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GPU Radiosity for Triangular Meshes with Support of
Normal Mapping and Arbitrary Light Distributions

Günter Wallner
University of Applied Arts Vienna, Austria

Oskar Kokoschka Platz 2
1010 Vienna

wallner.guenter@uni-ak.ac.at

ABSTRACT

This paper describes an implementation of a progressive radiosity algorithm for triangular meshes which works completely
on programmable graphics processors. Errors due to the rasterization of triangles are fixed in a post-processing step or with
a fragment shader during runtime. Adaptive subdivision to increase the accuracy of the radiosity solution can be performed
during render-time. Since we found that the gradient is not very robust to determine whether triangles should be subdivided or
not, we propose a new technique which uses hardware occlusion queries to determine shadow boundaries in image space. The
GPU implementation facilitates the simple integration of normal mapping into the radiosity process. Light distribution textures
(LDTs) enable us to simulate a variety of real world light sources without much computational overhead. The derivation of
such an LDT from a EULUMDAT file is described.

Keywords Radiosity, Global Illumination, GPU, Normal Mapping, Shadow Boundary Detection, Light Distribution Texture

1 INTRODUCTION
Computer image generation has been driven by two ma-
jor factors: realism and interactivity. The former has
led to a variety of global illumination algorithms such
as radiosity. Radiosity was first introduced to com-
puter graphics by Goral et al. [Gor84] to simulate the
light interaction in strictly diffuse environments. The
fraction of the radiant light energy leaving one partic-
ular surface which strikes a second surface is defined
as the so-called form factor. These form factors can
be obtained by computing the coifficients of a set of
linear equations. Cohen et al. [Coh85] introduced
the hemicube to support scenes with occluded surfaces,
which where not considered in the original implemen-
tation. In [Coh88], Cohen et al. presented a progressive
refinement approach which eliminated the O(n2) stor-
age requirements of former methods by calculating the
form factors on-the-fly. Further speed ups can be gained
by implementing the substructuring approach from Co-
hen et al. [Coh86] where light is shot from a courser
mesh to a finer sets of elements. Smits et al. [Smi92]
published a radiosity implementation which focuses on
those parts of the scene which affect an image most. Al-
though radiosity is usually restricted to diffuse surfaces,
generalizations of the radiosity method which can han-
Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright UNION Agency - Science Press, Plzen, Czech
Republic.

Figure 1: GPU radiosity solution of a scene with
6534502 elements distributed over 13627 triangles.

dle general reflectance (e.g. by Sillion et al. [Sil91])
and volumetric scattering due to participating media
like smoke ([Rus87]) have been proposed. A compre-
hensive treatment of the radiosity method can be found
in [Sil94] and [Coh95]. However, for completeness the
essential features are reviewed in Section 2.

Modern GPUs opened up a whole new research area,
allowing researchers to compute a radiosity solution in
much faster time or even at interactive rates. Keller
[Kel97] generates a particle approximation of the dif-
fuse radiance in the scene using quasi-Monte Carlo in-
tegration. Afterwards, the graphics hardware renders
an image with shadows for each particle which are con-
sidered as point light sources. Martin et al. [Mar98]
calculated a hierarchical radiosity solution on the CPU
and refined the result by generating textures that repre-
sent the diffuse illumination. Nielsen and Christensen
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[Nie02] accelerated the hemicube method using graph-
ics hardware. Carr et al. [Car03] used floating point
textures to store the result of the radiosity computation.
Gautron et al. [Gau05] adapted the irradiance cache
([War88]) to graphics hardware. However, all of these
publications used graphics hardware to accelerate cer-
tain elements of the radiosity solution. Coombe et al.
[Coo03] finally proposed a progressive radiosity imple-
mentation which worked solely on the GPU.

This paper follows the approach by Coombe et al. but
extends it to arbitrary triangular meshes. Further con-
tributions are the inclusion of normal mapping into the
radiosity process, the support of arbitrary light distribu-
tions due to the use of light distribution textures (LDTs)
and new way to determine shadow boundaries for adap-
tive subdivision. Figure 1 shows a radiosity solution ob-
tained with our method. The reminder of this paper is
structured as follows. Section 2 reviews in short the ba-
sics of radiosity and the progressive radiosity approach
and Section 3 describes our implementation. Adaptive
subdivision is explained in Section 4. We conclude the
paper by presenting results and sample images (Sec-
tion 5) as well as future work (Section 6).

2 PROGRESSIVE RADIOSITY
The radiosity method evaluates the intensity (or radios-
ity) of discrete points and surface areas in an diffuse
environment. The radiosity Bi of an element i is given
by [Gor84]

Bi = Ei +ρi

n

∑
j=1

B jFi j (1)

where Ei is the emission, ρi the reflectivity and Fi j
the form factor between element i and j. Fi j is purely
geometrical in nature and describes the fraction of en-
ergy leaving element j impinging on element i. If using
the disc approximation of Wallace et al. [Wal89] to the
differential form factor equation (Figure 2), Fi j is given
by

FdAi,A j(= Fi j) = A j

m

∑
i=1

cos(φi)cos(φ j)

d2π + A j
m

(2)

where m is the number of sampling points on A j. As
noted by Coombe et al. [Coo03] this disc approxima-
tion reduces artifacts between adjoining faces exhibited
by the original form factor formulation [Gor84] when
used in conjunction with projection methods, like the
hemicube approach by Cohen et al. [Coh85]. To as-
sure conversation of energy in a closed environment the
sum of all form factors for a given element i is equal to
unity:

n

∑
j=1

Fi j = 1 for i = 1 . . .n (3)

Contrary to the conventional radiosity algorithm,
where all the form factors for the entire scene are
precalculated, form factors are calculated on-the-fly in

Figure 2: The form factor between a differential area
dAi and a polygon j which is divided into m sections.
Each section gets approximated by a disc.

a progressive radiosity solver. Furthermore, shooting is
always performed from the element radiating the most
light energy, since those typically have the greatest
impact on the illumination, leading to a solution which
converges quickly in regard to accuracy. Additionally
an ambient radiosity term

A = R
n

∑
j=1

∆B jF
′
i j for any i (4)

was introduced by Cohen et al. [Coh88] to estimate
reflected light in the earlier iterations, yielding a more
adequate illumination during early stages. ∆B j repre-
sents the unshot radiosity. F

′
i j is a first approximation to

the form factor and is given by

F
′
i j =

A j

∑
n
k=1 Ak

∀i (5)

and the interreflection factor R is defined as

R =
(

1− ∑
n
k=1 ρkAk

∑
n
k=1 Ak

)−1

(6)

3 IMPLEMENTATION
This section describes our radiosity implementation in
detail. For each triangle two 32bit RGBA floating point
textures are stored which hold the radiosity and residual
energy respectively. The RGB components are used to
store the illumination and the alpha channel is used to
determine if a particular texel of the texture is occupied
by the triangle (A = 1) or not (A = 0).

In a preprocessing step each triangle is rendered or-
thographically into a framebuffer of size (2n − 2)×
(2n−2). During rendering an occlusion query is issued
to retrieve the number of texels occupied by the trian-
gle. The area of a single element of a triangle can then
be obtained by dividing its area with the result of the oc-
clusion query. Note that due to partially covered pixels
the area of an element is slightly underestimated. How-
ever, we found that no significant error is caused by this.
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The texture coordinates are retrieved by multiplying the
vertex coordinates with the modelview-projection ma-
trix used for rendering and shifting the values to the
range [0,1]. The result is then centered in a texture
of size 2n × 2n to allow for interpolation in the post-
processing step. Furthermore all textures are placed in
a texture atlas of size 2m × 2m to reduce the number
of texture switches during the radiosity process and the
number of readbacks during the next shooter selection.
All textures have power-of-two dimensions to allow for
mipmapping.

After the preprocessing step the progressive radiosity
solver starts until the result has converged or a maxi-
mum number of iterations has been reached. At the be-
ginning of each iteration the next shooter is determined.
To find the triangle with the highest residual power the
nth level of the mipmap pyramid is constructed from
each residual texture atlas using a fragment program
and a ping-pong rendering scheme. This results in a
texture where each texel corresponds to the averaged
residual intensity (I = 0.3 · R + 0.59 ·G + 0.11 · B) of
a triangle. The reasons for a fragment program are
twofold. First, graphics hardware may or may not sup-
port hardware mipmapping for floating point textures.
Second, only texels which are occupied by the trian-
gle may influence the average. Therefore our fragment
shader only averages texels whose alpha channel equals
one. The alpha channel of the new texel is set to one if
one of the four original texels alpha value is one. The
values are read back and multiplied by the area of the
corresponding triangle to retrieve the residual power.
The resulting values are compared and the triangle with
the highest residual power is chosen as next shooter.
During the next shooter selection the ambient radiosity
term from Equation 4 is calculated. Since the average
residual energy of a triangle is evaluated nevertheless
and the overall interreflection factor can be precalcu-
lated, the computational expense is negligible.

Once a shooter has been selected, all the elements
of the triangle shoot their energy in turn. The selected
triangle is rendered orthographically into a framebuffer
with two color attachments. A fragment shader outputs
the interpolated normals and world positions of this tri-
angle. As suggested by Coombe et. al [Coo03], sub-
structuring ([Coh86]) can be supported by constructing
a lower resolution mipmap of the residual texture. In
our case, we also construct the mipmap from the nor-
mal and the world position map. The resulting residual
mipmap gets sampled and each texel whose alpha chan-
nel equals one shoots its energy.

To determine the visibility from the current shooter,
we follow the approach of Coombe et. al [Coo03] and
render the scene from the point of view of the shooter
using a stereographic projection into a visibility texture.
The position and orientation of the shooter are retrieved
from the world position and normal map. However, in-

Figure 3: Light Grey parts of the image are visible from
the shooter, black ones aren’t. If only one texel in the
visibility texture is evaluated for depth correspondence
artifacts appear near silhouette edges (left). Compar-
ing also the neighboring texels removes those artifacts
(right).

stead of using color-encoded IDs of the polygons, we
store the depth values as proposed by Barsi and Jakab
[Bar04]. Based on the front (fp) and back clipping dis-
tances (bp) the depth value is calculated in a vertex
shader as shown in Algorithm 1.

pos = mul(modelView, position);
float z = (-2*pos.z-bp-fp)/(bp-fp); // [-1..1]
float zDepth = -z/bp // [0..1]

Algorithm 1: Vertex shader code for calculation of the
depth value

Since only vertices are affected by the stereographic
projection, several errors are introduced, especially
near the equator of the hemisphere. For example,
convex quads may get concave after the projection,
which leads to rasterization artifacts. Working with
depth values instead of polygon IDs eliminates dot
artifacts1, since a tolerance value can be used when
the visibility checks are performed later in the process.
Triangles behind the hemisphere are culled away be
checking against the plane defined by the position and
normal of the shooter. For the remaining triangles, an
occlusion query is issued.

Every triangle that might have received energy (tri-
angles which pass the occlusion query test) is rendered
orthographically to a framebuffer of size (2n − 2)×
(2n− 2). However, instead of back-projecting the tex-
els into the shooter’s viewpoint, as done by Coombe
et al. [Coo03], the back projection is done in a ver-
tex shader and the resulting position is passed to the
fragment shader. This way the same error occurs dur-
ing back projection as observed in the creation of the
visibility texture. The fragment shader compares the
depth value of the texel with the depth value stored in
the visibility texture. We found that we can further re-
duce artifacts – mainly in areas of silhouette edges from

1 Due to the limited resolution of the visibility map and errors intro-
duced by the projection, nearby elements of the scene may be mapped
to the same texel.
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the shooter’s point of view – if we also check the neigh-
boring texels in the visibility texture for correspondence
with the – currently examined – texels depth (see Figure
3).

If the texel is declared visible, the form factor equa-
tion from Equation 2 is evaluated by the fragment pro-
gram. The radiosity value is gained by multiplying the
form factor, the shooters energy and the color as well as
the reflectivity r of the receiver and adding it to the ra-
diosity texture. Respectively the residual texture is up-
dated by taking 1−r. After all texels of the shooter have
shot their energy, the residual texture of the shooter is
set to zero.

After the post-process (described in Section 3.1), the
floating point textures are tone mapped using either
a simple exposure function or a GPU implementation
of the global tone mapping operator from Reinhard
[Rei02].

3.1 Rasterization of Triangles
According to the OpenGL specification [Seg03] poly-
gons and line segments are rasterized differently. For
lines OpenGL uses a "diamond-exit" rule. This means
that for each fragment f with center at window coordi-
nates xw and yw a diamond shaped region R f is defined
as

R f = {(x,y)|‖x− xw‖+‖y− yw‖<
1
2
} (7)

A good description of OpenGL’s line rasterization
can be found in [Sun03]. For polygons OpenGL fol-
lows the point-sampling rule. Only fragments which
centers lie inside the polygon are produced by rasteri-
zation. Special treatment is given to a fragment whose
center lies on a polygon boundary edge (see [Seg03]
for details). However, we are not concerned about the
exact details because those fragments get rasterized by
line-rasterization anyway. Figure 4 shows the rasteriza-
tion of a triangle. Since not all fragments – which are
needed for texturing – are rasterized (these are shown
red in Figure 4), the missing fragments are interpolated
from the neighbor intensities in a post-processing step.
To reduce artifacts due to rasterization, two steps are
taken. First, every triangle is rendered twice. One time
the polygon itself and next the outline with a line width
of 1. It should be noted that using a line width greater
than 1 leads to artifacts, since more than one fragment
of the line has the same texture coordinate assigned,
therefore pointing to the same location in the radiosity
map. Second, after the radiosity solver has finished a
textured quad is rendered orthographically to a frame-
buffer at the same resolution as the assigned radiosity
texture to establish a one-to-one correspondence with
the fragments of the framebuffer. A fragment program
linearly interpolates the intensities for fragments which
neighbor at least one fragment whose alpha channel is
one. Only fragments occupied by the triangle are con-
sidered for interpolation. Since the textures are interpo-

Figure 4: Rasterization of a triangle with OpenGL.
Light gray fragments are produced by polygon-
rasterization. Dark gray rectangles depict fragments
which were produced additionally by line-rasterization.
Red fragments represent fragments which would be
needed for GL_NEAREST texture sampling but have
not been rasterized.

lated linearly for rendering, this is done twice, using a
ping-pong technique. Fragments produced by this step
are marked with black (first iteration) and blue (sec-
ond iteration) dots in Figure 4. These fragments are
only used for display purposes, therefore they are nei-
ther considered in the radiosity process nor do they alter
the size of a triangle.

3.2 Light Distribution Textures
To include arbitrary light distributions into the radiosity
process, we propose a so called light distribution texture
(LDT). These textures can be derived from a EULUM-
DAT file or any other similar photometric file format.
An English translation of the EULUMDAT specifica-
tion can be found at [Ash]. Concordant do the speci-
fication we denote the number of C-planes as mc. The
number of light intensities in a C-Plane (vertical planes
through the light distribution) is designated as ng. Fig-
ure 5 shows the light distribution curve of a luminaire
and it’s 3D representation.

Although the EULUMDAT file stores photometric
values and the radiosity method works with radiomet-
ric values, the normalized light distribution can be used
as is. We can show that the radiant intensity Ie = kIv,
where k is some constant and Iv the luminous intensity
(an in-depth treatment of lighting engineering can be
found, for example, in [Gal04]).

Proof. The radiant intensity can be written as

Ie =
dφe

dΩ
(8)

where φe is the radiant flux and Ω the solid angle, and
the luminous intensity can be written as

Iv =
dφv

dΩ
(9)
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Figure 5: The light distribution of a Zumtobel KAREA-S luminaire (left) and its 3D representation with mc = 24
(middle). The red line depicts the intersection of the light distribution with the plane C0/180 and the blue line with
plane C90/270 respectively. The texture derived from the luminaire’s light distribution is shown on the right.

Furthermore the luminous flux φv is defined as

φv = Km

∫ 780nm

λ=380nm
φeλ

V (λ )dλ (10)

For a monochromatic lightsource we can reduce
Equation 10 to

φv = KmV (λ )φe (11)

where Km = 683 lmW−1 is the sensitivity of the eye at
555 nm and V (λ ) = 1 for photopic vision (these values
can be gained from the photopic vision curve V (λ )).
For values of V (λ ) refer, e.g. to [Gal04]. Substituting
into Equation 8 we get

Ie =
1

683 dφv

d∆Ω
=

1
683 Ivd∆Ω

d∆Ω
=

1
683

Iv (12)

An LDT stores the light distribution of a luminaire
of one half space and has dimension n′g ×mc where
n′g is the number of intensities of a C-Plane in one
half-space. The intensity values are retrieved from the
light distribution and divided by the maximum intensity
value Imax to normalize the values to the range [0..1].
These values are written into the texture, where each
horizontal line represents the intensity values of a C-
Plane. The relationships are shown in Figure 5. Texture
sampling is set to linear to automatically interpolate be-
tween the discrete measurements. To assure continuity
at the boundary of 0° and 360°, the texture wrap mode
in v-direction is set to GL_REPEAT. By storing only
the normalized intensity distribution the texture can be
reused for luminaires with the same light distribution
but different intensities.

To access the LDT, the azimuth φr and elevation φn of
the vector d with respect to the reference system of the
light source given by (n0,r0,u0) is determined. We use
the subscript 0 to denote unit vectors. Figure 6 shows
a geometrical representation of the problem. Normaliz-
ing the angles to the range [0,1] yields

Figure 6: The texture coordinates of the LDT for a
given direction vector d between the lightsource L and
receiver R depend on the azimuth φr and elevation φn
of this vector. The light distribution is depicted as red
curve.

xt = 1+
min(φn−π/2,0)

(π/2)
(13)

yt =

{
1− 0.5φr

π
u0 ·d≤ 0

0.5φr
π

otherwise
(14)

as texture coordinates (xt ,yt). According to Sillion et
al. [Sil91] the energy d2E emitted by a differential area
dAi around a point Ti in the direction of unit vector d0
and falling on a differential area dA j around a point Tj
is then given by

d2E = I(T1,d0)
cos(φ j)cos(φi)

d ·d
dA jdAi (15)

where I(T1,d0) is the intensity leaving the surface. In
our case the intensity is retrieved by sampling the LDT
at position (xt ,yt) and multiplying it with Imax.

3.3 Normal Mapping
Inclusion of normal mapping [Coh98] into the radios-
ity process is straightforward. Instead of taking the in-
terpolated vertex normals for calculation of φ j the per-
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Figure 7: Radiosity solution of a simple box. Once
without normal mapping (left) and one time with nor-
mal mapping enabled (right).

turbed normal is used. If the normals stored in the nor-
mal map are given in tangent space and since the light
calculation is handled in world space, the vector d has
to be transformed appropriately into tangent space. For
static scenes the required tangent vectors can be calcu-
lated during the preprocessing step. Figure 7 and Figure
9 show results obtained with normal mapping.

However, it is worthy to note that if normal mapping
and multitexturing is used simultaneously the resolu-
tion of the radiosity texture should correspond to the
resolution of the normal map. Otherwise artifacts will
appear because the result of light calculation does not
overlay correctly with the texture of the object. Note
also that illumination may change if normal mapping is
used, because the shooting order must not necessarely
be the same as without normal mapping.

4 ADAPTIVE SUBDIVISION
The accuracy of the radiosity solution depends very
much on the underlying mesh. As noted by several
authors (e.g. [Coh95]) uniform subdivision is not the
best approach for radiosity, since some areas may be
undersampled and others oversampled. Furthermore a
too coarse mesh can introduce shadow leakage ([Bul89,
Cam90]). Several techniques to identify elements that
require subdivision have been proposed (see [Coh95]
for an overview). For example, Vedel et al. [Ved91]
subdivides if the gradient of the radiosity values varies
more than a certain threshold. Campbell [Cam92] splits
an element perpendicularly to the line connecting the
maximum and minimum points of an element, if the dif-
ference between the extrema exceeds a certain thresh-
old. Campbell et al. [Cam90] suggested a geometrical
approach where the receiver polygon is tested against
the shadow volume, generated by the light source and
the occluding surfaces. However, the method is compu-
tationally expensive and does not scale well to complex
scenes. We therefore propose the following method to
determine if an element should be subdivided or not, by

rendering the scene three times from the point of view
of the shooter with a stereographic projection.

Step 1 Render the scene without depth testing and with
occlusion queries enabled. This gives the complete
number of rasterized fragments nr for a triangle (in-
dependent from rendering order).

Step 2 Render the scene with depth testing enabled to
initialize the depth buffer.

Step 3 Render the scene with depth testing and
GL_LEQUAL as depth function and occlusion
queries enabled. This yields the number of visible
fragments nv.

If nr 6= nv there has to be a shadow boundary on this
triangle. The triangle is subdivided if bl ≤ nv/nr ≤ bu
where 0 ≤ bl ≤ 1 and 0 ≤ bu ≤ 1 are the lower and
upper threshold respectively. This avoids subdivision
of triangles where the shadow boundary is short.

In our implementation, we account for subdivision
before shooting the first time from a triangle. If the area
of the shooter is small, we found that a sufficient trade-
off. In such a case, the rendering of the visibility tex-
ture can be combined with the steps outlined above. We
follow the suggestion of Baum et al. [Bau91] and use
regular refinement for subdivision of triangles. Newly
introduced triangles are tested again for subdivision un-
til a maximum subdivision level has been reached or the
subdivision criteria is not fulfilled. To avoid linear in-
terpolation artifacts due to introduced T-vertices, these
vertices are fixed with bisection refinement in regard to
the balance criterion of Baum et al. [Bau91]: the subdi-
vision level of the neighboring elements should not dif-
fer more than one. If a triangle is subdivided, the radios-
ity and residual texture of the parent triangle is copied
down to the child triangles using linear interpolation.
Since subdivision is done before actually shooting, no
reshooting as for example in [Coh88] is performed.

5 RESULTS
The presented method was implemented with C++,
OpenGL and the Cg shading language from NVidia.
Table 1 shows information about the examples used
throughout this paper. It lists the used radiosity texture
size T S along with the mipmap level used for shooting
(in brackets), the time consumed by the radiosity solver
including the post-process and simple exposure tone
mapping tr and the time for setup and preprocessing
(loading of scene geometry, calculation of tangent
vectors, initializing of the texture atlas etc.) tpp. Fur-
thermore, the number of triangles nt and the number
of elements ne as well as the number of iterations IT
(an iteration includes shooting from all elements of
a triangle) are listed. The subscript nm denotes that
normal mapping has been used. The time in brackets
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Figure 8: The scene consists of 9012 triangles which are divided into 4259072 elements. The street lamp
is simulated with a standard Lambertian light, the head and taillights are simulated with four spotlights. Each
triangle was assigned a 32×32 radiosity texture and shooting was done from the third mipmap level.

Figure 9: A scene illuminated by a Zumtobel wallwasher. There are 18436 triangles in the scene yielding 8440590
elements. The left image shows the scene without normal mapping, the middle and right image where rendered
with normal mapping. The right image is a close-up view of the statue showing the reflecting light from the wall.

Uniform TS tpp tr nt ne IT
[sec] [sec]

boxnm 256(4) 0.96 28.37 42 1365280 16
box 32(3) 0.5 0.92 42 20120 16
bus 32(3) 8.84 58.8 8798 4192282 16
museum 32(3) 8.78 89.98 13627 6534502 10
statue 32(3) 13.45 104 16028 7683931 8

Adaptive TS tpp tr nt ne IT
[sec] [sec]

bus 32(3) 8.84 72.26 9012 4259072 16
(2.14)

statue 32(3) 13.61 138.49 18288 8392967 8
(14.43)

statuenm 32(3) 27.43 164.94 18436 8440590 8
(33.0)

Table 1: Performance for uniform and adaptive mesh-
ing for different scenes

represents the portion of tr required for adaptive
subdivision of the mesh. Except of the statue scene,
all scenes have reached more than 88% convergence
for the given number of iterations. All measurements
where taken on a Intel Core2 CPU with 2.13 GHz with
a Geforce 8800GTS with 640MB DDR3 Ram.

Performance analysis of the code showed that most
time was consumed for rendering the receiver trian-
gles. This is evident since this function is dependent
on the result of the occlusion query to determine visi-
bility. Additionally, setting the appropriate parameters
of the orthographic projection for each triangle requires

context switches of the fragment program. The perfor-
mance of the current implementation is mainly limited
by the available texture memory of the GPU. Once too
many textures have to be maintained, texture memory
thrashing can be noticed.

6 CONCLUSION AND FUTURE
WORK

We presented a GPU implementation of progressive ra-
diosity for triangular meshes. The rasterization of tri-
angles is the major problem to overcome. We solve
this by rendering the triangle itself and the outline of
the triangle. The remaining artifacts are eliminated in
a post-processing step or can be fixed during runtime
with a fragment shader. Furthermore, we demonstrated
the inclusion of normal mapping into the radiosity pro-
cess, which yields more sophisticated results. Arbitrary
light distributions can also be simulated with the help
of light distribution textures.

The ample use of occlusion queries for determining
visibility and shadow boundaries requires an elaborate
algorithm to avoid stalling of the graphics pipeline. We
are currently optimizing our implementation in this re-
gard. Currently only one texture size is used for all tri-
angles in the scene – independent from the actual size
of a triangle. However, for scenes consisting of ob-
jects with rather coarse and fine meshes, this is subop-
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timal, since some triangles inevitable get undersampled
or oversampled respectively.

We aim to include general reflectance distributions by
means of BRDFs, as published by Sillion et al. [Sil91],
in our method. To allow for efficient reconstruction
of the BRDF during runtime we are investigating the
approach by NVidia [Wyn00]. To account for diffuse
transmission the inclusion of a backward diffuse form
factor [Rus90], which denotes the fraction of energy
leaving a surface from its back side and impinging on
another surface, is considered.
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ABSTRACT

Our work presents a virtual single lens reflection camera (vSLRcam) application which is employed in a virtual training envi-

ronment for crime scene investigation. vSLRcam’s back-end is a GPU based simulation of a realistic camera model taking into

account SLR camera properties like apperture, shutter speed, lens, etc., as well as their interdependencies. Thus, we can obtain

realistic lens effects like motion blur or depth of field in real-time. The application user interface allows for parameterizing the

inidividual camera attributes to achieve those effects and, as a result, to take realistic pictures of the scene. The resulting images

come very close to real world photographs with equal parameter values. Our main contributions are a common framework for

the SLR camera attributes and the simulation of their interdependecies in a single application which is capable of rendering

photographic lens effects in real-time.

Keywords: realistic camera model, virtual environments, real-time rendering, motion blur, depth of field

1 INTRODUCTION
The simulation of lens effects produced by a realistic

camera model is a recurrent field of interest in computer

graphics research. While incipient works usually ap-

plied raytracing techniques to achieve effects like mo-

tion blur or depth of field, by now GPU-based shader

programming allows for real-time rendering of the ef-

fects even within virtual environments (VEs) and 3D

games. This not only strengthens the environment’s

immersion depth and realism but also makes real-time

cinematography applicable to it [7].

Usually, in games only certain lens effects are sim-

ulated and they become an inherent part of the game

environment. A manual parameterization of the effects

is therefore not intended and incorporated. In contrast,

we wanted to completely approximate a single-lens-

reflection camera and integrate it into our virtual train-

ing environment. Moreover, we wanted a realistic cam-

era model to be the basis for the virtual SLR camera.

We put the main emphasis on the simulation of individ-

ual camera components and their contributions to the fi-

nal image on the one hand and their interdependencies

on the other hand in order to realistically generate pho-

tographic lens effects. Even though we did not focus on

film negative types in the first place, we also integrated

granularity effects and added a parameterization for the

film speed.

In order to allow for real-time rendering, the virtual

SLR camera was implemented using OpenGL’s Shad-
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ing Language on modern graphics hardware. The ap-

plication further was realized for usage in scene graph

based VEs and was integrated into the virtual training

environment OpenCrimeScene for testing [4]. Open-

CrimeScene is designed as a serious game for crime

scene investigation. It will be used by police students

for training purposes, e. g. crime scene photography. As

the students have to understand the interdependencies

of camera components in order to take useful pictures

of the crime scene, the vSLRcam has to meet realistic

standards.

2 BACKGROUND
Photography is the process of projecting 3D objects

onto a 2D image plane through a center of projection

including geometric distortions in the final image. The

image plane has to be made out of a light sensitive ma-

terial in order to capture the picture constantly. This is

usually a photo sensitive negative film for analog or a

CCD sensor for digital cameras. A picture then is a re-

production of light intensities reflected from the object

surfaces which lie in the angle of view.

We cannot go into detail on the underlying princi-

ples here and, thus, we clearify only the relationships

between the terms optical principles, realistic camera
model, and SLR camera. We assume that you are famil-

iar with the first two points and focus on camera com-

ponents hereafter.

1. Optical principles of reflection and refraction ex-

plain how light intensities from one place can be re-

produced at another.

2. A realistic camera model is a geometrical explana-

tion for the process of projecting 3D objects onto a

2D image plane.

3. An SLR camera approximates a realistic camera

model.
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2.1 Camera Components
Basically, an SLR camera is a photographic tool which

consists of an opaque body containing a photo sensitive

image plane and a camera lens. The amount of light

that reaches the image plane during the exposure can

be controlled by the aperture and the shutter which are

components of the camera lens and camera respectively.

The duration of the exposure is crucial for a balanced

image illumination. Moreover, different visual effects

within the image can be achieved by coordinating the

aperture and shutter.

Camera lens

Lenses are made of translucent material and, hence,

have refractive power. There are convex and concave

lenses, with the former being responsible for converg-

ing and the latter being responsible for diverging in-

coming light rays (cf. Fig. 1). The decisive lens pa-

rameter is the focal length f which is the distance be-

tween the center of the lens and the focal point F. That
is, all rays travelling in parallel to the optical axis get

refracted through the lens and intersect in F. In case of

concave lenses, the focal point lies on the rear side of

the lens’ refraction border [3, 8].

Thus, the refractive power of lenses offers to steer the

incoming light rays into a particular direction. When

grouping convex and concave lenses together, even

more control can be gained over the light distribution.

Consequently, the camera lens usually consists of

a whole group of convex and concave lenses. The

decisive property of it certainly is the focal length, as it

determines the camera lens’s angle of view as well as

its enlargement factor. A small focal length allows for

a wide pane whereas a small pane is caused by a large

focal length.

There are four standardized camera lens types which

range from small focal length to large focal length.

These are wide angle, normal, and tele as well as zoom

lens for varying focal lengths.

Aperture

The aperture regulates the amount of incoming light by

increasing or decreasing its size. It is specified in so-

called f-numbers and is set in fixed steps, so-called f-

(a) Convex lens (b) Concave lens

Figure 1: Convex and concave lenses which converge and diverge
light rays to the (virtual) focal point F [11].

Figure 2: Different aperture f-stops [1].

stops, as can be seen in Figure 2. An f-number is cal-

culated as the ratio of the focal length and the open-

ing’s diameter. Given a focal length of 28mm and a

current opening diameter of 10mm, the f-number then

is 2,8 f = 28mm
10mm . In order to regulate the amount of in-

cident light falling onto the image plain, each camera

furthermore is endued with a so-called shutter.

Shutter and Shutter Speed

If the aperture takes care of how much light enters the

camera lens, the shutter takes care of how long this

amount of light reaches the image plane. It is part of

the camera’s body and is positioned between the cam-

era lens and the image plane. Generally, the shutter is

made out of small leafs which are opened for a certain

amount of time, the exposure time (also referred to as

shutter speed). It is specified in seconds s, whereas each

time step is doubling or halving the previous one, e. g.

like · · · , 1
15 s, 1

30 s, 1
60 s, 1

125 s, 1
250 s, etc.

Negative Film or CCD Sensor — The Image Plain

The image plane of a camera either is equipped with

a negative film for analog models or a CCD sensor for

digital cameras. Both are photo sensitive and are thus

able to capture the incoming light. A CCD sensor sim-

ply converts the incoming light into an electrical signal

and stores it to memory. A negative film, in contrast,

brings its own visual effect. This can be simulated by a

digital camera, however it is unique for each film type.

Negative films are coated with a light-sensitive emul-

sion of silver halide salts that contains crystals in vari-

able size. The exposure of this emulsion results in a

permanent image capture, the negative, which has to

be chemically processed to become the final image, the

positive. The emulsion is responsible for the film’s light

sensitivity, the so-called film speed. The smaller the

crystal size, the less light-sensitive (slow) the film is but

the finer the final image details become. In turn, film

types which are very light sensitive (fast) can cope well

with dark surrounding light conditions but often result

in granulous images (cf. Fig. 3). The film speed is spec-

ified in ISO1 values which typically range between 100

to 1600.

1 ISO stands for International Standardization Organization. Digital

cameras usually approximate the film speed.
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Figure 3: The film speed determines the image granularity. On the
left an ISO 200 film speed leads to fine results whereas on the right
an ISO 1600 film speed results in granulous images.

2.2 Interdependencies

Given the camera components several photographic ef-

fects can be derived. This is due to the interdependen-

cies of the single components and their parameter set-

tings.

Exposure

The procedure of light falling onto and reacting with the

photo sensitive image plane is called light exposure. It
is specified as exposure value EV and depends on the il-

lumination level (regulated by the aperture and shutter)

and the image plane’s sensitivity. The illumination level

now is regulated by a balanced combination of aperture

size and shutter speed. For example, the same illumi-

nation level can be gained by a widely opened aper-

ture and a short shutter speed or a small opening and a

longer shutter speed. Both ways, the same amount of

light enters the image plane.

As mentioned in Section 2.1, the film speed speci-

fies the film’s light sensitivity. Fast films can be use-

ful under dark lighting conditions because still a small

amount of light suffices to obtain a correct illumination

but might lead to granulous image effects. Slow films,

on the opposite, need more incoming light. Hence, ei-

ther the aperture has to be widely opened or the shutter

speed has to be slow. This, however, could cause blur-

ring effects.

Motion Blur

Motion blur describes a blurring effect of the whole or

parts of the image. The effect is caused either by the

camera’s or the motif’s motion and a slow shutter speed.

Figure 4 illustrates the effect. On the left hand side you

see a swinging person whose motion is frozen in the

image due to a short shutter speed ( 1
30 s) whereas the

picture on the right hand side strongly shows motion

blurring caused by a slower shutter speed ( 14 s). Besides,

the pictures also demonstrate the relation of aperture

and shutter speed for a correct illumination. In order to

achieve equal illumination levels, the left picture had a

wide opened aperture of value 8 whereas the right one

was taken with a small opening of value 22.

Figure 4: The exposure time can be used to produce motion blur
effects. In the right picture a longer exposure time causes a blurred
image of the swinging person. (Pictures courtesy of Konrad Mühler.)

Depth of Field

A second effect that is caused by aperture size and shut-

ter speed setting is the depth of field. When taking a

picture certain objects are focussed and consequently

get displayed sharply on the photograph. The depth of

field describes the area around the object in focus which

is also projected without blurring onto the image plane.

Geometrically, this can be explained by the focus plane
to which the image plane has to be related (cf. Fig. 5).

All objects placed on the focus plane will be projected

alike on the image plane. Objects which are placed far

beyond the focus plane, however, will be blurred, they

form so-called circles of confusion on the image. The

size of the circle of confusion determines whether the

object’s points lie within or without the depth of field

and grows with increasing distance to the focus plane.

The aperture is the main indicator for regulating the

depth of field. The thinner the incoming light cone, the

smaller will the circle of confusion be (cf. Fig. 5). Fur-

thermore, a small focal length as well as the object’s

distance to the camera increase the depth of field (cf.

Fig. 6).

3 RELATED WORK
There have been a few approaches to simulating cam-

era lens effects in computer graphics. Recent works

deal with image correction techniques due to weak re-

sults of digital photography, e. g. [2]. Generally, the ap-

proaches concentrate on single camera aspects or lens

effects without taking the ensemble into account. This

is what we wanted to address. Beside, the existing ap-

proaches either are based on raytracing techniques and

thus cannot achieve interactive frame rates or they do

Figure 5: The illustration shows the influence of aperture size on
depth of field. All points (A) on the focues plane project points onto
the image plane (A’). In contrast, distant points (B) project circles of
confusion on the image plane (B’). Reducing the aperture size also
leads to smaller circles of confusion which then become part of the
depth of field.
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Figure 6: The depth of field spreads out differently due to the aper-
ture settings. By minimizing the f-number, the depth of field area
increases (from left to right f 4.5, f 8, and f 20).

allow for real-time rendering but not for integration into

interactive virtual environments, e. g., they render sin-

gle objects only. Both is mandatory for us, though.

The pioneers in the area of rendering depth of field ef-

fects were Potmesil and Chakravarty who developed a

post-processing technique to render depth of field based

on raytracing [13]. The approach generates depth of

field in a (pre-)rendered image from a standard pin-

hole camera by blurring each pixel with a pre-computed

circle of confusion. Even though the technique is far

to slow for real-time graphics it has inspired several

further works, e. g. [15, 9, 17], which apply hardware

shader programming. Other approaches were based on

distributed raytraycing or made use of an accumulation

buffer to simulate depth of field, e. g. [5, 6]. The lat-

est depth of field simulation by [10] is based on GPU

programming and leads to beautiful results. However,

each of these approaches is not applicable at interac-

tive frame rates. For simulating depth of field as part of

our virtual SLR-camera we present a technique which

is also based on Potmesil’s works [13]. Yet, we make

use of the GPU to achieve real-time rendering.

The simulation of a motion blur effect is a desirable

feature especially in computer games as it increases the

game’s realism. The first attempt also was undertaken

by Potmesil et al. [14]. They generated the motion blur

effect by applying a time convolution filter to the orig-

inally rendered image together with a moving Fourier

transformation function. However, this technique is not

capable of real-time rendering. Moreover, it is far from

being physically correct since it only uses a single input

image. A similar approach has been made by Shimizu

et al. using hardware shader programming [16]. The

authors integrated a pre-computed vector field to deter-

mine the optical flow of the individual 3D objects first.

Then, by warping and filtering the input image several

times according to the optical flow, motion blur is gen-

erated. The technique works in real-time but is only

suitable for single objects as well as for pre-computed

vector fields. This is too restricted for a virtual training

environment.

Our approach for simulating motion blur, however,

has to depend on the camera settings in the first place

Figure 7: The illustration shows the optical paths within an SLR cam-
era. Parameters included are the focal length f , the aperture’s diam-
eter ad as well as the distances to the focus plane ds, image plane
di, and object plane do as well as its’ image d′o. The latter are nec-
essary for generating the circles of confusion diameters ci derived
from non-focussed object points co.

and thus is based on the works of Haeberli and Ake-

ley [6]. They introduced the accumulation buffer which

allows for accumulating several images into one out-

put image. In contrast, we do not use an accumulation

buffer but rather implement the image accumulation us-

ing hardware shader programming.

4 A VIRTUAL SLR CAMERA
As shown in the previous sections, the SLR camera

components are related to one another and can pro-

duce certain photographic effects. As a virtual counter-

part, the vSLRcam has to offer the same functionality.

Each component and according parameters as well as

the component’s internal relationships need to be iden-

tified first.

Parameters

The decisive parameters to generate a certain visual ef-

fect are given by the camera components lens, aperture,

shutter, and film type. The according parameters which

can be specified by the user are:

• focal length f and distance to the focus plane ds
• f-number a
• exposure time t
• ISO value is and film format i f

To realistically render photographic effects like, e. g.

depth of field, further parameters have to be derived.

Figure 7 illustrates the main geometrical parameters

that are necessary. Our approach is based on a thin lens

approximation which simplifies the individual parame-

ter calculations [3].

4.1 Lens Effects
The lens effects we would like to realize are an ad-

justable angle of view, depth of field, and motion blur.

Furthermore, we have to determine the correct image

illumination regarding the current lighting conditions

as we also want to allow for over- and under-exposure.

The above specified parameters will be used to approx-

imate these effects.
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Angle of View

The angle of view is the result of a specific camera lens

type, see 2.1. It, thus, is responsible for the viewing

pane of the resulting image. However, it is not the fo-

cal length f which determines the angle of view but

rather the distance di from the lens center to the image

plane on the one hand and the image plane’s diagonal

id (which is specified by the film format i f ) on the other

hand. As a result, the angle of view also changes dur-

ing focussing as the distance to the image plane di is

changing. The angle of view is given by:

α = 2 · arctan
(

id
2 ·di

)
(1)

The parameters that have to be specified by the user

are focal length f , film format i f , and focus distance

ds. Given these parameters, id as well as di have to be

derived. To calculate the former,
√

width2 +height2
has to be employed whereas the latter can be obtained

by applying the thin lens formula:

1

f
=

1

di
+

1

ds
=⇒ di =

f ·ds

ds− f
(2)

Finally the angle of view is given by

α = 2 · arctan
(

id · (ds− f )
2 · f ·ds

)
(3)

Realization The adjustment of the angle of view is sim-

ply implemented by changing OpenGL’s view frustum

accordingly. Figure 8 shows different lens type simula-

tions.

Depth of Field

Rendering the depth of field effect is a bit more com-

plex. For each image point a circle of confusion has to

be computed. To start with, we calculate the circle of

confusion co in object space which projects on the fo-

cus plane at distance ds. This is illustrated in Figure 7.

By applying the intercept theorems we receive

co

ad
=

do−ds

do
=⇒ co = ad · do−ds

do
(4)

With ad being calculated as the ratio of focal length f
and f-number a, the equation becomes

co =
f
a
· do−ds

do
(5)

(a) Wide angle lens (b) Normal lens (c) Tele lens

Figure 8: Simulation of different camera lens types resulting in differ-
ent angle of views. The camera position is the same for each picture.

(a) T1 (b) T2

Figure 9: The texture on the left is a normal scene rendering whereas
the texture on the right holds the depth information to calculate the
depth of field.

Then, again by applying the intercept theorem for the

circle of confusion ci we get

ci

co
=

di

ds
=⇒ ci = co · di

ds
(6)

The image plane distance di already has been calculated

in equation 2, thus,

ci = co · f ·ds

(ds− f ) ·ds
= co · f

ds− f
(7)

and finally by substituting co we have

ci =
f
a
· do−ds

do
· f

ds− f
(8)

as the formula to calculate the circle of confusion of

each object point in the image.

Realization Equation 8 now has to be applied to

each image point in order to receive a realistic depth of

field distribution. Our approach is based on the works

of [13]. However, in order to render the effect in real-

time we implement it using OpenGL Shader Language.

The contributing parameters are the focal length f ,
the f-number a and the distance to the focus plane ds
which can be specified by the user. The distances to the

object points, described by do, are given by the scene as

z-values.
The implementation now consists of four rendering

passes, each rendering the scene to an individual tex-

ture, T1, T2, T3, and T4, respectively. We do not use

multiple rendering textures here, because some of the

textures serve only as static input data which is also

needed for other lens effects later on.

The first rendering pass is a pure OpenGL pass which

simply obtains the correct color distribution. The sec-

ond pass then renders the depth values to T2 and will be

used as a lookup table for the camera–object distances

do (cf. Fig.9).

The third rendering pass receives both textures T1

and T2 as well as the user specified parameters as in-

put variables. The calculation of the depth of field then

is done in the fragment shader as follows: For each

pixel from T1 the circle of confusion’s diameter is cal-

culated according to Equation 8 as well as an equally

sized poisson disc filter being centered on the corre-

sponding pixel. The poisson filter’s sample points are

associated to the proximity pixels that lie within the
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radius of the circle of confusion. When the sampling

is performed each pixel color as well as the surround-

ing pixel colors contribute to the new pixel color be-

ing stored in the texture T3. Although this technique

leads to very realistic results it does not prevent the

leaking of color from sharp objects to the blurred back-

ground. We do not circumvent this drawback yet. Be-

side, the poisson sampling leads to other regular arte-

facts (cf. Fig. 10 (above)). We simply overcome these

by re-filtering T3 with another poisson disc sampling

and store the result in texture T4 (cf. Fig. 10 (below)).

Exposure
During the exposure the image plane is exposed to the

incoming light. If the amount of light is too high, the

final image becomes over-exposed. If it is too low it

becomes under-exposed. To achieve a correct illumi-

nation two different exposure values have to be calcu-

lated: EVs indicating the scene illumination and EVc
as a result of the current aperture/shutter speed setting.

The applied equations are based on standardized 2-base

logarithmic scales. A correct illumination then means

that the difference EVdelta = |EVs − EVc| is minimal.

This can be achieved by adjusting either aperture size

or shutter speed.

The scene illumination EVs is approximated by three

parameters: The scene illuminance E specified in lux

lx, the film speed is specified in ISO, and a photometer

dependent constant C by default given as 250 lx.2 The

equation then is given as:

EVs = log2

(
E · is

C

)
(9)

The exposure value caused by the current aper-

ture/shutter speed combination EVc is given by:

EVc = log2

(
a2

t

)
(10)

Every increase or decrease of an exposure value by

one can either be caused by increasing or decreasing

Figure 10: Both pictures contain depth of field. Due to the pois-
son disc filter the upper picture consists of regular artifacts. By re-
sampling the image, the artifacts can be suppressed, though (lower
image).

2 C is the incident light meter calibration constant.

the f-number or the exposure time by one step each.

That means, each increase or decrease of an exposure

value by one leads to either twice or half of the amount

of incoming light. A common SLR camera can switch

between about 10 f-stops which corresponds to 10 dif-

ferent exposure values. Higher or lower values will be

displayed black or white.

Realization To realize a virtual exposure the values

of EVs, EVc, and EVdelta have to be calculated. There-

fore, the parameters f-number a, exposure time t, film
speed is, and photometer constant C need to be speci-

fied by the user or are given. A correct specification of

the scene illuminance E would require a global illumi-

nation model. As the underlying OpenGL API is based

on a local illumination model E has to be approximated.

We specify E manually and set it to 500 lx which is re-

alistic for indoor scenes.

Given these parameters we then apply two render-

ing passes. The first pass simply renders the scene to

texture T1. In the second pass we calculate EVc and

EVs as well as the difference Edelta. Due to the re-

sult, the vSLRcam then can either propose a new aper-

ture/shutter speed setting to accomplish a correct illu-

mination or the over-/under-exposed image is rendered.

To achieve the latter, each pixel color from T1 has

to be modified in the fragment shader. The tricky part

here is to correctly map the exposure values to the

color space in order to realistically simulate an over-

or under-exposure. As the pixel colors range between

0.0 and 1.0 the exposure value has to map to the inter-

val -1.0 to +1.0. Otherwise, no black pixel could com-

pletely turn white and vice versa. Thus, each change of

an exposure value by one leads to a color change of 0.2.

That is, the exposure value range of 2.0 devided by the

10 different exposure value steps a common SLR cam-

era allows for. Hence, the new color can be calculated

by:
newColor = oldColor +0.2 ·EVdelta (11)

Consult Figure 11 for examples on virtual exposure.

Motion Blur

The motion blur effect occurs during exposure when ei-

ther parts of the scene or the camera move. Each change

in position of the scene or scene objects is captured on

the image plane and results in blurred areas, because

the exposure H is the sum of the individual illuminance

values E over the exposure time t. This is given by:

H =
∫

E dt (12)

Realization To realistically simulate motion blur the

scene’s individual illuminances E have to be summed

up over time t. Again, t is given but E has to be ap-

proximated. We assume each frame being rendered dur-

ing the exposure as the current scene illuminance E and

sum up the frames by a weighting factor α : [0,1]→R.
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(a) correct exposure (b) under-exposure

(c) weak over-exposure (d) heavy over-exposure

Figure 11: The illustration shows four types of exposure. (a) shows
the first rendering pass image. (b) This then becomes under-
exposed with settings a = 4,0 f and t = 1

60 . Moreover, (c) and (d)
are over-exposed by values a = 2,0 f and 1

60 (c) and a = 1,4 f and
t = 1

15 .

This factor α takes care of how strong each frame con-

tributes to the final image together with the following

equation:

stepn = (1−α)Fn +α1(1−α)Fn−1+

α2(1−α)Fn−2 + ......+αnF0

(13)

Equation 13 assures two things: First, the contribu-

tion of each frame to the final image is decreased by the

number of rendered frames n. Second, when we start

the exposure we immediately receive an output image.

This way we can render motion blurred images realisti-

cally and in real-time (cf. Fig. 12).

The problem here is that for long exposure times

(large n) α can become so small that the correspond-

ing frame gets transparent and therefore does not con-

tribute to the final image anymore. This contradicts our

request for physical correctness and, thus, the question

is how to define α? First, we state the following two

conditions:
1. The frames per second (FPS) determine the number

of frames which need to be accumulated to receive a

correct illumination in the motion blurred image.
2. The color intensity of an image is nearly transparent

if reduced to 1
50 of the original value and it becomes

invisible if reduced further.

Following Equation 13, the first frame F0 contribu-

tion is specified by αn in each step. That means, to

Figure 12: Three rendering passes are responsible for accumulating
the current frame with the previous frames by weighting factor α .

(a) t = 1
30 s (b) t = 1

10 s

(c) t = 1
5 s (d) t = 1s

Figure 13: Simulation of motion blur by varying exposure times t.

assure a contribution of at least 1
50 of the frame to the

final image, we have to define a threshold ε which has

to be at most equal to αn: ε ≤ αn. Hence, α can be

calculated by:
α = n

√
ε (14)

Given an exposure time t of 1
8 s and 80 f ps we need

to accumulate n = 10 frames. This results in α = 0.676.
See Figure 13 for some example output images.

5 RESULTS
The virtual SLR camera approximates the main compo-

nents of a real SLR camera and allows for realistically

simulating the resulting lens effects. These even can be

rendered in real-time which offers us the possibility to

integrate the vSLRcam into our virtual training environ-

ment OpenCrimeScene. Even though our user interface

does not conform to a realistic SLR camera display yet,

the necessary settings can easily be adjusted. Figure 14

shows an example of virtual pictures that are used to

document the crime scene.

Figure 14: The vSLRcam can be used to document the crime scene.
Here, the virtual photographs depict a letter with a fingerprint on it.
An overview picture illustrates the context first. Then the letter is
focussed more closely (from left to right).

We evaluated the virtual photographs with real pic-

tures taken by a digital SLR camera, the Nikon D70

(cf. Fig. 15). The camera parameters have been equally

set and lead to very similar images. Further results can

be found in [12].

6 CONCLUSION
In this paper we presented the vSLRcam. The appli-

cation simulates a real SLR camera by realistically ap-
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(a) a = 3,5 f , t = 1
200 (b) a = 3,5 f , t = 1

60

(c) a = 3,5 f , t = 1
30 (d) a = 3,5 f , t = 1

4

Figure 15: Comparison of the vSLRcam with a real Nikon D70. The
upper images were taken by the Nikon D70 whereas the lower im-
ages are virtual shots. You can see that the scene illuminances cor-
respond very well. The images (a) and (b) show under-exposure
and correct illumination whereas images (c) and (d) show slight and
strong over-exposure. The camera settings have been the same for
real and virtual picture taking leading to very similar results with our
technique.

proximating its individual components and allows for

the real-time rendering of photographic effects due to

the camera’s parameter settings. The integration of the

vSLRcam application into our virtual training environ-

ment allows for the users to associate with a common

SLR camera’s functionality. Moreover, this is espe-

cially supported by the realistic looking photographs

the virtual camera generates. Besides, the camera ef-

fects could also be made a part of the virtual environ-

ment as they can be rendered in real-time. Further-

more, the camera application could be used for cine-

matographic purposes, e. g. to train camera views or to

simulate tracking shots. Firstly, however, we want to

improve the user interface to become more intuitive.
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ABSTRACT  
We present a novel method to accelerate the computation of the visibility function of the lighting equation, in 
dynamic scenes composed of rigid, non-penetrating objects. The main idea of the technique is to pre-compute 
for each object in the scene its associated four-dimensional field that describes the visibility in each direction for 
all positional samples on a sphere around the object, we call this a displacement field. We are able to speed up 
the calculation of algorithms that trace visibility rays to near real time frame rates. The storage requirements of 
the technique, amounts from one byte to one bit per ray direction making it particularly attractive to scenes with 
multiple instances of the same object, as the same cached data can be reused, regardless of the geometric 
transformation applied to each instance. We suggest an acceleration technique and identify the sampling method 
that gives the best results based on experimentation.  

Keywords  
indirect lighting, pre-computed visibility, uniform distribution, hemisphere, queries, query-point, tracing rays.  

 

1. INTRODUCTION  
Ray based solutions to the rendering problem have 
been popular for over two decades now. An 
enormous amount of work has been done by 
researchers in order to accelerate the tracing of rays, 
especially through the use of spatial acceleration 
structures. However, such methods typically have a 
non-constant cost for ray-intersections. We propose 
an acceleration method for speeding up the visibility 
term of ray casting and apply the method to the 
approximation of the secondary diffuse illumination, 
namely the ambient occlusion.  

Ambient occlusion is defined as the attenuation of 
ambient light due to the occlusion of nearby 
geometry. It is a technique that approximates the 
effect of indirect global illumination and does not yet 
try to simulate the interplay of incident and reflected 
light. In Ambient occlusion the indirect component 
can be computed as: 

( ) ( ) ( )⋅∫ o o oΩ

1A x,n  =   V x,ω ω n dω  
π

  

where  ( )oV x,ω  is an empirical function that maps 

distance from surface point x to the closest surface 
along direction oω  to visibility values between 0 (no 
visibility) and 1.  

 
Figure 1: A hemisphere of rays emanating from 
the bounding sphere towards the object is 
precomputed for a large number of sample 
points on the sphere.  

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
Copyright UNION Agency – Science Press, Plzen, Czech 
Republic. 
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By tracing rays outward from a given surface point x 
over the hemisphere around the normal n , ambient 
occlusion measures the amount that a point is 
obscured from light. This average occlusion factor is 
used to simulate soft-shadowing.  

The method proposed in this paper uses a 
discretization approach. It accelerates the ray-object 
intersection test and in turn the computations of the 
visibility function of the lighting equation, by 
separating the task in two subtasks. First, at pre-
processing time, we construct the displacement maps 
(Figure 1). These store the intersection distances of a 
hemisphere of rays originating from sample points on 
the bounding sphere of an object and directed 
towards the model itself. We construct one map for 
each sample point (Algorithm 1). Then, at run time, 
when a ray from the environment towards an object 
intersects its bounding sphere, we perform a simple 
ray-sphere intersection test and recover from the pre-
computed maps the rest of the distance of the 
incoming ray at the given angle.  

The advantage of our method is that the bulk of the 
computation is moved to a pre-processing stage. The 
results are stored in compact grayscale textures (one 
byte per ray direction), providing for each object a 
constant size of additional information independent 
of the complexity of the original model. Then the 
real time algorithm performs a simple intersection 
test and a constant-time map lookup as in Algorithm 
2.  

We show that, in applications such as ambient 
occlusion, maps that use 1-byte of storage per ray 
give almost the same result as maps that use 4-bytes 
of storage space. If the model changes level of detail 
the same maps can still be used. In addition, the 
displacement maps contain information that is 
transformation invariant. As such, no additional 
information has to be computed when the rigid object 
moves in the environment. For dynamic scenes with 

rigidly moving objects, displacement fields 
accelerate the computation of the approximation of 
the indirect lighting term of the rendering equation to 
real-time frame rates as well as the computation of 
collision detection algorithms and ray casting.  

In Section 2 we give an overview of the previous 
work, followed by a description of our method in 
greater detail in Section 3. In Section 4 we discuss 
our results in one application area, that of computing 
secondary diffuse illumination (termed ambient 
occlusion).  

2. PREVIOUS WORK  
We distinguish the previous work in three different 
areas: ray tracing acceleration algorithms, ambient 
occlusion computation, and various field 
computations around an object for accelerating 
different types of algorithms.  

Ray Tracing Algorithms  
Traditionally ray-scene intersection is accelerated 
through the use of hierarchical data structures. 
Bounding Volume Hierarchies [Gol87a] [Rub80a] 
[Cla76a], Voxel Grids [Sny87a] [Fuj86a], 
Hierarchical Grids [Kli97a] [Caz95a] [Jev89a], 
Octrees [Gla84a], Binary Space Partitioning Trees 
[Sun92a], kd-Trees [Hav02a] [Nay93a] [Mac90a] 
[Arv88b] [Jan86a] are just a few.  

Recently, a new set of algorithms have been 
developed for interactive ray tracing and ray tracing 
of dynamic scenes. The work of Wald et al. 
demonstrates real time ray tracing for small scenes 
using in-expensive off-the-shelf PCs with SIMD 
floating point extensions [Wal01a] [Wal01b] and for 
larger scenes on shared memory multiprocessor 
machines by Parker et al. [Par98a] and on PCs using 

 

generate bounding sphere sample points  
generate samples of hemisphere of rays  
for all bounding sphere sample points (u, v) do  

align hemisphere of rays to normal at (u, v)  
for all rays (φ, θ) do  

if ray intersects the object then  
normalize the distance (divide by 2 * R)  
record distance in displacement map  

else  
record distance in displacement map as 2 * R 

end  
end  
 

Algorithm 1: Pseudo code of basic algorithm for 
displacement fields computation at preprocessing 

time.  

 

generate hemisphere of ray samples  
for each occlusion receiver object do  

for all points x on the occlusion receiver surface 
do  

for all emanating rays do  
if ray intersects bound sphere of occluder obj. 

discretize intersection point (u, v)   
discretize ray (φ, θ)  
access distance in displacement map  

end  
use distance for occlusion approximation  

end  
compute occlusion at x  

end  
end  
 

Algorithm 2: Pseudo code of basic algorithm for 
ambient occlusion rendering using displacement 

fields during real time processing.  
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a cluster architecture by Wald et al. [Wal01b] 
[Wal01a]. The main issue of these algorithms that 
accelerate spatially coherent rays, is that their 
speedup on secondary ray intersection tests is 
limited.  

Ambient Occlusion  
Ambient occlusion was first introduced by Zhukov 
and Iones et al. [Ion03a] [Zhu98a]. Their algorithm, 
depending on the size of the scene, could run in real 
time producing adequate results. For offline 
rendering, ambient occlusion is usually pre-
computed at each vertex of the model, and stored 
either as vertex information or into a texture. For 
real-time rendering, recent work by Kontkanen et al. 
[Kon05a] suggests storing ambient occlusion as a 
field around moving objects, and projecting it onto 
the scene as the object moves. The interactions of 
multiple dynamically moving rigid objects can be 
combined in real-time. Zhou et al. [Zho05a] 
approximate the ambient occlusion by computing a 
field around an object that describes the shadowing 

effects of the model at points around it. The field is 
represented by Haar Wavelets or Spherical 
Harmonics making it more accurate than the method 
of Kontkanen et al. but also more expensive to 
calculate. Finally Malmer et al. [Mal05a] surround 
the object with a regular 3D grid, pre-computing 
ambient occlusion at the center of each grid cell with 
high memory costs for moderately complex scenes.  

Field Computations around an Object  
The work of Avneesh Sud et al. [Sud06b] [Sud04a] 
for computing the discretized 3D Euclidian distance 
to the surface of a primitive is used for speeding up 
interactive collision and distance queries types of 
algorithms. In our method, for the selected points 
around the object, we don’t just compute the closest 
distance but rather the distance in a hemisphere of 
directions towards the object. In the work of Huang 
et al. [Hua06a] in a pre-computation stage the object 
is separated into convex segments each one 
surrounded by an oriented bounding box. The OBB 
is split into cells, each one recording a reference to 
the primitive that is intersected by a ray through this 
cell (traversal field). The multiple OBBs are needed 
in order to allow inter-reflections. Due to the fact that 
the number of OBBs and their corresponding 
traversal fields depends on the complexity of the 
original model, memory consumption may rise 
significantly.  

3. DISPLACEMENT FIELDS  
In this section we describe the general idea of 
displacement fields, while in section 4 we show their 
application for ambient occlusion.  

Our method bears some similarity to the 
parameterization of Huang et al. [Hua06a] where 
each ray was described as a vector of the parametric 
incident location (u, v) on the bounding volume and 
its corresponding incoming direction (θ, φ). 
However, we introduce our novel displacement field 
encoding pre-computation where using a similar 
parameterization, we store the distance from the 
entry point on the bounding volume to the surface of 
the object. We further discuss the sampling 
techniques used and the storage requirements of our 
method along with the compression scheme.  

Displacement Field Computation  
The main idea of encoding displacement fields into 
maps is as follows (Algorithm 1). Consider a rigid 
object possibly moving through a scene. At a pre-
processing step, from a discreet set of sample points 
on the bounding sphere, described as spherical 
coordinates (u, v), a hemisphere of rays is cast 
around the inward normal direction (Figure 1). For 
each ray (u, v, θ, φ), the closest distance between the 

  

  

  

Figure 2: 512x512 displacement maps of a model 
of a cow and a cube with a hole in it. (top row) 
Using uniform Sampling of rays, (middle row) 
Rejection Sampling, (bottom row) Concentric 
Map Sampling. Different (θ, φ) to (s, t) 
mappings, produce different displacement maps.  
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bounding volume and the model surface is found and 
recorded as a compact integer value after being 
normalized by twice the sphere radius. Thus, for each 
sample point (u, v) a displacement grayscale map is 
obtained (Figure 2) that represents the distance 
traveled along the ray in the direction (θ, φ) before 
hitting the model surface. We define the 
displacement field of the object to be the collection 
of all displacement maps generated from all sample 
points on the bounding sphere of the object.  

Displacement Field Indexing  
During the real time part of the execution (Algorithm 
2) an incident ray to the object, intersects its 
bounding sphere and the distance between the ray 
origin and the intersection point is recorded. The 
intersection point q is transformed into the object 
coordinate system: 1 ,−′ = ⋅  q M q where M is the 
transformation matrix with respect to the reference 
frame of the ray. Depending on the sampling on the 
surface of the sphere (see Section 3.3), the inverse 
function is applied to ′ q in order to get the closest 
corresponding point (u, v) on the sphere for which 
we have a displacement map and therefore the index 
of the corresponding displacement map. Next we 
need to find the corresponding (θ, φ) of the incident 
ray. Depending on the ray sampling method (see 
section 3.4), the appropriate inverse function is 
applied to the ray, thus recovering the (θ, φ) values 
of the ray. We can now index into the displacement 
field for the given ray (u, v, θ, φ) and extract the 
distance information which is then added to the 
intersection distance above and this is our 
approximated distance value of the ray origin from 
the object’s surface.  

Selecting Samples around the Object  
We need to sample entry points on the surface of the 
bounding volume of the object from where the rays 
originate in order to generate the displacement maps. 
The method selected must also have a quick inverse 
function that can convert an intersection point into 
the nearest sample. In addition it should distribute the 

samples over the bounding volume as evenly as 
possible. 

A fairly straightforward choice are the spherical 
coordinates which have a fairly easy to compute 
inverse function. However, the samples in this 
method are concentrated more towards the poles of 
the sphere.  

A common bounding shape that is used to sample the 
contained geometry is a axis-aligned bounding box 
(AABB). During the real-time simulation we would 
perform fast ray-box intersections. Special care 
though is needed as the AABBs are not 
transformation invariant and their oriented bounding 
boxes (OBB) counterparts require more operations. 

As most sampling methods deal with sampling over a 
sphere, if the same methods were used to sample 
over a cube there would be a high concentration of 
samples near the vertices of the cube.  

We opted for Slater’s [Sla02a] method, which 
generates uniformly distributed points on a 
hemisphere using the triangle subdivision method. 
The same can be used to cover the full sphere as 
well. At the same time he suggests a constant time 
inverse function so, when an environment ray 
intersects the bounding sphere of the object, we can 
immediately associate this intersection point with one 
of the pre-generated displacement maps, in order to 
retrieve the angle and distance information.  

Sampling a Hemisphere of Directions  
There are several methods that deal with the uniform 
sampling of rays distributed over a hemisphere. The 
method selected must be able to uniquely discretize 
its samples so that they can be stored in the 
displacement maps. In addition there must exist an 
inverse function that converts the displacement map 
entries back into sample space.  

One method is to use spherical coordinates where a 
direction in the hemisphere is given by two angles 
(φ, θ). But as can be seen in Figure 3a the rays 
generated are concentrated towards the cap of the 

 
Figure 3: Sampling a hemisphere of rays. (a) Polar Mapping of rays, (b) Rejection Sampling, (c) 
Concentric Map Sampling. 
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hemisphere producing a good cosine term (close to 
1.0) but they are not equally spaced.  

In the rejection sampling method (Figure 3b) 
uniformly distributed points are selected inside a unit 
disk by selecting points inside the [-1, 1]2 square and 
rejecting the points that fall outside the unit disk. 
Using Malley’s method [Mal88a] the samples are 
projected on the disk up to the hemisphere above it, 
producing a cosine distribution of rays. Using this 
method, about 21.5% of the samples are rejected and 
so the corresponding space in the displacement map 
remains unused.  

Shirley et al. [Shi97a] suggest a concentric map 
(Figure 3c) sampling method that maps samples in 
the square [-1, 1]2 to the unit disk {(x, y) | x2 + y2 ≤ 
1} by mapping concentric squares to concentric 
circles. The map preserves fractional area, it is bi-
continuous and has low distortion. Combined with 
Malley’s method where samples on the unit 
hemisphere have density proportional to the cosine 
term, it provides the best solution.  

4. IMPLEMENTATION & RESULTS  
We have implemented the displacement fields 

algorithm on an Intel Pentium 4 desktop PC running 
at 3.4 GHz with 1GB RAM and an nVIDIA Quadro 
FX 5500 graphics board, with 1GB Video RAM 
(mach. type 1) and an Intel dual Xeon running at 3.0 
GHz with 4 GB RAM and the same graphics board 
(mach. type 2).  

The implementation does not utilize the GPU for the 
indexing calculations. The method is a generic ray 
casting implementation, used in this case for ambient 
occlusion and as such can not be compared with 
other specialized GPU implementations.  

Storage and Error Considerations  
A 256x256 map stores the distance to the object for 
65536 ray directions emanating from one sample. If 
that map was to store the values as floats it would 
require 262144 bytes of storage space while storing 
them as unsigned chars it would require 65536 bytes. 
In addition, if lossless compression is used (e.g. run 
length encoding) then on average less storage would 
be required. In application areas where integral 
calculations are performed over the samples or 
accuracy is not imperative, lossy compression could 
be used to further reduce the storage requirements. 
Given that it is essential to keep the storage 
requirements to a minimum we opted to use unsigned 
chars for storage as it was found in ambient 
occlusion approximations that there was little to no 
gain in visual quality from using floats as can be seen 
in Figure 4. If higher accuracy is desired one can 
consider storing more bytes per sample.  

Results using the 8-bit maps 
In our examples we used a large number of cast rays 
per vertex (256) and achieved interactive results that 
would otherwise be impossible (Figure 8). The 
complexity of the displacement field method is O 
(Nr) where Nr is the number of rays.  

We have run several experiments in order to evaluate 

Figure 4: (left) 4 bytes per ray for storage, 
(right) 1 byte per ray for storage. There are no 
obvious visible differences, when the 
displacement fields are used for ambient 
occlusion.  

Reference image using Ray Casting 
and 256 rays  

Using 1122 displacement maps 
(positional samples) of size 64 x 64 
and Uniform sampling of 256 rays  

Using 1090 displacement maps of size 
64 x 64 and Concentric map sampling 

of 256 rays  

   
Figure 5: The image differences between the Reference image and the displacement map methods, 
show that using Concentric map sampling produces much better quality results as compared to 
Uniform sampling. Image differences are exaggerated by a factor of 5.  
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the method and establish which of the sampling 
method is the preferred.  

As we can see in Figure 5 choosing a concentric map 
sampling distribution for the rays produces much 
better results than the uniform sampling of rays. As 
such, we opted to use this method in producing the 
rest of the results.  

In Figure 6 we see images of the ambient occlusion 
solution produced using 4 different resolutions for 
the concentric map sampling for the ray directions 
and 3 resolutions for the positional samples on the 
bounding sphere around the object. Here, as 
expected, we see that cost of computing the 
displacement field is a function of the sampling 
resolutions while the cost of using it for ambient 
occlusion is almost independent of the object 
complexity. By looking at the root mean square (rms) 
error, we observe that it drops quickly as we increase 
the positional samples. In addition, we observe that 
as we increase the directional samples, the error does 

not decrease significantly. So a good compromise 
between memory use and accuracy would be to use 
the 4226 / 32x32 maps.  

In Figure 8, we see the method applied to different 
types of models. We observe that the cost of using 
the displacement maps increases very little as we go 
to higher complexity models. The only exception is 
the multiple model case, where we have inter-object 
interactions. The bunny is a caster, the corner is a 
receiver and the other two objects are both casters 
and receivers. So the results are justified by the 
increase of rays cast by about 30 times. 

Further Memory Optimization  
When objects are further away from the viewer, the 
approximate ambient occlusion calculated 
previously, can be further optimized in terms of 
texture space required. Instead of storing into the 
map the distance between the bounding sphere and 
the object, we can store only the visibility of the 

 Displacement field directional samples 

  32 x 32 64 x 64 128 x 128 256 x 256 

29
0 

 3.96 / 0.09462 / 2.8207 14.60 / 0.09584 / 2.4118 54.42 / 0.09809 / 2.3153 213.75 / 0.10159 / 2.2914 
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90

 

 14.06 / 0.09870 / 1.0653 51.23 / 0.10219 / 1.0318 193.25 / 0.10785 / 1.0294 772 / 0.11516 / 1.02871 
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26
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 54.79 / 0.10826 / 0.6772 204.27 / 0.11118 / 0.6315 925.05 / 0.11504 / 0.6209 3039.72 / 0.12190 / 0.6185

Figure 6: Cumulative table using 256 sample rays from each vertex of the tessellated corner (3x33x33) 
with a concentric map sampling distribution. The numbers under the images correspond to the pre-
processing time, the run-time ambient occlusion computation in seconds (using mach. type 2) and the 
rms error compared to the Reference image of Figure 5.  
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geometry in the given ray direction. This is a binary 
value, thus the method saves about 87.5% in texture 
space. The distance used in this case is the average 
distance of the sample points towards the object in 
the direction of the normal at the given sample point. 
In Figure 7 we can see the comparable results.  

5. CONCLUSIONS - FUTURE WORK  
We have presented the displacement fields, a novel 
discretization of the visibility around an object. We 
have shown how it can be used for an interactive 
ambient occlusion approximation computation. It 
especially favors large model data sets, where we 
maintain a constant computation time, independent 
of the model complexity as shown in Figure 8. Our 
method is robust, has a relatively small memory 
footprint against comparable existing methods and 
the time required to generate the displacement maps 
depends only on the complexity of the occluder 
geometry. Furthermore, our algorithm can be applied 
to ray tracing calculations where exact ray hits are 
not critical, for example for secondary ray 
intersection tests, such as soft shadow rays.  

The number and resolution of the displacement maps 
used in the displacement field can be adjusted 
depending on the required accuracy and available 
memory.  

In addition we could try to use a smaller number of 
displacement maps around the sphere; just enough to 
cover the surface of the sphere with little map 
overlap. We would in effect be creating an 
environment map. But then, our approximation 

would suffer as the angle of approximation increases, 
especially if our objects’ geometry possessed many 
folds and creases that would provide dramatic self-
occlusion variations from different angles.  

For future work, for objects that leave too much void 
space in their bounding sphere, a hierarchical scheme 
could be used such as a sphere tree [Bra02a]. This 
would result in tighter sphere placement and denser 
partial displacement maps at the expense of texture 
storage.  

Furthermore, it is possible to map the displacement 
field indexing procedure to a shader program and 
stack the displacement maps into one 3D texture. 
Then the distance determination can be executed in 
the GPU with the added advantage of a trilinear 
interpolation of the distance for an arbitrary ray from 

 Lemon Tree  Bunny  Igea  Multiple Objects  

Model 

 

Triangles  26,300 39,000 67,200 142,300 

Rays cast 836,352 836,352 836,352 26,444,800 

Ray casting 
time 196.20 s 331.10 s 616.35 s 4,286.8 s 

Pre-processing 
(4226 / 32x32) 

99.54 s 54.79 s 243.76 s 334.6 s 

AO calculation 0.240 s 0.228 s 0.204 s 4.692 s 

Figure 8: The displacement field algorithm applied to several different types of models and their 
respective timings (using mach. type 1). In the above images we used 256 sample rays with a concentric 
map sampling distribution. The ambient occlusion computation is done using the 4226 / 32x32 maps.  

 
Figure 7: Using the 1 bit per direction 
optimization method with 4226 occlusion maps 
(positional samples) of size 64x64 and 
Concentric map sampling of 256 rays we get 
results which are comparable with the 
corresponding image from Figure 6 but slightly 
brighter (giving an rms error of 4.4030).  
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distances measured at the discrete sample points 
(third 3D texture coordinate) and discrete directions 
(s, t plane texels).  
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ABSTRACT
We present a practical and inexpensive approach for the acquisition and rendering of static incident light fields.
Incident light fields can be used for lighting virtual scenesor to insert virtual objects into real world video footage.
The virtual objects are correctly lit and cast shadows in thesame way as real objects in the scene. We propose to
use an inexpensive planar mirror and a high dynamic range video camera to record incident light fields quickly,
making our method suitable for outdoor use. The mirror serves as a moving virtual camera sampling the light
field. To render with the acquired data we propose a hardware accelerated rendering algorithm that reproduces the
complex lighting and shadows of the 4D light field. The algorithm is scalable and allows continuous trade between
quality and rendering speed.

Keywords: Light Fields, Illumination, Image-Based Rendering, Reflectance and Shading, Image-Based Lighting

1 INTRODUCTION
As the boundaries of traditional photography are shifted
light fields become an increasingly important tool in vi-
sual modeling. Light fields are used as object repre-
sentations, replacing geometric descriptions of appear-
ance [LH96,GGSC96]. They are also used to represent
light sources [GGHS03a, HKSS98], compute synthetic
apertures [WJV+05] and refocus images after they have
been taken [NLB+05].

In this paper we focus on capturing the lighting en-
vironment in a scene and illuminating virtual objects
with real light. We acquire static incident light fields
in a couple of minutes using a light weight system con-
sisting of a laptop, a mirror and a USB-high dynamic
range video camera. This makes our system applicable
to indoor as well as outdoor scenes under constant illu-
mination. We light virtual objects and place them into
real environments using a newly developed hardware
accelerated rendering algorithm based on orthographic
projective texture mapping and shadow mapping. The
proposed rendering algorithm includes an importance
sampling scheme allowing continuous trade between
quality and rendering speed.

Lighting scenes with light fields has received little at-
tention due to non-trivial acquisition and time consum-
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ing rendering. Most current lighting approaches em-
ploy importance-sampled environment maps for the ap-
proximation of lighting in a scene. This, however, does
not account for spatially varying lighting effects. The
proposed acquisition and rendering methods can be ef-
fectively used to augment real world scenes with syn-
thetic objects.

The paper is organized as follows. In the next section
we discuss related work, Section 3 presents our light
field acquisition scheme, while in Section 4 we focus on
rendering with incident light fields. Section 5 describes
the implementation details of our rendering algorithm.
We conclude the paper by presenting results and dis-
cussing future work in Sections 6 and 7 respectively.

2 RELATED WORK

There are several acquisition methods for light fields
available. Dynamic light fields are captured using large
camera arrays [WJV+05] whereas static light fields
can be acquired with several methods. Structure-from-
Motion (SfM) based algorithms [PGV+04, LA03]
require the least preparation but sufficiently many
natural features to be present in the scene. Further-
more, SfM-based approaches usually exhibit less
accuracy than pattern oriented calibration approaches
and are less robust. Another class of algorithms
uses a calibration pattern embedded in the scene to
calibrate the camera poses, e.g. [GGSC96]. These
algorithms need to remove the calibration patterns
from the input images using blue screening or other
techniques. Using robotic arms or camera gantries
is popular as well [LH96, UWH+03a]. However,
robotic arms or translation stages are expensive and not
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Figure 1: Our recording setup consists of a HDR video
camera, an acquisition laptop and a planar optical front
surface mirror with a frame of rotationally invariant bi-
nary coded patterns.

portable. In [UWH+03a] an array of mirroring spheres
is presented. This approach suffers from resolution
problems since only one image is acquired.

We propose to use a static video camera and a mov-
ing mirror to acquire static light fields. The advantages
of this method are flexibility, affordability and robust-
ness. The acquisition is nearly as flexible as for SfM-
approaches, however the implementation is much sim-
pler because calibration source code is freely available,
e.g. [Bou05]. Our method is as robust as standard cam-
era calibration methods and the only devices necessary
are a camera and a planar mirror, resulting in a portable
setup. Acquisition times are usually less than 5 min-
utes.

The closest approach to our rendering algorithm is
[HKSS98]. They were the first to propose the use of
projective texturing and shadowmaps to render simu-
lated light sources using graphics hardware. However,
their results are computed per vertex and limited to
phong shading. We show how the special case of or-
thographic projective texturing gives the advantage of
handling more complex BRDFs. Our proposed per di-
rection rendering is further extended to include impor-
tance sampling to achieve interactive frame rates. An-
other related hardware accelerated algorithm is reported
in [GGHS03b] for real world light sources represented
in an optical filter basis. The application to general light
field rendering is however limited as the optical basis is
optimized for the representation of a single light source.

Most of the approaches used in light field lighting ap-
ply ray tracing techniques e.g. [UWH+03b,GGHS03a].
They usually employ photon-mapping or Monte-Carlo
integration. The complexity of these rendering ap-
proaches make interactivity hard to achieve.

C CvM
Figure 2: Light Field sampling using a planar mirror
and a static camera: The moving mirror M causes dif-
ferent viewpoints to be seen by the virtual camera Cv.

In the derivation of our algorithm we discuss a per
vertex rendering algorithm which is closely related to
the approach from [NRH04] where precomputed scenes
are relit at interactive frame rates.

3 CAPTURING INCIDENT LIGHT
FIELDS

The basic idea of our light field sampling technique is
shown in Figure 2. We use a static camera to observe a
planar mirror in the scene. The pixels on the mirror cor-
respond to virtual viewpoints behind the mirror plane.
When moved around in the scene, the mirror gener-
ates a number of virtual viewpoints which are used to
sample the light field. This results in a non-uniform
sampling of the light field similar to Structure-from-
Motion (SfM) based techniques [PGV+04,LA03]. and
essentially realizes a dynamic catadioptric camera sys-
tem with multiple centers of projection. The advan-
tage over SfM-based techniques is two-fold. Firstly we
achieve a calibration accuracy as in methods using a
known calibration target [Zha99] which is higher than
in SfM-approaches because the uncertainty in the fea-
ture points’ 3D positions does not influence the cal-
ibration parameters. Secondly the mandatory bundle
adjustment process [TMHF00] involves significantly
fewer free parameters allowing for larger problems to
be solved.

3.1 Acquisition Setup
Our hardware setup for capturing incident light fields is
shown in Figure 1. The camera is a Photonfocus Hurri-
cane 40 one mega-pixel HDR video camera with 12 bit
A/D conversion and a programmable response curve. It
can record up to 37 frames per second depending on the
exposure time required to capture the image. The mir-
ror is an optical front surface foil mirror originally in-
tended for use in rear projection screens. These mirrors
are inexpensive and are available in sizes up to several
square meters. In order to track the mirror through the
acquired video sequences we add a specially designed
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Figure 3: The tracking process: We find the rotation-
ally invariant features (correctly identified features are
shown in orange) and track them through the video se-
quence. The features encode positions on the mirror
plane. This allows us to compute a homography be-
tween mirror coordinates and image coordinates which
in turn facilitates camera calibration.

frame consisting of self-identifying features. The fea-
ture patterns are rotationally invariant and encode unit
positions in the mirror coordinate system. The design
of the patterns is inspired by the work of Forbes et
al. [FVB02].

3.2 Tracking
In order to calibrate the mirror planes with respect
to the static camera we track the frame with the bi-
nary encoded positions of the mirror coordinate system
through the video sequence. The features encode their
positions in the mirror coordinate system. This allows
us to uniquely identify a feature point even if it is leav-
ing and re-entering the field of view of the camera.

The tracking is performed using a combination of
robust homography estimation using RANSAC [FB81]
and non-linear optimization with the Levenberg-
Marquardt method [MNT04]. We

1. identify initial feature positions,

2. estimate the mirror plane to screen homography us-
ing RANSAC [HZ00],

3. update the guessed feature positions using the esti-
mated homography and

4. perform a non-linear optimization using Levenberg-
Marquardt to refine the ellipse positions of the fea-
tures’ centers, shown in yellow in Figure 3.

The features are then tracked to the next frame using
a cross-correlation measure between adjacent frames.
The resulting positions are used as an initial guess for
step 1 of the feature detection process in the next frame.

3.3 Geometric Calibration
The homographies computed in the previous subsec-
tion are used to compute the geometric calibration
of the video sequence. We use Zhang’s calibration
method [Zha99] which relies on planar calibration
targets. The homographies can be directly used to
compute a closed form solution of the internal and
external calibration parameters. These initial guesses
are refined by a global optimization step. We use a
sparse implementation of the Levenberg-Marquardt
(LM) algorithm similar to the sparse bundle adjustment
presented in [LA04].

It is very important to employ an efficient implemen-
tation of the global optimization step because the num-
ber of free parameters becomes quite large with a higher
sampling rate of the light field. In the LM-iterations
we compute only the non-zero entries of the Jacobian
matrix J of the cost function, i.e. the projection error
function. The iteration involves the solution of a lin-
ear system which is performed using the sparse iterative
solution method CGLS (Conjugate Gradients for Least
Squares) [Han98]. The CGLS method avoids comput-
ing JTJ for the normal equations explicitly which can
be computationally expensive and memory consuming
in its own right.

The calibration process results in a camera internal
parameter matrixK and for each frame of the video se-
quence a poseRi , t i of the camera with respect to the
mirror plane. The mirror plane is defined to lie in the
x,y-plane. This resembles a fixed calibration pattern
with a moving camera. World pointsx project to image
coordinatesxi in the ith video frame via

xi = K [Ri | t i ]x. (1)

Since the camera is static we use the camera coordi-
nate system as the frame of reference for our calibra-
tion. We mirror the camera pose at the mirror plane:

M i =
(

Ri | t i

0 | 1

)
(2)

F =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


 (3)

M̂ i = M iFM−1
i , (4)

to yield the projection matrices.

P̂i = KM̂−1
i (5)

for the virtual views generated by the mirror. The
mirror operation correctly changes the handedness of
the coordinate system for the virtual views. The matri-
cesP̂i allow the projection of world coordinates into the
virtual views. We use this fact in Section 4.3 to resam-
ple the light field into a uniform representation.
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3.4 Photometric Calibration
For rendering with incident light fields a linear cam-
era response is needed, i.e. the pixel values should be
proportional to the measured radiance. We use a high
dynamic range video camera for our measurements.
These cameras in general exhibit a non-linear response
to the incoming radiance. Pixel values are compressed
using a logarithmic function prior to A/D conversion.
Our camera allows a programmable compression func-
tion. To obtain linearized images the camera response
function has to be measured.

We use the method of Robertson et al. [RBS03] to
estimate the camera response curve. The different ex-
posure times required by [RBS03] are simulated using
optical neutral density filters [KGS05]. The recovered
response curve is then applied to the input images.

4 RENDERING INCIDENT LIGHT
FIELDS

Lighting with light fields is a very time consuming task
in general due to the large amount of data that must
be processed. As the computational power of GPUs
and hardware increases, lighting with light fields be-
comes more and more tractable. However, making the
most use of the processing power available is an im-
portant property when designing such rendering algo-
rithms. We like to pronounce that the proposed ren-
dering algorithm poses no restrictions onto the scene
content, material properties or lighting.

Lighting from light fields, as many rendering ap-
proaches, can be derived from the rendering equation
for a pointx in euclidean space,

L(ωo,x) =
∫

Ω
fx(ωi ,ωo)Li(x,ωi)v(x,ωi)(N ·ωi) dωi

(6)
were fx is the bidirectional reflectance function
(BRDF), Li denotes the incoming radiance andv the
visibility for each direction. In the following sections
we will discuss two rendering approaches aiming at
implementing this equation as efficiently as possible on
graphics hardware using recent OpenGL extensions.

N
ωo

ωi

Figure 4: Visualization of the per vertex lighting ap-
proach. In each iteration for one vertex all directions of
the light field are integrated (red).

4.1 Per Vertex Lighting
Our first approach solves the directional integral of
Equation 6 for one vertex, for all directions of the light

field simultaneously. We loop over all vertices to com-
pute the solution. Translated to meshes and hardware
accelerated shading, this can be achieved by rendering
a hemisphere from each vertex’ point of view, multiply-
ing with the incoming light field and BRDF, and inter-
polating in-between.

The algorithm can be implemented completely in
graphics hardware by rendering a hemisphere or cube
map from the vertex’ point of view and blending with
textures for the BRDF and the incoming radiance inter-
polated from the light field. Although this approach is
able to produce nice results (see Figure 5), it has sev-
eral drawbacks. For example, the input meshes must be
densely sampled in order to reproduce fine shadowing
details. Furthermore, a cube map per vertex has to be
re-computed from the incident light field data and up-
loaded to the graphics card when changing the relative
pose of the object with respect to the incident light or
in case of rendering dynamic objects. Our implemen-
tation of this algorithm, with the integration and ren-
dering of the hemispheres implemented on the GPU,
revealed that the rendering time per vertex is still too
high to scale to satisfying mesh resolutions. The scene
depicted in Figure 5 has 8000 faces and took already
about 15s to compute.

Figure 5: Rendering result of a per vertex light field
illumination approach. Although the overall impression
of the lighting is plausible, the shadow lacks detail due
to insufficient mesh tessellation.

4.2 Per Direction Lighting

Since the per vertex approach proved computationally
expensive, we investigated the dual approach, involving
lighting computations per direction for all fragments si-
multaneously. Different rendering passes are then per-
formed for every lighting direction. Equation 6 is thus
solved simultaneously for one direction and all points
in the model, similar to [HKSS98]. The complexity
of this approach scales with the number of directions
and the output quality is less dependent on the tes-
sellation of the meshes. This idea translates to hard-
ware accelerated rendering through projective textur-
ing [SKvW+92]. Visibility testing is straight forward
to implement via shadow maps [Wil78]. Generally,
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N
θe

θi

Figure 6: Visualization of the per direction lighting. In
each iteration for all fragments one direction of the light
field is integrated (red).

Figure 7: Rendering result of per direction light field
illumination. Fine shadow details and complex lighting
details are visible.

incident light fields have a higher spatial than direc-
tional resolution which matches the hardware capabil-
ities, since high texture resolutions are less expensive
to handle than more rendering passes. The detailed de-
scription of our algorithm is stated in Section 5. We
will further show how importance sampling of the di-
rections gives a good control over rendering speed vs.
quality in Section 5.1.

Since light fields have inherently a very high dynamic
range (HDR), it is necessary to make use of HDR ren-
dering. Fortunately, recent GPUs have a floating point
pipeline and support hardware accelerated rendering to
floating point textures and their blending.

4.3 Light Field Resampling
In order to use our acquired, non-uniform light field
data with the proposed rendering algorithm we have to
resample it into a uniform light field representation. For
this purpose we apply a variant of Unstructured Lumi-
graph Rendering [BBM+01].

As a first step we define a light field sampling plane
as our proxy geometry. We use a plane parallel to the
ground plane but specifying a more complex proxy is
also possible. As a next step we project the boundaries
of the virtual views, i.e. the region surrounded by the
calibration frame, onto the light field sampling plane.
This allows us to compute a bounding area in which the
resampling process is performed. We choose a rectan-
gular bounding area and sample it uniformly yielding a
number of sample positions on the light field plane. We
employ Unstructured Lumigraph Rendering to render
orthographic views of the unstructured light field data

Figure 8: Two of 9057 resampled light field directions.
The images are gamma corrected to show the details
in the acquired light field. 15 original camera views are
weighted for every pixel in the resampled images.

obtained in the acquisition process for each directional
component of the resampled light field. The directions
are distributed according to a subdivided icosahedron
to ensure a uniform directional sampling of the hemi-
sphere.

For every direction being resampled the implementa-
tion performs the following steps:

1. project the uniform samples into all virtual views

2. compute the field of view penalty

3. look up the intensity value if the projected sample
falls into the field of view

4. determine the angular penalty by computing the an-
gle between the direction currently being resampled
and the direction from the sample position towards
the center of projection of the virtual view

5. compute and normalize the weights from the penalty
values

6. compute the resampled light field value

Two examples of a directionally resampled light field
are shown in Figure 8. The light field contains high
dynamic range data which has been re-mapped for vi-
sualization purposes. In the next section we discuss the
lighting of virtual scenes with acquired incident light
fields.

5 IMPLEMENTATION
Our proposed rendering algorithm is conceptually sim-
ple and can be efficiently implemented on graphics
hardware. All our rendering results are computed in
half float precision to account for the high dynamic
range content when lighting with light fields.

We render two passes per direction of the light field.
The first pass produces the shadowmap for the direc-
tion. In the second pass a skewed orthographic projec-
tive texturing is computed for the actual lighting. Re-
sults of the iterations are accumulated directly in GPU
memory.
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Our implementation is based on OpenGL using cus-
tom GLSL shaders. Placement and sizing of the light
field is modeled via a rectangular shape in the scene.
Since we do not rely on precomputation we are able to
render fully animated scenes such as presented in the
accompanying videos.

Since the incoming light in one lighting iteration is
parallel with the orthographic projection,ωi in equa-
tion 6 is constant for each iteration. This property al-
lows the implementation of a variety of materials in the
lighting pass efficiently. We implemented three BRDF
models, which are diffuse shading, Blinn shading and
others via cubemaps.

The rendering speed of our algorithm is mainly de-
pendent on two limiting factors. One factor is the size
of the output images, because our rendering algorithm
is heaviliy dependent on the fragment shader perfor-
mance. The most important limitation however, is the
number of light field directions that can be handled,
since each additional light field direction adds two more
rendering passes which can not be parallelized. In the
next section we explore a sampling technique which
chooses the most important lighting directions for the
current view and scene and helps to find a good trade-
off between rendering quality and speed.

5.1 Importance Sampling
The most limiting speed factor of our implementation is
the number of directions used for the lighting computa-
tion. To reduce the impact of this limitation we propose
an importance sampling technique to allow for trading
image quality and speed. The idea to importance sam-
pling is to find a measure of the influence of each light
field direction on the final rendering result and to use
the most important ones for rendering. Generally the
light contributing to the fragments is dependent on the
incoming light field direction and the BRDF of the frag-
ment. This property can be reformulated from Equa-
tion 6 to

I(ωo,ωi) =
∫

X
fx(ωo,ωi)Li(x,ωi)v(x,ωi)(N ·ωi) dx.

(7)
To speed up the computation of the importanceI we
propose some simplifications. First we assume each
fragment has a diffuse BRDFfx(ωo,ωi) = 1

2π which
results in

I(ωo,ωi) ≈
∫

X
Li(x,ωi)v(x,ωi)(N ·ωi) dx. (8)

Further, we assume eachx is always visible, i.e.
v(x,ωi) = 1, and that the amount of light for each
direction in the light field can be approximated by
a constantlωi ≈ Li(x,ωi). This results in our final
approximation

I(ωo,ωi) ≈
∫

X
lωi ·ωi ·N dx. (9)

We like to stress that all approximations introduced
above are only used to get a fast estimation of the im-
portanceI for each light field direction and do not re-
strict the generality of our rendering algorithm.

Figure 9: The rendering quality increases with the
number of samples (100 vs 200).Our importance sam-
pling strategy ensures an intelligent selection process
for a continuous trade between rendering quality and
speed.

The computation ofI is implemented as an extension
to the previously proposed per-direction rendering al-
gorithm. One rendering pass for each frame in the an-
imation sequence is added, where the normals of each
fragment are rendered to a float texture with a custom
shader. We then download the normal map onto the
CPU and process the importance sampling as described
above in parallel with the GPU. The computation takes
only a few milliseconds for 9000 directions and normal
map sizes of 64×64. By ordering the available direc-
tions according to their importance, we can impose a
best first approximation of the final results by process-
ing only the N most important directions in the light
field.

Figure 10: Sample images of the synthetic light field
generated with a ray tracer. The resolution is 256×256
texels per light field direction.

6 RESULTS
We implemented our approach on a Linux worksta-
tion with a AMD64 dual-core processor and 2 GB
of memory. The GPU is a NVIDIA GeForce7800
GTX. Our implementation is based on the OpenScene-
Graph library [osg], which allows us to render animated
scenes modeled with standard 3D modeling tools such
as Maya. In the scenes, the light field plane is repre-
sented by a rectangle, to easily allow for placement.
Table 1 shows the timings for different scenes and the
number of directions used in the renderings.
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# directions 100 1000 5000
car (8402 prim.) 0.02s 0.28s 1.9s
complex (18096 prim.) 0.03s 0.32s 2.3s

Table 1: Render timings for the recorded light field and
different scenes. The spatial light field resolution is
128× 128 Texels per light field direction. The result-
ing animations are shown in the accompanying video.

Figure 11: Real world scene with augmented teapot.
The shadows of the recorded light field are faithfully
rendered on the modeled geometry. Shadows cast by
the teapot are generated by the recorded light source
and blended with the background image.

Since the rendered light fields have 100 to 10000 di-
rections, the produced shadows are very realistic with-
out the need of special techniques such as percentage
closer filtering [RSC87].

6.1 Incident Light Fields

The synthetic light field was generated by ray tracing
a scene with one directional and two additional point
light sources. Two samples from the light field are de-
picted in Figure 10.

For our real-world test data we acquired a sequence
of 2200 high dynamic range images sampling a
scene containing a checkerboard lit by a desk lamp
with leaves of office plants casting shadows onto the
checkerboard. The acquisition time was 3 minutes.
We also recorded a camcorder sequence that was
calibrated using the checkerboard in the scene. The
calibration of the sequence has a mean reprojection
error of ≈ 0.5 pixels. The non-uniform light field
data was resampled into 9057 directions covering the
area of the checkerboard and the spatial resolution per
direction was 128× 128 pixels. We render the virtual
model from the tracked camera’s point of view using
a virtual ground plane that acts as a shadow receiver.
The rendering result is composited into the original
camera images. As shown in the images, Figure 11, the
shadows of the real scene are convincingly reproduced
on the teapot. The spatially varying incident lighting is

captured very well. Additional results can be found in
the accompanying video.

7 CONCLUSIONS AND FUTURE
WORK

We have presented a pipeline for the acquisition and
rendering of incident light fields. The presented al-
gorithms allow for fast acquisition and rendering of
complex real world lighting scenarios. Our acquisition
scheme requires only a couple of minutes to record an
unstructured incident light field. It combines several
desirable properties of a light field acquisition method.
The hardware setup is easily portable and lends itself to
indoor as well as outdoor acquisition. The calibration
accuracy is on par with fixed camera setups and the cal-
ibration pattern is not visible in the light field images.

Our rendering algorithm does not impose restrictions
on geometry, animation or material properties of the
scene. We can trade off rendering accuracy against
speed and achieve interactive frame rates at lower qual-
ity settings. This is desirable for previewing and plan-
ning animations under complex illumination.

The main aspect for future work is an investigation
into the sampling scheme in the light field acquisition
phase. Because the mirror is a hand-held device it
would be desirable to have an on line system to help
the user choosing sample directions of the light field
that have not been covered so far. This kind of system
requires an on line tracking and calibration approach.
Further the acquisition approach could be developed
into a cheap scanner for standard light fields using a
web cam and a standard mirror. It needs to be seen if
the noise characteristics of web cams permit this kind
of use.

On the rendering side we plan to investigate the pos-
sibility of avoiding the light field resampling step while
maintaining the rendering speed and the quality control.
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ABSTRACT

The detection of stable feature points is an important preprocessing step for many applications in computer graphics. Espe-
cially, registration and matching often require feature points and depend heavily on their quality. In the 2D image case, scale
space based feature detection is well established and shows unquestionably good results. We introduce a novel scale space
generalization to 3D embedded surfaces for extracting surface features. In contrast to a straightforward generalization to 3D
images our approach extracts intrinsic features. We argue that such features are superior, in particular in the context of partial
matching. Our features are robust to noise and provide a good description of the object’s salient regions.

Keywords: Feature Detection, Intrinsic, Surface, Scale Space.

1 INTRODUCTION

The identification of salient geometric features is cru-
cial for many 3D applications in computer graphics. In
morphing applications a feasible mapping between two
objects is computed, where salient regions should be
mapped on corresponding regions, for example eyes on
eyes (regarding mappings between animals). Other ap-
plications such as feature based registration or match-
ing rely on the computation of suitable features, too.
Thereby, two major requirements on the features should
be satisfied in order to support practical results. First,
the features have to be robust to marginal changes or
noise, because otherwise two similar objects could have
two very different feature sets resulting in wrong corre-
spondences. Second, the extracted features have to be
distinctive, they should correspond to regions that are
characteristic for the particular object or its class of ob-
jects. If the features describe non-characteristic regions
it would often be impossible to distinguish very differ-
ent objects.

Having robust and distinctive features at hand, a fea-
ture driven and therefore plausible matching between
similar objects or parts of objects is possible. Unfor-
tunately, the scaling of similar objects is often differ-
ent. For example matching an adult and a little child
based on features with a fixed scale would mostly fail.
While this case can be solved by a simple scaling based
on the object size, it becomes more complicated if the
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matching is partial (e.g. parts of one object are miss-
ing). In this case, the scale can only be computed
from local properties. Therefore we use a scale space
based approach, which, related to well known 2D image
based methods, extracts feature points with an associ-
ated scale parameter. This scale parameter indicates the
extent of the inherent local shape, which enables scale
invariant matching. Additionally, a partial matching of
objects in the same scale can as well be improved by
simply rejecting correspondences between features of
different extends.

2 RELATED WORK

Several approaches introduced techniques to find fea-
tures on 3D surfaces, often used in the context of shape
matching or shape retrieval applications. The great
amount of literature in this area makes it practically im-
possible to give a full review on these methods. There-
fore we focus on previous work most closely related
to our method and refer the reader to state of the art re-
ports for broad overviews in related areas as for instance
[TV04], [BKS+05] and [IJL+05].

The first two methods we want to mention here fol-
low the idea of subdividing the surface into small re-
gions and then selecting the most distinctive ones as a
representative feature set in order to match or retrieve
3D objects. Shilane and Funkhouser [SF07] first sam-
ple a 3D surface by a set of random points. For each
point, a spherical descriptor is evaluated in four dif-
ferent radii and the descriptor difference of all pairs
is computed to produce a ranked list with respect to a
set of equally processed and already classified objects.
These lists are then analyzed to produce measures of
distinctiveness for a specific class of objects and their
descriptors. Finally, a small set of most distinctive fea-
tures is extracted to represent the object.
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A partial surface matching method based on local
descriptors was introduced in [GCO06]. The surface
is divided into small regions, whose local shapes can
be well approximated by quadrics. These regions are
used as descriptors and the most salient ones are cho-
sen for the partial matching process. Unfortunately, this
method seems to be sensible to noise, because of the de-
pendency of the extracted surface regions on local cur-
vature. Moreover, no scale parameter is extracted, so
partial matching of different scaled objects is not possi-
ble.

Other approaches aim at extracting the topological
structure of an object in order to perform matching or
retrieval. In this context Tam and Lau [TL07] intro-
duced a novel method for the retrieval of deformable
3D models. They extract topological points and rings,
which are identified by solving a flow and transporta-
tion (EMD) problem, which is based on the construc-
tion of reeb graphs. While this method shows great
results for retrieving articulated shapes as a whole, it
is unclear how to generalize it to the partial matching
context.

Several so called multi-scale methods extract features
of different sizes to gain more geometric information.
For example in Clarenz et al. [CRT04] feature points
and lines are extracted by performing a local momen-
tum analysis of the surface. To detect features of dif-
ferent scales they adopt variable neighborhood sizes re-
sulting in increased robustness to noise. Unfortunately,
it is not suitable to extract the unique scale of a feature,
because the neighborhood size parameter is specified
manually.

The last category of geometric feature point extrac-
tion methods we want to mention here are scale space
based approaches. These methods extract salient fea-
tures with an incorporated scale parameter, which indi-
cates the size of the inherent structure. Li and Guskov
[LG05] introduced a novel registration method for point
sampled surfaces. They detect feature points on the
basis of the scale space theory of Lindeberg [Lin98].
Thereby the surface is smoothed with increasing neigh-
borhood sizes (euclidian balls) using a least squares
formulation. This method works well with simple ob-
jects, however considering more complex objects this
approach will lead to unwanted behavior. This is be-
cause euclidian neighborhoods of large sizes are used
and therefore often parts of the object are contained,
that are far away from the feature in the geodesic sense
and should actually not have influence on the feature
point. Furthermore the used formulation does not cor-
respond to the scale space theory, so the meaning of the
extracted scale parameter is unclear.

In [WNK06] and [NDK05] a partial matching be-
tween 3D objects is performed using volumetric scale
invariant feature points. To extract these points a 3D
scale space of the binary (either inside or outside the

object volume) 3D voxel image is built and blob fea-
tures are detected in the object volume. For each fea-
ture a descriptor is computed and a sub part matching is
performed. While this approach extracts scale invariant
features, these features are not intrinsic and therefore
much less distinctive. For example considering a very
elongated part of an object (e.g. a finger of a hand),
the volumetric blob will only describe the thickness of
the tip, which does not change if the elongation has
changed. However an appropriate intrinsic feature point
with associated scale will describe a combination of the
length and the thickness, which delivers a superior de-
scription of this object part and its size. Furthermore, at
tapered tips this method would miss this feature com-
pletely, because no blob would have been found.

3 GENERAL SETUP AND NOTATION
Our objective in this paper is to extract scale invariant
feature points on a 3D model. These features are in-
trinsic, because they depend only on the surface. In
the following we assume that the object is represented
as a closed two manifold surface. In addition to that,
we consider only objects with genus zero. The sur-
face is a triangulated mesh M with M = {V,E}, where
V = {vi|vi ∈ R3, i = 1, ..., |V |} is a set of vertices and
E = {ei j} the set of edges which connect the vertices.
A face is given, if a cycle of three edges ei j,e jk and eki
exists. For each vertex vi, a normal ni can be computed.

4 BLOB FEATURES IN 2D
The detection of feature points is well established in
2D image applications. Many feature based matching
methods, as surveyed in [ZF03], have shown great prac-
tical utility. Especially scale space based techniques
[MTS+05] are known for their performance and robust-
ness and therefore often used in practice. A scale space
or representation over scales is computed by successive
smoothing an input signal to a space consisting of the
smoothed signals. In this space, the scale parameter
determines the magnitude of the smoothing of the in-
put signal. Figure 1 shows two input signals (bottom),
that are iteratively smoothed to obtain a scale space. A
scale space of a function f : RD → R is defined as fol-
lows: If a continuous signal f is given, then a scale
space L : RD ×R+ → R of f is defined as the solution
of the heat diffusion equation

∂tL =
1
2

∇
2L =

1
2

D

∑
i=1

∂xixiL, (1)

with L(·,0) = f (·). This scale space can be computed
by convolution of f (·) with a Gaussian kernel g:

L(·, t) = g(·, t)⊗ f (·), (2)

with g : RD×R+\{0}→R. Note that the Gaussian ker-
nel is the unique kernel to solve the diffusion equation,
what was shown in [Koe84, JWBD86].
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Figure 1: An input signal (bottom) is iteratively
smoothed to obtain a scale space. a) One dimen-
sional. b) Two dimensional with marked extrema.
[Wit83]

To detect scale invariant blob features, Lindeberg
[Lin98] used a scale-normalized Laplacian of Gaus-
sian (LoG) function t∇2L to detect features in the scale
space. Scale invariance means, that if an image is scaled
with a certain factor, then its features corresponding to
features of the non-scaled image will be detected in
scales, which are multiplied with the same factor. In
Figure 2 two exemplary scale invariant feature points
are shown with their signatures, detected in the scale-
normalized LoG.

Figure 2: Top row shows two images taken with dif-
ferent zoom. Bottom row shows the responses of the
Laplacian over scales. The ratio of scales corresponds
to the scale factor (2.5) between the two images. The
radius of displayed regions in the top row is equal to 3
times the selected scales. [MTS+05]

For the case of 2D images Lowe [Low04] introduced
a so called difference of Gaussian representation (DoG)
of f , defined as follows:

DoG(x, t) = (g(x,kt)−g(x, t))⊗ f (x)
= L(x,kt)−L(x, t). (3)

The initial image is incrementally convolved with
Gaussians to produce images separated by a constant
factor k in the scale space. Adjacent images are
subtracted to produce the so called difference of

Gaussian images. For the discrete case, beginning with
a constant σ0 (e.g. σ0 = 1), the σi are obtained as
follows:

σi = ki
σ0, (4)

where t = σ2. This results in an exponential time step.
To be able to find all extrema, the factor k should be
small enough. Lowe [Low04] used values from the in-
terval (1;

√
2]. Depending on the magnitude of σ0, more

or less initial scales of L are excluded for building the
DoG. Lowe [Low04] used this representation to ap-
proximate the scale normalized Laplacian of Gaussian.

A feature point is extracted, if a pixel in a level of the
DoG has an extremal value with respect to its spatial
neighbors in the same scale as well as to its and their
temporary neighbors in adjacent scales. The informa-
tion about the scale a feature was detected in is a great
advantage, because the scale indicates the size of the
structure the feature point describes. In addition to that,
the feature points of two images of different resolutions
can be compared in an appropriate manner, because of
the scale invariance property.

Following this idea, we generalized the scale space
and the feature extraction from the 2D image case to the
case of triangulated two manifold surfaces in 3D. We
use a diffusion flow to derive the sequence of smoothed
surfaces and use the vertex movements as a measure
similar to the DoG-values in order to extract feature
points as well as their scale.

5 GENERALIZATION TO SURFACES
To simulate the diffusion equation (see Equation 1), we
use a surface diffusion flow to iteratively smooth the
model and to obtain a set of smoothed surfaces that con-
stitute our scale space.

In this section we first describe the mean curvature
flow and some of its properties. Furthermore, we give
the discretisation used in our implementation and fi-
nally, the definition of our feature points is introduced.

5.1 Building the Scale Space
In the image case usually a Gaussian kernel is used to
generate the representation over scales. That is possi-
ble because it exists a global parameterization invari-
ant over all scales. However, in the case of two man-
ifold surfaces such a parameterization is generally not
defined. But nevertheless, a local parameterization for
each vertex in each scale is calculable. Therefore an it-
erative flow is utilizable to simulate a similar diffusion
process.

Averaged Mean Curvature Flow The ordinary mean
curvature flow is defined as follows:

∂vi

∂ t
=−Hini, (5)
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where Hi is the mean curvature at vertex vi. ∂vi
∂ t is the

position increment vector of vertex vi so the new posi-
tion results in ṽi = vi + ∂vi

∂ t . That means, a vertex vi is
moved in direction of its normal ni with the magnitude
of the mean curvature H = 1

2 (κmin + κmax), where κmin
and κmax denote the principal curvatures. A vertex on a
convex region will move inwards, whereas a vertex on
a concave region will show an outward movement. At
a saddle point, the minimal curvature is negative, while
the maximal curvature is positive, so the direction of the
movement depends on their magnitudes.

The mean curvature flow is known to shrink volume.
Thus, a closed surface with genus zero will evolve into
an infinitesimally small sphere (see Figure 3).

Figure 3: Ordinary mean curvature flow evolves ob-
jects to an infinitesimal small sphere.

Therefore we use a modification of the ordinary
mean curvature flow: the averaged mean curvature
flow, which is defined as follows:

∂vi

∂ t
=−(Hi− ∑

v j∈M

H j

|V |
)ni. (6)

The result is a volume preserving flow as shown in Fig-
ure 4. Whereas the averaged mean curvature flow is
more stable than the ordinary one, it still suffers from
one deficiency. If an object has a long thin limb, the
flow will trench it after a few steps as shown in Figure
5. However, with a little variation in the thickness, it
is possible, that the object is not fragmented. This re-
sults in big variations of the feature detection, so that
the computed features for such objects are not robust.
For this reason, it is only useful for restricted types of
objects. Therefore, in our work, we use and compare
only objects, that do not cause fragmentations. Note
that such a fragmentation can be detected in the smooth-
ing process by checking if local mesh triangles are de-
generated to line segments or points.

Figure 4: Averaged mean curvature flow evolves ob-
jects to a sphere with the same volume.

Figure 5: Mean curvature flow trench thin limbs after
a few steps.

Another approach to derive and smooth a surface
from polygonal data to multiple scales is done in
[SOS04]. By using a constrained moving least-squares
formulation a surface can be generated, which approx-
imates the input, whereas features with a specified
size are smoothed away. Unfortunately, if the surface
nearly touch itself, it will accrete at this point, so that
marginal differences of the surface could result in a
highly different behavior of this smoothing process.
For this reason, this formulation of a smoothing of a
surface is not usable to replace the mean curvature flow
in order to solve the problem of fragmentation.
Discretisation In the following the implementation
details for the iterative computation of the flow are
provided. The principal curvatures are computed by
first locally approximating the surface with a quadratic
function and then computing the eigenvalues of its hes-
sian, which correspond to the principal curvatures. The
sampling of the local neighborhood is obtained via the
Dijkstra-Algorithm, it consists of the n nearest vertices
vik of vertex vi.

To fit a quadratic function in the collected points, first
the sampled points vik have to be transformed onto the
tangent plane of vi. For that purpose two arbitrary or-
thonormal vectors o1 and o2, lying in the plane with
normal ni, are computed. Then the sample points are
transformed to points qk as follows:

qk = ((vik − vi)∗o1,(vik − vi)∗o2). (7)

To get the coefficients cl ∈ R, the basis
{Bl(ξ1,ξ2)}5

l=1 = {ξ1,ξ2,
1
2 ξ 2

1 ,ξ1ξ2,
1
2 ξ 2

2 } of the
quadratic functions (without constant coefficient) is
used to set up the following system of equations:

5

∑
l=1

clBl(qk) = (vik − vi)ni, k = 1, ...,n. (8)

With A = (Bl(qk))
n,5
k=1,l=1 ∈ Rn×5 and C =

(AT A)−1AT ∈ R5×n is its pseudo inverse matrix,
it can be written as

[c1, ...,c5]T = C[(vi1 − vi)ni, ...,(vin − vi)ni]T . (9)

This way the coefficients of the quadratic function
f (x,y) = c1x + c2y + c3x2 + c4xy + c5y2 can be cal-
culated and by computing the eigenvalues of the
function’s hessian matrix we get the principal curva-
tures. This scheme is based on the quadratic fitting
technique from Xu [Xu04].
Remeshing Since geometry changes greatly during
smoothing, the mesh has to be adopted, in order to ob-
tain a mesh with neither too large nor too small or nar-
row triangles. To this end we use flips, collapses and
splits. After each smoothing step the following tasks
are executed in sequence:
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1. Flip all edges ei j, if the resulting edge is shorter than
‖vi − v j‖ and the angle between the normals of the
two adjacent facets of ei j is smaller than three de-
grees. This improves the structure of the mesh with-
out adding or deleting a vertex.

2. Collapse all edges ei j, if their lengths are below one
fifth of the average edge length. This avoids too
small triangles.

3. Split all edges ei j, if their lengths are above five
times of the average edge length or if the round-
ness of one of the adjacent triangles is above 1.5.
The roundness is defined as the ratio between the ra-
dius of the circumcircle and the length of the shortest
edge of the triangle. This avoids too big or narrow
triangles.

The movement of the vertices in one smoothing step is
very small, so one iteration after each smoothing is suf-
ficient. Additionally, we assume the initial meshes to
have a structure, which does not make such an remesh-
ing operation necessary.

5.2 Scale Space Signatures
To define the scale space signatures, we first need to
formally define our scale space L. Because we are us-
ing an explicit scheme, the time step between two scales
has to be constant and not too large. If the sample rate is
higher, the time step in the smoothing process should be
smaller, because otherwise oscillations and other sin-
gularities would arise. Especially the exponentially en-
largement would cause those problems. For this, we
first build a discrete scale space as follows:

LD(v, j) =
j

∑
i=0

di(v), j ∈ N, (10)

di(v) = sign(v, i)‖∂vi

∂ t
‖

sign(v, i) =
{

−1 , if 〈 ∂vi

∂ t ,ni〉< 0
1 , else

with vi is the vertex v in scale i (v0 = v) and ni its normal
in this scale. di(v) are the signed distances between two
scale levels i and i + 1 of vertex v. To get an approxi-
mation to a continuous scale space with scale level σ ,
we use the discrete values with

L(v,σ) = LD(v,bσc)+(σ −bσc)ddσe(v), σ ∈ R.
(11)

Now, we define analogously to the discrete difference
of Gaussian representation of Lowe [Low04]:

D(v, j) = L(v,σ j+1)−L(v,σ j), j ∈ N, (12)
σ j = k j

σ0.

σ0 depends on the constant smoothing step, that is used
to smooth the surfaces. If the resolution is high, the step

has to be smaller than for a mesh with a lower resolu-
tion. Moreover, in order to subdivide each octave of σ0

to sixteen steps, we used k = 2
1

16 .

Figure 6: (Left) The trajectories of two vertices on the
ears of the bunny. (Right) The scale space signatures
(smoothed) of the trajectories.

As a signature S of a vertex v we now use the vec-
tor S = {D(v,0), ...,D(v,m− 1)}, where m denotes the
maximal computed scale. In Figure 6 the trajectories
and signatures of two vertices are shown.

5.3 Feature Points

In the application of feature detection we need features
which provide a sufficient description of the surface and
stays nearly the same, if the object changes marginally.

In our case, we compute feature points as extrema on
extremum paths as analogously done in [Lin98]. An ex-
tremum path r is a sequence of extremal vertices over
the scales. That means, the vertices r(i) of the maxi-
mum path r have locally maximal signature values in
all scales i = 1, . . . , l:

D(r(i), i)≥ max
vk∈Ni(r(i))

(D(vk, i)), (13)

where vk are the neighbors of v = r(i) in scale i and
l is the length of the path. Note that a vertex v has a
different position depending on the scale that is consid-
ered. Is di

geo(v,w) the geodesic distance of two vertices
in scale i and the signature values of vertices v j are max-
imal in respect to their neighbors in this scale, then the
following constraints have to be satisfied:

∀v j : di
geo(r(i−1),r(i)) ≤ di

geo(v j,r(i)) and

di
geo(r(i−1),r(i)) ≤ di

geo(v j,r(i−1)),
i = 1, . . . , l. (14)

Note that the length l of a path r depends on whether a
following maximum exists or not. The computation of
the minimum paths is analogously done. An extremum
path always begins in the first scale and ends if no fol-
lowing extremum exists.

Now, we detect v as a feature vertex in scale i, if it
is included in a maximum/minimum path r with r(i) =
v and if the value D(r(i), i) is maximal/minimal with
respect to its neighbors r(i−1) and r(i+1).
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5.4 Reducing Noise
To reduce noise due to remeshing (because of its local
changes in the triangulation), a filtering over the mesh
(see Figure 7) on the one hand and a filtering over the
signatures of the extremum paths (see Figure 8) on the
other hand is done with Gaussian kernels. The standard
deviation σ of the first Gaussian kernel (two dimen-
sional) is set in dependency of the average edge length
in the mesh. This is a good choice, because normally
the higher the resolution (corresponds to the average
edge length) of a mesh, the smaller are the structures
in the mesh that can be modeled and the more feature
points should and can be extracted. In our application
we took a width of twice the average edge length. The
standard deviation of the second Gaussian kernel (one
dimensional), used to smooth the signatures, is set to
four.

Figure 7: A fish with relatively colorcoded differences.
(Left) Unfiltered. (Middle) Filtered with σ = 2. (Right)
Filtered with σ = 4.

Figure 8: The scale space signatures of three ex-
tremum paths of the fish model. (Left) Unfiltered.
(Right) Filtered with σ = 8.

5.5 Eliminating Unstable Features
If a feature point describes a ridge or ravine like
structure of the object, often its position is not well
determined, because the vertices along this structure
have very similar DoG-values. For this reason, Lowe
[Low04] introduced the hessian condition. This
condition rejects such feature points by thresholding
the ratio of its eigenvalues. Therefore, the eigenvalues
λmax and λmin of the hessian matrix H in respect of the
difference of Gaussian values

H =
(

Dxx Dxy
Dyx Dyy

)
(15)

are computed. Now, if the ratio λmin
λmax

is above 0.5, the
point is not taken as a feature. Additionally, features are
rejected, if their eigenvalues of H have different signs.
Because of this threshold all unstable feature points can
be removed. Analogously to the image case, we com-
pute the hessian matrix of a feature point in its scale

with an radius proportional to its scale. By this, we get
a good indicator for figuring out, whether a feature has
an unstable position.

6 RESULTS
In this section, several examples of our feature de-
tection method are presented. For all examples, the
same thresholds and widths of the Gaussian kernels to
smooth the DoG-values are used.

In all following figures, the feature points detected as
a maximum are printed in red, while those detected as a
minimum are printed in blue. The signatures of the ex-
tremum paths are printed in accordant colors. A feature
point is illustrated as a circle with a radius proportional
to the scale the feature was detected in. Thereby, the
object is shown in the scale of the feature points.

The computation times for the following examples
ranged from 30 seconds (for approx. 1400 vertices) to
20 minutes (for approx. 5000 vertices). For meshes
larger than 10000 vertices a computation time of more
than 2 hours is needed. Therefore, we decided to sim-
plify large meshes in a preprocessing step. To this end
a curvature driven simplification is used in order to pre-
serve small features.

6.1 Differently Scanned Objects
To show the robustness by extracting feature points of
differently sampled models, the features of two ants
with different resolutions are shown in Figure 11. It
can be seen, that the same features are extracted, and
only the signatures differ marginally.

6.2 Similar Objects
To demonstrate the robustness of our method for pose
invariance, we applied our technique on three postures
of a hand. The results in Figure 12 show a great attitude
in this case.

6.3 Other Examples
The third feature point of the vase in Figure 9 shows,
that important features are found, which probably
would not be found by other methods.

Figure 9: Feature points and signatures of a vase.
(Left) Original model (approx. 1500 vertices). (Middle)
Smoothed object in scales of the features. (Right) Sig-
natures.

In the feature detection process for the Max Planck
head in Figure 13 a lower threshold (0.35) is used for
performing the hessian condition, because otherwise
the nose and the ears would not have been extracted.
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Unfortunately, the problem of choosing the most appro-
priate threshold arises, so we think, that in a practical
application the ratio of the eigenvalues should better be
used as a confidence of a feature than for thresholding.

Last but not least we applied our method also on the
Stanford Bunny. The results are shown in Figure 10.

Figure 10: Feature points and signatures of the Stan-
ford Bunny. (Top) Smoothed object in scales of the
features. (Bottom) (Left) Original model (approx. 3100
vertices). (Middle) All feature points. (Right) Signa-
tures.

7 CONCLUSIONS AND FUTURE
WORK

Robust feature points are needed for many applications,
as for instance matching and morphing. Based on ap-
proved methods for the image case, we introduced a
novel technique for the extraction of feature points on
3D surfaces. Therefore we generalized the scale space
method of Lindeberg [Lin98] to 2-manifolds in 3D and
use the averaged mean curvature flow to build an analog
representation over scales. We detect a salient point by
checking if it is extremal both in the adjacent scales and
in the adjacent mesh vertices. The transfer of the hes-
sian condition has shown good results by thresholding
unstable features. Furthermore, we have shown the ro-
bustness of our method by processing several example
surfaces.

One problem of our approach is the dependency on
the used flow. The mean curvature flow is not qualified
to be used in a general application, because it tends to
fragment specific objects. Because of this, we want to
explore different flows and their properties, in order to
find a more suitable one for our method.

Due to the fact that we use a scale space based detec-
tion, we obtain features, that are robust against noise on
the surface. Only in the first scales wrong features were
found.

In a matching application a descriptor could be used
to additionally improve the descriptive power of our
features. To get scale invariance, this descriptor could

work with a radius proportional to the scale of its fea-
ture point.

In the future, we would like to modify our method
to compute other types of features, as for example line
features.
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search in 3d object databases. ACM Comput. Surv., 37(4):345–
387, 2005.

[CRT04] Ulrich Clarenz, Martin Rumpf, and Alexandru Telea. Ro-
bust feature detection and local classification for surfaces based
on moment analysis. IEEE Transactions on Visualization and
Computer Graphics, 10(5):516–524, 2004.

[GCO06] Ran Gal and Daniel Cohen-Or. Salient geometric features
for partial shape matching and similarity. ACM Trans. Graph.,
25(1):130–150, 2006.

[IJL+05] Natraj Iyer, Subramaniam Jayanti, Kuiyang Lou, Yag-
nanarayanan Kalyanaraman, and Karthik Ramani. Three-
dimensional shape searching: state-of-the-art review and future
trends. Computer-Aided Design, 37(5):509–530, 2005.

[JWBD86] Babaud J., A. P. Witkin, M. Baudin, and R. O. Duda.
Uniqueness of the gaussian kernel for scale-space filtering. IEEE
Trans. Pattern Anal. Mach. Intell., 8(1):26–33, 1986.

[Koe84] J. J. Koenderink. The structure of images. Biological Cy-
bernetics, 50:363–370, 1984.

[LG05] Xinju Li and Igor Guskov. Multiscale features for approxi-
mate alignment of point-based surfaces. In Symposium on Geom-
etry Processing, pages 217–226, 2005.

[Lin98] Tony Lindeberg. Feature detection with automatic scale se-
lection. Int. J. Comput. Vision, 30(2):79–116, 1998.

[Low04] David G. Lowe. Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vision, 60(2):91–110, 2004.

[MTS+05] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A compari-
son of affine region detectors. Int. J. Comput. Vision, 65(1-2):43–
72, 2005.

[NDK05] M. Novotni, P. Degener, and R. Klein. Correspondence
generation and matching of 3d shape subparts. Technical report,
University of Bonn, 2005.

[SF07] Philip Shilane and Thomas Funkhouser. Distinctive regions
of 3d surfaces. ACM Transactions on Graphics, 26(2):Article 7,
2007.

[SOS04] Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk.
Interpolating and approximating implicit surfaces from polygon
soup. ACM Trans. Graph., 23(3):896–904, 2004.

[TL07] Gary K. L. Tam and Rynson W. H. Lau. Deformable
model retrieval based on topological and geometric signatures.
IEEE Transactions on Visualization and Computer Graphics,
13(3):470–482, 2007.

[TV04] Johan W. H. Tangelder and Remco C. Veltkamp. A survey
of content based 3D shape retrieval methods. In Proceedings of
the Shape Modeling International, pages 145–156, 2004.

[Wit83] Andrew P. Witkin. Scale-space filtering. In 8th Int. Joint
Conference on Artificial Intelligence, pages 1019–1022, 1983.

[WNK06] R. Wessel, M. Novotni, and R. Klein. Correspondences
between salient points on 3d shapes. In Vision, Modeling, and
Visualization 2006 (VMV 2006), pages 365–372, 2006.

[Xu04] Guoliang Xu. Convergent discrete laplace-beltrami opera-
tors over triangular surfaces. In Proceedings of the Geometric
Modeling and Processing, pages 195–204, 2004.

[ZF03] Barbara Zitová and Jan Flusser. Image registration methods:
a survey. Image Vision Computing, 21(11):977–1000, 2003.

Journal of WSCG 39 ISSN 1213-6972



Figure 11: The feature points of an ant model with different sample rates. (Left) Smoothed models in scales of
the features. (Right) Signatures.

Figure 12: Feature points and signatures of three poses of a hand. (Left) Original models (approx. 1400 vertices).
(Middle) Smoothed objects in scales of the features. (Right) Signatures.

Figure 13: Feature points and signatures of the Max Planck model. (Left) Original model (approx. 1650 vertices).
(Middle) Smoothed object in scales of the features. (Right) Signatures.
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ABSTRACT 

Gaussian Process Latent Variable Models (GPLVMs) have been found to allow dramatic dimensionality 
reduction in character animations, often yielding two-dimensional or three-dimensional spaces from which the 
animation can be retrieved without perceptible alterations. Recently, many researchers have used this approach 
and improved on it for their purposes, thus creating a number of GPLVM-based approaches. The current paper 
introduces the main concepts behind GPLVMs and introduces its most widely known variants. Each approach is 
then compared based on various criteria pertaining to the task of dimensionality reduction in character 
animation. In the light of our experiments, no single approach is preferred over all others in all respects. 
Depending whether dimensionality reduction is used for compression purposes, to interpolate new natural 
looking poses or to synthesize entirely new motions, different approaches will be preferred. 

Keywords 
Character Animation, Gaussian Process, GPLVM, SGPLVM, GPDM, B-GPDM, Dimensionality Reduction, 
Degrees of Freedom, Nonlinear Transform, PCA. 

 

1. INTRODUCTION 
Animating realistic human-like characters usually 
requires handling a large number of degrees of 
freedom (DOF). The skeleton we use in our own 
research is a good example, with 44 active DOFs 
(see Figure 1). Considering each of the d DOFs as a 
dimension, each possible pose of the character may 
be seen as a vector in a d-dimensional space. 

Such high-dimensional spaces are generally not 
useful in practice since they usually translate into an 
increased amount of work, both for the animator and 
for the computer, and require more storage space. 
Moreover, they do not provide any insight regarding 
what poses look natural or regarding how one should 
interpolate between two known poses (i.e. linear 
interpolations in these spaces rarely look natural). 

 

Figure 1. The DOFs for the human model used in 
our experiments 

For these reasons, among others, animators may well 
be interested in more compact and more informative 
representation spaces. By learning motion-specific 
models, one might use the correlation between values 
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at each DOF to reduce the number of effective DOFs 
while preserving the resulting animation almost 
intact. As will be shown later, GPLVM-based 
techniques are especially well suited for this task. 

In this paper, we present the GPLVM approach and 
its most widely known variants. We then compare 
their performances on keyframe animations extracted 
from motion capture experiments. For comparison 
purposes, we perform the same experiments with 
Principal Components Analysis (PCA). This paper is 
in line with our research work, which consists in 
animating virtual characters using forward dynamics 
under a physics simulation. To this end, GPLVMs 
are used to learn kinematic motion models and to 
interpolate new natural looking poses. 

2. RELATED WORK 
Principal Components Analysis (PCA), which is 
arguably the best known dimensionality reduction 
technique, finds its origins early in the 20th century. 
Pearson [Pea01a] and Hotelling [Hot33a] are 
generally credited as providing the earliest 
descriptions of PCA. (Source: [Jol02a]) 

The concept of using Gaussian processes for the 
purpose of dimensionality reduction, through 
Gaussian Process Latent Variable Models (GPLVM), 
has been introduced by Lawrence in 2003 [Law03a] 
and 2005 [Law05a]. The main idea behind the 
GPLVMs is to find a non-linear function that 
smoothly maps low-dimensional latent-space vectors 
to a high-dimensional observation-space. In 2006, 
Lawrence et al. improved on the GPLVM by 
proposing back-constraints which enforce the 
conservation of local distances from the observation-
space over to the latent-space [Law06a]. 

In 2004, Grochow et al. proposed the Scaled 
Gaussian Process Latent Variable Model (SGPLVM) 
[Gro04a]. This approach improves on the original 
GPLVM by learning a scaling factor for each 
observation-space dimension, thus expressing the 
process of learning a model in a normalized 
observation-space. Their work was also instrumental 
in highlighting the potential of GPLVM approaches 
in the field of realistic character animation. 

In 2005, Wang et al. presented the Gaussian Process 
Dynamical Model (GPDM) [Wan05a]. While 
GPLVMs may be used on any kind of multi-
dimensional data, GPDMs are specially designed to 
handle datasets exhibiting chronological relations 
between successive data points, such as keyframe 
animations. As with the SGPLVM, the GPDM 
approach uses scaling factors for each of the 
observation-space dimension. 

In 2006, Urtasun et al. proposed the Balanced 
GPDM (B-GPDM) [Urt06a]. This contribution is 
essentially a slight alteration to the objective function 
used during the learning of the model. This revised 
objective function amplifies the importance of 
smoothness of the latent-space in the final model. It 
was studied in more details by Wang et al. [Wan07a]. 

3. PROBLEM DEFINITION 
Consider a keyframe animation of m frames for a 
character with d DOFs. This animation may be seen 
as a d-by-m matrix Y, where each of the m columns 
represents a pose of the character and each of the d 
rows represents the trajectory taken by a given DOF 
over the course of the animation. The observation-
space for the poses of the character is d-dimensional. 
We wish to derive a transformation f such that  

 )(YfX = , (1) 

where X is the q-by-m matrix representing the m 
frames of the animation in the latent space, with q < 
d. Moreover, to be of any practical use, one must be 
able to reverse this transformation, at least 
approximately, through a transformation g defined by 

 )(' XgY = , (2) 

where Y’ is the reconstructed d-by-m animation 
matrix. The transformation g is required because 
poses in the latent space may not be applied directly 
to the character. It is important to note that, while the 
entire animation is generally needed in order to 
produce satisfying transformations f and g, these 
transformations can then be applied to single poses in 
the observation/latent-space and not necessarily on 
the whole animation. 

Evaluation Criteria 
Now, the problem definition is very large and allows 
for many different solutions, most of which would 
not produce interesting results. Thus, specific and 
measurable criteria need to be defined that will allow 
the evaluation of the quality of a given solution. 

The criteria we deem to be the most important are : 
• Dimensionality reduction potential: 

For values of q as small as possible, the 
distance between an observed pose y and its 
reconstruction y’=g(f(y)) must be small enough 
not to be noticeable by a human observer; 

• Learning/synthesis computing time: 
The transformation g should be as fast as 
possible since single poses should ideally be 
synthesized many times per second in order to 
allow for interactive applications. Another 
factor is the learning time for the 
transformations f and g; 
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• Interpolation quality: 
A linear interpolation between two known 
poses in the latent space should translate to a 
natural-looking intermediate pose in the 
observation space; 

• Generalization potential: 
As animations with a high-density of keyframes 
are not always available, solutions generalizing 
quality transformations from few data points are 
of great interest; 

• Ease of visualization: 
The latent space should allow quick and easy 
visualization of an entire motion. In order to be 
shown on static media, the latent space should 
be 2-dimensional or 3-dimensional at most. A 
1-dimensional space is not interesting as it is 
not suited to represent generic cyclic motions as 
closed paths in the latent space;  

• Extrapolation quality: 
It should be possible to generate genuinely new 
motions from a model by sampling the latent 
space near known poses. Such extrapolated 
motions should look fluid and natural. 

4. APPROACHES 
This section briefly introduces the reader to each of 
the compared approaches. However, the reader is 
referred to the original papers describing each 
approach for a more thorough explanation. 

Principal Components Analysis 
Using mean-removed data Y, the PCA consists in 
finding the rotation matrix Rd,d that aligns the x1-axis 
of the d-dimensional space with the direction of 
greatest variance in the data, the x2-axis with the 
direction of second greatest variance and so on. 
Figure 2 illustrates this process on fictive 2-
dimensional data. This matrix R can be found 
analytically by finding the eigenvectors of Y. 

Variance along an axis gives a measure of the 
amount of information provided by that axis. In order 
to reduce the space dimensionality while maintaining 
enough information for accurate reconstruction, the 
axes associated with the least variances are removed 
from the transformed space. Only the q first rows of 
R are kept and to give a transformation matrix Tq,d. 
The transformation from d-dimensional observation 
space to the q-dimensional latent space is given by 

 Tyx = , (3) 

and the transformation back to observation space is 
given by the transpose of the transformation matrix 

 xTy t=' . (4) 

 

Figure 2. An illustration of PCA on 2D data 

GPLVM-based Approaches 
Gaussian processes are the function equivalent of 
Gaussian random variables. Both obey to a given 
probability density function, but a Gaussian random 
variable describes a single variable while a Gaussian 
process describes a whole function, which can be 
seen as an infinite number of variables. Gaussian 
random variables are defined by their mean value 
and their variance. In the same fashion, Gaussian 
processes (GPs) are defined by a mean function 

dq ℜ→ℜ:μ  and a covariance function dqk ℜ→ℜ: , 

thus describing a distribution over all functions 
dqg ℜ→ℜ: . 

Gaussian processes can be used for the regression of 
a function on known data points in an arbitrary 
space. However, while traditional regression adjusts 
a single function on known data points, GP 
regression adjusts a distribution over a space of 
functions with respect to those data points. This is 
done by adjusting the parameters of the covariance 
function in order to maximize the likelihood of the 
observed data given the GP. This optimization favors 
the simplest GPs among all those explaining the 
observed data and thus follows Occam’s razor 
principle.1 

GPLVM-based approaches aim at constructing a q-
dimensional latent space for d-dimensional data by 
learning a Gaussian process on a training set of data 
points. The functions considered by the GPLVM 
represent the transformation from latent space to 
observation space, which are candidates for the g 
function from equation (2). 

GPLVMs represent the original implementation of 
this idea while other GPLVM-based approaches 

                                                           
1 For a complete introduction to Gaussian Processes, the 

reader is referred to the book Gaussian Processes for 
Machine Learning [Ras06a], which is freely available in 
electronic format at: www.gaussianprocess.org/gpml/ 
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propose slight improvements. Contrary to PCA, all of 
these approaches allow non-linear transformations of 
the data. Removing the linearity constraint usually 
allows far better results. 

In the literature, the covariance function k is often 
chosen to be a Radial Basis Function (RBF) kernel 
for which the parameters have to be adjusted. 
However, any other positive definite Mercer kernel 
could be used. We will consider k to be a generic 
positive definite Mercer kernel. 

4.1.1 GPLVM  
In order to perform GP regression (i.e. adjusting the 
parameters of the kernel), we theoretically need to 
know both the observed data Y and the latent space 
data X. As X is not known a priori, an initial 
estimation is given using PCA (see equation (3)). 
Once X has been initialized, GP regressions and 
corrected estimations of X are performed iteratively 
until convergence has been achieved or until a 
maximum number of iterations has been reached. 

To perform the GP regression, the likelihood of the 
GP and X given Y has to be maximized with respect 
to the parameters of the kernel.2 This likelihood 
function is chosen so as to favor smooth mappings 
from latent space to observation space. To reassess 
the values of the vectors xi, they are chosen to 
maximize the likelihood of X given the GP and Y. 
GPLVMs were first introduced in [Law03a]. 

For large datasets (i.e. large values of m), one may 
reduce the computational complexity of these 
optimizations by performing the GP regression using 
only an active subset of X and Y, reassessing only the 
inactive subset of X and choosing a different active 
subset for the next iteration. With this approach, each 
xi may be optimized independently. 

4.1.2 GPLVM with back-constraints 
As presented so far, GPLVMs enforce the 
preservation of local proximities from latent to 
observation space. In other words, they insure that 
close poses in X are kept close in Y. This implies that 
GPLVMs preserve dissimilarities from observation 
to latent space. In other words, far apart poses in Y 
will be kept far apart in X. However, nothing so far 
prevents two similar poses in observation space to 
become two distant points in latent space, thus 
creating discontinuities in the latent space. 

In order to enforce the conservation of local 
proximities from observation to latent space, latent 
space data xi can be replaced by a function f that 
maps observation space data to latent space data: xi = 

                                                           
2 In practice, the negative log-likelihood is minimized. This 

corresponds to maximizing the likelihood but simplifies 
the computational complexity. 

f(yi). By optimizing over the parameters of f instead 
of directly optimizing the vectors xi, a smoother 
mapping from Y to X is obtained. In [Law06a], 
Lawrence et al. present two such mappings. The first 
is a multilayer perceptron, later referred to as the 
MLP back-constraint, and the second is a RBF kernel 
based mapping, later referred to as the KBR back-
constraint. 

4.1.3 SGPLVM 
Scaled GPLVMs introduce an important, yet simple, 
improvement over standard GPLVMs. This 
improvement consists in evaluating the effect of 
varying y along each observation space axis and 
scaling the values of Y accordingly, to obtain an even 
distribution of poses along all axes of the latent 
space. The different scales are initialized at unit 
value and are adjusted as parameters of the GP 
through a modified likelihood function. The 
likelihood of X given the GP and Y is also modified 
to consider these scales. SGPLVMs were introduced 
in [Gro04a]. 

4.1.4 GPDM 
Proposed in [Wan05a], Gaussian Process Dynamical 
Models are specially designed to handle dynamical 
processes, such as keyframe animations. They 
improve on SGPLVMs by the addition of a 
dynamical model to the latent variable model. This 
dynamical model also takes the form of a Gaussian 
process but, instead of providing a mapping from 
latent to observation space, it provides a mapping 
from latent points happening at time t-1 to latent 
points happening at time t. 

If the original mapping from observation to latent 
space, obtained from PCA, preserves local 
proximities in most cases, the dynamical model will 
enforce the conservation of local proximities. 
Loosely speaking, if two consecutive poses are 
nearby in X, the dynamical model will favor a nearby 
position for the following pose. 

Depending on the number of previous values 
considered, the dynamical model may be defined to 
model the similarity between consecutive poses, the 
velocity, the acceleration or higher-order dynamical 
relations. In our experiments, it only considers the 
previous pose and therefore models the similarity 
between poses. 

The likelihood function of the GPDM is similar to 
that of the SGPLVM multiplied by the likelihood of 
the dynamical model.  

4.1.5 B-GPDM 
Since q is generally much smaller than d, the 
objective function of the GPDM, its negative log-
likelihood, gives less importance to the terms coming 
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from the dynamical model. Balanced GPDMs further 
improve on the GPDM simply by adding a scaling 
factor to these terms. This translates into a smoother 
mapping from observation to latent space, as the 
preservation of local proximities is further enforced. 
B-GPDMs were proposed in [Urt06a]. 

5. PERFORMANCES 
This section presents the various experiments we 
performed on each technique. Lawrence’s Matlab 
code was used for the implementation of the 
GPLVM, including the MLP and KBR back 
constraints, and for the SGPLVM. Wang’s Matlab 
code was used for the GPDM and the B-GPDM. 

The experiments were performed on two motion 
capture animations. The first one, Walk, is an 
animation of many walk cycles with 63 actuated 
DOFs and 581 frames (or poses) at 120fps. The 
second one, Basketball, is an animation of a few 
dribbles followed by a free throw and cheering. It 
animates 51 actuated DOFs and has 209 frames at 
30fps. While using a greater number of test sets 
could have been interesting, from our experience the 
observations made on these animations can be 
generalized over to most natural human motions, 
cyclic or not. Moreover, using only two test 
animations allows for a more succinct presentation. 

In our experiments, the methods were tested as 
presented in this paper, not using method-specific 
heuristics. For instance, in [Gro04a] the SGPLVM 
uses feature vectors as yi, which include velocity and 
acceleration informations. Our experiments used 
only DOF values as the vectors yi. Also, we do not 
use the active set heuristic proposed in [Law03a]. 
Instead, we optimize the GP parameters with respect 
to all points in X and then optimize all points in X 
with respect to the GP. Thus, each technique is not 
evaluated at its best, but all techniques are compared 
on equal grounds.  

In all cases, the values of X were initialized by PCA 
and all GP models used RBF kernels, including the 
dynamical model of the GPDM and B-GPDM. The 
optimization of the negative log-likelihood functions 
was performed by the scaled conjugate gradient 
algorithm, as implemented in NETLAB, with a 
maximum of 200 iterations. 

The error of a model is given by the mean over all 
poses of the absolute difference between the angles 
from observed pose yi and reconstructed pose yi’. The 
error measure is given in degrees. One may notice 
that this error measure does not account for the 
different relative effects of the various DOFs on the 
overall pose. While this is a drawback, very low 
error values do correspond to seamless 
reconstructions to a human observer. 

Dimensionality Reduction Potential / 
Ease of Visualization 
To evaluate the dimensionality reduction potential of 
each approach, we varied q, the dimension of the 
latent space, and evaluated the error of the models 
obtained using this value for q. 

We empirically set a threshold � = 0.5° under which 
the reconstructed motion is virtually 
undistinguishable from the original motion for a 
human observer.3 A model with an error below this 
threshold is therefore considered to be a valid model. 
Furthermore, if the model achieves an error rate 
below � for q=3 or q=2, the model is said to respect 
the ease of visualization criterion. 

Figure 3 and 4 give the error rates obtained from 
each method for increasing values of q on the Walk 
sequence and the Basketball sequence respectively. 
Due both to its acyclic nature and to its lower 
sampling frequency (30fps), the Basketball sequence 
provides a greater challenge, which translates into 
greater mean errors to most techniques.  

 

Figure 3. Mean error against number of latent 
dimensions for the Walk sequence 

During our experiments, we observed that the MLP 
and the SGPLVM approaches were more prone to 
converge early to a local minimum corresponding to 
a model of poor quality. This explains why their 
mean error does not necessarily decrease as q 
increases. Moreover, as will be illustrated later, MLP 
naturally learns latent spaces where the poses are 
constrained along a handful of line segments. This 
explains why it generally obtains greater error rates 
than the other GPLVM-based approaches. 

In both cases, PCA is far above the threshold even 
for q=9. In fact, it did not reach the threshold until 

                                                           
3 As different DOFs affect the motion on different scales, 

two models with similar error values might provide 
different qualities of reconstruction. However, such a 
low error threshold insures a satisfactory reconstruction 
for all but the most erratic models. 
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values of q greater than 40. MLP aside, all GPLVM-
based techniques met the threshold � on the Walk 
sequence with only 2-dimensional or 3-dimensional 
latent spaces. On the Basketball sequence however, 
the B-GPDM reached the threshold only starting at a 
4-dimensional latent space. In both sequences, B-
GPDM clearly has slightly higher mean errors. This 
is the effect of the emphasis that is put on learning a 
smooth latent space, at the expense of a more precise 
fitting of the training poses.  

 

Figure 4. Mean error against number of latent 
dimensions for the Basketball sequence 

The GPLVM is also interesting. In both cases it 
performs better than most techniques that are, in fact, 
improvements over the GPLVM. This is due to the 
nature of this test, which does not penalize 
overfitting. Since the error is computed using the 
same poses that were used during the learning phase, 
overfitting these training poses may provide lower 
error rates. On the other hand, techniques that 
enforce a smoother latent space, such as B-GPDM, 
avoid overfitting and may obtain somewhat higher 
error rates. That said, if dimensionality reduction is 
performed only with the intention of reconstructing 
exactly the learned poses, GPLVM should be 
preferred over its alternatives. 

Learning / Synthesis Computing Time 
Using q=3, we evaluated the computing time 
required to learn the model (Figure 5) and to 
synthesize a pose given a point x in the latent space. 
These times were obtained on an Intel E6600 Core 2 
Duo processor running at 2.4GHz. The synthesis 
times are averages over 200 trials. 

As shown by Figure 5, the learning times for GPDM 
and B-GPDM appear to be significantly faster than 
that of the GPLVM, however this is simply due to 
more optimized Matlab code and not due to lower 
computational complexity. In fact, Lawrence’s 
implementation of the GPDM has roughly the same 
learning time as the GPLVM. Considering this, all 

GPLVM-based techniques require loosely the same 
amount of time to learn the model. This is expected 
as these techniques mainly differ from each other by 
the function being optimized during learning and not 
by the optimization mechanics. While these objective 
functions play a significant part in the total 
computing time, their evaluation takes roughly the 
same amount of time. Note that PCA is not shown in 
Figure 5, as its times were well below one second. 

 
Figure 5. Learning times on both sequences  

With the exception of PCA, which is significantly 
faster, pose synthesis times are also similar across all 
techniques. For GPLVM-based approaches, pose 
synthesis times varied between 19.0ms and 19.2ms 
for the Walk sequence and between 2.3ms and 2.5ms 
for the Basketball sequence. Once again, this is 
expected as the pose synthesis process is almost 
identical for all techniques. Using PCA, pose 
synthesis took less than 0.1ms on both sequences. 

These results clearly show that the main factor in the 
computing time, both for model learning and for pose 
synthesis, is the number of poses on which the model 
is learned. At 209 frames, the Basketball sequence 
allows significantly faster times than the Walk 
sequence at 581 frames. In time critical applications, 
this should be motivation enough to use the active set 
heuristic proposed in [Law03a] or to use only a 
subset of the frames when learning the model. 

Interpolation Quality / Generalization 
Potential 
For this portion of the experimentation, the frames 
from the motion capture animations were evenly 
down-sampled. The models were learned using this 
subset of the frames and then evaluated exclusively 
on the frames that were left aside, again with q=3. 
This allows the interpolation of poses for which we 
have a ground truth. Interpolation quality and 
extrapolation quality were not tested on PCA as its 
models for q=3 had too high error rates when we 
tested for dimensionality reduction potential.   

To assess the generalization quality of the models, all 
approaches were tested with different levels of 
down-sampling: using only every 2nd frame; every 4th 
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frame; every 8th frame; and so on. Better 
interpolation from fewer data points indicates better 
generalization potential. Figure 6 presents the results 
of these experimentations on the Walk sequence. The 
results for the Basketball sequence are not shown, 
but were similar in tendencies with much higher 
error rates. 

 

Figure 6. Mean error against decreasing training 
set size for q = 3 on the Walk sequence 

As Figure 6 shows, the GPLVM, KBR and GPDM 
all provide very good generalization and follow each 
other closely as the training set of poses gets smaller. 
With a training set composed of only 1/8th of the total 
frames, these three methods still remain under the 
threshold and provide seamless interpolations. As 
noted earlier, the SGPLVM and the MLP are prone 
to early convergence to a local minimum and this 
plagues these approaches in the quality of their 
interpolations as well. Finally, the B-GPDM follows 
the curve of the best approaches, but with a slightly 
higher mean error. Once again, this is due to the 
emphasis that is put on latent space smoothness 
during the learning phase. 

Extrapolation Quality 
We have not yet devised an objective measure for 
extrapolation quality. However, unlike interpolation, 
extrapolation depends directly on the conservation of 
distances by the latent space. That is, two nearby 
poses in observation space should be nearby in latent 
space and, likewise, two distant poses in observation 
space should be distant in latent space. Otherwise, 
moving a point in latent space with constant speed 
could represent a motion of varying speeds in 
observation space. Interpolation does not require 
these criteria as the new pose is expressed in terms of 
relative distance between known latent points. 

In order to evaluate the extrapolation quality of a 
given model, one may observe the sequence of poses 
in the latent space. Indeed, as the motions were 
sampled at a constant frequency, the faster portions 

of the motion should be represented by more distant 
points while the slower portions should be 
represented by closer points. Figure 7 presents the 
poses of the Walk sequence in 2-dimensional latent 
spaces obtained with each GPLVM-based approach. 

As shown by this figure, the B-GPLVM generally 
presents the smoothest path of all, closely followed 
by KBR, which exhibits only a handful of 
discontinuities in the sequence of poses. In both 
models, the slowest portions of the motion (i.e. the 
end of each leg swing) can be identified by the points 
that are closer together and the biggest changes in 
direction (i.e. when arms and legs decelerate and 
then start moving in the opposite directions) is 
clearly represented by the strongest curves in the 
path of the sequence. Finally, in both models, the 
cyclic nature of the motion is obvious. From this 
subjective analysis, one could expect to extrapolate 
natural looking motions from these models. 

In our experiments, GPLVM, SGPLVM and GPDM 
all obtain latent spaces of similar smoothness. With a 
fair share of discontinuities, they still exhibit the 
cyclic nature of the motion and provide a few hints 
about its different phases. Finally, MLP naturally 
converges to paths formed of connected line 
segments, which hardly convey the organic nature of 
the motion. Moreover, as the arrows of different 
length show, these paths are also plagued with 
jerkiness. 

6. CONCLUSIONS 
While all GPLVM-based approaches perform better 
than PCA, no approach is clearly better than all 
others in all respects. Depending on the task at hand, 
different choices should be made. For instance, if 
dimensionality reduction is used for compression 
purposes, GPLVM and GPDM will allow accurate 
reconstruction of the original poses as well as 
interpolation of natural looking poses. On the other 
hand, if a smoother latent space is necessary, to 
synthesize entirely new motions as in [Urt06a] for 
example, the B-GPDM should be preferred. 

From our experiments, the GPLVM with KBR back-
constraint seems to offers the best balance. It 
provides better fitting to the training poses than the 
B-GPDM and a smoother latent space than the 
GPLVM and GPDM.  

The authors insist on the fact that the approaches 
were tested on equal grounds, not using any method-
specific heuristic. The results should therefore be 
seen as relative performances. It should also be noted 
that these heuristics, like the feature vector proposed 
in [Gro04a] and the active set proposed in [Law03a], 
could be adapted to any GPLVM-based approach 
and possibly improve their performance. 
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Figure 7. 2-dimensional latent spaces obtained on the Walk sequence with: GPLVM (a), MLP (b), KBR 

(c), SGPLVM (d), GPDM (e) and B-GPDM (f) 

 

Finally, it may be argued that some pose synthesis 
times are too slow to allow interactive applications. 
This could easily be corrected by using an optimized 
C/C++ implementation of the approach and by using 
the active set heuristic. 
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ABSTRACT 

The problem of modeling and visualization of scattered data where there are inherent constraints on value of the 

data exists in many scientific and business research areas. For example, the value of mass concentration always 

has the lower bound of 0 and upper bound of 1. The modeling functions having gradient continuity usually do 

not guarantee to preserve the bounds of data. In this paper we present the Constrained Shepard method for 

interpolation of scattered data satisfying the lower and upper bounds specified by the two constraint functions. 

The constrained interpolant is an extension of the Modified Quadratic Shepard method with comparable 

efficiency and accuracy. The proposed method is easy to implement and extend to higher dimensionality. The 

constrained interpolation function is C
1
 continuous. 

Keywords  
Visualization, scattered data interpolation, Shepard’s method, bounds, positivity, constraints 

 

1. INTRODUCTION 
Data visualization is an important tool used for study 

of phenomena in scientific and business research. 

Standard visualization tools require input of data at 

the specified grids. However, this is not always 

possible to collect data at the required grids due to 

various constraints (e.g. economical, physical, 

temporal, socio-political etc.). To visualize the 

scattered data, it is required first to construct a 

faithful model of the reality represented by the data 

samples. The model is then used to approximate the 

reality at the required grids. Interpolation and 

approximation methods are usually used for this 

purpose. Many methods are available for modeling 

the reality from the scattered data samples. The 

surveys [Fra91], [Lod99] and [Ami02] provide good 

reference to the scattered data modeling methods and 

their applications. These methods differ in 

capabilities and characteristics. In general, there is no 

single best method for all application areas. 

Requirements of an application determine the 

suitability of an existing interpolation method. 

Careful selection from the existing methods suiting 

the application is often required. An existing 

modeling method may not have all the characteristics 

required for the application. We some times need 

extension in the existing method to incorporate the 

underlying constraints of the data. A few examples of 

such constraints are positivity, monotonicity, 

convexity, gradient and bounds that are commonly 

encountered in various scientific and business 

applications. These are usually the known facts about 

the reality being modeled. The modeling function 

must not produce results that contradict such known 

facts about the data. Otherwise the reality discovered 

using the model may not be trustworthy. Work of 

many researchers has been reported in literature to 

preserve the above mentioned constraints of the data. 

We refer to the work [Sar00] and [But91] for 

preservation of monotonicity of data on regular grids 

and [Han97] for the scattered data. We refer to the 

work of Schmidt [Sch90] for preservation of 

convexity, monotonicity and positivity of the data on 

regular grids. 

Non-negative, fractional and percentage values are 

commonly encountered in many areas of science, 

engineering and business. It does not make sense if 

the stated values of mass, volume, number of persons 

and radiation dose are negative. The percentage mass 

concentration is meaningless if it is below zero or 

above 100. Many researchers have worked to solve 

the problem of positivity with various interpolation 

methods. For related literature and background we 

refer to the work reported in [Nad92], [Sar00a], 

[Bro93] and [Mas96]. 

Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted 

without fee provided that copies are not made or 

distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first 

page. To copy otherwise, or republish, to post on servers 

or to redistribute to lists, requires prior specific 

permission and/or a fee.  

Copyright UNION Agency – Science Press, Plzen, Czech 

Republic. 
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Shepard’s family of interpolation methods introduced 

by Shepard [She68] is commonly used for metric 

interpolation of large sets of multidimensional 

scattered data. The multidimensional datasets are 

commonly encountered in the fields of business, 

science and engineering research. A smooth function 

of the Shepard’s interpolation family, known as the 

Modified Quadratic Shepard (MQS) method, has 

excellent efficiency and accuracy characteristics. 

This method can be easily extended to any 

dimensionality. However, it does not satisfy the 

constraints imposed by various applications. Work 

has been reported in [Asi00], [Bro05] and [Asi04] for 

constrained interpolation of scattered data using the 

MQS method. These extensions to the MQS method 

are computationally expensive especially for large 

and multi-dimensional datasets. The suggested 

methods also reduce accuracy or continuity of the 

interpolant. In this paper we present a method and 

refer it as the Constrained Shepard method that 

preserves the upper and lower bounds of data 

specified by the two constraint functions. The 

constrained interpolation function is C
1
 continuous. 

This method is better than the previous extensions in 

accuracy, efficiency and extendibility. 

The rest of the paper is organized as follows: An 

overview of the Shepard family of interpolants and 

need for extension of the work is given in section 2. 

The Constrained Shepard method is presented in 

section 3. The advantages and limitations of the 

method are demonstrated and discussed in section 4. 

In section 5, we concluded and gave future directions 

of the research. 

2.  AN OVERVIEW OF THE 

MODIFIED SHEPARD METHODS 
Let a set of N non-negative data values fi at the 

associated scattered sampling locations Xi = (x1i, x2i, 

……, xmi,)’, where m is the number of independent 

variables and i =1, 2, ….., N, are given. The 

interpolation method due to Shepard [She68] is 

defined as follows: 
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2 Xd
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and 
2

)( ii XXXd −=  is the radial distance from 

position X to Xi. 

The interpolation function )(XF  has many 

interesting properties. The method is easy to 

implement and extend to higher dimensionality. 

There is no setup up time for the interpolant. The 

interpolation function is translation, rotation and 

scale invariant. This is a global method where each 

sample value represents. For example it is bounded 

between the maximum and minimum values in the 

dataset [Gor78]. Although this interpolant is bounded 

between maximum and minimum values in the 

dataset i.e. it satisfies the bounds, however this is 

sometimes an unnecessary and misleading 

characteristic for visualization applications. The 

gradient of the interpolant at each of the data points is 

zero, as shown in Figure 1, which too is misleading 

for many visualization applications. As this is a 

global method so it becomes inefficient for large 

datasets. 

A number of modifications have been suggested to 

overcome the drawbacks of the Shepard’s method. 

We will focus only on the few modifications of 

interest for visualization of multidimensional data. 

The modification by Franke and Neilson [Fra80] 

improved continuity of the interpolant that replaced 

constant basis function fi in Eq. (1) by the quadratic 

basis function Qi(X) defined as follows: 

( ) )()(
2

1
)( ii
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ii

T

iii XXAXXXXgfXQ −−+−+=        (2) 

The matrix Ai in Eq. (2) is the Hessian matrix of the 

quadratic basis function Qi (X) and T

ig is the gradient 

vector. The quadratic basis function Qi(X) has 

following characteristics: 

(1). The Qi(Xi) = fi i.e. the Qi(X) interpolates the 

corresponding data value. 

(2). The Qi(X) is an inverse distance weighted least 

square approximation to the Nq nearest data 

points. 

The resulting quadratic Shepard interpolation 

function F(X) is defined as follows:  
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The modification given above not only improves 

continuity but also accuracy of the interpolant. 

Franke and Neilson [Fra80] have proved that the 

interpolation function F(X) in Eq. (3) is C
1
 

continuous.  

To overcome the inefficiency of the Shepard’s 

method, which is due to its global nature, Franke and 

Neilson [Fra80] defined the following weight 

functions: 

wi(X) = 
2

)(

)(
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XRd
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and R= Rq is the radius within which the nodes take 

part in the construction of Qi(X) and R= Rw for 

evaluation of the F(X). Franke and Neilson suggested 

following formula to evaluate the values of Rq and Rw 

for a dataset of size N:  

Rq=

N

ND q

2
 , and  Rw=

N

ND w

2
 

Where D =
2,max jiji XX − and Nq is the 

number of data points used for construction of the 

least square quadratic Qi(X) and Nw is the number of 

data points used to evaluate the F(X). The constant D 

for a dataset is the maximum distance between two 

points in the dataset. The suggested values for evenly 

distributed 2D data are Nw= 9 and Nq=18. For sparse 

data or where datasets are small (i.e. N<25) 

considerable increase in the numbers Nq and Nw is 

suggested with constant ratio of Nq/Nw=2. Renka 

[Ren88] obtained improvement in accuracy using 

separate Riw and Riq values for each of the data points 

and used different criteria for their evaluation. The 

Riq and Riw in the method suggested by Renka are the 

smallest radii that enclose the nearest Nq and Nw data 

points respectively. The suggested values [Ren88] for 

2D data are Nw=19 and Nq=13. 

The MQS interpolation function defined above has 

excellent efficiency and accuracy characteristics. 

This is a C
1
 continuous function which is easy to 

implement and extend to higher dimensionality. 

These characteristics make the method a suitable 

choice for efficient modeling and visualization of 

large sets of multidimensional data. However, it is 

not suitable for applications where there are some 

inherent constraints on value of the data. Examples of 

such constraints are non negativity, upper and/or 

lower bounds and more general constraint defined by 

a function. Such constraints commonly arise in 

science and engineering applications. Positivity is a 

special case of the generalized bounds preserving 

problem. Examples of the datasets imposing this 

constraint are mass, volume and density that are 

always positive. The problem of preserving arbitrary 

lower bound also exists in science and engineering 

applications. For example temperature measured on 

Celsius scale must preserve the lower bound of 

absolute zero (-273.15 C
o
). Gauge pressure should 

not be less than the negative of atmospheric pressure 

which is function of the altitude position. This is an 

example of the lower bound defined by a function. 

Similarly the problem of preservation of both upper 

and lower bounds is also common in business, 

science and engineering. For example: mass and 

volume concentration must lie between 0 and 1. A 

value below zero or above 1 is meaningless in such 

cases. The problem of arbitrary upper and lower 

bounds preservation are common in business and 

engineering optimization. 

The MQS method does not guarantee to preserve 

such bounds of data. Samples of the oxygen mass 

concentration in flue gases from a boiler with respect 

to time [Asi00] are given in Table 1. A graph has 

been constructed in Figure 2 through the dataset 

using the MQS method. The interpolated negative 

mass concentration values in the graph do not make 

sense. So, we need an interpolation method that 

efficiently preserves the above given inherent 

constraints of the datasets encountered in various 

application areas. 

3. THE CONSTRAINED SHEPARD 

METHOD 
The basis functions of the MQS method, defined by 

Eq. (2) are inverse distance weighted least square 

quadratic approximations. It is due to these best fitted 

basis functions that the MQS method has good data 

modeling accuracy. The Shepard’s interpolant 

defined in Eq. (1) is bounded between the maximum 

and minimum values in the dataset [Gor78]. 
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Figure 2. Interpolated negative values of mass 

concentration using the MQS method. 
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Figure 1. Graph through the data in Table 1 

using the Shepard’s method 

Time (sec) 0 20 40 100 280 300 320 

Oxygen (%) 20.8 8.8 4.2 0.5 3.9 6.2 9.6 

Table 1. Oxygen levels in flue gases from a boiler. 
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Similarly the MQS interpolation function is bounded 

between the maximum and minimum values of the 

contributing basis functions in their domains of 

participation. We used these facts to have an accurate 

constrained interpolation method. The constrained 

method is based on the maxima and minima principle 

of the Shepard’s family. We used constrained basis 

functions )(ˆ XRi
 which are piecewise continuous 

functions approximating the corresponding basis 

functions of the MQS method and satisfying the 

upper and lower constraints. 

Let CU(X) and CL(X) are the functions defining the 

upper and lower bounds respectively. To construct 

the constrained basis function, we define difference 

functions DU(X) and DL(X) as the difference between 

the basis function Qi(X), defined in (2), and the 

constraints CU(X) and CL(X), respectively i.e.:  

)]()([)( XCXQXD UiUi −=   and )]()([)( XCXQXD LiLi −=  

Let us rewrite the basis function Qi(X) as: 

Qi(X) = fi+Q0i(X) 

The scaled difference functions, )(ˆ XDUi
 and 

)(ˆ XDLi
, are constructed  using the fixed point 

scaling that maintains values of the difference 

functions at the data point Xi. The scaled difference 

functions are defined as follows: 

)]([)(ˆ
0 XQKdXD iUiUi +=                                   (4) 

and 

)]([)(ˆ
0 XQKdXD iLiLi +=            (5) 

where dUi=fi-CU(XmU) and dLi=fi-CL(XmL). The XmU 

represent the point of maximum of the DU(X) and XmL 

is the point of minimum of the DU(X) in the domain 

of participation of the Qi(X). For simplicity we will 

use Xm to represent both XmU and XmL. The coefficient 

K in (4) and (5) is a positive constant which has value 

between zero and 1. The constrained basis function 

)(ˆ XRi
 is defined as follows: 
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The functions µLi(X) and µUi(X) in Eq. (6) are defined 

as follows:  
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where )(ˆ XQi
 = fi + K.Q0i(X)           (8) 

and          n = 1
1

−
K

            (9) 

The Constrained Shepard interpolation function is 

defined as follows: 
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The weight functions wi(X) of the Constrained 

Shepard method in Eq. (10) are same as defined by 

Renka [Ren88]. The maximum value of K for which 

the )(ˆ XQi
 in Eq. (8) is constrained between the 

bounds is the best value of K factor for the basis 

function. However in this research we use a constant 

value of K for all the basis functions for efficiency 

reasons. The valid range for K value is 0 < K <1. We 

use K as an input parameter which gives us flexibility 

to use a value that is suitable for the application. We 

propose a value of K =1/3 that suits many 

applications. We used the same value of K for 

construction of all the examples and comparisons in 

this research. Similarly we suggest the use of 

approximate values for CU(Xm) and CL(Xm) to reduce 

computational cost of searching minimum/maximum 

of each of the difference functions. The minimum of 

upper constraint and maximum of the lower 

constraint functions in the whole domain of interest 

may be used for an efficient solution.  

A combination of the values of K and the constraint 

functions CL(X) and CU(X) defines the characteristics 

of the Constrained Shepard method. Following are a 

few special cases of the value constrained problems 

commonly encountered in science and engineering 

application areas. The corresponding combination of 

the input values of K, CL(X) and CU(X), to handle the 

cases, using the Constrained Shepard method, are 

also given. 

Case 1: For preserving lower bound 0 and upper 

bound 1, the CU(Xm)=1 and CL(Xm) = 0. The )(ˆ XRi
 

in this case reduces to:  

[ ]
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Case 2: Where )(ˆ XRi
 is required to preserve lower 

bound only, the input value of K is selected between 

zero and 1. The upper bound function CU(Xm) is 

defined by a large constant value. This large value 

can be estimated by multiplying the maximum value 

in the data set by a large positive number. 

Case 3: Where the basis function )(ˆ XRi
 is required 

to preserve upper bound only, the input value of K is 

selected between zero and 1. The lower bound 

function is defined by a negative constant of large 

magnitude. 
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The interpolation function )(ˆ XF  defined in Eq. (10) 

has the following properties:  

Theorem 3.1. For all sample positions i, the 

interpolant )(ˆ XF  in Eq. (10) satisfies the following 

for all independent variables xd where d = 1, 2, ..., m:  

ii XXd
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Proof: We refer to [Ren88] for proof of the theorem. 

Theorem 3.2. If the input value of K=1, the basis 

function of the Constrained Shepard method 

degenerates to )()(ˆ XQXR ii =  between the bounds. 

The basis function beyond the bounds are equal to 

the minimum/maximum of the corresponding 

constraint i.e. CL(Xm) and CU(Xm).  

Theorem 3.3. At all the positions X, for which 

ii fXQ =)(ˆ , the basis function in Eq. (6) satisfies:  

i
fXQ

i fXR
ii

=
=)(ˆ

)(ˆ            

Proof: Let )(ˆ XRUi
and )(ˆ XRLi

are the lower and 

upper part of )(ˆ XRi
defined by the Eq. (6) i.e.: 

)(ˆ)()()(ˆ XDXXCXR UiUimUUi µ+=                (11) 

and  

)(ˆ)()()(ˆ XDXXCXR LiLimLLi µ+=    

Combining the equations (7) and (11) we get:    
n
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Fixing 
ii fXQ =)(ˆ  in Eq. (12) we get 
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We can prove similarly for lower part of )(ˆ XRi
 that  

i
fXQ

Li fXR
ii

=
=)(ˆ

)(ˆ  

Theorem 3.4. If 0<K<1, the first partial derivatives 

of )(ˆ XRi
 exist and continue at Xi. Moreover for all 

independent variables xd, where d=1, 2,    , m: 
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Proof: Let )(ˆ XRUi
 be the upper part of basis 

function )(ˆ XRi
defined in Eq. (12) i.e.: 
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The first partial derivative of the above given 

equation with respect to xd results in: 
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1

1

+
=

n
K           

As the Q0i(Xi)=0,  using this value in Eq. (4) we get: 

 1
)(ˆ

=
= iXX

n

Ui

n

Ui

d

XD                   (15) 

Combining the equations from (13) to (15) we get: 
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We can prove similarly for lower part of )(ˆ XRi
 that  
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Theorem 3.5. If 0<K<1, the first partial derivatives 

of )(ˆ XRi
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Proof: From Eq. (6) the basis function )(ˆ XRi
 

approaches )( mU XC  where the difference function 

)(ˆ XDUi
approaches 0. Using the Eq. (13) we can 

prove that where the )(ˆ XDUi
 approaches 0: 
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Theorem 3.6. The interpolation function defined by 

the Eq. (10) is C
1
 continuous. 

Proof: To prove that the interpolant is C
1
 continuous 

it is sufficient to prove that the first partial 

derivatives of the basis function )(ˆ XRi
 in Eq. (10) 

exists and continuous in the domain of its 

participation [Ren88]. The theorems 3.1 to 3.5 prove 

the theorem 3.6.  

4. RESULTS AND DISCUSSION  
Implementation of the Constrained Shepard method 

and its extension to higher dimensionality is as 

simple as that of the MQS method where constant 

bounds are involved. Only a few changes in the main 

module of the existing implementation of the MQS 

method are required. The additional user inputs 

required in this method are the value of K and the 

two arrays holding the coefficients of the constraint 

Journal of WSCG 53 ISSN 1213-6972



functions CU(X) and CL(X) defining the upper and 

lower bounds respectively.  

In Figures 3 and 4 we have demonstrated that how 

the convex and concave basis functions of the MQS 

interpolant are modified to preserve the lower bound 

of 0 and upper bound of 1. We can observe from the 

graphs that the constrained basis functions are 

smooth in the whole domain joining smoothly to the 

lower & upper bounds. Slope of the constrained basis 

functions become zero where their value approach 

zero (at the lower bound that is a constant) or 1 (the 

upper bound that too is a constant). The constrained 

basis functions do not depart much from the basis 

functions of the MQS method especially in the 

vicinity of their own data points. This characteristic 

minimizes the negative effect, which may occur due 

to the departure from the least square fitted basis 

function, on accuracy of the interpolant. Graphs 

through the dataset in Table 1 using the MQS and the 

constrained interpolants are shown in Figure 5. We 

can observe from the graphs that the constrained 

interpolation function preserves lower and upper 

bounds (i.e. 0 and 100 respectively) inherent to the 

given data. The graph is smooth and a close 

approximation of the graph due to the MQS method. 

To analyze the accuracy and efficiency of the 

Constrained Shepard method, the 2D datasets 

generated using the following test functions were 

used: 
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F(x, y) = exp(x) sin
2
(y)          (19) 

F(x, y) = sin
2
(x) sin

2
(y)          (20) 

The above given functions represent a few natural 

phenomena i.e. linear, exponential, constant and 

harmonic etc. The test functions (18) and (20) are 

bounded between 0 and 1. Data generated at 30 

random positions using the test functions has been 

used for visual comparison and estimation of the 

deviations and execution time. 

The MQS method is known to have excellent 

efficiency, accuracy and smoothness characteristics 

and it is easy to implement and extend to higher 

dimensionality. We will use these characteristics to 

assess the capabilities of the Constrained Shepard 

method.  

• The MQS interpolation function is C1
 continuous. 

The C
1
 continuity is required for most of the 

visualization and other applications for reasons like 

visually pleasing, visual perception and continuity of 

the phenomenon that the dataset is representing. The 

constrained interpolation function, we proved in the 

previous section, is C
1
 continuous. Gradients of the 

MQS and Constrained Shepard interpolants are equal 

at all the data points which lie within the bounds. 

The basis functions of the MQS method are inverse 
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Figure 3. The quadratic basis function (R1) has 

values greater than 1 and less than 0 while the 

constrained basis function (R2) remains 

between 0 and 1. 
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Figure 5. One-dimensional data (Table 1) using 

the MQS (R1) and the Constrained Shepard 

(R2) method. 
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Figure 4. The quadratic basis function (R1) has 

values less than 0 while the constrained basis 

function (R2) remains above 0. 
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distance weighted least square quadratic functions. 

Any deviation of the quadratics from the least square 

fit may results in the increase of deviations of the 

graph from original. Use of the piecewise continuous 

constrained basis functions minimizes its deviation 

from the least square fitted quadratic basis functions 

of the MQS method. So its accuracy measures are 

very close to the MQS method as depicted from the 

measurements of jackknifing errors and the 

deviations from the test functions. The Root Mean 

Square (RMS) and Absolute Maximum (AM) 

deviations of three randomly generated datasets, 

using the test functions given by Eq. (18) to (20) are 

listed in the Table 2. The RMS & Absolute 

Maximum (AM) jackknifing error estimates for the 

same datasets are also given. The MQS and 

Constrained Shepard methods have similar accuracy 

measures as depicted from the Table 2. A dataset 

generated using the test function (18) is plotted on 

25x25 grids, using the MQS method, in the Figure 6. 

The graph does not preserve the lower and upper 

bounds i.e. 0 and 1.  A graph through the same 

dataset using the Constrained Shepard method is 

shown in the Figure 7. The graph is constrained 

between the bounds i.e. 0 and 1. This graph seems to 

be a closer approximation of the graph of the test 

function that is plotted in Figure 8. 

The Constrained Shepard method is slightly 

expensive computationally than the MQS method. 

The computational time for generation of 25x25 grids 

using the MQS and the Constrained Shepard method 

are given in Table 2. Machine used is PC, P-IV, 2.4 

GHz; 496 MB RAM with windows XP operating 

system. Larger the sample size: less will be the 

relative computational cost of the Constrained 

Shepard and MQS methods for constant grids. For a 
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Figure 6. A randomly generated dataset (N=30) 

using the test function (18) is plotted using the 

MQS method. The graph does not preserve [0, 1] 

bounds of data.  

0

1
2

0

0.5

1

0

0.5

1

XY

Z

 
Figure 7. The graph due to the Constrained 

Shepard method is bounded between 0 and 1. 

Deviations from the test 

functions 

Jackknifing 

Errors 

Test functions 

of the data 

sets 

Performance parameters 

/ measures 

MQS method 

Constrained 

Shepard method

MQS method Constrained 

Shepard method 

RMS 0.1482 0.0995 0.1612 0.1646 Eq. (18) 

Absolute Maximum  1.287195 0.5059 0.7207 0.7822 

RMS 0.2452 0.2460 0.0129 0.0101 Eq. (19) 

Absolute Maximum 0.8856 0.9046 0.0499 0.0336 

RMS 0.0137 0.0153 0.0182 0.0148 Eq. (20) 

Absolute Maximum 0.0801 0.0923 0.0479 0.0497 

Execution time (seconds) 0.0175 0.01797 

Table 2. Efficiency and accuracy measures using the MQS and Constrained Shepard methods. Data used 

is generated at 30 random locations using the test functions. The time is for 25x25 grids execution. 
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Figure 8. Test function (18) plotted at 25x25 grids. 
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constant size dataset, the relative cost will increase 

with increase of the number of grids. The application 

areas of the interpolant involve very large datasets. 

The Constrained Shepard method imposes very small 

efficiency penalty making it a suitable choice for 

constrained modeling of very large datasets. 

The formulation of the Constrained Shepard method, 

given in this research, is without reference to the 

number of dimensions of the data. It is easy to 

implement the Constrained Shepard method for 

higher dimensional data.   

5  CONCLUSIONS & FUTURE WORK 
We have presented an efficient method for modeling 

scattered data where there are inherent constraints on 

value of the data samples. The method handles the 

upper and lower constraints while maintaining 

efficiency, C
1
 continuity, accuracy and extendibility 

of the MQS method. Hopefully this will be a valuable 

method for constrained modeling and visualization of 

very large sets of multidimensional scattered data.  

Typical application areas of this research are 

visualization of environmental data, locating mobile 

target using wireless sensors networks and 

multidimensional optimization problems in business 

and engineering i.e. optimization of cellular 

communication networks. 

We are working to implement the method for higher 

dimensional data for applications in engineering 

optimization. 
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ABSTRACT

The new generation astronomy digital archives cover large area of thesky at fine resolution in many wavelengths from ultraviolet
through optical and infrared. For instance, one of these projects the Sloan Digital Sky Survey is creating a detailed catalog
covering more than a quarter of the sky with images measured with five different filters. The size of the data set can be
measured in terabytes. These archives enable astronomers to explore the data for their research. However, virtually walking
through these huge data sets also enables to visualize the beauty of the Universe and raises problems which can be interesting
for people related to computer graphics. In this paper we present a technique for parallel visualization of large-scale scattered
astrophysical data that has wide-spectrum photometric property. Our method performs sort-last parallel particle rendering using
hierarchical, static data distribution; and its performance scales up linearlyby increasing the number of the rendering nodes. It
also enables setting the color matching function in the rendering phase and as well as altering the distance calculation formulae
that calculates spatial coordinates from the redshift – all interactively.

Keywords: Graphics Systems, Distributed/Network Graphics, GPU Programming, Visualization

1 INTRODUCTION

Up till now, the Sloan Digital Sky Survey (SDSS) is
one of the largest astronomical survey ever undertaken.
When completed, it will provide detailed optical im-
ages covering more than a quarter of the sky and a three
dimensional atlas of about a million galaxies, quasars,
and stars. As the survey progresses, the data is released
to the scientific community and the general public as
well. The latest release to date (SDSS Data Release 6)
has been announced in June 2007. The amount of gath-
ered and processed photometric and spectroscopic data
exceeds 10 terabytes. This data contains detailed imag-
ing and spectroscopic description of more than 800000
astronomical objects.

This data is indisputably a treasury for the astrophysi-
cists for checking the validity of numerous models re-
lated to the origin and evolution of the Universe and
to the fundamental characteristics of the galaxy popula-
tion. However, this huge data set is interestingfor itself
too. The photometric images of the astronomical ob-
jects with aid of spectroscopic data can be visualized
in three dimensions interactively in order to show the
structure and the beauty of the observed part of the Uni-
verse. Moreover, it is possible to alter the color match-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

ing functions that maps the original photometric data to
pixel colors in the rendering phase. On the other hand,
the visualization system can be designed to enable vary-
ing the distance calculation algorithm and tuning its pa-
rameters also during the image synthesis.

However, such amount of data fairly exceeds the
memory capacityof a recent graphics hardware. To
overcome this limitation while keeping the advantage
of hardware accelerated rendering that produces accept-
able frame rates, the rendering has to be decomposed
to run in parallel utilizing the cumulative processing
power of multiple computer nodes. First, the data have
to be distributed among the nodes, then the visualiza-
tion of the partial data is performed in parallel, and
finally the rendering outputs have to be composited.
Both image-order (ray casting) and object-order meth-
ods (splatting or particle rendering) exist for rendering
scattered data. In our work we have investigated the
latter approach.

Parallel rendering necessarily raise the issue of load
balancing that is originated indata distribution strat-
egy, especially when the memory is the bottleneck of
overall visualization task. Image-space partitioning is
not feasible when using such a huge data set since it
requires all nodes to be able to render potentially any
part of the dataset. Because of the size of the whole
data set exceeds the capacity of the system memory of a
rendering node only object-space distribution is appro-
priate for interactive rendering. In case of particles rep-
resenting astrophysical objects with photometric data,
the rendering cost of a particle is inversely proportional
to the square of its distance. When simply partition-
ing the data set into axis-aligned blocks according to
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the number of the rendering nodes, the rendering cost
per node does not necessarily decreases linearly by in-
creasing the number of nodes (Fig. 3). However, when
the data set is partitioned by distributing the leaves of
a space partitioning treebuilt on the data set, a linear
scale-up can be guaranteed.

In this work we used images and numerical data of
more than 800000 objects over about 8000 square de-
grees of the sky forsort-last[MCE94] parallel particle
visualizationusingkD-tree data partitioning and sort-
independent blending. The purpose of our rendering
scheme is to support interactive visualization of such
data sets. This paper summarizes our experiments and
suggestions.

2 RELATED WORK

One of the most popular architectures is Chromium, a
parallel implementation of OpenGL that allows flexible
sort-first parallel rendering. Distributed particle-based
simulation and rendering that uses Chromium and MPI
was investigated by Smith [Smi03]. A distributed scene
graph library (Aura) was developed and compared to
Chromium for parallel particle rendering by Schaaf et
al. [vdSKB06]. A system for real-time animation and
rendering of large particle sets using GPU computation
including inter-particle collisions and visibility sorting
was presented by Kipfer et al. [KSW04]. Taylor et
al. discussed a parallel implementation of the visu-
alization of galaxy formation simulation running in a
grid environment using a decentralized peer-to-peer ap-
proach [TSWP03].

From the application point of view, Rosner et al. have
created a movie from the SDSS Data Release 4 data set
walkthrough [RLF05]. Subbarao et al. have made a
three dimensional model of the galaxies and quasars
found by the SDSS. They visualized 250000 galax-
ies and 40000 quasars including the cosmic microwave
background radiation. Their model is interactive, which
means one can fly around in it exploring both galax-
ies close up and the large scale structure of the Uni-
verse [SSL]. The Extragalactic Atlas of the Digital
Universe visualization program by Hayden Planetarium
can render the whole SDSS Data Release 6 data set.
For the preceding movie and the applications Partiview
was used which is an interactive open-source tool from
the National Center for Supercomputing Applications
at the University of Illinois at Urbana-Champaign [Par].

3 PREPROCESSING THE SDSS DR6
DATA SET

Our rendering scheme can be divided into three main
stages. First, the data used for rendering is downloaded
from the SDSS servers andpreprocessedto meet the
requirements of the graphics hardware. This long pro-
cess that have to be performed once is detailed in this

section. Before starting the effective rendering anini-
tialization stephas to be performed during application
startup in which the geometry and the textures are com-
puted (Sec. 4). This is followed by the visualization
step in which the rendered frames are produced and the
user inputs are handled (Sec. 5).

The SDSS Data Release 6 data is distributed via
the Catalog Archive Server(CAS) which is an SQL
database that contains the measured spectroscopic
properties of the astrophysical objects, and theData
Archive Server(DAS) which is a file server storing the
outputs of the imaging pipelines. From now on we
will refer these as the structural (or spectroscopic) and
image (or photometric) data, respectively. For creating
our data set, we have queried all the records that
has accurately measured spectroscopic data (redshift,
viewing angle, etc.) from the SQL database and then
retrieved the photometric data for these objects from
DAS; i.e. the corresponding image taken by the SDSS
telescope for every single object.

DAS contains images of the emitted spectrum of
galaxies, quasars and stars recorded with five different
filters. We preferred to keep the possibility of post-
shading the objects. That means, one could interac-
tively modify the color matching functions either to
enhance a small frequency domain or to get a com-
prehensive view of the whole spectrum. On the other
hand though, it is possible to handle these five color
channels on the GPU at the cost of multiple textures
and a more complex logic in the pixel shader, it is rea-
sonable to choose a trade-off between the performance
and the accuracy. In our solution the photometric data
were transformed from the five-channel UGRIZ color
space (ultra violet, blue-green, red, far red and near in-
frared pass band filters [GCRS98]) to four-channel im-
ages that have the same extent in the frequency domain
but fit better to the 4-wide SIMD architecture of the
graphics hardware.

The original fi(λ ) color matching functionsillus-
trated in Fig. 1(a) are described on the SDSS web site
while the pixel valuesci are known from the down-
loaded images for each filteri. However, the orig-
inally measuredΦ(λ ) spectrum cannot be calculated
from these quantities. We treatedΦ(λ ) as a constant
Φi for each filter:

ci =
∫

λ
Φ(λ ) fi(λ )dλ = Φi

∫
λ

fi(λ )dλ
︸ ︷︷ ︸

Fi

(1)

From these Φi values an estimated spectrum
can be calculated using the weight functions
wi(λ ) = fi(λ )/∑ fi(λ ) (Fig. 1(b)):

Φest(λ ) = ∑
j

w j(λ )Φ j = ∑
j

w j(λ )
1
Fj

c j (2)
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(a) Original UGRIZ filters. (b) Filter weightswi(λ ) (c) Our 4-channel filters (stored in RGBA
format in our rendering system)

Figure 1: Transformation from 5-channel to 4-channel filters. The abscissas are wavelength in nanometers and the ordinates show the
transmission of the filter in figures (a) and (c) and the weighting values in figure (b)

The new pixel values can be computed refiltering this
estimated spectrum with the new four-channel color
matching functionsf ′i (λ ) . We applied simple box fil-
ters (Fig. 1(c)) partitioning the spectrum into four inter-
vals with equal extent betweenλ0 andλ1, λ1 andλ2,
and so on:

c′i =
∫

λ
Φest(λ ) f ′i (λ )dλ =

∫ λi+1

λi

Φest(λ )dλ =

=
∫ λi+1

λi
∑

j
w j(λ )

1
Fj

c j dλ =

= ∑
j

1
Fj

∫ λi+1

λi

w j(λ )dλ
︸ ︷︷ ︸

Ci, j

c j (3)

According to (3), the transformed color vectorc′i can
be efficiently calculated multiplying the 4-by-5 matrix
[Ci, j ] by the input color vectorc.

The original-scale images are resampled to 32× 32
smaller images also in the preprocessing step. This in-
fers only marginal information loss, since the vast ma-
jority of the images did originally fit into this size. In
order to reduce the size of the data stored offline, ev-
ery image is compressed using the lossless DEFLATE
algorithm.

4 INITIALIZATION STEP

In the following sections the preliminary computations
are introduced that precede the rendering steps. First,
at the startup of application the structural data is read
in and spatial coordinates are calculated from the red-
shift values based on a given parametrized cosmolog-
ical distance model (Sec. 4.1). Then the objects are
distributed among the rendering nodes based on their
position (Sec. 4.2). The next section explains how the
spatial structure of the data set is calculated that has to
be distributed.

Figure 2:Redshift and blueshift in wavelength due to the relative
motion.

4.1 Distance Measures in Cosmology

The small-scaled concept of distance between two
points in our immediate environment cannot be ex-
tended to cosmological scales. Since the distances
between comoving objects are constantly changing in
the expanding Universe, and since the Earth-bound
observers look back in time as they look out in distance,
manydistance measurescan be defined [Hog99]. They
are often based on observable quantities such as the
wavelength shift of a receding galaxy or the luminosity
of a distant quasar. However, the concept of “distance
measurement” can be treated more generally. For
instance the time elapsed since the emission and the
observation of the photons (lookback time) can be
considered as distance measure as well.

The dominant motion in the Universe is the expan-
sion described by Hubble’s Law. It states that the ob-
served velocity of a distant galaxy away from us is pro-
portional to its distance, where the proportion coeffi-
cient H0 is calledHubble constant. It is currently be-
lieved to be about 77 km/sec/Mpc. The symbol “Mpc”
denotes mega parsec which is approximately 3.09·1022

meters.

Light from moving objects appears to have different
wavelengths depending on the relative motion of the
source and the observer. An observer looking at an ob-
ject that is moving away receives light that has a longer
wavelength than it had when it was emitted. For opti-
cal wavelengths this means that the wavelength of the
emitted light is shifted towards the red end of the elec-
tromagnetic spectrum. More generally, any increase in
wavelength is calledredshift. Conversely, a decrease in
wavelength is called blueshift (Fig. 2).
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Redshiftz can be calculated as the Doppler shift of
its emitted light resulting from radial motion:

z≡
λo

λe
−1, (4)

whereλe is the emitted andλo is the observed wave-
length. The cosmological redshift is directly related to
the scale factor a(t) of the Universe, which is a func-
tion of time and represents the relative expansion of the
Universe. For redshiftz

1+z=
a(to)
a(te)

=
1
a

, (5)

using the normalizationa(t0) = 1 anda≡ a(te) where
a(te) is the scale factor when the photons were emit-
ted, anda(to) is the scale factor at the time they are
observed.

Distance Measures

The small comoving radial distance∆DCMR between
two nearby objects in the Universe is defined as the dis-
tance between them which remains constant when the
two objects are moving with the Hubble flow [Hog99].
Generally, thecomoving radial distanceDCMR of two
objects is computed by integrating the infinitesimal
∆DCMR contributions between nearby events along a
radial ray [Wri06]:

DCMR =
∫

c
a

dt =
∫ 1

1
1+z

c
aȧ

da, (6)

wherec is the speed of light and ˙a is the time derivative
of a. The light travel time DLTT is calculated simi-
larly: [Wri06]

DLTT =
∫

cdt =
∫ 1

1
1+z

c
ȧ

da. (7)

The mean mass densityρ of the Universe and the
value of thecosmological constantΛ are dynamical
properties of the Universe which affect the time evo-
lution of the metric [Hog99]. They can be converted
into dimensionless density parameters by [Pee93]

ΩM =
8π Gρ0

3H2
0

and ΩΛ =
Λc2

3H2
0

, (8)

whereG is Newton’s gravitational constant. There are
two additional density parameters: theradiation den-
sity Ωr and thecurvature termΩk = 1−ΩM −ΩΛ −
Ωr [Wri06].

Using the Newtonian approximation to capture the
dynamics of the Universe ˙a can be substituted by
H0

√
X(a) with [Wri06]

X(a) ≡
ΩM

a
+

Ωr

a2 +ΩΛa2 +Ωk . (9)

This enables to calculate (6) and (7) from redshiftz

DCMR =
c

H0

∫ 1

1
1+z

1

a
√

X(a)
da and (10)

DLTT =
c

H0

∫ 1

1
1+z

1√
X(a)

da. (11)

The angular diameter distanceDA can be calcu-
lated directly fromDCMR as follows: [Hog99]

DA ≡
R
Θ

= (12)

=
c

H0 (1+z)
·




1√
Ωk

sinh

(
H0
√

Ωk
c DCMR

)
for Ωk > 0

DCMR for Ωk ≈ 0

1√
Ωk

sin

(
H0
√

Ωk
c DCMR

)
for Ωk < 0

The luminosity distanceDL is related to the angular
diameter distance [Wri06]:

DL ≡

√
L

4π S
= (1+z)2DA . (13)

We do thenumerical evaluation of the integrals(10)
and (11) using the mid-point rule with ten million pan-
els. Instead of evaluation for each object, they are
sorted by ascending redshifts and the distance integrals
are evaluated for all objects in a single pass through the
sorted redshifts. Moreover,DCMR andDLTT values are
calculated in parallel while calculatingDA andDL does
not need any iterative calculation only evaluation of ex-
plicit formulae (12 and 13). The total time cost of the
calculation for the whole data set is under a second on
a 2 GHz AMD64 processor.

4.2 Data Distribution
The data set is partitioned amongN rendering nodes by
distributing the astrophysical objects. The distribution
is based on the spatial coordinates of the objects that
are calculated in the preceding section. It is achieved
as a result of building akD-tree over the whole data
set – constrained by the fact that all except one of the
leaves of the tree must containN particles – and uni-
formly distributing the contents of the leaves (Fig. 4).
This is more favorable than simple chopping the scene
into axis aligned blocks according to the number of ren-
dering nodes. The former approach guarantees practi-
cally linear scale-up in the rendering frame rates since
the data set partitions have uniform spatial distribu-
tion. The scale-up is worse for the latter one when only
the particles per node ratio is reduced by adding more
nodes to the system but the particles are assigned to the
nodes as a spatially centralized way (Fig. 3). Unfortu-
nately, the other side of the coin is that thekD-tree dis-
tribution cannot be efficiently used with sort-dependent
blending operators, since each node generates images
not for a convex volume but for any part of the space;
and the complete ordering of the object images would
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Figure 3:Rendering using block partitions. The rendering cost of a
particle is proportional to the area of its projection on thecamera im-
age, thus it is inversely proportional to the square of its distance. The
rendering cost isnot decreasing linearly with the increasing number
of nodes. The load is not balanced well among the nodes therefore the
overall rendering time is dominated by the most loaded node. (Nodes
B, C, and D have to wait until Node A completes the rendering.)

Figure 4:Distributing the contents of the leaves of the data splitting
kD-tree during initialization.

be required. Even so, when the scalability and the load
balancing strategy has great importance a space parti-
tioning tree aided data distribution can be preferred.

As a final step of the initialization the spatial data is
uploaded to the graphics hardware and the interactive
visualization is started.

5 RENDERING
The following subsections discuss the sort-
last [MCE94] parallel rendering process in detail.
The rendering is accomplished separately on each node
of the cluster, while the final parallel compositing of
the partial images is performed as a co-operation of the
nodes.

5.1 View Frustum Culling
The most obvious way of visualizing such number of
astrophysical objects is by the means of a particle sys-
tem. But since in our case each particle has a cor-
responding unique texture – derived from the image
recorded by a telescope – the major issue is the high
memory requirement instead of the large number of the
particles.

In order to avoid unnecessary renderingview frustum
culling was applied using akD-tree space partitioning
scheme. The data distribution hierarchy described in
Sec. 4.2 sports also a straightforward way to cull invis-
ible geometry: the tree is traversed from the root node,
an intersection test is performed between the viewing
frustum and the axis aligned bounding box (AABB) of

the children nodes. If an AABB turns to be outside the
viewing frustum [GG01] its descendants do not have to
be processed thus all the belonging points can be culled.

During the construction of the tree it can be assured,
that the resulting tree is well balanced by choosing the
position of an axis aligned splitting plane as a median
of the corresponding coordinate of the objects. Since a
balanced tree can easily be represented as an array of its
nodes, a simple linear vertex buffer [OARBWND05] is
capable of storing the positions for all the objects. The
additional advantage of using vertex buffers is they are
stored in the graphics memory requiring to upload them
only once.

5.2 Batch Rendering
Sending the image of each particle by itself to the
OpenGL rendering system would result in too many
API calls (not to mention that OpenGL cannot handle
so many textures objects concurrently) thus frittering
away the well-known performance potential of batch
rendering large parts of the visible particles. Our
strategy for avoiding this situation is packing sets
of individual particle images into larger textures,
so called texture atlases(e.g. OpenGL square tex-
tures with ATLAS_SIZE = 512). The atlases are
filled with the images of the particles using the fast
glTexSubImage2D function replicating a tile pat-
tern (IMAGE_SIZEwas 32 in our case). Rendering all
the particles corresponding to an atlas can be performed
with a singleglDrawArrays function call. To make
the GPU able to recall which part of an atlas belongs
to an actual particle, a 2D offset is calculated and
assigned as a vertex attribute. Moreover, it is worth
using multiple atlases in a round-robin fashion in order
to defer synchronization between the CPU and the
GPU.

This technique seems to exploit the asynchronous op-
eration of the CPU and GPU, keeping both of them
busy. On the other hand, the high traffic generated by
texture uploads causes the bus to become the perfor-
mance bottleneck but on our cluster configuration this
setup yielded the highest frame rates. See Sec. 7 for
other possible approaches.

From the number of imagest = ⌊ ATLAS_SIZE
IMAGE_SIZE⌋

2 that
fit into one atlas we can express the number of render-
ing passesn = ⌈ p

t ⌉ required to visualize the number of
visible particlesp returned by view frustum culling.

5.3 Color Matching and Blending
The fixed function OpenGL pipeline is replaced
with a pair of CG vertex and fragment shader pro-
grams [FR03]. Point sprites are used to visualize the
particles, that is for each astrophysical object a textured
point primitive is rendered. The following vertex
attributes are assigned to the points (see the Cg snippet
below): position is the location of the particle,
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(a)kD-tree space subdivision scheme. (b) BalancedkD-tree nodes. (c) Mapping tree nodes to vertex buffer
sequences.

Figure 5:Space partitioning and scene representation using a balancedkD-tree.

texCoord0 is the texture coordinate generated by
rasterization whiletexCoordOffset is the 2D
offset into the atlas.

struct VertexInput {
float4 position : POSITION;
float2 texCoord0 : TEXCOORD0;
float2 texCoordOffset : TEXCOORD1;

};

The vertex shader simply passes the texture coordi-
nates through and in addition adjusts the proper point
size for the sprite considering its distance from the
eye. The pixel shader is where the actual texturing and
color adjustment takes place. Although, particle sort-
ing could be performed fast on the GPU, when using fi-
nal compositing of images ofkD-trees sorting the huge
number of partial images before blending is unfeasible.
Therefore, we gave up the order-dependent part of the
over operator that should be applied to capture the at-
tenuation of a distant object’s light obscured by a closer
one; and kept only the order-independent additive part
using the following blending equation:

colorout = (αsrc ·colorsrc)+1.0·colordst ,

whereαsrc is the product of the average of the incoming
color channels (Fig. 1(c)) and the intensity attenuation
factor. The value of this factor is kept constant 1.0 as
long as the rendered size of the particle reaches the size
of a pixel; then it falls proportionally to the subpixel
area of the particle’s image.

5.4 Final Compositing

In the last phase of the image synthesis the partial im-
ages generated by the rendering nodes are transferred
through the interconnection network from one node
to another. For compositing, we applied theparallel
pipelinecompositing algorithm [LRN96] consisting of
two stages. The images to be composited are divided
into N framelets, which is the number of the composit-
ing processes. In most implementations,N equals the
number of the rendering processes as well since every
node both renders and composites. In the first part of
the algorithm these framelets flow around through each

node inN−1 steps, each consisting of a compositing
and a communication stage. AfterN−1 steps each pro-
cessor will have a fully composited portion of the final
frame. The framelets are collected for an external dis-
play node or for an internal node in the second part in
one step. The clear benefit of this compositing scheme
is that the amount of data transferred on the network in
one step is independent of the number of compositing
processes.

6 RESULTS

For our experiments we used a Hewlett-Packard “Scal-
able Visualization Array” consisting of four render-
ing nodes. Each node has a dual-core AMD Opteron
246 processor, 2 GBytes of memory, an nVidia Quadro
FX3450 graphics controller with 256 MBytes graphics
memory, and an InfiniBand network adapter.

The initialization step (different distance calcula-
tions, space partitioning, and loading all the images)
could be performed under a minute for the whole
data set. The color matching functions, the distance
calculation models, and the parameters of these could
be altered during the visualization.

To illustrate the scalability of our rendering system,
configurations of one up to four rendering nodes were
investigated for different subsets of the SDSS DR6.
One of the nodes displayed the final output on a 800×
600 viewport. The average frame rates and their stan-
dard deviation calculated for 500 frames are illustrated
in Table 1. The rendering results are presented in Fig. 6.
For creating these images comoving radial distance was
applied withH0 = 77 km/sec/Mpc,ΩM = 0.27, ΩΛ =
0.73, andΩr = 7.0210−5; according to [Wri06].

It is hard to make any valuable comparison between
the results presented by other interactive approaches
(e.g. [RLF05], or [SSL]) and our achievements. This
is because – according to our best knowledge – other
interactive simulations do not use unique images for
every visualized particle. The other factor limiting
the direct comparison is that Partiview-based visualiza-
tions [Par] lack support for distributed computation and
programmable graphics pipeline.
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Nodes 1% (85 MB) 5% (425MB) 20% (1.66GB) 50% (4.15GB) 100% (8.3GB)

1 8.04±0.03 1.87±0.02 0.46±0.00 N/A N/A
2 12.13±1.06 2.95±0.09 0.83±0.01 0.35±0.00 N/A
3 12.99±1.52 3.84±0.58 1.11±0.02 0.49±0.01 N/A
4 14.20±1.32 4.10±0.61 1.52±0.01 0.65±0.01 0.34±0.01

Table 1: Scalability results for the average frame rate when rendering increasing subsets of the SDSS DR6 data set. All test cases was
measured on a 800×600 viewport. The images were downsampled to 8-bit color depthand downscaled to 32×32. The N/A sign indicates
that the test case cannot be measured due to the lack of memory capacity of our nodes.

All the source code of the tools were used for down-
loading and preprocessing the SDSS data files as well
as the final data set are available from the authors upon
request. Comments and corrections are highly appreci-
ated.

7 CONCLUSIONS AND FUTURE
WORK

In this paper we have demonstrated that using hierar-
chical object-space partitioning a large-scale scattered
astrophysical data set can be efficiently visualized in a
distributed rendering environment using sort-last paral-
lel particle rendering. The performance of our test sys-
tem scales up approximately linearly by increasing the
number of the rendering nodes. As an extra feature in
order to support interactive demands, it also enables set-
ting the color matching function in the rendering phase
and as well as altering the distance calculation formula
that calculates spatial coordinates from the redshift.

The disadvantage of our approach is that itdoes not
support efficient sort-dependent blendingfor composit-
ing the partial images, so thus the light attenuation can-
not be taken into account. However, when dealing with
huge data sets the scalability of the rendering frame
rates has great importance. This is true especially when
the amount of photometric data to be rendered on a
node exceeds of the capacity of the texture memory and
therefore multiple rendering passes are required within
a frame; for instance for a practical data set: the SDSS
DR6. In these circumstances, the space partitioning tree
aided data distribution can be preferred.

As our measurements reflect, increasing the number
of rendering nodes results in a near linear frame rate im-
provement letting us conclude that more nodes would
render faster or be able to handle even larger data sets
efficiently. However, our current configuration was ev-
idently bandwidth limited. If the graphics cards were
equipped with more memory (e.g. one gigabyte would
be comparable to the size of the image data handled by
a node) a completely different storage method could be
relevant. Some parts of the image data could be kept in
the graphics memory and be accessed orders faster than
continuous uploads. This would necessitate the admin-
istration where the particle images are stored. On the
other hand, applying level of detail on the particles –
like replacing textured point sprites not greater than a
pixel with an appropriately colored point – could also
impact performance positively.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Rendering results of the parallel particle visualization. The whole SDSS DR6 data set was rendered. The
images were downsampled to 8-bit per channel color depth anddownscaled to 32×32. (a) Close-up of the center
of the data set. (b) Seeing through the center from greater distance (greater distance implies more visible galaxies).
(c) Large-scale structure of the data. (d) Large-scale structure from greater distance. (e) Rendering 1 percent of
the data set from a spectacular view. (f) Rendering the wholedata set from the same position.
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ABSTRACT 
This paper proposes a system to recognize the alphabets and numbers in real time from color image sequences 
by the motion trajectory of a single hand using Hidden Markov Models (HMM). Our system is based on three 
main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. 
In automatic segmentation and preprocessing stage, YCbCr color space and depth information are used to detect 
hands and face in connection with morphological operation where Gaussian Mixture Model (GMM) is used for 
computing the skin probability. After the hand is detected and the centroid point of the hand region is 
determined, the tracking will take place in the further steps to determine the hand motion trajectory by using a 
search area around the hand region. In the feature extraction stage, the orientation is determined between two 
consecutive points from hand motion trajectory and then it is quantized to give a discrete vector that is used as 
input to HMM. The final stage so-called classification, Baum-Welch algorithm (BW) is used to do a full train 
for HMM parameters.  The gesture of alphabets and numbers is recognized by using Left-Right Banded model 
(LRB) in conjunction with Forward algorithm. In our experiment, 720 trained gestures are used for training and 
also 360 tested gestures for testing. Our system recognizes the alphabets from A to Z and numbers from 0 to 9 
and achieves an average recognition rate of 94.72%. 

Keywords 
Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition, Application. 
 

1. INTRODUCTION 
Sign language recognition from hand motion or hand 
posture is an active area in gesture recognition 
research for Human Computer Interaction (HCI). A 
gesture is a spatio-temporal pattern [Nia04b] which 
may be static or dynamic or both as in Sign 
Language Recognition (SLR). Over the last few 
years, several methods [Dey06a, Hos01a, Ngu05a, 
Nob02a, Seb00a, Vas03a] have been suggested for 
the recognition of the sign language from the hand 
motion but these differ from one another in their 
models. Some of these models are Syntactical 

Analysis [Hos01a], Neural Network [Dey06a], 
Hidden Markov Models [Seb00a] etc.  

HMM are widely used in handwriting, speech 
recognition, part-of-speech tagging and machine 
translation. Another advantage of using discrete 
HMM is that the output distributions are 
automatically learned by the training process. 
Vassilia et. al. [Vas03a] have developed a system 
that could recognize both isolated and continuous 
Greek Sign Language (GSL) sentences where the 
orientation vector is extracted from images and used 
in sentences as input to HMM. Ho-Sub et. al. 
[Hos01a] introduced a hand gesture recognition 
method which used combined features of location, 
angle and velocity to determine the discrete vector 
that is used as input to HMM. This method runs over 
the alphabets A to Z, numbers 0 to 9, six edit 
commands and six drawing elements. Nianjun et. al. 
[Nia04b] proposed a method to recognize the 26 
letters from A to Z by using a different HMM 
topologies with different states. But, these methods 
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to lists, requires prior specific permission and/or a fee.  
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Republic. 
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run off-line over a non complex background. Nguyen 
et. al. [Ngu05a] introduced a hand gesture 
recognition system to recognize real time gesture in 
unconstrained environments and the system was 
tested to a vocabulary of 36 gestures including the 
American Sign Language (ASL) letter spelling 
alphabet and digits. Nobuhiko et. al. [Nob02a] 
introduced a method to obtain features from image 
sequence where a person is performing the Japanese 
Sign Language (JSL) in a complex background and 
to recognize the JSL word. The previous two 
methods [Ngu05a, Nob02a] run in real time over a 
complex background, but they are studying the 
posture of the hand, not the motion trajectory of the 
hand as in it is our system.  

We develop a system to recognize the alphabets (A - 
Z) and numbers (0 - 9) in real time from color image 
sequences by the motion trajectory of a single hand 
using HMM. Our system depends upon following 
main steps; using GMM for skin color detection, the 
orientation between two consecutive points is 
extracted as basic feature, BW algorithm for training 
and forward algorithm for testing in conjunction with 
LRB model. Moreover, each alphabet and each 
number is based on 30 video (20 for training and 10 
for testing) where the input images are captured by a 
Bumblebee stereo camera that has 6mm focal length 
for about 2 to 5 second at 15 frames per second with 
240×320 pixels image resolution on each frame. The 
recognition rates achieved on training and testing 
gestures are 99.16% and 94.72% respectively. The 
rest of this paper is organized as follow; Section 2 
demonstrates with the suggested system in three 
subsections. The experimental results are described 
in Section 3. Finally, the summary and conclusion 
are presented in Section 4.  

2. GESTURE RECOGNITION SYSTEM 
Our system is designed to recognize the alphabets 
and numbers in real time from stereo color image 
sequences by the motion trajectory of a single hand 
using HMM. For automatic initialization, color and 
3D-information are used on the basis of clustering of 
3D-points in order to overcome the difficulties of 
overlapping regions. In particular, the gesture 
recognition system consists of three main stages 
(Fig.1 and Fig. 10): 

• Automatic segmentation and preprocessing; the 
hand is segmented, localized and tracked to 
generate its motion trajectory (gesture path) by 
using GMM for skin color detection. 

• Feature extraction; determine the discrete vector 
which is used as input to HMM by the orientation 
quantization. 

• Classification; the hand motion trajectory is 
recognized by using discrete vector, LRB model 
and forward algorithm of HMM. 
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Figure 1. Gesture recognition system using HMM. 
 
The hand graphical gesture consists of 26 alphabet 
characters from A to Z and 10 Arabic numbers from 
0 to 9 where the gesture shapes are shown in Fig. 2. 
 

        
 

         

         

         
 

 
        

  

   

   

   

Figure 2.  Alphabets and Numbers gesture shapes 
that are used in our system from hand graphical 
motion. 

2.1 Segmentation and Preprocessing 
Automatic segmentation and preprocessing is an 
important stage in our system where the 
segmentation of the hand takes place using 3D and 
color information. For the removal of remaining 
errors, morphological operations are used as a 
preprocessing. This stage contains two steps; in the 
first step the skin color is detected by using Gaussian 
Mixture Model (GMM) over YCbCr color space.  In 
the second step, the hand is localized and tracked by 
using a blob analysis for hand region. 

2.1.1  Skin Color Detection via a GMM 
YCbCr color space is used in our system where Y 
channel represents brightness and (Cb,Cr) channels 
refer to chrominance [Ask04a, Noo06a]. We ignore 
Y channel in order to reduce the effect of brightness 
variation and then use only the chrominance channels 
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which are fully representing the color. In a 
chrominance plane, human skin color is found in a 
small area (Fig. 3(a)), so each pixel is classified as 
skin or non skin by using Gaussian model. The 
GMM technique begins with modeling of skin and 
non skin by using a database of skin and non skin 
pixels respectively.  A large database of skin pixel is 
used to train the Gaussian model where the mean 
vector and covariance matrix of the database 
characterize the model. In our system, we collect 
images that contain human skin pixels (Fig. 4) and 
also images for non skin pixels (Fig. 5). 
 

 
Figure 3.  The distribution and histogram of the skin 
training data (a) Distribution values of skin pixels for 
training data (b) Histogram for skin training data 
over (Cb,Cr) channels. 
 
A variant of k-means clustering algorithm [Phu02a] 
for Gaussian clusters performs the model training to 
determine the initial configuration. 
 

 

 

 

 

Figure 4. Database of skin pixel where these cropped 
images were collected from the World Wide Web for 
different races. 
 

 

 

 

Figure 5. Database of non skin pixel where these 
cropped images were collected from the World Wide 
Web for different background. 
 
Suppose that x=[Cb Cr]T represents the chrominance 
vector of an input pixel. The probability of skin pixel 
over vector x for mixture model is a linear 
combination of its probabilities and is calculated as 
follows: 

1

( | ) ( | ). ( )
K

i

p x skin p x i p i
=

=∑                                       (1) 

where K is the number of Gaussian components and 
is estimated by a constructive algorithm that is used 
the criteria of maximizing likelihood function 
[Raj98a]. ( )p i  is the mixture weight and ( | )p x i  is 
the Gaussian density model for the ith  component. 
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where μi and Σi represent the mean vector and the 
covariance matrix of ith component respectively and f 
is the dimension of feature space, fx R∈ .  
 

1

( ) 1 ; 0 ( ) 1
K

i

p i p i
=

= ≤ ≤∑                                       (3) 

After K is decided which takes the value 4 in our 
experiment, the Expectation Maximization (EM) 
algorithm [Min99a, Ric84a] is used to estimate the 
maximum likelihood of parameters (mean, 
covariance and mixture weight) which run on the 
training data. The EM algorithm starts with initial 
parameter values where k-means algorithm is used to 
determine the initial configuration as in Table 1.  

(b) (a) 

 
Cluster Mean μ Covariance Σ Weight 

 

1 

 

119.5 ; 144.1 

 

35.81     -13.55 

-13.55     14.88 

 

0.2422 

 

2 

 

110.3 ; 153.2 

 

 

13.34       2.12 

2.12         5.73 

 

0.2612 

 

3 

 

98.6 ; 165.9 

 

46.09     -21.65 

-21.65     46.82 

 

0.1668 

 

4 

 

103.1 ; 157.3 

 

16.83      -1.26 

-1.26      16.94 

 

0.3298 

Table 1. Gaussian Mixture Model for skin color. 
 

 

 

 

Moreover, the initial parameters are now old 
parameters and then EM algorithm estimates the new 
parameter values. In the next iteration, the new 
parameters become old and this process is repeated 
until the convergence is achieved [Sob96a] (i.e. the 
change in log-likelihood between two iterations is 
less than a threshold). EM algorithm is done by the 
following two steps:  
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• Expectation step 
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• Maximization step 
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where N is the number of data points xn. For the 
probability p(x| non-skin), a non skin color pixels are 
modeled as a unimodel Gaussian in order to reduce 
the computational complexity of skin probability 
calculation (Table 2).  
 

Mean μ Covariance Σ 
 

58.65; 48.24 

 

13.22      -8.37 

-8.37       19.01 

Table 2. Unimodel Gaussian for non skin color. 
 
For the skin segmentation of hands and face in stereo 
image sequences an algorithm is used, which 
calculates the depth information in addition to skin 
color information [Nie06a]. The depth information 
can be gathered by passive stereo measuring based 
on cross correlation and the known calibration data 
of the cameras. Several clusters are composed of the 
resulting 3D-points [Nie06a]. The clustering 
algorithm can be considered as kind of region 
growing in 3D which used two criteria; skin color 
and Euclidean distance. Furthermore, this method is 
more robust to the disadvantageous lighting and 
partial occlusion which occur in real time 
environment (for instance, in case of gesture 
recognition). For more details, the reader can refer to 
[Nie07b].  By the given depth information from the 
camera set-up system (Fig. 6 (c)), the overlapping 
problem between hands and face is solved since the 
hand regions are closer to the camera rather than the 
face region. For removing the outliers (noise, 
spurious components) from the skin probability 

image, we use morphological operation (median 
filter, erosion and dilation) since there are small 
regions that are close to skin but does not belong to 
the human skin. Furthermore, the holes pixels are 
filled on the outer edge of an image that is not 
connected to the background. Thereby, the skin color 
is detected (hands and face). Fig. 6 (a) shows the first 
frame of the image sequence. 
 

c. Depth value b. Skin detection a. Orignal image 

Figure 6. Skin segmentation. (a) First frame of image 
sequence (b) Labeled skin color detection after using 
morphological operation (c) Depth information of the 
original image from a Bumblebee stereo camera. 

2.1.2 Hand Detection and Tracking 
After the labeled skin image is determined (Fig. 6 
(b)), the localization of two hands is found by 
selecting the two small areas (Fig. 7 (a)) where the 
face represents the big area and the furthest away 
from the camera. In addition, we use a blob analysis 
to determine the boundary area, bounding box and 
the centroid point of each hand region. Our attention 
concentrates to the motion of a single hand to detect 
the hand graphical trajectory for a specific alphabet 
or number. Consequently, we select a search area in 
the next frame (Fig. 7 (b)) around the bounding box 
that is determined from the last frame in order to 
track the hand and reduce the Area of Interest (AOI). 
If there are multiple extracted skin regions in a 
search area of the hand, a big region is selected since 
this region represents a hand at most. 
 

     

Figure 7. Hand localization and search area  (a) Hand 
localization with a boundary area, bounding box and 
centroid point (b) Search area around the hands in 
the next frame. 

a. Hand detection b. Search area

 
Thereby, the new bounding box is calculated and the 
centroid point is determined. By iteration of this 
process, the motion trajectory of the hand so-called 
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gesture path is generated from connecting centroid 
points (Fig. 8). 
 

  

 
Figure 8. Gesture path for alphabet N and number 3. 

2.2 Feature Extraction 
The feature extraction is the second stage in our 
system and there is no doubt that, selecting good 
features to recognize the hand gesture path play 
significant role in system performance. There are 
three basic features as location, orientation and 
velocity. The previous researches [Hos01a, Nia04b] 
showed that the orientation feature is the best in 
terms of results. Therefore, we will rely upon it as a 
main feature in our system. A gesture path is spatio-
temporal pattern which consists of centroid points 
(xhand, yhand). So, the orientation is determined 
between two consecutive points from hand gesture 
path (Eq. 8). 

1

1
arctan ; 1, 2,..., 1t t

t
t t

y y t T
x x
+

+

⎛ ⎞− ⎟⎜ ⎟⎜= = −⎟⎜ ⎟⎟⎜ −⎝ ⎠
θ                     (8) 

where T represents the length of gesture path. The 
orientation θt is divided by 20° in order to quantize 
the value from 1 to 18 (Fig. 9). Thereby, the discrete 
vector is determined and then is used as input to 
HMM.  

                                       

 

 

 

 

 

 

 
Figure 9.  Discrete vector quantization range. 

2.3 Classification 
Classification is the final stage in our system. 
Throughout this stage, Baum-Welch algorithm (BW) 
[Law89a] is used to do a full train for the initialized 
parameters of HMM by a discrete vector. Moreover, 
the gesture path of hand motion is recognized by 
using Left-Right Banded model with 9 states, 
discrete vector in conjunction with Forward 
algorithm [Law89a] and building gesture database.  
  

First frame from image sequence with depth 
information image  

 
GMM & Morphological operation to detect 

hands and face  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 10. Real time system for alphabets and 
numbers gesture recognition. 
 
The gesture database contains 30 video for each 
alphabet from A to Z and also for each number from 
0 to 9 where HMM parameters are trained on 20 
video and the other 10 video are used for testing by 
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forward algorithm. The following subsections 
describe this stage in details. 

2.3.1 Hidden Markov Models 
Markov model is a triple λ= (A, B, Π) and is 
described as follows [Hos01a, Nia03a, Nia04b, 
Sus07a]: 
 
• The set of states S= {s1, s2, …, sN} where N is the 

number of states. 
• An initial probability for each state Πi , i=1, 2, ..., 

N  such that Πi=P(si) at the initial step. 
• An N-by-N transition matrix A= {aij} where aij is 

the probability of a transition from state si to sj; 
1≤i, j≤ N and the sum of the entries in each row of  
matrix A must be 1 because this is the sum of the 
probabilities of making a transition from a given 
state to each of the other states. 

• The set of possible emission (an observation) O= 
{o1, o2, …, oT} where T is the length of gesture 
path. 

• The set of discrete symbols V= {v1, v2, …, vM} 
where M represents the number of discrete 
symbols. 

• An N-by-M observation matrix B= {bim} where bim 
gives the probability of emitting symbol vm from 
state si and the sum of the entries in each row of 
matrix B must be 1 for the same pervious reason. 

 
Evaluation, Decoding and Training are the main 
problems of HMM and they can solved by using 
Forward-Backward algorithm, Viterbi algorithm 
[Law89a] and Baum-Welch algorithm respectively. 
Also, HMM have three topologies: Fully Connected 
(Ergodic model) where any state in it can be reached 
from any other state, Left-Right model such that each 
state can go back to itself or to the following states 
and Left-Right Banded (LRB) model that also each 
state can go back to itself or the following state only 
(Fig. 11). 
 
 
 
Figure 11. Left-Right Banded model with 9 states. 

2.3.2 Initializing HMM parameters 
Before describing the initialization of HMM 
parameters, it will be more convenient to explain, 
why we use left-Right Banded model with 9 states. 
LRB model is restricted and simple for training data 
that will be able to match the data to the model. Since 
fully connected model has many transitions rather 
than LRB model, its structure data can lose easily. 
This also applies to Left-Right model. Moreover, 
previous researches [Hos01a, Nia04b] showed that 
the using of 9 states for LRB model are the best in 

terms of results. So, we used LRB model with 9 
states in our system. At most, selecting good initial 
parameters for HMM, achieves better recognition 
results. The initial vector Π takes the following 
value; 
 

( )1 0 0 0 0 0 0 0 0 TΠ =                           (9) 
That is because we use 9 states and in order to ensure 
that it begins from the first state. 
The matrix A depends on the duration time d of states 
for each alphabet or each number and is determined 
by Eq. 11 such that d is defined as: 
 

Td
N

=                                                                    (10) 

where T is the length of gesture path and N 
represents the number of states.   
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d

= − = − a                                       (12) 

Matrix B is the important parameter in our system 
and is determined by Eq. 13. Since HMM states are 
discrete, all elements of matrix B can be initialized 
with the same value for all different states. 

{ } 1;im imB b b
M

= =                                            (13) 

where i, m represent the number of states and number 
of discrete symbols respectively. 

1 2 3 4 5 6  7 8 9
2.3.3 Baum-Welch and Forward Algorithm 
Baum-Welch algorithm plays a very important role 
in our system where it is used to do a full train for the 
initialized HMM parameters. This algorithm 
estimates the new matrix A, new matrix B and vector 
Π where the inputs of it are discrete vector and the 
initialized parameters. Since our system is trained on 
20 video for each alphabet and number, the value of 
matrix A and matrix B for them is averaged. 
According to the Forward algorithm, the other 10 
video for each alphabet and number are tested where 
this algorithm is built on discrete vector, matrix A, 
matrix B and vector Π as inputs for it. The forward 
algorithm is used to solve the evaluation problem by 
computing the P(O| λ) which give us the probability 
of the observation.  
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Define the forward (alpha) values as follows; 
1 1( ) ( ,..., , | )t t ti p O o O o S sα = = = =t i λ

1+

                    (14)          
11: ( ) ( ). imStep i i bα Π=                                          (15) 
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2 : ( ) ( ). .t t ij jt
i

Step j i a bα α+
=

=∑                         (16) 

Then, the forward value is computed by two steps 
according to the Eq. 15 and Eq.16. 

3. EXPERIMENTAL RESULTS 
Our system proposed good results to recognize the 
alphabets and numbers in real time from color image 
sequences by the motion trajectory of a single hand 
using HMM. In our experimental results, each 
alphabet from A to Z and each number from 0 to 9 
was based on 30 video which 20 for training and 10 
for testing. In other words, our database contains 720 
video for training gestures and 360 video for testing 
gestures. The system was implemented in Matlab 
language and the input images were captured by a 
Bumblebee stereo camera system that has 6 mm focal 
length for about 2 to 5 second at 15 frames per 
second with 240×320 pixels image resolution on 
each frame.  
 

  

 
Figure 12. System output for alphabet R, where at 
t=28 the high priority is alphabet F, at t=45 the high 
priority is alphabet P and at t=70 the result is R. 
 
Fig. 12 shows the output of our system for alphabet 
R. The following criteria evaluated our result as 
follows: 
The testing data is considered as, , for each 
alphabet or each number where these test data 
include valid gesture v  and also invalid gesture 

10τ =

v such that; 

; 1,2,...,j jv v jτ = + = 36                                 (17) 

where j represents the index of alphabets from A to Z 
and numbers from 0 to 9. The valid percentage for 
each alphabet and each number is calculated by 

Eq.18 and the total percentage for all testing data is 
determined by Eq. 19. 
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where ηj is the result of each alphabet or a number 
and ℜ represents the value of all testing data. 
Similarly, training data was calculated with 20 video 
for each alphabet and number. For each hand 
graphical video, the higher priority was computed by 
forward algorithm to recognize the alphabet or 
number in our real system frame by frame (Fig. 13). 
 

 

 
Figure 13. System output for number 8, where at 
t=18 the high priority is number 3, at t=25 the high 
priority is number 2 and at t=50 the result is 8. 

The recognition was achieved on training and testing 
gesture with 99.16% and 94.72% respectively where 
the yield of training data higher than testing data in 
our system.  

4. SUMMARY AND CONCLUSION 
This paper proposes a system to recognize the 
alphabets (A - Z) and numbers (0 - 9) from color 
image sequences by the motion trajectory of a single 
hand using HMM which is suitable for real time 
application. The system consists of three main stages. 
The first stage is the automatic segmentation and 
preprocessing, where the hand is localized and 
tracked to generate its gesture path by using GMM 
for skin color detection. In the second stage so-called 
feature extraction, the discrete vector is obtained by 
quantization of the orientation where this vector is 
used as input to HMM. The final stage is the 
classification which can be able to recognize the 
hand graphical gesture by using LRB model, BW 
algorithm and Forward algorithm. Our database 
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contains 720 video for training and 360 video for 
testing. Our results show that; an average recognition 
rate is 94.72% and 99.16% for testing and training 
video respectively. In future, our research focuses 
on: the motion trajectory will be determined by a 
fingertip instead of the centroid point for the hand 
region. Also, our system will be developed to 
recognize the American Sign Language words and 
sentences.  
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ABSTRACT

In this paper we propose a new method for stable numerical integration of the dynamic Cosserat equations for
rods, which constitute a mechanical framework for the physically based modeling of slender structures like DNA
strands, drill strings, marine cables or human hair. Our integration method is well-established in the field of
structural dynamics and has the major advantage of unconditional stability as well as user controllable numerical
damping. We demonstrate its advantages in the context of fiber-based modeling of human hair. To our knowledge
this approach has not been used in the computer graphics community before.

Keywords
Cosserat theory, Cosserat rods, human hair, hair modeling, unconditionally stable, controllable numerical damping

1 INTRODUCTION
Recently the simulation of slender structures has
gained increased attention in the computer graph-
ics community. Typical examples are tubes, cords,
catheters, or hair fibers. The special theory of Cosserat
rods [Ant95] or so called director theories in general
provide a mechanical framework for the description
of the temporal evolution of such slender structures
subject to external loads. Its major advantage is its
completeness in theory as well as its ability to accu-
rately describe local deformations like bend, twist,
shear and extension. Our paper is motivated by the
need for stable but fast numerical integration schemes
for the dynamic Cosserat equations which arise in
the context of the special theory of Cosserat rods
[Ant95]. In particular, these equations constitute a
system of coupled partial differential equations which
are known to be stiff if certain material constraints are
imposed.
While the static Cosserat equations have suc-
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fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

cessfully been adopted in order to model the
behavior of surgery cables [Pai02], human hair
[SVW05][BAC+05][SW06] or flexible tubes in
CAD applications [GS06] the dynamic Cosserat
equations are relatively new to the computer graphics
community and so effective solution methods are few
and far between. In the special case of unshearable
and inextensible rods they reduce to the well-known
Kirchhoff equations. Recently, two models have
been proposed [BAC+06][ST07] that approximate
solutions to the dynamic Kirchhoff equations by
restating the problem based on the Lagrange formal-
ism. The resulting equations of motion together with
the initial conditions are usually treated as an initial
value problem. This is an obvious oversimplification
because none of the approaches take the problem as it
is: a system of non-linear coupled partial differential
equations with boundary as well as initial conditions
that together form a two point boundary value problem
(BVP). BVPs are traditionally a domain of shooting
or relaxation techniques.
In this context our specific contributions are as fol-
lows: We present a proper relaxation procedure for
solving the dynamic Cosserat equations and demon-
strate the efficiency of our approach by various ex-
amples. In particular, we introduce a relatively un-
known implicit integration method coming from the
field of structural dynamics. This so called gener-
alized α-method is second-order accurate, uncondi-
tionally stable and allows for controllable numerical
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damping. Furthermore, we show that finding solutions
to the associated BVP need not necessarily be signifi-
cantly slower than the numerical treatment of the sim-
plified problem as an initial value problem .
We start with a brief discussion of the work related to
our objective and proceed with an introduction of the
theoretical framework of the special theory of Cosserat
rods. In Sec. (4) a new stable integration method for
stiff differential equation systems is introduced. Fi-
nally, we present some results to conclude with a dis-
cussion.

2 Related Work
Due to its importance we directly turn to the dynamic
Cosserat equations and omit the discussion of solution
methods to their static pendants. For the latter we refer
the interested reader to the above cited literature.
In [BAC+06] an approximate solution method to the
Kirchhoff equation in terms of Lagrange mechanics is
presented wherein the system energies are described
in terms of generalized coordinates, here the Darboux
vector. The basic idea of this so called super-helix
model is to approximate the underlying geometry of
the curve by helices with piecewise constant curvature.
This fact allows for relatively coarse spatial discretiza-
tions and enters the equations of motion by a simple
selection function which makes the system discrete in
space. Temporal discretization is then achieved by an
implicit integration scheme. However, reduced coordi-
nate formulations give rise to dense equation systems.
This can become a bottleneck especially when refine-
ments of the spatial discretization are necessary, e.g.,
if forces due to collision response or non-local elec-
trostatic forces are acting on the structure. Moreover,
collision detection on continuous models is normally
not effective.
The Cosserat rod element approach [ST07] bases
on Lagrange mechanics, too. Discrete energies
are derived for piecewise linear segments of the
rod with prescribed lengths. The major difference
between both models—beside the linear and helical
curve approximations—is that the latter enforces the
constraints of unshearability and inextensibility by
additional energy terms in the Lagrange equations
while the former dislocates the problem to the explicit
integration of the kinematic relations. The numerical
integration of the kinematic relation as described in
[ST07] is a little bit clumsy as the chosen type of
integrator usually does not respect the basic properties
of SO(3). Explicit integration of the kinematic
relation using Rodrigues formula [Pai02] is always a
good choice and we will also embark on this strategy.

3 Cosserat Theory
Let r(s, t) : [s1, s2] × R 7→ R3 be a smooth space
curve of length L describing the centerline of the
rod. Further, let {di(s, t)} be a set of orthogonal di-
rectors furnishing the space curve such that d1, d2

span the cross section plane and d3 := d1 × d2 is
orthogonal to it. The configuration at every time t
is thus uniquely determined by the triple C(s, ·) =
{r(s, ·),d1(s, ·),d2(s, ·)}. Please note that “orthog-
onal to the cross section plane” does not necessarily
mean “tangent to the space curve” as the rod can un-
dergo shear deformation.
From the existence of the local basis {dk} it fol-
lows that there are vector valued functions ω(s, t) and
κ(s, t) that define the kinematic of the cross-section
through

∂sdk = κ× dk, (1)
∂tdk = ω × dk. (2)

Therefore, we call these equations kinematic relations.
κ is the Darboux and ω the twist vector. The kinematic
of the center line is given by ∂sr = υ. All three quan-
tities are decomposed with respect to the natural basis
{dk} as κ = κidi, ω = ωidi, and υ = vidi. The
Darboux vector κ and the vector υ are the strain vari-
ables of the system and their components have physi-
cal meanings as they express the local deformation of
the rod. The components of κ = (κ1, κ2, κ3) measure
bending (κ1 and κ2) and twist (κ3) about the three di-
rectors while the components of υ = (υ1, υ2, υ3) mea-
sure the shear (v1 and v2) and the extension (v3), re-
spectively. In order to prevent the case of total shear in
which the cross-section becomes parallel to the rod’s
centerline we require that v3 ≡ d3 ·∂sr > 0. This also
implies the condition |∂sr| > 0, so that the centerline
cannot collapse to zero length.
In this context we require compatibility of the local
basis {dk},

∂t∂sdk(s, t) = ∂s∂tdk(s, t), (3)

which using Eq. (1) and Eq. (2) leads to the compati-
bility equation:

∂sω = ∂tκ + κ× ω. (4)

This means that the temporal evolution of the basis
{dk} must lead to the same orientation as its spatial
evolution.

3.1 Balance Laws
The special theory of Cosserat rods [Ant95] used
herein describes the evolution of a slender object sub-
ject to external loads. Conservation of linear and angu-
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lar momentum leads us to the dynamic Cosserat equa-
tions which take the form

∂sn + f = ρA∂ttr, (5)
∂sm + ∂sr× n + l = ρ∂t(Iω), (6)

where n and m are the contact force and contact cou-
ple at the cross sectional area, respectively. f and l are
the external forces and moments acting on the rod. I
the moment of inertia tensor, A is the area of the cross
section and ρ the linear density which we assume to be
constant.

3.2 Inextensibility - Infinite Stiffness
For our purposes we assume the rod to be hyper-
elastic, unshearable, and inextensible, thus, υ =
(0, 0, 1). This means that the tangent now coincides
with the director d3 which is perpendicular to the cross
section, i.e., ∂sr = d3. In our approach we implicitly
enforce inextensibility by an appropriate constraint ex-
pressed through a differential equation. This is distinct
from other approaches like e.g. [Pai02] where the in-
extensibility constraint is satisfied by explicit integra-
tion of the screw motion defined by the twist (κ,υ)T .
Due to continuity, we get the compatibility equation
for the centerline r(s, t) as

∂t∂sr(s, t) = ∂s∂tr(s, t). (7)

Since d3 coincides with the tangent of the centerline
it becomes locally independent of time (but not glob-
ally). Using the centerline velocity u = ∂tr our con-
straint takes the following form:

∂td3 = ∂su. (8)

From a numerical point of view this equation is critical
as it introduces severe stiffness into system. It acts like
an infinite stiff spring and makes necessary the use of
an implicit integration scheme. For this reason we will
switch to a relatively unknown integration technique,
the generalized α-method, cf. Sec. (4).

3.3 Material Laws
In order to relate the strain variables κ and υ to the
material internal forces n and torques m we need suit-
able constitutive relations of the form

m(s, t) = m̂ (κ(s, t),υ(s, t), s) , (9)
n(s, t) = n̂ (κ(s, t),υ(s, t), s) . (10)

Since the rod is unshearable and inextensible, i.e. υ =
(0, 0, 1), it is indicated to choose the material law for
m as

m(s, t) = K(s)∆κ(s, t), (11)

which corresponds to Hook’s law. Here,
∆κ = (κ − κ̂) and κ̂(s) is the initial deforma-
tion of the rod which does not depend on time.
K(s) = diag(EI1(s), EI2(s), Gµ(s)) is a diagonal
matrix describing the resistance of the material against
bending and twist about the three axes. I1,2 are the
principal moments of inertia of the cross section A
(A ≈ 1.5× 10−5 cm2 for human hair fibers). Young’s
modulus E as well as the shear modulus G are em-
pirical values that depend on the material (for Keratin
E = 3.89 × 1010 and G = 0.89 × 1010 dynes/cm2).
If the cross-section is constant, K’s dependency on s
vanishes. Please note that there is no corresponding
material law for n, since shearing and dilatation of
the rod are not allowed. In other words, there are
no strains to which the contact couple n could be
related. Thus, n can take any value that maintains the
constraint υ = (0, 0, 1).

3.4 Problem Reduction and Decoupling
The kinematic relation Eq. (1), the compatibility equa-
tion Eq. (4), the two balance laws Eq. (5) and Eq. (6),
and the inextensibility constraint Eq. (8) together con-
stitute a (12+x)-dimensional system of coupled PDEs,
where x depends on the type of parameterization of
the directors. Together with the boundary conditions
(to be defined later) the task at hand is to solve a
two point boundary value problem. We can simplify
the problem by decoupling of the kinematic relation
Eq. (1) from the system. This is done by decomposing
all the equations with respect to the local basis {dk}.
In other words, we treat the problem in local coordi-
nates instead of global coordinates. This reduces the
system to a 12-dimensional one because the kinematic
relation Eq. (1) is integrated independently. Following
Antman [Ant95] the worst thing that can happen is that
the rotational invariance of the material laws gets lost.
In the computer graphics context this was first used
in [Pai02] where Pai introduces a rather approximate
solution scheme to the static Kirchhoff equations by
decoupling the kinematic relations from the equation
system without explicitly pointing to this fact.
To reformulate the problem in local coordinates we use
the fact that the derivate of any vector ♦ with respect
to a fixed frame {ek} is related to the local derivative
by

∂t♦
{ek} = ∂t♦

{dk} + ω × ♦{dk}, (12)

∂s♦
{ek} = ∂s♦

{dk} + κ× ♦{dk}. (13)

If we apply these rules to Eq. (4), Eq. (5), Eq. (6),
and Eq. (8) we obtain the following final system of
PDEs (please note that from now on all quantities are
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referred to the local system):

ρA∂tu = ∂sn + κ× n− ρA (ω × u) + f , (14a)
ρI∂tω = ∂sm + κ×m + d3 × n

− ρ (ω × Iω) + l, (14b)
∂tκ = ∂sω − ω × κ (14c)

0 = ∂su + κ× u− ω × d3. (14d)

Here, we make use of the fact that—as mentioned
above—due to the inextensibility constraint the local
time derivative of the vector d3 must vanish. The con-
tact torque m is expressed through κ using the mate-
rial law Eq. (11). If we assume that the material pa-
rameters do not vary along s, the spatial derivative of
m can be replaced by ∂sm = K(∂sκ−∂sκ̂). We omit
the replacement of m and its derivative in the follow-
ing equations for brevity.
The above equation system can be rewritten in the
more concise form of the standard formulation for
structural dynamics problems:

M̂∂tx(s, t) + K̂∂sx(s, t) + Λ(s, t) = 0, (15)

where x is the state vector of the rod, x(s, t) =
{u(s, t),ω(s, t),κ(s, t),n(s, t)}T , M̂ = diag(ρA,
ρA, ρA, ρI1, ρI2, ρI3, 1, 1, 1, 0, 0, 0) is the mass
matrix and −K̂ = adiag(1, 1, K, 1) is the stiffness
matrix, with K as defined in Eq. (11). Note, that our
mass matrix has not full rank since the time derivative
of n does not exist. We collect all remaining terms
in Λ(s, t). The above equation system is in the fi-
nal form. We are now ready to integrate Eq. (14a) -
Eq. (14d) in the form of Eq. (15). For this we adopt—
as mentioned above—an implicit integration scheme
from structural dynamics, the so called generalized α-
method.

3.4.1 Boundary Conditions

To complete the system of equations we must spec-
ify six boundary conditions at both ends of the rod.
Since our fibers are clamped at the scalp we have
BC0 := {r(0, ·),d1(0, ·),d2(0, ·)}. Due to our co-
ordinate free formulation we redefine this as BC0 :=
{u(0, ·),ω(0, ·)} and express the “fixed”-condition by
requiring that u(0, ·) = Fu(t) and ω(0, ·) = Fω(t)
with the functions F(·)(t) taking non-zero values in
case of moving supports only. At the opposite end we
have BCL := {m(L, ·),n(L, ·)} which is expressed
as {κ(L, ·), f(L, ·)}. Further, from the material law
we know that κ(L, ·) = K−1m(L, ·) + κ̂(L) and
m(L, ·) = l(L, ·) is equal to the external torque at
s = L. Since there is no corresponding material law
for nL we assume that it is equal to the external force
f(L, ·) acting at the end point of the rod. Other bound-
ary conditions, e.g. for buckling can be integrated eas-
ily.

4 Generalized α-Method
In 1993 Chung and Hulbert introduced the gener-
alized α-method for numerical integration of prob-
lems in structural dynamics [CH93]. In fact it is a
Newmark-like implicit integrator with desirable fea-
tures like second-order accuracy, unconditional stabil-
ity and numerical dissipation of high-frequency noise.
This typically occurs in stiff problems if the discretiza-
tion of the domain is too coarse. In contrast to well-
established implicit integration schemes in the com-
puter graphics community, e.g., the implicit Euler
method, the numerical damping is fully controllable
by the user. While the idea of a controllable damping
is not new in general the actual problem lies in achiev-
ing an optimal ratio between high-frequency and low-
frequency dissipation, as the low-frequency portion is
essential for the solution. The generalized α-method
achieves this optimal ratio by a careful analysis of
how the spectral radius of the amplification matrix
behaves as certain system parameters grow to infin-
ity. The spectral radius itself is a measure of the
degree of numerical dissipation. The elimination of
high-frequency noise can strongly improve the con-
vergence behavior of non-linear problem solvers. Be-
side second-order accuracy and controllable damping
the α-method has the nice property of being uncondi-
tionally stable. This means that we can take arbitrary
large step sizes—in time as well as in space—without
running the risk of becoming unstable. This does not
only work in theory but also in practice, as we shall
see later. The Kirchhoff rod model along with the α-
method has been successfully applied by Sachin Goyal
[GPL03] to model the structural mechanics of bio-
molecules. However, our solution method is different
as we use a relaxation procedure instead of shooting.

4.1 Discretization of the System
We are now ready to discretize the system Eq. (14a) to
Eq. (14d) in the form of Eq. (15). In the first step we
derive the semi-discrete form of Eq. (15) with respect
to time as

M̂1−αt∂tx1−αt + K̂1−βt∂sx1−βt + Λ1−βt = 0.
(16)

The actual discretization of Eq. (15) by means of the
α-method is straightforward as it follows a simple re-
placement rule: ♦1−ε := (1 − ε) ♦i + ε ♦i−1. This
means that whenever the index (1 − ε) appears on a
quantity of Eq. (15) we replace it with the averaging of
this quantity over two subsequent time steps as given
above, which leads to:

M̂
[
(1− αt)∂txi + αt∂txi−1

]
+K̂

[
(1− βt)∂sxi + βt∂sxi−1

]
+

[
(1− βt)Λi + βtΛi−1

]
= 0.

(17)
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Here, we assume that the mass matrix as well as the
stiffness matrix are constant. In the same spirit we ap-
ply the replacement rule to all quantities in Eq. (17) for
spatial discretization to yield the final discrete form of
the equation system

M̂
{
(1− αt)

[
(1− αs)∂txi

j + αs∂txi
j−1

]
+αt

[
(1− αs)∂txi−1

j + αs∂txi−1
j−1

]}
+K̂

{
(1− βt)

[
(1− βs)∂sxi

j + βs∂sxi
j−1

]
+βt

[
(1− βs)∂sxi−1

j + βs∂sxi−1
j−1

]}
+

{
(1− βt)

[
(1− βs)Λi

j + βsΛi
j−1

]
+βt

[
(1− βs)Λi−1

j + βsΛi−1
j−1

]}
= 0.

(18)

In the above equation the index ♦i indicates the time
step whereas the exponent ♦j indicates the node of the
discretized curve. The left-hand side of Eq. (18) is
a non-linear function Fj(xj ,xj+1) = 0 of the state
vector xi at the node j and the next node j + 1. In
Eq. (18) all quantities from the last time step ♦i−1 are
known while the xi and Λi are to be computed. Note
that Λi = Λi(xi) is also a function of xi.
In order to solve the above equation system we must
choose an appropriate approximation of the space and
time derivatives of x. If we use the trapezoidal rule
we obtain the following recursive relationships for the
time and space derivatives of the state vector x:

∂txi =
xi − xi−1

γt∆t
− 1− γt

γt
∂txi−1, (19)

∂sxj =
xj − xj−1

γs∆s
− 1− γs

γs
∂sxj−1, (20)

where ∆s and ∆t are the spatial step and the time step,
respectively and γ is some factor. For the derivative
∂sκ̂ which appears in Λ we use the same approxima-
tion as for ∂sx, Eq. (20).

4.2 Stability and Numerical Damping
The stability of the generalized α-method depends on
the choice of the coefficients α, β, γ. If the same dis-
cretization scheme is applied to the famous Dahlquist
test equation, ∂tx+kx = 0, we can analyze the stabil-
ity of the integrator through the spectral radius ρ which
is the largest absolute eigenvalue ρ(A) = max |λ1,2|
of its amplification matrix A, cf. [GG01]. The algo-
rithm is unconditionally stable for linear problems if
the spectral radius satisfies ρ ≤ 1. For ρ > 1 the so-
lution grows from one time step to the next and the
method becomes unstable. It was shown in [Gob00]
that for the generalized α-method in order to remain
stable it is required that α ≤ 1/2, β ≤ 1/2, γ ≥ 1/2
and for second order accuracy α− β + γ = 1/2.
The dissipation of high-frequency noise is controlled
through the spectral radius as its magnitude is a mea-

sure for the degree of numerical dissipation. The spec-
tral radius should be close to one for the low-frequency
range and monotonically decreasing as k∆t → ∞
approaches infinity. This requirement on the smooth-
ness of the spectral radius restricts the possible range
of eigenvalues and reduces the α-method to an one
parameter method which is controlled by the eigen-
value λ∞ for k∆t at infinity (instead of λ1,2). In the
original work of Chung and Hulbert [CH93] it was
shown that for a given value of λ∞ ∈ [−1, 0] the
coefficients of the α-method can be expressed as a
function of this eigenvalue at infinity λ∞ as: α =
(3λ∞ + 1)/(2λ∞ − 2), β = λ∞/(λ∞ − 1), and γ =
1/(1− λ∞), where α, β, γ ∈ [0, 1]. However, our
differential equations are different from the Dahlquist
test equation. As a consequence, these simple selec-
tion rules do not apply. In our case there is currently
no known way for the computation of proper values
for the integration parameters α, β, and γ. Since they
are problem dependent finding the right parameters it
is up to the user.

4.3 Solving the Equation System
With the above equations at hand we end up solving a
non-linear equation system F : RN×12 7→ R(N−1)×12

F(x) =


F1 (x1,x2)
...
FN−1 (xN−1,xN )

 = 0 (21)

of size (N − 1)× 12 for the N × 12 unknowns. Here,
xi = {xi

1, ..,x
i
N} is the global state vector of size

N × 12 at time step i containing the states xi
j of all

N nodes, where j = 1, ..., N . Together with the six
boundary conditions at both ends the system is com-
plete.
In order to solve the equation system we employ the
classical Newton iteration, which linearizes the equa-
tion system in the area of the solution. Therefore, con-
vergence is only achieved if the initial guess for the
iteration is close to the solution. For the dynamic evo-
lution this is usually not a problem as subsequent steps
of the dynamic deformation are similar. Thus, we al-
ways take the configuration from the last time step as
the initial guess for every new iteration.
The classical Newton approach uses the following it-
eration scheme:

x̃k+1 = x̃k + J−1(x̃k)F(xk), (22)

where J is the Jacobian matrix of the system Eq. (21).
The building blocks of J are the derivatives of Eq. (18)
with respect to xj and xj+1.
In the same spirit as above we define a reduced ver-
sion of the global state vector x̃ = {xi

1\BC0,xi
2,...,
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xi
N−1,xi

N\BCL} without the boundary conditions be-
cause we do not want to iterate over them. Thus,
we assume that there exists a bijective function Ξ :
RN×12 7→ R(N−1)×12 that transforms the global state
vector to the reduced one and vice versa, x̃ = Ξ(x)
and x = Ξ−1(x̃), by fading out/in the boundary con-
ditions.
Rather than directly inverting the Jacobian matrix we
solve the linear equation system Jδx̃ = −F(xk) and
proceed with x̃k+1 = x̃k +δx̃. The Jacobian matrix is
a tridiagonal block matrix with block size 12×12. Un-
fortunately, it is neither symmetric nor diagonal domi-
nant so that the best choice for solving the above equa-
tion system is the Gauss elimination for sparse band
matrices, cf. [PTVF02].
In order to improve stability of our Newton approach
we never take the full step δx̃ but pre multiply it with
some relaxation parameter µ ∈ [0, 1]. This under re-
laxation strongly improves the convergence behavior
of our procedure. It is also possible to introduce an
adaptive selection of the relaxation parameter like in
[Gob00].

4.3.1 Derivation of the Jacobian Matrix

In what follows we aim to give a short derivation of the
Jacobian matrix and its overall structure which may
be a little bit unclear, especially how to deal with the
boundary conditions. All we have to do is to take the
derivatives ∂xj Fj and ∂xj+1Fj of all the functions in
Eq. (21) with respect to the function variables xj and
xj+1 or to their 12 components. Some care must be
taken with the derivatives of the first and the last func-
tion, ∂x1F1 and ∂xN

FN−1 as we have imposed six
boundary conditions to each of the two state vectors.
That is, the derivatives with respect to these variables
vanish. In particular, we derive function F1 with re-
spect to the unknowns κ and f and function FN−1 with
respect to u and ω. Hence, the first and the last build-
ing block of our global Jacobian has only size 12 × 6
whereas all other entries are of size 12× 12. Thus, the
global Jacobian has size [(N − 1)× 12]2.

4.4 Integrating the Kinematic Relations
In Sec. (3.4) we decided to decouple the kinematic re-
lations Eq. (1) from the system of governing PDEs in
order to reduce the complexity of the problem. Since
Eq. (1) is no longer part of the equation system it must
be integrated separately. For this we use the well-
known fact, that the integration yields a matrix expo-
nential which can be solved by the application of Ro-
drigues formula. If the orientations are represented by
rotation matrices then they are updated according to
the following scheme [MLS94]:

∆Ri
j+1 = eκ̃i

j∆s, Ri
j+1 = Ri

j ∆Ri
j+1, (23)

where κ̃ is the skew symmetric matrix form of the Dar-
boux vector. At the same time we can use the above ro-
tational increment ∆Rj+1 to update the local forces f
and torques l since the coordinate systems at the nodes
change during the Newton iteration. For the sake of
simplicity the spatial step size ∆s is held constant.
On the other hand, for the new positions ri

j+1 we
directly integrate the velocities ui because equation
Eq. (8) ensures that the new velocities satisfy the con-
straints on shear and extensibility. This is different to
the explicit enforcement by considering spatial twists
like in [Pai02].

4.5 Implementation Details
Direct implementation of the above equations in a pro-
gramming language like C++ is an awkward and error
prone task. To shorten the process of code generation
we highly recommend the use of a computer algebra
program like Maple or Mathematica to produce opti-
mized source code, e.g. in C, for the evaluation of the
left-hand side of Eq. (15) and the derivation of the Ja-
cobian matrix. All we have to do is to type in Eq. (18)
using the approximations Eq. (19) and Eq. (20) and
invoke automatic differentiation of the latter with re-
spect to xj and xj+1. The resulting C-code can be
easily integrated into an existing framework as a sub-
procedure.
Now, let’s assume that the code for the evaluation of
the Jacobian matrix as well as the left hand side of
Eq. (15) has been derived. Then our relaxation al-
gorithm proceeds as follows: Given ρ∞ (or α, β,
γ), ∂sκ̂0 and ∂sx0

0 we initialize the integration coeffi-
cients and the derivatives ∂sκ̂, ∂sx0 and ∂tx0 as given
above. This is done in the first time step only. Further,
Eq. (15) is solved for ∂tx0 since ∂txi−1 is an unknown
in the first time step. Here, we encounter the problem
that there exists no corresponding equation for the time
derivative of the contact force ∂tn0

0, so we choose it to
be zero.
Now we are ready to iterate over the state vector xk

until a solution is found that zeros the function system
Eq. (21). In each iteration we compute the Jacobian
matrix and solve a sparse equation system in order to
find the Newton update xk. With this vector we com-
pute the new orientations according to Eq. (23) and
transform the loads to the new local coordinate sys-
tems. Since our boundary conditions depend on the
orientations as well they are updated in each iteration,
too.
After convergence is achieved, we update the posi-
tions, which are normally not needed for the boundary
conditions. If geometric boundary conditions are to be
matched, e.g. a point-to-point constraint, the position
update must be carried out within the iteration loop.
The whole relaxation pseudo-code is given below.
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Data: i, ∆t, xi−1, ri−1, Ri−1, f i, li

Result: xi, ri, Ri

if i = 0 then /* First time step */1:
{α, β, γ} ← compCoefficients(ρ∞);2:
xi ← updateBC(xi);3:
∂sκ̂← compDxDs(κ̂, ∂sκ̂0, ∆s, γ);4:
∂sx

i ← compDxDs(xi, ∂sx
i
0, ∆s, γ);5:

∂tx
i ← −M

−1
(K∂sx

i + Λi);6:
end7:
xi−1 ← xi; ∂sx

i−1 ← ∂sx
i; ∂tx

i−1 ← ∂tx
i;8:

k ← 0;9:
while |F(xi)| ≥ ε do10:

x̃k ← Ξ(xi);11:
J← ∂Fm/∂x̃k

n;12:
δx̃← sparseSolve{Jδx̃ = −F(xi)};13:
x̃k+1 ← x̃k + δx̃;14:
xi

M ← Ξ−1(x̃k+1);15:
Rk+1 ← updateOrientations(xi

M , ∆s);16:
{f , l}k+1 ← ∆Rk+1{f , l}k;17:
xi ← updateBC(xi

M );18:
∂tx

i ← compDxDt(xi, xi−1, ∆t, γ);19:
∂sx

i
0 ← −K

−1
(M∂tx

i + Λi);20:
∂sx

i ← compDxDs(xi, ∂sx
i
0, ∆s, γ);21:

k ← k + 1;22:
end23:
ri ← updatePositions(xi, ∆s);24:
{f , l}i−1 ← {f , l}i25:

Algorithm 1: Relaxation procedure for comput-
ing solutions to the equations of motion for the
dynamic Cosserat rod. F(x) is the left-hand-side
of the discretized system Eq. (21).

5 Results
For our numerical experiments a test environment was
written in C++. As stated above, the numeric code
was generated using Maple. We consider different test
cases each of which is consisting of 100 segments: 1.)
A sinus-like shaped rod which is released under grav-
ity from a horizontal position (no damping). 2.) A
highly damped helical rod (30 cm) subject to a time-
varying end point load. The damping is obtained by
setting α = 0.4, β = 0, and γ = 1.0. 3.) A
straight rod (45 cm) subject to a time-varying torque.
4.) A helical rod with low damping that is excited by a
force parallel to the axis of the helix and released after
0.1 secs. This example shows the typical oscillating
behavior of a steel-like coil spring. Furthermore, we
varied the number of segments from six up to 100 and
in a second experiment the time step ∆t from 10−5 up
to 100 secs. Interestingly, our algorithm remains sta-
ble, regardless of how many segments we use for dis-
cretization. The same holds for the time step. This re-
sult clearly shows that the prime property of uncondi-
tional stability of the generalized α-method applies not
only in theory but also in practice. 5.) The buckling
behavior of a slender structure is one of the canoni-
cal examples in rod mechanics. Therefore, we demon-
strate that our model is also capable of capturing this
important effect. For this the end-points of a straight
rod are being moved towards each other while it ex-

periences an axial torque. The movement of the rod
accelerates as the solution approaches its bifurcation
point. 6.) In the sixth example we present a hair tress
(25 cm) consisting of a deformable guide (Keratin) and
180 interpolated fibers. The guide is extended by ap-
plying a constant velocity to its end and then released
after a total extension of 30 % of its bounding box
length. The effects are very similar to that of a force
driven simulation, e.g. a hair tress under gravity. But
in the former case the end point is constrained to a line
parallel to the direction of gravity. For this the bound-
ary conditions at s = L have to be modified accord-
ing to BCL := {v,ω} = {λd13, λd23, λd33, 0, 0, 0}
where we choose the extension speed λ = −2.0.
This shows how easily the boundary conditions can
be adopted to a given problem. 7.) Hair tress under
gravity and its kinetic energy for different values of α
and γ (β = 0). The results are depicted in Fig. (1).
Our relaxation procedure converges within 14 iter-
ations on the average. The time until convergence
for 100 segments is approximately 135 ms on a lap-
top with Intel Pentium M (Centrino), 1.86 GHz and
1GB RAM and ’standard’ boundary conditions as in-
troduced above. The time step was ∆t = 1/30 in all
examples and α = 0.3, β = 0, and γ = 0.7.

5.1 Conclusion
We have presented a novel approach for the simula-
tion of slender structures based on the special theory of
Cosserat rods that is fast and stable. In contrast to ex-
isting approaches, that are based on simple Lagrange
mechanics we directly solve the system of governing
PDEs using the generalized α-method. Our method
demonstrates that there is an efficient way to deal with
the Cosserat equations, not necessarily through model
simplifications, and proves also the fact that integra-
tion methods from structural engineering have appli-
cations in the computer graphics field as well. In this
spirit our model must be seen as the first approach that
tackles the problem at its root. Our approach is well-
suited especially for the simulation of human hair. In
combination with proper contact models it should be
possible to analyze all the physical effects observed in
hair fiber interaction. Moreover, we think that our ap-
proach can be successfully adopted to other problem
areas like cloth modeling as well.
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ABSTRACT

Recently, the B-spline family of reconstruction filters has been generalized for the hexagonal lattice, which is optimal for
sampling 2D circularly band-limited signals. In this paper, we extend this generalization to the body-centered cubic (BCC)
lattice, which is optimal for sampling spherically band-limited 3D signals. We call the obtained new reconstruction filters
BCC-splines. Although the explicit analytical formulas are not defined yet, we evaluate the discrete approximation of these
filters in the frequency domain in order to analyze their performance in a volume-rendering application. Our experimental
results show that the BCC-splines can be superior over the box splines previously proposed for the BCC lattice.

Keywords: Optimal Regular Volume Sampling, Body-Centered Cubic Lattice, Reconstruction, Volume Rendering.

1 INTRODUCTION

Volumetric data usually contains the samples of a con-
tinuous signal sampled on a Cartesian lattice. This rep-
resentation is still the most popular one in practice, as it
has obvious advantageous properties. For example, the
samples are easy to store in a 3D array, and a continu-
ous reconstruction can be efficiently implemented by a
fast separable convolution. However, it is well-known
that the Cartesian lattice is not optimal for sampling
spherically band-limited 3D signals [TMG01], even if
the sampling distance is the same along the three major
axes yielding a Cartesian cubic (CC) lattice. Although
the shape of the spectrum is usually not known in ad-
vance, it is not favorable if the sampling scheme prefers
specific directions in the frequency domain [EM06].
Therefore, the assumption that the spectrum of the orig-
inal signal is bounded by a sphere seems to be natural.

When a signal is sampled on a specific lattice, the
original primary spectrum gets replicated around the
points of the dual or reciprocal lattice [OS89], which
is the Fourier transform of the sampling lattice. The
original signal can be perfectly reconstructed if there
is no overlapping between these replicas. On the other
hand, the sparsest sampling in the spatial domain can
be achieved by the tightest arrangement of the spheri-
cal replicas in the frequency domain. This can be en-
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sured if the replicas are located around the points of a
face-centered cubic (FCC) lattice, which is optimal for
sphere packing [CSB87, Slo98, Hal98]. As a conse-
quence, the BCC lattice, which is the reciprocal of the
FCC lattice, is optimal for sampling spherically band-
limited 3D signals [TMG01].

Although the BCC lattice requires around 30% fewer
samples per a unit volume than a CC lattice does for
a perfect reconstruction of a spherically band-limited
3D signal [TMG01], it is not widely used for practical
applications yet. The reason is mainly the more com-
plicated non-separable resampling scheme, which is re-
quired for a BCC-sampled data. For the CC lattice, re-
construction filters are usually designed in 1D, and ex-
tended to 2D or 3D by either a separable tensor-product
extension [MMK+98] or a spherical extension [ML94].
Although there have been attempts to use separable or
radially symmetric filters also for BCC-sampled data
[TMG01, TMMG02, Mat03], the results did not live up
to the expectations. The separable sheared trilinear in-
terpolation [TMMG02, Mat03] led to a non-isotropic
solution, while the spherical filters [TMG01] resulted
in blurry images.

The first non-separable box-spline filters, which take
the special geometry of the BCC lattice into account,
were derived by Entezari et al. [EDM04] demonstrating
that the theoretical advantages of BCC sampling can be
exploited also in practice. Recently they published a
fast evaluation scheme for these filters [EVM08], which
turned out to be more efficient than the standard tri-
linear or tricubic interpolation for CC-sampled data in
a software-implemented volume-rendering application.
An efficient hardware implementation of box-spline-
based resampling, however, has not been published yet.
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Csébfalvi recommended a prefiltered reconstruction
scheme [Csé05], adapting the concept of generalized
interpolation [BTU99] to the BCC lattice. According to
this approach, first a non-separable discrete prefiltering
is performed as a preprocessing, and afterwards a fast
separable Gaussian filtering is used for a continuous re-
sampling on the fly. Note that the resulting impulse
response is non-separable and not even radially sym-
metric. This method was extended also to the B-spline
family of filters [CH06], and exploiting the separable
postfiltering, an efficient hardware implementation was
proposed.

In this paper, the B-splines are generalized to the
BCC lattice analogously to the Hex-splines. The Hex-
splines were proposed by Van de Ville et al. for the
hexagonal lattice [VBU04], which is optimal for sam-
pling circularly band-limited 2D signals. The key idea
is to take the indicator function of the Voronoi cell cor-
responding to the BCC lattice as a generating function.
The successive convolutions of this generating function
with itself yield the family of our BCC-splines. In the
following we empirically show that a BCC-spline can
be superior over a box spline of the same order of ap-
proximation.

2 THE B-SPLINE FAMILY OF FIL-
TERS

In this section we shortly review the B-spline family
of filters, as we will generalize them for the the BCC
lattice. The B-spline of order zero is defined as a sym-
metric box filter:

β 0(t) =




1 if |t|< 1
2

1
2 if |t|= 1

2
0 otherwise.

(1)

The non-symmetric nearest-neighbor interpolation ker-
nel and β 0(t) are almost identical, they differ from each
other only at the transition values. Generally, the B-
spline filter of order n is derived by successively con-
volving β 0(t) n times with itself. The first-order B-
spline is the linear interpolation filter:

β 1(t) = β 0(t)∗β 0(t) =
{

1−|t| if |t| ≤ 1
0 otherwise.

(2)

Higher-order B-splines are only approximation filters,
as they do not satisfy the interpolation constraint. For
example, the cubic B-spline results in a smooth C2

continuous approximation, therefore it is often used
in practice to reconstruct signals that are corrupted by
noise. The cubic B-spline is defined as follows:

β 3(t) =




1
2 |t|3−|t|2 + 2

3 if |t| ≤ 1
− 1

6 |t|3 + |t|2−2|t|+ 4
3 if 1 < |t| ≤ 2

0 otherwise.

(3)

Since the Fourier transform of β 0(t) is sinc(ω/2) =
sin(ω/2)/(ω/2) and the consecutive convolutions in

the spatial domain correspond to consecutive multipli-
cations in the frequency domain, the Fourier transform
of β n(t) is sincn+1(ω/2).

Note that the frequency response of any B-spline
takes a value of zero at the centers of all the aliasing
spectra (if ω = j2π , where j ∈ Z \ {0}), therefore a
sample frequency ripple [ML94] cannot occur. This
postaliasing effect arises when the frequency response
of the filter is significantly non-zero at the positions rep-
resenting the “DC” component of the aliasing spectra,
and appears in the reconstructed signal as an oscillation
at the sample frequency.

The 1D B-splines can be extended to higher-
dimensional Cartesian lattices by a tensor product
extension. It is easy to see that such an extension of a
B-spline of order n provides an approximation order
of n + 1 as the multiplicity of zero at the dual lattice
points (except the origin) is at least n+1 [SF71].

Figure 1: The Voronoi cell of the BCC lattice.

3 GENERALIZATION FOR THE BCC
LATTICE

The separable 3D B-spline of order zero is actually the
indicator function of the Voronoi cell corresponding to
the Cartesian lattice. Furthermore, the higher-order 3D
B-splines can also be obtained by the successive 3D
convolutions of this indicator function. This concept
can be generalized to the BCC lattice by taking the in-
dicator function of its Voronoi cell (see Figure 1) at the
origin as a generating function:

χBCC(x) =

{1 if x ∈ Voronoi cell,
1

mx
if x ∈ boundary of the Voronoi cell,

0 if x /∈ Voronoi cell,
(4)

where mx is the number of Voronoi cells adjacent at
point x. We define the BCC-spline of order zero as
β 0

BCC(x) = χBCC(x). BCC-splines of higher orders are
constructed by successive convolutions:

β n+1
BCC(x) =

(β n
BCC ∗β 0

BCC)(x)
Ω

, (5)
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where Ω is a normalization term defined as the integral
of χBCC(x):

Ω =
∫

x∈R3
χBCC(x)dx. (6)

T 4 /T�

Ш
BCC

( /T)/Tx
3

Ш
FCC

( )��	
� 	


spatial domain frequency domain

Figure 2: Duality between the FCC and BCC lattices.

4 ORDER OF APPROXIMATION
Note that β 0

BCC(x) guarantees a partition of unity by de-
finition, thus it tiles the 3D space on a BCC pattern:

XBCC(x)∗β 0
BCC(x) = 1, (7)

where XBCC(x) is a shah function defined on the BCC
lattice (see Figure 2). Transforming Equation 7 into the
frequency domain (see the details in the Appendix), we
obtain:

1
4
XFCC

( ω
4π

)
· β̂ 0

BCC(ω) = δ
( ω

2π

)
. (8)

According to Equation 8, the Fourier transform
β̂ 0

BCC(ω) of β 0
BCC(x) takes the value of Ω at the

origin and equals to zero at all the other FCC lattice
points. Therefore, based on the well-known Strang-Fix
conditions [SF71], an approximation order of one
is ensured by β 0

BCC(x). The order of approximation
is an asymptotic measure, which expresses how fast
the approximate signal f̃ (x) converges to the original
signal f (x), when the distance T between the samples
is decreased. According to the approximation theory,
it depends only on the reconstruction filter φ(x) that is
convolved with the original BCC samples of f (x):

f (x)≈ f̃ (x) =
XBCC(x/T ) · f (x)

T 3 ∗φ(x/T ). (9)

To ensure that || f̃ (x)− f (x)|| tends to zero as T L, the
approximation order of the filter φ(x) should neces-
sarily be L. When higher-order BCC-splines are con-
structed, each successive convolution (which is equiv-
alent to a successive multiplication in the frequency
domain) increases the multiplicity of zeros (or vanish-
ing moments) by one, thus the approximation order of
β n

BCC(x) equals to n+1.

5 EXPERIMENTAL RESULTS

Non-separable 3D filters have been proposed for the
BCC and FCC lattices [EDM04, QEE+05], and re-
cently even for the separable CC lattice [EM06]. Due to
their non-separability, however, these filters are either
difficult to express by a simple closed form, or compu-
tationally expensive to evaluate. Nevertheless, their im-
pulse response can be evaluated in a 3D lookup table in
a preprocessing, and afterwards such a discrete approx-
imation can be used for a fast resampling on the fly.
Higher-order non-separable filters defined by succes-
sive convolutions of a generating function are usually
evaluated in the frequency domain [QEE+05, EM06],
where the convolution is replaced by a multiplication.
We apply the same approach for our BCC-splines of
higher orders as well.

Each successive convolution of the generating func-
tion increases the support of the resulting BCC-spline
filter, but its shape remains the same as that of the
Voronoi cell, which is a truncated octahedron (see Fig-
ure 1). The slices of the first-order BCC-spline β 1

BCC(x)
are shown in Figure 3. Note that β 0

BCC(x) and β 1
BCC(x)

are interpolating filters (β 1
BCC(x) vanishes reaching the

first neighboring lattice points), while the higher-order
BCC-splines are just approximating filters.

Figure 3: Slices of the first-order BCC-spline.

In order to empirically compare the BCC-splines to
the box splines of the same approximation orders, we
implemented a software ray caster, which uses a pre-
calculated 3D lookup table of resolution 2563 for rep-
resenting the approximate filter kernels. First, we ren-
dered the classical Marschner-Lobb test signal sampled
at resolutions of 32×32×32×2, 64×64×64×2, and
96×96×96×2. In Figure 4 the first-order BCC-spline
is compared to the linear box spline of the same approx-
imation order. The upper six images show the shaded
isosurface of the test signal, whereas the lower six im-
ages show the angular error of the gradients calculated
by central differencing on the reconstructed function.
Although both filters ensure approximately the same
speed of convergence, the BCC-spline produces much
less annoying artifacts, and it reconstructs the high-
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frequency components significantly better, especially
when the original signal is not oversampled.

Figure 5 shows the comparison of the third-order
BCC-spline to the cubic box spline1 of the same
approximation order. In this case, both filters provide
approximately the same image quality and convergence
to the original signal. However, the BCC-spline leads
to slightly stronger oversmoothing for the lower-
resolution representation. For rendering data sets of
high signal-to-noise ratio this is clearly a drawback, as
the high-frequency details might be removed. On the
other hand, practical data sets are usually corrupted by
noise, which can be suppressed by a filter of stronger
oversmoothing. In order to test the BCC-splines on a
real world data set as well, we downsampled an MRI
scan of a human brain consisting of 256× 256× 166
CC samples onto a lower resolution BCC lattice
yielding 128×128×83×2 BCC samples. Entezari et
al. used a similar downsampling [EMBM06] to obtain
a BCC representation of an originally CC-sampled
data set. However, we exploited that in the frequency
domain a perfect low-pass filtering can be performed
before the subsampling. Therefore we multiplied the
discrete Fourier transform of the original CC-sampled
data by the indicator function of the FCC Voronoi
cell, that is, the frequency response of the ideal
low-pass filter for BCC downsampling. Afterwards
we transformed the data back into the spatial domain
and took the samples of the BCC sublattice. Figure 6
shows the reconstruction of the human brain from
the 128× 128× 83× 2 BCC samples. The images
demonstrate that artifacts caused by the noise and
postaliasing are better reduced by the BCC-splines than
by the box splines of the same approximation orders.

Concerning the computational cost, the BCC-splines
of order one and three require 8 and 64 neighboring
voxels to access respectively. It is interesting to note
that the equivalent B-splines for the Cartesian lattice re-
quire exactly the same number of voxels to read. Nev-
ertheless, using a 3D lookup table to approximate the
filter kernels, the BCC-splines are about twice as ex-
pensive to evaluate than the box splines of the same
approximation orders, since the linear and cubic box
splines need just 4 and 32 neighboring voxels to take
into account respectively. Thus, the price of the quality
improvement is the additional computational cost.

6 CONCLUSION AND FUTURE
WORK

In this paper a new family of filters has been proposed
for the BCC lattice, which can be interpreted as a non-

1 In [EDM04] the convolution of the linear box spline with itself is
referred to as a “cubic box spline” as it provides the same approxi-
mation power as the tricubic B-spline for the CC lattice. Throughout
this paper we also use the term “cubic box spline”, although this filter
is quintic in fact [EVM08], as it consists of quintic polynomials.

separable generalization of the separable tensor-product
extension of B-splines. It has been empirically demon-
strated that, for an additional computational effort, our
BCC-splines can provide higher image quality than the
box splines of the same approximation orders. For our
experiments we approximately evaluated the filter ker-
nels in the frequency domain.

The derivation of the explicit analytical formulas,
however, is the subject of our future work. Recently
it has been shown that a cubic box spline can be ef-
ficiently evaluated by factorizing the filter into a fi-
nite difference operator and its Green’s function cor-
responding to the given filter kernel [EVM08]. We plan
to follow a similar strategy for the efficient analytical
evaluation of our BCC-splines. This would be favor-
able for a fast hardware implementation as well, since
the 3D lookup table representing the approximate filter
kernel would not take the texture memory from larger
data sets. Furthermore, we would like to derive the fre-
quency responses of these filters in order to quantita-
tively measure their postaliasing and oversmoothing ef-
fect.

An additional possibility for improving the recon-
struction of BCC-sampled data is to use a discrete pre-
filtering before the continuous filtering. For example,
the approximation power of higher-order BCC-splines
could be better exploited by applying prefitered inter-
polation or quasi-interpolation schemes.
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APPENDIX
The shah function for the BCC lattice is defined as two
overlapping Cartesian shah functions:

XBCC(x) = ∑
i, j,k∈Z

δ (x− [i, j,k]T )+ (10)

∑
i, j,k∈Z

δ

(
x−
[
i+

1
2
, j +

1
2
,k +

1
2

]T
)

.

Analogously, the shah function for the FCC lattice is
constructed as four overlapping Cartesian shah func-
tions:

XFCC(x) = ∑
i, j,k∈Z

δ (x− [i, j,k]T )+ (11)

∑
i, j,k∈Z

δ

(
x−
[
i, j +

1
2
,k +

1
2

]T
)

+
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∑
i, j,k∈Z

δ

(
x−
[
i+

1
2
, j,k +

1
2

]T
)

+

∑
i, j,k∈Z

δ

(
x−
[
i+

1
2
, j +

1
2
,k

]T
)

.

The Fourier transform of XBCC is derived as follows:

XBCC(x)⇐⇒ ∑
i, j,k∈Z

δ
( ω

2π
− [i, j,k]T

)
+ (12)

∑
i, j,k∈Z

δ
( ω

2π
− [i, j,k]T

)
· eJ [ 1

2 , 1
2 , 1

2 ]ω

= ∑
i, j,k∈Z

δ
( ω

2π
− [i, j,k]T

)(
1+(−1)(i+ j+k)

)

In Equation 12 only those terms are non-zero, where i+
j + k is even. This is possible if all these three integers
are even, or two of them are odd and one is even. Thus
we can separate the sum into four terms:

XBCC(x)⇐⇒ ∑
l,m,n∈Z

δ
( ω

2π
− [2l,2m,2n]T

)
·2+

(13)

∑
l,m,n∈Z

δ
( ω

2π
− [2l,2m+1,2n+1]T

)
·2+

∑
l,m,n∈Z

δ
( ω

2π
− [2l +1,2m,2n+1]T

)
·2+

∑
l,m,n∈Z

δ
( ω

2π
− [2l +1,2m+1,2n]T

)
·2

Exploiting that δ (Aω) = δ (ω)/det(A), we obtain:

XBCC(x)⇐⇒ ∑
l,m,n∈Z

δ
( ω

4π
− [l,m,n]T

)
· 1
4
+ (14)

∑
l,m,n∈Z

δ

(
ω
4π
−
[
l,m+
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32×32×32×2 voxels. 64×64×64×2 voxels. 96×96×96×2 voxels.

Isosurface reconstruction using the first-order BCC-spline.

Isosurface reconstruction using the linear box spline.

Angular error of the gradients calculated with the first-order BCC-spline.

Angular error of the gradients calculated with the linear box spline.

Figure 4: Reconstruction of the Marschner-Lobb signal using the first-order BCC-spline and the linear box spline
of the same order of approximation. In the error images the angular error of zero degree is mapped to black,
whereas the angular error of 30 degrees is mapped to white.
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32×32×32×2 voxels. 64×64×64×2 voxels. 96×96×96×2 voxels.

Isosurface reconstruction using the third-order BCC-spline.

Isosurface reconstruction using the cubic box spline.

Angular error of the gradients calculated with the third-order BCC-spline.

Angular error of the gradients calculated with the cubic box spline.

Figure 5: Reconstruction of the Marschner-Lobb signal using the third-order BCC-spline and the cubic box spline
of the same order of approximation. In the error images the angular error of zero degree is mapped to black,
whereas the angular error of 30 degrees is mapped to white.
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Linear box spline. First-order BCC-spline.

Cubic box spline. Third-order BCC-spline.

Figure 6: Reconstruction of a human brain from 128×128×83×2 BCC samples of an MRI scan.
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ABSTRACT

In anatomical illustrations deformation is often used to increase expressivity, to improve spatial comprehension and to enable an
unobstructed view onto otherwise occluded structures. Based on our analysis and classification of deformations frequently found
in anatomical textbooks we introduce a technique for interactively creating such deformations of volumetric data acquired with
medical scanners. Our approach exploits the 3D ChainMail algorithm in combination with a GPU-based ray-casting renderer
in order to perform deformations. Thus complex, interactive deformations become possible without a costly preprocessing or
the necessity to reduce the data set resolution. For cutting operations we provide a template-based interaction technique which
supports precise control of the cutting parameters. For commonly used deformation operations we provide adaptable interaction
templates, whereas arbitrary deformations can be specified by using a point-and-drag interface.

Keywords: Volume rendering, volume deformation, volume cutting, illustration.

1 INTRODUCTION

In recent years medical imaging technologies such as
computed tomography (CT) or positron emission tomo-
graphy (PET) have revolutionized many areas of medical
diagnosis and other fields of medical practice. However,
medical students still learn from anatomical textbooks
and atlases, in which the style of illustrations has not
changed fundamentally for over a century.

While many research approaches aim at 3D volume
visualization, the aspect of creating illustrative images
from volume data by using computer-aided concepts
has found less consideration. Besides using a specific
overall drawing style, e. g., by the definition of a certain
color palette, anatomical illustrations often apply special
techniques to disclose complex spatial relationships. In
this context one of the main problems is to deal with
occlusions of important parts of a data set. A concept
frequently used by anatomical illustrators, but not often
considered in visualization, is deformation: soft tissue is
cut and flipped open to allow an occlusion-free view onto
underlying structures, organs are twisted to visualize
their shape, or blood vessels are pulled using pointed
hooks for accentuation.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech
Republic

In this paper we propose an interactive system which
supports real-time cutting and deformation of a full
resolution volume object, and thus enables the user to
achieve effects similar to those found in anatomical illus-
trations. Since the volume data visualized corresponds
to real physical objects, the deformations should have a
physical foundation, possibly using voxel intensities to
specify material properties such as elasticity. However,
because the main focus is on the interactive generation
of cuts and deformations but not on simulation, physical
realism has to be balanced with needs of interactivity and
artistic freedom. An example of an illustration generated
by using our system is shown in Figure 1.

The remainder of this paper is structured as follows.
Section 2 examines work related to deformation and
illustrative rendering of volumetric data. In Section 3
we present a classification of typical deformations found
in anatomical atlases. The methods used for interactive
deformation and rendering are described in Section 4.
Section 5 presents interaction techniques for applying
deformations to real-world data. Results are discussed
in Section 6, and Section 7 concludes the paper.

2 RELATED WORK
Before introducing our approach, we discuss the hand-
ling of occlusions in illustrative visualization, algorithms
for volume deformation and rendering, and related inter-
action techniques.

2.1 Occlusion in Illustrative Visualization
Different techniques are used in medical or technical
illustrations to enable insights into occluded regions.
Cutaway views [Die03] represent the most basic form
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Figure 1: Cutting and flipping open the hand using our
deformation and interaction techniques.

of simplifying a structure for illustration by discarding
irrelevant or obscuring parts of an object. In a medical
context this corresponds to the removal of (parts of) or-
gans or tissue. In general use, simple cutting planes are
very common while more complex cutaway shapes are
found less frequently. Ghosting [Bru05] may be inter-
preted as an extension to cutaway views, where parts of
an object are not completely removed but rather drawn
with a different degree of transparency, which retains
more context information. Most often found in technical
illustrations, exploded views [Bru06] separate parts of
an object by moving them to different positions. This
enables the viewer to comprehend spatial relationships
and, as in assembly instructions, get a mental image of
how parts fit together. With deformations not an object’s
position but rather its shape is modified to allow an un-
obscured view onto the deformed object itself or other
objects. Deformations are frequently used in medical
illustrations.

2.2 Deformation Models
There exists a variety of deformation algorithms but
most of them work on meshes rather than directly on
volume data. Most are not suitable for real-time applica-
tions when using volume data sets of realistic sizes. An
overview of deformation models in computer graphics
is given by Gibson and Mirtich [Gib97b], and more re-
cently by Chen et al. [Che05] and Nealen et al. [Nea05].

A well-established geometry-based model is Free-
Form Deformation by Sederberg and Parry [Sed86],
where the object to be deformed is placed in a lattice of
grid points and the user manipulates these control points.
Correa et al. [Cor06] use predefined, purely geometric
deformation operators for illustrative visualization, with-
out consideration of physical properties. Mass-spring
systems represent a popular simplified physical model
and have been widely used for modeling deformable
objects. The Finite Element Method (FEM) approxi-
mates a continuous function which satisfies some equi-
librium expression. This leads to very accurate results

and therefore FEMs are in widespread use for modeling
deformations, including soft tissue deformation. But this
accuracy has a strong negative impact on performance
when processing large objects.

All these methods are problematic with regard to the
physical model, computational requirements, flexibil-
ity, or accuracy, making them unsuitable for real-time
deformation of medical volume data for our use case.
The 3D ChainMail algorithm as introduced by Gibson
[Gib97a, Sch98] uses a different approach, solving most
of these problems. The algorithm is based on a linked
volume representation in which each element of a vol-
ume data set is directly linked to its six neighbor el-
ements, and simple constraints are defined for these
links. To model elastic material correctly, additionally
a relaxation algorithm has to be applied to the results
of the ChainMail algorithm, which iteratively tries to
minimize an object’s energy configuration. While more
physically-inspired than physically-based, the algorithm
has the advantage of being very fast even for large data
sets, because it works locally. Successful usage in sev-
eral surgery simulation systems [Gib97c, Sch98] shows
that it can produce reasonable results—even though they
might not be physically correct.

2.3 Rendering of Deformed Volumes
While hardware-accelerated volume rendering using tex-
ture slices [Cul94] is still prevalent in visualization appli-
cations, GPU-based ray-casting [Krü03] is much more
flexible and becomes feasible due to significant improve-
ments in GPU shader performance. This method first
renders a proxy geometry in order to generate textures
containing the entry and exit points (EEP). Pixel colors
in the EEP textures encode start and end positions of
rays which are then casted through the volume using a
fragment shader.

The straight-forward approach for rendering deformed
volumes is to directly apply the deformation algorithm
to the data set and to render the resulting deformed vol-
ume. This revoxelization or forward-mapping requires
resampling to ensure voxels are positioned in a rectilin-
ear grid which is required for most rendering methods.
Schulze [Sch07] presents such a system based on the
ChainMail algorithm, which supports efficient defor-
mation for small parts of large data sets only. Besides
the high computational costs for resampling, additional
memory needed for the deformed volume and resam-
pling artifacts are problematic for general use.

An alternative approach is applying the deformation
implicitly during rendering with backward-mapping.
Kurzion and Yagel [Kur97] introduced the concept of
ray deflectors which deform view rays during the ren-
dering process rather than the volume data itself. Their
purely geometric algorithm has the disadvantage that
specifying deformations is not intuitive and, as complex
deformations have to be modeled by several ray deflec-
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tors, performance may become an issue. Rezk-Salama et
al. [RS01] present a similar approach where the volume
object is adaptively subdivided into a set of sub-cubes,
and the deformation is then specified by transforming
texture coordinates.

Revoxelization is flexible and should give good qual-
ity results when choosing a sophisticated resampling
method, but performance is expected to be inadequate
in the general case. In addition, it is uncertain whether
optimization can help in practice without restricting the
model to only small deformations. Speed is an issue
for the ray deflector solution. Furthermore complexity
of implementation and usage, together with a lack of a
physical model, makes this method unsuitable.

2.4 Interaction
Virtual tools resembling scalpels, scissors, and forceps
and their associated interaction metaphors have the ad-
vantage of being understood easily. But relying on “real”
tools also limits interaction in the virtual system to what
is possible in the physical world, preventing the sys-
tem from exploiting the full potential of a computer-
based solution. Therefore the system by McGuffin et
al. [McG03] uses easily understandable interaction tools
which are based on physical instruments and have been
extended to allow a more light-weight interaction style.
Correa et al. [Cor07] present a deformation method
which requires only two-dimensional user input, but
restricts the possible deformations.

3 MEDICAL ILLUSTRATION
In this section we analyze and describe the usage of
deformation in anatomical atlases.

When classifying common types of deformations
found in medical illustrations we exclude (piece-wise)
rigid deformations, such as exploded views, which are
easier to model and found more often in technical than
in medical illustrations. Three main types of non-rigid
deformations can be distinguished: pulling, turning, and
cutting open. When an object such as a muscle or a vein
occludes another object lying further behind, instead of
cutting it away completely it can be pulled a small dis-
tance to provide an unobstructed view. An entire object
can also be turned to provide an unobstructed view or to
show it from the back. To show the internal structure of
an object, it can be cut and flipped open in one or more
directions. Finally, different deformation types can be
combined to form a more complex deformation.

This classification was developed by examining defor-
mations found in three common anatomical atlases, the
classical atlases by Netter [Net97] and Sobotta [Sob05],
and the newer Prometheus atlas [Sch05] which was
drawn using 2D graphics applications. All three are
regularly used in anatomy courses. It is notable that
their illustration plates do not make use of transparency

Source Plates Pull Turn Cut/Flip
Netter 29 19 6 6
Sobotta 57 33 7 23
Prometheus 37 22 16 15
Total 123 74 29 44

Table 1: Types of deformations found in some common
anatomical atlases. Given are the total number of illus-
tration plates containing deformations and the fraction
of specific deformation types. Some plates contain more
than one type of deformation.

or ghosting techniques, whereas cutaways are used ubiq-
uitously. Table 1 shows the results of analyzing the
illustrations which make use of deformations; listed are
the numbers of occurrences for the different types of
deformations. However, it should be noted that many
illustration plates show basically the same scene with
only minor variations. Therefore the numbers can only
give a rough hint about the actual use of deformation
techniques. Nevertheless it can be concluded that the
simple pulling deformations dominate. Cutting/flipping
is found less often, perhaps because simple cutaways
which remove parts of an object without any deformation
are very common. For the anatomical layman turning is
somewhat difficult to distinguish from pulling, since the
two deformation types mainly differ in the illustrator’s
intention, not the visual result.

4 OUR APPROACH TO VOLUME DE-
FORMATION

Based on the classification described in the previous sec-
tion we have designed a system for interactively creating
such deformations from medical volume data.

The following requirements for the system were de-
rived from analyzing classical illustration techniques and
methods for deformation and visualization. The goal is
physically comprehensible but not necessarily physically
correct behavior. It is the user’s task to ensure a realistic
result. This gives a certain degree of freedom that a
strict physical model would possibly prevent. Our main
contribution is the introduction of intuitive interaction
concepts supporting the user by reducing complexity
of six DoF interactions while still allowing interactive
frame rates. Thus, we had to ensure that deformation
and visualization achieve interactive frame rates without
time-consuming preprocessing, while the full data set
resolution is maintained. Full resolution is important
since sometimes fine structures of an object need to be
deformed, and down-sampling could make this impos-
sible. Finally, since medical illustrations usually do not
utilize transparency and ghosting, support for rendering
of semi-transparent objects is optional.

4.1 Proxy-Geometry Deformation
An important aspect of deformation is the visual rep-
resentation. In order to achieve interactive frame rates,
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Figure 2: Overview of our deformation and rendering
approach. Based on the data set a linked volume is gen-
erated and deformed before a surface mesh is extracted
and used as proxy geometry for ray-casting.

we combine GPU-based ray-casting [Krü03] with the
ChainMail algorithm. A conceptual overview of our
approach is depicted in Figure 2.

With the exception of cutting operations, the Chain-
Mail algorithm always keeps a static list of elements
which form the object’s surface. Hence, no additional
computation is necessary to extract the surface elements
after each deformation step. GPU-based ray-casting usu-
ally makes use of a box as proxy-geometry for creating
the entry and exit points for each ray. Since all contribut-
ing voxels are located in the volume that is contained
within the object’s surface, the box proxy-geometry can
be replaced by the object’s surface without changing
the rendering algorithm. When doing so, deforming the
proxy-geometry has the effect of a space transformation,
as it modifies the entry and exit points which control the
position and direction of rays casted during rendering.

4.2 Functional Units in Proxy-Geometry
Deformation

In the following we describe how we utilize the Chain-
Mail algorithm, how we extract the object’s surface from
the deformed data structure, how we generate entry and
exit points for the rendering, and how we ensure correct
shading for deformed volumes.
ChainMail Deformation The linked volume data struc-
ture can be created directly from a volume given as a
three-dimensional array. Neighborhood information is
given implicitly by the rectilinear array. When the user
has selected one or more elements for movement, the
algorithm tests for constraint violations, while working
on each element at most once per deformation step. For
non-homogeneous material, a mapping from the inten-
sity saved for each voxel to certain material properties
can be made.

While the soft tissue found in medical volume data
sets often shows elastic properties, adding elastic re-
laxation does not automatically provide a realistic sim-
ulation, as human tissue may show a more complex
behavior (see e. g. Fung [Fun05]). For illustrative ap-
plications elasticity is not needed in general. Just like

Figure 3: Entry and exit points textures for a proxy-
geometry generated from the hand data set.

artists prefer modeling clay to a rubber-like material,
elastic relaxation may interfere when artistic freedom is
more important than physical realism.

Making cuts into the volume is realized by simply
removing the link between two adjacent elements and
adding them to the list of surface elements. This modi-
fies the logical object surface, but no other modifications
or special actions are necessary.
Surface Extraction For extracting a surface
mesh from the linked volume, the marching cubes
algorithm [Lor87] seems appropriate, although its
computational requirements are quite high, as the
basic marching cubes algorithm cannot make use of
the available information about elements located on
the object surface. However, without considerably
increasing the number of generated triangles the
marching cubes algorithm cannot ensure that the
generated proxy-geometry completely encloses all
object voxels, and thus for our case marching cubes is
unsuitable.

Taking into account all information about surface el-
ements and the grid-like structure of the data a simpler
approach can be chosen. Although deformations may
change the overall object shape, the ChainMail con-
straints limit relative movement of adjacent elements
and ensure that the deformed linked volume may still
be treated as a rectilinear grid. Our surface extraction
algorithm successively looks at the ChainMail structure
from all six principal directions and searches for cycles
formed by four connected surface elements, for each
adding a quad to the output geometry while removing
redundant quads. Although the computation time of the
surface extraction algorithm is proportional to the num-
ber of surface elements, which is significantly lower than
the total number of volume elements, it could still be
difficult to reach interactive performance for large vol-
umes. Fortunately, it is not necessary to run the surface
extraction after every deformation step. The relation
between a volume element in the ChainMail structure
and a vertex in the extracted surface persists as long
as no topology changes take place. Therefore only the
positions of vertices corresponding to displaced volume
elements have to be updated. After a cut has been made
the surface extraction must be repeated, taking into ac-
count the modified list of surface elements.
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Entry and Exit Points Generation The entry and
exit points are generated from the proxy-geometry cre-
ated in the previous surface extraction step, as shown
in Figure 3. Each vertex in the proxy-geometry surface
relates to a specific voxel of the volume. To generate en-
try points, the geometry is rendered with the associated
original voxel positions encoded as vertex colors. These
colors are linearly interpolated over the entire surface
by the graphics hardware. When a volume element is
moved by deformation, the associated vertex is moved
as well. But its color still encodes the original position
of the volume element, while for each fragment in the
entry points image of an undeformed proxy-geometry
the fragment position and the position encoded in the
fragment color are equal.

The depth buffer can be used to retrieve all fragments
with maximum z-value to get exit points and with min-
imum z-value to get entry points. To be able to use
transparency in the volume rendering, a more complex
depth-peeling approach [Eve02] with multiple rendering
passes would have to be incorporated, but this feature is
not required for our use case. After generating entry and
exit points the standard ray-casting process can be used
without any modifications. For an undeformed volume
the visual result is exactly the same as with a simple
cube proxy-geometry.
Shading Ray-casting allows to apply shading to the
rendering by deriving normal vectors from volume gra-
dients. These normals are then used within a local il-
lumination model for each sample along a view ray.
While giving good results for an undeformed volume,
this technique is not applicable after deformation. The
problem is that gradients would have to be recalculated
after each deformation, but this is not possible since the
deformation is applied only implicitly during rendering.
Gradient calculation requires analyzing neighboring vox-
els, but after deformation it is hard to localize a voxel’s
neighbors. When using the old gradients, all deformed
surfaces would be shaded as if they were still located in
their original position which results in shading artifacts.

Consequently, a different shading approach must be
chosen; more specifically an improved normal estima-
tion is necessary. Yagel et al. [Yag92] have analyzed
several image-space algorithms for calculating normals
based on a depth image. An approach using averaged
forward differences reduces sensitivity to noise and dis-
cretization artifacts:

ñi, j =

(
1
N

N

∑
k=1

Pi+k, j−Pi, j

)
×

(
1
N

N

∑
k=1

Pi, j+k−Pi, j

)
,

with ñi, j,Pi, j ∈R3, and where Pi, j is the position of the
fragment at screen coordinates (i, j). As an optimization,
it is decided on a per-fragment basis whether to use gra-
dients or normal estimation. When a ChainMail element
is moved by deformation, this is encoded in the alpha

(a) single (b) L-form (c) U-form (d) cross

Figure 4: Some of the predefined cutting templates.

value of the corresponding vertex in the proxy-geometry,
influencing the alpha value of the resulting EEP frag-
ments and therefore selecting normal calculation in the
ray-casting shader. Figure 9 shows the successive im-
ages created and used during the shading process. Notice
the incorrect normals for the deformed part of the object
in Step 2 in contrast to the correct estimated normals in
Step 4.

5 INTERACTION
In our system, user interaction mainly consists of two
operations: specifying and applying a cut, as well as
deforming the newly cut object. These operations are
usually applied sequentially and can therefore be han-
dled independently during the interaction process.

The common problem is that a three-dimensional
object is transformed, while the user only sees a two-
dimensional projection onto the screen and is using a
two-dimensional input device, i. e., the mouse. In sys-
tems for CAD or 3D modeling, this lack of depth in-
formation is often solved by splitting the screen into
four views, one orthogonal to each principal axis, plus
a three-dimensional view. But this is unsuitable and
unintuitive for a visualization application where only a
single main view is in use.
Cutting As mentioned above, only a small number
of different cuts are actually used in anatomical atlases.
McGuffin [McG03] notes that there is “at least anecdotal
evidence” that anatomists prefer to remove tissue seman-
tically layer by layer, rather than making arbitrary planar
cuts. This claim is supported by our findings described
in Section 3. Therefore the user interface can be sim-
plified by just providing a small set of predefined cuts,
specified by cutting templates, which may be resized
and positioned freely within the scene. These templates
share some resemblance with a cookie cutter, with the
main difference that they do not start cutting as soon as
they touch an object, but only when the user explicitly
initiates the cut. Some of the cutting templates defined
in our system are shown in Figure 4.

An easy way for realizing placement of cutting tem-
plates would be dragging an associated 3D widget for
translation and rotation, as shown in Figure 5 (left).
While this permits unrestricted placement, such a user
interface may get cumbersome as it requires several
changes of perspective to verify the correct position.
Since most often the cutting templates need to be placed
on an object surface, a geometric constraint can simplify
this task. When activated, clicking on the 2D rendering
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of the volume places a cut onto the surface, centered
at the position of the picked voxel. Its orientation is
calculated from the voxel’s gradient, giving a surface
normal. After the initial placement the cutting template
may be dragged and moved to a different position, while
always remaining on the object’s surface. The imple-
mentation of the cut placement requires only two 2D
images as input: a rendering where each pixel encodes
the position of the first non-transparent voxel hit by the
ray, and a similar rendering encoding the voxel’s nor-
malized gradient, i. e., the normal. Both images can be
created simultaneously in a single rendering pass using
OpenGL’s multiple render targets extension, see Figure 9
Step 2 and 3 for an example.

In order to superimpose a cut on a surface, the cutting
template not only has to be placed and oriented correctly,
but also has to be fitted to the shape of the surface. In
the following we only consider two-dimensional cutting
templates consisting of cutting lines which are fitted to
the surface and extruded later on to obtain the desired
three-dimensional cutting template. Usually a cut is de-
termined by several cutting lines on the surface of the
object which meet in a common center point, similar to
spokes of a wheel which meet in its center. First the (pla-
nar) cutting template is positioned on the object’s surface
in such a way that the center point coincides with the
location selected by the user, and then it is oriented ac-
cording to the surface normal at this position. In general
only the common center point of the cutting lines will lie
on the surface, but not the entire cutting line. Since no
neighborhood information can be retrieved directly from
a surface voxel, we use an image-based technique to
map the cutting lines to the surface efficiently, as shown
in Figure 6. For each cutting line its start and end point
is projected to screen space and the next pixel on the line
connecting these two points is sampled. Based on this
sampling the position and the normal of the current pixel
are retrieved and taken into account when reprojecting
the end point. This reprojection is necessary in order to
allow an alignment of the lines along the surface. The
reprojection process is repeated for further pixels until
the length of the 3D polygonal chain formed by the cor-
responding points in voxel space exceeds the length of
the cutting line. The cut is determined by the polygonal
chain constructed during this process.

The line segments forming the polygonal chain are
extruded in the direction opposite to the surface normal
to create the desired 3D cutting template, while the user
controls the amount of extrusion and thereby the cutting
depth. Due to noise in normal calculation for adjacent
surface voxels, multiple normal vectors are averaged to
give the direction for this extrusion. This results in the
final 3D cut which can then be applied to the data.

Deformation The next step after a cut has been applied
is the specification of the desired deformation. A point-
and-drag interface is intuitive and suitable for simple

Figure 5: Placing a cutting template using 3D widgets
(left) and our surface-based placement technique (right).

Figure 6: Surface-based cutting template placement.

deformations such as pulling. For more complex cases
the 2D interface proves unsuitable, as the deformation
has to be performed in multiple steps. After each step the
camera orientation has to be changed in order to check
the deformation achieved so far. This becomes even
more difficult when multiple points have to be dragged
simultaneously. Deformation templates can help to solve
this problem. Similar to cutting templates they can be
moved in the volume specifying a certain type of defor-
mation with several editable parameters. For example, a
deformation template for a flip-open deformation would
be used after a corresponding cutting template has been
applied, with parameters such as the number of inci-
sions, size, and amount of aperture. The deformation
is determined by control points on the object’s surface
which are initially placed close to the center point of
the template, shown in the leftmost image in Figure 10.
When the user specifies the amount of deformation, the
points head in different directions, each moving on a
circle segment, and thus pulling the ChainMail structure
and applying the deformation. This is demonstrated by
the image sequence in Figure 10.

6 RESULTS
In Figure 1 a surface-based cutting template with four
cutting lines was applied to a hand data set before the
skin was deformed using a deformation template. Phong
shading is used for rendering the skin, while the internal
structure with blood vessels is rendered in a second
pass using cel-shading and a different transfer function.
The images from the two passes are merged by taking
into account the calculated depth values for each pixel.
A simpler pulling deformation of the same data set is
depicted in Figure 7. Here the cutting template shown in
Figure 4(a) was manually placed on the object; the cut
was then dilated by pulling on both sides. For Figure 8
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Figure 7: Applying a single cut with manual deforma-
tion using the point-and-drag interface, compared to a
similar hand-drawn illustration (by Howell MediGraph-
ics, http://www.medigraphics.com).

Figure 8: The head of the Visible Human (courtesy
of the United States National Library of Medicine) is
flipped open using a three-way cutting template.

a surface-based cutting template with three cutting lines
was applied to the head of the Visible Human data set,
and then manually deformed.

The hand data set consists of 256× 128× 256 vox-
els, from which a ChainMail structure with 2,710,516
elements was generated. About 4.3% of those elements
lie on the surface, therefore the surface-extraction algo-
rithm generates a proxy-geometry with 693,200 vertices.
The head data set with 2563 voxels resulted in 6,040,852
ChainMail elements, 3.9% on the surface resulting in
1,529,000 vertices. Providing meaningful frame rates
when performing a deformation is difficult, but it is safe
to say that the time needed for deformation depends
linearly on the number of ChainMail elements involved.
For all scenes and deformations shown in this paper
the system stayed responsive and supported smooth in-

teraction. Frame rates for rendering have been mainly
unaffected by the deformation, the hand data set reach-
ing 38 FPS, the head data set 23 FPS, for a rendering
with 512× 512 pixels. All tests were conducted on a
machine with an Intel Core 2 Duo E6300 CPU, 2 GB
of RAM, and an NVIDIA GeForce 7900 GTX graphics
board.

7 CONCLUSION
In this paper, techniques for generating interactive
computer-based medical illustrations have been
introduced, with the focus on interactively applying
deformation to anatomical objects.

The deformation technique developed in this paper
utilizes the 3D ChainMail algorithm to deform a vol-
ume object and renders the result using ray-rasting. It
has been shown that the 3D ChainMail algorithm can
give real-time results for reasonably sized data sets. The
simple yet flexible data structure has proven useful for
applications besides deformation, such as cutting and
surface extraction. Some deformations can make use of
the physically-inspired behavior of the linked volume,
especially pulling, because they are similar to the Chain-
Mail deformations, where a given element is grabbed
and pulled. With adequate data sets, material properties
based on real data can be used to define deformation
constraints for the 3D ChainMail algorithm, exploiting
its support for non-homogeneous material. The advan-
tages of a more realistic physical model (e. g. FEM or
mass-spring systems) could also be evaluated, but a good
balance between realism and interactivity is necessary.
However, it seems that current methods cannot fulfill
these requirements.

Although the focus was on techniques for interactively
performing cuts as well as deformations, a rendering ap-
proach has been presented which applies a deformation
to the proxy-geometry which is used by GPU-based
ray-casting. This technique allows to include the system
into an existing ray-caster, without notable impact on the
overall rendering performance. The implemented simple
surface extraction algorithm is insufficient for surfaces
of objects consisting of only few voxels, e. g., nerves
or skin, nor can the 3D ChainMail algorithm accurately
deform such objects. While the presented rendering
technique allows to interactively change all deforma-
tion parameters, the image quality could be improved.
An improvement would be achieved by resampling the
ChainMail data structure into a new volume data set,
which could be rendered using standard volume ren-
dering techniques. Although this approach would lack
interactivity, it would be suitable for rendering a single
final image after all deformation parameters have been
specified interactively. Finally, the ChainMail algorithm
could be improved to not produce the visible deforma-
tion artifacts due to the rectilinear composition of the
used data structure.
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Figure 9: Shading process with normal estimation.

Figure 10: Applying a deformation template on a cube consisting of 1283 voxels.
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ABSTRACT 

The solution to the camera registration and tracking problem serves Augmented Reality, in order to provide an 
enhancement to the user’s cognitive perception of the real world and his/her situational awareness. By analyzing 
the five most representative tracking and feature detection techniques, we have concluded that the Camera Pose 
Initialization (CPI) problem, a relevant sub-problem in the overall camera tracking problem, is still far from be-
ing solved using straightforward and non-intrusive methods. The assessed techniques often use user inputs (i.e. 
mouse clicking) or auxiliary artifacts (i.e. fiducial markers) to solve the CPI problem. This paper presents a novel 
approach to real-time scale, rotation and luminance invariant natural feature tracking, in order to solve the CPI 
problem using totally automatic procedures. The technique is applicable for the case of planar objects with arbi-
trary topologies and natural textures, and can be used in Augmented Reality. We also present a heuristic method 
for feature clustering, which has revealed to be efficient and reliable. The presented work uses this novel feature 
detection technique as a baseline for a real-time and robust planar texture tracking algorithm, which combines 
optical flow, backprojection and template matching techniques. The paper presents also performance and preci-
sion results of the proposed technique. 

Keywords 
Camera Pose Initialization, Feature Detection and Tracking, Augmented Reality, Texture Tracking, scale invari-
ant, rotation invariant, luminance invariant. 

1. INTRODUCTION 
The Camera Pose Initialization (CPI) problem has 
been a research topic of considerable interest and 
constant growth in the areas of augmented reality and 
automatic panoramic images generation. This issue 
can also be defined as camera calibration problem, 
where the goal is to compute the intrinsic and extrin-
sic parameters of the real camera, aiming object reg-
istration or user tracking applications. There are a 
variety of different methods to accomplish this goal, 
with the first ones being introduced in 1992 by 
Caudel and Mitzell [Cau92]. We can find among 
these tracking methods, techniques based on circular 

or square fiducial markers [Art07], colored objects 
segmentation [Dia04] [Din04] and natural feature 
extraction [Kat03] [Yua06] [Che06]. 

Vision-based tracking systems have been using in-
formation related to the acquisition and identification 
of simple geometric primitives in the scenes, such as 
planes [Sim02] or even a combination of different 
techniques [Mar02]. The proliferation of vision-based 
tracking techniques is due to the fact that they work 
well in real time and are not expensive, since there is 
only one main cost involved: the processor’s cost.  

We propose a novel and automatic approach to the 
CPI problem, based on scale, rotation and luminance 
invariant natural feature extraction and tracking. This 
method operates without the need of any kind of extra 
information, like fiducial markers [Art07] [Kat03], to 
compute the CPI. The feature matching procedure has 
been optimized using a heuristic clustering algorithm, 
which has revealed to be efficient and reliable. 

As a test case for evaluating our proposed feature 
extracting and matching method, we have developed 
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a texture tracking algorithm. Our texture tracking 
algorithm combines known methods such as template 
matching, homography computation, and texture re-
construction by back projection and optical flow 
computation. The algorithm is completely automated 
and produces real-time efficient tracking. 

This paper is organized as follows. After the Intro-
duction of section 1, we present some related work 
(section 2), followed by the presentation of our fea-
ture extraction technique (section 3). In section 4, we 
detail our heuristic feature clustering algorithm and, 
in Section 5, we describe our texture tracking algo-
rithm as a test case for our proposed feature extrac-
tion and matching method. Finally, in section 6, we 
draw some conclusions and describe some future 
work. 

2. RELATED WORK 
We have assessed five representative techniques from 
the literature, which are based on feature tracking and 
that use planar object topologies as in our texture 
tracking test case: [Kat99], [Sim02], [Bue02], 
[Mai02] and [Kat03]. From this assessment, we have 
concluded that the majority of these systems include 
an offline stage to spear processing resource for 
online tracking. Another popular paradigm is the 
need of user assistance to initialize or to preprocess 
the tracking object. The assessed pose extraction 
methods (DLT [Abd71] and POSIT [Dem91]) have 
shown to be quite robust and efficient for real-time 
Augmented Reality applications. In combination with 
these methods, most of the presented systems apply 
the RANSAC [Fis81] algorithm to identify outlier 
features. One of the identified problems in these sys-
tems was the unsuitability of the tracking techniques 
for real-time purposes, since only [Sim02] and 
[Kat03] have proven to work in real-time (more than 
25 fps). The lack of a robust and fast matching tech-
nique invariant to rotation and other affine transfor-
mations was another common identified problem. In 
the presence of shadows, noise or fast rotation cam-
era/object movements the systems tend to fail track-
ing or to induce extreme jitter. Another common 
problem found was the excessive use of binary fidu-
cial markers to accomplish calibration and tracking 
routines, instead of using natural elements in the real-
scene or tracking object. We have concluded from 
this assessment that the CPI problem is still far from 
being solved, unless new real-time CPI methods are 
developed. A solution for the real-time CPI problem 
is the use of scale and rotation invariant features. 

There are a variety of popular methods for scale and 
rotation invariant feature extraction, namely SURF 
[Bay06], SIFT [Low03], and an extension of the 
later, PCA-SIFT [Ke04]. Although these methods 

have proven to be robust and to yield good distinctive 
power, the lack of suitability for a real-time applica-
tion is still an issue. For example, if we use an image 
with a resolution of 800x640 pixels, the faster 
method (SURF) takes 255 milliseconds to compute 
and extract the image features. For a real-time appli-
cation, this computation time is very expensive, since 
we would spend ¼ of a second only for feature ex-
traction, without taking into consideration feature 
matching algorithms. In this work, the challenge was 
to design and develop a robust scale, rotation and 
luminance invariant method for real-time applica-
tions. 

3. FEATURE EXTRACTION 
In this section we will describe our feature extraction 
and matching algorithm. Features are extracted using 
minimum eigen values [Shi94], and are made scale, 
rotation and brightness invariant using straightfor-
ward and real-time computer vision techniques. At 
the end of each section, there will be a report about 
performance results, using a PentiumIV 2.66GHz. 

Minimum Eigen Values (MEV) 
To evaluate the MEV of an image, we convert the 
original image to grayscale, and a block of 3x3 pixels 
is taken at every image position and first derivatives 
are computed using Sobel Operators Ox and Oy for 
convolution: 
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The convolution will result in the first derivative in 
direction of x (Dx) and the first derivative in direction 
of y (Dy). We construct matrix C, where the sum is in 
respect to all components of the 3x3 block: 
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We can solve the Eigen Values for this matrix by 
computing: 

0)(det =− IC λ   (3) 

where I is the identity matrix and λ the column vector 
of Eigen Values. The solutions may be written as: 
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This equation will result in two solutions: λ1 and λ2. 
The minimum λ is called the Minimum Eigen Value 
and must be the one to be taken in consideration ac-
cording to Shi [Shi94]. For numerical stability rea-
sons, we use Singular Value Decomposition (SVD) 
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[Gol93] to solve the equation. We perform feature 
selection by applying a threshold to the resulting 
MEV. For that, we have selected a threshold t value 
of 1% of the global maximum in the current minimum 
eigen values spectrum, and only features that satisfy 
this condition are selected. We can see an example of 
this technique depicted in Figure 1, and a perform-
ance summary in Table 1. 

 
Figure 1. Prague Castle Scene  

(800x600, t=1%, 1243 features). 

 

800x600 640x480 480x360 320x240 

8.506 ms 5.450 ms 2.970 ms 1.469 ms 

Table 1. MEV Computation time varying the in-
put image resolution. 

Scale Invariance 
To make features scale invariant, we rely on a basic 
assumption, that is: every feature has its own intrinsic 
scale factor. Our challenge was to find a mechanism 
that could determine the intrinsic scale factor of a 
feature, based on simple computer vision operations, 
retaining the real-time requirements. If we look at an 
image after applying a Sobel filter (Equation 1), we 
can see that the edge length of the resulting deriva-
tives is directly correlated with the zooming distance 
(see Figure 2).  

 

Figure 2. Edge length of vertical and horizontal 
derivatives, varying zoom distance.  

As the zooming distance gets larger, the thinner the 
derivatives will get and vice-versa. Our goal is to find 
the main edge length of the derivatives to compute an 
intrinsic scale factor. This scale factor will be used to 

determine the intrinsic feature patch dimension. The 
intrinsic feature patch will then be rescaled, in order 
to normalize it and make it scale invariant. 

We start by normalizing the results (giving Nx and Ny) 
of the Sobel operators Ox and Oy (Equation 1) convo-
lution: 
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Where, the min function determines the minimum 
value for the specified patch. These normalized re-
sults (Nx and Ny) are threshold using a value of 0.5, 
resulting in 2 binary images (Bx and By).  For each 
row (in the case of By) and for each column (Bx), we 
find the number of consecutive connected compo-
nents by accumulating the number of occurrences of a 
determined connection value on a 1D edge length 
histogram vector T(B). For Bx we will accumulate 
column connection values in T(B), and for By we will 
accumulate row connection values. The value max(T), 
at vector position v will be the global edge length 
maximum. Instead of using T[v] directly as the intrin-
sic scale factor s, we can smooth the result by apply-
ing a parabolic interpolation, since s will be the local 
maximum: 
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Since other derivatives may appear inside when 
zooming in or zooming out, we only apply this pro-
cedure to a surrounding area of 7x7 pixels of the fea-
ture center.  

 
Figure 3. Scale invariant algorithm. Green dashes 
square: expanded area by s=2.2 (55x55).  Pink 
crosses square: original feature patch (n=25, 
25x25). White square (center): processed area 
(7x7). The right image represents the rescaled fi-
nal patch. 

Finally, assuming these computations are applied to a 
feature F, centered at (xc, yc), with a square size of 
nxn, where n is the starting feature size; instead of 
using this feature area, we will expand it to (n.s)x(n.s) 
around (xc, yc), and rescale it again to nxn. We exem-
plify this procedure in Figure 3. Performance tests 
show that this operation (scale factor computation 
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and rescaling), takes about 0.012 milliseconds per 
feature, since derivatives were already pre-computed 
in the previous step.  

Rotation Invariance 
Assuming the feature’s data is the nxn grayscale im-
age patch (gi) centered at (cx, cy), which is already 
scale invariant, the feature’s information is extracted 
in a rotation invariant manner. For this purpose we 
have designed a function θ(gi) which finds the main 
orientation angle of the feature gi, in the form: 

( ))H(max)( ii gbg =θ   (7) 

In this equation, max corresponds to the function 
which determines the vector index of H(gi) which 
contains the highest value of the orientation of gi, that 
is, the main orientation of feature gi. The H(gi) func-
tion computes the orientation histogram (a vector) of 
a given grayscale feature gi. This histogram vector is 
composed by b elements (b is the total number of 
histogram bins), where each element corresponds to a 
360º/b degrees interval. We can define an indexing 
function κ(gi, x, y) for the histogram vector H(gi) as: 
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The H(gi) histogram vector at index κ(gi , x, y) accu-
mulates in the following manner:  
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After finding θ(gi) – the grayscale patch main orienta-
tion – we create the final rotation invariant feature 
(gr), which can be found by performing a simple off-
centered (cx, cy) 2D rotation of θ (gi) degrees to the gi 
grayscale patch.  

 

Figure 4. Rotation invariant algorithm (Left: gi 
patch (n=25, θθθθ(gi)=288º); Right: gr patch)  

Irrespective to the orientation of feature gi, the feature 
gr, is the version of the original always oriented to-
wards the patch main direction (see Figure 4). Per-
formance tests show that this computation (patch ro-
tation), takes about 0.019 milliseconds per feature, 
with n = 15 (see Table 2). 

n=15 n=25 n=35 n=45 
0.019 ms 0.034 ms 0.061 ms 0.094 ms 

Table 2. Rotated patch computation time, varying 
the patch size. 

Luminance Invariance 
Given two scale and rotation invariant features, fea-
ture matching is accomplished using a template 
matching technique which is luminance invariant 
[Bas05] and uses the invariant image grayscale tem-
plates. This technique uses the image average and 
standard deviation to obtain a normalized cross corre-
lation (NCC) value between features. For two feature 
patches (I and P), we compute their mean value (µI 
and µ P) and their standard deviation (σI and σP), al-
lowing us to find the correlation factor ρ using the 
following equations: 
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A value above 0.7 (70%) is a satisfying correlation 
factor. We use a circular feature mask to improve 
feature correlation matching, since pixels near to the 
centre tend to be more similar than the farther ones. 
This template matching procedure is less sensitive to 
small variations of scaling and rotation. Performance 
tests have show that each template match operation 
time, varying the patch size (n), consumes the follow-
ing processor times: 0.002 ms (n=15), 0.003 ms 
(n=25), 0.005 ms (n=35) and 0.008 ms (n=45). 

4. FEATURE CLUSTERING 
To enable efficient feature matching, the features 
database is organized in clusters, each one aggregat-
ing the corresponding possible features. Our heuristic 
method states that these clusters have a binary identi-
fication value (a kind of simple and efficient feature 
signature), that is obtained by evaluating certain re-
gions of the feature patch in relation to its average. 
By dividing the feature patch into 8 different regions 
(left, right, top, bottom, top-right diagonal, down-left 
diagonal, top-left diagonal and bottom-right diago-
nal), and by comparing these areas’ average pixel 
value with the feature patch global average value, we 
obtain an 8 digit binary result. For each one of these 
areas we obtain a 0 value if the region average is 
smaller than the global average, otherwise we obtain 
a value of 1. For the sake of clarity, we exemplify this 
procedure in Figure 5. 
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Figure 5. Binary identifier creation example. 

(At the top we have the patch that is being clus-
tered; at the bottom we have all 8 regions that 
form the binary identifier) 

When a feature patch is processed and created, this 
evaluation is performed, and this feature is inserted in 
the corresponding cluster using the obtained binary 
identification. When matching a feature, we also 
compute the binary identification of the candidate 
feature, which allow us to only match with potential 
candidates instead of matching with all features in the 
database. Performance tests have shown that this al-
gorithm can reduce to ~10% the number of possible 
matching operations. In the Prague Castle Scene 
(Figure 1), in some clusters, the number of matches 
per feature is reduced from 1243 to 73. The average 
consumed time per match was also reduced to 12.8%.  

Accuracy Results 
In this section we present some accuracy results in 
what concerns the variation of luminance, scaling and 
rotation. For these testes we have used a determined 
image as a basis for (see Figure 6). The luminance 
test consists in changing the global image luminance 
by a determined percentage value (see Chart 1). The 
scaling test relies on an isotropic rescaling of the 
original image, also by a percentage value (see Chart 
2). Finally, the rotation test consists on applying a 
rotation transformation to the original image, using 
steps of 30º (see Chart 3). In each test, the “full 
matches” group indicates the percentage of success-
fully matched features at a given instance. The “out-
liers” group indicates the percentage of false matches 

in the given “full matches” group. We can see an ex-
ample depicted in Figure 6. 
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Chart 1. Luminance Test. 
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Chart 2. Scaling Test. 
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Chart 3. Rotation Test. 

 

 
Figure 6. Accuracy test scenario 
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In Figure 6 the top image is the Prague Castle Scene 
(800x600, n=15, t=1%, 1243 features), and the bot-
tom image is a version of the first (scale=25%, lumi-
nance=-30%, rotation = 240º, 740 features). The re-
sults for this test were: 25.33% of full matches (187 
features) and 7.72% of outliers (14 features).  

Performance Results 
Some performance tests were made using the Prague 
Castle Scene, varying the resolution size. These tests 
consist in extracting features and matching them 
against each other, using n=15, t=1% and assuming a 
clustering matching reduction of ~10% (see Table 3). 
 

Resolution Features 
Extraction 

(ms) 
Matching 

(ms) 
Total 

320x240 285 10.30 16.25 26.55 
(38 fps) 

480x360 523 19.18 54.71 73.89 
(14 fps) 

640x480 818 30.81 133.82 164.63 
(6 fps) 

800x600 1243 47.04 309.01 356.05 
(3 fps) 

Table 3. Performance Test Results (t=1%, n=15, 
clustering matching reduction of ~10%). 

In order to maintain real-time performance (25 fps) 
for all the presented resolutions, one must adapt the 
threshold extraction factor t, reducing the number of 
features (see Chart 4). 
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Chart 4. Minimum Threshold (t) required for 
each resolution to work in real-time (25 fps). 

5. TEST CASE - TEXTURE TRACK-
ING 
As a test case for our novel natural feature detection 
technique, we have chosen the texture tracking para-
digm, integrated in a real-time augmented reality 
(AR) application. We’ve chosen this test case since 
we have been developing new AR tracking methods 
since 2003, and already have a stable AR texture 
tracking system [Bas05]. The only constraint in the 
previous system was the need of black contours sur-
rounding the texture to track, in order to compute the 
CPI. This test case is an advance of our previous 

work, since with this novel technique there is no need 
for the use of black contours. Our hardware setup is 
straightforward: a Webcam (320x240) connected to a 
PentiumIV (2.66GHz). We have knowledge about the 
camera intrinsic parameters, since it was previously 
calibrated using popular methods [Zha99]. The sys-
tem process flow starts at an offline stage, where the 
planar texture image is preprocessed so that all natu-
ral features can be extracted using our proposed 
method. The algorithmic process is divided in two 
stages: Camera Pose Initialization and Feature Track-
ing. In the second stage, to increase performance, we 
use the previous texture pose to derive the current 
pose, based on optical flow and back projection tech-
niques. 

Stage 1 - Camera Pose Initialization 
The CPI main goal is to find the first texture’s pose, 
so that subsequent poses can be derived using the 
method proposed on the next stage. We apply our 
feature extraction and matching techniques at each 
camera frame, using the preprocessed texture image 
as baseline for comparison (Figure 8 – Left). We 
have chosen the RANSAC [Fis81] algorithm to iden-
tify outliers and the Direct Linear Transform (DLT) 
[Abd71] method to compute the planar object pose 
(6DOF – rotation & translation). Subsequently, we 
minimize the reprojection error, to refine the resulting 
pose, using a Gradient Descent (GD) technique 
[Brak04]. It is assumed that at the end of this stage, 
we have a camera pose. 

Stage 2 - Feature Tracking 
The feature tracking stage’s main goal is to derive the 
current texture pose, using previous information, 
namely the number of previous features detected and 
tracked, and the previous texture pose. This stage 
relies on the assumption that the previous pose is a 
“good pose”, and that we can back project the texture 
so that more features can be found and matched. The 
main problem of this assumption is that when large 
camera displacements are performed, the previous 
pose is not a “good pose” for applying the back pro-
jection technique, since the resulting image will be 
completely displaced.  

Optical Flow 
To overcome the displacement problem, we use an 
optical flow technique [Bou99], and apply it to the 
previous tracked features. The optical flow computes 
the current feature position based on the previous 
one, using the current and previous tracking images 
(see Figure 7).  The feature matches must be refined 
to discard outliers. We use the RANSAC algorithm to 
identify these false matches, and compute the correct 
pose for the current image (DLT/GD). With the use 
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of the RANSAC algorithm a new problem arises: we 
run out of features.  We must collect new features for 
the next pose computation – feature tracking stage.  

 

Figure 7. Virtual object registration with optical 
flow overlay. The bottom right image corresponds 
to the current back projected image. 

Texture Backprojection 
The texture backprojection [Bas05] consists in un-
rolling the texture’s perspective distortion at a given 
frame, resulting in an untransformed and similar im-
age to the one that was preprocessed in the offline 
stage. For that we use the correct pose information 
for the current image, apply the inverse transforma-
tion of common projective geometry concepts (see 
Figure 8). Since the back projected image is placed in 
a similar form as the base texture image, we can tem-
plate match all the remaining valid features in a 2D 
untransformed space. By projecting the found feature 
positions using the correct pose information and the 
intrinsic camera parameters, we will obtain the 2D 
position for each feature match in the camera image 
subspace. The positive matches will be refined again 
(RANSAC) and a new refined pose will be computed 
(DLT/GD). More information can be found at 
[Bas05]. 

  

Figure 8. Left: base texture image (Copyright So-
lutions by Heart); Right: back projected image. 

Feature Matching 
Here we introduce a novel concept for feature match-
ing, assuming we have two similar images that may 
differ in small pixel displacements (base texture im-
age and back projected image), and using our previ-
ous proposed template matching metric. Our pro-
posed method consists in finding a local maximum, in 

a determined sub-region. Having a key template Tk 
centred at (xk, yk) covering a 15x15 area of the origi-
nal template image, and a search region also centred 
at (xk, yk) covering a 25x25 area of the back projected 
image, we can define the search algorithm for each 
feature in the following steps: 

1. Define (xs, ys) as the centre position of the search 
template Ts extracted from the backprojected image, 
starting with the values of (xk,yk).  

2. Define θx and θy as offsets of the current search 
template centre, starting each one with a 0 value. 

3. Template match Tk (xk, yk) with Ts (xs+θx, y+θy), 
varying θx and θy from -1 to 1, giving 9 possible cen-
tre positions (e.g. (xs-1, ys-1), (xs, ys-1), (xs+1, ys-1) … 
(xs+1, ys+1)). 

4. Find the θx and θy that maximizes the matching 
function for the 9 possible centre positions. 

5. If the found θx and θy are both different from 0, 
then we update the current (xs, ys) with the θx and θy 
which maximize the matching function. We now have 
xs=xs+θx and ys=ys+θy. The algorithm starts back 
from point 3, using the correct updated values, unless 
xs or ys have invalid values, since they are restricted 
to the limits constrained by the search region. In the 
latter case, the result will be the current xs and ys be-
fore the update process. 

6. If the found xs and ys are both equal to 0, then the 
Ts which maximizes the matching function is centred 
at the current (xs, ys). We have found the possible 2D 
corresponding position of (xk, yk) in the backprojected 
image. We illustrate this procedure in Figure 7. 

 

Figure 9. Various steps of the search algorithm 
and the final result (pink/brighter square). 

Accuracy and Performance Results 
We have developed an original technique to generate 
synthetic video evaluation sets. In the general case, 
these evaluation test sets were based on the textured 
3D planar object pose simulation, subject to transla-
tion and rotation DOF, much like the ones that occur 
when using the system with a HMD. This stream is 
then used to feed our texture tracking system, so that 
the obtained camera poses can be mathematically 
compared with the known simulated poses of the tex-
ture plane. The accuracy tests have shown that our 
algorithm has an average error of: 1.45 mm for trans-
lation, 0.76 degrees for rotation and 2.64 pixels for 
reprojection. In what concerns performance, the sys-
tem operates at ~35 fps at the CPI stage and at ~60 
fps at the feature tracking stage. 
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6. CONCLUSION AND FUTURE 
WORK 
We have proposed a novel approach to real-time 
scale, rotation and luminance invariant natural feature 
tracking, in order to solve the CPI problem using 
totally automatic and real-time procedures. We have 
also proposed a heuristic method for feature cluster-
ing, which can reduce the number of feature matching 
operation to ~10%. We presented a real-time aug-
mented reality texture tracking algorithm which uses 
this novel feature detection technique as a baseline 
and a new approach to feature matching by local 
maximum. This algorithm has millimetric and sub-
degree precision, as has been stated by our accuracy 
tests. However, our tests have shown that our tech-
nique is still very sensitive to features at different 
scales and some degrees of rotation. We don’t find 
this fact preoccupying since we are aware that most 
of the error has its origin on the bilinear interpolation 
filter we’ve used when creating the tests images, 
which have altered the strength of the image’s deriva-
tives. As future work we intend to compare our tech-
nique with other “de facto” algorithms (SIFT, SURF, 
PCA-SIFT) and to enable general 3D object tracking 
using 3D reconstruction and model based tracking 
techniques, using our technique as the main core. 
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ABSTRACT

Current commercial and freely available grabbing libraries are tightly coupled to operating systems and/or imaging hardware.
Moreover, they usually do not support any kind of distributed camera-systems. This forces developers to either reimplement
significant parts of the application or to come up with elaborate abstraction for the grabbing, should the underlying operating
system, hardware (e.g. changing from analog PAL sources to IIDC cameras) or distribution model (e.g. adding remote intel-
ligent cameras, which are capable of image processing themselves) change. In this paper we describe ‘libugrab’, a versatile
grabbing library designed to provide a flexible abstraction of the grabbing process. The main advantages of ‘libugrab’ over sim-
ilar libraries are the following: open source license, cross-platform availability, network transparency, support for both push and
pull grabbing models, built-in support for image-processing via callbacks. The design especially facilitates rapid prototyping
of distributed vision systems, which we demonstrate by several examples.

Keywords: image processing, middleware, grabbing, intelligent cameras

1 MOTIVATION
Applications that do image processing vary consider-
ably with respect to the complexity of the software logic
they need to acquire data from their imaging sources.
Depending on whether a system has to do offline or
real-time (RT) processing, whether it is monocular or
multiview or whether it uses a single computer or com-
putation is distributed among several nodes, the associ-
ated implementation efforts vary heavily.

1.1 Offline monocular systems
If online processing is not required and the system is
monocular, the software infrastructure can be held sim-
ple: a standalone application records a video-file, which
is later read by an actual processing program. Conve-
niently, the recording application might be built-in in
the used operating-system or comes with the purchased
camera. A skeleton-code for an application that loads
the images from the recorded file and makes them avail-
able for processing can be implemented once and easily
reused for different algorithms. This allows researchers
to concentrate on the vital task at hand: developing the
actual image processing algorithm. Examples for sys-
tems that can be developed this way are computation-
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that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech Republic.

ally expensive image segmentation or object recogni-
tion methods.

1.2 Offline multiview systems
Even if only the monocular requirement is changed
to multiview, the software infrastructure can get con-
siderably more complex. Although the complexity of
boilerplate-code for multi-source offline processing is
basically the same as for the monocular counterpart
(and all the benefits described above still hold), this
is not necessarily true for the image acquisition phase.
This is due to the fact that the grabbed images usually
have to be synchronized. Depending on the imaging
source used, this can be done in hardware (e.g. gen-
lock) or in software (e.g. adding timestamps to frames
and selecting close ones later). Multiview algorithms
benefit from using a higher number of cameras and re-
searchers normally would like to experiment with dif-
ferent camera placements and numbers. This can lead
to two acquisition difficulties: first, different off-the-
shelf cameras might have different framerates and sec-
ond, the desired number of cameras might prohibit the
use of a single computer, due to harddisk and/or PCI-
bus bandwidth limitations. In the latter case, the grab-
bing application should be written network-aware and
relatively high-precision synchronization of the clocks
of the involved computers is also necessary.

1.3 Online multiview systems
Among other research areas, the currently emerging
field of markerless computer vision based Human-
Computer-Interaction (HCI, for more details see e.g.
[EBN+07]) also necessitate online processing on
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behalf of the image processing system. Interaction
essentially does not lend itself to offline solution:
“offline interaction” is contradictory in itself. As
immersive user-experience is decisive regarding the
acceptance or refusal of such applications, the RT
aspects of such systems are accentuated, requiring “as-
fast-as-possible” implementations in order to minimize
latency between user action and system reaction. As
methods aiming for success should live up to the RT
expectations, often the need arises for multi-threading
and/or distributed processing among different com-
puting nodes (e.g. PCs or smart cameras). Moreover,
though “offline interaction” does not exist, in order to
make repeatable experiments and algorithm analysis
possible, implemented systems should preferably also
be able to process previously recorded inputs.

1.4 Implementation issues
As both offline monocular and multiview systems can
be treated as subsets of online multiview systems, such
a system can also be used for offline processing. Creat-
ing an application framework, which is flexible enough
to easily adapt to changes in the number of cameras,
threads and computing nodes, is a formidable soft-
ware engineering challenge. During research phase,
work is being focused on algorithm development and
quickly creating a working prototype. As scalability
and adaptability tend to be secondary issues, they can
be traded for RT performance, resulting in research pro-
totypes that are usually custom made solutions to given
imaging hardware and node distribution. This hinders
future research, because experimenting with different
algorithms or distribution models requires the time-
consuming rewrite of significant components of the sys-
tem. The components that have to be reimplemented or
modified are responsible for interfacing with the used
camera device drivers, thread management, synchro-
nization and network communication. Also, if a totally
new system is created from scratch, such components
have to be written once again or previous ones have to
be customized for the new system setup.

1.5 libugrab
If the system components mentioned above were avail-
able and could easily be combined programatically with
each other to form a basis for complex solutions, re-
search and prototyping could solely focus on high-level
issues like algorithm selection and development, in-
stead of also committing resources to low-level imple-
mentation aspects that are scientifically irrelevant, but
must be taken care of.

This fact was our main motivation to develop the
‘libugrab’ C++ grabbing framework. The library can
be used as a basis for creating online multiview sys-
tems. The framework was designed with flexibility in

mind in order to provide easy ways to carry out the fol-
lowing tasks that frequently occur during vision system
development:

• adding or removing computing nodes to/from the
system (in order to cope with computational com-
plexity via load-balancing – processing power is in-
expensive),

• change of camera types (e.g. camcorder to DCAM),

• adding or removing of cameras to/from the nodes
(off-the-shelf imaging HW is inexpensive),

• separating low-level image preprocessing into
background threads from the high-level processing
thread (in order to better exploit multi-core CPUs)

• notifying the main processing thread of data-arrival
after preprocessing via events (without the need for
polling),

• changing preprocessing algorithm (e.g. color seg-
mentation to background subtraction),

• conversion of raw camera data to low-level process-
ing input type (e.g. bayer to RGB),

• recording from multiple sources,

• changing from camera input to prerecorded data,

• sensor fusion.

The library handles widely used imaging sources
(e.g. camcorders or webcams) and videoformats, as
well as several format conversions out-of-the-box.
Moreover, the user can register her own custom
sources/converters, which can be used by the system
like its built-in components. Extra care has been taken
to make the library “unintrusive”: to minimize the
amount of user code required to take full advantage
of ‘libugrab’, allowing researchers to concentrate on
algorithm design and implementation.

2 RELATED WORK
There are an abundance of optical motion capture
systems commercially available (e.g. [Sys07]), along
with marker-based tracking products for HCI (e.g.
[Gmb07]). These systems offer turnkey solutions for
the specific task by realizing online multiview systems.
They have a modular design, therefore the observed
area or accuracy can easily be enlarged simply by
adding more cameras and possibly processing nodes
to the system. Their drawback from our point of view
is that they are closed systems designed specifically
to provide a RT solution for the visual marker-based
tracking problem, often coupled with near-infrared
imaging. Although e.g. [Sys07] has products to
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capture multi-camera streams for offline processing,
the camera images are not available online to the user,
thus, it is not possible to experiment with custom
processing algorithm chains. Therefore, these systems
are not capable of realizing general multi-camera
online systems. Another downside is that although
low cost high-performance computing power and
off-the-shelf imaging hardware becomes more and
more available, commercial solutions tend to utilize
their own proprietary HW.

‘OpenCV’ [Lib07] provides portable functionality
to capture from different video sources connected
to one computer. This grabbing interface, however,
supports only pull-access (polling the sources) and
does not directly makes multithreaded background
or network transparent processing possible. ‘unicap’
[uni07] is an extensible C-library for UNIX-like OS-s
providing a uniform interface for various imaging
devices. Although it is possible to register a callback
for arriving data, which is called in the background, the
user has to take care of thread synchronization and data
passing between the background and main processing
threads or any kind of network transparent operation.

Multimedia Frameworks (MMF, e.g. GStreamer
[GSt07] or DirectShow [Dir07], among numerous
others) are media-streaming architectures, designed to
handle media on a computer, usually also in a network
transparent way. Multimedia data passes through a so
called rendering- or filter-graph through filter nodes
from the source to the sink. During e.g. playback, the
source is a movie file that will be demultiplexed and
decoded to video and audio data in the filters and finally
rendered in the video and audio sinks. A similar setup
can realize also to grab from an image source to the
harddisk. Network transparency is achieved by sources
that can read media data from the network and sinks
that can write to the network. The ‘NMM’ presented
in [Loh05] allows even more advanced cross-network
operation, enabling the nodes of the filter-graph to
transparently be instantiated on different computing
nodes.

MMFs realize graph dataflow processing in separate
threads and an arbitrary number of custom filter nodes
can be inserted along the processing path, thus general
vision algorithms can be implemented. As MMFs were
designed to record or playback from a single source,
achieving such goals programatically can be solved
only with a few lines of code. Building a custom pro-
cessing graph with proper error checking from scratch,
however, requires significantly more coding effort. It
is even more problematic to have more than one source
in the graph (which is, however, required for multiview
systems), because synchronization of different source
paths with each other and possibly with the main thread
has to be taken care of manually within the given frame-
work. Furthermore, as the main purpose of MMFs is

to “sink” the data to the screen (or harddisk), getting
the processed data out of the graph can also be prob-
lematic. These facts, unfortunately, mean that low-level
software aspects of algorithm implementation will have
increased importance and have to be mixed up with
“pure” algorithm implementation – [Wim05], for exam-
ple, deals with the problem of implementing a stereo-
scopic player and multiplexer within Microsoft’s Di-
rectShow framework.

MMFs can be considered as a subset of Synchronous
Data Flow (SDF) systems, with a specialized scope
for multimedia processing. SDF is a special case of
data flow in which the number of data samples pro-
cessed by each node (filter) on each invocation is spec-
ified a priori [LM87]. SDF graph programming en-
vironments are widely used for DSP and FPGA pro-
gramming and special extensions have been proposed
in [SK02] for problems encountered in RT vision. SAI
[Fra04] enhances data flow stream processing into a
hybrid (shared memory and message passing) design
framework for distributed asynchronous parallel com-
putation targeted to realize “Immersipresence” appli-
cations. Example vision applications using the SAI
paradigm clearly demonstrate that image processing
enormously benefits from parallel processing and that
multithreading is not an option, but a “must have”.
The main difference between ‘libugrab’ and the SAI
programming paradigm is that while SAI is a design
methodology for whole applications, based on a data
flow-like code execution model, ‘libugrab’ serves as
fast algorithm prototyping tool retaining scalability at
the code “near” to the imaging hardware.

Finally, distributed system frameworks (DSFs)
should also be mentioned. The purpose of DSFs is
to make it possible to implement algorithms or appli-
cations distributed on a network, utilizing resources
wherever they are available. Resources in this context
are interpreted in a broad sense, meaning not only HW
objects, but software entities implemented on a specific
network node, too. There are a large number of such
frameworks available and it is impossible to review
even a fair portion of them here, for an overview over
DSF programming models and middleware we refer
to [BCP07]. CORBA [COR07], for example, is an
object-oriented middleware and lets programmers in-
stantiate and use objects in a network transparent way.
Such general frameworks can be used to implement
e.g. MMFs; this is the case with DirectShow, which is
based on COM [Tec07].

3 DESIGN RATIONALE
The data flow paradigm can naturally be used to
describe stream-oriented image processing systems,
therefore it forms the basis for ‘libugrab’. In order
to allow the construction of the grabbing graph with
minimal programmer interaction, we have to limit the
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possible data flow graph structure. In the following we
derive the graph configurations allowed by the system,
that are complex enough to model the vision pipeline of
a large number of classes of online multiview systems
and at the same time simple enough to facilitate
automatic graph construction.

3.1 An effective multithreaded applica-
tion setup

Let us consider a simple monocular handtracking
system that could be used as a simple alternative
mouse-like input device. The input is read from a
DV-camcorder, which observes the user’s hand from
above. Low-level processing consists of decompress-
ing the DV frames to grayscale images and subtracting
the background in order to get a binary mask of the
user’s hand. A high-level processing step follows
that determines the 2D-position and gesture of the
hand based on the hand-mask. A naïve sequential
implementation of such a system is depicted in Figure
1.

Figure 1: A naïve sequential main loop implementa-
tion of a simple mouse-like visual interface. THW is the
time needed to get the DV-frame from the camcorder
to main memory and TLL is the duration of the low-level
processing.

There are two problems with such an implementa-
tion. First, one theoretically has to wait THW time for
the next raw frame (wait until the start of the next full
frame and then wait until that frame arrives). Second,
TLL delay happens before high-level processing can take
place, as the raw frame has to be converted to some ap-
propriate format for the actual low-level processing and
then the low-level processing still has to be carried out.
This results in at least THW +TLL lag for the user. Fortu-
nately, in the case of push-sources (like camcorders or
DCAMs in isochronous mode) THW can be neglected,
as the OS device drivers adapt to the nature of the imag-
ing source and buffer the raw frames. TLL, however, re-
mains, though clearly could be drastically reduced or
even eliminated on modern multi-core systems, simply
by doing the low-level processing in a second thread.

A subtle additional problem is that if we would like
to update our example system to multiview, e.g. to tri-
angulate the position of both hands to allow 3D inter-
action, the individual THW + TLL lags are additive, see
Figure 2.

Figure 2: In the case of a multiview system the THW +
TLL individual lags are additive.

Naturally, the solution to these problems is to create
a separate grabbing thread for each source. These grab-
bing threads should carry out the low-level processing
and store their results in buffers. The high-level algo-
rithm runs in its separate thread and accesses the pre-
processed data in a thread safe way, c.f. Figure 3. This
setup has the extra benefit that it fits the operation mode
of push-sources and does low-level processing on de-
mand as the data arrives. It is clear that efficient mul-
tiview systems all have such a setup, thus the creation
of such systems should be possible applying the same
pattern.

Figure 3: Efficient multithreaded setup of a vision sys-
tem. The thick arrows represent the high-level thread
that takes input data from the low-level threads.

Vision systems should solve the given computer vi-
sion problem they were designed for. Implementing a
multithreaded setup for an online system plays an im-
portant role in this task. In the following we will exam-
ine what parts of the full solution should come neces-
sarily from the problem domain addressed by the sys-
tem and what tasks are common enough to be abstracted
away into a library that allows for the automation of set-
ting up the systems described above.

3.2 Changes in the low-level thread
Let us examine what happens if we change different al-
gorithmic aspects of a low-level processing thread. We
will do this by modifying the initial setup of the 2D
mouse-like interface example described previously.
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First, suppose that the camcorder is changed to a
bayer format DCAM, in order to gain higher resolu-
tion and framerate. This change does not have any
influence on the grayscale background subtraction
step. The camcorder and the DCAM, however, have
fundamentally different raw frame formats, thus
the “raw-to-algorithm-input” conversion has to be
reimplemented. On the other hand, if we change the
background subtraction to skin-color segmentation in
HSV-space, both the “raw-to-algorithm-input” and the
actual mask-generation algorithm have to be recoded.
These problematic algorithm parts are illustrated in
Figure 4.

Figure 4: Modifying the low-level thread. Changes in
the source and the processing algorithm lead to differ-
ent reimplementation issues; reimplementing the con-
version code, however, is necessary in both cases.

It follows from the above facts that conversion from
raw source data to the appropriate low-level algorithm
input can be implemented independently both from the
type of the source and the actual low-level algorithm.
As long as the source and algorithm use a common
specification (that of the library) to specify their out-
put and input, conversion code can be automatically
selected and provided by the library. Moreover, in-
terfacing to different sources is also independent from
the processing code, therefore code to handle different
sources should also be reused.

Figure 5: Different uses of the results of the low-level
thread. They are all independent of actually what kind
of processing was carried out in the low-level box.

As shown in Figure 5, there are several possible ways
to further process the results of the 3 stages of the low-
level thread. It should be noted, however, that if the size
(width, height, padding) and the endianness of the result
are known, any of these additional processing possibili-
ties can be abstracted away by a “sink” (it is not exactly
true for OpenGL sinks, but if the types are assumed to

be known a priori before operation, this problem can be
taken care of during sink initialization). Thus, different
sink functionality can also be accumulated in the library
and reused.

In accordance with the above discussion the final
low-level thread can be decomposed into 4 steps as il-
lustrated in Figure 6. This decomposition scheme has
several benefits:

• because of the fixed size of the graph nodes, such a
graph can be created automatically by a framework
if the source, low-level algorithm and the sink are
given,

• as sources and sinks are automatically provided, the
relevant work can focus in implementing the low-
level algorithm,

• such a framework does not necessarily have to be
used with imaging sources and thus, for image pro-
cessing.

Figure 6: Final decomposition of the low-level thread.
All but the low-level box should be provided by the li-
brary.

An important aspect not addressed by the scheme of
the several 4-stage low-level and one high-level threads
is data multiplexing. Disparity maps, for example,
could be computed in the background from two images
rectified in low-level threads, before actually reaching
high-level processing. As in the design discussed so far
the low-level threads are independent from each other,
this is not possible. To alleviate this problem, multi-
plexers (see Figure 7) should also be provided by the
library. As multiplexers have sinks, they can be cas-
caded arbitrarily.

Figure 7: Multiplexing several low-level stubs with ring-
buffer sinks (stubs are the subgraph composed of the
source, converter and low-level processor nodes of the
low-level thread).

3.3 Rationale summary
‘libugrab’ uses a two-stage model for per node process-
ing: there is a low-level and a high-level stage. Low-
level processing is driven by the capturing device run-
ning in its own thread. Any algorithm that is used in
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Figure 8: A relatively complex 3D reconstruction system easily realizable by ‘libugrab’.

the low-level stage is assumed to be fast enough to be
executed between successive frames. The high-level
stage depends on one or more low-level preprocessing
results and is carried out when necessary data arrives.
Low-level output can be used directly by the high-level
stage or multiplexers can be employed as an additional
intermediate step to combine several low-level results
for high-level processing. The multiplexing and the
high-level step are detached from the low-level threads
through the use of buffers, consequently there are no
assumptions made about its execution time. Network-
transparency is achieved similarly to MMFs by allow-
ing (possibly multiplexer) sinks to write to the network
and sources to read from the network. Data stream-
ing directly supported by ‘libugrab’ is downstream:
from the imaging sources to final high-level processing
thread, where some relevant result should be computed.
An example for a relatively complex system that is eas-
ily realizable is depicted in Figure 8.

4 IMPLEMENTATION DETAILS
In the following we describe some parts of the library
to provide better insight into its internal workings.

4.1 Type system
Types build the fundamentals for automatic graph
building. Determining whether two graph nodes can be
connected is based on checking their output and input
types. Types are stored in the type registry, in distinct
“type-trees”. Type-trees are a hierarchical collection of
connected types. Two types can be equivalent, have a
subtype relationship between them or no relationship
at all. Leaf elements in the type-trees are actual types,
other elements are general types. In a created graph all
input and output types should be leaf-types. In order to
allow users to implement their own sources with output

Figure 9: Example of “type-trees” in the type registry.

types not included in the library, custom types can be
added to the registry. The relationship of some built-in
types is shown in Figure 9.

4.2 Automatic graph building
Maybe the most important feature of ‘libugrab’ is the
automatic graph-building. In contrast to other systems,
the structure of realizable graphs is restricted, this, how-
ever allows automatic creation of low-level subgraphs
with one function call. A graph can hold any number
of subgraphs, the multiplexers with their sinks count as
subgraphs in this regard, too.

In order to create a subgraph (without multi-
plexer output) the user must specify the source,
the low-level processing algorithm and the sink.
Sources are specified by string, for example
‘PUSH1394_00097eff51200083’ refers to our firewire
bayer DCAM with GUID ‘00097eff51200083’ and
‘/dev/v4l/video0’ to a connected webcam. This means
that by changing the source string literal (possibly by
taking it from the command-line) one can easily use
different sources for processing.

The essence of the subgraph is the processing al-
gorithm. This is the only important piece that the
user has to provide. It can simply be done by inher-
iting from the Callback or Inplace_callback
classes. The callback should specify its input type along
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with the desired storage properties: alignment of the in-
put data pointer and row padding. These two parame-
ters are needed, since special processing implementa-
tions, e.g. using SSE2 instructions cannot work with
arbitrary alignment and padding. When there is no need
for callback processing in the subgraph, the user should
simply specify needed type and storage properties.

Finally, a sink must be specified. Either the user in-
stantiates one implemented in ‘libugrab’ or can sublass
Memory_sink or Nonmemory_sink to provide her
own. These two types of sinks are distinguished in or-
der to allow “optimal” subgraph building without extra
buffering between the nodes. A memory sink (e.g. a
ringbuffer) provides its own data area where it requires
the result of processing to be placed, in contrast to e.g.
a sink that can flush its input to network on the fly.

The library maintains a registry of source factories,
which are all queried whether they can create an in-
stance based on the source ID string. If one is found,
it is used to create the source. The source gets the re-
quired processing input as a hint. If possible, it can
obey this request, however, it does not have to. If the
source does not provide the requested type, a converter
is created with the help of the converter factories. The
user can register her own sources or converters that
will be automatically picked up by the subgraph cre-
ation process. Finally, the callback (if any) and the sink
are initialized and the subgraph is ready for process-
ing. Subgraphs connected to a multiplexer can be sim-
ilarly created by delayed initialization of the subgraph
stubs. For example, to create all the low-level graphs on
‘NODE 4’ in Figure 8 the user has to make 4 function
calls: 3 times adding the appropriate stubs with the net-
work sources and finally adding the multiplexer with its
sink.

4.3 Getting data out of the graph
Until now, we have created all the subgraph process-
ing threads. The main thread depending on the back-
ground threads still has to be notified about the fact
that data has arrived for processing. In order to al-
low this, the subgraph nodes can specify signals (based
on condition variables to avoid missed signals), which
can be subscribed to by another (usually the main)
thread. Using these signals and a special helper class
(the Signal_multiplexer) the thread in question
can wait for any, a subset or for all subthreads to pro-
duce data. In order to avoid the starvation of slower
sources, the Signal_multiplexer checks for ar-
rived signals in a Round Robin fashion. Please note,
that this signaling scheme allows for not only waiting
for new data, but any “interesting” event: e.g. the end of
the learning phase of background subtraction or frame-
drop.

There is a special signal, the graph error signal, which
must be subscribed to if any other signal of the graph is

subscribed to. This is enforced in order avoid deadlocks
if the thread listened to does not produce data any more
for some reason.

4.4 Error handling
As mentioned above, every graph has an error signal. It
must be signaled by any subgraphs of the graph if an
error occurs. This way, the graph can stop all of its sub-
graphs in an exceptional case. If a graph is spanning
multiple computing nodes, the error condition is propa-
gated through the network on special “service” sockets
created by the involved network sinks and sources.

4.5 Pull sources – offline processing
As previously argued, it is very useful for algorithm de-
bugging or evaluation purposes to be able to process
prerecorded input. The user can specify video-files, di-
rectories with images, etc. as sources for this purpose –
simply by changing the source ID string. In this case, a
special two-threaded pull-source is created that pumps
data into the graph. One thread reads the next data
chunk, the other pushes the data down the subgraph.
Framedrop is avoided by suspending the reader thread
until the sink of the subgraph finishes processing.

5 EXAMPLES
The first example application of the system was to
implement multi-node/multi-source grabbing based on
‘libugrab’. Actually the main implementation effort
was to create a special writer multiplexer. This special
writer multiplexer allocates as large ringbuffers for the
local sources as possible and simply writes the arriving
frames with their timestamps (timestamps are created in
the sources for the data coming from the devices) into a
common file. After recording, frames with the smallest
time difference are merged across the network from the
common files into streams that have the same number
of frames. This was implemented as an extra function
(that is why we have created an extra application for it),
could have been done theoretically in the sink destruc-
tors, though. In order for this simple scheme to work,
we had to synchronize the clocks on our local network.
This has been done by ‘ntpd’, as suggested in [Loh05].

We used our library to implement both the 2D and
3D interaction systems mentioned in the Design Ra-
tionale with near-infrared background subtraction and
skincolor segmentation, too. ‘libugrab’ was also used
to create a 3-view model-based handtracking system
based on adaptive color segmentation. The segmenta-
tion was implemented as a callback and the skincolor
distribution was updated based on the registered hand-
model area in the camera images. As the model based
registration was not as fast the grabbing sources, this
update had to be asynchronously injected into the sub-
graph threads. Though ‘libugrab’ does not support up-
stream data out-of-the-box, the update was safely real-
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ized by using mutexes for the distribution access in the
implemented callback.

We have found the greatest use of the library dur-
ing the development of our RT markerless handtrack-
ing system ([SKSK07]). The first prototype setup con-
sisted of 3 cameras with preprocessing on 3 Linux PCs
and a master Windows PC carrying out the high-level
algorithm. Later, when we optimized both low- and the
high-level processing, we were able to migrate the sys-
tem seamlessly to a single Windows computer thanks
to ‘libugrab’.

Finally, we also used the library to implement a toy
surveillance system that consisted of 5 PCs in 5 rooms
and a master PC. Background subtraction was used
to detect whether someone was present in any of the
rooms. The slave PCs sent just a boolean value to mas-
ter, simulating programmable TCP cameras.

6 CONCLUSIONS AND FUTURE
WORK

We introduced the design and implementation of ‘libu-
grab’, a versatile grabbing library. The main design
goals were efficiency and to allow researches to concen-
trate on the scientifically significant parts of algorithm
development. We demonstrated with several examples
the ease-of-use of our library.

We plan to release the full library under BSD-
license in the near future (apart from the code that uses
GPL/LGPL licensing). In order to be able to do this, the
most important task is to create better documentation.
Releasing the library would also allow for anyone to
participate in the development effort and contribute new
ideas. Please visit our website at ‘http://cg.cs.
uni-bonn.de/project-pages/libugrab/’.

We have several ideas to improve the current imple-
mentation, like driver programs configurable by plugins
for simpler graphs and to allow subimage processing as
data is streamed from the cameras, as opposed to the
current frame oriented implementation.

REFERENCES
[BCP07] Alex Buchmann, Geoff Coulson, and Nikos

Parlavantzas. http://dsonline.computer.
org/middleware/, December 2007.

[COR07] CORBA. http://www.omg.org/, De-
cember 2007.

[Dir07] DirectShow. http://msdn2.
microsoft.com/en-us/library/
ms783323.aspx, December 2007.

[EBN+07] A. Erol, G. Bebis, M. Nicolescu, R.D.
Boyle, and X. Twombly. Vision-based hand pose esti-
mation: A review. 108(1-2):52–73, October 2007.

[Fra04] Alexandre R.J. François. A hybrid architec-
tural style for distributed parallel processing of generic

data streams. In Proceedings of the International Con-
ference on Software Engineering, Edinburgh, Scot-
land, UK, May 2004.

[Gmb07] Advanced Realtime Tracking GmbH.
http://www.ar-tracking.de, December
2007.

[GSt07] GStreamer. http://gstreamer.
freedesktop.org, December 2007.

[Lib07] Open Source Computer Vision Library.
http://www.intel.com/technology/
computing/opencv, December 2007.

[LM87] Edward A. Lee and David G. Messerschmitt.
Synchronous data flow. In Proceedings of the IEEE,
Vol. 75., No. 9, September 1987.

[Loh05] Marco Lohse. Network-Integrated Multime-
dia Middleware, Services, and Applications. PhD the-
sis, Department of Computer Science, Saarland Uni-
versity, Germany, June 2005.

[SK02] Dirk Stichling and Bernd Kleinjohann. CV-
SDF - a model for real-time computer vision appli-
cations. In WACV 2002: IEEE Workshop on Applica-
tions of Computer Vision, Orlando, FL, USA, Decem-
ber 2002.

[SKSK07] M. Schlattmann, F. Kahlesz, R. Sarlette,
and R. Klein. Markerless 4 gestures 6 dof real-time vi-
sual tracking of the human hand with automatic initial-
ization. Computer Graphics Forum, 26(3):467–476,
September 2007.

[Sys07] VICON Motion Systems. http://www.
vicon.com, December 2007.

[Tec07] Component Object Model Technologies.
http://www.microsoft.com/com/, Decem-
ber 2007.

[uni07] unicap. http://unicap-imaging.org,
December 2007.

[Wim05] Peter Wimmer. Stereoscopic player and
stereoscopic multiplexer: a computer-based system
for stereoscopic video playback and recording. In
Stereoscopic Displays and Virtual Reality Systems XII,
Proc. of SPIE Vol. 5664A, pages 400–411, 2005.

Journal of WSCG 112 ISSN 1213-6972



Managing dynamic entities in mobile, urban virtual
environments

Antti Nurminen
antti.nurminen@hut.fi

Helsinki University of Technology

ABSTRACT

Mobile networked virtual environments (mNVE’s) are a new, emerging type of virtual environments. Mobile 3D maps that sup-
port dynamic entities and communication between clients are a subcategory of mNVE’s, intended for navigation and location-
based information browsing. Models and entities portrayed in 3D maps represent real environments and entities, such as
buildings, vehicles and people. Our main contribution is in developing a lightweight and scalable scheme for real dynamic en-
tity management and visibility culling by exploiting geometry of urban environments, the honesty of locally positioned clients
and the lack of interference between clients. We bind moving entities to a topological network consisting of street segments,
crossings and larger areas, all associated to precalculated visibility cells. Our system reduces visibility determination to a sim-
ple cell occupation logic, performed at smart clients or proxies. In this scheme, servers act as fast message passing switches,
managing client subscription and query tables, simply forwarding state update messages. Computational scalability is ensured
by transferring computations to client side, and networking scalability by spatially localized servers, which allow roaming by
subscribing to each others’ neighboring visibility cells.

Keywords: 3D maps, mobile networked virtual environments, 3D user interfaces

1 INTRODUCTION AND RELATED
WORK

Mobile 3D graphics API’s, mobile 3D hardware and
cellular networks have reached the point where im-
plementations of advanced, networked and graphically
rich applications are possible on mobile devices. De-
spite these developments, mobile devices are still thin,
and cannot directly present large and detailed, dy-
namic worlds. We attack this challenging optimiza-
tion problem and develop a scalable mobile platform
for visualizing static and dynamic objects in urban en-
vironments with near real time tracked real world en-
tities, rendering the scene at interactive refresh rates,
and in a realistic manner.

Our work has connections to networked virtual envi-
ronments and computer graphics optimizations in gen-
eral. We discuss previous work, and exploit the fea-
tures of our environment to create a lightweight and
scalable solution, based on precalculated cell-to-object
and cell-to-cell visibilities, topological data structures
and client-side logic for positioning decisions and dis-
tributing position updates.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech Republic

1.1 Mobile maps
Maps are representations of real environments. The
level of abstraction may vary, from symbolic 2D rep-
resentation to realistic 3D. Most commercial mobile
maps, such as TomTom [Tom06], have been designed
for navigational purposes, and may feature static
location-based information, such as restaurants, mu-
seums, and other points of interest. 2D map views are
based on static raster pictures, or real-time rendered
vector graphics. A currently popular view mode in car
navigation systems is the perspective 2D view, por-
traying 2D street networks from the street level with
a perspective transformation. Mobile map research
projects have yielded prototypes with various nav-
igational features and interaction methods, support-
ing multimedia and online searches [Che00, Pos02,
Bau01].

The key idea in 3D maps, in contrast to 2D maps,
is the direct recognizability of the environment - when
rendered in full 3D, including buildings and all other
features of the environment, the virtual scene should
match the real world, facilitating unambiguous navi-
gation.

The first attempts at creating mobile, interactive
3D maps faced severe technical limitations. Without
3D hardware, and without optimizations, for example
the 3D City Info project attempted to use a realistic
VRML city model, but had to perform the first field
experiments with pre-rendered images on web pages
[Rak01]. The TellMaris project applied simple spatial
culling, and was able to render low resolution textured
models at interactive rates [Prz05], but without routing
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or online search capabilities. With visibility informa-
tion embedded in VRML models, and low resolution
textures, Burigat and Chittaro [Bur05] achieved 4-5fps
for a city square model, with information content re-
trievable from the model. These prototypes did not
support progressive model downloading, nor dynamic
entities.

When dynamic entities and message passing be-
tween clients are introduced to mobile 3D maps, they
can be viewed as a subset of mobile networked envi-
ronments (mNVE’s), where the 3D content represents
real environments, and the entities represent real peo-
ple and vehicles. In this sense, such mobile 3D maps
are real virtual environments. Figure 1 presents our
case, an urban environment with tracked, dynamic en-
tities.

1.2 Networked virtual environments
Networked virtual environments (NVE’s) are simu-
lated worlds, where multiple users can interact with
the shared environment, and each other. NVE’s in-
clude text-based games such as multi-user dungeons
(MUDs), teleoperation applications, massive mili-
tary combat simulators and immersive, shared envi-
ronments such as collaborative virtual environments
(CVE). First NVE’s were military simulators, such
as the SIMNET [Joh87], but academic use and en-
tertainment industry soon adapted similar technolo-
gies. The most popular NVE’s are currently network
games, such as the massive multiplayer online role-
playing game (MMORPG) World of Warcraft (WoW)
or the first-person shooter (FPS) Counter-Strike, with
millions of users.

Most NVE’s include a 3D front-end. Large, in-
creasingly more realistic environments easily exceed
the capabilities of any given 3D hardware. Smart al-
gorithms are required to reach interactive rendering
speeds. The two fundamental methods are visibility
culling and level of detail (LOD). Visibility determi-
nation methods remove those objects from the render-
ing pipeline that are not visible in the current view,
and LOD techniques use screen space metrics to de-
termine how accurately objects need to be rendered.
LOD methods include optimization of both geometry
and surface detail (shaders, textures).

Networking requirements of NVE’s depend on the
application. For example, a networked chess would
only involve two players, whereas a military simula-
tion or a MMORPG might need to scale up to hun-
dreds of thousands of units or players. In a client-
server model, even a chess server could be exhausted,
if it was required to serve a million concurrent clients.
As the games are independent, scalability can be ad-
dressed by simply increasing the number of servers. If
the world allows users to interact, as in military simu-

Figure 1: Real dynamic entities: GPS tracked public
transportation

lations or games, message passing must be facilitated,
and independent servers are not sufficient.

Interest management [RMa95] and communication
visibility [Cap97] techniques have been developed to
minimize network traffic between clients. Common
solutions utilize various area-of-interest (AOI) based
approaches and direct visibility, but the related com-
putation and decision making is performed at server
side, causing a potential computational bottleneck. In
the Player/Ghost model, transmissions are optimized
by honest Players, which send updates only when a
locally computed extrapolated state deviates from the
real one significantly [Bla92].

1.3 Network topologies
Network topology has a significant impact on the po-
tential scalability of NVE’s, both computationally and
network-wise. Client-server solutions often require
the server to maintain a simulation of the entire world,
and typically server-to-client network traffic rises lin-
early with the number of clients. For example, one
of the most popular networked first person shooter
games, Counter-Strike, was observed to follow this
rule very accurately [Far04]. Client-server solutions
are considered good for event- and behavior-rich envi-
ronments, where persistency and consistency are im-
portant, but the server and the network easily become
bottlenecks. Common client-server FPS games allow
only 32–64 simultaneous users per server.

Peer-to-peer (P2P) network based systems could
scale infinitely, if each client would perform only a
small part of the whole world simulation, and transmit
its data only to a limited number of other clients. In
the NPSNET-IV military simulator, clients distributed
their states to every participating client, and a maxi-
mum of 300 Players was reached on a 10Mbit/s ether-
net [RMa95].

In a P2P system, every participating unit must be
honest. In addition, resolving parallel actions, where
client states diverge, is difficult [Mar06]. P2P net-
works suit the situation where divergence of client
states is unlikely, and which require computational
scalability.
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2 VISIBILITY OF STATIC SCENES
Complex models can be rendered at interactive rates
even in lightweight systems, given that the complex-
ity is reduced by rendering only the actually visible
parts of the model, using appropriate levels of de-
tails. Naturally, the run time computations required
to achieve such an output-sensitive situation should
be minimal. The classical scenario has been a walk-
through of a static, densely occluded scene, a situation
usually found indoors. [Coh03] provides a compre-
hensive survey of such methods. In these applications,
the world is typically divided into a hierarchical struc-
ture, and various culling techniques applied to select
the parts of the scene currently in view.

Most visibility algorithms aim for conservativeness,
where the method ensures that all visible geometry is
rendered, with the risk of including some occluded ge-
ometry. The possible degree of aggressivity in visibil-
ity determination depends on the application, and the
situation. In practice, even an approximate solution
may provide sufficient quality.

2.1 Spatial subdivision
Visibility algorithms are tied to the underlying spatial
subdivision algorithm. For static indoor scenes, the bi-
nary space partition algorithm (BSP) [Fuc80] has been
popular. A BSP tree structure can directly represent a
correctly created B-rep model, avoiding any external
data structures, and can also be used for fast collision
detection [Ar00].

Octree based spatial subdivision algorithms divide
the space into a hierarchy of volumes. 2D spatial data
can be divided to a hierarchy of quads using quadtrees.
Octrees and quadtrees usually serve as separate, as-
sisting data structures. They provide good localiza-
tion, and the hierarchical structure suits various culling
schemes, such as view frustum culling.

The hierarchical Z-buffer algorithm[Gre93] utilizes
both an object-space octree, and image-space Z buffer
hierarchy. The hierarchical occlusion map (HOM)
stores opacity and occluder distance information sep-
arately [Zha98], creating potential occluders in a pre-
process.

2.2 Potentially visible sets
The concept of potentially visible sets (PVS) was de-
veloped in the seminal work by Airey [Air90] and
Teller [Tel92]. In this scheme, the world is divided to
cells, connected to each other through portals, open-
ings between the cells such as doorways. Cell-to-
cell or cell-to-object (or cell-to-polygon) visibilities
are precomputed, and at run time, the objects deemed
visible from the current cell are rendered. [Tel92] also
defines detail objects, which are discarded as non-
occluding, small objects. Later research improves
upon this work. For example, [And00] defines the

hardly visible set, objects that contribute only little
to the scene and can be discarded. In city scenar-
ios, [Cap97] classifies visibility into graduated visi-
bility sets, for objects of varying visibilities. The vis-
ibility precomputation is also associated with the re-
quired level of detail of the models: the vLOD system
[Chh05] binds these aspects together.

Potentially visible sets are a very powerful tool for
visibility culling. Lookup functions have minimal
overhead in fetching precomputed visibilities, given
sufficiently simple visibility list compression algo-
rithms. With PVS systems, there is no need for expen-
sive computations or view dependent scene structure
rearrangements, such as BSP tree reconfigurations.

For our case, with free viepoint, we subdivide our
space to 3D voxels (view cells), and apply a cell-to-
object PVS algorithm, using façades and roofs as ob-
jects. A precomputation stage creates visibility lists
and compresses them into difference clusters. Our
static object culling scheme is described in [Nur06].

3 VISIBILITY OF DYNAMIC OB-
JECTS

Dynamic objects are not part of the static world,
and their visibilities cannot be simply preprocessed.
[Chr92] asserts three requirements for an algorithm
supporting dynamic 3D scenes, the abilities to
1. Change the camera view
2. Add objects to the scene
3. Delete objects from the scene
A dynamic entity is then managed by deleting it
from the old position, transforming it, and inserting
back to the scene. This introduces significant over-
head, a problem long recognized. In the context of
managing dynamic objects within BSP based urban
scenes, Fuchs suggested to divide static and dynamic
objects to separate BSP trees, where the static BST
trees would not intersect the paths of dynamic objects
[Fuc83].

In addition to the insertion overhead, visibility
would need to be determined each frame. Sudarsky
and Gotsman offer a possible relief: each moving
object is replaced by a temporary bounding volume
(TBV), which contains the object during a validity pe-
riod [Sud97]. During this time, run time visibility cal-
culations rely on the TBV. A TBV is created based on
a priori knowledge of the object’s behavior. For ob-
jects with well known trajectories, sweep surfaces can
be used.

The TBV eliminates the need to perform scene
management and visibility determination every frame.
TBV’s can be used in several run time occlusion
culling algorithms, as they simply replace the object
geometry. However, the method’s efficiency is depen-
dent on the underlying culling technique, and insertion
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overhead. Unfortunately, current dynamic entity visi-
bility culling algorithms don’t offer lightweight pre-
computation based solutions for urban environments
with unrestricted viewpoints. In addition, the TBV va-
lidity period depends on viewpoint motion: it can be
determined accurately only for a static viewpoint.

4 MANAGEMENT OF DYNAMIC
REAL WORLD ENTITIES

A real city is populated by pedestrians, bicyclists, cars,
public transportation and possibly other types of vehi-
cles. We consider all these entities as detail objects,
which do not contribute to visibility. In the follow-
ing, we develop a view independent dynamic entity
management and culling scheme using predetermined
visibilities.

4.1 Topological entity management
We assume that all real entities in an urban environ-
ment are restricted to areas or paths, which can be
extracted from existing map databases. As a conse-
quence, we also assume that only physical positions
are updated, not virtual, freely flying cameras. Pedes-
trians use sidewalks and walk in parks or market-
places, while vehicles are restricted to essentially one-
dimensional streets and occasional parking lots. Taxis,
buses and bicycles can have their own dedicated lanes,
and trams and subways use rails. Furthermore, public
transportation is generally limited to predefined routes.

In the context of increasing GPS accuracy, [Cuy03]
proposes to constrain vehicle paths to streets. Fol-
lowing this idea, we create topological street networks
(possibly separate for each entity type, if suitable data
exists), connecting areas such as parks and market-
places to the network. We limit potential navigable ar-
eas to this network of street segments (figure 2) and ar-
eas (figure 4). Similar work has been done in [Whi07],
with the addition of indoor topologies, for navigation
purposes.

The resulting network consists of nodes (crossings
and areas), edges between nodes (street segments), and
can be viewed as an adjacency graph. We use inci-
dence lists as internal data structures. Such a list con-
tains pointers from nodes to adjacent edges and vice
versa. Street segment geometry is stored to edges, and
area geometry to nodes. The position of an entity can
now be given by an edge ID, and the one-dimensional
position along the street segment, or by a node ID, and
the two-dimensional position within the area. Nodes
that are associated to crossings do not hold area geom-
etry.

A dynamic entity is now managed by tracking its
position within this topological network. For initial
placement, a quadtree provides a good external struc-
ture to localize closest street segments and areas. We

Figure 2: Pedestrians projected onto a street network.

then test if the entity lies within one of the closest ar-
eas, and if not, project it to the nearest street segment.
When the entity moves, its position on the network is
constantly verified. Each entity holds its locally mea-
sured position (for example, a GPS position) and the
inferred position within the network.

4.2 Visibility cells
To build a system where dynamic entity visibility can
be predetermined, we create static virtual visibility
cells reflecting the geometry of street segments and
areas. For any visible cell, we assume that entities
occupying them are visible as well, in the cell-to-cell
visibility manner. In pursue of conservativeness, visi-
bility cells should cover all occupiable space. In prac-
tice, we use a constant value for cell width, estimating
the widest possible street. For the height, we use the
height of the tallest possible entity. We construct the
cells as sweep volumes along the street geometry. For
each area, a single large visibility cell is constructed
as an extruded volume, again using the height of the
tallest entity (figure 4).

We observe that generally crossings seem to be
more visible than the streets at urban canyons (the an-
tipenumbra of crossings tends to be larger than that
of the streets between buildings). Even if a piece of
a cell would be visible at a junction, the entire street
would be deemed visible. Therefore, we make a minor
modification to the shape of the virtual cells, and the
network, where the nodes would otherwise be located
only at the centers of crossings and areas. We split
each street segment near a crossing, and use the short
pieces to create a virtual cell reflecting the junction ge-
ometry. For example, in a T crossing, three short seg-
ments are connected to one node, constituting a single
T shaped visibility cell (figure 2). An entity on any of
these small segments would occupy only this particu-
lar visibility cell. We store pointers to the edges and
nodes in the associated visibility cells.
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Figure 3: Cell occupations and validity periods for
trams.

Results from the visibility calculations are stored
into each view cell’s visibility list. These lists can
be downloaded in advance, or progressively streamed
at run time. Visibilities are updated as the viewpoint
moves from a view cell to another. For each visible
cell, the occupying entities are rendered.

4.3 Approximating entity motion: cell
occupation validity periods

In the sense of temporal bounding volumes, we could
approximate entity motion by discretized temporal
bounding vectors along the one-dimensional street
network. A moving vehicle would be described by a
larger set of points than a stationary vehicle. How-
ever, our visibility scheme utilizes preprocessed static
cells. Thereby, we are primarily interested in poten-
tial cell occupation instead of the potential motion vec-
tor. We abandon the temporal bounding vector calcu-
lation, and estimate cell occupation validity periods.
In another words, instead of estimating a new position
based on a given time interval, we estimate time of
travel, given a distance (shortest remaining street seg-
ment within a visibility cell). We compute separate
periods for entity’s front (entering a new cell) and aft
(leaving the current cell). After the shorter of these va-
lidity periods expires, occupation approximations are
recalculated, and visibilities reassigned.

In figure 3, the front validity period of the tram A
has expired, and new periods calculated. We possess
a priori knowledge of the tracks, and know that the
tram will continue straight across the junction. There-
fore, the front period becomes rather long, and we se-
lect the aft period. Until this period expires, the tram
will occupy two cells. Tram B has been GPS posi-
tioned before its period expired, caught before reach-
ing a node. For this tram, the front period is shorter,
and selected for validity period calculation. Until it
expires, the tram occupies the X shaped crossing cell.

Figure 4: A single large visibility cell representing a
walkable area, joined to a surrounding street topology.

4.4 Networking: subscriptions
In a peer-to-peer network, utilizing visibility effi-
ciently is difficult. In order to know which clients
are visible, a client should send position queries to ev-
ery client, and do this frequently. We choose a client-
server approach to allow centralized message passing
with interest management. A server maintains master
tables of client states, including cell occupation, valid-
ity periods and subscriptions.

During normal operation, clients subscribe to vis-
ible cells, and cancel subscriptions to invisible ones.
This can be performed as a single subscription differ-
ence message. We also support direct subscriptions.
If clients are interested in individual entities, such as
other users or certain vehicles, they can subscribe to
them. The server will then update these entities inde-
pendently of visibility or distance. Maximum limits
are set to avoid overuse. Clients are also allowed to
perform entity queries to find, for example, their bud-
dies, or plan their schedule based on the location of an
arriving bus. Again, temporal limits suppress overuse.

Should the visibility change rapidly due to view-
point movement (such as when the viewpoint first ele-
vates and then descends at rooftop level), a client may
receive data for already invisible entities due to net-
work latency. This data can be stored for validity pe-
riods, and used to simulate the entities immediately if
the related cells become visible again. When validity
periods expire, these entities are deleted.

4.5 Computational scalability
We proceed to utilize a key notion to optimize our
system to be computationally scalable. Client posi-
tioning is based on local devices, such as GPS’s, so
smart clients must be trusted to some extent. In ad-
dition, the real world resolves possible near paral-
lel actions, asserting consistency, and the real entities
take care of their long term situation, asserting per-
sistency. We now assume that our clients are honest,
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and let them compute their position on the topologi-
cal network. They also publish their dead reckoning
scheme, so other clients can extrapolate their position.
This is utilized in the Player/Ghost manner, so that a
client sends its position and cell occupation updates
only when its locally computed extrapolated position
exceeds an error threshold. When a client senses un-
expected, emergent behavior, such as stopping, it can
immediately send a state update. Updates are also trig-
gered when new validity periods are calculated.

In our scheme, a server can avoid dead reckoning
and position projection computations altogether, sim-
ply updating its master tables, and forwarding state
changes when ever it receives such data from the smart
clients. For entities where our client software is not
installed, such as public transportation with external
tracking network interfaces, separate proxies can be
used to scale the system up.

4.6 Networking scalability
When the amount of concurrent users reach millions,
the local network at server side may become con-
gested, despite our optimization efforts. We overcome
this by limiting servers spatially, and increasing the
number of servers, which are distributed to different
subnetworks. Neighboring servers subscribe to each
others’ cells that lie at their shared border. If the
density of users is very high, local mobile networks
may become a bottleneck. In this case, motion ex-
trapolation can be extended to cover several visibility
cells, although crossings pose a problem, unless a pri-
ori knowledge on entity paths is available. For exam-
ple, public transportation usually follows static routes,
but pedestrians may choose any direction.

4.7 Privacy
Privacy issues are addressed by a buddy system; users
can choose whether they publish their identities or not,
and their target audience. However, unless they pub-
lish their identities, they will not be able to identify
other users.

5 DYNAMIC ENTITIES: A REAL
WORLD CASE

We have utilized our developments for a real case.
We gathered map data, public transportation schedule
data, and obtained access to an interface for a public
transportation tracking system. For practical purposes,
we expected to use GPS for positioning, with accuracy
of 5m or worse, and update rates of 1Hz or less.

The system was built upon our current mobile 3D
map system, the m-LOMA platform. m-LOMA uti-
lizes regular 3D view cell subdivision and precalcu-
lated cell-to-object visibilities and contribution culling
for static geometry, with building façades and roofs as
atomic objects. Our city model consists of about 200

individually textured and 100 flat colored buildings,
from the city center of Helsinki, Finland. The texture
detail varies between 10–20cm. The model runs at 30–
200fps in recent smart phones with 3D hardware sup-
port, such as the Nokia N93 and N95, simultaneously
rendering up to 50 textured buildings, and 50–100 flat
colored, distant buildings. The system relies on ex-
plicit memory management at run time, optimized for
LOD textures. The 3D models and textures can be pro-
gressively downloaded over mobile networks using a
pipelined binary XML protocol over TCP. The engine,
its network scheme and performance are described in
[Nur06, Nur07]. The presented dynamic entity man-
agement system replaces the early system described in
[Nur06].

5.1 Map data and public transportation
Our map data covers street geometry, building out-
lines, parks, etc. Area data is given as polylines. Only
the centerlines of streets is provided. No sidewalk data
is available. The data is not topological and contains
errors. After manual cleaning, a topological, slightly
simplified street network was created to cover the city
center. Visibility cells were instanced based on the re-
sulting network. On average, 5–6 cells were needed
for each city block. This increased the size of our vis-
ibility lists, but not prohibitively. For a geometrically
complex 3D city model, this increase would be even
less significant.

Public transportation data was provided in a collec-
tion of files in a proprietary format. We integrated
multiple road polylines, simplified route geometry,
and extracted bus stop positions. Unfortunately, the
route data was very inaccurate, randomly misaligned
to the street data, containing various loops, zig-zag
shapes etc. It is stored in the local public transporta-
tion organization’s internal database, and exported ev-
ery time a schedule change occurs, so manual editing,
without access to the database, would only prove a
temporary solution. The public transportation track-
ing system provides estimates of arrival for the bus and
tram stops with a granularity of one minute. It has a
SOAP interface, and suffers from a latency of several
seconds. Less than half of buses, but all trams, are
equipped with this tracking system.

5.2 Simulation: real entity behaviors
Entities were assigned behaviors and related param-
eters for dead reckoning and validity period calcula-
tions set. The basic behaviors reflect the method of
movement. Our current system supports pedestrians,
one-part vehicles such as buses and cars, and two-part
vehicles such as trams. The related parameters de-
fine their length (including 0 for pedestrians and bicy-
clists), maximum speed, lateral position offsets, col-
lision avoidance schemes, collision distance thresh-
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old, and timeouts for solving dead locked situations,
including temporary acceptance of collisions and en-
tity deletion. We also specify spawn times based on
schedule data. The lateral position offset allows us to
randomize pedestrian locations, and vehicles can be
shifted to virtual lanes.

5.3 Simulator implementation
We implemented a simulator based on existing sched-
ule and route data to the m-LOMA system. Public
transportation vehicles were modeled, and behaviors
programmed. A fast bounding box test provides colli-
sion avoidance: vehicles wait at crossings and let the
first arrivers pass first. The speed of the vehicles is
approximated by the distance to the next stop, given
the estimated times of arrival, and limited by the max-
imum speed. The lateral offset for vehicles was set to
3 meters to emulate street lanes.

The proprietary schedule and route data were stored
to compact files, providing ETA’s for each stop at each
route. At run time, a Python script, installed at a proxy
server, queries the SOAP positioning interface a few
times a minute, discards the overhead (over 95% of the
data), and forwards only those ETAs for vehicles that
are actually traced. A set of timeouts are frequently
used to resolve collisions. Vehicle motion is not al-
ways parallel to actual streets due to the route data
inaccuracies. For visibility cell occupation determina-
tion, vehicles on these routes are projected to the street
segments, which were parsed from the more accurate
road database. These two data sets do not coincide
everywhere, so currently we run the simulation with
buses and trams placed on the route data set.

The first version of the system has been running in a
local science park on a desktop computer (see figure 1)
consecutively over a year. We have recently ported the
system to mobile devices. At most a few dozen public
transportation vehicles occupy our modeled city cen-
ter at a time, which is no burden to our system, es-
pecially due to the poor granularity of tracking. Our
system allows tracking and distribution of position up-
dates of the entire local public transportation fleet, but
visibility culling is meaningless outside the 3D mod-
eled area.

Rendering the scene at full speed in a smart phone
consumes batteries fast. We have implemented a con-
figurable tick rate to scale power consumption down.
In addition, a separate toggle button can be used to
pause the entire simulation.

6 CONCLUSIONS AND FUTURE
We have presented a lightweight and efficient visibil-
ity culling and message reduction mechanism for dy-
namic entities based on precalculated, static visibility
cells, exploiting geometrical properties of urban en-
vironments. Relying on the real world to solve con-

sistency issues, the scheme combines the best parts
of P2P networks and client-server architectures: po-
sitioning computations and decision making processes
are performed at client side, while a server manages
global visibility and subscription look-up tables and
acts as a fast state update passing switchboard. The
system is truly scalable, as the only potential bottle-
neck, server-side networking, can be extended by spa-
tially limited servers, which exchange borderline data.
However, situations where a very high number of dy-
namic entities occupy a small area pose a problem. If
a viewpoint is high above ground level, looking down,
visibility optimizations are of no use, and both mo-
bile networking and local rendering resources become
a bottleneck.

Precomputed visibilities exchange run time compu-
tations to larger memory consumption, but the increase
of visibility lists is acceptable. Even where small
buildings cannot occlude moving entities, the draw-
back in not significant: the number of virtual visibil-
ity cells is still much less than the number of building
façades we use for static visibility calculations.

We have implemented a mobile 3D map with pro-
gressive content download, applying an efficient XML
based binary protocol, static visibility preprocessing
and buddy tracking, running a near real time tracked
public transportation simulation. The current public
transportation tracking system does not push our sys-
tem to its limits. In addition, we have tracked only a
few pedestrians at a time. Our local public transporta-
tion organization is implementing a direct GPS track-
ing based system, which we will integrate as soon as
it becomes available. Until that happens, we will per-
form artificial benchmarks to acquire quantitative per-
formance statistics.

In near future, we will utilize the presented sys-
tem in managing a different type of dynamic entities,
namely a swarm of cleaning robots in an indoor envi-
ronment.
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ABSTRACT

We present the Combined B-rep (cB-rep) as a multiresolution data structure suitable for interactive modeling and
visualization of models composed of both free-form and polygonal parts. It is based on a half-edge data structure
combined with Catmull/Clark subdivision surfaces. In addition to displaying the curved parts of the surface at an
adaptive level-of-detail, the control mesh itself can be changed interactively at runtime using Euler operators. The
tessellation of changed parts of the mesh is incrementally updated in real time. All changes in the mesh are logged, so
that a complete undo/redo mechanism can be provided.
We introduce Euler macros as a grouping mechanism for Euler operator sequences. The macro dependency graph, a
directed acyclic graph, can be used for creating progressively increasing resolutions of the control mesh, and to guide
the view-dependent refinement (pcB-rep). We consider Progessive Combined B-reps to be of use for data visualization
and interactive 3D modeling, as well as a compact representation of synthetic 3D models.
Keywords
shape editing, interactive 3D modeling, B-rep, Catmull/Clark, Euler operators, tesselation on the fly, selective update

1 INTRODUCTION

The basic motivation for the work presented in this pa-
per was the search for a surface representation that ren-
ders quickly, has adequate – not too many and not too
few – degrees of freedom, and, most importantly, can also
efficiently cope with incremental shape changes through
some kind of selective update scheme. Our assumption
was that operator sequences like the collapse/split se-
quences known from progressive triangle meshes might
be useful for interactive 3D modeling as well.

Progressive meshes as introduced by Hoppe in 1996
[Hop96] are based on an invertible sequence of edge col-
lapse operations. In each step, a pair of vertices is merged
into one, thereby removing one vertex and two triangles
from the triangulation. The choice of the edge to be col-
lapsed and the position of the merged vertex is determined
by a separate algorithm, for instance using quadrics, as
proposed by Garland and Heckbert [GH97]. The simplifi-
cation routine usually works in a preprocessing step, pro-
ducing as output the sequence of edge collapses together
with a coarse base mesh. This turns a triangle mesh into
a multiresolution mesh, as the level of detail can now be
freely adjusted by traversing the edge collapse sequence
in reverse. Starting from the coarse base mesh, vertices
are successively inserted back into the mesh using the in-
verse operation, the vertex split. A serious drawback of
this approach is that the simplification routine has no in-
formation about the intended structure of the 3D model,
and it has, in case of synthetic shapes, no connection to
the modeling history. Consequently, symmetries and reg-
ularities in a simplified model are broken, and even a quite
regular mesh is turned into a “triangle soup”.

This can be avoided if more control over the split se-
quence is granted to the user: The application generating
a mesh, i.e. the modeller, can also automatically generate
the refinement operations from the modeling history. It
can be supervised by the user during the modeling pro-
cess, so that a very coarse LOD still exhibits some regu-
larity. Thus, we were looking at ways for direct authoring
of multiresolution models.

1.1 Combined B-reps
Triangles are the smallest common denominator for repre-
senting polyhedral objects, and also the lowest level of ab-
straction. For higher-level representations, primitive ob-
jects, NURBS, or implicit functions are used, which have
fewer DOFs but also lack fine-grained control.

As a compromise, we have chosen to use B-rep meshes,
based on a fairly conventional half-edge data structure.
Unlike triangles, B-rep faces may have an arbitrary num-
ber of vertices. In addition, our implementation also sup-
ports rings so that a face can have one or more holes. As
B-rep faces may have holes and do not have to be con-
vex, they need to be triangulated in order to render them.
Another way to look at B-rep faces is that they are just
a method for grouping several triangles together. From
this point of view, B-rep edges are feature edges, which
are distinguished from artifact edges in the face interior,
introduced by the triangulation algorithm.

The same approach can be taken to integrate free-form
surfaces with B-reps. The combination of polygonal and
free-form geometry is accomplished by introducing one
additional bit with every B-rep edge, to distinguish be-
tween sharp and smooth edges. This is somtimes re-
ferred to as edge-tagged B-rep, e.g. by Bolz and Schröder
[BS02a].
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In regions with only sharp edges, B-rep faces are ren-
dered using standard polygon rendering, while in smooth
regions the B-rep is regarded as a control mesh for Cat-
mull/Clark subdivision to create smooth free-form shapes.
Consequently, the resulting data structure is called Com-
bined B-rep (short cB-rep), as it bridges the gap between
polygonal models on the one hand and free-form model-
ing on the other. Its expressive power was demonstrated
in the field of architectural reconstruction at VAST 2001
[HF01].

This approach follows the above argument in that the
tessellation is considered a transient artifact which can
be quickly (re-)generated on demand, and may also be
deleted if no longer needed. Based on an efficient scheme
for tessellation on the fly, this technique makes it possible
to cope with changes of the control mesh in real time.

B-reps provide a well-defined interface for mesh ma-
nipulation, the Euler operators. A well-known, inher-
ent property of Euler operators is their invertibility, use-
ful e.g. for implementing the undo-functionality of a 3D
modeler. But in order to use this invertibility in interactive
applications, it needs to be intertwined with update strate-
gies for tessellation data. At this point, the contribution
of this paper is to provide an example of a higher-level
shape representation that permits incremental updates of
the tessellation.

It should be noted that B-reps and Euler operators com-
bined with Catmull/Clark subdivision is by no means the
only possible design option for implementing changeable
objects. Reasonable alternatives to Euler operators do ex-
ist, most notably the Splice and EdgeCreate from Guibas
and Stolfi [GS85] and the InsertEdge/VertexCreate oper-
ations introduced by Akleman et al. [ACS02].

The choice of Catmull/Clark surfaces was motivated by
the fact that they are highly compatible with B-rep control
meshes, as the mesh uniquely defines the free-form sur-
face. The overhead of additional data is only one sharp-
ness bit per half-edge. This is an advantage over possi-
ble alternatives such as NURBS or non-uniform subdivi-
sion surfaces [SZSS98]. With NURBS in particular there
are the well-known problems of maintaining (geometric)
continuity with an irregular patch layout. This impairs
their usability in interactive design, especially in compar-
ison with subdivision surfaces, where – due to quite fast
tesselation algorithms – practically instant feed-back can
be guaranteed for interactive modifications involving hun-
dreds of control mesh faces.

To this end, our system is to be seen as a proposal
for a prototype architecture, deliberately based on main-
stream technology that is widely known and well under-
stood. With B-reps and Catmull/Clark surfaces as under-
lying concepts, it contributes important technical prereq-
uisites necessary for interactive design:

• incremental update of a multi-resolution tessellation
• to cope with interactive mesh modifications,
• while still supporting efficient adaptive display.

Please note that we do not use any GPU-based techniques,
for the following three reasons:

• CPU-based algorithms can access finest surface detail
• The GPU can still be used for various other purposes
• GPU-sation might make some things faster, but this

adds no new quality to the issues discussed here.

1.2 Related Work
When designing an object representation for 3D models,
there is a certain trade-off between ease-of-manipulation
and rendering efficiency. For many surface representa-
tions, e.g. NURBS, efficient adaptive rendering schemes
were developed, from Kumar’s torpedo room [KML96] to
the fat borders from Balázs et al. [BGK03]. Alternatively,
surface models can be tessellated and represented by tri-
angle soups, or using simplification and multi-resolution
meshes. An obvious drawback of all these approaches is
that if a shape is changed, the costly preprocessing has to
be re-done. Our proposal is to intertwine the preprocess-
ing with the interactive display.

To our knowledge, the subject of designing a shape
representation especially for changeable shapes contain-
ing both free-form and polygonal parts has received rel-
atively little attention so far as a subject in its own right.
It is of course also treated in the large body of literature
on interactively deformable models. These approaches
are all based on some kind of underlying shape repre-
sentation that permit real-time manipulation, e.g. triangle
meshes [WW94a], [WW94b, Gai00, GD99], implicit sur-
faces [Baj96, BCX95, HQ01, DTG96, MCCH99], volu-
metric simplicial complexes [CFM∗94], discrete levels of
detail [DDCB01], subdivision solids [MQ02, McD03], or
even point clouds [PKKG03]. The focus of these papers
though is in most cases more the modeling functional-
ity than the underlying shape infrastructure. The subject
of incremental tesselation updates for deforming NURBS
surfaces is only treated by Li and Lau [LL99] in greater
detail.

For Catmull/Clark surfaces, Bolz and Schröder
[BS02b] report rates of 5.5 million quads that can be
generated using their adaptive tesselation scheme. This
raises the question of whether caching the tesselation data
is worthwhile altogether, as 180K quads can be created at
30 fps with this approach. But doing this imposes a 100%
CPU load – while with our approach for progressive
tesselation on the fly, no further computation is necessary
for adaptive display, once the caches are filled. There
is also a body of literature on editing multi-resolution
triangle meshes, summarized e.g. in [KBB∗00]. Using
a decomposition operator, a fine-to-coarse hierarchy is
established, and the shape can be edited at any level.
Shape detail is transferred back on the shape using the
inverse operator, e.g. by subdivision. The correspondence
between different levels is maintained during modeling,
either through a semi-regular connectivity (cf. [ZSS97]),
or via local parametrizations like in [KBS00].

Our approach differs from these in that we restrict the
modeling operations to the base mesh. It captures the
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complete shape information, there are no detail coeffi-
cients. The obvious drawback is that with ’pure’ Cat-
mull/Clark, there is no fine level feature editing; no edit-
ing of the basic shape while preserving high-frequency
detail is possible.

These operations are quite useful for sculpting (’virtual
clay’), yet less applicable in high-precision applications
or for creating regular shapes (cf. Figs. 12-15). Yet we
think our Combined B-reps might be suitable for sculpt-
ing as well: Note that we provide a complete set of mesh
construction operators. They maintain topological con-
sistency, but impose no geometric restrictions. Feature
editing can be built on top of Combined B-reps through
locally refining the control mesh, possibly in a manner
similar to how Biermann et al. [BKZ01] computed the
control mesh of approximate subdivision CSG solids.

One major problem when editing multi-resolution
meshes is to maintain a consistent tesselation. Ap-
proaches that maintain several levels of detail explicitly
have limitations with large-scale modifications, espe-
cially with genus changes. Cheng et al. present a quite
interesting approach in [CDES01] for a consistent adap-
tive triangulation of a skin surface, basically an implicit
surface derived from a set of moving weighted points,
e.g. spheres. Their mesh update is based on local oper-
ations (collapse/split), but also has operations to change
genus. This permits smooth transitions even between
objects that differ in genus. Their approach could eventu-
ally be extended to produce a multi-resolution mesh, i.e.,
when the modifications are carried out simultaneously on
different levels.

But all approaches that explictly manipulate individual
triangles (e.g. [GD99, Gai00]) suffer from the fact that (i)
with large meshes, to bother with single triangles is ineffi-
cient, and (ii) local modifications interfere with rendering
optimizations, e.g. triangle strip generation. Our approach
does not have these problems: It is strictly top-down on
a per-patch, per-face basis, where the Catmull/Clark sur-
face is regular and the tesselation scheme can be highly
optimized. Irregular cases are captured on an intermediate
level with our technique of using subdivision rings (cf. Fig
1). Second, the technique of multi-resolution rendering
by patch sub-sampling permits to pre-compute optimized
triangle strips, avoiding cracks in the tesselation even with
arbitrary depth differences of neighbouring faces.

The contribution of this paper, which we think is novel,
is therefore a technique to maintain consistency across all
levels even when the control mesh has changed after the
execution of an arbitrary sequence of Euler operations.

2 COMBINED B-REP MESH: DATA
STRUCTURES

Combined B-reps are based on a conventional half-edge
data structure. Vertices, half-edges and faces are imple-
mented as C++ classes as shown in Table 1, much in line
with Kettner [Ket99]. The highlighted items, Vertex::p
and Halfedge::sharp, are geometric data and can be ma-
nipulated directly. Topological data are accessible only

to Euler operators which maintain the topological consis-
tency of the mesh during manipulation. The set of Eu-
ler operators used in our system restricts the mesh to be
an orientable 2-manifold mesh without boundaries. This
guarantees that all pointers of the incidence relation are
valid. The limitation to manifold meshes considerably
simplifies some consistency issues mentioned below in
Section 4.1. The generalization to non-manifold topol-
ogy is subject to future work, but it can be based on the
same general approach.

Halfedges form a singly linked list on the face bound-
ary via a next-pointer. All half-edges of the mesh are
stored in a single array, and they are allocated in pairs.
Consequently, a half-edge with an even array index finds
its other half, its mate, at the next array position, or vice
versa, which makes an explicit mate pointer redundant.

class Vertex {
Edge* oneEdge;
int status;

Vec3f p;

VertexType type;
int ring;

};

class HalfEdge {
Vertex* vertex;
Edge* next;
Face* face;
int status;

bool sharp;

int patch;
int sourceId;

};

class Face {
Edge* oneEdge;
Face* nextring;
Face* baseface;
int status;

FaceType type;
int ring;
ChunkID triangles;

ChunkID sharpTriangles[4];
ChunkID sharpPoints;
short depth;

Vec3f sphereMid;
float sphereRad;
Vec3f normal;
float normalDist;
float normalCone;

};

Table 1: C++ classes for vertices, edges and faces. For
each class, the topological data come first, followed by
geometric data (bold), and the data to store the dynam-
ically generated tessellation. For culling, faces contain
also a bounding sphere and a normal cone.

A face is either a baseface (CCW orientation) or a ring
(CW orientation) within a baseface. For a face with no
rings, nextring is NULL and baseface points to the face
itself. Faces can have any number of vertices and rings.

2.1 Memory Management for Dynamic
Data

An efficient memory management strategy is crucial for
the overall performance of a highly dynamic interactive
system where the data may quickly vary.

The mesh itself (see Table 2) consists of STL-like con-
tainer data structures (C++ templates) that support fast al-
location and de-allocation: skipvectors and skipchunks. A
skipvector is basically an array of items each containing
an integer field status to distinguish between active (sta-
tus ≥ 0) and inactive (status < 0) items. Active items
may freely use the status field, as long as it remains non-
negative; we abuse the status fields from Table 1 for this
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class PCB-repMesh {
skipvector<Vertex> vertices;
skipvector<HalfEdge> edges;
skipvector<Face> faces;

skipchunk<GLuint> triangulation;
skipchunk<GLuint> sharpTriangles;
skipchunk<Vec3f> sharpPoints;

skipvector<CCPatch> patches;
skipvector<CCRing> rings;
skipchunk<Vec3f> ringpoints;

skipvector<Record> records;
skipvector<EulerMacro> macros;

};

Table 2: C++ class representing the actual Combined B-
rep mesh. Triangulation and Patch data are explained in
Section 3. All data is arranged in arrays that support fast
selective element deletion (see Section 2.1).

purpose. Inactive items are considered as deleted, and
the (then negative) status field is used for a linked list of
deleted items. An allocation request thus yields the last
deleted item for re-use, or the item at the end of the ar-
ray if there is no free item. The constructor is executed
only once: when an item is allocated for the first time.
Subsequent allocation/de-allocation is done without any
constructor/destructor calls, but just by changes to the sta-
tus field. If the reserved space is used up, the array size
is doubled, possibly leading to a relocation in memory. In
this case, all pointers to array elements need to be updated
by adding a constant memory offset. This obviously hap-
pens only log(n) times for an array of size n, with total
update cost O(n logn).

A skipvector is basically an array with holes. The great
advantage of arrays is that cache coherence is maximal
when iterating over all elements, which is a common oper-
ation with meshes. In our experience, performance drops
increasingly due to memory fragmentation when the new
and delete operators of C++ are used (as with some im-
plementations of the STL standard allocator). Skipvec-
tor iterations require an additional test if(item→status≥0)
to skip over inactive items. This is a space-time trade-
off: time could be saved by interlinking only the active
items. This would need more space and make alloca-
tion/deallocation more expensive, but might save time in
iterations. Skipvectors instead provide a garbage collec-
tion that makes the active items contiguous by sorting the
inactive items to the end of the array. This implies also a
pointer update.

Skipchunks are much like skipvectors, but instead of
single array elements, whole chunks of consecutive data
can be allocated. When de-allocating a chunk, it is only
marked as unused. Garbage collection is done automati-
cally when the number of unused items is larger by a con-
stant factor than the number of used items. In our case,
the factor is 5.

3 COMPUTING THE TESSELATION

The connectivity of the mesh together with the distri-
bution of smooth and sharp edges determine how faces
are tessellated and rendered. The appropriate tessellation
method is chosen on a per face basis, depending on a clas-
sification of vertices and faces. The tessellation is gener-
ated from the input mesh and handles to it are stored in
fields of the appropriate entities, i.e. vertices, edges, or
faces.

3.1 Vertex and Face Classification

Vertices are classified according to whether they have less
than two, exactly two, or more than two incident sharp
edges (see Table 3). The face classification (Table 4) de-
pends on the vertex classification, on the edge types and
on whether the face has rings. We have basically adopted
the classification rules from Hoppe et al. [HDD∗94], but
we have introduced sharp faces as additional class which
is treated specially (see Section 3.5).

Smooth all incident edges are smooth,
control point of the freeform surface

Dart 1 sharp edge,
endpoint of a crease curve

Crease 2 sharp edges,
control point of a crease curve

Corner more than 2 sharp edges, interpolated

Table 3: Vertex classification according to the number of
incident sharp edges

Smooth no rings,
at least one smooth edge

Sharp planar, may have rings,
all edges are sharp

Polygonal planar, may have rings,
all edges are sharp,
all vertices are corners

Hollow the face is a ring,
or a baseface not to be rendered

Table 4: Face classification according to the vertex classi-
fication, edge types, and whether the face has rings.

3.2 Polygonal Faces

A polygonal face can be a complicated geometric ob-
ject, as it may contain arbitrarily many vertices and holes.
Thus, it must be triangulated for display. We use a stan-
dard O(n logn) triangulation algorithm that is based on
a 2D sweep-line [Meh84]. In order to omit a 3D to 2D
transformation, the technique of projecting to a principal
plane is used. The selection of one of the (xy),(yz),(zx)
planes, or (xz),(zy),(yx) respectively, is based on the (av-
eraged) face normal. A normal where the x-component
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is positive and largest in absolute value results in a pro-
jection on the (yz) plane by considering only (py, pz) in-
stead of p = (px, py, pz). This technique can also cope
with faces which are only approximately planar if the pro-
jection to the chosen principal plane contains no foldover.

The result of the triangulation is an array of index
triplets (of type GLuint) that is stored in a chunk from
PCB-repMesh::triangulation. The indices directly refer
to the vertex indices in PCB-repMesh::vertices. A com-
plete face can then be rendered with a single call of the
OpenGL function glDrawElements (see also Fig. 3 from
Section 3.5).

We have also considered to create strips/fans instead of
individual triangles. But this would not only increase the
time for triangulation, but also require more than one call
to render, one for each strip/fan. Also, the optimal strip
length depends on the OpenGL implementation and the
size of the accelerator’s vertex cache. But the sweepline
algorithm creates triangles in left to right order, so that
in most cases, vertices will actually be still in the cache,
and they can be uniquely identified by the OpenGL driver
through their indices.

3.3 Smooth Faces
A face with at least one smooth edge is regarded as part of
the control mesh of a Catmull/Clark subdivision surface.
The first subdivision step introduces the face centroid and
the edge points, and partitions the face into quadrangle
patches which are the basic unit for display. Each patch
corresponds to a half-edge (Fig. 1a) and can be accessed
through HalfEdge::patch.

Patches can be tessellated independently from the
mesh, as they operate on subdivision rings (Fig. 1c, and
also Fig. 16). For more detail we refer to [Hav02]. There
is one subdivision ring for each vertex that belongs to
a smooth face, and one for each smooth face. The face
and the vertex points of the first subdivision are the only
possibly irregular vertices of a patch: The four corners of
a patch are one vertex and one face point and two edge
points of the first subdivision. So the irregular part of the
subdivision can be captured by connecting each patch
to the subdivision rings of its respective vertex and face
point, which are said to be of class CCRing (class Ring
in [Hav02]). The availability of subdivision rings for all
depths make the top left and bottom right points from the
4×4 control mesh in Fig. 1b redundant. The tessellation
of the patch itself then contains only regular points and
can be optimized a lot.

The basic idea of the tessellation on the fly and the
adaptive rendering is that each patch of class CCPatch
consists of a fixed-size array of 9×9 = 81 points and nor-
mals, corresponding to 64 quads (Fig. 1d). But points
are computed only on demand, and adaptive display is ac-
complished by choosing from a set of precomputed index
lists using the patch as vertex array.

The main feature of the tessellation scheme is that once
all vertices of a patch are computed, no further calcula-
tions at all are needed to switch the subdivision depth. So

the depth can be adjusted from frame to frame. Smooth
faces are assigned a quality value Face::depth ranging
from −1 (not visible, back-facing) to 3 (four times sub-
divided). Depth 0 is the first subdivision where one quad
per patch is rendered, which is computed when the patch
is created. Refining points are computed only on demand,
according to the required depth. This takes the neighbor
faces’ depth also into account, possibly refining towards
the face with higher resolution. With increasing depth, the
9×9 array is successively filled with valid points.

3.4 Crease Curves
According to the definition, a smooth face can also have
sharp edges. Now suppose there is a path of sharp edges in
an otherwise smooth mesh. Such a path is called a crease
in the surface, and all vertices along the path are crease
vertices. For Catmull/Clark subdivision, the canonical
way to deal with a crease is to regard it as a uniform cubic
B-Spline curve. The subdivision stencils on both sides of
the crease are decoupled: For computing the tessellation
of a patch next to a crease, the vertices on the other side
of the crease do not matter – but of course does the neigh-
bor depth. For patches next to a crease, the neighbor face
depth can be incremented by one. This improves the vi-
sual quality of creases, as can be clearly seen in the color
section.

Crease curves can also establish a link between smooth
and polygonal parts of the mesh: A polygonal face next
to a smooth face is called a sharp face, and both meet in a
common crease curve.

3.5 Sharp faces
Given a face with only sharp edges it may be that not all
of its vertices are corner vertices: some may be crease
vertices. Such a face is classified as sharp face, and it
is treated almost like a polygonal face. The difference is
that it has not only straight line segments on its border, but
also (at least two) edges which are part of a crease. The
uniform B-spline must be evaluated prior to triangulation:
A creased edge is replaced by 16 line segments so that the
sharp face matches the neighboring patch at its highest
resolution. The curve is evaluated by recursive subdivi-
sion of the border polygon using the weights ( 1

2 , 1
2 ) and

( 1
8 , 6

8 , 1
8 ) for edge and vertex points. Vertices are taken to

the limit position on the curve using the weights ( 1
6 , 4

6 , 1
6).

When all crease segments are evaluated, the face can be
triangulated just like a polygonal face.

A problem occurs if lower resolutions are needed. To
deal with this case, not only one, but four triangulations
are computed for every sharp face: With all sharp edges
being uniformly replaced by 16, 8, 4 and 2 segments. The
reason for this is that coarser triangulations cannot be ob-
tained by straightforward downsampling of triangulations
from a higher level, especially not for non-convex faces
(cf. Fig. 2). Although this looks like a large overhead,
it essentially requires only twice the space of the high-
est resolution: The triangulation of a polygon with n ver-
tices has n− 2 triangles, so the triangulation of a sharp
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a) b) c) d)

Figure 1: Partition of a B-rep face into patches. The top left vertex of the quad face is regular (valence 4), so the control
mesh of the patch contains 16 points (b). They are stored in subdivision rings (c) around the possibly irregular vertex
and face points. The four patches of a quad face yield 16×16 = 256 quads as the highest resolution tesselation (d).

Figure 2: Triangulations of a sharp face for different res-
olutions of the border curve

void renderSharp(PCBMesh* mesh, Face* face)
{

Vec3f* normal = &face→normal();
ChunkID chunkid = face→sharpTriangles[face→depth];

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3,GL_FLOAT,sizeof(Vec3f),

sharpPoints.chunk(face→sharpPoints));
glNormal3f(normal→x,normal→y,normal→z);
glDrawElements(GL_TRIANGLES,

mesh→sharpTriangles.size(chunkid),
GL_UNSIGNED_INT,
mesh→sharpTriangles.chunk(chunkid) );

glDisableClientState(GL_VERTEX_ARRAY);
}

Figure 3: OpenGL code to render a sharp face adaptively.

face with n crease vertices has 16n−2 triangles, which is
more than the 8n− 2 + 4n− 2 + 2n− 2 = 14n− 6 trian-
gles for the other three triangulations. The ratio is worse,
of course, when a face has many straight line segments.

The downsampling of the curve is only implicit, as the
index triplets returned by the triangulation algorithm refer
to the full-depth point list. This list is stored as a chunk
in PCB-repMesh::sharpPoints, while the different triangu-
lations are held in PCB-repMesh::sharpTriangles[depth].
Again, this enables the use of OpenGL vertex arrays, so
that a triangulation can be rendered with a single call, and
there is no cost for switching between resolutions. The
code example in Fig. 3 demonstrates how a sharp face is
rendered.

To render a sharp face one additional pass is necessary
to determine the maximum neighbor depth, which gives a
sharp face’s depth. This is also sufficient, as patches au-
tomatically refine towards a neighbor with higher depth.

The four triangulations of sharp faces are computed
only on demand, i.e. triggered from the display routine
– but they are cached as long as they are valid. This amor-

tizes the time for tessellation updates over a number of
frames. The advantage is that once the triangulations are
done, the resolution of a sharp face can be switched at
no further cost. The disadvantage is that any change of
vertex positions, sharpness flags, or topology, implies a
re-triangulation.

Catmull/Clark has no rules for rings, so a smooth face
with rings is automatically treated as a sharp face, and all
its edges as sharp. If a face with rings is supposed to be
a freeform face, additional edges must be introduced to
break up the rings (see makeEkillR in Fig. 4).

4 EULER OPERATIONS

Euler operations are a conceptually clean way to modify
a mesh. Insertion and deletion of edges, vertices, faces,
creation of rings, and genus modifications all maintain a
valid orientable 2-manifold connectivity, and they are in-
vertible.

The five topological operators and their inverse oper-
ators are depicted in Fig. 4, basically following a pro-
posal from Mäntylä [Män88]. As for cB-reps, operators
that create an edge actually have one more parameter, a
boolean edge sharpness. Note that there is no makeVFS,
but only a makeVEFS operation to create a new shell,
which behaves like makeVFS followed by makeEV. The
reason is that there is no direct link between faces and
vertices in our data structure. This also implies that a ring
cannot consist of an isolated vertex alone.

There is one version of makeEV to a create a dangling
edge, which is equivalent to makeEV(e0,e0, p). For
killing a dangling edge, killEV can receive either of
the two half-edges as parameter. In case e0→mate =
e0→faceCCW, we set e0 to e0→mate so that killEV has
to deal only with the case of a dangling edge shown
in Fig. 4. The topological dual of a dangling edge is
a one-vertex-loop created by makeEF(e0,e0) but this
is less useful for modeling. Using the three operations
makeVEFS, makeEV and makeEF, all objects of genus 0
can be built, i.e. any set of connected components each
topologically equivalent to the sphere. The remaining
two operators are related to rings and the modification of
genus.

A ring can be created from an edge where both half-
edges are incident to the same face. When it is re-
moved, the inner polygon is decoupled from the border
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Figure 4: Planar diagrams of Euler operators.

and is turned into a ring, while the border becomes the
ring’s baseface. The ring is clockwise oriented, which
is consistent with the rule that the face interior is to the
left of a half-edge. As with all the operators, the or-
der and orientation of the parameters is crucial: In Fig.
4, killEmakeR(eNew→mate) is also legal and would ex-
change the roles of ring and baseface, leading to a geo-
metrically invalid configuration. But makeEkillR(e1,e0)
is rejected because e1→face is not a ring but a baseface,
to guarantee topological consistency.

The genus modification also uses rings, which makes
it extremely simple. In the situation shown in Fig. 4,
makeFkillRH simply turns the ring into a baseface of its
own. As a result, a new connected component, a shell,
is created: a two-sided quadrangle. Edge e0 is then part
of the backfacing quadrangle that from our viewpoint is
clockwise oriented – just as the ring was. Any orientable
manifold mesh can be created by these five pairs of oper-
ations. But for convenience, we use the extended set of
12 Euler operators including moveV to move a vertex and
sharpE to change the sharpness of an edge. Both of them
are self-inverse.

mate

vertexCW

vertexCCW

faceCW

faceCCW

Figure 5: Half-edge navigation functions.

As a design decision, operators check only for topolog-
ical and not for geometrical consistency (face planarity
etc.). We consider geometric consistency to be in the re-
sponsibility of the software layers above the Euler opera-
tors. The reason is that some consistency issues can only
be decided when knowing the semantics of the model.
Geometry checks on the level of Euler operators would
introduce great overhead, often be redundant, and rule out
inconsistent intermediate configurations that are some-
times indispensable (see Fig. 7).

The absence of geometry checks however can lead to
confusion when perceivably impossible configurations
are created, with self-intersections, reversed orientations,
or rings outside the baseface border. Consequently, an
intermediate software layer is favorable that checks the
user input and sends only topologically and geometrically
valid operator sequences to the mesh.

4.1 Operator Sequences and Undo/Redo
Our architecture provides a logging mechanism that cre-
ates a record for each Euler operation that is executed. It
stores the data needed to undo the operation, and to redo
it again. So the record for an operation op needs to store
the parameters of both op and inverse(op): The record for
killEF must also store the parameters needed by makeEF
to reconstruct the deleted edge, namely e0→faceCCW
and e0→mate→faceCCW. Consequently, every pair of
mutually inverse operators has the same number of items
in their records (Table 5, last column).

The signatures of the Euler operations and the individ-
ual fields of the undo records are summarized in Table 5,
basically derived from the configurations in Fig. 4. Note
that for killEV in the table, we set eA=e0→vertexCW ex-
cept for a dangling edge where we set eA=e0→faceCCW
to avoid that eA=e0. The records in our log are of equal
size and match the union of the signatures of the Euler op-
erators: A record can hold three edge indices, two points,
and a boolean. All records are stored in the skipvector
PCBMesh::records.

The implementation of operator inversion is some-
what complicated by the fact that some of the B-rep
modeling operations actually delete entities, as the
whole extended set of 12 Euler operations can be
used. Examples include the removal of edges between
coplanar faces and the deletion of an edge to create a
ring using killEmakeR. But the inverse of a sequence
containing [. . . ,opi(makeEV),opi+1(killEV), . . .] will read
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Operation Edges Points Flags #
e = makeVEFS(p0, p1,s) e p0, p1 s 4

killVEFS(e0) e0 e0→vertex→p,
e0→mate→vertex→p e0→sharp 4

e = makeEV(e0,e1, p,s) e, e0, e1 p s 5
killEV(e0) e0, eA, e0→faceCCW e0→vertex→p e0→sharp 5

e = makeEF(e0,e1,s) e,e0,e1 s 4
killEF(e0) e0, e0→faceCCW, e0→vertexCW e0→sharp 4

e = makeEkillR(e0,e1,s) e,e0,e1 s 4
e = killEmakeR(e0) e0, e0→faceCCW, e0→vertexCW e0→sharp 4

makeFkillRH(e0) e0, e0→face→baseface→oneEdge 2
killFmakeRH(e0,e1) e0, e1 2
moveV(e0, p) e0 e0→vertex→p, p 3
sharpE(e0,s) e0 e0→sharp, s 3

Table 5: Data in undo-records of the extended set of 12 Euler operations. e,e0,e1 are edges, p, p0, p1 are 3D points,
and s is a boolean sharpness flag. The value of eA from killEV is explained in Section 4.1.

[. . . , invi+1(makeEV), invi(killEV), . . .] as the operators are
inverted and the sequence is reversed. So care must be
taken that invi kills the right edge, because invi+1 proba-
bly recreates the edge in a different memory location than
before, due to the skipvector’s behavior.

The solution to this problem comes from the observa-
tion that every edge has a unique original creator, i.e., the
operation that created it. Consequently, every half-edge
stores the record index of the operation from which it was
created in the HalfEdge::sourceId field. The above prob-
lem is now solved by taking the sourceId as the edge index
that is stored in a record. Edges are then referred to indi-
rectly via the operation that created them, and the source
operation is the unique place where the edge’s current ar-
ray index is stored.

In the above example, opi creates an edge e. Its array
index is stored in reci, and e→sourceId is set to i. Before
the next operation opi+1 kills e, it stores the sourceId i
as a reference to e’s creator in reci+1. Now for an undo
of the sequence, invi+1(makeEV) recreates the edge as e′.
But the e′→sourceId is set to the original creator i, and
the array index of e′ is written back to reci as the current
location of the edge. Then opi can also be safely undone.

Matters are slightly complicated by the fact that half-
edges encode a direction. This issue can be resolved by
reserving the least significant bit of the sourceId for the
distinction between mates. In our example, e′→sourceId
is actually not set to i but to 2i, while the sourceId of
e′→mate, created together with e′, is set to (2i + 1). Ac-
cordingly, if opi+1 was killEV(e′→mate), invi+1 would
write the array index of e′→mate back to reci.

The described procedure is sufficient for meshes which
are created from scratch by Euler operators. But if a 3D
object is imported from a file, there is no operator se-
quence. If this mesh is changed, there are no source oper-
ations to refer to. In this case, a dummy record is inserted
into the operator sequence. It serves as a synthetic unique
source record for an edge, so that Euler operators can refer
to it. Thus, all modeling operations can also be invertibly
applied to externally created meshes.

4.2 Tesselation Update

The choice of a tessellation method is based on the face
classification, which in turn depends on the vertex clas-
sification (cf. Section 3.1). Every Euler operation results
in a possible class transition of the entities involved in
the operation. However, there is no simple transition ta-
ble: The vertex classification, for instance, depends on
the number of incident sharp edges. Now, as shown in
Fig. 4, makeEV(e0,e1) splits a vertex into two and parti-
tions the vertex’s edges between them. So this may very
well create two crease vertices, or even a smooth vertex,
from a corner vertex. In order to accomodate all possible
changes, we follow a simple strategy: Each Euler opera-
tion touches entities, i.e., marks them for re-classification.
Touching is done basically on each input edge, i.e., both
end vertices and both faces are marked, using the respec-
tive status fields.

After changing the mesh but before redisplay, a commi-
tUpdate routine processes all new and all touched entities
to assert a consistent triangulation. It first re-classifies all
vertices of touched faces, and then all faces incident to
these vertices. This makes sure that if a smooth face is
touched, information is propagated to the neighbor faces
as well. This is necessary because of the C2 continuity of
Catmull/Clark patches, as a smooth vertex belongs to the
control mesh of all smooth faces in its 2-neighborhood.

All touched faces, and new entities as well, are re-
classified and re-tessellated, i.e., the procedure from Sec-
tion 3 is applied to them. This strategy is not optimal,
as sometimes tessellations are unnecessarily recomputed.
As an example, let e0, e1 be edges of a smooth face f .
A makeEF(e0,e1) then touches the vertices of e0 and e1

and triggers a re-triangulation of all faces incident to these
vertices. But if some edges are sharp, not all such faces
may require a re-triangulation. An example can be seen
in Fig. 6.

In order to avoid a combinatorial explosion for all pos-
sible combinations of touched smooth, sharp and polygo-
nal faces, the described simple touching scheme is used.
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Figure 6: A makeEF inserts an edge and touches both
adjacent faces and vertices. All neighbor faces are re-
triangulated, including the top right quadrangle, which
is a sharp face where the tessellation actually does not
change.

5 PROGRESSIVE COMBINED B-REPS
There is an interesting relation between Euler operators
and progressive triangle meshes (PMs): The split se-
quence can be expressed also in terms of Euler operators.
An edge collapse is basically a killEV and two killEF, as
it removes three edges, two vertices and one face. Conse-
quently, a split sequence could equivalently be expressed
as a sequence of Euler operators, exploiting their invert-
ibility for coarsening and refinement. But compared to
PMs, the Euler sequence is operating at a finer granular-
ity and also more general in that not only one operation is
encoded in the sequence, but all Euler operations can be
used.

But while the PM split sequence is obtained through
automatic simplification, we propose instead to gather the
Euler sequence at the time when the object is being built,
and to let the user control the process through the model-
ing application. Even more important: All the modeling
tools that are offered by a 3D modeler must eventually
modify a mesh – and can be implemented in terms of Eu-
ler operators (or alternative operator sets). This is exactly
what we advocate.

Compared with a triangle mesh, a cB-rep mesh is typ-
ically much smaller as subdivision surfaces are used for
smoothly tessellated regions. But for very large meshes,
their built-in level of detail alone is not sufficient for in-
teractive rendering. Instead, the control mesh itself must
be coarsened. When the Euler sequence is used for LOD
control, the resulting data structure is called Progressive
Combined B-rep, or pcB-rep for short.

5.1 Euler Macros
In database terms, each Euler operation is an atomic
operation, and an arbitrary sequence of them can be
grouped together to form a transaction, which we call
Euler Macro. Such a macro is either active, for example
right after its creation, or inactive: To undo a macro, its
record sequence is traversed back to front, and the inverse
operators are executed. Euler Macros are therefore the
basic unit for undo/redo, unlike PMs, where individual
edge-collapse/vertex-splits are the undo/redo unit.

Euler macros may contain any number of operators. A
PM could be emulated by a sequence of Euler macros that

Figure 7: Motivation for Euler macros. The center image
shows an intermediate configuration from the construc-
tion of a profile (right). In order to avoid such inconsistent
LODs, all operations leading from one consistent state to
the next can be grouped into one Euler macro.

each contain three Euler operations. But Euler Macros
were introduced with a different idea in mind: Semantic
LOD. Experienced modelers often work in a coarse-to-
fine fashion: They start with some basic shapes or prim-
itives and successively refine them and add detail. This
modeling style fits well with the macro concept, starting
a new macro every now and then in the modeling pro-
cess. The drawback of a low macro granularity is that
undo/redo gives popping artifacts. But the great advan-
tage is that the user – or, synonymously, a higher software
layer – can steer the refinement process, and actually au-
thor a multi-resolution mesh. It is possible to group ar-
bitrary modeling operations together that belong to the
same level of structural refinement. Thus, user-defined
macros can be based on the model semantics instead of
on the output of a simplification cost function that con-
trols the coarsening of the model. And in terms of pro-
gressive meshes, the edges of a pcB-rep are feature edges
– and changing them always produces artifacts, unless the
object covers just a few pixels, which is the usual way to
hide popping when using LOD.

Another reason for a grouping facility is that it helps to
avoid geometrically inconsistent intermediate configura-
tions. There is not much use for detail such as a beveled
edge or a profile being constructed only halfway (Fig. 7).

There is a canonical dependency relation between
macros: Euler operations are formulated in terms of
half-edges, and operators in a modeling sequence may
have input parameters produced by operators occuring
earlier in that sequence. A macro mA is a parent of mB

iff an operator from mB has an input parameter that was
produced by mA. In this case mB is called a child of
mA. An undo of mA will first undo mB. To redo mB,
first mA must be redone. So all parents of active macros
are also active, and all children of inactive macros are
also inactive. The graph induced by the parent-child
relation can be regarded, and used, as the continuation
of a scene graph below the object level: the object graph
or modeling graph. As this graph is a directed acyclic
graph (DAG), a partial order exists, which can be used
for navigating in the graph. Macros can be dynamically
added and deleted, so each macro maintains two explicit
sets of parents and children. In order to completely delete
an active macro, first all children are recursively deleted,
then the macro itself is undone. Finally, the macro’s
records are deleted and returned to the skipvector for
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Figure 8: Overlap test between view cone and bounding
sphere through apex translation

later reuse. After a change in the graph, the partial order
is recomputed in linear time using depth first search.

6 RENDERING A PROGRESSIVE COM-
BINED B-REP

The commitUpdate routine already mentioned keeps track
of bounding volumes for each face and for each macro.
As was described in [Hav02], a face of the control mesh
contains a normal cone and also the bounding sphere of its
vertices. For a smooth face, the face normal is the limit
normal of the face point, and the sphere also contains the
limit positions of the vertex and face points. It is bene-
ficial to attach these data to each face because it greatly
facilitates view frustum culling and LOD determination,
and it pays off as each face of a Combined B-rep typically
comprises many triangles: A smooth quad face contains
four patches with 2 to 512 triangles altogether, depending
on the subdivision depth.

6.1 Rendering Faces

Frustum culling is done for each face via apex translation
of the view cone, as shown in Fig. 8. The use of a view
cone is based on the assumption that the aspect ratio of
the viewport is usually close to 1. The cone is determined
only once, from the slope s of a line through frustum cor-
ners c f , cb with respect to the axis through the midpoints
f and b of front- and backplane. The overlap test with
a bounding sphere (ms,rs) can be reduced to a point test
by using a translated apex e′ = e + rs dx, where dx is the
displacement for the unit sphere. It can be determined by
solving for dx in equations d2

x + d2
y = 1 and dy/dx = s.

With a normalized view vector v no sqare root is nec-
essary for testing whether the sphere center ms is inside
the cone with modified apex e′: With dm = ms− e′ and
dxs = 〈dm,v〉 we have dy2

s = 〈dm− dxsv,dm− dxsv〉, and
the point is inside the translated cone iff dy2

s/dx2
s < s2.

The LOD of front-facing smooth faces is determined
in a different way than in [Hav02], namely also via the
bounding sphere. To assure that larger and closer faces
have a higher resolution, the subdivision depth is com-
puted as the projected size of the bounding sphere, rela-
tive to the size of the view cone. It is biased for faces with
higher curvature by adding cnormal:=face->normalCone,

the sine of the normal cone’s opening angle (stored with
the face). It can also be biased for smaller faces through a
square root. Finally it is scaled by an overall quality factor
q, determined a posteriori from measuring the frame rate.
The resulting value is clamped to the useful depth range
[0,3].

depth :=
⌊

q ·
(√

rs

s ||ms− e|| + cnormal

)⌋

6.2 LOD from Euler Macros: Macro
Culling

Each macro holds an axis-aligned bounding box (AAB-
Box) of the 3D points and the positions of vertices occur-
ring in its operator sequence. It also holds a child sphere,
which is recursively defined as enclosing the macro’s own
AABBox and the child spheres of the macro’s children.
The sphere tree is computed in linear time together with
the partial order of the macro DAG every time a macro is
added or deleted.

The sphere tree and the macro DAG are used together
for LOD adjustment. It is most useful when the complete
model has many faces or a great spatial extent: The pro-
cedure in Section 6.1, although quite fast, has to process
each face in every frame, consequently it will not scale
with very large scenes. This can be resolved by macro
culling.

In a first attempt to realize this concept, we follow a
simple strategy much like the active tree in the papers
from Hoppe [Hop97] and Luebke [LE97]. The active
front contains active macros that have inactive children. In
every frame each macro in the active front is tested: If the
projected size of its bounding sphere is below a threshold
sundo, the macro (with its active children) is deactivated
(undo), and its parents are added to the active front. Oth-
erwise, testing continues with the children. If the size of
an inactive child is greater than a threshold sredo, it is re-
activated (redo), and added to the active front. When all
children are active, the macro is also removed from the
active front. Macros with no children are always tested.

Note that in measuring the projected size the view di-
rection is not taken into account, so it measures actually
the solid angle of a macro’s child sphere with respect to
the viewer location. The reason is that the view direction
is less stable than the viewer’s position, and the undo/redo
of Euler macros has a relatively long latency. This is
also the reason why different threshold values are used for
undo and redo, for instance sundo = 0.15 and sredo = 0.30
of the field of view angle. In summary, this mechanism
works like a semantic magnifying glass, where most of
the detail is present only in the vicinity of the viewer.

6.3 Results
We have deliberately used two older benchmark plat-
forms: PC1 is a dual Pentium3 866 MHz with Nvidia
Geforce 3 and 256 MB RAM, while PC2 is a Pentium4
1700 MHz with Nvidia Geforce4 and 512MB RAM, both
running under Windows 2000.
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Figure 9: PC2 with Gothic sequence.
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Figure 11: PC1 with Flower sequence.

Our benchmark object is the Gothic window shown in
Fig. 12. The B-rep mesh has 16 319 vertices, 58 910 half-
edges, and 13 306 faces. Most of its faces are smooth: It
has 54 184 patches, almost as many as half-edges. The
tessellation results in as many as 7 008 558 triangles at
highest resolution, which is slightly oversampled then.
First we have tested the time for creation and rendering
in highest resolution, where adaptive LOD is switched off
and all faces have static depth 3. On PC2, commitUpdate
takes 0.219 s for classification, memory allocation, setup
of subdivision rings and patches, and for computing the
first subdivision. When the first frame is rendered, the
Catmull/Clark tessellation is triggered and takes 0.944 s
to compute. OpenGL output of the 7M triangles finally
takes 0.49 seconds. On PC1, the timings are 0.437s for
update, 1.978s for tessellation and 1.13s for rendering. It
must be noted that on both machines, the first update takes
much longer (1.078s/2.781s) due to the memory alloca-
tion which takes place in this step, leading to relocations
of skipvectors and skipchunks.

We have benchmarked the adaptive display of the static
model using a pre-scripted camera path over approx. 800
frames on both machines (Figs. 9 and 10). The upper di-
agrams show the quality vs. seconds to render a frame,
where the maximal quality 1.0 was scaled to 0.15 to fit.

The animation first shows the whole object, then goes
to a close-up view, slides parallel to the object in close
distance, and finally the view is tilted showing again the
whole object. This is reflected in the diagrams, as the
quality increases when less of the object is visible but in
higher detail; this is due to the view cone culling. The ab-
solute number of triangles rendered varies significantly,
but the lower diagrams show that the rendering rate (in
million triangles per second) is relatively stable. Both di-
agrams also show that it is more efficient to display fewer
faces in higher detail, than to spread the triangles over all
faces of the whole object. PC2 even reaches maximum
quality at close-up, revealing the highest level of refine-
ment.

The next thing we have tested was macro culling. We
found the performance hard to quantify, it is largely de-
pendent on the scene structure. The Flower Scene an-
imation (see Fig. 14) starts with the object behind the
far plane, zooms in close to one flower, and zooms out
again. The diagram in Fig. 11 shows the number of B-rep
faces versus the render time. It exhibits a typical behav-
ior: First, the object is completely inactive. Then the basic
structure is created, and the face number remains constant
for a while. Then, at a certain point, there is a peak in ren-
dering time: Many of the equally sized flowers have their
detail enlarged beyond the threshold. Thus, the mesh is
greatly changed during only a few frames. Zooming fur-
ther in, the number of B-rep faces remains constant and
subdivision surface LOD takes over. The zoom out then
is very gradual, and the update effort can be spread over
more frames than before. – The castle scene (Fig. 15)
uses macro culling with the Euler operations creating the
round arches, which works quite well but unfortunately
exhibits some popping as well.

To summarize, macro culling is most effective when
gradually adding or removing complex detail at greater
distance, and less efficient when a great number of objects
have to be processed at the same time. The solution could
be a budget admitting only a limited number of changes
per frame.

Finally, we have tested the performance for interactive
modeling with a model that is being rebuilt in every frame.
Fig. 18 shows the interactive manipulation of a procedu-
ral gear. The basic model has 493 faces, 464 of which
are smooth, resulting in 1862 patches. The gear construc-
tion parameters are animated using a spacemouse. So the
mesh size varies as a function of e.g. the number of teeth.
Benchmarks are promising: On both PCs, the model can
be re-generated at≥ 20 fps, including update, tesselation,
and display. The relative quality on PC1 is 0.23 in aver-
age, where most faces have depth 1, and around 22K-28K
triangles are effectively displayed per frame. For PC2, the
quality is 0.65-0.71, most faces have depth 3, and 120K-
180K triangles are generated and displayed at 20 fps. This
clearly demonstrates the effectiveness of our approach for
adaptive tesselation and display. For this reason the cB-
reps have become in our group a work horse for interac-
tive display of complex freeform objects (see Fig. 17).
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7 CONCLUSION AND FUTURE WORK

We have presented the design of a surface representation
for interactive 3D design and manipulation, together with
techniques for incremental update and interactive render-
ing. Our emphasis was on developing one component of
a layered architecture, with clear responsibilities on each
layer.

a) The lower level contributes the memory management
for dynamic data, the generation of display primitives
on demand through 2D triangulation and tessellation
of subdivision surfaces, and view frustum culling and
LOD management for rendering.

b) The intermediate level provides a commit routine to
propagate changes from the upper level to the lower
level, selectively recomputes invalid low-level data,
and maintains the integrity of normals, bounding vol-
umes and other hinting information needed by the low
level.

c) The highest level of the presented architecture pro-
vides the Euler operators as a concise, clean interface
to higher-level software, e.g. to the application layer.

The emphasis in the design of the interface was on iden-
tifying a closed and sufficient set of operations to build
up Combined B-rep meshes, which is our chosen surface
representation. This marks in fact a paradigm shift from
a static object description (such as indexed face sets) to a
procedural, operation-based description. We consider the
procedural paradigm to be mandatory when dealing with
dynamically varying data – simply because this requires
to find ways for describing the variations.

Much remains to be done in the future. First, we would
like to extend our framework to true non-manifold ge-
ometry and more general simplicial complexes, hopefully
still with efficient free-form geometry. Second, the macro
culling can be further improved, especially if there is a
good way to detect and deactivate occluded Euler macros.
A related problem is to find the right macro resolution in
order to minimize popping artefacts, something for which
we will have to gather more experience in model building.
The third line of research is on the conversion of given
geometry into a procedural description. There are expo-
nentially many ways to decompose a static mesh into a
sequence of Euler operations, for instance through simpli-
fication. Our focus will be on finding suitable sequences
that exhibit some self-similarities, and ways for a concise
description of them through parameterized Euler macros.

Finally, we would like to go one step beyond: After
tessellation on the fly and model generation on the fly,
we would also like to generate the Euler operations them-
selves only on demand, e.g. by evaluating a high-level ge-
ometry description language, making use of our frame-
work’s capability to add and delete Euler macros at run-
time.

An interactive demo for pcB-reps can be downloaded
from the homepage of the Generative Modeling Language
at http://www.generative-modeling.org .
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Figure 12: The top row shows images from the Gothic Window animation discussed in Section 6.3. The bottom row
show the polygonal B-rep mesh, and subdivision surface tessellations in low and high resolution, and also the individual
patches.

Figure 13: View cone culling. The slight excess of the view cone with respect to the view frustum can be seen especially
in the right image, on the top and bottom sides of the view frustum (in white).
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Figure 14: The Flower scene for benchmarking macro culling. A dense distribution of equally sized small flowers is
progressively built from the stored Euler operator sequence. Each flower is built from three macros, the tessellation
and the control mesh are updated at runtime.

Figure 15: The Castle scene is another demonstration for macro culling: In this case, each single arkade has a limited
spatial extent and can therefore be constructed lazily. The complexity of the scene is comparable to the Gothic window
with 11745 B-rep faces containing 42294 Patches, resulting in 5557821 triangles at the highest resolution.

Figure 16: Close-up of single patches. Each patch contains 8×8 quads (left).
Note that the top face has degree five just like its face point. The right image
shows the subdivision rings around possibly irregular vertex (yellow) and face
(cyan) points.

Figure 17: Application of Com-
bined B-reps: Interactive display
of the ribbon structure form a
molecule used in organic chemistry.

Figure 18: The interactive gear. The spacemouse is a 6-DOF input device with three translational and three rotational
degrees of freedom. They are used as input parameters for the procedural construction of the gear model. The whole
model is re-generated and displayed with at least 20 fps on both of our benchmark PCs, at relative qualities of 0.23 and
0.69 in average.
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MPIglut: Powerwall Programming Made Easier
Orion Sky Lawlor∗ Matthew Page† Jon Genetti‡

Department of Computer Science, University of Alaska Fairbanks

ABSTRACT
A powerwall is an array of separate screens that work
together to provide a single unified display. Powerwalls
are often driven by a small cluster, which requires paral-
lel software to organize and synchronize the distributed
rendering process. This paper describes MPIglut, our
powerwall-friendly implementation of the popular se-
quential GLUT OpenGL 3D programming interface.
MPIglut internally communicates using MPI to pro-
vide a single coherent display even across a distributed-
memory parallel machine. Uniquely, MPIglut is source-
code compatible with ordinary sequential GLUT code
while providing high performance.
Keywords: Powerwall, large display, GLUT, MPI,
OpenGL, API override.

1 INTRODUCTION
After decades of predictions, parallelism is finally arriv-
ing in mainstream computing. From instruction-level
parallelism in CPUs, to pixel-level parallelism in GPUs,
to today’s multiple CPU/multiple GPU machines (for
example, via multicore and SLI), parallelism at all lev-
els is ubiquitous today.

However, despite its increasing importance, writing
code for parallel machines is still difficult [Sut05]. One
approach we have pursued recently [Law06] that pre-
serves the millions of man-years invested in sequential
software is to build “parallelizing libraries,” reusable
pieces of parallel code that enable existing sequential
programs to operate correctly in parallel. Parallelizing
libraries cleanly encapsulate much of the complexity
of parallelization, leaving all application-domain com-
plexity to the existing sequential program.

In this paper we describe our open-source paralleliz-
ing graphics library called MPIglut. MPIglut is de-
signed to support the many existing sequential OpenGL
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Same program in parallel on a powerwall with MPIglut.

Sequential OpenGL/GLUT program running on a laptop.

Figure 1: MPIglut allows sequential OpenGL GLUT
applications to run efficiently in parallel on powerwall-
style tiled display clusters with distributed memory.

3D graphics applications that use the GLUT user inter-
face. As shown in Figure 1, MPIglut allows these ap-
plications to operate correctly on a distributed-memory
parallel cluster via a simple recompile. Our current
primary use for MPIglut is for display walls, or pow-
erwalls1 [Woo94] [Sch00], where a single application
drives a tiled array of physical display devices (such as
monitors or projectors) as a large virtual display sur-
face.

1 PowerWall (note capitalization) is a trademark of Fakespace Systems.
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1.1 Prior Work
Many libraries already exist for adapting applications to
a tiled parallel display—see Staadt et al’s 2003 survey
[Sta03]. Table 1 summarizes some of this prior work
by the parallelism used in the geometry-generating ap-
plication and the geometry-rendering display.

Molnar et al [Mol94] provided a popular three-level
taxonomy of approaches to parallel rendering: sort-
first (send data before rasterization), sort-middle (send
data during rasterization), and sort-last (send data af-
ter rasterization). Because rasterization is not the only
noteworthy event in graphics programming, we find a
slightly more fine-grained taxonomy useful:

1. send-event: The user interacts with the program via
window system events. MPIglut and VR Juggler
broadcast these events across the network, and are
hence send-event systems. One advantage of this is
events are normally far smaller than any other stage
in the system.

2. send-database: The program responds to those win-
dow system events by traversing its scene database.
Several parallel scene graph libraries, described be-
low, are able to respond to changing viewpoints by
sending the appropriate parts of the scene database
across the network to their new displays.

3. send-geometry: The program generates renderable
geometry for the scene by making calls to the graph-
ics interface library. Chromium captures OpenGL
calls at this level with its own libGL; DMX captures
the GLX protocol stream generated by the stock X
OpenGL library. The captured geometry is then po-
tentially sent across the network to a different GPU
for rendering, such as via Chromium tilesort. This
is Molnar’s “sort-first” level.

4. send-groups: During rasterization setup, many ren-
derers decompose primitives into groups of pixels
such as scanlines. This “Scan Line Interleave” ap-
proach was used with multiple 3dfx graphics cards,
and is Molnar’s “sort-middle” level.

5. send-pixels: After rasterization, rendered pixels must
be delivered to the appropriate display and possi-
bly composited together. The common approach
is to divide the display surface into tiles and (pos-
sibly dynamically) assign a renderer to each tile.
ATI’s CrossFire, and IBM’s scalable graphics en-
gine [Pra05] network-attached-framebuffer work at
this level to composite rendered pixels. Chromium’s
readback component also provides support for this,
Molnar’s “sort-last” compositing.

The Chromium [Hum02] system, formerly WireGL
[Hum00], captures all OpenGL rendering calls sent
to its special OpenGL library. The captured OpenGL

calls can then be sent across the network to other pro-
cessors for rendering in a flexible way, so Chromium
can either distribute the calls coming from a single se-
quential application, or route the calls from pieces of
a parallel application to the appropriate parallel or se-
rial display. Because it uses binary call interception,
Chromium is compatible with most OpenGL binaries.
But because Chromium must intercept and forward all
OpenGL calls, it cannot help but heavily intrude upon
the rendering process. This makes the library difficult
to extend to follow the evolving OpenGL standard, and
also has performance implications. Finally, Chromium
does not provide much assistance with application-level
parallelization, although it does come with a GLUT-like
library called CRUT, and provides unrendered geome-
try and rendered pixel communication.

Distributed Multihead X (DMX) [Mar] is an X Win-
dow System server that splits up incoming graphical
user interface requests and forwards them to a list of
“backend” X servers. DMX is often used on power-
walls to allow ordinary unmodified sequential X appli-
cations to run on the parallel tiled display. DMX also
includes GLX Proxy, an implementation of X’s native
OpenGL network transmission protocol (GLX) which
broadcasts each GLX request to all machines for ren-
dering. Exactly like Chromium, GLX Proxy thus in-
trudes on every rendering operation, which can be slow
and makes it difficult to keep up to date as OpenGL
changes. DMX’s GLX Proxy is purely broadcast-based,
and does not do any of the intelligent geometry routing
performed by Chromium’s tilesort.

Like MPIglut, VR Juggler [Bie01] only handles event
reception and OpenGL setup, leaving OpenGL render-
ing largely to the user. VR Juggler works in CAVE sys-
tems, supporting 3D head trackers and displays at arbi-
trary 3D orientations. A similar library specifically for
SGI Performer hardware was pfCAVE [Pap97].

A number of libraries exist which provide a paral-
lel scene graph interface. OpenSG [Rei02] (which is
not related to OpenSceneGraph) provides a replicated
scene graph that can be modified and rendered by mul-
tiple threads or the distributed machines of a cluster. To
cite a few, Syzygy [Sch03], Aura [vdS02], OpenRM
Scene Graph [Bet03], and Coin3D [Sys] are among
the many feature-rich parallel scene graph libraries,
which often target tiled displays. But the main barrier
to adoption of all these libraries is that they are not,
and cannot be, anything like classical immediate-mode
OpenGL. This means existing 3D programs must be
almost totally rewritten to take advantage of their fea-
tures. MPIglut by contrast aims for source code com-
patibility. In the scene graphs’ defense, MPIglut im-
plicitly assumes the original program is capable of ren-
dering any portion of the scene at any time, so even un-
der MPIglut a parallel view-culling scene graph is still
quite useful for large models.

Journal of WSCG 138 ISSN 1213-6972



Single Display Multiple Displays
Serial Application Serial toolkits like Windows, X, GLUT, etc DMX [Mar]
Parallel Application ParaView, Tachyon MPI Raytracer [Sto98], etc MPIglut, VR Juggler [Bie01], Aura [vdS02]

Table 1: Classification of prior work by primary use. Chromium [Hum02] can be used for all four cases.

2 IMPLEMENTATION OF MPIGLUT
MPIglut implements a parallel version of the OpenGL
Utilities Toolkit (GLUT) standard [Kil96]. GLUT is
normally a sequential windowing and GUI event han-
dling interface called by sequential programs. MPIglut
parallelizes GLUT programs by running a separate copy
of the user’s sequential code on each of a set of MPIglut
rendering processes called “backends”. Each backend
is responsible for rendering a small part of the overall
display, although MPIglut provides the user’s sequen-
tial code the appearance that it is rendering to the entire
display.

MPIglut is built on top of a sequential GLUT im-
plementation, which handles user input at the front
end and the render system interfacing at the back end.
We currently use a patched version of freeglut[Ols07]
2.4.0, since MPIglut requires one small modification
to the underlying GLUT in order to work well with
DMX (MPIglut forces its backend windows to be X
children of the DMX backend window, which prevents
window-stacking order and event routing problems).
Also, MPIglut intercepts a few GLUT and OpenGL
calls for special handling:

• MPIglut’s glutInit on a backend calls MPI_Init, sets
up MPIglut’s internal state, and calls the underly-
ing glutInit. On the frontend, glutInit spawns the
appropriate number of backends (using mpirun) and
forwards user events to those backends.

• MPIglut’s glutCreateWindow (and other window ma-
nipulation calls, such as glutReshapeWindow) for-
wards the request to the frontend, which adjusts its
window and correspondingly reorganizes the back-
ends.

• MPIglut’s glutMouseFunc (and all other user event
handling functions) calls the user’s callbacks based
only on events broadcast from the frontend.

• MPIglut’s glutGetModifiers returns the frontend’s
keyboard state as of the last event broadcast.

• MPIglut’s glViewport command internally asks for
an OpenGL viewport covering only our backend’s
screen region. This avoids the OpenGL implementa-
tion’s GL_MAX_VIEWPORT_DIMS limit, which
is often as low as 4096 pixels—less than half the
display width of our 8400x4200 pixel powerwall!

• MPIglut’s glLoadIdentity (and the other matrix load
functions) pre-loads this backend’s subwindow ma-
trix, as described in Section 2.3.

• MPIglut’s glutSwapBuffers synchronizes all displays
(using a glFinish and MPI_Barrier). This avoids
tearing and lag effects as slower or more heavily-
loaded backends fall behind faster ones.

MPIglut’s call interception scheme currently uses the
preprocessor. For example, inside our MPIglut public
header file, we intercept glLoadIdentity calls with the
simple C/C++ preprocessor macro “#define glLoadI-
dentity mpiglLoadIdentity”. For full binary compatibil-
ity, it would be straightforward to implement a shared-
library technique such as LD_PRELOAD or even con-
struct an entirely new replacement library, similar to
Chromium [Hum02]. But for mere source-code com-
patibility the preprocessor is very small and simple.

2.1 Parallel Programming with MPI
Underneath, MPIglut uses the parallel Message Pass-
ing Interface (MPI) standard [MPI94] to synchronize
and communicate GUI events between the backend pro-
cesses. We currently use MPICH 1.2.7 [Gro96] as our
MPI implementation, although any implementation of
MPI should work. MPIglut programs are not required
to make any MPI calls themselves, but are free to call
MPI functions if needed, for example to accomplish
some application-specific communication not provided
by MPIglut.

Several of the best aspects of MPIglut are taken di-
rectly from MPI. Unlike with threaded multiprogram-
ming, MPI and MPIglut run a completely separate copy
of the main() program in each of the parallel back-
end processes. This avoids many of the race con-
ditions common with threaded parallel programming,
avoids slow and error-prone locking, and allows the en-
tirely safe use of global or static variables by MPI and
MPIglut programs.

One obvious major drawback of non-shared memory
parallel programming is the potential for duplication
of large shared data structures. However, if the larger
shared structures are memory-mapped in from files, the
OS kernel will safely point all local processes’ pageta-
bles at one copy of this common data, and so multiple
processes can be made memory-use-competitive with
multithreaded programming even on shared-memory
hardware.
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Figure 2: Sequential GLUT normally receives events
from the X server and forwards them to the applica-
tion’s event handler callbacks. MPIglut receives events
at the frontend and broadcasts them out to all the back-
ends. Broadcast events are then delivered to the appli-
cation’s event handler callbacks collectively.

2.2 Event Delivery
As shown in Figure 2, MPIglut receives user input
events such as keystrokes and mouse motion using a
single placeholder “frontend” process. This frontend
process then sends the incoming events over a TCP
socket to one backend process, where the events are
broadcast via MPI to all the backends.

The semantics of some calls in MPI and MPIglut
are “collective”, meaning they must always happen in
the same order on every backend process. In MPIglut,
event reception and delivery is collective, so every back-
end is guaranteed to receive the same user input events
in the exact same order. Collective calls usually al-
low the programmer of an MPIglut (or MPI) process
to safely ignore the confusing unsynchronized execu-
tion common to parallel programming, and think of the
processes as executing together in lock-step.

Applications must ensure they retain this collective
property when they make GLUT windowing and over-
all rendering control calls such as glutSwapBuffers.
Deterministic applications automatically remain collec-
tive. Applications that determine window state based
on a nondeterministic function of their (identical) input
data, (identical) command-line arguments, and (identi-
cal) user events would require additional synchroniza-
tion to work properly under MPIglut. For example, ad-
ditional code would be needed to synchronize applica-
tions based on a non-shared clock, or that already ren-
der data from the network. However, no OpenGL ren-
dering commands (such as glDrawLists) are collective
or intercepted by MPIglut, so all are safe to call in any
order and all run at full speed.

2.3 MPIglut Coordinate Systems
MPIglut currently fetches both input events and screen
geometry from the frontend’s DMX window, although
it would be trivial to have MPIglut fetch this informa-
tion from some other program or a configuration file.

Most events in MPIglut are delivered collectively to
the user code in global coordinates, the coordinates
of the DMX display running across the collective vir-
tual display screen. Because global coordinates are the
same everywhere, user code never needs to translate co-
ordinates due to MPIglut.

Window Coordinates

Global Coordinates

Local

Sublocal Subwindow

Figure 3: Coordinate systems used inside MPIglut.

But as shown in Figure 3, internal to MPIglut there
are no fewer than five separate coordinate systems that
must stay properly interrelated.

• Global coordinates are coordinates on the entire col-
lective virtual screen. Global coordinates (0,0) are
the top-left corner of the whole powerwall. These
coordinates are used by DMX and the user code to
specify window positions.

• Local coordinates are the coordinates of the local
machine’s directly-attached screen. Local coordi-
nates (0,0) are the top-left corner of this MPI pro-
cess’s attached physical display. These are used in-
ternal to MPIglut backends to position windows on
the local screen.

• Sublocal coordinates mark our backend process’s
portion of its own directly-attached screen. Sublocal
coordinates (0,0) are the start of the portion of screen
space this process is responsible for drawing. They
are different from local coordinates because we may
wish to have more processes than screens, for exam-
ple on a multi-core machine.

• (Global) Window coordinates are measured on the
frontend’s virtual window. Window coordinates (0,0)
are the top-left corner of the collective frontend win-
dow. All mouse events are reported by DMX and to
the user code in these global window coordinates.
OpenGL viewports are requested by the user code
in window coordinates.

• Subwindow coordinates are the part of the window
our local backend is responsible for drawing. Sub-
window coordinates (0,0) are the topleft corner of
where we actually must draw. OpenGL rendering
actually happens in subwindow coordinates.
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In the simplest case of one process drawing to a sin-
gle fullscreen window, all five coordinate systems are
identical! In any powerwall, global and local coordi-
nates are different, but local and sublocal coordinates
may still be identical. Sublocal coordinates are also
useful for separating the images being delivered to two
separate displays from a dual-output graphics card with
a single contiguous framebuffer.

During rendering, the main task of MPIglut is sim-
ply to convert the global window coordinates used by
the sequential user code (which knows nothing of the
separate powerwall screens) into subwindow coordi-
nates as used by the local graphics card to drive a
portion of the display. For rendering, this coordinate
shift should happen after the perspective divide, but
before vertex clipping. In OpenGL, we simply need
to fill the GL_PROJECTION matrix with the window-
coordinates-to-subwindow-coordinates matrix—called
the “subwindow matrix”—before any other matrix op-
erations.

Because the MPIglut implementation of glLoadIden-
tity premultiplies the subwindow matrix into the pro-
jection matrix,2 then any code that reads back this ma-
trix (for example, via a glGetFloatv call) will instead
receive the projection-to-subwindow matrix. This is a
feature, not a bug! It means applications that construct
clipping planes from the projection matrix will actually
automatically cull away geometry they are not responsi-
ble for drawing locally. In other words, under MPIglut
often well-written sequential OpenGL programs will
not replicate every drawing call across the entire pow-
erwall, but instead only load and draw the geometry
visible on their own local piece of the overall display.
The soar application we used for benchmarking gener-
ates only the geometry needed on each backend in this
intelligent fashion, and a web search for "glGetFloatv
culling" finds hundreds of similar applications.

3 PERFORMANCE RESULTS
We benchmarked MPIglut’s performance against both
Chromium3 and DMX4 on our 20-screen powerwall,
shown in Figure 4, which consists of ten nodes5 con-
nected with switched gigabit ethernet. The aggregate
resolution of the 5x4 array of 20 screens is 8400x4200
pixels, not counting the 150-pixel gap between screens,
which once accounted for increase the overall display
dimensions to 9000x4650 pixels.

2 The premultiplication of course only happens in GL_PROJECTION
mode.

3 Chromium 1.8, using DMX tilesort client and crserver render SPUs.
4 Xorg DMX 7.1.1 version of DMX, running with glxProxy.
5 Software: 32-bit Linux 2.6.15, nVidia 87.62 drivers, gcc 4.04, and

MPICH 1.2.7. Hardware: dual-core Intel Core2 Duo 6300 CPU, 2GB
RAM, and one nVidia QuadroFX 3450 or 1450 PCI Express graphics
card connected to two 1680x1050 DVI LCD monitors.

Figure 4: The UAF CS Bioinformatics powerwall, run-
ning the soar terrain renderer used for benchmarking.

mandelbasic

tex, tex_obj vtx, vtx_obj

Figure 5: Output of six of our seven benchmark pro-
grams (the bottom row images represent two bench-
marks each). The soar benchmark is shown in Figure 4.

To show different performance aspects, we present
results from seven small GLUT programs as shown in
Figures 4 and 5, and described in detail below. Each
of these programs began as an ordinary serial GLUT
program, but ran without problems in parallel using
MPIglut. Figure 6 and Table 2 show framerates for each
program.

Parallel programmers will notice that powerwall ren-
dering is naturally a "scaled problem"—because we
add screens, CPUs, and GPUs at the same rate, with
zero communication or synchronization cost our fram-
erate would remain constant regardless of the machine’s
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Figure 6: Framerate as a function of machine size for all
our benchmarks, running under MPIglut, Chromium,
and DMX. Machine sizes: 1, 2, 4, 6, 8, 10, 12, 16,
and 20 screens and CPUs. Framerates below 10fps are
unusable (log-log scale).

size (or "scale"). Hence a communication solution that
"scales" will have near-constant framerates as a func-
tion of machine size. Communication costs show up as
a fall-off in framerate as the machine scales up.

• basic draws one fullscreen quad of a fixed color per
frame. This was intended as a baseline to test frame
synchronization cost. Both MPIglut and Chromium
sustain hundreds of frames per second out to the full
20 CPUs, but DMX scales poorly even for this sim-
ple program, ending up just below 40fps.

MPIglut Chromium DMX
basic 282.5 232.6 40.1
tex_obj 279.3 217.9 39.4
vtx_obj 36.1 35.0 fail
tex 80.3 2.6 2.8
vtx 57.5 0.7 0.4
soar 27.1 1.4 1.4
mandel 19.9 fail fail

Table 2: Framerates (frames/second) of our seven
benchmark GLUT programs running under MPIglut,
Chromium, and DMX on 20 screens and CPUs.

• tex_obj draws one fullscreen quad using a 1024x1024
texture loaded from an OpenGL texture object. All
three systems were able to locally cache the texture,
so the performance of this test was similar to the ba-
sic test.

• vtx_obj draws a 2-million triangle mesh from an
OpenGL vertex buffer object (loaded with a us-
age of GL_STATIC_DRAW_ARB). Again, MPIglut
and Chromium were able to locally cache the mesh
object, and hence maintained good performance.
DMX does not support the 2003 ARB_vertex_buffer
_object OpenGL extension, and so could not execute
this program.

• tex draws one fullscreen textured quad exactly like
tex_obj, but reloads the 1024x1024 texture’s data
from the CPU every frame using glTexSubImage2D.
This is intended to mirror a high-definition movie
player using software decoding, or other live exter-
nal data display. MPIglut uses the parallel CPUs
to load all the textures in parallel, and hence scales
perfectly. Chromium and DMX must broadcast the
updated texture over the network every frame, and
scale terribly as expected.

• vtx draws a 320-thousand triangle mesh using an
OpenGL vertex array rendered with glDrawElements.
Unlike vtx_obj, vertex arrays cannot be stored in
the GPU, and must be copied from the CPU every
frame. As with tex, under MPIglut each node uses
its local copy of the data and hence the vertex up-
load scales well, while Chromium and DMX must
send all the vertex data via the network every frame
and hence do not scale.

• soar is Peter Lindstrom et al’s SOAR v1.11 ter-
rain renderer [Lin02] using a flight path through
the 4096x4096 Puget Sound terrain model, which
is read from a .geo file on disk. This renderer is
CPU-intensive and generally geometry-rate limited,
generating and drawing approximately 50,000 poly-
gons per screen per frame. Under MPIglut SOAR
scaled fairly well, running at over 27fps even on the
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entire machine. But because both Chromium and
DMX use a single sequential program to generate all
geometry on node 0, they both quickly became net-
work bound, and gave terrible performance on the
full machine–under 1.5fps!

• mandel interactively renders the famous Mandel-
brot set fractal using an OpenGL GLSL fragment
program, using the recently added hardware pixel
shader loop and branch support. Because rendering
pixels in different regions of the Mandelbrot set re-
quires dramatically differing numbers of iterations,
this program’s parallel speed under MPIglut varies
substantially due to load imbalance between the dif-
ferent backends, but is still acceptable. Chromium
and DMX do not yet support programmable shaders,
and hence neither one could execute this program.

In general we have found that MPIglut scales well for
the applications and machines we have tested, provid-
ing usable framerates even for difficult applications on
the full machine. Similarly, Chromium scales well for
some applications, specifically those where the geome-
try and texture data is either simple or locally cached.
But Chromium and DMX both become network-limited
for other applications, since they must often send geom-
etry and texture data across the network. We observed
Chromium and DMX both saturate gigabit ethernet, of-
ten sending over 100 MB/s of geometry and texture data
over the network from node 0, sometimes even in a ma-
chine configuration with only two nodes!

We measured per-frame network overhead with the
trivial basic benchmark. On 20 screens, MPIglut ran
this program at approximately 300fps (3.28ms/frame),
and each machine sent a few kilobytes of data across
the network per frame (0.79MB/s maximum total net-
work usage). 82% of each frame time was spent waiting
for the GPU to render pixels; 8% (about 300 microsec-
onds per frame) was spent in the MPIglut MPI_Barrier
software framesync; and another 8% in MPIglut’s event
broadcast and delivery. The remaining time, less than
2%, was spent by the CPU actually issuing OpenGL
commands. MPIglut’s total overhead on 20 screens
is thus about half a millisecond per frame, which at a
more reasonable framerate amortizes out to a few per-
cent communication overhead (for example, at 30fps,
MPIglut takes about 1.5% of the runtime). Chromium
had similarly low per-frame overhead, although we oc-
casionally got anomalously high performance in the
>200fps region, which may be caused by dropped frames.
DMX on 20 screens appears to become network latency
limited to 40fps (25ms/frame), despite the low network
data rate (under 250KB/s) and CPU and GPU utiliza-
tion (both under 8% utilized).

We have not evaluated the performance of MPIglut
compared to the many quality parallel scene-graph li-
braries such as VR Juggler [Bie01], though assuming

those libraries also use only a small fraction of their
time communicating then we expect our overall perfor-
mance would be comparable. But the reason we have
not done this comparison is telling–porting a GLUT ap-
plication to a non-GLUT library would mean rewriting
all the event handling and rendering setup code, which
for many real applications is rather painful.

4 CONCLUSIONS & FUTURE WORK
We have presented MPIglut, a minimally invasive li-
brary to help sequential GLUT programs run on par-
allel powerwalls. We have surveyed the architecture
of MPIglut, and compared its performance to similar
existing libraries. The implementation of MPIglut is
small, consisting of one C/C++ header and one two
thousand line C implementation file, small enough to
be statically linked. MPIglut is still being developed,
and we plan to try several promising improvements.

Although currently designed for powerwalls, MPIglut
could be used with a single display to more easily take
advantage of multi-CPU or multi-GPU parallelism. A
single display could be divided into dozens of small
strips or tiles, with each region of the screen rendered
by a separate local MPIglut MPI process.

When developing complicated applications, MPIglut
would be a natural place to add load balancing sup-
port, to ensure that each node shares in both applica-
tion and rendering work. Within each shared-memory
screen, static load balance could easily be improved by
“overdecomposition”: creating many more MPI ranks
than physical CPUs, and allowing the OS to schedule
the tiles as needed. With standard MPI it is difficult to
implement more dynamic forms of load balancing, but
a migratable MPI like AMPI [Hua03] could help.

MPIglut could be extended to perform edge blending
and color balance correction inside glutSwapBuffers at
the end of each frame, which MPIglut already inter-
cepts to provide frame synchronization. One could even
resample the finished framebuffer to compensate for ge-
ometric nonlinearities in the screen, such as a curved
display wall. MPIglut could also be made to work on
entirely non-planar displays such as projector domes,
although this would likely not be compatible with nor-
mal OpenGL projection matrices which assume a flat
2D display.

At the moment, MPIglut does not intercept frame-
buffer readback routines such as glReadPixels or glCopy-
TexSubImage2D, so these currently read back only lo-
cal pixels. For some uses of these functions, such as
rendering small or screen-local environment or reflec-
tion maps, this provides correct answers. But for other
uses of these routines, such as taking screenshots or
picking, this gives an incomplete set of pixels. The best
solution would probably be to provide optional collec-
tive versions of these routines, like mpiglReadPixels.
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This support would enable GPGPU applications to be
used more easily under MPIglut.

Finally, the idea behind MPIglut is by no means lim-
ited to either MPI or GLUT. The source-compatible
divide-up-the-screen parallelizing library approach could
equally easily be applied to arbitrary graphics toolkits
including Microsoft’s DirectX or portable GUI libraries
such as GTK or Qt, as well as arbitrary communication
schemes including threads and bare sockets. We feel
parallelizing libraries offer a simple path towards high
performance with the increasingly prevalent multi-core
and multi-GPU machines.

Readers may download [MPI07] and try MPIglut!
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ABSTRACT

This paper presents a real-time water simulation framework with respect to wave propagation in flowing liquids. The presented
method is based on the coupling of liquid flow simulation and simulation of surface waves. Physically, our system combines
the solution of the Navier-Stokes Equations with the solution of the 2D Wave Equation. Numerically, we combine the concept
of wave particles with a FDM-based flow simulation. Thus, wave propagation in fast flowing liquids (e.g., a creek) can be
simulated – in real-time. Therefore, it is very suitable for today’s video games and VR-environments. Finally, we discuss the
coupling of the liquid simulation with a rigid-body simulation and a fountain simulation.

Keywords: Real-time liquid simulation, rigid-body simulation, water simulation, wave particles, stable fluids, fountain.

1 INTRODUCTION
Due to the immense computational costs of simulation,
surface extraction and rendering the real-time interac-
tive simulation of liquids is an ongoing challenge. This
paper presents a new real-time method to simulate de-
tailed surface waves moving with the flow. Think e.g.,
of a moving river: Rain drop impacts create radial prop-
agating surface waves. These circular waves are mov-
ing with the river flow.

This effect depends on two interfering physical prop-
erties of the liquid:

• 3D flow,
• 2D surface wave propagation.

The river flow depends on moving water masses.
These masses act as the transport medium for the sur-
face waves. The global surface movement can be de-
scribed physically by superposition of both movements.
In complex flows or vortexes, this effect can result in
spectacular chaotic wave movements. In a fast flowing
creek, the mentioned circular waves (rain drop impacts)
can be deformed strongly by the flow.

The flow is described by the Navier-Stokes-
Equations and the propagation of surface waves can
be described by the 2D Wave Equation. In the field
of computer graphics, the Navier-Stokes-Equations
are typically solved with a finite difference approach
(FDM) or the smoothed particle hydrodynamics (SPH)
method. Usually, the 2D Wave Equation is solved with
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Figure 1: Real-Time Water at 33 FPS.

a finite difference approach. The coupling of both
simulations requires the handling of velocities in the
2D Wave Equation solver. The straight forward intro-
duction of velocities in a finite difference solver results
in numerical instabilities due to the discretization of
the 2D wave field.

This paper presents a stable and fast method to com-
bine the flow simulation with a surface simulation, in-
cluding the movement of surface waves with the flow
and the deformation by the flow. Our work builds on
the concept of wave particles, which has been pre-
sented by Yuksel et al. [YHK07]. They use a particle
system for approximating the 2D Wave Equation and
achieve realistic and plausible results for water surfaces
in real-time. In principle, we add to their concept of sur-
face wave propagation the handling of flowing liquids.
Hence, surface wave propagation in moving liquids can
be simulated (Fig. 1).

Moreover, we present a fast liquid–rigid body cou-
pling and a liquid-fountain coupling. The concepts has
been evaluated in practice, achieving good performance
and plausible results. Hence, our approach is practical
for interactive environments, e.g., VR’s or video games.
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2 RELATED WORK

Two dimensional radial propagating waves are de-
scribed by the Wave Equation. Until recently, the
Wave Equation is solved with a finite difference
approach [Gom00] to simulate liquids in the field of
computer graphics. Lately, Yuksel et al. presented an
alternative approximating method to solve the Wave
Equation [YHK07]. They use particles to simulate
the propagating waves with reasonable results at high
frame rates. They also present a coupling of rigid body
simulation and wave particles – resulting in convincing
motor boat simulation in real-time.

The Navier-Stokes equations are usually solved
with the Lagrangian approach (particle-based systems,
e.g., Smoothed Particle Hydrodynamics - SPH), the
Eulerian approach (finite difference approach, FDM)
or hybrid methods – at least in the field of computer
graphics. Large quantities of water or complex effects
are still impossible to simulate physically based at high
frame rates on current personal computers. Stam et al.
presented the first real-time approach for simulating
gaseous phenomena using SPH [SF95]. This approach
has been extended to the interactive simulation of
liquids in [MCG03] allowing simulations with a few
thousand particles at interactive rates. A GPU based
implementation has pushed the limit of simulated
particles in real-time immensely [HKK07]: Tens
of thousands of particles are simulated on the GPU
(GeForce 8800GTX). However, the particles are just
drawn as points – no surface reconstruction algorithm
in real-time has been proposed, demonstrating the
complexity of the surface reconstruction itself. Highly
detailed, but still interactive liquids at real-time fram-
erates (including surface extraction and rendering) can
be reached by superposition of the SPH method and a
FDM based wave equation solver [Cor07a].

The FDM approach for simulating liquids has been
introduced to the computer graphics community as the
marker and cell method [HW65] and has also become
popular [CMT04] [FF01], whereas the implicit tech-
nique for interactive simulation of fluids was introduced
in [Sta99]. This approach has been enhanced for execu-
tion on the GPU with reasonable frame rates [Har05].

To increase performance, approaches have been pre-
sented that replace the 3D Navier-Stokes equations by
2D ones and extract a height-field from density values
[CdVL95]. In this context, column-based height-field
approaches have become popular [OH95] [MFC06].
The 3D simulation space is displaced by columns, de-
creasing the computational costs immensely. Beside
liquid flow simulation, these approaches can also sim-
ulate the propagation of surface waves at interactive
rates. Lately, the Lattice Boltzmann method has been
introduced to the field of computer graphics [TSS+07]:
Instead of solving the Navier-Stokes equations directly,

the Boltzmann equation of kinetic theory of gases is
solved. For neatly chosen parameters, the resulting
flows are equivalent and can be simulated at interactive
rates.

One of the main bottlenecks for interactive anima-
tions is the surface or volume reconstruction from simu-
lation data. In the majority of cases a height-field based
rendering approach is used. The benefit of such a 2,5D
approach is

• fast surface construction and rendering,
• high resolution, and
• the possibility of neat approximations of reflection

and refraction effects.

However, specific complex liquid phenomena, such as
breaking waves or splashes, cannot be visualized as
height-fields. Real-time rendering of height-field based
water surfaces (including reflection and refraction ef-
fects) is usually either based on environment mapping
techniques or approximating raytracing techniques.
The former approach includes a fast technique, split-
ting the environment along the water surface [Sou05]
[SW01]. Even though non-physical, this approach
achieves good visual results and performance [Bel03]
when visualizing lakes and ocean. This approach has
recently been expanded for better approximation of
physical refraction for objects intersecting the water
surface [Cor07b]. Using two height-fields (ground and
surface field), a simplified raytracer can be realized
on the GPU [BD06]: The intersection with refracted
and reflected rays is calculated on the GPU with
reasonable frame rates. Other GPU-based approaches
towards real-time raytracing built upon some major
simplifications have been presented [SKALP05]
[PMDS06].

Alternatively to the height-field based approaches,
an expensive marching cubes algorithm [LC87] can
be used, substantially reducing the possible interactive
simulated amount of liquid but is extracting a real 3D
surface. However, rendering a 3D refractive surface
in a complex environment is still an unsolved prob-
lem. An image-based double refraction (front and back
faces), for instance, can be realized with a two pass ren-
dering approach using an environment map [Wym05]:
The refractive object is split into back and front faces
and is rendered GPU-based. Restricted to static envi-
ronment maps (lying at infinite distance), the approach
achieves reasonable results at high frame rates. How-
ever, this approach cannot refract objects intersecting
the water surface. In other cases, a surface splatting
technique [ZPvBG01] is used for rendering the surface
– anticipating complex refraction effects in real-time as
well. Recently, the projected grid method [Joh04] has
been extended to the rendering of particle based liquids
[MSD07], featuring good performance and splashing
effects.
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3 OUR APPROACH
According to liquid simulations solving the full 3D
Navier-Stokes equations for incompressible flows in
real-time, we observe the following problem: Due to
the constraints of real-time, a relatively low sampling
density of the liquid volume has to be used (Eulerian
methods: small grid-size, Lagrangian methods: few
particles). Thus, real-time simulated, fast-flowing liq-
uids tend to show rough surface waves. Hence, we pro-
pose the coupling of a 2D flow simulation and a surface
wave simulation to up-sample the surface (Sect. 3.1).

Figure 2: The basic idea: A 2D flow simulation (here:
In- and Outflow, left) is coupled with a surface wave
simulation (here: circular wave, center), resulting in
wave deformation (right).

We aim at fast moving liquid masses with surface
waves moving with the flow. Hence, fast and detailed
surface effects (e.g., a moving boat, or the wave effect
of a static object in the flow) can be simulated. To reach
a global flow propagation of a liquid with low viscos-
ity (e.g., water), we use an implicit grid-based Navier-
Stokes simulator (Sect. 3.1.1) – similar to [Sta99]. Due
to the particle based approach, the Wave Particle con-
cept [YHK07] (Sect. 3.1.2) is well suited to be cou-
pled with such a Navier-Stokes simulation (Fig. 2, Sect.
3.1.3). Our rendering method, including the approxi-
mation of refraction effects, is described in Sect. 3.1.4.

Finally, we demonstrate the application of our
method in combination with a rigid body simulation
(Sect. 3.2) and a fountain simulation (Sect. 3.3).

3.1 Liquid
The key idea of our liquid simulation is shown in the
following Table:

Region Dim. Simulation Principle
Liquid Flow 2D FDM N.-S. Eq.

Surface 2D Wave Particles Wave Eq.

In the next two Sections both principles are described
separately. In Sect. 3.1.3 the coupling of both concepts
is introduced (Fig. 2).

3.1.1 Flow

The dynamic flow of liquids is described physically by
the conservation of momentum (Navier-Stokes equa-
tions)

ρ

(
∂v
∂ t

+(v ·∇)v

)
=−∇p + μ�v + ρf (1)

and the conservation of mass (continuity equation):

∂ρ
∂ t

+ ∇ · (ρv) = 0, (2)

where v is the velocity field, ρ the density field, p the
pressure field, ∇ = ( ∂

∂x1
, ∂

∂x2
, ∂

∂x3
)T ,� is the Laplacian

with�= ∇2, μ is the viscosity and f is the acting exter-
nal force (e.g. gravity). Since we assume incompress-
ible liquids, the density is constant ( ∂ρ

∂ t = 0), resulting
in the mass conservation ∇v = 0.

As mentioned above, we use an Eulerian method to
solve these differential equations to reach a global flow
propagation. A lot has been written about algorithms
for solving these equations. We use the implicit Stable
Fluids algorithm presented by Stam et al. [Sta99]. This
algorithm features a good trade-off between accuracy,
stability and performance. It is based on an implicit
finite difference solving scheme (for a detailed descrip-
tion of the algorithm we refer to [Sta99]). Additionally,
to determine the pressure physically, a Poisson Equa-
tion has to be solved numerically – we use the Gauss-
Seidel method for good performance. Furthermore, col-
lision objects (or boundary conditions) can be handled
as slip or no slip objects: The velocity-elements along
the contour of collision objects are set to the opposite
value of the direction of the neighboring liquid grid-
element (slip) or they are set to zero (no-slip).

3.1.2 Surface Waves

The general Wave Equation describes the propagation
of waves in time t and space x. For liquid surface waves
the 2D Wave Equation can be used, describing radial
wave propagation (e.g., a rain drop impact on flat water
surface):

� f (x, t)− 1
c2

∂ 2 f (x, t)
∂ t2 = 0. (3)

Here, � = ∇2 = ∑2
1

∂ 2

∂x2
i

is the Laplace operator in 2D

and c is the velocity at which waves propagate across
the surface. The idea of wave particles is to describe
this propagation with particles (Fig. 2). In the follow-
ing, we give just a brief overview of wave particles (we
refer to [YHK07] for more details): An impact results
in the creation of circular aligned wave particles with
radial velocity. Hence, the particles are moving radi-
ally and describe the propagation of a radial wave. Due
to the particle discretization, the sampling of the prop-
agating circle decreases. In other words, the distance
between particles increases. If the distance reaches a
threshold d, each particle is subdivided into three par-
ticles with distance d

3 . This value becomes the new
threshold d as well. Hence, a minimum sampling of
the wave is guaranteed. The distance d can be deter-
mined without expensive neighbor comparisons. The
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distance only depends on the radius r and the number
of particles n of the actual wave (circumference: 2πr):

d =
2πr

n
. (4)

Thus, every particle is animated independently, result-
ing in very fast simulation. By creating several impacts,
wave trains, rain drop impacts or the typical wave prop-
agation of a moving boat are simulated. Beside circular
waves, the technique is also useful to simulate the wave
creation process of swimming objects or linear waves.
The dispersion can be influenced by several parameters:
In combination with different maps, the damping or the
velocity of propagation can be described according to
the type of ground.

Boundary conditions (e.g., collision objects) can be
included easily as particle reflections from boundaries:
Adapting positions and velocities at boundary colli-
sions models the wave reflection process. Due to the
independent movement of the wave particles, physical
wave interference is guaranteed. Merely, diffraction has
to be modeled separately at edges. But in curved water
this inaccuracy is hardly noticeable.

To generate a height-field from a wave particle sys-
tem, all particles are rendered anti-aliased into a 2D tex-
ture t(x,y), which is filtered in both directions (normal-
ized filter). The surface normals are calculated straight-
forwardly. As mentioned in [YHK07] an extended
height-field can enhance the realism of waves: Waves
under influence of wind become spiky. Therefore, the
regularity of x and y positions of the height-field grid is
resolved. We manipulate the vertexes of the height-field
as follows:

⎛
⎝ x

y
t(x,y)

⎞
⎠→

⎛
⎝x + c · ∂

∂x t(x,y)
y + c · ∂

∂y t(x,y)
t(x,y)

⎞
⎠ . (5)

The intensity of the height-field extension can be con-
trolled by the parameter c.

3.1.3 Coupling

This work targets surface waves on fast flowing liquids.
Thus, the wave particles have to be coupled with the
flow. Since the surface waves are moving with the flow
but do not create a flow by themselves, the coupling is
one-way:

Flow→ waves.

That is, the flow simulation can be executed au-
tonomously, whereas the wave simulation depends on
the flow simulation. Since the waves are represented
by autonomous wave particles, the wave particles have
to be manipulated according to the velocity of the
liquid flow at the same position (Fig. 2). Since the

discretization of the flow depends on a discrete grid of
size n×m, the flow velocity vflow(x) at an arbitrary
position x should be determined using a bilinear filtered
grid. Thus, aliasing artifacts are avoided. The position
pn of each particle n is influenced explicitly by the
determined floating velocity vflow:

pn = pn +�t ·vflow(pn). (6)

Hence, the coupling of wave propagation and liquid
flow is simulated according to nature. The collision
handling of wave particles is not affected by the de-
scribed method and can persist unchanged.

3.1.4 Rendering

This work aims at real-time liquid simulation at high
frame rates. Thus, fast rendering is crucial and fast ap-
proximating techniques are favored. Non-transparent
liquids can be rendered straightforwardly. The visual
behavior of those substances can be approximated using
specific shader programs. For some liquids (e.g., milk),
a subsurface-scattering algorithm can increase realism.
Standard reflection effects can be handled by environ-
ment mapping techniques – at least for surfaces with no
intersecting objects.

For transparent liquids, refraction becomes impor-
tant: We approximate refraction with a simple two-pass
algorithm [Sou05]. The environment without liquid is
rendered into a texture. This texture is accessed dur-
ing the rendering of the height-field according to the
surface positions in projection space and a slight varia-
tion according to the belonging surface normals. Thus,
the refraction is roughly approximated – but without
the typical lens and depth effects. However, this ap-
proach results in plausible results of refraction of sev-
eral swimming objects or collision objects – and re-
quires only one additional render pass. Furthermore,
the use of effects on a per pixel basis (e.g., bumpmap-
ping, chaotic reflexes, motion blurring) can enhance re-
alism even more. In general, the animator can use the
whole scope of shader effects to achieve desired effects.

3.2 Rigid Body Dynamics
One main application of flow simulation in computer
graphics is the simulation of objects swimming in the
flow. The realistic motion of objects in water depends
on rigid body dynamics coupled with the flow and
buoyant forces. The buoyant forces Fb equal the mag-
nitude of the weight of liquid volume displaced by the
rigid body Vdispl (Archimedes’ Principle):

Fb = ρlFgVdispl, (7)

where ρl is the average density of the liquid and
Fg = m · g is the gravity force with mass m and
g ≈ (0 0 −9,81)T N

kg ). For a swimming object in
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Figure 3: Rigid Body Simulation.

equilibrium, the gravity force equals the buoyant force:
Fb = Fg. If the fluid’s density exceeds the average
density of the object, the object floats – otherwise, the
object sinks. The rigid body motion for dynamic liquid
surfaces can be determined by the local differences of
Fb and Fg. The movement of a rigid body can then be
separated into a translational displacement T (x) and
a rotational movement R(ω). The rotational part R is
described by the angular momentum M and the acting
forces F in relation to the distance r to the center of
mass:

‖M‖= ‖r×F‖= ‖mr2 dω
dt
‖. (8)

The translational displacement T (x) can be described
by the derivations of velocities and the acting forces

F2D trans ≈ m ·
(

∂vx
∂ t

∂vy
∂ t

)
, (9)

where vx and vy are the partial derivatives of the 2D ve-
locity field v of the simulated fluid (see Sect. 3.1.1).
However, this approximation neglects the orientation
and immersion depth of the object for translation. But
the influence of these physical properties during ani-
mation is hardly noticeable and would result in signifi-
cant higher computational costs. Moreover, the buoyant
forces during wave animation produce similar move-
ments. Thus, the rigid body motion can be described
according to the center of mass

RCoM =
1
m

∫
rdm, (10)

with an angular acceleration and a translational accel-
eration. Finally, we use a standard damping or fric-
tion force Ffrict depending on the velocity of the rigid
body vRB with different damping parameters b for ob-
ject parts lying beneath or above water level:

Ffrict =−b ·vRB. (11)

We discretize all these equations of rigid body mo-
tions with particle systems. The rigid body is described

(a)

pcol1

pcol2

pcol3d13

d23

Fcf1

-Fcf1

Fcf2

-Fcf2
Fcf3

(b)

Figure 4: Rigid Body Collisions.

by its center of mass RCoM, the n relative constant par-
ticle positions prel

i (1 ≤ i ≤ n) and the rotation matrix
MR describing the orientation of the rigid body:

pi = RCoM + MR prel
i . (12)

MR
t is updated within a time-step t according to the

angular acceleration:

MR
t = MR

t−1 + ΔMR, (13)

where ΔMR is the rotation matrix of Δt · ‖M‖ about the
vector M/‖M‖. Physically, the angular momentum of
a collection of particles is the sum of the angular mo-
menta of each particle. Thus, ΔMR can be determined
by the sum of the angular accelerations of each particle.
Hence, the mathematics is simplified considerably for
arbitrary swimming objects and different object shapes
can be simulated easily. The acting forces for a 2D quad
are shown in Fig. 3. The acting particle masses within
a depth dp under water surface are linearly scaled down
to zero at the free surface, to avoid instantaneous buoy-
ant force changes if a particle cuts the liquid surface. In
other words, the volume of object parts lying under wa-
ter is determined smoothly, even for objects represented
by just few particles.

For collision handling, we use a force based ap-
proach. We distinguish between

• static object - dynamic object collisions and
• dynamic object - dynamic object collisions.

The former are handled by a static force field surround-
ing static objects (Fig. 4a). Thus, the acting collision
force on each particle can be determined with one sin-
gle memory access.

Dynamic object collisions are handled by an approx-
imation: Depending on the distance between dynamic
objects, a force acts between them in opposite direction
(Fig. 4b). Therefore, we introduce collision particles
pcol to dynamic objects. The particles are used to de-
termine the distance d and the acting collision forces
Fcf. Cubes as rigid bodies can be simulated well with
just one collision particle in the center of the cube, but
more collision particles should be used for objects with
complex shape. A linear kernel describes the acting
collision force. The neighbors can be found efficiently
within the kernel size using a regular grid, where the
grid-size equals the kernel size. The described method
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Figure 5: Fountain: Coupled with liquid simulation (seen from above, a), collisions (b,c). Surface extraction:
spherical potentials (d,e), ellipsoidal potentials (f,g).

does not prevent overlapping of rigid bodies and sim-
ulates conservation of momentum just roughly. How-
ever, for moderate object velocities, the described han-
dling reaches fast and pleasing results without any over-
lapping problems (Fig. 6).

3.3 Fountain
In the following, we describe the particle creation
process for fountains of external inflow, e.g., water
splashing out of a pipe. Our particle based fountain
simulation is based on the assumption that the interac-
tion between falling liquid particles, splashing particles
or drops is negligible. The only acting force is gravity
and no liquid specific forces have to be calculated:
Fg = mg. Hence, the integration over time is trivial
and very fast. The intensive process of neighbor
searches and numerical calculations within a SPH
simulation or the free surface determination within a
FDM simulation leaves out. Thus, more particles can
be used in splashes (compared to full physics based
simulation), allowing a plausible real-time simulation.

However, when omitting interactions between parti-
cles for rapid simulation, the creation process of par-
ticles becomes significant. The natural chaotic appear-
ance of splashes should result in a creation process with
caution. Imitating nature, the particle creation in foun-
tains or splashes depends among others on a random
function. Thus, the chaotic nature of liquids in such
situations can be faked.

Particles are created in a discrete cubic volume
(�x,�y,�z) around xoffs. using random positions:

x = xoffs. +

⎛
⎝rneg�x

rneg�y
rneg�z

⎞
⎠ . (14)

The initial velocities also depend on random functions:
The particle velocities are distributed according to one
main direction R∗ (1,0,0) and two apex angles:

vinit = R ·
⎛
⎝r · vmain + vmain offs.

rneg · vapex 1

rneg · vapex 2

⎞
⎠ . (15)

R is a rotation matrix changing main direction, r and
rneg are random functions (0 ≤ r ≤ 1; −1 ≤ rneg ≤ 1)

and vmain offs. is the minimum speed of liquid outflow.
Using these parameters, a flow can be modelled any-
where with any direction and any main velocity. How-
ever, other particle creation functions are possible and
can be used to model special situations.

Another parameter for controlling the flow is the
number of created particles nc per time step. Modeling
flow intensity variations, we use the following formula:

nc = nmin + r ·�n. (16)

nmin is the minimum number of created particles per
time step and�n is the intensity of variation. Instanta-
neous variations of nc models the change of flow inten-
sity. If nc equals to zero, no liquid flow occurs.

If a fountain particle hits the liquid surface, it is de-
stroyed and creates wave particles. Hence, a radial
wave propagates, starting from the impact position (Fig.
5a). Using collision handling for fountain particles, re-
alistic splashes even at moving objects can be modeled
in real-time (Fig. 5b,c). Thereby, we use the same col-
lision handling as described in Sect. 3.2.

For 3D surface reconstruction of the fountain we use
a traditional Marching Cubes (MC) algorithm [LC87].
The isosurface for n particles with positions xi (i =
1 . . .n) is determined by the following potential (h: iso-
radius):

φ(x) =
n

∑
i=1

√
1− ‖x−xi‖2

h2 (17)

The square root (Eq. 17) can be approximated to in-
crease performance. The performance is good, due to
a small, adaptive splashing volume being used for im-
plicit function and iso-surface generation. Additionally,
performance increases at low sampling and small parti-
cle potentials used in implicit function generation. To
increase details and decrease the blobby-ness of the sur-
face, we don’t use strict spherical potentials but ellip-
soidal potentials along the particle velocities.

v v

Hence, the fountain becomes more detailed and fili-
gree along the velocity direction (Fig. 5d-g).
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Figure 6: Examples of the proposed method – please see accompanying video for animations.

4 IMPLEMENTATION AND RESULTS
The proposed algorithms were implemented using
OpenGL 2.0 and the related shading language GLSL
in C++. The presented examples were performed on
a dual-core desktop PC with a 2,6 GHz AMD Athlon
64 CPU, 2GBs of RAM and a graphics card based
on an ATI Radeon x1900 GPU. We use a parallel
implementation and split the simulation between two
cores as shown in the following Table:

Surface Extraction

Wave Eq. N.-S. Eq. FountainRigid-B.

Core 1:

Core 2:

Interaction Rendering

The GPU is used for fast height-field rendering and
refraction simulation. The physically based simula-
tion tasks are performed CPU based. Hence, the per-
formance could be increased immensely, using GPU-
based implementations for parts of the physical simu-
lation. The FDM flow simulation is especially suited
to be performed on the GPU. However, the measured
frame rates achieved with the actual implementation
are quite satisfactory, as shown in Table 1 (Resolution:
1024×1024 pixels). Take note that already small grid-
sizes NS-GS lead to convincing flow results – due to the
explicit handling of surface waves. The performance
and complexity of the proposed technique mainly de-
pends on the following parameters:

• Eulerian grid-size (O(n2)),
• number of wave particles (O(n)),
• surface resolution (O(n2)),
• number of rigid body particles (O(n)),
• number of rigid b. collision particles (O(n logn)),
• number of fountain particles (O(n)) and resolution

of associated reconstruction volume (O(n3)).

However, a problem of the technique shared with
many other height-field based liquid simulation tech-
niques is the impossibility to visualize 3D liquid ef-
fects (e.g., splashes or breaking waves). At least, the
mentioned extended height-field allows the rendering
of surfaces, slightly exceeding the 2,5D surface and the

Figure NS-GS 2. WP (max) S-GS FPS
1 32×64 40000 128×256 33

6a,b,c 32×32 20000 128×128 74,76,23
6a 64×64 20000 128×128 70
6a 128×128 20000 128×128 27
6a 256×256 40000 256×256 4
6d 16×128 40000 64×512 26

Table 1: Performance measurements of the presented
algorithms in different scenarios (Gridsize of Navier-
Stokes Eq. solver (NS-GS), maximum number of used
wave-particles (WP), surface grid-size (S-GS), exam-
ples 6a,c,d use 100 rigid body objects).

presented fountain model solves this problem in special
scenarious.

The presented method allows the simulation of a 2D
flow (e.g., a river) at high performance, whereas the sur-
face remains detailed and the surface waves and numer-
ous rigid bodies are propagating with the flow – indicat-
ing e.g. the flow direction. Recapitulating, the benefits
of the presented combination of flow and surface simu-
lations are:

• Physically based flow simulation,
• physically based wave simulation,
• flow interactions (e.g., moving boat, turbine),
• objects moving with the flow (e.g., leafs, objects),
• automatic, natural and global flow (e.g., creek),
• interactive wave creation (e.g., rain, moving obj.).

The low viscosity of real water cannot be reached in
real-time with full 3D Navier-Stokes simulation meth-
ods (due to large time-steps and the necessary damp-
ing), resulting in a liquid behavior more like oil than
real water. The presented method reduces these vis-
cous effects, due to the fast calculation of the 2D flow
and the 2D Wave Equation. Hence, the viscosity of the
simulated fluid appears to be low. In addition, while de-
creasing the time-steps or reducing speed the convinc-
ing simulation of liquids with a viscosity greater than
the viscosity of physical water, such as oil, honey or
molten wax, can be achieved easily.
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5 CONCLUSION/FUTURE WORK
We have presented a concept for real-time liquid
simulation with focus on wave propagation in flowing
liquids. The basic idea is the coupling of a 2D Navier-
Stokes simulation for flow description and a 2D Wave
Equation simulation for surface waves propagation.
The solver is based on the Stable Fluids algorithm
[Sta99] and the wave particles algorithm [YHK07].
Furthermore, we present methods for real-time rigid
body simulation of several hundred objects swimming
in the liquid and a real-time fountain simulation inter-
acting with the liquid. The resulting liquid is rendered
height-field based at high frame rates.

We demonstrated the potential of combining exist-
ing methods and a new coupling scheme according to
the simulation of plausible, complex liquid effects in
real-time. Of course, those effects have been used in
computer animated films with perfect quality (based on
slow off-line techniques), but not in real-time environ-
ments at high frame rates. Hence, our approach is prac-
tical for interactive environments, e.g., VR’s or video
games. In view of multi-core architectures, our ap-
proach can enhance realism of such environments im-
mensely. Although aiming for real-time environments,
our fast method is interesting for high quality off-line
rendering applications as well.

Our future investigation includes a better rendering
approach (e.g., GPU-based approximated raytracing),
the use of a column based approach or a SPH approach
for flow simulation. As well, the collision handling of
many colliding objects at the same time should be en-
hanced. In those situations, our method tends to un-
wanted intersection effects. We would also like to use
the GPU for numerical calculations to increase perfor-
mance immensely. Finally, the use of adaptive surface
rendering and simulation techniques would decrease
complexity and much larger liquid volumes could be
simulated.
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ABSTRACT 
This paper addresses face recognition under varying light via 3D reconstruction based on the techniques of 
shape from shading (SFS). First, we improve the geometric-based SFS by introducing the integrability constraint 
as one of the regular terms. This operation preserves the local curvedness of the recovered surface. Second, we 
propose a novel method to investigate human face recognition in the illumination varying case using local 
topographic information, such as curvedness and shape index extracted from intensity images by SFS algorithms. 
The experimental results have shown that the curvedness and shape index are suitable for representing 3D local 
features, and also it is insensitive to light variations since only 3D information is involved. Compared with 
typical face recognition approaches based on principal component analysis (PCA) plus linear discriminant 
analysis (LDA), the proposed method has demonstrated a better performance. This implies local topological 
properties are effective attributes for face recognition under light variations 
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1. INTRODUCTION 
Face recognition technique has been studied for 
decades because of its wide applications such as 
recognition and verification of personal identity, 
public safety, etc [Zha03]. However, face recognition 
under illumination variation is still a challenging task. 
According to the report of FERET test, the 
recognition error will rise rapidly with light 
variations for some of the existing recognition 
systems [Phi00]. Recent FRVT evaluation report also 
showed that most of the algorithms are still sensitive 
to outdoor light variations [Phi03]. Nowadays, more 
researchers have focused on challenging issues 
arising from illumination, pose and facial expressions. 
Illumination variation is one of most difficult 
problems and has received much attention [Tur91, 
Bel97, Mog00, Sha01, Liu06, Zha99, Zha00a, 
Zha00b, Wor01]. As far as we know, the algorithms 
of face recognition for overcoming illumination 
variation can be divided into two categories: 
statistical-based and model-based. In the former 
category, the invariant features or parameters to light 
variation are extracted to present the normalized 

object through statistical analysis. Typical algorithms 
include Eigenfaces[Tur91], Fisherfaces[Bel97] and 
Baysien-based [Mog00] etc. The latter category is 
under the assumption that a human face is a 
Lambertian surface. Under the assumption, new 2D 
light normalizing appearance images are synthesized 
to be applied in recognition stage. The illumination 
cone-based [Geo01] and quotient image [Sha01, 
Liu06] belong to this category. The illumination cone 
theory tells us the set of images of any object in a 
fixed pose, but under all light conditions, is a convex 
cone in image space [Geo01]. According to this rule, 
one face image can be expressed by the linear 
representation of other 3 images under independent 
light. The face recognition based on the illumination 
cone can handle light variations quite well.  However, 
at least 3 images under different light directions are 
required in the training stage in this algorithm in 
order to obtain the feature representation. In quotient 
image algorithms, 3D face models are required, 
while most algorithms adopted the same generic 3D 
mask [Liu06]. So errors will be introduced due to the 
depth differences among the subjects.  

Journal of WSCG 153 ISSN 1213-6972

mailto:mcsfgc@mail.sysu.edu.cn


Like the simulating visual ability of human beings, 
SFS is one of the useful computer vision methods 
concerned with recovering surface topography from 
intensity pictures. Although it developed quickly, 
one of the biggest limitations in most SFS algorithms 
is that they fail to provide an accurate the shape of 
surface. This is due to the loss of a large amount of 
height information when 2D pictures are projected 
from 3D objects. In essence, SFS is a mapping from 
2D space to 3D space, so it is an ill-posed problem. 
However, the SFS problem has attracted many 
researchers and made good progress. Generally 
speaking, SFS techniques can be divided into four 
types according to the attached constraint [Zha99]: 
minimization, propagation, localization and 
linearization approaches. Minimization approach was 
first presented by Ikeuchi and Horn [Hor70, Ike81], 
who introduced the brightness and smoothness 
constraints. Frankot and Chellappa [Fra88] enforced 
integrability in the energy function in order to 
recover integrable surfaces. Propagation methods 
propagate the surface shape from a set of particular 
points(e.g., singular points) to the whole image. 
Bichsel and Pentland [Bic92] presented an algorithm 
as minimum downhill principle, which requires prior 
knowledge of the heights of singular points. Rouy 
and Tourin’s approach[Rou92] is based on Hamilton-
Jacobi-Bellman equation and viscosity solution 
theories which provide conditions for the existence 
of both continuous and smooth solutions. Prados and 
Faugeras [Pra03] developed the notion of viscosity 
solutions for SFS and proposed generic SFS for both 
orthographic and perspective projection. Lee and 
Rosenfeld [Lee85] computed the solution on the 
assumption that the surface is locally spherical. 
Linear methods compute the solution based on the 
linearization of the reflectance map. Tsai and Shahis 
method [Tsa94] is one of the typical linear SFS 
algorithms.  
Since most algorithms cannot derive accurate shapes, 
many papers focused on surface reconstruction rather 
than recognition. Up to now, few papers explored 
object recognition using the SFS technique. Zhao and 
Chellappa [Zha00a,Zha00b] presented a model-based 
bilateral symmetric SFS algorithm, which improves 
the performance of a face recognition system in 
handling illumination variations via image synthesis. 
But in practice, the symmetry assumption limits its 
application. More recently, Worthington and 
Hancock and Worthington [Wor01] presented a 
geometric-based SFS recovering accurate surface 
normal fields, and used normal fields for object 
recognition in handling variations due to pose. 
However, they did not consider the surface 
integrability constraint, which brings the shape index 
to be an invariant feature to light variations for real 
images. 

Following Worthington and Hancock’s idea, the 
extra integrability constraint in the radiance equation 
is included in this paper. Then, along with the 3D 
surface normal field constructed by the proposed 
algorithm, curvedness and shape index are developed 
and applied in a face recognition system. The 
experimental results have shown the proposed 
method works well and is robust in handling light 
variations. 
 The rest of this paper is organized as follows: 
following Worthington and Hancock’s geometric-
based SFS algorithm, the integrability constraint as a 
new regular term is introduced to improve the 
robustness of 3D reconstruction. The derivation of 
3D reconstruction is introduced in section 2. Then 
we explore three strategies of face recognition based 
on the similarity of surface normal fields in section 3. 
The experimental results for 3D recovery and face 
recognition are demonstrated in section 4. Finally, 
we draw some conclusions in Section 5. 
 

2. NORMAL FIELD RECOVERY 
BASED ON SFS  
Our SFS algorithm is following Worthington and 
Hancock’s Geometric-based SFS [Wor99] with an 
extra improvement in the integrability regular term, 
which preserves fine surface normal fields. These 
normal fields form the groundwork of recognition 
strategies in the next section.  
 

A. Reflect Cone 
Under Lambertian assumption, the image intensity is 
determined by cosine value of the angle between 
light direction and surface normal. That means the 
image irradiance equation defines a cone of possible 
surface normal direction. The axis of this cone is in 
the direction of light and the opening angle is 
determined by corresponding brightness. With this 
observation, a hard constraint to satisfy the image 
irradiance equation is proposed, and it makes surface 
normal fall on this cone.  
To be formal, for the surface Z=Z(x,y), let us denote 
ni,j the unit normal of the surface Z at the lattice 
position (i, j) and S a unit vector of light direction. 
Then the corresponding brightness Ei,j is determined 
by: 

SnE jiji .,, ρ=     (1) 

where brightness Ei,j has been normalized (here 
assume albedo ρ as 1). So the reflect cone has the 
opening angle jiE ,arccos=φ . In order to define 

the reflect cone correctly, we need to determine the 
light direction reliably. There are many related 
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algorithms [Zhe91,Lee85]. In our experiments, Lee 
and Rosenfeld’s method [Lee85], for its simplicity 
and good results, is used here as a pretreatment to 
estimate the light direction. 
 

B. Additional Constraints 
In the classical minimization approach, Horn and 
Brooks [Hor81] first used the following energy 
function with the smooth constraint: 

∫ ∫ ∂
∂
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(2) 
where n is the surface normal. The first term is 
known as brightness constraint and it facilitates 
satisfaction of the image reflection function. The 
second expression is a regular term which imposes a 
smoothness constraint on the recovered surface 
normal. In our proposed algorithm, the brightness 
constraint is treated as a hard constraint to ensure the 
data-closeness between the image intensity E and the 
reflectance function n. S. Usually, there are four 
kinds of constraints [Zha99]: 

 The smooth constraint: to ensure a smooth 
surface. 

 The integrability constraint: to ensure a valid 
integrable surface. 

 The intensity gradient constraint: to ensure that 
the intensity gradient of the reconstructed image 
is close to the intensity gradient of the input 
image. 

 The unit normal constraint: to force the 
recovered surface normal to be unit vector. 

In this paper, we introduce two constraints, the 
smooth constraint and integrability constraint, for the 
SFS scheme. 
1) The Smooth Term: We take the smoothness 
constraint [Zha99]: 
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where N means the neighborhood around the normal 
n. The 4-neighborhood smooth constraint is chosen 
in our scheme. In the discrete grid of coordinates, the 
updated surface normal at (k + 1)th iteration is 
estimated by the value at kth iteration as  

k
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k
ji nn ,
1
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where k
jin ,  is the mean of the 4-neighborhood 

surface normal around (i,j). However, one of the 
most serious disadvantages of this smooth term is it 
quickly leads to a flat surface and results in poor 

surface recovery. Therefore, we use a simple 
Gaussian filter to perform preprocessing first: 
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where σ is a constant, which is taken as 0.6 in our 
experiments and s, t = 1, 0, 1. Thus for a 3x3 
neighborhood the new equation is: 
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2) The Integrability Term: Frankot and Chellappa’s 
algorithm [Fra88] introduced the integrability 
constraint into the energy function to recover valid 
surfaces, that is, Zxy = Zyx The integrability term can 
be described as: 

∫ ∫ − dxdyZZ yxxy
2)(   (7) 

Inspired by their works, we introduce the 
integrability regular term in geometry: 
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where e1 and e2 are unitary, that is, e1 = (1, 0, 0) and 

e2 = (0, 1, 0). Here 
y
ne
∂
∂

1  and 
x
ne
∂
∂

2 are dot 

products. To discretize τ(n, N) directly, we can gain 
the following equation: 
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Applying the calculus of ni j yields the following 
iterative operation: 

⎪
⎩

⎪
⎨

⎧

=

+=

+=

−+

−+

jiji

jijiji

jijiji

nn

nnn

nnn

,,

,1,1,

1,1,,

)3()3(~
2/))1()1(()2(~
2/))1()1(()1(~

 

where n(x)… is the xth component(x=1,2,3) of the 
normal n…, and n~ (…) means the value of 
parenthesized component after this integral operation. 
Actually, the integrability term plays a role in 
substituting the first component of the target normal 
with the mean of the first components of the up-
down normal in the 4-neighborhood, and substituting 
the second component of the target normal with the 
mean of second components of the left-right normal. 
This improvement changes the surface normal 
gradually in iterations, and provides a more accurate 
recovered surface in the following experiment. 
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C. Normal Rotation 
After regular operation, the surface normal may fall 
off the reflect cone. So they need to rotate back to the 
cone. The axis of this rotation is given by the cross 
product between the fall-off surface normal k

jin ,  and 

light S: 

Snwvu k
ji ×= ,)',,(  

The rotation axis is perpendicular to both the light 
direction S and the off-cone normal k

jin , . The angle 

of this rotation is equal to: 
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Hence, the rotation matrix is: 
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where θcos=c , cc −=1' , θsin=s . The off-
cone normal is rotated to the cone by . Θ
 

D. Framework of the Proposed SFS 
Algorithm 
Summarizing the above derivation, our SFS 
algorithm can be represented by the following steps: 

 
1) Initialize the surface normal field N0 with the 

intensity gradient. 
2) Smooth the surface normal field with the 

smooth regular term  

according to equation (3). 
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3) Enforce integrability using the integrability 
regular term  according 

to equation (8). 
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4) Rotate the normal to satisfy the brightness 
constraint  according to 

equation (10). 
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5) Normalize the normal. 
6) If it converges, terminate the iteration, 

otherwise go back to step 2. 
 

3. FACE RECOGNITION 
STRATEGIES 
Lots of features can be exploited in 3D surface 
matching [Zha00b,Wu04,Pan05]. The surface 
curvature is one of the most important. In this section 
we explore the ability of three different face 
recognition strategies by using surface normal fields 
obtained from the above SFS algorithm. The 
strategies are respectively dot product based, 
curvedness histograms based, and shape index based 
strategy. 
 

A. Dot Product based Strategy 
Dot product is the most straightforward operation. It 
measures the similarity of two normal fields N and M 
directly by computing the dot product. The smaller 
the dot product is, the more similar these two fields 
are. The distance between two normal fields is 
defined as: 

∑ −=
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where N and M are the unit normal fields of two 
surfaces. Dot product distance ddp measures the 
difference of surface normal in each pixel. However, 
its recognition ability is not good because the normal 
field is affected by the image noise and the error 
introduced in the estimation of the light direction. 

 
B. Curvedness Histograms based Strategy 
The curvedness histogram idea enhances the fact that 
though the SFS algorithm fails to obtain an accurate 
surface, the recovered surface in essence is the same 
as the original one. Therefore, it is a good choice to 
apply curvedness to measure the similarity of two 
surfaces extracted from the SFS algorithm. Usually, 
the surface curvedness can be computed from the 
Hessian matrix: 
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where (…)x and (…)y are the x and y components of 
the parenthesized vectors respectively. From this 
matrix, the most important attributes are these 
curvatures 1κ  and 2κ , which are the eigenvalues of 
the Hessian matrix. With the principal curvatures, 
several local surface attributes can be defined: 

 Mean curvature: The mean curvature K is the 
mean of the principal curvatures: 
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2
1

21 κκ +=K . 

 Gaussian curvature: The Gaussian curvature G 
is the product of the principal curvatures: 

21κκ=G . 
 Curvedness: The curvedness C is another 

measure derived from the principal curvatures: 
2
2

2
12

1 κκ +=C . 

 Shape Index: The shape index labels the type of 
shape using the principal curvatures in angular 
measure as: . 
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Detailed discussion will be given in the following 
subsection. 
In practice, we prefer curvedness of 2-D histogram to 
1-D. This 2-D histogram with  bins is built by 
counting the curvedness in each bin. Then Eucliean 
distance is simply adopted to compare two 
histograms as follows: 
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where HM and HN denote two histograms with 
 bins. nm×

 

C. Shape Index based Strategy 
Shape index is a high-level characteristic extracted 
from the surface normal field. It can be computed 
from the principal curvatures mentioned above. 
Usually, shape index is used to label local surface 
shapes according to the following table [Wor01]: 
 

Region type  Shape index Weight 
 Cup (-1, -5/8] -3 
 Rut (-5/8, -3/8] -2 
 Saddle rut (-3/8, -1/8] -1 
 Saddle point (-1/8, 1/8] 0 
 Plane  Null 
 Saddle ridge (1/8, 3/8] 1 
 Ridge (3/8, 5/8] 2 
 Dome  (5/8, 1] 3 

Table 1. Topographic Labels 
 
These seven region type labels are set with different 
weights. After the surface is labeled, label vector (LV) 
needs computing:  

),...,,( 721 LVLVLVLV =   (18) 

where LV denotes the label vector, and its component 
LVi  represents number of ith label on the surface. 
Actually, LV represents the statistical information of 
shape index in the surface.  
Then the LV is sorted with ascending order. From the 
sorted label vector (SLV), we can obtain the number 
of each label and the main label in the surface, which 
is the last component in the SLV. According to this 
analysis, shape index based difference can be 
measured: 

||))()(exp(||)(
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2
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(19) 
where SLVA and SLVB are two sorted label vectors, 
and weight(.) is the cost function which returns the 
weight of the parenthesized components. 
 

4. EXPERIMENTS 
 

The experiments consist of two parts: geometric-
based SFS algorithm with integrability regular term 
and face recognition SFS. We commence by 
evaluating the performance of this improved SFS 
algorithm with synthetic images. The second part 
will focus on face recognition with three different 
strategies using surface normal fields obtained from 
the above SFS and evaluates its ability for face 
recognition in the varying light situation. 

 
A. Shape from Shading 
In this part, we generate the synthetic ball image to 
test our SFS algorithm. The ball is created using the 
following formula: 

222500),( yxyxZ −−=  

where ,50,50 ≤≤− yx  and . 
This yields a true half sphere with radius 50. Using 
the Lambertian assumption, the reconstructed picture 
with the light direction S = (0; 0; 1) can be generated 
in Fig. 1. Then, we obtain the 3D information of the 
sphere by applying the proposed algorithm in Fig. 2. 
As benchmark, results based on Worthington and 
Hancock’s are listed in the second column. Fig. 2 
shows the normal field, curvedness histogram and 
shape index label of the original sphere and the 
results recovered by Worthington and Hancock’s and 
our algorithm respectively. Comparing their SFS 
method and our method, we find that there is a small 
difference just from the surface normal fields, but our 
algorithm achieves a better improvement by 

250022 ≤+ yx
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curvedness histogram and shape index label. In Table 
2, errors of recovered results by Worthington and 
Hancock’s and our algorithms are shown 
respectively. Obviously, the error in our algorithm is 
much smaller than theirs, especially for dcur and dshi. 

(a) (b) 
Figure 1. Synthetic sphere: (a) the true height 
map of the ball, (b) the reconstructed image with 
light direction S = (0, 0, 1) 
 

 
Figure 2. Comparison between original data and 
the recovered results of Worthington and 
Hancock’s[Wor01] and ours respectively. 

 
Algorithms ddp dcuv dshi 

Worthington and 
Hancock 

94.4 34.8 7228

Ours 66.7 15.2 2244
Table 2. Error comparison between Worthington 
and Hancock’s[Wor01] and ours 
 

B. Face Recognition 
In order to investigate the recognition ability of the 
proposed method in face recognition, we conducted 
experiments with three different strategies described 
in this section. The database adopted in our 
experiment is the not-lighted group of the CMU 
illumination pie database, which consists of 1428 
pictures (21 illuminations of 68 persons). All of these 
images have been aligned in advance. Here we use 4 

kinds of different testing sets: Set5, Set10, Set15, 
Set18. “Seti” means i types out of 21 illumination 
conditions for each person, which are chosen 
randomly as the testing set, and the rest of pictures 
are used as the training set. Fig. 3 is a subset of Set5. 
Fig. 4 gives the midway results which show the 
human face’s normal field, curvedness histogram and 
shape index for 2 persons under different 
illumination conditions. From this figure, we can find 
that the same person has similar features including 
normal field, curvedness histogram and shape index 
label from the proposed algorithm. 

 

 
Figure 3. Example of face images used in our 
experiment. Each row includes pictures of the 
same person in different light directions. 
 

Original 
image 

Normal field

Curvedness 
histogram 

Shape Index 
Label 

Figure 4. The feature representation for two 
human face images under different illuminations 
 
In the face recognition stage, all experiments are 
repeated randomly for 20 times and the recognition 
rate is taken as the average of all 20 times. The 
recognition rates and standard deviation are 
presented in Table 3. Dot product based strategy (ddp) 
performs rather poorly in Set18 and Set15. Scores for 
Strategies for curvedness histogram based (dcuv) and 
shape index based (dshi) are very close, both 
produced a much higher performance. In Set5, they 
achieve a recognition rate of 96%. To evaluate our 
method, we choose a typical face recognition method 
PCA+LDA as benchmark to carry out further 
experiments using the same database [Tur91,Bel97]. 
A comparison between PCA+LDA and the proposed 
is displayed in Fig 5. The results show that the 
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recognition rate of the proposed method has achieved 
about 5% higher than that of PCA+LDA in all testing 
sets. These results demonstrate that the proposed 
method perform well in the recovery and 
representation of 3D objects and recognition.  

 Set 18 Set 15 Set 10 Set 5 
ddp 47.2±12 52.7±16 75.6±8 81.2±9 
dcuv 79.3±27 83.8±22 94.1±8 96.1±8 
dshi 79.2±27 83.7±22 94.0±8 96.0±8 

Table 3. Recognition Rate for 3 strategies and 4 
sets 
 

 
Figure 5.  Comparison between typical 
PCA+LDA and the proposed method. 

 
 

5. CONCLUSION 
 
In this paper, we explored face recognition using 
surface normal fields derived from SFS. The 
investigation consists of two aspects. First, the 
integrability regular term is introduced into 
Worthington and Hancock’s  geometric-based SFS 
algorithm and it leads to a much more accurate 
reconstructed surface normal field. Second, we use 
three different strategies for face recognition in 
testing the ability to handle light variations. We find 
that curvedness histogram and shape index based 
strategies perform much better than the dot product. 
Furthermore, compared with typical face recognition 
by PCA+LDA, the proposed method has 
demonstrated its ability in overcoming illumination 
variations because the features derived from surface 
local topological information are more robust under 
light variations. 
 
 

REFERENCES 
 
 [Bel97] P. N. Belhumeur, J. P. Hespanha and D. J. 

Kriegman, “Eigenface vs Fisherfaces: 
Recognition Using Class Specific Linear 
Projection,” IEEE Trans. on PAMI, Vol. 20, No. 
7, pp. 711-720, 1997 

[Bic92] M. Bichsel and A. P. Pentland, ”A Simple 
Algorithm for Shape from Shading,” IEEE Proc. 
Computer Vision and Pattern Recognition, pp. 
459-468, 1992 

[Fra88] R. T. Frankot and R. Chellappa, ”A Method 
for Enforcing Integrability in Shape from 
Shading Algorithms,” IEEE Trans. PAMI, Vol. 
10, No. 4, pp. 439-451, 1988 

1 1.5 2 2.5 3 3.5 4
70

75

80

85

90

95

100

R
ec

og
ni

tio
n 

R
at

e

Curvedness Histogram

PCA+LDA 

Set18 Set15 Set10 Set5 

[Geo01] A. S. Georghiades, P. N. Bellhumeur, and D. 
J. Kriegman, “From Few to Many: Illumination 
Cone models for Face Recognition under Pose 
and Lighting,” IEEE Trans. on PAMI, Vol. 23, 
No. 6, pp. 643-660, 2001 

 [Hor70] B. K. P. Horn, ”A Method for Obtaining the 
Shape of a Smooth Opaque Object from One 
View,”  PhD thesis, MIT, 1970 

[Hor81] B. K. P. Horn and M. J. Brooks, ”Shape and 
Source from Shading,” Int. Joint Conf. on 
Artificial Intelligence, pp. 932-936, Los Angeles, 
1985 

[Ike81] K. Ikeuchi and B. K. P. Horn, ”Numerical 
Shape from Shading and Occluding Boundaries,”  
Artificial Intelligence. Vol. 17, No. 1-3, pp. 141-
184, 1981 

[Lee85] C. H. Lee and A. Rosenfeld,” Improved 
Methods of Estimating Shape from Shading 
Using the Light Source Coordinate System,” 
Artificial Intelligence, Vol. 23, No. 2, pp. 125-
143, 1985 

 [Liu06] L. Y. Liu, S. G. Shan, X. L. Chen and W. 
Gao, “Face Recognition Varying Light Based the 
Harmonic Images,” Chinese Journal of 
Computers, Vol. 29, No. 5, pp. 760-768, 2006 

[Mog00] B. Moghaddam, T. Jebara and A. Pentland, 
“Bayesian Face Recognition,” Pattern 
Recognition, Vol. 33, No. 11, pp.  1771-1782, 
2000 

[Pan05] G. Pan, S. Han, Z. H. Wu and Y. M. Wang, 
“3D Face Recognition Using Mapped Depth 
Images,”, CVPR’2005, pp.1-7, 2005 

 [Phi00] P. J. Phillips, H. Moon, S. A. Rizvi at. al., 
“The RERET Evaluation Methodology for Face 
Recognition Algorithms,” IEEE Trans. on PAMI, 
Vol. 22, No. 10, pp. 1090-1104, 2000 

Journal of WSCG 159 ISSN 1213-6972



[Phi03] P. J. Phillips, P. Grother, R. J. Macheals, et. 
al., “FRVT 2002: Evaluation Report,” 
http://www.frvt.org/DLs/FRVT_2002_Evaluation
_Report.pdf, March, 2003. 

 [Pra03] E. Prados and O. Faugeras, ”A 
Mathematical and Algorithmic Study of the 
Lambertian SFS Problem for Orthographic and 
Pinhole Cameras,” INRIA Report, 2003 

[Rou92] E. Rouy and A. Tourin, ”A Viscosity 
Solutions Approach to Shape-from-Shading,” 
SIAM Journal on Numerical Analysis, Vol. 29, 
No. 3, pp. 867-884, 1992 

[Sha01] A. ShaShua and T. Riklin-Raviv, “The 
Quotient Image: Class-based Re-rendering and 
Recognition with Varying Illuminations,” IEEE 
Trans. on PAMI, Vol. 23, No. 2, pp. 129-139, 
2001. 

[Tsa94] P. S. Tsai and M. Shah, ”Shape from 
Shading Using Linear Approximation,” Image 
and Vision Computing, Vol. 12, No. 8, pp. 487-
498, 1994 

[Tur91] M. Turk and A. Pentland, “Eigenfaces for 
Recognition,” Journal of Cognitive Neuroscience, 
Vol. 3, No. 1, pp. 71-86, 1991 

[Wor99] P. L. Worthington and E. R. 
Hancock, ”New Constraints on Data-Closeness 
and Needle Map Consistency for Shape-from-
Shading,” IEEE Trans. on PAMI, Vol. 21, No. 12, 
pp. 1250-1267, 1999 

[Wor01] P. L. Worthington and E. R. 
Hancock, ”Object Recognition Using Shape-
from-Shading,”  IEEE Trans on PAMI, Vol. 23, 
No. 5, pp. 535-542, 2001 

 [Wu04] Z. H. Wu, Y. M. Wang and G. Pan, “3D 
Face Recognition Using Local Shape Map,” 
ICIP’2004, pp. 2003-2006, 2004, 

 [Zha99] R. Zhang, P. S. Tsai, J. E. Cryer and M. 
Shah, ”Shape from Shading: a Survey”, IEEE 
Trans. on PAMI, Vol. 21, No. 8, 1999 

 [Zha00a] W. Y. Zhao and R. 
Chellappa, ”Illumination-Insensitive Face 
Recognition Using Symmetric Shape-from-
Shading,” CVPR’2000, pp. 286-293, 2000 

[Zha00b] W. Y. Zhao and R. Chellappa, “SFS Based 
View Synthesis for Robust Face Recognition,” 
AFGR’2000, pp. 285-292, 2000 

[Zha03] W. Y. Zhao, R. Chellappa, A. Rosenfeld and 
P. J. Phillips, “Face Recognition: a Literature 
Survey,” ACM Computing Survey, Vol. 35, No. 4, 
pp. 399-458, 2003 

[Zhe91] Q. Zheng and R. Chellappa, ”Estimation of 
Illumination Direction, Albedo, and Shape from 

Shading ,” IEEE Trans. on PAMI, Vol. 13, No. 7, 
pp. 680-702, 1991 

 

Journal of WSCG 160 ISSN 1213-6972

http://www.frvt.org/DLs/FRVT_2002_Evaluation_Report.pdf
http://www.frvt.org/DLs/FRVT_2002_Evaluation_Report.pdf


GPU bucket sort algorithm with applications to
nearest-neighbour search
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ABSTRACT

We present an adoption of the bucket sort algorithm capable of running entirely on GPU architecture. Our implementation
employs render-to-texture to enable scatter operation. Linked lists of elements in each bucket are build and stored directly in
video memory. We show also the use of this sorting method in a particle-based simulation. Dissipative Particle Dynamics is
the physical model of choice; the simulation is performed entirely on the graphics hardware. GPU bucket sorting is used to
build nearest-neighbour maps on a regular cell-grid which are the input of interparticle interaction computation. Finally we
implement a simple random-number generator which is required by the DPD method.

Keywords: Computer graphics and animation, GPU programming, Nearest-neighbour search algorithm, Fluid simulation

1 INTRODUCTION
One of the fundamental problems in computer simula-
tion of molecular and particle dynamics (e.g. Dissipa-
tive Particle Dynamics [HK92]) is the determination of
interacting atoms or molecules. In order to compute
all forces acting on a single particle a set of interacting
neighbours in a given proximity has to be found.

The straightforward approach of linear scanning
through all particles cannot be applied to any but the
simplest simulation environment. Several solutions
have been proposed to alleviate the problem. Most
of them are based on subdividing the simulation
space and reducing the number of searched elements
[AMN+98], e.g. kd-trees [Ben75], well suited for
unstructured random data. However, when the particles
are almost uniformly distributed in space a simple yet
effective method for nearest neighbour search is to
distribute them into a regular cell grid and to look for
neighbours in spatially close cells. This is the case of
fluid simulation with low compressibility where each
particle has roughly the same number of neighbours.

Particle-based simulation methods require significant
computational power. Through recent years we have
witnessed a growing interest in using commodity
graphics hardware in general-purpose computations.
This is due to its increasing performance as well as

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech Republic.

flexibility in data and instruction handling, allowing
quicker solution than traditional CPU implementations
to a variety of problems [OLG+05]. The problem of
nearest-neighbour search is also an important issue in
ray-tracing and global illumination. Purcell [Pur04] has
demonstrated the use of sorting on a GPU by building
a regular cell-grid where a single cell’s size equals the
search radius and then sorting particles based on the
cell number.

Purcell used bitonic merge sort algorithm [PDC+03]
to order photons by cells. Bitonic merge sort is based
on a sorting network [LKO05]. It doesn’t require arbi-
trary write operation thus allowing straightforward im-
plementation on GPU. Moreover it always executes the
same sequence of steps regardless of the input data.
The downside is the computational complexity, which
is Θ(nlog2n). Cache usage improvements to this al-
gorithm have been introduced by Govindaraju et al.
[GRHM05]. Their memory usage pattern reduces band-
with overhead and allows for optimal throughput re-
sulting in faster sorting times, however the algorithmic
complexity has not been reduced. A recent improve-
ment to GPU sorting by Gress and Zachman [GZ06a]
based on adaptive bitonic sorting achieves optimal com-
plexity of O(nlogn). However using any of the above
mentioned techniques requires further post-processing
with binary search to find a range of neighbours.

Alternative method for particle-based simulation has
been proposed by Amada et al. [AIY+04] where a
neighbourhood map is pre-computed on the CPU and
then at each step transfered to graphics memory to be
used during simulation. Also KD-tree methods have
been successfully implemented on the graphics hard-
ware by Foley and Sugerman [FS05].
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Particle simulation methods which do not require an
explicite nearest-heighbour search have also been in-
vestigated, e.g. by Kolb and Cuntz [KC05] who used
force accumulation on a 3D grid to solve Smoothed Par-
ticle Hydrodynamics equations. A similar approach has
been used by Mueller et al. [MCG03]. SPH-based sim-
ulation has been the foundation of work by Hegeman
et al. [HCM06], however they computed exact inter-
particle interactions by using a dynamic quad-tree to
find particle neighbours. An interesting contribution is
the paper by Kipfer et al. [KSW04] who have build a
particle engine for simulating and rendering large par-
ticle sets on the GPU. Interparticle collisions are ap-
proximated by finding a set of potential colliders in a
2D texture. Nearest-neighbour search on the GPU has
also been investigated by Bustos et al. in [BDH+06] the
context of database operations.

A recent paper by Harada et al. [HKK07] shows
implementation of limited bucket sorting in Smoothed
Particles Hydrodynamics simulation. Their method al-
lows for a maximum of four particle references in a sin-
gle grid cell.

We present a novel GPU bucket sorting algorithm
that builds linked lists of neighbours from regular cell-
grid with application to nearest neighbour search in par-
ticle based simulation.

2 BUCKET SORT ALGORITHM FOR
THE GPU

Bucket sort [CLR89] algorithm is a sorting algorithm
that runs in linear time. It works by partitioning the
problem domain into a finite number of buckets and as-
signing each element to a bucket. The process may be
repeated recursively or another algorithm may be used
to further sort elements in each bucket. For many ap-
plications however (e.g. nearest neighbour search, see
next section) it may be sufficient just to distribute ele-
ments to buckets. The classical bucket sorting achieves
Θ(n) complexity by scanning only once through the
input data and inserting the elements into lists corre-
sponding to each bucket. This behaviour cannot be
easily reproduced on the GPU due to the limitations in
scatter operation. In this chapter we present a modified
bucket sort algorithm that can be successfully imple-
mented on the resource limited hardware.

Listing 1 shows pseudo code of our algorithm. N and
M parameters are the numbers of element and bucket
count respectively. The array a[N] holds the bucket
identifiers to which the array elements will be put, i.e.
element i will be placed in the bucket pointed to by a[i]
. When the algorithm stops two arrays are returned,
head[M] and next[N], which make up a linked list of
elements in each bucket. The first holds identifiers of
the first element in each bucket while the second one
points to the next element in the same bucket. A spe-

Listing 1: GPU bucket sort algorithm
b u c k e t _ s o r t ( a [N] , head [M] , n e x t [N] )
1 f i l l ( head , NULL)
2 f i l l ( nex t , NULL)
3 f i l l ( v i s i t e d , f a l s e )
4 w h i l e t r u e
5 f i n i s h e d = t r u e
6 f o r i = 0 t o N−1
7 i f n o t v i s i t e d [ i ]
8 head [ a [ i ] ] = i
9 f i n i s h e d = f a l s e
10 i f f i n i s h e d
11 b r e a k
12 f o r i = 0 t o N−1
13 i f n o t v i s i t e d [ i ]
14 i f head [ a [ i ] ] == i
15 v i s i t e d [ i ] = t r u e
16 e l s e
17 n e x t [ i ] = head [ a [ i ] ]

cial NULL value is put at the end of each list (or into an
empty bucket).

The algorithm performs bucket sorting by employing
two simple steps in a loop: (i) the elements, which have
not yet been inserted into any bucket, are put into lists’
heads and then (ii) all items have their next pointers set
to the head element in their buckets (except for the el-
ements that are currently at the head of bucket’s list).
Additionally step (ii) marks the head elements as com-
puted (visited[N] array) thus leaving them out from the
following iterations. The loop terminates when all ele-
ments have been assigned to a list.

Figure 1 visualises the way our algorithm works for
a simple case with eight elements distributed into four
buckets.

The average computational complexity of the pro-
posed algorithm is O(N2/M). In practical case with
a large number of buckets and uniformly distributed
items in the buckets this algorithm can perform very
well. However, the lower bound for the running time
is Θ(N2), which may happen if all elements are to be
put in the same bucket. As mentioned before in our ap-
plication to fluid simulation this will never be the case
thanks to particle repulsion.

2.1 GPU implementation details
The algorithm presented in pseudo-code listing has
been implemented on modern graphics hardware using
OpenGL API, mapped to the following steps:

1. Initialise textures

2. Create points from elements (vertex buffer)

3. Scatter elements to buckets heads
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a) / / / / / / / /

0 2 3 2 0 1 3 3A=

next= / / / /head=

b)

4 3 7 / / / 7 /

Start

4 5 3 7

4 3 6 / / / 7 /

0 5 1 6

0 5 1 2

4 3 6 / / / 7 /

c)

0 5 1 2

0 1 2 3

4 3 6 / / / 7 /

0 2 3 2 0 1 3 3

Figure 1: Algorithm execution example a) content of
input data: A input array with element cell numbers
[0..7] (constant through execution time), head first el-
ement in each bucket, next next element in the same
bucket; a special value "/" (NULL) indicates the end
of a linked list b) execution steps; dark grey elements
of next array have their visited flag set (excluded from
further computation) c) resulting data.

a)

R: ID3[0]

G: ID3[1]

B: ID3[2]

A: unused

b)

R: ID3[0]

G: ID3[1]

B: ID3[2]

A: unused

c)

R: ID3[0]

G: ID3[1]

B: ID3[2]

A: visited?

Figure 2: Data representation using texture memory:
a) mapping texture: element bucket mapping (3ID) b)
head texture: first element in each bucket (3ID) c) next
texture: next element in the same bucket (3ID) and a
visited flag.

4. Occlusion query of step 2: STOP if nothing drawn

5. Update next pointers

6. Mark elements in buckets’ heads as visited

7. Repeat from step 2

First, texture memory is initialised for data structures
(see Figure 2). RGBA texture format is used with 8-bit
precision per channel. Bucket and elements identifiers
are encoded using 3 bytes into R, G and B colour chan-
nel respectively. A special value of (255,255,255) in-
dicates the end of a linked list or empty bucket (NULL
value). This scheme allows for effective number of
16777215 item identifiers. The mapping texture is ini-
tialised with user provided data while head and next
textures are initially filled with NULLs.

A simple scatter operation is employed in order to
assign elements to buckets heads. Mapping texture is
copied to a vertex buffer, using copy-to-vertex buffer
OpenGL extension GL_ARB_pixel_buffer_object, and
then used to render points on the head texture. If multi-
ple points end up in the same bucket, all except one will
be overwritten and the same operation will be repeated

for the remaining points. During point rendering occlu-
sion is queried to count drawn points. If it is zero the
algorithm is stopped.

At the end of each iteration next pointers of unvisited
elements are updated and elements currently in bucket
head are marked as visited.

A simple optimisation has been added to the scatter
step to reduce the amount of overwritten buckets. The
vertex buffer with elements is divided into a number
of equal parts, each has an occlusion object attached.
During the initial step only the first sub-vertex buffer is
used. In subsequent steps other sub-buffers are added
to rendering only if the previous one’s not visited ele-
ment count reaches a predefined threshold. If a occlu-
sion query indicates that for a sub-buffer no points are
being drawn this buffer is excluded from future render-
ing. The algorithm stops if there are no more elements
to draw in any of the vertex buffers (all queries returned
zero pixels drawn). This partial-update approach allows
for significant performance boost.

2.2 Re-sort algorithms
The presented algorithm has a useful property in that
it allows for efficient re-sorting of input data. This is
important for many applications which need to initially
sort their data and then periodically update the list to
accommodate changes in element order.

Our algorithm is able to re-sort the sequence by alter-
ing only the elements which are not in their destination
buckets. At first, elements’ lists are scanned for ele-
ments that should be moved to another buckets. Such
elements are removed from the list by updating next
pointers of sibling elements and clearing the visited flag
for such elements. After this operation the sorting algo-
rithm is started as described above but the number of
elements that needs sorting is smaller resulting in a low
number of iterations.

Partial buffer update optimisation needs to be ad-
justed depending on the count of elements that need
re-sorting. When the number is small only a few (or
even one) vertex buffer may be used.

2.3 Application to nearest neighbour
search

One of the possible applications of our sorting algo-
rithm is to the problem of nearest neighbour search. An
example of such application, Dissipative Particle Dy-
namics simulation, is presented in the following chap-
ter. In our sample a set of particles representing phys-
ical fluid are simulated in three dimensional space. In
order to compute particle-particle interaction for each
particle a set of neighbours needs to be found in a spec-
ified radius. To accomplish this the simulation space
is evenly divided along each axis into cubes with edge
length equal to neighbour search distance. Each cube
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has a unique sequential identifier assigned. Cube num-
bering first goes along the x axis, then increases along y
axis and finally by z axis.

All particles from the simulation domain are assigned
to corresponding cubes based on their spatial location.
Because of the cell numbering scheme introduced it’s
a straightforward task to compute cell number for each
one. Particles are marked with their corresponding cell
identifier.

Now our bucket sort algorithm is employed to sort
the particles. This results in two arrays:

• there is a link between each cell and the first particle
which belongs there,

• each particle has an identifier of a next one in the
same cell.

These arrays form a linked list of particles for each cell.
Nearest neighbours of a particle can now be narrowed

down to the particles in the current cell and neighbour-
ing cells (27 total for 3D space). These may however
include more particles than desired, so an additional
distance check needs to be performed in order to get
the exact neighbours set.

3 EXPERIMENTAL RESULTS
Our test environment included a GeForce 6800 graph-
ics card with 256MB of video memory. The CPU was a
Pentium IV 3.0 GHz. OpenGL 2.0 has been used as the
graphics API and all pixel and vertex shaders have been
implemented using GLSL. Benchmarking data comes
from the particle-based simulation described in the fol-
lowing chapter.

The first set of tests measured the performance
of bucket sort algorithm for several grid sizes and
particle-per-cell numbers. Table 1 shows the obtained
results. As expected computation time increases with
data count. Also, when the particle count/cell number
ratio is high more iterations are executed.

Re-sorting times have also been tested. This is an im-
portant issue e.g. in particle simulations where usually
only a fraction of the total number changes their cell lo-
cation. Table 2 shows the results for a 1048576 particle
set-up, with a 643 grid. This test included two steps.
The former consisted of bucket sorting the input data
the normal way. With sorted data some particles were
displaced to other cells and the re-sorting algorithm has
been applied.

We have also compared our solution with another
GPU sorting algorithm: GPUSort version 2.0 by Govin-
daraju et al. [GRHM05]. This is a general purpose sort-
ing algorithm which produces an ordered array out of
arbitrary data. To achieve the results of bucket sorting
input data is first sorted by grid cell key followed by a
binary search to locate the first and the last element in
each cell. Such approach has been employed by Purcell

Particles 1/Cell 2/Cell 4/Cell 8/Cell 16/Cell
65536 13.28 16.15 19.84 28.01 38.17
131072 23.33 28.21 34.7 45.33 62.03
262144 43.27 50.26 60.24 76.86 109.02
524288 85.1 94.79 112.36 145.57 203.58
1048576 206.15 213.25 227.66 274.73 361.52

Table 1: Sorting times on a GeForce 6800 Ultra with
different average particle to cell number ratio.

Moved particles Sort Re-sort
0 231.26 78.07
256 231.26 92.63
4096 231.26 106.4
20971 231.26 120.73
209715 231.26 195.87
419430 231.26 233.13
1048576 231.26 369.75

Table 2: Re-sorting times on a GeForce 6800 Ultra
compared to full sorting when certain number of par-
ticles has been moved to another cell.

and Donner [PDC+03] to global illumination render-
ing. On the other hand our algorithm produces lists of
particles for each cell so no additional step is required.
Comparison results are shown in table 3. We have also
included the timing of re-sorting with 2% of particles
moved to another grid cells.

4 APPLICATION EXAMPLES
As it has been mentioned in the introduction, sorting
algorithm has been included into particle simulation
model. The simulation itself is performed on GPU as
well, thus our approach is entirely computed on graph-
ics processor. The choice of the particle model is quite
arbitrary here, as we treat it mainly as a “wrapper” for
the sorting algorithm. On the other hand it seems rea-
sonable to pick up simulation that would give results
understandable without deep insight into physical na-
ture of the problem, and which wouldn’t need too much
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Particle Count GPUBuck 2% re-sort GPUSort
65536 19.34 7.68 17.67
131072 33.81 16.5 40.36
262144 58.61 31.27 90.75
524288 111.06 61.59 202.27
1048576 233.69 121.23 450.42

Table 3: GPUSort by Govindaraju compared to our
bucket sorting implementation on a GeForce 6800 Ul-
tra.

computing time. Having in mind three common particle
models, namely Molecular Dynamics, Smoothed Parti-
cle Hydrodynamics and Dissipative Particle Dynamics,
we have decided to rely on the latter one.

In this section we introduce briefly basic concepts of
DPD model, the numerical method and the simulation
conditions. Then we apply it to demonstrate the mixing
of two immiscible fluids, driven by the Rayleigh-Taylor
instabilities in a rectangular box, as well as to show the
process of phase separation of two fluids.

4.1 Numerical model

In the DPD model [HK92] the discrete particles move
about within the confines of a rectangular box with a
height h and basis of Lx and Ly length. Periodic bound-
ary conditions are imposed along the x- and y-direction,
while reflecting boundary conditions are employed in
the vertical z-direction. We have divided the box into
two parts, with the upper (smaller) part of the box filled
up with heavy fluid particle (H) and the lower part filled
with lighter fluid particles (L). An external gravity field
~G pointing downwards is present. The particles are
defined by the mass Mi, position ri, and momentum
pi. We use classic two-body, short-ranged DPD force
~FT = ~FC +~FB +~FD. This type of force consists of con-
servative FC, dissipative FD and Brownian (stochastic)
FB components. The value of FC = FB = FD = 0 for
ri j > rc. Otherwise, we apply the following definitions:

FC = πω1(ri j)ei j,

FD = γMω2(ri j)(ei j ·vi j)ei j,

FB =
σΘi j√

∆t
ω1(ri j)ei j

where: ω1() and ω2() - are the weight functions de-
fined such that

nD

∫ rc

0
ωm(r)d(r) = 1 for m = 1,2.,

ri j – the distance between particles i and j, rc – a
cut-off radius, for which ω1(r) = ω2(r) = 0, nD – an
average particle density in D-dimensional system (D–
dimension of the system), ei j – a unit vector pointing
from particle i to particle j, π – the scaling factor for the
conservative part of collision operator, γ – the scaling
factor for the dissipative force, σ – the scaling factor
for the Brownian motion, Θi j – a random variable with
a zero mean and actually normalised variance.

We assume that the normalised weight functions
ω1(ri j) and ω2(ri j) are linear as it is in [ESZ97]). Ac-
cording to the fluctuation-dissipation theorem they are
chosen such that ω2(ri j) = [ω1(ri j)]2 [CN96].

The temporal evolution of the particle ensemble
obeys the Newtonian equations of motion. For inte-
grating them we employ the “leap-frog” algorithm
in time-steping for the particle positions rn

i and the
Adams-Bashforth scheme for the particle velocities vn

i
and momenta pn

i . For the two-component fluid, where
k = g(i) and l = g( j) denote the types of particle i and
j (while k, l ∈ H,L), the equations of motion in 2-D
space can be represented in the following discretized
form.

pn+ 1
2

i = pn− 1
2

i + ∑
i 6= j

[
πklω1(rn

i j)

− γklMklω2(rn
i j) · (eij •vn

i j)

+
σklΘi j√

∆t
ω1(rn

i j)
]
ei j ·∆t

rn+1
i = rn

i +
pn+ 1

2
i
M

∆t

pn
i =

pn+ 1
2

i +pn− 1
2

i
2

Below we present snapshot from two DPD runs with
16384 particles. In the first run in figure 3 we demon-
strate the process of two phase separation of particles in
rectangular box. In the second simulation (figure 4) the
gravity force acting downwards is added in the entire
box. Starting from configuration, where heavier parti-
cles are placed in the top layer, we observe a develop-
ment of Rayleigh-Taylor instability [Mik89].

4.2 Random number generator on the
GPU

Dissipative Particle Dynamics method includes a Brow-
nian component. To compute it on the GPU we used
a random number generator which has been designed
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Figure 3: Simulation of phase separation using DPD model with 65536 particles.

Figure 4: Simulation of Rayleigh–Taylor instability using DPD model, 65536.

to test floating-point behaviour of computer systems
[Kar85]. The forumla is presented below:

x = 1.000005(ri +
√

3)5

ri+1 = x−bxc
where the random-number ri+1 is computed from the
previous value ri. The initial value r0 = 0. Its numerical
properties are adequate to our needs and it can be easily
implemented in a vertex or fragment shader.

5 CONCLUSIONS
We presented a novel way to implement bucket sort-
ing on current graphics hardware. The results obtained
are much faster than previous methods for at least some
specific applications. Further we have shown the ap-
plication of our algorithm to nearest neighbour search,
which has been used in physical simulation. We used
Dissipative Particle Dynamics to simulate fluids in real-
time. We have also presented a random-number gener-
ated implementation on the GPU, which is required by
the DPD.

Recently there has been another sorting algorithm
published by Gress and Zachman [GZ06b] which out-
performs GPUSort. Their implementation is a modified
and optimised adaptive bitonic merge sort with a opti-
mal complexity of O(nlogn). We would like to com-
pare our approach with these results in nearest future.

We also consider comparing OpenGL implementation
with CUDA version on the new NVIDIA 8000 family.
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