
Controlling GPU-based Volume Rendering using
Ray Textures

Matthias Raspe
Institute for Computational Visualistics,

University of Koblenz-Landau
Universitätsstraße 1,

56070, Koblenz, Germany

mraspe@uni-koblenz.de

Stefan Müller
Institute for Computational Visualistics,

University of Koblenz-Landau
Universitätsstraße 1,

56070, Koblenz, Germany

stefanm@uni-koblenz.de

ABSTRACT

In this paper we introduce a novel approach to control different rendering parameters of volume ray casting. Since the intro-
duction of ray casting implementations on programmable graphics hardware, both performance and flexibility have increased
and are able to outperform texture-based techniques. In addition, by using rays for computing the volume integral instead of
proxy geometry one has more control over local settings. Therefore, we employ dependent texture lookups to user editable 2D
textures, thus allowing for interactive parameter setting on a per-ray basis, at a negligible performance overhead on modern
graphics hardware. By those means we are able to control the volume rendering in a way not possible with proxy-based direct
volume rendering and demonstrate some exemplary uses.

Keywords:
Volume rendering, GPU raycasting, Texturing

1 INTRODUCTION

Direct volume rendering (DVR) plays an important role
in visualizing three-dimensional data, with datasets
from modern image acquisition systems in medicine
being the most prominent. Several methods for solving
this computationally demanding problem have been
proposed in the past decades and form the foundations
of many volume rendering systems in a variety of
applications. Engel et al. [EHK+06] provide a detailed
overview of basic and advanced volume rendering
concepts for real time applications.
Among the rendering methods, volume ray casting
and texture-slicing are the approaches that are mainly
used today. While the former performs the volume
integration directly by sampling the data volume,
the latter uses proxy geometry to exploit accelerated
texturing capabilities of graphics hardware. Ray
casting has been proposed long before programmable
graphics hardware (GPU) has been widely available,
with Levoy’s work being one of the first [Lev90].
Therefore, it has been first realized on the CPU only,
whereas the texture slicing approach uses the graphics
hardware. In addition, the quality of ray casting is

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG’2008, February 4 – February 7, 2008
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

usually higher, making it the de-facto standard for
modern medical visualizations.
With the fast advances of graphics hardware technol-
ogy, GPU-only implementations of the ray casting
algorithm have become feasible [KW03] and have
achieved a lot of research since then. The key idea
behind ray casting is to generate rays starting at the
boundary of the volume data and sample the data along
each ray at certain intervals until the ray reaches the
opposing boundary (or some other criterion is met).
For GPU-implementations, the rays are determined
by rendering the front and back faces, respectively, of
some bounding geometry. Integration along the ray is
then performed by multi-pass or – starting with Shader
Model 3.0 hardware – single-pass implementations
using loops in shader programs.

In our work, we propose the control of rendering pa-
rameters at ray level by employing intermediate tex-
tures used as parameter lookup table. Being a ray cast-
ing approach, it is of course not limited to pure GPU
implementations. However, to achieve reasonably in-
teractive performance on commodity hardware we fo-
cus on a GPU-only implementation.
As outlined before, the rays are generated by render-
ing front- and back-facing bounding geometry, respec-
tively. During rasterization the transformed positions of
the vertices are interpolated and stored as RGB colors,
resembling the rays’ directions. Usually, other compu-
tations as gradient estimation, transfer function appli-
cation, etc. are performed during this pass. In addition
to the step size as the basic internal parameter for ray
casting, these computations typically introduce differ-



ent parameters. Controlling them individually across
the volume domain as proposed in this work is usu-
ally not possible, but would provide different possibili-
ties: starting the rays at different intervals for local cut-
away views, decreasing the step size (thus better qual-
ity) only in areas of interest or importance, weighting
optical properties during integration, to name a few.

The remainder of the paper is structured as follows:
In the next section, we will discuss some existing tech-
niques and approaches in the context of our method.
Then, we will present our approach by briefly outlin-
ing the environment used and deriving a classification
of relevant parameters. Also, we will present details on
using the additional, volume-domain texture for con-
trolling the parameters, as well as different user interac-
tion strategies. The rendering performance and results
are then presented in section 4. The paper concludes
with a discussion of the results and further ideas and
improvements left as future work.

2 RELATED WORK
In order to visualize volumetric data, several ap-
proaches have been proposed. Especially ray casting
provides superior quality, but comes at a high computa-
tional cost. The first implementations on programmable
graphics hardware in 2003 by Krüger et al. [KW03]
and Röttger et al. [RGW+03] have introduced such
visualizations to single commodity PCs, particularly
in combination with optimizations such as early ray
termination, empty space skipping, etc. To allow for
a better rendering performance, while maintaining
or even improving the visual quality, the work by
Scharsach et al. [Sch05] introduced several advanced
concepts for GPU ray casting.

Another advantage of ray casting is the easy inte-
gration with geometry, as is particular interesting for
clipping techniques or convincing volumetric effects
in computer games. Although integrating non-volume
data into GPU-based ray casting systems needs some
special handling during ray generation, Kratz et
al. [KSFB06] have established a flexible solution using
the depth buffer. Related to ray–geometry intersection
is the correct rendering while moving the camera
within the volume. Therefore, the bounding geom-
etry generating the rays must not be clipped by the
view-frustum (i.e., near plane), but reset to resemble
the "new" starting point of rays; details can be found
in [SHN+05].

The concept of controlling the ray itself has been fur-
ther extended by Rezk-Salama et al. [RSK06] to al-
low for a flexible exploration of the volume. Espe-
cially in medical datasets, inner structures often cannot
be revealed by editing the transfer function only, due
to the viewpoint dependency of occlusion. Their ap-
proach aligns well with GPU-based ray casting and also
exploits other hardware features to achieve interactive

performance, but does not work on individual rays or
their properties. This idea has been proposed by Malik
et al. [MMG07] whose method evaluates the profile of
each ray through the volume and thus allows for a more
flexible peeling technique.

Another category of research aims at controlling the
rendering of the volume by defining clipping data, usu-
ally consisting of basic geometry like planes, spheres
etc. This quite simple, yet effective technique is in-
tegrated in almost every commercial system and pro-
vides basic interaction functionality. In addition, this
can also be extended to volume data (e.g., segmentation
results) specifying the rendering/clipping of individual
voxels. Although Weiskopf et al. [WEE03] have pre-
sented this approach originally for texture-based sys-
tems, using their concepts in a ray casting environment
is straightforward.

3 OUR APPROACH
In this section we will describe our implementation by
presenting the approach of controlling individual rays
for GPU-based ray casting. Therefore, we will first
outline the environment and some related features of
our framework. In order to allow the control of dif-
ferent types of parameters, we will derive and classify
parameters according to their properties. Subsequently,
details on the ray textures and shader implementation
are provided.

3.1 Concepts
Programming environment The concepts of ray tex-
tures have been implemented using our GPU-based sys-
tem "Cascada". This cross-platform framework focuses
on processing (medical) volume data by applying mod-
ular algorithms running solely on modern commodity
graphics hardware. Using the GPU for such computa-
tions is motivated by the rapid performance increases as
shown in the overview by Owens et al. [OLG+07] or, in
a more specific context, in Langs et al. [LB07].

In order to abstract from the graphics programming
details, algorithms are represented hierarchically: so-
called sequences encapsulate procedures that can range
from simple thresholding to more complex operations
like region growing. Sequences in turn consist of multi-
ple passes, i.e., drawing geometry with assigned shader
programs, usually to offscreen buffers for advanced
processing. Finally, shader programs resemble objects
containing GLSL vertex, geometry, and fragment pro-
grams, together with an automatic infrastructure for
handling uniform parameters on both the CPU and GPU
efficiently, concatenation of shaders, etc. For even
more flexibility, the system uses different design pat-
terns from object-oriented programming to implement
composite structures, amongst others.



The data itself is represented as volumes packed
into RGBA-tuples, thus allowing for direct rendering
into the volume and exploiting the SIMD-like data
types of GPUs. For both backward compatibility and
better performance, the system uses a two-dimensional
variant of the volumetric data as introduced as "flat
3D textures" by Harris et al. [HBSL03]. Our system
also provides CPU equivalents of the aforementioned
sequences and is therefore able to transfer data between
graphics and main memory interchangeably. To this
end, Cascada uses a "lazy evaluation" policy to avoid
unnecessary bus communication.

Classification of parameters As mentioned before,
we are looking for means to control volume rendering
parameters down to the ray level. Of course, this im-
plies that we can also build groups of rays for equal
properties, thus simplifying user interaction. Thereby,
the possible levels of control range from a single ray up
to all rays at once, i.e., standard ray casting.
Apart from the level of control, we need to look at the
parameters’ type and semantics. One basic parameter
in ray casting is the step size specifying the interval at
which the volume is sampled along the ray: the larger
the step size, the coarser the sampling, and vice versa.
Another set of parameters closely related to the ray it-
self is the offset specifying the valid interval of sample
positions along the ray. Figure 1 illustrates those geo-
metric parameters, with the offset parameters defining
only two intervals for clarity in the example.

in
t = 0

out
t = 1

in1
t = 0.14

out1
t = 0.59 in2

t = 0.71 out2
t = 0.88

stepsize
d = 0.071

in
t = 0

out
t = 1in1

t = 0.22

out1
t = 0.63

in2
t = 0.66 out2

t = 0.91

stepsize
d = 0.167

Figure 1: Controlling geometric parameters per ray: step
size (blue dashes) and two intervals ("inN/outN") are set
individually, thus sampling the volume along different in-

tervals (thick black lines)

In contrast to the ray geometry, another class of pa-
rameters can be defined as value parameters that con-
trol the computations during integration (i.e., within the
ray casting loop). The following list names a few typi-
cal parameters with increasing complexity:

• threshold for early-ray termination (ERT)

• weighting directional properties, e.g. gradients

• combining optical properties by blending different
rendering modes (MIP, transfer functions, etc.)

As well as the geometric parameters described be-
fore, the uses are not limited to the examples listed here.
In addition, both sets of parameters can be combined to
increase, for example, the quality of early terminated
rays by reducing the step size for low ERT thresholds.

screen
ray texture

Figure 2: Different rendering modes: initial view (left),
view aligned (middle) and volume aligned (right) applica-

tion of ray textures to transformed volume.

Controlling the texture In order to edit the ray texture
during run time, there are two different approaches, no
matter if the texture is set up automatically or via di-
rect user input. As depicted in figure 2, the texture can
be aligned with the screen or with the volume. For the
former, the data in the texture is set in viewport coordi-
nates, i.e., keeping the texels at fixed positions while
changing the volume rendering in terms of rotation,
position, etc. We will call this method view aligned,
also to emphasize the analogy to view aligned slices
in proxy-based volume rendering. The second method
maps the additional texture to the bounding geometry of
the volume. This way the ray texture is transformed to-
gether with the volume and represents a volume aligned
texture mode. Note the difference in the sampling of the
volume, indicated by the different dashes in the exam-
ple, with the ray texture specifying the step size.

Shader handling Our approach focuses on a GPU-only
implementation of ray casting which means that the
computations are performed by shader programs. These
programs are compiled once and loaded for drawing the
geometry. Thus, the functionality of a shader cannot
be changed without loading a recompiled program. To
minimize the overhead of providing several complete
shader programs we will utilize two different strategies.
First, our system supports the concatenation of shader
code fragments to allow building complex shaders from
small components, especially as GLSL does not sup-
port include directives. Using this approach, we can
use different modules integrating the parameter types
introduced before into a default ray casting fragment
program. Depending on the user’s selection the corre-
sponding shader is assembled and loaded.
The second method does not employ the assembly of
shader programs from small components, but uses one
complete shader program. The different "semantics"
(i.e., controlling the step size, ERT threshold, etc.) are
used directly in the code by accessing different textures
(or channels thereof) that have been initialized accord-
ingly. In section 3.2 we will show some example code
and discuss the different approaches.



3.2 Implementation
In the preceding section, several use cases for the con-
cept of ray textures have been outlined. From that, the
different levels of complexity of the parameters should
have become clear, thus requiring appropriate controls
for the user. We will first describe the implementation
details and discuss different approaches for mapping
the user input to the parameters.

Setup In our framework, we already have some basic
tools for working with and rendering volume data. In
addition to the data itself represented as volume and ar-
ray objects, respectively, the system also provides the
corresponding texture objects for wrapping OpenGL
states, handles, etc. Also mentioned before, we uti-
lize "flat 3D textures" that unfold volumetric data into
a large 2D texture, also to allow for fast rendering into
volume data. Although this introduces some additional
code for address translation it still outperforms 3D tex-
tures on current hardware for basic interpolation (for
details see Langs et al. [LB07]).

Figure 3: Color-coded textures to generate rays: starting
positions (left), end positions (middle) and resulting nor-

malized vectors (right).

The ray casting itself is implemented as a typical
two-pass algorithm: the first pass renders the front
faces of the bounding geometry (here: cube scaled to
volume proportions) into an offscreen buffer, convert-
ing the fragments’ positions into RGB colors. Note that
our approach is also applicable to optimized bounding
geometry as proposed by Scharsach et al. [Sch05],
because only the rays’ parameters are controlled,
independent of how the rays are computed. These
starting positions are given in volume coordinates,
resulting in the typical color cube (fig. 3). The sec-
ond pass performs the remaining computations by
rendering the back faces, sampling the volume along
the calculated rays and accumulating the values, do
various calculations, etc. This shader program is the
main part of the ray casting algorithm and will be
augmented with the additional texture for controlling
the individual rays. In addition to extending the shader
code as shown in figure 4, we also prepare a 2D texture
initialized as needed for the further steps.

Application As described in section 3.1, both control-
ling options have the advantage of providing a fast and
simple setup and manipulation on the application side,

and being easily accessed during the ray casting process
in the shader program. The two approaches differ only
slightly in terms of shader implementation, so that the
whole procedure can be summarized as follows:

1. initialize 2D texture in size of the viewport

2. manipulate the texels according to user input from
window coordinates (optional)

3. update the texture and load it to the GPU

4. during ray casting (i.e., in the second render pass):

(a) view aligned: access the ray texture using the
window relative coordinates

(b) volume aligned: access the ray texture using the
starting position of the ray

5. control the ray parameters within the shader (e.g.,
within the loop)

The first step should be clear and does not need fur-
ther explanation. If the ray texture should be initialized
with pre-computed results, the second step is optional.
In case the step is needed, we have implemented a
circular neighborhood of the current pixel position,
with varying size and fall-off. Taking the basic idea of
ray textures to controlling rays from a single ray to all
rays at once one step further, we have also implemented
a hierarchical approach. Therefore, editing the ray
texture can be performed in different resolution levels:
using a coarser level will result in many rays being
changed at once, and vice versa. However, this permits
only square areas to be edited due to the very nature
of texture mip-mapping. Together with the "manual"
approach, this allows for further customization of the
editing area, with results being presented and discussed
in section 4.2. The following step transfers the changes
to the graphics hardware, so that this has to be done
per frame. The subsequent steps are performed within
the shader and will be described in the next section in
detail.

Shader implementations As mentioned before, ac-
cessing the texture for the two methods is done in the
second pass of the ray casting algorithm. For the view
aligned mode, the ray texture is simply indexed us-
ing the relative window coordinate of the current frag-
ment via GLSL’s gl_FragCoord. When using vol-
ume aligned access the same texture coordinates as for
the color-coded ray positions from the preceding pass
(i.e., the fragments from rendering the bounding geom-
etry) are used for fetching the corresponding texel from
the ray texture. This is shown in the example code in
figure 4 for editing the step size. Note how the current
ray texture value can be used differently by using tex-
ture channels, sets of ray textures, etc.



uniform sampler3D volTex; // volume data
uniform sampler2D rayTex; // control texture
uniform sampler2D startTex; // ray start pos.
uniform vec2 rcpWinSize; // reciprocal win size
varying vec3 texcoord; // ray stop positions
uniform float stepsize; // default: 1/256.0
uniform bool volAligned; // mode (default: true)

void main()
{
// compute ray
vec2 tc = gl_FragCoord.xy * rcpWinSize;
vec3 raystart = texture2D(startTex, tc).xyz;
vec3 ray = raystart - texcoord;

vec4 control;
if ( volAligned )
control = texture2D(rayTex, raystart.xy);

else
control = texture2D(rayTex, tc);

// ...

// set step size from first channel of rayTex
stepsize = max(0.00390625, control.x);

// integrate
for (float t = 0.0; t <= ray_len; t += stepsize)
{
vec3 pos = texcoord + t * ray;
vec4 sample = texture3D(volTex, pos);

// ...
}
// weight result from ray texture
gl_FragColor = finalcolor * control.y;

}

Figure 4: GLSL shader code (simplified) showing the use
of ray texture within a standard ray casting shader.

Implementing the functionality itself is also straight-
forward, as will be shown with some examples that ad-
dress both classes of parameters (see section 3.1). For
the first example, we show the effect of decreasing the
step size in regions of interest to improve rendering
with an initially low step size (1/10 instead of 1/256).
Therefore, the user draws into the texture to lower the
value stored in one of the channels. This value is then
read in the shader to set the step size which is used as
increment of the inner loop. Figure 5 shows a vessel
data set (3842×72, 16 bit) with an accordingly edited
ray texture to increase rendering accuracy in regions of
interest.

Figure 5: Decreasing the step size for a region of inter-
est (left part of vessel) in an example dataset. The inset

depicts the corresponding ray texture.

The second example (figure 6) blends two shading
modes by using a value parameter for linear interpola-
tion. Thus, the user is enabled to control the exact ap-
plication of transfer functions, simple shading, or other
techniques on a per ray basis.

Figure 6: Blending a one-dimensional transfer function
and simple accumulative shading by using value parame-

ters, with the inset showing the interpolation weight.

4 RESULTS
In this section we will look at the results of our ap-
proach, both in terms of rendering performance and
level of control. All implementations and tests have
been done using our C++/GLSL GPU-framework "Cas-
cada", running on an Intel Core2 Duo (2.4 GHz) with
2 GB RAM and an Nvidia Geforce 8800 GTS under
Windows XP. The viewport size for the ray casting has
been 5122 pixels, with 256 loop iterations in the default
setting. Ray casting is done by a two-pass approach as
described in section 3.2, without further optimizations.
The data set used in some figures and the timings below
is an MRI volume of 2563 voxels, with 16 bit floating
point scalar values per voxel (represented as IEEE-754r
compliant type "half"). The rendering performance is
averaged over a full rotation of the volume to account
for viewpoint dependency, with the volume covering at
least 90% of the viewport.

4.1 Performance
We have stated that the overhead for the additional tex-
ture lookup is negligible on current graphics hardware.
Aside from the number of the pixels used for casting
ray, the rendering performance is mainly influenced by
the number of iterations due to the multiple texture
fetches along the ray. Accessing the ray texture imposes
only one additional texture fetch per fragment and does
not contribute to the overall performance, as can be seen
by the table below (static ray texturing).

Of course, while editing and reloading the texture as
described in the preceding section, the performance is
limited by the CPU–GPU communication bottleneck.
Note that this includes setting a whole neighborhood of
values, not only the pixel currently "selected", so that
there is some additional computation performed by the
CPU. In order to reduce the performance hit by updat-
ing the texture per frame, the transfer should be limited



to the actually edited region of the texture, of course.
In addition to the initial resolution of the ray texture,
we have used the hierarchical approach for updating an
area of rays comparable to that of direct update. This re-
sults in a clear performance gain compared to working
with an equally large area of the full resolution. How-
ever, a detailed control of the neighborhood with arbi-
trary shapes is not possible when using the hierarchical
approach.

Rendering Mode Average FPS
Default ray casting (RC) 61

RC with static ray texturing 59
Direct update 9

Hierarchical update 33
Table 1: Average performance for standard ray casting,
additional ray textures, and update strategies, respectively

Although it is quite difficult to compare the two
classes of parameters (geometric and value, respec-
tively) due to their different usage, we have tried to
measure them in equally complex scenarios. Therefore
we decreased the step size in equal steps resulting
in an increased number of loop iterations. For the
value parameters we have increased the threshold
for early ray termination likewise, which yields also
more iterations (due to the delayed termination of the
loop). As expected, the performance is not related of
the direct type of parameter, but to its use within the
shader.

4.2 Control
The two methods of transforming the ray texture led to
different behaviour while editing the texture. For the
view aligned approach, the functionality can be inter-
preted as looking through a "window" of altered prop-
erties. This is similar to the idea of ray casting as image
space method, where rays are cast through the view-
ing plane and sample the volume along the ray (usu-
ally within the volume’s boundaries). As expected, this
works only intuitively for fixed viewing positions due to
the view-dependency: for example, an increased level
of detail applied to a specific region of interest will af-
fect other regions once the camera has moved.

A more intuitive control is to transform the ray
texture with the volume (volume aligned). This ap-
proach counteracts to some degree with the ray casting
concept where the rays are all in viewing direction.
Their properties, however, are changed only partially
depending on the visibility and transformation of the
edited ray texels.

Thus, the former method can be used, for example,
as a tool for inspecting parts of the volume, analog to
a filter being applied to data. As both can be inter-
changed easily during rendering, manipulations of the

Figure 7: Comparison of the two editing modes: "view
aligned" (top) and "volume aligned" (bottom). Note the

inset illustrating the different effects

texture can be made on-the-fly in one view or the other.
Figure 7 shows the different results for the volume and
view aligned mode, respectively.

5 CONCLUSION AND FUTURE
WORK

We have presented the concept of ray textures for
controlling parameters of individual rays in volume
rendering. Therefore, we have classified parameters
as geometric and value properties that can be edited
and used separately or in combination. We have also
described two modes of applying the ray texture:
view aligned or volume aligned, which differ only
slightly in terms of implementation and can thus be
used interchangeably during run time. In addition to
some neighborhood of the current position allowing for
changing a whole set of rays at once, we have shown
using a hierarchical approach is more efficient, if some
simple quadratic neighborhood is sufficient.

We would like to investigate further on this concept
by extending it to data-driven ray textures. That way the
textures could be initialized with data from the volume
itself to allow guided editing or adaptive performance
control. Therefore, the volume would be rendered first
to an offscreen buffer and from this some relevant infor-
mation (e.g., gradients, silhouettes) could be extracted
and used in different contexts. Also, we would like to
investigate other interaction modes and evaluate them
in various applications. Yet another extension would be
to apply the ray texture concept to offscreen rendering,
as used for processing data in the context of image pro-
cessing, data analysis, etc.



ACKNOWLEDGEMENTS
We would like to thank all the students involved in the
development of our GPU-based framework, especially
Guido Lorenz for his great contribution to "Cascada".
Also we would like to thank our colleagues for all the
useful discussions and comments on the topic. Finally,
we thank the reviewers for their feedback helping to
improve the paper.

REFERENCES
[EHK+06] Klaus Engel, Markus Hadwiger, Joe M. Kniss,

Christof Rezk-Salama, and Daniel Weiskopf.
Real-Time Volume Graphics. A K Peters, 2006.

[HBSL03] Mark J. Harris, William V. Baxter, Thorsten
Scheuermann, and Anselmo Lastra. Simu-
lation of cloud dynamics on graphics hard-
ware. In HWWS ’03: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 92–101, 2003.

[KSFB06] Andrea Kratz, Rainer Splechtna, Anton L.
Fuhrmann, and Katja Bühler. GPU-Based High-
Quality Hardware Volume Rendering For Vir-
tual Environments. In International Workshop
on Augmented Environments for Medical Imag-
ing and Computer Aided Surgery, 2006.

[KW03] Jens Krüger and Rüdiger Westermann. Acceler-
ation Techniques for GPU-based Volume Ren-
dering. In Proceedings of IEEE Visualization
2003, pages 287–292, 2003.

[LB07] Andreas Langs and Matthias Biedermann. Fil-
tering video volumes using the graphics hard-
ware. In Bjarne K. Ersbøll and Kim Steenstrup
Pedersen, editors, SCIA, volume 4522 of Lec-
ture Notes in Computer Science, pages 878–887.
Springer, 2007.

[Lev90] Marc Levoy. Efficient ray tracing of volume
data. ACM Trans. Graph., 9(3):245–261, 1990.

[MMG07] Muhammad Muddassir Malik, Torsten Möller,
and Meister Eduard Gröller. Feature peeling. In
Proceedings of Graphics Interface 2007, pages
273–280, May 2007.

[OLG+07] John D. Owens, David Luebke, Naga Govin-
daraju, Mark Harris, Jens Krüger, Aaron E.
Lefohn, and Timothy J. Purcell. A survey of
general-purpose computation on graphics hard-
ware. Computer Graphics Forum, 26(1):80–113,
2007.

[RGW+03] Stefan Röttger, Stefan Guthe, Daniel Weiskopf,
Thomas Ertl, and Wolfgang Strasser. Smart
Hardware-Accelerated Volume Rendering. In
Proceedings of EG/IEEE TCVG Symposium on
Visualization VisSym, pages 231–238, 2003.

[RSK06] Christof Rezk-Salama and Andreas Kolb. Opac-
ity Peeling for Direct Volume Rendering. Com-
puter Graphics Forum (Proc. Eurographics),
25(3):597–606, 2006.

[Sch05] Henning Scharsach. Advanced GPU Raycasting.
In Proceedings of CESCG 2005, pages 69–76,
2005.

[SHN+05] Henning Scharsach, Markus Hadwiger, André
Neubauer, Stefan Wolfsberger, and Katja Büh-
ler. Perspective Isosurface and Direct Volume
Rendering for Virtual Endoscopy Applications.
In Proceedings of EuroVis/IEEE-VGTC Sympo-
sium on Visualization 2006, 2005.

[WEE03] Daniel Weiskopf, Klaus Engel, and Thomas Ertl.
Interactive Clipping Techniques for Texture-
Based Volume Visualization and Volume Shad-
ing. IEEE Transactions on Visualization and
Computer Graphics, 9(3):298–312, 2003.


