
VDesktop: Event Management and Physically Based
Behaviour in Tabletop Displays

Aitor Moreno1, Jan Heukamp1, Jorge Posada1, Alejandro García-Alonso2

1 VICOMTech
Paseo Mikeletegi, 57

20009, San Sebastian, Spain

{amoreno, jheukamp, jposada}
@vicomtech.org

2 Euskal Herriko Unibertsitatea
Lardizabal, 1

20018, San Sebastian, Spain

alex.galonso@ehu.es

ABSTRACT

Applications for digital tabletops have some notable differences when compared to traditional desktop
applications, the principal difference being that the user input method is not the traditional combination of mouse
and keyboard.
This work addresses the difficulties and characteristics of event-handling management, when the applications are
extended from 2D to 3D in the context of tabletop displays and where the interactions between the user and the
represented 3D objects are more complex. This complexity increases when physically based behaviour of the
objects is considered.
More specifically, the scope of this work is oriented to the support of physic-based simulation events in a
tabletop display with an implementation of a system based on the OGRE graphical library and the ODE physical
library, that are able to handle such elements.

Keywords
Tabletop display, Virtual Table, Simulation, Physics, Event Management, 3D widgets

1. INTRODUCTION
The digital tabletops displays allow the user to apply
novel interaction paradigms, offering them a more
usable and intuitive way to interact with a
computerised system. One of the key characteristics
of digital tabletops is that they provide an alternative
to the traditional input mechanisms (mouse and
keyboard). Instead, tabletop displays have a
combination of input devices that translate the user’s
gestures into application input, the most widely found
input methods are touch screens [Forl06] and gesture
recognition using a tracking system.

Digital tabletop systems have some advantages
compared to the traditional screen, keyboard and
mouse combination. Firstly, the interaction is more
natural and intuitive. Secondly, it provides a better
social interaction with the system, since it allows
multiple users to meet near the display, regardless of

whether it is a horizontal or vertical tabletop. As a
consequence, collaborative work can be enhanced
using a digital tabletop.

A typical demonstration application that almost all
the digital tabletop systems usually support is
multimedia viewing and management (Figure 1),
where the users can move, zoom and pan a set of
photographs, maps or videos just by using their
fingers as input devices.

Figure 1. PerceptivePixel wall [Han06]. A vertical

digital tabletop.

On the other hand, there are other sets of applications
that use physical simulation to give an even more
realistic behaviour to the objects represented in the
tabletop. The BumpTop Desktop [Agar06] improves

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

the desktop metaphor, extending it to the 3D world
and adding physical behaviour, providing a more
realistic representation of a real desktop.

However, there is a lack of a generic methodology to
handle events from tabletop displays combining
physically based behaviour and interaction with 3D
objects.

Figure 2. Sensetable [Patt01] tracked elements
used as user interface controls.

In applications where this methodology is employed,
the objects interactively process all the events
generated by the users. Also, internal events will be
triggered when collisions or other customised events
occur. In 2D and classical desktop applications, all of
this management is commonly addressed in a
middleware layer between the applications, the users
and I/O devices, and it is typically provided by GUI
toolkits and frameworks tied to the host operating
system.

Figure 3. DiamondSpin [Shen04] TableTop

Toolkit.

Following this approach, this work presents the
definition and the characteristics of a middleware
layer able to mediate between the user interactions in
a desktop application and the underlying 3D

environment, supporting physically based behaviour
of 3D objects.

2. STATE OF THE ART
For a comprehensive study of modern tabletop
system and methodologies, we refer the reader to
[Stac06].

There are several works about tabletops displays,
being the more relevant the following ones.

Sensetable [Patt01] (Figure 2) uses tracked physical
objects as an input device. The system tracks the
positions of multiple objects on a horizontal display
surface. Each tracked objects is, in essence, a user
interface element with a predefined behaviour.

DiamondSpin [Shen04] (Figure 3), is a library for
virtual desk applications development that allows the
gesture interaction between people allocated around
the desktop and virtual objects.

Figure 4. BumpTop Desktop [Agar06] is a virtual
and physic desktop with enhanced file

organization.

Perceptive Pixel [Han06] (Figure 1) presents a large
and vertical touch display where multiple users can
interact with the included graphically and
aesthetically rich applications.

The Reactable [Jor06] is a collaborative electronic
music instrument with a multi-touch tabletop
interface that uses tangible objects ad input
controllers. As in the Sensetable, it uses different
objects to represent synthesizers, and other electronic
musical instruments.

Microsoft Surface [Surface07] is the Microsoft
attempt to enter the digital tabletops market. It is
essentially a Windows Vista ® PC with a 30 inches
touch display and five cameras that track the object
interaction. The graphical quality of the Microsoft
Surface user interface is its chief strength.

The BumpTop Desktop [Agar06] (Figure 4)
application offers a full interactive virtual 3D world

where all the traditional desktop documents are
represented as 3D objects with physical behaviour.

From the application point of view, all these tabletop
displays technologies are conceived as events
triggered by i) the user, due to interaction with the
display, ii) by the virtual objects, due to their own
interactions or iii) by the system itself, e.g. timers.
This separation of the real tabletop display hardware
and applications is performed in a middleware layer
that acts as an interface.

In the following section, the basic concepts to
implement this generic event management are
described. After a description of the 3D widgets and
their organisation, the basic events and the geometric
event management are presented.

3. EVENT MANAGEMENT
The event management connects system and user
interactions. The user input events are interpreted and
the system reacts accordingly with the implemented
behaviour.

In a higher abstraction level, the application event
management allows the objects to trigger customised
events that the system will deliver to other objects
that are listening or waiting for them. Normally, this
kind of event management is implemented using
observer patterns, where the objects register
themselves as observers of the desired event classes.

Figure 5. 2D GUI showing some common controls
(Wikimedia Commons).

In 3D virtual worlds with physical behaviour, an
extended object oriented event management is
implemented to handle the user and object
interactions, taking into account that it must provide
real-time graphics rendering, real-time collision
events and the traditional user interaction.

3D WIDGETS
The user interfaces are composed of widget elements
whose main characteristics are that they may be
drawn and they have specific behaviour. In Figure 5,

a classical 2D user interface is shown. An extension
of the traditional 2D desktop metaphor was
introduced by the Compiz 3D and related projects
(Figure 6), giving a sophisticated 3D management of
the desktop.

In 3D environments, the 2D widgets of the user
interface must be translated to the 3D world. Thus, a
3D widget is defined as an encapsulation of geometry
and behaviour used to control or display information
about application objects [Conn92].

WIDGET ORGANISATION
The widgets are organised in a hierarchical tree,
where the internal elements act as containers. Each
leaf widget has its own associated drawable
geometry, collision geometry and the physical
behaviour. However, the containers don’t have any
drawable geometry, their function is to allow tree
traversal.

Figure 6. Compiz 3D on Ubuntu GNU/Linux
(Wikimedia Commons).

The collision geometry of the containers is the
composition of its child’s geometry, and it is only
recomputed when the widget sub-tree is modified.
This geometry composition schema can be
overridden by calculating a bounding box or sphere
of all the contained children, which is a major
efficiency improvement.

Figure 7. Left: The Root - Leaf communication as

a tree traversal. Right: A widget – widget
communication as a path.

The input events are sent by the root and they are
usually propagated to the leaf widgets using a
standard tree traversal (Figure 7, left). This could be
called the standard algorithm for event management
(Algorithm 1).

The geometric events are usually defined with a 3D
position and a direction (mainly, a ray). As the
widgets belong to a dynamic 3D world, their parents
are responsible to pass the event data transformed to
the local system reference of the widget (normally
applying an affine transformation). These events must
be passed only to those children whose bounding
boxes collide with the ray.

Apart from the parent-child communication, it is
useful the communication between any pair of tree
elements reduces the amount of steps needed to
traverse the tree between source and target widgets.
The widget to widget communication is done by
attaching a path to the event. This path defines a list
of widgets that must be followed in order to reach the
desired target widget, providing a direct
communication between them (Figure 7, right). To
calculate the path, an upwards tree traversal is
performed until a common widget is found, which
will be the pseudo-root of the path.

procedure processEvent (event)

 foreach child in children do

 event.push (collision point);

 event.push (child transform);

 child.processEvent (event);

 event.pop ();

 event.pop ();

 ...

 otherProcessing ();

end;

Algorithm 1. The process event pseudo-algorithm
is a recursive function that traverses the tree.

It is possible to stop the propagation of any event.
When a widget does not want to propagate an event,
it consumes that event, and thus, the event will not be
propagated toward the target widget.

The widgets must register the events that they want to
receive. If any given widget children are not
registered to a specific event, the event will not be
propagated to the children. This is a major
improvement, since the calculation of collisions and
bounding box checks are not trivial, and it is better to
avoid it if they are not necessary. It would be
inefficient to generate thousands of events per
seconds, when only a few of the widgets are
interested in those events.

The parent widget must have the control over the
events that their children receive. In this way, they
can filter or modify some of the event if required.

BASIC EVENTS
Although an application can define its own
customised events, a common set of necessary events
has been defined:

Input Event : The input events are those that are
triggered by the users when they interact with the
system. With high similarities with the 2D world, the
input events are classified in MoveEvent,
PressedEvent, DragEvent and ReleaseEvent, as a
clear reference to the standard mouse events in a 2D
GUI.

The MoveEvent events are generated each time the
device pointers are moved over an object.

The PressedEvent, DragEvent and ReleaseEvent are
generated each time the user clicks, drags or releases
the pointer device over an object.

For example, almost all the widgets react to the
DragEvent modifying their size. Depending on the
drag direction, the size of the objects is increased or
decreased. If a multi-touch device is used, this
functionality can be used to allow the user to resize
an object by placing fingers in two corners of the
object, sending two DragEvent events to the target
object with a distinguishable identifier. The object
will modify its own size using the information
provided by both events.

Collision Events: Collision Events are created by a
physical world when two objects collide. The event is
sent to both objects, and they usually react to the
collision in a physically based behaviour. One of the
major problems is that a high number of collision
events are generated by the physics engine in every
step of the simulation, which leads to efficiency and
performance problems that will be addressed in the
next topic.

SystemEvents: The system can trigger events when a
condition occurs, the most common system events are
command actions, time dependant events and I/O
instructions (read, write).

The VariableStepEvent is triggered each time the
graphics engine renders a frame in the virtual scene.
The widgets registered to the class of event have and
opportunity to change elements within the scene, such
as animations or post-rendering calculations. This
event provides the objects with the elapsed time since
the last VariableStepEvent event.

The ConstantStepEvent is a generalization of a timer
function, and it used to trigger events periodically.
The physics world uses a ConstantStepEvent to
update the physics simulation, since typically physics
engines have fixed step periodicity. In addition to the
physics engine, the objects may receive the same

event to update some physical values, such as
acceleration, force, friction, etc.

The ActionEvent notifies that an action has occurred.
For example, when a button is pressed it will trigger
an ActionEvents event. These kinds of events do not
traverse the complete tree. To receive the action
events, the widgets must register themselves as
observers of the desired action events. For example,
when a pause button is pressed, the video is paused or
resumed, depending on its internal state.

COLLISION EVENTS MANAGEMENT
Geometric events are generated when the physics
engine detects a collision between two objects. It
does not matter whether the collision is between two
free objects (whose movements are calculated by the
physics engine), between two user controlled objects,
or any other combination, as a user interaction is
reduced to a directed ray from the 2D tabletop
display to the 3D virtual world.

In all cases, the geometric events are described by

i) the involved objects identifiers,

ii) the collision points in both objects and

iii) the vectors of the collision.

In a single simulation step, the physics engine
updated some physical data for each object, like
accelerations, speed, orientation, position, and others.
When the new positions of the objects are calculated,
potential collisions occur. Depending on the number
of objects and their geometric complexity, the
number of collisions can be difficult to handle
interactively. In order to reduce the amount of
collision information, a filtering algorithm has been
introduced (Figure 8).

Firstly, when a collision occurs, it is checked whether
one of the collided objects wants to receive the
collision. If neither of the objects wishes to receive
the collision, the event is dropped. All the pure
graphical and static objects should have this
behaviour, since it will lead to better overall
performance.

In the second stage, if another collision event has
been previously triggered by both of the two objects,
the event is dropped. This simplification is needed,
since a collision is resolved by the physics engine
during a period of time, not instantaneously. The
collision events are prolonged in several simulation
steps; this generates a large amount of events and
consequently becomes difficult to handle in real time.

Each time two new objects collide and generate a
collision event, their ID's are stored as a pair in an
ordered list. Each time a collision is received, the ID's

of the collided object are searched in the list. If they
are found, the elapsed time is checked and the
collision event is dropped if the time is less than a
fixed time value (e.g., 200 ms). If the time is greater
than the given threshold, the ID pair is removed from
the list and the collision event passes. This stage is
conceived as time filtering, allowing only collision
events pass at a fixed rate (See Table 1).

Figure 8. The diagram shows the Collision Event

filtering algorithm.

In a third stage, one of the target widget filtering
callback function is called, passing the reference of
the other target widget as parameter. This filtering
stage consists in determining if the collision between
both widgets will succeed or not.

Filtering
Time (s)

Max widget
Subjective

Impressions
0.1 250 Interactive

0.2 140 Interactive

0.4 70 Bumpy

0.8 40 Bad

Table 1. For some different values, the table shows
the number of widgets that the system can handle
before the simulation becomes very slow and the

subjective impressions with 100 widgets.

A scenario where this filtering is effective is when we
have several widgets composed by low level and
smaller widgets. When one of these smaller widgets
collides against a high level one, it is better to drop
the collision and let the high level widget react to the
collision, since it will likely have an optimized

Collision

Does the object want to
receive collision events?

Yes

Has the collision event been
received recently?

Does the object want to
receive collision events

from the collided object?

No

Yes

Event

 No

 Yes

 No

physical geometry. In this example, several complex
collisions are dropped and only a single and simpler
collision is calculated by the physics engine.

As the filtering algorithm will be executed several
times per second, it should be implemented in the
most efficient way. It is preferable to implement a
fast but permissive filtering algorithm rather than an
intensive and accurate one.

Combining these three stages, a high performance
collision events handler is plausible, with little impact
on the overall system performance. The time filtering
interval is the only configuration variable and its
effects are noticeable on the system reaction time.
With higher values, the system tends to react very
slowly to collisions and this can cause side effects
such as disturbing the physics engine calculation in
the following iterations.

Figure 9. Low Level widgets. From left to right

and top to bottom: ImageNode, VideoNode,
RenderNode and ButtonNode.

4. IMPLEMENTATION
The implementation of the proposed event-handling
middleware has been done through the
implementation of a Virtual 3D Desktop application,
without a strict validation of what are the benefits of
the desktop metaphor itself [Trist01].

The VDesktop contains a top view of a virtual, 3D
and visually attractive desktop metaphor, where the
user documents are represented as physical widgets
following fundamental physical laws, i.e. gravity,
collision and friction.

IMPLEMENTED WIDGETS
The implemented widgets are divided into high level
widgets (Figure 10), akin to the users understanding
of document, and low level widgets (Figure 9), that
are used to compose the high-level ones. These are
the low level widgets:

The GraphicalNode represents a simple drawable
and physical object. The graphics engine will render
the 3D geometry into the graphics card’s frame buffer

and the physics engine will use the physical geometry
in the physics simulation. Both geometries could be
different, for example, a highly detailed 3D model
using its own bounding box as collision geometry. All
of the following widgets inherit this behaviour, and
therefore omitted from their descriptions.

Figure 10. High Level widgets. From left to right

and top to bottom: ImageDocument,
VideoDocument, MeshViewer, FolderContainer,

RecycleBin and the VDesktop.

The ImageNode represents an image as a physical
box with the image itself as the texture of the surface
of box. It has internal functionality to access the
image information, including the width, height and
the pixels of the image.

The VideoNode represents a video as a physical box
with the first video frame as the box surface texture.
It has internal functions to access the video playback
functions, i.e., play, stop and pause.

The RenderNode represents a 3D world as a
physical box. The internal virtual world is rendered to
a texture that is set as the top surface of a physical
box. This widget has internal functions to manage
several aspects such as the camera position.

The ButtonNode is the translation to the 3D world of
the 2D classical button present in the 2D GUI
toolkits. When it is activated or pushed, a customised
ActionEvent is triggered, enabling the registered
objects to react to the button action.

The high level widgets share some common
functionality. For example, when they are resized
down to a specified threshold, they are represented as
a simpler box with a proper texture on its top surface.
When they are scaled up, the following behaviour is
obtained:

The ImageDocument represents a very simple image
editor. It is composed by an ImageNode with some
ButtonNode’s offering an editing functionality.

The VideoDocument contains a VideoNode with
some ButtonNode’s to control the video playback
functions.

Figure 11. The input events are passed to the

internal RenderNode of the MeshViewer

The MeshViewer represents a simple 3D model
viewer. The widget has a menu with a ButtonNode for
each animation stored in the 3D model. When such
buttons are pressed the selected animation is loaded
in the model and visualised. The internal camera is
moved passing input events to the internal
RenderNode widget (Figure 11).

Figure 12. Desktop application showing various
ImageDocument, VideoDocument and RecycleBin

widgets. The textured marbles are
GraphicalNode’s with no other major

functionality.

The FolderContainer is the 3D representation of a
folder, which acts as a documents container that can
be extracted or inserted.

The Recycle Bin represents the traditional place
where deleted documents go. Using the physics
system, the user can literally throw the document to
the trash. As it has depth, thrown objects can be
recovered back by simply dragging them.

VDESKTOP APPLICATION
The VDesktop itself is a widget composed of several
other widgets, and defines the common physical rules
that will be used by the physics engine (mainly
gravity and friction).

The application is composed of a single VDesktop
widget and an eagle eye camera correctly positioned
to give the users a correct perspective of the widgets
(Figure 12).

The OGRE high performance graphical library
[OGRE07] has been used as the graphics engine,
achieving real time rendering (for OpenGL and
DirectX) having a GeForce 5200 FX graphics card
with 32 Mb, installed on a AMD XP 2600 MHz CPU
with 512 Mb RAM, which is a common basic PC
specification.

The ODE [ODE07] physics engine has been used for
the physics simulation, using the OgreODE wrapper
[OGREODE07] to integrate the ODE functionality in
OGRE projects.

5. RESULTS AND CONCLUSIONS
This work presented a generic methodology to handle
user input events in tabletop displays showing 3D
virtual world with physical behaviour.

The presented event management has been optimised
to provide interactive visualisation when the object
interaction generates a large quantity of physical
collisions.

Figure 13. VDesktop demonstration shown in a

BARCO display. The spatial 3D mouse is used to
interact with the virtual world.

The implemented VDesktop prototype is focused in
the validation of the proposed event management
methodology, providing basic desktop metaphor
elements adapted to the digital tabletop display
paradigm. In this case, the implemented widgets are
related to the multimedia domain, thus, images,
videos and 3D objects are the principal document
types the prototype can handle. The folder and the

recycling bin are other common elements in desktop
that have been also implemented.

Finally, the VDesktop application has been tested on
a BARCO Baron model [BARCO07] (Figure 13)
using a magnetic tracking mouse for user input.

6. FUTURE WORK
The next steps should be focussed on the integration
of hand gesture recognition in the system, which will
provide users with a more natural interaction.

From the point of view of the applications, the
presented event management provides a very suitable
framework as a start point to the development of
customised applications, such as kiosk information
points, travel information access, museum story
telling, etc.

In any case, tabletop display oriented applications
should be involve the end user in design and
development to ensure the final user experience is
natural and intuitive.

7. ACKNOWLEDGMENTS
Dr. García-Alonso was supported by the Spanish
Ministry of Education and Science, grant TIN2006-
14968-C02-01.

REFERENCES
[Agar06] Agarawala, A., Balakrishnan, R. Keepin' it

Real: Pushing the Desktop Metaphor with
Physics, Piles and the Pen. Proceedings of CHI
2006 - the ACM Conference on Human Factors in
Computing Systems. p. 1283-1292.

[BARCO07] BARCO Displays Website. Baron
Product technical specifications. Last Visited on
2007-10-23:
http://www.barco.com/corporate/en/products/prod
uct.asp?GenNr=324

 [Conn92] Conner, D.B., Snibbe, S.S., Herndon, K.P.
et al. Three Dimensional Widgets. Proceedings of
the 1992 Symposium on Interactive 3D Graphics,
Special Issue of Computer Graphics, Vol. 26

[Han06] Han, J., Perceptive Pixel Site. Last visited
on 2007-10-23. http://www.perceptivepixel.com

[Forl06] Forlines, C., Shen, C. and Vernier, F. Under
My Finger: Human Factors in Pushing and
Rotating Documents Across the Table. IFIP TC13
International Conference on Human-Computer
Interaction (INTERACT), September 2005

[ODE07] Open Dynamics Engine Website. Last
Visited on 2007-10-23. http://www.ode.org

[OGRE07] OGRE Graphics Engine Website. Last
Visited on 2007-10-23. http://www.ogre3d.org

[OGREODE07] ODE wrapper for the OGRE. Wiki,
last Visited on 2007-10-23.
http://www.ogre3d.org/wiki/index.php/OgreODE

[Patt01] Patten, J., Ishii, H., Hines, J. and Pangaro,
G. Sensetable: A Wireless Object Tracking
Platform for Tangible User Interfaces, in
Proceedings of Conference on Human Factors in
Computing Systems (CHI '01), March 31 - April
5, 2001). pp. 253-260

[Stac06] Scott, S.S. Carpendale, S. Interacting with
Digital Tabletops, IEEE Computer Graphics and
Applications, September/ October 2006, Volume
26; Issue 5.

[Shen04] Shen, C., Vernier, F.D., Forlines, C. abd
Ringel, M. DiamondSpin: An Extensible Toolkit
for Around-the-Table Interaction. ACM
Conference on Human Factors in Computing
Systems (CHI), ISBN: 1-58113-702-8, pp. 167-
174, April 2004

[Jor06] Jordà, S., Geiger, G., Alonso, M.,
Kaltenbrunner, M. The ReacTable: Exploring the
Synergy between Live Music Performance and
Tabletop Tangible Interfaces. Proceedings of the
first international conference on "Tangible and
Embedded Interaction" (TEI07). Baton Rouge,
Louisiana.

[Surface07] Microsoft Surface Site. Last Visited on
2007-10-23. http://www.microsoft.com/surface

[Trist01] Tristram, C. The next computer interface.
MIT Technology Review, December 2001.

