
Shape Recognition in 3D Point-Clouds

Ruwen Schnabel, Raoul Wessel, Roland Wahl
and Reinhard Klein

University of Bonn



Introduction
• Size of geometric datasets 

increases quickly
• In particular: Large point-clouds 

from 3d scanning

Problem:
• Interaction still limited, e.g.: Selecting all columns for 

assigning them colors or textures
• Common approach:

– Selecting columns with mouse

– Time consuming and imprecise



Introduction
• Desirable approach:

– Select single column
– find all other columns automatically



Introduction
• Our approach:

– Based on primitive shapes (plane, cylinder, cone,...)
• Well suited for man-made objects
• E.g.: column ≈ cylinder

– Decompose point-cloud into primitive shapes



Introduction
• User defines „query graph“

– Desired configuration of primitive shapes

• Search for configuration in decomposed point-cloud 
– Graph matching

Graph 
matching

Graph 
matching



Related Work
• 3D city reconstruction

– Verma, Kumar, Hsu: 3D Building Detection and Modeling from 
Aerial Lidar Data, CVPR 2006

• detection of roof types
• configurations of planes (region growing)

• limitations: only planes, no node and graph constraints

• Graph based shape matching
– Zuckerberger, Tal, Shlafman: Polyhedral surface decomposition 

with applications Computers and Graphics, 2002
• segmentation into meaningful units

• unconstrained subgraph matching -> prohibitively time consuming

• restricted to triangle meshes -> segmentation not stable



Point Cloud Decomposition
• Efficient RANSAC
• Detection of planes, cylinders, spheres, cones and tori

– Fast, robust

• Set of remaining points will be ignored
– Outliers, noise, complex geometry



Topology Graph
• Captures spatial relation between primitives
• Represent primitive shapes as nodes
• Neighboring nodes are connected by edges

– controlled by proximitiy threshold t



Defining Query Graphs
• Node Constraints

– type of underlying primitive shape (e.g. plane, cylinder,...)
– assign additional constraints manually (e.g. normals, angles, 

radius,...)

• Edge Constraints
– describes spatial configuration between two shapes (e.g. angles,

intersections, relative sizes,...)

• Graph Constraints
– configuration constraints between

unconnected nodes



Defining Query Graphs
• Context Nodes

– certain features benefit from context objects to distinguish them 
from other structures

– model context objects as additional nodes in query graph
– after matching, remove context nodes from result



Defining Query Graphs
• Optional Nodes

– represent variants of one shape

• Matching
– first match query graph without optional nodes
– try to maximally extend results by optional nodes

• Optional graph components
– use graph constraints to assure completeness of component



Defining Query Graphs
• Multinodes

– represent repititive patterns in shapes (e.g. stairs )
– modeled as self loops in the query graph

– use of directed edges
– restricted to one outgoing edge per multinode



Graph Matching
• Recursive graph matching

– node and edge constraints are 
checked early on

– graph constraints are checked 
when all nodes and edges have 
been correctly matched

Match subgraph

Match node

Match edge

T

T

C

T

T

C

S

P start node node constraints failed !node constraints match !
checking node constraints...checking target node constraints...checking edge constraints...
edge constraints match !
no unmatched edges left

Query graphTopology
graph



Timings

chapel
nodes: 232
edges: 406
graph construction: 1.8 sec
matching: < 10 msec

CAD house
nodes: 160
edges: 513
graph construction: 3.9 sec
matching: < 10 msec

choir screen
nodes: 537
edges: 2731
graph construction: 1.8 sec
matching: < 10 msec

dormer roof house
nodes: 106
edges: 138
graph construction: 0.27 sec
matching: < 10 msec

city model
nodes: 431
edges: 351
graph construction: 2.5 sec
matching: < 10 msec



Conclusion
• Object detection in point clouds based on primitive shape 

decomposition
– suited even for large amounts of data
– applicable to nearly every data source like point-clouds, polygon 

soups, meshes
– very fast due to constrained graph matching

• Limitations
– restricted to objects consisting of primitive shapes

• Not suited e.g. for natural objects like flowers or animals

– large graphs might lead to degeneration of retrieval performance



Future Work

• User Interface
– more comfortable interface for unexperienced users
– easily define query graphs and constraints

• Compression
– detect self-similarities
– replace instances of query graphs by generic representations

• Editing
– Apply basic point cloud operations like copy and paste of semantic 

units



Thanks for your attention !


