
Accelerating Rendering of NURBS Surfaces by Using Hybrid
Ray Tracing

Oliver Abert Markus Bröcker Rafael Spring
Institute for Computational Visualistics

University of Koblenz-Landau
Universitätsstraße 1

56070, Koblenz, Germany
abert@uni-koblenz.de mbroecker@uni-koblenz.de spring@uni-koblenz.de

ABSTRACT

In this paper we present a new method for accelerating ray tracing of scenes containing NURBS (Non Uniform Rational
B-Spline) surfaces by exploiting the GPU’s fast z-buffer rasterization for regular triangle meshes. In combination with a
lightweight, memory efficient data organization this allows for fast calculation of primary ray intersections using a Newton
Iteration based approach executed on the CPU. Since all employed shaders are kept simple the algorithm can profit from older
graphics hardware as well. We investigate two different approaches, one initiating ray-surface intersections by referencing
the surface through its child-triangles. The second approach references the surface directly and additionally delivers initial
guesses, required for the Newton Iteration, using graphics hardware vector interpolation capabilities. Our approaches achieve a
rendering acceleration of up to 95% for primary rays compared to full CPU ray tracing without compromising image quality.

Keywords: Ray Tracing, NURBS, Realtime Ray Tracing, Hybrid Ray Tracing, Object Intersection Buffer

1 INTRODUCTION
Plain ray tracing itself always has been very popular
for realistic image synthesis. Recently, it even received
more attention by scientists, as it is now possible to ray
trace non-trivial scenes in real-time on a single com-
modity PC. Unfortunately, such ray tracing systems
mostly work on data stored as simple triangle meshes.
Typical drawbacks of triangular mesh representations
are visible edges at surface silhouettes as well as very
large primitive counts depending on the scene.

NURBS surfaces, however, have become the de facto
standard in most CAD/CAM applications, where they
are, for example, especially vital to the automobile in-
dustry. Virtual prototypes are nearly always developed
using NURBS surfaces. However, rendering such data
using common approaches, i.e., rasterization or stan-
dard ray tracing, requires the conversion into triangular
meshes. On the one hand, such an offline conversion is
often expensive and error prone, but on the other hand
the rendering process afterwards is relatively fast. Nev-
ertheless, it would be desirable to render NURBS data
sets directly and fast. Recently, Abert et al. [AGM06]
presented the ray tracing system Augenblick which is
able to ray trace complex scenes consisting of NURBS

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG’2008, February 4 – February 7, 2008
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

surfaces with several frames per second. Obviously,
ray tracing NURBS surfaces still can be considerably
slower than ray tracing triangles.

In order to further reduce the speed gap, we extended
the existing system with a hybrid ray tracing module.
This module will speed up the NURBS tracing process
by completely avoiding acceleration data structure in-
tersection tests for primary rays. This enhances SIMD-
coherence and additionally minimizes the total number
of performed intersection tests (see table 6). Addition-
ally, providing optimal starting values for the Newton
Iteration, which is the core of the intersection algorithm
(see [AGM06, PMS+99] for more details about the ac-
tual intersection test), will reduce the time for a single
intersection test itself.

Hybrid solutions for ray tracing triangles (see sec-
tion 2) already exist, however, the combination with
NURBS surfaces is novel. Interestingly, hybrid ray
tracing is more beneficial to NURBS scenes than to tri-
angle based scenes. Since the NURBS intersection test
is extremely expensive compared to simple triangle in-
tersections, every unnecessary intersection test avoided
is worth much more compared to classical triangle tests.

The underlying ray tracing system Augenblick is a
cross platform application, optimized especially for
massively parallel execution on both, SIMD units and
multiple cores, delivering several frames per second on
complex NURBS scenes on a single PC.

2 RELATED WORK
Ray tracing as well as (general purpose) GPU devel-
opment have been experiencing a lot of research since

their introduction. In this section we shortly summa-
rize other researchers’ work that is closely related to
our own.

2.1 Hybrid Ray Tracing
For conventional ray tracing it is mandatory to employ
an hierarchical acceleration data structure. Such a data
structure reduces the complexity for ray-scene intersec-
tion tests from O(n) to O(logn), where n is the num-
ber of primitives. Nevertheless, a significant amount of
computation time is spend for the traversal of this data
structure (sometimes up to 70% of the total processing
time). Another approach was introduced with hybrid
ray tracing. Primary ray first-hit calculations can be
replaced by rasterization using the graphics hardware.
This was already described by Lamparter et al. in 1990
[LMW90] and by Paik in 1999 [Pai99]. Due to the
enormous advances in the field of hardware-accelerated
graphics, this shortcut works well even for scenes with
high polygon count (though it is known that rasteriza-
tion has O(n) complexity). Thus most standard- or es-
pecially gaming-scenes do not have a primitive count
critical to rasterization speed.

In 2005 Beck et al. [BBDF05] presented a GPU-CPU
hybrid ray tracing framework targeting at interactive
framerates for medium- and high-complexity scenes.
They used the GPU to compute primary ray intersec-
tions along with shadow maps for simple shadows
and standard Phong shading. Additionally, GPU and
CPU rendering calculations were computed with a
one-frame-offset, thus enabling parallel execution
with minimal synchronization overhead. While they
achieved good results for mostly diffuse scenes, their
approach suffered from less efficient secondary ray
computations on the CPU, resulting in sub-interactive
rendering times for scenes with lots of reflective
materials. Finally, only triangles were supported as
geometric primitive.

Two years later, Reiter et al. [HSHH07] presented a
kd-tree based ray tracer running entirely on the GPU.
In contrast to [BBDF05], all rays (i.e., primary and
secondary as well as shadow rays) were computed on
the GPU. They were able to achieve nearly real time
frame rates on an ATI X1900 XTX graphics board for
non-trivial scenes. Limitations were inflicted by non-
coherent secondary rays, which reduced the frame rate
considerably. Again, only triangles were supported.

2.2 NURBS Ray Tracing
In general all ray-NURBS intersection algorithms work
either iteratively or by subdivision, since a universal an-
alytic solution does not exist.

The work of Kajiya [Kaj82] and Toth [Tot85] in 1982
and 1985 respectively, solved the problem generally.
However, as they employed arithmetics with complex
numbers in an iterative manner, their approaches were

very slow, especially the latter one, and therefore un-
suitable for real time applications.

Sweeney et al. [SB86] used a subdivision based tech-
nique to compute the intersection point. By refining the
initial control point mesh successively, they were able
to perform the intersection test with a triangle generated
from such a refined part of the mesh.

A different method, called Bézier Clipping, was sug-
gested by Nishita et al. in [NSK90]. By exploiting the
convex hull property of Bézier surfaces, whole regions
of the surface could be found that are known not to
intersect the ray. Unfortunately, his approach can not
be mapped to more complex B-Spline surfaces directly,
since the Bézier convex hull property does not hold for
them. 1 However, it would be possible to convert the
NURBS surfaces to a Bézier representation and apply
Bézier clipping for them. We do not consider this ap-
proach since high degree Bézier surfaces are very inef-
ficient due to their global control property.

In contrast, Martin et al. [MCFS00] employed tiny
bounding volumes covering very small regions of the
parametric domain. For these regions, they success-
fully assumed that any enclosed value will suffice as an
initial guess to start off the Newton Iteration. As their
approach scales nicely with SIMD units, this approach
was adopted for the Augenblick ray tracing system.

3 GENERAL APPROACH
In this section, we will shortly summarize the steps
employed in our approach. We present two variants of
our hybrid ray tracing technique. For convenience we
call the first variant ID processing (i.e., storing surface
ID numbers in the graphics buffer), while the second
is called u/v processing (i.e., additionally storing uv
parameters to start the Newton Iteration). We store
triangle meshes as well as various kinds of free-form
surfaces together in one scene while both primitive
types benefit from the hybrid technique.

Standard ray tracing approaches, which do not em-
ploy the GPU for rendering, mostly operate on scene-
data stored in main memory only. Because our system
benefits from the high geometry throughput- and fill-
rates of today’s rasterization hardware, geometry data
must be available to the GPU during rendering and thus
has to be loaded into GPU memory as a step previous
to rendering.

As all current rasterization hardware only supports
triangles as geometric primitives, we cannot transfer
free-form models to GPU memory directly, but must
first triangulate every free-form model. Since this
model-tessellation is a costly operation requiring
sophisticated algorithms for good results, and due

1 The stronger B-Spline k-point convex hull property can not be ex-
ploited that efficiently for this algorithm, though it might be an inter-
esting option

to the fact that we are rendering rigid models only,
these computations are performed offline during
scene loading. Since triangulated models are just an
approximation, this entails small errors in the resulting
rasterization output and will be described in sections
5.3 in detail.

Note, that the original free-form data must not be dis-
carded, since it is still required for the intersection test.

Along with the regular triangle meshes provided by
scene data, we store the triangulation output in GPU
memory using display lists. Additionally, we provide
u/v parameter data (i.e., u/v NURBS surface parameters
to start the Newton Iteration) for every triangle corner
using regular texture coordinates. When choosing u/v
processing this is necessary for further processing of
the free-form surfaces in the rendering step.

During scene rendering, our approach operates on a
per-frame basis. All triangle meshes, now available in
GPU memory, are at first rasterized into two buffers
using the multiple render targets capability of today’s
graphics boards. Since we use the GPU only for gen-
erating first-order hits and interpolating u/v vector data,
all remaining computation steps are done by the CPU,
using the buffer’s contents. GPU buffer-content thus
has to be transferred into main memory as an interme-
diate step.

Subsequentially, we process the acquired buffer data
and calculate actual ray-primitive intersections. These
operations highly depend on the employed variant: The
ID processing method only uses the contents of the
color-buffer for primary-hit-information. However, for
intersecting rays with freeform-surfaces using Newton
Iteration, additional parametric u/v vector-data must be
provided for each ray-patch intersection. u/v parame-
ters reference a point on the surface to serve as an ap-
proximate guess for the actual ray-patch intersection.
This vector is thus acquired in an additional function-
call when choosing ID processing.

Since we did already pass the parametric u/v data to
the GPU using texture-coordinates, correctly interpo-
lated u/v data is available for each pixel (or ray, respec-
tively) in an additional buffer, too. The u/v processing-
variant processes data from this buffer and passes the
resulting intersection guesses to the Newton Iteration.

Note, that the tessellated models are used solely for
accelerating the overall ray tracing process. Resulting
images do not contain the tessellated models as ren-
dered geometry. Hence, the goal of the tessellation
process is to generate meshes that are most suitable for
accelerating NURBS ray tracing rather than generating
high-quality smooth meshes for direct screen rendering.

4 PREPROCESSING

In this section the required preprocessing steps are fur-
ther outlined.

4.1 Free-Form Model Tessellation
Triangle-meshes can only serve as a linear approxima-
tion to continuously curved surfaces. Naturally, when it
comes to tessellation, this involves a trade-off between
tessellation accuracy and primitive count. This trade-
off involves some more significant aspects in the con-
text of our hybrid ray tracing approach. We will focus
on these in this section.

Triangulating coarsely will obviously result in a
smaller mesh size, which saves on overall memory
resources. Of course, for rasterization hardware, less
triangle transformations implies faster rendering, too.
For the ID processing-mode, which processes every
triangle in the rasterized image, a coarser mesh results
in less cache misses, since rasterized triangles, once
needed for intersection calculations, reside in L1 cache
and can often be reused for following ray intersections.

However, choosing a too coarse tessellation does not
allow for accurate and efficient ray-patch intersections.
More accurate guesses lead to more efficient iterations
(and thus ray-surface intersections), whereas inaccurate
guesses cause a render time penalty or even iteration di-
vergence leading to image artifacts. Since triangles can
only store accurate u/v parameters on a per-vertex ba-
sis, the guesses will become too inaccurate when using
extremely coarse meshes.

To avoid seam holes between surfaces, triangulation
should be computed as a per-model operation rather
than tessellating each surface individually. In section
5.3 we describe possible artifacts resulting from tessel-
lation and our approaches to avoid these errors.

4.2 Data Preparation
Necessary data for the rasterization process is trans-
fered to GPU memory upon scene loading. Each rigid
model is stored in a display list containing geometry-,
color- and u/v-coordinate-information. For both, trian-
gle models as well as tessellated free-form models, the
geometry information is passed straightforward as ordi-
nary triangles.

The transferred triangle colors are dependent on the
chosen variant: For ID processing (see figure 1) a trian-
gle color represents the 32-bit triangle’s main memory
address for both regular triangle meshes or tessellated
NURBS models.

For u/v processing (see figure 2) triangle colors
for tessellated NURBS models refer directly to the
memory address of the parent NURBS surface (the one
it was tessellated from).

5 RUNTIME COMPUTATIONS
In this section we will give an in-depth description of
the steps performed on a per-frame basis which differ
from standard ray tracing.

Figure 1: Rasterization output: The color buffer show-
ing a scene with triangle-colors representing their ad-
dress in main memory.

Figure 2: Rasterization output: The auxiliary buffer
showing a tessellated teapot with colors which are u/v
coordinate values, interpolated over the triangle’s cor-
ners. U values are encoded in red, v values in green.

5.1 Scene Rasterization and Read-back

Acquiring primary-ray intersections through rasteri-
zation techniques is beneficial in two ways: First of
all, costs for traversing the acceleration data structure
are completely avoided. Furthermore, for each (non-
background) pixel only a single intersection test is
required, exploiting the z-buffer filled during rasteriza-
tion. This way a significant number of intersection tests
can be saved, as can be seen in section 6. Note, that
in general no traversal scheme for bounding volume
hierarchies can guarantee only a single intersection test
per pixel.

In order to be able to separate the colors for both the
object-reference and the parametric u/v-coordinates (if
desired) into different buffers in one pass, we use the
multiple render targets capability of today’s graphics
hardware. As mentioned before, rendering to more than
a single buffer is only required for u/v processing. ID
processing uses the standard, shaderless fixed-function-
pipeline only.

However, to keep the overall process simple, our sys-
tem uses a single shader, always rendering reference-
and u/v-information into two buffers simultaneously.
Rasterization speed is hardly affected, therefore it is
not a limiting factor to overall processing speed. Like-
wise for sake of simplicity, u/v coordinates are always

passed to the GPU, even if the underlying processing
variant is not using them in the intersection step.

Camera and projection information for the rasterizer
is simply drawn from the original scene data, since the
ray traced and the rasterized scene need to be identical
from the camera’s point of view, obviously.

After the rasterization step, buffer data is read back
into main memory. For both the intersection and the u/v
coordinate-buffer we use data-aligned memory blocks
for further SIMD-friendly processing.

5.2 Calculating ray-patch intersections
By processing the acquired buffer data, exact ray-
primitive intersections are calculated:

As in standard ray tracing of primary rays, the image
is rendered tile-wise using multiple threads, which ex-
ploits cache coherence and the power of modern com-
puters with several cores per system. The tile size is
variable, however we found a tile-size of 32x32 pix-
els to be the most efficient setting for the majority of
scenes and hardware architectures. For each tile, four
rays corresponding to four pixels in buffer-memory are
processed simultaneously since all operations are per-
formed using SIMD instructions.

The intersection-buffer stores 32-bit-wide RGBA
color values, which represent memory addresses of
the same width. Therefore, four references can be
held in a SIMD-vector. The buffer that stores the
interpolated u/v-values holds a 128-bit data word for
each pixel. Two 32-bit words are used for floating
point coordinate values of both parametric coordinates.
64-bit are wasted, however, we still found this to be
the fastest solution, since a slightly higher memory
consumption trades off well compared to costly data
transformations.

From this point on, the algorithm basically consists of
two successive steps of which the first differs depending
on whether ID- or u/v processing is chosen.

Step one prepares all data for fast and unified inter-
section.
ID-processing The colors of the primary hit image
reference triangle addresses in main memory. Trian-
gles that were generated from free-form surface models
have u/v information stored at each vertex. First, all of
the packet’s pixels acquire initial guesses for the New-
ton Iteration. This is implemented using polymorphic
function calls. It immediately returns for regular trian-
gles. In any other case it computes the average of the
u/v values associated to the triangle vertices. Second,
the four reference values taken from the intersection-
buffer are replaced by the address values pointing to the
parent surface of each referenced triangle. The parent
surface for a regular triangle, for example, is the tri-
angle itself, since it was provided by scene data itself.
The parent surface for a triangle generated by tessella-
tion is the surface it was tessellated from (see figure 3

for an illustration of this). Processing surface data this
way greatly enhances SIMD coherence: Because whole
free-form surfaces (or their tessellated counterparts, re-
spectively) are more likely to cover bigger chunks of
space in the rasterized image, variance of references in
a SIMD-vector is reduced. Often, four pixels in a block
refer to the same patch which can then be intersected
by at best four rays in parallel with only one call to the
intersection routine.

Figure 3: Triangles tis with their parent surface s.
u/v coordinate values are stored for each corner. A
packet of primary rays r1..4 hitting both of the triangles
whereas the (also hit) parent surface s is the same for
both triangles.

u/v-processing A 4x4 matrix containing four u/v
values is read from the u/v-buffer and then transposed
to acquire the initial guesses for a packet of four
rays. Since with this variant, all tessellated parent
surfaces are rasterized directly, colored with their
32-bit address, no further processing is necessary to
obtain parent surfaces.

In step two the actual intersection is calculated. At
this point, all values in our reference buffer are point-
ers to surfaces that can be intersected right away. The
polymorphic intersection method is then called for each
distinct reference in the SIMD-packet. Of course, any
arbitrary intersection algorithm can be employed for
the different geometric primitives. We employed the
Möller-Trumbore algorithm [MT97] for triangles and
the approach by Abert et al. [AGM06] for NURBS sur-
faces.

The overall algorithm used to calculate the exact pri-
mary hits of rays in a tile using the rasterization output
is shown in Algorithm 1. Note that the setupPacket()
method is polymorphic and differs on the selected mode
- either ID Processing or u/v Processing.

5.3 Artifact handling
Visible artifacts mainly originate from the tessellation
of free-form surfaces. Since free-form surfaces are con-
tinuously shaped and triangle meshes are a piecewise
linear approximation, there are always cases in which
rasterized primary hits do not exactly match the ray-
traced hits. If that was not true, there would have been
no reason to ray trace the scene in the first place. Missed
hits at convex surface boundaries do not impose a prob-
lem: if the background was drawn instead of a surface,

as we can simply use standard ray tracing in that case.
Concave surfaces are different: there might be cases in
which a hit is indicated by rasterization while the ac-
tual free-form surface has a slight offset in one direc-
tion, like illustrated in figure 4. In this case, responding
to the rasterization output, an intersection test is per-
formed, resulting in iteration divergence. However, if
another surface, lying behind, is actually hit by this ray,
we must perform an intersection test for this surface
but are not able to do this directly since rasterization
output does not provide correct primary hit informa-
tion for this ray. Therefore, as a second step, all rays
that have both a hit indication by rasterization and an
intersection fail are conventionally traced through the
scene. This scheme also works for displaced patch bor-
ders through tessellation: If primary hits from rasteri-
zation involve ray-patch-intersection tests on the wrong
patch, iteration will diverge and the corresponding rays
are traced. As mentioned before, this scheme also han-
dles very coarsely or noisy tessellated surfaces as well
as displaced rasterization output. More accurate rasteri-
zation output gradually leads to shorter rendering times
since less rays have to be traced through the hierarchy.

Figure 4: A primary ray r hitting a triangle ts from a
tessellated surface while missing the original (parent)
surface s.

6 RESULTS
We implemented the algorithm using C++ and
OpenGL with GLSL as a module for the existing real-
time NURBS ray tracer Augenblick. Since Augenblick
is cross-platform and currently supports OS X and
Linux, OpenGL was chosen as hardware interface,
although a DirectX implementation would be possible.
However, DirectX is not an option for non-Windows
systems.

The difference in speed between normal and hybrid
ray tracing (see figure 7 for an example) depends on
the complexity of the scenes and on the number of
cores/threads used. Because our hybrid approach still
involves additional constant buffer-readback times,
highly parallelized standard ray tracing on multiple
cores still begins to outperform our hybrid approach
at some point (compare table 6). These additional
readback times become most evident when using
u/v-Processing. The cost of reading two buffers back
into main memory (instead of one for ID-Processing) is

Algorithm 1: Primary Intersection Algorithm

Method processTile ()
Data: tile : Tile, idBu f f er : IDBuffer
foreach RayPacket rays in tile do

HitPacket hits = rays.getHits ();
PixelPacket p = idBu f f er.getPacket (rays);
computeHits (rays, hits, p);

end Method

Method computeHits (RayPacket rays, HitPacket hits, PixelPacket p)
if containsBackgroundColor (p) then

trace (rays, hits);
else

GuessesPacket g = p.setupPacket ();
foreach distinct reference r in p do

r.intersect (rays, hits, g);
RayPacket f ailedRays = raysContainingFailedIntersection (rays);
if not isEmpty (f ailedRays) then

trace (f ailedRays, hits);

end Method

Method PixelPacket::setupPacket () - Approach 1
GuessesPacket g;
forall distinct references r in this do

g.set (r.acquireGuesses ());
r = r.getParentSurface ();

return g
end Method

Method PixelPacket::setupPacket () - Approach 2
Data: uvBu f f er
GuessesPacket g;
UVBufferData uvd = uvBu f f er.getNextPacket ();
uvd.transpose ();
g[U] = uvd[U];
g[V] = uvd[V];
return g

end Method

evident in table 6, as the framerate drops about almost
one third in many cases.

As a consequence of the slight shape distortion
done by tessellation there also might be artifacts due
to geometric inaccuracies (leading to intersection
calculations on wrong patches) which our artifact
handling cannot catch. This might happen especially
when surfaces with very coarse tessellation intersect
(as shown in figure 6). An exact scheme to catch these
types of artifacts seems infeasible and would require
additional ray tracing on (self-)intersecting objects to
determine correct z-locations. However, almost all of
these artifacts are avoided when tessellating not too
coarsely.

The presented algorithm will work only on 32-bit
systems, as the pointer size must fit into a 32-bit color.
Extending the presented technique to support 64-bit
pointers would be possible, assuming graphics hard-
ware that can write to multiple buffers. A single mem-
ory address could then be split into two buffers. How-
ever, we found such an extension to be not reasonable
at this point of time, since scenes with triangle-data ex-
ceeding 4 GB can neither be rasterized easily nor fast
even using latest techniques and high-end graphics pro-
cessors. In such a case direct ray tracing would be the
more efficient choice in the first place.

During tests with float values, we found that 32-Bit
values passed to the graphics hardware and then to be
read back are not guaranteed to arrive “untouched”.
Naturally, bad pointer data for the intersection test

Statistics Easy Cornell Box Teapot Killeroo Mercedes
NURBS Surfaces 1 18 32 90 1212
Triangles 112 576 16792 170712 1389582
Screen Coverage 27% 100% 21% 14% 18%
BVH Boxes 81 445 13018 131006 1012680
Intersection count (standard) 33800 92239 64186 89121 165551
Intersection count (hybrid) 27317 69006 28342 32750 48972
Frames/Second (standard, 1 thread) 7.2 3.1 5.2 3.3 2.1
Frames/Second (standard, 8 threads) 45.2 22.2 34.2 22.4 15.1
Frames/Second (hybrid, 1 thread) 7.9 4.0 8.0 5.9 4.1
Frames/Second (hybrid, 8 threads, ID-processing) 42.9 25.5 41.7 30.8 14.3
Frames/Second (hybrid, 8 threads, u/v-processing) 27.5 19.5 25.5 22.1 12.0

Table 1: Rendering times table. The FPS are the computed average over 5 frames and rounded to the first
decimal place. The intersection count gives the number of calls to the NURBS intersection method. All tests were
run on a Dual 3.0 GHz quad-core Apple Mac Pro with 2 GB RAM and an ATI X1900 XT graphics board. The
rendered image has a size of 512x512 pixels.

Figure 5: From left to right and top to bottom: Cornell,
Teapot, Killeroo, Mercedes

will cause severe problems, one of which most likely
a crash of the application. Fortunately, since we pass
32-bit references as an RGBA color value and graphics
hardware uses 128-bit to store color values, our system
is robust against falsification through internal floating-
point-conversions on bus transfers. Thus we did not
encounter any system crashes on erroneous pointer
data. Regardless of this, we can, of course, never
guarantee an error free bus transfer on all hardware
layouts using float values.
Using the OpenGL integer texture extension which
allows for direct writing of unsigned integers to the
graphics buffer has not been tested yet. This could
overcome possible corruption of memory addresses
using float values while also using a smaller bandwidth
to transfer data to the graphics hardware.

Rasterizing speed, which will carry more weight for
very high primitive counts, could be further improved

Figure 6: A packet of rays r1..4 intersecting the wrong
surface t j. The altered shape tis of the surface s causes
objects in the shaded area to be drawn instead of
culled and vice versa (if rays origin in the opposite di-
rection).

by using techniques such as view frustum culling or
occlusion culling. To take full advantage of this, one
must not upload and reference objects to the GPU as
a whole, but rather piecewise. A bounding volume
hierarchy for ray tracing already exists and could be
reused for visibility culling purposes. This is not yet
implemented in our system, since the rendering time
for rasterization has not presented itself as a bottleneck,
yet.

However, one of the biggest bottlenecks of our ap-
proach lies in memory readbacks from the graphics
hardware to the main memory. At least one buffer must
be readout. If using u/v coordinate interpolation this
will be two buffers. Additionally readback speed can be
compromised by CPU-sided data-conversion, when the
employed graphics board does not support hardware-
sided data-conversion.

Shifting GPU and CPU calculations by one frame and
thus eliminating data dependencies (and idle-times) on
the CPU as in [BBDF05] would certainly be a good

Figure 7: Time comparison for primary scene-intersection. The color of a pixel shows the time it took to compute
the shaded result. A darker color means a longer ray tracing time. Left: standard ray tracing. Right: our hybrid
approach using u/v-Processing.

solution to that problem. However, as recent develop-
ments in CPU- and GPU evolution show, the CPU and
GPU will become much more tightly integrated in fu-
ture systems which might have a major positive impact
on bus-transfer- and readback-times, too.

Of course, our system only accelerates object-
intersection with primary rays. All generated
secondary rays, as needed for shadows or reflective
materials, must be traced through the scene with
standard traversal schemes.

7 CONCLUSION AND FUTURE
WORK

We have presented a simple and efficient scheme to
speed up the generation of first-order hits in realtime ray
tracing of NURBS surfaces. The presented algorithm
also accelerates conventional ray tracing of triangle-
data at no additional cost.

Since GPU readback times are still a major speed is-
sue, extending the scheme to support data-independent,
frame shifted rendering as in [BBDF05] can certainly
be regarded useful with respect to rendering time.
Another consideration applies to running the costly
NURBS intersections on GPU.

This could be done by shifting both intersections
and the overall ray-scene traversal onto the GPU as in
[HSHH07]. In contrast to their work, a BVH traversal
scheme would have to be employed. Obviously, this is
only necessary if secondary rays are traced.

Finally, as a third research topic, all shading com-
putations could be done on the GPU for triangle data
and then be remapped onto the correctly intersected
NURBS surface using interpolated u/v coordinates.
This would completely avoid the need for an accel-
eration data structure. Of course, shading techniques
specific to ray tracing, such as shadows or photon
mapping, would not be available then.

REFERENCES
[AGM06] Oliver Abert, Markus Geimer, and Stefan Müller.

Direct and Fast Ray Tracing of NURBS Sur-
faces. IEEE Symposium on Interactive Ray Trac-
ing 2006, pages 161–168, September 2006.

[BBDF05] S. Beck, A.-C. Bernstein, D. Danch, and B. Fröh-
lich. CPU-GPU Hybrid Real Time Ray Tracing
Framework. 2005.

[HSHH07] Daniel Reiter Horn, Jeremy Sugerman, Mike
Houston, and Pat Hanrahan. Interactive k-d tree
gpu raytracing. In I3D ’07: Proceedings of the
2007 symposium on Interactive 3D graphics and
games, pages 167–174, New York, NY, USA,
2007. ACM.

[Kaj82] James T. Kajiya. Ray tracing parametric surfaces.
Computer Graphics (Proceedings of SIGGRAPH
82), 16(3):245–254, July 1982.

[LMW90] Bernd Lamparter, Heinrich Mueller, and Jörg
Winckler. The ray-z-buffer-an approach for ray
tracing arbitrarily large scenes. In Eurographic
seminars; tutorials and perspectives in com-
puter graphics on Advances in computer graphics
hardware, pages 141 – 145, 1990.

[MCFS00] William Martin, Elaine Cohen, Russell Fish, and
Peter Shirley. Practical ray tracing of trimmed
NURBS surfaces. journal of graphics tools,
5(1):27–52, 2000.

[MT97] Tomas Möller and Ben Trumbore. Fast, mini-
mum storage ray/triangle intersection. In Journal
of graphic tools, pages 21–28, 1997.

[NSK90] Tomoyuki Nishita, Thomas W. Sederberg, and
Masanori Kakimoto. Ray tracing trimmed ratio-
nal surface patches. Computer Graphics (Pro-
ceedings of SIGGRAPH 90), 24(4):337–345, Au-
gust 1990.

[Pai99] Samuel Paik. Z-buffer and raytracing. Ray Trac-
ing News Guide, 1999.

[PMS+99] Steven Parker, William Martin, Peter-Pike J.
Sloan, Peter Shirley, Brian Smits, and Charles
Hansen. Interactive ray tracing. In Proceedings
of ACM Symposium on Interactive 3D Graphics,
pages 119–126, April 1999.

[SB86] Michael Sweeney and Richard Bartels. Ray trac-
ing free-form B-spline surfaces. IEEE Computer
Graphics and Applications, 6(2):41–49, February
1986.

[Tot85] Daniel L. Toth. On ray tracing parametric sur-
faces. Computer Graphics (Proceedings of SIG-
GRAPH 85), 19(3):171–179, July 1985.

