velocity scales with the
distance from the hand to the body) or even by taking
walking speed into accout. But since it is hard for users
to get a good feeling for distance and speed in VEs this
could easily overburden them.

Instead we propose to automatically calculate and set
the gain every time the technique is triggered. The goal
is to automatically allow the user to walk to every point
in the VE at every time no matter where his starting
position might be. To achieve this two variables have
to be taken into account (see figure 3). The first is the
distance from the user’s position to the ’edges’ of the
VE. Secondly one has to account for the user’s posi-
tion inside the CAVE itself i.e. the distance the user can
freely walk before hitting a projection screen. We now
take the ratio of virtual and walkable distance for every
direction as gain whenever the technique is triggered.
If the user is standing very close to a wall, the corre-
sponding direction is not considered because of the po-
tentially unnaturally high gain owing to a very small
trackable distance. Of course we also assumed that the
user does not intend to walk into a wall.

In particular for rooms or objects that are slightly
larger than the tracking space of the CAVE we think
this approach is very promising because the gains tend
to remain near the value one. For example, previewing
the design of a new car or construction machine can eas-
ily be accomplished with this technique even though its
dimensions are generally larger than the 3.6 x 2.4 me-
ters of our CAVE. We will report on users’ experience
in the next section.

5.2 Other techniques
While we think the Seven-league boots are the most
highly developed of our techniques, there are other
ideas that warrant further investigation.

In our scrolling technique we used walking solely as
the trigger for movement. Whenever the user steps near
a projection wall (e.g. less than one meter distance –
see figure 4) he starts to travel with constant speed in
the direction of the wall. Much like scrolling with the

Figure 4: Area the user has to stand in to initiate travel
in our scrolling technique

WSCG 2010 Communication Papers 66

mouse on a desktop (often applied in computer games)
the user can ’scroll’ the VE by stepping to the appro-
priate side. Unfortunately this can become tedious very
fast, especially if the speed of the travel technique is
high. If you overshoot your target you have to move to
the opposite side to reverse the direction. In case that
happens more than once the user gets tired or irritated
very quickly.

Hence we modified the above technique by using the
direction of his gaze as the travel direction. This ap-
proach has two advantages. Areas of the tracking space
that are otherwise rarely visited are assigned a practi-
cal use. Furthermore, the only input condition for this
technique is the position of the user, leaving hands and
possible input devices free for other actions. However,
one should somehow visualize the area (eg. on the floor
or as a virtual transparent curtain in space) that triggers
the technique to avoid having it triggered by accident.

The directed stepping technique also uses movement
to determine direction. However, it does not depend
on continuous input. By taking a step in any direction
while holding down a button the user can trigger tra-
velling in that direction with a constant speed (see fig-
ure 5). Whenever he steps in another direction while
the technique is active the direction of travel is changed
accordingly. This allows for very fast, albeit potentially
disconcerting course corrections. The user can instan-
taneously reverse direction by simply stepping in the
opposite direction.

Figure 5: directed stepping – a step in a direction trig-
gers movement in that direction

6 RESULTS
In order to analyze our results we again refer to Bow-
man et al. [4] who distinguish three main travel tasks:

• Exploration: Browsing the environment without a
goal, obtaining information about the objects and lo-
cations within the world. This task is typical for (but

not limited to) the beginning of an interaction with
an environment.

• Search: Travel to a specific target location.

• Maneuvering: Subtle positioning (e.g. of the view-
point) in a local area with precise movements in-
volved.

We here analyze our techniques in relation to these
three task types, while also taking into account factors
like size or structure of the VE.

Exploration of small to medium sized VEs was our
main goal when designing Seven-league boots. The
idea was to give a designer or mechanical engineer an
easy to use tool to examine models of cars or machines
in the CAVE that do not fit in the captured volume. To
that end the technique proved to be uniquely effective.
Generally it could be argued that this technique is well
suited for all three task types as long as the VE is rel-
atively small. Manoeuvering to exact locations is as
easy as literally walking there (with or without pressed
button, i.e. scaling gain). Since the technique is very
similar to a pure walking interface (like the one Ruddle
and Lessels [11] use) it stands to reason that searching
should be equally as effective. Moreover we have not
met problems with the scaling of the lateral movements
to result in excessive swaying, discomfiting feeling in
open space, and disastrous effects in case of closed
spaces reported in [7]. Some questions (in parts related
with the results in [7]) remain to be answered. One is
how well the performance of Seven-league boots scales
with the size of the VE. How high can the gain get be-
fore the technique becomes unusable? How does the
structure of the VE (e.g. object clutter) factor into this?

Our scrolling technique on the other hand is more
suited for travel in large VEs, especially if accuracy
and relative travel is not a concern. We observed that
most often the user walks to a trigger region in the di-
rection he wishes to travel even though he does not have
to since the determination of direction is based on gaze.
Since when starting travel he is generally looking at his
target this is still quite intuitive. However, we found
that actions like correcting the course after overshoot-
ing do not come naturally to most users. Furthermore
in our case, the user might have to stare at a projection
wall he is standing directly in front of, resulting in a
view of only a sea of pixels rather than a clear image.

Directed stepping is still work in progress and needs
further investigation. Especially with this technique,
the step length to change direction has to be chosen
carefully. If it is too short, small (unintentional) move-
ments of the body might render the technique unstable.
If it is too long starting travel at all might be virtually
impossible. Because this technique is much less de-
pendent on available tracking space it seems especially
suited for travel in larger VEs. Similar to pointing tech-
niques it allows for relative movement meaning the user

WSCG 2010 Communication Papers 67

can freely look around while travelling in any direction.
However it still has to be determined how this technique
performs for small course corrections during travel.

Finally we did not address the case of critical infor-
mation being located in the direction of the missing
back wall of the CAVE. We deliberately did not allow
for rotation of the VE in any of our techniques since we
wanted to keep them simple and not disorient the user.

In general we believe that navigation techniques
should be customized to the requirements of the
particular VE. We want to stress that walking should
not be overlooked in this design process, especially
when looking for a way to determine the direction of
travel (be it directly or indirectly). There is also some
potential for walking as an input condition. For now,
we did not find a satisfying way to use walking for
determining velocity and leave this open to further
research.

7 CONCLUSION AND FUTURE
WORK

We considered walking to be combined to new naviga-
tion techniques according to the taxonomy of Bowman
et al. [3]. We believe our extension of the taxonomy
can be a valid starting point for designing walking in-
terfaces. Especially in a CAVE such techniques allow
us to utilize the available tracking space as an addi-
tional input device. Of course the examples we gave for
the different components of the taxonomy are far from
complete. We still carry on with our research looking
at different ways walking can be used for navigation.

Moreover, the navigation techniques we proposed are
issue of further investigation. For the Seven-league
boots we plan to experiment with ways for segmenting
the VE into compartments to keep gains small while
using this technique. This might be done beforehand or
dynamically by the user. The scrolling technique might
work better with an alternative method for determining
direction. We also want to test different ways for rotat-
ing the VE (starting from the results of [10]) to make
up for the missing back wall of the CAVE.

After an informal testing phase in order to optimize
the techniques more generalized user tests for our dif-
ferent approaches have to be carried out to obtain more
objective results about their performance. By using
testbed evaluation as suggested by Bowman et al. [2]
we hope to gain important knowledge of how well our
navigation techniques work in relation to other options.

REFERENCES
[1] C. Anthes, P. Heinzlreiter, G. Kurka, and J. Volkert. Navigation

models for a flexible, multi-mode vr navigation framework. In
VRCAI ’04, pages 476–479, 2004.

[2] D. A. Bowman, D. B. Johnson, and L. F. Hodges. Testbed eval-
uation of virtual environment interaction techniques. Presence:
Teleoper. Virtual Environ., 10(1):75–95, 2001.

[3] D. A. Bowman, D. Koller, and L. Hodges. Travel in immer-
sive virtual environments: An evaluation of viewpoint motion
control techniques. VRAIS ’97, pages 45–52, 1997.

[4] D. A. Bowman, E. Kruijff, J.J LaViola, and I. Poupyrev. 3D
User Interfaces Theory and Practice. Addison-Wesley, 2005.

[5] R. P. Darken, W. R. Cockayne, and D. Carmein. The omni-
directional treadmill: a locomotion device for virtual worlds. In
UIST ’97, pages 213–221, 1997.

[6] D. Engel, C. Curio, L. Tcheang, B. Mohler, and H. H. Bülthoff.
A psychophysically calibrated controller for navigating through
large environments in a limited free-walking space. In VRST
’08, pages 157–164, 2008.

[7] V. Interrante, B. Ries, and L. Anderson. Seven league boots: A
new metaphor for augmented locomotion through moderately
large scale immersive virtual environments. 3D User Interfaces,
2007.

[8] H. Iwata, H. Yano, H. Fukushima, and H. Noma. Circu-
lafloor. In ACM SIGGRAPH 2004 Emerging technologies,
page 3, 2004.

[9] H. Jiung-yao, C. Wen-hsin, L. Yung-ting, B. Hua-hseng, T. Chi-
fu, G. Chung-Yun, and L. Hwa-teng. The gait sensing disc -
a compact locomotion device for the virtual environment. In
WSCG, 2000.

[10] S. Razzaque, D. Swapp, M. Slater, M. C. Whitton, and A. Steed.
Redirected walking in place. In EGVE ’02, pages 123–130,
2002.

[11] R. A. Ruddle and S. Lessels. The benefits of using a walking in-
terface to navigate virtual environments. ACM Trans. Comput.-
Hum. Interact., 16(1):1–18, 2009.

[12] M. Slater, M. Usoh, and A. Steed. Taking steps: the influence of
a walking technique on presence in virtual reality. ACM Trans.
Comput.-Hum. Interact., 2(3):201–219, 1995.

[13] D. S. Tan, G. G. Robertson, and M. Czerwinski. Exploring 3d
navigation: combining speed-coupled flying with orbiting. In
SIGCHI ’01, pages 418–425, 2001.

[14] M. Usoh, K. Arthur, M. C. Whitton, R. Bastos, A. Steed,
M. Slater, and F. P. Brooks, Jr. Walking > walking-in-place
> flying, in virtual environments. In SIGGRAPH ’99, pages
359–364. ACM Press/Addison-Wesley Publishing Co., 1999.

[15] B. Williams, G. Narasimham, T. P. McNamara, T. H. Carr, J. J.
Rieser, and B. Bodenheimer. Updating orientation in large vir-
tual environments using scaled translational gain. In APGV ’06,
pages 21–28, 2006.

WSCG 2010 Communication Papers 68

Ray Tracing on a GPU with CUDA –
Comparative Study of Three Algorithms

Martin Zlatuška
Czech Technical University in Prague

Faculty of Electrical Engineering
Czech Republic

zlatum1{@}fel.cvut.cz

Vlastimil Havran
Czech Technical University in Prague

Faculty of Electrical Engineering
Czech Republic

havran{@}fel.cvut.cz

ABSTRACT

We present a comparative study of ray tracing algorithms implemented on a GPU for three published papers using different
spatial data structures evaluated for performance on nine static scenes in walk-through animation. We compare the performance
for uniform grids, bounding volume hierarchies (BVHs), and kd-trees evaluated on a GPU for ray casting and Whitted-style ray
tracing. We show that performance of ray tracing with BVHs exceeds the performance of ray tracing with kd-trees for coherent
rays. Contrary, the ray tracing with kd-trees is faster than that with BVHs for incoherent rays. The performance of ray tracing
with uniform grids is slower than both ray tracing with BVHs and kd-trees except for uniformly populated scenes. We show
that the performance is highly sensitive to details of implementation on kd-trees.

Keywords: GPU programming, CUDA, performance study, ray tracing, uniform grids, kd-trees, bounding volume hierarchies.

1 INTRODUCTION

While modern graphics cards (GPUs) allow for gen-
eral computation in a parallel manner, one of the most
prominent applications for a GPU is image synthesis.
This is thanks to the inherent parallel nature of ray trac-
ing and other global illumination algorithms – the de-
composition of images into pixels provides a natural
way of creating individual tasks for many parallel pro-
cessors. Unlike the GPUs a few years ago, modern
ones allow us full programmability similar to general
CPUs, while the streaming computation model has its
own specific issues. This has to be taken into account
when adopting the data structures and traversal algo-
rithms for ray tracing on a GPU architecture.

In this paper we compare three formerly published
papers that implement ray tracing with spatial data
structures on a GPU. These are uniform grids [Pur02],
kd-trees [Hor07], and bounding volume hierar-
chies [Gün07]. While the algorithms were successfully
mapped to a GPU, their performance have not been
carefully compared on a current programmable GPU
architecture as a common implementation framework
was not available. In this paper we first present such
a comparison study dealing with efficiency of three
different data structures for ray tracing on a GPU. We
restrict ourselves to a static setting irrespective of the

construction time as the data structures are built offline
on a CPU for our tests. We show on a kd-tree that even
small changes to the implementation of traversal code
can lead to the significant change of performance.

This paper is further structured as follows. Section 2
summarizes the previous work of ray tracing on a GPU
and performance comparison of data structures for ray
tracing. Section 3 describes our choices for implemen-
tation. Section 4 shows the results from measurements
on two GPUs for a set of scenes. Further it discusses
the bottlenecks of a contemporary GPU architecture for
ray tracing algorithms. Section 5 concludes the paper
with possible prospectives for future work.

2 PREVIOUS WORK

In this section we review chronologically the most sig-
nificant papers that address mapping of spatial data
structures for ray tracing to a GPU. We discuss briefly
all three data structures of our interest: uniform grids,
kd-trees, and BVHs, while we avoid the discussion
of results on other computer architectures except for
a GPU as such surveys for CPU implementation have
been provided for example in [Wal07].

Uniform grids. The first ray tracing algorithm
mapped fully on a GPU has been published by Pur-
cell et al. [Pur02] and uses a uniform grid. Their
implementation mapped the computation by means
of shaders while their data resided in a texture. In
a concurrent work Carr et al. [Car02] present the
architecture of a software ray tracer on a GPU with a
focus on ray-triangle intersection with predefined BVH
hierarchy. The mapping of both mentioned approaches
had been influenced by architectural limitations.
Recently, Kalojanov and Slusallek [Kal09] presented

WSCG 2010 Communication Papers 69

the algorithm for parallel construction of uniform grids
on a GPU.

Kd-trees. A stack on a GPU with a low level of pro-
grammability was studied by Ernst et al. [Ern04] and
used for stack-based kd-tree traversal algorithm. Fo-
ley and Sugerman [Fol05] presented two algorithms
for kd-tree traversal without a stack. Their first algo-
rithm called kd-restart is in fact the algorithm published
by Kaplan [Kap85]. The second stack-less algorithm
called kd-backtrack requires the storage of the bound-
ing box and link nodes to its parent for every node of a
tree, which significantly increases the memory footprint
and hence it decreases performance. Both presented al-
gorithms increase the number of nodes traversed com-
pared to stack-based traversal algorithms. Another pa-
per by Horn et al. [Hor07] addresses the lack of lo-
cal memory to implement the stack much more effi-
ciently. They propose the use of a push-down and short
stack which can avoid most of the restarts of a traver-
sal from the root node. This is possible as ray tracing
with the kd-tree traverses only a few leaves on aver-
age. In concurrent work Popov et al. [Pop07] suggest
to use the augmentation of a data structure by neighbor
links among the nodes of a kd-tree. They even exceed
the performance of CPU-based ray tracers while they
achieve comparable performance as in [Hor07]. Fur-
ther, Zhou et al. [Zho08] proposed the algorithm for kd-
tree construction on a GPU. This method yields the per-
formance of kd-tree construction comparable to CPU-
based algorithms for kd-tree construction [She07]. This
can be used for dynamic scenes up to 200,000 triangles
to yield interactive performance.

Bounding Volume Hierarchies. Bounding volume
hierarchies (BVHs) were also successfully imple-
mented on a GPU. Thrane and Simonsen [Thr05] in
fact compare kd-trees, uniform grids, and bounding
volume hierarchies implemented on a GPU (hardware
of year 2005). They conclude the performance of
BVHs is low, however higher than the performance
of other two data structures when no ray packets are
used. Carr et al. [Car06] implemented a variant of
BVHs in combination with geometry images. Günther
et al. [Gün07] use ray packets and yield interactive
performance comparable or exceeding CPU-based
implementation, but only for primary and shadow
rays. Recently, Lauterbach et al. [Lau09] present
an algorithm for fast BVH construction on a GPU,
where they report performance comparable to kd-
trees [Zho08] only for one scene. Recently, Torres et
al. [Tor09] published an algorithm for stack-less BVH
traversal, where the use of stack is replaced by ropes
connecting the nodes of a BVH in a sibling order. Very
recently, Aila and Laine [Ail09] analyze the efficiency
of various CUDA kernels for ray tracing with BVH
(This paper is not included in our study as our research
was completed in January 2009 in [Zla09].).

Comparison. For algorithms on a CPU it is believed
that the hierarchical spatial data structures (both kd-
trees and BVHs) built up in a top-down fashion yield
similar performance. A decade old study by Havran et
al. [Hav00] provides thorough performance comparison
of twelve data structures implemented on a CPU. More
recently Havran [Hav07] discusses the similarities and
differences of top-down constructed spatial hierarchies
(kd-trees and BVHs) and uniform grids. He argues that
while kd-trees and BVHs have very similar properties
as they can be mutually emulated in a constant time and
space, uniform grids can outperform hierarchical data
structures only for uniform distribution of objects in the
scene.

To our best knowledge a proper recent experimental
comparison of different ray tracers on a modern pro-
grammable GPU (year 2008 and 2009) has not been
available. We would like fill the gap by our paper for a
current GPU architecture (CUDA) of NVidia for a static
scene setting (walk-through).

3 ALGORITHM IMPLEMENTATION

We have implemented a standalone compact program
that does not need the support by other 3rd party li-
braries. The program implements a parser for scene for-
mat PLY, format BART [Lex01], and subset of Open In-
ventor format. While the data structures are built offline
on a CPU, the created data structures are transferred to
a GPU and used for ray tracing algorithm entirely on
the GPU. To study the efficiency of shooting rays using
different data structures this methodology is sufficient.
The traversal algorithms and shading on the GPU were
implemented using NVidia CUDA [PRG08].

The geometry of a scene consisting solely of trian-
gles is represented by a list Lv of vertices and list of
materials Lm, where each triangle has a list of three in-
dices to Lv plus an index to the Lm. We tested also the
variant where each triangle is represented directly by
three vertices, however the memory consumption was
increased with the negative impact to the performance.
Shading is implemented via simple Phong model and is
included in timing. The program can run in two modes
- for measurement purposes and with GUI. Since we
released the source code to public, we do not discuss
many tiny but often relevant implementation details in
this paper. Our paper serves as the summary of the Mas-
ter Thesis [Zla09], where many details are stated, deci-
sion choices for that particular solution are discussed,
and several unsuccessful attempts to improve the effi-
ciency of algorithm implementations are described.

Below we describe the selected details of our imple-
mentation for uniform grids, kd-trees, and bounding-
volume hierarchies.

WSCG 2010 Communication Papers 70

3.1 Uniform Grids

The implementation of uniform grids loosely follows
the paper [Pur02], with the traversal algorithm de-
scribed in [Ama87]. The implementation is easier as
CUDA is used instead of shaders. To decrease the
number of registers we used a constant cache to store
the values that do not change such as the direction
and origin of the ray and precomputed values for 3D
DDA traversal. This allows us to save five registers and
get better occupancy [PRG08]. The threads have to
be synchronized to compute the intersection with the
triangles in the cells. The threads for the rays that do
not intersect any cell with triangles are idle.

We tried to optimize the traversal algorithm by shar-
ing the load of rays with many ray-triangle intersec-
tions with rays that do not need to compute many ray-
triangle intersections. This required the rescheduling of
the computation during the visit to the cell. However
the resulting algorithm was several times slower than a
simple algorithm, where some threads become inactive
either when the computation is finished or a ray inter-
sects an empty cell. Further, we also tried to imple-
ment packet tracing [Wal06] on a GPU. Although the
pilot implementation has a uniform access to the mem-
ory and common branching, it resulted in an increased
number of cells that were traversed. As a result, for
packet of size 8× 8 and for packets of size 4× 4 the
performance was substantially decreased compared to
the simple implementation.

3.2 Kd-Trees

Kd-trees were built with surface area heuristics accord-
ing to the sampling approach described in [She07].
Internally, each node of a kd-tree is represented by
8 Bytes, using the compact representation described
in [Wal01].

We have been experimenting with several traversal
algorithms and finally we decided to use a short stack
traversal [Hor07] with four entries to compromise be-
tween number of traversal steps and occupancy. The
stack is stored in shared memory. We aim at minimizing
the conflicts in the shared memory as the threads for the
rays are computed rather independently. We show the
performance of two versions of kd-tree traversal code
which illustrates the performance of very similar solu-
tions. Initially, we stored three values to the short stack
- “mint, maxt, and node address”. However, we can de-
crease the size of stack entry to only two values, as for
the farther node traversed the mint is equal to maxt for
the node we just traversed. This changes the occupancy
and performance as we show in Section 4. The traversal
algorithm referred to as kdt-3 stores three values to the
stack, while the algorithm kdt-2 stores only two values
to the stack.

3.3 Bounding Volume Hierarchies
The BVHs were built in top-down fashion with surface
area heuristics using the centroids of bounding boxes
for scene triangles, following the paper by Günther et
al. [Gün07]. As a BVH does not need to store the mint
and maxt values along the ray, only the node address
is saved to the stack. For packet traversal, the stack can
be shared by all the threads in a packet, which increases
the utilization of the resources. The stack does not need
to be shortened to only several entries, which minimizes
the number of traversal steps. The stack is similarly to
kd-trees stored in shared memory.

The order of traversal among several threads is re-
solved by a concurrent write to the shared memory,
where four memory entries are first initialized to zero.
Each thread then writes the preference to one of four en-
tries, value one for one of the four cases: traverse left,
traverse right, traverse both, traverse none. The serial-
ization of write operation may occur as threads record
their information.

When rays diverge, the traversal continues to the
node where most of the rays need to traverse. This
is implemented by parallel reduction using auxiliary
memory with one entry for each thread. Each thread
writes either -1 when a left child should be visited as
first, 0 for no preference, and 1 for the right child. The
decision which first node should be traversed is then re-
solved by parallel reduction – the most node wanting to
be traversed by most of the rays is visited as first while
the other node is stored to the stack. When a thread
does not need to visit any node, the node stores simply
0 as a preference. This is different from the algorithm
described in [Gün07] and this change increases the per-
formance for secondary rays by up to 20%. The disad-
vantage of BVH compared to kd-tree is the increased
memory space required by the BVH node representa-
tion, it is 32 Bytes, which is 4 times higher than for a
kd-tree node. However, it is compensated as the num-
ber of nodes and object references is strictly limited by
the number of objects, so the storage of the whole BVH
is typically smaller than the one for a kd-tree.

4 RESULTS
In this section we describe the results for measure-
ment on nine scenes. To provide more variability to
testing, we used three scenes of individual objects
courtesy of Stanford scene repository, three scenes
from BART [Lex01] (camera animated, objects not
animated), and three other general interior architectural
scenes. The rendered images of all scenes are shown
in Figures 3, 4, and 5. These scenes are frequently
used to test the performance of ray tracing and global
illumination algorithm, the BART scenes [Lex01]
scenes were designed for benchmarking of ray tracing.

To decrease the view dependence of results, we cre-
ated a static walk-through animation for each scene of

WSCG 2010 Communication Papers 71

length 400 frames. All the performance results in this
paper were measured on a GPU NVidia GeForce GTX
280 (June 2008), which has compute capability 1.3,
240 multi-threaded processor cores on 600 MHz, and
1 GByte of memory with a bandwidth of 141.7GB/sec.
We also measured the results on an older, low-level
GPU, an NVidia GeForce 8600GT (April 2007), where
we got between 1/10 and 1/6 of the performance for the
NVidia GeForce GTX 280.

The static properties of data structures for all nine
scenes are shown in Table 1. The average computa-
tion time for the animation for a frame is shown in
Table 2 for three settings: (1) shooting only primary
rays, (2) primary and shadow rays, and (3) Whitted-
style recursive ray tracing with two bounces for sec-
ondary rays. The occupancy for three scenes is shown
in Table 3 for different settings of compilation in depen-
dence on the number of registers where the maximum
rendering times are reported. The results demonstrate
that both the setting and the use of either three or two
values stored to the traversal stack for a kd-tree have
remarkable impact on performance. The dependence
on the resolution is shown in Figures 1 and 2 for scene
Dragon and Robots. More detailed results and eval-
uation can be found in [Zla09].

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

256x256 512x512 768x768 1024x1024

ti
m

e
[m

s
]

resolution

Grid
kdt−3
kdt−2
BVH

Figure 1: The dependence of computation time[ms] on
resolution for scene Dragon for different resolutions.

 0

 20

 40

 60

 80

 100

 120

256x256 512x512 768x768 1024x1024

ti
m

e
[m

s
]

resolution

Grid
kdt−3
kdt−2
BVH

Figure 2: The dependence of computation time[ms] on
resolution for scene Robots for different resolutions.

Discussion
While an interested reader can draw his/her own con-
clusion from the numbers in tables, let us provide our

interpretation of the measured data. As we tested the
performance on two different architectures (G80 and
GT200), we can report: the progress of hardware was
the most beneficial for the performance increase of a ray
tracing with uniform grids. Similarly to the implemen-
tation on a CPU, the performance of uniform grids is
superior only for uniformly populated scenes (Bunny,
Dragon, and Buddha).

The (packet) ray tracing with BVH of incoherent
rays is memory bound but is relatively well masked
by switching threads. However, BVH has higher
performance for (coherent) primary and shadow rays.
This is in concordance with the results of Günther
et al. [Gün07]. For traversing individual diverging
(incoherent) rays such as secondary reflected rays in
path tracing, the performance of BVH significantly
deteriorates.

For diverging rays the kd-tree with its own short stack
for each ray (thread) is a more efficient solution. The
small size of each kd-tree node decreases the data traffic
between memory and the processor cores. The bottle-
neck for the kd-tree traversal is a lack of larger local and
fast memory for the stack implementation. The increase
of local memory should lead to higher performance for
upcoming GPU architecture(s).

As the performance of GPU ray tracing is depen-
dent on many details in the implementation, this
paper is accompanied by the source code available
at: http://dcgi.felk.cvut.cz/members/
havran/rtgpu2009/. We hope that the released
source code can be further utilized in rendering
applications and performance studies in future.

5 CONCLUSION AND FUTURE
WORK

In this paper that serves as a summary of [Zla09] we
have described a performance study comparing ray
tracing implemented with CUDA on modern GPU from
NVidia. We optimized the implementation for three
data structures and traversal algorithms for ray tracing
and compared the performance obtained from measure-
ments for nine scenes for shooting primary rays, ray
casting with shadow rays, and recursive Whitted-style
ray tracing. The performance differed for coherent
rays, where the bounding volume hierarchy is the
winner, and for incoherent rays, where kd-trees seem to
be more efficient on average when implemented using
the short-stack as suggested by Horn et al. [Hor07].
However, the performance of ray tracing algorithm on
a GPU is sensitive to many implementation details,
likely due to the relatively small local cache on GPU
architectures.

As future work, the implementation could be ex-
tended by several other data structures that can be ef-
ficiently mapped to a GPU architecture. The measure-

WSCG 2010 Communication Papers 72

scene grid kd-tree BVH
Grid size #refs size #trav. #int. #leaves #refs size #trav. #int. #leaves size #trav. #int.

triangles lights [MB] steps tests [×103] [MB] steps tests [×103] [MB] steps tests

Bunny 69451 1 83×82×64 3.7 8.3 47.4 37.2 154 5.5 9.2 54.0 12.3 23.0 2.84 52.1 8.0
Dragon 871414 1 273×193×122 3.1 103.1 117.3 45.5 978 2.3 58.5 68.8 10.4 295.0 35.8 114.1 28.0
Buddha 1087716 1 128×312×129 2.8 102.1 100.8 43.1 1265 2.5 76.5 64.3 8.8 389.0 44.7 130.9 30.9
Robots 71708 1 128×209×268 19.2 79.9 40.4 66.5 82 6.6 12.7 30.5 8.8 25.0 6.1 30.6 3.5
Museum 14380 2 71×43×106 9.5 5.1 60.2 33.6 26 4.5 2.0 19.2 6.7 4.6 0.9 40.1 3.9
Kitchen 110559 4 254×128×256 14.1 89.3 154.8 12.7 164 3.9 11.2 6.3 1.0 36.4 4.9 40.0 5.2
Theatre 53832 2 172×135×60 23.0 31.4 56.6 37.9 124 8.6 10.9 17.4 5.4 17.7 3.3 33.1 3.7
Office 36310 3 93×55×93 6.5 7.9 73.9 71.6 55 6.4 5.1 11.2 4.4 11.1 11.5 30.5 4.9
Conference R. 298866 2 387×246×93 10.3 121.3 165.7 31.5 338 8.7 51.6 14.3 4.8 97.9 14.5 34.6 5.9

Table 1: The properties of the test scenes and the spatial data structures built up for them. The general properties
include number of triangles and light sources. For each data structure we report the number of leaves/cells. #refs
corresponds the average number of references to objects in leaves. The storage for the data structure is given in
MBytes. The number of intersection tests and traversal steps are reported for primary and secondary rays, the other
results are in [Zla09].

primary rays primary and shadow rays primary, shadow, secondary rays
time[ms] time[ms] time[ms]

grid kdt-3 kdt-2 BVH grid kdt-3 kdt-2 BVH grid kdt-3 kdt-2 BVH

Bunny 16.0 41.6 31.5 13.8 27.4 61.7 52.1 27.0 — — —- —-
116% 301% 228% 100% 53% 118% 100% 52% — — — —

Dragon 40.2 55.9 42.3 39.0 73.3 86.0 73.4 80.0 — — —- —-
103% 143% 108% 100% 100% 117% 100% 109% — — — —

Buddha 34.6 45.6 34.2 36.8 69.1 73.5 62.9 81.8 — — —- —-
94% 124% 93% 100% 110% 117% 100% 130% — — — —

Robots 27.3 20.5 16.2 25.9 53.8 35.6 30.1 50.0 89.0 43.8 38.7 64.3
105% 79% 63% 100% 179% 118% 100% 166% 230% 113% 100% 166%

Museum 25.0 46.2 35.7 20.0 68.3 86.2 73.4 53.2 168.5 184.1 162.4 163.7
125% 231% 179% 100% 93% 117% 100% 72% 104% 113% 100% 101%

Kitchen 41.6 40.5 31.9 29.3 209.6 130.0 110.8 138.8 442.8 244.4 214.3 403.9
142% 138% 109% 100% 189% 117% 100% 125% 207% 114% 100% 188%

Theatre 43.1 42.3 33.1 34.3 119.7 87.3 74.3 93.6 379.7 201.6 177.5 292.1
126% 123% 97% 100% 161% 117% 100% 126% 214% 114% 100% 165%

Office 52.9 44.1 34.2 22.7 218.6 116.1 101.5 87.9 224.0 120.1 107.7 94.2
233% 194% 151% 100% 215% 114% 100% 87% 208% 112% 100% 87%

Conference 83.2 83.7 66.2 28.9 228.2 153.0 132.7 85.2 292.8 — — 114.1
Room 288% 290% 229% 100% 172% 115% 100% 64% (257%) — — (100%)

Average[%] 148% 181% 140% 100% 141% 117% 100% 104% 193% 113% 100% 142%

Table 2: Average computation time for a frame [ms] for three settings rendered in resolution 1024×1024 for
rendering 400 frames animations: (1) primary rays only (2) primary and shadow rays (ray casting) (3) primary,
shadow, and secondary rays for recursion depth two (one primary ray per pixel). For individual objects (Bunny,
Dragon, and Buddha) the setting (3) is meaningless. There was not enough memory for scene Conference
Room to compute the recursive ray tracing with kd-trees. Timing includes also shading by Phong model. kdt-
3/kdt-2 stands for storing 3 or 2 values to the stack during traversal.

ments and observations can provide interesting feed-
back to architects of graphics hardware in future.

ACKNOWLEDGMENTS
This work has been supported by the Ministry of Edu-
cation, Youth and Sports of the Czech Republic under
the research program MSM 6840770014 and LC-06008
(Center for Computer Graphics) and the Aktion Kon-
takt OE/CZ grant no. 2009/6.

REFERENCES

[Ail09] Aila, T., and Laine, S.. Understanding the Ef-
ficiency of Ray Traversal on GPUs. In Proceedings
of High-Performance Graphics 2009, pages 145–
150, New York, NY, USA, 2009. ACM.

[Ama87] Amanatides, J., and Woo, A. A fast voxel
traversal algorithm for ray tracing. In G. Marechal,
editor, Eurographics ’87, pages 3–10. North-
Holland, August 1987.

WSCG 2010 Communication Papers 73

Robots Kitchen Museum

reg.
occupancy

[%] time[ms] speedup
[%]

time[ms] speedup
[%]

time[ms] speedup
[%]

grid 59 25 430.7 907.7 266.2
32 50 350.2 19 704.8 23 220.5 18

kdt-3 56 25 110.7 429.5 240.5
32 25 129.0 -18 496.2 -15 278.2 -15

kdt-2 56 25 110.7 429.5 240.5
40 37.5 96.0 13 372.2 13 211.4 12

BVH 53 25 151.0 1064.8 274.7
32 50 129.9 25 762.4 29 214.4 22

Table 3: GPU occupancy and timing for NVidia GeForce GTX 280 for three BART scenes for ray tracing with
primary, secondary, and shadow rays in resolution 1024×1024.

[Car02] Carr, N.A., Hall, J.D., and Hart, J.C. The
ray engine. In HWWS ’02: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware, pages 37–46, Aire-la-
Ville, Switzerland, Switzerland, 2002. Eurograph-
ics Association.

[Car06] Carr, N.A., Hoberock, J., Crane, K., and Hart,
J.C. Fast GPU ray tracing of dynamic meshes us-
ing geometry images. In GI ’06: Proceedings of
Graphics Interface 2006, pages 203–209, Toronto,
Ont., Canada, Canada, 2006. Canadian Information
Processing Society.

[Ern04] Ernst, M., Vogelgsang, C., and Greiner, G.
Stack implementation on programmable graphics
hardware. In Vision Modeling and Visualization
2004, pages 255–262, 2004.

[Fol05] Foley, T., and Sugerman, J. KD-tree ac-
celeration structures for a GPU raytracer. In
HWWS ’05: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graph-
ics hardware, pages 15–22, New York, NY, USA,
2005. ACM.

[Gün07] Günther, J., Popov, S., Seidel, H.-P., and
Slusallek, P. Realtime Ray Tracing on GPU with
BVH-based Packet Traversal. In Proceedings of the
IEEE/Eurographics Symposium on Interactive Ray
Tracing 2007, pages 113–118, September 2007.

[Hav00] Havran, V., Přikryl, J., and Purgathofer, W.
Statistical Comparison of Ray-Shooting Efficiency
Schemes. Technical Report TR-186-2-00-14, In-
stitute of Computer Graphics, Vienna University
of Technology, Favoritenstrasse 9/186, A-1040 Vi-
enna, Austria, May 2000.

[Hav07] Havran, V. About the Relation between Spa-
tial Subdivisions and Object Hierarchies Used in
Ray Tracing. In 23rd Spring Conference on Com-
puter Graphics (SCCG 2007), pages 55–60, Bud-
merice, Slovakia, May 2007.

[Hor07] Horn, D.R., Sugerman, J., Houston, M., and
Hanrahan, P. Interactive k-D Tree GPU Raytracing.

In I3D ’07: Proceedings of the 2007 symposium
on Interactive 3D graphics and games, pages 167–
174, New York, NY, USA, 2007. ACM.

[Kal09] Kalojanov, J. and Slusallek, P. A parallel al-
gorithm for construction of uniform grids. In HPG
’09: Proceedings of the Conference on High Per-
formance Graphics 2009, pages 23–28, New York,
NY, USA, 2009. ACM.

[Kap85] Kaplan, M.R. The uses of spatial coherence in
ray tracing. In ACM SIGGRAPH ’85 Course Notes
11, July 1985.

[Lau09] Lauterbach, C., Garland, M., Sengupta, S.,
Luebke, D., and Manocha, D. Fast BVH Con-
struction on GPUs. Computer Graphics Forum,
28(2):375–384, April 2009. (Proceedings of Eu-
rographics 2007).

[Lex01] Lext, J., Assarsson, U., and Möller, T. A
Benchmark for Animated Ray Tracing. IEEE Com-
put. Graph. Appl., 21(2):22–31, 2001.

[Pop07] Popov, S., Günther, J., Seidel, H.-P., and
Slusallek, P. Stackless KD-Tree Traversal for High
Performance GPU Ray Tracing. Computer Graph-
ics Forum, 26(3):415–424, September 2007. (Pro-
ceedings of Eurographics).

[PRG08] NVIDIA CUDA Compute Unified Device
Architecture - Programming Guide, 2008. Version
2.1.

[Pur02] Purcell, T.J., Buck,I., Mark, W.-R., and Han-
rahan, P. Ray tracing on programmable graphics
hardware. In SIGGRAPH ’02: Proceedings of the
29th annual conference on Computer graphics and
interactive techniques, pages 703–712, New York,
NY, USA, 2002. ACM.

[She07] M. Shevtsov, A. Soupikov, and A. Kapustin.
Highly parallel fast kd-tree construction for inter-
active ray tracing of dynamic scenes. Computer
Graphics Forum, 26(3):395–404, September 2007.
(Proceedings of Eurographics).

[Thr05] Thrane, N., and Simonsen, L.O. A comparison
of acceleration structures for GPU assisted ray trac-

WSCG 2010 Communication Papers 74

Figure 3: Stanford scenes: Bunny, Buddha, Dragon.

Figure 4: BART scenes: Robots, Museum, Kitchen.

Figure 5: MGF scenes: Theatre, Office, Conference Room.

ing. M.Sc. Thesis, University of Aarhus, Denmark,
2005.

[Tor09] Torres, R., Martin, P.J., and Gavilanes, A. Ray
Casting using a Roped BVH with CUDA. In 25th
Spring Conference on Computer Graphics (SCCG
2009), pages 107–114, Budmerice, Slovakia, April
2009.

[Wal01] Wald, I., Slusallek, P., Benthin, C., and Wag-
ner, M. Interactive Rendering with Coherent Ray
Tracing. Computer Graphics Forum, 20(3):153–
164, 2001. (Proceedings of Eurographics).

[Wal06] Wald, I., Ize, T., Kensler, A., Knoll, A., and
Parker, S.G. Ray Tracing Animated Scenes using
Coherent Grid Traversal. ACM Transactions on
Graphics, pages 485–493, 2006. (Proceedings of
ACM SIGGRAPH 2006).

[Wal07] Wald, I., Mark, W.R., Günther, J., Boulos, S.,
and Ize, T. Warren Hunt, Steven G Parker, and Peter
Shirley. State of the Art in Ray Tracing Animated
Scenes. In Eurographics 2007 State of the Art Re-
ports, 2007.

[Zho08] Zhou, K., Hou, Q., Wang, R., and Guo, B.
Real-time KD-tree construction on graphics hard-
ware. In SIGGRAPH Asia ’08: ACM SIGGRAPH
Asia 2008 papers, pages 1–11, New York, NY,
USA, 2008. ACM.

[Zla09] Zlatuška, M. Ray Tracing Algorithms on Mod-
ern GPUs. M.Sc. Thesis, Czech Technical Univer-
sity in Prague, Jan 2009. http://dcgi.felk.
cvut.cz/members/havran/rtgpu2009/.

WSCG 2010 Communication Papers 75

WSCG 2010 Communication Papers 76

Difference-Contribution Strategy for Seeding 2D
Streamlines

Shaorong Wang, Rui You, Yisong Chen, Sheng Li, Guoping Wang

The Key Lab of Machine perception and intelligent, MOE,Beijing, China, 100871

School of Electronics Engineering and Computer Science, Peking University, Beijing, China, 100871

{wangsr@graphics.pku.edu.cn, yourui@graphics.pku.edu.cn, chenys@graphics.pku.edu.cn,
lisheng@graphics.pku.edu.cn, gwang@graphics.pku.edu.cn}

ABSTRACT
This paper presents a novel seeding strategy for streamline visualization of 2D vector field. The main idea of our

approach is to capture the spatial-varying features in a vector field. Generally speaking, we measure the

difference between the inflow and the outflow to evaluate the local spatial-varying feature at a specified field

point. A Difference-Contribution Matrix (DCM) is then calculated to describe the global appearance of the field.

We draw streamlines by choosing the local extreme points in DCM as seeds. DCM is physics-related thus

reflects intrinsic characteristics of the vector field. The strategy performs well in revealing features of the vector

field even with relatively few streamlines.

Keywords
Seeding strategy, Streamline, Difference-Contribution Matrix

1. INTRODUCTION
Vector fields are commonly used in many scientific

and engineering domains, such as astronomy,

aeronautics, and meteorology. Visualization of vector

fields is important for properties analysis. The most

common approaches include geometry-based,

texture-based, feature-based, and streamline-based

approaches.

Geometry-based approaches, such as arrow and

hedgehog plots, give a visual perception of local flow

feature.

Texture-based methods give a dense representation

of the vector field. However, they can‟t provide

visual focuses on significant information of vector

field and obtain visually pleasing images requires an

intrinsically huge computational expense.

Feature-based visualization approaches seek to
compute a more abstract representation that already

contains the important properties in a condensed

form and suppresses superfluous information.

Anyway, the feature is always not easy to be

extracted.

The most popular flow visualization method in use

today is still streamlines and those derived from

streamlines because they provide sparse visualization

that focus on significant structures and can be

combined with other visualization techniques.
Furthermore, they are faster to compute and can be

rendered at any resolution at interactive rates.

The quality of visualization of the streamlines highly

relies on the seeding strategy, which includes seed

location and a length of each streamline. In other

words, it‟s very important to select a set of
streamlines to represent the vector fields

comprehensibly and completely. On the one hand,

placing too many streamlines can make the final

images cluttered, and hence make it more difficult to

understand the data. On the other hand, we may miss

important flow features if too few streamlines placed.

An ideal streamline seed placement algorithm should

be able to generate visually pleasing and technically
illustrative images.

There are several seeding strategies developed in the

past years, such as evenly-spaced streamlines

algorithm [Liu06], and feature-guided algorithm. A

criteria of seeding strategy is proposed by Verma et
al. [Ver00]. Coverage, no important features of the

vector field should be missed and the streamlines

should cover the whole domain; Uniformity, the

distribution of streamlines should be more or less

uniform across the domain; Continuity, long

continuous streamlines are preferred over short ones.

In this paper, we define a Difference-Contribution

Matrix (DCM) as a metric for flow features. We

propose a novel 2D streamline seeding strategy

according to the DCM. Suppose a region including

inflow and outflow shown in Figure 1, there is cross

interface between the flow and the region. If the area

of inflow interface is not the same as that of outflow
interface, changes happen in the region. The greater

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2010 Communication Papers 77

the difference between the inflow and the outflow,

the greater the vector fields change.

Figure 1. Inflow and outflow

Compared to the past approaches, the strategy

proposed in this paper give higher priority to the

variation of the streamline than to the density of the

streamlines. This is because the former represents

more flow feature. In other words, if there is little

variation in a region, the streamline is nearly evenly
distributed in the region and they can be represented

by fewer streamlines. If the variation is great in a

region, more streamlines are needed to provide the

detail.

The seeding strategy in this paper is based on the

DCM. Streamline starting points are seeded
depending on the maxima of the matrix. Because

DCM is defined by the physical meaning of the

vector fields, our seeding strategy is able to

qualitatively capture more important flow features

with less streamlines, hence less clutter and

occlusion.

The advection of streamlines in the previous

streamline placement algorithms can be terminated

by explicit inter-streamline distance control. This

may cause visual discontinuity of the flow pattern,

especially when it is near the vicinity of critical

points. Our seeding algorithm only determines

complete streamlines which are integrated as long as
possible until they leave the domain, reach a critical

point, or generate a loop. Without abruptly stopping

the streamlines, the flow patterns shown in the

visualization are much easier to understand.

2. RELATED WORK
Overview of vector field visualization techniques can

be found in [Lar04] and [Pos03]. We consider here

the most relevant work in streamline visualization. A

number of techniques with different objectives have

been developed. We group the present seeding

strategies into four categories: image based, direct,

feature based and vector field property-based.

Image-based method searches for an energy

function‟s minimal value to place seeds, in which the

energy function is defined in image space according

to streamlines. In [Tur96], techniques for automated

placing of seed points were developed to achieve a

nearly uniform, dense distribution of streamlines for
2D flow fields. Mao et al. [Mao98] extend this

approach to 3D curved surfaces. For 3D flow fields,

seeding strategies typically involve analysis of the

underlying flow field to visualize certain features

using sparse distributions.

Direct methods place new streamlines with a certain

heuristic rule without computing any global energy

function. A seeding strategy for automated placing of
seed points was developed to achieve a nearly

uniform, dense distribution of streamlines for 2D

flow field [Job97]. The technique is extended to

unsteady flows in [Job00], and multi resolution flow

visualization in [Job01]. By defining a 3D Euclidean

distance metric, the strategy is directly extended to

3D field [Mat03]. The seeding strategy presented by

Mebarki et al. [Meb05] starts new streamlines in the
center of the biggest remaining voids, and achieve

good continuity and uniformity of the streamlines by

a greedy algorithm. Liu et al. [Liu06] improves

continuity by prioritizing streamline elongation over

new streamline insertion.

Feature-based flow visualization is concerned with

the extraction of specific patterns of interest, or

features. Verma et al. [Ver00] first proposed a

feature-based strategy for 2D vector field

visualization. The seeding strategy is extended to 3D

vector fields by Ye et al. [Ye05].

Streamline similarity and streamlines density are

both properties of vector field. They can be regarded

as the criteria of adding new streamlines. Li et al.

[Li07] proposed a 3D image-space streamline

placement method. They control the seeding and

generation of streamlines in image space to avoid

visual cluttering. Schlemmer et al. [Sch07] defined

the streamline density of a region as the ratio
between the number of occupied pixels by

streamlines and the total number of pixels in the

region.

3. DISTRIBUTION-BASED SEEDING

STRATEGY

3.1. In-out Contribution Matrix
We first give some definitions about our idea. For a

non-zero vector at any position in a vector field, there

is a streamline passing through the position. A

streamline is a Complete Streamline if either of the

following conditions is satisfied:

The ending point overlaps the starting point. In other

words, the streamline is a closed curve.

The endpoint is on the border of the vector field, or

the vector at the endpoint is zero.

First a set of Complete Streamlines are generated to

cover the vector field domain, which is called as the

Complete Streamline Set. The Complete Streamline

Set can be generated uniformly or randomly. The

former method is chosen in this paper: The vector

field domain is evenly divided into m n squares,

and then streamlines are seeded at each square‟s

center. If all the streamlines are regarded to be

WSCG 2010 Communication Papers 78

different, we get a Complete Streamline Set with

m n Complete Streamlines.

For a given point p in the vector field,
pc is a

circle of radius r centered at p . We partition the

circle
pc into congruent curve segment units

uniformly. Each unit
iu has an outward-weight

()out iw u and an inward-weight ()in iw u , both of

which are initialized with 0 and 0 , 1
in out

w w  .

Given a Complete Streamline Set
lineS , subset

subS

contains all streamlines in lineS which have

intersection with pc . For each streamline l in

subS , cp is the intersection point of l and pc ,

()N p is the number of all intersection points of

subset subS and pc . Let V be the vector at the

intersection point cp , if V is outward to the circle

pc , cp is called as an outward intersection point,

otherwise it is an inward intersection point. For every

inward intersection point icp , we calculate its

inward contribution inCon (,)i jcp u to every unit

ju :

 Con (,) F((,))in i j i jcp u Dis cp u

Con (,) F((,))in i j i jcp u Dis cp u Where (,)i jDis cp u

is the distance between icp and ju , and F() is a

decreasing function.

The weight of every unit ju is updated by every

inward intersection point icp :

() () (,)

() 1, if (() 1)

in j in j in i j

in j in j

w u w u Con cp u

w u w u

 

 

The inward-contribution of point is defined as

Con () ()in j

j

p w u

And the outward-contribution is calculated the same

as that of inward-contribution.

Support points have been sampled uniformly in the

vector field, for each sampling point (,)p i j we

calculate its inward and outward contribution

/Con ()in out p . Then the Density Matrix densityMat ,

Out-Contribution Matrix outMat , In-Contribution

Matrix inMat , Signed-Difference-Contribution

Matrix sdeltaMat and Difference-Contribution

Matrix(DCM) delMat can be defined as:

.

(N((,))

(Con ((,)))

(Con ((,)))

()

p i j
density

p i j
out out

p i j
in in

sdelta in out

abs
del sdelta







 



Mat

Mat

Mat

Mat Mat Mat

Mat Mat

The following statements of DCM are obvious:

1. For any element a in
inMat ，

outMat , 0a 

2. If (,) 0 and (,) 0in outi j i j Mat Mat , there exists

convergent points around (,)p i j .

3. If (,) 0, (,) 0in outi j i j Mat Mat , there exists

divergent points around (,)p i j .

4. If (,) 0
sdelta

i j Mat , (,) (,)
in out

i j i jMat Mat ,

a flow will be “squeezed” when the flow p

passes through the region around (,)P i j .

5. If (,) 0sdelta i j Mat , (,) (,)in outi j i jMat Mat ,

a flow will be “expanded” when the flow

passes through the region around (,)p i j .

From above definition, DCM is somewhat like

divergence. The divergence represents the volume

density of the outward flux of a vector field from an
infinitesimal volume around a given point. The

divergence of the velocity field in that region would

have a nonzero value only when the region is a

source or sink. As shown in Figure 1, if there is no

sink or source in the region, divergence is 0. On the

contrary, the length variation between inflow

interface and outflow interface is nozero, which is

described by our DCM.

(a) Icon based visualization (b) Streamlines distribution

(c) DCM (d) Density matrix

Figure 2. Vector field and its statistics matrix

WSCG 2010 Communication Papers 79

Figure 2(a) shows icon based visualization result.

Figure 2(b) shows the sample streamlines. Figure 2(c)

shows DCM and Figure 2(d) shows the density

matrix. Vector field variation is more enhanced in

DCM than that in Density Matrix. The density of the

consistent region may be very higher, while the value

of DCM may be very little.

3.2. DCM seeding strategy
We try to sort the seeds according to the variation of

the vector field. A seed with greater variation has

higher priority.

In this section, DCM defined in the past section is

used to represent the variation the vector field.

According to this DCM streamline start points are

seeded mainly depending on the maxima of the

matrix. The generation of each streamline lowers the

matrix locally until the given condition is satisfied.

3.2.1. Initialization

To start our iterative seeding strategy, we need an

initialization set of streamlines. The maxima of DCM

can be regarded as the initial seed. As the streamlines

vary greatly around the elements of big values in the

DCM, and the feature are more evident. If there are

several candidate seeds with the same value, we
randomly get one from the candidates. Thus if we

assume a constant DCM, start points are generated

randomly and would not be picked in a raw.

If there are some critical points in the vector field, the

topology structure is an import property of the vector
field. To discover the vector field‟s detail, seeds

around the critical points are preferred. DCM

captures sources or sinks nodes easily. On the other

hand, streamline around a saddle are much less than

around other positions. So seeds around saddle are

placed firstly. The location and classification

methods of critical points can be found in [Gre92]

and [Hel89] [Hel91].

3.2.2 Iteration

Each of the iteration consists of two major parts:

1. Trace a new complete streamline in forward
and backward direction and test for
intersections.

2. Update the DCM according to the new
streamline.

In step 1, new seed is picked by get the maxima of

DCM. As described in the initial step, if there are

several candidate seeds with the same value, we

randomly get one from the candidates.

The element priority of DCM around the new

streamline is lowered after the streamline is added. If

the DCM is not updated, the next candidate seed may

be very close to the previous one and the generated

streamlines are also very close to each other. So an

update process is taken after a new complete
streamline is added.

Obviously the influence from the new streamline on

the vector field‟s feature of a given region is related

to the distance between the streamline and the region.

For a given new streamline, we first get all

streamlines‟ positions in DCM, which is denoted as a

position set
pS . All the elements of these positions

are set to 0, which means that no streamline will be

added more than once. The other elements in DCM

are updated by their distances to the set
pS . For a

given position p , the value DCM(p) is updated by

a function F ()update
 as follows:

() F (, ())updateDCM p Dis DCM p

Where Dis is the distance between p and set pS .

For a given ()DCM p , Dis is non-negative. The

longer Dis is, the smaller ()DCM p is. In other

words, the farther away from the region, the less

influence the new streamline has on the region.

If the distances between all position and the set SP

are calculated during DCM update process, too many

CPU resources will be consumed. Given a maximal

distance maxd , if we have maxd d , then ()DCM p

is the same as the previous value. So we only update

those values whose distances to set SP are no more

than maxd . Inspired by [Set99], a fast marching

method is adopted in this paper.

If seeds around the saddles are placed firstly, we

update the DCM when all the streamlines from the

saddle seeds are generated.

3.2.3. Termination

The algorithm terminates if either of the following

happens.

 The number of streamlines is greater than a
given value. If the number is too small, some
important detail may be missed.

 DCM satisfies some conditions, such as the
minimum of DCM is smaller than the given
value, which means the most important feather
is captured.

4. RESULTS AND DISCUSSION
We tested our approach for some analytical and

computational data sets. The data sets are used to
compare random seeding against DCM seeding. The

quality of streamlines relays on the coverage,

uniformity and continuity. For the continuity, all the

streamlines generated by our method are complete

streamline, which means the streamlines are the

longest of all the streamlines passing through the

same seeds. Because there are no standards to

compare uniformity and continuity quantitatively, we
compare the results with other methods visually.

Our results have been generated on a Windows Vista

ThinkPad T61p notebook equipped with an Intel

WSCG 2010 Communication Papers 80

Core2 Duo T7500 2.2GHZ CPU, 3GB Ram, Nvidia

Qurdro FX 570M 128M GPU. All the three tests cost

no more than 10 seconds including the DCM

calculation process which costs most of the time.

Figure 3 shows the comparison with other methods.
The vector field consists of 50*50 vectors. All

method have almost the same results with more

streamlines. The compared algorithm tends to

produce short separated streamline and is much more

obvious when using less streamlines. Our method

does not require as much uniformity as others do, by

which it can capture more features with less

streamlines, which is shown in center and right of

Figure 3(d).

(a) Turk/Banks([Tur96])

(b) Jobard/Lefer([Job97])

(c) Mebarki et al.([Meb05])

(d). Our method

Figure 3 Comparison of streamline placement techniques

WSCG 2010 Communication Papers 81

Figure 4 shows a slice of a 3D vector field. The

vector field consists of 128*128 vectors, which

comes from simulation of swirling jet entering fluid.

Figure 4(a) and 4(b) show results of our method. The
swirl of the vector field is well captured. On the other

hand, Figure 4 (c) and (d) show the results of

algorithm of Jobard/Lefer. The swirl is not so distinct,

for the streamlines are not long enough to reveal the

features.

Figure 5 shows comparison with algorithm of Vermal

et al. The vector field consists of 70*70 vectors.

Figure 5(a) and 5(b) show results of algorithm of

Verma. The algorithm does perform well in the

critical regions. In other words, the critical regions

can not be well represented, especially when fewer

streamlines are used. Figure 5(c) and 5(d) show

results of our method. Very few streamlines are
produced in Figure 5(d), but the critical regions are

very clear.

Our algorithm only uses complete streamlines. The

long streamlines are preferred in this paper, while

discontinuities in the layout with shorter streamlines

may impair the impression of a flow field.

(a) (b)

(c) (d)

Figure 4 Swirling jet entering fluid at rest.

Our seeding strategy picks position with the maxima

of DCM. The greater difference-contribution the

position has , the greater the variation is. The position

with great variation is picked firstly, such as
convergent point. And there are less streamlines in

the region with lower difference-contribution, such as

in Figure 4(b) while the streamlines in Figure 4(d)

are still even almost everywhere.

(a). (b).

(c) (d)

Figure 5. Comparison to feature-based technique

5. CONCLUSION
A DCM seeding strategy is proposed in this paper.

We introduced inward and outward contribution of a

position as variation measure of the vector field.

Then DCM is defined. The streamline starting points

are seeded mainly depending on the maxima of the

DCM matrix. The generation of each streamline

lowers the matrix locally until the given condition is

satisfied.

The new approach catches regions with great

variation and the vector field can be represented by

less streamlines.

6. ACKNOWLEDGEMENTS
We would like to thank Roger Crawfis for providing

the tornado dataset, and also University of California

Davis for the provision of the swirling jet dataset.

The work described in this paper was supported by
Chinese National High-Tech R&D Program Grant

(2007AA01Z318, 2007AA01Z159, 2009AA01Z324),

National Natural Science Foundation of China

(90915010 ， 60925007, 60973052, 60703062,

60833007, U0735004), National Basic Research

Program of China(2010CB328002).

7. REFERENCES
[Liu06] Liu, Z.: „An Advanced Evenly-Spaced

Streamline Placement Algorithm‟, IEEE

Transactions on Visualization and Computer

Graphics, 2006, 12, (5), pp. 965-972

[Ver00] Verma, V., D. Kao, and A. Pang. A

flow-guided streamline seeding strategy. in IEEE

Visualization 2000, pp. 163-170

WSCG 2010 Communication Papers 82

[Lar04] Laramee, R.S., Hauser, H., Doleisch, H.,

Vrolijk, B., Post, F.H., and Weiskopf, D.: „The

state of the art in flow visualization: dense and

texture-based techniques‟, Computer Graphics

Forum, 2004, 23, (2), pp. 203-221

[Pos03] Post, F.H., Vrolijk, B., Hauser, H.,

Laramee, R.S., and Doleisch, H.: „The state of the

art in flow visualisation: Feature extraction and

tracking‟, Computer Graphics Forum, 2003, 22,

(4), pp. 775-792

[Tur96] Turk, G. and D. Banks. Image-guided

streamline placement. in SIGGRAPH 1996. pp.

453-460. New York,USA.

[Mao98] Mao, X.Y., et al. Image-guided streamline

placement on curvilinear grid surfaces. in IEEE

Visualization '98. 1998. pp. 135-142.

[Job97] Jobard, B. and W. Lefer. Creating

evenly-spaced streamlines of arbitrary density. in

Visualization in scientific computing '1997, pp.

43-56.

[Job00] Jobard, B., and Lefer, W.: „Unsteady flow

visualization by animating evenly-spaced

streamlines‟, Computer Graphics Forum, 2000,

19, (3), pp. C31-C39.

[Job01] Jobard, B., and Lefer, W.: „Multiresolution

flow visualization‟, WSCG '2001: Short

Communications and Posters, 2001, pp. P34-P37.

[Mat03] Mattausch, O., et al. Strategies for

interactive exploration of 3D flow using
evenly-spaced illuminated streamlines. in Spring

Conference on Computer Graphics. 2003: ACM

New York, NY, USA, pp. 213-222.

[Meb05] Mebarki, A., P. Alliez, and O. Devillers.

Farthest point seeding for efficient placement of

streamlines. in IEEE Visualization 2005, pp.

479-486.

[Ye05] Ye, X.H., Kao, D., and Pang, A.: „Strategy
for seeding 3D streamlines‟, IEEE Visualization

2005, Proceedings, 2005, pp. 471-478.

[Li07] Li, L.Y., and Shen, H.W.: „Image-based

streamline generation and rendering‟, IEEE

Transactions on Visualization and Computer
Graphics, 2007, 13, (3), pp. 630-640.

[Sch07] Schlemmer, M., et al. Priority Streamlines:

A context-based Visualization of Flow Fields. in

EuroVis07: Joint Eurographics - IEEE VGTC

Symposium on Visualization. 2007, pp. 227-234.

[Gre92] Greene, J.M.: „Locating three-dimensional

roots by a bisection method‟, J. Comput. Phys.,

1992, 98, (2), pp. 194-198.

[Hel89] Helman, J., and Hesselink, L.:

„Representation and Display of Vector Field

Topology in Fluid-Flow Data Sets‟, Computer,

1989, 22, (8), pp. 27-36.

[Hel91] Helman, J.L., and Hesselink, L.:

„Visualizing Vector Field Topology in
Fluid-Flows‟, Ieee Computer Graphics and

Applications, 1991, 11, (3), pp. 36-46.

[Set99] Sethian, J.A.: „Fast marching methods‟,

Siam Rev, 1999, 41, (2), pp. 199-235.

WSCG 2010 Communication Papers 83

WSCG 2010 Communication Papers 84

Sparse Bundle Adjustment Speedup Strategies

Christian Lipski
TU Braunschweig,

Germany
lipski@cg.tu-bs.de

Denis Bose
TU Braunschweig,

Germany
bose@tu-bs.de

Martin Eisemann
TU Braunschweig,

Germany
eisemann@cg.tu-bs.de

Kai Berger
TU Braunschweig,

Germany
berger@cg.tu-bs.de

Marcus Magnor
TU Braunschweig,

Germany
magnor@cg.tu-bs.de

ABSTRACT

Over the past years, Structure-from-Motion calibration algorithms have become widely popular for many applications in com-
puter graphics. From an unordered set of photographs, they manage to robustly estimate intrinsic and extrinsic camera parame-
ters for each image. One major drawback is the quadratic computation time of existing algorithms. This paper presents different
strategies to overcome this problem by only working on subsets of images and merging the results. A quantitative comparison
of these strategies reveals the trade-off between accuracyand computation time.

Keywords: Camera Calibration, Sparse Bundle Adjustment, Structure-from-Motion.

1 INTRODUCTION

Many of today’s vision and graphics applications
are based on well-calibrated cameras. The camera
calibration process has been widely explored in the past
years and many methods have been proposed - ranging
from classical checkerboard recordings to calibration
without a priori known patterns [PGV+04, SSS08].
These recent methods require the recorded images
only to obtain a multitude of feature points (e.g.
SIFT-features) for a properself-calibration. Especially
image-based modeling and rendering applications
benefit from the development: The camera setup can be
freely chosen and a calibration recording session has
become obselete. Furthermore, the camera steup does
not need to be fixed during the recording anymore.
Scenes recorded with multiple handheld cameras can
nowadays be reconstructed by employing the self-
calibration methods. The method most widely used
in the research community is the Sparse Bundle Ad-
justment, orBundler for short, introduced by Snavely
et al. [SSS08]. The recorded images are searched for
feature points, e.g. SIFT-features. Feature points, that
are shared between any two images are considered
as correspondence points. After an initial estimate of
camera parameters, these points are triangulated and
reprojected to the images. The reprojection error, i.e.
the euclidean distance between the original feature
locations and their reprojections on the image plane
is minimized during the so-called bundle adjustment.
Being considered as a milestone in the community,

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

this tool, however, has serious issues regarding the
computation time.

In this paper we examine the reasons for these is-
sues and propose new methods to significantly reduce
the computation time whilst keeping the reprojection
error minimal. The paper is outlined as follows. We
give a brief overview to recent advances in calibration
methods in Section 2, also focussing on Bundler’s run-
time issues. Afterwards, we introduce two strategies
to tackle these problems in Section 3. We justify our
methods with a quantitative analysis in Section 4 and
conclude in Section 5.

2 RELATED WORK

While our work mainly improves Bundler by Snavely
et al. [SSS08], a renowned tool for 3D object recon-
struction from uncalibrated multicamera footage used
by many other scientists [WMC04, Sna08, JB09], we
also relate to the following previous work in the field of
multicamera calibration.

A good overview of calibration algorithms can
be found in the paper by Triggs et al. [TMHF99].
The commercial toolBoujou [vic09] reconstructs 3D
models from moving uncalibrated cameras. Hasler
et al.[HRT+09, THWS08] calibrate multiple moving
unsynchronized cameras by first finding each camera’s
trajectory (using KLT-tracking and RANSAC-fitting).
An approach based on geometric dissimilarity mea-
surement is described by Denzler et al. [BBD09]. They
rely on a less restrictive matching method compared to
[SSS08].

However, most calibration approaches, including the
Sparse Bundle Adjustment [SSS08], suffer from long
computation times. Schwartz et al. [SK09] investigate
the preconditions of multicamera calibration and sug-
gest to merge connected components for an initial es-
timate to achieve computation speedup. Byrod et al.
suggest an iterative adjusting approach by solving the
problem with a conjugate gradient method. They pre-

WSCG 2010 Communication Papers 85

condition the matrix with a multiscale Gauss-Seidel ap-
proach. He et al. [HQH08] try to improve the com-
putation time by propagating matches between camera
pairs.

Our approaches, instead, address the computation
time problem by applying Bundler to a limited selec-
tion of images, and incorporating the other images at a
later stage.

2.1 Bundler: Sparse Bundle Adjustment
As our work is based on the work of Snavely et
al. [SSS08], we will give a brief introduction into
the Bundler Calibration pipeline. Bundler accepts an
unordered set of photographs as input, along with an
initial estimate of the focal lengths of the cameras that
took these images. A calibration of the images is the
output of the algorithm which provides the relative
rotationsR and translationst of all cameras along with
the intrinsic parameters (focal length and radial lens
distortion). The first part of the Pipeline is an image
feature extraction. Snavely et al. proposed to use SIFT
features [Low04] for this task. This step runs in linear
time. A pairwise feature matching phase matches the
key features of all images pairs. This step runs in
quadratic time. The two most promising images are
chosen for an initial calibration. After calibration, an
initial set of 3D points is obtained via triangulation of
the corresponding points. The bundle adjustment step
refines the calibration by minimizing the reprojection
errors of the obtained points. The remaining cameras
are added one by one: If at least six correspondences
to the already reconstructed 3D points are known,
an initial estimate of its parameters is calculated via
Direct Linear Transformation. A bundle adjustment
step refines the initial parameters of the camera, new
reconstructed 3D points may be added and a global
bundle adjustment step is performed. This final phase
runs in quadratic time. We can see that both the key
feature matching and the bundle adjustment run in
quadratic time with respect to the amountm of input
images. The overall computational complexity of
Bundler is thereforeO(m2).

3 SPEEDUP STRATEGIES
Data sets containing just a few hundred images may
lead to run-times of several days on a single CPU. In-
stead of focussing on algorithmic techniques to tackle
this problem, our approaches reduce the number of im-
ages used as an input to the sparse bundle adjustment.
We developed two different strategies that let Bundler
only run on subsets of images, thus decreasing the over-
all run-time.

3.1 Merge Images Approach
We partition the set of images inton subsets of equal
size. Given an (arbitrarily chosen) order of images, the

Figure 1: Merge Images Approach forn = 2 andk = 9.
Two subsets are created and separated independently
(blue and red boxes). All subsets contain a set of com-
mon images (yellow boxes). Both subsets are merged
via a Procrustes transformation.

first, then + 1st, the 2n + 1st, etc. . . image are put in
subsetN1. The second,n +2nd, 2n +2nd, etc. . . image
are placed in subsetN2 and so forth, see Fig. 1. After-
wards, we make sure that the image subsets also contain
some common images. We select eachkth image from
the original image set and add it to each subset if it is
not already present in that set. Each subset is calibrated
with Bundler independently. We are now faced with
the problem that we obtainedn calibrations of the same
scene. We arbitrarily pick the first subset to be our refer-
ence set and merge the other calibration results into this
reference system. The subset’s reference systems differ
in their locationzn, their rotationRn and their scalebn.
So, a Procrustes transformationΦ has to be obtained for
each subset to align it with the reference set. When this
transformation is know, new rotation matricesRnew and
translation vectorstwnew are obtained. We recall that the
positionp of a camera can be derived from its rotation
matrixR and its translation vectort.

p = −RT t. (1)

We can obtain a set of common points for all subsets
of images when we compute the camera positions for
the common images in each set. For each image sub-
set, we obtain the transformationφ that maps the set of
common camera locations to the one of the reference
calibration. We make use of the matlab implementation
of the Procrustes Analysis. The same transformation
can be used to obtain the camera locationspnew, the
rotation matricesRnew and the translation vectorstnew:
The new camera locations and rotation matrices can de-
rived by directly applyingφ . The translation vectors are
computed as follows:

tnew = −RT
new

−1
pnew (2)

The speedup caused by this strategy can be formal-
ized by a reduction of the complexity fromO(m2),
wherem is the total number of images, toO(n · (m/n +
m/k)2). As we will show in Section 4, an adequate se-

WSCG 2010 Communication Papers 86

Figure 2: Add Images approch withn = 4. Only each
nth image is used for the initial calibration (red boxes).
The other images are added using via Direct Linear
Transformtion.

Figure 3: A representative frame of the test sequence.

lection ofk andm can cause a dramatic speedup, while
preserving a high accuracy, i.e. a low reprojection error.

3.2 Add Images Approach

The original implementation of bundler provides the
opportunity to add images to an already calibrated set
of images. We exploit this feature and determine a
subset of images that is calibrated instead of the com-
plete set of images. We add everynth image into the
subset, calibrate the subset and add all remaining im-
ages via Bundler’sAdd Images feature, Fig 2. When
adding images to the calibrated set of images, no new
bundle adjustment iteration is performed. I.e., only the
optimal rotation matrix and translation vector for the
new image is determined, no new 3D points are in-
serted and no optimization of the camera parameters
is performed. Therefore, adding images runs in linear
time. Instead of the original computationl complexity
of O(m2), the Add Images Approach has a complexity
of O((m/n)2 + (m−m/n)), which is even faster than
the Merge Image Approach.

4 RESULTS

Our speedup strategies are tested on the graffiti im-
age sequence, Fig. 3. This test sequence contains the
recordings of 5 non-stationary camcorders, all pointed
towards a juggler in front of a highly textured wall.
Each camera recorded 40 video frames, resulting in a
total size of 200 images. The image size is 480px×
270px. We calibrate the set of 200 images with the orig-
inal bundler algorithm, the Merge Images Approach
and the Add Images Approach. Several calibration runs

1 2 4 8 16 32
0

20

40

60

80

100

120

n

ru
nn

in
g

tim
e

[m
in

]

Running Times − Graffiti Sequence

Add

Merge k=20

Merge k=30

Merge k=50

Figure 4: Runtimes for Bundler using both speedup
strategies with different parametersn and k. We ob-
tained results forn = 1,2,4,8,16,32 andk = 20,30,50.
Please note thatn = 1 is identic to a calibration without
speedup. Compared to the original Bundler calibration
(n = 1), a significant speedup can be achieved in all
cases.

with different parameters quantitatively determine the
tradeoff between computation time and accuracy.

As an error measure, we use the reprojection er-
ror of the reconstructed 3D points. In order to make
all speedup scenarios comparable, we have to make a
slight alteration to the Add Image approach. When us-
ing this approach, the reconstructed point sets tend to
be much smaller with increasingn. Because not all im-
ages are used for Bundle Adjustment, less reconstructed
points are added. It is also quite likely that only these
points will be incorporated into that set that have a low
reprojection error: Bundler either optimizes or discards
points. Therefore, we store a list of reconstructed 3D
points and their image locations when running Bundler
without a speedup strategy. When evaluating the repro-
jection error with the Add Images method, we recon-
struct the full set of 3D points by triangulation of the
previously stored image locations. We then measure the
reprojection error of the full set of 3D points. For both
speedup methods, we calibrate withn = 2,4,8,16,32.
In the case of the Merge Images method, we did indi-
vidual test runs for each differentn with k = 20,30,50.

The computation times, Fig. 4, reveal that the Add
Images Approach outperforms the Merge Images Ap-
proach in terms of speed. Forn = 32 it takes just 6 in-
stead of 120 minutes to perform the calibration. This is
not surprising, as the Merge Images method does runn
separate calibrations instead of only a single one. With
computation times as low as 22 minutes, the Merge Im-
ages method still achieves a remarkable result. When
choosingk > n, the runtimes start to increase again, as
a lot of redundant frames are incorporated into the cal-
ibrations. All calibration runs are performed on a 2.66
Ghz Intel CPU using a single core. In defense of the
Merge Images method one must admit that the Merge

WSCG 2010 Communication Papers 87

1 2 4 8 16 32
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

re
pr

oj
ec

tio
n

er
ro

r
[p

x]

Reprojection Error − Graffiti Sequence

Add

Merge k=20

Merge k=30

Merge k=50

Figure 5: Average reprojection error for both the Add
Images and the Merge Images approach. Please note
thatn = 1 is identic to a calibration without speedup.

Images method can be easily parallelized. In contrast,
the Add Images approach runs a consecutive algorithm.

When we look at the reprojection error, one can see
that for low k (k = 20,30) values, the Merge Images
Method achieves much better results, Fig. 5. With
higherk (k = 50) the merging of data sets seems to be-
come unstable. The Add Images method’s reprojection
error increases linear withn. Although, forn = 32 the
mean error still stays below 0.8 px.

When we look at the mean deviation of the error, we
see that it keeps low in all scenarios where the Merge
Approach is used, Fig. 6. On the other hand, the devi-
ation of the error climbs up to a value of 1.6 px when
using the Add Images Approach. This can be explained
by the fact that many of these points were not consid-
ered for bundle adjustment and that a few large outliers
exist. The shown quantitative results lead to the inter-
pretation that both approaches succeed in their task to
speed up the computation while maintaining a low re-
projection error. When a very high speedup is required,
the Add Images apporach is the first choice, especially
for high values ofn, drastic speedups are achieved.
When accuracy is crucial, the Merge Images approach
is the more advisable choice. One should pickn < k
when using the Merge Images method, otherwise the
speedup will significantly diminish.

5 CONCLUSION

We introduced two methods, i.e., the Merge Images and
the Add Images approach, to speed up the computation
in the camera calibration tool Bundler. We found that
both methods achieve comparably fair results, i.e. min-
imal reprojection error.

In the future we want to examine, if clustering of im-
ages will lead to further speedup. I.e., if instead of pick-
ing images arbitrarily for our calibrtion subsets, a more
considerate preselection of images can be used to fur-
ther improve the accuracy of the calibration.

1 2 4 8 16 32
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

n

st
an

da
rd

 d
ev

ia
tio

n
of

 r
ep

ro
je

ct
io

n
er

ro
r

Standard Deviation − Graffiti Sequence

Add

Merge k=20

Merge k=30

Merge k=50

Figure 6: Standard deviation of the reprojection error
for both speedup strategies.

REFERENCES
[BBD09] M. Brückner, F. Bajramovic, and J. Denzler. Geometric

and probabilistic image dissimilarity measures for com-
mon field of view detection.Proc. of CVPR, pages 2052–
2057, 2009.

[HQH08] S. He, Y. Qi, and F. Hou. Photo Traveler: A System for
Exploring Photos in 3D.Proc. of the JCIS, 2008.

[HRT+09] N. Hasler, B. Rosenhahn, T. Thormählen, M. Wand,
J. Gall, and H.-P. Seidel. Markerless motion capture with
unsynchronized moving cameras. InProc. of CVPR,
pages –, Miami, USA, June 2009. IEEE Computer Soci-
ety. (to appear).

[JB09] K. Josephson and M. Byrod. Pose estimation with radial
distortion and unknown focal length.Proc. of CVPR,
pages 2419–2426, 2009.

[Low04] David G. Lowe. Distinctive image features from scale-
invariant keypoints. Intl. Journal of Computer Vision,
60:91–110, 2004.

[PGV+04] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest,
K. Cornelis, and R. Koch J. Tops. Visual modeling with
a hand-held camera.Intl. Journal of Computer Vision,
pages 207–232, 2004.

[SK09] C. Schwartz and R. Klein. Improving initial estima-
tions for structure from motion methods. InProc. of the
CESCG, April 2009.

[Sna08] N. Snavely. Scene Reconstruction and Visualization
from Community Photo Collections. PhD in com-
puter science, University of Washington, Computer Sci-
ence and Engineering,University of Washington,Box
352350,Seattle, WA 98195-2350, USA, 2008.

[SSS08] N. Snavely, S.M. Seitz, and R. Szeliski. Modeling the
world from internet photo collections.Intl. Journal of
Computer Vision, 80(2):189–210, 2008.

[THWS08] T. Thormählen, N. Hasler, M. Wand, and H.-P. Seidel.
Merging of feature tracks for camera motion estimation
from video. InProc. of the CVMP, London, UK, Novem-
ber 2008.

[TMHF99] B. Triggs, P.F. McLauchlan, R.I. Hartley, and A.W.
Fitzgibbon. Bundle adjustment-a modern synthesis.Lec-
ture Notes in Computer Science, pages 298–372, 1999.

[vic09] vicon. boujou. http://www.vicon.com/
boujou/, 2009.

[WMC04] K. H. Wong, M. Ming, and Y. Chang. 3d model re-
construction by constrained bundle adjustment. InProc.
of ICPR, pages 902–905, Washington, DC, USA, 2004.
IEEE Computer Society.

WSCG 2010 Communication Papers 88

Reduction of Animated Models for Embedded Devices
Jiri Danihelka, Lukas Kencl, Jiri Zara

Czech Technical University in Prague, Faculty of Electrical Engineering
{danihjir, kencl, zara}@fel.cvut.cz

ABSTRACT

We present a new supplementary method for reduction of animated 3D polygonal models. The method is applicable mainly in
animation of human faces and it is based on intelligent merging of visemes represented by key polygonal meshes. It is useful
for devices with limited CPU and memory resources like mobile phones or other embedded devices. Using this approach we
can reduce operation memory needs and time to load the model from storage. We describe the algorithm for viseme merging
and we prove that our method is optimal for selected metrics. Finally we validate method performance on an example and
compare with the case when only traditional methods for 3D models reduction are used.

Keywords: animation, model, reduction, viseme

1 INTRODUCTION
Modern technology devices like personal computers
and mobile phones are becoming more and more pow-
erful and complicated. Many people have difficulties
controlling miscellaneous computer systems and appli-
cations [17]. Computer graphics and designers of com-
puter programs look for new kinds of interfaces to con-
trol still more complex computer programs. Talking-
head interface seems to be a promising alternative to
traditional menu/windows/icons interface for sophisti-
cated applications. Such interface has proven to be use-
ful as a virtual news reader [1], blog enhancement [11]
and in many other cases.

So far talking-head interface has been applied mostly
on desktop PCs. However, recent small electronic
equipment, such as mobile phones, pocket computers
and embedded devices possess enough CPU power to
offer the talking-head interface as well.

Current smartphones and pocket computers usually
have 128MB or 256 MB of RAM. Most of this memory
is occupied by the operating system(OS) itself or by OS
extensions like HTC TouchFLO or Samsung TouchWiz
(formerly pocket computers had only 16 or 32 MB of
operation memory, but the OS was stored in read-only
memory rather than in RAM). The lack of memory is a
bottleneck for animations computed by interpolation of
polygonal meshes, because it requires a lot of possibly
large polygonal meshes loaded in memory.

To achieve the lowest memory requirements, we have
decided to reduce both the amount of polygons in the

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2010 conference proceedings, ISBN 80-903100-7-9
WSCG’2010, February 1 – February 4, 2010
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Figure 1: A talking head keyframe model articulating
the phoneme "f" (left) is similar to a keyframe model
articulating the phoneme "th" (right). Our algorithm
detects such similarity and replaces both models with
one merged model (down).

mesh and the number of key meshes (see figure 1). We
propose a dissimilarity metric to detect similar models
and a technique to merge them. We prove that our merg-
ing technique is optimal for the given dissimilarity met-
ric.

WSCG 2010 Communication Papers 89

2 RELATED WORK
Traditional methods for polygonal reduction are suffi-
ciently covered in [10] and [15]. Specific aspects about
geometric rendering and model reduction on mobile
phones and embedded devices were presented by Pulli
et al. [16].

An interesting way for speeding up morphing anima-
tion on embedded devices was proposed by Berner [5].
It is based on optimization strategies by omitting less
important polygonal meshes during the animation.

In our research we aim to develop software compat-
ible with the Xface animation framework [2, 3] that
is open-source and widely used in academia. There
are also more advanced animation frameworks that
use skeleton-muscle [18] animation model instead of
MPEG-4 standard. The best known of them is Greta
[13]. A method of anatomical musculature modeling
to achieve realistic and real-time figure animation was
proposed by Zuo Li et al. [12].

However none of the works above focuses on reduc-
ing the number of visemes (as our work does).

3 FACE ANIMATION PRINCIPLES
3.1 Phonemes and visemes
When using face animation in talking-head applica-
tions, we have to consider both visual and audio ef-
fects. They are described by visemes and phonemes.
A phoneme is an element of spoken language similarly
like a letter is an element of written language. A viseme
is an element of facial animation. It describes the partic-
ular facial position when pronouncing a phoneme. Usu-
ally one phoneme corresponds to one viseme, but some-
times multiple phonemes share the same viseme. This
happens when facial position of two or more phonemes
differs only by position of non-displayed body parts like
vocal cords or a tongue.

The frequencies of occurrence of phonemes and
visemes depend on spoken language, there are also
differencies e.g. between frequencies in British and
American English. English has 40 different phonemes.

For our algorithm we need to know the frequen-
cies of phonemes and visemes. The frequencies of
phonemes can be determined by converting a long text
(at least several pages) using a phonetic transcription
software and then by counting the phoneme frequen-
cies in the transcribed text. Such process is usually
part of text-to-speech-engine pre-processing of text in-
put for voice synthesis. There is also a free transcription
engine available together with typical frequencies of
American English phonemes [6]. Having the frequen-
cies of phonemes one can determine the frequencies of
visemes using phoneme-to-viseme mapping function.

For our experiments we use the FaceGen facial edi-
tor [19] to generate human head visemes. This editor
generates 16 different visemes.

Figure 2: A subset of feature points (FP) defined in
MPEG-4 facial animation standard [8]

3.2 MPEG-4 animation
The most widely accepted standard for human face an-
imation is the ISO standard MPEG-4 released by the
Moving Pictures Experts Group in 1999 [7, 8].

In this standard 84 feature points (FPs) are specified
on human face (see figure 2). The facial animation is
controlled by 68 parameters called Facial Animation
Parameters (FAPs).

The MPEG-4 standard allows two ways of facial an-
imation. The first one manipulates the feature points
individually and can achieve various range of facial ex-
pressions. The second one is based on interpolating be-
tween two keyframe models. This interpolation can be
done either linearly or with cubic interpolation func-
tion.

In this paper we focus on the keyframe facial ani-
mation. This approach is less CPU intensive and the
visual results of this animation are sufficient for mobile
phones and embedded devices.

4 DEFINITIONS

4.1 Polygonal model
For purposes of this paper, the polygonal model is a
triplet (V, E, P) of vertices V, edges E, and polygons P.
To avoid rendering problems with general polygons af-
ter geometric transformations, we triangulate all poly-
gons in advance.

Fully triangulated models allow us use a specific met-
ric for model comparison (see section 4.3). They also
fit very well into commonly used graphics libraries for
mobile phones and embedded devices like OpenGL ES
(OpenGL for Embedded Systems) [9] which are opti-
mized for processing triangles only.

4.2 Interpolable set of models
We call polygon models interpolable if they differ only
in coordinates of their vertices. Interpolable models
have the same topology and the same number of ver-
tices, edges and polygons. There must also be given a

WSCG 2010 Communication Papers 90

bijection function that matches the corresponding ver-
tices/edges/polygons.

4.3 Polygonal model dissimilarity
We define the polygonal model dissimilarity as a metric
(distance function) ρ for two interpolable models.

ρ(A,B) :=
∥V∥

∑
k=1

w(vk)∥vA,k − vB,k∥2 (1)

where
A and B are the polygonal models.
w(v) is the weight of the vertex v. It represent an im-
portancy of the vertex in the model. The author of the
model can set higher weights for vertices important for
human perception.

For models with unspecified weights, we have con-
sidered two general metrics:

ρ1(A,B) :=
∥V∥

∑
k=1

∥

∥vA,k − vB,k
∥

∥

2 (2)

ρ2(A,B) :=
∥V∥

∑
k=1

S(vN)
∥

∥vA,k − vB,k
∥

∥

2 (3)

where
S(vN,k) is a sum of surfaces of triangles incident with
vertex vN,k. Since the triangle surface may differ for
individual visemes, we work with polygon surfaces in
the neutral expression of the model N = (VN ,EN ,PN).

The first metric assumes that more important areas
are tessellated more densely. The weight of a face part
is given by a number of its vertices.

The second metric can be used if each part of the
model surface is equally important for the animation.
If we use this metric it is necessary to split all polygons
to triangles first as mentioned in section 4.1. We have
proven that both metrics give the same results if applied
in our reduction algorithm. Thus the real implementa-
tion can utilize the first and more simple metric only.

4.4 Dissimilarity for sets of polygonal
models

Let A = {A1,A2, . . . ,An}, B = {B1,B2, . . . ,Bm} are two
sets of polygonal models that represents visemes. Let
f (A1), f (A2), . . . , f (An) are frequencies of visemes in
A. If we have a dissimilarity metric for polygonal mod-
els ρ(A,B), we can define dissimilarity for two sets of
polygonal models ρ f (A,B) as:

ρ f (A,B) =
n

∑
i=1

f (Ai) min
j=1...m

ρ(Ai,B j) (4)

It is the sum of distances from each model from A to
its most similar models in B. Note that dissimilarity
function for sets of polygonal models is not a metric
because it is not symmetrical.

4.5 Problem definition
We describe an algorithm for the following problem:
Input:
Set of polygonal models A = {A1,A2, . . . ,An}. These
models represent visemes of a human face that have
frequencies f (A1), f (A2), . . . , f (An). An integer num-
ber m; m < n
Task:
Find a set of new polygonal models with m elements
B = {B1,B2, . . . ,Bm} that is the most similar to A.
(ρ f (A,B) is minimal for all such sets of polygonal
models)

5 FINDING OPTIMAL SOLUTION
The solution for the problem is described in two steps:
Firstly, we describe how to solve the extreme case when
m = ∥B∥ = 1. Then we describe the solution for arbi-
trary value of ∥B∥.

5.1 Case ∥B∥= m = 1
We have to find such a set of polygonal models B= (B)
with one element for which the expression in equation
(4) is minimal.

B = argmin
B ;∥B∥=1

(ρ f (A,B)) (5)

We the definition of the dissimilarity for sets (see equa-
tion (4)):

B = argmin
B ;∥B∥=1

(
n

∑
i=1

f (Ai) min
j=1...m

ρ(Ai,B j)) (6)

Because m = 1 we can leave out the second minimum.

B = argmin
B

(
n

∑
i=1

f (Ai)ρ(Ai,B)) (7)

Now we use the definition of model dissimilarity
metric (see equation (1)).

B = argmin
B

(
n

∑
i=1

f (Ai)
∥V∥

∑
k=1

w(vk)∥vAi,k − vB,k∥2) (8)

We swap the summations.

B = argmin
B

(
∥V∥

∑
k=1

n

∑
i=1

f (Ai)w(vk)∥vAi,k − vB,k∥2) (9)

Since the vertices of model B are mutually independent,
we can calculate each of them individually.

VB,k = argmin
VB,k

(
n

∑
i=1

f (Ai)w(vk)∥vAi,k − vB,k∥2) (10)

WSCG 2010 Communication Papers 91

The vertex weight w(vk) remains constant for indi-
vidual vertex. Thus it does not affect the argmin ex-
pression. We can leave it out.

VB,k = argmin
VB,k

(
n

∑
i=1

f (Ai)∥vAi,k − vB,k∥2) (11)

We use the definition of the Euclidian distance. vAi,k =
[xAi,k,yAi,k,zAi,k], vB,k = [xB,k,yB,k,zB,k]

VB,k = argmin
[xB,k,yB,k,zB,k]

n

∑
i=1

f (Ai)(xAi,k − xB,k)
2 + (12)

+ f (Ai)(yAi,k − yB,k)
2 + f (Ai)(zAi,k − zB,k)

2

We can determine individual coordinates separately, be-
cause they are independent on each other. Let us con-
sider the x-coordinate only:

xB,k = argmin
xB,k

n

∑
i=1

f (Ai)(xAi,k − xB,k)
2 (13)

We expand the expression.

xB,k = argmin
xB,k

n

∑
i=1

f (Ai)(x2
Ai,k −2xAi,kxB,k + x2

B,k) (14)

In order to find the minimum, we find where the deriva-
tion is equal to 0.

0 =
∂

∂xB,k

n

∑
i=1

f (Ai)(x2
Ai,k −2xAi,kxB,k + x2

B,k) (15)

After the derivation we get:

0 =
n

∑
i=1

f (Ai)(−2xAi,k +2xB,k) (16)

The second derivation is equal to 2∑n
i=1 f (Ai). This

is greater than 0 because all of the frequencies are pos-
itive. Thus this is a minimum. We express the xB,k.

xB,k =
∑n

i=1 f (Ai)xAi,k

∑n
i=1 f (Ai)

(17)

We express the vertex vB,k:

vB,k =
∑n

i=1 f (Ai)vAi,k

∑n
i=1 f (Ai)

(18)

We finally express the model B:

B =
∑n

i=1 f (Ai)Ai

∑n
i=1 f (Ai)

(19)

5.2 Case ∥B∥= m > 1
We have to find such a set of polygonal models B =
(B1,B2, . . . ,Bm) with m elements for which the expres-
sion in formula 4 is minimal.

B = argmin
B ;∥B∥=m

(ρ f (A,B)) (20)

We use a dynamic programming approach:
Let minDis[T, p] is an array of real numbers indexed by
a subset T ⊂ A and an integer p ∈ {1 . . .m} defined as:

minDis[T, p] := min
U ;∥U∥=p

(ρ f (T,U)) (21)

This array represents the distance for all subsets of A

to its optimal reductions of size p. If we are able to fill
the array, we can find the answer to our problem in the
field minDis[A,m]. We describe an algorithm to fill the
array minDis[T, p] with values. For p = 1 we can use
the equation (19).

minDis[T,1] = ρ f (T,{
∑n

i=1 f (Ti)Ti

∑n
i=1 f (Ti)

}) (22)

Now we can increase the value of p step-by-step and
compute the values of remaining fields of the array
minDis. We try to find a subset V⊂T that is reduced to
a single mesh during the optimal reduction. The reduc-
tion is optimal if the sum of reduction of V to one mesh
and reduction of T\V to p−1 meshes is minimal.

minDis[T, p] = min
V⊂T

(minDis[V,1]+minDis[T\V, p−1])

(23)
Using the algorithm above we can compute the dissim-
ilarity during the optimal reduction. We can find the
set B itself easily by making notes about the performed
reductions (found sets V) during the algorithm.

The time complexity of the algorithm is
O(n2n∥V∥ + 4nm). The spacial complexity of the
algorithm is O(n∥V∥+ 2nm). The algorithm is expo-
nential to n. It is not a principal drawback because the
values of n and m are small (e.g. n = 16, m = 10) and
we use this reduction only once for each set of models.

6 IMPLEMENTATION
We have implemented the algorithm in Java. For our

measurement we used a computer with Intel Core Duo
processor T8300 2.4GHz with 2 GB of RAM. (Our im-
plementation is single thread only.) We measured the
time needed to reduce 16 visemes to 10 visemes. Each
of these visemes was represented by a polygonal model
with 3000 triangles. Initial reductions for the case p= 1
took 2 minutes and 43 seconds. Dynamic programming
reductions for the case p > 1 took 2 minutes and 23
seconds. Input/output operations took 12 seconds. The
total time was 5 minutes and 18 seconds.

WSCG 2010 Communication Papers 92

input A
input f (A1), f (A2) . . . f (An)
input m
for T ⊂ A do

minDis[T, 1] := ρ f (T,
∑n

i=1 f (Ti)Ti
∑n

i=1 f (Ti)
)

for p := 2 to m do
for T ⊂ A do

currentMinDistance := ∞
for V ⊂ T do

distance := minDis[V,1] +
minDis[T\V, p−1]

if distance < currentMinDistance then
currentMinDistance := distance

minDis[T, p] := currentMinDistance
output minDis[A,m]

Algorithm 1: Algorithm for optimal mesh reduction

We use VRML (Virtual Reality Markup Language)
as our input and output format for polygonal meshes.
The output from our application is compatible with
XFaceEd face editor proposed by Balci in [3].

7 PERFORMANCE VALIDATION
We have compared animation of a head with unreduced
set of 16 visemes and the same head with reduced set of
10 visemes. We used a textured head model with 3000
triangles exported from FaceGen [19] for our measure-
ments and Windows Mobile phone HTC Touch Pro
with OpenGL ES[9] support. An application with unre-
duced model required 18 seconds for startup, an ap-
plication with the reduced model required only 8 sec-
onds for startup. The speed of the model animation
was 5.4 FPS for the unreduced and 12.2 FPS for the
reduced version. The unreduced version was likely
slowed down by memory swapping. The animation of
the reduced version appeared much more smooth.

8 CONCLUSION AND FUTURE
WORK

The presented method primary focusses on the head an-
imation but it is general enough for use in other ani-
mation techniques using polygonal mesh interpolation
(e.g. body, animals). In our work, we intend to investi-
gate further reduction techniques as part of our ongoing
effort of designing an open platform for development of
talking-head applications on mobile phones (using the
XFace framework developed by Balci [2, 4]).

ACKNOWLEDGEMENTS
This research has been partially supported by the
MSMT under the research program MSM 6840770014,
the research program LC-06008 (Center for Computer
Graphics) and by Vodafone Foundation Czech Repub-
lic.

REFERENCES
[1] Marc Alexa, Uwe Berner, Michael Hellenschmidt, and Thomas

Rieger. An animation system for user interface agents. In Pro-
ceedings of WSCG 2001, 2001.

[2] Koray Balci. Xface: Mpeg-4 based open source toolkit for 3d
facial animation. In AVI ’04: Proceedings of the working con-
ference on Advanced visual interfaces, pages 399–402, New
York, NY, USA, 2004. ACM.

[3] Koray Balci. Xfaceed: authoring tool for embodied conver-
sational agents. In ICMI ’05: Proceedings of the 7th inter-
national conference on Multimodal interfaces, pages 208–213,
New York, NY, USA, 2005. ACM.

[4] Koray Balci, Elena Not, Massimo Zancanaro, and Fabio Pi-
anesi. Xface open source project and smil-agent scripting
language for creating and animating embodied conversational
agents. In ACM Multimedia, September 2007.

[5] Uwe Berner. Optimized face animation with morph-targets.
Journal of WSCG 2004, 12, 2004.

[6] Foreignword.
English-Truespel (USA Accent) Text Conversion Tool.
http://www.foreignword.com/dictionary/truespel/transpel.htm.

[7] ISO/IEC 14496-1:1999. Information technology – Coding of
audio-visual objects – Part 1: Systems. ISO, Geneva, Switzer-
land.

[8] ISO/IEC 14496-2:1999. Information technology – Coding of
audio-visual objects – Part 2: Visual. ISO, Geneva, Switzer-
land.

[9] Khronos Groups. OpenGL ES - The Standard for Embedded
Accelerated 3D Graphics. http://www.khronos.org/opengles/.

[10] Mike Krus, Patrick Bourdot, Françoise Guisnel, and Gullaume
Thibault. Levels of detail & polygonal simplification. Cross-
roads, 3(4):13–19, 1997.

[11] Ladislav Kunc, Pavel Slavik, and Jan Kleindienst. Talking head
as life blog. In Text, Speech and Dialogue, Lecture Notes in
Computer Science, pages 365–372, 2008.

[12] Zuo Li, LI Jin-tao, and Wang Zhao-qi. Anatomical human mus-
culature modeling for real-time deformation. Journal of WSCG
2003, 11, 2003.

[13] Radoslaw Niewiadomski, Elisabetta Bevacqua, Maurizio
Mancini, and Catherine Pelachaud. Greta: an interactive ex-
pressive eca system. In AAMAS ’09: Proceedings of The 8th In-
ternational Conference on Autonomous Agents and Multiagent
Systems, pages 1399–1400, Richland, SC, 2009. International
Foundation for Autonomous Agents and Multiagent Systems.

[14] Igor S. Pandzic and Robert Forchheimer, editors. MPEG-4 Fa-
cial Animation: The Standard, Implementation and Applica-
tions. John Wiley & Sons, Inc., New York, NY, USA, 2003.

[15] W. Pasman and F. W. Jansen. Scheduling level of detail with
guaranteed quality and cost. In Web3D ’02: Proceedings of the
seventh international conference on 3D Web technology, pages
43–51, New York, NY, USA, 2002. ACM.

[16] Kari Pulli, Jani Vaarala, Ville Miettinen, Robert Simpson, Tomi
Aarnio, and Mark Callow. The mobile 3d ecosystem. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 courses, page 1, New
York, NY, USA, 2007. ACM.

[17] Thomas Rieger. Avatar gestures. Journal of WSCG 2003,
11:379–386, 2003.

[18] Eftychios Sifakis, Andrew Selle, Avram Robinson-Mosher, and
Ronald Fedkiw. Simulating speech with a physics-based fa-
cial muscle model. In SCA ’06: Proceedings of the 2006 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
pages 261–270, Aire-la-Ville, Switzerland, Switzerland, 2006.
Eurographics Association.

[19] Singular Inversion. FaceGen. www.facegen.com.

WSCG 2010 Communication Papers 93

WSCG 2010 Communication Papers 94

Multi-Level Hashed Grid Construction Methods

Vasco Costa

INESC-ID / IST
Lisboa, Portugal

vasc@vimmi.inesc-id.pt

João Pereira
INESC-ID / IST
Lisboa, Portugal

jap@vimmi.inesc-id.pt

Joaquim Jorge
INESC-ID / IST
Lisboa, Portugal

jaj@vimmi.inesc-id.pt

ABSTRACT
Ray tracing is an inherently parallel visualization algorithm. However to achieve good performance, at
interactive frame rates, an acceleration structure to decrease the number of per ray primitive intersections is
required. Grid acceleration structures have some of the fastest build times, with O(N) complexity, but
traditionally achieved this at a high memory cost. Recent research has reduced the memory footprint by
employing compression for one-level grids. Render time performance can be improved using multi-level grids.
We describe two methods for building such multi-level grids. In the first method we employ a recursive
compressed grid in which grid cells are adaptively subdivided in a variable fashion. The second method uses a
finely divided compressed grid, with a lower resolution macrocell overlay to speed up traversal. We analyze the
performance of these new algorithms, which enable improved render times, versus existing solutions.

Keywords
Ray tracing, spatial subdivision, grid.

1. INTRODUCTION
Realtime ray tracing is an active area of research
[Wal07]. Even traditionally skeptical hardware
vendors have recently demonstrated, or made
available, realtime ray tracing solutions [Sei08]. Ray
tracing is desirable for several reasons, namely per
pixel accurate shadows, reflections and refractions. It
can also be used as a base for other global
illumination algorithms such as path tracing, and
photon mapping, to add more effects such as caustics
and diffuse interreflections.
In the naive ray tracing algorithm, it is necessary to
search the nearest intersected primitive for each ray.
Without an acceleration structure, the complexity for
such an algorithm is O(N), where N is the number of
primitives in the scene. Hence to enable realtime ray
tracing for complex scenes, with many primitives,
acceleration structures are used. These acceleration
structures can theoretically reduce per ray complexity
to O(log N).

Ideally an acceleration structure should be fast to
build and use as little memory space as possible,
while still delivering good render time performance.
This work describes our efforts to combine the
desirable traits of multi-level grid [Jev89,Wal06]
render time performance, with the low build time and
memory consumption characteristics of row
displacement compression [Lag08].
Existing related work in this area is surveyed in
Section 2. Section 3 describes the proposed multi-
level grid construction methods. The performance
results of these methods are analyzed in Section 4.
Finally conclusions are presented in Section 5.

2. RELATED WORK
Grid acceleration structures for ray tracing were first
described by Fujimoto et al. [Fuj89]. These
acceleration structures subdivide 3D space in near
cubical cells. It was found that grids, by eliminating
vertical traversal time costs present in other
acceleration structures popular at the time, had
increased overall render time performance. 3DDA, a
3D extension of the raster line drawing algorithm,
was employed for ray grid traversal.
An improved grid traversal algorithm was later near
simultaneously devised by several researchers
[Woo87,Cle88]. This algorithm is still employed
today. The historical grid ray tracing acceleration
structures around this period are described by Havran
et al. [Hav99]. Grid dimensions (Mx × My × Mz) are
determined based on heuristics related to the number

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2010 Communication Papers 95

of scene primitives, scene bounding box, and certain
constant factors.
Recently Lagae and Dutré [Lag08] employed grid
row displacement compression (i.e. hashing) to
reduce the memory footprint of this kind of
acceleration structure. It does this by compressing
empty cells. By allocating all memory, before
inserting primitives into the data structure, build time
performance was also improved. The render time
performance of this one-level grid algorithm is
however inferior to non-compressed multi-level
algorithms, such as the rgrid used by the Manta ray
tracer [Big06], as shall be seen in Section 4.
Kim et al. [Kim09] have created compressed versions
of the bounding volume hierarchy (BVH)
acceleration structure, one of the acceleration
structures first used in ray tracing. Kim et al. also
compress the triangle mesh and page data to the disk
providing increased memory savings.
BVH acceleration structures have higher construction
time complexity than grids. BVH construction
complexity is O(N log N) versus a grid construction
complexity of O(N).
More recent, faster to build, grid acceleration
structures have many advantages. However further
work is necessary to improve their render time
performance. This work aims at filling this gap.

3. METHODS
The classification of multi-level grid construction
methods employed here is based on that of Jevans
and Wyvill [Jev89].
Variable construction methods recursively subdivide
the grid, by employing subgrids in each cell. Subgrid
dimensions are chosen using a similar heuristic to
that employed for the first cell division level.
Memory consumption is hard to predict, usually
leading to the use of dynamic memory allocation
along the construction method.
Fixed construction methods use a fixed ratio, finer
subdivision than a regular one-level grid would
employ. Since the total size of a grid acceleration
structure can be known in advance, all memory
allocation can be done before the method is
employed. A fixed construction grid can be build
using macrocells for the lower resolution levels.
Fixed construction methods have good performance
for uniformly distributed scenes, such as laser
scanned models. Variable construction methods
adapt more easily to varying scene primitive
distribution but at increased memory consumption
and build time costs.
The following heuristic, attributed to Woo, is
employed to determine grid dimensions:

Equation 1. Woo’s heuristic. Si is the scene

bounding box size in dimension i, ρ is 4.
Via profiling we noticed some characteristics in the
existing algorithms [Lag08,Big06] described at
Section 2. Grid traversal dominates render time, and
one-level grids spend a lot more time doing
ray/triangle intersections than multi-level grids. In
attempting to improve render-time performance we
posed the following hypothesis: we can reduce the
number of ray/triangle intersections by using smaller
cells, with fewer triangles per cell. To reduce
traversal time we can employ a multi-level structure
to skip empty cells in larger steps.

3.1. Multi-Level Variable Hashed Grid
This subsection describes the multi-level variable
hashed grid implementation. It is a recursive grid,
with the top level grid and subgrids using the hashed
grid [Lag08] algorithm. This grid has a maximum
grid depth size of 2.
First the top level hashed grid is built using the
algorithm described by Lagae et al. [Lag08] but
using the heuristic from Equation 1. We selected a
grid density ρ of 4 since it empirically provided good
render time performance. Each cell of this top level
grid is then subdivided using the same algorithm,
creating a new subgrid, for each cell containing more
than a certain number of primitives.

3.2. Multi-Level Fixed Hashed Grid
In this subsection a multi-level fixed hashed grid is
described. It is a high resolution hashed grid [Lag08]
with multi-level macrocells [Wal06] to speedup
traversal.

Figure 1. Timings for the Buddha scene according

to grid density.
First a finely divided one-level hashed grid is built in
a similar fashion to that of Lagae et al. [Lag08], but
using the grid heuristic described in Equation 1 with
a high grid density parameter to reduce cell size.

WSCG 2010 Communication Papers 96

Bunny Dragon Buddha

Asian Dragon

Thai Statue

Scene statistics
triangles 69.45K 871.41K 1.09 M 7.22 M 10 M
memory 1.2MB 15.0MB 18.7MB 123.9MB 171.7MB

Manta recursive grid [Big06]
Primitive intersections/ray 1.58 1.58 1.56 0.91 1.17
Cell traversals/ray 4.73 5.80 4.95 6.44 7.00
Grid traversals/ray 1.38 1.28 1.17 0.72 0.82

Build Time (s) 0.47 3.46 4.50 20.44 29.59
Render Time (s) 0.30 0.52 0.34 0.36 0.58
Time to Image (s) 0.78 3.98 4.84 20.80 30.17

One-level hashed grid [Lag08]
Primitive intersections/ray 8.35 9.87 9.53 13.15 12.67
Cell traversals/ray 14.53 35.23 26.93 93.14 100.76
Grid traversals/ray 0.00 0.00 0.00 0.00 0.00

Build Time (s) 0.02 0.22 0.26 1.48 2.07
Render Time (s) 0.58 0.89 0.78 1.60 1.80
Time to Image (s) 0.60 1.11 1.04 3.09 3.88

Multi-level variable hashed grid
Primitive intersections/ray 3.99 3.83 3.92 1.93 2.63
Cell traversals/ray 15.12 26.05 17.21 68.31 69.38
Grid traversals/ray 0.54 0.53 0.53 0.27 0.36

Build Time (s) 0.09 0.75 0.81 4.09 6.29
Render Time (s) 0.51 0.64 0.55 1.00 1.11
Time to Image (s) 0.60 1.39 1.36 5.10 7.39

Multi-level fixed hashed grid
Primitive intersections/ray 6.14 8.26 10.06 8.74 9.06
Cell traversals/ray 14.04 17.86 13.10 29.97 27.31
Grid traversals/ray 0.57 0.47 0.45 0.24 0.25

Build Time (s) 0.04 0.39 0.29 3.09 3.45
Render Time (s) 0.57 0.68 0.67 0.79 0.82
Time to Image (s) 0.61 1.07 0.97 3.88 4.27

Table 1. Scene triangle mesh statistics, render time profile results, timings for the studied grid
acceleration structures.

We empirically chose the grid density parameter by
analyzing the behavior for the Buddha scene as can
be seen in Figure 1. We selected a grid density ρ of
32 since it features adequate render time without
having a severe impact on time to image.
Next multi-level macrocells [Wal06], are built to skip
empty cells in larger steps during traversal.
Macrocells overlay a coarser grid over the finely
divided grid. The macrocells for each level consist of
a 3D bit array with information if a region of space is
empty of not. To speed up this construction step
macrocells are downscaled by a factor S of 6 on each
extent. We arrived at this value by empirically
analyzing algorithm behavior for the tested scenes.
Wald et al. [Wal06] reached the same value with a

different heuristic and test scenes. Macrocell
downscaling can be done with a quick 3D bitmap
scaling operation.

4. PERFORMANCE AND RESULTS
This section evaluates the performance of the grid
construction methods.
All tests were performed on a single Intel Core 2
Duo processor at 3 GHz. The machine has 4GB of
RAM running the Linux operating system. The
algorithms were implemented in C++ using STL and
Boost without use of assembly or intrinsics.
Only a single thread was used, with one ray per pixel
and diffuse shading, at 1024×1024 resolution. A

WSCG 2010 Communication Papers 97

Figure 2. From bottom right clockwise: memory consumption; build time; render time; time to image
acceleration structure statistics for the tested scenes.

variety of models from the Stanford 3D Scanning
Repository were used for the evaluation.
The top of Table 1 shows scene statistics such as
number of triangles, memory used by the triangles.
These scenes were chosen because the system is
expected to support visualization of laser scanned
architectural models. Scene memory usage is
computed by using 12 bytes per triangle to store
vertex index information (three machine words for
each vertex index), plus 12 bytes per vertex (three
floating point numbers for each coordinate). This
provides reduced memory usage in an expedient
fashion. Ray/triangle intersection was done using the
Möller-Trumbore [Mol05] intersection algorithm
because of its low memory requirements.
For performance comparison purposes with existing
published algorithms the recursive grid from the
Manta interactive ray tracer [Big06] was tested. An
implementation of the hashed grid algorithm by
Lagae and Dutré [Lag08] was added to the system to
serve as the one-level compressed grid baseline.
The multi-level hashed grid structures feature
improved render time performance compared to the
one-level hashed grid. This is markedly so for the
larger scenes where over twice the render time
performance is achieved. Of the multi-level hashed
grid methods, the fixed hashed grid is better for the
larger scenes, as can be seen at top left in Figure 2.
Fixed grid features improved render times, versus the
variable grid, due to several factors: the fixed grid
has a smaller memory footprint (and increased

memory coherence); the cells of the top hierarchical
level of the fixed grid have a larger volume, skipping
empty regions of space faster, this is reflected in the
cell traversals/ray.
The recursive grid from Manta has even better render
time performance, although the performance
difference varies according to the tested scene.
These performance results required a more in depth
examination by profiling the acceleration structures
in terms of number of primitive intersections,
horizontal cell traversals and vertical grid traversals.
Profiling, seen in Table 1, shows improved Manta
render time performance is due to the lower number
of ray/primitive intersections and horizontal cell
traversals used by the recursive grid to display the
same scene.
Manta employs a deeper variable grid structure with
maximum depth of 3 and has a modified heuristic.
This enables improved render time performance but
comes at a big build time penalty. It takes six times
longer to build the acceleration structure for the Thai
Statue scene for example as can be seen at the bottom
left of Figure 2.
Memory usage paints a similar picture to the build
time statistics. The Thai Statue scene uses around ten
times more memory in the non-compressed Manta
multi-level acceleration structure versus the fastest
compressed multi-level acceleration structure we
implemented.

WSCG 2010 Communication Papers 98

The compressed multi-level grid acceleration
methods of note feature much improved performance
on the figures of merit. Time to first image in
particular is much improved versus the times
achieved by Manta using algorithms of the same
class. The multi-level fixed hashed grid has a
similarly low time to image compared to the one-
level hashed grid. This makes it the best option
among the multi-level grids for the tested scenes.

5. CONCLUSION
Multi-level compressed grid methods achieve best of
class performance by combining the desirable traits
from existing algorithms: low memory requirements,
fast build and render times. The algorithms presented
here could still use some work in the heuristics, as
the multi-level heuristic from Manta has quicker
render times. There is also room for expansion in
improving the number of cell traversals and primitive
intersections per ray. Alternative methods for
speeding up traversal time by skipping empty voxels,
not studied in this work, include proximity clouds
[Coh94], macro-regions [Dev89], and similar
directional techniques [Sem97].
We would also like to implement these algorithms on
GPUs to investigate the performance characteristics
of compressed structures on that hardware class.

6. ACKNOWNLEDGEMENTS
It would not have been possible to make the tests in
this work without the models from the Stanford 3D
Scanning Repository.
This work was supported by the Portuguese
Foundation for Science and Technology project
VIZIR (PTDC/EIA/66655/2006).

7. REFERENCES
[Big06] J. Bigler, A. Stephens and S. G. Parker

Design for Parallel Interactive Ray Tracing
Systems Proceedings of the IEEE Symposium on
Interactive Ray Tracing, 2006.

[Coh94] D. Cohen, and Z. Sheffer. Proximity clouds
- an acceleration technique for 3D grid traversal.
The Visual Computer, 11(1): 27–38, 1994.

[Cle88] J. Cleary and G. Wyvill. Analysis of an
algorithm for fast ray tracing using uniform space
subdivision. The Visual Computer, 4(2):65–83,
1988.

[Dev89] O. Devillers. The macro-regions: an
efficient space subdivision structure for ray
tracing. In Eurographics ’89, pages 27–38, 1989.

[Fuj89] A. Fujimoto, T. Tanaka, and K. Iwata. Arts:
Accelerated ray-tracing system. Computer
Graphics and Applications, IEEE, 6(4):16–26,
1986.

[Jev89] D. Jevans and B. Wyvill. Adaptive voxel
subdivision for ray tracing. In Graphics Interface
’89, pages 164–172, June 1989.

[Hav99] V. Havran, F. Sixta, and S. Databases.
Comparison of hierarchical grids. Ray Tracing
News, 12(1):1–4, 1999.

[Lag08] A. Lagae and P. Dutré. Compact, fast and
robust grids for ray tracing. Computer Graphics
Forum (Proceedings of the 19th Eurographics
Symposium on Rendering), 27(8), 2008.

[Kim09] Tae-Joon Kim, Bochang Moon, Duksu
Kim, Sung-Eui Yoon. RACBVHs: Random-
Accessible Compressed Bounding Volume
Hierarchies. IEEE Transactions on Visualization
and Computer Graphics, 17 Jun. 2009.

[Mol05] T. Möller and B. Trumbore. Fast, minimum
storage ray/triangle intersection. In International
Conference on Computer Graphics and
Interactive Techniques. ACM Press New York,
NY, USA, 2005.

[Sei08] L. Seiler, D. Carmean, E. Sprangle, T.
Forsyth, M. Abrash, P. Dubey, S. Junkins, A.
Lake, J. Sugerman, R. Cavin, R. Espasa, E.
Grochowski, T. Juan, and P. Hanrahan. Larrabee:
a many-core x86 architecture for visual
computing. ACM SIGGRAPH, 2008.

[Sem97] S.K. Semwal, and H. Kvanstrom. Directed
Safe Zones and the Dual Extent Algorithms for
Efficient Grid Traversal during Ray Tracing. In
Graphics Interface ’97, pages 76-87, May 1997.

[Wal06] I. Wald, T. Ize, A. Kensler, A. Knoll, and S.
Parker. Ray tracing animated scenes using
coherent grid traversal. In International
Conference on Computer Graphics and
Interactive Techniques, pages 485–493. ACM
Press New York, NY, USA, 2006.

[Wal07] I. Wald, W. Mark, J. Gunther, S. Boulos, T.
Ize, W. Hunt, S. Parker, P. Shirley. State of the
art in ray tracing animated scenes Eurographics
2007 State of the Art Reports, 2007.

[Woo87] J. Amanatides and A. Woo. A fast voxel
traversal algorithm for ray tracing. In
Eurographics ’87, pages 3-10, 1987.

WSCG 2010 Communication Papers 99

WSCG 2010 Communication Papers 100

Interactive Image-space Point Cloud Rendering with

Transparency and Shadows

Petar Dobrev Paul Rosenthal Lars Linsen

Jacobs University, Bremen, Germany

{p.dobrev, p.rosenthal, l.linsen}@jacobs-university.de

ABSTRACT

Point-based rendering methods have proven to be effective for the display of large point cloud surface models. For a realistic

visualization of the models, transparency and shadows are essential features. We propose a method for point cloud rendering

with transparency and shadows at interactive rates. Our approach does not require any global or local surface reconstruction

method, but operates directly on the point cloud. All passes are executed in image space and no pre-computation steps are

required. The underlying technique for our approach is a depth peeling method for point cloud surface representations. Having

detected a sorted sequence of surface layers, they can be blended front to back with given opacity values to obtain renderings

with transparency. These computation steps achieve interactive frame rates. For renderings with shadows, we determine a point

cloud shadow texture that stores for each point of a point cloud whether it is lit by a given light source. The extraction of the

layer of lit points is obtained using the depth peeling technique, again. For the shadow texture computation, we also apply a

Monte-Carlo integration method to approximate light from an area light source, leading to soft shadows. Shadow computations

for point light sources are executed at interactive frame rates. Shadow computations for area light sources are performed at

interactive or near-interactive frame rates depending on the approximation quality.

Keywords: point-based rendering, shadows, transparency

1 INTRODUCTION

Ever since the emergence of 3D scanning devices, sur-

face representation and rendering of the scanned ob-

jects has been an active area of research. Acquiring

consistent renderings of the surfaces is not trivial as

the output of the scanning processes are point clouds

with no information about the connectivity between

the points. Several techniques have been developed

to remedy this problem, ranging from global and lo-

cal surface reconstruction to methods entirely operat-

ing in image space. Traditional approaches involve the

generation of a triangular mesh from the point cloud,

e.g. [3],which represents a (typically closed) manifold,

and the subsequent application of standard mesh ren-

dering techniques for display. Such global surface re-

construction approaches, however, scale superlinearly

in the number of points and are slow when applied to

the large datasets that can be obtained by modern scan-

ning devices.

This observation led to the idea of using local sur-

face reconstruction methods instead. Local surface re-

construction methods compute for each point a subset

of neighboring points and extend the point to a local

surface representation based on plane or surface fitting

to its neighborhood [1]. The point cloud rendering is,

then, obtained by displaying the (blended) extensions.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The local surface reconstruction itself is linear in the

number of points, but it relies on a fast and appropri-

ate computation of a neighborhood for each point in

a pre-computation step. The speed and quality of the

approach depends heavily on the choice of the neigh-

borhood.

As the number of points increases, the surface el-

ements tend to shrink and when projected to the im-

age plane have nearly pixel size. This observation

was already made by Grossman and Dally [6], who

presented an approach just using points as rendering

primitives and some image-space considerations to ob-

tain surface renderings without holes. Recently, this

image-space technique has been re-considered and im-

proved [8, 11, 13]. This method has the advantage

that no surface reconstruction is required and that all

image-space operations can efficiently be implemented

on the GPU, utilizing its speed and parallelism. It only

assumes points (and a surface normal for appropriate

illumination). Our approach builds upon the ideas of

Rosenthal and Linsen [11]. The image-space opera-

tions for transforming a projected point cloud to a sur-

face rendering include image filters to fill holes in the

projected surface, which originate from pixels that ex-

hibit background information or occluded/hidden sur-

face parts, and smoothing filters. The contribution of

this paper is to provide transparency and shadow capa-

bilities for such point cloud renderings at high frame

rates using a depth peeling technique.

Depth peeling is a multi-pass technique used to ex-

tract (or “peel”) layers of surfaces with respect to a

WSCG 2010 Communication Papers 101

given viewpoint from a scene with multiple surface

layers. While standard depth testing in image space

provides the nearest fragments of the scene (i.e., the

closest layer), depth peeling with n passes extracts n

such layers. We describe our depth peeling approach

for point cloud surface representations in Section 3.

The information extracted by the depth peeling ap-

proach can be put to different applications. We exploit

this information for enhancing the capabilities of in-

teractive point cloud renderings with transparency and

(soft) shadows. To achieve the first goal, we developed

a method for order-independent transparency compu-

tation described in Section 4. Once the depth peel-

ing approach has acquired the surface layers, they are

blended with object-specific opacity values in the order

of their acquisition. This approach allows for render-

ing of multiple surfaces in one scene using different

opacity values for each.

Our second goal was the shadow computation in

scenes with point cloud surface representations and the

interactive rendering of such scenes. To determine

lit and unlit regions of the scene, one has to deter-

mine, which points are visible from the light source

and which are not. This can be done by rendering the

scene with the viewpoint being the position of the light

source. In this setting, all those points that are visi-

ble can be marked as lit. This approach assumes that

we apply the image-space rendering approach with the

filters that remove occluded surface parts. The result

can be stored in form of a point cloud shadow texture.

However, since the scene is typically composed of a

large number of points, it is more than likely that mul-

tiple visible points project to the same pixel such that

marking only one of those points as lit would result in

an inconsistent shadow texture. To extract and mark

multiple lit points that project to the same pixel, we

apply the depth peeling technique, again. Once all lit

points have been marked, the scene is rendered from

the viewpoint of the observer, where the unlit points

are rendered without diffuse or specular lighting, i.e.,

only using ambient light. To create soft shadows and

alleviate aliasing artifacts, we use a Monte-Carlo inte-

gration method to approximate light intensity from an

area light source. Details are given in Section 5.

The GPU implementation of the algorithms allows

us to achieve interactive rates for layer extraction,

transparent renderings, and renderings of scenes with

(soft) shadows. Results of all steps are presented in

Section 6.

2 RELATED WORK

An effective way to incorporate transparency and/or

shadows to point-based rendering is the use of ray

tracing methods as introduced by Schaufler and

Jensen [12]. However, such approaches are typically

far from achieving interactive frame rates. The only

interactive ray tracing algorithm of point-based models

was introduced by Wald and Seidel [14], but they

restricted themselves to scenes with shadows, i.e.,

transparency is not supported. The original EWA

splatting paper [16] presents a method for trans-

parency utilizing a software multi-layered framebuffer

with fixed number of layers per pixel. Zhang and

Pajarola [15] introduced the deferred blending ap-

proach, which requires only one geometry pass for

both visibility culling and blending. They also propose

an extension how to use this approach to achieve

order-independent transparency with one geometry

pass.

An approach to incorporate shadows into inter-

active point-based rendering can be obtained in a

straight-forward manner when first reconstructing

the surface from the point cloud (globally or locally)

and subsequently apply standard shadow mapping

techniques [4]. Botsch et al. [2] applied shadow

maps to EWA splatting using GPU implementation to

achieve interactive rates. Guennebaud and Gross [7]

presented another local surface reconstruction tech-

nique, employing moving least squares fitting of

algebraic spheres, and also applied shadow mapping

to it.

The shadow computation in our approach is simi-

lar to irradiance textures (also known as “pre-baked”

lighting) in mesh-based rendering [10, 9]. Lit surfaces

are determined and stored in a texture by rendering the

scene with the viewpoint being the position of the light

source. In the rendering pass this information is used to

determine which surfaces should be drawn in shadow,

and which not.

3 DEPTH PEELING

Depth peeling was introduced by Everitt [5] and is a

technique to partition a static 3D scene into sorted lay-

ers of geometry. As the name suggests, the layers are

extracted in an iterative fashion by “peeling” off one

layer after another. The sorting is induced by the given

viewpoint. Hence, in each iteration the fragments of

the projected visible scene are determined, stored as

a representation of the current layer, and removed to

compute the subsequent layers. Figure 1 illustrates the

depth peeling idea. The depth peeling technique is im-

screen

1 2 3 4

Figure 1: 2D illustration of depth peeling: visible lay-

ers of geometry are extracted from front to back. First

layer is shown in blue, second in red, third in green,

and fourth in yellow.

WSCG 2010 Communication Papers 102

plemented in a multi-pass algorithm, i.e., to extract n

layers the whole scene has to be rendered n times. Each

rendering pass is performed with enabled depth test-

ing such that the points closest to the viewpoint and

their distances to the viewer are recorded. For the sec-

ond up to the nth pass, only those points are rendered,

whose distance to the viewer is greater than the dis-

tance recorded in the preceding pass.

As we want to avoid any (global or local) object-

space surface reconstruction, we apply the depth peel-

ing technique to scenes consisting of points only. Con-

sequently, each layer is represented as a set of projected

points. Depending on the sampling rate that has been

used to acquire the surface, the screen resolution, and

the distance to the viewer, it may happen that the points

projected to the image plane do not cover all the screen

pixels that a reconstructed surface would. Hence, the

surface layer may exhibit holes where the background

or points of hidden surface layers become visible. Fig-

ure 2 illustrates this effect for a 2D scene that is pro-

jected to a 1D screen consisting of five pixels. The

projection of the first surface layer (blue points) should

cover the entire screen. However, there are pixels to

which no blue point is mapped. Instead, the second

surface layer (red color) or even the background of the

scene (grey color) is visible. These gaps in the surface

representation of the first layer need to be filled appro-

priately. Of course, the same issue may arise for all

other extracted layers. Hence, in each rendering pass,

we apply image-space operations to the extracted layer

to fill the gaps in the surface. The image-space opera-

screen first layer hidden layers

Figure 2: When projecting first layer (blue) in point

cloud representation to the screen, the layer exhibits

holes such that hidden layers (red) or the background

(grey) become visible.

tions are executed on the rendering texture using depth

information stored in the depth buffer. The operations

are executed in four steps: filling surface gaps in form

of background pixels (grey pixel in Figure 2), filling

surface gaps in form of occluded pixels (red pixel in

Figure 2), smoothing the image for an improved ren-

dering quality of the extracted layer, and anti-aliasing

applied to the silhouettes and feature lines in the result-

ing image.

To fill holes caused by pixels exposing background

information, one has to identify which background pix-

els represent holes in the surface layer and which do

not. To determine reliably which pixels are to be filled

and which not, we apply a filter that checks the 3× 3

neighborhood of each background pixel against the set

of masks shown in Figure 3. In Figure 3, the framed

pixel is the candidate to be filled and the bright ones

are neighboring background pixels. The dark pixels

may be background or non-background pixels. If the

neighborhood matches any of the configurations, the

pixel is not filled. Otherwise, its color and depth infor-

mation is replaced by the color and depth information

of the pixel with smallest depth within the stencil of the

mask, i.e., within the 3×3 neighborhood. The filters in

Figure 3 have been proposed by Rosenthal and Linsen

for image-space point cloud rendering. For a detailed

discussion of the filters and their application, we refer

to the literature [11]. The application of the gap fill-

ing step may have to be iterated to fill larger gaps. The

operations are always executed on both the rendering

texture and the depth texture simultaneously.

Figure 3: Masks of size 3× 3 for detecting pixels ex-

hibiting holes in the projected point cloud surface rep-

resentation.

To fill pixels that exhibit occluded surface layers, we

need to be able to distinguish between pixels from dif-

ferent surface layers. In order to decide whether two

pixels belong to the same surface layer, we introduce

a parameter dmin denoting the minimum distance be-

tween two consecutive layers. The parameter depends

on the dataset and is typically determined empirically.

The occluded pixel filling operation is analogous to the

background pixel filling operation. The neighborhood

of the candidate pixel is also checked against the masks

in Figure 3, only that the bright and the dark pixels in

the masks have a different meaning. If the candidate

pixel’s depth is d, bright pixels correspond to points

that have depth values greater than d +dmin. Dark pix-

els may have any depth. If the neighborhood satisfies

any of the masks, the pixel is not changed. Otherwise,

its color and depth information is replaced by the color

and depth information of the pixel with smallest depth

within the stencil of the mask. Also this second gap

filling step may have to be iterated.

To improve the quality of the surface rendering, two

additional steps may be applied. The two gap filling

steps always replace the gap with the information from

the pixel closest to the viewer. A weighted average of

the information of those neighboring pixels that belong

to the same surface layer would have been preferable.

As it would have been too cumbersome to detect all

those neighbors, a more efficient way to obtain a simi-

WSCG 2010 Communication Papers 103

lar result is to apply a subsequent smoothing filter. We

apply a Gaussian filter of size 3× 3. This smoothing

step may be iterated.

However, the smoothing step does not smooth across

the silhouette of the projected surface. The silhouettes

and feature lines are treated in a separate step that has

explicitly been introduced for anti-aliasing purposes.

From the depth image, we can easily detect silhouettes

and feature lines by checking the depth difference of

neighboring pixels against parameter dmin (edge de-

tection filtering). All those pixels whose neighbor-

hood exhibit a significant jump in the depth values

are marked as contributing to a feature line. To all

these pixels, we apply a smoothing that reduces alias-

ing along the feature lines.

A result of the described pipeline may be seen in Fig-

ure 4. We used the Turbine Blade dataset (Data cour-

tesy of Visualization Toolkit) and extracted the first

three surface layers. The results have been obtained

by applying in each depth peeling pass one iteration

of the background pixel filling, occluded pixel filling,

Gaussian smoothing, and anti-aliasing.

(a) (b)

(c) (d)

Figure 4: Depth peeling applied to the Blade dataset

to extract the (a) first, (b) second, and (c) third layer.

The layers are represented as point clouds.The gaps

between projected points have been filled using only

image-space operations. Blending the layers allows for

transparent surface renderings (d).

4 TRANSPARENT SURFACES

Rendering of transparent surfaces is a direct applica-

tion of depth peeling. It only requires to blend the ac-

quired layers in the order of extraction. However, since

point clouds are typically dense, it frequently happens

that two or more adjacent points of one surface layer

project to the same fragment. Without taking special

care of this case, they would be recorded in separate

layers by the depth peeling technique such that con-

secutive layers contain points that should belong to the

same surface layer. Figure 5(a) illustrates this problem

in the 2D case. Points of the first surface layer are de-

picted in blue and of the second surface layer in red.

Multiple blue points are mapped to one pixel of the

screen.

(a) screen first layer second layer

(b) screen second layerdmin

Figure 5: Depth peeling for transparent rendering: (a)

first rendering pass records closest points and their

depths; b) second rendering pass again records the

closest points and their depths, but ignores points less

than dmin away from the reference depths obtained in

the preceding run.

We tackle this problem by using, again, parameter

dmin, i.e., the minimum distance between two surface

layers, to perform ε-z culling: in each rendering pass,

depth peeling records the color of the closest point p

for each pixel along with its depth d that serves as a

reference for the next run. All points that project to

the same pixel as point p and have a depth less than

d + dmin must belong to the same surface layer as p.

Figure 5(b) illustrates this idea for the example from

Figure 5(a). The green boxes of width dmin indicate

the area that is considered as one surface layer. Hence,

the second depth peeling pass discards all points with

depth less than d + dmin and correctly detects only

points belonging to the second (red) surface layer, see

Figure 5(b).

This procedure of skipping points within depth range

[d,d+dmin] has already been used to generate the three

layers of the Blade dataset shown in Figure 4. All that

is left to do for point cloud rendering with transparency

is to blend the layers front to back with an application-

specific opacity value α . The result can be seen in Fig-

ure 4(d). The opacity value used for all layers was

α = 0.5.

5 SHADOW TEXTURES

Point cloud shadow textures are basically Boolean ar-

rays that store which points are lit and which not. Once

the shadow texture is determined, lit points are drawn

WSCG 2010 Communication Papers 104

properly illuminated with ambient, diffuse, and spec-

ular reflection components using Phong’s illumination

model, while unlit points are only drawn using the am-

bient reflection component. This illumination creates

the effect of shadows, as only those points are marked

unlit where the light source is occluded by other sur-

face parts.

To determine which points are visible from the light

source, we render the scene with the light source’s po-

sition being the viewpoint with depth testing enabled.

All visible points are marked in an array. However,

as in Section 4 we observe that, due to the high point

density, it is not unusual that several adjacent points of

one surface layer project to the same fragment position.

The suggested procedure would only mark the closest

point for each fragment as lit, which would lead to an

inconsistent shadow textures. Figure 6 illustrates the

problem for a scene with only one surface layer and

no occlusion. The points of the entire surface should

be marked as lit. However, due to the described issue,

only the closest points (red) are marked as lit, while the

others (blue) remain unlit. When observing the scene

from a position different from the position of the light

source, the unlit points become visible and the render-

ing exhibits strange shadow patterns.

 light
source

observer

Figure 6: Inconsistent shadow texture in case of high

point density: marking only the closest points to the

light source as lit, leaves unlit points on the same sur-

face part. The unlit points become visible when posi-

tions of observer and light source do not coincide.

Again, depth peeling is the key to solve this problem,

but we apply it differently. While for transparent sur-

face rendering our goal was to extract different surface

layers, now we want to find all the points that belong

to a single surface layer, namely the closest one.

To decide, which points belong to one layer, we con-

sider again parameter dmin, i.e., the minimum distance

between two surface layers. We render the point cloud

from the position of the light source. Let d be the depth

of the closest point p for a given pixel. Then, we con-

sider all points that project to that pixel and have depth

values less than d +dmin as belonging to the same sur-

face layer as p. Therefore, we mark them as lit.

However, since depth is measured as the distance to

the viewing plane, applying the same offset dmin for all

points would result in an inconsistent shadow texture.

The reason is that the depth of the lit layer should al-

ways be taken perpendicularly to the surface, and not

along the viewing direction. In order to account for

the change in the offset, we scale dmin by a factor that

depends on the surface normal. Let v be the viewing di-

rection and n be the surface normal in the light source

domain. Then, the offset is given by ∆d = dmin
<v,n>

.

Given that the viewing direction in the light source do-

main is (0,0,−1), we obtain that < v,n >= −nz. To

avoid division by zero, this factor is truncated at some

maximum value.

As a first step of the algorithm, we obtain the shadow

map for the light source, i.e., we record the depth of the

closest points as viewed from the light source. As some

of the recorded depths might correspond to occluded

surface parts, we apply the occluded pixel hole-filling

filter on the shadow map. This way pixels, which be-

long to an occluded surface, will be overwritten in the

shadow map and, hence, remain in shadow.

Then, we project all points from the dataset to the

light domain and compare their depth values to the

ones stored in the shadow map. The points, whose

depth is less than the reference depth plus threshold

∆d, are recorded as lit in the shadow texture. The rest

are left unlit. This operation can very efficiently be im-

plemented on the GPU by using a shader, which takes

an array (a texture) of all point positions as input and

outputs a boolean array of the same size. The values

in the boolean array determine whether the respective

point from the input array is lit or not. The shader reads

the position of each point from the input texture and

projects it in the light domain. Then it compares its

depth with the one stored in the shadow map and out-

puts the result of the comparison to the same texture

position as in the input texture.

Figure 7(a) shows a point cloud rendering with shad-

ows applied to the Blade surface shown in Figure 4.

It can be observed that the binary marking whether a

point is lit or not results in hard shadows with crisp,

sharp edges. To create more appealing renderings with

softer shadows, we approximate the complex compu-

tation of illumination by an area light source using

Monte-Carlo integration methods. A number of ran-

domly chosen sample points, lying in the plane perpen-

dicular to the light direction and within the area of the

light source, are used as point light sources. A sepa-

rate shadow texture is computed for each of them. The

resulting binary decision values are averaged. The re-

sulting shadow texture is the average of all the shadow

textures for the different sample points. It contains no

longer just zeros or ones, but floating-point numbers

out of the interval [0,1]. These numbers determine to

what extent the diffuse and specular components are

taken into account.

Let ka, kd , and ks denote the ambient, diffuse, and

specular components of the illuminated surface at a

specific point. Moreover, let m ∈ [0,1] be the value

in the shadow texture stored for that particular point.

WSCG 2010 Communication Papers 105

Then, the surface color at that point is computed as:

c = ka + m · (kd + ks). Figure 7(b) shows the result

of point cloud rendering with soft shadows using

Monte-Carlo integration methods for the scene that

has been shown in Figure 7(a). We have used 30

samples to compute the shadow texture. In the lower

left of both figures, we provide a zoomed view into

a shadow/no-shadow transition region. The shadows

appear much softer in Figure 7(b) and their edges are

much smoother.

(a) (b)

Figure 7: Point cloud rendering with shadows for the

Blade dataset: (a) hard shadows using one point light

source; (b) soft shadows using Monte-Carlo integration

methods with 30 samples to compute the point cloud

shadow texture.

6 RESULTS & DISCUSSION

We applied our approach to three types of point cloud

data: The model of the Turbine Blade (883k points),

given as an example throughout the paper, is from the

category of scanned 3D objects. Other datasets from

the same category that we have tested our approach on

are the Dragon (437k points) and Happy Buddha (543k

points) models1. Although polygonal representations

of these objects exist, any information beside the point

cloud was not considered. A synthetical dataset we

applied our algorithm to is a set of three nested tori

(each 2M points). Finally, we tested our method on two

point clouds obtained from isosurface extraction: one

from an electron spatial probability distribution field

referred to as “Neghip”2 (128k points) and the other

from a hydrogen molecule field3 (535k points for 3

nested isosurfaces).

All results have been generated on an Intel XEON

3.20GHz processor with an NVIDIA GeForce

GTX260 graphics card. The algorithms were imple-

mented in C++ with OpenGL and OpenGL Shading

Language for shader programming. All images

provided as examples or results in the paper have been

captured from a 1024× 1024 viewport. One iteration

of each of the image-space operations described in

Section 3, i.e., background pixels filling, occluded

pixels filling, smoothing, and anti-aliasing, was used

1 Data courtesy of Stanford University Computer Graphics Lab
2 Data courtesy of VolVis distribution of SUNY Stony Brook
3 Data courtesy of SFB 382 of the German Research Council

when producing each rendering. A detailed list of

computation times for different datasets, number of

layers, number of samples, and resolutions is given in

Table 1.

The frame rates for point cloud rendering with local

Phong illumination are between 102 fps and 7.8 fps for

datasets of sizes between 128k and 6M points and a

1024×1024 viewport. The computation times exhibit

a linear behavior in the number of points and a sub-

linear behavior in the number of pixels. There is no

pre-computation such as local surface reconstruction

necessary. All methods directly operate on the point

cloud. All operations are done in image space.

For rendering with transparency, the computation

times depend linearly on the number of transparent lay-

ers. For three transparent surface layers, we obtained

frame rates ranging from 28 fps to 2.7 fps. No pre-

computations are required. Zhang and Pajarola [15]

report better performance for their deferred blending

approach than depth peeling, but it is only applicable to

locally reconstructed surfaces using splats and requires

pre-computations. Moreover, it relies on an approx-

imate solution to compute transparency. The frame

rates they achieve on an NVidia GeForce 7800GTX

GPU are around 37fps for a 303k points dataset and

23 fps for a 1.1M points dataset. As a comparison, our

approach renders a 437k points model with 3 layers of

transparency at 35fps and a 883k points one at 17.6.

Unfortunately, no information about the resolution of

the view port used to capture their results is stated to

be able to perform a fully adequate comparison.

Figure 8(a) shows a transparent rendering of three

nested tori, each drawn with a different color and hav-

ing a different opacity value. The required number of

layers to achieve this kind of rendering is six, such

that all surface parts of all three tori are captured and

blended. When rendering all six layers of this 6M point

dataset, the frame rate drops to 1.3 fps. During naviga-

tion it may, therefore, be preferable to render just the

first layer.

Figures 8(b) and (c) show examples of how our ap-

proach can be applied in the context of scientific visu-

alization. When a scalar field is only known at unstruc-

tured points in space, an isosurface can be computed by

interpolating between neighboring points. The result is

given in form of an unstructured set of points on the

isosurface, i.e., a point cloud. The datasets we used

actually represent scalar fields defined over a struc-

tured grid, but for a proof of concept we re-sampled

the datasets at uniform randomly distributed points in

space. In Figure 8(b), we extracted an isosurface with

many components and 128k points, whereas in Fig-

ure 8(c) we used three isovalues to extract multiple

nested isosurfaces with a total of 535k points. Some

surface parts are completely occluded by others. A

transparent rendering helps the user to fully observe

WSCG 2010 Communication Papers 106

Dataset Blade Happy Buddha Dragon 3 nested tori Neghip Hydrogen

points 883k 543k 437k 3 × 2M 128k 535k in total

Resolution 5122 10242 5122 10242 5122 10242 5122 10242 5122 10242 5122 10242

Local illumination 52 52 83 64 103 68 8 8 235 82 72 48

Transparency (3 layers) 17.6 17.5 28 22 35 23 2.7 2.7 83 27 24 15

Transparency (6 layers) 8.8 8.8 14 11 18 12 1.4 1.4 43 14 12 8

Shadows (1 sample) 26 25 40 39 50 49 4 3.7 145 64 40 31

Shadows (5 samples) 9 9 14 14 18 17 1.3 1.1 62 35 14 14

Shadows (10 samples) 5 5 7 7 9.6 9 0.6 0.6 35 22 8 7.5

Table 1: Frame rates in frames per second (fps) for rendering of point clouds with local illumination only, with

transparency (using 3 and 6 blending layers), and with shadows computed with 1, 5, and 10 samples used for

approximation of an area light source. One step for each hole filling filter was applied. No pre-computations are

necessary.

(a) (b) (c)

Figure 8: Image-space point cloud rendering with transparency: (a) Transparent rendering of three nested tori (2M

points each) with six blended layers. Each of the tori is drawn in a different color (blue, green, brown) and with

a different opacities (α = 0.3,0.5,1.0). (b) Point cloud with 128k points obtained by isosurface extraction of the

volumetric scalar field “Neghip” is rendered with transparency (α = 0.7) at 25 fps. (c) Three nested isosurfaces

are extracted from a hydrogen molecule scalar field in form of point clouds with a total of 535k points. The

visualization (at 9.8 fps) with semi-transparently rendered surfaces (α = 0.3,0.5,1.0) allows the user to observe

surfaces that are entirely occluded by others.

the isosurface extraction results. The transparent point

cloud renderings use four and six surface layers, re-

spectively, and run at frame rates of 25 fps and 9.8 fps.

The frame rates for generating renderings with shad-

ows by first computing a shadow texture are also pre-

sented in Table 1. For low number of samples for

Monte-Carlo integration, we achieve interactive rates

for most tested models. For comparable models, our

frame rates are higher than what has been reported for

interactive ray tracing on splats [14] and similar to the

ones reported for using shadow maps on splats [2].

These approaches, however, require a local surface re-

construction from the point cloud representation in a

pre-processing step. For large datasets such local sur-

face reconstructions can have a substantial computa-

tion time. Wald and Seidel [14] report performance

of about 5 frames per second for comparable models

with shadows and Phong shading, using a view port

of 512x512 on a 2.4GHz dual-Opteron PC. On mod-

ern day hardware their approach would still be slower

than what we have achieved (26 fps), since it utilizes

only the CPU. The GPU accelerated EWA splatting

approach of Botsch et al. [2] achieved a frame rate

of about 23 fps on a GeForce 6800 Ultra GPU for

rendering a model of 655k points with shadows. For

comparison, our approach renders a 543k points model

at 40 fps with one sample for shadows computation.

On today’s GPUs, their approach would achieve sim-

ilar performance, but it still requires a pre-processing

step to compute the splats. Moreover, for objects and

light sources that do not change their relative position

our approach also allows the shadow texture to be pre-

computed and loaded along the point cloud. This way

soft shadows, computed with lots of samples, can be

rendered at highly interactive rates, imposing almost

no load on the rendering pipeline.

A limitation of our approach comes from the reso-

lution of the shadow map used to generate the shadow

texture. If the resolution is chosen high, it is likely

that the shadow texture will contain more “holes” and

hence require more steps of the hole-filling filter to be

applied. If the resolution is chosen lower, such that

a couple of steps suffice, the edges of the shadow ap-

pear crisp and jaggy. This problem can be alleviated

by using more samples for the area light source inte-

gration, which will provide soft anti-aliased shadows.

If the scene cannot be rendered with multiple samples

at interactive rates, an interactive rendering mode can

be used: while navigating through the scene, i.e., rotat-

ing, translating or zooming, only one sample is used for

shadow computation to provide high responsiveness.

When not interacting, soft shadows are computed with

a given number of samples.

A rendering of the Dragon dataset with shadows is

shown in Figure 9. Ten samples were used for the

shadow texture computation. The frame rate for that

WSCG 2010 Communication Papers 107

rendering is 9.6 fps, which allows for smooth interac-

tion.

Figure 9: Interactive rendering of the Dragon point

cloud model with soft shadows at 9.6 fps. 10 samples

are taken for the Monte-Carlo integration over the area

light source.

Although all operations were executed without any

computations in object space, we only introduced one

intuitive parameter, namely the minimum distance dmin

between two consecutive surface layers. This param-

eter was used at multiple points within our rendering

pipeline. An improper choice of this parameter can

produce severe rendering artifacts. For many datasets

there is a wide range of values from which a suitable

value for dmin can be chosen. Only when consecutive

layers happen to get close to each other as, for example,

for the Blade dataset, one has to choose dmin carefully.

However, as the impact of the choice becomes imme-

diately visible, an empirical choice was quickly made

for all our examples.

7 CONCLUSION

We presented an approach for interactive rendering

of surfaces in point cloud representation that supports

transparency and shadows. Our approach operates en-

tirely in image space. In particular, no object-space

surface reconstructions are required. Rendering with

transparency is achieved by blending surface layers

that have been computed by a depth peeling algorithm.

The depth peeling approach is also applied to compute

point cloud shadow textures. A Monte-Carlo integra-

tion step was applied to create soft shadows. We have

demonstrated the potential of our approach to achieve

high frame rates for large point clouds. To our knowl-

edge, this is the first approach that computes point

cloud rendering with transparency and shadows with-

out local surface reconstruction.

ACKNOWLEDGEMENTS

This work was supported by the Deutsche Forschungs-

gemeinschaft (DFG) under project grant LI-1530/6-1.

REFERENCES
[1] Marc Alexa, Markus Gross, Mark Pauly, Hanspeter Pfister,

Marc Stamminger, and Matthias Zwicker. Point-based com-

puter graphics. In SIGGRAPH 2004 Course Notes. ACM SIG-

GRAPH, 2004.

[2] Mario Botsch, Alexander Hornung, Matthias Zwicker, and Leif

Kobbelt. High-quality surface splatting on today’s gpus. In

Eurographics Symposium on Point-Based Graphics, pages 17–

24, 2005.

[3] Frédéric Cazals and Joachim Giesen. Delaunay triangulation

based surface reconstruction. In Jean-Daniel Boissonnat and

Monique Teillaud, editors, Effective Computational Geometry

for Curves and Surfaces. Springer-Verlag, Mathematics and

Visualization, 2006.

[4] Florent Duguet and George Drettakis. Flexible point-based

rendering on mobile devices. IEEE Comput. Graph. Appl.,

24(4):57–63, 2004.

[5] Cass Everitt. Introduction interactive order-independent trans-

parency. White Paper, NVIDIA, 2001.

[6] J. P. Grossman and William J. Dally. Point sample rendering.

In Rendering Techniques ’98, pages 181–192. Springer, 1998.

[7] Gaël Guennebaud and Markus Gross. Algebraic point set sur-

faces. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers,

page 23, New York, NY, USA, 2007. ACM.

[8] Ricardo Marroquim, Martin Kraus, and Paulo Roma Caval-

canti. Efficient point-based rendering using image reconstruc-

tion. In Proceedings Symposium on Point-Based Graphics,

pages 101–108, 2007.

[9] Tom Mertens, Jan Kautz, Philippe Bekaert, Frank Van Reeth,

and Hans-Peter Seidel. Efficient rendering of local subsurface

scattering. In PG ’03: Proceedings of the 11th Pacific Confer-

ence on Computer Graphics and Applications, page 51, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

[10] Ravi Ramamoorthi and Pat Hanrahan. An efficient representa-

tion for irradiance environment maps. In SIGGRAPH ’01: Pro-

ceedings of the 28th annual conference on Computer graph-

ics and interactive techniques, pages 497–500, New York, NY,

USA, 2001. ACM.

[11] Paul Rosenthal and Lars Linsen. Image-space point cloud ren-

dering. In Proceedings of Computer Graphics International

(CGI) 2008, pages 136–143, 2008.

[12] Gernot Schaufler and Henrik Wann Jensen. Ray tracing point

sampled geometry. In Proceedings of the Eurographics Work-

shop on Rendering Techniques 2000, pages 319–328, London,

UK, 2000. Springer-Verlag.

[13] R. Schnabel, S. Moeser, and R. Klein. A parallelly decode-

able compression scheme for efficient point-cloud rendering.

In Symposium on Point-Based Graphics 2007, pages 214–226,

September 2007.

[14] Ingo Wald and Hans-Peter Seidel. Interactive ray tracing of

point based models. In Proceedings of 2005 Symposium on

Point Based Graphics, pages 9–16, 2005.

[15] Yanci Zhang and Renato Pajarola. Deferred blending: Image

composition for single-pass point rendering. Comput. Graph.,

31(2):175–189, 2007.

[16] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and

Markus Gross. Surface splatting. In SIGGRAPH ’01: Proceed-

ings of the 28th annual conference on Computer graphics and

interactive techniques, pages 371–378, New York, NY, USA,

2001. ACM.

WSCG 2010 Communication Papers 108

Tracking single channel in protein dynamics

Petr Beneš

Faculty of Informatics
Masaryk University

Botanická 68a
602 00 Brno

 Czech Republic

xbenes2@fi.muni.cz

Petr Medek

Faculty of Informatics
Masaryk University

Botanická 68a
602 00 Brno

Czech Republic

medek@fi.muni.cz

Jiří Sochor

Faculty of Informatics
Masaryk University

Botanická 68a
602 00 Brno

Czech Republic

sochor@fi.muni.cz

ABSTRACT
In this paper we present a new approach to the processing of molecule dynamics. The method performs the
tracking of a channel in a sequence of molecule snapshots which represent atom positions in the molecule in
certain time intervals. The centerline of the tracked channel is refined using the Delaunay triangulation from the
actual snapshot resulting in a new optimized centerline. This method allows us easily to animate the behaviour of
the channel in the sequence. The method can also be used to detect the channel geometry in snapshots, where
recent methods are not able to find this channel. In addition, the method yields information about channel
parameters which vary over time. We can evaluate opening and closing of the input channel.

Keywords
channel, protein dynamics, tracking, Voronoi diagram, Delaunay triangulation

1. INTRODUCTION
Biochemists usually want to observe the behaviour of
a protein in a particular part of the molecule, e.g. to
observe the exit route of a substrate. Channels as
defined in [Med07] can be used to visualize this
information. A channel which leads through an empty
space in the molecule can for example be wide for a
significant period of time or the substrate might
initiate the opening of a narrow channel when passing
by. This information helps chemists to predict the
behaviour of a molecule before performing real
experiments.
Most of the methods of channel computation are
designed to process a single static protein molecule.
There are only a few methods for analysing the
dynamics of protein molecules. Since the dynamics of
a protein molecule is a continuous movement, it is
sampled into a sequence of snapshots representing
atom positions in given time intervals. The snapshots

are usually aligned so that the global position and
rotation of the molecule is fixed in all snapshots and
the snapshots only represent local movement of
atoms.
Recent methods typically process each of these
snapshots separately as static molecules and cluster
obtained results at the end of the computation.
Therefore, none of these methods is specialized for
tracking a certain channel throughout the whole
sequence. The visualization of this information can
improve the process of protein analysis significantly.
The method proposed in this paper is able to detect a
particular channel in each snapshot of the dynamics
and the resulting channels are spatially close to each
other. This allows us to animate the progress of a
channel over time easily.
We can use also this method to compute a channel in
the snapshots, where the classic approaches are not
able to detect this channel since they compute only
limited number of channels in each snapshot.
However, there are situations where we need to know
the channel geometry in each snapshot. Using the
proposed method, the missing channel can be
computed from the surrounding snapshots where the
channel geometry is known.
The main advantage of the proposed method is not
only to improve the visualization of channel progress
over time. As demonstrated in the results section, the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2010 Communication Papers 109

overall evaluation of channels computed by this
method can also bring new information about
molecule and channel behaviour.

2. RELATED WORK
For the computation of channels in static molecules
there have been many different methods proposed.
All these methods process the molecule as a
geometric model where each atom corresponds to a
sphere with given position and radius in the three-
dimensional space. Other biochemical properties are
not considered. A channel in the molecule (also
referred to as tunnel) is defined as a centerline and
the volume ([Med07], Fig. 1). A centerline is a
continuous curve and the volume is formed by the
union of spheres inserted at each point of the
centerline. The radius of all these inserted spheres is
maximal so that it does not intersect any other atom
in the molecule.
An approach introduced in [Pet06] is based on space
rasterisation. This approach suffers from several
disadvantages resulting from discrete sampling.
Other methods [Med07, Pet07, Yaf08] are based on
the Delaunay triangulation (DT) and the Voronoi
Diagram (VD) computed for the molecule. These
methods are faster, more precise and more efficient
than rastering solutions. However, they are designed
to process a single static molecule and so they are not
able to return information about channel properties
varying across snapshots (such as the progress of the
width of a channel over time). Nevertheless, the
channels and their trajectories in the static snapshots
can be used as an input for the tracking method
proposed in this paper.

A method which is able to determine the progress of
channels in protein molecules over time is called
molecular dynamics (MD) [Ald59]. A small molecule
(substrate) is positioned inside the protein molecule
and a physical simulation starts. Random forces are
applied to the substrate during the simulation and
collisions and interactions of the substrate with the
protein are evaluated. It is probable that the substrate
molecule reaches the protein surface. This method is
able to find certain exit route of a substrate leading
from a given position inside the protein, so called
active site, to the protein surface. Note that this
method does not require the whole dynamics to be
computed before starting the simulation (actually, it
computes the dynamics itself in a run-time
simulation). The movements of atoms are computed
continuously during the simulation according to the
result of force interactions. The method is immensely
time consuming (one simulation takes hours to days
to evaluate). Due to the application of random forces,
it is not guaranteed that a channel is found. If a
channel is not detected, it does not mean that this
channel does not exist.
The complex approach proposed in [Ben09] requires
a sequence of snapshots to be known in advance,
either from some real screening or existing
simulation. It computes channels in snapshots
separately using any method for the computation of
channels in a static molecule and clusters them
afterwards for the whole dynamics. Each cluster
represents the progress of a particular channel
throughout the dynamics. Since the methods for the
computation of channels in a single snapshot produce
only a limited number of channels, it is probable that

Figure 1. (a) Demonstration of a channel. This channel is ideal, i.e. its centerline leads along Voronoi
edges. (b) Channels computed in a real static molecule and visualized using pyMol software.

WSCG 2010 Communication Papers 110

some clusters will not cover the whole sequence. We
can consider a dynamic channel to be closed in the
snapshots, where the cluster provides no information
about the geometry of this dynamic channel.
However, this complicates the visualization of the

channel dynamics.

3. PROPOSED METHOD
The method proposed in this paper is able to track the
progress of a specific part of the protein molecule
over time. The specific part is described by a channel.
Its centerline is referred to as initial trajectory for
further tracking.
The initial trajectory can be the centerline of an
already known important channel or it can also be an
exit route of a substrate computed by molecular
dynamics.

Algorithm
In each snapshot, we optimize the initial trajectory so
that the channel formed by this trajectory has the
maximal possible volume. If we do not optimize the
trajectory, the channel can be very narrow or it can
even have zero or negative width (see Fig. 2a). The
optimized trajectory follows edges of a Voronoi
diagram of the protein molecule (Fig. 2b) and thus the
resulting channel can be much wider (see Fig. 2c).
The algorithm utilizes the duality between VD and
DT. The initial trajectory is mapped onto a sequence
of tetrahedra in the DT. This sequence can be
converted to Voronoi edges easily.
The initial trajectory is represented as a polyline with
vertices p1,...,pn. These input points define n-1 line
segments. For each of the segments <pi, pi+1>
(i=1,...,n-1) the tetrahedron Tactual containing pi is
located and marked as actual. Then we determine the
tetrahedron side s which intersects the ray between pi
and pi+1. As the next step we move into the
tetrahedron Tnew which shares the side s with actual
tetrahedron Tactual. Finally, Tnew is marked as actual.
The process is depicted in Fig. 3. The line segment

Input: initial trajectory t = p1..pn,
 tetras of DT for the actual
 snapshot
Output: optimized trajectory

for each <pi, pi+1>, i ∈ 1..n-1
{
 Tactual = tetra containing pi;
 while (Tactual not contains pi+1)
 {
 s = side of Tactual intersected
 by <pi, pi+1>;
 Tnew = tetra sharing s with Tactual;
 // function c(T) returns center
 // of gravity for tetrahedron T
 output(<c(Tactual),c(Tnew)>);
 Tactual = Tnew;
 }
}

Algorithm 1. The optimization of an initial
trajectory in a single snapshot of a molecule.

Figure 2. (a) Initial trajectory (dashed polyline) and the corresponding channel, (b) Voronoi diagram
with optimized trajectory emphasized, (c) Channel defined by optimized trajectory

Figure 3. The demonstration of the algorithm
for the segment <pi, pi+1>

WSCG 2010 Communication Papers 111

<pi, pi+1> is substituted by the polyline which is
formed by Voronoi edges adjacent to the tetrahedra in
the DT which were traversed during the above
procedure. The procedure is summarized in Alg. 1.
Note that the implementation of Delaunay
triangulation enables to determine all neighbours of a
given tetrahedra in constant time. In addition, the
geometry test required for each processed tetrahedron
is the calculation of the intersection of a line segment
and a triangle (tetrahedron side) in three dimensions,
which is fast and simple.
Since each segment <pi, pi+1> is replaced by the
Voronoi edges dual to the tetrahedra intersected by
<pi, pi+1>, the spatial distance between initial and
optimized trajectory is the minimal possible.
Notice that also the approach presented in [Med07]
with minor changes could be used to get the widest
channel between each two segment endpoints.
Nevertheless, the computation would be more time
consuming as the Dijkstra's algorithm would be used
instead of fast following the ray-tetrahedra
intersections in the DT. In addition, the channel might
be much longer and its centerline might lead far from
the initial trajectory. This fact would certainly
complicate the smooth and continuous animation of a
channel over time.

Time complexity
The time required to compute the Delaunay
triangulation is quadratic with respect to the number

of atoms in the molecule [Pre85]. The subsequent
tracking of an input trajectory is linear with respect to
the number of atoms. The overall complexity is
O(k*n2) where n is the number of atoms and k is the
number of molecule snapshots.
The computation time can be reduced by computing
only a subset of Delaunay triangulation which would
be located near the input trajectory. If a trajectory
covers only a small part of the molecule the
computation time can be reduced significantly.

4. RESULTS
The first dynamics analysed by the proposed method
is the protein molecule 1mj5 consisting of 50
snapshots. This sequence was achieved by MD
simulation of the molecule and substrate. Therefore,
the exit route of the substrate is known in this case.
This exit route is used as the initial trajectory in the
computation. When we visualize the results of the
analysis, we can observe the substrate initiates
opening of the channel, i.e. the channel gets wider in
places where the substrate passes.
Different types of visualization of these results are
depicted in Fig. 4. Five snapshots (1-5) are chosen
from the dynamics to illustrate the progress over time.
The results are visualized in different ways (a-d). The
first of them (a) shows the exit route of a substrate
and the trajectory of this route. The others show the
resulting channel with a centerline located on the
optimized trajectories in different snapshots displayed

Figure 4. (a) The exit path of the substrate molecule in time (1-5) in 1mj5. This path was used as the
initial trajectory. (b-d) Different types of visualization of a channel dynamics in certain snapshots (1-5).

WSCG 2010 Communication Papers 112

as a set of spheres (b) or a surface (c). In (d), the
whole scene is clipped using the front clipping plane
approximately in the middle of the channel. In this
case we can observe the substrate molecule passing
through the channel.
Notice that the previous example demonstrates a
possible use of this method on dynamics where an
exit route is known before. If such route is not
known, chemists have to define the initial trajectory
they want to observe. The definition can be done by
hand or the widest channel from a single snapshot of
the dynamics can be used.
The behaviour of the channel in the analysis indicates
whether a certain substrate would be able to pass
through this channel.
The second data set consisted of a set of nine
molecules of type rdcl, which were structurally
similar. They were mutants of the same protein
molecule (only a few residues were different in each
of the mutants). The dynamics of each mutant
consisted of 400 snapshots. We tracked the same
initial trajectory in all dynamic sequences.

The behaviour of resulting channels was analyzed in
ten uniformly distributed points along their
centerlines. The first point refers to the channel
endpoint in the active site and the tenth point is the
channel endpoint located near the molecule surface.
For each dynamics, statistics about the pulsing of a
channel in each of these segments were computed.
The statistic for selected molecules is shown in Fig.
5. The average width, minimal width and maximal
width (y-axis) are shown for each of the ten points on
the x-axis. One of the possible interpretations of the
data in these charts is the following. All channels tend
to be more stable near the active site whereas certain
opening and closing of a channel happens near the
molecule surface. It can be seen that in case of
wt_rdcl (Fig. 5, wt_rdcl) the first half of a channel
remained open during the whole sequence with radius
varying from 0.8Å1 to 2.6Å whereas the radii in the
second half varied more significantly.
This information helps chemists to estimate which of
the mutants is the most suitable for a certain substrate
molecule to penetrate into the protein.
The visualizations in Fig. 4 were created using pyMol
software [DeL02].
As a third test case, we have analysed the width of a
channel in the sequence of 250 snapshots of
21_rdcl.cl using the clustering method [Ben09] and
the proposed method. In Fig. 6, it can be seen that
both methods provide similar results. In the case of
clustering method (Fig. 6a) the width of a channel is
usually slightly larger. However, there are snapshots
in which the channel is not detected. On the contrary,
the proposed method (Fig. 6b) detects the channel in
all snapshots. Therefore we can use results of this
method to add the missing channel data.
We have also evaluated the distances between
channels in all consecutive snapshots according to the
distance function defined in [Ben09]. In comparison
with the graph cutting clustering method, the distance

1 1 Å = 10-10 m

Figure 6. The analysis of the width of a channel
in the sequence of 250 snapshots using

(a) the clustering method, (b) the proposed
method. The dashed green line denotes the

biochemically important value 1.4Å

Figure 5. Charts depicting channel statistics for selected protein dynamic sequences. The x-axis denotes
uniformly distributed points on a centerline and the y-axis denotes the variation of channel width in
these points throughout the dynamics: maximum width, minimum width and average width in the

whole sequence.

WSCG 2010 Communication Papers 113

between channels computed using the proposed
method is much smaller. The example for the
sequence 21_rdcl.cl can be seen in Fig. 7. The
average distance for the proposed tracking method
was 0.77Å whereas the average distance for the
clustering method was 2.03Å. Due to the fact that the
average distance is small, the progress of a channel
over time can be easily animated.

5. CONCLUSION
The proposed method allows tracking an initial
trajectory in the dynamics. The method is based on
computational geometry and is fast and robust.
Except for computation of the Delaunay triangulation,
it uses only basic geometry tests.
We have also presented several applications of this
method. The optimization is of key importance when
performing smooth animation of channel progress
across snapshots over time.
The properties of resulting optimized trajectories can
provide useful information about the protein
molecule. The possible interpretation of such results
has been suggested. The presented method can also
be used in snapshots where recent methods are not
capable of detecting the channel geometry.
As for the future work, we plan to integrate this
method within the complex software application
Caver Viewer (http://loschmidt.chemi.muni.cz/caver/)

which is designed for the visualization and analysis of
protein molecules.

6. ACKNOWLEDGMENTS
This work was supported by The Ministry of
Education of The Czech Republic, Contract No.
LC06008 and by The Grant Agency of The Czech
Republic, Contract No. 201/07/0927.

7. REFERENCES
[Ald59] Alder, B. J., and Wainwright, T. E., Studies

in molecular dynamics. i. general method. The
Journal of Chemical Physics, vol. 31, no. 2, pp.
459–466, 1959.

[Ben09] Beneš, P., Medek, P., and Sochor, J.
Computation of channels in protein dynamics.
IADIS International Conference Applied
Computing 2009, Rome, pp. 251-258, 2009

[DeL02] DeLano, W.L. The PyMOL Molecular
Graphics System (2002) on World Wide Web
http://www.pymol.org

[Med07] Medek P., Beneš P., Sochor J.: Computation
of tunnels in protein molecules using Delaunay
triangulation. Journal of WSCG 15, 1–3, pp. 107–
114, 2007.

[Pet06] Petřek, M., Otyepka, M., Banáš, P., Košinová
P., Koča, J., and Damborský J. CAVER: a new
tool to explore routes from protein clefts, pockets
and cavities. BMC Bioinformatics, 2006.

[Pet07] Petřek, M., Košinová, P., Koča, J., and
Otyepka M.: Mole: A Voronoi diagram-based
explorer of molecular channels, pores, and
tunnels. Structure 15, 11, pp. 1357–1363, 2007.

[Pre85] Preparata, F.P., and Shamos, M.I.
Computational Geometry: An introduction.
Springer-Verlag, 1985.

[Yaf08] Yaffe, E., Fishelovitch, D., Wolfson, H. J.,
Halperin, D., and Nussinov, R.: Molaxis: Efficient
and accurate identification of channels in
macromolecules. Proteins, 73(1):72-86, 2008.

Figure 7. Distances between channels in
consecutive snapshots for tracking and
clustering method. First 250 snapshots
containing channels were considered.

WSCG 2010 Communication Papers 114

A framework for User-Assisted Sketch-Based Fitting of
Geometric Primitives

Davide Portelli
VCL - ISTI, Pisa

davide.portelli@gmail.com

Fabio Ganovelli
VCL - ISTI, Pisa

fabio.ganovelli@isti.cnr.it

Marco Tarini
Univ. dell’Insubria, Varese

marco.tarini@isti.cnr.it

Paolo Cignoni
VCL - ISTI, Pisa

paolo.cignoni@isti.cnr.it

Matteo Dellepiane
VCL - ISTI, Pisa

matteo.dellepiane@isti.cnr.it

Roberto Scopigno
VCL - ISTI, Pisa

roberto.scopigno@isti.cnr.it

ABSTRACT
In this paper, we present a user-assisted sketch-based
framework to extract hi-level primitives (e.g. columns
or staircases) from scanned3D models of an architec-
tural complex. The framework offers a unified level
of representation of the hi-level primitives, so that new
types of primitives can be easily added as plug-ins to the
main engine. Primitives are fitted with a user-assisted
procedure: the user suggests the approximate location
of the primitive by means of simple mouse gestures,
sketched over a rendering of the model. The viewpoint
that was selected prior to the sketching is also taken in
consideration as hints on the orientation and size of the
primitive. The engine performs a GPU assisted fitting
and the result is shown in real time to the user. Ad-hoc
gestures cause the system to add and fit groups of prim-
itive in one go (e.g. a column complex, or a sequence
of windows).
Keywords: 3D segmentation, fitting geometric prim-
itives

1 INTRODUCTION
Before the advent of scanning devices, 3D digital mod-
els of architectural buildings were mainly obtained via
manual modeling. This operation is typically guided
by 2D data, like sections and prospects. A modeler
usually proceeds by decomposing the structure in a set
of primitives, then “builds" the model by adding the
primitives.
The increasing availability of 3D range scanning
devices, the development of software increasingly
efficient and user-friendly for the creation and manip-
ulation of complex 3D digital models and the drop of
the scanning technology costs, are the main reasons
of the recent fast proliferation of scanning campaigns
for the acquisition of the shape of real world objects.
Along with other application fields, 3D range scanning
[CM02] is increasingly used in architecture.
The result that can be obtained using 3D scanning,
organized as clouds of points or as triangle meshes,
is a far more accurate description of the actual shape
of the building or the faćade then the one obtained
with manual modeling, but it does does not carry any

information on what the object or its parts are.
The possibility to decompose an architectural model in
a set of higher level primitives (which are very often
repeated on the same faćade) is extremely important for
a number of possible applications: analysis, archival,
comparison with other models. This would combine
the flexibility of direct 3D modeling to the accuracy
of 3D scanning. The primitive extraction can also be
applied to different approaches aimed at recovering the
3D information of buildings [BSZF99, SB03].
In this paper we present a framework for a user-assisted
extraction of geometric primitives. The intervention of
the user is limited to a few sketches over a rendering of
the low-level model. The sketches roughly define the
size, orientation and position of the intended primitive.
The approach is robust with respect to incomplete
geometry, and is also capable automatically identifying
and extract repeated instances of a single primitive. As
a result, the user can decompose a complex 3D models
in a few minutes, without the need of picking accurate
positions, and obtain good results.
The next subsections will briefly review several state-
of-the-art automatic and semi-automatic approaches
for primitive fitting. Then, the proposed framework
will be shown. A discussion on the obtained result will
be presented before the conclusions.

2 RELATED WORK
The literature on reverse engineering from 3D data is
vast. In this section we will only give a brief overview
of the approches more closely related to our domain.
We will subdivide the approaches in segmentation ap-
proaches and fitting approaches. In the first class we
put the approaches for finding low level features, such
as lines, planar regions or high curvature points in the
3D dataset. These methods do not aim to give the in-
formation about the nature of an object, instead they
try to convert a raw geometric description (i.e. a point
cloud or a triangles mesh) into a more abstract descrip-
tion. Usually these techniques rely on on discrete local
curvature operators to detect features [OBS04, WB01,
HHW05, CSAD04], the biggest challenge being mak-
ing the algorithm robust to geometrical noise. Extract-

1

WSCG 2010 Communication Papers 115

Skala
Obdélník

ing features from an irregular 3D point cloud or from
triangle mesh produced by 3D scanning is made dif-
ficult by the inherent ambiguities of the task as well
as by the presence of geometrical noise, holes in the
model, and other inconsistencies. Once basic geomet-
ric features such as lines and planes have been found,
they can grouped to describe higher level structures.
In [SWWK07] this is done by creating a graph of re-
lations where sub parts of the graph define structural
elements and arcs describe the constraint between ele-
ments. In the class of fitting approaches we place those
methods which use parametrized description of higher
level primitives and try to ”place“ them in subparts of
raw data by means of minimizing an error function.
The function being minimized can be defined ad hoc
for a given type of primitive (e.g. planes, cones, cylin-
ders) [MLM01, Ben02]. In the general case, however,
it consists in some form of distance between the sur-
face of the primitive being fitted and the real model.
In [USF08] the authors give a GML parametric de-
scription for the model being fitted and the minimiza-
tion performs the fitting using the given parameters.
In [PMW∗08] the case of repeated regular structure in
manufactures or natural objects is studied, such as a se-
ries of windows or a snow flake. The approach uses
a sequence of operation consisting of partitioning the
object, finding a set of transformations between parts
and clustering them to extract geometric relations in the
model.

3 OUR FRAMEWORK
Our framework falls in the group of fitting approaches.
Rather than trying a fully automatic approach, we aim
at reducing user intervention down to few mouse ges-
tures. The gestures are used to reduce the search do-
main the the minimization required by the fitting pro-
cess, so to avoid the most computationally demanding
phase which is often carried out with RANSAC based
algorithms. Figure 1 shows the steps required for the
user to identify and fit a set of 5 columns. The user
selects a view of the 3D raw dataset by manipulating
a mouse-controlled trackball. Then he perform a sign
over the current rendering with the mouse, as shown in
Figure 1-(a). With this information a column shape (in
this case, a trunk of cone) is fitted over the 3D dataset
– the surface shaded in red in Figure 1-(b); once the
first column has been fitted the user may perform a sec-
ond gesture to indicate that there is a series of similar
columns, as shown Figure 1-(c); those columns are au-
tomatically fit (also see attached video).

Our main concern is to make the system easily ex-
tendable, so that the process of adding new types of
primitives is easy and the system is not tied to a prede-
fined set of primitive types. The fitting problem is ap-
proached as a generic minimization problem. All prim-
itive types are defined likewise as a parametric shape

function Sh, which takes as input a variable amount of
intrinsic and extrinsic parameters, and returns in output
a set of 3D points. More precisely, Sh(x1, . . .xn,RT) =
{p1, . . . , pm}, where m is the number of produced sam-
ples on the surface, and n is the number of scalar in-
trinsic parameters, and RT is a roto-translation matrix,
or extrinsic parameters, which specify the location in
space of the shape. Specification of a primitive type
also include an interval for each intrinsic parameter.
Note that choosing to express the shape as a parametric
point set does not allow to exploit non geometric infor-
mation that we may know about the primitive. On the
other hand it gives generalization of the primitive de-
scription and allow us to write a extendable framework.

While any primitive type has the same extrinsic pa-
rameters, the intrinsic parameters vary from type to
type, both in number and in range of values.

For example the primitive type Column is defined by
the shape function:

Column(rbottom,rtop, len,RT)

where rbottom and rtop are the two radii of trunked cone
with length len.

The minimization problem can now be defined inde-
pendently of the type of the primitive being fitted:

min Err(Sh(x1..xn,RT),M)
xi ∈Constr(i) (1)

where Err is a measure of the difference between the
primitive and the scanned model and Constr(i) is the
constraint defined for the parameter i (for example in
the case of the column we have 0 < rbottom,rtop, len).

Figure 2 show a scheme of the whole process. The
user select a shape and perform a mouse gesture so pro-
viding the input for the module that computes a first
estimation of the parameters. Then the minimization
process start by sampling the surface generated by the
parameters, computing its distance from the model and
updating the parameters to decrement the error, until a
satisfactory fitting is found.

Being that our method relies also on user interven-
tion, it may reminds to many user assisted techniques
for segmentation of medical datasets for which a vast
literature is available (see [PXP00] for a recent survey).
However there are important distinctions both in finali-
ties and in adopted strategies. The first difference is that
for architectural manufactures we do not need a tool for
supporting the recognition of a shape, as usually is for
medical images, but only a tool for converting a raw
description (a point cloud) in a structured one (union
of architectural elements). Many techniques in medical
segmentation are based on energy minimization meth-
ods but the exploitation of a known parameterization of
the object to segment brings less advantages than in our
case for the simple reason that human organs are much

2

WSCG 2010 Communication Papers 116

Skala
Obdélník

Figure 1: application example of fitting of 5 columns.

more difficult to parametrize than architectural build-
ings.

3.1 From gesture to parameters estima-
tion.

The goal of using the mouse gesture is to reduce the
search space for in the minimization process. However,
in order to be effective, the gesture must be simple to do
and not necessarily precise. The first task is to interpret
a 2D mouse gesture in a selection of a 3D subpart of the
original 3D data (mesh or point-cloud).

Figure 3.(a) shows the example of the column where
the sign of the mouse is partly over the column (shaded
in red) and partly over the background (shaded in
green). In Figure 3 we see how the selected points are
distributed in space.

We compute the distribution of the distance of these
points from the viewer and use it to remove what we
consider to be outliers (see Figure 3.(c)), in the assump-
tion that the majority of points will be coherently on
the part of the dataset that corresponds to the primitive
being fitted. Then we take the bounding box of these
points to infer an initial estimation of parameters for the
shape. In the most general case, i.e. with no assump-
tion neither on the type of dataset nor on the type of
primitive, the only information that we could use from
the bounding box is its volume, so we can solve a min-
imization problem:

min ‖Volume(Sh(X0, . . . ,xn,RT)−Volume(BBox)‖

and use the solution as the initial estimation for the
problem 1. The computation of a solution is made less
computationally intensive by taking in account the view
transformation that was chosen by the user in order to
have a suitable view of the intended feature:

• the view transformation selected by the user before
he performs a mouse gesture is assumed to be such
that the feature has a natural orientation (e.g. the col-
umn is not upside down in screen space);

• similarly, the intended instance of the primitive is
oriented, in view-space, as facing the camera.

taking advantage of these reasonable assumptions, we
infer a correspondence between the frame centered in
the center of the bounding box and oriented with its
sides, and the frame where the shape is defined for the
initial to obtain the parameters estimation.

3.2 Minimization
At a first glance, we could take the function to min-
imize, referred as Err in the problem 1 as the sums
of Euclidean distance between the primitive and the
model. Unfortunately this is not enough, because we
may have architectural elements which subparts are
also instances of the same type of element. For exam-
ple a portion of a plane is also a plane and a portion
of a column is also shaped as a column. Of course
this also depends on the definition of the primitive
types. Consider for example how a column including
a basement and the capital we would not have these
ambiguities (however that primitive type could not be
fitted, for example, over a 3D point cloud featuring a
broken column, a case for which we would need an ad
hoc primitive).

For these reasons, we aim at the maximal portion of
dataset that matches with the primitive. Therefore we
redefine our error function as:

Err(Sh,M)=
1

Area(Sh)

j<k bArea(Sh)c

∑
j=0

max(t,wi D(si,M))2

(2)
where si, i = 0 . . .k is a sampling of the surface of the
primitive, D(si,M) is a measure of the distance from
si to the model M, t is the minimum error that is as-
signed to each sample to smooth out the contribution
due to the the noise of the scanned model and wi is a
[0,1] weight associated with the ith sample that is used
to discard outliers that are created is the model misses
portion of surface that are represented in the shape (e.g.
a column with a missing piece). Essentially Err takes
into account the distance between the primitive and the
model and the area of the shape and decreases both if
the distance decreases and if the area grows. Note that
the distance measure is squared in order to express both
parts of the fraction in the same scale, and that the num-
ber of samples is proportional to the area so that each
sample accounts approximately for a constant area.
Computing D(si,M). We can define the distance func-
tion as the Euclidean distance to the closest point on M,

3

WSCG 2010 Communication Papers 117

Skala
Obdélník

Figure 2: A scheme of the fitting framework

Figure 3: From mouse gesture to initial parameters.

just like in classic IPC algorithm [BM92] D. However,
since we have an estimation of the normals both for the
shape and for the model, we can achieve better results
including the normals in the estimation and defining the
distance as:

D(si,M) = min D(si, pi), pi ∈M (3)

where:

D(si, pi) = E(si, pi)+
α (1− ~n1 ~n2)2β

E(si, pi)+1
(4)

the function D is simply the Euclidean distance E plus
a positive bounded contribution En (the right part of
the sum) which accounts for the normals in the distance
computation. The expression is formulated so that the
weight of the normal only comes into play where the
two points are close to each other and the magnitude of
their contribution is proportional to the angle between
them. It can be easily seen that the maximum contri-
bution (found when E(si, pi) = 0 and ~n1 ~n2 = −1) is
α 22β . We can set β to determine how fast the con-
tribution of this term grows and α to relate the term to
the density of the dataset. The value of α is important
because the contribution of the term must be propor-
tioned to the density of the sampling to affect the min-
imization. Typically a good choice is to set it to the
average inter point distance. So if, say, β = 2 and the
average inter point distance is 0.5, we will have a term
that may increase the distance estimation from the Eu-
clidean value at most by 0.5 22 2 = 8, when points with

Figure 4: A plot of the distance function for β = 2,
α = 0.5 and several values of angle between the points’
normal.

opposite normals coincide. Figure 4 shows a plot of
En for different values of the product ~n1 ~n2 and β = 2
where this behavior can be observed.

Al thought the distance function En is a 5D function,
the closest point on M with respect to En can be found
using only data 3D space indexing data structures for
Euclidean distance by:

1. finding the closest point pi with respect to the metric
E

2. taking the closest point with respect to D among
those which euclidean distance is less than D(si, pi).

It is easy to see that the algorithm returns the closest
point w.r.t. D, because

E(si, p′)> D(si, pi)→D(si, p′)= E(si, p′)+En(si, p′)> D(si, pi)

Minimization cycle. At this point we have defined
both the parameters and the function to minimize and
may apply any non linear minimization algorithm to
find a hopefully optima solution. However, we exploit

4

WSCG 2010 Communication Papers 118

Skala
Obdélník

the knowledge of a closed form solution for the extrin-
sic parameters alone [BM92] and decompose the mini-
mization cycle in three steps:

1 for each sample in the shape Sh, find the closest
point in the model

2 find the rototranslation that minimizes the squared
distances between all the pairs (only explicit param-
eters involved)

3 iterate a non linear minimization procedure (only
implicit parameters involved)

- if Err(Sh,M) is under a user selected threshold re-
turn, otherwise goto 1

We used both Levemberg-Marquardt [Lou09] and
Newuoa [Pow08], with similar results.

4 EXTENDING TO MULTIPLE IN-
STANCES

When an architectural element has been fitted, it is
likely that other similar elements (i.e. of the same type
and size) are present. Examples are the columns, the
steps of a stair of a series of window. Therefore we
wanted to spare to the user to repeat the same mouse
gesture for all the elements an simply make a single
gesture which says here there are other elements of this
type. As shown in Figure 1.(c), the gesture required is
two mouse clicks to define a line segment. From this
gesture the initial parameters for all the other columns
are find and the minimization process just described is
launched on each instance.

4.1 From gesture to parameters estima-
tion.

Since we have fitted the first element, we already have
the estimation of the initial implicit parameters for the
other instances of the same type of element. The user
may define a segment (seg(t)x,seg(t)y to indicate where
these other instances are, as shown in Figure 6. There-
fore the information we need to extract is how many
other elements there are and, for each one of them, an
estimation of the extrinsic parameters. Furthermore we
can exploit the fact the in architectural manufactures re-
peated elements usually differ by a translation but are
oriented in the same way and reduce the missing ex-
trinsic parameters to a translation.

In principle we could sample the segment and, for
each sample, launch the optimization taking the projec-
tion of the sample onto the scene as a starting point for
translation. Unfortunately the minimization process re-
quires few seconds to complete and therefore we need
to reduce the set of candidates translations.

We harness the rasterization process in order to
quickly reduce the candidate translations. More pre-
cisely we exploit the z-fighting artifact. The z-fighting

Figure 5: A schematic representation of z-fighting
quantification

is the rendering artifact that happens when the depth
values of the rasterization of different polygons falls
in a range of values close or under the precision of
the z-buffer, so that the pixel are evenly written by the
conflicting polygons.

The idea is that if we consider the 3D point
(seg(t ′)x,seg(t ′)y,seg(t ′)z) where (seg(t ′)x,seg(t ′)y are
2D points belonging to the segment and seg(t ′)z is the
projection on the model and render an instance of the
shape translated by seg(t ′) together with the scene, the
presence of z-fighting indicates a superimposition of
the rendered shape with the model, at least from the
view used to draw the segment.

Normally the z-fighting is a symptom of a weakness
of the geometric representation or of the rendering al-
gorithm, therefore if not quantified but only, possibly,
avoided. In our approach, however, the z-fighting is an
estimation of matching between a shape and the model
and therefore we are interested in quantifying it.

Figure 5.(a) shows a schematic example representing
the section of a column in the model (shaded in blue)
and a section of the shape being fitted (shaded in red).
Since they are perfectly superimposed, we see part of
the pixels red and part blue, in the proportion which is
essentially random and cannot be used directly to quan-
tify the superimposition. However, if we apply a small
displacement of the shape towards the viewer we see
that all the pixels are red and, vice versa, displacing
the shape away from the viewer the pixels will all be
blue. In other words, the more the shape and the model
are superimposed, the more the two renderings with the
displaced shape will be different. Therefore we quan-
tify the z-fighting as:

Z f ight(Sh,M,Ti) =
‖FSh(+ε)−FSh(−ε)‖

FSh

where FSh(+/− ε) is the number of fragments belonging
to the shape when is displaced by +/− ε and FSh is the
number of fragments of the shape Sh alone. The upper
half of Figure 6 shows two examples of a fitted shape,
a column and a step, and the segments defined by the
user, while in the lower part are shown the plots ob-
tained by setting t (the parameter of the segment with
range [0,1]) as ascissa and (Sh,M, t), so (Sh,M,0.5) is
the value of the z-fighting when the shape is placed

5

WSCG 2010 Communication Papers 119

Skala
Obdélník

Figure 6: Example of estimation of extrinsic parame-
ters from mouse gestures for a series of columns and a
stairs.

on the projection of the middle point of the segment.
Quantifying the z-fighting is very efficient because it
requires only one rendering of the model and two ren-
derings of the shape for each pixel of the segment,
while the number of fragment for the displaced shape
are counted by means of the hardware occlusion query.

Note that, being based on the rasterization, this tech-
nique is dependent on the window resolution, therefore
it will be generally more effective with higer resolu-
tions, simply because more translations are evaluated.
It should be clear that the resolution to which we per-
form the zfighting computation can be different (higher)
that the resolution used by the application for rendering.

5 DEFINING NEW PRIMITIVE TYPES
As stated in Section 3, our framework is not restricted to
a given set of primitives but uses an abstraction layer the
sees a primitive as a sampling of its surface dependent
on a set of implicit parameters. Therefore a developer
user may add new type of primitive by deriving from a
base class Primitive and implementing two methods:

s t r u c t MyPrimitiveType : p u b l i c Primitive{
i n t N_params () ; / / r e t u r n s t h e number o f t h e i m p l i c i t p a r a m e t e r s o f t h e←↩

p r i m i t i v e

points Samples (f l o a t * params) ; / / r e t u r n s a s a m p l i n g of t h e s u r f a c e ←↩
wi th t h e p a s s e d p a r a m e t e r s

} ;

6 RESULTS AND DISCUSSION.
We tested our framework implementing a few types of
primitives, summarized in Table 1.
We fitted the primitives to a scanned model of the Dome
of Pisa and reported the timing for various runs in Ta-
ble 2. Some of the runs are related to the figures we

Name . n.params. meaning
Column 3 bot. rad., top rad., len.
SquareColumn 3 width, depth, leng.
Stap 3 width, depth, length
Arch 3 radius, angle, depth
Window 3 width, height,depth

Table 1: A few primitives defined to test the framework.

fig n. pts nI nM extr.(s) intr.(s) tot.
2M 1 1 53 4.9 58.7

1 1.5M 5 1+1 132 18.5 1.51m
309K 3 3 21.4 16.3 37.82
122K 1 1 1.4 0.34 1.78
226K 1 1 1.7 0.6 2.39

7(up) 730K 5 1+1 57.7 4.7 62.5
7(bt) 200K 4 4 12.4 0.43 12.8

Table 2: Time for fitting the primitives. n. pts: num-
ber of points of the model included in the user hint, nI:
number of primitives fitted,nM: numbers of mouse ges-
tures, extr. intr. time spent for minimization of ex-
trinsic and intrinsic parameters, respectively, tot.: total
time

used in the paper, in which case a reference is reported
in the first column of the table. The second columns re-
ports the size of the portion of the model hinted by the
user with the gesture and the third the number of prim-
itives found with the run. The last three columns re-
port the computation time. Note that the time for mak-
ing the gestures are not reported in this table, since the
experiments have been run only by an expert user and
therefore not very meaningful. We took the number of
mouse gestures as a measure of the user effort.

The table says that, thanks to the replication gesture,
5 architectural elements have been found with 2 ges-
tures (second and sixth row), while where the replica-
tion is not used we need a mouse gesture per element,
as for the arches refered in the last row. Conversely, in-
dicating manually each and every element gives better
starting points for the minimization and therefore the
computation time are lower.

Since we performed minimization by alternating
minimization of extrinsic parameters, for which we
have a closed form solution, and extrinsic parameters,
the time spent on each one is reported separately. The
result may appear surprising at first, because the easiest
side of the problem, i.e. finding the rototranslation
between two sets of points, is actually the most expen-
sive, in some cases almost by an order of magnitude.
On the other hand, we must consider that the extrinsic
step is performed many more times, in that we solve
a mesh alignment problem for each iteration. It goes
without saying that tweaking the thresholds of the
minimization algorithms we may obtain different ratios
between the two timings, we simply tuned their values
to have robust fitting in reasonable time. The time for

6

WSCG 2010 Communication Papers 120

Skala
Obdélník

Figure 7: Above: example of selection of stair steps:
(a) mouse gesture for the first step (b) fitting (c) mouse
gesture for replicating the fitting (d) result. Below: final
results for a set of arcs.

the analysis of the mouse gestures are not reported
explicitly since they amount to few milliseconds both
for the single primitives than for replication with the
z-fighting computation.

Figure 8: Fitting of columns and arches. (a) results
from [USF08] (b) results of our framework on a sim-
ilar model.

7 CONCLUSIONS
In this paper we presented a framework for user assisted
fitting of geometric primitives on scanned architectural
models. The main advantage of our framework is the
generalized description of the primitive to fit that allows
to include new type of primitive with minimal effort.
We also devised efficient and practical solutions for en-
abling the user to hint the approximate position of the
primitives, for improving the assessment of primitive
models distance with a novel measure and for quan-
tifying the superimposition of primitive and model by
exploiting the rasterization hardware. Although requir-
ing user assistance is in general a drawback, we made
this choice motivated by two facts: 1) For a human it is
very easy to indicate where an architectural component
is, while is much more difficult to manually superim-
pose the CAD model of a component on the raw data;
conversely, the analysis of raw data to locate architec-
tural components is computationally time consuming
while the minimization for finding the exact placement
is an efficient process. 2) The process to digitize and
entire building still take many man-hours and the re-
verse engineering is done once for all in a fraction of the
time required for the rest of the scanning pipeline. In
other words the little interaction used in this approach
is hardly the bottleneck of the whole process.

From the work carried out so far, we can envisage at
least two independent improvements.
The first one is to exploit more deeply the z-fight quan-
tification to define a faster minimization algorithm only
based on the rendering and therefore taking advantage
of the rasterization hardware.
The second one is to derive the parametric primitive di-
rectly from a known model, that would allow a non-
developer to define new type of primitives. The idea
is that the user could provide a sample of the primitive
as a geometric model (from a CAD or 3D scanning)
and we should derive a parametric description of it, ei-
ther automatically or providing a tool to do it. In this
manner we could include complex shapes for which to
find a parameterization is too complicated. With some
approximation this would allow to include artifacts as
statues when if they are copies of statues for which the
digital counterpart is available.

REFERENCES
[Ben02] BENKO P.: Constrained fitting in reverse

engineering. Computer Aided Geometric
Design 19 (March 2002), 173–205.

[BM92] BESL P. J., MCKAY N. D.: A method for
registration of 3-D shapes. IEEE Trans-
actions on Pattern Analysis and machine
Intelligence 14, 2 (Feb. 1992), 239–258.

[BSZF99] BAILLARD C., SCHMID C., ZISSERMAN
A., FITZGIBBON A.: Automatic line

7

WSCG 2010 Communication Papers 121

Skala
Obdélník

matching and 3d reconstruction of build-
ings from multiple views. In ISPRS Con-
ference on Automatic Extraction of GIS
Objects from Digital Imagery (Munich,
1999), pp. 69–80.

[CM02] COLOMBO L., MARANA B.: 3d building
models using laser scanning. GIM - Ge-
omatics Info Magazine 16, 5 (2002), 32–
35.

[CSAD04] COHEN-STEINER D., ALLIEZ P., DES-
BRUN M.: Variational shape approxima-
tion. ACM Transactions on Graphics 23
(August 2004), 905.

[HHW05] HILDEBRANDT K., HILTHIER K.,
WARDETZKY M.: Smooth feature lines
on surface meshes. In Symposium on
Geometry Processing (2005), pp. 85–90.

[Lou09] LOURAKIS M. I. A.: Levenberg-
Marquardt nonlinear least squares algo-
rithms in C/C++. Online, Apr. 2009.

[MLM01] MARSHALL D., LUKACS G., MARTIN
R.: Robust segmentation of primitives
from range data in the presence of geo-
metric degeneracy. IEEE Trans. Pattern
Anal. Mach. Intell. 23, 3 (2001), 304–314.

[OBS04] OHTAKE Y., BELYAEV A., SEIDEL H.-
P.: Ridge-valley lines on meshes via im-
plicit surface fitting. ACM Trans. Graph.
23, 3 (2004), 609–612.

[PMW∗08] PAULY M., MITRA N. J., WALLNER J.,
POTTMANN H., GUIBAS L.: Discovering
structural regularity in 3D geometry. ACM
Transactions on Graphics 27, 3 (2008),
#43, 1–11.

[Pow08] POWELL M. J. D.: Developments
of NEWUOA for minimization without
derivatives. IMA Journal of Numerical
Analysis 28, 4 (Oct. 2008), 649–664.

[PXP00] PHAM D. L., XU C., PRINCE J. L.:
A survey of current methods in medical
image segmentation. In Annual Review
of Biomedical Engineering, vol. 2. 2000,
pp. 315–338.

[SB03] SCHINDLER K., BAUER J.: A model-
based method for building reconstruction.
In First IEEE International Workshop on
Higher-Level Knowledge in 3D Modeling
and Motion Analysis (2003), pp. 74–82.

[SWWK07] SCHNABEL R., WAHL R., WESSEL R.,
KLEIN R.: Shape Recognition in 3D Point
Clouds. Tech. Rep. CG-2007-1, Univer-
sität Bonn, May 2007.

[USF08] ULLRICH T., SETTGAST V., FELLNER

D. W.: Semantic fitting and reconstruc-
tion. JOCCH 1, 2 (2008).

[WB01] WATANABE K., BELYAEV A. G.: Detec-
tion of salient curvature features on polyg-
onal surfaces. Comput. Graph. Forum 20,
3 (2001).

8

WSCG 2010 Communication Papers 122

Skala
Obdélník

Real time accurate collision detection for virtual
characters

Andoni Mujika, David Oyarzun, Aitor Arrieta, María del Puy Carretero

VICOMTech - Visual Interaction and Communication Technologies Center
Mikeletegi Pasealekua, 57 - Parque Tecnológico

E-20009 Donostia - San Sebastián, Spain

{amujika, doyarzun, aarrieta, mcarretero}@vicomtech.org

ABSTRACT
This paper presents an accurate real time collision detection algorithm for interactively animated virtual

characters using sphere-trees as Bounding Volume Hierarchies. We build upon a fast mathematical method for

on-demand sphere refitting during the animation and improve it for being applicable to any object, without

dependency on its geometrical level of detail or its dynamic/static behavior. It uses sphere-plane intersection test

as the exact test in the collision detection algorithm instead of the usual triangle-triangle one. Corner-trees, a

special hierarchy that ensures the utilization of the plane-sphere intersection test is right, are also presented. In

the worst case, the optimization decreases in 25% the time needed to process a frame in extreme conditions. The

algorithm has been successfully tested on a real time and collaborative 3D virtual world.

Keywords
Real-time Collision Detection, Bounding Volume Hierarchies, Virtual Character Animation.

1. INTRODUCTION
Collision detection (CD) is a key issue in almost all

fields of computer graphics. Real time virtual objects

and virtual characters’ animation are not exceptions.

In most of cases they need to have realistic behaviors

that imply CD, i.e. not to penetrate other objects.

Therefore, many algorithms have been proposed in

recent years.

Accurate algorithms are usually very expensive

computationally speaking. Then, applications that

make use of collision detection algorithms have to

balance between preciseness of the detection and

velocity of the algorithm.

For instance, a very fast performance of the collision

detection algorithm is needed in Massively

Multiplayer Online Games (MMOGs) and a very

precise detection is crucial in serious games and

virtual prototyping. On the other hand, continuous

collision detection (CCD) was presented to solve the

main problem that discrete algorithms presented, the

tunneling effect, i.e. the miss of some collisions.

However, the velocity of the algorithm obtained was

not appropriate for real time purposes.

Although the problem has been widely studied for

rigid bodies, there is a lot to do regarding CD for real

time deformable objects such as clothes, interactive

virtual humans, etc. The problem increases in case of

collaborative virtual worlds, with lot of avatars

interacting among themselves and with objects at the

same time. It is usual to see very fast but imprecise

CD algorithms.

Therefore, in this article, we focus on real time

humanlike animation in collaborative virtual worlds

and propose an algorithm to obtain a fast and precise

CD for interactive virtual characters of high level of

detail. In order to be used in both, virtual worlds and

precise simulations, the algorithm is based on these

features:

- A fast update of the spheres in the Bounding

Volume Hierarchy.

- Utilization of the sphere-plane intersection

test instead of the slower triangle-triangle

test.

- Implementation of the corner-trees, a novel

hierarchy for the correct and fast

performance of the algorithm.

The paper is structured as follows. In section 2 we

summarize the related work. In section 3 we describe

our virtual character animation platform and its

collision detection algorithm. In section 4 we analyze

the major problem we found for a fast performance

of the algorithm and in section 5 we describe two

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2010 Communication Papers 123

methods to solve it. In section 6 we present and

compare the obtained results and finally, in section 7,

we analyze future extensions to improve the

performance of our CD algorithm.

2. RELATED WORK
When detecting collision detection between a virtual

character and its environment, first, the character’s

movement has to be computed, i.e. the new position

of the avatar’s vertices has to be calculated. And

then, the second stage will be the CD itself, taking

into account the new positions of the vertices.

Sections below deal with related work in each of

these stages.

Virtual Character Animation
Virtual character animation has been widely studied

in computer graphics. In this research field, one of

the main goals is the realistic simulation of human

movements. Especially in 3D animation, many

efforts have been done in recent years. Although

there are some methods such as Blend Shape

Deformation [Moh03a] and Free-Form Deformation

[Sed86], skeletal animation systems are the most

used. The primitives that form the virtual character

are transformed depending on the movements of a

skeleton. We can classify these methods by the way

they skeleton affects the primitives. Linear Blend

Skinning [Moh03b] manipulates the triangle-mesh

associating each vertex to a group of joints of the

skeleton and giving a weight for each joint (the sum

of the weights is one). Then, the transformation of

the vertex is a linear combination of the joints’

transformations. Spherical Blend Skinning [Kav05a]

works similarly, but the relation between joints’

transformations and vertices’ transformations is not

linear. It is based on Spherical Linear Interpolation.

Collision Detection
When detecting collisions between two objects,

testing each primitive-couple is too costly. Detecting

collisions between two objects with and

primitives would cost operations, where

is the number of basic operations needed in an

intersection test between primitives. Therefore, a

method that detects which primitives are more likely

to be colliding (broad phase) is used before executing

the exact test between primitives (narrow phase)

[Mol97, Tro05].

Usually, Bounding Volume Hierarchies (BVHs), i.e.,

sets of volumes that bound the object getting

different levels of tightness, are used in the broad

phase. During the collision detection, the volumes in

the hierarchies of the objects are tested to be

colliding. If they don’t collide, all the primitives

inside the volumes don’t collide, but if they do

collide, next levels of tightness are checked. Once the

algorithm finds two colliding leaf-nodes, i.e. volumes

that enclose only one primitive, the exact intersection

test between primitives is called.

The number of operations needed to detect collisions

between bounding volumes is much lower than

between primitives. For instance, a collision test

between spheres consists of 10 operations and the

best collision test between triangles consists of 96

operations.

We can sort these methods by the type of volume

they use:

 Spheres [Qui94, Hub96]

 Axis-Aligned Bounding Boxes (AABBs)

[Van98]

 Oriented Bounding Boxes (OBBs) [Got96],

 k-Discrete Orientation Polytopes (k-DOPs)

[Klo98]

Most of these methods were presented for collision

detection between rigid objects. Nevertheless, CD for

deformable objects also makes use of BVHs. Once

again, different types of BVHs appear such as

spheres [Bro01] and AABBs [Lar01, Zac06].

Regarding collision detection for avatars, i.e. virtual

characters, there have been different approaches in

recent years. Kavan et al. use spheres to create the

BVH. They refit the sphere-tree for bodies that are

moved based on a skeleton. They proposed collision

detection methods for Linear Blend Skinning

[Kav05b] and Spherical Blend Skinning [Kav06].

All the results shown so far are discrete, i.e. they

sample objects’ motions. As opposed to these

methods, continuous collision detection (CCD)

methods compute the first time of contact during the

collision detection. Six different approaches to CCD

have been presented in the literature: algebraic

equation-solving [Cho06], swept volumes [Abd02],

adaptive bisection [Red02], kinetic data structures

(KDS) [Aga01], the configuration space approach

[Van04], and conservative advancement [Cou06]

However, these methods performance is not as fast as

is required.

There are also some continuous collision detection

results for avatars. Zhang et al. [Zha07] use OBB-

trees and create AABBs during the motion

interpolation using Taylor Models, i.e. a

generalization of interval arithmetic. Instead, Redon

et al. [Red04] use swept volumes (SV) for CCD in

scenes with a simple articulated avatar.

3. ALGORITHM OVERVIEW
The developed collision detection algorithm is a

discrete collision detection method and works with

spheres as bounding volumes. Spheres were chosen

because of the fast performance of the sphere-sphere

WSCG 2010 Communication Papers 124

intersection test and the low space needed to store the

data.

Virtual Character Animation
Regarding the animation stage, in our system, the

vertices are associated to a unique joint and the

transformation of a vertex is obtained computing the

product of the transformations of all joints upon the

associated joint in the skeleton-tree and the weighted

transformation of the associated joint.

where is the group of joints upon the associated

joint in the skeleton-tree, the transformation of the

vertex, s the transformations of the joints in ,

the transformation of the associated joint and the

weight associated to the vertex. This way of

animation provides an adequate balance between

performance and realism for its use in collaborative

virtual worlds.

Collision detection
The collision detection algorithm begins with the

sphere-tree construction. This construction of the

sphere-tree is based on Quinlan’s work [Qui94]. First

a binary tree is constructed: in each step, the triangles

of a sphere are divided in two groups and two

spheres are constructed enclosing each group

[Gae99]. In this case, to make the division, the

triangles are ordered depending on their position in

one of the axes, so as to get two spheres as far as

possible one from the other. Moreover, the axis is

chosen to be the one where the spheres are most

spread. As in [Kav05b], the binary tree is turned into

a n-ary tree eliminating the spheres the radius of

which is similar to their parent’s radius. This way,

when testing for collision, tests between similar

spheres are avoided.

Since each vertex is associated to a single joint in our

platform, instead of creating a unique tree, a tree is

constructed for the group of vertices associated to

each joint, so as to prevent the algorithm having

spheres affected by no-adjacent-joints. To merge all

the trees, an enclosing sphere for all vertices is

computed as the root of the main tree and a sphere

for each extremity to form the second level are

created.

Sphere update
The sphere update of our algorithm is inspired by the

main contribution of Kavan and Zara [Kav05b]. In

the preprocess, all the vertices of a sphere are visited

to compute the minimum and maximum weights for

each joint affecting this sphere.

Then, during the animation, when a joint is visited to

update the vertices associated to it, the spheres

containing vertices associated to this joint are also

visited. For each visited sphere, two new spheres

(one if maximum and minimum weights are the

same) are created applying the same transformation

as to the vertices to the center of the sphere but using

the maximum and minimum weights. The radii are

the same as the original sphere.

where is the center of the sphere, and

are the new centers and and are the

precomputed maximum and minimum.

Finally, the enclosing sphere of the new spheres is

created, ensuring that all the vertices are inside the

new sphere.

where and are the center and the radius of the

final updated sphere and and are the centers and

the radii of the spheres obtained with all the

maximum and minimum weights.

Narrow phase
During the collision detection, when two spheres in

the lowest level of the hierarchies are colliding, an

exact collision test between the triangles enclosed by

those spheres is called. We use the fast algorithm

presented by Tropp et al. [Tro05]. When detecting

intersection between edges of a triangle and the other

triangle, all the redundant operations to calculate

determinants are discarded.

4. OPTIMIZATION
Since we want our platform to cope with virtual

characters containing more than 40000 vertices, the

algorithm needs some optimization. It has to be able

to handle the big amount of spheres generated with

this number of vertices.

In order to reduce the number of triangles that take

part in the collision detection algorithm, we

implemented an optimization proposed by Curtis et

al. [Cur08]. They realized that many collision tests

WSCG 2010 Communication Papers 125

between primitives are made more than once and

developed a method to avoid these duplications. In

our case, we assume that each edge of the triangle-

mesh has to be tested once. Then, taking into account

a triangle surrounded by three triangles that have

already been taken into account is not necessary (see

Figure 1). Therefore, we assume this triangle doesn’t

exist for the collision detection. One may think that

some collision may be skipped this way. In fact, the

penetration of a smaller triangle in a “not existing”

triangle without touching its edges wouldn’t be

detected, but we have seen that in practice, this

extreme case doesn’t occur with avatars of so high

level of detail. After implementing the optimization,

the number of triangles used for the collision

detection decreased 40%.

Figure 1 The triangle among the other 3 triangles

is not taken into account in the CD algorithm.

Big triangles, a problem
When an avatar is walking in an environment,

usually the triangles that compose the environment

(walls, tables, windows, etc.) are much bigger than

the ones that compose the avatar. This fact is a

serious drawback when trying to get a fast

performance of the collision detection system.

The leaf-node of the sphere-tree that corresponds to a

big triangle is a big sphere. So, when the avatar is

near a big triangle, it’s possible that all the spheres in

the BVH of the avatar are inside the big enclosing

sphere of the triangle. This leads to a huge number of

collision tests between spheres and a huge number of

exact collision tests between triangles, since all the

leaf-nodes of the avatar hierarchy are inside the leaf-

node of the environment. We have checked that the

algorithm can’t cope with this number of operations,

especially because of exact tests.

5. SOLVING BIG TRIANGLES’

PROBLEM
A solution for the problem with big triangles could

be just to divide big triangles in smaller triangles.

Nevertheless, it is not always possible to manipulate

the model received and dividing all big triangles until

the leaf-nodes are small enough can increase the

weight of the model drastically.

From now on, we denote the small triangle in the

avatar’s triangle mesh that takes part in an exact

intersection test as and the big triangle of the object

in the environment as . We denote their enclosing

spheres, i.e. their leaf-nodes in the sphere-tree as

and respectively.

Sphere Division
Although the division of the model’s vertices may be

impossible to carry out, a similar approach can be

applied.

We want the avatar not to be inside . So, we create

a hierarchy inside the enclosing sphere of the big

triangle to ensure that when exact test is called the

primitives are really close. When the triangle is too

big (we use a border value for the lengths of the

edges), the triangle is divided in four new triangles

joining the intermediate points of the edges and four

new enclosing spheres are created to form the next

level in the hierarchy (see Figure 2). The division

finishes when the triangles are smaller than the

threshold.

Figure 2 The enclosing sphere (black) of a

triangle. The triangle divided in four triangles and

their enclosing spheres (red).

During the animation, the collision detection

algorithm runs as before, calling the spheres of the

lower levels if the ones in upper levels collide, but in

this case, the leaf-nodes doesn’t enclose a triangle.

They point to the big triangle .

WSCG 2010 Communication Papers 126

This way, when the avatar is not really close to ,

only intersection tests between spheres are called. So

the algorithm’s performance is much faster.

Moreover, when the avatar is close to the object that

contains , the exact collision test is only called for

those triangles that are really close, avoiding the huge

number of exact intersection test we had before.

The results obtained with this implementation were

satisfactory, but we saw that a better performance

could be obtained. Results will be shown in section 6.

Plane-Sphere intersection test
Virtual characters with high level of detail are

composed by very small triangles comparing with the

triangles that compose some objects of the

environment. When the enclosing sphere , of the

small triangle, , is colliding with a big triangle, ,

is colliding with or it is very near. Therefore,

testing and and testing and are nearly the

same.

If the intersection test between a triangle and a sphere

is not very costly, it is worth to use it instead of the

exact test between two triangles. Nevertheless, we

can see in [Eri05] that the sphere-triangle test is quite

costly.

However, a simple and very efficient collision test

between spheres and planes is presented in [Eri05]

(see Algorithm 1) and it seems that can be

considered as a plane when testing with . That way,

the biggest bottle-neck in our algorithm would be

solved due to the substitution of the exact test

between triangles.

The problem of this substitution is that it is usual to

find a leaf-node in the hierarchy of the avatar inside

 which is not colliding with , but colliding with

the plane defined by . This leads to a not existing

collision detection.

So, before calling the plane-sphere collision test, we

have to ensure that the sphere is in front of the

triangle and it is not in the part of the enclosing

sphere that the triangle doesn’t occupy.

Working as in the latest subsection, we can create a

quaternary tree inside the enclosing sphere . Then,

when the collision detection algorithm reaches leaf-

nodes and calls the plane-sphere test, we can be sure

that the sphere is in front of and we can consider it

as a plane.

Besides, a smaller tree than the quaternary-tree can

be used without losing any property. For instance,

when dividing the triangle in four smaller triangles,

we can assume that if is colliding with the

enclosing sphere of the central triangle it is in front

of .

So, in the algorithm that recursively creates the

hierarchy inside , only triangles that have an edge

that matches one of ’s edges are divided into four

new triangles again. We call the new hierarchy

Corner-tree (see figure 3).

One may think that it is better to continue dividing

the central triangles, because of the higher cost of the

plane-sphere test. Nevertheless, it is less costly one

plane-sphere test (30 operations) than four sphere-

sphere tests (4x10 operations).

Figure 3 Division of a triangle to create the

corner-tree.

Moreover, the number of the spheres in the hierarchy

decreases drastically with this new algorithm. If is

the number of levels of the hierarchy, in the

quaternary-tree the number of spheres in the th level

is . A huge number comparing to the new

algorithm, which creates spheres in

each level (see table 1).

Level 1 2 3 4 5 6 7

Corner-tree 1 4 12 36 84 180 372

Quaternary 1 4 16 64 256 1024 4096

Table 1 Number of spheres in the th level in the

Corner-tree and in the quaternary-tree

bool SpherePlaneTest(sphere s, triangle t){

 edge1 = t.v1 – t.v0;

 edge2 = t.v2 – t.v0;

 p = edge1 edge2;

 n = s.center – t.v0;

 return (|p · n| < s.radius * ||p||);

}

Algorithm 1 Plane-sphere intersection test for

sphere S and tirangle t

WSCG 2010 Communication Papers 127

6. RESULTS
The collision detection algorithm has been applied in

our platform for the animation of virtual characters in

collaborative virtual worlds successfully [Oya07]

(see Figure 4).

We have checked our algorithm with an avatar

composed by 44345 vertices in two different

scenarios: a virtual museum with 9482 vertices and

virtual living-room with 133139 vertices.

Both virtual worlds have triangles that are bigger

than the avatar and we have checked the performance

of the algorithm in extreme conditions, i.e. when the

avatar is very close to these triangles without

colliding. Moreover, the collision detection algorithm

was run without any optimization and with the sphere

division optimization to compare them with the latest

version. All the tests were made with an Intel Core 2

Duo CPU at 2.20 GHz.

Figure 4 A virtual character in a virtual living-

room.

First, we counted the basic operations (sum and

multiplication) needed in each basic collision test: 10

operations in the sphere-sphere test, 96 in the

triangle-triangle test [Tro05] and 30 in the plane-

sphere test. Then, we ran the animation platform

counting the number of these basic tests per frame so

as to obtain the maximum number of operations

made in a frame.

Table 2 and table 3 show the results obtained. The

space needed to store sphere hierarchies, maximum

times the intersection tests are called in one frame,

the sum of basic operations in those maxima and the

duration of the frame in the case of maximum

operation.

In both cases, the space to store the information

about the sphere hierarchies is much bigger when the

algorithm has an optimization. Nevertheless, the

space needed is not big enough to be a problem. As

we stated before, we can see that the corner-tree is

smaller than the quaternary-tree.

Virtual

Museum

Original Sphere

Division

Plane-

Sphere

Data 548 KB 65 MB 24 MB

Sph-Sph tests 200000 15000 5000

Tri-Tri tests 150000 150

Pla-Sph tests 2000

Operations 17000000 165000 110000

Table 2 Results obtained for the animation in the

virtual museum.

Living-room Original Sphere

Division

Plane-

Sphere

Data 3.21 MB 49.2 MB 37.5 MB

Sph-Sph tests 80000 80000 8000

Tri-Tri tests 70000 50000

Pla-Sph tests 275

Operations 7000000 5000000 90000

Table 3. Results obtained for the animation in the

virtual living-room.

As wished, sphere division optimization decreases

the number of exact tests, especially in the virtual

museum. This leads to a decrease in the duration of a

frame.

Moreover, the plane-sphere optimization decreases

the number of tests made in both the broad phase and

the narrow phase. Combining this with the lower

complexity of the plane-sphere collision test, we

obtain a very fast performance.

In conclusion, we can see in the tables that increasing

the stored data, i.e. creating bigger sphere

hierarchies, we can decrease the time spent detecting

collisions. In the virtual museum, the difference

between the optimizations is not considerable, but in

the living room, the time gained with the plane-

sphere optimization is twice as the time gained with

the sphere division optimization.

7. CONCLUSIONS AND FUTURE

WORK
This article presents a fast and precise collision

detection algorithm for real-time virtual character

animation.

The utilization of the intersection test between a

sphere and a plane instead of the triangle-triangle test

resulted in a much faster performance of the

algorithm.. We also presented the corner-tree, a novel

sphere hierarchy that makes the algorithm detect

collisions correctly.

WSCG 2010 Communication Papers 128

We implemented the algorithm in a virtual world

composed of several interactive avatars of high level

of detail and objects of different levels of detail. The

velocity obtained is fast and the collision detection is

precise enough. We also implemented the collision

detection for an online version of our platform.

Since discrete collision detection methods sometimes

miss collisions (tunneling effect), continuous

collision detection is becoming an important topic of

research. Most of the new CCD methods are based

on discrete methods, so it seems natural to try to

convert our contribution into a CCD algorithm.

In recent years, the utilization of the GPUs has

become very important when accelerating

algorithms’ performance. Since collision detection is

one of the most important bottle-neck in animation, it

is important to study how GPUs can accelerate the

collision detection.

8. REFERENCES
[Abd02] Abdel-Malek, K., Blackmore, D. and Joy,

K. Swept volumes: foundations, perspectives, and

applications. International Journal of Shape

Modeling. 2002.

[Aga01] Agarwal, P. K., Basch, J., Guibas, L. J.,

Hershberger, J. and Zhang, L. Deformable free

space tiling for kinetic collision detection. In

Workshop on Algorithmic Foundations of

Robotics, 83–96. 2001.

[Bro01] Brown, J., Sorkin, S., Bruyns, C., Latombe,

J. C., Montgomery, K. and Stephanides, M. Real-

time simulation of deformable objects: Tools and

application. Computer Animation 2001, 2001.

[Cho06] Choi, Y.-K., Wang, W., Liu, Y. and Kim,

M.-S. Continuous collision detection for elliptic

disks. IEEE Transactions on Robotics 22, 2.

2006

[Cou06] Coumans, E. Bullet Physics library.

http://www.continuousphysics.com. 2006.

[Cur08] Curtis, S., Tamstorf, R. and Manocha, D.

Fast collision detection for deformable models

using representative-triangles. Proceedings of the

2008 symposium on Interactive 3D graphics and

games, 61-69. 2008

[Eri05] Ericson, C. Real-time Collision Detection.

The Morgan Kaufmann Series in Interactive 3-D

Technology. 2005

 [Gae99] Gaertner B.: Fast and robust smallest

enclosing balls. In ESA ’99: Proceedings of the

7th Annual European Symposium on Algorithms

, Springer-Verlag, pp. 325–338. 1999.

[Got96] Gottschalk, S., Lin, M. C. and Manocha, D.

Obb-tree: A hierarchical structure for rapid

interference detection. Proceedings of the 23rd

annual conference on Computer graphics and

interactive techniques, pages 171 – 180, 1996.

[Hub96] Hubbard, P.M. Approximating polyhedra

with spheres for time-critical collision detection.

ACM Transactions on Graphics (TOG), Volume

15 , Issue 3:179 – 210, 1996.

[Kav05a] Kavan L. and Zara J. Spherical blend

skinning: a real-time deformation of articulated

models. Proceedings of the 2005 symposium on

Interactive 3D graphics and games. 9 – 16. 2005.

[Kav05b] Kavan, L. and Zara J. Fast collision

detection for skeletally deformable models.

Computer Graphics Forum, 2005.

[Kav06] Kavan, L., O’Sullivan, C. and Zara, J.

Efficient collision detection for spherical blend

skinning. Proceedings of the 4th international

conference on Computer graphics and interactive

techniques in Australasia and Southeast Asia,

Fast graphics:147 – 156, 2006.

[Klo98] Klosowsky, J. T., Held, M., Mitchell, J.S.B.,

Sowizral, H. and Zikan, K. Efficient collision

detection using bounding volume hierarchies of

k-dops. IEEE Transactions on Visualization and

Computer Graphics, Volume 4 , Issue 1:21 – 36,

1998.

[Lar01] Larsson, T. and Akenine-Möller, T. Collision

detection for continuously deforming bodies.

Eurographics, pages 325–333, 2001.

[Moh03a] Mohr, A. and Gleicher, M. Building

Efficient, Accurate Character Skins from

Examples, ACM Trans. Graph., Vol. 22, No. 3,

pp. 562-568. 2003.

[Moh03b] Mohr, A., Tokheim L. and Gleicher M.

Direct manipulation of interactive character skins.

Proceedings of the 2003 symposium on

Interactive 3D graphics. 27 – 30. 2003.

[Mol97] Möller, T. A fast triangle-triangle

intersection test. journal of graphics tools,

2(2):25–30, 1997.

[Oya07] Oyarzun, D., Lehr, M., Ortiz, A., Carretero,

M. P., Ugarte, A., Vivanco, K. and García-

Alonso, A. Using Virtual Characters as TV

Presenters. Technologies for E-Learning and

Digital Entertainment, 225-236. 2007.

[Qui94] Quinlan, S. Efficient distance computation

between non-convex objects. International

Conference on Robotics and Automation, 1994.

[Red02] Redon, S., Kheddar, A. and Coquillart, S.

Fast continuous collision detection between rigid

bodies. Proc. Of Eurographics (Computer

Graphics Forum). 2002.

[Red04] Redon, S., Kim Y.J., Lin, M.C., Manocha,

D. and Templeman, J. Interactive and Continuous

WSCG 2010 Communication Papers 129

http://www.continuousphysics.com/
http://portal.acm.org/author_page.cfm?id=81335489690&coll=Portal&dl=GUIDE&trk=0&CFID=50939438&CFTOKEN=84108866
http://portal.acm.org/author_page.cfm?id=81100289069&coll=Portal&dl=GUIDE&trk=0&CFID=50939438&CFTOKEN=84108866
http://portal.acm.org/author_page.cfm?id=81100618474&coll=Portal&dl=GUIDE&trk=0&CFID=50939438&CFTOKEN=84108866
http://portal.acm.org/author_page.cfm?id=81100550151&coll=Portal&dl=GUIDE&trk=0&CFID=50625841&CFTOKEN=56933562
http://portal.acm.org/author_page.cfm?id=81100271934&coll=GUIDE&dl=GUIDE&trk=0&CFID=50607370&CFTOKEN=88644109
http://portal.acm.org/author_page.cfm?id=81100639618&coll=GUIDE&dl=GUIDE&trk=0&CFID=50607370&CFTOKEN=88644109
http://portal.acm.org/author_page.cfm?id=81100639618&coll=GUIDE&dl=GUIDE&trk=0&CFID=50607370&CFTOKEN=88644109
http://portal.acm.org/author_page.cfm?id=81100639618&coll=GUIDE&dl=GUIDE&trk=0&CFID=50607370&CFTOKEN=88644109
http://portal.acm.org/author_page.cfm?id=81100342764&coll=GUIDE&dl=GUIDE&trk=0&CFID=50607370&CFTOKEN=88644109
http://www.springerlink.com/content/t14j5863076r/?p=1cf298d969724e589ba241e3a4565903&pi=0
http://www.springerlink.com/content/t14j5863076r/?p=1cf298d969724e589ba241e3a4565903&pi=0

Collision Detection for Avatars in Virtual

Environments. IEEE Virtual Reality Conference

2004 (VR 2004). 2004.

[Sed86] Sederberg, T. W. and Parry, S.R. Free-form

deformation of solid geometric models, In

SIGGRAPH '86: Proceedings of the 13th annual

conference on Computer graphics and interactive

techniques, ACM Press, pp. 151-160. 1986.

[Tro05] Tropp, O., Tal, A. and Shimshoni, I. A fast

triangle to triangle intersection test for collision

detection. Journal of Graphics Tools, Volume 2 ,

Issue 2:25 – 30, 2005.

[Van98] Van Den Bergen, G. Efficient collision

detection of complex deformable models using

aabb trees. Journal of Graphics Tools, Volume 2 ,

Issue 4:1 – 13, 1998.

[Van04] Van Den Bergen, G. Ray casting against

general convex objects with application to

continuous collision detection. Journal of

Graphics Tools. 2004.

[Zac06] Zachmann, G. and Weller, R. Kinetic

bounding volume hierarchies for deformable

objects. Proceedings of the 2006 ACM

international conference on Virtual reality

continuum and its applications, Session F5:189 –

196, 2006.

[Zha07] Zhang, X., Redon, S., Minkyoung, F. and

Kim, Y.J. Continuous collision detection for

articulated models using Taylor models and

temporal culling. International Conference on

Computer Graphics and Interactive Techniques.

2007

WSCG 2010 Communication Papers 130

http://portal.acm.org/author_page.cfm?id=81350600854&coll=Portal&dl=GUIDE&trk=0&CFID=51171926&CFTOKEN=30619034
http://portal.acm.org/author_page.cfm?id=81100239543&coll=Portal&dl=GUIDE&trk=0&CFID=51171926&CFTOKEN=30619034
http://portal.acm.org/author_page.cfm?id=81318495139&coll=Portal&dl=GUIDE&trk=0&CFID=51171926&CFTOKEN=30619034
http://portal.acm.org/author_page.cfm?id=81318495139&coll=Portal&dl=GUIDE&trk=0&CFID=51171926&CFTOKEN=30619034
http://portal.acm.org/author_page.cfm?id=81318495139&coll=Portal&dl=GUIDE&trk=0&CFID=51171926&CFTOKEN=30619034
http://portal.acm.org/author_page.cfm?id=81318495139&coll=Portal&dl=GUIDE&trk=0&CFID=51171926&CFTOKEN=30619034

Fast Approximate Visibility on the GPU using pre-

computed 4D Visibility Fields

Athanasios Gaitatzes
University of Cyprus

75 Kallipoleos St.
P.O.Box.20537

 Cyprus (CY-1678),
Nicosia

gaitat@yahoo.com

Anthousis Andreadis
Athens University of

Economics & Business
76 Patission St.
Greece (10434),

Athens
anthousis@gmail.com

Georgios Papaioannou
Athens University of

Economics & Business
76 Patission St.
Greece (10434),

Athens
gepap@aueb.gr

Yiorgos Chrysanthou
University of Cyprus

75 Kallipoleos St.
P.O.Box.20537

Cyprus (CY-1678),
Nicosia

yiorgos@cs.ucy.ac.cy

ABSTRACT
We present a novel GPU-based method for accelerating the visibility function computation of the lighting
equation in dynamic scenes composed of rigid objects. The method pre-computes, for each object in the scene,
the visibility and normal information, as seen from the environment, onto the bounding sphere surrounding the
object and encodes it into maps. The visibility function is encoded by a four-dimensional visibility field that
describes the distance of the object in each direction for all positional samples on a sphere around the object. In
addition, the normal vectors of each object are computed and stored in corresponding fields for the same
positional samples for use in the computation of reflection in ray-tracing. Thus we are able to speed up the
calculation of most algorithms that trace rays to real-time frame rates. The pre-computation time of our method
is relatively small. The space requirements amount to 1 byte per ray direction for the computation of ambient
occlusion and soft shadows and 4 bytes per ray direction for the computation of reflection in ray-tracing. We
present the acceleration results of our method and show its application to two different intersection intensive
domains, ambient occlusion computation and stochastic ray tracing on the GPU.

Keywords
indirect lighting, pre-computed visibility, uniform distribution, hemisphere, tracing rays.

1. INTRODUCTION
The acceleration of the computation of the lighting
equation in real-time on the GPU and especially the
visibility term, one of the most intensive parts of the
computation, is still a very active field of research.
Ambient occlusion computation and real-time ray
tracing are just two of the fields where the fast
computation of the visibility queries is very
important.
Ambient occlusion is defined as the attenuation of
ambient light due to the occlusion of nearby
geometry. It gives perceptual clues of depth,
curvature, and spatial proximity and thus is important
for realistic rendering. It is a technique that

approximates the effect of indirect global
illumination without trying to simulate the interplay
of incident and reflected light.
Ray tracing is a general and versatile algorithm that
performs image synthesis by shooting rays through
each pixel, finding the closest intersection with the
scene geometric entities. The generic backwards ray
tracing algorithm is capable of capturing both local
illumination and basic indirect specular effects such
as mirror-like reflections and refraction.
In this paper we improve and expand the method
proposed by Gaitatzes et al. [Gai08] by moving the
implementation to the GPU, taking advantage of the
shader units parallelism and demonstrating
significant performance gains. While the core of the
visibility queries mechanism remains the same, the
paper shows how the method is adapted to both
interoperate with a generic ray tracing system and
accelerate the generation of high quality ambient
occlusion. First, at pre-processing time, we construct
the visibility field (Figure 1). It stores the intersection
distances of a hemisphere of rays originating from
sample points on the bounding sphere of an object

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2010 Communication Papers 131

and directed towards the model itself. We construct
one map for each sample point (see Section 3.1).
After the construction of the visibility field maps, we
compactly fit them in one volume texture (see
Section 4.1) for easy access on the GPU. In addition,
all mesh information (i.e. coordinates, normals and
materials) are stored in maps and passed on to the
GPU. Then, at run time, when a ray from the
environment towards an object (or vise versa)
intersects its bounding sphere, we perform a simple
ray-sphere intersection test and recover from the pre-
computed maps the rest of the ray distance for the
ray-object intersection test.
The advantage of the method described in Gaitatzes
et al. [Gai08] is that the bulk of the computation is
moved to a pre-processing stage. The results are
stored in compact gray-scale textures; 1 byte per ray
direction for the computation of ambient occlusion

and soft shadows and 4 bytes per ray direction for the
computation of reflection in ray-tracing, providing
for each object a constant size of additional
information, independent of the complexity of the
original model. Then the real-time algorithm
performs a simple intersection test with the bounding
sphere of the object and a constant-time map lookup
(see Section 3.2).
For dynamic scenes with rigidly moving objects,
visibility fields accelerate the computation of the
approximation of the indirect lighting term of the
rendering equation to real-time frame rates as well as
the computation of soft shadows and reflection in
ray-tracing. The performance of this approach does
not depend on the polygon count to a large extent;
instead, it is directly related to the number of visible
pixels shaded by the GPU. This is a significant
advantage over existing approaches. In addition, our
acceleration structure is flat by nature and thus more
suited to the GPU architecture.
In Section 2 we give an overview of the previous
work, followed by a description of our method in
greater detail in Section 3. In Section 4 we discuss
the GPU implementation and in Section 5 our results
from the application of the visibility fields method in
ray tracing and especially the benefit of shadow rays
and secondary rays as well as secondary diffuse
illumination (termed ambient occlusion).

2. BACKGROUND AND PREVIOUS
WORK
We distinguish the previous work in two areas that
both share the computation of the visibility function;
the acceleration of the computation of ambient
occlusion on the GPU and the acceleration of
stochastic ray tracing algorithms on the GPU. Note
that we apply our method only to a GPU-based ray
tracing algorithm in order to compare timings with
the fastest approach.

2.1 Ambient Occlusion on the GPU
In ambient occlusion the indirect component can be
computed as:

() () ⋅⎢ ⎥⎣ ⎦∫x n x no o oΩ

1
A , = V ,ω ω dω

π

Where ()oV ,ωx is an empirical function that maps
distance from surface point x to the closest surface
along direction οω to visibility values between 0 (no
occlusion) and 1 (full occlusion).
By tracing rays outward from a given surface point x
over the hemisphere around the normal n , ambient
occlusion measures the amount that a point is
obscured from light. This average occlusion factor is
used to simulate soft-shadowing.

Figure 1: A hemisphere of rays emanating from
the bounding sphere towards the object is pre-

computed for a large number of sample points on
the sphere. Bottom: Volume texture of the

visibility field. Row by row each map is placed
into a slice of the volume texture thus minimizing
the volume space requirements. As a result a 5123

volume will hold four 2562 maps per slice.

WSCG 2010 Communication Papers 132

Ambient occlusion (AO) computation on the GPU
was first used by Bunnell [Bun05], who
approximates the AO by modelling the receiver
surface as disk-based occluders and evaluates the
ambient occlusion caused by the disks using an
analytic method. He uses a heuristic method to
combine the shadows cast from multiple disks into a
noise free image but requires high tessellation of
scene geometry and a big pre-computation step.
Shanmugam et al. [Sha07] compute ambient
occlusion as a post-processing pass based on a depth
buffer from the eye’s point of view. They split the
AO computation into two phases, one for high
frequency near detail, and another phase for low
frequency detail with a wider search. The second
phase allows large objects to inter-occlude as they
pass next to each other. Their approach requires no
scene-dependent pre-computations. On the downside,
over occlusion artefacts might show up when
multiple neighbouring spheres contribute occlusion
to the same pixel.
Mittring [Mit07] does a full screen post-processing
pass where z-buffer data is sampled around each
pixel and an AO value is computed based on depth
differences. Sampling occurs randomly in a sphere
around each pixel, and AO is proportional to the
number of sampled occluders. Like other screen
space techniques, such as [Bav09], this view-
dependent approach is fast, requires minimal or no
pre-calculation, but cannot model AO correctly,
because depth discontinuities, such as object edges
and buffer boundaries, produce popping effects.

2.2 Real-time Ray Tracing on the GPU
Most GPU ray-tracing methods accelerate already
established mechanisms for limiting the number of
intersection tests. On the other hand, our approach
provides an alternative and fast ray-surface
intersection test, while it can certainly take advantage
of the mentioned methods, to further improve final
performance.
Carr et al. [Car02], Purcell et al. [Pur02], [Pur04],
Karlsson et al. [Kar04] and Christen et al. [Chr05]
implemented a streaming ray-triangle kernel on the
GPU, fed by buckets of coherent rays and proximate
geometry organized by a CPU process. However,
there was a frequent communication of results from
the GPU to the CPU over a narrow bus, negating
much of the performance gained from the GPU
kernel. Streaming geometry to the GPU became
quickly the bottleneck.
To improve the performance of the GPU ray tracing,
different acceleration structures have been widely
adopted, such as the incorporation of kd-trees by
Havran [Hav00] and Ernst et al. [Ern04]. However,
these approaches had limited performance; by far not

reaching the frame rates of the CPU based ray
tracers. The main problem was the limited GPU
architecture. Only small kernels without branching
were supported. In addition a stack was usually
required, which was poorly supported on GPUs.
Foley et al. [Fol05] presented two implementations
of a stack-less kd-tree traversal algorithm for the
GPU, namely kd-restart by Kaplan [Kap85] and kd-
backtrack. Foley showed, that on graphics hardware,
there are scenes for which a kd-tree yields far better
performance than a uniform grid. Although better
suited for the GPU, the high number of redundant
traversal steps led to relative low performance.
Besides grids and kd-trees there are also several
other approaches that use a BVH as an acceleration
structure on the GPU. Carr et al. [Car06]
implemented a limited ray tracer on the GPU that
was based on geometry images but it required careful
parameterization of the geometry. It could only
support a single triangle mesh without sharp edges.
The acceleration structure was a predefined bounding
volume hierarchy which could not adapt to the
topology of the object. To alleviate the need for a
stack Thrane et al. [Thr05] presented stack-less
traversal algorithms for a BVH. They conclude that
on the GPU, the bounding volume hierarchy traversal
method is up to 9 times faster than that of a uniform
grid and a kd-tree. Also, the technique proves the
simplest to implement and the most memory
efficient.
Horn et al. [Hor07] reduced the number of redundant
traversal steps of kd-restart by adding a short stack.
With their implementation on modern GPU hardware
they achieved a high performance of 15–18M rays/s
for moderately complex scenes. At the same time,
Popov et al. [Pop07] presented a parallel, stack-less
kd-tree traversal algorithm without the redundant
traversal steps of kd-restart but with a poor GPU
utilization of below 33%. With over 16M rays/s,
their GPU ray tracer achieved similar performance as
CPU based ray tracers. However, both GPU ray
tracing implementations demonstrated only medium-
sized, static scenes. Günther et al. [Gün07] presented
a BVH based GPU ray tracing method for large
models achieving close to real time rates using hard
shadows.

3. APPROXIMATE VISIBILITY
COMPUTATION
The computation of exact visibility is a time
consuming task even for the new GPU architectures.
We briefly describe here the visibility field
acceleration method that follows that of Gaitatzes et
al. [Gai08] but emphasizing the GPU architecture.

WSCG 2010 Communication Papers 133

3.1 Visibility Field Computation
The main idea of encoding visibility fields into maps
is as follows. Consider a rigid object possibly
moving through a scene. At a pre-processing step,
from a discrete set of sample points on the objects
bounding sphere, described as spherical coordinates
(u, v), a hemisphere of rays is cast around the inward
normal direction (Figure 1). For each ray (u, v, θ, φ),
the closest distance between the bounding volume
and the model surface is found and recorded as a
compact integer value after being normalized by
twice the sphere radius. Thus, for each sample point
(u, v) a visibility gray-scale map is obtained that
represents the distance travelled along the ray in the
direction (θ, φ) before hitting the model surface. We
define the visibility field of the object to be the
collection of all visibility maps generated from all
sample points on the bounding sphere of the object.

3.2 Visibility Field Indexing
During the real-time part of the execution an incident
ray to the object intersects its bounding sphere and
the distance between the ray origin and the
intersection point is recorded. The intersection point
q is transformed into the object coordinate system:

1 ,−′ = ⋅ q M q where M is the transformation matrix
with respect to the reference frame of the ray. We
need to acquire the closest point (u, v) on the sphere
for which we have a visibility map and therefore the
index of the corresponding visibility map. In addition
we need to transform the corresponding (θ, φ) of the
incident ray into a visibility map cell coordinates.
The indexing is performed following the
methodology proposed in Gaitatzes et al. [Gai08].
We can now index into the visibility field for the

given ray (u, v, θ, φ) and extract the distance
information which is then added to the intersection
distance above and this is our approximated distance
value of the ray origin from the object’s surface.
A special case arises when the rays originate from
the object being queried for visibility. As we can see
in Figure 2, when a ray originates on the object at
point p0, the distance d1 in direction 0 1p p is
computed and compared to distance d2 in direction

1 0p p which is extracted from the visibility map at
point p1. If d1 is greater than d2 then point p0 is
occluded.

4. Visibility Fields on the GPU

4.1 Ambient Occlusion
Directional ray samples on a reference hemisphere
aligned with the z-axis are pre-computed and stored
in a texture for passing to the GPU. In the fragment
shader (Algorithm 1), the pre-computed ray
directions are transformed according to the local
normal vector and intersected with the bounding
sphere of each occluder. We are able to handle both
rays originating outside and inside the bounding
sphere for inter-object and intra-object occlusion
respectively. The only difference in the computation
is the respective step to compute the final ray-object
intersection distance at line 7 of Algorithm 1.
The indexing of the visibility fields is executed
entirely on the GPU as is the Monte Carlo ray casting
to evaluate the resulting ambient occlusion. The
visibility maps are compacted and stored into a single
3D texture as slices, as shown in Figure 1. As the
number of positional samples (i.e. visibility maps)
can exceed the maximum volume texture dimension
supported by the hardware, we compact as many
visibility maps on each 2D slice of the volume as the
texture hardware permits.

4.2 Ray tracing
For our proof-of-concept case study, we wanted to
further improve ray-tracing timings of an already fast
ray tracer. We used the method of Amit Ben-David
et al. [Ami07] that implemented both a CPU and a
fast GPU ray tracer by exploiting a BVH acceleration
structure that has been proven to work better in some
cases [Gün07] and is better suited for dynamic
scenes. We did not replace the primary ray
intersection tests because the regularity of the ray
distribution emphasized the sampling pattern on the
bounding sphere. Furthermore GPU rasterization
provides better timings for the primary rays pass. In
conjunction with the fact that for complex (and
therefore time consuming) scenes with elaborate
materials, most time is spend on secondary rays, we
applied the visibility fields method only to secondary

Figure 2: Visibility computation for intra-

object occlusion.

1: for all emanating rays do
2: if ray intersects bounding sphere of occluder object
3: discretize intersection point (u, v)
4: discretize ray (φ, θ)
5: access distance in visibility field volume
6: end
7: use distance for occlusion approximation
8: end
9: compute occlusion at pixel x

Algorithm 1: Pseudo code of shader algorithm
for AO rendering, using visibility fields.

WSCG 2010 Communication Papers 134

rays, including shadow rays. To capture the intricate
reflection effects of non-perfect reflection surfaces
and to highlight the advantage of our method when
intersection tests increase significantly, we extended
the implementation to stochastic ray-tracing.
As in the case of the ambient occlusion computation,
the rays are stored in a 2D map but this time are re-
computed for each running pass. For the ray-object
intersection the visibility maps are used in a fragment
shader on the GPU (similar to Section 4.1) along

with the additional pre-computed maps of normals.
The generated fragments correspond to intersection
test results and the fragment shader returns the
intersection point and distance to the actual surface
as extracted from the visibility field. These results
are used for shading or for spawning secondary rays
for the next ray-tracing iteration.

5. Tests and Results
We implemented the real-time part of the above
algorithm using the OpenGL® Shading Language
[Kes06] on a 32bit Intel Core 2 Quad Q6600 at 2.4
GHz CPU and 4GB of main memory equipped with a
GeForce 8800 GTS GPU with 512MB of texture
memory. The window size was set to 512x512 for a
total of 262144 pixels.

5.1 Ambient Occlusion
For most of the test runs the active pixels were about
200000 as only 75% of the window was rendered
(the rest being black).
To acquire a reference image against which to
compare our acceleration method in speed but mainly
in image quality, we implemented ambient occlusion
on the GPU using the uniform grid acceleration
structure (see Figure 3 bottom-right).
We observe (in Figure 3) that the RMS error of the
images compared to the reference image of the
bunny, is very low and the achievable draw time,
even for large models, is real-time. Based on the
RMS error using 4226 64x64, visibility maps gives
the same results as using maps of size 16642 32x32.
We also infer from Figure 4 that the draw time is
unaffected by the number of maps used thus the
space required for the visibility maps depends only
on the image quality that we would like to achieve.
 In Figure 5 the visibility fields were used for the
generation of intra-object occlusion but because the
ray sphere intersection algorithm always succeeds at
finding an intersection (worst case since we are
inside the bounding sphere of the object) the
rendering times are up to 4 times slower than the

Visibility field directional samples
32 x 32 64 x 64 128 x 128

10
90

 81.2 ms,
RMS 0.59578

82.7 ms,
RMS 0.58886

82.9 ms,
RMS 0.58606

42
26

 83.2 ms,
RMS 0.45392

83.3 ms,
RMS 0.42404

16
64

2

V
is

ib
ili

ty
 fi

el
d

po
si

tio
na

l s
am

pl
es

 84.2 ms,

RMS 0.42054

Figure 3: Inter-object AO of a bunny model
using the visibility fields method with 256 rays
per pixel implemented on the GPU. We report

the draw time and the RMS error. On the
bottom right the reference image rendered on
the GPU using 256 rays per pixel in 7126 ms.

The model itself is rendered using fixed-pipeline
direct rendering.

Figure 4: The draw time of the bunny model

(39000 tris) plotted against different rays/pixel
versus the size of the visibility maps.

WSCG 2010 Communication Papers 135

inter-object occlusion case. Still the performance rate
is above the one reported by Horn et al. [Hor07]. We
also observe that more visibility maps are required in
this case in order to render a believable image. We
attribute this to the fact that multiple rays, with small
angular differentiation, originating on close points on
the object, hit the same sample point on the objects
bounding sphere. Thus the same visibility map is
used and the occlusion result looks grainy. When
more maps are used the problem is alleviated.
In Figure 6 we show the Sponza Atrium rendered
with several large polygon models inside it. The

resulting draw time is contributed to the rendering
method that uses one pass for each caster model. Just
before each caster model is drawn, we enable
subtractive blending (with OpenGL blend equation
GL_FUNC_REVERSE_SUBTRACT), in effect,
removing colour from the image. The poor draw time
is also attributed to the fact that non-visible pixels
(the Sponza Atrium has a lot of non-visible
geometry) are not culled before the fragment shader
is executed on the GPU.
Even though the visibility fields method is only an
approximation, it does a very good job at preserving
image quality given the low memory requirements
and achieved draw time.

5.2 Ray tracing
In Figure 7 we show a close-up of the bunny ears of
using the visibility-fields method. We show that very
good results of soft shadows can be achieved while
using 20 shadow ray samples along with 4226 64x64
visibility maps (i.e. 16.51MB of memory).
In Figure 8 we render a slightly more complex scene
using 3 light sources of radius 2. As in the previous
cases, the rendering time is almost completely
affected by the primary rays which perform triangle
intersection tests. Our method completes the
rendering in 3268 ms, of which 70% is for the
shadow rays. It produces a very good approximation
of soft shadows using 20 shadow rays per pixel. For
the total of 11,838,600 shadow rays, this corresponds
to 1.9323 10-4 ms per shadow ray which is a very
encouraging result. In the corresponding BVH GPU
method to produce sharp shadows using just 1
shadow ray per pixel, the draw time is 48047 ms to
compute the final image. Of that time 70% is used
for the 591930 shadow rays yielding 5.682 10-2 ms
per shadow ray.
In Figure 9 we use the visibility fields algorithm to
render non-perfect-mirror reflections. The polished
reference image is rendered with 4 rays for each
reflective pixel leading to slower rendering times.
However, we notice from the images and the RMS
factor that the reflected sub region of our method is
much closer to the result of the brushed metal
reference image than the perfect mirror reference
image. This strengthens our position that the
proposed method is suitable for stochastic ray-
tracing, as the quality of the rendered image is
comparable to the reference image. Furthermore, the
rendering time, even using 4 rays per reflective pixel,
is very close to ray-casting without secondary rays.

6. Limitations of the Visibility Fields
The visibility fields method is not very well suited for
elongated models. The occlusion produced, even
when using 16642 maps is pretty grainy. In addition

Igea 67170 tris

202 ms - 119.80 M rays/s
Santa 75777 tris

183 ms - 132.24 M rays/s

Elephant 157160 tris

400 ms - 60.5 M rays/s
Super Shape 261120 tris
330 ms - 73.33 M rays/s

Figure 5: Intra object ambient occlusion
rendered on the GPU using 16642 64x64

visibility maps requiring 65 MB of space and
121 rays per pixel.

Figure 6: A scene of the Sponza Atrium with a
bunny (38889 tris), a cow (92864 tris) and an

elephant (157160 tris) rendered in three passes
(one per object) with the visibility fields
algorithm using 4226x64x64 maps and

rendering in 2.5 frames per second.

WSCG 2010 Communication Papers 136

models that are highly concave would fail to produce
accurate visibility maps as it would not be possible to
record all of the tight concavities of the model.

7. Conclusions
We have presented the visibility fields, a
discretization of the visibility around an object,
implemented on the GPU. We have shown how it
can be used for an interactive inter-object ambient
occlusion approximation computation. For the intra-
object occlusion case the number of required maps is
large and the draw time needs improvement when the
model covers a lot of pixels on the screen. But in a

game environment where several models exist on the
screen and their coverage is not very big, the intra-
object occlusion method can be used even for high
triangle count models.
The method especially favours large model data sets,
where we maintain a constant computation time,
independent of the model complexity. Our method is
robust, has a relatively small memory footprint

Visibility field directional samples
32 x 32 64 x 64 128 x 128

42
26

348.0 ms,
RMS 5.95,
4.127 MB

348.5 ms,
RMS 4.82,
16.508 MB

348.7 ms,
RMS 4.44,
66.031 MB

16
64

2

V
is

ib
ili

ty
 fi

el
d

po
si

tio
na

l s
am

pl
es

348.5 ms,
RMS 5.94,
16.252 MB

348.6 ms,
RMS 4.80,
65.000 MB

Close-up of the bunny ears from
the reference image.

Figure 7: Close-up of the bunny ears rendered
using the visibility fields for the generation of
soft shadows using 3 lights and 20 shadow ray
samples on the GPU. We report the required

time, the RMS error and the total space
requirements. Bottom: Reference image

rendered using the BVH method with 3 lights
and 256 rays per pixel taking 913,210 ms on the

GPU.

Figure 8: Close-up of a more complex scene
using 3 point lights and 20 shadow ray samples
rendered in 3268 ms using the visibility fields

method. The BVH GPU method for sharp
shadows takes 48047 ms.

Reference image
 GPU: 5530 ms

Reference Image
GPU: 112910 ms

(top) 4226 64x64 maps

441 ms, 4.480 RMS error,
66.031 MB used

(bottom) 4226 32x32 maps
440 ms, 4.555 RMS error,

16.508 MB used

(left) 4226 64x64 maps
1900 ms, 8.137 RMS error,

66.031 MB used

(right) 4226 32x32 maps
1897 ms, 9.392 RMS error,

16.508 MB used

Figure 9: Polished reflection of the elephant
(157160 tris) and the bunny (39000 tris) using 4
rays per reflective pixel. First row: Reference

images using the BVH method (GPU draw
times). Second row: Close-up view of our

visibility fields GPU method where we report
the draw time, the RMS error and the space

requirements.

WSCG 2010 Communication Papers 137

against comparable existing methods and the time
required to generate the visibility maps depends only
on the complexity of the occluder geometry. In
addition, the number and resolution of the maps used
in the visibility fields can be adjusted depending on
the required accuracy and the available memory. The
same maps can be used for both inter and intra-object
ambient occlusion computation.
Furthermore, our algorithm can be applied to ray
tracing calculations where exact ray hits are not
critical, for example for shadow and secondary ray
intersection tests, such as soft shadow rays and
Monte Carlo ray tracing.
We have shown that in the above mentioned cases
the production of the desired image is accelerated
while the results remain close to the reference
images. The hybrid method we propose favours large
model data sets as in ambient occlusion. This result is
expected as all triangle intersection tests for shadow
and secondary rays are replaced with constant time
operations. In this way rendering time is affected
mostly by the primary rays that give us the visibility
of the scene.

8. REFERENCES
[Ami07] Amit B., Elber G.: GPU Ray Tracing. Master's

Thesis, Technion Israel Institute of Technology, 2007.
 [Bav09] Bavoil, L., Sainz, M.: Image-space horizon-based

ambient occlusion. In ShaderX7 - Advanced Rendering
Techniques, Delmar, 2009.

[Bun05] Bunnell M.: Dynamic ambient occlusion and
indirect lighting. In GPU Gems 2, pages 223–234.
Addison Wesley, 2005.

[Car02] Carr A. N., Hall D. J., Hart C. J.: The Ray Engine.
In Proc.Graphics Hardware 2002, pg. 37–46, Sep.
2002.

[Car06] Carr A. N., Hoberock J., Crane K. Hart C. J.: Fast
GPU Ray Tracing of Dynamic Meshes using Geometry
Images. In Proceedings of Graphics Interface 2006,
Quebec, Canada, June 07-09, 2006.

[Chr05] Christen M., Engel W., Hudritsch M.: Ray Tracing
on GPU. Diploma Thesis Univ. of Applied Sciences
Basel (FHBB), 2005.

 [Ern04] Ernst M., Vogelgsang C., Greiner G.: Stack
Implementation on Programmable Graphics Hardware.
In Proceedings of the Vision, Modelling, and
Visualization Conference 2004 (VMV 2004), pp. 255–
262.

[Fol05] Foley T., Sugerman J.: Kd-tree acceleration
structures for a GPU ray tracer. In Proc. Graphics
Hardware, pages 15–22, 2005.

[Gai08] Gaitatzes A., Chrysanthou Y., Papaioannou G.:
Presampled Visibility for Ambient Occlusion. In Proc.
of the 16-th International Conference in Central Europe
on Computer Graphics, Visualization and Computer

Vision (WSCG '2008), Czech Republic, February
2008.

[Gün07] Günther J., Popov S., Seidel H.-P., Slusallek P.:
Realtime Ray Tracing on GPU with BVH-based Packet
Traversal. In Proc of the IEEE / Eurographics
Symposium on Interactive Ray Tracing 2007, pp. 113–
118.

[Hav00] Havran V.: Heuristic Ray Shooting Algorithms.
Ph.D. thesis, Department of Computer Science and
Engineering, Faculty of Electrical Engineering, Czech
Technical University in Prague, November 2000.

[Hor07] Horn R. D., Sugerman J., Houston M., Hanrahan
P.: Interactive k-D Tree GPU Raytracing. In
Proceedings of the Symposium on Interactive 3D
Graphics and Games, ACM Press, pp. 167–174, 2007.

[Kap85] Kaplan R. M.: Space-Tracing: A Constant Time
Ray-Tracer. In Proc. Computer Graphics 19, 3 (July
1985), pg. 149–158. (Proceedings of SIGGRAPH 85
Tutorial on Ray Tracing).

[Kar04] Karlsson F., Ljungstedt C. J.: Ray tracing fully
implemented on programmable graphics hardware.
Master's Thesis, Chalmers Univ. of Technology, 2004.

[Kes06] Kessenich J., Baldwin D., Rost R.: The OpenGL
Shading Language. Version 1.2.8. 3Dlabs, Inc. Ltd.
2006.

[Mal88] Malley T. J. V.: A shading method for computer
generated images. In Master’s Thesis, Computer
Science Department, University of Utah, June 1988.

[Mit07] Mittring M.: Finding next gen: CryEngine 2. In
ACM SIGGRAPH 2007 Courses, San Diego,
California, August 05-09, 2007.

[Pur02] Purcell J. T., Buck I., Mark R. W., Hanrahan P.:
Ray tracing on programmable graphics hardware. In
Proc. SIGGRAPH, 2002.

[Pur04] Purcell J. T.: Ray Tracing on a Stream Processor.
Ph. D. Dissertation, Stanford University, 2004.

[Pop07] Popov S., Günther J., Seidel H.-P., Slusallek P.:
Stackless KD-Tree Traversal for High Performance
GPU Ray Tracing. In Proc. of Computer Graphics
Forum 26(3), pp. 415–424, 2007, (Proceedings of
Eurographics)

[Sha07] Shanmugam P., Arikan O.: Hardware accelerated
ambient occlusion techniques on GPUs. In Proceedings
of the 2007 Symposium on interactive 3D Graphics
and Games, Seattle, Washington, April 30 - May 02,
2007.

[Shi97] Shirley P., Chiu K.: A low distortion map between
disk and square. In Journal of Graphics Tools 2, 3
(1997).

[Sla02] Slater M.: Constant time queries on uniformly
distributed points on a hemisphere. In Journal of
Graphic Tools 7, 1 (2002), pp. 33–44.

[Thr05] Thrane N., Simonsen L.O.: A comparison of
acceleration structures for GPU assisted ray tracing.
Master’s Thesis, University of Aarhus, Denmark, 2005.

WSCG 2010 Communication Papers 138

Parcel’s information visualization on mobile Device

Andriamasinoro Rahajaniaina1 Jean-Pierre Jessel2

VORTEX Group
Institut de Recherche en Informatique de Toulouse

Université de Toulouse - Paul Sabatier, 118 Route de Narbonne
31062, Toulouse, France
{rahajani1, jessel2}@irit.fr

ABSTRACT
This paper presents the use of Augmented Reality system for visualizing a distributed parcel’s information in a
mobile device using wireless network. Our system offers useful information (number of parcel, name of the
owner, agronomic structure, juridical state, and adequate plant) related to each parcel geo-referenced according
to the user's position and orientation. This information augmented the live images of the real environment
surrounding the user. For receiving these live images, we used two kinds of camera: webcam for an Ultra
Mobile Personal Computer and notebook, and SD camera for Pocket Pc hardware. We used inertial sensor MTi
and Global Positioning System receiver to achieve user’s position and orientation. Internet Communication
Engine, an object-oriented middleware is used to ensure the connection between database servers and clients.
The users can interact with the images of surrounding environment using classic interaction tools (stylus, buttons
...).

Keywords
Distributed Augmented Reality, Visualization of GIS data, Interaction with GIS data, Ubiquitous system.

1. INTRODUCTION
In Human Computer Interaction, quality of user
interface is important. Augmented Reality (AR) is
among of the technique used to perform an user
interface for ubiquitous application. AR presents
information in its context within a 3D environment.
The goal is to create the impression that the virtual
objects are part of the real environment.
Geographical Information System (GIS) database
takes an important place for an outdoor AR system.
Most of previews researches [Höl99][Käh06]
[Rei07] used GIS database corresponding for
building, streets in order to enhance the experiences
of users (e.g. tourists, visitors). These systems
overlaid digital information (such as building name,
road name) on the real world in order to perceive
remote or local geographical information.

Instead, the system presented here talks about
visualization of parcel’s characteristic depending on
location and context. As GIS database stores
numerous data, retrieving information from it is
among of one critical point in a distributed AR
system because it may generate latency during
exchange. To overcome this problem, we show in
detail our approach about retrieving information
related to a Parcel from GIS database, and the
adequate metaphor of visualization and interaction of
them.
For receiving live images of real environment, we
used two kinds of camera: webcam for an Ultra
Mobile Personal Computer (UMPC) and notebook,
and SD camera for Pocket Pc hardware.
In this paper, section 2 reviews the related work.
After that, we describe in detail our ARGisUbiq
system in Section 3. Finally, we conclude and
provide possible perspectives for future
investigations.

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

2. RELATED WORK
Outdoor AR systems have traditionally been reserved
to use GIS databases related to buildings and streets
in order to provide help to users. Several systems are
presented hereafter.

WSCG 2010 Communication Papers 139

First, Mars (Mobile Augmented Reality Systems)
project [Höl99] presented in 1999 by Columbia
University was one of the first truly mobile
augmented reality setups which allowed the user to
freely walk around while having all necessary
equipment mounted onto his back. It allowed user to
arrange the multimedia information according to
chronological order. This system used a campus
database to overlay labels on buildings seen through
a tracked head-worn display. Users was able to
request additional overlaid information, such as the
names of a building departments, and to view related
information, such as a department web page, on a
hand-held display.
Archeoguide project [Gle06] was designed to
increase real images of user’s environment with
virtual story information related to them.
Next, in [Lia05], the authors presented a prototype of
an interactive visualization framework specifically
designed for presenting geographical information in
both indoor and outdoor environments. They used
ESRI Shapefiles as input of their system. They
represented 3D building geometry and others
attributes. Participants can visualize 3D
reconstructions of geographical information in real-
time based on two visualization clients: a mobile VR
interface and a tangible AR interface.
Then, ARscouting system [Rei07] introduces an
outdoor AR system witch has run on UMPC using a
camera and a GPS receiver to collect information
about the environment. Mobile system has been used
as a thin client. While exploring the environment, the
scout takes several images for instance of a target
building. These images are automatically annotated
by current positioning data. The enriched data are
then transmitted to a custom database (multimedia
database) store. Whenever a new image is stored in
the database, the reconstruction engine gets a
notification and triggers the reconstruction process.
The engine requires at least three different views in
order to generate an initial 3D model. Each further
image is added in an iterative way and updates the
model accordingly within seconds. Once the
reconstruction task is over, the server stores the
virtual object and transmits it to the mobile client
(scout) in order to increase user interface. The last
one is based on the Studierstube platform.
The claimed MARA [Käh06] system implements
hand-held, video-see through Augmented Reality for
Nokia S60 mobile imaging devices equipped with
additional sensors like a GPS receiver,
accelerometers and a tilt compensated magnetometer.
The system allows users to interact with their
surrounding environment using the standard mobile
device inputs. It allowed users to place hyperlink at
their current location in order to give information

about an object. The users could share or exchange
all data with others connected users.
The following Section expands our ARGisUbiq
platform.

3. ARGISUBIQ SYSTEM
ARGisUbiq system is an improved version of
[And08] which runs on Windows Vista, Windows
mobile XP and Windows CE dedicated for desktop
PC or notebook, UMPC and Pocket Pc hardware
devices. [And08] was a new architecture for a
multiplatform AR which allowed the users to change
in dynamic way their virtual workspace. The work
plan is augmented by the virtual workspace. Each
virtual workspace relied to several virtual objects.
For adding virtual objects, we used a virtual menu
inspired by the metaphor of forward and next
buttons.
The main goal of ARGisUbiq system is to propose a
new application AR GIS in agronomic domain that
shows all information about a parcel according to the
user’s location. In our knowledge, this is the first AR
system using parcel’s information to enhance user’s
visualization interface.

Figure 1. The UMPC visualization tool

Figure 2. The software architecture

WSCG 2010 Communication Papers 140

We added some module in the software architecture
of [And08] in order to enhance its functionalities (see
Figure 2):

• Communication module ensures the
exchange between clients and servers, and
between all modules.

• LoaderShapeDbf module is responsible of
parcel’s information loading from the Data
module using the database’s structure (see
Figure 3).

• Position module and orientation module
retrieve information from GPS receiver
and MTi inertial sensor.

Our system is made of two modules: server module
and client module (see Figure 5). About 90% of the
task was run on the client part. Visualization module
and communication module are the two main
modules of the client. Data module may be available
on the client and/or on the server module. The
servers are used as database servers.

3.1 Information source
In the following section we present our database
structure and explain the information’s selection
mode.

3.1.1 Database’s structure
Like others outdoor AR systems, ARGisUbiq system
uses GIS data as data source. As parcel’s information
related to agronomic and type of plant is unavailable
on producer’s map, we create our own database
inspired from parcel database (using a vector format
formed by shape files, index one and dbf one) (see
Figure 3). In the Figure 3:

• Parcel’s table stores information about
parcel in the public register of lands. It has
five attributes: the numParcel indicates the
parcel’s number, numFeuille designates the
number of page, numeSection is the number
of section, codeCom signify common’s code
and nomCom is the name of common.

• JuridicalState’s table stores data related to
the juridical state of parcel. Num_Situat and
libelle are its attributes: the first one is
number of the juridical state and the second
one designates the label of the juridical
state.

• AgronomicalState table is designed to stock
data associate to the state agronomic. The
attribute Num_prte_a is the number of the
agronomical state. Type_sol indicates the
structure of the parcel and ph is the ph of
the land.

• Adequateplant table stores data related of all
type of tilling. It has three attributes: id_cult
indicates the identity of the tilling, libelle is

the name of the tilling and detail relates to
the detail of the tilling’s feature.

Figure 3. The database’s structure

We can note that this database may be available on
the clients and/or on several replica servers. The
clients establish a connection to the servers using the
communication module based on Internet
Communication Engine (Ice) [hen03] when local
database is unavailable. This later case occurred
while the device have not enough space disk (UMPC
or notebook) or space memory (Pocket Pc) for
storing the database or it is deleted.

3.1.2 Information’s selection mode
Information retrieval procedure occurs when the
camera’s orientation turns to the ground. GPS
receiver (TomTom wireless GPS receiver) and MTi
inertial sensor are used for tracking the camera’s
position and orientation. The GPS receiver
exchanges information with the client using a
BlueTooth connection whereas the connection
between client and MTi sensor is established by a
serial communication. Orientation values provide by
MTi relate to the orientation of its coordinate system
S(x, y, z) according to the fixed global coordinate
system G(X, Y, Z) (see Figure 4).

 Figure 4. The coordinate system of the MTi

WSCG 2010 Communication Papers 141

Each polygon in the shapefile is delimited by a
bounding box. In order to know the existence of
parcel according to user’s location, we check if
user’s position is in the bounding box of its record.
When his location is included in the limit, we save
the number of row and bounding box of all
corresponding record. Whether the record number is
more than one, we take account only the record
(polygon) having its barycenter nearby the camera’s
position. After that, we use the row number related to
the selected parcel for searching others information
(agronomical state, adequate plant, juridical state …)
in the associated tables. While the user’s location is
always in the bounding box, we work (research a
new nearest barycenter of polygons) with these
existing number rows and bounding box values of
each record. We made it in order to reduce the
amount of requests to the database which produce
latency indeed for lightweight hardware devices.

3.2 Distributed architecture
As we describe above, ARGisUbiq system is
composed of two modules: client module and server
module which use geo-referenced GIS database. The
Clients connect to the servers using WLAN network.
Our framework uses Internet Communication Engine
(ICE) and IceE (Ice Embedded: a lightweight version
of Ice for mobile devices) to ensure the connection
between the clients and the servers.
With the aim of having flexible data distribution, we
duplicate on several servers our database and IceGrid
services is used to establish load balancing between
the client and all replica servers. It provides a
convenient way to distribute an application to a set of
computers, without the need for a shared file system
or complicated scripts. Each server may have one
registry which control one or several node’s
activities. Registry implements locator service and
the locator object is available on the registry client
endpoints (IP address or hostname and port number).
A Node monitors the load of their computers
(servers) and reports this information to the registry.
This one uses this information to decide which
endpoints of the object adapters to return to a client.
In general, the server selects one or a set of endpoints
which have the least-load statistics.
In presence of several Ice servers, one which have
master registry is the master server and others one
are slaves. Slave or master server property is
specified in their configuration files. A first locate
request activates the application server automatically
(starting the Ice server process). Activation usually
occurs as a side effect of indirect binding, and is
completely transparent to the client. Node is
responsible of this activation task when it receives
registry’s order. Node sends responses to a registry

according to its configuration file (the replica’s
number to include in the registry’s response is
specified in this file).

Figure 5. The distributed architecture

Selected application server uses object adapter in
order to obtain information about an object (parcel)
requested by a proxy client. Then, object adapter
attempts requests to a servant which is a direct
responsible of one or more objects.
Notice that multithreading is supported by Ice server.
In fact, this property allows more clients to establish
connections in the same time.
The master replica knows all of its slaves, but the
slaves are not in contact with the others. If the master
replica fails, the slaves can perform several vital
functions that should keep most applications running
without interruption. Eventually, however, a new
master replica must be started to restore full registry
functionalities. For a slave replica to become the
master, the slave must be restarted.
Client module uses Ice/IceE in order to retrieve
parcel’s information from the replica server when a
local database is unavailable. We deactivate proxy
cache (that contains all information about previous
server) and set a timeout to cache locator in order to
make load balancing. IceGrid’s load balancing
capability assists the client in obtaining an initial set
of endpoints for the purpose of establishing a
connection. Before attempting locate request to a
server location, client checks its cache locator. We
randomize selection of object adapter’s endpoints
used by proxy client to establish connection in order
to collect all object’s information. One Client’s
request is formed by endpoint and object id.

WSCG 2010 Communication Papers 142

As these properties are unavailable on IceE, in fact,
to simulate the functionality of load balancing, we set
a timeout for an established connection and close it
in order to establish another one to other endpoints
when the timeout is expired.

3.3 Visualization metaphors
With the aim of seeing augmented view, users must
hold account information’s selection principle. Once
this one is respected, users saw real video augmented
by parcel map, juridical situation, agronomical state
and adequate kind of tilling related to the user’s
location. To achieve it, we propose two
visualizations metaphors: textview mode and
hybridview mode. In the textview mode, the scene is
augmented by virtual text and aural information
related to a parcel and the position of user. In the
hybridview metaphor, user interface is enhanced by
virtual text, parcel map and audio information. The
blue point on the map is the user’s position.

We combine landscape and portrait mode with
textview and hybridview when users use lightweight
hardware as visualization tools. The transition

between the two metaphors depends on the way
which the user holds his PDA.

Figure 8: The landscape
hybridview mode

Figure 9: The portrait
hybridview mode

Figure 10. The landscape Textview mode

The hybridview is the default visualization metaphor
for UMPC and PC notebook, and the textview
metaphor is for PDA.

Figure 6. The hybridview mode 3.4 Interaction metaphor
We propose a possibility for user to choose
visualization metaphor using textview and hybridview
menus. We decide to use classical interaction tools
like menu, stylus, and button because these are
available on each device that we use as visualization
tools. When the user selects one of both menus using
his stylus, the user interface changes according to the
menu item selected. After that, the menu item
changes to another one.
As described above, when using a PDA, the
transition between the two metaphors depends on
how the user holds his PDA and the value of pitch
angle (Ө) from the inertial sensor MTi (Ө value
between -5.0° and 0.0° for portrait mode and
landscape mode for others values).

Figure 7. The hybridview mode on the UMPC

If the user needs additional information related to the
kind of tilling, he selects “more info” and listens the
aural information.

WSCG 2010 Communication Papers 143

4. Experimentation and Results
This first prototype was tested with three users: the
first client has used Q1 Samsung with 800 Mhz
Celeron M ULV processor, 256 Mo RAM and the
two other clients have used a Pocket PC dell axim
x51v with 624Mhz Intel xscale processor, 64Mo
RAM. We have used a database of common formed
by 180,000 parcels and each parcel is formed by 10
up to 20 vertices. We have tested two different
scenarios: first, we have used a local database: as we
have loaded the database in the memory at the first
time, the Q1 client has run after 5s of the database
loading and 22s for the two PDA clients. After this
step, the Q1 client was able to achieve 25-30 fps
(frame per second) and 17-20fps for the PDA clients
during the exchange with the data in memory. In the
second test, the database is duplicated on three
replica servers. One master registry and two slave
registries. Each slave registry has had its own node
which monitors two applications servers. The locate
request from the client to the registry has spent 0.3s
for Q1 client and 0.7s for PDAs clients. After that,
the Q1 client was able to 23-28fps and 15–20fps for
the PDAs clients during the exchange with the
replica server.
After these tests, we asked the users about ergonomic
of user interface and about the visualization
hardware device: 80% of the users are satisfied about
user interface but 50% only for hardware device.

5. Discussion
As we saw, the difference between the results using
the local database and replicate database was small.
It’s not surprising because we have added to the
client a functionality to reduce the number of
exchange with the replica server (see section 3.1.2).
It’s also due to the performance of our replica
servers. 50% of users only are satisfied for hardware
device ergonomic because most of users prefer using
wireless inertial sensor instead of using MTi. It is
easy to use.
From these results we can deduce designs guidelines
for choose of hardware device in future AR
application.

6. Conclusion and future work
In this paper, we addressed the problem of enhancing
user’s contextual perception of the real word using
GIS data on several hardware and software platform.
To tackle this, we have proposed the ARGISUbiq
multiplatform architecture which exploits Mobile
Augmented Reality principles to improve
user’sinteraction with GIS data. As we use
specifically built GIS data, we described our

database’s structure and how to select appropriate
information related to user’s position. Our distributed
application is based on Internet Communication
Engine, an object-oriented middleware, used to
ensure the connection between database servers and
clients. To avoid eventual problem with database
server, we duplicate our database on several servers
and we use Icegrid services to provide load balancing
between all servers. Some clients are able to access
concurrently to a selected server.
We are entirely satisfied with our first results. In the
future work, instead using MTi sensor we plan to use
low cost or embedded inertial sensor and image based
techniques to compute the user’s orientation

7. REFERENCES
[And08] Andriamasinoro Rahajaniaina and Jean-

Pierre Jessel, A new architecture for a
multiplatform Augmented Reality System, Proc.
In International Conference on Signal processing
and multimedia Applications, Porto Portugal,
2008.

[Gle06] Gleue and P. Daehne, Design and
implementation of a mobile device for outdoor
augmented reality in the archeoguide project, In
Virtual Reality, Archaeology, and Cultural
Heritage International Symposium, Glyfada, Nr
Athens, Greece, 2001.

[hen03] Henning et al., Distributed Programming
with Ice, ZeroC: http://www.zeroc.com/Ice-
Manual.pdf, 2003.

 [Höl99] Höllerer, S. Feiner, T. Terauchi, G. Rashid,
and D. Hallaway, Exploring MARS: Developing
Indoor and Outdoor User Interfaces to a Mobile
Augmented Reality System, Computers and
Graphics, 23(6), Elsevier Publishers, 1999.

[Käh06] Kähäri and D. J. Murphy, MARA-Sensor
based Augmented Reality System for Mobile
Imaging Device, 5th IEE and ACM International
Symposium on Mixed and Augmented Reality,
Santa Barbara, 2006.

[Lia05] Liarokapis, I. Greatbatch, D. Mountain, A.
Gunesh, V. Brujic-Okretic and J. Raper, Mobile
Augmented Reality techniques for
GeoVisualisation, Proc. 9th International
Conference on Information Visualisation, IEEE
Computer Society, London, 2005.

[Rei07] Reitinger, C. Zach and D. Schmalstieg,
Augmented RealityScouting for interactive 3D
reconstruction, in Procedings of IEEE Virtual
Reality Conference, Charlotte NC, USA, 2007.

WSCG 2010 Communication Papers 144

http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf

Modeling and rendering heterogeneous fog in real-time
using B-Spline wavelets

Anthony Giroud
University Paris Est Marne-la-Vallée

giroud@univ-umlv.fr

Venceslas Biri
University Paris Est Marne-la-Vallée

biri@univ-umlv.fr

ABSTRACT

Heterogeneous fogs are often modeled with several layers of different density or using particle systems. However, layers
are limited to vertical variations and using particles can involve a long computation time with large outdoor scenes. In this
article we present a simple method to render heterogeneous fog in real-time. The extinction function of our fog, related to
its density, is first modeled in a B-Spline function basis. Then, a wavelet transform is applied on this function to obtain a
decomposition in both space and frequency domains. A grid traversal is used to render the fog in real time using the GPU.
Since no precomputation is required concerning the position of the camera or the fog, we can freely navigate or move the fog
into the scene.

Keywords: Participating medium, Fog, Rendering, GPU.

1 INTRODUCTION
Fog is massively used in rendering both for aesthetic
purposes and to increase performances by providing an
efficient way to cull surfaces that are far from the cam-
era. Simple fog models are straightforward to imple-
ment but, like OpenGL’s fog model, only allow a ba-
sic representation of homogeneous fog as can be seen
on figure 1. Most of the time, these models are barely
convincing visually, as we know that natural fogs never
reach such perfect homogeneity. Considering latest ad-
vances in GPU programming, design of heterogeneous
fog should be simple, and its rendering reachable in
real-time.

The fog phenomenon is due to small particles of wa-
ter in suspension. Because it interacts with light rays,
fog is considered as a participating medium in computer
graphics. Fog effects take into account attenuation,
caused by absorption and out-scattering, and also con-
sider multiple scattering of light as isotropic and con-
stant over the scene. If we consider an homogeneous
fog in its simplest form, equations are simple enough
to allow an analytical integration of its effects along a
view ray. When rendering heterogeneous fog, the den-
sity of water particles is varying across the scene, thus
dramatically complexifying the model, involving local
changes in physical properties of the fog, such as its ex-
tinction coefficient. Therefore, in order to compute the
light-fog interaction, we have no other choice than per-

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Figure 1: Comparison between OpenGL’s homoge-
neous fog (left) and our heterogeneous fog (right)

forming the integration of the density along each view
ray from the eye to the nearest object.

Considerable work has been achieved in the devel-
opment of real time solutions to handle participating
media. Physical simulations taken aside [12, 14, 7,
11, 6], which do not reach realtime, researchers have
been working on rendering complex exchanges of light
within the medium, dealing, for example, with single
scattering. They also considered simpler forms of fogs,
with a density either varying along horizontal layers,
defined by Perlin noise, or using particles. But few tried
a direct and continuous mathematical representation of
its density.

In this paper, we present a new method helping to
shape and render complex heterogeneous fog in large
outdoor scenes, lighted by a single light source (the
sun). First, the fog is modeled in a B-Spline function
basis, which allows a simple and efficient construction
of its extinction function. As a preparation before ren-
dering, Mallat’s wavelet decomposition is applied on
the extinction function in order to automatically gen-
erate different resolutions, enabling an optimized real-
time rendering using the GPU. The use of wavelets of-
fers several advantages :
• An easy modelization leading to a smooth and con-

tinuous fog density by opposition to particles ap-

WSCG 2010 Communication Papers 145

proaches that are discrete. Analytical representation
compresses data more efficiently and are, for exam-
ple, easier to animate.

• Wavelet modelization is generic. It includes natu-
rally, using Haar wavelets, discrete approaches like
quad tree or octree representation.

• Wavelet decomposition leads to sparse data that can
be used to improve rendering time.

Therefore the contribution of this paper is :
• Establishing a wavelet framework for the definition

and modelization of an heterogeneous fog.
• Rendering the fog in real time using this represen-

tation without precomputation involving camera or
fog position.

• Allowing a tradeoff between correctness and speed
using the multiresolution offered by the wavelet de-
composition.

In the next section, we review previous methods to
render, in real time, the effects of participating media in
a scene. Then, we briefly introduce the wavelet theory
along with the equation of transfer inside a participat-
ing medium. Section 4 presents our modeling scheme
and our implementation for rendering. In section 5, we
expose and discuss our results.

2 PREVIOUS WORK
Rendering participating media such as fog in real-time
has been well studied. We will not consider global il-
lumination algorithms concerning participating media.
For more information on this subject, the readers should
refer to the excellent survey of Cerezo et al. [2]. Algo-
rithms dealing with single scattering, including volume
based approaches [17] or direct representation [1], also
handle fog naturally but due to complexity problems
these techniques only consider homogeneous mediums
(except [19] discussed bellow). Therefore, we limit our
overview to other real time approaches for heteroge-
neous fog which can roughly be divided in, on the one
hand, particle approaches and, on the other hand, lay-
ered or bounded approaches.

Particles provide a natural way to handle heteroge-
neous fog. They have been used efficiently in numerous
works [4, 15, 9, 3]. The idea is to consider particles as
groups of water drops, allowing real time rendering of
effects like smoke or physically based simulation. But
is not well adapted to large scale fog recovering a whole
scene. Moreover, animating all particles in a large scene
is computer time consuming. The same drawbacks hold
for the hybrid approach of Zhou et al. [19] which han-
dles single scattering in a heterogeneous participating
medium combining particles and spherical harmonics.
We can also cite the work of Zdrojewska [18] which
uses Perlin noise to alter the homogeneous density of
the fog. Despite this good idea, the use of 3D random
noise forbids any animation of this fog.

The idea behind layered or bounded approaches is
to enclose fog density variations into layers [8, 5] or
bounded volumes [10]. These works consider homoge-
neous fog enclosed in volume, inducing a discontinuous
density function and creating artifacts on the border of
these volumes. Moreover, intuitive or physically based
animations of this kind of representation could be dif-
ficult to handle. Despite these limitations, it is often
the kind of solution we can find in common graphic
engines, along with particle rendering. Nevertheless,
none of the previous methods offers a simple and effi-
cient mathematical representation of heterogeneous fog
adapted for both animation and rendering.

3 THEORETICAL BACKGROUND
3.1 Fog’s illumination model
Our main goal is to render our fog in real-time, using
conventional graphics cards. Although performances
of GPUs have never been increasing so fast, we have
to slightly simplify our fog model. Between points O
and P, fog induces an attenuation (due to out-scattering
and absorption) of the luminance L of P and an increase
(in-scattering and emission) of light along the ray ~OP.
We start directly with the integral transfer equation,
see [13] :

L(O) = τ(O,P)L(P)+
∫ P

O
τ(O,u)Kt(u)J(u, ~ω)du (1)

L(O) being the radiance received by the observer,
J(u, ~ω) being the incoming radiance along the ray, Kt
the extinction coefficient and τ(u,v) the transmittance
of the fog along the ray going from u to v :

τ(u,v) = e−
∫ v

u Kt (s)ds (2)

First, when daylight passes through fog, it is immedi-
ately scattered such that light in-scattering can be sim-
plified by a constant amount Lfog. Moreover, if we con-
sider that the light emitted by the fog itself can be ne-
glected, the incoming radiance J(u, ~ω) equals Lfog, and
then equation (1) becomes :

L(O) = τ(O,P)L(P)+
∫ P

O
τ(O,u)Kt(u)Lfogdu (3)

Figure 2: View ray ~OP through a participating medium.

WSCG 2010 Communication Papers 146

The second part of equation (3) can be analytically
integrated to obtain :

L(O) = τ(O,P)L(P)+Lfog(1− τ(O,P)) (4)

3.2 Wavelets
From equation (3), we can see that the density vari-
ation could be represented efficiently by the extinc-
tion function. Therefore, Kt will be modeled using the
wavelet framework whom principal used characteristics
are detailed in this section. More details on the wavelet
framework can be found in [16].
The wavelet framework. In a multiresolution analysis,
data is represented using several approximation spaces.
Different functions bases are used to represent a single
signal, and each functions basis corresponds to a dif-
ferent resolution. Moreover, all basis functions are ob-
tained by translating and scaling a single original pat-
tern function f ∈ L2(R), in other words :

f j,k(x) = f (2 jx− k), with j ∈ N,k ∈ Z (5)

where f j,k represents the basis functions and j the reso-
lution level. If we define Fj as the closed subspace of L2

using basis functions { f j,k}k∈N, the closure of
⋃

j∈N Fj

is the space L2 and represent all square integrable func-
tions.

The wavelet framework uses, to build basis functions
of spaces Fj, a particular function called scaling func-
tion and often denoted by φ . It verifies equation (5) and
generates a φ jk family, j ∈ N,k ∈ Z. This function φ

also presents the property of being written as a linear
combination of k/2 translated and 1/2 scaled versions
of itself. It is the scaling relation of the scaling func-
tion, given by :

φ(x) =
∞

∑
k=−∞

pk×φ(2x− k) (6)

where {pk} are the coefficients of the scaling sequence
of φ . Note that each subspace Fj, j ∈ N will in fact use
the same and unique function φ translated and scaled.

The particularity of the wavelet framework is its abil-
ity to decompose a function of Fj+1 using several func-
tions of Fj and of its orthogonal complement G j. There-
fore, if J is the maximum resolution level, the FJ space
can be written :

FJ = F0∪
J−1⋃
j=0

G j (7)

This equation means that a function (up to a resolu-
tion J) can be described using only one scaling function
(space F0) and several functions of spaces G j. The ba-
sis functions of spaces G j are called wavelet function
and verify equation (5). They can also be built using

the scaling relation for wavelets, which we will call the
wavelet relation :

ψ(x) =
∞

∑
k=−∞

qk×φ(2x− k) (8)

where {qk} are the coefficients of the wavelet sequence
of ψ . Note that, similarly to Fj, each subspace G j uses
the same and unique function ψ translated and scaled.
Decomposition and multiresolution using wavelets.
The advantage of the wavelet framework is that it pro-
vides an efficient way to decompose a function into
multiresolution spaces. The fast decomposition can be
assured by the Mallat’s wavelet transform which uses,
as entry data, coefficients of the function modeled di-
rectly in the maximum resolution level. Therefore, our
fog extinction function will be modeled using scaling
function.

Mallat’s algorithm takes advantage of equation (7)
and consists, for each step, in extracting from the ap-
proximation at level n (represented in a scaling func-
tions basis) first the approximation at level n−1 (Fn−1
which is twice less precise), and then the corresponding
layer of details (Gn−1 represented by a wavelet basis).
We simply repeat this process until we obtain the ap-
proximation at level 0. Mallat’s transform is lossless,
therefore when we simply sum up the coarsest approxi-
mation with all layers of details, we recover the original
signal untouched.
Wavelets in two dimensions. Now that we know how
to build scaling functions and wavelets in one dimen-
sion, going 2D will actually be quite straightforward.
In a nutshell, it simply consists in assigning the cor-
responding 1D function to each axis, and the result is
given by the product of these two 1D functions. Basi-
cally :

φφ(x,y) = φ(x)φ(y) (9)

where φφ is a 2D scaling function and φ is the corre-
sponding 1D scaling function. Things go exactly the
same way with wavelet functions.

Obtaining a 2D wavelet transform is slightly harder
and requires to process rows and columns separately.
There are two different decomposition methods : the
standard decomposition and the nonstandard decompo-
sition. These two types of decomposition output exactly
the same kind of result :

• A single coarse approximation at level 0, modeled
with 2D scaling functions φφ(x,y) = φ(x)φ(y).

• J−1 layers of vertical details, modeled with hybrid
functions φψ(x,y) = φ(x)ψ(y).

• J− 1 layers of horizontal details, modeled with hy-
brid functions ψφ(x,y) = ψ(x)φ(y).

• J−1 layers of 2D details, modeled with 2D wavelets
ψψ(x,y) = ψ(x)ψ(y).

WSCG 2010 Communication Papers 147

For example, our fog’s extinction function can be
written as :

Kt = ∑
i j

αi jφφi j + (10)

J−1

∑
n=1

[
∑
i j

β
n
i jφψ

n
i j +δ

n
i jψφ

n
i j + γ

n
i jψψ

n
i j

]

4 OUR METHOD
4.1 Modeling the fog
The two-dimensional framework. Unlike other types
of participating media from the same family, fog almost
always appears in large outdoor scenes as a horizontal
layer of varying thickness. This is quite different from
smoke, which can evolve indifferently in all directions
in terms of shape and movement, and thus really need
to be defined with the same precision along all three
dimensions.

For this reason, and in order to ease the shape defini-
tion as much as possible and, later, the rendering step,
we have chosen to restrict our main framework to two
dimensions. The optical properties of our fog, simi-
larly to most other participating media rendering tech-
niques, are proportional to its density, which depends
itself on its extinction function. Therefore, the fog’s
main shape will actually be modeled as horizontal lay-
ers containing horizontal extinction function projected
in a two-dimensional function basis. Further parame-
ters, starting with a vertical extinction coefficient, will
then thicken the fog vertically and give its final appear-
ance.
Designing the fog’s shape. Horizontal variations of
our fog’s density are modeled by specifying the value of
each coefficient in the extinction function basis. These
coefficients can be adjusted by hand, or be, for exam-
ple, the result of a simulation, which was exported as a
fogmap (see figure 3), i.e. a greyscale image, and then
loaded back in our implementation.

Compared with other techniques such as RBF
or particle-based methods, shaping our fog using a
grayscale image is straightforward. The fogmap rep-
resents, in some extent, a direct preview of its aspect,
what can be interesting for some applications where
great intuition is needed. To ease the manual setting of

Figure 3: Left : snapshot of our modeling tool. Right
: greyscale image representing the highest resolution
coefficients

Figure 4: Shape of Haar, Linear and Quadratic B-
Splines.

the coefficients, we also developed a small application
where the values of the density can be directly adjusted
using a drag-and-drop interface.
Choosing the basis functions. The appearance of the
fog’s density is a key criteria to choose our basis func-
tion. It is clear that abrupt changes in density would not
look natural, so we would ideally like continuous func-
tions to design smooth fogs using as few coefficients as
possible. In order to avoid border effects, the scaling
function must tend to zero on both sides of its support,
which eliminates, for example, Legendre scaling func-
tions.

For design and optimisation purposes, our rendering
algorithm also needs the scaling function never to os-
cillate under zero. Whatever the trajectory of the ray
within the function in 2D, and more generally within
the fog, we would like to be sure that the sum of
the density it intersects can only increase as it tra-
verses the fog from the observer to the nearest object.
Daubechies wavelets, which, by the way, are not sym-
metrical, might not be the way to go.

Finally, we have to consider the fact that, as will be
discussed in the next section, the cost of using a partic-
ular type of wavelet is quadratically proportional to the
support of the scaling function in one dimension.

According to their shape, the most adapted candi-
dates seem the linear or quadratic B-Splines, which are
shaped like a hill (see figure 4), and have a relatively
compact support.

Although we are limited to wavelet scaling functions
for the fog’s representation, our method is not reduced
to a particular type of wavelet. Our implementation
specifically handles all degrees of B-Spline wavelets,
but can be extended to other families, as long as they
are compatible with Mallat’s decomposition.

4.2 Preparing data for rendering
Generating multiple resolutions. One of our main
goals is to take profit of multiresolution. Indeed, mul-
tiresolution helps to omit details that could be expen-
sive to render, while being of limited visual impor-
tance. Therefore, perform a wavelet decomposition on
our fog, which generate multiple level of details (i.e.
multiple resolutions) from the original extinction func-
tion, and use them at the rendering phase. The most

WSCG 2010 Communication Papers 148

adapted solution seems Mallat’s fast wavelet transform,
which is lossless, but requires data to be modeled in a
scaling functions basis of the same type as the wavelets
used for the decomposition. Therefore, each pixel of
the fogmap will represent the coefficient of a scaling
wavelet function.
Computing textures. From the fogmap we gener-
ate four multiple-level function bases : the approxi-
mation on a single level (i.e. a single 2D grid of val-
ues), and three different kinds of details for each level
which was decomposed. All details bases have the same
depth, which corresponds to the number of decompo-
sition steps that were executed, value which must be
decided by the user, depending on how much details
can be omitted. Coefficients from the approximation
and details basis will be stored in packed textures, and
transmitted to the GPU under this form.

4.3 Rendering the fog
Overview. The purpose of our algorithm is to alter the
original color of each pixel of the image using equa-
tion (3), blending L(P), the color of the object behind
the fog, and the fog color to obtain L(O) the new color
to compute.

For each pixel, we perform a ray-marching from the
camera to the nearest surface, in which we integrate
over the fog’s extinction function to obtain the trans-
mittance τ(O,P) along the view ray ~OP.
The grid. As a result from the wavelet decomposition,
the fog’s density is scattered in several multiple-level
function bases, having their own vector space and def-
inition domain in 2D. Each single level can be assimi-
lated to a rectangular grid, each cell being associated to
both a coefficient and a basis function. Since all bases
have the same definition domain, grids from different
bases match at a given level.

Since our fog is only modeled in two dimensions, we
do not take into account vertical variations and consider
the fog as homogeneous on that direction. However, a
vertical extinction coefficient taken as parameter allows
to fade the fog out while its vertical distance from the
viewer increases. But note that this is only a quick ap-
proximation over the exact equations.
Integration along the ray. The algorithm is itera-
tive, but instead of advancing regularly along the ray,
we move cell by cell. Each step corresponds to a new
intersection between the ray and the grid, thus we al-
ways integrate between two intersections, i.e. between
two positions on the perimeter of a square cell. This is
a brute-force method, and some optimisations will be
discussed in the next section.

We start by transposing both positions of the camera
and the object from the scene to the fog’s vector space.
Our algorithm performs the entire integration level by
level, and then, for each single function basis level, cell
by cell.

Figure 5: Ray-marching through a single level, de-
signed with linear B-Splines scaling functions (sup-
port=2).

To initiate the integration on a given level, we first
determine both entry and exit points of our integra-
tion on the grid. The entry point corresponds to either
the nearest intersection between the ray and the current
level’s bounding box, or the viewer’s position in case
he stands within the fog. Similarly, the exit point corre-
sponds to the intersection with either the farthest plane
of the bounding box, or with the nearest object if situ-
ated within the fog.

When integrating a given level, the contribution of
each single cell can be obtained by the product of both
the function basis coefficient and the integral of the ba-
sis function associated to that cell along the view ray.

Mathematically, considering each cell c intersected
by OP and using the extinction function decomposition
of (10), we have :

τ(O,P) = ∑
cell:c

∫
c∩OP

Kt = ∑
c

[∫
c∩OP

αcφφc+ (11)

J−1

∑
n=0

∫
c∩OP

β
n
c φψ

n
c +δ

n
c ψφ

n
c + γ

n
c ψψ

n
c

]

J being the maximum decomposition level of our fog.
Thanks to multiresolution analysis, each function in-
dexed by cell c and level n is indeed a translated and
scaled version of φφ , φψ , ψφ or ψψ .

Therefore, we can precompute on the CPU a bunch of
integrals for a set of sampled paths (complete or partial)
within 1× 1 squares on each function’s definition do-
main, so that these values are directly available at run-
time, transmitted on the GPU in packed textures. Inte-
gration on partial paths allow handling particular cases
when the ray either starts and/or ends at the center of a
cell within the fog’s bounding box.

Figure 5 shows ray ~OP traversing a single level’s grid
from entry point S to exit point E. Integration steps
(i.e. intersections with the grid) are shown in red. The

WSCG 2010 Communication Papers 149

basis function (in this example : linear B-Spline scaling
function) associated to the orange cell’s coefficient c is
shown in blue.

When using basis functions which are supported
on an 1× 1 square (e.g. Haar scaling functions and
wavelets), their contribution area matches exactly that
of the cell it is attached to, therefore we know that the
cells which contribute to the pixel being rendered are
exactly those traversed by the ray.

When the functions are supported on a domain larger
than 1× 1, part of the contribution of each cell gets
superimposed on that of its neighbouring cells, thus
also contributing to rays which do not necessarily pass
through those cells themselves. Actually, a ray passing
through a cell must take into account the contribution
of that cell, plus the contributions of the dx− 1 previ-
ous cells on the X axis, times the dy−1 previous cells
on the Y axis, where dx and dy are the dimensions of
the basis function’s definition domain.

When the ray encounters a new function, we only in-
tegrate the density on the portion of that function which
overlays the current cell, and then resume the integra-
tion for another 1×1 square of the same function when
the ray traverses the next cell. If we directly integrate
on the whole function’s support at once, we omit the
contributions of the functions attached to cells which
are not encountered by the ray.

When the ending point has been reached, the whole
process must be repeated with each level of each
wavelet basis that was generated by Mallat’s wavelet
transform.

4.4 Optimizations & multiresolution
Our idea consists in omitting an increasing quantity of
details from layers whom resolution is above a thresh-
old which decreases as the observer moves away from
the fog. When integrating the fog’s density from the ob-
server O to point P, the maximum integration distance
dmaxl on level l ∈ N is given by :

dmaxl (~OP) = ‖OP‖×µ
l (12)

where µ ∈ [0,1] is the optimization coefficient. When
µ = 1, the integration is performed entirely on all levels
; on the contrary, when µ = 0, only the upper level of
the basis is rendered.

As seen previously, when using scaling functions that
are defined on more than an 1×1 square, the integration
cost is no longer proportional to the fog’s size, since
more than each single particular cell traversed by the
ray brings a contribution on these cell’s area. That’s
why although the total number of coefficients model-
ing the fog stays almost unchanged, the rendering cost
increases dramatically after the wavelet decomposition,
since B-Spline wavelets always have a larger support
than their scaling function.

Algorithm 1 Pseudo code of the shader
for each pixel do

sum = 0
for l = 0 to nb_levels do

compute 2D entry point on grid
compute 2D exit point on grid
while pos 6= exit do

inter = compute next intersection with grid
if (l = 0) then

coef = get cell coef on approx basis
approx = integrate on φφ between pos &
inter
sum += coef*approx

end if
coef = get cell coef on details1 basis
det1 = integrate on φψ between pos & inter
sum += coef*det1
coef = get cell coef on details2 basis
det2 = integrate on ψφ between pos & inter
sum += coef*det2
coef = get cell coef on details3 basis
det3 = integrate on ψψ between pos & inter
sum += coef*det3
pos = inter

end while
end for
pixel color=sum*obj color + (1-sum)*fog color

end for

When using such basis functions, for example lin-
ear or quadratic B-Splines, it can be interesting to use
the two-scale relation for wavelets 8 to deconstruct the
three wavelet bases. This turns them back into scaling
function bases, which can then be merged (i.e. added)
together. When using scaling functions with a large
support, this operation, performed on the CPU just af-
ter the decomposition, can reduce the rendering cost
by up to 2, while keeping the multi-resolution aspect
brought by the decomposition. Moreover, if we per-
form a deconstruction, we can stop the integration as
soon as the sum reaches a particular threshold, close
to a great opacity. Deconstruction is important since it
assures than each new cell will only add opacity.

5 RESULTS AND DISCUSSION
This algorithm has been implemented using GLSL,
an Intel Core 2 Quad 2.8Ghz processor and a NVidia
GeForce GTX 280 graphics card. Screen resolution is
800x600.

5.1 Performance
Table 1 show FPS results obtained when using our ray-
marching alone to directly render raw Haar, linear or
quadratic fogmaps, without any decomposition. Note
also that a classical numerical integration along the ray,

WSCG 2010 Communication Papers 150

Fog resolution Haar Linear Quadratic
16×16 199 142 71
32×32 124 83 31
64×64 90 45 15

Table 1: FPS results with our ray-marching without op-
timizations.

PPPPPPPPNb levels
µ

1 0.8 0.6 0.4 0.2 0

0 45 - - - - -
1 35 39 47 55 66 83
2 31 45 55 71 90 124
3 27 39 66 76 99 166

Table 2: FPS results with our optimization, using a 64×
64 linear B-Spline fogmap.

with 256 samples, runs at 99 FPS and suffers from se-
vere aliasing artifacts. This is clearly outperformed by
our method : Haar without decomposition gives 124
FPS and we can achieve similar FPS using a linear
base. Each type of basis functions is defined on an area
which size is increasing linearly in 1D, which involves
a quadratically increasing number of neighbouring cells
contributing to the density on each 1× 1 square on the
grid.

Table 2 show FPS results obtained when rendering
a 64× 64 linear B-Spline fog using our details drop-
ping optimization, for different values of the tolerance
parameter µ . With µ = 1, no details are dropped, and
we are performing a simple ray-marching. If, in addi-
tion, we do not apply any decomposition step, we are
directly rendering the fogmap, like in table 1, therefore
this value stands for the threshold above which we have
a substential acceleration.

In table 3 we show, with arrows, the performance
gain induced by our optimisations.

Figure 6: Quality difference when removing all layers
of details (bottom left) from an Haar 32x32 (top left).
Difference image (right) is shown (x25).

Nb levels 1 2 3
Linear 16x16 58→ 111 47→ 99 35→ 83
Linear 32x32 20→ 62 15→ 55 13→ 49
Quad. 32x32 7→ 23 5→ 20 5→ 18

Table 3: FPS improvement when turning back into scal-
ing function bases the four b-spline/wavelet generated
by the decomposition (before→ after).

5.2 Visual quality
The higher the degree of the B-Spline wavelet is,
the smoother each basis function looks. With Haar
wavelets, we can see, in figure 7.B, that the visual result
is a bit unsatisfactory, with abrupt changes in density
which betray the discontinuity of Haar functions. With
linear B-Spline wavelets (figure 7.C) the framerate
decreases but the visual result is a lot smoother and
artifacts and peaks are now practically imperceptible.
Finally, with quadratic B-Spline wavelets (figure 7.D),
we loose in performance but this time, the quality gain
is relatively low compared to linear B-Spline wavelets.

5.3 Discussion
Linear B-Spline seems a good trade-off between speed
and quality but Haar could be used if rendering time
is an issue. The advantage of using wavelets, beside
their property of good data compression, is to have a
mathematical representation of heterogeneous fog from
physical simulation to rendering. Indeed, animating
such fogs is easy, since wavelet decomposition can be
performed in real-time. Moreover, unless previous ap-
proaches, we perform a precise numerical integration
of density along the view ray, without any approxima-
tion. In comparison to particle approaches like [19], our
method is more adapted to large outdoor scenes when
camera is moving in the fog, and the modelling is far
more intuitive than using particles.

6 CONCLUSION AND FUTURE
WORK

In this paper, we presented a new method for model-
ing heterogeneous fog using wavelet scaling functions.
Rendering is performed through a simple decomposi-
tion scheme of the fog density function represented in a
scaling function basis leading to sparse data. Wavelets
and scaling functions allow and ease a certain num-
ber of precomputations, such as the integrals of the
wavelets along each ray. A brute force rendering al-
gorithm using the GPU has been presented allowing
real-time rendering for moderated complex fog along
with an optimized version taking profit of the sparcity
of data induced by the wavelet decomposition. We have
shown that our method outperforms brute force integra-
tion and allows exact computation of the effects of fog,
without exotic approximations. Moreover, our method

WSCG 2010 Communication Papers 151

Figure 7: Quality difference with a large 30x30 fog. Fog taken from above (A), and the associated fogmap (E).
Zoom on the red part when using Haar (B), Linear (C) and Quadratic (D) wavelets.

do not depends on the position of either the light or the
fog, allowing simple transformations of the fog.

The use of wavelets opens the door to other major
optimisations for our method. Mainly, the rendering al-
gorithm can be improved by focusing only on the grid’s
cells which actually contain a non-negligible value, in
order to be able to directly jump to the interesting zones
of the fog when performing the integration along the
ray. For this purpose, we aim at designing a simple
GPU traversal of the graph generated by the wavelet de-
composition. Since wavelets can be used to solve fluids
equations, we also plan to link our rendering algorithm
to a physical simulation involving wavelets, allowing a
real-time physical animation and rendering of hetero-
geneous fog. Finally, we plan to add single scattering
and volumetric shadows in our model.

REFERENCES
[1] V. Biri. Real Time Single Scattering Effects. In Best

Paper of 9th International Conference on Computer Games
(CGAMES’06), pages 175 – 182, November 2006.

[2] Eva Cerezo, Frederic Perez-Cazorla, Xavier Pueyo, Francisco
Seron, and François Sillion. A survey on participating media
rendering techniques. the Visual Computer, 2005.

[3] R. Fedkiw, J. Stam, and H.W. Jensen. Visual Simulation of
Smoke. In proceedings of SIGGRAPH’01, Computer Graphics,
pages 15–22, August 2001.

[4] N. Foster and D. Metaxas. Modeling the motion of a Hot,
Turbulent Gas. In proceedings of SIGGRAPH’97, Computer
Graphics, pages 181–188, August 1997.

[5] Wolfgang Heidrich, Rüdiger Westermann, Hans-Peter Seidel,
and Thomas Ertl. Applications of pixel textures in visualization
and realistic image synthesis. In I3D ’99: Proceedings of the
1999 symposium on Interactive 3D graphics, pages 127–134,
New York, NY, USA, 1999. ACM.

[6] Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen.
Irradiance Gradients in the Presence of Participating Media and
Occlusions. Computer Graphics Forum (Proceedings of EGSR
2008), 27(4):xx–xx, 2008.

[7] H. W. Jensen and P.H. Christensen. Efficient Simulation of
Light Transport in Scenes with Participating Media using Pho-

ton Maps. In Proceedings of SIGGRAPH’98, Computer Graph-
ics, pages 311–320, August 1998.

[8] J. Legakis. Fast multi-layer fog. In Siggraph’98 Conference
Abstracts and Applications, volume Technical sketch, page 266,
1998.

[9] N.Adabala and S. Manohar. Modeling and rendering of gaseous
phenomena using particle maps. The Journal of Visualization
and Computer Animation, 11(5):279–293, December 2000.

[10] Nvidia. Fog polygon volumes - rendering objects as thick vol-
umes, 2004.

[11] Mark Pauly, Thomas Kollig, and Alexander Keller. Metropo-
lis light transport for participating media. In B. Peroche and
H. Rushmeier, editors, Rendering Techniques 2000 (Proceed-
ings of the Eleventh Eurographics Workshop on Rendering),
pages 11–22, New York, NY, 2000. Springer Wien.

[12] H. Rushmeier and K. Torrance. The zonal method for calcu-
lating light intensities in the presence of participating medium.
In proceedings of SIGGRAPH’87, Computer Graphics, volume
21(4), pages 293–302, 1987.

[13] R. Siegel and J.R. Howell. Thermal Radiation Heat Transfert.
Hemisphere Publishing, 3rd edition, 1992.

[14] F.X. Sillion. A Unified Hierarchical Algorithm for Global Il-
lumination with Scattering Volumes and Object Clusters. In
IEEE Trans. on Vision and Computer Graphics, volume 1(3),
pages 240–254, September 1995.

[15] J. Stam. Stable Fluids. In proceedings of SIGGRAPH’99, Com-
puter Graphics, pages 121–128, 1999.

[16] E. J. Stollnitz, A. D. Derose, and D. H. Salesin. Wavelets for
computer graphics: a primer.1. Computer Graphics and Appli-
cations, IEEE, 15(3):76–84, 1995.

[17] B. Sun, R. Ramamoorthi, S.G. Narasimhan, and S.K. Nayar.
A practical analytic single scattering model for real time ren-
dering. In proceedings of SIGGRAPH’05, Computer Graphics,
volume 24 (3), pages 1040–1049, 2005.

[18] D. Zdrojewska. Real time rendering of heterogeneous fog
based on the graphics hardware acceleration. In proceedings
of CESCG’04, 2004.

[19] Kun Zhou, Qiming Hou, Minmin Gong, John Snyder, Bain-
ing Guo, and Heung-Yeung Shum. Fogshop: Real-time design
and rendering of inhomogeneous, single-scattering media. In
PG ’07: Proceedings of the 15th Pacific Conference on Com-
puter Graphics and Applications, pages 116–125. IEEE Com-
puter Society, 2007.

WSCG 2010 Communication Papers 152

Efficient Reconstruction From Scattered Points
Helton Hideraldo Bíscaro

University of São Paulo, Brazil
EACH-USP

Av. Arlindo Bettio, 1000.
São Paulo - SP - Brazil

CEP: 03828-000
Tel.: 55 (11)-3091-1020

heltonhb@usp.br

Abstract

Most algorithms that reconstruct surface from sample points rely on computationally demanding operations to derive the re-
construction, beside this, most of the classical algorithm use a kind of three-dimensional structure to derive a two-dimensional
one. In this paper we introduce an innovative approach for generating two-dimensional piecewise linear approximations from
sample points in R3 that simplify significantly the numerical calculation and the memory usage in the reconstruction process.
The approach proposed here is an advancing front approach that uses rigid movements in the three-dimensional space and a
bidimensional Delaunay triangulation as the main tools for the algorithm. The principal idea is to use a combination of rota-
tions and translations in order to simplify the calculations and avoid the three-dimensional structure used by the most of the
algorithms. Avoiding those structures, this approach can reduce the computational cost and numerical instabilities typically
associated with the classical algorithm reconstructions.

Keywords: Algorithm, Reocnstruction, Rigid Movements, three-dimensional structures, Delaunay triangulation.

1 INTRODUCTION

Given a set of samples P extracted from a smooth
closed surface S in R3, the reconstruction problem con-
sists in reconstruct F , a piecewise linear approximation
of S, using the points of P. The surface F must be
equivalent to S topologically and as close as possible
to S.

In the last decades, surface reconstructions have been
focus of extensive investigation not only because the
number of practical applications in engineer and vir-
tual museums but also by the challenges that need to
be faced. In general only the three-dimensional coordi-
nates of the points are known. Despite of lack of infor-
mation about the topology and geometry, several algo-
rithms has been proposed to solve this problem [8, 7, 9].
Some of the existing methods can even ensure a correct
reconstruction as long as an adequate sampling rate is
employed, such as those by Amenta et al. [2, 3]. How-
ever, in spite of considerable theoretical advances many
algorithms fail to accomplish a successful reconstruc-
tion in practical situations.

In general, algorithms in literature use three-
dimensional structures as Delaunay triangulations,

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2010 conference proceedings, ISBN 80-903100-7-9
WSCG’2010, February 1 – February 4, 2010
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

or a kind of "immersion" three-dimensional space to
derive a two-dimensional reconstruction. This paper
introduces an advancing front approach, called LDT
(Local Delaunay Triangulations) which runs entirely
in two-dimensions. The main idea is to start from a
boundary edge e and use the n nearest neighbors of one
of end points of e to build a two-dimensional Delaunay
triangulation in order to choose the better triangle
to be glued in e. Avoiding those three-dimensional
structures, not only the calculations are simplified,
but also the amount of memory used is considerably
reduced.

Prior to introducing the LDT algorithm, this work
discuss related work in Section 2 and introduce some
mathematical fundamentals required to lay out the pro-
posed approach in Section 3. In Section 4 the recon-
struction algorithm is described. Reconstruction results
with LTD are given in Section 5. Finally, conclusions
and further work are addressed in Section 6.

2 RELATED WORK
Surface reconstruction from sample points has de-
served considerable attention from researchers in both
Computer Graphics and Computational Geometry. The
problem became popular after the paper by Hoppe et
al. [23], who presented an algorithm for reconstructing
the surface as the zero set of a signed distance function.
However, that approach is unable to capture fine surface
details. A related algorithm was developed by Curless
and Levoy [14] that is more effective in capturing
surface details; nevertheless, it relies on additional
information than just the sample points. An alternative

WSCG 2010 Communication Papers 153

Figure 1: Models reconstructed with LDT algorithm

approaches for reconstructing a surface from the zero
set of a distance function have been proposed. Carr et
al. [13], for example, employ radial basis functions
to approximate the signed distance. Their algorithm,
though computationally expensive, can handle gaps
and capture fine model details. Ohtake et al. [29] and
Alexa et al. [1] use local fitting by employing partition
of unit and moving least-squares approximation to
estimate the approximating surface. The ability of
handling large data sets is a major strength of such
implicit approaches. However, the surfaces produced
do not interpolate the given samples, which may be
undesirable in some applications.

Researchers in Computational Geometry adopted a
different approach towards the problem, some of them
have proposing reconstruction algorithms based on a
Delaunay complex generated from the sample points.
The rationale behind such algorithms is to sculpt the
surface from the Delaunay complex; others have pro-
posed advancing fronts approaches. Boissonnat [11]
proposed the first Delaunay based reconstruction algo-
rithm, which operates by removing tetrahedral and tri-
angles that violate certain geometrical conditions. Un-
fortunately, it is applicable only to surfaces of genus
zero. The α-shape algorithm [17] starts with the De-
launay tessellation of the sample points and removes
all simplices that are not contained in an empty ball of
radius 1

α
. The α-shape is simple to implement, but it

works properly only on evenly sampled point sets, as
a single α value applies to the whole data set. Teich-
mann and Capps [33] introduced a density scaled α-
shape to handle this problem. Nonetheless, their ap-

proach requires the normal vectors at the sample points.
The Crust, by Amenta and Bern [2], is the first three-
dimensional algorithm with theoretical guarantees of
reconstruction. For a suitably sampled object it com-
putes a piecewise linear surface approximation that is
homeomorphic and geometrically close to the original
one. The Crust handles non-evenly sampled point sets
and requires little user intervention during reconstruc-
tion. A drawback is that the geometrical calculations
required to compute the Voronoi vertices introduce nu-
merical instabilities. Furthermore, the algorithm has
high computational cost because it builds two Delaunay
tessellations, one to compute the Voronoi vertices and
a second one to generate the Crust. The Cocone algo-
rithm, by Amenta et al. [4], is an elegant and fast sim-
plification of the Crust that holds the same theoretical
guarantees. However, in practical applications it gen-
erates undesirable holes in the reconstructed surface.
This problem has been solved by Dey and Goswami in
the Tight Cocone algorithm [15]. Nonetheless, unlike
its predecessor Tight Cocone does not capture internal
components. Moreover, it requires pole estimates, cell
labeling and, in some cases, triangle size estimates are
also necessary. Power Crust [5] also improves on the
Crust algorithm. It computes a piecewise linear ap-
proximation of a smooth surface employing a weighted
Voronoi diagram called Power Diagram. Power Crust
is also theoretically guaranteed to generate a correct re-
construction under proper conditions, and its computa-
tional performance is superior to that of the Crust. But it
still faces numerical instability problems due to the ge-
ometrical calculations required to construct the Power

WSCG 2010 Communication Papers 154

Diagram. Kolluri et al. [25] introduced the Eight Crust
algorithm for reconstructing a watertight surface from
noisy point cloud data. Starting from the Delaunay tes-
sellation it uses a variant of spectral graph partitioning
to decide whether each tetrahedron is inside or outside
the original object. The reconstructed surface consists
of the set of triangular faces shared by both internal and
external tetrahedral. The spectral partition makes lo-
cal decisions based on a global view of the model and
therefore the algorithm can ignore outliers, patch holes
and under-sampled regions. The high computational
cost is still a major disadvantage.

The ball pivoting algorithm by Bernardini et al. [9] is
very simple and fast. Three points form a triangle if a
ball of user-specified radius touches them without con-
taining any other point. Starting from a seed triangle,
the ball pivots around an edge – i.e., it revolves around
the edge while keeping in contact with the edge’s end-
points until it touches another point, forming another
triangle. The process proceeds until all reachable edges
have been tried, and then it starts over from another seed
triangle, stopping when all points have been conside-
red. The process can be repeated with a ball of larger
radius to handle uneven sampling densities. A major
advantage of ball pivoting is that it does not compute
the Delaunay tessellation of the sample points. On the
other hand, it is user-dependent and needs the normals
at the samples. Advancing front strategies have been
employed in reconstruction algorithms by several au-
thors, such as Schreiner et al. [30] and [31], but com-
putational implementation of such methods can be quite
intricate.

Edelsbrunner [16] derived an algorithm for fitting a
surface to a set of sample points that relies on classi-
cal Morse theory. Although it relies on a topological
background, topology is employed just to deduce the
geometrical calculations. Another approach that uses
Morse theory, in its discrete version is the work of Bís-
caro et al. [10] which uses a discrete Morse function de-
fined in a three-dimensional Delaunay triangulation to
guide the reconstruction process. Also, the main draw-
back of this work is the three-dimensional structure re-
quired to extract a two-dimensional one.

Finally, Gopi et al.[20] has proposed a similar ap-
proach that uses a local Delaunay triangulation. How-
ever, their approach selects a set of candidate points
which might be possible neighbors of a vertex in the
final triangulation using a kind of sample criteria. They
also compute the local Delaunay triangulation in the
tangent plane without using any kind of simplification
in its computation.

In fact, most of the classical algorithms derive the
reconstruction from a subset of the three-dimensional
Delaunay tessellation. This approach avoid to con-
struct a three-dimensional structure to derive a two-
dimensional piecewise linear approximation of the sur-

face. Avoiding this immersion space, the algorithm
presented here reduces the amount of ram memory
used in the process as well as number of geometrical
calculations. Another advantage of avoiding a three-
dimensional Delaunay triangulation is absence of sliver
tetrahedrons, which is a classical problem in three-
dimensional triangulations.

3 BASIC CONCEPTS
This Section introduces the basic concepts and the ter-
minology used in the remainder of the text.

A Delaunay triangulation for a set P of points in Rn

is a triangulation of DT (P) such that no point in P is
inside the circumsphere of any simplex in DT (P). In
the plane, each vertex has on average six surrounding
triangles; also, this triangulation maximizes the mini-
mum angle. Compared to any other triangulation of the
points, the smallest angle in the Delaunay triangulation
is at least as large as the smallest angle in any other
[21, 18].

Let S be a smooth closed surface in R3, i.e., S is C1-
continuous and divides R3 into open solids. A ball B is
said to be empty (with respect to S) if its interior con-
tains no point of S. The set of centers of the maximal
empty balls touching S in at least two points make up
the medial axis of S. The local feature size of a point s
in S, denoted l f s(s), is the distance from s to the me-
dial axis of S. An important property of l f s(·) is that
l f s(p) ≤ l f s(q)+ |pq|, where |pq| is the distance be-
tween p and q. A set of points P⊂ S is an r-sample of S
if the distance from any point s ∈ S to the closest point
in P is at most r× l f s(s). In this case S is said to be r-
sampled; in general, good results in reconstructions are
achieved for r ≤ 0.1.

Quaternions (four numbers) are a kind of number sys-
tem that extends the complex numbers. A quaternion
number q=(w,x,y,z), or correspondingly, w+ ix+ jy+
kz, where hold the following identities; i2 = j2 = k2 =
−1, i j = k− i j and w,x,y,z ∈R [22]. They also provide
a useful mathematical notation for representing and ro-
tations of objects in three dimensions. When compared
to Euler angles, they are simpler to compose and have
an advantage of not present the problem of "gimbal
lock". Also, they are more numerically stable a more
efficient than rotations matrices. To represent a rotation
of an angle θ around the axe n, a unit vector, is enough
to define the quaternion q = (cos(θ

2),sin(θ

2)n).
This work also need an efficient and effective way

of find the n nearest neighbors of a three-dimensional
point p. To accomplish this, the work of Lin and Yang
[27] was used. Their work offer a high accuracy near-
est neighbor search by their ANN-Tree (Approximate
Nearest Neighbor Tree) which is a tree based structure
that works for arbitrary dimension.

Another important calculation present in this work is
the angles between two vectors. According to Jonathan

WSCG 2010 Communication Papers 155

Shewchuck [32], given two vectors with the same ori-
gin r and s, the best way of calculate the angle between
r and s is to use the formula tan(θ) = 2A f

〈r,s〉 , where A f is
the area of the triangle with sides r and s. The compu-
tation of A f can be done making A f =

|r×s|
2 , where r×s

is the cross product of r and s.
This paper uses the Hausdorff distance to compare

the meshes generated by the LDT algorithm and the
meshes of the classical algorithms. Hausdorff distance
is a generic technique that defines a distance between
two nonempty sets; and has been used as an efficient
tool to evaluate distances between three-dimensional
meshes [6].

In next section, this paper presents details of the al-
gorithm developed in this work.

4 ALGORITHM
The algorithm LDT uses the normal vector at each sam-
ple point. There are several strategies to estimate this
vector, but is important to include, in such estimation,
the impact of the point’s distance. The influence of the
sample points must be inversely proportional to its dis-
tance. This work uses weighted principal component
analysis (WPCA). The weight average of a point p∈R3

is given as follow:

M (p) =
n

∑
i=1

wp (pi) pi
n
∑

i=1
wp (pi)

(1)

where n is the number of the nearest neighbors of p,
the function wp(x) specifies the influence of the point x
in point p. According to Levin [26], a good choice is

wp (x) = e
‖x−p‖

H2 , where H estimates the local density in

p, H =
n
∑

i=1

‖pi−p‖
n . The 3×3 covariance matrix C for a

point p if given by:

C =


p1−M (p)
p2−M (p)

...
pn−1−M (p)
pn−M (p)


T 

p1−M (p)
p2−M (p)

...
pn−1−M (p)
pn−M (p)

 (2)

Let λ1 ≤ λ2 ≤ λ3 be the three eigenvalues of C, and
α1,α2 and α3 the three associated eigenvectors. Jol-
liffe, in his work [24] establish that α3 is the direction
of greatest variance in a neighborhood of p, α2 repre-
sents the direction of second greatest variance and α1
the direction that minimizes the variance. As the set
of points P is a subset of the surface S, the geometric
interpretation is that α2 and α3 approximates the main
directions of the tangent plane at p and α1 approximates
the normal direction.

Data: A set of samples P⊂ R3

1 for each p ∈ P do
2 Approximate the normal vector in p
3 end
4 Find a initial triangulation F ;
5 Store in E the boundary edges of F ;
6 while E 6= /0 do
7 Remove e from E;
8 if e still is a boundary edge then
9 f ← FindNewFace(e);

10 F ← F ∪{ f};
11 Add to E the boundary edges of f ;
12 end
13 end
14 return F
Algorithm 1: Algorithm LDT - Local Delaunay
Triangulation

The main idea in the LDT algorithm is to execute an
advancing front approach to achieve the reconstruction.
This advancing front technique uses a two-dimensional
Delaunay to get the next triangle from a boundary edge.
The pseudo-cod 1 shows the main loop of the algorithm
developed here. In the step 2, the weighted principal
component analysis is used to approximate the normal
vectors in the samples points. The initial triangulation
(step 4 in the algorithm 1) is acquire choosing an ini-
tial point p, projecting its n nearest neighbors in its tan-
gent plane, computing the Delaunay triangulation in the
plane and re-projecting the triangulation in the surface.
The two-dimensional Delaunay triangulation was im-
plemented using the only the first and the second coor-
dinates of the samples. Considering this, the algorithm
must rotate p and its neighbors such that the tangent
plane in p coincide with the XY plane. By doing this
rotation, the projection operation is expressively sim-
plified. The Figure 2 illustrates this initial step, show-
ing a normal vector in an initial point of a paraboloid,
the blue points are the nearest neighbors of the initial
point and the orange plane is the tangent plane where
the neighbors are projected.

The set E store the boundary edges of the triangula-
tion F and can be interpreted as a list of active edges
that guide the reconstruction process. The main loop of
the algorithm is repeated while E is not an empty set.
It is worth to mention that when an edge e is removed
from E, it is possible that e is not a boundary edge any-
more. Also is possible that a new face f returned in the
step 9 of the algorithm 1 has no boundary edges.

The pseudo-code 2 illustrates the procedure to ex-
pand the frontier of F , and is a variation of the proce-
dure to achieve the initial triangulation. The idea is also
to project the neighbors in the tangent plane π , execute
a two-dimensional Delaunay DT triangulation with the

WSCG 2010 Communication Papers 156

a) b)

Figure 2: a) Set of samples of a 3D object b) Zoon view
of the initial point.

Data: A boundary edge e.
1 Let p be one of the end points of e;
2 Rotate p and its n nearest neighbours to align the

normal in p whith the Z axe and the edge e with
Y axe ;

3 Find pe, the opposite vertex to e;
4 Project in the tangent plane only the vertex pi

such that pex ∗ pix ≤ 0;
5 Find DT , a two-dimensional Delaunay

triangulation with the projected vertices ;
6 Find f , the triangle of DT that contain e as a

boundary edge ;
7 return f

Algorithm 2: Algorithm FindNewFace

project points, to choose from DT , the face f that has e
as boundary edge, and re-project f in the surface.

To ensure that the projection of e appear in the local
triangulation, consider fe ⊂ F the face of F contain-
ing e, and pe the vertex of fe opposite to e. When the
vertex p, which is one of the end points of e, and its
nearest neighbors are rotate to align the edge e with the
Y axe, the x coordinate of pe is either positive or nega-
tive depending of its relative position. After that, only
the neighbors that has x coordinate with opposite signal
when compared with pe are projected in π . This proce-
dure is enough to ensure that the projection of e appear
in the boundary of the Delaunay triangulation DT . It
is worth to mention that at this point of the algorithm
(step 4 of the algorithm 2), only the boundary vertex in
the neighborhood of p or vertices that are not contained
in a face are considered to be projected in the tangent
plane π .

Two steps of a paraboloid reconstruction can be seen
in the Figure 3 a) and b). The distinct face represents
the last face glued in the mesh and the wider edge rep-
resents the first edge in the list E of active edges. In
the Figure 3 c) the complete reconstruction is showed.
The figure 4 exhibit a local Delaunay triangulation’s ex-
ample for a set of sample points, and again, the distin-
guished face is the one captured to be re-projected in
the surface.

Although this algorithm does not need to handle
sliver tetrahedral, which is a very common problem in
sculpturing techniques, it is possible that the algorithm

a) b)

c)
Figure 3: Two steps in the reconstruction of a
paraboloid

Figure 4: Local Delaunay triangulation to a set of sam-
ple points

a) b)
Figure 5: Small dihedral angles

glue faces with small dihedral angles as is showed in
the Figure 5 The Figure presents two consecutive steps
of the paraboloid reconstruction. However, according
to the work of Mederos et al. [28], the dihedral angle
between two adjacent faces approximates to π when
the sample rate increases. To avoid this problem,
a dihedral angle calculation, given by the work of
Jonathan Shewchuck [32], must be done before glue a
new face in the mesh.

WSCG 2010 Communication Papers 157

4.1 Discussions
There are some crucial points in the LDT algorithm.
The estimation of normal vectors in the samples points
for instance, plays a crucial role in all reconstruction
process (algorithm 1 step 2). Of course that the LDT
algorithm does not have intention of reconstructs arbi-
trary surfaces with arbitrary sampling rate. In order to
achieve a good normal estimation in all samples; is ac-
ceptable that a minimum sampling rate be respected.
However, this is a theoretical study that will be sub-
ject of a future work. Another consideration, is about
the projection effect over the algorithm’s results. Ac-
cording to Amenta’s work [3], for an adequate sample
rate, in general, a r−sampled surface with r ≤ 0.1, the
correct reconstructions lies in a subset of the Delaunay
complex of the samples points. Therefore, respecting
this sampling condition, for an arbitrary sample point
p, its neighbors must lie close to the tangent plane in p;
not causing ample movements in the projection opera-
tion as well.

It is also worth to mention that in the initial triangula-
tion (cod:algorithm step 4) no glue operation is needed.
Therefore, the Delaunay triangulation computed I this
step can be re-projected directly in the output surface.

The next section presents some of results obtain with
the LDT algorithm.

5 RESULTS
This section shows some examples of models recon-
structed with LDT algorithm as well as some compari-
sons with classical algorithms in the literature. For the
comparisons was used in-house implementations, based
on CGAL [12], of the Crust and Power Crust developed
as part of a master dissertation project [19]; the TSR im-
plementation was part of a previous work [10] and the
original implementations of Cocone and Tight Cocone
were kindly provided by Tamal Dey. The reconstruc-
tions were performed on a dual Pentium 4 with 3 GHz
and 1GB RAM.

The figure 6 give an idea of the quality of the mesh
generated by the algorithm LDT in a reconstruction of
a bitorus. The Figures 7 and 8 show additional recon-
structions examples, the dragon model is rendered with
a jade texture and the hand model with a stone texture,
and the Figure 10 shows the Lucy model reconstructed
from a large data set (921085 points).

In the table 1 the usage of memory, in Kbytes, of
some classical algorithm is exhibit. The algorithms are
Crust, Power Crust, Cocone Tight Cocone, TSR and
that of LDT, for a set of standard sample sets, identi-
fied in the top Table line (models shown were gener-
ated with LDT). The Crust and the Power Crust Algo-
rithm produces no output to the Isis model, the fourth in
the table. The Figure 9 represents the running times, in
seconds, of three traditional reconstruction algorithms,

Figure 6: Mesh generated with LDT algorithm

Figure 7: Dragon Model generated with LDT algorithm
and rendered with a jade texture

Figure 8: hand Model generated with LDT algorithm
and rendered with a stone texture

Cocone, Tight Cocone , TSR and LDT. As the table 1
reveal, the LDT algorithm, due its optimizations and its
advancing front approach, lean to use less memory than
the others. One observes that the running times were
improved, particularly when the models are bigger than
50,000 points. One can see in Figure 9 that the LDT al-

WSCG 2010 Communication Papers 158

gorithm is faster than the classical algorithms compared
with it, especially when reconstruct larges data sets.

9697 pts 35947 pts 54707 pts 187644 pts

Cr 21.90 53.13 72.21 No output

PC 41.94 79.50 110.54 No output

Co 15.10 51.24 78.98 265.32
TC 19.20 66.10 101.68 343.50
TSR 20.65 71.28 111.72 376.19
LDT 12.48 38.75 59.17 192.22

Table 1: Usage of memory in k bytes to reconstruct the
models shown Legend: Cr - Crust; PC - Power Crust;
Co - Cocone; TC - Tight Cocone; TSR - Topological
Surface Reconstructor; LDT - Local Delaunay Trian-
gulation

The table 2 exhibits the Hausdorf distances between
the LDT’ meshes and meshes generated by other clas-
sical algorithms (cocone, Tight-cocone and TSR). The
distances are quite small; suggesting that the output
meshes are very similar.

9697 pts 35947 pts 54707 pts 187644 pts

Co 0.003235 0.001485 0.213477 0.000561
TC 0.002139 0.001181 0.446078 0.000525
TSR 0.002480 0.001018 0.006002 0.000074

Table 2: Hausdorff distance between the meshes gen-
erated with LDT algorithm and the follow ones : Co -
Cocone; TC - Tight Cocone; TSR - Topological Surface
Reconstructor

6 CONCLUSION AND FUTURE
WORK

This work introduces an innovative approach, called
LDT - Local Delaunay Triangulation, to reconstructing
piecewise linear approximations of surfaces in R3 that
are defined by set of samples. The approach present
here is an advancing front approach which make use of
a two-dimensional Delaunay triangulation to choose the
adequate triangle to be glued in the mesh. The main ad-
vantage of this kind of technique is to avoid the use of
three-dimensional structures when the goal is to derive
a two-dimensional one. Principal component analysis
is used to estimate the normal vector in the samples
points, and rigid movements are used to optimize the
projections operations.

By avoiding those three-dimensional structures, the
LDT algorithm improves not only the running times,

Figure 9: Running time in seconds to reconstruct the
models shown Legend: Co - Cocone; TC - Tight Co-
cone; TSR - Topological Surface Reconstructor; LDT -
Local Delaunay Triangulation

Figure 10: Lucy model reconstructed with LDT

but also the amount of memory used in the reconstruc-
tion process, which enable it to reconstruct models with
considerable quantity of points, as showed in the lucy
model (Figure 10).

Unfortunately, was not possible to compare the LDT
algorithm with the one developed by Gopi et al.[20],
which is another two-dimensional approach that uses
Delaunay triangulation. Basically, the Gopi’ approach
uses a sample criteria to select the candidate points in
computation of the Delaunay triangulation. The com-
parison of the two techniques must be subject of a fu-
ture work.

Another step to be analyzed is the possibility of sub-
stitute the two-dimensional Delaunay triangulation by
another kind of calculation, which cam makes this algo-
rithm even faster. Another possibility for future work is
to produce theoretical guarantees of the reconstruction,
that is, to investigate for which value of r the LDT pro-
duces a correct reconstruction of a r−sampled surface.

WSCG 2010 Communication Papers 159

ACKNOWLEDGEMENTS

The authors are grateful to Tamal K. Dey for providing
his implementations of the Cocone and Tight Cocone;
and to João Paulo Gois for his implementation of Crust
and Power Crust.

REFERENCES
[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and

C. Silva. Computing and rendering point set surfaces. IEEE
Transactions on Visualization and Computer Graphics, 9(1):3–
15, 2003.

[2] N. Amenta and M. W. Bern. Surface reconstruction by voronoi
filtering. In Symposium on Computational Geometry, pages 39–
48, 1998.

[3] Nina Amenta, Sunghee Choi, Tamal K. Dey, and N. Leekha.
A simple algorithm for homeomorphic surface reconstruction.
International Journal of Computational Geometry and Applica-
tions, 12(1-2):125–141, 2002.

[4] Nina Amenta, Sunghee Choi, Tamal K. Dey, and N. Leekha.
A simple algorithm for homeomorphic surface reconstruction.
International Journal of Computational Geometry and Applica-
tions, 12(1-2):125–141, 2002.

[5] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The
power crust, unions of balls, and the medial axis transform.
Computational Geometry, 19(2-3):127–153, 2001.

[6] Nicolas Aspert, Diego Santa-Cruz, and Touradj Ebrahimi.
Mesh: Measuring errors between surfaces using the hausdorff
distance. In Proc. of the IEEE International Conference in
Multimedia and Expo (ICME) 2002, volume 1, pages 705–708,
Lausanne, Switzerland, August 2002.

[7] D Attali. r-regular shape reconstruction from unorganized
points. Computational Geometry Theory and Applications,
10:239–249, 1998. Elsevier.

[8] Chandrajit L. Bajaj, Fausto Bernardini, and Guoliang Xu. Auto-
matic reconstruction of surfaces and scalar fields from 3d scans.
Computer Graphics, 29(Annual Conference Series):109–118,
1995.

[9] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and
G. Taubin. The ball-pivoting algorithm for surface reconstruc-
tion. IEEE Transactions on Visualization and Computer Graph-
ics, 5(4):349–359, 1999.

[10] Helton Hideraldo Bíscaro, Antonio Castelo Filho, Luis Gustavo
Nonato, and Maria Cristina Ferreira de Oliveira. A topological
approach for surface reconstruction from sample points. Vis.
Comput., 23(9):793–801, 2007.

[11] J D Boissonnat. Shape reconstruction from planar cross-
sections. Computational Vision Image, 44:1–29, 1988.

[12] Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion,
Monique Teillaud, and Mariette Yvinec. Triangulations in cgal.
Computational Geometry - Theory and Applications, 22:5–19,
2002.

[13] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.
Fright, B. C. McCallum, and T. R. Evans. Reconstruction and
representation of 3d objects with radial basis functions. In SIG-
GRAPH ’01: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 67–76.
ACM Press, 2001.

[14] B Curless and Levoy M. A volumetric method for building
complex models from range images. In Siggraph, pages 303–
312, 1996.

[15] Tamal K. Dey and Samrat Goswami. Tight cocone : A water-
tight surface reconstruction. Technical Report OSU-CISRC-
12/02-TR31, The Ohio State University, december 2002.

[16] Hebbert Edelsbrunner. Surface recosntruction by wrapping fi-
nite point set in space. Discrete and Computational Geometry.
The Goodman-Pollack Festschrift, pages 379–404, 2003.

[17] Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional
alpha shapes. ACM Transactions on Graphics, 13(1):43 – 72,
1994.

[18] Fortune. Voronoi diagrams and delaunay triangulations. In
Computing in Euclidean Geometry, Edited by Ding-Zhu Du and
Frank Hwang, World Scientific, Lecture Notes Series on Com-
puting – Vol. 1. 1992.

[19] João Paulo Gois. Reconstrução de superfícies a partir de nuvens
de pontos. -in portuguese. Master’s thesis, Universidade de São
Paulo - Instituto de Ciências Matemáticas e Computação., 2004.

[20] M. Gopi, S. Krishnan, and C. T. Silva. Surface reconstruction
based on lower dimensional localized delaunay triangulation.
In M. Gross and F. R. A. Hopgood, editors, Computer Graphics
Forum (Eurographics 2000), volume 19(3), 2000.

[21] Leonidas Guibas and Jorge Stolfi. Primitives for the manipu-
lation of general subdivisions and the computation of voronoi.
ACM Trans. Graph., 4(2):74–123, 1985.

[22] W.R. Hamilton. Elements of Quaternions. Chelsea Publishing
Company, third edition, 1969 - The original was published in
1866.

[23] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald,
and Werner Stuetzle. Surface reconstruction from unorganized
points. Computer Graphics, 26(2):71–78, 1992.

[24] Ian T. Jolliffe. Principal components analysis. Springer Us,
2002.

[25] Ravikrishna Kolluri, Jonathan Richard Shewchuk, and James F.
O’Brien. Spectral surface reconstruction from noisy point
clouds. In Sigraph, pages 11–22, 2004.

[26] D. Levin. Mesh-independent surface interpolation. Geometric
Modeling for Scientific Visualization.

[27] King-Ip Lin and Congjun Yang. The ann-tree: An index for
efficient approximate nearest neighbor search. In DASFAA ’01:
Proceedings of the 7th International Conference on Database
Systems for Advanced Applications, pages 174–181, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

[28] Boris Mederos, Luiz Velho, and Luiz Henrique de Figueiredo.
Moving least squares multiresolution surface approximation. In
SIBGRAPI 2003, 2003.

[29] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk,
and Hans-Peter Seidel. Multi-level partition of unity implicits.
ACM Trans. Graph., 22(3):463–470, 2003.

[30] John Schreiner, Carlos E. Scheidegger, Shachar Fleishman, and
Cláudio T. Silva. Direct (re)meshing for efficient surface pro-
cessing. Computer Graphics Forum, 25(3):527–536, 2006.

[31] Andrei Sharf, Thomas Lewiner, Ariel Shamir, Leif Kobbelt,
and Daniel Cohen-Or. Competing fronts for coarse–to–fine sur-
face reconstruction. In Eurographics, pages 389–398, Vienna,
september 2006.

[32] Jonathan Richard Shewchuk. Adaptive precision floating-point
arithmetic and fast robust geometric predicates. Discrete &
Computational Geometry, 18:305–363, 1996.

[33] Marek Teichmann and Michael Capps. Surface reconstruction
with anisotropic density-scaled alpha shapes. In David Ebert,
Hans Hagen, and Holly Rushmeier, editors, IEEE Visualization
’98, pages 67–72, 1998.

WSCG 2010 Communication Papers 160

Creating Continuous Force Feedback for Haptic Interaction
of Volume Data Sets

Y. Liu S. D. Laycock
School of Computing Sciences, University of East Anglia

Norwich, NR4 7TJ, UK
{yu.liu|s.laycock}@uea.ac.uk

ABSTRACT

Interacting with volumetric models via a haptic device presents an effective way of perceiving details concerning
the models internal structures. Approaches to facilitate this range from interacting directly with the volume data
to interacting with a polygonal surface derived from the data. Previous approaches have utilised a force field
to provide continuous forces such as the Force-Map method which assigns a force vector at any position in the
virtual environment. Nevertheless, the Force-Map method is still limited in simulating fast moving drilling due to
the fact that there are no forces inside the volume. It suffers from a pop through problem when the virtual drill
quickly moves against the volume object. To circumvent this problem, the work presented in this paper introduces
a Level-Box method to improve the Force-Map method by encoding the object’s internal area into a number of
levels which not only enables the user to touch the volume object by using a Force-Map, but also accelerates the
Force-Map update procedure when drilling. Users can select from a variety of virtual tools to gain continuous and
smooth force feedback during the drilling of volumetric data which increases the applicability of the approach.

Keywords

Volume haptics, Marching cubes, Force-Map haptic rendering, Level-Box,

1 INTRODUCTION

The potential for the use of volumetric data in medi-
cal applications has been well established. Recent de-
velopments in graphics accelerator cards have enabled
systems to render large and complex volumetric data
sets in a variety of different rendering styles, aiding the
observer’s perception of the data. Previous work in in-
teractive simulation of volumetric data has focused pri-
marily on visualization. By integrating haptic technol-
ogy, an important emerging area related to volumetric
visualization has developed to build up a visual hap-
tic system which enables the user to interact with the
volume data via a haptic feedback device. The visual-
izations that were linked with haptic feedback devices
to enable the user to touch the volumetric data were in-
troduced in 1993 by Iwata and Noma. They used their
approach for the haptic interaction of data produced in

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Computational Fluid Dynamics. In this case a force
could be mapped to the velocity and torque mapped to
the vorticity [5]. Virtual Sculpting systems linked to
haptic feedback devices have been available for many
years; however, these often do not ensure the modi-
fied data remains faithful to the characteristics of the
original volumetric data. In this paper, a Level-Box
approach to improve the Force-Map haptic rendering
method for drilling into surfaces based on the volumet-
ric data is presented.

Figure 1: The visual-haptic system illustrating drilling
into a volumetric object constructed from CT data.

The major objective for the design of the visual hap-
tic system is to gain a fast haptic and graphic refresh
rate at which the calculations must be efficiently per-
formed. Based on the results of analyzing human fac-

WSCG 2010 Communication Papers 161

tors, an update rate of 1KHz is required in order for a
user to perceive stable and smooth haptic feedback from
the visual haptic system. This is in contrast to the visu-
alization which must update at approximately 30Hz to
ensure the graphic scene is perceived as a smooth and
continuous animation. If the haptic update frequency
is lower than 1KHz, an obvious vibration can be felt
from the haptic device. One objective of this work is
to create a system which can accurately render volume
data at sufficient rates for both the visualization and the
haptics. For the field to move beyond today’s state of
the art, researchers must surmount a number of techno-
logical barriers. Firstly, the volume data updating algo-
rithm must be fast, especially considering the fact that
the surface representation of the volume data may be
constructed from millions of triangles. Secondly, the
haptic feedback should be rendered such that when the
probe point is moving across the voxel boundaries a
continuous force is returned to the user. Lastly, since
the haptics and visualization calculations will be per-
formed in separate threads, mechanisms are required to
ensure that each thread can be updated in a safe manner.

2 PREVIOUS WORK
A large proportion of the previous volume haptic ren-
dering approaches have concentrated on the use of a
surface-based haptic rendering technique. An interme-
diate surface can easily be extracted using Marching
Cubes to enable forces to be calculated utilizing a stan-
dard constraint-based method [15, 4]. However, this
suffers from stability problems which occur when the
surface is updated. This motivates researchers to de-
velop algorithms which directly haptically render the
isosurface extracted from the volumetric data. The di-
rect volume haptic rendering approach is capable of
providing a way to generate force feedback directly
from the volume data without extracting an intermedi-
ate representation. Even though it is able to represent
the force at any position in the volume data, the haptic
feedback generated by this method suffers from force
instabilities since it is difficult to properly decide the
rendering parameters in the force function. This is es-
pecially the case when the function is changing during
the process, such as when drilling or milling, in real
applications. Moreover, forces may vary significantly
in strength and direction which sometimes can not be
represented by a simple mapping method.

Morris et al. [12] simplifies the computations for
drilling through the use of another point-shell method to
compute haptic interactions and bone erosion for spher-
ical drill bits. In contrast to the work of Pflesser et al.
[13], Morris et al. use the data within the spherical tool
to perform bone removal as opposed to sampling points
on the tool’s surface. Both of these approaches limit
the user to drilling with a spherical drill. Eriksson et al.
[2] proposed a haptic milling surgery simulator using a

localized Marching Cubes algorithm for the visualiza-
tion. To improve the stability they employed a direct
haptic rendering method with mechanisms to remove
fall-through issues. The data inside the virtual drill is
set to a vector pointing to the centre of the voxel. The
output force is the sum of all those vectors. This ap-
proach works well when the drilling tool moves in a
small area, but a "kicking" would result when the hap-
tic test points move across the cubes’ boundaries.

A Force-Map method is proposed by Liu and Lay-
cock [6] to solve these problems which encode the
whole virtual 3D space in an invisible map for haptic
rendering and is able to generate smooth force feed-
back. It allows arbitrary shapes of drilling tools. But
simulators are still limited to haptic rendering methods
which use the surface based haptic rendering approach
for touching the object. What is more, the force calcu-
lation suffers from the pop through problem due to the
Force-Map only being calculated near to the surface.
This is particularly likely to occur when the operation
is performed by a fast moving drilling tool. In order to
alleviate these issues, the work presented in this paper
introduces a Level-Box method to improve the Force-
Map haptic rendering algorithm which enables the vi-
sual haptic system to use a single approach to rendering
for the standard interaction and also when drilling. Ad-
ditionally, it can more efficiently update the Force-Map
to gain smooth and stable force feedback during drilling
into the volume data.

McNeely et al [10] proposed a distance field method
to give an advance warning of any potential contacts
between the tool and the objects. They extend the vox-
elization of an object beyond its surface into free space
surrounding the polygonal object, marking free-space
voxels with different integer values that represent a con-
servative estimate of distance-to-surface expressed in
units of voxel size. The work presented in this paper
uses a similar distance field idea to encode the non-
surface free-space voxels into a number of layers ac-
cording to the Euclidean distance to the surface. In con-
trast to McNeely’s work, we encode the internal voxels
of the volume object in this work with our Level-Box
approach. The method is described in detail in Sec-
tion 5.

Yau et al [14] also proposed a visual haptic system for
training dental students by using surfel models. They
use an octree based box to define the internal area of
the teeth, when the drilling changes the shape of the
teeth models, the internal boxes are dynamically up-
dated which increases the octree level to create a modi-
fied surface. In spite of the advantages of using variable
shapes of drilling tools, the haptic rendering update oc-
curs under 1 kHz which does not meet the requirement
of a stable haptic rendering system.

WSCG 2010 Communication Papers 162

3 VOLUME DATA MODIFICATION
The volume-based representation is a natural choice for
rendering a collection of digital images produced by
medical scanning technologies such as Magnetic Reso-
nance Imaging (MRI) or Computed Tomography (CT).
There are a variety of graphical rendering techniques
for visualizing the three dimensional data, often with
options to display the material properties such as den-
sity and viscosity within the voxels. This has the poten-
tial to greatly enhance a user’s performance in medical
and scientific three dimensional data exploration.

When using the Marching Cubes algorithm [8], a vol-
ume can be interpreted by generating polygons repre-
senting the surface, typically constrained to a specified
value of the data. But extracting the global iso-surfaces
from the volume data based on Marching Cubes can
be time consuming especially when the volume data
is derived from many high resolution digital images.
However, in this work a local Marching Cubes algo-
rithm is employed to enable the surface to be updated
efficiently. The values of the volume data surrounding
the haptic stylus can be adjusted to less than a surface
threshold value depending on the application. By con-
sidering the material properties of the data contained
within a voxel the rate at which the data is removed can
be adjusted. Once the data has been updated, the lo-
cal Marching Cubes approach recomputes the surface
surrounding the stylus. The volume that is updated
depends on the resolution of the volume data and the
shape of the tool used for the interaction.

(a) (b)
Figure 2: (a) Octree data structure, (b) Pelvis data con-
struction using Octree data structure.

To handle large data sets, an Octree based structure
[3] is employed which enables the data to be changed
dynamically in an efficient manner. The Octree based
structure uses a hierarchical representation of the data
to efficiently detect and update localized changes to the
data [11]. Each node in the octree represents a cell
which contains triangles. Initially paths in the octree
from the root to a leaf (voxel) will only be created if
triangles forming the surface reside in the voxel, Fig-
ure 2. If the haptic stylus reaches a region and edits the
data where no surface triangles are present then a new
surface is likely to result. At this point the octree is up-
dated by traversing from the root to the leaf containing
the modified data, creating any new cells for the octree
that do not previously exist. If the data changes such

that an octree cell no longer contains triangles on the
surface, then the triangles and octree cells are removed
from the structure.

The efficiency of the approach is affected by the cho-
sen depth of the octree. There is a trade-off between
the quality of the visualization and the efficiency of the
approach. If a small octree depth is used fewer vox-
els containing large triangles will result, which can of-
ten exhibit undesirable edge aliasing. Conversely, too
many voxels caused by higher octree depths will in-
crease the computational load of updating the surface
during tool-object intersection. The Octree depth se-
lection also depends on the size of the volume data. If
the grid is too small then the visualization is more com-
plex when dealing with a huge number or a large area
of volume data.

4 SURFACE EXTRACTION AND MOD-
IFICATION

The visual haptic system presented in this paper is able
to function with an arbitrarily shaped drilling tool com-
posed of polygons. This extension strives further than
other work which only employs simplistic objects, such
as single spheres or cylinders as the drilling tools rep-
resented by implicit functions.

(a) (b)
Figure 3: (a) Original Polygonal tool, (b) Identification
of internal boxes via flood fill.

A grid of cells is constructed to encompass the whole
object. Then a flood fill algorithm can be used to de-
termine the cells that are inside the virtual tool. This
method starts by choosing a cell known to be inside the
tool object. Subsequently, it iteratively checks the 26
surrounding boxes until the boundary ones are reached.
The approach results in all the interior boxes being la-
belled as interior. Figure 3 shows the steps for voxelis-
ing the internal volume of an arbitrary polygonal tool.
The scale of the tool may also be easily adjusted to sat-
isfy the specific requirements of a given application.

During the running of the program the polygonal tool
interacts with the object derived from the volume data.
To be able to effectively modify the data whilst drilling
the volume, data points within the tool’s bounding box
are tested to determine if they are inside the tool’s vol-
ume. Firstly, each data point must be checked with the
three dimensional grid of cells to detect if the point is

WSCG 2010 Communication Papers 163

Figure 4: Polygonal tool and object interaction.

either in a boundary or interior cell. If a data point is lo-
cated in a boundary cell, then it will be further checked
against the tool’s surface triangles located in the cell.
After these steps, the values of all the data points in-
side the tool will be modified. After the data has been
changed, the bounding box volume around the modified
data points can be utilised to perform a local March-
ing Cubes algorithm to generate a new surface from the
modified volume data.

The efficiency of the method discussed above largely
depends on the size of the tool. The larger the tool used
to interact with the data, the more voxels that need to
be updated and recalculated by the Marching Cubes ap-
proach. This limits the use of the complicated tool im-
plementation. Typically the haptic stylus moves slowly
during drilling, especially when the tool interacts with
rigid objects such as bones. The volume of data that
must be changed between the adjacent graphic frames
may differ by only a small amount, or indeed maybe
exactly the same when the drilling tool does not move
across a small voxel.

(a) (b)
Figure 5: The red outlines represent the tools between
two adjacent graphic frames when drilling. The dotted
outline represents the drill tool at the previous frame,
whilst the solid outline represents the drill at the cur-
rent frame. The blue boxes represent areas that need
to be calculated by the Marching Cubes algorithm. (a)
represents the full updata, whilst (b) illustrates our ap-
proach.

In this situation, it is not necessary to update the
whole bounding box in each graphic frame because of
the largely overlapping area. Alternatively, the update
step can only consider the new area compared to the
data area in the previous frame, as shown in Figure 5(b),
which avoids calculating the overlapping voxels twice

in two frames. By using this method, the computation
of the tool-object interaction is dramatically improved
even when dealing with large polygonal tools. First of
all, the modified data is detected for later use. Then
the voxels containing the modified data are chosen to
regenerate the new surface, as shown in Figure 5(b).

5 HAPTIC RENDERING

5.1 Force-Map Algorithm
The haptic rendering method described by Eriksson et
al. [Eri05] suffers from force discontinuities when the
tool moves between the encoded cubes. Sample points
in this work are tested for contact with the volume data.
Given a sample point position, a vector calculated from
the occupancy force-map can be output. By using this
method, the force feedback is stable and smooth even
though it has a similar force cube encoding system. The
force vectors stored in the data are calculated based on
the local surface, which also benefits from the advan-
tages of the surface based haptic rendering approach.
The synchronisation of updating the graphic and hap-
tic loops enhances the fidelity of the virtual visual-
haptic system when applied to real applications. The
following steps outline the Force-Map haptic rendering
method adopted for a surface representation of dynam-
ically changing voxel data.

Initially all the normals of the triangles contained in
each octree leaf node (voxel) are averaged to result in
a single force vector representing the data in the voxel.
The larger the voxel is, the more volume data points lie
within it. Additionally, only the data inside the voxel is
assigned to a force vector while others are set to none.
After this initialisation step, all the data near to the sur-
face is set to a force vector which approximately equals
the closest surface normal.

When the surface is updated in the haptics thread the
data points that are found to lie inside the new voxel
are set to a force value based on the triangle’s face nor-
mal. If there is more than one triangle in the voxel, the
averaged face normal will be used. Some force values
in the old surface might also need to be updated since
the triangles forming the surface in the voxel may have
changed.

The force vectors stored in the data must be com-
bined appropriately before being returned to the haptic
device. When the virtual drilling tool moves into the
volume data, a haptic test point checks the surrounding
eight data values in the three dimensional space. These
eight data values are referred to as the force cube in
this work. The corners of the force cube contain the
force vectors stored in the data. Tri-linear interpola-
tion is employed here to enable an interpolated force
vector to be calculated for any position inside the force
cube. Another advantage of using the tri-linear inter-
polation method is that the haptic test point can be

WSCG 2010 Communication Papers 164

(a) (b)
Figure 6: Force-Map haptic rendering, the red arrows
represent the force vector. (a) The yellow square indi-
cates one force cube displayed in two dimensions. (b)
The same single force cube in three dimensions.

smoothly moved from one force cube to another with-
out any force discontinuities occurring between them.

5.2 Level-Box Method
In our previous work [7], two different haptic rendering
methods are employed depending on the user interac-
tion with the volume data. When touching, a surface
based method is employed. The Force-Map method is
only used for the drilling. The system needs to switch
between two totally different haptic rendering methods
which can cause problems with regard to the consis-
tency of the forces. Previously the Force-Map method
only set force vectors close to the surface, preventing
it from being employed when the user is touching the
surface. If the user quickly pushes the tool toward the
volume object, it will pop through the Force-Map.

In order to overcome this problem and enable the sys-
tem to use one haptic rendering method, this paper in-
troduces a new Level-Box method as an enhancement
to the Force-Map approach. The area inside the volume
will be partitioned into different layers. The data points
in each layer will be assigned a force vector. The deeper
the layer is, the larger the force vector will be set to the
data in that layer. Firstly, the whole volume is parti-
tioned into small boxes which are called Level-Boxes
in this paper. The size of each Level-Box matches the
size of the Octree leaf used to construct it.

5.2.1 Level-Box Construction

The Level-Boxes outside the volume object are labelled
as level -1, as shown by the empty boxes in Figure 7.
The boxes with the surface triangles are then labelled
as level 0, as shown by the yellow boxes. After that, the
neighbouring boxes of level 0 are set to level 1(repre-
sented by green boxes). This step is repeated a number
of times, until the level box reaches the centre of the
volume and every box has been assigned to a level.

The next step is to assign a force vector to each data
point. Basically, the data in the high level boxes will
be set to a larger force vector. Figure 8 (a) shows one
corner of the whole volume. Figure 8(b) shows the data
position which is also the Force-Map corner position in
2D. The data in the higher level is set to a force vector

Figure 7: Level-Box construction.

with the direction of the average of the neighbouring
lower level boxes. As shown in Figure 8(c), the yellow
box (level 1) has one data point inside. The force vector
direction will be decided by the neighbouring yellow
boxes but with larger scale. Then the data in level 2 is
decided by level 1. Following this logic, the centre data
has the greatest force vector.

(a) (b)

(c)
Figure 8: . Level-Box construction. (a) A small area of
the level boxes, (b) The data position in the level boxes,
the black points represent the data, (c) The force in the
high level green box is decided by the force in low level
yellow boxes.

When the Level-Boxes are constructed, the tool is
able to gain the correct force feedback. The deeper it
goes into the volume object, the larger the force will
be which is sent to the haptic device. The Force-Map
makes sure that the force is continuous and smooth.

5.2.2 Level-Box Updating

In the Level-Box construction step, the system also
sets up a link between adjacent lower and higher level
boxes. The force vectors in the higher level boxes are
decided by the lower level ones, thus any changes in
the lower box will affect the Force-Map in the neigh-
bouring higher level box. In this circumstance, if the
drilling tools modify the surface level boxes, the inte-
rior high level boxes get updated correspondingly. This

WSCG 2010 Communication Papers 165

link helps the low level boxes to quickly find the high
level box related to it.

Figure 9: Level-Box link between high level and low
level boxes. The arrows represent the links between a
level 0 box and its neighbouring level 1 boxes.

When the tool moves towards the volume object dur-
ing drilling, the surface will be recalculated based on
the position of the sphere. If there is no surface in the
level boxes anymore, they are changed to level -1, while
the surface boxes are set to level 0. By using the link,
the neighbouring ones will reduce the level because it
is closer to the surface. Since the level numbers are
updated, the scalar of the force vectors inside is also
changed based on which level they are located in. The
user is able to detect the difference of the surface after
the drilling.

(a) (b)
Figure 10: Level-Box updating. (a) The tool drills into
the volume object. The dotted sphere represents the
previous position of the drilling tool, while the solid one
represents the current position, (b) The surface is up-
dated and the level 0 boxes are changed. Consequently,
the high level boxes are affected.

5.3 Multi-point Haptic Rendering
For any real application, drilling with a single point
does not lead to a realistic result. An approach involv-
ing multiple test points approximating the drilling tool
is usually preferred. In this work, a number of hapic
points are distributed approximately around the surface
of the drilling tool. At each time step, each haptic point
is tested in the constructed Force-Map to calculate the
contribution to the overall haptic force.

5.4 Arbitrary Tool Haptic Rendering
Pflesser et al. [13] proposed a haptic system for virtual
temporal bone surgery which uses a modified version

(a) (b)

(c)
Figure 11: Arbitrary tool haptic rendering. (a) Peter-
sik’s et al. [13], (b) Morris et al. [1], (c) Arbitrary tool
for changing data. Red points represent the haptic test
points. Yellow points represent the data removed by the
of drilling tool.

of the Voxmap-Pointshell algorithm [9]. Their ap-
proaches sample the surface of the drilling instrument
and then generate appropriate forces at each sampled
point. A number of samples are distributed around the
drill and a ray-tracing approach is then employed to cal-
culate the force vectors towards the tool centre, which
can subsequently be combined to generate the overall
force returned to the haptic feedback device. The ray
tracing algorithm has the potential to miss voxel data lo-
cated between two rays due to an insufficient sampling
as Figure 11(a) shows. Morris et al. [1] also present
a method which calculates the force by counting the
data points inside the tool. The force direction points to
the centre of the drilling tool. Unfortunately, the hap-
tic rendering method only allows sphere drilling (Fig-
ure 11(b)). In this work, the multiple points are located
on the surface of the tool to calculate the force in the
Force-Map respectively. All the force vectors inside the
drilling tool are set to none and when the tool touches
and drills the volume the next time, the user can detect
the previously modified area.

5.5 Multi-Layer Rendering
In many applications, the properties of the simulated
materials differ depending on the location being drilled.
This is particularly the case in medical and dental ap-
plications where the material properties of each voxel
must be considered. For example drilling through soft
tissue should be very different to drilling through rigid
bone. We demonstrate that the Force-Map haptic ren-
dering method can be extended to use Multi-Layer vol-
ume data so that the trainee can feel underlying struc-
tures and material properties, such as teeth and bones.
In detail, the Force-Map method can easily incorporate

WSCG 2010 Communication Papers 166

this issue by simply setting a scaled force vector where
the scaling factor is related to the neighbouring voxel
data.

Figure 12: Multi-Layer haptic rendering.

5.6 Tangent Force Rendering
In order to enhance the force fidelity, this work also im-
plements the tangential force on tools which is an im-
portant property of the drilling application by using the
Force-Map haptic rendering algorithm. The direction
of the tangent force is opposite to the tools rotation di-
rection on the surface of the volume object.

Figure 13: Tangent force implementation.

The tangent force also depends on the drilling speed
of the tool and the properties of the drilling material.
This haptic system allows users to choose a range of
the haptic drilling speed from 200000 R/min to 400000
R/min. A faster speed will result in a greater tan-
gent drilling force in the tangent direction of the tool-
surface-contact points. Different material properties
also affect the tangent force. This work allows multi-
layer applications; the tangent force differs when the
drilling tool moves through different materials.

6 RESULTS
Figure 14 illustrates a procedurally generated sphere
along side a surface representation of a human pelvis.
The surface was extracted from 87 CT slices obtained
at the Norfolk and Norwich University Hospital, UK.

The work has been tested on a Two Quad Core
2.26 GHz processor PC with a NVIDIA Quadro
FX580 graphics card. To provide haptic feedback
a PHANToM Omni device, produced by SensAble
Technologies has been employed. By using the system,

Figure 14: The left sphere-like object is created proce-
durally whilst the right hand image was extracted from
87 CT image slices. Each slice contains 256 X 256 pix-
els.

a user can drill into rigid objects using arbitrary types
of tools constructed from polygons.

Figure 15: A graph presenting the time taken to update
the surface during drilling with a polygonal tool. The
blue line shows the result which uses octree level 5. The
red line shows the result which uses octree level 4.

The volume of the tooth has been calculated from a
data set. This data has been sampled to create a trian-
gular surface mesh. Figure 15 shows the time required
to perform the surface modification and Force-Map up-
dates during rendering, which allows users to efficiently
obtain visual cues. The Force-Map can be sampled at a
higher rate in the haptic feedback loop to obtain stable
force feedback. In Figure 15 the blue line shows that if
the octree depth is five, the display has higher resolution
but this increases the update time.

7 CONCLUSION

In this paper a Level-Box method is introduced for
assisting a Force-Map haptic rendering algorithm to
achieve real-time drilling of volumetric objects. In or-
der to gain more realistic force feedback for drilling
applications, arbitrary tool model selection has been
implemented in this work, for tools based on implicit
equations.

This paper addresses some of those challenges,
specifically in the context of simulating stable and
smooth force feedback. To further ensure that the
fidelity of the simulator is at an acceptable level, the
future work will involve the integration of drilling
sound and drilling dust simulation.

WSCG 2010 Communication Papers 167

A video demonstrating the program can
be downloaded from the following link.
http://www.urbanmodellinggroup.co.uk/drilling.wmv.

REFERENCES

[1] E. Ruffaldi E, D. Morris D, T. Edmunds T,
F. Barbagli, D. K. Pai, S. Superiore, and S. Anna.
Standardized evaluation of haptic rendering sys-
tems. Proceedings of the 14th IEEE Haptics Sym-
posium, 2006.

[2] M. Eriksson, H. Flemmer, and J. Wikander. A
haptic and virtual reality skull bone surgery simu-
lator. Proceedings of World Haptics, March 2005.

[3] J. D. Foley, A. V. Dam, S. K. Feiner, and J. F.
Hughes. Computer Graphics: Principle and prac-
tice. Addison-Wesley, 1996.

[4] C. Ho, C. Basdogan, and M.A. Srinivasan. Hap-
tic rendering: Point and ray based interactions.
In Proc. of the Second PHANToM Users Group
Workshop, 1997.

[5] H. Iwata and H. Noma. Volume haptization. In
Proc. of IEEE Symp. on Research Frontiers in Vir-
tual Reality, pages 16–23, 1993.

[6] Y. Liu and S.D. Laycock. The force-map haptic
rendering algorithm for drilling into volume data.
In WSCG 09, pages P17–20, 2009.

[7] Y. Liu and S.D. Laycock. A haptic system for
drilling into volume data with polygonal tools. In
TPCG 09, pages 10–16, 2009.

[8] W. E. Lorenson and H. E. Cline. Marching cubes:
A high resolution 3d surface construction algo-
rithm. In ACM SIGGRAPH, pages 163–169,
1987.

[9] William A. Mcneely, Kevin D. Puterbaugh, and
James J. Troy. Six degree-of-freedom haptic
rendering using voxel sampling. In ACM SIG-
GRAPH, pages 401–408, 1999.

[10] William A. Mcneely, Kevin D. Puterbaugh, and
James J. Troy. Six degree-of-freedom haptic ren-
dering improvements. In Haptics-e,3, 2006.

[11] M.Eriksson, M.Dixon, and J.Wikander. A haptic
vr milling surgery simulator using high resolution
ct data. Proceedings of Medicine Meets Virtual
Reality, 14:138–144, 2006.

[12] Dan Morris, Christopher Sewell, Nikolas Blevins,
Federico Barbagli, and Kenneth Salisbury. A col-
laborative virtual environment for the simulation
of temporal bone surgery. In In MICCAI, pages
319–327, 2004.

[13] A. Petersik, B. Pflesser, U.Tiede, and K. H.
Höhne. Haptic rendering of volumetric anatomic
models at sub-voxel resolution. In 10th Sympo-

sium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems, page 66, 2002.

[14] H. T. Yau, L. S. Tsou, and M. J. Tsai. Octreebased
virtual dental training system with a haptic device.
Computer-Aided Design & Applications, 3:415–
424, 2006.

[15] C. Zilles and J. Salisbury. A constraint based
godobject method for haptic display. IEEE Con-
ference on Intelligent Robots and Systems, pages
146–151, 1995.

WSCG 2010 Communication Papers 168

Surface Curvature Effects on Reflectance from Translucent
Materials

Konstantin Kolchin
NVIDIA Corporation, Russian branch

Arbat 10, Moscow 119002, Russia
kkolchin@nvidia.com

ABSTRACT
Most of the physically based techniques for rendering
translucent objects use the diffusion theory of light scat-
tering in turbid media. The widely used dipole diffu-
sion model [JMLH01] applies the diffusion-theory for-
mula derived for the planar surface to objects of arbi-
trary shapes. The purpose of this communication paper
is to present the very first results of our investigation
of how surface curvature affects the diffuse reflectance
from translucent materials.

1 INTRODUCTION
Translucent materials, such as human skin, marble,
wax, fruits, more scatter light than absorb it. There-
fore, when a photon enters such a material, it under-
goes many scattering events under the surface before it
leaves the material. Such a light behavior is well de-
scribed by the Bidirectional Surface Scattering Distri-
bution Function (BSSRDF) [NRH+77]. Based on the
light diffusion theory, Jensen et al. [JMLH01] sug-
gested the dipole diffusion model for BSSRDF. This
model applies an expression for reflectance from a tur-
bid half-space to arbitrarily shaped objects. The mul-
tipole [DJ05, DJ06] and quadpole [DJ08] models have
been suggested to describe more complicated geome-
tries - a multilayered slab (or half-space) and a right-
angle corner, respectively. Jensen et al. [DJ08] showed
that a big variety of shapes can be rendered by combin-
ing photon tracing and a scheme for interpolating be-
tween dipole and quadpole and between quadpole and
multipole models wherever appropriate. However, they
do not focus on how the BSSDRF itself changes as a
flat surface is replaced with a curved one. It is difficult
to devise how their interpolation scheme can be used
with approaches that do not use photon tracing - for ex-
ample, the curvature-based method [Kol07]. Our goal
is to investigate how inclusion of curvature may change
the diffusion BSSRDF model. A BSSRDF model that
includes curvature effects could be easily incorporated
into many existing approaches for rendering translucent
materials. We present here preliminary results of our
study.

2 DIFFUSION EQUATION
Under the assumption that light scattering in a turbid
medium dominates absorption, light transport in it is

well described with the diffusion theory [Far92]. The
fluence rate Ψ(r) obeys the modified Helmholtz equa-
tion [Far92]

∆Ψ−σ
2
trΨ =−D−1

δ (r− r0) (1)

where σtr =
√

3σa(σ ′s +σa) is the effective transport
coefficient, σ ′s is the reduced scattering coefficient, σa is
the absorption coefficient, D = 1

3(σ ′s+σa) is the diffusion
coefficient. We refer the reader to [JMLH01, Far92] for
explanation of the physical meaning of the quanitities.
In the above equation, we assume that there is a single
source in the medium, and it is located at a point r0.

Let us first consider the case of translucent mate-
rial occupying the half-space z > 0. The point source
is at r0 = (0,0,z0). Farrell et al. [Far92] showed
that quite an accurate solution can be obtained by us-
ing the boundary condition Ψ|z=−zb = 0 and putting
the image source at the point r0 = (0,0,−z0 − 2zb),
where zb = 2AD, and A is calculated as described in
[JMLH01, Far92]. The resulting fluence is

R(ρ,z0) =
1

4πD
[
e−σtrr1

r1
+

e−σtrr2

r2
],

where r1 and r2 are the distances to the source and im-
age source, respectively; that is,

r1 = [(z− z0)2 +ρ
2]1/2 (2)

r2 = [(z+ z0 +2zb)2 +ρ
2]1/2 (3)

The reflectance is calculated from the fluence using
the formula

R =−D∇Ψ (4)

where the gradient is evaluated at the interface. In the
planar case, this gives

R(ρ,z0) =
1

4π
[z0(σtr +

1
r1

)
e−σtrr1

r2
1

+

+(z0 +2zb)(σtr +
1
r2

2
)

e−σtrr2

r2
2

] (5)

where r1 and r2 are calculated for z = 0.
The dipole diffusion model [JMLH01] applies the

above formula to an arbitrary shaped air-material in-
terface by calculating r1 and r2 as the distance from

WSCG 2010 Communication Papers 169

a point being shaded to the source and image source,
respectively.

3 EXACT SOLUTION FOR A SPHERE
Suppose the turbid medium is confined within a sphere
having the radius R0 and the center at z = R0. In addi-
tion to Cartesian coordinates, we will also use the polar
system of coordinates with r counted from the sphere
center and θcounted from the z axis. We assume that
R0is much bigger than the mean free path for photons
scattered in the medium, we can use the same bound-
ary condition as in the planar case - namely, the fluence
rate vanishes at a distance of zb from the sphere sur-
face. In other words, Ψ is zero at a sphere of the radius
R = R0 + zb. We will solve eq. (1) with the boundary
condition Ψ|r=R = 0 following the method described in
[Mat71]. The solution of the modified Helmholtz equa-
tion 1with the zero boundary condition on the sphere
r = R can be written as

Ψ(r,θ) =


∑

∞
m=0 Am

Im+1/2(σtrr)
√

r Pm(cosθ) , r < r′

∑
∞
m=0 Bm

1√
r [Im+1/2(σtrr)×

×Km+1/2(σtrR)−Km+1/2(σtrr)×
×I(σtrR)]Pm(cosθ) , r > r′

(6)

where r′ is the distance of the point source from the
sphere center; that is, we suppose thatr0 has the polar
coordinates r = r′ and θ = 0. The functions Iv(r) and
Kν(r) are the modified Bessel functions [MA70]. The
constants Amand Bm are determined by stitching the so-
lutions 6 at the sphere r = r′. The function Ψ is con-
tinuous, but its derivative is not. In a manner similar
to that used in [Mat71], we integrate eq. 1 over an in-
finitisemally thin region confined by parts of spherical
surfaces with radiuses r = r′+ε and r = r′−ε and con-
taining the pointr0. We utilize the Gauss theorem and
get

(
∂Ψ

∂ r
|r′+ε −

∂Ψ

∂ r
|r′−ε) =

1
r′2

δ (Ω) (7)

where Ω is the solid angle variable. The delta func-
tion δ (Ω) can be decomposed in terms of the Legendre
polynomials as [Mat71]

δ (Ω) =
∞

∑
m=0

(2m+1)
4π

Pm(cosθ) (8)

Substituting eq. (8) into eq. (7) and calculating the
derivatives from eq. (6), we arrive at an equation for
Amand Bm. One more equation for them is obtained by
requiring continuity of Ψ at r = r′. Solving the resulting
system of two equations, we get

Ψ(r,θ) =
1

4πD
[

∞

∑
m=0

(2m+1)√
rr′

Im+1/2(σtrr′)×

×Im+1/2(σtrr)
Km+1/2(σtrR)
Im+1/2(σtrR)

Pm(cosθ)− e−σtr r̃

r̃
]

where

r̃ = [r2 + r′2−2rr′ cosθ]1/2,

and we used equality 10.2.35 from [MA70].
To find the reflectance, we choose r′ = R0− z0, apply

eq. 4 and set r = R0 and get

R(r,θ) =
1

4π
σtr{

∞

∑
m=0

(2m+1)√
R0r′

Im+1/2(σtrr′)×

×I′m+1/2(σtrR0)
Km+1/2(σtrR)
Im+1/2(σtrR)

Pm(cosθ)+

+[z0 cosθ −R0(cosθ −1)](σtr +
1
r1

)
e−σtrr1

r2
1
}

4 RESULTS

Figure 1: A spherical potato (left) and a marble sphere
(right) illuminated with a stencil beam, which enters at
the image center, normally to the image plane. Each
of the spheres is rendered using the exact solution pro-
posed (left part of a sphere) and the dipole diffusion
model (right part of a sphere).

We calculated the reflectance from translucent spheres
of various radiuses. The incident light is a pencil beam
entering a sphere at x = 0,y=0 . Ideally, we should con-
sider a line of sources situated along the z axis. But
it was shown in [Far92] that they all can be replaced
with a single source located z = 1/(σ ′s+σa). The plot
below shows how the reflectance depends on the dis-
tance from the point of light entrance measured along
the surface (that is, the length of a geodesic connect-
ing the entrance point and the point of interest). The
calculations were done for the scattering coefficient
σ ′s = 1mm−1and absorption coefficient σa = 0.01mm−1

(note that in [Far92], the same quantities are designated
as µ ′s and µa, respectively). These values of the scat-
tering and absorption coefficients are typical for hu-
man tissue (see [JMLH01]). It can be seen that in this

WSCG 2010 Communication Papers 170

case, the difference between the exactly computed re-
flectance and that found by the dipole diffusion model
becomes noticable only when the radius approaches 1
cm.

Figure 1 above shows visualization of light reflection
from spheres having a radius of 1 cm in two cases -
a potato, on the left, and marble, on the right. As for
the plot given below, we assume that a sphere is lit up
by a stencil beam entering the sphere at the center of
the image. The left part of each of the image corre-
sponds to the exact calculation we describe above. The
right part is computed using the diffuse dipole approx-
imation. We used the measured values σ ′s and σa re-
ported in [JMLH01]. Because the amount of reflected
light decays with distance from the entrance point very
rapidly, we applied the tone mapping operator to a cal-
culated HDR image. We chose the logarithmic mapping
operator[DMAC03], as it is simple and robust, and a
source code for its implementation is available on the
web.

As we could anticipate in advance, the diffuse dipole
model underestimate the reflectance. However, our
investigation shows that this underestimation is small
when curvature radiuses are of the scale of several cen-
timeters and more for such materials as marble, potato,
human tissue.

The program for computing the solution given by the
last formula of the previous section was written using
CUDA [NVI], which allowed a roughly 10x speed-up
as compared to a CPU implementation.

0 2 4 6 8 10 12 14 16
10

−5

10
−4

10
−3

10
−2

10
−1

Distance along surface (mm)

R
ef

le
ct

an
ce

 (
1/

m
m

2)

Dipole R
0
=10 mm

Exact R
0
=10 mm

Dipole R
0
=50 mm

Exact R
0
=50 mm

5 FUTURE WORK
The investigation presented here definitely lacks com-
parison of analytical results with Monte-Carlo simula-
tions. We are working on this and plan to report them
elsewhere when the work is complete. Also, we would
like to consider the case of arbatrarily curved surfaces.
It would be interesting to try to build a phenomenolog-
ical model for reflectance from a translucent material
with an arbitrary surface. It can be sought as a function
of principal curvatures at the point of light entrance. An
approximate solution for slightly curved surfaces can
serve as a base in attempts to construct a phenomeno-
logical model. Monte-Carlo simulations can be used
for validation of such a model. A big potential of the
phenomenological approach to constructing BSSRDF

models has been proven by successfull development of
an empirical BSSRDF model described in [DLR+09].
A BSSRDF model including surface curvature could be
incorporated into the curvature-based method [Kol07].
It could be used for investigating perceptional effects,
such as color shift at the terminator line [Gre04].

REFERENCES
[DJ05] Craig Donner and Henrik Wann Jensen.

Light diffusion in multi-layered translu-
cent materials. In SIGGRAPH ’05: ACM
SIGGRAPH 2005 Papers, pages 1032–
1039, New York, NY, USA, 2005. ACM.

[DJ06] Craig Donner and Henrik Wann Jensen.
Rapid simulation of steady-state spa-
tially resolved reflectance and transmit-
tance profiles of multilayered turbid mate-
rials. J. Opt. Soc. Am. A, 23(6):1382–1390,
2006.

[DJ08] Craig Donner and Henrik Wann Jensen.
Rendering translucent materials using
photon diffusion. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 classes, pages 1–
9, New York, NY, USA, 2008. ACM.

[DLR+09] Craig Donner, Jason Lawrence, Ravi
Ramamoorthi, Toshiya Hachisuka, Hen-
rik Wann Jensen, and Shree Nayar. An em-
pirical bssrdf model. ACM Trans. Graph.,
28(3):1–10, 2009.

[DMAC03] Frederic Drago, Karol Myszkowski,
Thomas Annen, and Norishige Chiba.
Adaptive logarithmic mapping for dis-
playing high contrast scenes. In Pere
Brunet and Dieter W. Fellner, editors,
Proc. of EUROGRAPHICS 2003, vol-
ume 22 of Computer Graphics Forum,
pages 419–426, Granada, Spain, 2003.
Blackwell.

[Far92] Patterson M.S. Wilson B. Farrell, T.J. A
diffusion theory model of spatially re-
solved, steady-state diffuse reflectance for
the noninvasive determination of tissue op-
tical properties in vivo. Med Phys., Jul-
Aug, 19(4):879–88, 1992.

[Gre04] Simon Green. GPU Gems: Programming
Techniques, Tips, and Tricks for Real-Time
Graphics, chapter Real-Time Approxima-
tions to Subsurface Scattering, pages 264–
266. Addison-Wesley Professional, March
2004.

[JMLH01] Henrik Wann Jensen, Stephen R.
Marschner, Marc Levoy, and Pat Hanra-
han. A practical model for subsurface
light transport. In SIGGRAPH ’01: Pro-
ceedings of the 28th annual conference

WSCG 2010 Communication Papers 171

on Computer graphics and interactive
techniques, pages 511–518, New York,
NY, USA, 2001. ACM Press.

[Kol07] Konstantin Kolchin. Curvature-based
shading of translucent materials, such as
human skin. In GRAPHITE ’07: Pro-
ceedings of the 5th international confer-
ence on Computer graphics and interac-
tive techniques in Australia and South-
east Asia, pages 239–242, New York, NY,
USA, 2007. ACM.

[MA70] Abramovitz M. and Stegun I. A. Hand-
book of Mathematical Functions. Dover
Publications, 1970.

[Mat71] Walker R. L. Mathews, J. Mathemati-
cal Methods of Physics. Addison Wesley
Longman, 1971.

[NRH+77] Fred E. Nicodemus, J. C. Richmond, J. J.
Hisa, I. W. Ginsberg, and T. Limperis. Ge-
ometrical Considerations and Nomencla-
ture for Reflectance. Monograph number
160. National Bureau of Standards, 1977.

[NVI] NVIDIA. Cuda architecture.
http://www.nvidia.com/
object/cuda_get.html.

WSCG 2010 Communication Papers 172

Fingerprint Alignment Based on Local Feature

Combined with Affine Geometric Invariant

Chuchart Pintavirooj
Department of Electronics

Faculty of Engineering
King Mongkut’s Institute of
Technology Ladkrabang

Thailand 10520
kpchucha@kmitl.ac.th

Fernand S. Cohen
Department of Electrical and

Computer Engineering
Drexel University

 Philadelphia, PA 19104

 Woranut Iampa
Department of Electronics

Faculty of Engineering
King Mongkut’s Institute of
Technology Ladkrabang

Thailand 10520
woranut_nuch@hotmail.com

ABSTRACT
In this paper we introduce a novel method of fingerprint alignment that uses the intrinsic geometric properties of
minutiae-based triangles combined with the geometric invariant. The minutiae points are extracted from the
fingerprint image and a Delaunay (DL) triangulation is constructed from these minutiae points resulting in a
series of triangles. Corresponding minutiae points are established using local affine invariants constructed from
the local minutia-based triangles. Triangles that are distorted by noise or have no counter part on the query are
discarded. We rely only on “strong” matches that are reliable and present, for example, where the error metric
between the local absolute invariants is below a set threshold. The correspondences of such matches are then
used to estimate transformation parameters. The performance of our method is represented by computing the
distance map error between a template and a query fingerprint after undoing the transformation, computed from
the ridge structures of the two fingerprints. In conclusion, the proposed method can be used to find the
corresponding minutiae and align any fingerprints considered into affine transformation, in the presence of noise
including the partial occlusion.

Keywords
Fingerprint Alignment, Geometric Invariant, Delaunay Triangulation

1. INTRODUCTION
Biometric recognition based on distinctive
anatomical and behavioral characteristics is used to
recognize an individual in terms of verification and
identification purposes. The biometric systems are
applied to building access systems, authenticating
person to access facilities, electronic access control
including forensic identification. Commonly used
biometric identifiers are human’s face, fingerprint,
iris, signature, and voice. The fingerprint is one of
the most widely used biometric identifiers because of
its uniqueness and immutability. The most evident
structural characteristic of a fingerprint is a pattern of
interleaved ridges and valleys.

Fingerprint matching can be categorized into 3 main
approaches [Mal09] which are (i) correlation-based
matching; (ii) minutiae-based matching; and (iii)
non-minutiae feature-based matching. Correlation-
based fingerprint matching is the simplest and
earliest method. In the matching scheme, two
fingerprint images consisting of template and query
are superimposed in order to estimate the correlation
between the corresponding pixels of the two images.
For example, the differential matching rate based on
the cyclic structure in the local area of fingerprint
pattern was used to calculate the correlation value in
the fingerprint verification algorithm [Hat02a].
Additionally, the correlation-based technique was
applied based on coherence of the orientation field to
match the fingerprints scanned from high resolution
and touchless sensors [Lin09a]. Consequently, this
technique was developed to the correlation filters
tolerated to distorted fingerprints [Ven03a]. The
performance of the correlation-based technique
significantly relies on the alignment accuracy, which
can be quite sensitive to transformation changes.
Minutiae-based matching is the technique for
fingerprint matching to find the alignment of

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2010 Communication Papers 173

minutiae feature sets between the template and the
query fingerprint images. These minutiae, ridge
endings and bifurcation, are characterized by their
attributes such as location, orientation, and minutiae
types. The local minutiae matching [Mal09] can be
classified according to the local structures which are
nearest neighbor-based structures [Jea05a], [Chi06a],
fixed radius-based structures [Che06a], [Fen08a],
minutiae triangles [Tan03a], [Che06b] and texture-
based local structures [Tic03a], [Ben07a]. For the
non-minutiae feature-based matching, due to the
complexity of minutiae extraction in quite low-
quality fingerprint images, other features of the
fingerprints are extracted from the ridge pattern, for
instance, local ridge orientation [Yag05a], [Liu06a]
and frequency, shape, texture information [Jai00a],
and sweat pores.
From these three approaches of fingerprint matching,
the local minutiae-based matching is the most widely
used technique. Moreover, many of minutiae-based
matching construct Delaunay triangles from the
minutia set and extract various features from these
triangles. In [Beb99a], the ratio of side of triangle
and cosine of the angle between the smallest two
sides were used as the invariant features for the
fingerprint indexing. The relative position and
orientation of each minutia with respect to its
neighbor of triangle structure were utilized in the
fingerprint minutiae-matching algorithm [Par04a].
The invariant feature vectors consisting of the
distance between the two minutiae and the relative
radial angle between directions of each two minutiae
were obtained from the minutia triangle and were
then used together with the growing and fusing
region of minutiae structures to match the
fingerprints [Xu07a]. In addition, the minutiae type,
the minimum and median angles, the length of the
longest edge of the triangle including the difference
between angles of two edges and orientation field at
any minutiae were determined from the low-order
Delaunay triangles to find the corresponding
triangles for the fingerprint identification [Lia07a].
In this paper we introduce a novel method of
fingerprint alignment that uses the intrinsic geometric
properties of triangles constructed from minutia
triplet to align minutiae points on the query and the
template. Finding correspondences using invariants
allows a fast non-iterative procedure for alignment,
additionally, it is robust to noisy or missing data
since these invariants are based on the local triangles
constructed from the minutiae points. Triangles that
are distorted by noise or have no counter part on the
query are discarded. We rely only on “strong”
matches that are reliable and present, for example,
where the error metric between the local absolute
invariants is below a set threshold. The

correspondences of such matches are then used to
estimate transformation parameters.
This paper is organized as follows. Section 2 is
related to Delaunay triangulation. Section 3 describes
minutiae-based matching in the presence of affine
transformation including estimation of linear
transformation. Section 4 shows experimental results
on the proposed algorithm. Discussion and
conclusion are given in Section 5.

2. DELAUNAY TRIANGULATION OF
MINUTIAE SET
Given a set ℜ of minutiae points N21 m,...,m,m , a
Voronoi diagram divides the region into sub-region
about each point im such that all points around im
are closer to im than any other minutiae point. By
connecting an edge between each pair of centers in
the Voronoi diagram, a Delaunay triangulation is
formed. A Delaunay Triangulation possesses
attractive properties that make them very suitable for
fingerprint matching [Beb99a]. The following
properties in particular are extremely relevant to
fingerprint matching:
(i) Affine invariance: A Delaunay Triangulation
constructed from minutiae subjected to an affine
transformation is still a Delaunay Triangulation
whose minutiae points are obtained by subjecting the
original minutiae points to that affine transformation.
(ii) Local shape controllability: Any local
deformation of minutiae is locally confined. This is
very important when trying to deal with fingerprint
identification in the presence of missing parts or
noise.
(iii) Uniqueness: A Delaunay Triangulation is
unique. The same set of minutiae always generates
the same Delaunay Triangulation.
(iv) Robustness: A Delaunay Triangulation is
immune to noise. Any disturbance to the vertex does
not significantly affect the triangulation pattern.
(v) Linear computational time complexity: This
makes the algorithm suitable for on-line fingerprint
matching system.

3. MINUTIAE-BASED MATCHING
An overview of fingerprint alignment using
minutiae-based matching is shown in Figure 1. A
Delaunay triangulation is constructed from the
minutiae sets resulting in series of triangles. Then,
the corresponding minutiae are established prior to
determine transformation parameters and align the
two fingerprint images.
In this paper, we present the fingerprint matching in
the case of the fingerprint derived from a different

WSCG 2010 Communication Papers 174

scanner and with a different shear on the query
sample. It is considered into an affine transformation
rather than a rigid transformation. Therefore, finding
the matched triangle will be done based on absolute
affine invariant.
From a relative invariant, the areas of the two
corresponding triangles are related to each other
through the determinant of linear transformation
matrix as shown in Equation 1. From the equation,
A(k) are the area patches of sequence of triangles on
the template and Aa(k) are those of triangles on the
query.

nkkA
aa
aa

kAa ,...,2,1),()(
2221

1211 == (1)

By taking the ratio of the consecutive area of the
sequence, absolute invariants are obtained. These
absolute invariants are applied to find the matched
triangles between the two fingerprints according to
following algorithm:
(i) Obtain the set of triangles for the template and the
query fingerprint using the Delaunay triangulation
process.
(ii) Find the list of triangles having the minutiae as a
vertex and order their sequence in a counter-
clockwise direction.
(iii) Compute the absolute invariant by taking the
ratio of the consecutive area of ordering triangles.
(iv) Search for the longest string of absolute invariant
that matched between the template and the query.
Given one minutia in the unknown, searching the
matched criterion between each pair of absolute
invariant, says invariant ith and jth, is defined by
Equation 2.

ξε <
−

= 100
)(

)()(
% x

iI

jaIiI
 (2)

(v) Circular shift of the absolute invariant is
performed both in each sequence of triangles
corresponding to a vertex and the list of triangles
having the minutiae as a vertex.
(vi) Declare the match on the longest string (N) of
triangles that yields minimum averaged error of

N
i

i∑ ε%

Eventually, the matched triangles are obtained from
the algorithm described above. The vertices of the
matched triangles are considered as the
corresponding minutiae. The corresponding
minutiae between template and query fingerprint are
used to compute the transformation matrix. The

matrix is estimated in a least square sense, from
normal equation as shown in Equation 3.

)()(1 FGGGT TT −= (3)

Where

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
..
..
..
1

.

.

.

1
22

11

nn y

y

x

x
yx

F

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1'
..
..
..
1'

'
.
.
.

'
1''

22

11

nn y

y

x

x
yx

G

and where F and G are the sets of corresponding
minutiae between template and inquiry fingerprint.

4. EXPERIMENT AND RESULTS
Two fingerprints of thumb of the same individual
shown in Figure 2 were scanned with a fingerprint
scanner of L SCAN 100R. The resolution of the
scanner is 500 pixels per inch (ppi). Prior to the
computation of DL triangulation, the pre-process was
performed including Gaussian blurring, Gabor
filtering, thinning and minutia detection. Only two
types of minutia were interested including ridge
ending and bifurcation as represented in Figure 3.
The DL triangulation of minutiae of the two
fingerprints is shown in Figure 4.
As a result, according to the algorithm described in
Section 3, the matched triangles of the two
fingerprint images were found as shown in Figure 5.
The vertices of the corresponding triangles were used
as to estimate transformation parameters. The two
fingerprint images before and after the alignment are
shown in Figure 6a and 6b, respectively. Since the
true correspondences of the scanned ridge points are
not known, we elect to use the distance map that
displays the distance between any point of one ridge
coordinate and the closest point on the other image
after undoing the transformation to the second image.
The average distance map before and after the
alignment are 39.8519 and 23.1273 pixels,
respectively. The alignment errors on average before
and after the alignment are 10.71% and 6.22% of the
size of the finger, respectively.
Moreover, the results of fingerprint matching in the
presence of noise are shown in Figure 7. The two
fingerprint images before and after alignment are
shown in Figure 8. The average distance map before
and after the alignment are 2.0424 and 1.2852 pixels,
respectively. The alignment errors on average before
and after the alignment are 0.55 % and 0.35% of the
size of the finger, respectively.

WSCG 2010 Communication Papers 175

Figure 1. An overview of fingerprint alignment

using minutiae-based matching.

a) b)

Figure 2. Template (a) and query (b) fingerprints

a) b)

Figure 3. Minutiae position of template (a) and query
(b) fingerprints. Cross signs indicate ridge endings

and circle signs indicate ridge bifurcations.

a) b)

Figure 4. DL triangulation constructed from the
minutiae of the template (a) and the query (b).

a) b)

Figure 5. Matched triangles of the template (a) and
the query (b) derived from the minutia-based

matching

a) b)
Figure 6. Two fingerprints before (a) and after (b)

alignment.

a) b)

Figure 7. Matched triangles of the template (a) and
the query (b) fingerprints in the presence of noise

a) b)
Figure 8. Two fingerprints in the presence of noise

before (a) and after (b) alignment

WSCG 2010 Communication Papers 176

5. DISCUSSION AND CONCLUSION
In this paper, we introduced a geometric-based
method to perform shape matching by aligning
fingerprint image. For the 2D-to-2D alignment, a set
of minutia points are extracted. The fiducial points
were local and hence are well suited to deal with the
partial alignment problem (occlusion). This is sharp
contrast to other geometric invariant methods like
moments and Fourier descriptors that are global in
nature. To find correspondences between the minutia
points on the two fingerprint images, a set of
geometric invariants were determined based on the
triangles constructed from sets of the minutia point
triplets. After the correspondences were established,
the parameters of a relevant transformation were
estimated and the two images were aligned. The
performance of our method is demonstrated by the
ability to register the fingerprint image scanned
under a host of shape transformations. In conclusion,
the proposed method can be used to find the
corresponding minutiae and align any fingerprints in
case considered as the affine transformation, the
presence of noise including the partial occlusion.

6. REFERENCES
[Beb99a] Bebis, G., Deaconu, T., and Georgiopoulos, M.

“Fingerprint identification using Delaunay
triangulation,” in IEEE Int. Conf. on Intelligence, pp.
452-459, 1999.

[Ben07a] Benhammadi, F., Amirouche, M.N., Hentous,
H., Bey Beghdad, K., and Aissani, M. “Fingerprint
matching from minutiae texture maps,” Pattern
Recognition, vol. 40, pp. 189-197, 2007.

[Che06a] Chen, X., Tian, J., and Yang, X. “A new
algorithm for distorted fingerprints matching based on
normalized fuzzy similarity measure,” IEEE Trans.
Image Process., vol. 15, no. 3, pp. 767-776, 2006.

[Che06b] Chen, X., Tian, J., Yang, X., and Zhang, Y. “An
algorithm for distorted fingerprint matching based on
local triangle feature set,” IEEE Trans. Inf. Forensics
and Security, vol. 1, no. 2, 2006.

[Chi06a] Chikkerur, S., Cartwright, A.N., and
Govindaraju, V. “K-plet and coupled BFS: A graph
based fingerprint representation and matching
algorithm,” Proc. Int. Conf. on Biometrics, LNCS
3832, pp. 309-315, 2006.

[Fen08a] Feng, J. “Combining minutiae descriptors for
fingerprint matching,” Pattern Recognition, vol. 41,
no.1, pp. 342-352, 2008.

[Hat02a] Hatano, T., Adachi, T., Shigematsu, S.,
Morimura, H., Onishi, S., Okazaki, Y., and Kyuragi, H.
“A fingerprint verification algorithm using the
differential matching rate,” in Proc. Int. Conf. on
Pattern Recognition (16th), vol.3, pp. 799-802, 2002.

[Jai00a] Jain, A.K., Prabhakar, S., Hong, L., and
Pankanti, S. “Filterbank-based fingerprint matching ”
IEEE Trans. Image Process., vol. 9, pp. 846-859, 2000.

[Jea05a] Jea, T.Y., and Govindaraju, V. “A minutia-based
partial fingerprint recognition system,” Pattern
Recognition, vol. 38, no. 10, pp. 1672-1684, 2005.

[Lia07a] Liang, X., Bishnu, A., and Asano, T. “A robust
fingerprint indexing scheme using minutiae
neighborhood structure and low-order Delaunay
triangles,” IEEE Trans. Inf. Forensics and Security,
vol. 2, No. 4, pp. 721-733, 2007.

[Lin09a] Lindoso, A., Entrena, L., Liu-Jimenez, J., and
Millan, E.S. “Correlation-based fingerprint matching
with orientation field alignment,” in Proc. Int. Conf. on
Biometrics, LNCS 4642, pp. 713-721, 2009.

[Liu06a] Liu, L., Jiang, T., Yang, J., and Zhu, C.
“Fingerprint registration by maximization of mutual
information,” IEEE Trans. Image Process., vol. 15, no.
5, 2006.

[Mal09a] Maltoni, D., Maio D., Jain A.K., and Prabhakar
S., Handbook of Fingerprint Recognition, 2nd ed.,
Springer-Verlag: London, pp. 168-233, 2009.

[Par04a] Parziale, G., and Niel, A. “A fingerprint
matching using minutia triangulation,” Int. Conf. on
Biometrics Authentication, LNCS 3072, pp. 241-248,
2004.

[Tan03a] Tan, X., and Bhanu, B. “A robust two step
approach for fingerprint identification,” Pattern
Recognition Letters, vol. 24, pp. 2127-2134, 2003.

[Tic03a] Tico, M., and Kuosmanen, P. “Fingerprint
matching using an orientation-based minutia
descriptor,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 25, no. 8, pp. 1009-1014, 2003.

[Ven03a] Venkataramani, K., and Vijaya Kumar, B.V.K.
“Fingerprint verification using correlation filters,” in
Proc. Int. Conf. on Audio-and Video-Based Biometric
Person Authentication, LNCS 2688, pp. 886-894, 2003.

[Xu07a] Xu, W., Chen, X., and Feng, J. “A robust
fingerprint matching approach: growing and fusing of
local structures,” Proc. Int. Conf. on Biometrics, LNCS
4642, pp. 134-143, 2007.

[Yag05a] Yager, N., and Amin, A. “Coarse fingerprint
registration using orientation fields,” EURASIP J.
Appl. Signal Process., no. 13, pp. 2043-2053, 2005.

WSCG 2010 Communication Papers 177

WSCG 2010 Communication Papers 178

Chrome, Gold and Silver on the Screen

Julia Wucharz

Hochschule Bremen

University of Applied Sciences

Flughafenallee 10

28199 Bremen, Germany

wucharz@gmx.de

Jörn Loviscach

Fachhochschule Bielefeld

University of Applied Sciences

Wilhelm-Bertelsmann-Str. 10

33602 Bielefeld, Germany

joern.loviscach@fh-bielefeld.de

ABSTRACT
A plausible rendering of metallic effects on a computer display is of high importance for 3D representations—as

used in advertising and sales—and for pre-visualizing print designs that include special inks such as gold and/or

silver. A human viewer recognizes these materials by their specific reflection properties. Hence, simulating them

requires taking the illumination from the environment and the position of the viewer’s head into account. We

demonstrate that this can be achieved in a Web-based application that leverages the webcam installed on the

user’s computer. Thus, metallic color effects can be made available almost ubiquitously, in particular in Web

shops.

Keywords
Lighting-sensitive displays, head-tracking, virtual reality, Web-based applications

1. INTRODUCTION

A car manufacturer’s Web site may show the newest

model of that brand as an almost photorealistically

rendered 3D object. Typically, a canned environment

map is employed to simulate the look of parts made

of chrome. The rendered image does not depend,

however, on the viewer’s position so that the illusion

breaks down when the user moves his or her head.

The reproduction of metallic effects has been ad-

dressed even less in prepress applications, that is:

applications that deal with simulating the look of a

printed sheet of paper. Color management systems

have been employed for more than a decade to ensure

the optimal simulation of matte color prints on com-

puter displays. Current color management systems do

not, however, simulate metallic printing inks.

With 3D catalogs and 2D prepress as two fields of

application in mind we have developed a Web-based

system (see Figure 1) to address these issues in the

reproduction of metallic colors. The system reads

data from the user’s webcam, leveraging the fact that

webcams have become household items and mostly

are already integrated in the screen bezels of note-

book computers. Thus, the method cannot solely be

used in software locally installed on the computer.

Rather, it is also available to electronic product cata-

logs as used by Web shops and to online print ser-

vices that want to show the effect of non-standard

printing inks in advance. The contributions of this

work to the state of the art comprise

• the use of the webcam to track the position

of the viewer’s head—in addition to captur-

ing the illumination—and

• the integration of all components into a

Web-based application.

This paper is structured as follows: Section 2 outlines

relevant related work on displays for virtual and aug-

mented reality and on color reproduction. Section 3

describes the architecture of the prototype system, the

implementation of which is covered by Section 4.

Section 5 reports the results achieved; and Section 6

concludes the paper, indicating directions for future

research.

2. RELATED WORK

Displays that react to their environment have been

proposed at highly different levels of complexity:

Ropinski et al. [Rop04] create an environment map

from the camera image to improve the look of 3D

objects inserted into augmented reality displays, a

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2010 Communication Papers 179

technique that was already outlined by Miller

[Mil95]. Daniel [Dan05a] employs a camera with a

fisheye lens to capture an environment map and illu-

minate 3D objects displayed on the screen through

pre-computed radiance transfer. This is limited to

diffuse lighting. The exposure time of the camera

alternates between a long and a short setting to syn-

thesize a higher dynamic range. Nayar et al. [Nay04a]

describe a display that makes similar use of a fisheye

lens but employs a large data-compressed collection

of pre-rendered or pre-captured images for full re-

lighting including specular highlights.

Fuchs et al. [Fuc08a] discuss options to build passive

reflectance field displays, that is: displays that react

to illumination—in this case illumination from be-

hind. Using microlens arrays and LC display panels

in a similar fashion, Koike and Naemura [Koi08a]

demonstrate a “BRDF display,” in which the direc-

tional response to the incoming illumination can be

controlled digitally. Reproducing metallic effects

with such a system would, however, require a huge

angular resolution to produce appropriately sharp

reflections.

In a patent application [Ker09] that has been pub-

lished after the submission of this paper, Kerr and

King of Apple, Inc., propose to track the user’s

head—for instance through a camera—to simulate

3D effects on a 2D screen. The user may for instance

“look around” the edges of window in the foreground

to see what is behind; including reflections of the

environment is mentioned, too. Mannerheim and Nel-

son [Man08] propose using a camera to track the

location of the user’s head in order to adjust a binau-

ral audio signal presented through loudspeakers.

Many goggle-free (i.e., autostereoscopic) 3D virtual

reality displays employ head-tracking to project the

left and right partial images onto the respective eye of

the user; for an example, see [San05a]. The data thus

gained can in principle be employed to render specu-

lar and mirroring reflections based on the actual posi-

tion of the viewer.

Color management systems [Sto04a] are a standard

amenity of current computer operating systems. They

operate on the basic principle of converting colors

from device-dependent spaces such as RGB and

CMYK to device-independent spaces such as XYZ or

CIELAB. This conversion is described through pro-

files for each input and output device such as camera,

scanner, display, or printer. Current color manage-

ment systems only support perfectly diffuse reflection

Figure 1. The system takes the position of the viewer’s head (two positions shown) and the illumination

into account to simulate metallic effects.

WSCG 2010 Communication Papers 180

Figure 3. The environment cube map is built from

the camera’s input through cropping, the repeti-

tion of the final rows and columns, and feathering.

models. Whereas color models for metallic inks have

been researched into [Her03a], they have not yet

found their way into off-the-shelf prepress software

solutions.

3. ARCHITECTURE

This work focuses on rendering a sheet of paper or a

single view of an object and trying to create as lean

and hence Web-compliant a system as possible.

Hence, we confine ourselves to working with two-

dimensional maps instead of operating on complete

three-dimensional meshes as has been done in former

work on Mixed Reality. The input to the system con-

sists of several maps, which typically are stored on

the server side: the color data for diffuse reflection (a

standard RGB image), a normal map (encoded as

RGB image), and a specularity map (encoded as

grayscale image) that defines the blend between matte

and metallic behavior per pixel.

The non-metallic part of the model is rendered with

the Lambertian model [Bli77]. The metallic part em-

ploys the Cook-Torrance model [Coo82] with fully

editable parameters. In the software prototype, these

are offered as controls on the graphical user interface.

In an actual application, however, they would be set

and frozen during the authoring phase and then be

stored as part of the media file or in a configuration

file.

To adapt the sharpness of the reflected environment

to the selected sharpness of the highlights, the envi-

ronment map can be sampled down by an adjustable

power of two. Figure 2 shows the overall architec-

ture.

To provide a system that works over the Web with a

typical computer on the client side we elected to em-

ploy a standard webcam image instead of an image

shot through a fisheye lens. The image taken by the

webcam is used for three purposes:

First, a cube map of a plausible environment is build

from the image. The front face of the cube is formed

by the camera image as such, cropped from both the

left and right side by the eighth part of its width. The

remaining parts on the left and right are put into the

left and right faces of the cube map and extended

through repetition of the last pixel column. The bot-

tom and the top face of the cube map are formed

through repetition of the first row or the last row of

the camera image, respectively. To partially hide the

repetitions, the lateral faces are feathered toward

black at their ends, see Figure 3.

Second, a coarse-grained version of the camera image

is searched for the brightest spot. For the rendering, a

light source with this color is placed accordingly.

Thus, one strong specular reflection is taken into ac-

count without high dynamic range imaging and with-

out complex rendering algorithms, see Figure 4.

Third, the user’s head is found in the camera image

using an existing software library (see Section 4). The

center of the head is used to define the view direction

for the rendering, see Figure 5. In case no webcam is

available—for example, out of privacy concerns—,

the user can choose to steer the viewing position

Figure 2. The system reads three two-dimensional

maps and the image stream from the webcam to

feed the pixel shader used for rendering.

WSCG 2010 Communication Papers 181

Figure 5. A point slightly above the centroid of the

largest rectangle returned by the face detector

controls the view direction of the lighting model.

Figure 4. To determine a position for a single

dominant light source, the camera image (left) is

sampled down to large blocks (right).

through the mouse and apply one of several environ-

ment maps included with the software.

4. IMPLEMENTATION

The prototype has been developed in ActionScript 3

using the Adobe Flex Builder 3 development envi-

ronment based on the Flex software development kit

3.4 targeting Adobe Flash Player version 10 or

newer.

The face-tracking component employs the “Marilena”

port [Mas09a] of the face detection in the OpenCV

library. This detector [Vio01] employs a cascade of

simple classifiers that use the contrast between aver-

ages over rectangular parts of the image. These aver-

ages can be computed quickly through a summed-

area table. Consequently, the features being detected

resemble Haar wavelets. The training data that has

been generated upfront is based on a variant of the

AdaBoost. In this case, during training the best fea-

tures (that is: sets of rectangles) are found and the

classifiers are adjusted, whereas a classical AdaBoost

would only concern the latter step.

The rendering has been realized through a shader

routine developed with Adobe’s Pixel Bender Toolkit

1.5 [Ado09a]. PixelBender comprises of a basic in-

teractive development environment to build image

processing routines (called “kernels”) in a program-

ming language resembling the OpenGL Shading Lan-

guage GLSL. The range of available functions corre-

sponds to a pixel shader in standard GPU program-

ming. The kernels thus created can be connected into

dataflow graphs and can be compiled to byte-code to

be loaded and executed in Flash Player 10.

As the Pixel Bender Toolkit as such offers GPU ac-

celeration for the kernels, it is foreseeable that future

versions of Flash Player also execute kernels on the

GPU instead of running them on the CPU as the cur-

rent version does. Then a vital part of the acceleration

offered by the graphics processor can be leveraged

even in this Web-based software. The circumstance

that Pixel Bender only targets pixel processing but

not mesh processing fits nicely to the scope of our

application.

5. RESULTS

We measured the performance of the system on an

Apple MacBook computer, which runs Mac OS X

10.5.8., is equipped with an Intel Core 2 Duo proces-

sor running at 2.2 GHz and an integrated webcam, It

does not contain a dedicated graphics chip but uses

the Intel GMA X3100 chipset graphics instead.

At an image size of 512 x 384 pixels, the software

prototype with all functions applied runs at 15 frames

per second; at an image size of 615 x 461 pixels, this

rate decreases to 8 frames per seconds. With all cam-

era functions switched off, the rendering alone easily

achieves 30 frames or more per second. This shows

that the processing of the camera image is the step

that limits the performance.

One may hope that future application frameworks

grant direct access to head-tracking data and thus

relieve the application from such computations. Most

popular webcams already come with robust and com-

putationally lean integrated head-tracking to add 3D

items such as hats or sunglasses to the user’s face.

Currently, however, there is no official way to access

these head-tracking data from other software.

The .swf file that is transferred to the client computer

and contains the complete code of the application

possesses a size of 260 KB. The three maps (diffuse

WSCG 2010 Communication Papers 182

color, normal, specularity) add to this size; their byte

count depends heavily on the compression used.

The pixel repetitions used to build the environment

cube map (see Figure 3) may become visible in ex-

treme situations, namely if large, flat and perfectly

mirroring surfaces are viewed from head positions

that are strongly off-center. In all other cases, the

details of the texture and specularity maps and/or the

blurriness of the reflection hide these artifacts. This

becomes apparent in Figure 6, which also demon-

strates the use of our system with two-dimensional

normal maps of three-dimensional meshes: Even

though the object does not rotate, the look of polished

metal is reproduced faithfully.

For speed and simplicity, the color computations are

executed in RGB space and employ the automatic

clamping of the RGB components. Thus, bright high-

lights—as they are more or less required for metallic

effects—appear color-shifted toward white. For in-

stance, the internally computed color (1.9, 1.5, 0.9)

does not appear on the display screen as reddish or-

ange but as (1.0, 1.0, 0.9), which is a slightly yellow-

ish white. Even though this effect is only apparent to

the trained eye, a color clamping that restricts the hue

of the color to its original value could suppress it, at

the cost of less brighter highlights.

6. CONCLUSION AND OUTLOOK

We have demonstrated a system that plausibly simu-

lates of metallic colors but remains inexpensive in

terms of computer hardware and computational ef-

fort. In particular, the system leverages standard In-

ternet technology and can thus be employed in Web

shops, electronic advertisements, etc.

Future developments can target the precision of the

simulation of the lighting, possibly turning the plau-

sible result into an almost visually exact one. Doing

so would require dealing with camera calibration,

generating environment maps with a high dynamic

range from a standard camera [Dan05a], and creating

cheap but precise ancillary lenses to turn a standard

webcam into a fisheye camera. The reproduction of

perfectly mirrored reflections on extended flat sur-

faces could be improved through replacing the pixel

repetition in the cube map by a synthesized texture.

Strong highlights would benefit from bloom effects

based on high-dynamic range computations of the

colors.

An integration of 3D meshes looks straightforward

from the algorithmic side. In terms of performance,

however, Adobe Flash—running on the computer’s

CPU—may be overcharged with such a task. In fu-

ture, a more general approach that requires no

browser plug-in may become possible through the

advent of WebGL [Mar09].

A second avenue of development would be to focus

on strengthening the connection to color management

systems in their present form. A standard color man-

agement system could handle the diffuse illumination

and a system similar to the prototype we have de-

scribed could add gloss and mirror effects.

7. REFERENCES

[Ado09a] Adobe. Adobe Pixel Bender technology.

http://labs.adobe.com/technologies/pixelbender/,

last accessed 2009-10-24.

[Bli77] Blinn, J.F. Models of light reflection for

computer synthesized pictures. SIGGRAPH Com-

puter Graphics 11, No. 2, pp. 192–198, 1977.

[Coo82] Cook, R.L., and Torrance, K.E. A reflec-

tance model for computer graphics. ACM Trans-

actions on Graphics 1, No. 1, pp. 7–24, 1982.

[Dan05a] Daniel, T. Real-time video lighting. ACM

SIGGRAPH ’05 Posters, Los Angeles CA, ACM

Press, p. 50, 2005.

[Fuc08a] Fuchs, M., Raskar, R., Seidel, H.-P., and

Lensch, H.P.A. Towards passive 6D reflectance

field displays. ACM Transactions on Graphics 27,

No. 3, Article No. 58, 2008.

[Her03a] Hersch, R.D., Collaud, F., and Emmel, P.

Reproducing color images with embedded metal-

lic patterns. Proceedings of ACM SIGGRAPH

’03, Los Angeles CA, ACM Press, pp. 427–434,

2003.

[Ker09] Kerr, D.R., and King, N.V. Systems and me-

thods for adjusting a display based on the user’s

position. United States Patent Application

20090313584, 2009.

[Koi08a] Koike, T., and Naemura, T. BRDF display:

interactive view dependent texture display using

integral photography. Proceedings of IPT/EDT

’08, Los Angeles CA, ACM Press, Article No. 6,

2008.

[Mas09a] Masakazu, O. Marilena: port of the

OpenCV face to ActionScript 3. http://www.

libspark.org/wiki/mash/Marilena, last accessed

2009-10-24.

[Man08] Mannerheim, P., and Nelson, P.A. Virtual

sound imaging using visually adaptive loudspeak-

ers. Acta Acustica united with Acustica 94, No.

16, pp. 1024–1039, 2008.

[Mar09] Marrin, C. (editor). WebGL specification,

working draft 10 December 2009.

http://www.khronos.org/webgl/, last accessed

2010-01-02.

WSCG 2010 Communication Papers 183

[Mil95] Miller, G. Volumetric hyper-reality, a com-

puter graphics holy grail for the 21st century?

Proceedings of Graphics Interface ’95, Québec

Québec, Canadian Information Processing Soci-

ety, pp. 56–64, 1995.

[Nay04a] Nayar, S.K., Belhumeur, P.N., and Boult,

T.E. Lighting sensitive display. ACM Transac-

tions on Graphics 23, No. 4, pp. 963–979, 2004.

[Rop04] Ropinski, T., Wachenfeld, S., and Hinrichs,

K.H. Virtual reflections for augmented reality en-

vironments. Proceedings of Artificial Reality and

Telexistence (ICAT04), Seoul, Korea, pp. 311–

318, 2004.

[San05a] Sandin, D.J., Margolis, T., Ge, J., Girado,

J., Peterka, T., and DeFanti, T. A. The Varrier

autostereoscopic virtual reality display. ACM

Transactions on Graphics 24, No. 3, pp. 894–903,

2005.

[Sto04a] Stone, M.C. Color in information display:

principles, perception, and models. ACM SIG-

GRAPH ’04 Course Notes, Los Angeles CA,

ACM Press, Course 21, 2004.

[Vio01] Viola, P., and Jones, M. Rapid object detec-

tion using a boosted cascade of simple features.

Proceedings of Computer Vision and Pattern

Recognition (CVPR 2001), Kauai HI, IEEE

Press, pp. I-551–I-518, 2001.

Figure 6. In addition to visualizing two-dimensional relief prints on paper, the system can also plausibly

convey the look of metallic 3D objects as described through a 2D normal map. In this image sequence, the

user’s head has moved from left to right. For demonstration, a specularity map with less metallicity below

the diagonal has been applied. (Stanford Bunny courtesy of http://graphics.stanford.edu/data/3Dscanrep/)

WSCG 2010 Communication Papers 184

Decomposing the Contact Linear Complementarity Problem
into Separate Contact Regions

Olexiy Lazarevych
lazarevych@vision.ee.ethz.ch

Gabor Szekely
szekely@vision.ee.ethz.ch

Matthias Harders
mharders@vision.ee.ethz.ch

Computer Vision Laboratory, ETH Zurich
Sternwartstrasse 7, CH-8092 Zurich, Switzerland

ABSTRACT

We present a novel approach to handling frictional contacts for deformable body simulations. Our contact model allows to sep-
arate the contact area into a set of detached contact regions. For each of them a separate mixed linear complementarity problem
(MLCP) is formulated. Parallel processing of these independent contact regions may considerably improve the performance of
the contact handling routine. Moreover, the proposed contact model results in sparse matrix formulation of the corresponding
MLCP in the individual contact regions. For solving the MLCPs we propose an iterative method which combines the projected
conjugate gradient approach and the projected Gauss-Seidel method.

Keywords

Linear complementarity problem, contact force, deformable object.

1 INTRODUCTION
Contact handling of interacting solid objects is a com-
mon research topic, for instance in computer animation
or surgical simulation. Physically plausible responses
to collisions and contacts potentially enrich the anima-
tion, especially if frictional effects are taken into ac-
count. Contact response methods aim at computing a
set of contact forces that prevent the simulated objects
from interpenetrating, while taking into account fric-
tion.

Several approaches have been proposed in the field of
computer graphics and simulations to handle contacts.
The majority of these can be split into two classes:
penalty-based and constraint methods (note that fur-
ther approaches exist, e.g. impulse methods). Penalty
methods compute virtual spring forces that drive the
interacting objects apart. The values of these forces
are usually considered to be proportional to a geomet-
rical measure of the interpenetration of the interact-
ing bodies [HTK∗04, KMH∗04, HVS∗09]. Therefore,
penalty based methods not only allow interpenetrations
but essentially depend on them. Despite the lack of
physical plausibility caused by this simplified contact

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

model, they are still widely used because of the sim-
plicity of their implementation and high computational
efficiency.

In contrast, constraint methods aim at following the
geometrical restrictions of non-penetration of the inter-
acting objects based on their relative position and ori-
entation [Bar89, DAK04, PPG04, Erl07]. The resulting
system of equations can be solved by a large variety
of methods among which the most preferable are fast
iterative procedures. However, for complex systems
which consist of many interacting objects the computa-
tion time of this approach becomes quickly prohibitive.
Therefore, much effort is made to develop efficient al-
gorithms [Bar96, GBF03, KEP05, KSJP08, OTSG09,
HVS∗09].

Contributions. We propose a new approach to re-
solving contacts for deformable objects by splitting the
contact area into separate, independent regions. The
deformation model together with the time-integration
scheme we use allows the separate treatment of de-
tached contact regions. Handling a number of local
contacts instead of a single global contact system gives
a significant gain in performance even without using
parallel computation techniques. The proposed contact
model results in a simple diagonal mass matrix as well
as sparse constraint matrices.

In addition, we propose a novel iterative scheme
for the mixed contact linear complementarity problems
which combines a projected conjugate gradient method
with the widely used projected Gauss-Seidel method.
Although, the performance in our current implementa-
tion is not better than for the normal projected Gauss-
Seidel method, our scheme demonstrated more stable
convergence behavior and therefore was more reliable.

WSCG 2010 Communication Papers 185

2 RELATED WORK

Constraint methods are widely used in computer
graphics as well as in computational mechanics due
to their physical correctness. The theoretical basis
of the underlying mechanics and related contact
problems are thoroughly discussed by Stronge [Str90]
and Wriggers[Wri02]. Classical works in con-
straint based dynamics in computer graphics are by
Baraff [Bar89, BW92] and Witkin [Wit97].

Constraint based approaches for contact problems
usually employ Signorini’s law [WP99] of unilateral
contact resulting in the formulation of the contact lin-
ear complementarity problem (LCP) [AP97]. Lagrange
multipliers belong to the most widely used solution ap-
proaches for this kind of problems [WP99]. The LCP
formulation in contact handling is used for obtaining
contact responses between rigid bodies [Cat05, Erl07]
or deformable objects [DAK04, DDKA06, OG07], as
well as in cloth simulations [VMT97, VT00, HB00].

General approaches to the LCP solution can be
split into two classes: direct and iterative meth-
ods [CPS92]. Although direct methods,e.g. Lemke’s
algorithm, Danzig’s method, and other pivoting
techniques [Cot90, CPS92, Mur88] are designed
to give precise solutions, they are computationally
demanding and slow. Therefore, in computer graphics
applications almost exclusively iterative methods are
used. Iterative methods for the LCP follow the scheme
similar to the one used to solve a linear system of
equations [CPS92, Mur88]. Therefore, projected
versions of well-known iterative methods such as
Jacobi, successive overrelaxation, and its special
case – Gauss-Seidel – are used [Cat05, Erl07]. They
work very well for rigid body simulations, however,
applied to deformable body collisions they become
computationally very expensive. Attempts to find a
compromise were presented in [PPG04, DDKA06].

Many researchers are working on optimization and
improvement of the performance of these basic itera-
tive methods in different application areas. Exploit-
ing the sparsity of the matrices involved in computa-
tions is one of the basic optimization approaches which
works for almost any underlying model of simulated
objects [GL89]. Other more sophisticated algorithms
consider the LCP formulation tightly linked with the
dynamical model. Baraff and Witkin employed im-
plicit integration methods for large time step simula-
tions of cloth [BW98]. Otaduy et al. [OTSG09] pro-
posed an iterative solver that includes two nested relax-
ation loops (based on the constraint anticipation intro-
duced in [Bar96]).

Using the conjugate gradient method for general LCP
was proposed by researchers in the area of computa-
tional mechanics, like Renouf and Alart [RA05], and
Li et al. [LNZL08]. We explore the combination of

the projected conjugate gradient approach with the pro-
jected Gauss-Seidel method.

3 DEFORMABLE CONTACT MODEL
AND MLCP FORMULATION

In simulations of scenes with many interacting de-
formable objects, numerous pairs of objects or parts of
the same object may be simultaneously in contact. The
deformable nature of the simulated material provides
non-instantaneous spreading of the contact forces from
the contact area into the physical body. Therefore,
simultaneous but spatially separated contacts may be
considered independently as their effect spreads over
the objects in contact during future simulation time
steps. This is in contrast to rigid body simulations
where all contacts have to be taken into account to
correctly compute the reaction of the object. Following
this reasoning we take advantage of considering spa-
tially separated contacts between deformable objects
independently. This should speed up the contact
response computations in the simulations.

In our simulations deformable objects are repre-
sented as tetrahedralized meshes with mass points
located in the nodes. Each object has a triangulated
surface and contacts are treated between basic sur-
face elements: point-triangle and edge-edge pairs.
Point-edge and point-point contacts are treated as
special cases of point-triangle contacts. For the sake
of simplicity we omit edge-edge contacts and consider
only point-triangle pairs in the further discussion.

Constraints Formulation

In the absence of friction the only constraint for the
point-triangle collision is that contact points cannot
penetrate planes of the corresponding contact triangles.
Mathematically this can be described by the condition
of non-negativity of the functionC(p0,p1,p2,p3) of the
coordinates of the corresponding mass points.

C(p0,p1,p2,p3) =−((p1−p0)× (p2−p0)) · (p3−p0)
(1)

The time derivative of this function gives the Jacobian
matrix of the normal contact constraints.

Ċ(p0,p1,p2,p3) = Jn ·u (2)

whereu =
[
vT

0 vT
1 vT

2 vT
3
]T is a generalized velocity vec-

tor of the corresponding points.
The principle of virtual work requires orthogonality

of the constraint force and the constraint. Therefore, in
the frictionless case for our model the constraint force
is defined as

fn = JT
n ·λn (3)

where the Lagrange multiplierλn is to be found.

WSCG 2010 Communication Papers 186

According to Signorini’s contact law [WP99] at a
unilateral contact the following compementarity condi-
tions have to be satisfied.

wn = Jn ·u≥ 0, λn≥ 0, wn ·λn = 0 (4)

The conditions (4) pose a linear complementarity
problem (LCP) for a frictionless unilateral contact.

In general, ifN mass-points are involved in contacts
with K constraints, the Jacobian of the whole system is
easily assembled from the Jacobians of each individual
constraint. Therefore, the global Jacobian consists ofK
lines of blocksJ0

q, J1
q, J2

q andJ3
q, whereq = 1, . . . ,K.

Note, that in each line only the entries corresponding
to the mass-points involved in theq-th contact are non-
zero. This way the Jacobian of the contact system has
the dimensionK×3N.

Separation of the Contact Regions
The time integration scheme of the simulations uses the
net force of the internal, global (e.g.gravitational), and
contact forces to compute position and velocity of each
simulated contact point at the next time step. Thus, a
force applied to a particular mass point in the current
time step will influence its neighbors only in the next
time step through internal deformation.

The nature of the time-integration scheme and the
discretized model of simulated objects allows us to sep-
arate two contact areas if they do not have any common
simulated mass points simultaneously involved in con-
straint equations of both contacts. As will be shown
later, this way the amount of computations becomes
significantly smaller and the convergence rate for each
individual contact problem increases.

The separation of the contact areas is performed by
analysis of the constraint matrixJn which consists of
the rows related to the normal contact constraints only.
The elementjki of the matrix is non-zero if and only
if the i-th mass point is involved in thek-th constraint.
Therefore, the area separating algorithm efficiently ex-
tracts sets of rows such that each pair of the sets does
not have any non-zero elements in the same columns
simultaneously. In terms of the contact graph of the
current configuration which is encoded by the Jacobian,
the region separation algorithm aims at finding a set of
disconnected subgraphs.

Currently, a basic sequential algorithm is used to as-
sign each contact to a contact region. Contacts corre-
sponding to a line of the JacobianJn are assigned to
a particular region, such that any two different con-
tact regions do not have contacts that share a simulated
mass point. Thus, contacts that involve the same mass
point belong to the same contact region. The outline
of the contact region separation is presented in Algo-
rithm 1. Here,Contact[i][j] contains the index of the
j-th point on thei-th contact,i = 1, . . . ,K, j = 1, . . . ,4
and{Contact[i]} is the set of points that belong to the

i-th contact.Area[i] contains the index of the detached
region to which the pointi belongs. Note that more
advanced,e.g. parallel, algorithms could be applied in
this stage. Moreover, it should be mentioned that we
consider contacts of deformable objects which usually
are maintained over a number of successive simulation
time steps, even in dynamic scenes. Thus, information
about contact regions could be stored and updated on
successive time steps as required.

Algorithm 1 Contact region separation

nextIndex← 1
CheckedPointSet⇐ /0
for i = 1 toK do

if Area[i] not assignedthen
Area[i]← nextIndex++
CheckedPointSet⇐{Contact[i]}
for j = i +1 toK do

if Area[j] is assignedthen
continue

endif
if {Contact[j]}∩{Area[i]} 6= /0 then

Area[j] = Area[i]
endif

endfor
else

for l = 1 to 4do
if Contact[i][l] /∈CheckedPointSetthen

for j = i +1 toK do
if Area[j] > 0 then

continue
endif
if {Contact[j]} ∩ {Area[i]} 6= /0
then

Area[j] = Area[i]
endif

endfor
CheckedPointSet⇒Contact[j][l]

endif
endfor

endif
endfor

Including Frictional Contact
Classically the frictional part of the contact force lying
in the plane of the contact triangle is introduced having
two components along two orthogonal vectorse1 and
e2 [Bar94]. In the frame of our contact model the part
of the Jacobian responsible for friction is[

Je1
Je2

]
=

[
−eT

1 α eT
1 β eT

1 γ eT
1

−eT
2 α eT

2 β eT
2 γ eT

2

]
(5)

where(α,β ,γ) are barycentric coordinates of the con-
tact point at the time of collision.

WSCG 2010 Communication Papers 187

Coulomb’s friction model is often approx-
imated by a 4-sided [Bar94] (in general,k-
sided [KEP05, DDKA06]) pyramid with faces
parallel to the orthogonal vectorse1 and e2. This
friction model leads to the following conditions to be
satisfied at the contact.

Jei ·u > 0 ⇒ λei =−µλn

Jei ·u < 0 ⇒ λei = µλn

Jei ·u = 0 ⇒ λei ∈ [−µλn; µλn]
(6)

wherei = 1, 2 andµ is the friction coefficient.
In addition, we also tested a friction cone model

which more precisely follows Coulomb’s law. We
project the solution onto the friction cone domain. If
the tangential component of the contact force is larger
than µλn then we scale the friction components to fit
the friction cone without changing the direction of the
friction force.

||λe1e1 +λe2e2||> µλn⇒

 λe1←
λe1 ·µλn

||λe1e1+λe2e2||

λe2←
λe2 ·µλn

||λe1e1+λe2e2||
(7)

For a single point-triangle frictional contact the com-
plementary conditions (4) together with (6) or (7) have
to be satisfied. The general Jacobian of the system is
built in the same way as in the frictionless case. The
dimension of the matrix is 3K×3N.

Dynamics Formulation
After separating the contact area into detached contact
regions we formulate and solve the dynamic equations
for each of the regions independently. In the following
discussion we consider a part of the simulated system
which corresponds to a particular contact regionC. This
part consists of the mass points involved in the contacts
of that specific region. The simulated system obeys the
following equation of motion.

MC ·uC = JT
C ·λC + fC (8)

where MC is the mass matrix of the system,
λC = (λn, j1 λe1, j1 λe1, j1 . . .λn, jk λe1, jk λe1, jk)

T – the
generalized vector of contact forces for the region,
and fC = (fT

1 fT
2 . . . fT

l)T – the generalized vector of
non-contact forces acting on each mass point.k and l
are the number of constraints and mass points of the
contact regionC, respectively.

We employ the forward Euler integration scheme to
relate the unknown general velocity at timet + ∆t to
the known velocity at the previous time stept. For de-
formable object collisions we employ Newton’s rule for
changes of the normal component of velocity after the
collision [Str90],i.e.

vre f lected
vincident

= κ.

uC(t +∆t) = (1+κ)uC(t)+M−1
C JT

C ·λC∆t +M−1
C · fC

(9)

By pre-multiplying (9) withJC we connect the dy-
namics equation with the complementarity conditions
(4) and (6) discussed above.

wC = JC ·uC(t +∆t) = A ·λC +b (10)

where

A = JCM−1
C JT

C (11)

b = (1+κ)J ·uC(t)+JC ·M−1
C · fC (12)

Note, that we included the factor∆t into λC and there-
fore λC is no longer the force but the impulse vector.

The above equations (11) and (12) together with gen-
eral complementarity condition (6) or (7) constitute the
MLCP that has to be solved for the values of the contact
force componentsλC.

Unlike the usual formulation of the dynamics equa-
tions we explicitly consider only mass-points involved
in each contact. Therefore, the generalized velocity
vector does not include the angular velocity of the con-
tact triangle and the mass matrix does not include 3×3
blocks corresponding to inertia tensors. This formula-
tion provides a strictly diagonal form of the matrixM
allowing optimized matrix multiplications.

Each line of the constraint matrixJC consists of four
3×3 blocks. However, if the matrixJC is stored in a
suitable reduced format [GL89, Cat05], the calculations
of JCM−1

C JT
C can be done very efficiently in linear time.

4 ITERATIVE METHODS FOR LCP
Here, we leave aside the underlying dynamics and con-
sider iterative methods for solution of the LCP(A,b)

A ·λ −b > 0
λ > 0

(A ·λ −b) ·λ = 0
(13)

Projected Gauss-Seidel Iterative Method
A general splitting scheme for iterative LCP solving is
described in [CPS92]. By splitting the matrixA of the
LCP(A,b) in different ways, iterative schemes similar to
those for systems of linear equations are obtained. The
projected Gauss-Seidel method is derived by splitting
A = L +D+U, whereL , D andU are the strictly lower,
diagonal, and strictly upper matrix components ofA.

According to the iterative scheme for solving the
LCP(A,b) [CPS92] each iteration cycle consists of two
steps. In the first a new approximation of the solution is
found

λk+ 1
2

= (L +D)−1 · (b−U ·λk) (14)

In the second step this approximation is projected
onto the set of feasible solutions.

λk+1 = max
{

0, λk+ 1
2

}
(15)

WSCG 2010 Communication Papers 188

Although, the projected Gauss-Seidel method
demonstrates only first-order convergence, its compu-
tational efficiency and implementation simplicity have
made it a common choice for many constraint based
collision response methods in computer animation,
e.g.[Cat05, DDKA06, Erl07, OTSG09].

Projected Conjugate Gradient Method
The conjugate gradient method [She94] can also be
adapted for solving the LCP(A,b) [RA05]. The orig-
inal conjugate gradient method has been widely used
for optimization problems as well as for the solution of
systems of linear and non-linear equations. For a linear
system the method converges after at mostn iterations,
wheren is the order of the system. If the method is
applied to a non-linear system it gives successive ap-
proximations and is stopped if a particular condition is
fulfilled, e.g. the residualr i+1 is less than some prede-
fined threshold. The general scheme of the conjugated
gradient method as well as its detailed analysis can be
found in [She94]. Nevertheless, some specific remarks
related to the application to LCP are given below.

The expression for calculating the conjugate direc-
tion

di+1 = r i+1 +βi+1di (16)

usually takes the value of the coefficientβi+1 from
Fletcher-Reeves’ formula.

βi+1 =
rT

i+1r i+1

rT
i r i

(17)

However, another possible approach is to calculateβi+1
using Polak-Ribiere’s formula.

βi+1 =
rT

i+1(r i+1− r i)
rT

i r i
(18)

Analysis of both approaches in our computations
showed that the Fletcher-Reeves method converged if
the initial approximation was sufficiently close to the
solution, whereas the Polak-Ribiere method sometimes
resulted in an infinite loop. However, the latter often
converged faster.

To adapt the conjugate-gradient algorithm to our spe-
cific MLCP(A,b) formulation, we add an additional
projection step (15) to the general scheme. Another im-
portant modification we introduce concerns the resid-
ual. Given the current solutionλi+1 of the MLCP(A,b)
we denote the set of feasiblew = A ·λ −b asW(λi+1).
Since we are interested only in solutions lying in the
feasible domain, we modify the intermediate residualr̃
by projecting its value onto the setW(λi+1).

r i+1 = Proj(r̃ i+1,W(λi+1)) (19)

This way, the direction for searching the solution on the
current iteration step is lying in the feasible domain.

Moreover, if the current solution is close to the real so-
lution then the projected residualr i+1 is close to zero,
which may not be the case forr̃ i+1.

We did not carry out a rigorous theoretical investiga-
tion of the convergence of the obtained projected con-
jugate gradient-like method, but we thoroughly tested
it experimentally. The complete algorithm for the pro-
jected conjugate gradient method is summarized in Al-
gorithm 2.

Algorithm 2 Projected conjugate gradient algorithm

d0← b−A ·λ0
r0← b−A ·λ0
for i = 0 to imax do

αi ←
rT
i r i

diAd i

λ̃i+1← λi +αiλi

r̃ i+1← r i−αi ·A ·di

λi+1← Projcontact(λ̃i+1)
r i+1← Proj(r̃ i+1,W(λi+1))
if error is small1 then

exit
endif
if Polak-Ribierethen

βi+1←
rT
i+1(r i+1−r i)

rT
i r i

else
βi+1←

rT
i+1r i+1
rT
i r i

endif
di+1← r i+1 +βi+1di

endfor

Combined Iterative Method and Termina-
tion Criteria
In order to improve the iterative search for the solu-
tion of the MLCP(A,b) we combine the projected con-
jugate gradient and the projected Gauss-Seidel meth-
ods. One of the advantages of using the projected con-
jugate gradient is its fast convergence rate during the
first iteration steps. The conjugate direction is chosen
for optimal convergence, and therefore this method has
a clear advantage over the projected Gauss-Seidel ap-
proach at this stage. However, the convergence rate
decreases while approaching the solution and the pro-
jected Gauss-Seidel method becomes more preferable.
Following this consideration we perform several steps
of the projected conjugate gradient method and then use
the resulting solution as the initial approximation of the
projected Gauss-Seidel algorithm.

As termination criteria of the iterative loops we check
the values of the successive approximations of the so-
lution ||λi+1−λi || as well as the value of the projected
residual||r i+1||. If either||λi+1−λi || ≤ ε or ||r i+1|| ≤ δ

1 The details of the exit criterion are discussed in the following section.

WSCG 2010 Communication Papers 189

is fulfilled then the corresponding iterative loop is ter-
minated. The error thresholdsεcg, δcg andεgs, δgs for
the conjugate gradient and Gauss-Seidel iterative loops
respectively can be set to different values (obviously,
εcg≥ εgs andδcg≥ δgs).

Taking into account the physical meaning of the solu-
tion λ – in our case this is the contact impulse or force
– it is reasonable to require a certain precision for each
component ofλ which is related to the accuracy of the
computer simulation. Therefore, along with above cri-
teria we also use

||λi+1−λi ||∞ ≤ ε∞ (20)

as well as
||r i+1||∞ ≤ δ∞ (21)

In some cases the convergence rate of both iterative
methods is slow. This is presumably a consequence of
the numerical properties of the matrixA and the lim-
ited numerical accuracy. For instance, for the projected
Gauss-Seidel the convergence rate is small if||L + D||
is close to 1 [CPS92, Mur88]. In such cases the suc-
cessive approximations of the solution may oscillate or
even diverge. In order to prevent infinite loops we re-
strict the number of iteration within both phases of the
combined method. The termination of the projected
conjugate gradient loop is enforced after 2n iterations,
wheren is the size of the system in consideration, and
the projected Gauss-Seidel loop is halted after a prede-
fined number ofNmax iterations.

In order to improve the precision in cases of forced
termination we store the best solution approximation
showing the smallest residualr . The value is used as
the outcome of the corresponding phase of the method,
if it is better then the last approximation. Thus, we guar-
antee that the best approximation obtained in the conju-
gate gradient phase is taken for initializing the Gauss-
Seidel phase. The final solution will correspond to the
smallest residual among all of the obtained approxima-
tions. It should also be noted that according to the ex-
perimental results the portion of the cases with poor
convergence,i.e. cases for which the iterative process
did not terminate within the maximum number of iter-
ations, is quite small – ranging from 0 to 0.9%. On the
contrary, using a pure projected Gauss-Seidel method
for the same simulating scenarios gave up to 3% cases
with poor convergence.

5 RESULTS
In order to compare the performance of the proposed
method for separated and non-separated contact treat-
ment, several scenes were simulated.

Separated vs. Non-Separated Contact Re-
gion Handling
A scene of balls breaking a pyramid of bowling skit-
tles with friction was used to test methods in a dynamic

Figure 1: Static scene: Number of contacts K vs. com-
putation time for separate (above) and non-separate (be-
low) contact handling (the latter plot can be omitted)

simulation without any resting states because of the ab-
sence of gravity. A scene of balls stacking in a bucket
under gravity was used to test the methods in mostly
static conditions. The number of contacts varies from 1
to ∼ 45 for the dynamic scene and from 1 to∼ 80 for
the static scene. Note that all objects in the simulations
are (slightly) deformable.

The advantage of the separation of the contact area
into independent regions becomes apparent for MLCPs
with larger numbers of contacts. The benefit is even
present if the processing of the independent regions
is performed sequentially for a method of complexity
O(n2). The average total computation time is∼ 2.5 – 3
times less for the dynamic, and∼ 7 – 8 times less for
the static scene.

Figure 1 shows the dependency of the computation
time on the number of contacts. In case of non-
separated contact handling the time increases much
faster than for separated contact handling. Moreover,
since the independent contact regions in the latter
approach have similar sizes, an almost linear growth
is obtained. Note that a further possible improvement
could be achieved by processing the detached contact
regions in parallel.

WSCG 2010 Communication Papers 190

Friction Handling
Simple static scenes of deformable objects placed on an
inclined plane were used to verify the correctness of the
friction handling. Experiments showed that the critical
inclination angle of the plane corresponds to the friction
coefficient between objects and the plane with high ac-
curacy. Moreover, the number of separate contact areas
between objects and the plane had no influence on the
result. It was the same for global and separated contact
area handling.

Figure 2: A table on the inclined plane

When simulating the sliding of a deformable plas-
tic table on a plane (Figure 2), even a typical behav-
ior found in reality could be reproduced. If the friction
coefficient exceeds the critical value for the given in-
clination, a deformable table still can move downwards
with its legs sliding in turns (i.e. the front legs slide
while the back ones remain still, then the front legs
stop and the deformation tension transfers to the back
legs which start to slide until the opposite deformation
tension cause them to stop and the cycle repeats). This
phenomenon is a distinctive feature of certain objects
made of plastic and can be easily observed in reality.
It also has been described in related work dealing with
contact friction [KSJP08].

Finally, both friction models were tested in more
complex scenes – the 4-sided pyramid and the friction
cone. The combined MLCP solving method demon-
strated a considerably better performance when using
the friction cone model – the convergence time de-
creased by∼ 20−40%.

6 DISCUSSION AND CONCLUSION
We have presented an algorithm for the separation of
detached contact regions in a simulated scene consist-
ing of deformable objects. The experimental results
demonstrated considerable gain in performance by us-
ing this approach. Moreover, the separate handling of
the contact regions allows further acceleration by paral-
lelization.

The presented contact model is based on simple con-
straint conditions and directly considers the mass points
of the discretized deformable objects. This approach
provides a simple diagonal mass matrix of the system
which does not contain blocks related to the inertia ten-
sors unlike most of previously proposed models. The

simplicity of the mass matrix combined with the spar-
sity of the constraint matrix potentially allows efficient
implementation of matrix computations by employing
known patterns ofM and J. Therefore, no auxiliary
routines or modifications,e.g. iterative constraint antic-
ipation [OTSG09], are needed.

We also presented an iterative method for the so-
lution of the contact MLCP which combines the pro-
jected conjugate gradient and the widely used projected
Gauss-Seidel methods.

7 ACKNOWLEDGEMENTS

This work has been performed within the frame of the
EU project PASSPORT ICT-223894 and the Swiss CTI
project ArthroS.

REFERENCES
[AP97] ANITESCU M., POTRA F.: Formulating dynamic multi-

rigid-body contact problems with friction as solvable
linear complementarity problems.Nonlinear Dynamics
14, 3 (1997), 231–247.

[Bar89] BARAFF D.: Analytical methods for dynamic sim-
ulation of non-penetrating rigid bodies. InComputer
Graphics, SIGGRAPH89(1989), vol. 23, pp. 223–232.

[Bar94] BARAFF D.: Fast contact force computation for nonpen-
etrating rigid bodies. InSIGGRAPH ’94: Proceedings
of the 21st annual conference on Computer graphics and
interactive techniques(1994), ACM, pp. 23–34.

[Bar96] BARAFF D.: Linear-time dynamics using lagrange mul-
tipliers. In SIGGRAPH ’96: Proceedings of the 23rd
annual conference on Computer graphics and interac-
tive techniques(1996), ACM, pp. 137–146.

[BW92] BARAFF D., WITKIN A.: Dynamic simulation of non-
penetrating flexible bodies.Computer Graphics (Proc.
Siggraph) 26, 2 (1992), 303–308.

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simula-
tion. In Computer Graphics Proceedings, Annual Con-
ference Series(1998), SIGGRAPH, pp. 43–54.

[Cat05] CATTO E.: Iterative dynamics with temporal coherence.
Online Paper(2005).

[Cot90] COTTLE R. W.: The principal pivoting method revis-
ited. Math. Program. 48(1990), 369–385.

[CPS92] COTTLE R., PANG J. S., STONE R. E.: The Linear
Complementarity problem. Academic Press, 1992.

[DAK04] DURIEZ C., ANDRIOT C., KHEDDAR A.: Signorini’s
contact model for deformable objects in haptic simu-
lations. In IROS, 2004. Proceedings.(2004), vol. 4,
pp. 3232–3237 vol.4.

[DDKA06] DURIEZ C., DUBOIS F., KHEDDAR A., ANDRIOT C.:
Realistic haptic rendering of interacting deformable ob-
jects in virtual environments.IEEE Transactions on Vi-
sualization and Computer Graphics 12, 1 (2006), 36–47.

[Erl07] ERLEBEN K.: Velocity-based shock propagation for
multibody dynamics animation.ACM Trans. Graph. 26,
2 (2007), 12.

[GBF03] GUENDELMAN E., BRIDSON R., FEDKIW R.: Non-
convex rigid bodies with stacking.ACM Transaction on
Graphics 22, 3 (2003), 871–878.

[GL89] GOLUB G. H., LOAN C. F. V.: Matrix Computations,
second ed. Baltimore, MD, USA, 1989.

[GMS04] GIROD B., MAGNOR M. A., SEIDEL H.-P. (Eds.):.
Proceedings of the Vision, Modeling, and Visualization
Conference 2004(2004), Aka GmbH.

WSCG 2010 Communication Papers 191

Figure 3: Dynamic scene

Figure 4: Static scene

[HB00] HOUSE D. H., BREEN D. E. (Eds.): Cloth modeling
and animation. A. K. Peters, Ltd., 2000.

[HTK∗04] HEIDELBERGER B., TESCHNER M., KEISER R.,
MÜLLER M., GROSS M. H.: Consistent penetration
depth estimation for deformable collision response. In
Girod et al. [GMS04], pp. 339–346.

[HVS∗09] HARMON D., VOUGA E., SMITH B., TAMSTORF R.,
GRINSPUNE.: Asynchronous contact mechanics.ACM
Trans. Graph. 28, 3 (2009), 1–12.

[KEP05] KAUFMAN D., EDMUNDS T., PAI D.: Fast frictional
dynamics for rigid bodies.ACM Trans. Graph. 24, 3
(2005), 946–956.

[KMH ∗04] KEISER R., MÜLLER M., HEIDELBERGER B.,
TESCHNER M., GROSS M. H.: Contact handling
for deformable point-based objects. In Girod et al.
[GMS04], pp. 315–322.

[KSJP08] KAUFMAN D., SUEDA S., JAMES D., PAI D.: Stag-
gered projections for frictional contact in multibody sys-
tems. InACM SIGGRAPH Asia 2008 papers(2008),
ACM, pp. 1–11.

[LNZL08] L I D.-H., NIE Y.-Y., ZENG J.-P., LI Q.-N.: Conjugate
gradient method for the linear complementarity problem
with s-matrix. Mathematical and Computer Modelling
48, 5-6 (2008), 918–928.

[Mur88] MURTY K. G.: Linear Complementarity, Linear and
Nonlinear Programming, vol. 3 of Sigma Series in Ap-
plied Mathematics. Heldermann Verlag, 1988.

[OG07] OTADUY M. A., GROSS M.: Transparent rendering
of tool contact with compliant environments. InWHC
’07: Proceedings of the Second Joint EuroHaptics Con-
ference and Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems(2007), IEEE
Computer Society, pp. 225–230.

[OTSG09] OTADUY M., TAMSTORF R., STEINEMANN D.,

GROSS M.: Implicit contact handling for deformable
objects. Computer Graphics Forum (Proc. of Euro-
graphics) 28, 2 (2009).

[PPG04] PAULY M., PAI D., GUIBAS L.: Quasi-rigid objects
in contact. InSCA ’04: Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer an-
imation(2004), Eurographics Association, pp. 109–119.

[RA05] RENOUF M., ALART P.: Conjugate gradient type al-
gorithms for frictional multi-contact problems: applica-
tions to granular materials.Computer Methods in Ap-
plied Mechanics and Engineering 194, 18-20 (2005),
2019–2041.

[She94] SHEWCHUK J. R.: An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain. Tech.
rep., 1994.

[Str90] STRONGE W.: Rigid body collisions with friction.
Proceedings: Mathematical and Physical Sciences 431,
1881 (1990), 169–181.

[VMT97] VOLINO P., MAGNENAT-THALMANN N.: Developing
simulation techniques for an interactive clothing system.
In VSMM ’97: Proceedings of the 1997 International
Conference on Virtual Systems and MultiMedia(1997),
IEEE Computer Society, p. 109.

[VT00] VOLINO P., THALMANN N. M.: Accurate collision re-
sponse on polygonal meshes. InCA ’00: Proceedings of
the Computer Animation(2000), IEEE Computer Soci-
ety, p. 154.

[Wit97] WITKIN A.: Physically based modeling: Principles and
practice. InComputer Graphics(1997), pp. 11–21.

[WP99] WRIGGERS P., PANATIOTOPOULOS P. (Eds.): New
Developments in Contact Problems. SpringerWien-
NewYork, 1999.

[Wri02] WRIGGERS P.: Computational Contact Mechanics.
John Wiley & Sons Ltd., 2002.

WSCG 2010 Communication Papers 192

Interactive Stipple Rendering for Point Clouds

Naoyuki Awano

Osaka Institute of Technology
1-79-1, Kitayama
Hirakata, Osaka

 Japan(573-0196)

awano@is.oit.ac.jp

Koji Nishio

Osaka Institute of Technology
1-79-1, Kitayama
Hirakata, Osaka

 Japan(573-0196)

nishio@is.oit.ac.jp

Ken-ichi Kobori

Osaka Institute of Technology
1-79-1, Kitayama
Hirakata, Osaka

 Japan(573-0196)

kobori@is.oit.ac.jp

ABSTRACT
Non-photorealistic rendering has been attracting attention in the field of computer graphics. A common approach
to artistic rendering is using a shape model which utilizes mesh data. In recent years, the use of point clouds as
shape models has increased due to the rapid development of 3D-scanners used to create them. Correspondingly,
there has been an increase in the research on point clouds. We propose a stipple rendering method as a type of
artistic rendering for point clouds, based on a hybrid image/object space. First, we eliminate hidden points based
on an image space. Next, we apply a novel shading method to the visible points based on an image space. Lastly,
we apply the above two results to the input point cloud. We implement the proposed method using a graphics
processing unit to accomplish the interactive rendering. The experimental results show that we can achieve
shading and shadowing interactively.

Keywords
Computer graphics, non-photorealistic rendering, stippling, point cloud, and graphics processing unit.

1. INTRODUCTION
Non-photorealistic rendering (NPR) has become a
major focus for research in the field of computer
graphics, because it is an effective conveyor of
geometric features. Considerable artistic rendering
has been proposed using a 3D-shape model utilizing
mesh model [Zan04][Sat04][Lak00][Say06]. A mesh
model is suggested because it has a topological data
structure that can be used to extract features.
However, the mesh model must first be constructed
from point clouds before any suggested methods can
be applied to it.
Over the past few years, point clouds have attracted
attention as a new shape model, because they can be
easily created using 3D-scanners, which have seen
rapid development lately. Correspondingly, there has
been an increase in the research on point clouds
[Pau03][Pfi00] including NPR studies.
For example, Zakaria [Zak04] proposed a hybrid

image/object space method of interactive silhouette
rendering. It can also do stipple rendering or user-
drawn strokes on point set surfaces. Runions [Run07]
proposed a novel rendering method for point clouds.

photorealistic or non-photorealistic representations.
Furthermore, it achieves NPR interactive silhouette
rendering utilizing ribbons only. Rosenthal [Ros08]
proposed an image space rendering method using a
graphics processing unit (GPU). It is mainly used for
photorealistic representations, and optionally for non-
photorealistic representations. In addition, it can
render silhouettes on photorealistic representations,
and accordingly enables conspicuous representation.
In this paper, we propose an NPR method of stippling
using a point cloud without normal vectors. We
selected stippling because it is suitable for point
clouds, which consist of points only. First, we
eliminate the hidden points based on the image space.
Next, we apply a new shading method to the visible
points based on the image space; moreover, we can
control the degree of shading. In addition, we
implement all of the methods using a GPU to
accomplish interactive rendering.

2. STIPPLE RENDERING
Stippling is an artistic rendering method which uses
points only, and achieves shading by changing the
density of the points. To get results for stippling

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2010 Communication Papers 193

using a point cloud, we limit the background color to
white and color all the points black. The input point
cloud our method uses is evenly distributed without
normal vectors and insufficiency.
Figure 1 shows the results of applying general
shading to the mesh model. Figure 1(b) is the result
of applying diffuse reflection to Figure 1(a). Figure
1(c) is the result of applying specular reflection to
Figure 1(b). Typically, there are two steps to general
shading; diffuse and specular reflection. Therefore,
we apply our method, which also consists of diffuse
and specular reflection, to the input point cloud. To
get an effect similar to diffuse reflection, we thin out
some of the points from Figure 2(a) as shown in
Figure 2(b). In addition, we omit some local points
for specular reflection as shown in Figure 2(c).

(a) (b) (c)

Figure 1. Shading; (a) original; (b) diffuse; (c)
specular.

(a) (b) (c)

Figure 2. Shading using our proposed method.
Our method consists of four steps, which are outlined
in Figure 3, and we implement all the methods using
a GPU to accomplish interactive rendering.
Step 1) Creating a texture to eliminate the hidden
points from the point set surfaces.
Step 2, 3) Creating textures for diffuse and specular
reflections so that we can obtain similar effects.
Step 4) Applying the three textures applied to a point
cloud and obtain the result.

2.1 Hidden points texture
In general, if we use the mesh data as input shapes,
the back faces are eliminated from the front faces
utilizing a Z-buffer. However, point clouds have
points only, so the points on the back faces are not
eliminated even if we apply a Z-buffer. Therefore, we
apply following method so that we can apply the Z-
buffer to eliminate the hidden points.
First, we place a texture plane at a viewpoint on the
GPU at a size greater than the screen resolution. All
points are then projected onto the texture plane. In
Figure 4(a), the depth value of point A is 2, point B

Figure 3. Outline of our method.

is 4, and point C is 3. So, each pixel has the smallest
depth value of all the points which are points
projected onto it. Next, as shown in Figure 4(b), in
order to eliminate the hidden points in the texture
plane, we store each depth value into the neighboring
pixels, which also have the smallest depth value.
After that, we apply the results of the texture plane to
the point cloud; see Section 2.4.
However, there are cases where the hidden points on
the back faces are not eliminated from the texture
plane by the above process. In such cases, we repeat
the above process until the hidden points are
eliminated from the texture plane.
When B (Figure 4(b)) is eliminated from the texture
plane, other points in high density parts of the texture
plane also tend to be eliminated. As a result, too
many points are eliminated from a high-density point
cloud.

Figure 4(a). Projection onto a texture plane.

Figure 4(b). Storing the depth values into 8

neighboring pixels.

Display

GPU

Point Cloud

Determining drawing points

Texture for diffuse reflection

Texture for hidden points

Texture for specular reflection

depth

depth

WSCG 2010 Communication Papers 194

Hence, instead of storing the same depth value into
the surrounding pixels, we store a slightly larger
depth value, as shown Figure 5, so as to avoid cases
where extra points are eliminated. In fact, if we
assume that the maximum norm in all points is 1.0,
we set the larger depth value is 0.05, which value was
defined by our implementation. The final result of the
hidden points texture is shown in Figure 6.

(a) Before changing. (b) After changing.

Figure 5. The centered pixel is projected by a
point with depth value 3. In (a), the other pixels
have the same depth value: 3. In (b), the other
pixels have a slightly larger depth value of 6.

Figure 6. Improvement of storage.

2.2 Diffuse reflection texture
As shown in Figure 2(b), we thin out some points to
represent diffuse reflection, and control the degree by
changing the number of hidden points. In particular,
we control the degree by changing the density of the
points; a high-density part is low degree and a low-
density part is high degree.
First, we place a texture plane at an illuminant on the
GPU as a diffuse reflection texture. Next, all points
are projected onto the texture plane as shown at the
top of Figure 7. The density distribution of all the
projected points on the texture plane is shown at the
bottom of Figure 7. As a result of this, the lowest
density part has the highest degree of diffuse
reflection. Therefore, it is possible to achieve the
effect of diffuse reflection by all points are projected
only onto the texture plane. Additionally, we control
the degree of diffuse reflection by changing the
number of drawing points.
The idea is that each pixel on a texture has a hidden
point, and we control the degree of diffuse reflection
by changing texture size. In particular, after all
visible points are projected onto the texture plane,
each pixel has a minimum depth value, similar to the

hidden points texture. The texture consists of multi-
resolution textures so that we can control the degree
of diffuse reflection, as shown in Figure 8(a). Then
we define a full quadtree, with LEVELS 0-n.

Figure 7. Density of projected points.

If we select a LEVEL, all stored points on the texture
of the selected LEVEL are hidden. Moreover, the full
quadtree is maintained on a texture so that we can
effectively hold the textures on the GPU. In our
method, we create the diffuse reflection texture, sized

nn 22 1 , and store each LEVEL as shown in Figure
8(b). So, a pixel on LEVEL 1 has the minimum depth
value of four pixels on LEVEL 2. Similarly, a pixel
on LEVEL 2 has the minimum depth value of four
pixels on LEVEL 3. Thus, all LEVELS can be
created based on the texture of LEVEL n .
In particular, after the projection of all visible points
onto the texture of LEVEL n , all of the other
resolution textures are created in descending order,

(a) Multi-resolution texture.

(b) On a texture.

Figure 8. Full quadtree.
based on the texture of LEVEL n . So, e.g., a pixel

),(yx on the texture of LEVEL 1l has the
minimum depth value in)','(yx which is calculated
by Formula (1),)',1'(yx ,)1','(yx ,)1',1'(yx .

n

lk
k yxyx)2),2(2()','((1)

2n+1

LEVEL n

LEVEL n-1

LEVEL n-2

2n

Point s depth value

LEVEL 0

LEVEL 1

LEVEL 2

6

6

6

6

3

6

6

6

6

3

3

3

3

3

3

3

3

3

Ray vector

High Low High
Projected plane

depth

WSCG 2010 Communication Papers 195

2.3 Specular reflection texture
We refer to the Phong reflection model that is
typically applied to a shape model. The degree of
specular reflection is determined by the angle
between the ray and normal vector of the surface.
However, the input point cloud does not include
normal vectors; therefore, instead of using normal
vectors, we create parameter similar to the above
angle.
First, we place a texture plane at an illuminant on the
GPU as a specular reflection texture. Next, all points
are projected onto the texture plane. Then, assume
that all points have normal vectors as shown at the
top of Figure 9. The angle between each normal
vector and ray vector has the angle distribution
shown at the bottom of Figure 9.
Note that the density distributions of the projected
points in Figure 9 have a similar distribution to those
in Figure 7. Therefore, we compare their distribution
to achieve shading without a normal vector. In
particular, we regard each of the density distributions
on the projected plane to be the angle between a
normal and ray vector. Similarly, if we replace the
ray vector with the eye vector in Figure 9, we can
regard the density distributions of each projected
point with the angle between the normal and eye
vector. Consequently, the differences of their
distributions indicate the angle between the eye and
ray vector.
In Figure 6, note that the depths based on point A
were stored into 8 pixels; point C has 9 pixels. We
have found that their numbers are almost proportional
to the distributions on the hidden points texture.
Thus, we create a hidden points texture at an
illuminant as a specular reflection texture on the GPU.
Then, we determine the drawing points by referring
to specular reflection texture and the hidden points
texture; see the next section.

Figure 9. Angle between two vectors.

2.4 Determining drawing points
We determine the drawing points by utilizing all three
textures. First, we determine the visible points by
applying the results of the hidden points texture to the
point cloud. Next, we apply the results of the diffuse

reflection texture and specular reflection texture to
the visible points.

2.4.1 Eliminating hidden points
To eliminate the hidden points, all points are
projected again onto the hidden points texture, as
shown in Figure 10, where the depth value of point A
is 2, point B is 4, point C is 3, and point D is 7. It
shows that point A is projected onto a pixel whose
depth value is 2, and each adjacent pixel has a depth
value of 4-5. Then, since there is a larger depth value

However, point D is projected onto a pixel whose
depth value is 6, and each adjacent pixel has a depth
value of 3-6. Then, since there is no larger depth

drawn. Using this process, all points are projected
onto the hidden points texture to determine whether
they should be eliminated or not.

Figure 10. A result of hidden points texture.

2.4.2 Hiding points for diffuse reflection
We hide some of the points to represent diffuse
reflection. This process is illustrated using Figure 11,
where we can select any of the four hidden LEVEL
(0-3).
We start by selecting hidden LEVEL 3. All visible
points are projected onto the diffuse reflection texture
of LEVEL 3, so as to represent the diffuse reflection
with LEVEL 3. For example, if a point with depth
value 4 is projected onto the pixel shaded with
diagonal lines, the point is not drawn because it has
the same depth value as that of the pixel. In contrast,
when a point with depth value 5 is projected onto the
same pixel, the point is drawn.
Next, when we select hidden LEVEL 2, all visible
points are projected onto the diffuse reflection texture
of LEVEL 3. For example, if a point with depth value
4 is projected onto the pixel shaded with diagonal
lines, the pixel is related to a pixel such as the bold
pixel in LEVEL 2 of Figure 11. Since, the bold pixel
in LEVEL 2 has the depth value of 2, the point is
drawn because its depth value is different from that of
the pixel.

depth

Projected plane

Ray vector

Normal vector

Small Large Small

WSCG 2010 Communication Papers 196

In case of selecting hidden LEVEL l , all points are
first projected onto the location of LEVEL n . After
that, when a point is projected onto a pixel yx, , we
refer to the pixel as ',' yx , computed by Formula (2).
If the depth in the referring pixel is equal to the

Figure 11. An example of diffuse reflection
texture. (The numbers represent the depth value
of each pixel.)

ln
ln

yx

yx
yx lnn

lk
kln 2/,22/

,
','

1

 (2)

2.4.3 Hiding points for specular reflection
We hide some points to represent specular reflection
in addition to diffuse reflection. First, all visible
points are projected onto a specular reflection texture
and a hidden points texture. As noted in Section 2.2,
we count the pixels in each texture and calculate the
difference between them. Then, we define a threshold

 to the difference so that we can control the degree
of specular reflection; is the ratio of the difference
to the number of pixels. The first iteration count is 9
and the second iteration count is 25. Next, all visible
points that have a difference greater than are
hidden.

3. RESULTS
We conducted experiments and verified our method.
We tested our method as shown in Table 1. The size
of the diffuse reflection texture is 2048 × 1024; the
hidden points texture and specular reflection texture
are 1024 × 1024 each. Additionally, we adopted Cg
for implementing our method on GPU, and assign
coordinate value XYZ of all points to color value
RGB in all three textures.

CPU Core2 Duo 2.66 GHz
RAM 2.0 GB
GPU GeForce 8800GTX

VRAM 768 MB

Table 1. Experimental environment.

Figure 12 shows the results of eliminating hidden
points with 72,027 (Bunny). This indicates that we
can eliminate the hidden points by repeating the

process, if we cannot eliminate the hidden points the
first time.
Figure 13 shows the results of applying diffuse
reflection to two point clouds: (a) and (b) are 542,199
(Oil pump); (c) and (d) are 152,807 (Chinese dragon).
They indicate that we can achieve diffuse reflection
as shown in Figure 2(b) and adjust the diffuse
reflection by changing the LEVEL. Figure 14 shows
the results of specular reflection on the shapes shown
in Figure 13. It shows that the high-light of specular
reflection, as shown in Figure 2(c), appears locally by
using our shading method. Furthermore, they indicate
that we can adjust the specular reflection by changing

. Therefore, they indicate that we achieve shading
by stippling.
Figure 15 shows another result of shading with
172,974(Armadillo). This indicates that our method
can achieve shadowing as shown in the circle in
Figure 15. Due to containing the eliminated hidden
points in our shading method, our shading method
has not been applied to the part in the shadow.
Figure 16 shows the results of processing speed. We
have compared the implementation on a CPU against
a GPU. It shows that on a GPU, the speed is 11 to 17
times faster than on a CPU. The reason is that our
method can be implemented with an image space, and
the GPU can perform in parallel with an image space.
Thus, our method can achieve interactive rendering.

4. CONCLUSION
In this paper, we proposed a NPR method with
stippling using point cloud without normal vectors.
First, we eliminated hidden points. Next, we applied a
novel shading method consists of specular reflection
and diffuse reflection. In addition, we implemented
our method on GPU to accomplish interactive
rendering.
In the future, we will refine our method so it can be
applied to an unorganized point cloud.

(a) once (b) twice

Figure 12. Eliminating hidden points.

WSCG 2010 Communication Papers 197

5. REFERENCES
[Zan04] J. Zander, T. Isenberg, S. Schlechtweg, and T.
Strothotte, High Quality Hatching, Computer Graphics
Forum, 23(3), 2004, 421-430.
[Sat04] Y. Sato, T. Fujimoto, K. Muraoka, and N. Chiba,
Stroke-Based Suibokuga-Like Rendering for Three
Dimensional Geometric Models, The Journal of the Society
for Art and Science 2004, 3(4), 2004, 224-234.
[Lak00] A. Lake, C. Marshall, M. Harris, and M.
Blackstein, Stylized Rendering Techniques For Scalable
Real-Time 3D Animation, 1st International Symposium on
Non-Photorealistic Animation and Rendering, 2000, 13-20.
[Say06] R. Sayeed, T. Howard, State of the Art Non-
Photorealistic Rendering (NPR) Techniques, EG UK
Theory and Practice of Computer Graphics, 2006, 1-10.
[Pau03] M. Pauly, R. Keiser, L.P. Kobbelt, and M. Gross,
Shape Modeling with Point-Sampled Geometry,
Proceedings of SIGGRAPH 2003, 2003, 641-650.
[Pfi00] H. Pfister, M. Zwicker, J.V. Baar, and M. Gross,
Surfels: Surface Elements as Rendering Primitives,
Proceedings of SIGGRAPH 2000, 2000, 335-342.
[Zak04] N. Zakaria and H.P. Seidel, Interactive Stylized
Silhouette For Point-Sampled Geometry, GRAPHITE 2004,
2004, 242-249.
[Run07] A. Runions, F. Samavati, and P. Prusinkiewicz,
Ribbons: A representation for point clouds, The Visual
Computer: International Journal of Computer Graphics,
23, 2007, 945-954.
[Ros08] P. Rosenthal and L. Linsen, Image-space Point
Cloud Rendering, Proceedings of Computer Graphics
International 2008, 2008, 136-143.

Figure 15. A result of shadowing.

Figure 16. Processing speed.

(a) (b)

(c) (d)

Figure 13. Results of after applying diffuse
reflection.The hidden LEVEL of (a) and (c) are 7;

(b) and (d) are 9.

(a) (b)

(c) (d)

Figure 14. Results of applying specular
reflection. of (a) and (c) is 0.3; (b) and (d) is 0.2.

WSCG 2010 Communication Papers 198

New methods for progressive compression

of colored 3D Mesh

Ho Lee

Université de Lyon, CNRS
Université Lyon 1, LIRIS,

UMR5205, F-69622, France

ho.lee@liris.cnrs.fr

Guillaume Lavoué

Université de Lyon, CNRS
INSA-Lyon, LIRIS,

UMR5205, F-69621, France

guillaume.lavoue@liris.cnrs.fr

Florent Dupont

Université de Lyon, CNRS
Université Lyon 1, LIRIS,

UMR5205, F-69622, France

florent.dupont@liris.cnrs.fr

ABSTRACT

In this paper, we present two methods to compress colored 3D triangular meshes in a progressive way. Although

many progressive algorithms exist for efficient encoding of connectivity and geometry, none of these techniques

consider the color data in spite of its considerable size. Based on the powerful progressive algorithm from Alliez

and Desbrun [All01a], we propose two extensions for progressive encoding and reconstruction of vertex colors: a

prediction-based method and a mapping table method. In the first one, after transforming the initial RGB space

into the Lab space, each vertex color is predicted by a specific scheme using information of its neighboring

vertices. The second method considers a mapping table with reduced number of possible colors in order to

improve the rate-distortion tradeoff. Results show that the prediction method produces quite good results even in

low resolutions, while the mapping table method delivers similar visual results but with a fewer amount of bits

transmitted depending on the color complexity of the model.

Keywords: Progressive compression; Colored 3D mesh.

1. INTRODUCTION

Nowadays, 3D models are widely used in many

applications such as virtual reality, entertainment,

Computer-Aided Design, scientific simulation and e-

commerce. Among the various existing

representations, 3D triangular meshes are particularly

appropriate to represent these models due to their

algebraic simplicity so that the most part of

manipulations can be processed by the graphic

hardware. The increasing popularity and the

increasing size of 3D meshes to respond to the needs

of representing objects or scenes with more and more

realism have become a critical issue, especially for

the end-users with limited bandwidth and storage

capacity. In this context, compression is a good

solution for this task; two different classes of

techniques exist: single-rate and progressive. Single-

rate techniques compress the mesh information as a

whole and the visualization is possible only when the

entire compressed file is received at the user-side.

These techniques often have advantages in terms of

compression ratio. On the other hand, progressive

techniques are more flexible by providing the

possibility of early visualization of the coarse version

with very few bits transmitted and then more refined

models can be rendered when more bits are received.

This property of progressive reconstruction is useful

especially for large models and for Internet-based

applications.

A typical 3D mesh is composed by its geometry,

connectivity and attribute data. Geometry data

determine vertex positions in the 3D space.

Connectivity data describe how these vertices are

connected together and attribute data specify colors,

surface normals or texture information for instance.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2010 Communication Papers 199

Among these mesh elements, attribute data is not

often considered by the state-of-the-art mesh

compression algorithms in spite of their visual

importance and their considerable size, especially for

the progressive algorithms.

In this paper, we propose two approaches to encode

efficiently color data in a progressive manner. Our

work can be seen as an extension of the progressive

mesh compression algorithm from [All01a] which

encodes only the connectivity and the geometry. We

have chosen this algorithm, since it is the best state-

of-the-art connectivity-driven algorithm. As it was

observed in [Lee09], even the most efficient

geometry-guided algorithm [Pen05] produces a poor

visual quality at low and medium bit rate, due to the

stair-like effects. Moreover, Alliez and Desbrun’s

algorithm which is based on the vertex removal

allows a better prediction using more neighboring

vertices than algorithms based on edge-contraction

[Hop96] [Paj00] [Tau98a] [Kar02], leading to the

better compression of the color data.

Related work
Single-rate techniques have been firstly studied by

many researchers in order to reduce compactly the

mesh data [Tau98b] [Tou98] [Gum98] [Baj99]

[Ros99] [All01b].

Later on, research on progressive compression

techniques have been introduced with the increasing

popularity of web-based applications. The first

progressive algorithm was proposed by Hoppe

[Hop96]. This new mesh representation, progressive

mesh, simplifies a given mesh by applying

successively edge contraction operations. At each

step, the edge to be contracted is properly chosen in

order to reduce the approximation error as much as

possible. At the decompression stage, the

reconstruction is achieved by the inverse operation,

vertex split. This method has been extended by

several researchers to improve the compression

efficiency and also the rate-distortion trade-off

[Paj00] [Tau98a] [Kar02]. In their work, Cohen-Or et

al. [Coh99] proposed the patch coloring algorithm for

progressive transmission. This algorithm removes

iteratively an independent vertex set – any two

vertices of this set are not connected by an edge –

using vertex decimation. Then, each hole left by

vertex decimation is re-triangulated in a deterministic

way. The set of these new triangles is called a patch.

The authors applied 2-coloring and 4-coloring

methods to the patches in order to permit the decoder

to identify correctly each patch. This algorithm

encodes the connectivity with an average of 6 bits-

per-vertex (bpv). Alliez and Desbrun [All01a]

extended the existing valence-driven single-rate

approaches [Tou98] [All01b] for progressive mesh

encoding. Their algorithm, which is also based on

vertex decimation, consists of two conquests:

decimation and cleansing. The decimation conquest is

successively applied alternating with cleansing

conquest, building different levels of details. This

algorithm encodes the connectivity with an average of

3.7 bpv.

All the progressive algorithms described above are

connectivity-driven algorithms, meaning that the

priority is given to the connectivity coding.

Observing that the amount of geometry data in the

compressed file is often larger than connectivity data,

Gandoin and Devillers [Gan02] proposed the first

geometry-driven approach based on the kd-tree space

subdivision. In terms of lossless compression ratio,

this algorithm outperforms connectivity-driven

algorithms. Peng and Kuo [Pen05] proposed a more

efficient geometry-guided technique by using the

octree cell subdivision. An improvement is achieved

by using efficient prediction methods for both

connectivity and geometry. These geometry-driven

algorithms give very impressive results in terms of

lossless compression ratio, however they provide

quite poor results at low resolutions, hence they are

not fully efficient for progressive transmission. In

[Lee08], the authors proposed key-frame based

technique for the efficient transmission of animating

meshes.

Up to present, the compression of the mesh attribute

data such as colors, normals or texture coordinates

plays a secondary role. Among the well-known

single-rate techniques, only [Dee95] [Baj99]

[Tau98b] proposed a method to encode vertex-bind

color information in the RGB color space. However,

the prediction and the quantization used for the color

encoding are the same as for the geometry encoding

regardless of its different nature. More recently, Ahn

et al. [Ahn06] and Yoon et al. [Yoo07] proposed new

methods for the efficient encoding of color data. Ahn

et al. [Ahn06] used a mapping table based on the

vertex layer traversal algorithm. Instead of encoding

color coordinates of each vertex, they encode the

index of the vertex color in the mapping table. A

color value in the mapping table is encoded when it

appears for the first time during the traversal. In other

words, they have to encode the index of each vertex

and the corresponding color coordinates in the

mapping table. To further improve the efficiency,

they also used a delta coding for color index

encoding. Yoon et al. [Yoo07] introduces a

prediction method using connectivity and geometry

information of neighboring vertices. They consider

different weights for the neighboring vertices using

angle analysis. Then the color value of the current

WSCG 2010 Communication Papers 200

vertex is predicted from weighted averaged color

values.

Geometry images [Gu02] [Yao08] permit to represent

compactly the colored geometric models using 2D

images. There exist also some algorithms which

allow the simplifying the mesh taking the color

information into account [Hop99] [Gar98] [Roy05].

However, these algorithms do not provide a way to

reconstruct the original mesh. To our knowledge,

there is no progressive mesh coder allowing the

encoding of color information.

2. DESCRIPTION OF BASE

ALGORITHM

Our color compression scheme is based on the

valence-driven progressive approach proposed by

Alliez and Desbrun [All01a]. This algorithm uses the

good statistical property of the native distribution of

vertex valences for the mesh connectivity encoding.

This approach iteratively decimates a set of vertices

by combining decimation and cleansing conquests to

get different levels of details (LOD). Decimation

conquest consists in traversing the mesh patch by

patch using a gate-based traversal; the front vertex of

the current gate is removed only when its valence is

below 7, in order to preserve compactly the vertex

valence distribution. The hole left is then re-

triangulated. The boundary edges of the actual patch

are pushed into a FIFO list. The decimation conquest

continues with the next available gate in the FIFO list,

performing a breadth first traversal. Similarly,

cleansing conquest removes only vertex of valence 3.

Fig.1 illustrates this mechanism: a regular input mesh

(Fig.1.a) is simplified by decimation conquest

(Fig.1.b). A set of independent vertices (red vertices)

is removed and patches are re-triangulated. After

performing cleansing conquest (Fig.1.c), vertices of

valence 3 (blue vertices) are removed. We can see

that as the input mesh is regular, the simplified mesh

is also regular. Even for irregular meshes, this

algorithm delivers better triangulation at coarse levels

than the work of Cohen-Or et al. [Coh99]. During the

compression stage, valences of removed vertices and

additional null codes (in case of irregular mesh) are

encoded for the connectivity.

For the geometry coding, Alliez and Desbrun first

applied a global and uniform quantization to the

coordinates of the mesh vertices. Then, they used

both the barycentric prediction and the approximate

Frenet coordinate frame, separating normal and

tangential components to further optimize the bit rate.

The base vectors of the local frame are built from the

current gate (one of the boundary edges of the patch)

and the approximated patch normal. The barycenter is

obtained by averaging positions of neighboring

vertices. The difference between the position of the

vertex to be removed and the barycenter is then

encoded in the local frame.

Figure 1. An example of decimation (b) and

cleansing conquests (c) applied on a regular mesh

(a).

Recently, Lee et al. [Lee09] proposed an improved

geometric coder using a discrete bijection. They

adopted the bijection method of Cartens et al.

[Car99] and optimized the coding efficiency by

providing an angle minimization. They also proposed

a framework to improve the rate-distortion (R-D)

trade-off by using adaptive quantization during the

mesh simplification process.

In the following of this paper, we use the mesh

traversal and the connectivity encoding techniques of

[All01a] and the geometry coder of [Lee09].

3. COLOR COMPRESSION

The amount of color data associated to the mesh can

be as large as or even larger than connectivity and

geometry without an adaptive compression method.

Therefore, a specific technique is required to reduce

efficiently these data.

We propose in this section two methods which permit

to encode the color data associated with mesh

vertices, in a progressive manner.

Color space transform
Before to compress any color data, all colors

expressed in the RGB space are transformed into the

Lab space. The Lab space is the luminance-

chrominance representation which describes more

closely the human perception system. Moreover, this

representation is more decorrelated than the RGB

space. Thus, the Lab space is more appropriate to the

WSCG 2010 Communication Papers 201

data compression. After this transformation, each

color is represented using 8 bits for L, a and b color

components as in the initial RGB space.

Prediction-based method
Since we consider the connectivity reduction of

Alliez and Desbrun [All01a], the simplest method to

predict the color value of the current vertex to decode

is to use the average color of neighbors, like the

prediction used for geometry encoding as illustrated

in Fig. 2.

Encoding

Decoding

Figure 2. A vertex is removed (resp. inserted)

during the encoding (resp. decoding) process. Its

position is predicted from the averaged position of

the neighboring vertices.

However, this prediction is not very efficient because

the color data own a different behavior than geometry.

In the case of quite regular meshes, the difference of

positions (geometrical distance) between two vertices

connected by an edge is relatively small, hence the

barycentric prediction, explained in Section 2, can be

performed efficiently. However, the color difference

between two adjacent vertices can be very important,

especially in the case of a vertex located in a color

boundary, resulting that the averaging prediction is

quite ineffective.

We can observe that the color value of a vertex is

generally very close to at least one of its neighboring

vertices’ colors. Based on this observation, we

propose a method which selects the proper color

among the colors of the neighboring vertices so as to

predict more efficiently. To perform this color

selection, we first calculate the average values, Lmean,

amean and bmean of the neighbor colors. Then, for each

component, we select the one which is the closest to

the corresponding average component among the

neighboring vertices’ colors. The difference between

the original and the selected color component values

is then entropy coded to allow the decoder to

reconstruct the exact color value. During the

decompression process, after an insertion of new

vertex, the corresponding color data is added to the

vertex, allowing the progressive reconstruction.

Mapping table method
As each vertex color is represented using 24 bits,

there exist 2
24

 possible colors. Yet, the human visual

perception system cannot distinguish relatively small

change of colors. Hence, we propose a method to

reduce the bit rate needed for color encoding by

reducing the number of colors to encode.

Our method first applies a clustering algorithm to the

input mesh in order to reduce the number of possible

colors without seriously affecting the visual distortion.

Then, we use a mapping table method as in [Ahn06],

based on the observation that this method is

particularly useful when there is small number of

colors. Fig.3 illustrates the diagram of our method in

the case of the compression process.

Transformation
into Lab space

Reducing of
number of colors

Mapping table Color index

Entropy coder

Triangle mesh with
vertex color

Bitstream

Prediction

Figure 3. Diagram of the encoding process of our

second algorithm.

The clustering method is widely used for 2D image

compression [Sal98]. It consists in finding a set of

representatives (Look Up Table) and in mapping each

vertex color to its nearest representative. To generate

a correct mapping table by minimizing the color

distortion as much as possible, we use the well-

known K-means clustering algorithm.

1. K initial seeds colors are selected from the

mesh color data set.

2. K clusters are created by associating each

color to the nearest seed.

3. The centroids of each cluster are used as

new seeds and the new clusters are created.

The algorithm repeats step 2 and 3 until the all seeds

are unchanged. Since the efficiency of the clustering

algorithm depends on the initial condition of the

seeds, we use as initial seeds the K more frequent

colors of the input mesh in order to strengthen the

approximation. After finding K representatives, each

vertex color is replaced by its closest representative.

WSCG 2010 Communication Papers 202

A result of this clustering algorithm is illustrated in

Fig.4 with the Globe model containing initially 5030

colors. Although the number of possible colors is

reduced to 256 colors, one can hardly distinguish the

color distortion.

Figure 4. Color reduction based on clustering

for the Globe model.

To encode the color data, we use the mapping table

containing the final representatives obtained by the

clustering algorithm. At the compression stage, when

removing a vertex, the color index corresponding to

its color in the mapping table is encoded.

To further enhance the rate-distortion performance

and also to reduce additionally the coding cost, all

color values contained in the mapping table are

encoded in a progressive way. When the resolution

level is augmented (when the mesh is refined to one

higher level), the information of new colors are sent,

enlarging the size of the mapping table. Fig. 5

illustrates an example of the progressive decoding of

the mapping table. For a given resolution level, the

mapping table contains 4 colors (C0 to C3). When a

new vertex is inserted, and if the decoder identifies

that the associated color is not present in the current

mapping table then the new color value is added to it.

Furthermore, we try to reduce the coding cost needed

for the encoding of the mapping table. In Ahn et al.’s

work [Ahn06], they encode each color values in the

mapping table using 24 bits. We reduce this coding

cost by using our prediction-based method. During

the compression process, we use our prediction

method when removing each vertex. And we store

only the difference between the original color value

and the predicted color of the last encountered vertex

for each color of the mapping table. So, during the

mesh reconstruction, when a vertex is inserted and its

color is revealed for the first time, we use information

of the neighbors to acquire the correct color value of

the corresponding color in the mapping table.

Even when the full resolution of the geometry has

been reached, there still exist some differences of

colors between the reconstructed color mesh and the

original one, due to the color number reduction step

(i.e. the clustering). However, depending on the

needs, the original vertex colors can be restored, by

encoding the difference of color between the initial

color value of each vertex and its representative

during the clustering phase. These differences are

sent at the end of the decompression process.

Figure 5. An example of progressive decoding of

the mapping table. Initial mapping table (a) is

enlarged when a new color, C4, appears (b).

4. EXPERIMENTAL RESULTS

Fig. 6 shows the 3D models used in our experiments.

Each coordinate of vertices of these models is

quantized using 10 bits.

Figure 6 : Models used for compression.

WSCG 2010 Communication Papers 203

Lossless compression
Table 1 shows lossless compression results for the

test models using our methods. The bit rates needed

for compression of the color information and those of

the mesh connectivity and the geometry (C+G) are

given in bits-per-vertex (bpv). As most of the well-

known state-of-the-art progressive algorithms do not

consider color data, the efficiency of our prediction

method is compared with the prediction scheme used

in Yoon et al.’s work [Yoo07] and the averaging

prediction. The method of Yoon et al. was originally

applied in a single-rate way in their work. We have

adapted their prediction method based on angle

analysis for the mesh traversal technique of [All01a].

We can observe that the performance of these

prediction schemes is similar for each model and

better compression rates are obtained for the models

containing large surface of smooth color variation,

such as GIST-Monkey and Swirl models. For all test

models, our method outperforms those of [Yoo07]

and the averaging prediction method, especially for

the Swirl model which contains many color boundary

vertices and for those the color difference on the

boundary is important.

Results of lossless compression of our mapping table

method are also given. Different numbers of seeds, K,

are used during the color number reduction step. We

can see that the more the number of initial seeds

increases, the more the coding rates decreases. This is

because the cost of the original color restitution

applied after reaching the finest geometry resolution

level increases rapidly when the value of K becomes

smaller. As a consequence, the result of the mapping

table is better than our prediction method when the

value of K is superior to 256.

Progressive compression
Fig. 7 illustrates some intermediates meshes with

respective coding rates. All the rates presented in this

figure include the amount of connectivity, geometry

and color data. Our two methods produce

intermediates results with a quite good visual quality

both for the geometry and the color even for low bit

rates (< 5 bpv).

In this figure, the GIST-Monkey model is used to

compare the efficiency of our two methods:

prediction method (d–f) and mapping table method

(g–i). As expected, the mapping table method

produces intermediate meshes of similar visual

quality with less bit rates. Even though the number of

colors has been severely reduced, from 6669 to 32,

one can hardly sense the discrepancy comparing to

the results of the prediction method.

5. CONCLUSION

In this paper, we have presented two methods for

progressive encoding of colored meshes. To our

knowledge the proposed methods are the first ones

which consider the effective color coding in the field

of 3D progressive compression. Our first algorithm

based on the prediction is easily implementable and

produces quite good results even for low bit rates.

The second algorithm combining the mapping table

with the clustering delivers intermediate meshes of

almost equal visual quality with fewer bits, enhancing

the rate-distortion trade-off.

As future work, we will investigate a reliable metric

permitting to measure the global distortion between

two meshes taking mesh geometry and also color into

account, in order to evaluate the rate-distortion

performance.

ACKNOWLEDGMENTS

We would like to thank Hyun Soo Kim for sending us

the color mesh models. This work has been supported

by French National Research Agency (ANR) through

COSINUS program (project COLLAVIZ n°ANR-08-

COSI-003).

Table 1. Compression rates of test models in bits-per-vertex.

Models # V # Color C + G
Prediction Mapping table

Average Yoon Our K = 64 K = 256 K = 1024

Globe 36866 5030 4.61 16.43 16.17 15.37 15.81 13.81 12.65

GIST-Monkey 50503 6669 13.5 6.49 6.49 5.95 8.52 8.33 7.23

Swirl 9216 138 4.12 9.97 10.16 6.62 3.04 - -

WSCG 2010 Communication Papers 204

Figure 7. Result of progressive decoding of the test models. The model Globe (a – c) and the model GIST-

Monkey (d – f) are progressively reconstructed using our prediction method. Intermediates meshes of the

models GIST-Monkey (g – i) and Swirl (j – l) are given by our mapping table method. For both models,

the number of possible colors are reduced, using K = 32 seeds in the clustering step. The bit rates include

the connectivity, the geometry and the color information.

WSCG 2010 Communication Papers 205

 REFERENCES

 [Ahn06] J. Ahn, C. Kim, Y. Ho. Predictive compression

of geometry, color and normal data of 3-D mesh

models. IEEE Transactions on Circuits and Systems

for Video Technology, 16(2):291-299, 2006.

 [All01a] P. Alliez and M. Desbrun. Progressive

compression for lossless transmission of triangle

meshes. In ACM SIGGRAPH, 198-205, 2001.

[All01b] P. Alliez and M. Desbrun. Valence-Driven

connectivity encoding for 3D meshes. In

Eurographics, 480-489, 2001.

 [Baj99] C. L. Bajaj, V. Pascucci, and G. Zhuang. Single

resolution compression of arbitrary triangular meshes

with properties. In IEEE Visualization, 1999, 307-

316.

 [Car99] H.-G. Cartens, W.A. Deuber, W. Thumser, and

E. Koppenrade. Geometrical bijections in discrete

lattices. Combinatorics, Probability and Computing.

8:109-129, 1999.

 [Coh99] D. Cohen-Or, D. Levin, and O.Remez.

Progressive compression of arbitrary triangular

meshes. In IEEE Visualization Conference

Proceedings, 67-72, 1999.

 [Dee95] M. Deering. Geometry compression. In ACM

SIGGRAPH, 13-20, 1995.

 [Gan02] P.-M. Gandoin and O. Devillers. Progressive

lossless compression of arbitrary simplicial

complexes. ACM Transactions on Graphics,

21(3):372-379, 2002.

 [Gar98] M. Garland and P. Heckbert. Simplifying

surfaces with color and texture using quadric error

metrics. In IEEE Visualization, 263-269, 1998.

 [Gu02] X. Gu, S. Gortler, and H. Hoppe. Geometry

Images. ACM Transactions on Graphics, 21(3):355-

361, 2002.

 [Gum98] S. Gumhold and W. Strasser. Real time

compression of triangle mesh connectivity. In ACM

SIGGRAPH, 133-140, 1998.

 [Hop96] H. Hoppes. Progressive meshes. In ACM

SIGGRAPH, 99-108, 1996.

 [Hop99] H. Hoppes. New quadric metric for simplifying

meshes with appearance attributes, In IEEE

Visualization, 59-66, 1999.

 [Kar02] Z. Karni, A. Bogomjakov, and C. Gotsman.

Efficient compression and rendering of multi-

resolution meshes. In IEEE Visualization Conference

Proceedings, 347-354, 2002.

 [Lee09] H. Lee, G. Lavoué, and F. Dupont. Adaptive

coarse-to-fine quantization for optimizing rate-

distortion of progressive mesh compression. In VMV,

73-81, 2009.

 [Lee08] T. Lee, Y. Wang, and T. Chen. Animation key-

frame extraction and simplification using deformable

analysis. IEEE Transactions on Circuits and Systems

for Video Technology, 18(4):478-486, 2008.

 [Paj00] R. Pajarola and J. Rossignac. Compressed

progressive meshes. IEEE Transactions on

Visualization and Computer Graphics, 6(1):79-93,

2000.

 [Pen05] J. Peng and C.-C.J. Kuo. Geometry-guided

progressive lossless 3D mesh coding with octree

(OT) decomposition. In ACM SIGGRAPH, 609-616,

2005.

 [Ros99] J. Rossignac. Edgebreaker : Connectivity

compression for triangle meshes. IEEE Transaction

on Visualization and Computer Graphics, 5(1):57-61,

1999.

 [Roy05] M. Roy, S. Foutou, A. Koschan, F. Truchetet,

and M. Abidi. Multiresolution analysis for meshes

with appearance attributes, In ICIP, 816-819, 2005

 [Sal98] D. Salomon. Data compression: The complete

reference. Springer Verlag, 1998.

 [Tau98a] G. Taubin, A. Guéziec, W. Horn, and F.

Lazarus. Progressive forest split compression. In

ACM SIGGRAPH, 123-132, 1998.

 [Tau98b] G. Taubin and J. Rossignac. Geometric

compression through topological surgery. ACM

Transaction on Graphics, 17(2):84-115, 1998.

 [Tou98] C. Touma and C. Gotsman. Triangle mesh

compression, In Proceedings of Graphics Interface,

26-34, 1998.

 [Yao08] Z. Yao and T. Lee. Adaptive Geometry Image.

IEEE Transactions on Visualization and Computer

Graphics, 14(4):948-960, 2008.

 [Yoo07] Y. Yoon, S. Kim, and Y. Ho. Color data coding

for three-dimensional mesh models considering

connectivity and geometry information. In ICME,

253-256, 2007.

WSCG 2010 Communication Papers 206

High-Quality Wavelet Compressed Textures for Real-time
Rendering

Nico Grund
Philipps-Universität Marburg

Hans-Meerwein-Str.
35032 Marburg, Germany

ngrund@informatik.uni-marburg.de

Nicolas Menzel
Philipps-Universität Marburg

Hans-Meerwein-Str.
35032 Marburg, Germany

menzel@informatik.uni-marburg.de

Michael Guthe
Philipps-Universität Marburg

Hans-Meerwein-Str.
35032 Marburg, Germany

guthe@informatik.uni-marburg.de

ABSTRACT

Although modern graphics hardware provides up to 1.5 gigabytes of memory, methods for effective texture com-
pression are still required since there is always demand for more detailed and realistic images. In this paper, we
present a method for the effective compression of large images and textures based on a quadratic B-Spline wavelet.
The transformation is followed by a tree-compaction algorithm, which achieves high compression ratio at good
image quality.

Keywords
Texture Compression, Wavelets.

1 INTRODUCTION

Compression of large textures and images is of crucial
interest in many fields in computer graphics. The pro-
grammability of modern GPU allows texture and image
compression and decompression algorithms to exploit
the full parallel processing power and streaming capa-
bility. However, one considerable obstacle is yet the
limited support and capacity for general purpose data
storage on the graphics card: Though provided with up
to 1.5 gigabytes of memory, modern GPU’s texture size
is still limited to currently 8192x8192 pixels.

Wavelet encoding has proven to be an appropriate
tool for image compression, as in JPEG2000 [15]. Ad-
vantages are that it is easily implemented in software
and can be adapted to hardware for improved perfor-
mance [16]. There are several benefits arising from
wavelet compression. First, the encoding itself leads to
a straightforward lossy compression scheme by quan-
tizing the coefficients. By encoding the wavelet coef-
ficients into a quadtree, some memory can be saved by
removing subtrees containing only zero coefficients af-
ter quantization. This means that textures will require
less memory for storage, allowing them to fit into the
limited texture size of the graphics card without the use
of tiling. This way a shader program can be used for
decompression and filtering.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

Based on these observations, we present a compact
tree-coding algorithm for the efficient high-quality
compression of two-dimensional image data and a
real-time random access decompression algorithm
running on the GPU. Our approach is easily extensible
to multidimensional data and to non-linear HDR data.

2 RELATED WORK
The S3 Inc. introduced five simple lossy block-
decomposition-based compression schemes with
compression rates of 4:1 and 8:1 [10] for 8-Bit RGBA
images, which have been adopted by the Microsoft
DirectX framework. Based on the observation that
large textures, as required for terrain rendering, are
not supported by graphics cards, Tanner et al. [14]
proposed the clipmapping algorithm, which subdivides
a huge texture into small tiles which fit into the texture
memory.

For the compression of images the JPEG2000
standard [15, 2] supports the use of the LeGall and the
Cohen-Daubechies-Feauveau 7/5 wavelet, superseding
the discrete cosine transform used in regular JPEG
compression. Wavelet-based compression schemes
have proven to be more flexible, providing higher
compression rates while yielding higher quality.
Compared to other algorithms, they demand a higher
decompression complexity. Therefore, recent work
aimed at the use of modern graphics-hardware to yield
interactive frame rates.

Beers et al. [1] introduced a vector-quantization-
based technique that uses a precomputed codebook and
stores a smaller texture of indices into this codebook.
The size of the codebook determines the level of
compression. More recently, Fenney [4] described a
way to store a compressed texture so that decompres-

WSCG 2010 Communication Papers 207

sion needs one lookup per sample only. Schneider et
al. [12] introduced a compression scheme for static and
time-varying volumetric datasets. This algorithm is
based on a vector quantization with a fixed bit-rate. To
initialize the compression they use a codebook, which
is obtained using a splitting technique. The number
of generated entries is confined to the bit-rate of the
quantization. The compression rate is nearly 20:1.

Shaprio [13] presents the embedded zerotree wavelet
algorithm (EZW), which is based on a discrete wavelet
transform and a zerotree coding to store a compact mul-
tiresolution representation of significance maps, which
contains the positions of the significant wavelet coef-
ficients. This method can provide good performance
with very low complexity. The disadvantage of the
EZW procedure is, that all values are classifed by an
certain threshold. Coefficients below this threshold are
simply omitted. As an result of this it will remove noise
in uniform regions but also it generates blurry artifacts
in the reconstructed image. DiVerdi et al. [3], proposed
a method to implement the EZW algorithm for decod-
ing on graphics hardware using the Haar wavelet. The
wavelet coefficients are arranged in a tree with a zero
node, where all child pointers of the leaves and nodes,
which contain coefficients equal to zero, point to the
zero node. While they achieve good compression rates,
noisy images are problematic since too few wavelet co-
efficients are sufficiently close to zero for an imperceiv-
able difference.

3 WAVELET-TRANSFORMATION
Wavelet transformation in general has been well studied
in literature so we will not discuss it in detail. The most
important property of the wavelet transformation is that
it decomposes the image into perceptually meaningful
subbands that can afterwards be compressed more effi-
ciently than the original image.

Before the wavelet transformation the gamma correc-
tion is applied for linearization of the intensity values.
This step needs to be replaced by a log-mapping in the
case of HDR data. In both cases, the RGB color space is
converted to the Y ′PbPr color space, where a luminance
value and two differential color values are stored to con-
sider the human visual system, which is more sensitive
to changes in luminance than in color.

The choice of the wavelet basis is crucial for the
wavelet compression. The two major characteristics of
a basis are the width of support and the compression
it can provide. A wider support yields better compres-
sion results, but is computational more expensive. We
implemented three different wavelet bases in order to
compare their benefits and disadvantages.

Our first implementation is the Haar wavelet, which
has the most compact support. This simplicity makes it
optimal for decoding performance. Disadvantages are,
however, that it is neither continuous nor differentiable.

This results in highly visible block artifacts in the com-
pressed image.

The LeGall biorthogonal wavelet, which is also
described in the JPEG2000 specification [15, 2], is
continuous, but not differentiable. Compared to the
Haar wavelet, it represents local changes in frequency
smoother and thus produces more appealing compres-
sion results. As shown in Figure 1, its support is three
times as wide as the Haar wavelet.

Figure 1: Haar, LeGall and quadratic B-Spline mother
wavelet.

The quadratic B-Spline wavelet [11] is both continu-
ous and differentiable. It therefore should achieve the
best compression results compared to the two previous
bases. It has the same support width as the Le Gall
wavelet so the decompression performance is equiva-
lent. The associated coefficients of the analysis and
synthesis filter are shown in Table 1.

4 TREE-BASED COMPRESSION

Unfortunately, an entropy-based coding of the quan-
tized wavelet coefficients as in image compressions al-
gorithms like JPEG2000 is not suitable for real-time de-
compression on the GPU. Instead we first build a tree
data structure from the wavelet decomposed image and
then exploit redundancy in this tree by converting it into
a general directed graph. In this procedure, identical
or similar nodes are iteratively combined into a single
node until a desired compression ratio is achieved.

Analysis Filter Synthesis Filter
Coefficients Coefficients

i Lowpass Highpass Lowpass Highpass
Filter Filter Filter Filter

-1 1/4 1/4 -1/4 -1/4
0 3/4 3/4 3/4 3/4
1 3/4 -3/4 3/4 -3/4
2 1/4 -1/4 -1/4 1/4

Table 1: Coefficients of the quadratic B-Spline analysis
and synthesis filter.

WSCG 2010 Communication Papers 208

4.1 Wavelet tree
Based on the dyadic decomposition a natural tree struc-
ture for the wavelet coefficients is to store the LH, HL,
and HH coefficients of a single pixel in the current level
together with four pointers to the next finer level. The
LL coefficient for the root level then needs to be stored
outside the tree. This way the coefficients required to
reconstruct a single pixel can be collected by traversing
the tree from the root node to the leaf containing the
highest resolution coefficients for that pixel. The major
drawback is that for storing the quantized coefficients
only 9 bytes are required, while the pointers require 12
bytes, when using up to 24 Bits which allows up to 16
MB for the compressed representation.

Figure 2: Dyadic decomposition and derived tree data
structure.

In our approach we reduce the pointer overhead by
grouping the wavelet coefficients of a two by two pixel
block on each level. This way, only four pointers are
required per 12 quantized YCC coefficients. Thus, the
overhead is only 12 bytes per 36 bytes of data or in other
words roughly 33%. Since the lowest resolution level
only contains one coefficient of each type, four coeffi-
cients need to be stored outside the tree instead of only
one. As these must be considered seperately anyways,
we stop the wavelet decomposition at two by two pix-
els and store all of them as LL coefficients. Figure 2
shows the dyadic decomposition and the resulting tree
data structure.

4.2 Tree compression
After the tree data structure is generated, redundant
nodes are iteratively removed. Since combining two
nodes also joins their subtrees, only nodes with the
same children are candidates for such a collapse op-
eration. The final data structure now is a general di-
rected graph with the addition of a specifically marked
root node (see Figure 3). As a collapse operation might
introduce an approximation error the ordering of col-
lapses as well as the choice which two nodes are col-
lapsed at each step determine the quality of the decom-
pressed result.

We use a priority queue to perform the node collapse
operations in an optimal order on the directed graph. To
minimize the total mean square error (MSE), the key

Figure 3: Uncompressed (left) and compressed (right)
directed graph data structure. The colors depict identi-
cal coefficients stored in the tree nodes.

by which the operations are sorted needs to be propor-
tional to the sum of squared differences (SSD) of all
nodes collapsed together by this operation, i.e. all orig-
inal nodes collapsed into the two candidates i and j.
As the coefficients of each node are the average coeffi-
cients of all contained original nodes, this error ε(i, j)
can be computed by summing up the SSD of both nodes
(εi and ε j) with the appropriately weighted SSD when
collapsing the coefficients of the two candidates:

ε(i, j) = εi + ε j +d2(i, j)
wiw j

wi +w j
,

where d2(i, j) is the sum of squared differences of the
coefficients of node i and j and wi/ j is the sum of
the weights of all original nodes collapsed to i and j,
respectively. For the computation of the new coeffi-
cients, those of node i and j are simply multiplied by
the weight stored in each of these nodes and divided by
the new weight which is the sum wi and w j.

Since each node is always collapsed with the one for
which the collapse has the lowest cost, we only need to
find the closest node ci for each node i and store this
pair in the priority queue. This problem is similar to the
nearest neighbor search in high dimensional spaces as
our coefficient vector has a dimensionality of 36. The
only exception is that the distance beween two nodes
with different child nodes must be set to infinite to pre-
vent collapsing them. Section 4.2 discusses the nearest
neighbor search algorithm we use in more detail.

When a collapse is performed, some of the queue en-
tries become invalid and need to be recomputed. As-
suming that the new nearest neighbor of those nodes
introduces a higher SSD we can postpone the recom-
putation until that collapse is fetched from the prior-
ity queue. The only nodes for which we need to im-
mediately find the nearest neighbor are the newly con-
structed node and all nodes that had one of the two col-
lapsed nodes as immediate children. The latter is nec-
essary as these nodes might now have a closer neighbor
than the one that was previously found. Another prop-
erty we used to speed up the initial filling of the priority
queue is that inner nodes cannot be collapsed before the
first few leaf nodes were removed since they cannot ini-
tially have the same child nodes.

Zerotree coding In addition to the optimizations de-
scribed above we can also remove all leaf nodes for

WSCG 2010 Communication Papers 209

which their coefficients are all quantized to zero by in-
troducing a zero node similar to [3]. Since the zerotree
coding does not need a nearest neighbor search or a pri-
ority queue, those parts of the wavelet tree that do not
contain any information can be quickly removed. In
contrast to [3] we do, however, not collapse nodes con-
taining near-zero coefficients although these might be
collapsed with the zero node at a later time if the intro-
duced SSD is the lowest one.

As this step reduces the total number of nodes be-
fore the first neighbor search and the maximum number
of collapse operations in the priority queue it can sig-
nificantly reduce the total runtime. This is especially
important for images that required a padding before the
wavelet transformation.

Nearest neighbor search As mentioned above the
coefficient vector for which we need to find the nearest
collapse candidate is 36-dimensional. Thus we require
an efficient method to search the nearest neighbor in
this 36-dimensional space. Since each collapse implies
removing two and adding one point to the candidate set,
a spatial acceleration data structure like the r-tree [6]
cannot be used and we need to restrict ourselves to a
linear ordering based on some sort of key value.

Fortunately, we can exploit the fact that most coeffi-
cient vectors will be centered around the origin with a
more or less gaussian distribution. Therefore, we chose
our hash function to be the distance to the origin and
only need to search those node with a similar distance.
As soon as we find the first candidate, we can thus ef-
ficiently stop searching in one of the two directions if
points farther away or closer to zero cannot introduce a
lower error.

5 IMPLEMENTATION
To achieve real-time decompression, we had to meet
some contraints that are given by the graphics hard-
ware. First the coefficient values have to be quantized
to the range 0−255 using a global scaling to the range
[0,1] when storing them in a 24 bit RGB texture. After
this, all values are simply scaled by the factor 255. The
quantization also restricts us to textures of size 256 in
each dimension since the color value is to be directly
used as texture coordinate. Therefore, we use a three-
dimensional texture to encode the tree. The size of this
texture is 2562 × 2n, where 0 ≤ n ≤ 8 and each pixel
uses 24 bit in the regular RGB format.

As shown in figure 5 we encode blocks in pairs of
4× 4 pixels. In each block, the upper left four pixels
contain pointers to the children of the current node. In
each pointer pixel, the color values contain the texture
coordinates of the child nodes upper left pixel. With
this scheme, we can encode 64× 64 = 4096 nodes in
each layer of the texture so we can store up to one mil-
lion nodes or 36 million unique coefficients.

Figure 4: Part of the compressed wavelet data stored in
the 3D-texture. Since the image is taken from depth 0,
the root node is visible in the upper left corner.

5.1 Parallel decompression
For parallel decompression on the GPU, all wavelet
functions contributing to the current pixel need to be
evaluated and multiplied with the corresponding coeffi-
cients. The number of coefficients per pixel depends on
the width of the mother wavelet and is one for Haar and
three for LeGall und quadratic B-Spline in each dimen-
sion. This yields a total of 3 or 27 coefficients per level
for Haar and LeGall/quadractic B-Spline, respectively.
To extract these coefficients, one (Haar) or four nodes
(both others) have to be visited per level. This sums up
to 5 texture lookups per level for the Haar wavelet and
31 for the other two wavelets. Note, that since the child
nodes are not queried at the leaf level, the total number
of lookups if 4l − 1 for the Haar wavelet and 31l − 4
for both others, where l is the number of levels in the
coefficient tree.

Although the number of lookups for the more com-
plex wavelets might seem rather high, the Haar wavelet
only allows nearest neighbor interpolation and thus pro-
duces inferior quality when zooming. To achieve bilin-
ear interpolation the number of lookups for the Haar
wavelet is quadrupled. This yields a total of 16l − 4
which is approximately half than that of the other two
wavelets. Due to the smoother wavelet functions how-
ever, these produce better quality images at the same
compression rate and thus the higher number of texture
lookups is tolerable.

6 RESULTS
To evaluate our proposed algorithm and compare it to
existing approaches, we mainly used images from the
image compression benchmark [5] (Figure 6 and 7).

A quality comparison of the three implemented
wavelet transformations is shown in Figure 5. The
Haar wavelet shows significant block artifacts, which
neither appear using the LeGall nor the quadratic
B-Spline wavelet. Since the LeGall scaling function is
a linear filter, it tends to produce star-shaped artifacts.
The quadratic B-Spline wavelet reproduces sligthly

WSCG 2010 Communication Papers 210

Figure 5: From left to right: Haar-, LeGall- and B-
Spline wavelet.

more detail than the LeGall wavelet. In addition, the
biquadratic interpolation that comes for free with the
B-Spline wavelet generates smoother results when
magnifying the image. The PSNR is similar for all
three wavelets, where the Haar wavelet has the lowest
(41.7 dB) and LeGall (45.4 dB) and quadratic B-Spline
(42.9 dB) are slightly better.

Figure 6: Compression results with embedded zero tree
coding (left) and with our approach (right).

Figure 6 shows the differences between embedded
zero tree coding [13] (35.4 dB) and our method
(37.6 dB). Both were compressed at a rate of 23:1.
One disadvantage of the zero tree coding is, that all
values below a certain threshold are simply omitted.
While this removes noise in uniform regions, it cannot
compress data in images containing high frequencies.
In these cases the threshold needs to be significantly
increased to achieve a desired compression ratio and
thus the quality of the reconstructed image is degraded.
In contrast to this, our clustering approach can also
exploit similarities in high frequency regions and thus
much fewer nodes need to be collapsed with the zero
node. This greatly improves the visual quality when
compressing this type of images.

Figure 7: Comparison between S3TC (middle) and our
approach with same compression ratio (top, no visual
difference to original) and same quality (bottom).

In Figure 7 a comparison between S3TC (DXT1) and
our approach is shown. The upper two images are both
encoded with a compression ratio of 6:1 (8:1 for RGBA
images) at 55.1 dB. Note, that our approach yields a
significant higher quality (60.7 dB) at slightly smaller
texture size (1.5 MB compared to 1.6 for DXT1). With
four times the compression rate (26:1) the visual quality
of our method (still 57.1 dB) is equivalent to S3TC, as
shown in the lower image. Figure 8 shows an aerial
image with a resolution of 3000×3000 compressed at a
rate of 34:1 with 36.4 dB. Despite the high compression
rate, important features are still preserved.

The decoding was performed in a pixel shader run-
ning on an nVidia GeForce GTX 295 in real-time. The
performance for a 4096×4096 texture is approximately
400 Mpixels per second using the Haar wavelet and
nearest neighbor filtering (100 Mpixels with bilinear
filtering) and roughly 55 Mpixels per second with the
LeGall and quadratic B-Spline wavelet. For smaller or
larger images, the runtime is almost linear in the num-
ber of levels of the wavelet decomposition. E.g. for a

WSCG 2010 Communication Papers 211

Figure 8: Drastic compression (34:1) of a 3000×3000
pixel aerial image. The marked area is magnified below
the full image.

16k×16k texture we still achieve 46 Mpixels per sec-
ond.

7 CONCLUSION AND LIMITATIONS
We presented an effective method for the compres-
sion of large textures and images based on the linear
LeGall and quadratic B-Spline wavelet. With our tree-
compaction algorithm, we achieve high compression
ratios while still preserving high visual quality. The de-
compression is implemented as a pixel shader on a GPU
and runs in real-time on current graphics hardware. Our
approach has shown to be superior to simple zero-tree
removal.

In the future we want to improve the compression
time, which is currently 30 minutes for a 67 Mpixel im-
age (8192×8192 pixel) and thus still rather slow. In ad-

dition, we want to extend our method to high dynamic
range images and multi-dimensional datasets.

REFERENCES
[1] Andrew C. Beers, M.Agrawala, and N.Chaddha, Ren-

dering from compressed textures In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on computer
graphics and interactive techniques, pp.373-378, 1996.

[2] C.Christopoulos, A.Skodras, T.Ebrahimi, The
JPEG2000 Still Image Coding System: An Overview
In IEEE Transactions on Consumer Electronics, Vol.46,
No.4, pp.1103-1127, 2000.

[3] S.DiVerdi, N.Candussi, T.Höllerer, Real-time Ren-
dering with Wavelet-Compressed Multi-Dimensional
Datasts on the GPU In Technical Report UCSB//CSD-
05-05, 2005.

[4] S.Fenney, Texture compression using low-frequency
signal modulation In HWWS’03: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pp.84-91, 2003.

[5] S.Garg, Image Compression Benchmark.
http:www.imagecompression.infotest_images.

[6] A.Guttman, R-trees: a dynamic index structure for spa-
tial searching In Proceedings of the 1984 ACM SIG-
MOD international conference on Management of data,
pp.47-57, 1984.

[7] P.Lalonde, A.Fournier, A wavelet representation of re-
flectance functions IEEE Transactions on Visualization
and Computer Graphics, pp.329-336, 1997.

[8] P.Lalonde, A.Fournier, Interactive rendering of wavelet
projected light fields In Proceedings of the 1999 confer-
ence on Graphics interface ’99, pp.107-114, 1999.

[9] D.Le Gall, A.Tabatabai, Subband Coding of Digital Im-
ages Using Symmetric Short Kernel Filters and Arith-
metic Coding Techniques In Proceedings of the ICASSP
1988, pp. 761-765.

[10] S3TC DirectX 6.0 Standard Texture Compression S3
Inc, 1998.

[11] F.F.Samavati, R.H.Bartels, Local Filters of B-spline
Wavelets In Proceedings of International Workshop on
Biometric Technologies 2004, pp.105-110.

[12] J.Schneider, R.Westermann, Compression Domain Vol-
ume Rendering In Proceedings of the 14th IEEE Visu-
alization 2003, pp.39-47.

[13] J.M.Shapiro, Embedded Image Coding Using Zerotrees
of Wavelet Coefficients In IEEE Transactions on Signal
Processing, Vol.41 No.12, 1993, pp.3445-3462

[14] C.C.Tanner, C.J.Migdal, M.T.Jones, The Clipmap: A
Virtual Mipmap In Proceedings of SIGGRAPH 98,
pp.151-158.

[15] D.S.Taubman, M.W.Marcellin, JPEG2000: Image
Compression Fundamentals, Standards and Practice
Kluwer Academic Publishers, 2001.

[16] J.Wang, T.-T.Wong, P.-A.Heng, and C.-S.Leung, Dis-
crete wavelet transform on GPU In Proceedings of ACM
Workshop on General Purpose Computing on Graphic
Processors, pp. C-41, 2004.

WSCG 2010 Communication Papers 212

A system for panoramic navigation inside a 3D
environment

Polceanu Mihai

“Ovidius” University, Faculty of
Mathematics and Computer

Science
Bd. Mamaia nr.124

 900527, Constanta, Romania
polceanum@gmail.com

Popovici Alexandru
“Mircea cel Batran” National

College
Bd. Stefan cel Mare nr.6

900726, Constanta, Romania
popovici.alexandru@gmail.com

Popovici Dorin-Mircea
“Ovidius” University, Faculty of

Mathematics and Computer
Science

Bd. Mamaia nr.124
900527, Constanta, Romania

dmpopovici@gmail.com

ABSTRACT
This paper presents a physical user interface intended to help the user (or multiple simultaneous users) to
achieve an intuitive movement inside a 3D environment without using common interaction devices such as
mouse or keyboard, while stressing the aspect of reducing financial investments. After exposing an analysis of
current solutions and implementations of related topics, we argument our implementation and give detailed
aspects of hardware and software architecture of the system, as well as a comprehensive efficiency study and
explore the use cases with people with motor impairment. As future work, we intend to extend the usability of
the system and release it under the GNU General Public License (GPL) for free use and further development by
other parties.

Keywords
Virtual Reality, 3D navigation, user interface for physically disabled individuals.

1. INTRODUCTION
Regardless of the quality of simulated 3D worlds,
people are still conscious of the barrier between them
and what they see; this is because they only benefit
from a keyboard, mouse or other common input
devices. This paper presents a system through which
we try to whittle this barrier and give users a natural
interaction tool which they can intuitively use to
navigate at will with natural body movements. The
concept was also designed to be easily configurable
"at home" and to be a low-cost solution. Structure,
efficiency and the possible uses as an enhancement
for physically disabled individuals are explored in
this paper.

2. MOTIVATION
The system discussed in this paper is an
improvement of the IIUBAR setup (acronym for
Interactive Informative Unit Based on Augmented
Reality) described in [Pop08]. It refines the hardware
setup used by its previous version, and uses Virtual
Reality instead of Augmented Reality; this makes its
uses slightly different: user immersion instead of
fixed-point informational unit.
The goal of this paper is to extend the possible use
cases of this system architecture and to exhibit its
advantages and drawbacks compared to specialized
hardware. This system has been developed with
respect to product quality and reduced financial
investments. Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

3. RELATED WORK
Throughout the history of user interfaces there have
been many metaphors for addressing visualization
and navigation inside three dimensional virtual
worlds. Because of the impossibility of fully
recreating a three dimensional space on a two
dimensional display system, the ideas that were
developed in this domain can be split into two main
categories (Figure 1): fixed display metaphors with
interaction devices such as mouse, keyboard, space
mouse, etc, and mobile spatially aware systems.

WSCG 2010 Communication Papers 213

Figure 1. Interaction devices categories

The oldest member of the fixed displays is
represented by the classic desktop environment on
which 3D applications can run and the user can
“move” inside them by pressing keys or by dragging
the mouse. Display sizes and image quality have
grown in direct dependence with technology, and
today a wide variety is available for purchase; this
technological advancement came to enhance the
experience of 3D navigation by enlarging the user’s
field of view and therefore contributing to a higher
level of immersion inside the virtual environment.
Famous examples of this technique include
connecting multiple screens to form a panoramic
display around the user, a similar metaphor that uses
projections which materialized as the CAVE system
[Cru93], wide panoramic screens [Bau05], spherical
display systems, and other means of extending the
field of view as much as possible. Unfortunately, as
marvelous as they prove to be, extra technology
comes with extra costs, and may not be easily
accessible for the usual user and even for educational
institutions because of the lack of funds. The
category of fixed display devices can be further split
into two scenarios depending on the user’s mobility
and the lack of it; the CAVE system allows users to
move freely in a designated space and reacts to
his/her movements. The latter, although it allows the
implication of multiple users, cannot give each user a
personalized viewpoint but only a group-oriented
interaction. So far we’ve identified some key
advantages of this category: extended field of view,
multiple users and high level of immersion. The
inversion of the fixed display concept takes us to
explore devices that use their own spatial position to
transmit visual data to the user. These devices range
from personal digital assistants (PDA) to head
mounted displays (HMD) which come in a wide
variety of designs. This category also consists of
hardware that is specialized for performing precise

tasks which, through the prism of virtual reality,
consist of binding the navigation to the user’s view
point; this way the user can specify the desired focus
in the environment either by pointing the device or
using a pen also known as the peephole display
concept [Yee03], or in the case of the HMD by tilting
the head in direction. An example from this category
is represented by the use of a palm computer for
interacting with a virtual environment [Pig08]. This
feature gives the great advantage of user mobility,
being only constrained by the physical space
available to move into. There are several drawbacks
to these methods: hand-held devices can only display
a small portion of the visualized virtual world and the
HMD type devices should allow the user to be aware
of the surrounding real environment to prevent
accidental collisions while moving around. The latter
is achievable through augmented reality but another
impediment arises due to the low video resolution
relative to natural sight; this can be overcome by
using see-through lens technology, but again we
stumble into cost issues. From this category, we can
derive two new advantages: mobility and user-bound
viewpoint.
After this analysis we propose the following
question: is it possible to achieve similar
performances with relatively basic cost-wise
accessible hardware? One of the most used input
devices used today is video. In 2004, Microsoft
reckoned more than 18.5 million webcam users only
with instant messaging applications [Web09a], and
the number is ever growing. Webcams have become
an accessible and necessary possession for internet
users, and they can be used with a wide range of
applications and operating systems. Using webcams
as input devices is cost-efficient, but require a greater
effort to create software capable of interpreting the
input data; fortunately, open-source frameworks are
freely available which do most of the work.
Navigating inside a three dimensional environment
requires linear view-point movement and the ability
to rotate. In this paper we propose a model through
which we try to absorb the mentioned advantages
using low-cost equipment. Our solution consists of a
fixed but rotatable display that interprets the user’s
turning movements and level of approach for
navigation. To navigate inside a three dimensional
environment the basic requirements are speed and
rotation, which can be achieved by determining the
angle of rotation relative to a point of reference, and
using the distance to the face of the user as
directional speed input. In the following sections we
describe the architecture of this system, its use cases
and efficiency evaluation results.

WSCG 2010 Communication Papers 214

4. SYSTEM ARCHITECTURE AND
USE CASES
Considering the available technology previously
analyzed, we decided that the best method of
reducing the cost of the system is to recreate the
functionalities of the specialized hardware through
the means of software. This way the equipment
requirements can be reduced, but we must emphasize
the used software solution. Another aspect of the
system is that any user with minimum knowledge on
software installation and basic experience with
material carving (for the special support table) can
create a replica of the system at home without
significant investments; we like to believe this can be
a motivational factor through the satisfaction of
building it. In the following subsections we present
the aspects of the hardware and software used,
followed by the exhibition of an official use of the
system within an ongoing project, and finally we
describe the multiuser support and the possibility of
creating networks with multiple implementations of
the system.

Hardware architecture
The system is composed of two simple webcams
connected to a laptop placed on a rotatable support
like illustrated in Figure 2. The purpose of the tripod
table is to allow the hidden camera to look down on a
cardboard marker which is needed by the software to
extract rotation coordinates. When in use, the top
camera is always directed toward the user(s). Each
component is adjusted to fit the others, thus making
the system stable for user interaction.

Figure 2. System schematic

Our implementation uses a laptop, a rotating laptop
stand, two low-cost webcams and a hand-made
tripod table, although any similar hardware can be
properly used for which drivers, if required, are
compatible with the utilized operating system.

Software
The application is developed in C++ and runs on
UNIX (our implementation uses Ubuntu [Web09b]).
It combines three open-source frameworks as
follows:

• AReVi (Atelier de Realite Virtuelle)
[Web09c] for virtual environment representation.
AReVi is a powerful agent-based library that
provides services for multi agent systems and 3D
graphics.
• OpenCV (Open Computer Vision library)

[Web09d] for face detection support. Visual
algorithms play an important role in deciding
how far away a user is from a camera. To
advance or retreat in the virtual environment we
chose to use the distance of the user relative to
the top camera. Achieving this effect resides in
detecting the user’s face; the difference in face
size from different positions give away the
distance, i.e. if the image of the face appears
larger implies that the user is closer to the camera
and vice-versa. A basic threshold based noise
reduction algorithm is used to prevent the
navigation speed from trebling.
• ARToolkit (Augmented Reality Toolkit)

[Web09e] for viewpoint orientation. Similarly to
OpenCV, ARToolkit uses image processing
algorithms to extract position and rotation
information from a physical cardboard marker
and returns a rotation matrix. For rotation in the
horizontal plane, we only need one rotation angle
(around the z axis); we can calculate this angle
with Equation 1, where R = Rx*Ry*Rz (a 3 by 3
matrix), and Rx, Ry and Rz are defined in
[Fol93]. This way, the resulting angle is applied
to the viewpoint inside the 3D environment and
the effect of rotation is achieved.

Equation 1. Rotation angle calculation

The main application works by reading data from
OpenCV and ARToolkit through a local shared
memory mechanism (Figure 3); this concept is not
new, but makes individual builds independent from
each other, and enhances simplicity of the code and
extensibility of the software.

WSCG 2010 Communication Papers 215

Figure 3. Communication between components

Demonstrating the system’s features
For testing the system we developed two
applications: a game entitled “Crystal Island” in
which players enroll to solve quests by collecting
crystals of different colors and bringing them to the
totems which required them, and an interactive
lesson about the solar system entitled “UFO Driver”
in which the user controls a flying saucer and
navigates through our solar system to discover the
planets, our sun, and the asteroid belt (Figure 4).

Figure 4. Applications of the system

This lesson about the solar system was created with
respect to the real dimensions of the planets, to give
scholars a feel of the great distances between
celestial bodies and to help them grasp this
information in an entertaining and intuitive way.

Virtual tour of archeological sites
Today, a lot of emphasis is put on virtually
reconstructing lost cultures from different times in
the history of mankind and even before. History
lessons have evolved into interactive game-like
experiences in which users can explore 3D replicas
of ancient artifacts, buildings and even people. The
immersion of the user in these environments can give
visual, auditory or haptic feedback which helps to
better grasp the details that were specific to a certain
time in the past.
In this sense, apart from the games that we developed
to evaluate the system, we also integrated the system
in the TOMIS project which aims to virtually
reconstruct the ancient Roman Edifice with Mosaic
from Constanta, Romania, through designing,
implementing, experimenting and demonstrating an
interactive and collaborative multi-sensorial system
based on VR/AR technologies. Although not yet
complete, the reconstruction of the site has been
integrated with the system and allows users to walk
through the edifice like it was between the years 46
AD and 610 AD (Figure 5). The starting point of the
virtual tour corresponds to the system’s location so
users can grasp the feel of orientation, and presence
in the Tomis colony during the Roman period. The
reconstruction has a hypothetical approach as the
archeological information from the colony is not
entirely complete. This enhancement to the project
aims at promoting culture and tourism in the region.

Figure 5. Using the system in the Roman Edifice

with Mosaic from Constanta, Romania

WSCG 2010 Communication Papers 216

Multiuser interactivity
Having more than one system can be used to create a
network of interactive “3D browsers” through which
users can compete in games or explore virtual sites.
The networks can be either local, using a wireless
router for increased mobility, or distributed over the
internet, or both local and wide area networks
connected through a server located on one of the
machines.
Along with the network possibility, the system
supports multiuser on the same machine (Figure 6).
In this situation, the control of the unit or avatar is
distributed to each user participating in the
interaction. To allow other people to observe without
disturbing the users, adjustments have been made to
this feature so that people who are more than
approximately 1.5 meters away from the system (the
limit of physically maneuvering the device) cannot
influence the acceleration.

Figure 6. Illustration of multi-user support:

average of the face positions is computed
(magnified at bottom of picture)

When more users engage in interaction with the
system, an average of the users’ positions is made
and requires them to work in a team to achieve the
desired result. Hence to move forward in the 3D
environment all users must lean forward and if one of
them leans backwards the average acceleration
would decrease and cause inefficient movement.

5. EFFICIENCY STUDY
With the occasion of the “Laval Virtual” contest that
took place in Laval, France in 2009 [Web10] where
we participated with the system under the name of

“Navoramique” (which stands for Navigation
Panoramique), we took the opportunity to test its
efficiency with the help of the people who tried it
(Figure 7). In this section we discuss the results of
the survey, and some of the suggestions received
from our users.

Figure 7. An user testing the system at Laval

Virtual
A survey was prepared which contained six
questions about the system, as follows:

• Q1: “I think Navoramique is intuitive and
easy to use.”

• Q2: “Using Navoramique is more appealing
than using a keyboard and a mouse to
navigate.”

• Q3: “I easily learnt how to control my
movements with Navoramique.”

• Q4: “I think ‘UFO Driver’ is an interesting
lesson about the Solar System.”

• Q5: “I found ‘Crystal Island’ to be an
attractive quest game.”

• Q6: “I would like to have a version of this
system at home.”

The possible answer choices were: “Totally
disagree”, “Disagree”, “Neutral”, “Agree” and
“Totally agree”. We made the surveys available both
on paper and online within an application, but most
users preferred the paper forms because they were
faster to fill in, and more persons could submit them
simultaneously (we only had one computer available
for this task). Figure 8 shows the comparative results
for this survey on a number of 112 users of all ages,
and different nationalities.

WSCG 2010 Communication Papers 217

Figure 8. Answers for the evaluation survey

From the results we learnt that an average of 81% of
the users gave a positive answer for the first three
form items while 18 users expressed the wish for
their own version of the system. As not all users
played the two available games, the positive answer
average was 89.91% of the people who did try the
games (Q4, Q5). There were 59.5% people who tried
the games from the total who submitted a survey.
As an additional note, in the case of “Crystal Island”,
the player’s performance was measured by keeping
the score; the score was calculated with respect to the
time that the user needed to complete the tasks of the
game. The users also had visual feedback of their
current score and about their position in the top
scores and after completing the game. The observed
results were that while some users managed to
achieve a top score from the first try, the others learnt
quickly and were able to improve their scores after
playing several times.
Some of the users also submitted comments about the
system which helped us identify some weak and
strong points.
One user pointed out that the table should be
adjustable for each person’s height. Unfortunately
we underestimated the possibility of the difference in
height; most tall users had problems with the system
because the laptop monitor did not permit a very
wide angle of inclination, and therefore they could
not adopt a comfortable position while testing. The
best results appeared when the line between the
user’s face and the top camera was close to the
horizontal.
Another drawback would be the energy necessary to
physically rotate around the table. We also
encountered issues with the lighting in the room
which caused problems with the face detection when
the user stood between the camera and the light
source.
The idea was better accepted by children who
enjoyed the games and the fact that they had to move
around to navigate, and by people who were not
comfortable with navigating with the mouse and

keyboard. One user mentioned that “as a learning
tool it would be enhanced if students have to search
for information”; this underlines the factor of
motivation in learning.
To conclude the statistics, the system can benefit
from small comfort-related improvements, and can
serve as an efficient interactive learning tool for
primary school pupils and for students. It can also be
used as a navigation tool, complementary to the
standard input devices.

6. AIDING PERSONS WITH MOTOR
DISABILITY
While at the Laval exposition, we were most moved
when two persons in wheelchairs asked us if they can
try the system (Figure 9). We discussed the
possibility of adapting the mechanism to minimize
the effort needed for navigation, and one of them
suggested that the facial recognition could be also
used for turning, so they can only use the head
movements. Another solution which we discussed
was to allow left-right navigation without having to
make a whole turn, but only to slightly rotate the
stand; this would give similar feedback effect and
would be a lot more convenient in this case. As noted
in [Hol06], the weaknesses of one modality are offset
by the strengths of another, and by modality the
means of interaction is implied. Slight changes to the
system like the ones previously mentioned can
substitute for the impairment of lower body
movements.

Figure 9. Users with motor disability

Although we had not foreseen this use case, we were
deeply moved by the fact that their impression was a
positive one, and we hope we will collaborate with
the asylum in Laval to share the technology.

WSCG 2010 Communication Papers 218

7. RESULTS
The main aspect which we tried to demonstrate is
that using innovative ideas together with common
and accessible hardware and software resources, one
can achieve efficient low-cost solutions to enhance
human-computer interaction either for gaming,
learning or aiding persons with disabilities. The
presented system has been used for educational,
entertainment and aiding purposes. It also represents
a method for museums to exhibit a new, modern
point of view to the visitors.

8. ACKNOWLEDGMENTS
The present system has been implemented in the
Laboratory of Virtual and Augmented Reality
Research (http://www.univ-ovidius.ro/cerva/) within
the Faculty of Mathematics and Informatics of the
OVIDIUS University in Constanta, Romania.
This work is supported by the TOMIS project, no:
11-041/2007, by the National Centre of Programs
Management, PNCDI-2 - Partnerships program.
Thanks to everyone who submitted the system
evaluation surveys and shared their impressions and
suggestions with us.

9. REFERENCES
[Bau05] Baudisch, P., Tan, D., Steedly, D., Rudolph,

E., Uyttendaele, M., Pal, C., Szeliski, R.,
Panoramic viewfinder: providing a real-time
preview to help users avoid flaws in panoramic
pictures, Proceedings of the 19th conference of
the computer-human interaction special interest
group (CHISIG) of Australia on Computer-
human interaction: citizens online: considerations
for today and the future, Canberra, Australia,
November 21-25, ISBN 1-59593-222-4, 2005.

[Cru93] Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.,
Surround-screen projection-based virtual reality:
the design and implementation of the CAVE,
Proceedings of the 20th annual conference on
Computer graphics and interactive techniques,
ISBN 0-89791-601-8, 1993.

[Fol93] J.Foley, A.van Dam, S.Feiner, J.Hughes.
Computer Graphics: Principles and Practice.

Addison-Wesley Co., ISBN 0-201-12110-7,
1993.

[Hol06] Holzinger, A., Nischelwitzer, A.K., People
with Motor and Mobility Impairment: Innovative
Multimodal Interfaces to Wheelchairs, Computers
Helping People with Special Needs, Springer
Berlin / Heidelberg, ISBN 978-3-540-36020-
9,2006.

[Pig08] Pignatel, A., Farella, E., Brevi, F., Benini, L.,
Gaiani, M., On the use of a palm computer for
design review interaction in a virtual room, The
16th International Conference in Central Europe
on Computer Graphics, Visualization and
Computer Vision (WSCG 2008), Full Paper
Proceedings, ISBN 978-80-86943-16-9, 2008

[Pop08] Popovici, D.M., Polceanu, M., Interactive
Informative Unit Based on Augmented Reality
Technology, In Proceedings of The 3rd
International Conference on Virtual learning
(ICVL2008), Bucharest Univ. Press, ISSN 1844 -
8933, 2008.

[Web09a] Website of BBC (article from 2004):
http://news.bbc.co.uk/2/hi/technology/3833831.st
m (checked Oct 2009).

[Web09b] Website of Ubuntu operating system:
http://www.ubuntu.com/ (checked Oct 2009).

[Web09c] Website of AReVi framework:
http://svn.cerv.fr/trac/AReVi (checked Oct 2009).

[Web09d] Website for OpenCV library containing
links to documentation and source:
http://opencv.willowgarage.com/wiki/ (checked
Oct 2009).

[Web09e] Website of ARToolkit library:
http://www.hitl.washington.edu/artoolkit/
(checked Oct 2009).

[Web10] Official website of the Laval Virtual event:
http://www.laval-virtual.org (checked Jan 2010).

 [Yee03] Yee, K.-P, Peephole displays: Pen
interaction on spatially aware handheld
computers, in Proceedings of CHI 2003, ACM
Press, 2003.

WSCG 2010 Communication Papers 219

WSCG 2010 Communication Papers 220

Active Shape Models on adaptively refined mouth

emphasizing color images

Axel Panning
University of Magdeburg,

Germany

Axel.Panning@ovgu.de

Ayoub Al-Hamadi
University of Magdeburg,

Germany

Ayoub.Al-Hamadi@ovgu.de

Bernd Michaelis
University of Magdeburg,

Germany

Bernd.Michaelis@ovgu.de

Abstract

In this paper, we propose a hybrid method for lip segmentation based on normalized green-color histogram splitting and Active

Shape Models (ASM). A new adaptive method for histogram splitting is applied in two steps. First, after defining a region of

interest for mouth segmentation, a rough adaptive threshold selects a histogram region assuring that all pixels in that region are

skin pixels. Second, based on these pixels, we build a Gaussian model which represents the skin pixels distribution and is used

to obtain a refined optimal threshold for lip pixel classification. This process is used to refine the normalized green channel

image for the elimination of inner distortions and gradients inside the lip region, which can misguide active contours (i.e. ASM)

in the last step of the hybrid segmentation process. In the results, we present that the proposed method performed better than

conventional ASM on unrefined color enhanced images or pure color-histogram based mouth segmentation.

Keywords: Feature extraction, Segmentation, Image processing, Application.

1 INTRODUCTION

The segmentation of mouth and lips is a fundamental

problem in facial image analysis and is important for

various applications. It can be utilized for lip read-

ing, supporting speech recognition or expression analy-

sis (i.e. facial expression, estimation of emotional state,

pain recognition). Each application has its own limi-

tation concerning speed, accuracy and robustness. The

requirements for facial expression recognition can be

very different depending on application context.

Often initially a color transformation is performed to

exploit the different chromaticity of lips from skin. Ba-

sically, the segmentation approaches can be classified

into two groups. The first group, Histogram based

approaches, is a consequent continuation of the ini-

tial color transformation. The mouth region of inter-

est (ROI) is binarized into lip and non-lip pixels, where

non-lip pixels are mainly skin pixels. The crucial point

in histogram based algorithms is the estimation of that

particular threshold. A very easy approach, mostly used

for first rough mouth segmentation is a fixed threshold,

found by statistical average of numerous samples [8].

A more adaptive approach sets up a watershed like rule,

which defines 15 percent of the darkest pixels in their

color transformed mouth ROI as lip pixels[9]. Other

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

works [5] assume a certain topology in the histogram.

Following this idea they seek for a local minimum be-

tween a lip and a skin heap in the histogram and define

the threshold here.

The second group, is focusing on detection of lip edges

in the mouth ROI [4, 2]. They apply Active Contour

Models (e.g. [4]) or deformable templates [2] to the

mouth’s ROI. Some approaches [7, 1] stabilize their Ac-

tive Contours using support tracking points. The gen-

eral assumption of edge based algorithm is, that the lips

generate prominent edges at the skin-lip crossing. In

monochrome images only a simple shadow casting can

already cause serious problems. A hybrid of color and

edge information is the usage of color images and their

mouth-highlighting transformed representation (e.g as

used in [4, 2]). This can suppress some issues like

shadow casting. But still there is no guarantee the edges

of the lips create significant edges here. This might hap-

pen for many cases. For people having Asian skin tone

for example this rule holds true. However, for Euro-

pean/Caucasian this rule does not hold for all cases any-

more, since the transition from skin to lip pixels does

not form rough edges here for all subjects and condi-

tions. Another usage of color and edge information is to

align deformable templates or active contours using an

energy minimization function, which refers to edge in-

formation and average color intensity inside of the tem-

plate (or contour) as proposed in [2, 3].

In the proposed approach the advantages of both classes

of algorithms (pure color based, and shape/edge based)

shall be combined in another way. We chose Active

Shape Models (ASM), introduced by Tim Cootes [6], as

representative for the edge/shape based algorithms. The

idea is, that a color based approach can contribute to an

WSCG 2010 Communication Papers 221

Figure 1: Flow chart of the proposed algorithm

edge and model based approach (ASM here) to improve

its performance more than a simple prior transforma-

tion of color space, as most hybrid approaches do so

far. In this context we propose a novel adaptive method

for color based mouth segmentation. The rest of the pa-

per is organized as follows. Section 2 describes the idea

of combining histogram based thresholding and shape

based extraction for mouth segmentation. The results of

the proposed methods are presented in section 3. Sec-

tion 4 gives a short summery and outlook.

2 MOUTH SEGMENTATION

The process chain is shown in Figure 1. All successive

steps will be described in the following sub sections.

2.1 Locating Face and Mouth ROI

Object detection in image processing is always the

search for a delimited area in which the targeted pattern

is fitting. A general solution for this task has been

developed by Viola and Jones [13]. They developed an

algorithm, where a cascade of weak Haar-like features

(see Fig. 2) is utilized to model image objects appear-

ance. A Haar-like feature describes the difference of

pixel intensities within similar sized sub regions of one

rectangular region in an image. The most advantage,

compared to other feature descriptors, is the fact, that

they can be computed very fast using integral images.

Once calculated, an integral image can provide the

average intensity of any rectangular region of any size

by one addition and two subtraction operations. This

property is very important in context of applications,

where speed issues are relevant. Another acceleration

is provided by the cascaded structure of the classifier.

During the search process not the whole classifier

needs to be used at each potential position. Once one

cascade step fails all successive cascade steps can be

discarded, the current target region can be rejected and

the search continues in the next potential region.

An implementation of the algorithm as well as face de-

tection models can be found in the OpenCV c/c++ li-

brary, which are widely used. Also in this work, the

available face models were used for face detection. Fur-

Figure 2: Left: base features for the cascade classifier

and their cascadation. Middle: the face region, a result

of the face detector is the search area for single facial

features. Right: single weak features in their local ar-

rangement forming a strong classifier.

ther two models for detection of mouth corners in fa-

cial regions were trained in order to define a region of

interest (ROI) for further mouth segmentation process-

ing. Database for the training was the FGnet Database

from the Technical University of Munich [15]. To train

the classificator 400 positive and negative samples were

chosen. Positive samples were sub images where mouth

corners were directly in center of sub images. Negative

samples were chosen from randomly selected sub im-

ages where the mouth corner were not centred. [12].

2.2 Color Transformation

In common a color transformation is chosen converting

the RGB from R
3 to R

1 exploiting the difference of lip

and skin pixel colorness. Using the ground truth of our

database, a comparative statistic was made to analyze

their ability to separate lip from non-lip pixels, based

on color information only. In result the green channel

from normalized rg was superior to all others, which is

defined by nG = R/(R+G+B). We will refer to this in

further context as nG color channel. The worst results

were achieved by the YCbCr based color transforma-

tions. Qualitative results of this prior study are given in

table 1. The percentage is relative to the histogram of

the complete ROI and outlines the false classified pixels

using an optimal, FPR minimizing threshold found by

the ground truth. Under advantageous conditions lips

and skin pixel form two well noticeable bell curves in

the histogram with a noticeable local minimum in be-

tween (Fig. 3 left). This can motivate approaches like

[5], searching for this minor local minimum. However,

these optimal cases cannot be assumed in general. The

general structure of the histogram can vary in differ-

ent scenarios (Fig. 3). More complex situations can

create numerous minor local minima instead of only

one major minimum. In other cases the smaller bell

curve related to the lip pixels can be directly attached

to the larger bell which represents the skin pixels with-

out producing any local minimum (Fig. 3 middle). This

multiple behavior can be observed independently from

the chosen color transformation. Intersection of skin

and lip color in the mouth ROI with respect to differen

WSCG 2010 Communication Papers 222

Histogram
Class Skin
Class Lips
Class Teeth

nG

pi
xe

ls

Figure 3: (Top Row): Histograms. The real his-

togram is the fat black line. The colored lines rep-

resent skin/teeth (no-lip) and lips. These informa-

tion are only gathered by ground truth here and are

a-priori unknown in application case, (Bottom Row):

ground truth. The three samples show three states

normal mouth state(left), open mouth with appearing

teeth (middle), pressed lips with almost none lip pixels

left(bottom).

Used in Transf. With teeth No Teeth

[2] u(Luv) 4.61 % 3.16%

[10] G/B 5.97 % 2.59%

[3] G/R 2.30 % 1.45%

[4] Cr2 11.75 % 10.97%

[4] Cr/Cb 13.08 % 11.16%

[9] R/(R+G) 2.36 % 1.48%

not found nG 0.09% 0.38%

Table 1: Intersection for different color transformations

color transformations was analyzed with and without

teeth appearance. However, the appearance of the teeth

had just a minor impact to the separability (see Table 1)

using a histogram threshold.

2.3 Active Shape Model

Active Shape Models (ASM) combine assumptions

about specific shape behaviour and image signal

response at the model points of the shape. Base of

the ASM is a set of model points forming one or

more contours, which are stored in the mean shape

m. The modelized shape variance is stored in a vector

matrix S. A weighting vector −→w applies the different

shape variations to the mean shape. The fitting process

alternates two steps until convergence:

(0) initialize mean shape

near the object.

do

{

(1) search for special image

signal near model points

(gradients, pattern)

(2) find a shape, based on S,

fitting best to the (image

signal based) model points,

found in step 1.

}

until(convergence)

Step (2) in the algorithm results in the final shape m, by

applying the following equation

m = T (m+S−→w) (1)

where m is the mean shape of the mouth (a vector con-

taining all x- and,y-coordinates of the shape points one

below the other), S is the matrix of column wise aligned

shape variation vectors, −→w is the vector, containing the

weights for each shape variation of S, and T is a affine

transformation including x- and y-translation, scaling

and rotation. The unknown −→w and T are estimated by

solving

δ = S−→w (2)

with

δ = T−1(m∗)−m (3)

where m∗ are the associated landmark points based on

any measurement in the image data. The estimation of

T is described in [6].

The used shape model for the mouth consists of 22 con-

tour points (see Fig. 4). Only the outline of the mouth

will be addressed here. The mean shape m was found

by average of 20 samples. Classical ASM as introduced

in [6] define the shape variation matrix S by calculating

eigenvectors from the covariance matrix based on size

normalized samples. This method has some drawbacks.

It demands very exactly and equidistantly picked land-

marks for all samples. Further a few number of sam-

ples with less variations can cause wrong mutual depen-

dencies. To resolve semantically and technically clean

modes, the shape modifier vectors for S were created

manually with expert knowledge. Five different modes

were defined (see Fig. 4).

The edge fitting has two main parameters. a) the

method of edge detection and b) the range of edge

detection. Cootes [6] suggests statistical patterns here.

In case of mouth shape this results, more or less, in

a kind of gradient detection. The manifold of profile

structures is considerable. Only the lineup of all 57

Figure 4: The five mouth modi and their behaviour. The

red dots show the mean shape m. The two stacked im-

ages of a mode show the impact of negative (lower row)

or positive (upper row) weighting. Each mode repre-

sents one column of S.

WSCG 2010 Communication Papers 223

Figure 5: Red lines are the profiles taken during the

edge fitting process. Blue dots mark the starting points

from the last model-aligned instance respective the ini-

tial mouth model. The green dots represent that point

in the profile, where the largest gradient is found.

samples does not show some special pattern, different

from gradients, which could be fitted in a definite

pattern. For edge fitting a profile Pi of the normal to

the shape boundary is collected for each model point.

The normals are defined by the neighbour points in the

contour (Fig. 5). The profile contains the information

of interpolated sub-pixels along the profile line. A

simple concatenation of full pixels along a Bresenham

based line was distorting. Profiles always are collected

with a width of three pixels, where outer pixels got

lower weight than inner pixels. As feature for model

point detection gradient function was used, which is

defined as follows:

p∗i = argmax
t

(

t

∑
j=0

pi, j −
k

∑
j=t+1

pi, j

)

(4)

where p∗i is the found point to profile Pi with maximum

gradient. The length of the profiles is an important pa-

rameter here. In the current version a length of 30% of

mouth width is used (in average 30 pixels for the used

samples). All Points p∗i build the next instance of m∗.

2.4 Adaptive Lip Pixel Enhancement

Color enhancement for application of Active Contours

in general (e.g. Snakes, Active Shape Models etc.) has

been introduced already in previous works. But the

lips of the subjects not always have uniform color. So

inside of the lip itself distortions (causing gradients)

can occur, which are more prominent than the outer

(targeted) edge. These gradients can attract the con-

tours falsely and thus misguide the whole active con-

tour. To avoid this an in-between-step is suggested,

which is performed after color transformation but be-

fore the application of ASM. The idea of the Lip-

Pixel-Refinement is to flatten the lip pixels, in order to

weaken the edges inside the lips. Therefore an adap-

tive histogram based algorithm (which is a consider-

able segmentation method itself already) will determine

a threshold to define the lip pixels class in the ROI. This

Figure 6: Model Assumption. There are more skin than

lip pixels. Lip pixels have lower intensity than skin pix-

els. Unknown is their exact centering, scattering, distri-

bution and intersection.

pre-segmentation is used to equalize and flatten distor-

tions inside the (so far known) lip segment.

2.4.1 ACT: Adaptive Color Threshold

Basically the ROI contains two classes of pixels: Lip-

Pixels and Non-Lip-Pixels. A general description of

a statistically based model for lip or skin pixel distri-

butions is not reliable, due large variance among sub-

jects and illumination conditions. Thus an adaptive his-

togram based approach was developed to separate skin

from lip pixels. As color transformation for lip pixel

enhancement the green channel of the rg has been cho-

sen (in further context referred as nG). The approach

makes following assumptions:

• Skin pixels are Gaussian distributed in the histogram

• Lip pixels have lower intensities than Skin pixels (in

nG)

Skin pixels and lip pixels can be mixed in the histogram

(see Fig. 6), thus there is not always a perfect threshold

to separate skin pixels by color information only. The

algorithm prefers wrong positive skin pixels rather than

wrong positive lip pixels. Latter case produces a kind

of flow out which causes more damage to the segmen-

tation than lip pixels which are classified as skin pix-

els. Wrong positive lip pixels are caused by a threshold

greater than the optimum, with respect to the chosen nG

transformation. With increasing intensity of nG also the

probability of adding a high amount of pixels to the lip

pixel class in one single step is increasing (see Fig. 7).

Knowledge about the skin pixel distribution can pro-

vide a threshold that most likely avoids wrong positive

lip pixels (see Fig. 6). The target threshold should be

the foot-point of the skin pixel distribution, in order to

avoid wrong positive lip pixels.

Basically a Gaussian distribution is estimated by a set

of samples, calculating σ and µ , which are represented

by single skin pixels here. A-Priori it’s unknow which

WSCG 2010 Communication Papers 224

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 50 60 70 80 90 100

P
ix

e
l

nG

ε

m
e

d
ia

n
n
G

Modelled Skin
Ambiguous

Safe skin

Figure 7: Based on initial guess the upper part of the

histogram is defined as safe. This part is base for the

approximation of skin pixel distribution

pixels belong to skin and to lip class. The idea is to

select a part of the skin pixels, which can be assumed

to be ’safely’ part of skin pixel class. The condition is

made simply by its number of occurrence in histogram.

In other words, it is an ’initial guess’ avoiding partici-

pation of lip pixels.

Let h(x) be the value to the xth slot of the and hmax

be the global maximum of the histogram. To calculate

σs and µs in first step σ
∗ is calculated for all pixels

satisfying following condition:

h(x) > ε (5)

x > mediannG (6)

Condition in Eq.(5) represents an expected maximum

ratio of mouth size to ROI, where ε is adjusted using a

parameter α (1) with ε = hmax/α . Additionally a me-

dian constraint, relative to all occurring intensity values

in nG, was introduced to avoid disturbances from peaks

of very low intensities in the histogram. Both very

conservative conditions formulate a reasonable ’initial

guess’. However, only the median constraint itself is

a decent classification, which can compete with classic

watershed method (See 3.2, Fig. 12).

The Gaussian distribution has scatters less than the

original skin pixel distribution. However there is a cor-

relation between α and the ratio of σ
∗/σs. The un-

known σs can be approximated following equation

σs = σ
∗ ·

(

1+
1

α

)

(7)

The larger α , the smaller the part left out from the his-

togram. This will raise the quality of approximation. If

1 In the current experiments a value of 3 was chosen. Basically values

between 2 and 4 gave good results.

α → ∞ the whole histogram is used. But in case of ap-

plication the lower intensity edge parts of skin pixel dis-

tribution is mixed with lip pixels. Therefore the choice

of α is a trade off between approximation accuracy and

risk to include lip pixels to the initial guess. Estima-

tion of the threshold is done using the cumulative dis-

tribution function of N (σs,µs) applying a low border

(λ = 0.01).

th = argmax
x∈R

(λ < F(x)) (8)

with

F(x) = P(X ≤ x) (9)

where x is the intensity value of possible thresholds in

nG.

2.4.2 Combining ACT and Active Shape Models

The result from section 2.4 contribute in three ways to

the problem of ASM fitting:

1. more accurate initialization

2. fixing corner points of the model

3. better gradient fitting due refined base image (distor-

tion reduction)

As seen in the ASM algorithm in section 2.3 the ASM

need to be initialized near by the image object. The

quality of initialization can effect the result enormously.

For initialization the mean shape m needs only a affine

transformation Ttx,ty,scaling,rotation. The result BLOB ob-

tained in section 2.4.1 provides such corner points,

which are more accurate than the points provided by

the method outlined in section 2.1. Furthermore the

BLOB can be used to derive the weighting of the first

shape mode (mouth opening-closing). Thus the ASM

can be initialized very close and in appropriate scaling

and shape to the image.

Naturally ASM suffer problems, when model points

correspond to object corners with acute angles. Mouth

corners represent such special case. Once the analyzed

profile does not hit the narrow object, the gradient oper-

ator will not find any reasonable gradient. An additional

problem appears since this weak model points represent

in case of the mouth model the only forces drawing or

pushing the whole model in horizontal direction. Re-

placing the sensor function for this model points can

counteract this issue. Instead applying gradient opera-

tors the model points for mouth corners are set to the

corner points found by BLOB using the ACT algorithm

in section 2.4.1. These points will not change anymore

during the fitting process, so they can be seen as fixed.

WSCG 2010 Communication Papers 225

Figure 8: Sample28, impact of Adaptive Color Thresh-

old. Left: the original nG converted image. Right:

The ACT fixed image. Blue Pixels represent the ini-

tialization of the ASM. The red dots are the edge fit-

ting points. The red line is the resulting ASM. (RE-

MARK:BILDER LIEGEN IN ORDNER ’asmExtended/asm/’

Figure 9: Scheme of fusing ACT result and nG trans-

formed image

Figure 10: Combining Binary image information and

ASM. Top Left: RGB, Top Right: binary result from

ACT, Bottom Left: nG, Bottom Right: Fusion

One more application of the ACT is the elimination of

inner gradients and distortions in the lip segment, in or-

der to optimize the ASM algorithm. The threshold ob-

tained in Eq. 8 which is used to refine the nG ASM

work channel (See Fig.9) by applying following equa-

tion

I∗x,y =

{

th , Ix,y < th

Ix,y , Ix,y ≥ th
(10)

The fusion of binary image and original transformed

nG channel has some advantage. As outlined in sec-

tion 2.4.1 the method of ACT prefers a minimization of

false positive lip pixels. To it is most likely it is missing

a part of the mouth. Therefore in case of incompletely

allocated lip pixels the soft edges at lip borders still re-

main, where in the binary image no border could be

found there (see Fig. 10). This of course can also cause

inner gradients, but have significantly smaller impact.

3 EXPERIMENTAL RESULTS

In the experiments the algorithm was tested on 57 im-

ages partially from the Faces Database from CIT [11]

and partially from own recored data covering a wide

range of illumination and saturation (see Table 2). The

resulting mouth ROI had a size range of approximately

160x80 pixels. The mouth sizes varied in width be-

tween 120 and 150 pixels. The mouth height varied

between 20 and 70 pixels. The higher variance is due to

the opening of the mouth as greater impact to the height

than the e.g. smiling has impact to the width. For each

of the 57 images a ground truth was created consisting

of a binary blob for lip pixels and a contour (which is

equal to the outline of the binary blob).

The following sub sections will present the results and

quality of the single process steps (Mouth corner point

detection, lip pixel classification using ACT and Mouth

contour detection using ASM).

Channel[Range] H[0,360] S[0,1] I[0,1]

Mean 129.6 0.37 0.53

Variance 3666.5 0.02 0.04

Max 70.9 0.19 0.24

Min 247.6 0.72 0.91

Table 2: Image Conditions (in ROI), H=Hue, S= Satu-

ration, I=Intensity

3.1 Detection Rate of Feature Points

Deviation for measuring detection quality of single fea-

ture points inside the face (mouth corners in this work)

is given in relation to inter-ocular distance of the per-

son (distance of both eye centers). Though this value,

in relation to the face size, suffers inter-individual vari-

ations it is commonly used in shortage of better alter-

natives. We provide the results relative and additionally

as pixel error (normal and squared) in table 3. The re-

sults with an accuracy of less than 10% relative error

are good compared to other works [14]). Since the de-

tection points are primary used to determine the ROI it

was important to detect the mouth corners at all with

sufficient accuracy.

Error Type Left Right Overall

Relative 7.0% 6.5% 6.8%

Pixel Error 7.05px 6.41px 6.73px

Sqr Pixel Error 100.04px2 86.32px2 93.17px2

Table 3: Error of mouth corner detection using method

described in section 2.1

WSCG 2010 Communication Papers 226

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.05 0.1 0.15 0.2

T
ru

e
 P

o
s
it
iv

e
s
 (

S
e
n
s
it
iv

it
y
)

False Positives (1−Specifity)

Adaptiv
Ground Truth

Watershed (11−30%)

Figure 11: The cross on the left marks the quality of

our proposed algorithm. The curves represent the ROC

plots for different watershed percentages ranging from

10 to 30% in different color spaces. It’s obvious here,

that our adaptive threhsold is superior to threhsolds se-

lected by a general watershed percentage. This is in-

dependent from the choosen color space or the choosen

percentages for the watershed

3.2 Quality of ACT

The accuracy of the lip pixel classification is crucial for

the idea of the proposed method. To show the good

performance the results were put in context to an Wa-

tershed classification method (e.g. used in [9]), which

is adaptive to the coloring but not to the ratio of mouth

size to ROI size. Referring to the binary blob of the

ground truth the adaptive classification of lip pixels, us-

ing the method proposed in in section 2.4.1, reaches

a hitrate of 80.24% (True Positives - TP). However,

this is no perfect result. When selecting a threshold

from ground truth the rate is only insignificantly bet-

ter (81.75%) (see Table 4). This is the best available

hitrate aiming on low False Acceptence Rate (a max-

imum FAR of 5% was defined when selecting thresh-

olds using groud truth) and False Rejection Rate. As

mentioned in section 2.4.1 the primary aim is to avoid

falsely accepted lip pixels (FAR). The optimal results in

Table 4 represent results for thresholds which were cho-

sen with respect to the ground truth and a ROC-Plot.

3.3 Improvement of ASM

In section 2.4.2 several improvements of the classical

ASM algorithm were introduced. This subsection de-

scribes the impact of the different improvements. In

first stage each of the three improvements were applied

independent from each other, to analyze their individual

impact to the algorithm. The error is calculated as av-

erage of all model-points. Ground truth was the outline

of the ground truth blobs (See Fig. 3). So to each point

of the ASM the distance to the closest point of the out-

line was calculated. The results are listed as normal and

square error in Table 5. The algorithm is parametrized

as outline in section 2.3. However, the second improve-

Figure 12: Results of different illumination and mouth

poses.

ment of height fixing before ASM initialization is based

on the information of the ACT generated blob. To mea-

sure the impact of this improvement the ASM was ini-

tialized using ACT but applied than to the unfixed nG

image. The best refinement of the results is achieved by

the initial height fixing. This finding should be consid-

ered in context of the chosen profile length in the ASM

algorithm. Longer profiles could supersede the height

initialization. On the other hand the ASM could get at-

tracted by far objects like nose or eventually even by the

chin (longer profiles of course would demand larger re-

gions of interest). In non frontal views too long profiles

also could touch regions outside the face, with unpre-

dictable behavior. To avoid this, the algorithm would

need a (likely on skin color based) good face segmenta-

tion. The ACT refinement and fixing of the ASM at the

initialization points have only little but noticeable effect

to the results.

When the ASM is initialized there are two options

to chose the initialization points: a) the corner points

which were the base for the ROI, found by the method

outlined in section 2.3; b) the corner points, based on

the blobs found by the adaptive threshold defined in

2.4.1. To measure the impact of different sources for

initialization of ASM both available options a) and b)

were exploited and additionally c) a run utilizing the

ground truth points for mouth corners. These runs were

done using all optimization methods listed above (ACT

Refinement, Anchored Corners and ACT based height

refinement). Apparently the start points taken by ACT

result in a similar quality as the points chosen by ground

truth in average. The facial feature points found by the

AdaBoost trained Haar-Like features are sufficient to

define a ROI. For the further steps if ASM initialization

they lead to less accuracy.

4 SUMMARY AND CONCLUSION

In this paper new modifications for Active Shape Mod-

els based on an adaptive color based method for lip

WSCG 2010 Communication Papers 227

Result Base TP-µ TP-σ2 FAR-µ FAR-σ2

Optimal (by ground truth) 81.75% 3.88% 2.262% 0.002%

Proposed 80.24% 2.55% 2.200% 0.031%

Table 4: Results for Lip Pixel Classification (Histogram based using ACT)

Method Error Square Error

Classic ASM 3.21px 18.24px2

(1) ACT Refinement 2.88px 19.40px2

(2) Height Fix 2.08px 10.19px2

(3) Anchored 2.89px 19.86px2

Table 5: Impact of separately introduced improvements

to ASM Algorithm

Init Method Error Square Error

Haar-Like 2.75px 18.24px2

ACT 2.10px 10.17px2

Groundtruth 2.08px 9.06px2

Table 6: Impact of different ASM Initialization

Figure 13: Image wise squared error of the proposed

algorithm compared to classical method.

pixel classification were introduced. In contrast to other

methods using color emphasizing of lip pixels, this

method incorporates a refinement step. This refinement

step eliminates edges inside the lip pixel segments,

which can mislead the borders during the edge fitting

step. The refining of nG image for edge fitting mainly

helps to detect the lower mouth border. In this areas the

crossover from skin to lip pixels often does not create

a significant edge (for women this occurs more rarely

due usage of lipsticks). Further the lip pixel classifica-

tion creates a rough mouth blob. Based on this blob the

shape model can be initialized better and closer to the

real shape. The lip pixel classification performs good

and is adaptive to various image conditions and skin

tones. This skin vs lip color model assumption is de-

signed and limited for Caucasian, European and Asian

skin types. Further this method will suffer problems for

very dark colored subjects respectively less illuminated

scenes. Also the problem of bearded people was not

addressed here. The more the beard color is different

from general skin tone(light-gray, black) the greater the

chance that this method fails. But this problem remains

to all so far known methods and need further investiga-

tions and other solutions. Compared to classical shape

models the presented method performs more accurate.

In future works we will try to incorporate more shape

modes and add a inner contour for opened mouth.

ACKNOWLEDGEMENTS

This work was supported by DFG-Schmerzerkennung

473 (FKZ: BR3705/1-1), Innovationsfond der Univer-

sität Magdeburg, CBBS C4 M: (FKZ: UC4 -3704M)

and DFG-Transregional Collaborative Research Centre

SFB/TRR 62

REFERENCES

[1] A. Al-Hamadi, A. Panning, R. Niese, and B. Michaelis. A

model-based image analysis method for extraction and track-

ing of facial features in video sequence. In ICSIT 2006, Am-

man,Vol.3, pages 499–509, 2006.

[2] S. Arca, P. Campadelli, and R. Lanzarotti. A face recognition

system based on local feature analysis. In Audio- and Video-

Based Biometric Person Authentication, pages 182–189, 2003.

[3] C. Bouvier, P.Y. Coulon, and X. Maldague. Unsupervised lips

segmentation based on roi optimisation and parametric model.

In IEEE International Conference on Image Processing, pages

IV: 301–304, 2007.

[4] Jingying Chen, Bernard Tiddeman, and Gang Zhao. Advances

in Visual Computing, volume 5359/2008 of LNCS, chapter

Real-Time Lip Contour Extraction and Tracking Using an Im-

proved Active Contour Model, pages 236–245. Springer, 2008.

[5] P. Cisar and Zelezny M. Using of lip-reading for speech recog-

nition in noisy environments. In Speech Processing, pages 137–

142, Prague, 2004. Academy of Sciences of Czech Republic.

[6] T.F. Cootes, D. Cooper, C.J. Taylor, and J. Graham. Active

shape models - their training and application. Computer Vision

and Image Understanding, 61(1):38–59, January 1995.

[7] N. Eveno, A. Caplier, and P.Y. Coulon. Accurate and quasi-

automatic lip tracking. Circuits and Systems for Video Technol-

ogy, 14(5):706–715, May 2004.

[8] E. A. Ince and S. A. Ali. An adept segmentation algorithm

and its application to the extraction of local regions containing

fiducial points. In ISCIS, pages 553–562, 2006.

[9] J.Y. Kim, S.Y. Na, and R. Cole. Lip detection using confidence-

based adaptive thresholding. In International Symposium on

Visual Computing, pages I: 731–740, 2006.

[10] Trent W. Lewis and David M.W. Powers. Lip feature extrac-

tion using red exclusion. In Peter Eades and Jesse Jin, editors,

Workshop on Visual Information Processing, volume 2 of CR-

PIT, pages 61–67, Sydney, Australia, 2001. ACS.

[11] California Institute of Technology. Faces 1999 (front).

http://www.vision.caltech.edu/archive.html, 1999.

[12] A. Panning, A. Al-Hamadi, R. Niese, and B. Michaelis. Fa-

cial expression recognition based on haar-like feature detection.

Pattern Recognition and Image Analysis, 18(3):447–452, 2008.

[13] Paul Viola and Michael Jones. Robust real-time object detec-

tion. In International Journal of Computer Vision, 2001.

[14] Danijela Vukadinovic and Maja Pantic. Fully automatic facial

feature point detection using gabor feature based boosted clas-

sifiers. In International Conference on Systems, Man and Cy-

bernetics, volume 2, pages 1692–1698, Hawaii, 2005.

[15] Frank Wallhoff. Facial expressions and emotion database.

http://www.mmk.ei.tum.de/ waf/fgnet/feedtum.html, Technical

University of Munich, 2006.

WSCG 2010 Communication Papers 228

A User-Adaptive Image Browsing System with
Summarization Layout for the Personal Photo Collections

Dong-Sung Ryu, Chul-Jin Jang and Hwan-Gue Cho
Dept. of Computer Science and Engineering

Pusan National University
Keumjeong-gu, BUSAN, KOREA
{dsryu99,jin,hgcho}@pusan.ac.kr

ABSTRACT

Users spend much time organizing photos into small groups as part of photo management. Selecting good quality photos and
organizing them is burdensome, as photographers amass large number of photos. This paper presents a new photo layout system
with representative photos considering multiple features. Our approach consists of three steps to deal with hundreds of photos.
First, we construct photo clusters by user-adapted criteria: temporal context, the number of faces, blur and luminance metrics.
Then, we construct a bipartite graph that consists of photo nodes in a partite set and the constructed cluster nodes in other
partite set. The representative photos of each cluster are selected by a maximal matching algorithm based on user-controlled
multiple criteria. Finally, our system places the selected representative photos on a 2D grid using the placement algorithm of
PHOTOLAND. Other photos in each cluster are displayed in an upper layer of a screen when the user clicks the representative
photo. We conducted an experiment based on a user study; it used nine photo sets taken on a trip. The experiment showed that
our system conveniently managed hundreds of photos, summarizing and visualizing them.

Keywords: digital photo, photo layout, maximal matching.

1 INTRODUCTION

The digital camera has become an indispensable com-
modity for people. The low price of memory encour-
ages people to take a large number of photos. Since
a digital camera is convenient and does not need extra
cost to take photos, except for memory space, which is
getting cheaper, people tend to take more photos than
when using an analogue camera [3, 9]. Therefore, it is
usual for users to take hundreds of pictures. Moreover,
several users can take photos concurrently at the same
event. These digital photo files can be easily exchanged
by various means, such as flash memory, e-mail, ftp,
and messenger. The number of photos is more increas-
ing. People have to spend much more time organizing
and browsing them.

We face several issues in managing digital photo col-
lections due to the acquisition of large number of pho-
tos. These include:

• Poor accessibility - Low efficiency in selecting a
photo in the current layout scheme. It is hard to find
a specific photo amongst massive data.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2010 conference proceedings,
WSCG’2010, February 1 – 4, 2010
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

• Classification of photos - We need to classify input
photos based on user preference, e.g., date, event or
persons in a photo.

• Preference of clustering criteria - Photos are increas-
ing in volume and variety, since memory is cheap.
Photos can be clustered using various criteria.

Photo browsing and clustering are crucial features to
manage and organize many photos. Most users find
what they want through a browser interface, and they
spend most of their time classifying the photos into
meaningful sets. In this sense, the interface to manage
a large number of photos has been emphasized in re-
cent studies. Most photo browsing systems present the
images as a grid of thumbnails that the user can scroll
through with a scroll bar; they can see the original ver-
sion of the selected photo [8].

Meanwhile, many redundant or low quality photos
occupy much space in the display area. This makes it
difficult to understand the overall content of the photos.
These low-priority photos do not need to be preserved
in the original form. We introduce a method to select
representative photos from the user’s unrefined input
photos based on customizable categories and visualize
classified photos in a smart layout.

2 PREVIOUS WORK
Many studies related to photo management have been
undertaken recently. Many useful applications have
been developed to manage a large number of photos.

WSCG 2010 Communication Papers 229

Table 1: Previous work and systems for digital photo management and visualization

Method (reference) Layout Main features Extra info. Spatial info.
ACDSee [1] Grid Viewing only EXIF None
Agrafo [2] Grid Grouping and browsing EXIF Use (hybrid)
PhotoMesa [3] Grid Viewing (quantum treemap) Directory info. None
Kang [11] Grid Viewing (simple search) Annotation None
Picasa [17] Grid Viewing only EXIF None
Incremental board [18] Grid Viewing (similarity-based) None External input
Rodden [21] Grid Similarity-based arrangement Annotation Use
PhotoTOC [9] Hierarchical Clustering by temporal info. timestamp None
Kustanowitz [12, 13] Hierarchical Layout scheme User input None
Chen & Chu [4, 5] Slide Slideshow with layout [13] EXIF Use
Photo Navigator [10] Slide Slideshow for tracing scenes Creation time Use (3D)
Moghaddam [14] Non-Grid Layout for image retrieval Annotation Use
MediaGLOW [8] Graph Zoomable interface EXIF Use (graph)
Naaman [15, 16] Geometric Clustering based on place GPS Use
Quack [20] Geometric Community photo mining GPS+annotation Use

The most popular layout scheme of visualization sys-
tems is the grid layout to visualize a massive number of
photos.

Many image application including ACDSee, Picasa
and others use thumbnails of photos on grid layout [1,
17]. Generally, a user selects a specific photo on a grid,
and then the original size photo is shown on the full
screen. It is a very simple but useful method to show
photos when there are less than several hundred photos.
However, grid view has problems when there are too
many photos. Redundant photos may occupy much of
the display area. A long scroll bar is needed to explore
the entire photo set.

Some enhanced grid layout schemes were proposed
to overcome defects. Bederson introduced the section
based grid view, PhotoMesa. It can show each directory
as a section of layout [3]. PhotoMesa displays hierar-
chically organized photo clusters based on a file system
using treemaps. It uses a simple layout for image clus-
ters called bubblemaps. PhotoMesa emphasizes pre-
senting large numbers of photos on a limited screen.
At the top level view, photos of a specific directory are
shown as tiny thumbnails. Zoomed photos with larger
space are shown by selecting a section. Pinho proposed
grid-based incremental board [18]. This uses an infi-
nite grid by attaching tiny image thumbnails. Using a
pre-processed photo similarity, an identical photo is lo-
cated in close position to similar existing photos. It can
visualize abundant photos on the screen at low cost by
attaching many tiny photos to grid view. However, it is
too small to see each photo, so this is not an efficient
way to understand the content of input photos.

A hierarchical layout using uniform thumbnails was
proposed for convenient recognition in visualizing pho-
tos. Kustanowitz proposed an organized layout scheme

with different image sizes [12, 13]. The most impor-
tant image, which shows the concept of the photo set,
is located at the center of display area. The other pho-
tos surround the center photo aligned according to the
classification. However, the method requires identify-
ing photos by users. In addition, it is practically limited
to one sheet of display screen due to the center image.
Thus, it is not suitable to use the scroll bar or to show a
massive number of images. Chen & Chu applied the
method on their slideshow method [4, 5]. Photos in
each slide are arranged using a hierarchical layout.

Graham exploits Calendar and Hierarchical image
browsers to allocate the time-intensive annotation for
the photo groups [9]. He exploits the timing infor-
mation to construct the collections and to automati-
cally generate meaningful summaries. These studies
help the user give a more practical structure to the pho-
tos, but they cannot provide implicit browsing regard-
ing temporal and spatial information simultaneously. A
graph-based photo layout system, MediaGLOW, uses
the spring model to determine a layout in which the
spring system is in a state of minimal energy [8] . This
graph-based interface determines the distance between
each photo node according to a variety of distance mea-
sures, such as temporal, geographic, and visual distance
(tagged data). It can also deal with lots of user interac-
tion. This interface is very useful to organize photos.
Table 1 summarizes representative studies.

3 CLUSTERING WITH MULTIPLE
FEATURES

In digital life, people want to cluster photos using sev-
eral features; they also want to browse the correspond-
ing summarized view with each feature. For example,
let us assume the following case. Users grouped pho-

WSCG 2010 Communication Papers 230

(a) (b)

(c)

(d)

Figure 1: Result of clustering by multiple features. For convenience, we randomly pick 33 photos from the photo
set. The total number of clusters with multiple features is 23. (a) Temporal clustering by time [6]. |CT | = 10. (b)
Clustering by the number of faces (We use cvHaarDetectOb jects function of OpenCV library to detect the face in
a photo). |CF | = 4.(c) Clustering by blur metric[7]. |CB| = 4. (d) Clustering by luminance in Lab color space. |CL|
= 5.

tos by time taken. Then, after some time has passed,
they wish to find the corresponding photos that sat-
isfy the following conditions: 1) Photos taken with
his two friends, 2) A good quality photo without blur,
3) The light atmosphere of photos. In this case, he
spends much time to find the corresponding photos hav-
ing these conditions (Users compare the selected photo
with most of the photos in each cluster). Besides,
when the photos to be arranged are getting numerous,
these tasks become burdensome. A user-adaptive photo
browser that can provide a summarized view by multi-
ple user clustering criteria would be very useful in this
case.

We deal with a variety of similarity measures to over-
come these problems. These include time photo taken,
the number of faces, blur and luminance metrics. In this
section, we discuss with how to cluster each photo. For
discussion, let us define the following notation:

• U : U =< P0,P1, ...,Pn > denotes a sequence of pho-
tos taken, where Pi is each photo image.

• f ace(Pi) : the number of faces in Pi.

• blur(Pi) : a perceptual blur metric of Pi [7]. (0 ≤
blur(Pi)≤ 1.0)

• lumi(Pi) : a luminance metric in Lab color space for
Pi. (0≤ lumi(Pi)≤ 1.0)

• time(Pi) : a timestamp extracted from EXIF of Pi.

The first criterion is temporal context. We use
Cooper’s clustering method to evaluate the similarity
of each photo, as below [6] :

If K increases, we can get a coarser clustering result
of the photos’ timestamps. For smaller K, finer dissim-
ilarities between groups of timestamps become appar-
ent.

The second criterion of content based clustering is
the number of faces in a photo. In the photo, we can
grasp the number of faces using the OpenCV face de-
tection algorithm based on a Harr transform. Our sys-
tem simply classifies photos into small groups based on
the number of faces. We use the similarity of face fea-
ture as below:

SimF(Pi,Pj) = 1− | f ace(Pi)− f ace(Pj)|
max
Pk∈U

{ f ace(Pk)}
(1)

We construct a classified photo group considering
some visual features such as blur and luminance met-
rics. The similarity of blur metrics is determined by

WSCG 2010 Communication Papers 231

Frederique’s method [7]. The key idea of his method
is to blur the initial image and to analyze the behavior
of the neighboring pixels variation. We also consider
the luminance features, which are calculated from the
average of L values in Lab color space. These two met-
rics are normalized in a defined range from 0 to 1, their
similarity measures are given below:

SimB(Pi,Pj) = 1−|blur(Pi)−blur(Pj)| (2)

SimL(Pi,Pj) = 1−|lumi(Pi)− lumi(Pj)| (3)

Figure 1 shows the result of clustering by four fea-
tures. The input photos are selected from our past pho-
tos taken on a trip without any special intent. For con-
venience, we randomly select 33 photos from the photo
set in this study, since most photo sets have hundreds of
photos. As a result of this clustering, we can get sev-
eral small groups, C(k)

x , where x∈ T,F,B,L classify four
features (Temporal, Number of Faces, Blur metric and
Luminance in Lab color space):

1. C(k)
T denotes the k-th photo cluster using Cooper’s

algorithm [6].

2. C(k)
F = {Pj | f ace(Pj) = k}

3. C(k)
B denotes the k-th photo cluster in terms of the

blur metric.

4. C(k)
L denotes the k-th photo cluster in terms of lumi-

nance value.

4 SELECTING REPRESENTATIVE
PHOTOS

Now, we have many small groups clustered by multiple
features. We select each representative photo to sum-
marize each photo clusters. In this paper, we present a
selection method of representative photos using a max-
imal matching graph algorithm. First, we construct a
bipartite graph, whose node consists of the photos in a
partite set, and the created photo clusters of section 3,
in another partite set, as shown in Figure 2.

The cluster nodes on the right hand side of this graph
can have multiple edges, since the photos are assigned
into clusters through multiple features. However, since
each cluster has just one representative photo, we have
to determine which photos are assigned into which clus-
ters in this graph. We use the maximal matching algo-
rithm to select the representative photos of each cluster
to satisfy user’s clustering preference as much as possi-
ble.

Let us consider a bipartite graph G(V,E), as shown in
Figure 2. Placing weight w(Pi,C

(j)
x) on edge e(Pi,C

(j)
x),

(Pi ∈ V , e ∈ E, V and E are the set of all vertices and
edges in this graph, respectively) gives us a weighted
bipartite graph with partite sets Photos = {P0,P1, ...,

0P

1P

32P

…

2P

10 , PP

2P

3P

Photos Clusters

Clustering
by

Time

Clustering
by

Blur metric

Clustering
by the

number of
Faces

4P

5P

6P

7P

543 ,, PPP

76 , PP
…

1476

5410

,...,,
,,,,

PPP
PPPP

29

162

...,
,,...,

P
PP

301312 ,...,, PPP…

730 ,, PPP

3221 ,...,, PPP
…

70 , PP

3143 ,...,, PPP

)0(
TC

)1(
TC

)2(
TC

)3(
TC

)0(
FC

)1(
FC

)2(
FC

)0(
BC

)1(
BC

)0(
LC

)1(
LC

…

Figure 2: Maximal matching process for a selection of
representative photos.

Pn} and Clusters = {C(0)
T , C(1)

T , ..., C(0)
F , C(1)

F , ..., C(0)
B ,

C(1)
B , ..., C(0)

L , C(1)
L , ... }. The weights of each edge are

given below:

w(Pi,C
(j)
F) =

1

|E(C j
F)|

· ∑
Px∈C j

F

(ux ·Simx(Pi,Px)) (4)

, where Simx(Pi,Px) is the similarity function for
each clustering feature, {SimT (Pi,Px), SimF(Pi,Px),
SimB(Pi,Px), SimL(Pi,Px)}, defined as Section 3.
ux = {ut ,u f ,ub,ul} is one of the user-defined parame-
ters to control each clustering feature.

A maximal matching M of a graph G is maximal, if
every edge in G has a non-empty intersection with at
least one edge in M. Our system selects each represen-
tative photo of clustered groups based on the relation-
ships of these matching M. The maximal matching of
this graph means the most similar relations globally be-
tween clusters and photos, when we consider the user’s
intent.

Figure 3 shows a portion of the relationships between
several representative photos (P15, P23, P31) and their
corresponding clusters in Figure 1. In this figure, if we
consider the number of faces, three photos are respec-
tively clustered into different clusters (bold red edges
in the Figure). At the same time, they are also clus-
tered into different clusters considering the luminance
of photos (bold blue edges in the Figure). In this case,
the user can control which features are used to select
the representative photos using ux in Equation 4. If the
user sets u f = 1.0 and other features are less than 0.1,
then our system selects the red edges for the represen-
tative photos of each cluster in this Figure. If the user

WSCG 2010 Communication Papers 232

Photos Clusters

)1(
BC

)3(
BC

)3(
LC

,...},...{..., 2315 PP

)1(
LC

31P

15P

3|| },,,{)3(
31248 =BCPPP

5|| },{...,)1(
31 =LCP

18|| ,)1(
=BC

11|| },,...,{...)3(
3223 =LCPP

23P

)1(
FC ,...}{..., 23P 11|| ,)1(

=FC

)2(
FC },...,

,,{

30

151312

P
PPP 7|| ,)2(

=FC

)3(
FC

)4(
LC

}, ,,{ 32312421 PPPP 4|| ,)3(
=FC

5|| },,,,,{)4(
17161598 =LCPPPPP

Figure 3: A portion of the graph constructed from the
clusters in Figure 1. The user can control which fea-
tures are used to select the representative photos us-
ing ux in Equation 4. Bold red edges depict maximal
matchings when we consider the number of faces. Bold
blue edges depict maximal matchings when we con-
sider the luminance value of each photo.

)0(
TC)1(

TC)2(
TC)3(

TC)4(
TC

)1(
FC)2(

FC

)0(
BC)1(

BC

)0(
LC)1(

LC

)6(
TC

)5(
TC

)7(
TC)8(

TC)9(
TC

)3(
FC)0(

FC

)2(
BC

)2(
LC)3(

LC

)3(
BC

)4(
LC

Figure 4: Corresponding result with photos selected in
Figure 1. We set parameters as ut = 0.9, u f = 0.7, ub
=0.6, ul = 0.6.

also sets ul = 1.0 and other features are less than 0.1,
likewise our system selects the blue edges for their rep-
resentative photos.

Figure 4 shows the result of representative photo se-
lection based on each cluster in Figure 1. We im-
plements this maximal matching algorithm using the
LEDA library.

Figure 5: Result of placement for representative photos
in Figure 4. We consider only the temporal context of
selected representative photos in placing them.

5 LAYOUT FOR PHOTO VISUALIZA-
TION

Our earlier paper on PHOTOLAND outlined a system
that visualizes hundreds of photos on a 2D grid space
to help users manage their photos [22]. This system
considers spatial and temporal context simultaneously
when photos are placed on a grid. We used a similar
placement algorithm to visualize photos. This paper
summarized the placement algorithm as below:

1. PHOTOLAND places the first photo in the center of
a 2D grid.

2. It places the next photo considering temporal infor-
mation and spatial context :

S(Pi,Pj) = (tα ·ST (Pi,Pj)+(1−tα) ·SC(Pi,Pj)) (5)

,where tα is a user-defined parameter to control spa-
tial and temporal weight, it ranges from 0 to 1.0. ST
and SC denote the temporal and spatial similarity, re-
spectively.

3. It also considers global geometric constraints, such
as center of weight for placed photos and aspect ratio
for a screen.

4. The temporal similarity is calculated by the logistic
function of the time gap between two photos.

We use two hierarchical layers that display the rep-
resentative photos and the clustered photos related to
them in order to display photos. First, we consider
only temporal context to place the representative pho-
tos. As mentioned before, since it is related to the user’s
event, the temporal context has to be considered as be-
ing most important. Figure 5 shows the result of place-
ment for representative photos in Figure 4. Then, the
user can click on a representative photo; our system
displays other photos related to it in an upper layer, as
shown in Figure 6. When the clustered detail photos are
displayed, we rendered a semi-transparent gray back-
ground on the lower layer for representative photos.

WSCG 2010 Communication Papers 233

click)2(
TC

click)3(
BC click)3(

FC

Figure 6: Other photos related to the selected repre-
sentative photos in a upper layer. We rendered a semi-
transparent gray background on the lower layer for rep-
resentative photos.

Figure 7: Photo placement result of another representa-
tive photo. Input photo set is one of the type ‘C’ sets.
There are 66 clusters. They consist of 457 photos taken
in Banff, Canada. We set parameters as ut = 0.5, u f =
0.7, ub =0.7, ul = 0.5.

Figure 7 shows the result of placement for represen-
tative photos selected from one of the type ‘C’ photos
taken in Banff. There are 66 clusters. The blue arrows
near the grid cell depict their temporal sequence. Spa-
tial similarity between their neighboring photos is pre-
sented by the gray line border. The thicker line depicts
that the photos have colors that are more similar in 25
perceptual colors [19].

6 EXPERIMENT
We conducted three consecutive experiments to evalu-
ate the usability of our system. These user studies were
designed to understand the user’s subjective reaction to
our system. Our user studies deal with the following
three perspectives:

1. How much time can we save using our system in
photo clustering?

2. How nice is the representative photo selection algo-
rithm compared to random selection?

3. How quickly can users find the desired photos in
each photo sets?

Sixteen people participated in our experimental ses-
sions. The participants were six beginners, seven ex-
perts and three evaluators. We define a beginner as a
user whose major is not related to computer engineer-
ing. The beginner group does not deal with computers
in everyday life (Ages ranged from 25 to 36). In con-
trast to the beginner, the expert group consists of users
whose major is related to computer engineering. The fi-
nal group of participants (evaluators) consists of people
who take each photo set directly.

The input data consisted of three levels of photo sets,
A, B, and C based on the number of photos, described
in Table 2. Each photo sets consists of evaluator’s pho-
tos taken during a trip without any special intent. We
classified photos into several categories with the person
who took each photo set before the experiment to com-
pare the result of clustering. Then, these categories are
embedded in the custom field of their EXIF (“On the
mountain” and “Number of Face 3”). The clustering
features considered were temporal context, the number
of faces and luminance in Lab color space.

Table 2: Description of the input photos, A, B and C.
depicts the evaluator for each photo set

Type # of # of # of
Photos Evaluator photo sets

A 80 ∼ 100 3 4
B 150 ∼ 180 2 3
C 420 ∼ 460 3 2

Experiment 1. We investigated the clustering task
completion time. We compared our system to a tradi-
tional scrolling interface based on a 2D grid, ACDSee
Photo manager, as a benchmark [1]. The photo sets
were classified by evaluators in advance to construct
the true sets for this experiment. We determined the
true cluster information to be the number of clusters,
the number of photos in each cluster, the categories of
each cluster. We term this as “cluster information”.

We organized the new tester group for experiment 1
from the sixteen participants in the experiment. Since
clustering is very subjective, we want to pick out the
person who shares the memory of each photo set with
the evaluator as testers, to investigate the satisfaction
with the clustering results impartially. In this exper-
iment, they consisted of the photographer’s traveling
companions. We computed the satisfaction level of
clustering results comparing the file names of photos
in clustering folder to the cluster category label.

The precision indicates the proportion of true posi-
tives clustered as below:

Ep =
|{true photo sets}⋂{user-clustered photo sets}|

|{user-clustered photo sets}|
(6)

WSCG 2010 Communication Papers 234

A B C A B C
0

50

100

150

200

250

Input data sets with satisfaction level

C
o

m
p

le
ti

o
n

 T
im

e
 (

s)
Result of Experiment 1 (Completion time)

Our system

ACDSee

[more than 0.7] [more than 0.8]

Figure 8: Average completion time to classify each
cluster. The input photo sets are A, B and C as de-
scribed in Table 2.

The recall measure is the number of correct results di-
vided by the number of all relevant results. It measures
the proportion of true clustered photos :

Er =
|{true photo sets}⋂{user-clustered photo sets}|

|{all of relevant truth photo sets}|
(7)

We use an average of precision and recall that was re-
spectively measured as more than 0.4 in this experiment
to decide if it is sufficient to satisfy the clustering result.

Now we wrapped up preparation for experiment 1.
First, each tester selects one photo set from every type
of photo set described in Table 2. Then, we gave the
testers the cluster information of the selected set with a
simple program that can divide photos into groups by
a constant time gap. They were asked to divide each
photo set already by the evaluator. During the exper-
iment, the testers can know the corresponding satis-
faction level of their clustering results by clicking the
‘evaluation’ button on the program we presented them.
This simple program can report how much the current
photo clustering satisfies the evaluator’s clustering re-
sults, considering precision and recall. We iterate the
above steps until the clustering results can be recog-
nized as reaching the satisfaction level to compare the
completion time.

Figure 8 shows the average completion time for clus-
tering satisfaction, the satisfaction levels are 0.7 and
0.8. It shows that the layout of our system is useful
to classify hundreds of photos compared to ACDSee
Photo manager.

Experiment 2. We compare the representative pho-
tos selected by our system to randomly selected photos
from each cluster. These selected photos are given to
the evaluators. Then, evaluators were asked to score
the satisfaction of each selection. Each experiment was
iterated ten times per the photo set randomly selected
from sets (A, B and C, respectively), for generality.
The scores ranged from 4 to 10. The average score for
Experiment 2 is shown in Figure 9. We excluded the

blurred features, since it is difficult to identify with the
unaided eyes on a document.

(A) (B) (C)0
1
2
3
4
5
6
7
8
9

10

Input photo sets

Sc
or

es

Result of Experiment 2 (Scores)

Our System, beginner
Our System, experts
Random Selection

Figure 9: Result of experiment 2. Average scores of
participants evaluation.

Experiment 3. The participants were asked to find
each corresponding similar photo to the given images
when four images were given. We had already selected
photos for the correct answer based on its similar im-
ages, as a true set. We investigate the number of trials
in which that they select all correct answers. Figure 10
shows the average number of trials to find the objective
photos. Since the gap of trial results between beginners
and experts in Experiment 3 is small, our system can be
easily used by Beginners.

A B C0
1
2
3
4
5
6
7
8
9

10
11
12
13

Input photo sets

Sc
or

es

Result of Experiment 3
(The number of trials)

Our system, expert
Our system, beginner
Random Selection

Figure 10: Result of experiment 3. Average number of
trials to find all desired photos.

7 CONCLUSION
The digital camera has become an indispensable com-
modity for people. Tasks related to photo manage-
ment, such as classification, filtering of a bad quality
of photos and their construction, are increasingly part
of daily life. The low price of memory allows people
to take more and a greater variety of photos. The task
of organizing these becomes boring and burdensome.
Thus, we propose a representative photo layout system

WSCG 2010 Communication Papers 235

that provides a clustering function for photo collections
based on user preference.

Our clustering process used four criteria. First, our
system clusters photos into small groups using multiple
criteria. Then, we select the representative photo, from
each classified photo groups, using a maximal match-
ing graph algorithm. The selected photos are placed on
a 2D grid using a similar placement algorithm to PHO-
TOLAND. The other photos corresponding to the rep-
resentative photos in the same group are displayed on
the upper layer when the user clicks the placed photos
in a lower layer. Conclusively, let us summarize the
notable contributions of this paper:

1. Our maximal matching algorithm is very useful and
efficient in selecting the representative photo.

2. We apply four criteria, such as temporal context, the
number of face, blur metric and luminance value in
Lab color space, to cluster photos into meaningful
groups. Other clustering features can be adopted if
that feature is normalized between 0.0 and 1.0.

3. Our system uses two hierarchical layer structure to
visualize photo groups based on its representative
photos using a method similar to PHOTOLAND’s
placement algorithm.

The system proposed in this paper was positively re-
ceived by the participants. They evaluated our system
as being an intuitive photo clustering interface. How-
ever, the clustered group may at times not be able to find
its representative photo. If the edge weight between the
group node and its photo node is weak, the pairs are not
selected in the process of maximal matching. In this
case, we can not display the other photos without the
representative photo. We have to develop the solution
to this problem.

ACKNOWLEDGEMENTS
This work was supported by the IT R&D program
of MKE/MCST/IITA (2008-F-031-01, Development of
Computational Photography Technologies for Image
and Video Contents).

REFERENCES
[1] ACDSee Photo Software Homepage. http://www.acdsee.com/.

[2] Joȧo. Mota, Manuel J. Fonseca, Daniel Gonçalves, and
Joaquim A. Jorge. Agrafo: a visual interface for grouping and
browsing digital photos. In Proc. of AVI ’08, pages 494–495,
New York, NY, USA, 2008. ACM.

[3] Benjamin B. Bederson. Photomesa: a zoomable image browser
using quantum treemaps and bubblemaps. In Proc. of UIST ’01,
pages 71–80, New York, NY, USA, 2001. ACM.

[4] Jun-Cheng Chen, Wei-Ta Chu, Jin-Hau Kuo, Chung-Yi Weng,
and Ja-Ling Wu. Tiling slideshow. In Proc. of MULTIMEDIA
’06, pages 25–34, New York, NY, USA, 2006. ACM.

[5] Wei-Ta Chu, Jun-Cheng Chen, and Ja-Ling Wu. Tiling
slideshow: An audiovisual presentation method for consumer
photos. IEEE Multimedia, 14(3):36–45, July 2007.

[6] Matthew Cooper, Jonathan Foote, Andreas Girgensohn, and
Lynn Wilcox. Temporal event clustering for digital photo col-
lections. ACM Transactions on Multimedia Computing, Com-
munications and Applications, 1(3):269–288, 2005.

[7] Frederique Crete, Thierry Dolmiere, Patricia Ladret, and Ma-
rina Nicolas. The blur effect: perception and estimation with
a new no-reference perceptual blur metric. In Proc. of the
SPIEHuman, volume 6492, page 64920I. SPIE, 2007.

[8] Andreas Girgensohn, Frank Shipman, Lynn Wilcox, Thea
Turner, and Matthew Cooper. MediaGLOW: organizing pho-
tos in a graph-based workspace. In Proc. of IUI ’09, pages
419–424, New York, NY, USA, 2009. ACM.

[9] Adrian Graham, Hector Garcia-Molina, Andreas Paepcke, and
Terry Winograd. Time as essence for photo browsing through
personal digital libraries. In Proc. of JCDL ’02, pages 326–335,
New York, NY, USA, 2002. ACM Press.

[10] Chi-Chang Hsieh, Wen-Huang Cheng, Chia-Hu Chang, Yung-
Yu Chuang, and Ja-Ling Wu. Photo navigator. In Proc. of MUL-
TIMEDIA ’08, pages 419–428, New York, NY, USA, 2008.
ACM.

[11] Hyunmo Kang and B. Shneiderman. Visualization methods
for personal photo collections: browsing and searching in the
photofinder. In Proc. of ICME ’00, volume 3, pages 1539–1542,
2000.

[12] J. Kustanowitz and B. Shneiderman. Meaningful presentations
of photo libraries: rationale and applications of bi-level radial
quantum layouts. In Proc. of JCDL ’05, pages 188–196, 2005.

[13] J. Kustanowitz and B. Shneiderman. Hierarchical layouts for
photo libraries. IEEE Multimedia, 13(4):62–72, Oct. 2006.

[14] Baback Moghaddam, Qi Tian, Neal Lesh, Chia Shen, and
Thomas S. Huang. Visualization and user-modeling for brows-
ing personal photo libraries. International Journal of Computer
Vision, 56(1/2):109–130, 2004.

[15] Mor Naaman, Susumu Harada, QianYing Wang, Hector Garcia-
Molina, and Andreas Paepcke. Context data in geo-referenced
digital photo collections. In Proc. of MULTIMEDIA ’04, pages
196–203, New York, NY, USA, 2004. ACM.

[16] Mor Naaman, Yee Jiun Song, Andreas Paepcke, and Hector
Garcia-Molina. Automatic organization for digital photographs
with geographic coordinates. Proc. of JCDL ’00, 00:53–62,
2004.

[17] Picasa Homepage. http://picasa.google.com/.

[18] Roberto Pinho, Maria Cristina F. de Oliveira, and Alneu
de A. Lopes. Incremental board: a grid-based space for visual-
izing dynamic data sets. In Proc. of SAC ’09, pages 1757–1764,
New York, NY, USA, 2009. ACM.

[19] B.G. Prasad, K.K. Biswas, and S.K.Gupta. Region-based im-
age retrieval using integrated color, shape, and location index.
Computer Vision and Image Understanding, 94:193–223, 2004.

[20] Till Quack, Bastian Leibe, and Luc Van Gool. World-scale min-
ing of objects and events from community photo collections. In
Proc. of CIVR ’08, pages 47–56, New York, NY, USA, 2008.
ACM.

[21] Kerry Rodden, Wojciech Basalaj, David Sinclair, and Kenneth
Wood. Does organisation by similarity assist image browsing?
In Proc. of CHI ’01, pages 190–197, New York, NY, USA,
2001. ACM.

[22] Dong-Sung Ryu, Woo-Keun Chung, and Hwan-Gue Cho.
PHOTOLAND : A new image layout system using spatio-
temporal information in digital photos. In Proc. of SAC (to
appear), 2010.

WSCG 2010 Communication Papers 236

Automatic Generation of Character Behavior by the
Placement of Objects with Motion Data

Kenichi Kobori

Osaka Institute of Technology
1-79-1 Kitayama

573-0196 Hirakata, Osaka, Japan
kobori@is.oit.ac.jp

Kenji Hirose

Mitsubishi Electric Corporation
2-3-33 Miwa

669-1513 Sanda, Hyogo, Japan

Koji Nishio

Osaka Institute of Technology
1-79-1 Kitayama

573-0196 Hirakata, Osaka, Japan
nishio@is.oit.ac.jp

ABSTRACT
 Recently, virtual space design with high quality three-dimensional CG has become possible due to a rapid
improvement in computer performance. In order to give a CG character the movement of its own, it is necessary
to apply the motion data to the character after getting them with a motion capture device or by hand work.
Production costs have increased because this is complicated work for an animator. In general, the character
movement depends on the objects which it holds. Our idea is that the character does not have motion data of its
own, but we give the character motion to the objects that it holds. We have developed a method for automatically
generating the character motion data by giving motion information to the objects. Thus, each object includes the
motion data that cause the character to act. In addition, we give multiple motion data appropriate for the
situations to the objects and define the relationship between objects in a virtual space. By using this relation, we
can generate a variety of motion data according to the object which the character holds. The proposed method
reduces the number of character motion data which should be prepared beforehand.
Keywords
Motion data, animation, movement, virtual reality

1. INTRODUCTION
Recently, virtual environment design with high
quality three-dimensional CG has become possible by
a rapid development of the computing power. CG
characters have existed in three-dimensional virtual
space to realize the space where looks just like reality.
In general, we make use of motion capture data to let
the CG characters act [Alb00]. We have to prepare
many scenes to construct various kinds of virtual
space. In addition, it is necessary to prepare many
motion data of CG characters. It forces animators to
enormous work. Whenever the scene is changed, they
have to prepare many motion data. It is necessary that
they acquire motion data again or revises it.
Therefore, a method to automatically generate motion
data has been required and several methods have
been proposed [Kan06] [Mar99].

However, these approaches have the restriction that
only limited motion data can be generated or one CG
character maintains only one motion data. Kan et al.
showed that automatic generation can be achieved by
using building blocks, called motion patches with
motion data. Each patches is annotated with simple
movements such as walk or stand up .
However, we need to prepare a lot of motion patches
when we make complicated motion data.
We propose a method to solve these problems. In our
method, the character does not have the motion data
of its own. Instead, the objects that the character
operates preserve movement information of the
character. We can give several movement data to the
object when it is necessary. In addition, the
movement to the object varies depending on the
movement to other object by giving the relation
between two objects. The data that the object
maintains include motion information of the character
and start position to be carried out for the object and
its geometry data. This kind of approach is known in
the field of robotics, but has not been used generally
in character animation .

2. PROPOSED METHOD
The object has three kinds of information to give the
character some sort of action. We generate entire

Permission to make digital or hard copies of all or
part of this work for personal or classroom use is
granted without fee provided that copies are not
made or distributed for profit or commercial
advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

WSCG 2010 Communication Papers 237

motion data of the character by synthesizing the
following information and walking motion data.

2.1 Information that object maintains
The information includes display information,
movement information and relation information.
1) Display information
This is shape geometry data to display an object in
three-dimensional virtual space. We can change the
appearance of the object easily by changing these
data.
2) Movement information
This data is the information to generate the movement
of the character. The information includes the
movement to be applied to the character, the start
position of the movement and occupation area of the
object in the virtual space.
Put another way, the movement information is the
motion data to be carried out for the object.
For instance, a chair preserves the movement of sit
and a ball preserves the movement of throw .
This movement information is basic data that we
acquire with a motion capture device in advance.
The character recognizes the movement that it should
perform without distinguishing objects because each
object has the movement for the character.
The start position of the movement is the position
where the character starts the movement for the
object. The occupation area is a convex polygon
surrounding the object.
When the character advances toward a target object,
an avoidance path is generated utilizing the convex
polygon so that the character does not collide to other
objects. We describe the method in detail in section
2.2.
3) Relation information
The character sometimes operates several objects, as
follows:
a) Hammer + Nail Drive a nail with a hammer
b) Postcard + Mailbox Drop a postcard into a

mailbox
c) Ball + Locker Put a ball into a locker
In these cases, the character operates an object
holding with other object.
For example, the character will do the action that it
r However,

it is expected that the character drops the postcard
into a mailbox when it holds the postcard in front of
the mailbox.
In order to achieve above-mentioned mechanism, we
need to define the relation between the postcard and
the mailbox and add these two objects the
information that the character drops the postcard into
the mailbox. The object holds three kinds of
identifiers, as shown in Figure 1.

Figure 1. Relation information

Identifier A (Active) means the movement that the
character performs. Identifier P (Passive) means the
movement that the character performs in the state of
holding an object with identifier A.
Identifier I (Independent) means the movement that
the character performs independently.
Figure 2 shows the relations among three objects, a
mailbox, a postcard and a trash bin.

Figure 2. Relations among three objects

The postcard and the mailbox have the relation 1
each other and the trash bin and the postcard have the
relation 2 each other. The character can drop the
postcard into the mailbox when it holds the postcard
by relation 1. On the other hand, the character does
not drop into the mailbox without the postcard, but
checks the collection time of mails. Furthermore, the
character can throw the postcard away into the trash
bin when it holds the postcard by relation 2. If the
character does not hold the postcard, it will look in
the trash bin.

2.2 Motion data generation
The motion data of the character is determined by
using the movement information and the relation
information. The final motion data are generated by
synthesizing the movement to be applied and walking
movement.
1) Outline of generation of movement

Object
A-movement name
P-movement name
I-movement name

A: Active
P: Passive
I: Independent

Mail box Trash bin

Postcard

A-drop into
A-throw away

I-read

P-throw away
I-look in

P-drop into
I-check the
collection time

Relation 1 Relation 2

WSCG 2010 Communication Papers 238

Figure 3 shows the situation that a character and a
chair are placed in the virtual space.

Ph: Start position of a character
Pa: Position of the movement to be applied
P0: Position where an object is put on
h1: Initial direction vector of a character
h2: Vector from Ph to Pa
h3: Vector from Pa to P0

: Angle between h1 and h2
: Angle between h2 and h3

Figure 3. Motion data generation

First, the character turns degrees to the direction h2
and walking motion is allocated for the character.
When the character arrives at the position Pa, it turns
 degrees.

Next, the avoidance path is generated by using
walking motion in the case that obstacles exist in the
direction which the character is moving in.
The movement which the chair has is applied to the
character. As a result, the motion data are generated
from walking motion to the motion which the
character performs for the object. In the case that
plural objects are placed in the virtual space, the
process mentioned above is repeated until the
character completes the movement that all objects
have.
2) Generation of avoidance pass
When the character goes straight on toward a target
object, there is the case that it collides with an object
which blocks the chara
4. We generate the avoidance pass by using the
occupation area of the object, as shown in Figure 5.

Figure 4. Collision of object with character

Figure 5. Avoidance path generation

However, the movement of the character becomes
unnatural at those vertices of the convex polygon to
surround the object because the generated pass is a
set of lines through those vertices. Therefore, we
interpolate the generated pass with a curve, as shown
in Figure 6. Ps is a start point and Pe is an end point
of the path. P1 and P2 are the vertices of the convex
polygon. First, three points Ps1, P12 and P2e are
inserted in the middle point of these three lines. Next,
two quadratic Bezier curves are generated by using
Ps1, P1, P12 and P12, P2, P2e. The final path
consists of the line Ps-Ps1, the quadratic Bezier curve
Ps1-P12, the quadratic Bezier curve P12-P2e and the
line P2e-Pe.

Figure 6. Curve interpolation of avoidance path

3) Generation of the movement to walk
The movement to be applied starts at the position of
the movement in the state that the character stands
upright. When the character arrives at the position of
the movement to be applied, the posture must be
standing straight. In order to meet this requirement,
we prepare seven kinds of walk movement for the
half period in Figure 7 in order to join the walk
movement and the movement to be applied smoothly.

Ps Pe
P2e

P2 P12 P1

Ps1

:Convex polygon to surround object
:Polygonal line path before interpolating
:Final path

Target object
Object

Generated path

Convex polygon to surround object

Position of the movement

Target object
Object

Walking path

Collision position

Position of the movement

WSCG 2010 Communication Papers 239

Figure 7. Walk movement for half period
We choose several walk movements among seven
kinds of walk movement and connect those
movements so that the final posture becomes standing
straight. For instance, the walk movement is
generated in Figure 8(b) when five walk movements
are connected in numerical order, as shown in Figure
8(a).
4) Motion transition
In general, the posture becomes unnatural at the
potion where we just connect motion data A to B, as
shown in Figure 9.

(a) An example of
connection

(b) Generated walk movement

Figure 8. An example of walk movement generation

Figure 9. Unnatural motion to be connected

Therefore, we insert transition frames so that the
posture PA gradually resembles posture PB, as shown
in Figure 10. The motion data is modified so that the

posture changes from motion A to B naturally by
inserting intermediate motion data between those two
motions. The posture of the character is expressed by
Euler angle of each joint. Interpolation between two
postures becomes unnatural if we use the
interpolation of Euler angle [Jam90]. We use
spherical linear interpolation to avoid Gimbal Lock
problem. Two Euler angles to be interpolated are
transformed to two quaternions and those are
interpolated by using spherical linear interpolation
[Tom06].

 Transition frames

Figure 10. Interpolated postures

3. EXPERIMENTS AND RESULTS
1) Placement of two objects with the relation, as
shown in Figure 11.
Table 1 shows two objects and the movement to be
applied.

No. Objects Movement to be applied
1 Hammer Pick up
2 Wood Drive nail

Table 1. Allocated objects and the movements

First, we put a character and two objects which have
the relation data in a virtual space.
Figure 12 shows the result of the movement. The
number under each figure shows the frame number.
The wood has no movements for the character
directly after placement of the character and the
objects, as shown in Figure 13(a). After we select the
movement pick up in Figure 13(b), the movement
drive nail can be selected, as shown in Figure 13(c)

because the hammer and the wood have the relation
each other.

Long step

Medium step

Short step

Upright stance

t

frame

Posture Posture

Long step
Medium step
Short step

Long Short Short Medium

WSCG 2010 Communication Papers 240

Figure 11. Placement of two objects and

 a character

(a) frame #30 (b)frame #64

(c)frame #136 (d) frame #234

(e)frame#272 (f)frame#334

Figure 12. Result of motion data generation to
two objects with relation

(a) Before picking hammer

 (b) Selection of Pick up

 (c) Appearance of the movement Drive

nail
Figure 13. Selection of the movement to be applied

2) Placement of five objects (illuminator, television,
post card, door and mailbox) and a character in a
virtual space in Figure 14.

Figure 14. Three dimensional virtual space

 Table 2 shows the movement to be applied to five
objects. First, we set the character and five objects in
the virtual space. Next, we select the movement to be
applied to five objects in the movement order of the
character.

Figure 15 shows the result of the movement. The
result shows that the motion data of the character is
generated by the order in Table 2.

No. Objects Movement to be applied

1 Illuminator Turn on

2 Television Switch on

3 Post card Pick up

4 Door Open and pass through

5 Mailbox Drop into

Table 2. Allocated objects and movements

Character

WSCG 2010 Communication Papers 241

(a) frame #67 (b) frame #68

(c) frame #342 (d) frame #524

(e) frame #810 (f) frame #1030

Figure 15. Result of motion data generation

 The last movement of Drop into mailbox is
generated by using the relation between the post card

p the card
into the mailbox in case that it does not hold the post
card. The relation information enables generation of
variety of motions. When the television is replaced by
an electric fan, as shown in Figure 16, we can also
generate another objective movement by only
replacing those objects. The movement of the
character in Figure 16(b) is different from the
movement in Figure 16(a) obviously.

(a)Placement of a television (b) Placement of a fan

Figure 16. Scene modification

Even if the modification of the scene results from the
change of objects, it is unnecessary to capture motion
data afresh. This method produces reduction of
motion generation cost.

4. CONCLUSION
In this paper, we proposed an automatic generation
method of character behavior by only objects
placement. We achieved this motion generation by
giving the movement of the character to objects. The
relation information between the objects enables
generation of various motions depending on the
object that the character operates. Experimental
results showed that our method is effective.
There are some directions for future works. For
instance, unnatural walking motion may be generated
when the character changes a direction to walk. This
problem is caused by using only seven kinds of
walking movement, as shown in Figure 7. In order to
solve this problem, we could also improve walking
motion by introducing Motion Graphs [Kov02] that
is widely used to generate natural walking motion. In
addition, another future work will focus on adding the
function that a character acts in corporation with
other characters when several characters exist in three
dimensional virtual space.

5. REFERENCES
[Alb00]

MORGAN KAUFMANN PUBLISHERS, pp.14-36,
pp.121-142,2000.
[Kan06] Kang Hoon Lee, Myung Geol Choi, Jehee

Transactions on Graphics, Vol.25 No.3, pp.898-
906 ,2006.
[Mar99] Marcelo Kallmann, Daniel Thalmann:

Proc. of
the ACM symposium on Virtual reality software and
technology, pp.124-130, 1999.
[Jam90] James D. Foley, Andries van Dam, Steven K.
Feiner, John F. Hughes, Computer Graphics 2nd
edition ,ADDISON-WESLEY ,1990.
[Tom06] Tomas Akenine-Möller, Eric Haines:
REAL-TIME RENDERING , Born digital Inc.,

pp.36-42,2
[Kov02] Kover L., Gleicher M. and Pighin F.:
Motion Graphs , ACM Transactions on Graphics,
Vol.21, No.3, pp. 473-482, 2002.

WSCG 2010 Communication Papers 242

RenderManʼs Power to Visualizationʼs Rescue

Julio Espinal
jae3161@rit.edu

Virginia Allen
vla8446@rit.edu

Kwesi Amable
kxa9006@rit.edu

Reynold Bailey
rjb@cs.rit.edu

Hans-Peter Bischof
hpb@cs.rit.edu

Department of Computer Science, Rochester Institute of Technology

ABSTRACT

Most visualization systems employ a data flow approach in order to create visual representations of data. The
data flows along a directed graph through the different components, gets filtered, extracted, analyzed, and finally
converted into an image. Most visualization systems use one graphic toolkit or library to create the image. These
toolkits and libraries are not created equally; some are better suited than others to solve given problems. Being
able to pick and choose would often generate a better result. Within the Spiegel framework any toolkit, which
can be used in a Java environment, can be employed to create the image. In this paper, we explain the Spiegel
framework and how Pixar's PhotoRealistic RenderMan® can be used to visualize scientific data.

Keywords
Visualization Framework, RenderMan®, Data Flow Languages.

1. INTRODUCTION
Most visualization systems employ a data flow
approach along a directed graph to filter, extract,
analyze, and finally convert data into an image. They
generally use one specific, unchangeable graphic
toolkit or library to create images. The features of
these toolkits and libraries vary significantly; some
are better suited than others to solve given problems.
Simply changing from one toolkit or library to
another often produces strikingly different results.
Additionally, visualization systems run on different
hardware platforms, which use different drivers to
access the graphics card. For example, OpenGL
running on two different platforms, Mac OS X and
Windows, using the same NVIDIA GeForce 9400
graphics processor will not execute all shaders in the
same manner. As a result, the images generated from
the same program may differ in quality.
Within the Spiegel framework [Bis05], any toolkit
that can be used in a Java environment can be
employed in order to create the best possible image.
In this paper, we explain the Spiegel framework and
how Pixar's PhotoRealistic RenderMan® can be used
to visualize scientific data.
The rest of the paper is structured as follows: section
2 discusses general visualization principles; section 3
presents an overview of how a data flow architecture
can be used for creating visualizations; a brief survey
of related work is presented in section 4; Our
approach for incorporating RenderMan® into the

existing Spiegel visualization framework is described
in sections 5, 6, 7, and 8. Finally, results and future
work are presented in sections 9 and 10 respectively.

2. VISUALIZATIONS
Spiegel was designed as a visualization tool for the
Center for Computational Relativity and Gravitation
(CCRG) at Rochester Institute of Technology.
Spiegel has been used mainly to visualize simulations
of galactic events like black hole mergers,
gravitational waves, and galaxy mergers. However, it
can be used to visualize any type of data. For CCRG,
the visualizations created by Spiegel are used to help
debug and understand the simulations from which
they are generated, as well as explain the science to
the general public.
Certain galactic events like black hole mergers
cannot be observed in practice. Therefore, a
visualization of a black hole merger cannot be
compared to a photograph. This makes it relatively
easy to generate visualizations because it is not
bound to a specific pre-conceived image. On the
other hand the Hubble Space Telescope took images
of nebulas like the one shown in Figure 2. It is
difficult to accurately generate this scene in 3D on a
computer.
A typical simulation writes the current state of the
model into a file at discrete moments in time. The
visualization of scientific data always follows the
same rules. The state at successive time steps of the

WSCG 2010 Communication Papers 243

simulation data is read and subsequently converted to
a visual representation.
This can be done for all time steps in parallel if the
data of each time step is complete and independent of
other time steps. If this is not the case, the data can
always be pre-processed. Because of this,
visualization systems are excellent candidates for
execution on a cluster. The Spiegel framework is no
exception. As shown in Figure 1, individual frames
of the visualization can be generated in parallel thus
reducing execution time.

Figure 1: Overview of the Spiegel framework.
Data is extracted from one or more file severs and
distributed to a cluster of computers. Each
processing unit in the cluster generates one (or
more) frames of the complete visualization
sequence in parallel. These frames are then
combined to create a video.

Prior to this work, the Spiegel framework utilized
only Java3D or JOGL to create 3D images. However,
these libraries were limited to rendering simplistic
models, which in some cases, results in unattractive
images for a general audience. Java3D and JOGL
cannot be pushed to render extremely difficult visual
scenes. For example, it is impossible with either
library to generate an impressive looking nebula, like
the Cat’s Eye Nebula shown in Figure 2. The authors
do not argue that an image like the Cat’s Eye Nebula
cannot be generated on a computer, but they argue
that Java3D or JOGL are not the right tools with
which to solve this problem.

Figure 2: Cat’s Eye Nebula. Courtesy of NASA
and the European Space Agency. Image generated
by the Hubble Space Telescope.

Pixar's PhotoRealistic RenderMan® has been widely
used in the computer graphics community for over
two decades to create stunning computer generated
imagery. RenderMan’s reputation has grown over the
years and it is still used today to render scenes in
many big-budget Hollywood films. Because of its
power, huge benefits can be gained by incorporating
RenderMan® into existing visualization systems.

3. DATA FLOW ARCHITECTURE
Most current visualization systems utilize a data flow
architecture [Bis09]. Components have
communication endpoints, which can be connected to
form a visualization program. When the program is
executed, data is passed from one component to
another. Each component performs specific
operations that contribute to the final result.

Figure 3: Example of a program created in
Spiegel that illustrates the data flow architecture.

Figure 3 shows an example of a program created in
Spiegel using its graphical interface. The node Stars
reads the file named sim.dat specified as an argument
and sends the data to the node Stars3D, and from
there the data is sent to the last node in the graph,
Camera3D. The Stars, Stars3D, and Camera3D
components are simply small programs, which
perform specific operations on the data.
Most visualization frameworks, like Iris Explorer, the
grandfather of all visualization systems [Fou95], do
not expose this functionality to the user. Vish
[Ben07] and Spiegel [Bis09] are frameworks that
expose this functionality to the user; consequently,
they are very easy to extend.
The Unix operating system [Rit74] allows one to
create a data flow architecture using pipes. This
allows for the connection of multiple simple
programs to create powerful systems. But more than
this, it fosters the reuse of existing components. This
increases the productivity of a developer. A Unix
program like:

sort file | uniq | sort –n head -5

will print out the 5 most often occurrences of the
same line in file.
Vish and Spiegel follow the same philosophy as
Unix. In the end, this allows for the use of any
tool/library that can convert data into an image.
The authors explored OpenGL, JOGL, and
PhotoRealistic RenderMan® within the Spiegel
visualization framework.

WSCG 2010 Communication Papers 244

4. RELATED WORK
Other options besides RenderMan® exist for
rendering realistic images. These include OpenGL
with GLSL shaders and DirectX. Because Spiegel
was designed to be platform independent, DirectX
was an impractical choice because it is not fully
supported on all platforms. Additionally, not every
extension in OpenGL is supported on all graphics
cards. These factors led us to consider RenderMan®.
Due to the intuitive shading language and film-
quality rendering, RenderMan® is superior to
OpenGL. Even though it takes more time to render
an image, the quality is significantly better and
appeals to a general audience. The RenderMan®
Interface is well documented and its reputation has
been proven in the field for over twenty years.
RenderMan® automatically performs many
calculations that need to be performed manually in
OpenGL. For example, with lighting enabled, the
normal and view vectors are automatically
calculated. Furthermore, setting up the camera and
the scene is easier compared to OpenGL. The
RenderMan® standard defines five types of shaders:
surface, light, volume, imager and displacement; on
the other hand, GLSL only supports vertex and
fragment shaders. RenderMan's shaders have a very
modular design; therefore, it is possible to edit
certain parts of the pipeline without affecting other
aspects. It is also possible to have multiple variations
of a base shader, which facilitates the evaluation of
the effects. Scene setup is also easier in
RenderMan® as parameters can be added to a RIB
(RenderMan® Interface Bytestream) file to guide
scene generation as opposed to explicitly defining the
scene in OpenGL.

5. RENDERMAN®
As stated previously, part of RenderMan’s appeal is
its modular design and multiple shader types. They
can also be layered together to create unique textures.
Once a shader is compiled, it can be used in any
RenderMan® Interface Bytestream (RIB) file. A
RIB file describes the environment and the various
objects within a scene. RIB files can reference other
RIB files in order to add existing objects to other
scenes.
In many cases, the data set requires much processing
time to produce a movie. The processing time
increases drastically when rendering high-quality,
photorealistic scenes. The Spiegel framework allows
for distribution over a cluster, as shown in Figure 1,
to generate the images in parallel, which reduces
execution time.
Spiegel splits the RenderMan® interface into several
components. These components include lighting,
shader extractor, RIB generator, and camera settings.
Because RenderMan® is very flexible, it is possible

to have multiple instances of most of the
components. As data flows through each component,
a RIB file depicting the scene is generated and
ultimately processed by the PhotoRealistic
RenderMan® renderer to produce the desired image.

6. ARCHITECTURE
A modeling application is used to create and compile
the RIB file. During compilation, the modeling
application will parse each line of the RIB file and
call the corresponding RenderMan® Interface (RI)
routine. Once all of the information is gathered,
RenderMan® will then bound and split each
primitive. Figure 4 illustrates all the phases involved
in the architecture.
During the bound and split phase, each primitive is
checked whether or not it is within the bounding box.
The bounding box is the viewing area in which the
scene will be depicted. It is based on the current
location of the camera and the size of the screen. If
an entire primitive is not within the bounding box,
then it is discarded; however, if a primitive is
partially in the bounding box, then it is split. When a
primitive is split this means that it is made into
smaller polygons until a single one can fit into the
bounding area. This can be seen in Figure 5 when a
sphere is split into smaller polygons that create the
whole sphere. Once the smaller polygons of the
primitive fit into the bounding box, the polygons that
are still not within the bounding box are discarded.
Once each primitive is bound and split, they are
diced into a grid of micro-polygons. These micro-
polygons will be small enough to approximately
represent a pixel on the screen. As seen in Figure 5,
these grids will allow for the shaders to manipulate
the primitives. The first shader applied, if one is
specified, is the displacement shader. These shaders
need to be applied first because they manipulate the
vertices' data, such as the position or normals, and
this information is a basis for other shaders. Once
the displacement shader is applied, the surface
shaders are used next to manipulate the surface of the
primitive. In order to apply the surface shaders, the
lighting also needs to be taken into account to
produce appropriate shadows. The location of the
lights also needs to be considered, because if a light
is directed towards a primitive, then the surface
shader needs to adjust the color according to the type
of surface and make that area brighter than the rest of
the object's surface. Last, the atmosphere shader is
applied in order to make changes to the primitive's
color along with its opacity. After the objects are
bounded and split, diced, and shaded, the image is
rendered and displayed onto the screen.

WSCG 2010 Communication Papers 245

Figure 4: The stages involved in the RenderMan®
architecture.

7. RENDERMAN® PROGRAM
Consider the example of trying to render stars in a
galaxy. The following snippet of code shows part of
the RIB file that is generated:

...
TransformBegin
 Translate -0.1 0.6 -0.3
 Scale 0.1 0.1 0.1
 Color [0.46 0.46 0.4]
 Surface "glow"
"attenuation" "2"
 Sphere 1 -1 1 360
TransformEnd
TransformBegin
 Translate 0.1 -0.3 0.4
 Scale 0.2 0.2 0.2
 Color [0.0, 0.0, 0.0]
 Sphere 1 -1 1 360
TransformEnd
...

Figure 5: Illustration of a sphere being split,
diced, and shaded. Image adapted from
renderman.pixar.com [Pix09].

The first piece of information, between the first
TransformBegin/End, describes the characteristics of
one star within the image. The surface of a star is
described by using a shader called “glow”; this can
be seen on the “Surface” line. The second piece of
information is for a black hole. The scale of a black
hole is slightly larger than the stars and the color is
black.

8. SHADERS
The key to generating realistic images from
RenderMan® is shaders. A shader is a function
written in the RenderMan® shading language that
calculates the color and position of a point on the
surface of the object. The RenderMan® plug-in for
Spiegel allows the user to select the shader from a
file. The program will parse the header of the shader
file to determine the parameters it takes. It will then
dynamically add an input to Spiegel’s shader module
for each of these parameters. This module contains
the name of the shader and a list of variables with
their values. The camera module generates the main
RIB file. It imports the previously generated RIB file
that contains the models. After generating the RIB
file, the RenderMan® renderer (prman) is invoked to
produce an image. This process is illustrated in

WSCG 2010 Communication Papers 246

Figure 6. The module gets the camera position,
image size, and the render quality in as parameters.
It also has parameters for information about the
interpolation and the motion blur. To create an
interpolated movie, the program reads each time step
until it has four time steps, it will then render all of
the frames that should go in between these four time
steps.

Figure 6: Illustration of how the main RIB file is
built and used.

There are several Spiegel modules for RenderMan®
lighting. These modules add support for ambient,
distant, spot, and point lights. To add a light, connect
the light module to the RenderMan® camera module.
The “lights” input supports the connection of
multiple lights at the same time. The parameters of
the lights can be changed via Spiegel's interface.
These parameters include light intensity and color
along with others depending on the type of light. It is
important to note that some shaders, do not use
lighting to determine how to render the objects. This
means that, when using these shaders, adding lights
will have no effect on the final image.

9. RESULTS
The Spiegel framework was used to create video
clips of black hole mergers for the show “The
Universe: Cosmic Holes” which aired on the History
Channel in 2008. The videos were rendered using
OpenGL and depicted black holes as simple Gouraud
shaded spheres against a static texture mapped
background. Figure 7 (left) shows a single frame of a
three black hole merger that was rendered using the
old Spiegel/OpenGL approach. Figure 7 (right)
shows an image that was rendered using the new
Spiegel/RenderMan framework. In this case, the
individual stars surrounding the central black hole are
rendered using a shader which gives a more realistic
glowing effect.
We generated images based on a simulation of a
three-galaxy merger. Figure 8 shows one frame of the
merger viewed from the side and Figure 9 shows the
merger viewed from the top. For these images, a
different shader which emphasizes the appearance of
the back holes was used.

10. FUTURE WORK
RenderMan has been successfully incorporated into
the Spiegel visualization framework and has been
used to create visualizations of galactic events such
as black hole mergers. The new framework allows
for distribution over a cluster. This was successfully
verified for a small cluster. In the future, we will
have access to Blue Waters [NCS09]. Blue Waters
will consist of 100,000 nodes and the peak
performance will be in the Peta-flop range. The
Spiegel framework will be ported to this cluster and
its scalability will be analyzed.
Sonification [Her05], the art of representing data by
using sound, is a rapidly evolving area of research.
We plan to explore various approaches for using
sonification models to further enhance our
visualizations.
Many visualization algorithms are designed to
visualize a very specialized problem. Unfortunately
these algorithms cannot be used outside the tool in
which they are implemented. A language named
Sprache is used to describe a visualization program
in Spiegel [Bis05]. However, it is not well suited for
working with data that is distributed over multiple
servers. We plan to redesign this language to handle
distributed data and distributed rendering for the new
Spiegel/RenderMan framework.
Finally, one of the major limitations of our project
was the time it took to render images. The use of a
cluster to render individual frames in parallel helps to
reduce the overall rendering time for a video
sequence, however each individual frame could
potentially take a long time. Although PhotoRealistic

WSCG 2010 Communication Papers 247

RenderMan is an efficient software renderer, it is still
subject to long processing times for complex scenes.
We plan to explore the use of multi-core GPUs to
speed up the rendering time.

11. ACKNOWLEDGEMENTS
This material is based upon work supported by the
National Science Foundation under Award No. CCF-
0851743. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the authors and not necessarily reflect the views of
the National Science Foundation.
The authors would also like to thank to Manuela
Campanelli, Carlos Lousto and Yosef Zlowocher
from the Center for Computational Relativity and
Gravitation for their help and fruitful discussions.
This team provided the data used and the
interpretation of the visual representation.

12. REFERENCES
[Ant00] A. A., & Larry, G. (2000). Basic Geometric

Pipeline. In Advanced RenderMan: creating CGI
for motion pictures (pp. 136-143). San Diego,
CA: Academic Press.

[Ben07] Werner Benger and Georg Ritter and René
Heinzl, The Concepts of VISH, 4th High-End
Visualization Workshop, Obergurgl, Tyrol,
Austria, June 18-21, 2007, 978-3-86541-216-4.

[Bis05] Hans-Peter Bischof, Jonathan Coles: A
Movie Is Worth More Than a Million Data
Points, Lecture Notes in Computer Science

Publisher: Springer-Verlag GmbH, ISSN: 0302-
9743 Subject: Computer Science Volume
3514/2005, Title: Computational Science ICCS
2005: 5th International Conference, Atlanta, GA,
USA, May 22-25, 2005

[Bis09] Hans-Peter Bischof, Swathi Annamala: The
KISS Principle Applied to Dataflow Languages
Paradigms for Visualization Frameworks,
Proceedings of the 2009 Conference on Modeling
Simulations and Visualization Methods, p. 48-55,
ISBN: 1-601320-120-1.

[Fou95] David Foulser. Iris explorer: a framework
for investigation. SIGGRAPH Computer
Graphic, 29(2):13{16, 1995.

[Her05] Thomas Hermann, Andy Hunt, "Guest
Editors' Introduction: An Introduction to
Interactive Sonification," IEEE MultiMedia, vol.
12, no. 2, pp. 20-24, Apr. 2005,
doi:10.1109/MMUL.2005.26.

[NCS09] Blue Waters Announcement. Retrieved
October 20, 2009, from NCSA’s website
http://www.ncsa.illinois.edu/BlueWaters.

[Pix09] Pixar’s RenderMan Performance. (2009).
Retrieved November 30, 2009, from Pixar
website:
https://renderman.pixar.com/products/whats_rend
erman/2.html

[Rit74] D. M. Ritchie and K. Thompson. The Unix
time-sharing system. Communications of the
ACM, 17:365-375, 1974.

Figure 7: Image rendered using old Spiegel/OpenGL framework (left). Image rendered using new

Spiegel/RenderMan® framework using shaders.

WSCG 2010 Communication Papers 248

Figure 8: One frame from a three-galaxy merger viewed from the side. Image created by the Spiegel

Visualization System using RenderMan®.

Figure 9: One frame from a three-galaxy merger viewed from the top. Image created by the Spiegel

Visualization System using RenderMan®.

WSCG 2010 Communication Papers 249

WSCG 2010 Communication Papers 250

Image Authentication Using Robust Image Hashing

with Localization and Self-Recovery

Ammar M. Hassan,
 Ayoub Al-Hamadi, Bernd Michaelis

IESK
Otto-von-Guericke-Unviersity

Magdeburg, Germany
{Ammar, Al-Hamadi}@ovgu.de

Yassin M. Y. Hasan
Computer Sc. and Info. Dept.

Taibah University
Madinah, KSA

ymyhasan@aun.edu.eg

Mohamed A. A. Wahab
Electrical Engineering Dept.

Minia University
Minia, Egypt

ABSTRACT
The rapid growth of efficient tools, which generate and edit digital images demands effective methods for
assuring integrity of images. A semi-fragile block-based image authentication technique is proposed which can
not only localize the alteration detections but also recover the missing contents. The proposed technique
distinguishes content-preserving manipulations from the content alterations using secure image hashing instead
of cryptographic hashing. The original image is divided into large blocks (sub-images) which are also divided
into 8×8 blocks. Secure image hashing is utilized to generate the sub-image hash (signature) which may slightly
change when the content-preserving manipulations are applied. Furthermore, the sub-image code is generated
using the JPEG compression scheme. Then, two sub-image hash copies and the sub-image code are embedded
into relatively-distant sub-images using a doubly linked chain which prevents the vector quantization attack. The
hash and code bits are robustly embedded in chosen discrete cosine transform (DCT) coefficients exploiting a
property of DCT coefficients which is invariant before and after JPEG compression. The experimental results
show that the proposed technique can successfully both localize and compensate the content alterations.
Furthermore, it can effectively thwart many attacks such as vector quantization attacks.

Keywords
Cryptographic hashing, image authentication, image hashing, watermarking.

1. INTRODUCTION
The current advances in information technology, the
widespread multimedia applications and wireless
services require efficient methods for guaranteeing
privacy, security, protection and integrity of the
assorted multimedia data categories. Since many
recently developed devices and efficient software
products offer consumers worldwide capabilities of
flexibly creating, manipulating, and exchanging
multimedia data, considerable efforts and
contributions have been lately made on digital
watermarking that inserts a piece of information (the
watermark) into multimedia (host/cover) data for
many purposes such as [Has04, Has07, Won01]:

image authentication, copyright protection,
fingerprinting, broadcast monitoring and data hiding.
For example, in medical archiving and e-commerce,
we strongly desire to be sure that the images are
genuine and in the news reporting, it is important that
the image truthfully reflects the real view at the time
of capture [Lan99, Won01]. For image authentication
purposes, it is required that the watermarking
algorithm is blind, secure and so sensitive that slight
modifications to the image content are detected and
precisely localized [Lin99,Yeu97]. Fragile [Won98,
Bar02, Cel02], semi-fragile [Eki04, Lin00, Lin01a,
Lin07, Mae06], self-recovery/embedding [Fri99b,
Lin01b, Lue08, Wan08] watermarking schemes have
recently been presented for image authentication.
Fragile image authentication schemes are so sensitive
to pixel changes where their watermarks are easily
damaged even in case of harmless changes in the
image data due to content-preserving manipulations
that do not affect the content [Lin99]. Hence, fragile
image authentication is applicable and of interest only
in case of lossless environment, i.e., coding, storage,
transmission (of the watermarked image). The
fundamental objective of the attacker facing such
fragile watermark is to keep a watermark that makes

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2010 Communication Papers 251

his/her altered or completely forged image, “pass” the
verification test as authentic [Has04, Has07, Lue08].
Block-based fragile/semi-fragile image authentication
schemes provide attack localization but they are
vulnerable to vector quantization (VQ) attacks
[Hol00], relying on that the watermark
embedding/verification processes are run on
independent blocks. Once an attacker has a table of
authenticated blocks (with the same security
parameters), he/she can use the best-authenticated
approximation of an un-authenticated block without
having the verification process detecting his/her
alterations. This type of attack principally differs from
the attacks against copyright protection and
information hiding where the attacker may mainly
want to significantly distort or remove the watermark
with imperceptible alterations in the image [Kut00,
Kir02].

Various global and block-based (sized down to pixel-
wise) fragile image authentication methods have been
developed. A simple fragile scheme simply replaces
the least significant bits (LSBs) of the image of
interest with the checksum (i.e., modulo-2 addition)
bits of a long word of some most significant bits
(MSBs) [Lin99]. In [Yeu97], the use of a user-defined
color look-up tables (LUTs) guided pixel-wise
adjustment to embed the watermark is proposed.
Wong’s block-based method [Won97] and its public-
key modified versions [Won98, Won01] replace the
LSBs of each block with a signature of its MSBs,
with the image size, image index and/or block index,
xor-ed with its corresponding watermark block.

On the other hand, semi-fragile image authentication
techniques embed watermarks so robustly to survive
(to some, application dependent, extend) various
kinds of typical image processing manipulations such
as lossy compression as long as the image contents
are preserved. At the same time, embedded
watermarks must detect malicious alterations such as
deleting or adding an object. In many semi-fragile
schemes, the relations between pairs of discrete
cosine transform (DCT) coefficients in a block are
used as the block signature. Then, the signatures
(watermarks) are robustly embedded in low frequency
coefficients [Lin00, Lin01a]. In [Mae06], the authors
introduce two methods to generate the signatures
using the discrete wavelet transform (DWT). In the
first method, random values are added to the
difference between two coefficients before the
difference is encoded to generate the signature bit.
The second method proposes the use of a multiple
nonuniform quantizer to encode the coefficient
difference in each pair. Lin et. al. use the differences
of DCT coefficients as signatures and modify other
DCT coefficients to match the signatures [Lin07].

Furthermore, to not only localize altered regions but
also compensate for the damage, self-recovery/
embedding image authentication techniques have

been presented that embed an image approximation
into the image itself in a fragile [Lue08, Wan08] or
semi-fragile [Has07, Fri99a] way using various
techniques.

An original self-recovery/embedding image
authentication technique based on JPEG compression
has been introduced in [Fri99b]. A JPEG compressed
version of each block is inserted into the LSBs of
the block

B

PB
v

+ , where P
v

 is a vector of length
approximately 1/3 of the image size, with a randomly
chosen direction. The algorithm limitations and
possible attacks are addressed in [Fri99c, Lue08]. In
[Lin01b], Lin and Chang have proposed an
algorithm using quantized coefficients of the DCT of
the image blocks as a watermark and modifying the
coefficients differences to match the quantized
coefficients (watermark). The attacker can easy
defeat the verification process applying the same
algorithm into a fake image. Instead of using a JPEG
compression version as an image approximation,
Wang and Tsai have used fractal codes of a ROI
(region of interest), which is chosen as the important
object in the host image [Wan08]. On the other hand,
Lue et al. proposed a technique that uses a halftone
version of the host image as an approximation image
[Lue08].

In this paper, image hashing technology, which will
be described in the next sections in details is utilized
to generate the sub-image signature. A code of the
approximated sub-image is computed using the
principals of JPEG compression. Then, the sub-image
signature copies and the sub-image code are robustly
embedded into DCT coefficients of two relatively-
distant sub-images making a doubly linked chain.

The remainder of this paper is organized as follows:
cryptographic hashing, which is mostly used to
generate image/block signature in fragile algorithms,
and image hashing, which we adopt to generate the
proposed signatures, are described in Section 2. In
Section 3, existing image hashing schemes are
presented. The proposed technique is introduced in
Section 4. Experimental results are shown in Section
5. In Section 6, the conclusion is presented.

2. CRYPTOGRAPHIC HASHING AND
IMAGE HASHING
The cryptographic hash functions such as MD4,
MD5, and SHA [Men01, Sch96] map the input data
to a short fixed length string. For the hash function
Hc and the input data d, it should be easy to compute
the hash hc=Hc(d). For this type of functions, called
one-way-functions, it is too hard to estimate the input
data d from the hash hc. Hash functions have, at least,
the following additional properties [Men01, Sch96]:

WSCG 2010 Communication Papers 252

 Given the hash hc, it is computationally infeasible
to find an input which hashes to that output, i.e. it
is hard to find d such that Hc(d)=hc.

 Given the data d, it is hard to find another input
data d0 which hashes to the same output, i.e. it is
hard to find Hc(d)=Hc(d0).

 It is computationally infeasible to find any two
inputs d0 and d1 which have the same output (i.e.,
satisfying collision resistance).

It is clear that the cryptographic hash is so sensitive
to changes in the input data where small changes,
even a single bit, dramatically change (~50%) the
output. To secure the hash, it may be encrypted by an
encryption algorithm. The cryptographic hash is
mostly used for digital signatures and fragile image
authentication.
On the other hand, the image (visual) hash function
H maps the input image (or sub-image) to an output
h=H(I) that is invariant under perceptually
insignificant image changes with the following main
properties[Fri00, Mih01, Swa06, Ven00, Tan08]:

 It is hard to find two different images having the
same or very close hash value(s) (collision
resistance).

 Given h, perceptual changes to an image I lead
to a different hash H(I') ≠ H(I).

 The hash is key dependent, for security reasons,
so that different keys give significantly different
hash values.

The main difference between image (visual) and
cryptographic hashing is that image hashing accepts
perceptually insignificant changes in the input image
with small hash changes; but small changes in the
input data lead to very significant changes in the
cryptographic hash.

3. IMAGE HASHING SCHEMES
In [Fri00], The image hash is generated by projecting
the input image onto patterns which are generated
using a zero-mean uniform distributed key random
generator. The resulting hash is resilient to many
normal operations but it is not collision free [Swa06].
Venkatesan et al. have introduced an image hashing
algorithm that uses the discrete wavelet transform
(DWT) of an image. Statistics of each subband block
are calculated, randomly quantized and encoded to
generate the final hash value [Ven00]. Unfortunately,
the algorithm does not work well for object insertion.
In [Mih01], the DWT is employed to capture the
image hash based on threshoding and iterative
filtering. Swaminathan et al. [Swa06] have exploited
the Fourier-Mellin transform to generate image
features. In the polar coordinate, the summation of
image values alone angle axis at equal distant points
for a specific radius is an image feature. The image
features for radii are represented as the image hash.

In [Tan08], a robust image hash algorithm uses a non-
negative matrix factorization (NMF) scheme for
generating the image hash. First, the image undergoes
preprocessing as a sequence of image resizing, color
space conversion and low-pass filtering. The
preprocessed image is then divided into unequal
blocks. Next, each block is rescaled to a fixed size
and put as a vector in a matrix that is undergone
NMF. The elements of the NMF coefficient matrix
are quantized and encoded to generate the image
hash. We use this algorithm to generate the sub-image
signature in our proposed image authentication
technique. So, we describe it in more details in the
rest of this section. The scheme is composed of the
following four main steps:

First step: Image preprocessing
a- The image is resized to q×q using bi-linear

interpolation.
b- The color space of q×q image is converted to

YCbCr.
c- The Y plane is passed through a low-pass filter.

Second step: Building the secondary image
a- The preprocessed image U is randomly

divided into t strips, and each strip is again
divided into t blocks with varied sizes,
resulting in t2=Nb blocks in total.

b- Each block is resized to k×k using bi-linear
interpolation.

c- Each k×k block is stacked to construct a k2×1
vector v.

d- Each vector v is used as a column in a pseudo-
random order to form the m×n matrix V,
where m=k2. V is called the secondary image.

Third step: Data reduction
a- V undergoes NMV giving the coefficient

matrix C (see the appendix).
b- C entries are quantized to generate a binary

matrix Cb as follow:

 (1)
⎪⎩

⎪
⎨
⎧

>

≤
=

+

+

1,,

1,,
, ,1

,0

jljl

jljlb
jl cc

cc
c

where cl,j denotes the entry of C in the lth row and the
jth column , and cl,n+1 = cl,1.
Final step: Hash security

a- Cb entries are concatenated to form a binary
string.

b- The binary string is interleaved using a key to
produce a key-dependent image hash h.

4. PROPOSED TECHNIQUE
Image hashing is employed to generate the sub-
images' hashes (signatures) which are used to check
the authenticity of an image. Two signature copies of
each sub-image are robustly embedded into two

WSCG 2010 Communication Papers 253

relatively distant sub-images which are pseudo-
randomly chosen using a doubly linked chain in low
frequency DCT coefficients. In the proposed
technique, the image of interest is divided into sub-
images. The sub-image hash (signature) is computed
using the secure image hashing algorithm [Tan08]
and the sub-image code, which represents the
approximated sub-image is generated using the JPEG
compression principles. Then, the sub-image hash
copies and the sub-image code are robustly inserted
into relatively distant sub-images. In the next
subsections, the embedding and the verification
processes are described in details.

Embedding Process
The original M×N image I is divided into m'×n' sub-
images as follows:

⎡ ⎤ ⎡ ⎤{ }'' /,/2,21,22,11,1 ...,,,...,,, nNmMSISISISISII = (2)

where m' mod 8=0 and n' mod 8=0, is the floor of
x. For each sub-image SIi,j, the sub-image hash hi,j is
computed using the secure image hashing algorithm
[Tan08] such that:

⎡ ⎤x

 (3))(,, jiji SIHh =

To compute the sub-image code , the sub-image
SIi,j is resized to 8×8. Then, the resized sub-image is
undergone the DCT. The DCT coefficients are
quantized using the quantization table which
corresponds to 50% quality JPEG compression. Then,
the quantized coefficients are encoded using a fixed
bit allocation table to generate the sub-image code.

S
jiC ,

Each sub-image is divided into 8×8 blocks as follow:

 { }ji
nm

jiji
ji bbbSI ,

8/,8/
,
2,1

,
1,1, ''.....,,,= (4)

Two hash copies and the code of each sub-image are
robustly inserted and spread into two relatively
distant sub-images generating a doubly linked chain.
In the color images, we use the Y channel of the
YCbCr color space for embedding the hash copies and
codes. The choice of the two relatively distant sub-
images depends on the sub-image index and it is
controlled by secret keys as follows:

[] [[]3/2,3/)(,1mod))((111 ssksk MMjGMjGii ∈]++=

[] [[]3/2,3/)(,1mod))((12121 ssksk NNiGNiGjj ∈]++=
[] [[]3/2,3/)(,1mod))((332 ssksk MMjGMjGii ∈]++=

[] [[]3/2,3/)(,1mod))((24242 ssksk NNiGNiGjj ∈]++=

 (5)

where Gk1, Gk2, Gk3 and Gk4 are key seed random
generators with keys k1, k2, k3 and k4. Ms and Ns
are the number of sub-images per column and row,
respectively.
Fig. 1 illustrates an example of the indices of the first
relatively distant sub-image for each sub-image after
Gk1(j) column-wise circular shifts followed by Gk2(i1)

row-wise circular shifts.
Then, each block of distant sub-images is transformed
to the frequency domain using the DCT. We robustly
embed two hash copies of the sub-image and the sub-
image code (sub-image approximation) into the two
relatively distant sub-images. One copy is embedded
into the first distant sub-image blocks and the other
copy into the second distant sub-image blocks.
Furthermore, we divide the sub-image code into two
groups which are embedded into the two distance
sub-images. For embedding a bit of a sub-image hash
copy or a bit of a sub-image code, we use a proved
theorem given in [Lin00]. The theorem explains that
if a DCT coefficient is quantized by Qqf(v) (qf refers
to the compression quality factor), this coefficient can
be reconstructed after JPEG compression with qf1>qf.
Depending on this theorem, we can embed a bit into a
DCT coefficient using an arbitrary quantization step
and we can also recover this bit even if JPEG
compression is applied with a quality factor greater
than the quality factor, which is used in the
embedding operation. Therefore, if we arrange the
DCT coefficients of a block in zigzag order , the
chosen coefficient of the block , which has an
index (u,v) in the sub-image SI

ji
vub ,

,

i,j, is modified as
follows :

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−+

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

=

elselQ
lQ
lb

lQ
lb

sign
lQ
lb

th
lQ
lb

lQ
lQ
lb

lmb

m
m

ji
vu

m

ji
vu

m

ji
vu

ji
m

ji
vu

m
m

ji
vu

ji
vu

,)(
)(
)(

)(
)(

)(
)(

)(2mod
)(
)(

,)(
)(
)(

)(
,
,

,
,

,
,

,

,
,

,
,

,
,

(6)

where is the modified block, Qm is the specific
quantization table, [x] is the round of x, l is the chosen
middle frequency coefficient index, t is the hash
index, sign(x) is equal 1 if x is a positive value and it
is -1 if x is a negative value. Using (6), we can embed
the bits of the hash and also the bits of the code into
low frequency coefficients, which have pre-specific
indices. A sub-image hash copy and the first group of
the code are embedded into chosen coefficients of the

ji
vumb ,

,

 Gk1(j) 3 2 4 2 4 3 2 4 Gk2(i1)
1 2 3 4 5 6 7 8 25 34 19 36 21 30 39 24 2 30 39 24 25 34 19 36 21
9 10 11 12 13 14 15 16 33 42 27 44 29 38 47 32 3 29 38 47 32 33 42 27 44
17 18 19 20 21 22 23 24 41 50 35 52 37 46 55 40 4 52 37 46 55 40 41 50 35
25 26 27 28 29 30 31 32 49 2 43 4 45 54 7 48 2 54 7 48 49 2 43 4 45
33 34 35 36 37 38 39 40 1 10 51 12 53 6 15 56 4 12 53 6 15 56 1 10 51
41 42 43 44 45 46 47 48 9 18 3 20 5 14 23 8 3 5 14 23 8 9 18 3 20
49 50 51 52 53 54 55 56 17 26 11 28 13 22 31 16 2 22 31 16 17 26 11 28 13

(a) (b) (c)
Figure 1. Example of the proposed scheme for

choosing relatively-distant sub-images.
 (a) Original sub-images. (b) Sub-images after

Gk1(j) column-wise circular shifts. (c) Sub-images
after Gk2(i1) row-wise circular shifts.

WSCG 2010 Communication Papers 254

first distant sub image blocks. This operation is
repeated for embedding another copy of the sub-
image hash and the second group of the code into
other chosen coefficients of the second distant sub-
image blocks. After embedding the hashes and codes
of all sub-images, the DCT coefficients are converted
back to pixel integer domain. There is a possibility for
losing some embedded bits by the rounding and
truncation which are used for converting to the pixel
domain. Therefore, we use an iteration procedure to
assure the embedded bits are exactly extracted from
the authenticated image.

Verification Process
In the verification process, the alterations that may
occur on an authenticated image are not only detected
and localized but also repaired. In the verification
process, the test image I' is divided into sub-images
and each sub-image hash h'i,j is computed. For each
sub-image SI'i,j, the corresponding distant sub-images
indices are computed using (5). The embedded hash
copy he1

i,j and the first group of the sub-image code
are extracted from the first distant sub-image SI'i1,j1. A
bit is extracted as follows:

 2mod
)(
)(

)(
1,1'

,1
,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

lQ
lb

the
m

ji
vu

ji
 (7)

where is the block, which has an index (u,v), in
the sub-image SI'

1,1'
,

ji
vub

i1,j1, and Qm(l) is the quantization
step. The other hash copy he2

i,j and the second group
of the code are extracted by the same method from
the second distant sub-image SI'i2,j2. The two groups
of the code are combined together to be the extracted
code Ce

i,j of the sub-image SI'i,j. To evaluate the
match of hashes, the normalized Hamming distance is
used which is defined as:

 ∑
=

−=
L

t

thth
L

hhd
1

)(2)(11)2,1((8)

where L is the length of the hash string. For each sub-
image, we compute the normalized Hamming distance
between the computed and extracted hashes. The
status of the sub-image STi,j (altered sub-image or not)
is evaluated as follows:

 (9)
⎪⎩

⎪
⎨
⎧ >>

=
else

ThehdandThehd
ST jijijiji

ji ,1

),(),(,0 2
,

'
,

1
,

'
,

,

where T is a threshold, STi,j=0 if the sub-image SI'i,j is
considered as an altered sub-image, otherwise STi,j=1.
For each altered sub-image, the approximated original
sub-image can be recovered if the two distance sub-
images of the concerned sub-image are not altered.
Therefore, the reconstructed sub-image is rebuilt
as follows:

c
jiSI ,

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

===

===

=

1,

)00(0,

10),(

,
'
,

2,21,1,

2,21,1,,

,

jiji

jijiji

jijiji
e

ji
c

ji

STSI

STorSTandSTLOST

STSTandSTCdec

SI
 (10)

where LOST is a sub-image that is marked as a lost
sub-image, dec is a sub-image decoding method.

5. EXPERIMENTAL RESULTS
To examine the robustness of the proposed technique,
we consider the performance of it to JPEG
compression and additive noise. The proposed system
has been tested using 50 512×512 images. We firstly
study the effects of JPEG compression with a range of
quality factors. Then, the additive Gaussian noise
effects are addressed. The size of the used sub-image
is 32×32. To calculate the sub-image hash, the
parameters are r=8, t=2 and k= 16. Thus, the hash
length is 32 bits. In the robustness tests of the
proposed technique, the quantization table of 50%
quality JPEG compression is used as a predefined
quantization table Qm. The chosen coefficients'
indices of the first distant sub-image blocks are
{(1,4),(4,1)} for embedding the hash copy and {(2,3),
(3,2)} for embedding the first group of the code. For
the second distant sub-image blocks, the chosen
coefficients' indices are {(2,4),(4,2)} for the second
hash copy and {(1,3),(3,1)} for the second group of
the code.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

50 55 60 65 70 75 80 85 90 95 100

JPEG Quality

H
am

m
in

g
D

is
ta

nc
e

First distance sub-image
Second distance sub-image

Figure 2. Average Hamming distance between
the computed and extracted hashes for various

JPEG compression quality factors.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Variance

H
am

m
in

g
D

is
ta

nc
e

First distance sub-image
Second distance sub-image

 Figure 3. Average Hamming distance between
the computed and extracted hashes for various

Gaussian noise variances.

WSCG 2010 Communication Papers 255

Fig. 2 illustrates that the average Hamming distance
between the computed sub-image hash and extracted
hashes recovered from the first distant sub-image and
the second distant sub-image, respectively for various
JPEG compression quality factors.

The effects of the additive zero-mean Gaussian noise
have also been tested. Fig. 3 shows the average
Hamming distance between the computed sub-image
hash and extracted hashes which are extracted from
the first distant sub-image and the second distant sub-
image, respectively for various noise variances. From
these figures, we observe that the normalized
Hamming distance values are less than 9%. Thus, we
can use this value as a threshold T.

To validate the proposed technique, we test it to check
its capability of detecting local malicious
manipulations mixed with JPEG compression. Fig. 4
is the original image and the approximated image,
which represents the codes of all sub-images is shown
in Fig. 5. The correlation coefficient between the
original (grayscale version) and approximated images
is 0.9198 and the peak signal to noise ratio PSNR of
the approximated image relative to original image is
26.07 dB. The original image is authenticated using
the proposed technique with the used quantization
table Qm of 70% quality JPEG compression to yield
the image of Fig. 6. The correlation coefficient
between the original and authenticated images is
0.9982 and the PSNR of the authenticated image
relative to the original image is 42.47 dB. The
authenticated image is altered by a local malicious
attack. Then, it is undergone 80% quality JPEG
compression to yield the image of Fig. 7. In Fig. 8, the
proposed technique efficiently detects and localizes
the content alterations. The proposed technique can
not only localize the alteration detection but also
successfully recover the missing contents as shown in
Fig. 9.

6. CONCLUSION
A self-recovery semi-fragile image authentication
technique is proposed which uses secure image

hashing with improved localization. Using image
hashing in the proposed technique to generate
the signatures gives the proposed technique
the capability to be robust against the normal
operations such as JPEG compression and
additive noise. To thwart the vector quantization
attack, two sub-image hash copies and the sub-image
code are securely embedded into two relatively distant
sub-images. The experiment results explain

Figure 5. Approximated image, correlation
coefficient=0.9198, PSNR=26.07dB.

Figure 6. Authenticated image, correlation
coefficient=0.9982, PSNR=42.47dB.

Figure 7. Altered version of the
authenticated image.

Figure 4. Original image.

WSCG 2010 Communication Papers 256

 that the proposed technique successfully
distinguishes the normal manipulations such as JPEG
compression from malicious operations and precisely
localizes the alteration detections. Moreover, the
proposed technique can successfully compensate the
missing contents.

Figure 8. Verification result marking the altered
regions.

7. ACKNOWLEDGMENTS
This work is supported by Forschungspraemie
(BMBF-Förderung, FKZ: 03FPB00213) and
Transregional Collaborative Research Centre
SFB/TRR 62 ”Companion-Technologyfor Cognitive
Technical Systems” funded by the German Research
Foundation (DFG).

8. APPENDIX
Non-negative matrix factorization NMF

In NMF, a non-negative matrix V is factorized
into two matrices, B and C:

 (11) CBV ≈

where B and C are called the base matrix and the
coefficient matrix respectively. The factors C and B
must be non-negative.
If the size of V is m×n, the sizes of B and C are m×r
and r×n, respectively. If r is chosen as less than m
and n, NMF may be used for dimensionality
reduction.
To compute B and C, the following updating rules are
applied [Tan08]:

∑

∑
=

=← n

j jl

n

j jijijl
lili

C

BCVC
BB

1 ,

1 ,,,
,,

)/(
 (12)

∑

∑
=

=← m

i li

m

i jijilj
jljl

B

BCVB
BC

1 ,

1 ,,,
,,

)/(
 (13)

where i =1,2,...,m ; j=1,2,...,n; l=1,2,...,r.

9. REFERENCES
[Bar02] Barreto, P. S. L. Kim, M. H. Y. and

Rijmen, V. : Toward a secure public-key
blockwise fragile authentication watermarking,
IEE Proc. Vision, Image & signal Proc., vol.149,
no.2, pp.57-62, 2002.

[Cel02] Celik, M. U. Sharma, G. Saber, E. and
Tekalp, A. M. : Hierarchical watermarking for
secure image authentication with localization,
IEEE Trans. on Image Proc., vol.11, no.6, June
2002.

[Eki04] Ekici, O. Sankur, B. Coskun,B. Naci, U. and
Akcay, M. : Comparative evaluation of semi-
fragile watermarking algorithms, Journal of
Electronic Imaging, vol.13, no.1, pp.209-216,
Jan. 2004.

 [Fri99a] Fridrich, J. : Methods for tamper detection
in digital images, in Proc. ACM Workshop on
Multimedia and Security, Orlando, 1999, pp.19-
23.

Figure 9. Reconstructed image.

[Fri99b] Fridrich, J. and Goljan, M. : Images with
self-correction capabilities, in Proc. ICIP'99,
Kobe, Japan, 1999.

[Fri99c] Fridrich, J. and Goljan, M. : Protection of
digital images using self embedding, Symp.
Content Security and Data Hiding in Digital
Media, New Jersey Institute of Technology, May
14, 1999.

[Fri00] Fridrich, J. and Goljan M. : Robust hash
functions for digital watermarking, in Proc. IEEE
Int. Conf. Information Technology: Coding
Computing, Mar. 2000, pp. 178–183.

 [Has04] Hasan, Y. M. Y. and Hassan, A. M. :
Fragile blockwise image authentication thwarting

WSCG 2010 Communication Papers 257

vector quantization attack, in Proc. IEEE
ISSPIT'04, Rome, Italy, 2004.

[Has07] Hasan, Y. M. and Hassan, A. M. : Tamper
detection with self-correction hybrid spatial-dct
domains image authentication technique, in Proc.
IEEE ISSPIT'07,Cairo, Egypt, 2007.

[Hol00] Holliman, M. and Memon, N. :
Counterfeiting attacks on oblivious block-wise
independent invisible watermarking schemes,
IEEE Trans. on Image Processing, vol. 9, no. 3,
pp.432-441, March 2000.

[Kir02] Kirovski, D. and Petitcolas, F. A. P. : Blind
pattern matching attack on watermarking
systems, IEEE Trans. on Signal Processing, pp.1-
9, 2002.

[Kut00] Kutter, M. Voloshynovskiy, S. and
 Herrigl, A. : The watermark copy attack, in
Proc. SPIE Elect. Imaging, San Jose, USA, Jan.
23-28, 2000.

[Lan99] Lan, T. and Tewfik, A. H. : Fraud detection
and self embedding, in Proc. ACM
Multimedia’99, Orlando, FA, 1999.

[Lin99] Lin, E. and Delp, E. : A review of fragile
image watermarks, in Proc. Of the ACM
Multimedia and Security Workshop, 1999, pp.
25-29.

[lin00] Lin, C. and Chang, S. : Semi-fragile
watermarking for authenticating JPEG visual
content, SPIE Security and Watermarking of
Multimedia Contents II EI '00, SanJose, CA, Jan.
2000.

[Lin01a] Lin, C. and Chang, S. : A robust image
authentication method distinguishing JPEG
compression from malicious manipulation, IEEE
Trans. On Circuits and Systems of Video
Technology, vol. 11, no. 2, Feb. 2001.

[Lin01b] Lin, C. and Chang, S. F. : SARI: Self-
authentication and recovery image watermarking
system, Proceedings of the ninth ACM
Conference on Multimedia, Ottawa, Canada
,2001.

[Lin07] Lin, C. Su, T. and Hsieh, W. : Semi-fragile
watermarking scheme for authentication of JPEG
images, Tamkang Journal of Science and
Engineering, vol. 10, no. 1, pp. 57-66, 2007.

[Lue08] Lue, H. Lu, Z. Chu, S. and Pan, J. : Self
embedding watermarking scheme using halftone
image, IEICE Trans. Inf.&Syst., vol.E91-D, no.1,
Jan.2008.

[Mae06] Maeno, K. Sun, Q. Chang, S. and Suto, M. :
New semi-fragile authentication watermarking
techniques using random bias and nonuniform
quantization, IEEE Trans. On Multimedia, vol. 8,
no. 1, Feb. 2006.

[Men01] Menezes, A. J. Orschot, P. C. and
Vanstone, S. A. : Handbook of Applied
Cryptography, CRC Press, 2001.

[Mih01]Mihçak, M. K. and Venkatesan, R. : New
iterative geometric methods for robust perceptual
image hashing, in Proc. ACM Workshop
Securityand Privacy in Digital Rights
Management, Philadelphia, PA, Nov. 2001.

[Sch96] Schneier, B. : Applied Cryptography:
Protocols, Algorithms, and Source Code in C,
John Wiley & Sons, USA, 1996.

[Swa06] Swaminathan, A. Mao, Y. and Wu, M. :
Robust and secure image hashing, IEEE Trans.
On Information Forensics and Security, vol. 1,
no. 2, June 2006.

[Tan08] Tang, Z. Wang, S. Zhang, X. Wei, W. and
Su, S. : Robust image hashing for tamper
detection using non-negative matrix factorization,
Journal of Ubiquitous Convergence and
Technology, vol. 2, no. 1, may 2008.

[Ven00] Venkatesan, R. Koon, S. M. Jakubowski, M.
H. and Moulin, P. : Robust image hashing, in
Proc. IEEE Int. Conf. Image Processing,
Vancouver,BC, Canada, Sep. 2000, vol. 3, pp.
664–666.

[Wan08] Wang, S. and Tsai, S. : Automatic image
authentication and recovery using fractal code
embedding and image inpainting, Journal of the
Pattern Recognition Society, vol. 41, pp. 701 –
712, 2008.

 [Won97] Wong, P. W. : A watermark for image
integrity and ownership verification, in Proc. IS
& TPIC, Portland, OR, USA, May 1997.

[Won98] Wong, P. W. : A public key watermark for
image verification and authentication, in Proc.
ICIP, NY, USA, Oct.4-7, 1998, pp.425–429.

[Won01] Wong, P.W. and Memon, N. : Secret and
public key image watermarking schemes for
image authentication and ownership verification,
IEEE Trans. on Image Processing, vol. 10, pp.
1593-1601. Oct. 2001.

 [Yeu97] Yeung, M. and Mintzer, F. : An invisible
watermarking technique for image verification, in
Proc. ICIP'97, Santa Barbara, CA, USA, 1997.

WSCG 2010 Communication Papers 258

Multi-Threaded Real-Time Video Grabber
Zdeněk Trávníček

DCGI, FEE
Czech Technical University in Prague

Czech Republic
zdenek.travnicek@fel.cvut.cz

Roman Berka
Institute of Intermedia, FEE

Czech Technical University in Prague
Czech Republic
berka@iim.cz

ABSTRACT

Communication in general incorporates technologies with increasing number of communication modes. Special applications
are developed in the area of virtual reality, multimedia communications and others where combinations of audio, video, 3D data
are sent between two (or more) distant users which can commonly interact with these data. A form of so exchanged information
usually requires, among others, special forms of presentation. Thus stereoscopic and virtual reality visualization devices are
used to present intricately structured information in multi-modal form.
There are situations where the presented information is to be rendered in real-time and transmitted to the remote user in form
of a video-stream. In this case, the content is presented on a local visualization device (e.g. CAVE) being simultaneously sent
to a remote device. Thus a method how to obtain rendered data from graphics hardware in real-time is necessary.
The problem is, how to obtain the rendered data for transmission with minimal impact on the rendering and visualization
process. In this paper, we present a method how to retrieve video stream from an arbitrary running OpenGL application,
capturing every frame with minimal impact on performance.

Keywords: OpenGL, real-time video grabber, streaming video, streamcast

1 INTRODUCTION

With the rise of 3D digital media, stereoscopic movies
and upcoming 3D television, the need for a new sources
of stereoscopic signal emerges. The usual sources of
such a signal are cameras in stereoscopic setups or pre-
rendered video sequences. There are many applications
rendering 3D images, some of them even stereoscopic
ones. Those could be great source for such a stream,
but they usually does not support producing an video
that could be directly used as a source of video signal
for stream nor support saving video to a file.
In order to use such an application we need to be able

to retrieve output of the running application in real-time
(see fig. 1). From other point of view, we may simply
want to record output of running application and store
it locally for later, offline use. In order to get those, we
could alter the application itself to produce such a video
stream or file. We can also use some screen grabbing
application (streamcast) or have a hardware solution.
As the graphics hardware and software technologies

changes over the time, the problem is still actual and
new approaches appear. The main problem is related to
the cost of the grabbing process because the data source
(typically a graphical subsystem) produces content in

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

real time. Thus the grabber should obtain pictures with
minimal impact on the rendering process.
We first describe known methods of the video grab-

bing which appeared during a period of the last decade.
These methods are evaluated according to our criteria
based on modification that needs to be done to the
application itself, impact on performance of the appli-
cation and possibility of grabbing stereoscopic images
from quad buffer. We evaluate the performance loss
formulti-core/multi-CPU systems. Next, our own asyn-
chronous wrapper is described and compared with the
already implemented solutions. Finally, some applica-
tions of the described wrapper are presented.

2 STATE OF THE ART

There exist several approaches to the solution of how to
acquire a stream of graphical data from an application
running on the system. These approaches are then of-
ten implemented for various purposes. We can classify
them into four basic groups:

• alteration of the application which is the source of
the data

• screen grabbing

• combination of previous two methods

• capturing output of the graphics hardware

These methods are know explained and compared in
the next paragraphs.

WSCG 2010 Communication Papers 259

Figure 1: A general scheme of grabber.

2.1 Altering an Application
The method of altering an existing application has an
obvious drawback in a need to have source codes for
the application and also alteration of every application
we use. This basically limits the usability of it to ap-
plications where we have source code (typically open-
source). The solution is also complicated when we use
many different applications.
Aside from that, this method has an advantage in

knowing everything about the application to have full
control over the grabbing process. Thus it can grab the
images synchronously with the rendering speed. Also,
for an application rendering stereoscopic images into
quad-buffer, this method can grab images for both eyes.
The implementation is specific to every application as
well as the performance loss. This solution can be
therefore seen in special applications (e.g., applications
working as real-time video content generators for net-
work projects or art performances).

2.2 Screen Grabber
The screen grabbing represent a next approach where
the graphical information is obtained independently on
the application code. Using a standalone screen grabber
does not require any alteration of the application, but
on many systems it has problems on accelerated win-
dows. It won’t be synchronized with the speed of an
application as it does not have any information about
architecture of the application. Asynchronous grabbing
can introduce image distortions when the frame buffer
is changed during read, it can miss frames when the
application renders faster than the grabber grabs and
can unnecessarily grab the same image multiple times,
when the application stalls or is just slower than the
grabber. Furthermore, this method would fail for quad-
buffer stereo.
As an example of such an approach, there are appli-

cations like scrot and xsnap realized in GNU/Linux en-
vironment. The code of the grabber runs outside the

context of the application, so the impact on the render-
ing speed should be quite small.

2.3 Combined Solution
Another solution would be combination of above men-
tioned two methods. Here, a separate grabber without
modifying the application is used. This can be done us-
ing an wrapper to rendering library, i.e. OpenGL,which
would inject some code to proper place of the render-
ing process and execute it there. Provided our code
could get enough information about rendering window,
we can grab the exact window, adjust the area being
grabbed when the application window changes and we
can start the grabbing exactly once per frame.
There is an opensource project captury using this so-

lution. In this project, the code is executed in context of
rendering thread of the application, effectively slowing
down the rendering of every frame by grabbing, com-
pressing and saving every frame, before it the buffers
gets swapped.

2.4 Hardware Solution
A hardware solution means plugging some device into
output of graphics card and process it on other com-
puter or in the device itself. This solution needs sepa-
rate hardware, it is quite expensive, and is not synchro-
nized with the application’s speed. The output signal
needs to be cropped when rendering only into an win-
dow. In addition, the captured signal has given param-
eters, like resolution, which are not easily controllable
during the grabbing process. On the other hand, it has
absolutely no impact on the application itself, as there’s
no processing on the rendering machine.
As the acquisition of the video from graphics hard-

ware in real-time is an interesting problem new so-
lutions implemented directly in the graphics boards
rises. In August 2009, nVIDIA released solution to
record/output SDI uncompressed video directly to/from
Quadro GPU’s memory. As this information is too

WSCG 2010 Communication Papers 260

much new, we had no chance to test it before submis-
sion of this paper.

3 MULTI-THREADED REAL-TIME
VIDEO GRABBER

The solution we propose is a modifie approach to
wrapping rendering library’s calls and injecting our
code there.
The key is in using a wrapper, that “hooks” onto few

library calls in order to retrieve information about ap-
plication’s window and to grab the window in a right
time.
The grabbing itself is done in the context of the ren-

dering thread using standard methods to retrieve the
content of framebuffer. This directly implies that, when
rendering in quad-buffer mode for active stereoscopy,
we can easily get both images as we can control the
flow of the code. After getting the frame we send it to
an other thread to next process. This ensures that the
impact will be as small as possible, provided the ma-
chine has multi-core CPU or multiple CPUs. The pro-
cessing itself can be done in multiple threads also, to
use more available cores more effectively. In the pro-
cessing threads, we can save the video to the local stor-
age or stream it over network and optionally compress
it.
The implementation we present was done under

GNU/Linux environment, using an OpenGL applica-
tions and nVIDIA QUADRO FX cards to render active
stereoscopic images in quad-buffered mode.

3.1 Wrapping

Thewrapping is done by utilizing linux dynamic loader,
which takes care of loading libraries and resolving sym-
bols. Using LD_PRELOAD environmental variable rec-
ognized by the loader, we tell it to preload a shared ob-
ject before an application and use it for symbol resolv-
ing with higher priority. In the shared object we pro-
vide hooks on few function that inject our code before
the real call to the library function.
Namely we “hook” onto glViewport in order to

get information about the window size and it’s changes.
We also use this as a point to initialize the processing
threads. We also hook onto framework specific func-
tions in order to swap buffers (glxSwapBuffers,
SDL_GL_SwapBuffers). When the application
calls swap buffers, it signalizes it has finished rendering
the frame, so it’s the right place for us to grab it and
send it to the next process. It is also the place where we
can drop frames if the application is rendering too fast.
Our implementation also wraps dlsym call to catch
symbol resolving done in real-time and not by dynamic
loader.

3.2 Grabbing

During a rendering process the rendered images are
stored in two (or four in case of stereoscopic output)
frame buffers which are periodically swapped. On prin-
ciple, there are two types of frame buffer reading:

• asynchronous – based on so called Pixel Buffer Ob-
jects [Biermann et al., 2004]

• synchronous – direct buffer reading

First, retrieving the image is the done by calling
glReadPixel with correctly set read buffer in
OpenGL context, optionally on initialized Pixel Buffer
Object (PBO). PBO approach moves the reading into
background so it does not block the rendering thread.
But it introduces a delay of 1 frame, because we get the
data on the next buffer swap.
The direct approach introduces delay into the render-

ing thread, which means a slowdown of the application,
but we get the data sooner. We support both methods.
By changing actual buffer and repeating the read, we
can retrieve data for the other eye, if we have quad-
buffer stereo.

3.3 Processing

The processing threads are doing color space conver-
sions and re-sampling. Other threads can take care of
possible video compression and others can stream it
or save it locally. Processing of stereoscopic signals
is done by pairs of threads to improve multi-threaded
performance.

3.4 Summary

A scheme of the process is shown on figure 2. Original
application is wrapped in it’s call to Swap Buffers (usu-
ally glxSwapBuffers) is intercepted and instead of
it, our code is executed. Content of the framebuffer
is then grabbed as described in 3.2 and sent for pro-
cessing to other threads. Then original SwapBuffers
method is called and control is returned to the applica-
tion. Meanwhile the data from framebuffer are being
processed in other threads and eventually streamed out
(or recorded).
The whole grabbing process is done in the context

of the rendering thread, but the rest of the processing
is done in other threads, not directly affecting the ap-
plication’s performance. So the impact to application
is mostly defined by the slowdown that takes place in
the grabbing functions. Of course, in case the applica-
tion would do some CPU intensive operation the video
(i.e. compression), it may place load to the CPU and
indirectly slowing down the application.

WSCG 2010 Communication Papers 261

Figure 2: Scheme of the wrapped grabber

4 APPLICATIONS
The possibility to capture rendered video in real-time
has lot of applications in wide area. As the problem
described in this paper is part of another project, we
can mention some applications which already use our
grabber.

4.1 Project C2C
Described method is successfully used in project
Cave2Cave (C2C) [Berka et al., 2009] to stream a
stereoscopic video signal from applications running
in CAVE-like system [Cruz-Neira et al., 1992] and to
present it on remote site (see fig 3).
We use the the multi-threaded grabber to get

video of the application, scale it, optionally com-
press it and stream it using standard protocol RTP
[Schulzrinne et al., 1996]. The grabber also creates
RTSP [Schulzrinne et al., 1998] server to provide SDP
descriptions [Arkko et al., 2006] of the streams. This
way we can (and we do) present applications from our
CAVE system to distant viewers. The use of standard
streaming protocols allows us to partially preserve
possibility of receiving data by standard players used
by remote user.

4.2 Prerendering
Another use of the method is to allow prerenderingwith
applications that does not support it natively. For ex-
ample, application rendering complex model which can
not be rendered in real-time could be used to render it
as fast as it could while having it’s whole run recorded.
Then we simply playback the recorded video at the

requested speed. This allows us to present output of
any application even in cases, when the application it-
self can not do it in real-time. We successfully used
this method for presenting walks through very complex
VRML models to public.

4.3 Industrial Applications
As the grabber can wrap theoretically any OpenGL ap-
plication (it depend on correctness of application imple-
mentation in relation to OpenGL library), it offers itself
in such situations where some industrial product (like
an architectural model or model of a car) is to be, prob-
ably interactively, presented to a remote user without
necessity to send these data to his/her computer. It is
important when there is not possible to move real data
or software, e.g. due to license limitations. Using sys-
tems like CAVE, running our grabber on each wall, as
a source of content, an application then allows to me-
diate immersive environment remotely using standards
described in already referenced RFC documents.

5 CONCLUSION
The proposed method allows real-time retrieval of ren-
dered stereoscopic images from arbitrary OpenGL ap-
plication without a need to modify the application itself.
It can be used as base for a system to record an output
of an application to local storage for offline use or to
stream the content over network in real-time.
The solution has potentially lot of applications in

wide area of remote visualizations also on immersive
devices or in the area of collaborative environments.
As it has been already mentioned above the problem

WSCG 2010 Communication Papers 262

Figure 3: Scheme of the multi-projection screen based configuration. A scene rendered in the resource device with
3 projection walls is grabbed and the resulting video is transmitted to the remote device where it is presented on
remote projection wall.

with grabbing methods is in continuous development
and follows possibilities of contemporary technologies.
For know, we can expect that the support of hardware
solutions will be probably accessible for wider area of
applications.

6 ACKNOWLEDGMENTS
This work has been partially supported by:

CESNET, association of legal entities,
Prague, Czech Republic
under the research programMSM 6383917201

Czech Technical University in Prague
Institute of Intermedia

Center for Computer Graphics
under the research program LC-06008

REFERENCES
[Arkko et al., 2006] Arkko, J., Lindholm, F., Naslund,

M., Norrman, K., and Carrara, E. (2006). Key Man-
agement Extensions for Session Description Pro-
tocol (SDP) and Real Time Streaming Protocol
(RTSP). RFC 4567 (Proposed Standard).

[Berka et al., 2009] Berka, R., Trávníček, Z., Havran,
V., Bittner, J., Žára, J., Slavík, P., and Navrátil, J.
(2009). Networking studies III, Selected Technical
Reports, chapter CAVE to CAVE: Communication

in a Distributed Virtual Environment, pages 161–
174. CESNET, 1ts edition. ISBN: 978-80-904173-
4-2.

[Biermann et al., 2004] Biermann, R., Carter, N., Cor-
nish, D., Craighead, M., Kilgard, M., Kirkland, D.,
Leech, J., Paul, B., Roell, T., Romanick, I., and
Sandmel, J. (2004). ARB_pixel_buffer_object spec-
ificatio
http://www.opengl.org/registry/specs/arb/pixel_bu
ffer_object.txt. Web page. Downloaded in October
2009.

[Cruz-Neira et al., 1992] Cruz-Neira, C., Sandin, D.,
Defanti, T., Kenyon, R., and Hart, J. (1992). The
cave: Audio Visual Experience Automatic Vir-
tual Environment. Communications of the ACM,
35(6):65–72.

[Schulzrinne et al., 1996] Schulzrinne, H., Casner, S.,
Frederick, R., and Jacobson, V. (1996). RTP:
A Transport Protocol for Real-Time Applications.
RFC 1889 (Proposed Standard). Obsoleted by RFC
3550.

[Schulzrinne et al., 1998] Schulzrinne, H., Rao, A.,
and Lanphier, R. (1998). Real Time Streaming Pro-
tocol (RTSP). RFC 2326 (Proposed Standard).

WSCG 2010 Communication Papers 263

WSCG 2010 Communication Papers 264

Markov Random Fields on Triangle Meshes

Vedrana Andersen
DTU Informatics

R. Petersens Plads
2800 Kgs. Lyngby

Denmark
va@imm.dtu.dk

Henrik Aanæs
DTU Informatics

R. Petersens Plads
2800 Kgs. Lyngby

Denmark
haa@imm.dtu.dk

Andreas Bærentzen
DTU Informatics

R. Petersens Plads
2800 Kgs. Lyngby

Denmark
jab@imm.dtu.dk

Mads Nielsen
DIKU

Universitetsparken 1
2100 Copenhagen

Denmark
madsn@diku.dk

ABSTRACT
In this paper we propose a novel anisotropic smoothing scheme based on Markov Random Fields (MRF). Our
scheme is formulated as two coupled processes. A vertex process is used to smooth the mesh by displacing the
vertices according to a MRF smoothness prior, while an independent edge process labels mesh edges according
to a feature detecting prior. Since we should not smooth across a sharp feature, we use edge labels to control the
vertex process. In a Bayesian framework, MRF priors are combined with the likelihood function related to the
mesh formation method. The output of our algorithm is a piecewise smooth mesh with explicit labelling of edges
belonging to the sharp features.

Keywords: Mesh, smoothing, Markov Random Fields.

1 INTRODUCTION
Markov Random Fields (MRF) have been used ex-
tensively for solving Image Analysis problems at all
levels. The local property of MRF makes them very
convenient for modeling dependencies of image pix-
els, and the MRF-Gibbs equivalence theorem provides
a joint probability in a simple form, making MRF the-
ory useful for statistical Image Analysis. While some
examples are mentioned below, MRF have rarely been
used for mesh processing. One reason could be that
MRF are usually defined on regular grids, but this is
by no means required.

In this paper we demonstrate that feature preserving
mesh smoothing may conveniently be cast in terms
of MRF theory. Using this theory we can explic-
itly model our knowledge of properties of the surface
(prior knowledge, e.g. how smooth the surface should
be, which sharp features should it contain) and our
knowledge of the noise (likelihood, e.g. how far do we
believe the measured position of a vertex is likely to
be from the true position). The central element of the
MRF formulation is that we use Bayes rule to express
the probability of any mesh configuration by defining

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this no-
tice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.

its of prior and likelihood independently. This division
of responsibilities often turns out to be a benefit.

For instance, a big advantage of the MRF formulation
is that we can use the likelihood to keep the mesh fairly
close to the input, avoiding the shrinkage associated
with many other schemes. Unlike [Hildebrandt and
Polthier, 2007] we do not obtain a hard constraint, but
meshes far from the input can be made arbitrarily un-
likely by choosing an appropriate likelihood function.

We investigate the use of MRF for formulating pri-
ors on 3D surfaces in a number of different ways.
The smoothness prior encodes the belief that a smooth
surface (according to some fairness criterion) is more
probable than a noisy surface. In particular, we show
how we can use one MRF to perform explicit labelling
of edges according to how sharp they are, and another
MRF to find optimal vertex positions according to the
smoothness prior. Using our edge labelling from the
first MRF to control the vertex smoothing, we are able
to recapture very subtle sharp features on the noisy
mesh.

2 RELATED WORK

Mesh-smoothing algorithms have a long history in the
field of geometry processing since the early work of
[Taubin, 1995], which demonstrated the connection
between various explicit linear methods using the so
called umbrella operator and low pass filtering. In
[Desbrun et al., 1999] a discrete Laplace Beltrami
operator was introduced and the connection between
smoothing and mean curvature flow was explained.
Both techniques are efficient, but fail to distinguish

WSCG 2010 Communication Papers 265

between the noise and the features of the underlying
object.

To address this problem, anisotropic diffusion [Des-
brun et al., 2000] and diffusion smoothing of the nor-
mal field [Tasdizen et al., 2002] were proposed. The
results are impressive, but the computation complex-
ity puts a limit on the size of the model. More ef-
ficient methods were also developed, such as non-
iterative feature-preserving smoothing [Jones et al.,
2003] based on robust statistics, and an adaptation of
bilateral filtering to surface meshes [Fleishman et al.,
2003].

Another feature preserving smoothing method, fuzzy
vector median smoothing [Shen and Barner, 2004], is
a two-step smoothing procedure. In the first step face
normals are smoothed using a robust method which
employs distance to median normal as smoothing
weight. In the next step vertex positions are updated
accordingly. More recently, in [Diebel et al., 2006]
a Bayesian approach was proposed. This method
uses a smoothness prior and the conjugate gradient
method for optimization. It is feature-preserving, but
without an explicit feature detection scheme. Similar
to [Diebel et al., 2006], we use a Bayesian approach,
but unlike that method we obtain feature preservation
by explicitly detecting the set of chosen features. Our
method is also more flexible, allowing us to use a
variety of priors and likelihood potentials.

The method for recovering feature edges proposed in
[Attene et al., 2005] is based on the dual process of
sharpening and straightening feature edges. Vertex-
based feature detection using an extension of the fun-
damental quadric is utilized in a smoothing method de-
scribed by [Jiao and Alexander, 2005].

Comprehensive study on the use of MRF theory for
solving Image Analysis problems can be found in
books [Li, 2001; Winkler, 2003]. MRF theory is
convenient for addressing the problem of piecewise
smooth structures. In [Geman and Geman, 1984] a
foundation for the use of MRF in Image Analysis
problems is presented in an algorithm for restoration
of piecewise smooth images, where gray-level process
and line processes are used. Another application of
MRF for problems involving reconstruction of piece-
wise smooth structures is [Diebel and Thrun, 2005],
where high-resolution range-sensing images are re-
constructed using weights obtained from a regular im-
age.

There are some previous examples of using MRF the-
ory to 3D meshes, but the applications are somewhat
different. In [Willis et al., 2004] MRF are used in
the context of surface sculpting with the deforma-
tion of the surface controlled by MRF potentials mod-

elling elasticity and plasticity. MRF was also used for
mesh analysis and segmentation in [Lavoué and Wolf,
2008].

Our work investigates the possibility of formulating
surface priors in terms of MRF, and using those pri-
ors for reconstructing the surface from the noisy date.
Unlike most other mesh smoothing algorithms, our ap-
proach does not only preserve sharp ridge features, but
also explicitly detects the ridges.

The method described here is not automatic and re-
quires an estimation of a considerable set of param-
eters. However, this allows a great control over the
performance of the priors.

3 MESH SMOOTHING USING MRF
Markov Random Fields is a powerful framework for
expressing statistical models originating in computa-
tional physics, and it has proven highly successful in
Image Analysis [Li, 2001; Winkler, 2003]. A MRF
is, essentially, a set of sites with associated labels and
edges connecting every site to its neighbors. The la-
bels are the values which we wish to assign (e.g. pixel
color, vertex position or edge label), and it is a central
idea in MRF theory that the label at a given site must
only depend on the labels of its neighbors. This frame-
work lends itself well to mesh based surfaces, where
the neighborhood of a vertex can be naturally defined
via its connecting edges.

Apart from a well developed mathematical framework
one of the main advantages of MRF is that its Marko-
vianity (local property) makes is quite clear what the
objective function is and what a MRF based algorithm
aims at achieving. Exponential distributions are often
used, and the joint probability distribution function of
given configuration f (e.g. combined vertex location)
is given by

P(f) ∝ e−∑U(f) ,

where the U(f) can be seen as energy terms or poten-
tials defined on neighborhoods. In order to find the
most likely configuration f , we need to obtain

min
f

∑U(f) . (1)

In our proposed framework, we wish to smooth a given
mesh. Some of the U(f) in (1) are thus data (likeli-
hood) terms penalizing the displacement of the ver-
tices in the smoothed mesh relative to the original
mesh. Other terms would be prior terms which express
how likely a surface is a priori, i.e. without making
reference to how far removed it is from the data.

3.1 Likelihood
We want the output of the smoothing to relate to the
input mesh, which has an underlying true surface cor-

WSCG 2010 Communication Papers 266

v v1

v2

v3

v4

Figure 1: Left: A neighborhood structure for the
smoothness prior. The neighbors of the vertex v are
marked red. When we move vertex v, we only need
to look at its neighboring vertices to calculate the
change in the joint smoothness potential. Right:
A collection of 4 vertices, expressing two adjacent

faces.

rupted by the noise of the data-acquisition device. As-
suming isotropic and Gaussian measurement noise we
choose quadratic function for the likelihood energy

UL(v) = α‖v0−v‖2

where v0 and v denote the initial and the current po-
sition of the vertex v. The constant α is used as the
weight determining how much faith one has in the
data.

There is always a possibility of plugging in a differ-
ent likelihood function in our model, e.g. a volume
preserving likelihood function or likelihood utilizing
some specific knowledge about data acquisition pro-
cess.

3.2 Smoothing Potential
Alongside the data term we also have some a pri-
ori terms expressing our assumptions about how
a smoothed mesh should look. Firstly, we have a
smoothing potential, which is basically a penalty
function, ρ , based on the difference between the
normals of adjacent faces, see Figure 1

Us (v1,v2,v3,v4) = ρ(n123−n243) , (2)

where n123 and n243 are the normals of the two adja-
cent faces. The suitable MRF neighborhood for above
formulation is defined as follows: two different ver-
tices are neighbors if they belong to the adjacent faces.
In this smoothing scheme the label of each mesh ver-
tex is its spatial position, which is adjusted to mini-
mize the chosen energy function.

The choice of the smoothness potential can greatly
influence the feature preserving property of the
smoothing. On the one side, there is a over-smoothing
quadratic potential developed by [Szeliski and
Tonnesen, 1992]

ρ(x) = ‖x‖2 ,

e e1 e2

θ12

Figure 2: Left: A neighborhood structure for the
edge support prior. The neighbors of the edge e are
marked red. The neighboring edges support each
other if they lie along the same line. Right: A pair of
edges. The support for the edges e1 and e2 depends

on the size of the angle θ12.

on the other side, there is a feature preserving square
root potential developed by [Diebel et al., 2006]

ρ(x) = ‖x‖ .

In our case, feature preservation will be handled by the
explicit edge labelling, which allows us to use the ag-
gressive quadratic potential for smooth regions, with-
out thinking about its feature preservation properties.

3.3 Edge Labelling
In many mesh smoothing tasks the presence of clear
ridge features in the result is part of our a priori ex-
pectation. This is included in our MRF model where
we, as an integral part of the smoothing process, label
mesh edges as being ridge edges or not. Edge label
ε is a number from the interval [0,1] which indicates
how probable it is that the given edge is a part of a
sharp ridge feature. Those labels will later be used to
introduce discontinuities in the smoothing process.

Edge labelling is in itself based on a MRF model con-
sisting of two terms, edge sharpness term UE1, and the
neighborhood support term UE2.

The larger the dihedral angle φe, of a mesh edge is, the
more probable it is that the edge lies along the surface
ridge. The first term is thus given by

UE1(e) = (φ0−φe)ε , (3)

where φ0 is a ridge sharpness threshold, and ε is the
label assigned to the edge e.

The second term of the edge labelling is the neighbor-
hood support, i.e. the presence of other ridge edges
along the same ridge line. We assign a support energy
to all pairs of edges, see Figure 2. A measure of paral-
lelism between the edges is used in the formulation of
the support potential

UE2(e1,e2) =−cos(θ12)ε1ε2 , (4)

where θ12 is the angle between the edges e1 and e2,
and ε1 and ε2 are the labels assigned to e1 and e2. Fea-

WSCG 2010 Communication Papers 267

ture edges lying on a straight line will have a max-
imum support, the orthogonal edges do not support
each other, and feature edges meeting at a sharp an-
gle are discouraged.

There are additional constrains one can use to define
ridge edges, like e.g. dihedral angle changing slowly
along the ridge line, or the expectation that the ridge
edge itself is smooth.

3.4 The Coupled Model
The smoothing potential and the edge labelling
are coupled in a feature preserving scheme, which
smoothes the mesh, but not over the edges labelled
as sharp. This is obtained by using edge labels as
weights for the smoothing potential, which is now, for
the setting as in Figure 1

Us (v1,v2,v3,v4) = (1− ε23)ρ(n123−n243) .

The edges labelled as sharp with will not contribute
to the smoothness potential, and the smoothed surface
will be allowed to form a ridge along those edges.

In total, we are minimizing the sum of three terms:
the likelihood term, (weighted) smoothing potential,
and the edge labelling potential, which in turn consists
of the edge sharpness term and neighborhood support
term.

3.5 Optimization
At present we use the Metropolis sampler [Winkler,
2003] with simulated annealing for the optimization,
i.e. computing a solution to (1). This is a some-
what cumbersome but flexible method, allowing for
widespread experimentation with different objective
functions. The clear advantage of this approach is that
we do not make any assumptions about the potentials.

The Metropolis sampler is a random sampling algo-
rithm, which generates a sequence of configurations
from a probability distribution using a Monte Carlo
procedure. The sampling scheme consists of randomly
choosing a new label for a single site, and replacing
the old label with the probability which is controlled
by the current temperature. For an initially high tem-
perature, the new configuration can be accepted even
if it has a smaller probability that the old one. This al-
lows the algorithm to leave local energy minima. The
temperature then gradually decreases and the system
converges.

In our case, a new label is either a new vertex posi-
tion (randomly sampled in the vicinity of the present
position), or a new edge label for the ridge detection.
Instead of optimizing simultaneously over all defined
potentials, we have in each iteration of the optimiza-
tion process first detected the feature edges (consider-

Figure 3: Smoothing fandisk model using our fea-
ture preserving method with explicit edge labelling.
Left: Fandisk model corrupted with the Gaussian
noise. Edges are initially labelled based only on the
sharpness of the dihedral angle. Right: The result-
ing smooth mesh and the resulting edge labelling.

ing vertex positions to be fixed), and than displaced the
vertices (considering edge labels to be fixed).

More specialized and efficient algorithms have been
developed for many kind of MRF problems e.g. via
filtering, belief propagation and graph cuts (in case of
discrete labels). After showing that MRF is a good for-
mulation of the mesh smoothing problem, the search
for faster optimization method is part of our ongoing
work. A conjugate gradient method would probably
provide sufficiently good results in a more efficient
way.

4 RESULTS
The results of our experiments prove the feasibility
and versatility of using MRF on triangular meshes.
Explicit edge labelling when smoothing models with
sharp ridge features is shown it the Figure 3. In an ini-
tial noisy mesh it is impossible to detect feature edges
based only on the local information. However, our
algorithm converges to a configuration where all the
ridges get correctly labelled and even the subtle fea-
ture edges get detected. Correct edge labelling allows
us to choose aggressive smoothing prior and obtain re-
sults superior to using only a single feature preserving
prior, as demonstrated in the Figure 4. Note that, un-
like the fuzzy vector median smoothing (which is gen-
erally very successful in preserving edges and smooth
regions), our method detects and preserves a subtle
ridge in the front of the model, and is partly preserving
a disappearing ridge close to models back. The most
other smoothing methods will either miss those subtle
ridges, or will not remove the low frequency noise.

5 DISCUSSION
There are many alternative ways of using MRF on tri-
angle meshes. Instead of labelling vertices with spa-

WSCG 2010 Communication Papers 268

Figure 4: Smoothing fandisk model using the dif-
ferent feature preserving methods. Top row: Origi-
nal model and the model corrupted with the Gaus-
sian noise. The two subtle ridges are circled in the
original model. Middle row: Results of fuzzy vec-
tor median smoothing and MRF smoothing using
only the feature preserving square root potential.
Bottom row: Results of MRF smoothing using the
quadratic potential and the explicit edge labelling.

Note the preserved subtle ridges.

tial positions, vertex labels can also be used to classify
vertices into smooth segments. Furthermore, vertex
labels could be used to detect features, classifying the
vertices into those that are a part of the smooth surface,
those that are on the ridge and vertices that are a cor-
ner, in a manner similar to [Lavoué and Wolf, 2008].
MRF can also be defined on mesh faces, either for seg-
mentation or aligning face normals.

Having enough prior knowledge of the problem at
hand, one can tailor the surface potentials to obtain the
desired result. By including the curvature information

Figure 5: Obtaining curvature clamping by pro-
viding curvature information to edge detection pro-
cess. Left: Initial mesh. Right: The result of clamp-
ing the curvature to discourage the concave sharp

ridges.

in the edge labelling process we can detect only certain
ridges, while skipping the others, obtaining curvature
clamping behavior mentioned in [Botsch et al., 2008]
and being the focus of the recent article [Eigensatz et
al., 2008], see Figure 5. Extending the size of the ver-
tex neighborhood it is possible to formulate the prior
for piecewise quadratic surfaces and also model the
ridge behavior more precisely.

To demonstrate the great flexibility and versatility of
the MRF formulation we include another example of
mesh smoothing. Inspired by a two-step smoothing
method [Shen and Barner, 2004], we used MRF to
obtain the smooth normal field, which is then used
for reconstructing vertex positions. Now we have the
mesh faces as the sites of the MRF, with the MRF
labels being the normal direction of the faces. The
vertex update step is taken directly from [Shen and
Barner, 2004], which in turn uses a method developed
by [Taubin, 2001] where the system of equations gets
solved in a least squares sense to obtain the vertex po-
sitions update.

One of the important differences between the vertex
based smoothing and face based smoothing is the pos-
sibility to preform smoothing of the normals without
changing the geometry of the mesh, which makes this
approach more effective. The disadvantage is that it is
not so straightforward to include displacement-based
likelihood function. The results of using this method
can be seen on the Figure 6.

REFERENCES
[Attene et al., 2005] Marco Attene, Bianca Falci-

dieno, Jarek Rossignac, and Michela Spagnuolo.
Sharpen & bend: Recovering curved sharp edges
in triangle meshes produced by feature-insensitive
sampling. IEEE Trans. on Visualization and Comp.
Graph., 11(2):181–192, 2005.

[Botsch et al., 2008] Mario Botsch, Mark Pauly, Leif
Kobbelt, Pierre Alliez, Bruno Lévy, Stephan
Bischoff, and Christian Rössl. Geometric model-

WSCG 2010 Communication Papers 269

Figure 6: Smoothing a noisy cube using the face
and the edge processes. Left: A synthetic cube cor-
rupted with Gaussian noise with the initial normal
field and the initial edge labelling. Right: The re-
sulting mesh, with the smooth normal field and the

resulting edge labelling.

ing based on polygonal meshes. Eurographics 2008
Full-Day Tutorial, 2008.

[Desbrun et al., 1999] Mathieu Desbrun, Mark
Meyer, Peter Schröder, and Alan H. Barr. Implicit
fairing of irregular meshes using diffusion and cur-
vature flow. In SIGGRAPH ’99: Proc. of the 26th
Annual Conf. on Comp. Graph. and Interactive
Techniques, pages 317–324, 1999.

[Desbrun et al., 2000] Mathieu Desbrun, Mark
Meyer, Peter Schröder, and Alan H. Barr.
Anisotropic feature-preserving denoising of height
fields and images. In Proc. of Graphics Interface,
pages 145–152, 2000.

[Diebel and Thrun, 2005] James R. Diebel and Sebas-
tian Thrun. An application of Markov random fields
to range sensing. In Proc. of Conf. on Neural Infor-
mation Processing Systems, 2005.

[Diebel et al., 2006] James Richard Diebel, Sebastian
Thrun, and Michael Brünig. A Bayesian method
for probable surface reconstruction and decimation.
ACM Trans. on Graphics, 25, 2006.

[Eigensatz et al., 2008] Michael Eigensatz,
Robert Walker Sumner, and Mark Pauly. Curvature-
domain shape processing. Comp. Graph. Forum,
27(2):241–250, 2008.

[Fleishman et al., 2003] Shachar Fleishman, Iddo
Drori, and Daniel Cohen-Or. Bilateral mesh
denoising. In SIGGRAPH ’03: ACM SIGGRAPH
2003 Papers, pages 950–953, 2003.

[Geman and Geman, 1984] Stuart Geman and Don-
ald Geman. Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images.
IEEE Trans. on Pattern Analysis and Machine In-
telligence, 6(332):721–741, 1984.

[Hildebrandt and Polthier, 2007] Klaus Hildebrandt
and Konrad Polthier. Constraint-based fairing of
surface meshes. In SGP ’07: Proc. of the 5th
Eurographics Symp. on Geometry Processing,

pages 203–212, 2007.
[Jiao and Alexander, 2005] Xiangmin Jiao and

Phillip J. Alexander. Parallel feature-preserving
mesh smoothing. In Int. Conf. on Computational
Science and Its Applications (4), pages 1180–1189,
2005.

[Jones et al., 2003] Thouis R. Jones, Frédo Durand,
and Mathieu Desbrun. Non-iterative, feature-
preserving mesh smoothing. In SIGGRAPH ’03:
ACM SIGGRAPH 2003 Papers, pages 943–949,
2003.

[Lavoué and Wolf, 2008] Guillaume Lavoué and
Christian Wolf. Markov Random Fields for
Improving 3D Mesh Analysis and Segmentation.
In Eurographics 2008 Workshop on 3D Object
Retrieval, 2008.

[Li, 2001] Stan Z. Li. Markov Random Field Mod-
eling in Image Analysis. Springer Verlag, Tokyo,
second edition, 2001.

[Shen and Barner, 2004] Yuzhong Shen and Ken-
neth E. Barner. Fuzzy vector median-based sur-
face smoothing. IEEE Trans. on Visualization and
Comp. Graph., 10(3):252–265, 2004.

[Szeliski and Tonnesen, 1992] Richard Szeliski and
David Tonnesen. Surface modeling with oriented
particle systems. In SIGGRAPH ’92: Proc. of the
19th Annual Conf. on Comp. Graph. and Interac-
tive Techniques, pages 185–194, 1992.

[Tasdizen et al., 2002] Tolga Tasdizen, Ross
Whitaker, Paul Burchard, and Stanley Osher.
Geometric surface smoothing via anisotropic
diffusion of normals. In VIS ’02: Proc. of the Conf.
on Visualization 2002, pages 125–132, 2002.

[Taubin, 1995] Gabriel Taubin. A signal processing
approach to fair surface design. In SIGGRAPH ’95:
Proc. of the 22nd Annual Conf. on Comp. Graph.
and Interactive Techniques, pages 351–358, 1995.

[Taubin, 2001] Gabriel Taubin. Ibm research report:
Linear anisotropic mesh filtering. Technical Report
RC22213, IBM Research Division T.J. Watson Re-
search Center, 2001.

[Willis et al., 2004] Andrew Willis, Jasper Speicher,
and David B. Cooper. Surface sculpting with
stochastic deformable 3d surfaces. In ICPR ’04:
Proc. of the 17th Int. Conf. on Pattern Recognition,
volume 2, pages 249–252, 2004.

[Winkler, 2003] Gerhard Winkler. Image Analysis,
Random Fields and Markov Chain Monte Carlo
Methods: A Mathematical Introduction. Springer
Verlag, 2003.

WSCG 2010 Communication Papers 270

Interactive Ray Tracing Client

Michal Radziszewski
AGH, Krakow, Poland

mradzisz@student.agh.edu.pl

Witold Alda
AGH, Krakow, Poland

alda@agh.edu.pl

Krzysztof Boryczko
AGH, Krakow, Poland
boryczko@agh.edu.pl

ABSTRACT

In this paper we present an interactive GPU-based, GUI client, working with rendering server employing ray tracing based
global illumination. The client is designed to guarantee interactivity (namely 1/60sec response time) no matter how slow
the rendering server is. The client dynamically adjusts image resolution to match the server performance and complexity of
the rendered scene. When the scene is modified, the image may appear out of focus and noisy, depending on the machine
computational power, but usually is readable. With no interrupt from the client, the image is progressively improved with new
data from the server. The system expliots hybrid programming model – CPU for the server and GPU for the client.

Keywords: Real-time global illumination, quasi-Monte Carlo ray tracing, hybrid CPU and GPU programming.

1 INTRODUCTION

Many contemporary approaches to ray tracing based
global illumination rely on computational power of
graphics hardware, eg. [25]. Unfortunately, true,
unrestricted, global illumination algorithms, which
solve the Rendering Equation [9], are not well suited
for GPU architecture. Such implementation is possible,
as has been shown numerous times, but is severely
restricted when compared with classic multi-core CPU
solutions, since GPUs cannot process irregular data
structures effectively [7].

Our renderer, based on significantly modified Bidi-
rectional Path Tracing [22] and Photon Mapping [8]
with quasi-Monte-Carlo (QMC) approach [12] is de-
signed for flexibility of CPUs. It allows rendering, in
full spectrum, of arbitrary scene primitives, arbitrary
materials, textures, and more. The only restriction is, in
fact, a computer memory size. Such, traditionally CPU
based, algorithms are rather difficult to port to GPUs.
When, despite all problems, they are ported eventually,
performance benefits of GPUs over multicore CPUs are
often questionable [7].

This paper presents a different approach to obtain in-
teractivity. Pure ray tracing algorithms are based on
point sampling scene primitives, not using scan line ras-
terization at all. This gives much freedom in the way
how samples are chosen, however QMC ray tracing al-
gorithms produce a huge number of samples, which do
not fit in raster RGB grid. Converting these data to
3x8bit integer based RGB image at interactive frame

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

rates may be impossible even for multi-core CPUs, es-
pecially when dynamic image resolution has to be ad-
justed to the server rendering speed and scene com-
plexity, with some non-trivial post-processing added.
As we will show, conversion of ray tracing output to
a displayable image and many post-processing effects
can be expressed purely by rasterization operations, in
which GPUs excel. The main idea behind the presented
approach is therefore the usage of the best suitable pro-
cessor for a given algorithm, instead of porting every-
thing to GPUs.

2 RELATED WORK
The concept of ray tracing is not new [27]. Because it
can produce much better image than hardware rasteri-
zation, for several years there has been a lot of research
dedicated to run it in real time, despite its high compu-
tational cost [15]. Ray tracing based global illumina-
tion is even more expensive. However, for some time
now real time global illumination algorithms are being
developed also [23].

Just after the appearance of first programmable Di-
rectX 9 class graphics processors there were first at-
tempts to use it for ray tracing [17]. Nowadays, vast
majority of contemporary real time global illumination
algorithms are based on computational power of mod-
ern GPUs, e.g. [11, 25]. Unfortunately, they still put re-
strictions, often quite severe, on scene content (limited
range of material and geometry representation), scene
size, and illumination phenomena which are possible to
capture.

However, this is not the only way to obtain interactiv-
ity – nowadays multi-CPU Intel workstations can per-
form interactive ray tracing [16], yet true global illu-
mination is still unachievable. Interactivity can also be
obtained using clusters of machines with CPU render-
ing [2].

On the other hand, approach presented here is sub-
stantially different from those above – placing abso-

WSCG 2010 Communication Papers 271

lutely no restrictions on scene and illumination effects.
It uses GPU just to display and postprocess image made
from CPU ray traced point samples, in resolution dy-
namically adjusted for real time performance.

3 REQUIRED SERVER OUTPUT

In general the server may run any point sampling algo-
rithm, but in this project we rely on QMC ray tracing.
The visualization client assumes the specific format of
the server’s output. In the following subsections we de-
scribe in detail the conditions which should be fulfilled
to make the client work properly. We also show how to
convert Photon Mapping to meet these assumptions.

The server should provide stream of color values
scattered uniformly at random locations in the screen
space. The uniformity of sampling ensures acceptable
image quality even at low sampling rates, which is typ-
ical due to high computational cost of ray tracing.

Additionally, the output stream should be generated
roughly uniformly in time. Otherwise the client might
fail to maintain interactive refresh rates.

3.1 Bidirectional Algorithms

Some most advanced ray tracing algorithms trace rays
in both directions – from the camera towards lights
(camera rays), and in the opposite one (light rays). Such
approaches produce two kind of samples, which must
be processed differently in order to produce displayable
images [22].

The client accepts two input streams. The format of
samples is identical in both streams: ([u,v], [x,y,z,w]),
where [u,v] are screen space coordinates, in [0,1]2

range, or, perhaps, with slight overscan to avoid post-
process filtering edge artifacts, x,y,z is sample color
value in CIE standard [6], and w is sample weight.

The two streams differ only in interpretation of sam-
ple density. The pixels of image from camera rays are
evaluated by averaging local samples using any suitable
filter – sum of weighted samples is divided by sum of
weights. On the other hand, pixels of light image are
formed using a suitable density estimation technique –
samples are filtered and summed, but not divided by
sum of weights. Therefore, a sample density affects
only quality of camera image, while it affects both qual-
ity and brightness of light image. The final, displayable,
image is a sum of both camera and light images, the lat-
ter divided by a number of traced paths.

Obviously, not all ray tracing algorithms need both
– camera and light – output streams. For example,
Path Tracing [9] and Photon Mapping [8] produce cam-
era samples only, while Particle Tracing [1] needs only
light image. Therefore, the visualization client em-
ploys an obvious optimization – it skips processing of a
stream given that no samples were generated into it.

3.2 Coherent vs. Non-Coherent Rays
For some time now it is often claimed that it is benefical
to trace camera rays in a coherent way, because it can
significantly accelerate rendering [24, 2]. This is true,
but only for primary rays (sent directly from camera or
light source). Unfortunately, rays, which are scattered
through the scene, do not follow any coherent pattern
and caching does not help much. Since true global il-
lumination algorithms typically trace paths of several
rays, these algorithms do not benefit much from coher-
ent ray tracing.

What is more, coherent ray tracing tends to provide
new image data in tiles, which make progressive im-
provement of image quality difficult. On the other hand,
we have chosen to spread even primary rays as evenly
as possible, using carefully designed Niederreiter-Xing
QMC sequence [13] as the source of pseudorandom
numbers. Therefore, it can be expected that very few
traced rays provide reasonable estimate of colour of the
entire image, and subsequently traced rays improve im-
age quality evenly.

3.3 Full Spectral Rendering
Having in mind further processing, it may be useful
to output full spectral images [5, 18]. However, full
spectral representation requires huge amount of mem-
ory. For example, full HD spectral image in 16bit
floating precision and with 3nm wavelength sampling
from 400nm to 700nm needs as much as 1920×1080×
100× 2B ≈ 400MB, while RGB one requires 1920×
1080×3×2B≈ 12MB.

The standard CIE XYZ space seems to be the best
option instead, since an RGB space, which depends on
a particular display hardware, is not a plausible choice.
For this reason our client accepts CIE XYZ color sam-
ples. The presented server natively generates full spec-
tral data and converts it internally from full spectrum to
the three component color space.

3.4 One-pass Photon Mapping
Original Photon Mapping [8] is a two pass technique.
This obviously violates the requirement of steady sam-
ple stream – during photon tracing there are no samples
generated, causing high latency before image starts to
appear. We have found that Photon Mapping actually
can be done in one pass, with only minor loses in effi-
ciency compared to the original approach. The new al-
gorithm uses a linear function of number of image sam-
ples (n) to estimate minimal necessary photon count in
photon map to obtain image with quality determined by
n. Therefore, the photon map is no more static structure
– new photons are added while new image samples are
rendered.

Immediately two issues have to be solved – synchro-
nization of read and write accesses to the photon map

WSCG 2010 Communication Papers 272

structure in parallel photon mapping and balancing kd-
tree. Synchronization can be performed with simple
read-write locks (classic readers-writers problem).

On the other hand, kd-tree balancing requires signif-
icant algorithm modification. We have chosen to bal-
ance the scene space instead of photons. The origi-
nal algorithm starts with bounding box of all photons
(unknown in our approach) and in each iteration places
splitting plane at a position such that half of the photons
remains on the one side of the plane. Otherwise, our al-
gorithm starts with bounding box of the entire scene,
and in each iteration it splits it in half across dimension
in which the box is the longest. Splitting stops when all
nodes contain less photons than a certain threshold (5-6
seems to be optimal) or a maximum recursion depth is
reached. Adding new photons require just splitting of
some of the nodes, where there happens to be too many
photons.

The idea is somehow similar to Irradiance Caching
algorithm [26]. Similarly as in this method, our ap-
proach starts with empty structure and fills it through
rendering. However, Irradiance Caching calculates ir-
radiance samples when they are needed by camera rays,
while our modified Photon Mapping traces photons in
a view independent manner.

Strictly speaking, the new approach does not generate
batches of samples in roughly uniform time. Due to kd-
tree lookup computational complexity as well as linear
dependence between number of photons in kd-tree and
number of samples computed, the average time to cal-
culate nth sample is the order of O(logn), where n is the
sample number. Logarithm, however, changes slowly,
and the client is designed to adjust to slow changes of
rendering speed by modifying size of batch of samples.

4 CLIENT AND SERVER ALGO-
RITHMS

Finally, a GPU task is to convert point samples into
a raster image. The conversion is done with resolu-
tion dynamically adjusted to the number and variance
of point samples. In the image, a color conversion from
XYZ to RGB space of current monitor, together with
gamut mapping, tone mapping, gamma correction and
other post-processing effects are performed.

As a target platform we have chosen a GPU compat-
ible with OpenGL 3.x [19] and GLSL 1.5 [10]. Ma-
jor part of algorithm is coded as a GLSL shader, which
suits our needs very well. Recent technologies, such as
Nvidia CUDA, ATI Stream, or currently being devel-
oped OpenCL are not necessary for this kind of algo-
rithm.

The rendering task is split into two processes (or
threads in one process, if a single application is used as
a client and server) running in parallel: a server wrap-
per process and visualization process. The rendering

process may be further split into independent threads,
if multicore CPUs or multiple CPU machines are used.

4.1 Server Wrapper Process
Ray tracing can produce virtually unlimited number of
samples, being limited only theoretically by machine
numerical precision (our implementation can generate
as many as 264 samples before sample locations even-
tually start overlap). Therefore, ray tracing process is
reset only immediately after user input, which modifies
the scene. Otherwise, it runs indefinitely, progressively
improving image quality.

The server wrapper runs on a separate thread, pro-
cessing commands. The wrapper recognizes three com-
mands: term, abort, and render. The term command
causes wrapper to exit its command loop, and is used
to terminate the application. The abort commad aborts
current rendering, and is used to reset server to the new
user input (for example, camera position change).

The render command orders server to perform ren-
dering. The rendering is aborted when either abort or
term command is issued. Maximum time to abort ren-
dering is a time necessary to generate just one sample.
Any algorithm capable of generating the specified out-
put (see Section 3) can be used. In our server imple-
mentation, rendering is performed in parallel on multi-
core CPUs.

The wrapper allows registering asynchronous f inish
event. This event is generated when rendering is fin-
ished (either a prespecified number of samples was gen-
erated or abort was issued). The event can be used
to synchronize client with server. Apart from send-
ing asynchronous messages, the wrapper can be queried
synchronically for already rendered samples. Since this
query just copies the data to the provided buffer, server
blocking due to synchronization takes little time.

4.2 Client Process
Client is responsible for visualizing samples generated
by server, and additionally it processes GUI window
system messages. Client stores its internal data in the
four screen-aligned textures, in the IEEE 32bit float-
ing point format. A 4-channel [X ,Y,Z,W] texture and a
single component variance [Var] texture are stored for
camera and light input streams. Therefore, client stores
40 bytes of data per screen pixel, apart from standard in-
teger front and back buffers. The details of client main
loop are presented in Figure 1.

When all GUI messages are processed, client raster-
izes new samples, generated by the server, into its in-
ternal textures. This task is performed by the render-
to-texture feature of Framebuffer Object (FBO). The
client sets an empty vertex program, which only passes
through data, and a geometry program which is equiva-
lent to rendering textured point sprites fixed function-
ality. The input is a stream of two elements – two

WSCG 2010 Communication Papers 273

process input

rasterize samples
repaint back buffer

swap buffers with vsync

get new samples

start

quit

Figure 1: Main loop of visualization client process.

component screen position (u,v) and four component
color (x,y,z,w). Input is placed in Vertex Buffer Object
(VBO), and is then rendered with GL ’render points’
command. Points are rendered in blending mode set to
perform addition, ensuring that all samples add up in-
stead of overwriting previous texture content.

Additional input is a monochromatic HDR filter tex-
ture, used to draw point sprites. The texture is normal-
ized (all the texel values add up to one) and the texture
border value is set to zero. The filter texture is applied
without rescaling and with bilinear filtering, thus pre-
serving filter normalization, which is crucial for algo-
rithm correctness. We have found that 5x5 texel win-
dowed Gaussian blur gives good results.

The rendering is performed in two passes. First,
color textures are updated. In the second pass, us-
ing already up-to-date color textures, variance textures
are updated. In both passes, the same samples are
rendered. The variance is updated using the formula
Vj = Vj−1 +∑i (Yi−Y j)

2, for jth batch of i samples.
The formula does not give the best theoretically pos-
sible results, since the mean Y is approximated using
only already evaluated samples. The alternative for-
mula Vj = Y 2 j −Y 2

j , Y 2 j = Y 2 j−1 +∑i Y 2
i , which re-

quires storing sum of squares (Y 2) instead of variance,
should be avoided due to poor numerical stability (even
negative variance results are possible). In both formulas
the division by n−1 factor, where n is the total number
of samples in a given stream, is omitted. This division is
performed when variance data is read from its texture.

The sample rasterization algorithm works as follows:

1. The content of client sample buffer (pairs
[u,v], [x,y,z,w]) is loaded into VBO, interpreted as
2D point coordinates and 4D color. There is one
buffer for both streams. Samples which come from
light stream are encoded with negative weights.

Stream separation is performed further in the
fragment program.

2. Monochromatic float texture with filter image is se-
lected and point draw command is issued. The tex-
ture is used as a texture sprite for emulated point
sprites. Fragment program performs multiplication
of ’color’ attribute by the texture value [X ,Y,Z, |W |].
The output is saved to the color texture of camera
stream if W ≥ 0 or light stream otherwise.

3. After rasterization, textures are detached from FBO,
GPU MIP-map build command is issued.

4. Texture LoDs (used by ’repaint back buffer’ pro-
cessing) for both streams are evaluated as LoDi =
log4(P/Si)), where P is number of pixels on the
screen and Si is the number of samples from ith
stream computed so forth.

5. Second draw is issued, with variance textures as out-
put this time. The variance is evaluated only for
luminance (Y) component, since three component
variance typically do not help much and substan-
tially complicates algorithm. Variance output for
each stream is (Yavg−Y)2, where Yavg is read from
previously generated color texture, and Y is lumi-
nance of currently processed sample, multiplied by
filter texture.

6. Similarly to color textures, variance textures are de-
tached from FBO, GPU MIP-map build command is
issued.

In order to repaint back buffer, client draws a screen-
sized quad, using the four textures as an input. The
screen is filled with custom fragment program. The
program accepts following control parameters: level of
detail (LoD) for both streams, light image weight (Lw),
image brightness (B), contrast (C), gamma (G), color
profile matrix (P), and variance masking strength (V m).
Level of detail (LoD) is already evaluated during ras-
terization. Now, the LoD values are used by fragment
program to blur texture data if not enough samples are
computed. Light image weight is got from the server
along with samples, and its value is equal to the num-
ber of paths traced from light sources. This parameter
is used to scale light image texture appropriately, such
that the texture can be summed with camera image tex-
ture.

Image brightness, contrast, gamma and color profile
are set by the user, and their values adjust the image ap-
pearance. Additionally, the visualization client is able
to add a glare effect as an additional post-process, im-
plemented as a convolution with a HDR glare texture,
generated according to [20]. However, sufficiently large
glare filters are far beyond computational power of con-
temporary GPUs for real-time screen refresh rate. Since

WSCG 2010 Communication Papers 274

these parameters are defined only for client, and do not
affect server rendering at all, their values can be mod-
ified freely without resetting the server rendering pro-
cess.

Variance of samples is estimated only for luminance
(CIE Y channel), using the standard variance estima-
tor (V ≈ 1

N−1 ∑(E(Y)−Yi)
2, where N is the number

of samples, Yi are luminance values, and E(Y) is the
luminance value estimated from samples computed so
far. The client is able to increase blurriness according to
the local changes in estimated variance, hence slightly
masking noise produced by stochastic ray tracing. The
noise to blurriness ratio can be controlled by V m pa-
rameter.

The blurriness is created by low pass filter or bilat-
eral filtering [14] guided by variance estimation, which
potentially can be much better in preserving image fea-
tures than a simple low pass filter. However, bilateral
filtering works correctly only if noise is less intense
than image features. When image is heavily undersam-
pled, this assumption may not be satisfied, and a low
pass filter remains the only viable option. For exam-
ple, in Figure 3, the two leftmost images cannot be en-
chanced by bilateral filtering. On the other hand, this
technique does a good job improving the quality of mid-
dle image from Figure 5.

Unfortunately, the noise masking feature can hide
only the random error which is the result of variance.
It cannot hide (in fact, it cannot even detect) other kind
of error resulting from bias. The variance is the only
source of error in Bidirectional Path Tracing, while
Photon Mapping error is dominated by bias.

The algorithm processes its input as follows:

1. The program reads data from both variance
maps, using requested LoDs through hardware
MIP-mapping.

2. LoDs for both streams are evaluated according to
initial LoDs, the variance and V m, for ith stream:
LoD′i← LoDi +V m log4([Var]).

3. [X ,Y,Z,W] textures of both streams are sampled,
this time using just evaluated LoD′ and custom fil-
tering technique (hardware MIP-mapping produces
very poor results, see section 4.3 for more detailed
discussion).

4. Texture samples for both streams are normalized,
i.e. [X ,Y,Z,W]→ [X/W,Y/W,Z/W,1] (if W = 0,
then sample is considered to be [0,0,0,1]). Then,
light texture sample, divided by Lw, is added to cam-
era texture sample, producing single result for fur-
ther processing.

5. Optionally, glare effect is applied here. Our glare
texture is generated to be applied in XYZ color
space instead of RGB one.

6. Tone mapping of luminance (Y) is performed, us-
ing very simple yet effective procedure: Y ′ ← 1−
exp(−(B ∗ Y)C), while X and Z components are
scaled by Y/Y ′ ratio. If Y = 0 it means that image is
black at that point and X ′Y ′Z′← (0,0,0) is used.

7. Resulting X ′Y ′Z′ is multiplied by matrix P, and a
basic gamut mapping is performed. We do not use
elaborated algorithms here – simple desaturation of
out-of-gamut colors, just to keep mapped luminance
unmodified, works reasonably well. Now output is
in RGB format, normalized to [0,1] range.

8. Finally, gamma correction using G is performed.

Next, client swaps front and back buffers, in syn-
chronization with screen refresh period. This guaran-
tees constant frame rate (typically 60Hz for common
LCDs).1 Finally, client reads new samples from the
server. The reading is performed with synchronization,
blocking the server for a moment. However, client does
not display samples immediately, blocking server just
for copying this portion of data to its internal buffer for
later processing.

4.3 MIP-mapping Issues
Images produced by rasterizing ray traced samples are
created as screen-sized textures. Should enough sam-
ples be generated, these images could be used imme-
diately without any resampling. Unfortunately, con-
temporary CPUs are far too slow to generate at least
#screen_pixels of such samples in, say, 1/30sec, which
is required for real time performance. Therefore, some
kind of blurring texture data, according to fraction of
necessary samples generated and the local sample vari-
ance, have to be performed.

While MIP-mapping is reasonably good in filtering
out texture details which would otherwise cause alias-
ing, it cannot be used reliably to blur the texture im-
age. Blurring by using LoD bias parameter of texture
sampling function produces extremely conspicuous and
distracting square pattern, with severe bilinear filtering
artifacts (see Figure 2 for details). This is not surpris-
ing, since a GPU uses box filter to generate MIP-maps
and linear interpolation between texels to evaluate tex-
ture value at sampled point. Moreover, MIP-mapping
with polynomial reconstruction instead of linear one
fails as well. We have used custom texture sampling
with Catmull-Rom spline interpolation for this purpose.

1 GPU class must be properly selected for a monitor resolution. If GPU
is too poor, interactivity is not obtained. We found that best contem-
porary single processor GPU (Nvidia GTX 285, at the time of testing)
is enough for refresh rate of 30Hz in full HD. Such issue, however,
does not slow down the server – the same number of samples is still
rendered in the same amount of time, they are just displayed more
rarely, in larger batches.

WSCG 2010 Communication Papers 275

Visually good results can be obtained by using Gaus-
sian blur:

I(u,v) =
∑i ∑ j Ti jgi j(u,v)

∑i ∑ j gi j(u,v)
.

The I is texture sample, u,v is the sample position, T
are texel values, and gi j = exp(−σd2

i j) is the filter ker-
nel, with σ controlling blurriness, and di j is the dis-
tance between the u,v position and texel Ti j. Unfortu-
nately, direct implementation of Gaussian blur requires
sampling an entire texture for evaluation of any texture
sample, which is far beyond computational capabilities
of contemporary GPUs. The weight of Gaussian filter,
however, quickly drops to zero with increasing distance
from evaluated sample. Truncating the filter to a fixed
size window containing limited number of samples is a
commonly used practice.

The simple truncation is not always optimal, since
quality of truncated Gaussian filter depends strongly on
the σ parameter – to obtain similar quality with dif-
ferent sigmas, an O(σ−1) number of texels have to be
summed. That is, if a Gaussian filter is truncated too
much, it starts to resemble a box filter. In our case, σ

varies substantially, and therefore more advanced tech-
nique should be used. We may notice that decreasing a
resolution of the original image twice, and increasing σ

four times, approximates the original filter on the orig-
inal image. Eventually, the following algorithm is em-
ployed: initial MIP-map level is set to zero, and while
σ is smaller than a threshold t, the σ is multiplied by
four, and MIP-map level is increased by one.

The threshold t and number of summed texels have
been adjusted empirically to balance the blur quality
and computational cost. First we have found that trun-
cation range R of roughly 2.5 is a maximum value
which ensures reasonable performance. For such trun-
cation, setting t ≈ 1 is reasonable. Additionally, it is
better to use a product of g and smooth windowing
function w instead of original g if truncation is used.
The w = 1− smoothstep(0,R,d)E , where E controls
how quickly w drops to zero with distance, works quite
well. The value E = 8 yields good results.

What is more, the transition between MIP-map levels
is noticeable and decreases image quality. This is espe-
cially distracting if σ varies across the image, which is
the case because blur is adjusted to the locally estimated
variance. Therefore, similarly as in trilinear filtering,
the Gaussian blur is performed on two most appropri-
ate MIP-map levels, and the results are linearly inter-
polated, avoiding sudden pops when MIP-map level
changes. Therefore, truncation to range 2.5 cause blur-
ring to use 2[(2 ·2.5)2] = 50 texture fetches on average,
which is costly, yet acceptable on contemporary GPUs.

The sophisticated filtering scheme is used only for
[X ,Y,Z,W] textures. Variance [Var] textures, not being
displayed directly, do not have to be sampled with any-

thing more complicated that basic MIP-mapping. This
saves some computational power of a GPU, yet does
not produce noticeable visual artifacts.

5 RESULTS
The quality of rendered images obviously mostly de-
pends on the rendering algorithm used. We have tested
the visualization client in cooperation with Path Trac-
ing (Figure 3) and Photon Mapping (Figure 4). Both
figures present initial image rendered after 1/30sec and
show the speed of image quality improvement. All the
tests were performed on Intel Core i7 CPU and Nvidia
9800 GT GPU, in 512x512 resolution.

The client is responsible merely for visualization and
postprocessing, assuming that it is provided with stream
of point samples, scattered roughly evenly through en-
tire image. The only algorithm for image quality im-
provement is noise reduction based on variance analy-
sis. The error due to variance (seen as high frequency
noise) is much more prominent in results of Path Trac-
ing than in Photon Mapping, so the noise reduction has
been tested on the first algorithm. The results are pre-
sented in Figure 5.

When multiple processors are used in the same ap-
plication, good load balancing is important. While it
is well known how to load balance ray tracing work be-
tween multiple CPUs, in our application it is impossible
to balance loads between visualization client and ray
tracing server. The subtasks performed by CPUs and
GPU are substantially different and suited for different
architectures of these two processors, so work cannot
be moved to the less busy unit as needed. In fact, on
contemporary machines rendering server is always at
full load, and GPU can be not fully utilized, especially
when low resolution images are displayed. However, it
is good to have some reserve in GPU power to ensure
real time client response.

6 CONCLUSION
We have presented an interactive GUI visualization
client for displaying ray traced images online, written
mainly in GLSL. Apart from visualization, the client
can hide noise of input data by means of variance anal-
ysis. Additionally, the client can apply glare effect as
a postprocessing technique, which is performed quite
efficiently on GPU.

The client is able to obtain interactivity regardless
of the ray tracing speed. However, the price to pay is
blurriness of images rendered at interactive rate. Nev-
ertheless, the image quality improves quickly with time
whenever rendered scene is not changed.

Our approach scales well with increasing number of
CPU cores for ray-tracing, as well as with increas-
ing number of shader processors on a GPU. Moreover,
the program never reads results from the GPU, so it
does not cause synchronization bottlenecks, and should

WSCG 2010 Communication Papers 276

Figure 2: Comparison of MIP-mapping and custom filtering based blur quality. From left: reference image,
hardware mipmapping, custom reconstruction based on Catmull-Rom polynomials, windowed Gaussian blur.

Figure 3: Results of Path Tracing (from left: after 1/30sec, 1/3sec, 3sec, 30sec). The Path Tracing error appears as
noise, blur in the first two images is caused by undersampling (far less than 1 sample per pixel were evaluated).

Figure 4: Results of Photon Mapping (from left: after 1/30sec, 1/3sec, 3sec, 30sec). Photon Mapping does not
produce much noise, but due to overhead caused by photon tracing and final gathering, less image samples than
with Path Tracing were computed, which cause some blurriness.

be friendly with multi-GPU technologies like SLI or
Crossfire.

Additionally, we have modified the Photon Mapping
algorithm to be a one-pass technique, with the pho-
ton map being updated interactively during the whole
rendering process. This enables using Photon Map-
ping with the presented visualization client, which then
could ensure progressive image quality improvement,
without any latencies resulting from construction of
photon map structure.

Our visualization client has a lot of potential for fu-
ture upgrades. The adaptive filtering technique [21]
seems to be good approach to significantly reduce im-
age noise on the side of the visualization client. More-
over the client can be extended to support frameless
rendering [3, 4]. This very interesting and promising
technique can improve image quality substantially us-

ing samples from previous frames, provided that subse-
quent images do not differ too much.

In future we plan to introduce to our client stereo ca-
pability, using OpenGL quad-buffered stereo technol-
ogy. Ray tracing algorithms can easily be converted
to render images from two cameras at once, and a lot
of them can do this even more efficiently than render-
ing two images sequentially (for example, Photon Map-
ping can employ one photon map for both cameras, and
similarly, Bidirectional Path Tracing can generate one
light subpath for two camera subpaths). Unfortunately,
stereo rendering doubles the load on the GPU shaders,
as well as on the GPU memory. However, it seems that
interactive stereo can be obtained by slight decrease of
custom texture filtering quality.

WSCG 2010 Communication Papers 277

Figure 5: Noise reduction based on variance analysis of Path Tracing image (from left: no noise reduction, with
noise reduction, variance image). The difference is noticeable especially in shadowed area beneath the sphere and
on the indirectly illuminated ceiling.

ACKNOWLEDGEMENTS
Support of this work by AGH Grant number
11.11.120.865 is kindly acknowledged.

REFERENCES
[1] James Arvo and David Kirk. Particle Transport and Image Syn-

thesis. In SIGGRAPH 1990 Proceedings, pages 63–66, New
York, NY, USA, 1990.

[2] Carsten Benthin. Realtime Ray Tracing on Current CPU Ar-
chitectures. PhD thesis, Saarland University, Saarbrücken, Ger-
many, 2006.

[3] Gary Bishop, Henry Fuchs, Leonard McMillan, and Ellen Scher
Zagier. Frameless rendering: Double buffering considered
harmful. In SIGGRAPH 1994 Proceedings, volume 28, pages
175–176, New York, NY, USA, 1994.

[4] Abhinav Dayal, Cliff Woolley, Benjamin Watson, and David
Luebke. Adaptive Frameless Rendering. In Rendering Tech-
niques 2005, pages 265–275, 2005.

[5] Kate Devlin, Alan Chalmers, Alexander Wilkie, and Werner
Purgathofer. Tone reproduction and physically based spectral
rendering. In State of the Art Reports, Eurographics 2002,
pages 101–123, September 2002.

[6] Bruce Fraser, Chris Murphy, and Fred Bunting. Real World
Color Management, second edition. Peachpit Press, Berkeley,
CA, USA, 2005.

[7] Anwar Ghuloum. The Problem(s) with GPGPU. http://blogs.
intel.com/research/2007/10/the_problem_with_gpgpu.php,
2007.

[8] Henrik Wann Jensen. Realistic image synthesis using photon
mapping. A. K. Peters, Ltd., Natick, MA, USA, 2001.

[9] James T. Kajiya. The rendering equation. In SIGGRAPH 1986
Proceedings, pages 143–150, New York, NY, USA, 1986.

[10] John Kessenich, Dave Baldwin, and Randi Rost. The OpenGL
Shading Language, version 1.50, 2009.

[11] Morgan McGuire and David Luebke. Hardware-accelerated
global illumination by image space photon mapping. In Pro-
ceedings of the 2009 ACM SIGGRAPH/EuroGraphics confer-
ence on High Perf. Graphics, New York, NY, USA, 2009.

[12] Harald Niederreiter. Random Number Generation and Quasi-
Monte Carlo Methods. Society for Industrial and Applied Math-
ematics, Philadelphia, USA, 1992.

[13] Harald Niederreiter and Chaoping Xing. Low-discrepancy se-
quences and global function fields with many rational places.
Finite Fields and Their Applications, 2(3):241–273, jul 1996.

[14] Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo Du-
rand. A gentle introduction to bilateral filtering and its applica-
tions. Siggraph 2008 course notes, 2008.

[15] Steven Parker, William Martin, Peter-Pike Sloan, Peter Shirley,
Brian Smits, and Charles Hansen. Interactive Ray Tracing. In
Symposium on Interactive 3D Graphics, pages 119–126, 1999.

[16] Daniel Pohl. Light It Up! Quake Wars Gets Ray Traced. Intel
Visual Adrenaline, 2:34–39, 2009.

[17] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Han-
rahan. Ray tracing on programmable graphics hardware. ACM
Transactions on Graphics, 21(3):703–712, 2002.

[18] Michal Radziszewski, Krzysztof Boryczko, and Witold Alda.
An Improved Technique for Full Spectral Rendering. Journal
of WSCG, 17(1):9–16, 2009.

[19] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A
Specification, version 3.2, 2009.

[20] Greg Spencer, Peter Shirley, Kurt Zimmerman, and Donald P.
Greenberg. Physically-based glare effects for digital images. In
SIGGRAPH 1995 Proceedings, pages 325–334, New York, NY,
USA, 1995. ACM.

[21] Frank Suykens and Yves D. Willems. Adaptive Filtering for
Progressive Monte Carlo Image Rendering. In Proceedings of
the 8th International Conference in Central Europe on Com-
puter Graphics, Visualization and Interactive Digital Media
(WSCG) 2000, pages 220–227, 2000.

[22] Eric Veach. Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Stanford University, Stanford, CA,
USA, 1997.

[23] Ingo Wald, Carsten Benthin, and Philipp Slusallek. Interactive
Global Illumination Using Fast Ray Tracing. In Proceedings of
the 13th Eurographics Workshop on Rendering, pages 15–24,
June 2002.

[24] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus
Wagner. Interactive rendering with coherent ray tracing. In
Computer Graphics Forum, pages 153–164, 2001.

[25] Rui Wang, Rui Wang, Kun Zhou, Minghao Pan, and Hujun Bao.
An efficient gpu-based approach for interactive global illumina-
tion. ACM Transactions on Graphics, 28(3):1–8, 2009.

[26] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear.
A ray tracing solution for diffuse interreflection. In SIGGRAPH
1988 Proceedings, pages 85–92, New York, NY, USA, 1988.

[27] Turner Whitted. An Improved Illumination Model for Shaded
Display. Communications of the ACM, 23(6):343–349, 1980.

WSCG 2010 Communication Papers 278

A Novel Image Transformation For Solving Complex

Image Mapping Problems

Igor V. Maslov
St-Petersburg State Polytechnical

University
29 Polytechnicheskaya street
Russia195251, St.-Petersburg

 ivm3@columbia.edu

Yulia D. Detkova
St-Petersburg State Polytechnical

University
29 Polytechnicheskaya street
Russia195251, St.-Petersburg

detkova@avalon.ru

Izidor Gertner
The City College of New York

138th Street at Convent Avenue,
NAC 8/206

USA 10031, New York, NY
gertner@cs.ccny.cuny.edu

ABSTRACT
The paper proposes a novel image transformation called Image Local Response (ILR) that can be used for
solving complex image mapping problems. The proposed transformation brings together two approaches based
on the pixel value distribution and image features. Image local response is defined as the average value of the
difference between the transformed and the original copies of the same image whereby the transformation is
small, i.e., the components of the corresponding parameter vector have sufficiently small unit values. The
response has a few interesting properties useful in image mapping. The validity of the proposed image
transformation is shown on sample complex image mapping problems formulated as the multi-objective piece-
wise imaging optimization problem.

Keywords
Image mapping, response analysis, imaging optimization, evolutionary algorithm.

1. INTRODUCTION
Many tasks related to digital image processing deal
with comparing (i.e., matching or mapping) images
of different types and sizes. Examples of such tasks
include e.g., image registration, object or target
recognition, and pattern matching. These tasks, in
turn, play a pivotal role in many important real world
applications like remote sensing, security systems,
robotics, computer vision, medical imaging,
information fusion, and industrial control.
The approaches that can be used for comparing the
images can be divided into two main groups.
1. The first group of methods compares the
distributions of the pixel values in the images, either
explicitly or implicitly. One of the problems
associated with this approach is related to the
changing light conditions between the images. In this
case, the comparison of the pixel values becomes
difficult since no matching pixels can be found.

Moreover, the comparison of the different types of
imagery, e.g., infrared and real visual images
obtained from the different types of sensors (as in
multi-sensor image fusion) becomes virtually
impossible using this approach.
2. Methods in the second group attempt to find a
set of salient characteristics, i.e., features that are
common for the compared images. Choosing the
appropriate features is by no means a trivial task. It
becomes even more difficult if the images are
simultaneously misaligned and distorted by some sort
of complex geometric transformation, e.g., affine or
perspective.
The proposed in the paper image transformation uses
the combination of the both abovementioned
approaches; the transformation is called Image Local
Response (ILR). The concept of ILR is somewhat
related to image neighborhood and block operations
[Seu00a], [Pit00a], [Ima06a], as well as to the node
and edge functions proposed in [Muc98a], although
it is based on a fundamentally different idea rooted in
Green’s functions [Bar89a] and response analysis
[Ger02].
The paper is organized as follows. Section 2 gives
the definition of Image local response and describes
its useful properties. Section 3 discusses sample
experimental results of object mapping in the case of
geometrically distorted images. Section 4 concludes

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2010 Communication Papers 279

the paper with the summary of the proposed
approach.

2. DEFINITION AND PROPERTIES
OF IMAGE LOCAL RESPONSE
In digital image processing, solving image mapping
(matching) problem means finding an adequate
vector V of parameters defining the unknown
transformation A between the images. In its most
general form, the sought transformation A can be a
fairly complex one, although in many cases it can be
represented or approximated with some suitable
general affine transformation.
The concept of Image Local Response (ILR) is based
on a fairly simple and rational idea: since the
mapping problem searches for the unknown
transformation A, it seems logical to explore the
response of the image to this particular type of
transformation. This task can be accomplished by
mapping a transformed image Img´ onto self (i.e.,
onto the original image Img), with a sufficiently
small transformation vector Vu. In accordance with
this idea, Image local response RP at a point P is
defined as the value of the difference F between the
transformed, Img´ and the original, Img copies of the
same image. Here, the transformation Au at the point
P is small, i.e., the components of the parameter
vector Vu have sufficiently small unit values.
The simplest way of defining the image difference F
is to compute a squared difference of the pixel gray
values over some area ωR, in the following way:

2

2)),(),((

R

R

yxgyxg
F

ω
ω
∑ −′′

= , (1)

where g(x,y) and g(x’,y’) are the gray values of the
image Img in the area ωR before and after the
transformation, correspondingly [Bro98a].
Making the area ωR sufficiently small has two
important implications.
1. The general affine transformation fairly accurately
approximates other interesting and plausible image
transformations (e.g., perspective) that can be found
in real world applications [Ros76a]. This means that
one can compute ILR once, i.e., for the affine
transformation, and then use the computed values in
image mapping with some other, even more complex
transformations.
2. The difficulty of mapping images with different
pixel value distributions can be significantly
mitigated when using ILR since the later maps a
particular image onto itself (i.e., onto the same pixel
value distribution) within a small area.

Here, the area ωR is called “response area”. For
convenience and without loss of generality, a square
box r × r can be chosen as the response area, where r
is called “response radius”. In the case of the general
affine transformation, image response has to be
computed for the vector Vu defined by nine
parameters: the translations DX and DY along the x-
and y-axes; the rotation θ in the xy-plane; the non-
isotropic scaling factors SX and SY along the x- and
y-axes; the shear SHX and SHY along the x- and y-
axes; and the reflections RX and RY about the x- and
y- axes. The shaded subarea in Figure 1 shows what
part of the small response area near the point P will
be changing during the unit transformation, in the
case of translation, rotation, and scaling.

Figure 1. Computing local response at point P for

translation, rotation, and scaling.

Computing Image local response according to
Formula (1) with the chosen small values of ωR and r
is similar to computing Green’s functions extensively
used in mathematical physics and engineering
[Bar89a]. It can be easily shown that, as in the case
of Green’s function, the response value RP rapidly
decreases as the distance from the point P (i.e., the
value of r) increases.

Figure 2. Algorithm for computing Image local
response.

The foregoing definition of the ILR suggests the
algorithm shown in Figure 2. In the algorithm, the
value of the difference F is computed for each of the
N components of the vector Vu. In the case of the
general affine transformation, N = 9. Finally, the
response value RP at the point P is computed as the
averaged sum of all N differences Fi (i = 1,…, N). In

foreach pixel P, do
foreach component of Vu, do

 compute (1)
endforeach component

 compute response
N

F
R

N

i
i

P

∑
== 1

endforeach pixel

WSCG 2010 Communication Papers 280

order to compute the response values for the border
pixels, the image can be appropriately padded.
The values of image response can be represented in a
graphical form - see Figure 3. As one can see, Image
local response has a dual nature. On the one hand,
ILR is defined in the form of a matrix computed from
the pixel value distribution, as Formula 1 suggests.
On the other hand, ILR represents the image feature
in the form of the contours of the objects that are
present in the image. The duality of ILR allows one
to transfer the search for the proper image
transformation A in image mapping problem from
the actual image space I into the response space R. In
this case, the difference between two images Img1
and Img2 can be evaluated as a squared difference of
the response values over the area Ω of the overlap of
the both images, in the following way:

2

2
12)),(),((

Ω

−′′
=
∑
Ω

yxRyxR
F , (2)

where R1(x,y) and R2(x’,y’) are the response values of
the reference image Img1 and the transformed image
Img2, correspondingly.

Figure 3. Original image of a scene (top) and its

response representation (bottom).

The different types of imagery are shown in Figure 4
whereby a wireframe and a principal model of the
same object expose different pixel values
distributions. That makes the mutual mapping of the
images with the direct comparison of their gray
values impossible. On the other hand, the response
images computed according to (1) and shown in
Figure 5 exhibit clear definition of the common
contours of the both objects, i.e., their main feature.

Figure 4. Original images of an object: the

wireframe (left) and the principal (right) model.

Figure 5. Image local response of the wireframe

(left) and the principal (right) model.

Image local response has a few interesting and
helpful properties that can be effectively used in
computationally intensive image mapping problems.
1. As mentioned before, Image response preserves
the main image feature, the contours of the objects in
the scene.
2. Using the matrix of the response values
significantly reduces the amount of information that
has to be processed during the search for the proper
transformation A. Only the higher response values
would participate in the image mapping
computations provided the sparse response matrices
of the images are represented using efficient data
structures.
3. The algorithm for computing ILR shown in Figure
2 can be easily parallelized, so all pixels comprising
the image would be processed concurrently on a
modern GPU, thus making the computational
complexity of the algorithm equal to O(1).
4. Image mapping can be formulated as an
optimization problem whereby the image difference
plays the role of the objective function that has to be
minimized. In this case, ILR provides a smooth bell-
shaped fitness landscape very well suited, e.g., for

WSCG 2010 Communication Papers 281

the evolutionary search where the selection of the
successful partial solutions drives the search towards
the complete optimal solution [Ash06a].
5. In some cases, the model of Image local response
can be effectively used to control local search when
image mapping is formulated as an optimization
problem. In particular, the value of the vector α =
{α1, α2, α3, α4} of the coefficients in the Downhill
simplex method can be adjusted to the landscape of
the objective function thus accelerating the search
[Mas05a]. This particular property of ILR is based
on the fact that in the close vicinity of the optimal
solution, ILR fairly well approximates the objective
function, i.e., the global difference between the
images.

3. COMPUTATIONAL
EXPERIMENTS WITH IMAGE
MAPPING AND IMAGE LOCAL
RESPONSE
The proposed image transformation in the form of
Image local response was tested on a few image
mapping problems [Mas08b]. A sample set of three
2D grayscale images is shown in Figure 6. The
300×300-pixel reference image Img0 contains an
object arbitrarily rotated in the 3D coordinate system.
Two template images are a 178×195-pixel top view
Img1 and a 185×66-pixel left view Img2 of the same
object. The corresponding image responses
computed in accordance with the algorithm given in
section 2 are shown in Figure 7.
The search for the proper mapping from the template
images onto the reference image is formulated here
as an imaging optimization problem solved with a
hybrid evolutionary algorithm [Mas08b]. The
following conditions are present that complicate the
problem:
• two or more template images are used to

represent the different views of the same object;
• the object of the mapping undergoes significant

distortion caused, e.g., by an arbitrary rotation in
the 3D space; such a mapping cannot be defined
with a single transformation vector;

• the difference between the images cannot be
formulated as a single fitness function;
consequently, the search has to deal with the
multiple objectives of the optimization.

In accordance with the proposed approach, the search
is conducted in the response space R, as opposed to
the actual image space I. In order to accommodate
the multiple template images, an advanced
computational model is used. The model includes the
multiple populations, so that every template is
represented by its own independent population. Since
the template objects can undergo significant

distortion, every template object is divided into k
sections, so each section can have its own
transformation vector Vk. This approach corresponds
to a piece-wise approximation of the actual image
transformation A(V).

Figure 6. A sample set of three 2D grayscale

images: reference image (left) and two template
images (right).

Figure 7. Response images of the sample test set.

The computational algorithm further assumes that
every object in the image has some prominent basic
feature in the form of a trunk to which all other parts
of the object are attached. Here, such a feature is
called a “hull”. The transformation of the hull can be
defined by the main vector VA of the general affine
transformation and a complementary vector VD of
elastic deformations. The latter vector describes the
deviation of the actual hull transformation from the
main vector VA.
In its most general form, the entire algorithm works
as two relatively independent phases implementing
the global search and the local correction. The global
search phase attempts to find the optimal solution for
the hull transformation, i.e., the best mapping
between the template hulls and the reference hull.
The local corrections phase attempts to find the
optimal piece-wise approximation of the actual
image transformation using the hull transformation as
its initial approximation. Because of the complex
composite structure of the template model and a two-

WSCG 2010 Communication Papers 282

phase search algorithm, one expression for fitness
function is not sufficient. The search is conducted in
the multi-objective space using the different
expressions for the fitness function at the different
stages of the algorithm.

Figure 8. Intermediate results at the different

stages of the piece-wise mapping.

Figure 9. Result of the piece-wise mapping of the

template objects onto the reference image.

Figure 8 shows some intermediate stages of the
piece-wise mapping of the different object sections
onto the reference image. Figure 9 shows the final
result of the image mapping. As one can see, the
template images were successfully mapped onto the
reference image using the piece-wise transformations
of the original template objects in the response space.
Another interesting and important image mapping
problem is medical image registration. Here,
different slice images obtained with the CT or MR
scan have to be put into the same framework by
computing their mutual transformations. Figure 10
presents two sample MR images of different slices.
The transformation has to be found that maps the

template image Img1 (Figure 10, right) onto the
reference image Img0 (Figure 10, left).

Figure 10. A sample set of MR images: reference

(left) and template (right).

The search for the optimal mapping is conducted
using the proposed approach, in the same manner as
the search for the solution of the previous problem.
Figure 11 shows the response matrices of the both
images, and Figure 12 presents the final result of the
mapping. As one can see, the algorithm was able to
find a fairly good mapping of the template onto the
reference image. Further improvement of the solution
can be achieved with the usage of the adaptive
division of images into sections. That would help
remove certain roughness and discontinuities in the
resulting image transformations.

Figure 11. Responses of the MR images.

Figure 12. Result of the piece-wise mapping of the

template (right) onto the reference image (left).

The results of the computational experiments
presented in this section validate the proposed

WSCG 2010 Communication Papers 283

approach in the form of Image local response and its
applicability to solving complex image mapping
problems.

4. CONCLUSION
The paper proposes a novel image transformation in
the form of Image Local Response (ILR) that can be
used for solving complex image mapping problems.
The proposed transformation brings together two
approaches based on the pixel value distribution and
image features.
Image local response is defined as the average value
of the difference between the transformed and the
original copies of the same image. Here, the
transformation is small, i.e., the components of the
corresponding parameter vector have sufficiently
small unit values.
The response has a few interesting properties useful
in image mapping:
 it significantly reduces the amount of

information that has to be processed during the
search for the correct mapping parameters,

 it retains the main features of the object shape,
its contour,

 the algorithm for computing response values is
inherently parallel,

 response provides a bell-shaped fitness
landscape very well suited for solving image
mapping problem with the evolutionary search,

 the ILR model can be used to effectively control
and accelerate the search for the proper
mapping.

The validity of the proposed image transformation is
shown on complex image mapping problems
formulated as multi-objective piece-wise imaging
optimization problem.

5. REFERENCES
[Ash06a] Ashlock, D. Evolutionary computation for

modeling and optimization. Springer, 2006.

[Bar89a] Barton, G. Elements of Green’s functions
and propagation: Potentials, diffusion, and waves.
Clarendon Press, Oxford, 1989.

[Bro98a] Brooks, R.R., and Iyengar, S.S. Multi-
sensor fusion: Fundamentals and applications
with software. Prentice Hall, New York, 1998.

[Ger02] Gere, J.M., and Timoshenko, S.P.
Mechanics of materials. Nelson Thornes, 2002.

[Ima06a] Image processing toolbox user’s guide. The
MathWorks, 2006.

[Mas05a] Maslov, I.V., and Gertner, I.. Reducing the
computational cost of local search in the hybrid
evolutionary algorithm with application to
electronic imaging. Engineering Optimization 37,
No 1, pp. 103-119, 2005.

[Mas08b] Maslov, I.V. Improving the performance
of Evolutionary algorithms in imaging
optimization. Ph.D. Thesis, City University of
New York, New York, 2008.

[Muc98a] Muchnik, I., and Mottl, V. Bellman
functions on trees for segmentation, generalized
smoothing, matching and multi-alignment in
massive data sets. DIMACS Technical Report 98-
15, February 1998.

[Pit00a] Pitas, I. Digital image processing algorithms
and applications. John Wiley & Sons, 2000.

[Ros76a] Rosenfeld, A., and Kak, A.C. Digital
picture processing. Academic Press, New York,
1976.

[Seu00a] Seul, M., O’Gorman, L., and Sammon,
M.J. Practical algorithms for image analysis:
Description, examples, and code. Cambridge
University Press, Cambridge, UK, 2000.

WSCG 2010 Communication Papers 284

	!_Short-papers.pdf
	A23-full.pdf
	A71-full.pdf
	A83-full.pdf
	A89-full.pdf
	A97-full.pdf
	Offline Signature Verification through Probabilistic Neural Network
	ABSTRACT
	Keywords

	INTRODUCTION
	LITERATURE REVIEW
	OVERVIEW OF WORK
	PREPROCESSING
	FEATURE EXTRACTION
	Discrete Radon Transform (DRT)
	Principle Component Analysis (PCA)
	Probabilistic Neural Network

	EXPERIMENTS & DISCUSSIONS
	Database and Setup
	Performance Evaluations
	Comparison with Other Research Groups’ Techniques

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

	B02-full.pdf
	Introduction
	Characterization of geological objects
	Related work
	Curvature Estimation
	Crest Line Detection

	Geological feature detection
	Pre-processing Step
	Estimation of Curvatures and their Derivatives
	Crest Line Detection
	Directional Filtering

	Results and Validation
	Conclusion

	B11-full.pdf
	B17-full.pdf
	B19-full.pdf
	B29-full.pdf
	B31-full.pdf
	B37-full.pdf
	B47-full.pdf
	B79-full.pdf
	C19-full.pdf
	C23-full.pdf
	C67-full.pdf
	C73-full.pdf
	C89-full.pdf
	C97-full.pdf
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. RELATED WORK
	3. ARGISUBIQ SYSTEM
	3.1 Information source
	3.1.1 Database’s structure
	3.1.2 Information’s selection mode

	3.2 Distributed architecture
	3.3 Visualization metaphors
	3.4 Interaction metaphor

	4. Experimentation and Results
	5. Discussion
	6. Conclusion and future work
	7. REFERENCES
	

	D05-full.pdf
	D11-full.pdf
	D37-full.pdf
	D59-full.pdf
	D79-full.pdf
	D83-full.pdf
	D97-full.pdf
	E07-full.pdf
	E13-full.pdf
	E19-full.pdf
	E29-full.pdf
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. MOTIVATION
	RELATED WORK
	4. SYSTEM ARCHITECTURE AND USE CASES
	Hardware architecture
	Software
	Demonstrating the system’s features
	Virtual tour of archeological sites
	Multiuser interactivity
	5. EFFICIENCY STUDY
	6. AIDING PERSONS WITH MOTOR DISABILITY
	7. RESULTS
	8. ACKNOWLEDGMENTS
	9. REFERENCES
	

	E31-full.pdf
	E53-full.pdf
	E59-full.pdf
	F05-full.pdf
	F23-full.pdf
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. CRYPTOGRAPHIC HASHING AND IMAGE HASHING
	3. IMAGE HASHING SCHEMES
	4. PROPOSED TECHNIQUE
	Embedding Process
	Verification Process
	5. EXPERIMENTAL RESULTS
	6. CONCLUSION
	
	7. ACKNOWLEDGMENTS
	8. APPENDIX
	9. REFERENCES

	F43-full.pdf
	F59-full.pdf
	F97-full.pdf
	G05-full.pdf
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. DEFINITION AND PROPERTIES OF IMAGE LOCAL RESPONSE
	3. COMPUTATIONAL EXPERIMENTS WITH IMAGE MAPPING AND IMAGE LOCAL RESPONSE
	4. CONCLUSION
	5. REFERENCES

	2010:

