

The 15th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision 2007

in co-operation with

EUROGRAPHICS

W S C G ' 2007

University of West Bohemia
Plzen

Czech Republic

January 29 – February 1, 2007

Short Communications Proceedings I

Co-Chairs

Jarek Rossignac, Georgia Tech, USA
Vaclav Skala, University of West Bohemia, Plzen, Czech Republic

Edited by
Vaclav Skala

WSCG’2007 Short Communications Proceedings

Editor-in-Chief: Vaclav Skala

University of West Bohemia, Univerzitni 8, Box 314
CZ 306 14 Plzen
Czech Republic
skala@kiv.zcu.cz

Managing Editor: Vaclav Skala

Author Service Department & Distribution:

Vaclav Skala - UNION Agency
Na Mazinách 9
322 00 Plzen
Czech Republic

Printed at the University of West Bohemia

Hardcopy: ISBN 978-80-86943-02-2

WSCG 2007

International Programme Committee

Alexa, Marc (Germany)

Bartz, Dirk (Germany)

Bekaert, Philippe (Belgium)

Benes, Bedrich (U.S.A.)

Bengtsson, Ewert (Sweden)

Bieri, Hanspeter (Switzerland)

Biri, Venceslas (France)

Bouatouch, Kadi (France)

Chen, Min (U.K.)

Chrysanthou, Yiorgos (Cyprus)

Coquillart, Sabine (France)

Davis, Larry (U.S.A.)

Deussen, Oliver (Germany)

du Buf, Hans (Portugal)

Ferguson, Stuart (U.K.)

Ferko, Andrej (Slovakia)

Goebel, Martin (Germany)

Groeller, Eduard (Austria)

Hauser, Helwig (Austria)

Hege, Hans-Christian (Germany)

Jansen, Frederik (The Netherlands)

Klosowski, James T. (U.S.A.)

Kobbelt, Leif (Germany)

Kruijff, Ernst (Austria)

Magnor, Marcus (Germany)

Midkiff, Sam (U.S.A.)

Myszkowski, Karol (Germany)

Pasko, Alexander (Japan)

Peroche, Bernard (France)

Puppo, Enrico (Italy)

Purgathofer, Werner (Austria)

Rauterberg, Matthias (The Netherlands)

Rokita, Przemyslaw (Poland)

Rossignac, Jarek (U.S.A.)

Rudomin, Isaac (Mexico)

Sbert, Mateu (Spain)

Schilling, Andreas (Germany)

Schumann, Heidrun (Germany)

Shamir, Ariel (Israel)

Skala, Vaclav (Czech Republic)

Sochor, Jiri (Czech Republic)

Teschner, Matthias (Germany)

Theoharis, Theoharis (Greece)

Veltkamp, Remco (The Netherlands)

Weiskopf, Daniel (Canada)

Wu, Shin-Ting (Brazil)

Wyvill, Brian (Canada)

Zemcik, Pavel (Czech Republic)

WSCG 2007 Board of Reviewers

Adzhiev,Valery (U.K.)

Alessandro, Piva (Italy)

Ammon, Lorenz (Switzerland)

Ancuti, Cosmin (Belgium)

Andreadis, Ioannis (Greece)

Andujar, Carlos (Spain)

Aspragathos, Nikos (Greece)

Aveneau, Lilian (France)

Bamidis, Panagiotis (Greece)

Bargouli, Maria (Greece)

Bartz, Dirk (Germany)

Battiato, Sebastiano (Italy)

Bekaert, Philippe (Belgium)

Bellon, Olga (Brazil)

Benes, Bedrich (USA)

Bengtsson, Ewert (Sweden)

Beyer, Johanna (Austria)

Bieri, Hanspeter (Switzerland)

Bilbao, Javier J. (Spain)

Biri, Venceslas (France)

Bottino, Andrea (Italy)

Bouatouch, Kadi (France)

Bourdin, Jean-Jacques (France)

Brunet, Pere (Spain)

Bruni, Vittoria (Italy)

Brunnet, Guido (Germany)

Buehler, Katja (Austria)

Butz, Andreas (Germany)

Callieri, Marco (Italy)

Clasen, Malte (Germany)

Coleman, Sonya (U.K.)

Coquillart, Sabine (France)

Crosnier, Andre (France)

Daniel, Marc (France)

Davis, Larry (USA)

de Geus, Klaus (Brazil)

Deussen, Oliver (Germany)

Dingliana, John (Ireland)

du Buf, Hans (Portugal)

Duce, David (U.K.)

Durikovic, Roman (Slovakia)
Egges, Arjan (The The
Netherlands)

Eisemann, Martin (Germany)

Erbacher, Robert (USA)

Faudot, Dominique (France)

Feito, Francisco (Spain)

Felkel, Petr (Czech Republic)

Ferguson, Stuart (U.K.)

Ferko, Andrej (Slovakia)

Fernandes, Antonio (Portugal)

Fischer, Jan (Germany)

Flaquer, Juan (Spain)

Galin, Eric (France)

Galo, Mauricio (Brazil)

Ganovelli, Fabio (Italy)

Garcia-Alonso, Alejandro (Spain)

Gautron, Pascal (France)

Giannini, Franca (Italy)

Goebel, Martin (Germany)

Gonzalez, Pascual (Spain)

Grammalidis, Nicolaos (Greece)

Gresh, Donna (USA)

Groeller, Eduard (Austria)

Gutierrez, Diego (Spain)

Habbecke, Martin (Germany)

Haber, Tom (Belgium)

Hadwiger, Markus (Austria)

Harding, Bruce (USA)

Haro, Antonio (USA)

Hast, Anders (Sweden)

Hauser, Helwig (Austria)

Havran, Vlastimil (Czech Republic)

He, Xiangjian (Australia)

Hege, Hans-Christian (Germany)

Horain, Patrick (France)

Hornung, Alexander (Germany)

House, Donald (USA)

Chen, Min (U.K.)

Chin, Seongah (Korea)

Chover, Miguel (Spain)

Chrysanthou, Yiorgos (Cyprus)

Iglesias, Andres (Spain)

Ihrke, Ivo (Germany)

Jaillet, Fabrice (France)

Jansen, Frederik (The The
Netherlands)

Joan-Arinyo, Robert (Spain)

Kähler, Ralf (Germany)

Kalantari, Leila (Canada)
Karabassi, Evaggelia-Aggeliki
(Greece)

Kersten, Marta (Germany)

Kinuwaki, Shinichi (Germany)

Kjelldahl, Lars (Sweden)

Klajnsek, Gregor (Slovenia)

Klosowski, James T. (USA)

Knight, Michael (U.K.)

Kobbelt, Leif (Germany)

Kohlmann, Peter (Austria)

Kolcun, Alexej (Czech Republic)

Kruijff, Ernst (Austria)

Lamecker, Hans (Germany)

Lanquetin, Sandrine (France)

Larboulette, Caroline (Austria)

Lee, Seungyong (Korea)

Leitao, Miguel (Portugal)

Lensch, Heindrik (Germany)

Lewis, J.P. (USA)

Linz, Christian (Germany)

Magillo, Paola (Italy)

Magnor, Marcus (Germany)

Malik, Muddassir (Austria)

Mandl, Thomas (Germany)

Mantler, Stephan (Austria)

Matey, Luis (Spain)

Mattausch, Oliver (Austria)

McMenemy, Karen (U.K.)

Megali, Giuseppe (Italy)

Meneveaux, Daniel (France)

Moccozet, Laurent (Switzerland)

Mokhtari, Marielle (Canada)

Mollá Vayá, Ramón (Spain)

Montrucchio, Bartolomeo (Italy)

Mould, David (Canada)

Mudur, Sudhir (Canada)

Muller, Heinrich (Germany)

Muntean, Adrian (Germany)

Myszkowski, Karol (Germany)

Nedel, Luciana P. (Brazil)

Neveu, Marc (France)

Nielsen, Frank (Japan)

Ogayar, Carlos,J. (Spain)

Oliveira, Manuel (U.K.)

Pasko, Alexander (Japan)

Patel, Daniel (Austria)

Patow, Gustavo (Spain)

Paulin, Mathias (France)

Pavic, Darko (Germany)

Pedrini, Helio (Brazil)

Peroche, Bernard (France)

Pettifer, Steve (U.K.)

Platis, Nikos (Greece)

Plemenos, Dimitri (France)

Podorelec, David (Slovenia)

Ponchio, Federico (Italy)

Popov, Stefan (Germany)

Prakash, Edmond (U.K.)

Pratikakis, Ioannis (Greece)

Přikryl, Jan (Czech Republic)

Puppo, Enrico (Italy)

Purgathofer, Werner (Austria)
Rauterberg, Matthias (The The
Netherlands)

Redon, Stephane (France)

Remolar, Inmaculada (Spain)

Renaud, Christophe (France)

Revelles, Jorge (Spain)

Ribelles, Jose (Spain)

Robert, Philippe (Switzerland)

Rodeiro, Javier (Spain)

Rodrigues, Marcos (U.K.)

Rojas-Sola, José Ignacio (Spain)

Rokita, Przemyslaw (Poland)

Rossignac, Jarek (USA)

Roth, Peter,M. (Austria)

Rudomin, Isaac (Mexico)

Sanna, Andrea (Italy)

Sbert, Mateu (Spain)

Scateni, Riccardo (Italy)

Segura, Rafael (Spain)

Sellent, Anita (Germany)

Semwal, Sudhanshu (USA)

Shamir, Ariel (Israel)

Scheiblauer, Claus (Austria)

Schilling, Andreas (Germany)

Schmidt, Thomas (Germany)

Schneider, Bengt-Olaf (USA)

Schumann, Heidrun (Germany)

Sips, Mike (USA)

Sirakov, Nikolay Metodiev (USA)

Sochor, Jiri (Czech Republic)

Solis, Ana Luisa (Mexico)

Sousa, A.Augusto (Portugal)

Stroud, Ian (Switzerland)

Suarez Rivero, Jose (Spain)

Suescun, Angel (Spain)

Szekely, Gabor (Switzerland)
Štulić, Radovan (Serbia and
Montenegro)

Tang, Wen (U.K.)

Tawara, Takehiro (Japan)

Tecchia, Franco (Italy)

Teschner, Matthias (Germany)

Theußl, Thomas (Austria)

Tobler, Robert (Austria)

Tonet, Oliver (Italy)

Turini, Giuseppe (Italy)

Tytkowski, Krzysztof (Poland)

Vanecek, Petr (Czech Republic)

Vasa, Libor (Czech Republic)

Veiga, Luis (Portugal)
Veltkamp, Remco (The The
Netherlands)
Vergeest, Joris (The The
Netherlands)

Vitulano, Domenico (Italy)

Wan, Taoruan (U.K.)

Weigel, Christian (Germany)

Weiskopf, Daniel (Canada)

Wenger, Thomas (Switzerland)

Wu, Shin-Ting (Brazil)

Wyvill, Brian (Canada)

Zach, Christopher (Austria)

Zachmann, Gabriel (Germany)

Zalik, Borut (Slovenia)

Zemcik, Pavel (Czech Republic)

Zhu, Ying (USA)

Zimeras, Stelios (Greece)

 i

Contents

Part I

Paper
Code

Title Page

B05 Birkholz,H.: Patch-Trees for Fast Level-of-Detail Synthesis (Germany) 1

D19 Garcia,R., Urena,C., Lastra,M., Montes,R., Revelles,J.: A study of Incremental Update of Global
Illumination Algorithms (Spain)

7

E03 Nakamura,N., Inoue,Y., Teshima,Y., Nishio,K., Kobori,K.: A Study on Generation Method from
Boundary Representation Model to Binary Voxel Model by Using GPU (Japan)

15

E59 Zotti,G., Wilkie,A., Purgathofer,W.: A Critical Review of the Preetham Skylight Model (Austria) 23

E73 Domonkos,B., Egri,A., Foris,T., Juhasz,T., Szirmay-Kalos,L.: Isosurface Ray-casting for
Autostereoscopic Displays (Hungary)

31

F37 Gumbau,J., Ripolles,O., Chover,M.: LODManager: A Framework for Rendering Multiresolution
Models in Real-time Applications (Spain

39

H19 Toth,B., Szirmay-Kalos,L.: Fast Filtering and Tone Mapping using Importance sampling (Hungary) 47

D97 Ko,P.K., Lee,J.-J., Choi,N.-S., Lee,B.-G.: Generalization of (2n+4)-point Approximating
Subdivision Scheme (Korea)

53

A29 Eisemann,M., Grosch,T., Magnor,M., Müller,M.: Automatic Creation of Object Hierarchies for Ray
Tracing Dynamic Scenes (Germany)

57

B79 Veleba,D., Felkel,P.: Detection and correction of errors in surface representation (Czech Republic) 65

D59 Sakalauskas,T.: Silhouette Partitioning for Height Field Ray Tracing (Lithuania) 73

E19 Ungvichian,V., Kanongchaiyos,P.: Finding Thin Points in an Abstract Cellular Complex (Thailand) 81

E41 Ungvichian,V., Kanongchaiyos,P.: 3-D Object Extraction Using Volume Computation (Thailand) 89

F03 Lai,G., Christensen,N.J.: A Compression Method for Spectral Photon Mapping (Denmark) 95

G53 Loke,R.E., Jansen,F.W.: Maintaining Sharp Features in Surface Construction for Volumetric
Objects (Netherlands)

103

A13 Ausheva,N., Demchyshyn,A.: Fractal Modeling of Vacuum Arc Cathode Spots (Ukraine 111

A03 Qian, X.,Zhao,Z.,Thorn,R.: Rapid Development of Virtual Environments: A systematic approach
for interactive design of 3D graphics (United Kingdom)

117

A37 Huebner,K.: Object Description and Decomposition by Symmetry Hierarchies (Germany) 125

 ii

Contents

Part II

Paper
Code

Title Page

A71 Pospisilova,R.: Occlusion Detection and Surface Completion in 3D Reconstruction of Man-made
Environments (Czech Republic)

133

C17 Oba,S., Ikai,T., Aoki,S., Yamashita,T., Izumi,M., Fukunaga,K.: Viewpoint Selection Based on
Fechner Type Information Quantities for 3D Objects (Japan)

141

C61 Krajíček,V., Pelikán,J., Horák,M.: Measuring and Segmentation in CT Data using Deformable
Models (Czech Republic)

149

D71 Oh,S., Yeo,W.: Comparative Navigation System for Collaborative Project (Japan) 153

D79 Khanduja,G., Bijaya,B.K.: Using Graphics Hardware for Multiple Datasets Visualization (United
States)

161

F41 Hashimoto,M., Miyamoto,K.: Physically Realistic Interface for a User Inside VR (Japan) 169

A23 Nassiri,N., Powell,N., Moore,D.: Virtual Environments and Human-Computer Interaction Anxiety:
An Experimental Study (United Arab Emirates)

177

F13 Gonzales,M.R.M., Wu,Sh.-T.: Using Simplified Meshes for the Crude Registration of Two Partially
Overlapping Range Images (Brazil)

183

F89 Thanasoontornlerk,K., Kanongchaiyos,P.: An Image Matching Using Critical-Point Filter and Level
Set Analysis (Thailand)

191

G17 Hussein,R., Mckenzie,F.: Automatic Identification of ambiguous Prostate Capsule Boundary Lines
using Shape Information and Least Squares Curve Fitting Technique (United States)

199

G41 Popov,A.T.: Fuzzy Mathematical Morphology and Its Apllications to Colour Image Processing
(Bulgaria)

205

H47 Martinez,D., Hernandez,J.T., Florez,L.: Contributions to Colon Segmentation Without Previous
Preparation in Computer Tomography Images (Colombia)

211

D37 Rodriguez,J.,Linares,P.,Reigosa,A.,Laya,D.,Urra,E., Saldivia,F.: Estimating the Tumor-breast
Volume Ratio from Mammograms (Venezuela)

219

F23 Sharma,O., Mioc,D., Anton,A.: Feature Extraction and Simplification from Colour Images based on
Colour Image Segmentation and Skeletonization using the Quad-Edge Data Structure (Denmark)

225

G89 Vergeest,J.S.M., Song,Y., Kroes,T.: Associating 6 DoF Sensor Data to 3D Scan View Registration
(Netherlands)

233

H37 Wang,Y., Turner,M.J., Perrin,J., Hewitt,W.T.: Evaluation of Different Vibration Visualization Modes
for Line Tracking (United Kingdom)

241

H67 Tantisiriwat,W., Sumleeon,A., Kanongchaiyos,P.: A Crowd Simulation Using Individual-Knowledge-
Merge based Path Construction and Smoothed Particle Hydrodynamics (Thailand)

249

H71 Pakdee,S., Kanongchaiyos,P.: Biped Cartoon Retrieval Using LBG-Algorithm Based State Vector
Quantization (Thailand)

257

Patch-Trees for Fast Level-of-Detail Synthesis
Hermann Birkholz
Research Assistant

Albert-Einstein-Str. 21
Germany, 18059, Rostock

hb01@informatik.uni-rostock.de

ABSTRACT
This paper describes a procedure that synthesizes Level-of-Detail (LoD) meshes from a tree of mesh-patches.
The patch tree stores the surface of the original mesh in different detail levels. The leaf patches represent the
original detail, while lower levels in the tree represent the geometry of their child nodes with less detail.
Such patch trees have a coarser granularity compared to basic approaches like “edge-collapse”. This is because
only complete patches can switch their detail, instead of pairs of triangles. On the other hand, it can better utilize
the graphics hardware, which is capable to render preloaded patches very fast. The problem of such a patch-
based LoD approach is to join the patches of different resolutions together in a smooth mesh. This problem is
solved by the use of different versions of the patch borders that depend on the detail level of the neighbor
patches.

Keywords
Level-of-Detail, Batched Dynamic Mesh.

1. INTRODUCTION
The drastic increase in speed of graphics hardware
demands new strategies for Level-of Detail algo-
rithms in order to make use of the GPU processing
power. Common LoD algorithms, such as vertex-
trees or triangle-subdivision schemes, only add / re-
move two triangles in each refinement / simplification
step. Used with many available large meshes, most of
the frame time is spent for the frame-to-frame mesh
update. This is due to the high CPU load of the up-
date process, compared to the GPU load. A coarser
update granularity in LoD hierarchies enables gener-
ating a higher GPU load, together with a lower CPU
load. The use of patches furthermore enables to store
the geometry data in the GPU memory and to use
efficient geometry descriptions, such as triangle-
strips.

The approach in this paper describes the steps to cre-
ate a patch-tree and how to use it for LoD rendering.

2. RELATED WORK
For the online approximation of triangle meshes there

exist many different techniques. All of them create a
hierarchy in an offline process, which is used for a
fast online approximation. Xia [Xia96] creates
merge-trees, which are constructed by a sequence of
merge operations on pairs of surface vertices. Each
merge operation creates a new node in the merge-
tree, which also stores an error value to allow a selec-
tive refinement. The leaf-nodes of the tree represent
the original vertices of the corresponding mesh.
Hoppe [Hop97] independently extended his Progres-
sive Meshes [Hop96] in order to create a comparable
hierarchical data structure. Both approaches have a
granularity of two triangles per simplification / re-
finement operation and thus create high CPU loads.
Furthermore, each update operation requires an adap-
tion of the triangles in the direct neighborhood and
thus another increase in CPU load.

Other algorithms avoid the neighborhood update by
substituting the mesh patches. The MT-hierarchy
method [Pup96] generates approximations from con-
strained cuttings through a previously constructed
hierarchy. Each update operation in the hierarchy cut
is equivalent to a merge of two surface vertices and
thus the fine granularity still results in high CPU load.
The same is true for the ROAM [Duc97] algorithm,
where a hierarchy of right-angled triangles is used to
approximate heightfield meshes with a constrained
triangle substitution.

The BDAM [Cig03] approach first used higher
granularity primitives. It constructs a hierarchy of
right-angled triangles like ROAM, but each node

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Short Communication papers 1 ISBN 978-80-86943-02-2

represents a patch of triangles. With the Adaptive
Tetra Puzzles [Cig04], the idea of BDAM was ported
to arbitrary meshes. Both approaches enable the syn-
thesis of conformal (crack free) mesh approximations
with constraints at the patch borders during the sim-
plification. The outer border of the patch which is
simplified must not be changed. Thus, patches which
differ by only one detail level can be placed side by
side without mesh cracks.

In [Cig05] the above approaches are generalized to
Batched Multi Triangulations. A sequence of parti-
tions is created for the mesh with a descending num-
ber of patches. Each pair of successive partitions in
the sequence is cut against each other, in order to
determine the parent-child relations in the hierarchy
of patches. The geometry in the partitions is simpli-
fied according to the number of patches, while the
geometry along the cuts is preserved. This hierarchy
is used to create approximations by stitching patches
of the different partitions together.

3. PATCH-TREE CONSTRUCTION
In this section the basic steps of the patch tree con-
struction are described. A tree of triangle-patches has
to be constructed, where each node contains a trian-
gle-patch with the simplified geometry of its child
patches. The nodes are further enriched with informa-
tion about the change of their borders from lower to
higher detail.

Creating the Patch-Hierarchy
To create the patch-tree, a greedy merge algorithm is
used to create the initial patches. Therefore, all origi-
nal triangles are treated as patches. The patches are
then iteratively merged according to the resulting
shape, until a desired number of patches is reached.
This number of patches depends on the average num-
ber of triangles per patch in the patch-tree. The prior-
ity of the merge operations is measured by the pe-
rimeter of the patch and its surface area:

2
*42 areaoutline

priority
π+= (1)

This metrics prefers small and compact patches. To
take only the patch perimeter into account, as done in
[San01], leads to problems at mesh parts that are con-
nected to the rest of the mesh with thin transitions
(e.g. neck connects head and body).

Once the initial patches are created, their borders are
smoothed with a local shortest path algorithm. This is
done in order to facilitate stitching of patches with
different triangle resolutions. The algorithm itera-
tively shortens the path between two patch corners.
Therefore the path-vertices, and all vertices that are

adjacent to them, are marked as optimization corri-
dor. Now the shortest possible path is found in this
corridor and optimized again, as long as optimiza-
tions are possible.

Figure 1 shows the result of the smoothing algorithm.
The patches in the left image have rough borders.
After straightening the borders, they are much
smoother as visible in the right image. Furthermore
the relatively compact shape of the patches can be
recognized, which enables a good distribution of the
image space error in later approximations.

With the smoothed patches, a merge tree is created
with a greedy algorithm again, using the same com-
pactness metrics. The resulting unbalanced binary
merge tree is then transformed to a balanced final
patch-tree. This step is necessary, because we need
explicit neighbor info of the patches in each level of
the final tree. The leaves of the patch-tree are identi-
cal to the leaves in the merge-tree, but all reside in
the same level of the tree. The following levels in the
patch-tree are extracted from the binary tree, accord-
ing to the compactness metrics and are provided with
half the number of patches compared to the previous
level.

Figure 1: initial (l.) and smoothed(r.) borders

Figure 2: initial (t.) and final(b.) patch-tree

Short Communication papers 2 ISBN 978-80-86943-02-2

Figure 2 shows a small example. The binary tree
(top) that was created by the patch merge algorithm is
transformed into a general tree (bottom), whose leaf
nodes are all situated on the same tree-level. Some
merge tree nodes have been ignored (e.g. node 12) in
this process, while other nodes appear multiple times
(e.g. node 9).

LOD Creation
In order to enable an extraction of LoD approxima-
tions, the non-leaf nodes of the patch-tree have to be
equipped with the simplified geometry of their child
nodes. The construction of the LoD halves the num-
ber of triangles from each level to the next, starting at
the leaf level. This ensures the same average number
of triangles per patch in the whole patch-tree.

The simplification process works as follows:

• Initialize leaf patches with original geometry

• For each lower level

o Merge geometry of child patches

o Halve number of triangles in level

• Precompute patch border switches

• Compute split weights for the patches

In order to halve the number of triangles from level to
level, an “half edge-collapse” [Kob98] algorithm is
used. This ensures common vertices in child and par-
ent patches. The surface error is measured with the
QEM [Gar97] and the shape of the patch borders is
preserved during the simplification. The simplified
geometry then remains in the patches of the actual
tree level and is used to initialize the simplification of
the next level.

In figure 3, four different levels of the patch-tree are
visible. The average surface area of the patches dou-
bles from level to level, while their shape remains
compact.

After the geometry of all levels was created, possible
changes at the borders of all patches are computed.
Therefore each patch references all of its adjacent
patches (at least one common vertex). During the
synthesis process, patch-refinement operations are
applied to the approximated surface. The refinement-
operations are restricted, in order to keep the differ-
ence between detail levels of adjacent patches below
two. This means that refinement-operations are only
allowed if all patches in the neighborhood have a
higher or the same level. If not, the corresponding
patches have to be refined first (forced refinement).
Due to the restricted difference in the levels of adja-
cent patches, only one additional version of each bor-
der between two patches must be computed. In this
approach, the higher level patch has to adapt to the
lower level. The indices of all border vertices of a
patch that do not appear in the parent patch, can be
changed to the closest border vertex that appears in
the parent patch. This ensures a closed triangle mesh
without cracks for each approximation. To determine
the correct replacement index, the distance to the next
left and right border vertex, which also belongs to the
parent patch, is compared.

Figure 4 shows an example for the border adaption.
The indices of the yellow vertices in the high level
patch have to be changed to match them with the
border of the lower level patch. The arrows show the
position of the according replacement targets.

The last step computes view-independent refinement
priorities, which measure the geometric distortion for
a replacement of some child patches by their parent
patch. The priority is measured with the average
squared distance of the vertices in the child patches to

Figure 3: different detail levels

Figure 4: border versions

Short Communication papers 3 ISBN 978-80-86943-02-2

the parent patch. To compute this average value, all
vertices of the child patches are mapped to their par-
ent patch. After that, the accumulated squared dis-
tance of all vertices is divided by the number of verti-
ces in the patch. The mapping is realized by locking
all common vertices of the child patches and the par-
ent patches. For all other vertices the “mean value
coordinates” [Flo03] are determined and used to
compute their mapping in the parent patch.

4. LOD SYNTHESIS
The patch-tree can now be used to synthesize ap-
proximations of the original mesh. A simple split-
only version of the approximation process first inserts
the root patch into a priority queue. The priority of
the patch is made view dependent by dividing the
view independent priority by the squared distance
between patch and viewer. Furthermore this first
patch is marked and then stored in a list of used
patches. Now a loop is started that iteratively splits
the patches in the approximation, if it is possible.
Therefore the neighbors of the first patch the queue
are checked. If all neighbors in the same patch-level
are marked, the first patch is removed from the queue
and the list of used patches. Furthermore its child
patches are marked and put into the list of used
patches. If the child patches are not from the leaf
level, they are also put into the priority queue, with
their view dependent weights.

If any of the neighbor patches in the same level of the
patch-tree were not marked yet, the priority of their
parent patches (which were surely marked) is lifted to
a higher priority than the first patch in the queue. This
ensures that patches can only be split if their
neighborhood is at least at the same patch-tree level.

The refinement process can be stopped by different
events. For the tests in the next section, a triangle
threshold was chosen.

To waste less triangles in invisible regions, a view
frustum culling has been implemented. Each priority
computation also tests the bounding sphere of the
patch against the planes of the view frustum. By
means of the results, the patch is tagged as com-
pletely visible, partial visible or completely invisible.
The priority of completely invisible patches is always
set to zero. Completely visible or invisible patches
can inherit this property to their child patches to save
culling tests. This ensures the distribution of most
triangles within the view frustum.

Frame-to-frame coherency can also be exploited by
the help of another priority queue, which stores pos-
sible merge operations of patches. But due to the low
tree size, the split-only method works fast even for
large meshes.

5. RENDERING
Before rendering, the borders of all used patches have
to be adapted. Therefore all neighbors of each used
patch in the same patch-tree level are checked for a
mark. The correct border vertex indices are chosen
according to the acquired neighbor information. If the
neighbor patch is marked, the original indices are
used. Else the previously determined parent versions
must be used. The resulting mesh is crack free, be-
cause the possibly different triangulations on the
patch borders have been repaired now.

Figure 5 shows the “Bunny” mesh without (top) and
with (bottom) crack removal. The holes in the upper
image are colored in bright red. The bottom image
does not show holes, because the patch borders which
caused the holes were updated.

The adapted patches can now efficiently be rendered
as vertex-, normal- and triangle-arrays. This process
can even be accelerated by dividing the patches into a
constant partition, which remains in GPU memory,
and the changeable parts. Thus only the few change-
able parts must be transferred to the GPU, while most
of the mesh already resides in the GPU memory.

6. RESULTS
The patch-tree based LoD synthesis has been tested
with several meshes. The average patch size was ad-
justed to 100 triangles to avoid strong popping ef-
fects. All meshes were partitioned into compact
patches.

Figure 5: with cracks (l.)/removed cracks (r.)

Short Communication papers 4 ISBN 978-80-86943-02-2

The “Bunny” mesh consists of almost 70,000 trian-
gles, while the “Armadillo” mesh uses almost
346,000 triangles and the “Rough Planet” even al-
most 2,1 Mio triangles. Figure 6 shows the leaf
patches of the “Armadillo” and the “Rough Planet”
mesh.

All meshes are rendered with simple vertex-, normal-
and triangle-arrays with approximately 15 Mio. trian-
gles per second, independent from the size of the
approximated mesh (P4 – 2GHz, 1GB Ram, ATI
Radeon 9800 Pro). With the use of float-buffers on
the GPU and a patch size of 1000 triangles, the ren-
dering throughput raised up to 25 Mio. trian-
gles/second. The number of triangles for the ap-
proximation was adjusted to 500,000 triangles at a
frame rate of 50 fps.

Figure 7 shows a 80,000 triangle approximation view
(left) of the „Armadillo“ mesh and an overall view
(right). The effect of the adaptive triangulation can be
seen here. The left hand shows the highest detail,
while the right part of the mesh, which has a higher
distance to the viewer, is triangulated significantly
coarser. Due to the low number of triangles per patch,
the transition of detail is relatively smooth.

7. CONCLUSION
This paper introduced patch-trees, which can be used
to synthesize LoD meshes. The algorithm is relatively
easy to implement and shows good results. Due to

the selectable granularity (average patch size), it is
possible to reduce the CPU load in the synthesis pe-
riod and thus enables highly detailed approximations.
The results can still be improved with a more GPU
oriented version of the rendering process. Further-
more a “Out of Core” version of the patch-trees
should be easily implementable.

8. REFERENCES
[Cig03] Cignoni, P., Ganovelli, F., Gobbetti, E., Mar-

ton, F., Ponchio, F., and Scopino, R. BDAM:
Batched dynamic adaptive meshes for high per-
formance terrain visualization. Computer Gra-
phics Forum, 22(3):pp.505–514, Sept. 2003.

[Cig04] Cignoni, P., Ganovelli, F., Gobbetti, E., Mar-
ton, F., Ponchio, F., and Scopino, R. Adaptive
tetrapuzzles: efficient out-of-core construction
and visualization of gigantic multiresolution po-
lygonal models. ACM Trans. Graph.,
23(3):pp.796–803, 2004.

[Cig05] Cignoni, P., Ganovelli, F., Gobbetti, E., Mar-
ton, F., Ponchio, F., and Scopino, R., Batched
Multi Triangulation, Proceedings IEEE Visualiza-
tion, IEEE Computer Society Press, 2005.

[Duc97] Duchaineau, M.A., Wolinsky, M., Sigeti,
D.E., Miller, M.C., Aldrich, C., and Mineev-
Weinstein, M.B. ROAMing terrain: Real-time op-
timally adapting meshes. Proceedings IEEE Visu-
alization, IEEE Computer Society Press, 1997.

[Flo03] Floater, M.S., Mean value coordinates. Com-
puter Aided Geometric Design, Elsevier Science
Publishers B. V., 2003

[Gar97] Garland, M., Heckbert, P.S., Surface Simpli-
fication Using Quadric Error Metrics, SIG-
GRAPH ’97 Conf. Proc., pp. 209-216, 1997

[Hop96] Hoppe, H., Progressive Meshes, Computer
Graphics:pp.99-108, 1996

[Hop97] Hoppe, H. View Dependent Refinement of
Progressive Meshes, Computer Graphics, 1997

[Kob98] Kobbelt, L., Campagna,, S., Vorsatz, J., and
Seidel, H.-P., Interactive multi-resolution model-
ing on arbitrary meshes, In Proceedings of the
25th annual conference on Computer graphics and
interactive techniques, pp. 105-114, 1998

[Pup96] Puppo, E. Variable Resolution terrain sur-
faces, Proc. Of 8th Canadian Conference of Com-
putational Geometry, 1996

[San01] Sander, P.V., Snyder, J., Gortler, S.J., and
Hoppe, H. Texture Mapping Progressive Meshes,
Computer Graphics Proceedings, ACM Press,
2001

[Xia96] Xia, J.C. and Varshney, A. Dynamic view-
dependent simplification for polygonal models.
Proceedings IEEE Visualization, IEEE Computer
Society Press, 1996

Figure 6: leaf patches of other test meshes

Figure 7: view dependent approximation

Short Communication papers 5 ISBN 978-80-86943-02-2

Short Communication papers 6 ISBN 978-80-86943-02-2

A study of incremental update of global illumination
algorithms

R. Garcia, C. Ureña, M. Lastra, R. Montes, J. Revelles
Dpto Lenguajes y Sistemas Informáticos

University of Granada
{ruben,curena,mlastral,rosana,jrevelle}@ugr.es

ABSTRACT

Global illumination solutions provide a very accurate representation of illumination. However, they are usually costly to
calculate. In the common case of quasi-static scenario, in which most of the scene is static and only a few objects move, most
of the illumination can be reused from previous frames, yielding increased performance. This article studies theoretically the
performance of global illumination algorithms for the case of interactive recalculation of quasi-static scenes, concentrating in
the Density Estimation on the Tangent Plane algorithm, although the study is applicable to other techniques. The results are
validated empirically with a test scene. Guidelines are given to choose the best algorithm for each case.
Keywords: Global Illumination, Density Estimation, Range Searching, Interactivity, Cost analysis.

1 INTRODUCTION
Global Illumination algorithms calculate a solution to
the rendering equation proposed by [Kaj86]. Monte-
carlo methods are very often used currently. However
comparing the performance of the different methods
taking into account the different variance and bias is
difficult. BART [LAM00] provides a compendium of
scenes with which the algorithms can be compared em-
pirically. The aim of this article is to provide a basis
for a theoretical comparison of these algorithms, taking
into account both variance and computation time.

In order to do this, the number of rays shoot is used
to calculate theoretically the variance of the method and
the computation time. Then the computation time ver-
sus variance link can be used to compare different algo-
rithms theoretically.

Sometimes different algorithms have the same under-
lying kernel for the Montecarlo integration, and there-
fore the same variance. In these cases, a study of com-
putation time suffices.

A theoretical study of incremental recalculation of
global illumination is presented in this paper, which in-
dicates the suitability of the different methods for the
different parts of the scene.

The following section has a review of Global Illumi-
nation algorithms. Section 2 contains an in depth anal-
ysis of global illumination using montecarlo methods.
Section 3.1 has a review and simplification of formulas

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech Re-
public.

from integral geometry which are used to estimate the
cost of different algorithms. In section 3.2 a study of in-
cremental recalculation of illumination for quasi-static
scenes is presented. Section 4 contains a practical study
which validates the theoretical results. Finally, conclu-
sions and some possible future work is presented.

1.1 Global Illumination
Interactive and Real-Time global illumination is
becoming increasingly important for many computer
graphics applications, such as building design and
games.

There have been many important algorithms which
attain high frame rates for medium-scale scenes. They
are based on highly parallel pathtracers and Photon
Maps derivatives. [BWS03], [WGS04] and [GWS04]
are examples of parallelism, whereas Density Estima-
tion on the Tangent Plane [LURM02] and Ray Maps
[HBHS05] are examples of extensions of Photon Maps
to increase performance.

These algorithms recalculate the illumination for ev-
ery frame, which is the best option for highly dynamic
scenes, since most of the illumination changes from
frame to frame.

However, in building design and games, the most
common scenes are a complex static scene and rela-
tively simple dynamic objects. In building design, the
designer will modify one object at a time to choose the
best configuration for a given, fixed, lighting setup. In
games, the user will control one small character im-
mersed in a large, mostly static, virtual world, while
the game controls other small characters.

Under these conditions, most of the illumination can
be reused from previous frames, since the small moving
objects change the illumination only slightly.

Selective Photon Tracing [DBMS02] recalculates in-
crementally the illumination by keeping the age of the

Short Communication papers 7 ISBN 978-80-86943-02-2

photons and recalculating as many of the old and no
longer valid photons as time allows, every frame.

[GUL+04] provides an algorithm which tests the
photons which are not valid and recalculates them. Old
valid photons are never discarded. The results are the
same as full recalculation of the frame for the Density
Estimation on the Tangent Plane algorithm. However,
for Photon Maps, while the result has no intrinsic bias,
it is different of the full recalculation, since obtaining
the same result means that adding the contribution of an
impact would require the removal of the contribution
of the photon further away from the point, and that
requires a photon map query. Recalculation in Ray
Maps remains an open topic [HBHS05].

2 DENSITY ESTIMATION METHODS
In order to obtain a radiosity value at a point, an ap-
proximation of the integral of the incident radiance for
all the directions towards that point must be calculated.

The most basic method is described by Arvo in
[Arv86] and Patanaik in [PM92]. It computes the
impacts of the photons in the patches and calculates
the energy density in those patches. Then vertexes are
assigned a radiance which is the average of the patches
to which they belong.

One method which has proved useful to obtain an es-
timate of the integral is the Density Estimation Method,
popularized by [WHSG97] and especially [Jen96]. The
original method by Shirley consists of three phases.
The first phase is based on the particle model of light,
and traces a number of photons from the light sources.
The second phase (Density Estimation proper) esti-
mates the radiance. The third phase, decimation, sim-
plifies the geometry after illumination has been calcu-
lated. This last phase is dropped often because it is con-
sidered to be outside the scope of density estimation.

Jensen [Jen96], devised the well known Photon Maps
method. It consists in finding the nearest n ray impacts
(n is predefined) to the point where radiance is being
estimated, adding their energy, and dividing it by the
area of the greatest circle of the sphere which contains
the n impacts.

The most known limitation of Photon Maps, is that
when radiance on a point is calculated, the surface in
the neighborhood should be relatively planar and large.
[HP02] presents an algorithm which solves this limita-
tion by using geometry information near the point.

Another less known limitation of Photon Maps and
[HP02], mentioned in [LURM02] and [HBHS05], is
that if relatively very small surfaces exist in the scene,
these zones have a comparatively high variance, and
they tend to appear either too bright (in a few cases)
or too dark (which is more frequent) if the number of
photons is not large enough.

Ray Maps [HBHS05] is a new method which uses a
lazily constructed kd-tree to store the ray trajectories.

An efficient method to calculate rays which intersect
a given subset of the space, or nearest rays to a point
according to different metrics is given.

2.1 Density Estimation on the Tangent
Plane

A method to avoid the high variance of Photon Maps
mentioned in the previous section consists in storing the
rays in the scene and using a fixed size disc centered in
the point where radiance is being calculated, and con-
tained in the plane tangent to the surface. Rays inter-
secting a given disc are used to calculate the radiance at
the point on which the disc is centered [LURM02]. The
algorithm is called Density Estimation on the Tangent
Plane (DETP). Note that this algorithm keeps track of
the trajectory of the photons (origin, direction and im-
pact point) unlike the original Photon Maps. See Fig-
ure 1. To avoid self-shadowing in concave surfaces, the
second intersection of the ray and the scene is used in-
stead of the first. This method uses discs of fixed radius
[LURM02].

Figure 1: Density Estimation on the Tangent Plane.
The yellow dots on the disc represent the intersection
of the rays

The algorithm has optimum trade-off between accu-
racy and variance when the disc radius (which is a user
defined constant) is in the order of magnitude of half the
distance between irradiance calculations. If disc radius
were smaller, rays intersecting the tangent plane near
the middle point of two irradiance calculations would
be ignored. If it were larger, intersections would be
used for various calculations, hiding small illumination
features which otherwise could be reconstructed.

2.2 Averaging over photons versus aver-
aging over surface

Most of Density Estimation algorithms for global illu-
mination consider a fixed number of samples near the
point where radiance is calculated, and project the en-
ergy into a disc of minimum radius containing all the
samples. This approach averages the samples over con-
stant energy.

Density Estimation on the Tangent Plane, however,
takes a disc of fixed radius and uses all the samples con-
tained there. This approach averages the samples over
constant surface area.

Both approaches are statistically equivalent with re-
spect to the bias and noise involved, trading spatial ac-
curacy for energy accuracy.

Short Communication papers 8 ISBN 978-80-86943-02-2

For fast incremental recalculation of illumination,
however, averaging over surface means photons can be
added and removed very efficiently, since the distance
between a photon and a point is the only data needed to
know whether the energy of the photon should be added
to the irradiance of the point. On the contrary, averag-
ing over energy means that adding the energy of one
photon requires finding the photon further away and re-
moving its energy.

This article concentrates therefore on DETP and pro-
vides a theoretical study of complexity which comple-
ments [GUR+06] when these algorithms are used for
recalculation.

2.3 Sphere cache
The limitation of DETP is that the number of disc-ray
intersections is high, therefore increasing the computa-
tion time. To address this, the sphere cache [LURM02]
was developed.

The sphere cache consists in creating a hierarchy of
spheres of decreasing radius and storing the rays which
intersect each sphere in order to decrease the number of
ray-disc intersection tests.

Firstly, a sphere tangent (i.e. circumscribed) to the
bounding box of the scene is built. This sphere inter-
sects all the rays.

Then, as Figure 2 shows, spheres of decreasing ra-
dius are built one inside the other (the ratio between
two consecutive spheres is a parameter called Q), un-
til the radius is just above the disc radius mentioned in
the previous section. However, spheres with less than a
given number of rays (usually 100) are not subdivided,
for efficiency reasons.

Each sphere has an associated data structure which
contains the rays which the aforementioned sphere in-
tersects. These rays are calculated by the intersection
of the sphere with the rays in the immediately enclos-
ing sphere.

The first point at which radiance is to be calculated is
the center of the spheres of decreasing radius. There-
fore, the first disc is contained in the inner sphere. Ir-
radiance can be calculated by checking which rays in
the inner sphere intersect the disc as well, and adding
their energy. The number of ray-disc intersection tests
is clearly reduced.

For the rest of the points, if the disc centered in the
point is contained in the inner sphere, the disc is in-
tersected against the rays in this sphere. Otherwise, the
sphere is discarded, and the rest of the spheres are tested
in order, until one is found to enclose the disc. Then the
hierarchy of spheres is recalculated, using this point as
center. See Figure 2 right.

Finally, the disc is intersected against the rays in the
innermost sphere, in the same way as when no recalcu-
lation of spheres is needed.

Figure 2: Sphere cache. If a disc lays partially out of
a sphere, the sphere is discarded and a new one is
created.

Lastra et al. [LURM02] demonstrated that the use
of space filling curves to reorder the points increments
spatial coherence, and therefore reduces computation
time. This approach is called point sorting.

2.4 Disc indexing
The disc indexing technique creates a spatial index-
ing of the discs in the scene. This is accomplished by
considering the discs as real geometry, and applying a
space partitioning method to them. The discs are ini-
tialized with a radiance value of zero. Then the rays
traverse the spatial index adding their contribution to
the discs they intersect. See Figure 3. The ray need

Figure 3: Disc indexing. The rays traverse the index-
ing, adding their contribution to the discs they intersect

only be followed until the first intersection with the real
scene (or the second if concave surfaces exist). The spa-
tial indexing should be able to store discs and to calcu-
late efficiently all the intersections with a segment (the
endpoints of this segment are the origin of the ray and
the intersection with the real scene). All the published
algorithms meet this criterion.

After radiance has been calculated, each disc con-
tains an estimate of the radiance according to the DETP
scheme. The data structure can be considered a sort
of irradiance cache [WRC88]; therefore new irradiance
values can be estimated using the same interpolation
which that paper proposes, or by using Irradiance Gra-
dients from [WH92].

Some work [HP03] has been done on studying
characteristics of the scene which make some indexing
techniques more efficient than others. Other studies
[HPP00][RLMC03] use a fast simulation with few rays

Short Communication papers 9 ISBN 978-80-86943-02-2

to choose the most appropriate indexing method. Since
the disc position follows the surface of the objects, this
research is applicable for this technique as well.

This method has higher performance than the orig-
inal sphere cache intersection method when the discs
have a radius which is in the order of magnitude of the
mean distance among the points in which radiance is
being calculated. In other situations, the performance
of the sphere cache is higher. Details are provided in
[GUR+06].

3 TIME COMPLEXITY OF INCRE-
MENTAL CALCULATION OF ILLU-
MINATION

[GUL+04] described an incremental method for the
recalculation of global illumination in a quasi-static
scene. In this type of scene, there is a static scenario,
which contains most of the geometry complexity of the
scene, and a dynamic object or objects, which are rela-
tively simple. When the objects move, most of the radi-
ance information can be reused from previous frames.

In the static scene, only rays which intersect the dy-
namic object in the previous frame or in this frame can
change their contribution to the static scene. Dynamic
objects, on the other hand, must have their whole ra-
diance estimate recalculated taking into account all the
rays in the scene.

The static scene can have the spatial indexing of disc
indexing reused for the whole simulation. The dynamic
scene, on the contrary, needs to have it rebuilt on each
frame, since it moves and rotates.

With respect to sphere cache, the dynamic scene is
very localized in space; therefore the sphere around the
bounding box of the moving objects will reject most of
the rays. Since objects move smoothly, sphere cache
can be very efficient for these objects.

These reasons suggest using sphere cache for the
dynamic scene, and choosing the most appropriate
method, according to the characteristics of the scene,
to the static scene.

The results presented in [GUR+06] were used to
study the performance of such a system. The time
needed to construct the spatial index produces higher
time in the first recalculations, but after 180 frames
(the first seven seconds of the animation), the cost has
been amortized for a small radius and number of pho-
tons. This time raises to 7000 frames when the ra-
dius grows and the number of photons increase. Then
Sphere cache becomes more efficient and the indexing
cannot be amortized.

3.1 Theoretical study of computing time
Table 1 provides a summary of the symbols used in
this section. The formulas presented in [GUR+06] for
the complexity of the different algorithms are reviewed,
and then they are applied to the case of interactive re-
calculation of quasi-static scenes.

Sphere related quantities
S = {Si} Set of Spheres
ri = ri−1Q = r0Qi Radius of Si

rD Radius of the sphere enclos-
ing the mobile object

mi Number of recalculations of
sphere Si with point sorting.

ti = tnRQ2i−2 Cost of recalculation of
sphere Si with point sorting

k Number of spheres
Ray related quantities
R Set of Rays
nR = #R Number of rays

ñR = nR
r2
D

r2
0

Number of rays which touch
the mobile object

Time related quantities
u Ray Disc intersection time
t Ray Sphere intersection time
TR Time to recalculate the

spheres with point sorting
TI Time to intersect the disc

against the inner sphere
Other symbols
0 < Q < 1 Ratio of the radii of two

spheres
P = {Pi} Set of Irradiance samples
nD Samples in dynamic objects
nS Samples in static objects
nP = #P = nD +nS Irradiance samples
d Disc Radius

Table 1: Symbols used in this article
The basis of the study comes from the fact that the

probability that a ray (with uniform distribution) which
intersects a convex body, intersects a second convex
body located inside the first is the ratio of the areas of
the bodies. This result can be derived from results of
integral geometry from Santalo [San02].

Theorem 1 The performance estimates of [GUR+06]
can be simplified to:

• Sphere cache: T = t nR
Q2

(

3√nP−1
1−Q

)

+ 4
3 u nR 3

√
nP

• Disc Indexing: T = u nR 3
√

nP

Proof
Sphere cache [GUR+06] provides the following for-
mulas for the performance of sphere cache:

T = TI +TR (1)

where T is the total time to calculate sphere cache,
formed by TI , the cost of the inner sphere, and TR, the
cost of the rest of the spheres.

TI = u nP nR
d2

r2
0

(2)

TR =
k

∑
i=1

mi ti =
t nR

Q2

(

3
√

nP−1
1−Q

)

(3)

Short Communication papers 10 ISBN 978-80-86943-02-2

Proposition 1 The optimal value of Q is 2/3.

Proof To calculate the optimum value of Q, the
derivative of Equation 1 with respect to Q is calcu-
lated, and dT/dQ = 0 is solved, yielding Q = 2/3.
(d2T/dQ2)(2/3) > 0 means this is the minimum of the
function.

Since the disc radius d should be the distance between
irradiance samples to decrease variance (Section 2.1),
Equation 3 can be simplified. Let’s suppose the points
are distributed in a regular grid. The distance between
the points is d and there are 3

√
nP points in a side of the

grid. The radius of the sphere circumscribed to the grid
is

r0 =

√
3d 3
√

nP

2
(4)

Solving in d:
d =

2r0√
3 3
√

nP
(5)

and expanding d in Equation 2 results in

TI =
4
3

u nR
3
√

nP (6)

Disc Indexing [GUR+06] gives the following cost for
Disc Indexing:

T = u k nR nP/4k (7)

If the data structure is balanced, and the cost of going to
the neighbor node is negligible with respect to the cost
of doing the ray-disc intersections, the cost is:

T = u nR nP/4k (8)

Again, taking into account that the node should not
be subdivided when the size of the side of the voxel
reaches the distance between samples:

2k = 3
√

nP → k = log2
3
√

nP (9)

Substituting k in Equation 8 yields:

T =
u nR nP

4log2
3√nP

=
u nR nP

n2/3
P

= u nR
3
√

nP (10)

These formulas are used in the following section to
study quasi-static scenes.

3.2 Application To Quasi-Static Scenes
Previous results can be used to guide the design of hy-
brid algorithms for global illumination. Here a study of
quasi-static scenes is presented.

A quasi-static scene is a scene in which most of the
geometry is static; dynamic objects are relatively few
and small. [GUL+04] provides an empirical study of
these scenes. Illumination in these scenes can be up-
dated efficiently by using the following approach: the
first frame is calculated, and the rays are stored. Rays
which intersect mobile objects are marked. On subse-
quent frames, the mobile object is located in a different
location. Rays which intersected the mobile object in
the previous frame or now do so are recalculated, and
stored in two lists of ’old’ and ’new’ rays, respectively.

• Static points: Radiance is updated by subtracting the
contribution of old rays and adding that of new rays.

• Dynamic points: The old radiance value is discarded
and all the rays are used to calculate the new value.

A theoretical study of this algorithm follows.

Theorem 2 The best method for DETP depends on
whether the points are static or dynamic:

• Static: Disc Indexing is faster than Sphere Cache.

• Dynamic: Sphere Cache is faster than Disc Index-
ing for objects smaller than 35 % of the scene.

Proof Section 3.1 shows that the probability that a ray
which intersects a convex body, intersects a second
convex body located inside the first is the ratio of the
areas of the bodies.

If we call rD the radius of the spherical bounding of
the dynamic object, it can be seen that the number of
recalculated rays is:

nnew
R ≈ nold

R ≈ nR
r2

D

r2
0

=de f ñR (11)

If we call nS the number of static points and nD the num-
ber of dynamic points (nP = nS +nD), the different pos-
sibilities can be studied.

Static points
The cost of sphere cache in this case is (from Equations
1, 3 and 6)

T =
t ñR

Q2

3
√

nS−1
1−Q

+
4
3

u ñR
3
√

nS (12)

where the first summand corresponds to cache misses
and the second to the cost of the inner sphere. Taking
into account that the ray-disc and ray-sphere intersec-
tion time are similar (t ≈ u) and the fact that in the limit,
for large nS, 3

√
nS−1≈ 3

√
nS, and using Q = 2/3 as rec-

ommended above, the cost is

T = 8.08 t ñR
3
√

nS (13)

Disc Indexing traverses the index for old rays and
new rays, so using Equation 10 for 2 ñR rays gives a
cost of

T = 2 t ñR
3
√

nS (14)

Disc Indexing is clearly the fastest option.

Dynamic points
Taking into account the previous results, the cost of
sphere cache is

8.08 t ñR
3
√

nD = 8.08 t nR
r2

D

r2
0

3
√

nD (15)

and that of disc indexing is t nR 3
√

nD. If the two costs are
used as the sides of an equation, and then solved with

Short Communication papers 11 ISBN 978-80-86943-02-2

respect to nD, the values of nD on which each algorithm
is optimal can be deduced.

8.08 t nR
r2

D

r2
0

3
√

nD = t nR
3
√

nD (16)

Simplifying, (dividing by tnR 3
√

nD)

8.08
r2

D

r2
0

= 1 (17)

Taking a square root and solving for rD yields

rD = 0.35 r0 (18)

This means that if the dynamic objects’ size is
35% of the scene, both algorithms are equally fast
in average. Checking the cost of the methods for
objects of size smaller and bigger than 35% of the
scene shows that sphere cache is faster for smaller
objects; while disc indexing is faster for larger objects.

Therefore, an optimal recalculation algorithm should
use disc indexing for static points and ray cache for
dynamic points, which by the definition of quasi-static
scenes, are smaller than 35% of the scene.

4 VALIDATION OF THEORETICAL
ASSUMPTIONS

This section contains a study of the error of the theoret-
ical study for real scenes, in which the distribution of
the rays is not uniform.

Two medium scale scenes were used to test the the-
oretical results. The first one, Atrium, can be seen in
Figure 4. The second one, Expo, can be seen in Fig-
ure 5.

Figure 4: Atrium scene

4.1 Mean number of rays in the spheres
In the theoretical study, the assumption that the distri-
bution of the rays was uniform was made. However, in
real scenes the distribution depends on the position and
intensity of the light sources and the objects. In prac-
tice, the light sources are located in order to provide

Figure 5: Expo scene

a sufficient illumination of the interesting part of the
scenes. This increases the density of the photons in the
zones where we are calculating the radiance. Two tests
were performed with the Expo scene. The results can
be seen in Figures 6 and 7. Even though the theoretical
study underestimates the number of rays, the prediction
is quite close to the real value in the middle and low lev-
els of the sphere list, which corresponds to most of the
time of the algorithm. Even though the rays are not uni-
formly distributed, as the spheres become smaller, the
density of the rays becomes more uniform, and there-
fore the error decreases.

In order to increase the accuracy of the estimate for
scenes in which the distribution of the rays is not uni-
form, a hybrid approach can be made. The algorithm
can be run with only the upper levels of the sphere list,
taking into account only cache misses and no density
estimation. Then, the lower levels can be estimated ac-
curately by the theoretical approach, since rays tend to
be more uniform over smaller volume. In addition one
may divide the number of rays by a large constant, and
then multiply the results by this constant to decrease
computation time of the estimate, as [RLMC03] sug-
gests.

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14

Error in the prediction

Figure 6: Percental error in the theoretical prediction of
the Atrium scene, for each level

4.2 Sphere cache misses for uniform dis-
tributions

A program was designed which created a set of rays
distributed uniformly in the surface of the unit sphere.
Then a set of points distributed uniformly inside the

Short Communication papers 12 ISBN 978-80-86943-02-2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12

Error in the prediction

Figure 7: Percental error in the theoretical prediction of
the Expo scene, for each level

unit sphere was created, and finally a set of normals
distributed uniformly was assigned to each point.

This set of points was tested against the rays using
Sphere Cache.
Uniform distribution of lines in a sphere To gen-
erate a ray following this distribution, two points dis-
tributed uniformly in the surface of the sphere must
be generated. We use the method presented in [Sbe]
and [TNSP98]. Then, the line which joins the two
points follows a uniform distribution in the sphere, as
[RWCS05] shows. The algorithm can be seen in Fig-
ure 8.

Algorithm 4.1 : POINTONSPHERESURFACE ()

Z←U [−1,1]
φ ←U [0,2π]
θ ← arcsin(z)
X ← cos(θ)cos(φ)
Y ← cos(θ)sin(φ)
return (Point(X ,Y,Z))

Algorithm 4.2 : LINEINSPHERE ()

a← POINTONSPHERESURFACE()
b← POINTONSPHERESURFACE()
return (Ray(a,b−a))

Figure 8: Pseudocode which generates rays uniformly
in the unit sphere

Results Figure 9 gives a graph with the number of
cache misses at each level. The Lebesgue sorting is
used, with a radius factor of 0.6, and the default 100
rays subdividing limit. 1024*1024 rays were used. The
graph shows a steady increase in cache misses as the
level increases, until level 9 is reached. Then there is
a sharp decrease. According to theory, level 9 has 94.6
rays in average, so the probability of subdivision is very
small (it is not zero because of the non-zero variance of
the distribution of rays). The sharp decrease in cache
faults in Figure 9 at level 10 is due to the fact that the

mean number of rays is so small that few spheres are
being subdivided.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 2 4 6 8 10

Lebesgue, Cache faults

Figure 9: Cache Misses at each level. Lebesgue sort-
ing.

Graph details In order to study in detail the graph, the
radius factor was increased to obtain more data points.

Figure 10 shows the cache misses at each level for a
radius factor of 0.9, for both the Lebesgue sorting and
the Hilbert sorting. It can be seen that Hilbert has much
smaller peaks. This is due to Hilbert having more spa-
tial coherence than Lebesgue. In this graph a series of
nearby local maxima followed by local minima. These
points are located at sphere levels which correspond to
a size of 2−k of the scene (k=1,2,...), and are caused by
the interaction between the sphere cache and the space
filling curve sorting.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60 70 80 90

Lebesgue, Cache faults
Hilbert, Cache faults

Figure 10: Cache Misses at each level for different
sorting methods. Q = 0.9

5 CONCLUSIONS AND FUTURE
WORK

A framework for the theoretical comparison of different
montecarlo-based global illumination algorithms has
been presented.

A theoretical study of the complexity of incremen-
tal recalculation of illumination has been performed for
quasi-static scenes, using Sphere Cache and Disc In-
dexing. The study suggests a hybrid method which

Short Communication papers 13 ISBN 978-80-86943-02-2

combines the benefits of both, using Disc Indexing
for the static scene and Sphere Cache for the dynamic
scene.

The ratio of the size of the bounding boxes of the
mobile objects and the scene should be used to choose
the method. If the dynamic objects have a size of less
than 35% of the scene (rD/r0 < 0.35), Sphere cache
should be used. (Theorem 2 in Section 3.2).

After some simplifications, the optimum value of
the ratio of spheres in sphere cache has been obtained
(Proposition 1 in Section 3.1), yielding Q = 2/3.

The error in the theoretical approach has been tested
with real scenes, showing less than 5 % in most of
the cases, even with non-uniform distribution of rays.
Cache faults have also been studied numerically for a
uniform distribution of rays, showing the interaction be-
tween sphere cache and space filling sortings.

5.1 Future work
Finding distributions of rays which model real scenes
better would reduce the differences between the esti-
mated number of rays and the practical results for the
first levels of the sphere cache.

The shape of the graphs of the cache misses at each
level shows that the interaction between sphere cache
and space filling curves has an inner structure. Mod-
eling this interaction is our next step in this research
topic.

Other interesting future work is applying this study
to Havran’s Ray Maps. It is noteworthy that Ray Maps
can be used in DETP mode, therefore making the study
easier.

6 ACKNOWLEDGEMENTS
This work has been supported by the research project
coded TIN2004-07672-C03-02 (Spanish Commission
for Science and Technology). We thank all anonymous
reviewers for their comments.

REFERENCES
[Arv86] James R. Arvo. Backward Ray Tracing. In ACM SIG-

GRAPH ’86 Course Notes - Developments in Ray Trac-
ing, volume 12, pages 259–263, 1986.

[BWS03] Carsten Benthin, Ingo Wald, and Philipp Slusallek. A
scalable approach to interactive global illumination. In
Computer Graphics Forum, volume 22. Eurographics,
Blackwell, September 2003.

[DBMS02] Kirill Dmitriev, Stefan Brabec, Karol Myszkowski, and
Hans-Peter Seidel. Interactive global illumination using
selective photon tracing. 13th Eurographics Workshop
on Rendering, 2002.

[GUL+04] R. J. García, C. Ureña, M. Lastra, R. Montes, and J. Rev-
elles. Interactive global illumination for quasi-static
scenes. In Proceedings of the CGI2004, pages 128–131,
June 2004.

[GUR+06] R. J. García, C. Ureña, J. Revelles, M. Lastra, and
R. Montes. Density estimation optimizations for global
illumination. In WSCG’2006 Short Communications
Proceedings, 2006.

[GWS04] J. Günther, I. Wald, and P. Slusallek. Realtime Caustics
using Distributed Photon Mapping. In Proceedings of
the Eurographics Symposium on Rendering, 2004.

[HBHS05] V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel. Ray
maps for global illumination. 16th Eurographics Sym-
posium on Rendering, 2005.

[HP02] Heinrich Hey and Werner Purgathofer. Advanced ra-
diance estimation for photon map global illumination.
Computer Graphics Forum, 21(3):541–546, 2002.

[HP03] V. Havran and W. Purgathofer. On comparing ray shoot-
ing algorithms. Computer and Graphics, 27, Issue
4:593–604, August 2003.

[HPP00] V. Havran, J. Přikryl, and W. Purgathofer. Statistical
comparison of ray-shooting efficiency schemes. Tech-
nical Report TR-186-2-00-14, Institute of Computer
Graphics and Algorithms, Vienna University of Tech-
nology, may 2000.

[Jen96] H.W. Jensen. Global illumination using photon maps.
In Rendering Techniques’96, pages 21–30. Springer-
Verlag, 1996.

[Kaj86] James T. Kajiya. The rendering equation. In SIGGRAPH
’86 Conference Proceedings, pages 143–150, 1986.

[LAM00] J. Lext, U. Assarsson, and T. Moeller. Bart: A bench-
mark for animated ray tracing. Technical report, Dept.
of Computer Engineering, Chalmers University of Tech-
nology, Goeteborg, 2000.

[LURM02] M. Lastra, C. Ureña, J. Revelles, and R. Montes. A
particle-path based method for Monte-Carlo density es-
timation. Poster at: 13th EUROGRAPHICS Workshop
on Rendering, 2002.

[PM92] S.N. Pattanaik and S.P. Mudur. Computation of global
illumination by Monte Carlo simulation of the particle
model of light. Proceedings of 3rd Eurographics Ren-
dering Workshop, Bristol, 1992.

[RLMC03] J. Revelles, M. Lastra, R. Montes, and P. Cano. A for-
mal framework approach for ray-scene intersection test
improvement. In WSCG’2003, 2003.

[RWCS05] Jordi Rovira, Peter Wonka, Francesc Castro, and Mateu
Sbert. Point sampling with uniformly distributed lines.
In Point-Based Graphics (PBG’05) Proceedings, 2005.

[San02] L. Santalo. Integral Geometry and Geometric Proba-
bility. Cambridge University Press, 2 edition, October
2002.

[Sbe] Mateu Sbert. The Use of Global Random Directions to
compute Radiosity. Global Montecarlo Techniques. PhD
thesis, Universitat Politècnica de Catalunya.

[TNSP98] R. Tobler, L. Neumann, M. Sbert, and W. Purgathofer. A
new form factor analogy and its application to stochas-
tic global illumination algorithms. In Rendering Tech-
niques ’98, 1998.

[WGS04] I. Wald, J. Guenther, and P. Slusallek. Balancing Con-
sidered Harmful – Faster Photon Mapping using the
Voxel Volume Heuristic. Computer Graphics Forum,
22(3), 2004.

[WH92] George J. Ward and Paul S. Heckbert. Irradiance gradi-
ents. In Rendering Techniques ’92, Eurographics, pages
85–98, 1992.

[WHSG97] B. Walter, P. M. Hubbard, P. Shirley, and D. P. Green-
berg. Global illumination using local linear density es-
timation. ACM Transactions on Graphics, 16(3):217–
259, July 1997.

[WRC88] G. J. Ward, F. M. Rubinstein, and R. D. Clear. A
ray tracing solution for diffuse interreflection. In SIG-
GRAPH ’88: Proceedings of the 15th annual conference
on Computer graphics and interactive techniques, pages
85–92, New York, NY, USA, 1988. ACM Press.

Short Communication papers 14 ISBN 978-80-86943-02-2

A Study on Generation Method from Boundary
Representation Model to Binary Voxel Model by

Using GPU

Norihiro Nakamura
Osaka Institute of Technology

1-79-1 Kitayama,
 573-0196 Hirakata, Osaka, Japan

nakamura@ggl.is.oit.ac.jp

Koji Nishio
Osaka Institute of Technology

1-79-1 Kitayama,
 573-0196 Hirakata, Osaka, Japan

nishio@is.oit.ac.jp

Yusuke Inoue
3D Incorporated

UrbanSquea Yokohama Bldg.2F
1-1 Sakae-cho, Kanagawa-ku

221-0052 Yokohama, Kanagawa,
Japan

inoue@ggl.is.oit.ac.jp

Ken-ich Kobori
Osaka Institute of Technology

1-79-1 Kitayama,
 573-0196 Hirakata, Osaka, Japan

kobori@is.oit.ac.jp

Yuji Teshima
Shizuoka Institute of Science and

Technology
2200-2 Toyosawa

437-8555 Fukuroi, Shizuoka,
Japan

teshima@cs.sist.ac.jp

ABSTRACT

The boundary representation model and spatial partitioning model have been used in the computer graphics
(CG) field. Each model has different advantages and disadvantages. Thus, if a user can mutually transform each
model, the user can utilize the advantages of both. However, it is necessary to decide whether each voxel is
inside or outside a shape when the user transforms the boundary representation model into the voxel model, and
the processing load is large.
In this paper, we propose a fast method to transform the boundary representation model into the voxel model by
using the Graphics Processing Unit (GPU); our method can decide the condition inside a shape. Furthermore, we
propose an extended method that improves the accuracy of the voxel model generated.

Keywords
GPU, transformation shape, boundary representation model, voxel model

1. INTRODUCTION
When we represent a shape on a computer, we

can classify the representation method as either the
boundary representation model or the spatial
partitioning model. A set of faces or curved surfaces
is used to represent the shape in the boundary
representation model. This model represents shapes
with numerical formulas, which means it is accurate.
In addition, the amount of data is relatively small
when compared to the spatial partitioning model.

However, it has some disadvantages. For example,
users find it complex to use topological data for
manipulating shapes, and the processing load for
Boolean set operation, which users frequently use for
modeling, is heavy.

On the other hand, there are several models
based on the principles of the spatial partitioning
model, one of which is the voxel model. This model
has a simple data structure, and so the shape
manipulation process is easy. Also, the Boolean set
operation is easy. Therefore, a modeler based on this
model has recently been proposed [Kas03]. However,
when a user wants to improve the accuracy of
representing shapes in this model, it is necessary to
set a higher resolution. So, it needs a large quantity
of data.

To solve the problems of each model, a data
structure which involves the best features of both

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Short Communication papers 15 ISBN 978-80-86943-02-2

representations has been proposed [Yon96][Bru90].
However, the data structure of this approach is still
complex. Another approach is to transform each
model bi-directionally so that one can utilize the
advantages of each model [Nak05]. This approach
does have a problem: the processing load required to
transform the boundary representation model into the
voxel model is large. The reason is that it is
necessary to decide whether each voxel is inside or
outside the shape when the user transforms the
boundary representation model into the voxel model.
To solve this problem, some researchers have
proposed methods which reduce the processing load
required to decide the condition of each voxel
[Kob95].

In regard to the processing involved in these
representation methods, researchers have recently
proposed faster methods by using the Graphics
Processing Unit (GPU). The GPU is specialized
hardware for drawing shapes, and it is used for fast
processing or improvement of the accuracy of
mathematical calculations [Ono03][Yam02][Yam04].
Also, we can alter part of the function of the GPU in
accordance with our needs. Thus, a transformation
method from a polygonal model to a voxel model by
using the GPU has been proposed
[Fan04][Hsi05][Don04]. Fan et al. proposed a
method for transforming only the boundary of the
shape into voxel data. However, it does not generate
inside voxels and outside voxels. Hsieh et al.
proposed the method for calculating a distance
function with the GPU. Thus, the processing cost is
large. The method proposed by Dong et al. is not
robust in deciding whether voxels are inside or
outside the shape.

In this paper, we propose a fast method to
transform the boundary representation model into the
voxel model by using the GPU; our method can
distinguish the inside and outside of a shape. In our
approach, the input data is the boundary
representation model, which consists of triangle
meshes. First, our method renders an input shape
with an orthographic projection along the z-axis.
Next, we get a particular color plane from the
drawing result. Thus, we can generate a part of the
voxel data. By repeating this process as many times
as is the resolution of the voxel space along the z-
axis, our method can generate the voxel data rapidly.
In addition, we propose an optional method that
improves the accuracy of the result.

2. RELATED WORK
Kobori et al. described how the spatial

partitioning model is generated from the boundary
representation model by using CPU only. This is a
conventional method for transformation of the

boundary representation model into the spatial
partitioning model, as shown in Figure 1.

Figure 1. The flow of a conventional method

polygons

Figure 2. Boundary voxels

The steps for the conventional method are as follows.

Step 1: The method judges whether a voxel intersects
the polygon that forms the boundary of a shape, and
then it generates a boundary voxel, as shown in
Figure 2.

Step 2: The method classifies each voxel into inside,
outside or boundary voxels by filling the inside of the
boundary voxels generated by Step 1.

Step 3: The method uses the inside voxels and the
boundary voxels to represent the shape.

Short Communication papers 16 ISBN 978-80-86943-02-2

3. PROPOSED METHOD

3.1 Introduction

Figure 3. Proposed method

Our method draws a shape by orthographic
projection after it sets the position of the screen, as
shown in Figure 3. Furthermore, the initial clipping
volume is a cube which circumscribes the bounding
box of the input shape; in our method, the center of
gravity of the bounding box is placed on the center of
gravity of the initial clipping volume. Also, we define
the screen as being constantly near the clipping plane
of the clipping volume. Thus, our method draws the
part of the shape that is placed behind the screen. If a
pixel on the screen exists outside the shape, the color
of its pixel is the color of the obverse face. If a pixel
on the screen exists inside the shape, the color of its
pixel is the color of the reverse face. Consequently,
we can check whether the position of the pixel is
inside or outside the shape by regarding the color of a
pixel as the voxel. Therefore, it not only generates
boundary voxels, but also generates the inside voxel
and the outside one at the same time.

Our method repeats this process while moving
the screen along the direction of the arrow in Figure
3. As a result, our method generates all of the voxel
data. The processing speed of our method is faster
than a method using only the CPU because the GPU
has a specialized unit for the rendering process.
Figure 4 shows the flow of the proposed method.

Input the shape

Output the voxel data

Set the initial view point

Draw the shape

Move the screen

Get specified color plane

　 Repeat this process
 until it generates whole voxel data

GPU

Figure 4. General flow of the method

Step 1: Set the resolution of the drawing space to the
resolution of the voxel space.

Step 2: Set red and blue as the color of the obverse
and reverse face of the input data, respectively, and
set an initial view point. The color information is
represented as (R,G,B) values: for example, red is
(1.0,0.0,0.0).

Step 3: Draw the input data after moving the screen.

Step 4: Get the color information from the result of
Step 3; our method gets only the blue color plane (B),
as shown in Figure 3, and writes the result to the
main memory. This result becomes the part of the
voxel data corresponding to the position of the screen.

Step 5: Our method repeats Steps (3) and (4) until it
generates all the voxel data.

3.2 Setting the position of the screen
Our method divides the draw space

perpendicular to an arbitrary axis, as shown in Figure
5. The number of partitions is the same as the
resolution of the voxel space. The position of the
dashed line shows the screen. In addition, the
distance between adjacent planes is the same as the
length of a side of a voxel. For example, our method
divides the draw space into 256 (slices) planes at a
perpendicular angle to the z-axis in the case that the
resolution of the voxel space is 256 x 256 x 256.

Short Communication papers 17 ISBN 978-80-86943-02-2

ｙ

ｚ
ｘ

view point

plane(the position of screen)

drawing space

input shape
Figure 5. Screen position

Our method draws the shape by orthographic

projection while moving the screen in the negative
direction of the z-axis by the distance described
above. At the same time, our method gets color
information for the position of each plane.

3.3 Getting color information

ｘ

ｙ

ｚ

(a) the input shape

(b) position of the screen (c) rendering result

current plane

reverse obverse

redview point

blue

Figure 6. Relation between screen position and

drawing result

Our method gets pixel data after drawing the
shape at the plane described above. Figure 6 shows
an example of the result when our method draws the
shape at an arbitrary plane. The color of the reverse
face is blue (0, 0, 1.0). Thus, when our method draws
the shape in Figure 6(a), the color of the area
corresponding to the heavy line in Figure 6(b) is blue
(0, 0, 1.0), as shown in Figure 6(c). The position of a
pixel colored (0,0,1.0) is inside the shape, and the
position of a pixel colored (1.0,0,0) is outside the
shape. Thus, getting the color plane of blue is the
same as generating part of the voxel data. For
example, we can assume that the blue color of the
pixel data is part of the voxel data at Zi when we

define the current z-position of the screen as Zi in
Figure 7. Our method repeats this process for each
plane.

Figure 7. Generation of binary voxel data

3.4 Improving the accuracy of
transformation

The GPU has the ability to alter its function in
accordance with the developer's needs [Cg]. In this
section, we propose a method that improves the
accuracy of the transformation. When generating
output pixel information to the screen, the GPU
rasterizes an input shape based on the center of each
pixel. Thus, our method sets a higher resolution for
the image than the resolution of the voxel space, and
the GPU rasterizes the shape. Our method increases
the number of sampling points to improve the
accuracy of the output voxel data.

In this paper, we set this resolution as twice the

target resolution. This ratio (set resolution/target
resolution) is defined as the magnification ratio. Our
method uses the magnification ratio to divide a pixel.
Then, we define the nearest plane from the view
point as the first plane, and define the odd-numbered
planes as odd planes and the even-numbered planes
as even planes.

Short Communication papers 18 ISBN 978-80-86943-02-2

even-numbered plane
odd-numbered plane

final output data

RGB

RGB

rendered result

threshold processing

the input shape

B G

one pixel of 1x resolution

pixel

B G

B G B G

mask blue color

Figure 8. Improving the accuracy of the voxel data

First, our method rasterizes the input shape with

the specified resolution; thus, the magnification ratio
becomes 2x. This means we also increase the number
of planes by two times the target resolution in
accordance with the magnification ratio. The adjacent
even planes and odd planes decide the condition of
each voxel corresponding to a specified z-position.
Our method renders the shape with two colors, red
and blue, on an odd plane, as shown in Figure 8. Our
method stores the rendered result to the GPU
memory. Next, our method sets green (0, 1.0, 0) to
the color of the reverse face, and masks the blue
color. Then, it renders the shape on the even plane; in
the even plane’s rendering, our method combines the
current result to the result of the odd plane’s
rendering. Consequently, the resulting data includes
the color information of the odd plane’s rendering.

Our method applies threshold processing to the
rendered result of each even plane so that it generates
the final output. We define the result of each even
plane’s rendering as the input buffer. Also, we define
the buffer which stores the result of the threshold
processing as the final output buffer. Our method
makes these buffers in the GPU.

In threshold processing, it can be assumed that
four pixels, surrounded by the heavy-lined frame in
Figure 8, are one voxel because one pixel of the final
output buffer comprises these four pixels. Our

method sums the value of the blue and green of these
four pixels; the total value is the same as the sum of
the number of pixels that are inside the shape on each
plane. The maximum value of the result is 8.0. Thus,
it can be assumed that the pixel in the final output
buffer corresponds to these four pixels and is inside
the shape if the total exceeds the threshold. Repeating
the threshold processing for each pixel in the final
output buffer, our method decides the part of the
voxel data corresponding to a particular z-position.
Figure 9 shows an example of the threshold
processing.

B G

B

B G

total　5.0

(0 ,0 , 1.0)

(0 ,1.0 ,1.0)

(1.0 ,0 , 0)

B
G 0 = 2.00

0 = 3.01.0 1.0
1.0

1.0
1.0

Figure 9. An example of the threshold processing

As shown in Figure 9, the total is 5.0. When

setting 4.0 as the threshold, our method thus sets the
pixel as blue (0,0,1.0). The color of one pixel in the
final output buffer is decided by this processing.
Finally, our method outputs the final output buffer to
the main memory, as described in Section 3.3. By
repeating the processes described in this section for
as many times as the resolution of the voxel space
along the z-axis, our method generates the voxel data
to be transformed. These procedures, excluding the
moving of the screen, are processed by the GPU.
Figure 10 shows the flow for improving the accuracy.

In addition, our method can set 3x as the
magnification ratio if we use the alpha information.
In the case of more than three times magnification, it
is possible to apply our method for the transformation
by preparing a temporary buffer to store the result of
the threshold processing.

Short Communication papers 19 ISBN 978-80-86943-02-2

Input the shape

Output the voxel data

Set initial view point

Threshold processing

Get the specified color plane

Move the screen

Move the screen

Draw the shape on the odd plane
 (Obverse face is red(1.0,0,0), and
reverse one is blue(0,0,1.0))

Draw the shape on the even plane
 (Obverse face is red(1.0,0,0), and
reverse one is green(0,1.0,0))

GPU

GPU

　 Repeat this process
 until it generates whole voxel data

input buffer

final output buffer

Figure 10. The flow for improving the accuracy of

the voxel data

4. EXPERIMENT

4.1 Comparison of transformation speed
We experimented to verify the effectiveness of

our approach. In the experiment, we measured the
entire processing time of transformation. The
measurement does not include the time for reading
the shape data. We compared our method with the
conventional approach described in Section 2 on a
3.2 GHz Pentium 4 computer and a GeForce6800
Ultra GPU. Figure 11 shows the experimental shapes.

Figure 11. Experimental shapes

Figure 12. Relation of the generation time to the level

We set the level from 7 to 9; when we define the

resolution of the voxel space as 2n, n is the level.
Also, we set 2x as the magnification ratio, and 4 as
the threshold value for improving the accuracy.

Short Communication papers 20 ISBN 978-80-86943-02-2

Figure 12 shows the experimental results. The
processing time in Figure 12 is shown by logarithmic
graphs. Figure 12 shows that the effectiveness of our
approach increases as the level increases. In the case
of level 9, the processing time of our method is only
20-35% of the processing time of the conventional
method when we apply the process of improving the
accuracy to the transformation process. Also, our
method’s processing time, excluding that for
improving the accuracy, is only 18-31% of that when
applying the method to improve the accuracy. Also,
our method becomes faster than the conventional
method as the number of triangles increases.

Table 1 shows a breakdown of the processing
time when applying our method to the apple shape;
this table includes the processing time for improving
the accuracy. Table 1 shows that the processing time
of drawing the shape accounts for over 50% of the
entire processing time for transforming the shape into
voxel data at level 9.

 Get the
color plane

Threshold
processing

Rendering
shape

Level 7 4.71 4.83 90.46
Level 8 12.31 10.06 77.63
Level 9 28.40 21.21 50.39

(%)
Table 1. Classification of the process for the apple

shape, including the time for improving the accuracy

4.2 Validation of the accuracy
In this section, we verify the effectiveness of the

method to improve the accuracy. First, we applied
our method to the four shapes shown in Figure 11
without improving the accuracy. We compared the
error value of the result with the error value of the
voxel data to which we applied our whole method.
The error value is the shortest distance between the
boundary of the shape and the gravity point of each
voxel corresponding to the boundary of the result.
We obtain the maximum error and the average error
of the distance by Eq.(1).

))(MinDist(max 　voxelMaxError
Vvoxel∈

=

∑
∈

=
Vvoxel

voxel
N

AveError))(MinDist(1
　

)),(Dist(min)(MinDist voxelfacevoxel

Fface∈
=

…(1)

V：the set of voxels corresponding to the boundary
of the result

F：the set of triangles of the input shape

N：the number of members of the set V

where Dist(face,voxel) is the function for obtaining
the shortest distance between the face and voxel;
voxel is the gravity point of a voxel: MinDist(voxel)
is the function for obtaining the minimum distance in
the set of the shortest distances between each triangle
and voxel. The error is based on the length of a voxel.
The level for the four shapes shown in Figure 11 was
set at 8. The magnification ratio and the threshold
value were the same as the settings described in
Section 4.2. Figure 13 shows these experimental
results.

Figure 13. Comparison of accuracy of generated
voxel data

Figure 13 shows that our method reduces the

average error by 0.05-0.45. Similarly, the maximum
error decreases. When the shape has complex
concavity and convexity, the average error is reduced
more than that for a simple shape by the process of
improving the accuracy, as shown in Figure 13. For
example, the average errors for the hourglass and the
chair are reduced more than the average errors for the
other experimental shapes. The reason is that the
error between the generated voxel data and the input
shape increases according to the increase of the
shape’s complexity and the sharpness of the dihedral
angle.

Short Communication papers 21 ISBN 978-80-86943-02-2

5. CONCLUSION AND FUTURE
WORK

In this paper, we proposed a fast method for
transforming the boundary representation model into
the voxel model. We achieved this fast
transformation method by using a rendering engine.
The required amount of video memory is small in our
method because it involves two-dimensional
processing. It is possible to apply our method even
when the resolution of the voxel data is high. We also
proposed a method for improving the accuracy with a
pixel shader. We hope that the performance of our
method improves along with the rapid progress of the
GPU. Our future work will focus on determining the
optimal number of sampling points for improving the
accuracy and on reducing the processing time of the
method to improve the accuracy.

REFERENCES
[Bru90] P. Brunet, and I. Navazo :”Solid
Representation and Operation Using Extended
Octree” ,ACM Transaction on Graphics ,
Vol.9,No.2,pp.171-197, (1990).
[Cg]CgUsersManual:http://developer.nvidia.com/obj
ect/cg_toolkit.html
[Don04] Z. Dong, W. Chen, H. Bao, H. Zhang, and
Q. Peng : ”Real-time Voxelization for Complex
Polygonal Models”, Computer Graphics and
Applications, 12th Pacific Conference on (PG'04),
p.43-50, (2004)
[Fan04] Z. Fan, W. Li, X. Wei, and A.
Kaufman :”GPU-based Voxelization and its
Application in Flow Modeling”, ACM Workshop on
General-Purpose Computing on Graphics Processors,
(2004)
http://www.cs.sunysb.edu/~vislab/projects/gpgpu/Jell
yfish.pdf

[Kas03] Kase, K., Teshima, Y., Usami, S., Ohmori,
H., Teodosiu, C., and Makinouchi, A. :”Volume
CAD”, Volume Graphics 2003 Eurographics / IEEE
TCVG Workshop Proceedings, I. Fujishiro, K.
Mueller, A. Kaufman (eds.) in cooperation with
ACM SIGGRAPH, Tokyo, pp.145-150, pp.173,
(2003).
[Hsi05] H. Hsieh, Y. Lai, W. Tai, and S. Chang :”A
Flexible 3D Slicer for Voxelization Using Graphics
Hardware”, Proceedings of the 3rd international
conference on Computer graphics and interactive
techniques in Australasia and South East Asia,
pp.285-288, (2005)
[Kob95] Kobori, K., Ishiguro, K. and Kutuwa,
T. :”An Accurate Conversion Method from Boundary
Representations to Octree Data”, ISCIE, Vol.8,
No.3, pp.97-105,(1995).
[Nak05] Nakamura, N., Nishio, K. and Kobori,
K. :”Automatic Generation of Boundary
Representation Models from Binary Voxel Data”,
The Journal of The Institute of Image Information
and Television Engineers,Vol.59,No.10,pp.1445-
1453,(2005).
[Ono03] Onoue, K., and Nishita, T. :”Virtual
Sandbox”, Proceedings of IEEE 2003 Pacific
Conference on Computer Graphics and Applications,
pp. 252-259, (Oct. 2003).
[Yon96] Yonekawa, K., Kobori, K. and Kutuwa,
T. :”A Geometric Modeler by Using Spatial-
Partitioning Representations”, IPSJ Transactions,
Vol.37, No.1, pp.60-69, (1996).
[Yam02] Yamachi, H. and Shindo, Y. :”A Technique
for Object and Collision Detection by Z-buffer”, IPSJ
Transactions, Vol.43, No.6, pp.1899-1909, (2002).
[Yam04] Yamamoto, O. :”Fast Computation of
Delaunay Triangulation using Graphics Hardware”,
Official Journal of JSIAM, Vol.14, No.4, pp.235-
266,(2004).

Short Communication papers 22 ISBN 978-80-86943-02-2

A Critical Review of the Preetham Skylight Model

Georg Zotti Alexander Wilkie Werner Purgathofer
Institute of Computer Graphics and Algorithms

Vienna University of Technology, Austria

{gzotti,wilkie,wp}@cg.tuwien.ac.at

ABSTRACT

The Preetham skylight model is currently one of the most widely used analytic models of skylight lumi-

nance in computer graphics. Despite its widespread use, very little work has been carried out to verify

the results generated by the model, both in terms of the luminance patterns it generates, and in terms of

numerical reliability and stability.

In this paper, we show where the model exhibits problematic behaviour, and compare the computed lumi-

nance values with the CIE 2003 Standard General Sky, and our own measurements of real, cloudless skies.

Keywords
Sky Luminance Models, Verification

1. INTRODUCTION
Over the past 20 years, the representation of the

clear blue sky in computer graphics has been im-

proved tremendously, from the then-common sim-

ple blue backgrounds to physically-based spectral

models of skylight distribution.

A brute-force numerical simulation of radiation

transport in the atmosphere still takes several hours

on contemporary fast PCs, so for most practical

applications, one still commonly chooses a fast ap-

proximative model of some sort.

This paper discusses the sky luminance values

in the widely used skylight model published by

Preetham [PSS99]. We contrast its luminance dis-

tributions to comparable distributions of the latest

CIE skylight models. It appears that the range of

atmospheric conditions Preetham’s model can rep-

resent is more limited than previously assumed.

The rest of the paper is organised as follows: For

brevity’s sake, we do not present the entire state

of the art in skylight models ourselves, but just

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a
fee.

Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

give references which do, and concentrate on the

Preetham model instead. We introduce the key

components of the model, and in the largest sec-

tion we show numerous colour-coded illustrations

which help to identify where it is applicable, and

also how it compares to the recent CIE models, as

well as to our own measurements.

2. RELATED WORK

Skylight models have a long history in computer

graphics. Sloup [Slo02] gives a good overview

of all skylight models derived up to that point in

time. Since then, the most ambitious overall at-

mospheric clear-sky simulation to have been pre-

sented is that of Haber et al. [HMS05], which

is a brute-force numerical simulation of radiation

transport in the atmosphere, and is even capable

of simulating twilight phenomena. However, such

a simulation takes several hours even on a con-

temporary PC. For most applications in computer

graphics this is clearly impractical.

For illumination planning purposes, the CIE and

ISO committees recently have released a joint

standard series of analytic models for skylight

luminance of clear and overcast skies [CIE04],

which supersede previous standards. These mod-

els lack both spectral and colour information, so

their immediate application to computer graphics

is not possible; however, they still provide a valu-

able reference and are discussed in section 4.

Short Communication papers 23 ISBN 978-80-86943-02-2

3. PREETHAM’S MODEL
This analytic model [PSS99] was created by fitting

simulation data from a skylight model of Nishita

et al. [NDKY96] to the sky luminance approx-

imation formula of Perez et al. [PSI93], which

has also been adopted by the CIE in a modified

form [CIE04]. The simulation and fitting only

took turbidities in the range 2. . . 6 into account.

In the appendix of Preetham’s paper, all necessary

formulae are given for the implementation of the

model. However, no comparison to measurements

taken in nature seems to have been performed,

and the paper is rather silent on limitations of the

model.

Coordinate System
In the model, several angles are required:

θs solar angle from zenith

θ view angle from zenith

ϕ view azimuth from solar azimuth

γ angle between solar and view direction

For simplicity, the solar azimuth is always taken as

0◦, and the sky obviously is symmetric around the

solar azimuth.

Turbidity
The key parameter to describe atmospheric condi-

tions in Preetham’s model is the atmospheric tur-

bidity T , defined as the ratio of the optical thick-

ness of the atmosphere including haze to that of a

pure-air atmosphere: T = (τm + τh)/τm. A (hypo-

thetical) perfectly clean atmosphere has T = 1, and

(rare, but observable) values of about 1.25 can be

called “exceptionally clear”, and 1.6 “very clear”,

as seen in figure 3 of Preetham’s paper. Haze has

T ? 10, and at this point at the latest we should

also stop using a “clear-sky” model. Preetham

states that turbidity is only a rough estimate for

atmospheric conditions; it is quite a useful param-

eter nonetheless, since it offers an intuitive way of

controlling the appearance of outdoor scenes.

A problem with zenith luminance Yz

Preetham [PSS99, A.2] gives zenith luminance as

Yz[kcd/m2] =(4.0453T −4.9710) tan χ

−0.2155T +2.4192 (1)

where χ =(
4

9
−

T

120
)(π −2θs) (2)

Figure 1 shows values of Yz dependent on solar

zenith angle θs and turbidity T . As can be seen

0 10 20 30 40 50 60 70 80 90
Θs

1

2

3

4

5

6

7

8

9

10

11

12

T

0 10 20 30 40 50 60 70 80 90

1

2

3

4

5

6

7

8

9

10

11

12

Preetham Zenith Luminance

0

106
@cd�m2D

Figure 1: Preetham zenith luminance Yz (1) as

function of solar zenith angle θs and turbidity T .

Negative values are depicted in red.

in the plot, there are regions (marked red) near

the border of valid input values where the model

yields negative zenith luminance! So, from this

plot alone, Preetham’s model should not be used

for exceptionally clear air (T > 1.6), and also val-

ues near sunrise/sunset (θs > 85◦) are apparently

problematic, and fail for turbidities T ? 10.

Sky luminance Y
The sky luminance Y (T,θ ,θs,ϕ) is given as

Y = Yz

F (θ ,γ)

F (0,θs)
, where (3)

F (θ ,γ) = (1+Ae
B

cosθ)(1+CeDγ +E cos2 γ) (4)

and A,B,C,D,E are given as functions of T .

Figures 6 and 7 show skylight distributions relative

to the zenith brightness and absolute luminance

values for different values of T and θs.

4. CIE STANDARD SKY
The CIE, together with the ISO, has recently

published fifteen standard sky luminance distri-

butions [CIE04], which are described in Table 1.

These distributions were created and refined from

a long series of skylight measurements and previ-

ous standards. A sixteenth type describes the “tra-

ditional” overcast sky.

The typical application of the CIE models

is illumination estimation for architectural de-

sign [KD06]. Unfortunately the model only pro-

vides luminance data, so that direct application to

(colorised) computer graphics is not possible.

Short Communication papers 24 ISBN 978-80-86943-02-2

1 CIE Standard Overcast Sky: Steep luminance

gradation towards zenith, azimuthal uniformity

2 Overcast, with steep luminance gradation and

slight brightening towards the sun

3 Overcast, moderately graded with azimuthal uniformity

4 Overcast, moderately graded and slight brightening towards the sun

5 Sky of uniform luminance

6 Partly cloudy sky, no gradation towards zenith,

slight brightening towards the sun

7 Partly cloudy sky, no gradation towards zenith,

brighter circumsolar region

8 Partly cloudy sky, no gradation towards zenith, distinct solar corona

9 Partly cloudy, with the obscured sun

10 Partly cloudy, with brighter circumsolar region

11 White-blue sky with distinct solar corona

12 CIE Standard Clear Sky, low luminance turbidity

13 CIE Standard Clear Sky, polluted atmosphere

14 Cloudless turbid sky with broad solar corona

15 White-blue turbid sky with broad solar corona

16 CIE Traditional Overcast Sky

Table 1: The CIE 2003 Standard General Sky

models [CIE04]

From the descriptions it appears that the only CIE

skylight distributions comparable to the Preetham

model are CIE Types 11–15. Note that the CIE

skylight distribution type designations are in no

way related to Preetham’s turbidity! The CIE mod-

els do not have a single intuitive parameter, how-

ever, they also use eq. (3) and a modified form of

the Perez equation (4), which, using the symbols

from above, is:

FCIE2003(θ ,γ) =

(1+Ae
B

cosθ)(1+C(eDγ − eD π
2)+E cos2 γ) (5)

with values A,B,C,D,E tabulated for the 15 stan-

dardized distributions [CIE04, DK02, KD06]. The

sixteenth distribution is the classic formula of

Moon and Spencer (1942):

Y (θ) = Yz

1+2cosθ

3
(6)

Figure 4 shows skylight luminances of the 16

CIE 2003 Standard General Skylight distributions

relative to the zenith luminance.

The standard does not provide absolute zenith lu-

minances Yz, but Kittler (one of the authors of the

CIE standard) and Darula [KD06, DK02] provide

another five-parameter equation and a table of typ-

ical values for sky types 1–15, which are applica-

ble for solar zenith angles 10◦ > θs < 90◦ [DK02].

Figure 5 shows all 15 “regular” CIE 2003 Standard

General Skylight distributions with their given

maximum and minimum recommended values.

5. MEASUREMENTS
For comparison with the Preetham model, we

made several measurement cycles of skylight dis-

24.9.2006: Slightly hazy, θs = 50◦ 6.10.2006: Extra clear, θs = 60◦

0

106
@cd�m2D

(a) (b)
23.9.2006: Very clear, θs = 72◦ 24.9.2006: Clear, θs = 80◦

0

106
@cd�m2D

(c) (d)

Figure 2: Measured sky luminances [cd/m2] for

solar zenith angles θs = {50◦,60◦,72◦,80◦} with

low turbidities. The discontinuity in the solar ver-

tical (towards right) shows the development during

the 1/2-hour measurement process.

tributions using a Minolta LS-110 Luminance Me-

ter on a tripod with coordinate indications. Fig-

ure 2 shows 4 typical results for bright, sunny days.

What can be clearly seen is a distinct dark zone

on the hemisphere opposite the sun and a slight

overall horizon brightening.

6. COMPARISON
Figure 6 shows skylight distributions of the orig-

inal Preetham model and an (obviously fruitless)

attempt to improve the Preetham model by using

equation (5) for various values of turbidity T and

solar zenith angle θs, relative to the zenith lumi-

nance. Each small circle represents a full 180◦

hemisphere in stereographic projection. With in-

creasing θs, the sun sinks towards the right hori-

zon.

Figure 7 shows skylight distributions for the same

data, again with both variants of the function F ,

but providing absolute luminance values from the

Preetham model. Compared to the recommended

values from the CIE standard and [KD06] (Fig-

ures 4 and 5) and real-world measurements (Fig.2)

we note the following shortcomings:

• The results for low turbidities T < 2 are defi-

nitely wrong: A very clear atmosphere only

has a moderate brightening along the hori-

zon (Fig. 2(b)), and not the wide, extremely

Short Communication papers 25 ISBN 978-80-86943-02-2

bright zone visible in the plots in Figure 7 (cf.

also Figure 3), leading to a totally unrealistic

“horizon glow”. Even for T > 2.4 the hori-

zon is shown unnaturally bright when the sun

is low (θs ? 60◦), and the brightening around

the sun is too weak.

• The Preetham model does not properly repro-

duce the noticeable darkening of the sky in

the antisolar hemisphere when the sun is low,

with luminance values about 2–5 times too

high.

• Also, the brightness peak towards the sun is

not as steep as it can be measured or is mod-

elled by the CIE Clear-Sky models.

The CIE Clear Sky (Type 12) is best approximated

with T ≈ 2.3 . . .2.5, however, differences remain,

esp. the mentioned darkening is too weak when

θs ? 60◦. Comparing Preetham and CIE models

for higher turbidities, we found some potentially

usable similarities, but with different absolute lu-

minances (with values from [KD06]):

Preetham T 10 5 2.9

CIE Type 6 7 10

YPr/YCIE |15◦<θs<70◦ > 2 ? 1 > 1.25

-75 -50 -25 25 50 75
Θ@°D

20

40

60

80

100

Sky Luminance Y@kcd�m2D, Φ=0° Θs=72°, T=1.8 CIE2003 Type 12

Measured

10Preet.�CIEmax

10Preet.�CIEmin

CIE2003max

CIE2003min

Preetham

Figure 3: A cut through the solar vertical for a very

clear sky (T = 1.8). The black line represents lu-

minance values from the Preetham model, the red

and green full lines are maximum and minimum,

resp., in the CIE model #12 with values recom-

mended by [KD06], and the blue line shows a re-

sult from our measurements (cf. Fig. 2(c)). The

dashed lines show the relation between Preetham

and CIE models (scaled 10 times for clarity and

to fit the scale). Clearly, the horizon area below

the sun (right end) and also on the opposite side

(and all around the sky, see Fig. 7) is far too bright

(brighter than the immediate solar vicinity)!

7. CONCLUSION AND FURTHER

WORK
We have provided comparisons between the sky

luminance values of the popular Preetham skylight

model, the ISO/CIE 2003 Standard General Sky

luminance distributions and a few measurements

taken by ourselves.

Our measurements of typical mid-European early

autumn clear sky luminance distributions yielded

luminance patterns which are not reproducible by

the Preetham model, but which are reasonably

close to the CIE Clear Sky models.

From the way it was created, the Preetham

model can at most be as good as the Nishita

model [NDKY96] with simulation of (at most)

second order scattering. The data fit was done for

turbidities 2. . . 6, so outside this range, it should

not be used. We showed it breaks down numeri-

cally for T > 1.9 and T ? 10.

An analytic skylight model certainly is required for

outdoor scenes, when the skylight should be used

as light source, and the sky as visible background.

A better simulation of atmospheric scattering such

as [HMS05] should be used as base to improve or

replace Preetham’s model, so that a data fit will

hopefully provide more natural results.

8. ACKNOWLEDGMENTS
This work was in part supported by the Aus-

trian Science Fund (FWF) under contract number

P17558.

REFERENCES
[CIE04] International Commission on Illumination (CIE). ISO

15469:2004(E) / CIE S 011/E:2003 Spatial distribution of daylight -

CIE standard general sky, second edition, February 2004.

[DK02] S. Darula and R. Kittler. CIE General Sky Standard Defining

Luminance Distributions. In Proceedings eSim, 2002.

[HMS05] J. Haber, M. Magnor, and H.-P. Seidel. Physically based

Simulation of Twilight Phenomena. ACM Transactions on

Graphics, 24(4):1353–1373, October 2005.

[KD06] R. Kittler and S. Darula. The method of aperture meridians: a

simple calculation toot for applying the ISO/CIE Standard General

Sky. Lighting Res. Technol., 38(2):109–122, 2006.

[NDKY96] T. Nishita, Y. Dobashi, K. Kaneda, and H. Yamashita.

Display method of sky color taking into account multiple scattering.

In Pacific Graphics ’96, pages 117–132, 1996.

[PSI93] R. Perez, J.R. Seals, and P. Ineichen. An allweather model for

sky luminance distribution. In Solar Energy, 1993.

[PSS99] A. J. Preetham, P. Shirley, and B. Smits. A Practical Analytic

Model for Daylight. In SIGGRAPH ’99, pages 91–100, New York,

NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[Slo02] J. Sloup. A Survey of the Modelling and Rendering of the

Earth’s Atmosphere. In Proceedings of SCCG, 2002.

Short Communication papers 26 ISBN 978-80-86943-02-2

Constant distributions: 1 3 5 16

Type 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

2

4

6

7

8

9

10

11

12

13

14

15

0 10 102 103 104 105 106 %

Figure 4: Relative sky luminance distributions of the 16 CIE 2003 Standard General Sky models [CIE04],

for various solar zenith distances θs. The scale is logarithmic in percent of zenith luminance, and colour

hues are used to separate the decades of magnitude.

Short Communication papers 27 ISBN 978-80-86943-02-2

Type 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 85◦

1

@ @ @ @ @ @ @ @ @

2

@ @ @ @ @ @ @ @ @

3

@ @ @ @ @ @ @ @ @

4

@ @ @ @ @ @ @ @ @

5

@ @ @ @ @ @ @ @ @

6

@ @ @ @ @ @ @ @ @

7

@ @ @ @ @ @ @ @ @

8

@ @ @ @ @ @ @ @ @

9

@ @ @ @ @ @ @ @ @

10

@ @ @ @ @ @ @ @ @

11

@ @ @ @ @ @ @ @ @

12

@ @ @ @ @ @ @ @ @

13

@ @ @ @ @ @ @ @ @

14

@ @ @ @ @ @ @ @ @

15

@ @ @ @ @ @ @ @ @

0 10 102 103 104 105 106 [cd/m2]

Figure 5: Absolute sky luminance distributions based on the CIE 2003 Standard General Sky models, for

various solar zenith distances θs. Each upper half-image shows the approximate maximum, the lower half

the minimum recommended values after [KD06]. The scale is logarithmic in [cd/m2].

Short Communication papers 28 ISBN 978-80-86943-02-2

Turb. 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

1.7

1.9

2.0

2.2

2.5

3.0

4.0

5.0

6.0

8.0

10.0

12.0

15.0

0 10 102 103 104 105 106 %

Figure 6: Relative sky luminance distributions of the Preetham model, for various solar zenith distances

θs and turbidities. The upper half-images show values from the original model, the lower show values

achieved by replacing equation (4) by (5), which however does not significantly improve the results and

was just done for trial purposes. The scale is logarithmic in percent of zenith luminance.

Short Communication papers 29 ISBN 978-80-86943-02-2

Turb. 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

1.7

@ @ @ @ @ @ @ @ @ @

1.9

@ @ @ @ @ @ @ @ @ @

2.0

@ @ @ @ @ @ @ @ @ @

2.2

@ @ @ @ @ @ @ @ @ @

2.5

@ @ @ @ @ @ @ @ @ @

3.0

@ @ @ @ @ @ @ @ @ @

4.0

@ @ @ @ @ @ @ @ @ @

5.0

@ @ @ @ @ @ @ @ @ @

6.0

@ @ @ @ @ @ @ @ @ @

8.0

@ @ @ @ @ @ @ @ @ @

10.0

@ @ @ @ @ @ @ @ @ @

12.0

@ @ @ @ @ @ @ @ @ @

15.0

@ @ @ @ @ @ @ @ @ @

0 10 102 103 104 105 106 [cd/m2]

Figure 7: Absolute sky luminance distributions of the Preetham model, for various solar zenith distances

θs and turbidities. The upper half-images show values from the original model, the lower show values

achieved by replacing equation (4) by (5), which however does not significantly improve the results and

was just done for trial purposes. The scale is logarithmic in [cd/m2].

Short Communication papers 30 ISBN 978-80-86943-02-2

Isosurface Ray-casting for Autostereoscopic Displays
Balázs Domonkos, Attila Egri, Tibor Fóris, Tamás Juhász, and László Szirmay-Kalos

TU Budapest

ABSTRACT

In this paper the GPU implementation of a real-time isosurface volume-rendering system is described in detail, which aims at
autostereoscopic displays. Since autostereoscopic displays provide images for many views, and thus require different camera
settings in each pixel, and even in the three color channels of a pixel, naive rendering approaches would slow down the rendering
process by a factor of the number of views of the display. To maintain interactive rendering, our approach is image centric, that
is, we independently set the eye position for each pixel and implement iso-surface ray-casting in the pixel shader of the GPU. To
handle the different camera settings for different color channels, geometric and color computation processes are decomposed
into multiple rendering passes. This solution allows rendering rates that are independent of the number of main views of the
autostereoscopic display, i.e. we cannot observe speed degradation when real 3D images are generated.

Keywords: Iso-surface ray-casting, autostereoscopic displays, GPU programming.

1 INTRODUCTION

3D autostereoscopic displays provide realistic depth
perception for multiple viewers without any special aids
like stereo glasses [9, 10]. To achieve the stereo effect,
these displays emit spatially varying directional light,
thus when a human observer looks at the screen with
two eyes, the directions corresponding to the two eyes
are slightly different, so are the perceived images. If
these images are generated appropriately, the required
stereo effect can be provided, allowing the viewers
to move their head from side to side and see differ-
ent aspects of the 3D scene. Current autostereoscopic
displays equipped with parallax barriers or lenticular
sheets placed on top of conventional screens offer a
cheap and practical solution for 3D imaging [8].

Parallax barrier methods [5] use a fine vertical grat-
ing placed in front of the screen. The grating is made
of an opaque material with fine transparent vertical slits
at a regular spacing. Each transparent slit acts as a win-
dow to a vertical slice of the image placed behind it,
and the exact slice depends on the position of the eye.
Lenticular displays[1], on the other hand, separate im-
ages into different viewing directions using a sheet of
long thin lenses.

Lenticular sheets contain a series of cylindrical lenses
molded into a plastic substrate. The lens focuses on
an image on the back side of the lenticular sheet. The
lenticular image is designed so that each eye’s line of
sight is focused onto different strips.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2007

Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Image

Barrier

Image

Lenticular

Figure 1: Parallax barrier and lenticular displays

window object

in
 s

cr
ee

n

ou
t s

cr
ee

n

be
hi

nd
 s

cr
ee

n

Figure 2: Virtual camera model for autostereoscopic
displays

For these displays, the virtual scene should be ren-
dered from several camera positions defined by the
structure of the barriers or lenticules. Creating the sev-
eral subimagesrequires the precise positioning of the
camera and frustum. One common solution rotates the
camera around a single point and symmetric camera
frustums are used. This approach is quite popular since
it is supported by conventional rendering systems. This
is called the “toe-in” method [1]. However, it is not
the correct method when a single flat physical display
surface is used, and the viewing directions are not or-
thogonal to the surface. Applying the toe-in method on
a flat surface causes not only horizontal but vertical par-
allax between the projections of the same spatial point.
This distortion increases as one moves towards the cor-

Short Communication papers 31 ISBN 978-80-86943-02-2

ners. The correct approach is to offset the camera along
a linear path and to use an offaxis frustum (figure 2).

Figure 3: Correspondence between the r,g,b channels
of pixels and the 8 main directions, and the utilization
of the first two subimages in the X3D-17 lenticular dis-
play. This pattern repeats itself on the screen and se-
lects one direction from the possible 8, from where the
particular pixels’ r,g,b channels are visible. For exam-
ple, the red, green, and blue points of the pixel at the
left-top pixel are visible from directions 0, 2, and 3, re-
spectively, and the same is true at every pixel whose
horizontal and vertical distances from the left-top cor-
ner are multiples of 5 and 8, respectively.

Since the lenses are usually not placed exactly ver-
tically in order to reduce aliasing and abrupt changes
in the image, the pixel-direction correspondence (fig-
ure 3) may change in every pixel row [12]. Further-
more, due to the fact that red, green, and blue emitting
points have slightly different location in a single pixel,
and lenses on these wavelengths have different index of
refraction, the red, green, and blue channels of a single
pixel correspond to different directions. These effects
make the pixel-direction correspondence rather com-
plex (figure 3), and prohibit the easy composition of
low resolution subimages into a higher resolution dis-
play image. Therefore the subimages are usually com-
puted on the same resolution as the final image, and the
compositing procedure selects the red, green, and blue
components for each target pixel from the subimages
according to the pixel-direction correspondence (fig-
ure 3). This means that a larger part of original subim-
ages are ignored during compositing (see the poor uti-
lization of the first two subimages in figure x3d). If
the bottleneck of rendering is fragment processing —
which is usually the case in volume rendering and pho-
torealistic image synthesis — this divides the speed by
the number of main display directions (8–24 in current
systems).

Using direct volume rendering, an isosurface can
be implicitly extracted by resampling the volume data
along the viewing rays at evenly located sample points
[7, 11]. Rays are cast from the eye through the center
of each pixel and the first samples, where the isosurface
intersects the rays are determined.

This paper proposes an isosurface ray casting algo-
rithm that does not increase the rendering time when
the number of display directions gets higher. The speed
degradation is avoided using an image centric rendering
algorithm, such as ray-casting, and decomposing the
rendering algorithm into geometric and spectral passes.

2 THE NEW ALGORITHM
Our approach decomposes the rendering process into
two passes, one deals with geometric computations,
while the other with spectral color data. This way we
can solve the problem that the r,g,b channels of a pixel
correspond to different camera positions without un-
necessarily repeating the same geometric calculations.
The geometric pass generates visible isosurface points
and volume derivatives, such as the normal vector and
curvature values, and derived values such as the cosine
of the angle between the surface normal and the illu-
mination direction. Formally, we assume that the sur-
face reflection formula can be expressed in the follow-
ing form

L(λ) =
n

∑
i=1

ai(λ) ·Gi · Ii(λ)

whereai(λ) is the spectral property of the isosurface,
Ii(λ) is the spectral property of the light source, andGi

is the geometric property of both the illuminated sur-
face and the light source. For example, if there is just a
single directional light source and the diffuse + Phong-
Blinn reflection model is used, then

G1 = cosθ , G2 = cosmδ

whereθ is the angle between the gradient vector of the
density field

g = ∇ f =
(

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

)
,

and the illumination direction,δ is the angle between
the gradient vector of the density field and the halfway
vector of the view and illumination directions, andm is
the shininess of the material. On the other hand, con-
cerning the spectral properties,I1(λ) = I2(λ) are the
intensity of the light source, isosurface spectral prop-
ertiesa1(λ) anda2(λ) are the diffuse and specular re-
flectances, respectively.

Note that if the cosines are negative, they should be
replaced by zero.

2.1 Geometric pass

The geometric pass takes the definition of the vir-
tual camera system and the 3D voxel array, and gener-
ates geometric propertiesg1, . . . ,gn for each pixel of the
screen. Ifn is not greater than 4, the result of the ren-
dering pass is a floating point texture. Otherwise, we

Short Communication papers 32 ISBN 978-80-86943-02-2

should use the multiple render target option and store
the result in more than one floating point textures.

Since the actual color channel of a pixel also affects
the camera model, during geometric computations we
assume that the wavelength corresponds to the red color
channel.

Ray traversal
Comparing to conventional ray traversal, now we also

have to find the eye position that corresponds to the pro-
cessed pixel (figure 4).

volume

z

x
y

window

eye

p

p p

p

p

1

2

3

4

2

eye3

eye4

eye
1

Figure 4: When autostereoscopic camera model is
used, we have to dynamically find the eye position for
each pixel

In this pass we render a singlefull screen quadri-
lateral (figure 5). To do that we set the model, view,
and projection matrixes to be unit matrices, and pass a
rectangle with vertices(−1,−1,0), (−1,1,0), (1,1,0),
(1,−1,0). In the texcoord0 registers the 2D screen
space pixel coordinates ([0,0] to [XM,YM]) of the ver-
tices are passed. On the other hand, texcoord1 registers
encode verticesp1, p2, p3, p4 of the camera window in
world space. The viewport resolution is set to the reso-
lution of the display. This guarantees that the fragment
shader is called once for every pixel. During fragment
processing the interpolated texture coordinates will de-
fine pixel coordinates[X,Y], and pointp corresponding
to this pixel in world space, respectively. Looking up
the eye position of the red component of the particu-
lar pixel from the pixel-direction correspondence table
(figure 3) using the interpolated pixel coordinates, we
define the viewing ray from the eye and through world
space point~p corresponding to the current pixel.

This ray is intersected with the bounding box of
the volumetric model to find entry pointpentry and
exit point pexit of the bounding box using the Cohen-
Sutherland clipping algorithm. Then the ray is marched
between the entry and exit points, evaluating sample
pointspi as:

pi = pentry+(pexit−pentry) · i/N, (1)

whereN is the number of samples along the ray.

Density estimation
At each sample positionpi density f (pi) of the vol-

ume is evaluated. Regarding the quality of isosur-
face rendering, the applied resampling technique to find
f (pi) is crucial.

As the volume data is a discrete representation, an ap-
propriate reconstruction filter has to be applied to eval-
uate a density sample at an arbitrary sample position.
Furthermore, the isosurface has to be shaded, therefore
a surface normal, i.e. the first derivative, and sometimes
curvatures, i.e. higher order derivatives, are calculated
for each intersection point. The derivatives are obtained
by resampling the volume by a derivative filter.

Generally the wider the support of the reconstruction
filter is, the better its quality. On the other hand, by
increasing the support of the filter kernel a convolution
with it is getting more and more expensive computa-
tionally. In practical volume-rendering applications the
most popular filter is the trilinear filter, since it repre-
sents a reasonable trade-off between quality and ren-
dering speed. The most important drawback of trilin-
ear interpolation, however, is that it produces discon-
tinuous derivatives. Furthermore, some of the non-
photorealistic volume-rendering techniques take also
second derivatives into account, which can hardly be
estimated by a linear filter. Therefore, to make our im-
plementation generally usable with different rendering
models, we apply a high-quality third-order (cubic) fil-
tering technique proposed in [2].

The cubic reconstruction of a 1D signal can be for-
mulated at an arbitrary positionx as a weighted sum of
the signal values at the nearest four sample positions:

f (x)≈ f̃ (x) =

w0(x) · fi−1 +w1(x) · fi +w2(x) · fi+1 +w3(x) · fi+2,

wherei = bxc is the integer part ofx and fi = f (i) are
the samples of the original signal. The filter weights
wi(x) are periodic in the intervalx ∈ [0,1] : wi(x) =
wi(α), whereα = x− bxc is the fractional part ofx.
Specifically,

w0(α) = (−α3 +3α2−3α +1)/6,

w1(α) = (3α3−6α2 +4)/6,

w2(α) = (−3α3 +3α2 +3α +1)/6,

w3(α) =
1
6

α3.

The reconstructed functioñf (x) can be evaluated as a
linear combination of two linear texture fetches as fol-
lows:

f̃ (x) = g0(x) · fx−h0(x) +g1(x) · fx+h1(x), (2)

where

g0(x) = w0(x)+w1(x),

Short Communication papers 33 ISBN 978-80-86943-02-2

(-1,-1, 0)
texcoord0: [0,0]
texcoord1: p1

(1,-1, 0)
texcoord0: [XM,0]
texcoord1: p2

(1,1, 0)
texcoord0: [XM,YM]
texcoord1: p3

(-1,1, 0)
texcoord0: [0,YM]
texcoord1: p4

OpenGL API

unit transform

vertex shader

texcoord0: [X,Y]
texcoord1: p

X

Y

fragment shader

pixel-direction
table

eye

ray
definition

ray

Figure 5: Generation of the ray to be traced

volume

z

x
y

isosurface

hit entry

exit

eye

p

2

Figure 6: Ray casting volume isosurfaces

h0(x) = 1− w1(x)
w0(x)+w1(x)

+x,

g1(x) = w2(x)+w3(x),

h1(x) = 1− w3(x)
w2(x)+w3(x)

−x.

Since functionsgi(x) andhi(x) are also periodic, they
can be stored in a lookup texture. In the 3D space
the cubic reconstruction kernel is evaluated separately
along the major axes and the resulting weights are sim-
ply multiplied (tensor product extension).

The samples of functionsh0(x), h1(x), andg0(x) are
stored in thex, y, andz components of an 1D texture.
Functiong1(x) does not need to be explicitly stored as
g1(x) = 1−g0(x).
Isosurface intersection calculation

A ray-isosurface intersection is found between sam-
ple positionspi andpi+1 if f (pi) < s and f (pi+1) ≥ s,
where f (p) denotes the density function ands is a
threshold defining the isosurface. The ray traversal al-
gorithm with isosurface intersection calculation is exe-
cuted by the following fragment shader:

float3 raydir = pexit - pentry;
float fv, fvprev;
float3 p, pprev;
// march the ray
bool found = false;
for(float t = 0; t <= 1.0f; t += dt) {

if (!found) {
float3 p = pentry + raydir * t;
float fv = f(p);
if (fv > s) { // intersection found

found = true;
} else {

pprev = p;
fvprev = fv;

}
}

}

Note that in this way we take the same number of
samples along each ray between the entry and exit
points of different distances, that is, the length of the
steps is different for different rays. It seems to be a dis-
advantage, but current GPUs are much faster if they do
not use the dynamic looping features. Step sizedt is
set to take at least one sample in each voxel along the
ray.

A refined intersection point can be calculated by us-
ing the following root searching algorithm:

float3 pnew;
for(int n = 0; n < nIter; n++) {

pnew = (p - pprev) * (s - fvprev) /
(fv - fvprev) + pprev;

fvnew = f(pnew);
if (v < s) {

pprev = pnew;
fvprev = fv;

} else {
p = pnew;
fv = fvnew;

}
}

According to our experience 1-2 additional iteration
steps provide sufficient accuracy.

This algorithm is mathematically equivalent to the
numerical solution of equationf (p) = sstarting a linear
search then refining the solution with secant search.
Gradient estimation and calculation of geometric
properties

After computing an accurate intersection point for
each ray, the geometric factors are determined, which
will be used by the next shading pass. The geometric
properties depend on the gradient of the density vol-
ume, and possibly on second derivatives.

The gradient components are calculated by filtering
the volume data with the partial derivatives of the 3D re-
construction kernel. For efficient derivative reconstruc-
tion the same fast filtering scheme can be used as for

Short Communication papers 34 ISBN 978-80-86943-02-2

the function reconstruction with the following modifi-
cations. Now the weighting functionswi(x) sum up to
zero instead of one, thereforeg1(x) =−g0(x).

The normalized gradients can be used for all shad-
ing models that require a surface normal, like the
Phong-Blinn or tone shading. More sophisticated
non-photorealistic or illustrative shading models,
however, rely on second-order partial derivatives of
the scalar field as well. The second-order derivatives
yield the Hessian matrix [4], which characterizes the
curvature in a given sample point:

H = ∇g =

∂ 2 f
∂x2

∂ 2 f
∂x∂y

∂ 2 f
∂x∂z

∂ 2 f
∂y∂x

∂ 2 f
∂y2

∂ 2 f
∂y∂z

∂ 2 f
∂z∂x

∂ 2 f
∂z∂y

∂ 2 f
∂z2

 . (3)

The first and second principal curvature magnitudes
(κ1, κ2) of the isosurface can be estimated from the gra-
dient g and the Hessian matrixH [6]. The principal
curvature magnitudes amount to two eigenvalues of the
shape operatorSdefined as the tangent space projection
of the normalized Hessian:

S= PT · H
|g| ·P, (4)

where

P = I − g·gT

|g|2 ,

and I is the unit matrix. The eigenvalue correspond-
ing to eigenvectorg vanishes, and the other two eigen-
vectors are the principal curvature magnitudes. Be-
cause one eigenvector is known, it is possible to solve
for the remaining two eigenvectors in the 2D tangent
space without computingS explicitly [2]. This results
in reduced number of operations and improved accu-
racy compared to the approach published in [6]. The
transformation of the shape operatorS to some orthog-
onal basis(u,v) of the tangent space is given by

A =
(

a11 a12

a21 a22

)
= (u,v)T · H

|g| · (u,v). (5)

Eigenvalues ofA can be computed using the direct for-
mulas for2×2 matrices:

κ1,2 =
1
2

(
trace(A)±

√
trace(A)2−4det(A)

)
, (6)

This amounts to a moderate number of vector and ma-
trix multiplications, and we have to solve a quadratic
polynomial.

Having computed the gradient and the principal
curvatures, the geometric properties are evaluated
and stored in the target pixel. In our current imple-
mentation we store the geometric properties of the
diffuse + Phong-Blinn reflection model (G1 = cosθ ,

G2 = cosmδ). Using the principal curvatures the mean
curvature (G3 = (κ1 + κ2)/2) and the Gaussian curva-
ture (G4 = κ1κ2) are obtained. Scalars(G1,G2,G3,G4)
scalars can be conveniently packed into a single pixel.

If the ray happens not to intersect the isosurface, we
put an invalid data item into the first channel, that is
a G1 = −1 is stored instead of the cosine of the angle
between the surface normal and the illumination direc-
tion.

3 SHADING PASS

The shading pass is invoked after generating the image
of the geometric properties, storingcosθ , cosmδ , and
the two curvature values in each pixel. Note that the ge-
ometric properties were obtained using the camera cor-
responding to the red channel of pixel. The geometric
properties of the green and blue channels are stored in
the neighboring fragments because of the shifts in the
pixel-direction correspondence table (figure 3).

To complete shading, having changed the fragment
shader program, a full screen quad has been rendered
again. The fragment shader takes the geometric prop-
erties of the actual fragment, which provides infor-
mation for the red channel, and based on the pixel-
direction correspondence table, it also fetches the ge-
ometric properties for the green and blue channels from
the fragments nearby using the table of figure 3. The
fragment shader receives the spectral properties, such as
the reflectances and light source intensities as uniform
parameters, and the standard diffuse + Phong-Blinn re-
flection formula is evaluated. To add curvature infor-
mation to the image, we take the two curvature values,
consider them as a texture coordinate pair, and fetch a
curvature color from a prepared lookup texture. This
curvature color is added to the reflected illumination.
Finally, the computed color is written into the frame
buffer memory. Note that our shading pass is quite sim-
ilar to deferred shading[3]. An important difference,
however, is that we use also neighboring fragment data
when a fragment is shaded since the data for blue and
green channels are stored in other pixels.

4 RESULTS

The proposed algorithm has been implemented using
OpenGL/Cg and run on an NV7800GT GPU. We used
an X3D-17 autostereoscopic display that has a lenticu-
lar sheet in front of a1280× 1024resolution 17 inch
Fujitsu-Siemens TFT. The lenticular sheet is able to
separate 8 main views. The zero parallax of the display
is at 1.5 meter, that is the highest quality 3D images can
be seen from this distance.

The visible human head used in our simulation has
5123 resolution and a single voxel is stored in two
bytes. The complete rendering, including isosurface lo-
calization, geometric property calculation, and shading

Short Communication papers 35 ISBN 978-80-86943-02-2

can be executed at 11 frames per second for a con-
ventional 2D display screen, and the same rendering
speed is attained when we used the proposed algorithm
for the autostereoscopic display. It means that the ad-
ditional overhead of reading the pixel-direction corre-
spondence table is negligible. The beetle dataset has
256×256×128resolution and is rendered at 15 FPS.

The rendering speed is dominated by the geometric
step, more precisely the computation of the ray isosur-
face intersection. In order to obtain higher rendering
rates the intersection calculation should be speeded up
by employing an empty space leaping scheme.

5 CONCLUSIONS

In this paper we presented an algorithm to interactively
render volume isosurfaces onto a 3D autostereoscopic
display. Since these displays trade off spatial resolu-
tion with directional dependence and thus 3D percep-
tion, the rendering time should not be higher than that
of conventional 2D displays. However, previous ap-
proaches usually rendered the directional data on higher
than necessary resolutions and composited the final im-
age in the last pass. In this paper we showed that it
is possible to eliminate unnecessary computations and
obtain just as many pixel values that the underlying dis-
play surface has. To achieve this, we have to transfer all
camera dependent computations to the pixel shader.

The proposed algorithm runs interactively for large
volumetric models and does not slow down when 3D
displays with many possible view directions are used.

ACKNOWLEDGEMENTS

This work has been supported by OTKA (T042735),
GameTools FP6 (IST-2-004363) project, and by
Hewlett-Packard and the National Office for Research
and Technology (Hungary).

REFERENCES

[1] P. Bourke. Autostereoscopic lenticu-
lar images. Technical report, 1999.
http://local.wasp.uwa.edu.au/˜pbourke/stereographics.

[2] M. Hadwiger, C. Sigg, H. Scharsach, K. Büh-
ler, and M. Gross. Real-time ray-casting and ad-
vanced shading of discrete isosurfaces. InPro-
ceedings of EUROGRAPHICS, pages 303–312,
2005.

[3] S. Hargreaves and M. Harris. Deferred shading.
Technical report, http://download.nvidia.com/
developer/presentations/ 2004/6800_Leagues/
6800_Leagues_Deferred_Shading.pdf, 2004.

[4] J. Hladuvka. Derivatives and Eigensystems for
Volume-Data Analysis and Visualization. PhD
thesis, Institute of Computer Graphics, Vienna
University of Technology, Vienna, Austria, 2002.

[5] S.H. Kaplan. Theory of parallax barriers.Journal
of SMPTE, 59(7):11–21, 1952.

[6] G. Kindlmann, R. Whitaker, T. Tasdizen, and
T. Möller. Curvature-based transfer functions for
direct volume rendering: Methods and applica-
tions. InProceedings of IEEE Visualization, pages
513–520, 2003.

[7] M. Levoy. Efficient ray tracing of volume data.
ATG, 9(3):245–261, 1990.

[8] W. Matusik and H. Pfister. 3D TV: A scalable sys-
tem for real-time acquistion, transmission and au-
tostereoscopic display of dynamic scenes.ACM
Transactions on Graphics (TOG) SIGGRAPH,
23(3):814–824, 1993.

[9] T. Okoshi. Three Dimensional Imaging Tech-
niques. 1976.

[10] S. Pastoor and M. Wopking.3-D displays: A re-
view of current technologies. Displays 17, 1997.

[11] T. Theußl, O. Mattausch, T. Möller, and M. E.
Gröller. Reconstruction schemes for high qual-
ity raycasting of the body-centered cubic grid.
TR-186-2-02-11, Institute of Computer Graphics
and Algorithms, Vienna University of Technology,
2002.

[12] x3d Technologies.17" 3D-Display A3. Opticality,
2005.

Short Communication papers 36 ISBN 978-80-86943-02-2

Figure 7: The human head dataset rendered from the main view directions setting the isovalue to visualize the
bone

Figure 8: The beetle dataset rendered from the main view directions setting the isovalue to visualize the bone

Figure 9: 3D autostereoscopic images when rendered on a normal 2D screen

Short Communication papers 37 ISBN 978-80-86943-02-2

Short Communication papers 38 ISBN 978-80-86943-02-2

LODManager: a framework for rendering multiresolution
models in real-time applications

J. Gumbau
Universitat Jaume I,

Castellón, Spain
jgumbau@uji.es

O. Ripolles
Universitat Jaume I,

Castellón, Spain
oripolle@uji.es

M. Chover
Universitat Jaume I,

Castellón, Spain
chover@uji.es

ABSTRACT

Many papers have addressed the problem of achieving real time visualization in interactive applications where millions of
polygons are rendered and many objects are visualized. Multiresolution modeling has proven to be a good solution, as it
diminishes the quantity of geometry to render. But this solution is not widely used because it presents inefficient level of
detail update routines that lower the overall performance. We are introducing a set of techniques to adapt the level of detail
while meeting time constraints and maintaining image quality. In order to fulfil the requirements of current game engines, the
LODManager considers exploiting graphics hardware and reuses as possible those levels of detail already calculated. Finally,
we will show the integration of our LODManager in a game engine and we will prove the validity of our solution in an interactive
application.

Keywords: Real-time rendering, level of detail, scene management

1 INTRODUCTION
In recent years, computer graphics have experienced an
intense evolution as new graphics hardware offers a fi-
nal image quality that was totally impossible to imagine
a few years before. This way, interactive graphics ap-
plications, such as computer games, virtual reality envi-
ronments or CAD applications, include more complex
scenes to offer very detailed environments.

The necessity of highly realistic scenarios often in-
volves including many polygonal meshes made up of
a high number of triangles, which poses a problem for
maintaining interactivity. In these applications, it is im-
portant to guarantee stable frame rates while reducing
perceived lag [15]. The lag, which is the delay between
performing an action and seeing the result of that ac-
tion, is as important as the frame rate to perceive inter-
activity in an application.

One of the possible solutions to this problem is the
use of continuous level-of-detail techniques to maintain
a balance between image quality and rendering speed.
Nowadays, multiresolution modeling can be considered
as a compulsory feature of libraries and game engines.
In this sense, graphics libraries like OpenInventor or
OSG, and game engines such as Torque or Ogre, in-
troduce multiresolution models to easily alleviate the
amount of geometry that must be rendered in a scene,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech Re-
public.

thus resulting in an improvement in performance. Most
of them use static heuristics, like the distance or the
screen-space area, as the metric to select the suitable
level of detail. Other works like [1] add a criterion
based on the occlusion information to obtain a tighter
estimation of the contribution of each object to the
scene. These heuristics, despite improving frame rates,
are usually not enough. They cannot guarantee stable
frame rates and often present jerky frame rates, as they
are not adaptive and cannot work correctly in scenar-
ios where objects are moving in and out of the scene or
where the objects become bigger or smaller quickly.

In order to improve the results of the static heuris-
tics, some authors have introduced the use of feedback
algorithms, which take into account the past rendering
times. These algorithms, even though are more adapted
to the rendering conditions, also suffer from oscillation
and unavoidable overshoot when rendering discontinu-
ous environments. They present a good alternative for
scenarios where there’s a large amount of coherence be-
tween frames, as it happens with flight simulators. This
is the case of the solution presented in [6], which pro-
vides temporal coherence through the runtime creation
of geomorphs to control de level of detail.

Funkhouser and Séquin [4] demonstrated that it is
necessary to use a predictive selection scheme, based
mainly on the complexity of the current frame, rather
than a reactive framework, based on the feedback ob-
tained. They formulated this problem as an optimiza-
tion task which is equivalent to a constrained version of
the Multiple Choice Knapsack Problem. Even though
this problem is NP-complete, some authors like [4] or
[9] obtained several techniques that could only guaran-
tee a solution that is at least half as good as the optimum
one. [14] reconsidered this problem for the special case

Short Communication papers 39 ISBN 978-80-86943-02-2

of continuous multiresolution models, obtaining a non-
iterative closed form solution which was cheap to eval-
uate for every frame.

This way, the problem of the time-critical multires-
olution rendering can be presented as an optimization
problem for finding the LOD that maximizes the scene
quality under timing constraints. Funkhouser and
Séquin [4] developed a generalization of the predictive
approach, using approximate heuristics of the cost and
the quality obtained that were efficient and accurate
enough to obtain the best image possible within the
target frame time. The work in [5] extended the use of
predictive techniques with more precise heuristics for
the cost and the benefit of the resolution of the objects.
It also considers temporal coherence to minimize
sudden changes, although the authors did not include it
in their tests. These optimizations are very accurate but
costly, and as they assign one variable for each object,
rendering scenes with a large number of objects tends
to be a slow solution.

All the previous approaches apply different kinds of
heuristics: static, feedback or predictive. But, in all
cases, it is necessary to use a criterion to select the
most adequate level of detail. This way, it is possible
to use the size, the speed, the position in the scene, etc.
Many authors have addressed the necessity of investi-
gating how the human perception system works. [11]
considers the necessity of including an analysis of the
human visual system to understand how it works and to
offer more adequate results, extending his results in his
subsequent publications. In this sense, several authors
have included biometrics into their heuristics, consider-
ing spatiotemporal sensitivity [17] or developing frame-
works with eye tracking as the basis [2].

Other authors have addressed this problem from dif-
ferent points of view. The approach presented in [13]
uses a multiresolution hierarchy based on bounding
spheres with a rendering system based on points spe-
cially designed for 3D scanned models with a great ge-
ometric complexity. They perform the LOD selection
based on the projected size in the screen, and adjust
the threshold from frame to frame. They also gradu-
ally refine the model when the viewpoint is not moved
for a period of time. In [3] it is presented a hierarchi-
cal solution which represents the environment with a
scene graph and automatically calculates the different
approximations of portions of the scene graph. Dif-
ferent researchers have presented architectures to solve
this problem, like [7], which use a distributed render-
ing architecture to obtain a stable frame-rate, or [8],
which proposes a parallel architecture combined with
levels-of-detail and occlusion culling techniques. The
most novel aspect of [16] is the concept of interruptible
rendering, which finds a rational compromise between
spatial and temporal detail. They produce a complete
image in the back buffer almost immediately and then

incrementally refine it so that the refinement can be in-
terrupted at any time. Zach [18] presents a solution
based on geomorphing where the LOD management is
achieved by distributing the LOD selection and calcula-
tion between several frames, reusing the old resolution
until the new one is ready. As the new LODs will appear
in future frames, they need a path prediction process to
obtain future viewpoints an directions. They also use
cost and benefits computation, but include some feed-
back strategy to compensate for some assumptions they
make. These authors extended their work in [19], pre-
senting an approach for discrete and continuous models
where the time spent for LOD selection is amortized
over several frames.

This paper presents the following structure. Section
2 presents the motivation for developing this LODMan-
ager. Section 3 contains an overview of the approach
we are presenting. Section 4 discusses the architec-
tural design of the LODManager. Section 5 presents
the results obtained and sketches briefly the framework
where this LODManager was tested. Lastly, Section 6
contains comments on the results and outlines the future
work.

2 MOTIVATION
Many of these articles were written in the early days
of the GPUs (or even in earlier times [4]) when it was
advisable to spend some CPU processing time to opti-
mize the GPU rendering process. Nowadays, due to the
great scalability of the graphics cards, we must revise
all that previous work to provide an updated and prac-
tical viewpoint of that situation: overloading the CPU
is a delicate task that in most cases will cause it to be a
bottleneck for the graphics hardware.

All the previous works have in common that, to op-
timize the GPU usage, they apply complex heuristics
that have an important CPU penalty. This issue is spe-
cialy problematic when dealing with scenes with lots
(some hundreds or even thousands) of LOD objects.
This way, these solutions tend to be CPU bounded, lim-
iting the gross horsepower of the GPUs. In addition,
many of them present high memory overheads, while
others guarantee image quality but not a stable frame
rate. Furthermore, many of the papers which present
hierarchies or pre-calculate LODs are not suitable for
dynamic scenarios as they are aimed at environments
with infrequent motion.

Therefore, the aim of this method is to offer real-time
rendering of dynamic scenes, by means of a LOD man-
ager with very low CPU requirements, freeing the CPU
by minimizing the number of real changes in levels of
detail. We provide a simple while effective method that
lowers the CPU usage in order to keep the bottleneck
on the GPU. This work also uses the concept of frame
rate feedback to automatically adapt the level of detail
of the scene to achieve a target user-defined frame rate.

Short Communication papers 40 ISBN 978-80-86943-02-2

Figure 1: Left: A LOD scene composed by 3000 LOD objects. Right: A LOD forest populated with 100 highly
detailed trees.

This approach (explained in section 4.2) offers more in-
teresting results as it is an adaptive solution. Adaptive
display has been lately presented as the most suitable
solution to maintain a balance between accuracy and
interactivity, while minimizing the CPU usage as much
as possible.

3 OVERVIEW OF THE APPROACH
Continuous multiresolution LOD models have always
had an associated extraction time. This is defined as the
time needed to compute the new level of detail and to
make it ready to be rendered. For this reason, chang-
ing the level of detail of a high amount of LOD objects
independently tends to be completely unefficient.

The aim of the work presented here is to provide a
framework on which a scene populated with a large
number of multiresolution objects (like a crowd in a
scene or the vegetation in a forest) can be managed ef-
ficiently. This management is based in the fact that a
multiresolution scene can contain a number NT of mul-
tiresolution objects of the same type T . When this oc-
curs, there is a certain possibility that two or more ob-
jects can share a similar level of detail. This similarity
S factor will be explained later. The objective of the
LODManager is to minimize the number of changes in
levels of detail to avoid recalculations. Therefore, the
LODManager must be able to reassign previously cal-
culated levels of detail.

To make this feature effective, the LOD objects must
implement a fast LOD switching functionality to allow
a low-cost update of their active rendering geometry.
For example, this can be accomplished in a real game
engine by changing the object’s active index buffer by
the one supplied by the LODManager. Thus, a LOD
object can hold its own level of detail or a borrowed
one.

Using this technique the number of changes in levels
of detail can be minimized depending on the similarity
factor and on the quantity of objects that need to change

to a particular precalculated LOD, so that they can share
it.

The main contribution of this approach is that
the heuristics proposed in this article, despite being
simpler, are faster and effective to manage big scenes
with lots of several LOD objects virtually changing
its LOD at the same time. Moreover, the method of
sharing already calculated LOD data is completely
GPU-compliant (because in practice LOD objects
share precalculated index buffers) which lowers the
CPU usage for LOD calculations in this kind of scenes.

The core technique of this method is the discretiza-
tion of continuous LOD data on-the-fly by maintain-
ing a user-defined number of different discretizations.
These discrete levels of detail are recalculated in real-
time using a continuous LOD algorithm. The objects in
the scene can decide if they should use one of the avail-
able levels of detail or if it is better to calculate their
own LOD. Therefore, this technique offers a continu-
ous range of approximations while exploiting the simi-
larity between the objects sharing levels of detail. This
method will be explained more deeply in section 4.

4 ARCHITECTURE
Let V be an array where the LODManager stores ref-
erences to all LOD objects in the scene. These objects
might be of different types. Two objects are said to be
of the same type T if they use the same geometry. We
create an array DT of a user defined length NT for each
type of object. These arrays will store the discretiza-
tions at different levels of detail of that type of object.
We assume that the level of detail is defined by a LOD
factor between 0 and 1, where 0 and 1 represents the
minimum and maximum levels of detail, respectively.

More precisely, a position i in the array DT contains a
discrete LOD associated to level of detail i/NT ∈ [0,1].
For example, assume an array DT of length 2. The first
position in the array would represent a discrete snap-
shot for the range [0,0.5) and the second position an
snapshot for the range [0.5,1].

Short Communication papers 41 ISBN 978-80-86943-02-2

O0

PVO

O2

Oi1 (0,55)

Oi0 (0,65)

Oin (0,57)

…

Oi

O1

On

Object i

Instances of i

(0,56)

(0,61)

(0,32)

…

Dynamic

LOD table

Index Buffer

Index Buffer

Index Buffer

Vertex Buffer

GPUCPU

Oin (0,30)

…

(DT)

(V)

(A)

Figure 2: The LODManager architecture.

This discretization of levels of detail defined by NT
also defines the similarity factor the algorithm will use
to decide when two objects are similar enough to share
the same level of detail. Two objects at two different
LODs are similar when they can be stored in the same
position of DT . More formally, we define a similarity
boolean function S as:

S(OT
1 ,OT

2)↔ trunc[lod(OT
1)·NT] = trunc[lod(OT

2)·NT]

where lod(O)∈ [0,1] returns the LOD factor at which
an object O is represented.

We can also define the similarity between two LOD
factors in the same way:

S(lod f1, lod f2,T)↔ trunc[lod f1 ·NT] = trunc[lod f2 ·NT]
(1)

Figure 2 presents the LODManager architecture. It
shows a snapshot state of the LOD managing system:
some objects in the scene (V) use some discretizations
(from DT). It can be seen that only those objects be-
longing to the Potential Visible Objects list (A) are be-
ing referenced as current active objects. Each element
of DT points to an active index buffer in GPU memory
that represents the object at a certain LOD.

4.1 Algorithm
First of all, an array DT is created for each different
type of objects in V . Each position of each array DT is
initialized to /0.

At each Update step, the LODManager iterates V =
(V0,V1, ...,Vn). Each object Vi has associated a type T
and a desired target LOD factor (dlod(Vi)). The way
this desired LOD factor is calculated is explained in
section 4.2. Thus, for each element Vi:

1. Discard any LOD change if the object has a simi-
lar LOD factor compared to the desired one. This
comparison is performed using the similarity func-
tion described in equation (1).

2. If the LOD must be changed:

(a) Find an object FT which has a similar level of
detail. This is done by accessing at the position
trunc[dlod(Vi) ·NT] at the array DT (where T is
the type of the object Vi).

(b) Compare the similarity of lod factor of FT to
dlod(Vi). This can be done using equation (1).

(c) If they are NOT similar enough:

i. Change the level of detail of the object Vi

ii. Update lod f (Vi) with the new LOD factor.
iii. Calculate the position in DT depending on

lod f (Vi) (using this formula: trunc[lod f (Vi) ·
NT]). After this step, that position of DT
points to the object Vi.

(d) If they are similar enough:

i. Make Vi to use the level of detail already cal-
culated by FT . In practical terms it means to
make Vi use the index buffer of FT .

ii. if Vi ∈ DT → Remove Vi from DT .

It is important to note that the implementation must
be aware of sharing index buffers. When an object bor-
rows the index buffer from another it is important that
the original object stores a reference to its own index
buffer. That’s because when an object changes its level
of detail, it must update its own index buffer, not the
borrowed one.

The number of elements in DT affects the perfor-
mance as it represents the number of discretizations
available, and therefore affects the number of LOD re-
calculations. The user can freely increase the number
of elements in DT for finer granularity of the similarity
comparisons, as the spatial cost can be negligible as it
only stores references to objects.

4.2 Heuristics
The active objects list. In order to simplify the algo-
rithm explanation, we have assumed that the algorithm
iterates through the whole list of objects in the scene
(V). However, when dealing with a high number of
LOD objects, iterating through all those elements tends
to be unefficient. To solve this problem, a list of active
(or more important) objects (A) can be maintained. For
deciding which objects must be included or excluded
from the active objects list, we create an initially empty
list A of a user-defined constant size Na. Every object
Vi has a value assigned depending on the difference be-
tween the ideal LOD and the real LOD lod f (Vi). Ob-
jects outside the frustum are given a penalization factor
to ensure that the algorithm potentially discards them.
Thus, objects outside the frustum will only have the op-
portunity to be included it they are near enough to the
camera, or in other words, if they are about to be in-
cluded in the frustum.

Short Communication papers 42 ISBN 978-80-86943-02-2

Figure 3: Perturbation function to calculate the desired
LOD factor to adapt it to the current frame rate. For
example, n = 2 will cause a global reduction in the de-
sired LOD factors.

The desired LOD factor. We define the desired LOD
factor (or dlod f (Vi)) associated to a LOD object as the
ideal LOD the object needs to change to, depending
on certain heuristics. We define it as ideal because an
object Va can takes an already precalculated LOD, by
similarity, from another object Vb, that may have not
exactly the same LOD factor.

To calculate dlod f (Vi) we use an heuristic that takes
as input the distance of the object to the camera and
the current application frame rate. The distance to the
camera defines a linear function that is mapped to the
range [0,1], as shown below:

lod =− distcam− rangenear

range f ar− rangenear

This value is clamped to the range [0,1] and is per-
turbed depending on the current frame. The aim is to
use the frame rate as a feedback parameter to alter the
linearity of the LOD function to fulfil that: 1) if we
are running under the desired frame rate, we must use
coarser levels of detail; and 2) if we are running above,
more objects will increase their LOD. We use the two
perturbing functions dlod f = lodn and dlod f = lod1/n

to increase or decrease, respectively, the global desired
level of detail. The higher the parameter n, the faster
the objects will increase or decrease their LOD. An il-
lustrative picture is shown in Figure 3.

4.3 Non-linear precalculated LOD inter-
vals

We have assumed for clarity that the vector DT , which
stores snapshots of previously calculated levels of de-
tail, has a linear distribution. However, more real ap-
plications will prefer to use a non-linear distribution to
allow for much finer LOD changes for closer models
and much coarser LOD changes for objects that are far
away from the viewer.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Linear distributed LOD snapshots along viewing distance:

Non-linear distributed LOD snapshots along viewing distance:

near far

near far

Figure 4: Linear vs non-linear LOD snapshots distribu-
tion

This distribution function can be customized by the
user so that it can be used in very different client ap-
plications and situations. An illustration can be seen in
Figure 4.

This optimization will reduce popping effects be-
cause queries for closer models will be classified with
less granularity. It is important to notice that equation 1
should be adapted to the new snapshot distribution.

5 IMPLEMENTATION AND RESULTS
5.1 Library usage
We have implemented this method as a library which
is independent of the underlying multiresolution model
used to represent the objects. There are only some re-
quirements that the multiresolution model must fulfil.
These requirements are:

• The objects must provide an interface to change their
level of detail. This interface must be implemented
using the range [0,1] as the active LOD range.

• The objects must be able to implement a fast LOD
switching functionality. In practice, this can be done
by borrowing index buffers from other objects while
keeping the original index buffer for further LOD
calculations.

Our implementation provides a LodObject class
interface that provides some virtual functions the mul-
tiresolution that the models must implement. Thus, it is
really simple to handle several types of different mul-
tiresolution models inside the same scene.

5.2 LOD Models
In our implementation we have used two different mul-
tiresolution models: one for general meshes called Lod-
Strips [10] and another one designed to handle the fo-
liage of plants and trees, which we will call LodTrees
[12].

Short Communication papers 43 ISBN 978-80-86943-02-2

LodStrips is a multiresolution model based on trian-
gle strips. It efficiently defines a continuous sequence
of level of detail changes from a base mesh. It is a
index-based multiresolution model, i.e. it calculates the
current index set for a defined level of detail, without
affecting to the vertex list.

LodTrees is a multiresolution model used to handle a
continuous level of detail management for the foliage of
trees and plants. It is based on a leaf-collapse operation
in which each simplification step removes two leaves
and replaces them by a new single leaf that keeps the
appearance.

Both models require a certain amount of time to
change the level of detail, depending on how much
change must be accomplished, and they can easily im-
plement the fast LOD switching functionality described
in section 3. Therefore, they are valid base multiresolu-
tion models to demonstrate the usefulness of our man-
ager.

5.3 Tests and results
We have used two different polygonal models for the
tests. The Ogre mesh features 1960 triangles and its
minimum level of detail reduces the triangle count to
a 10%. It implements the LodStrips algorithm (briefly
described in section 5.2). The Tree mesh represents an
Olea europaea with 97133 triangles at full level of de-
tail; it uses the LodTree algorithm to reduce its triangle
count to 10% at its minimum level of detail.

Two different tests are proposed: a performance test
which measures the performance boost when using the
LODManager, and a visual quality test that will prove
the visual acceptability of the method. The test machine
has been an Athlon 64 3500+ with 1 Gb RAM and a
GeForce 6800 Ultra.
Performance test We have used two different test
scenes. The first scene has been populated with 3000
independent LOD objects of the Ogre mesh, shown in
Figure 1. The second scene adds 100 tree LOD objects
to the previous one to show how the algorithm can deal
with heterogeneous scenes.

All demos move the camera through a predefined
path. Figure 6 shows the frame rate comparison en-
abling and disabling the LODManager in both scenes.
Thus, the improvements in performance offered by the
LODManager can be easly measured. In addition, this
Figure offers the number of triangles rendered during
the walkthrough. These graphs are a good help to un-
derstand the frame rate obtained, and also proves how
the number of triangles rendered with and without the
LODManager is nearly the same, proving that our solu-
tion offers higher frame rates while maintaining a sim-
ilar visual quality.

The two graphs on top of Figure 6 show a similar pat-
tern: the LODManager efficiently manages level of de-
tail changes and minimizes the CPU consumption due

Figure 5: Top: screenshot of a scene using the LOD-
Manager. Middle: screenshot of the scene with the
LODManager disabled. Bottom: per-pixel differences
between the other two pictures

to the LOD management. In fact, when dealing with
scenes with a high count of independent LOD objects
(like in the scene of the 3000 ogres), the CPU con-
sumption dedicated to LOD changes can become the
bottle neck of the application reducing the performance
to make it unsuitable for interactive content.

Visual quality test We have provided some perfor-
mance tests where our LODManager proves its useful-
ness in Lod scenes populated with lots of independent
LOD objects. Now we will show that our heuristics
do not affect the visual quality of the models in a sig-
nificant manner. The top image in Figure 5 shows the
scene populated with ogres using our technique to man-

Short Communication papers 44 ISBN 978-80-86943-02-2

Figure 6: Performance comparison with and without LODManager in two different scenes, showing the FPS and
triangles rendered throughout the scenes.

age the level of detail of the whole scene. The middle
image shows the same scene without any LOD man-
agement approach active, i.e. each independent object
treats its own level of detail independently. The differ-
ences caused by our method are shown in the Figure 5,
where a red pixel shows a difference between the two
images. We can see that the visual differences are al-
most imperceptible.

6 CONCLUSIONS
We have introduced a new technique to minimize the
number of level of detail changes of a scene populated
with a high count of LOD objects. This technique al-
lows the reuse of LOD calculations to minimize the
CPU computation time. In section 1 we have analyzed
some methods which use more complicated heuristics
than ours, and thus, require more computation time.
Our algorithm also features a feedback heuristic that is
able to globally reduce or increase the LOD of the scene
to achieve a user defined frame rate.

Nowadays, the great scalability of the graphics pro-
cessor units has contributed to make them far more
powerful than the CPUs. Thus, real world applications
tend to be CPU bound and the GPU becomes limited by
the CPU power. It is more useful a technique that saves
CPU time as well as providing an real world acceptable
LOD management, rather than more sophisticated tech-
niques that consumes CPU to save GPU cycles. This

is specially true when dealing with scenes with a high
number of LOD objects, where predictive methods tend
to be completely unsuitable for real time applications.

Even though our technique has been designed to be
much simpler than predictive heuristics, it has proved to
be simple to implement and effective to minimize CPU
consumption, to manage heterogeneous LOD scenes
and to help maintain a target user-defined frame rate.

ACKNOWLEDGEMENTS
This work has been supported by the Spanish Min-
istry of Science and Technology (TIN2004-07451-C03-
03), the Spanish Ministry of Science and Education
(FPU grants), the European Union (IST-2-004363) and
FEDER funds.

REFERENCES
[1] Carlos Andújar, Carlos Saona-Vázquez, Isabel

Navazo, and Pere Brunet. Integrating occlusion
culling with levels of detail through hardly-visible
sets. Computer Graphics Forum (Proceedings of
Eurographics ’00), 3:499–506, 2000.

[2] R. Danforth, A. Duchowski, R. Geist, and
E. McAliley. A platform for gaze-contingent vir-
tual environments, 2000.

[3] Carl Erikson and Dinesh Manocha. Hierarchical
levels of detail for fast display of large static and

Short Communication papers 45 ISBN 978-80-86943-02-2

dynamic environments. Technical report, Chapel
Hill, NC, USA, 2000.

[4] Thomas A. Funkhouser and Carlo H. Séquin.
Adaptive display algorithm for interactive frame
rates during visualization of complex virtual envi-
ronments. Computer Graphics, 27(Annual Con-
ference Series):247–254, 1993.

[5] Enrico Gobbetti and Eric Bouvier. Time-critical
multiresolution scene rendering. In Proceedings
IEEE Visualization, pages 123–130, Conference
held in San Francisco, CA, USA, October 1999.
IEEE Computer Society Press.

[6] Hugues Hoppe. Smooth view-dependent level-of-
detail control and its application to terrain render-
ing. In VIS ’98: Proceedings of the conference
on Visualization ’98, pages 35–42, Los Alamitos,
CA, USA, 1998. IEEE Computer Society Press.

[7] J. Edward Swan II, Jesus Arango, and Bala Kr-
ishna Nakshatrala. Interactive distributed
hardware-accelerated LOD-sprite terrain render-
ing with stable frame rates. In Proc. SPIE Vol.
4665, p. 177-188, Visualization and Data Analy-
sis 2002, pages 177–188, March 2002.

[8] William V. Baxter III, Avneesh Sud, Naga K.
Govindaraju, and Dinesh Manocha. Gigawalk: in-
teractive walkthrough of complex environments.
In EGRW ’02: Proceedings of the 13th Euro-
graphics workshop on Rendering, pages 203–214,
Aire-la-Ville, Switzerland, Switzerland, 2002.
Eurographics Association.

[9] Ashton E. W. Mason and Edwin H. Blake.
A graphical representation of the state spaces
of hierarchical level-of-detail scene descriptions.
IEEE Transactions on Visualization and Com-
puter Graphics, 7(1):70–75, 2001.

[10] J. F. Ramos and M. Chover. Lodstrips: Level of
detail strips. In International Conference on Com-
putational Science, pages 107–114, 2004.

[11] Martin Reddy. Reducing lags in virtual reality
systems using motion-sensitive level of detail. In
Proceedings of the second UK VR-SIG Confer-
ence, 1994.

[12] I. Remolar, M. Chover, J. Ribelles, and O. Bel-
monte. View-dependent multiresolution model
for foliage. Journal of WSCG’03, 11(2):370–378,
2003.

[13] Szymon Rusinkiewicz and Marc Levoy. QSplat:
A multiresolution point rendering system for large
meshes. In Kurt Akeley, editor, Siggraph 2000,
Computer Graphics Proceedings, pages 343–352.
ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 2000.

[14] Michael Wimmer and Dieter Schmalstieg. Load
balancing for smooth lods. Technical Report TR-

186-2-98-31, Institute of Computer Graphics and
Algorithms, Vienna University of Technology,
Favoritenstrasse 9-11/186, A-1040 Vienna, Aus-
tria, December 1998. human contact: technical-
report@cg.tuwien.ac.at.

[15] M. Wloka. Lag in multiprocessor virtual reality.
Presence, 4(1):50–63, 1995.

[16] Cliff Woolley, David Luebke, Benjamin Watson,
and Abhinav Dayal. Interruptible rendering. In
SI3D ’03: Proceedings of the 2003 symposium
on Interactive 3D graphics, pages 143–151, New
York, NY, USA, 2003. ACM Press.

[17] Hector Yee, Sumanita Pattanaik, and Donald P.
Greenberg. Spatiotemporal sensitivity and visual
attention for efficient rendering of dynamic en-
vironments. In ACM Transactions on Graphics,
pages 39–65. ACM Press, 2001.

[18] Christopher Zach. Integration of geomorphing
into level of detail management for realtime ren-
dering. In SCCG ’02: Proceedings of the 18th
spring conference on Computer graphics, pages
115–122, New York, NY, USA, 2002. ACM Press.

[19] Christopher Zach, Stephan Mantler, and Konrad
Karner. Time-critical rendering of discrete and
continuous levels of detail. In VRST ’02: Pro-
ceedings of the ACM symposium on Virtual reality
software and technology, pages 1–8, New York,
NY, USA, 2002. ACM Press.

Short Communication papers 46 ISBN 978-80-86943-02-2

Fast Filtering and Tone Mapping using Importance sampling
Balázs Tóth and László Szirmay-Kalos

tbalazs@sch.bme.hu - szirmay@iit.bme.hu
Dept. of Control Engineering and Information Technology

Budapest University of Technology and Economics
Magyar Tudósok krt. 2., H-1117, Hungary

ABSTRACT

This paper examines the process of tone mapping and blooming, and then discusses its real-time implementation on current
graphics hardware (GPU). The main contribution of this paper is a fast Gaussian filtering algorithm that significantly reduces the
number of texture fetches and thus runs at interactive frame rates on the GPU. The reduction of the number of texture fetches is
made possible by the rewriting of the filtering integral according to the concept of importance sampling. The proposed method
can be used not only in tone mapping but also in other screen space camera effects as well, like bloom, glow or depth of field.

Keywords: Filtering, GPU programming, Importance sampling.

1 INTRODUCTION
Full screen framebuffer effects are integral parts of the
rendering process if we want to create high quality im-
ages. It is important to make these effects as fast as
possible, because they are applied to the whole frame-
buffer. These effects are computed by rendering a full
screen quadrilateral to get the pixel shader to process
every pixel.

Full screen frame buffer effects include many impor-
tant particular methods, such as tone mapping, glow
generation, or depth of field. These methods require
weighted averages of pixel values at different neighbor-
hoods, which can be obtained by convolving the im-
age with the particular filter kernel. Thus the efficient
implementation of filtering is a key to the fast realiza-
tion of such effects. In this paper we consider the ef-
ficient realization of the 2D Gaussian filter. However,
we should emphasize that the basic ideas can be used
for other filters as well. Having proposed a fast filter-
ing scheme, we present different applications, including
bloom and temporal tone mapping.

2 FILTERING METHOD
Gaussian filtering is the most time critical part of the
GPU implementation of many screen space methods. If
we do it naively, the fragment shader needs to access
the texture memory many times to fetch values in the
neighborhood.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency - Science Press, Plzen, Czech Republic.

The general form of the Gaussian filter is

L′(X ,Y) =

∞∫
y=−∞

∞∫
x=−∞

L(X − x,Y − y)
1

2πσ2 e

(
− x2+y2

2σ2

)
dxdy.

Taking advantage of the fact that the exponential
function diminishes quickly, the infinite integrals can
be approximated by finite integrals:

L′(X ,Y) ≈
S∫

y=−S

S∫
x=−S

L(X − x,Y − y)
1

2πσ2 e

(
− x2+y2

2σ2

)
dxdy.

This double integral is replaced by double summations
for discrete images. If the domain of [−S,S]× [−S,S]
contains N ×N discrete samples, then the discrete inte-
gral approximation requires the evaluation of N2 kernel
values, multiplications, and additions, which is rather
costly when repeated for every pixel of the screen.

2.1 Separation of dimensions
One common way of reducing the computation burden
of 2D filtering is to exploit the separability of the filter
kernel. It is based on the recognition that the two di-
mensional convolution can be replaced by a vertical and
a horizontal one-dimensional convolutions. The double
integral is computed in two passes. The first pass results
in the following 2D function:

F(X ,Y) =

S∫
−S

L(X − x,Y)
1√

2πσ
e(− x2

2σ2)dx.

Then the final result can be obtained by filtering F again
with a similar one dimensional filter:

L′(X ,Y) ≈
S∫

−S

F(X ,Y − y)
1√

2πσ
e(− y2

2σ2)dy.

Short Communication papers 47 ISBN 978-80-86943-02-2

In this way the computation complexity can be reduced
from N2 evaluations to 2N evaluations.

2.2 Importance sampling
In this paper, we propose another trick to further reduce
the required computations. This approach is based on
the concept of importance sampling. Let us consider
the

∫
T Y (x− t) · g(t) dt convolution where Y is the im-

age value (e.g. luminance) and g is the filter kernel,
i.e. the Gaussian in our case, and find a function τ(t)
together with its inverse t(τ) so that the following con-
ditions hold

dτ

dt
= g(t) → τ(t) =

t∫
g(t ′)dt ′.

If g is known, then τ can be computed and inverted off
line. Substituting the precomputed t(τ) function into
the integral we obtain

∫
T

Y (x− t) ·g(t) dt =
∫

τ(T)

Y (x− t(τ)) dτ

Approximating the transformed integral taking uni-
formly distributed samples corresponds to a quadrature
of the original integral taking N′ non-uniform samples:

∫

τ(T)

Y (x− t(τ)) dτ ≈ |τ(T)|
N′ ·

N′

∑
i=1

Y (x− t(τi))

where |τ(T)| is the size of the integration domain.

This way we take samples densely where the filter
kernel is large and fetch samples less often farther
away, but do not apply weighting. Note that this allows
us to use a smaller number of samples (N′ < N) and
not to access every pixel in the neighborhood since far
from the center of the filter kernel, the weighting would
eliminate the contribution anyway, so taking dense
samples far from the center would be a waste of time.

The implementation of this approach is quite
straightforward. The required t(τ) function is
computed by integrating the standard Gaussian
function and inverting the integral. The samples
of the resulting t(τ) are hardwired into the shader
(−3.8697,−1.7229,0,1.7229,3.8697). These con-
stants determine where the texture should be fetched.

The convolution is executed separately for the two
directions (this is possible because of the separability
of the Gaussian filter). The horizontal and the vertical
passes are implemented by the following fragment
shaders:

texture LumTex;
half4 DownScaleH(float2 tex0:TEXCOORD0):COLOR
{

float2 du1 = float2(1.7229/Width, 0));
float2 du2 = float2(3.8697/Width, 0));
half4 texLookUp;
texLookUp = tex2D(LumTex, tex0 - du2).r +

tex2D(LumTex, tex0 - du1).r +
tex2D(LumTex, tex0).r +
tex2D(LumTex, tex0 + du1).r +
tex2D(LumTex, tex0 + du2).r;

return half4(texLookUp / 5, 0, 0, 1);
}

half4 DownScaleV(float2 tex0:TEXCOORD0):COLOR
{

float2 dv1 = float2(0, 1.7229/Height));
float2 dv2 = float2(0, 3.8697/Height));
half4 texLookUp;
texLookUp = tex2D(LumTex, tex0 - dv2).r +

tex2D(LumTex, tex0 - dv1).r +
tex2D(LumTex, tex0).r +
tex2D(LumTex, tex0 + dv1).r +
tex2D(LumTex, tex0 + dv2).r;

return half4(texLookUp / 5, 0, 0, 1);
}

In the following sections we apply this filtering
scheme for bloom and tone mapping effects.

3 BLOOM EFFECT
Due to the scattering of light in the optical system of
the eye, sources of relatively strong light cause the de-
crease of contrast in their vicinity. This phenomenon
is called the bloom. Such an effect cannot be naturally
evoked while perceiving an image on a display due to
different viewing conditions and limited maximum lu-
minance of such devices. Thus we should account for
it during rendering.

The attenuation due to blooming at frequency ρ of
the visible spectrum under a given pupil aperture d is
modeled by an Ocular Transfer Function (OTF) [1]:

OTF(ρ ,d) = e−
ρ

20.9−2.1·d 1.3−0.07·d

where

d(Ỹ) = 4.9−3tanh(0.4log10 Ỹ + 1),

and Ỹ is the logarithmic average of the luminance in the
scene. If we want to simulate this effect in a physically
correct way, then we have implement the computation
of the OTF. However in most of the computer graphics
applications, like computer games, the spectacular but
fast result is more important than the physical correct-
ness. Thus we should rather use fast approximations.

An approximative approach differentiates strongly
and weakly radiating parts of the image. Then the
strongly radiating parts are blurred and are added to the
darker regions.

The implementation of this method requires blurring,
which is a Gaussian filtering computed by the method

Short Communication papers 48 ISBN 978-80-86943-02-2

Figure 1: Bloom effect

of the previous section. First the scene is rendered into
a floating point buffer. In this buffer the pixels with high
intensities represents the glowing parts of the scene.
We use a low pass filter to separate these parts to an-
other image buffer. The second step is to blur this im-
age using convolution with Gaussian kernel. After the
blurring pass the original image is combined with the
generated glow image pixel by pixel. To get good re-
sults, we need to use high dynamic range source image,
otherwise we may catch too much or too less “glowing
emitter” part of the image.

We may also add an interesting motion blur like trail-
ing effect to the glow easily. If we store the blurred
glow image we can modulate the next frame’s glow im-
age with it. The length of the trail can be controlled
during the composition with a dimming parameter.

4 TONE MAPPING
Off the shelf monitors can control the intensity just in a
limited, low dynamic range (LDR). Therefore the val-
ues written into the frame buffer are unsigned bytes
in the range of [0, 255], representing values in [0,1],
where 1 corresponds to the maximum intensity of the
monitor. However, global illumination computations
result in high dynamic range (HDR) luminance values
that are not restricted to the range of the monitors. The
conversion of HDR image values to displayable LDR
values is called tone mapping [5]. The conversion is
based on the luminance the human eye is adapted to.
Assuming that our view spans over the image, the adap-
tation luminance will be the average luminance of the
whole image.

Having the adaptation luminance, source luminance
values Y are first mapped to relative luminance Yr:

Yr =
α ·Y

Ỹ
,

where α is a constant of the mapping, which is called
the key value.

The relative luminance values are then mapped to the
displayable [0,1] pixel intensities L using the following
function:

L =
Yr

1 +Yr
. (1)

This formula maps all luminance values to the [0,1]
range in such way that relative luminance Yr = 1 is

mapped to pixel intensity L = 0.5. This property is
used to map a desired luminance level of the scene to
the middle intensity on the display. Mapping a higher
luminance level to middle gray results in a subjectively
dark image whereas mapping lower luminance to mid-
dle gray will give a bright result. Images which we
perceive at low light condition are relatively dark com-
pared to what we see during a day. We can simulate this
impression by modulating the key value with respect to
the adapting luminance in the screen.

Key value α controls whether the tone mapped im-
age appears relatively bright or relatively dark. Its exact
value can be left as user choice, or it can be estimated
automatically based on the relations between minimum,
maximum, and average luminance in the scene [4]. Un-
fortunately, the critical changes in the absolute lumi-
nance values may not always affect the relation between
these three values. For example, this may lead to dark
night scenes appearing as too bright.

Krawczyk [3] proposed an empirical method to cal-
culate the key value. His method is based on the ab-
solute luminance. Since the key value was introduced
in photography, there is no scientifically based experi-
mental data which would provide an appropriate rela-
tion between the key value and the luminance. The low
key is 0.05, the typical choice for moderate illumination
is 0.18, and 0.8 is the high key. Krawczyk empirically
specified key values for several illumination conditions
and interpolated the rest using the following formula:

α(Ỹ) = 1.03− 2
2 + log10(Ỹ + 1)

.

This basic tone mapping process can be extended in
several ways. In the following subsections, we discuss
a local version, the incorporation of the bloom effect
into the tone mapping process, the extension to tempo-
rally varying image sequence, and to cope with scotopic
vision.

4.1 Local tone mapping
The tone mapping function of equation 1 may lead to
the loss of details in the scene due to extensive contrast
compression. Reinhard et al. [4] proposed a solution to
preserve local details by employing a spatially variant
local adaptation value V in equation 1:

Short Communication papers 49 ISBN 978-80-86943-02-2

Figure 2: The adaptation process

L(x,y) =
Yr(x,y)

1 +V(x,y)
,

where x,y are the pixel coordinates.
The local adaptation V equals to the average lumi-

nance in a neighborhood of the pixel. The problem lies
however in the estimation of how large the surround of
the pixel should be. The goal is to have as wide sur-
round as possible, however too large area may lead to
well known inverse gradient artifacts called halos. The
solution is to successively increase the size of a sur-
round on each scale of the pyramid, checking each time
if no artifacts are introduced.

For this purpose a Gaussian pyramid is constructed
with successively increasing kernel size. The Gaussian
for the first scale is one pixel wide, setting kernel size
to s = (2

√
2)−1, on each subsequent scale s is 1.6 times

larger.
Having the current and the previous scales, we

update the perceptual data on a per pixel basis in
a separate rendering pass. The local adaptation is
computed using the measure of the difference between
the previous and the current scale as described in [4].

4.2 Bloom integration into tone mapping
To take account the additional light scattering during
the tone mapping process, we have to create a bloom
map based on the absolute luminance of the picture.

For the bloom map, we first estimate the proper scale
for the luminance of the current pixel. It depends on
the adapting luminance and it is uniform for the whole
frame so we supply it as a parameter to the fragment
program. Before descending to the next scale of the
Gaussian pyramid, the texture containing the current
scale becomes the previous scale, and the texture with
the current set of the perceptual data becomes the pre-
vious set.

After descending to the lowest scale of the Gaussian
pyramid, the perceptual data texture is complete. In the
final rendering step, we tone map the HDR frame and
apply the perceptual effects with the equation

L(x,y) =
Yr +Ybloom

1 +V(x,y)
,

where L is the final pixel intensity value, Yr the rela-
tive luminance, Ybloom is the amount of additional light
scattering in the eye, and V is the local adaptation map.

4.3 Temporal Luminance adaptation
While tone mapping the sequence of HDR frames, it
is important to note that the luminance conditions can
change drastically from frame to frame. The human vi-
sion reacts to such changes through the temporal adap-
tation processes. The time course of adaptation dif-
fers depending on whether we adapt to light or to dark-
ness, and whether we perceive mainly using rods (dur-
ing night) or cones (during a day).

To take into account the adaptation process, a filtered
Ỹa value can be used instead of the actual adapting lu-
minance Ỹ . The filtered value changes according to the
adaptation processes in human vision, eventually reach-
ing the actual value if the adapting luminance is stable
for some time. The process of adaptation can be mod-
eled using an exponential decay function:

Ỹ new
a = Ỹa +(Ỹ − Ỹa) · (1− e−

T
τ)

where T is the discrete time step between the display
of two frames, and τ is the time constant describing the
speed of the adaptation process. These time constants
are different for rods and cones:

τrods ≈ 0.4s, τcones ≈ 0.1s

Therefore, the speed of the adaptation depends on the
level of the illumination in the scene. The time required
to reach the fully adapted state depends also on whether
the observer is adapting to light or dark conditions. The
above numbers describe the adaptation to light. The full
adaptation to dark takes up to tens of minutes, so it’s not
simulated.

4.4 Scotopic vision
On low light conditions only the rods are active, so
color discrimination is not possible. The image be-
comes less colorful. The cones start to loose sensitivity
at 3.4 cd

m2 and become completely insensitive at 0.03 cd
m2

where the rods are dominant. We can model the sensi-
tivity of rods with the following equation:

σ(Y) =
0.04

0.04 +Y

Short Communication papers 50 ISBN 978-80-86943-02-2

Figure 3: The illumination levels during the filtering: original, local, global

where Y denotes the luminance. The value σ = 1 de-
scribes the monochromatic vision and σ = 0 the full
color discrimination.

4.5 Implementation
The global tone mapping operators require the compu-
tation of the global average of the luminance. In the first
step we calculate the luminance value of every pixel us-
ing the standard CIE XYZ transform (D65 white point):

⎡
⎣ X

Y
Z

⎤
⎦ =

⎡
⎣ 0.4124 0.3576 0.1805

0.2126 0.7132 0.0722
0.0193 0.1192 0.9505

⎤
⎦ ·

⎡
⎣ R

G
B

⎤
⎦

The Y component of the XYZ vector is the luminance,
so we can compute it with the following equation:

Y = 0.2126 ·R + 0.7132 ·G+0.0722 ·B.

When we have the luminance image we can calculate
the global average with Gaussian filtering [2]. This can
be a multi step process, as we scale down the luminance
image to one pixel in several passes. We can reduce the
size of the luminance image in every step to reduce the
computation.

We account for the last perceptual effect, the scotopic
vision, while applying the final pixel intensity value to
the RGB channels in the original HDR frame. Using
the following formula, we calculate the tone mapped
RGB values as a combination of the color information
and the monochromatic intensity proportionally to the
scotopic sensitivity:
⎡
⎣ RL

GL
BL

⎤
⎦ =

⎡
⎣ R

G
B

⎤
⎦ L · (1−σ(Y))

Y
+

⎡
⎣ 1.05

0.97
1.27

⎤
⎦Lσ(Y),

where [RL,GL,BL] denotes the tone mapped intensi-
ties, [R,G,B] are the original HDR values, Y is the
luminance, L is the tone mapped luminance, and
σ is the scotopic sensitivity. The constant coeffi-
cients in the monochromatic part account for the blue
shift of the subjective hue of colors for the night scenes.

During the tone mapping process, in every pass we
render a full screen quadrilateral and let the fragment
shader visit each texel. The pixel shader computing the
luminance for each pixel is:

texture SourceTex; // source HDR image
float Luminance(in float2 Tex : TEXCOORD0)
: COLOR
{

float3 col = tex2D(SourceTex, Tex).rgb;
return dot(col, float3(0.21, 0.71, 0.08));

}

In order to downscale the luminance image, Gaussian
filter is used, which is implemented according to the
proposed importance sampling method. The final pass
takes the average luminance value of the neighborhood
and scales the color accordingly:

texture AvgLumTex;

float4 FinalPS(float2 Tex : TEXCOORD0):COLOR
{

float key = 1.03 - 2/
(2+log10(tex2D(AvgLumTex,Tex).r+1));

float relLum=key*tex2D(LumTex, Tex).r /
tex2D(AvgLumTex, Tex).r;

float Lum = relLum / (1+relLum);
float4 col = tex2D(SourceTex, Tex) * Lum;
float gamma = float3(1.05,0.97,1.27)
return pow(col * gamma, 1/2.2);

}

5 CONCLUSION

The proposed filtering method can be effectively im-
plemented on current GPUs. With this variation of the
Gaussian filter we can achieve interactive framerates
during the tone mapping process. The sample shaders
has been implemented in HLSL and integrated into a
game engine. Our test application runs on NV7800
GPU. Without tone mapping the average frame rate is
around 380 fps, with the suggested filtering method we
added postprocessing effects to the application. With
tone mapping the average frame rate is around 300 fps.

The reviewed tone mapping algorithm eliminates the
typical problems of global methods and preserves the
details of the images. The local adaptation part is mod-
ified to take account the large variation of the luminance
values of the pictures. This removes the disturbing halo
artifacts at the luminance jumps. With the simulation of
the temporal adaptation of human eyes, it can be used
to tone map image streams.

Short Communication papers 51 ISBN 978-80-86943-02-2

6 ACKNOWLEDGEMENT
This work has been supported by OTKA (T042735),
GameTools FP6 (IST-2-004363) project, and by the Na-
tional Office for Research and Technology (Hungary)

REFERENCES
[1] R.J. Deelay, N. Drasdo, and W. N. Charman. A

simple parametric model of the human ocular mod-
ulation transfer function. In Ophthalmology and
Physiological Optics, pages 91–93, 1991.

[2] Nolan Goodnight, Rui Wang, and Greg
Humphreys. Interactive time-dependent tone
mapping using programmable graphics hardware.
In Proceedings of Eurographics Symposium on
Rendering 2003. ACM SIGGRAPH, June 2003.

[3] Grzegorz Krawczyk, Karol Myszkowski, and
Hans-Peter Seidel. Perceptual effects in real-time
tone mapping. In Bert Jüttler, editor, Spring Con-
ference on Computer Graphics 2005, pages 195–
202, Budmerice, Slovakia, 2005. ACM.

[4] Erik Reinhard. Parameter estimation for photo-
graphic tone reproduction. In Journal of Graphics
Tools, 2002.

[5] Erik Reinhard, Greg Ward, Sumanta Pattanaik, and
Paul Debevec. High Dynamic Range Imaging.
Morgan Kaufman, 2005.

Figure 4: Original image without tone mapping

Figure 5: Tone mapping with normal light conditions

Figure 6: Tone mapping with bright light conditions

Figure 7: Tone mapping with low light conditions

Short Communication papers 52 ISBN 978-80-86943-02-2

Generalization of ()42 +n -point approximating
subdivision scheme

Kwan Pyo Ko Joon-Jae Lee Nam-Seok Choi Byung-Gook Lee

Graduate School of Design & IT Dongseo University
San 69-1 Jurye-dong Sasang-gu, Busan, S.Korea, 617-716

{kpko, jjlee, d8003150, lbg}@dongseo.ac.kr

ABSTRACT
In this paper, we present explicitly a general formula for the mask of ()2 4n + -point approximating subdivision
scheme with two parameters which reproduces all polynomials of degree 2n 1≤ + . The proposed scheme
generalizes several subdivision schemes such as the Chainkin's algorithm, the 4-point approximating scheme and
the ()2 2n + -point approximating schemes.

Keywords
Approximating subdivision scheme, mask, convergence and smoothness.

1. INTRODUCTION
Subdivision schemes define a smooth curve or
surface as the limit of a sequence of successive
refinements. By these methods at each refinement
step, new inserted points on a finer grid are
computed by affine combination of the already
existing points. In the limit of the recursive process,
data are defined on a dense set of points.

Each subdivision scheme is associated with a mask
, where we use Z to denote the set of all

integers. Throughout the work, we consider schemes
with a mask of finite support. The binary subdivision
scheme is a process which recursively defines a
sequence of control points by a rule of
the form with a mask

a { }i ia ∈=

{ }k k
i if f ∈= Z

a { }i ia ∈=

j

1
2 ,k k

i i j jf a f+
−

∈

=∑
Z

{ }0,1, 2, ,k ∈ K

0

which is denoted formally by 1k k kf Sf S f+ = = .

A subdivision scheme is said to be uniformly
convergent if for every initial data { }0

i if f
∈

= Z ,

there is a continuous function ()f C∈ R such that

for any interval [] ba,

[]
()

2 ,

lim 2 0,sup
k

k k
ik

i a b

f f i−

→∞
∈ ∩

− =
Z

and such that 0f ≠ for some initial data. We denote

the function by and call it a limit function
of subdivision scheme .

f 0S f∞

S

There are two ways to obtain a desired mask. One is
to enlarge the size of support so that we can allow
free parameters in the mask, the other is to fix the
size of support and find specific values of the mask
satisfying a certain property. There is no unique
method of obtaining a mask. Deslauries and Dubuc
[2,5] obtained the mask of a 2 -interpolatory
subdivision scheme reproducing all polynomials of
degree

n

2 1n .≤ − Ko et al. [6] rebuilt the masks of
interpolatory symmetric subdivision schemes such as
4-point and 6-point interpolatory subdivision
schemes, ternary 4-point interpolatory scheme,
butterfly scheme and modified butterfly scheme by
using only two conditions of symmetry and a
necessary condition for smoothness. Ko et al. [7]
obtained a general rule for the construction of the
mask of ()2 4n + -point symmetric subdivision
schemes with two parameters, that reproduces all
polynomials of degree 2 1n≤ + .

For the further study of Ko et al. [7], in much the
same way, we present masks of (-point
stationary approximating subdivision scheme with
two parameters which reproduces all polynomials of
degree

)

1

2 4n +

2n≤ + and the proposed scheme provides
good smoothness. The proposed scheme generalized
the masks of well-known approximating subdivision
scheme such as Chainkin’s algorithm, Dyn et al. [4]
4-point approximating scheme, Choi et al. [1]

Short Communication papers 53 ISBN 978-80-86943-02-2

proposed scheme and B-spline of degree 6. Choi et al.
[1] presented a new class of subdivision schemes.
They proved the convergence, smoothness and
approximation order of the proposed schemes. But
they did not get the explicit formulation for the mask.
The proposed subdivision schemes in this work have
two parameters. For the advantages of using two
parameters, we can get more flexible design of
scheme by setting the two parameters to various
values. And this new formula of the masks will be
useful to analyze the (2n+4)-point approximating
subdivision schemes for further study.

2. CONSTRUCTION OF SCHEME
We denote by the space of all polynomials of
degree for a nonnegative integer n . We
define the Lagrange fundamental polynomials

 corresponding to the nodes { }

2 1nP +

2n≤ +1

(){ } 1n
k k n

L x
+

=−

1n
k nk +
=−

 by

()
1

,
,

n

k
j k j n

x jL x
k j

+

≠ =−

−
=

−∏ (1) , , 1,k n n= − +K

for which

() , ,k k jL j δ= , , , 1,k j n n= − +K (2)

and

() () ()
1

,
n

k
k n

p k L x p x
+

=−

=∑ (3) 2 1.np P +∈

Then it is easy to see that for each 1, , ,j n n= − − K

() ()
()4 1

1 2 1 2 11 1
12 2 2 1

j
j n

n n n
L

n n jj− +

+ + +⎛ ⎞⎛⎛ ⎞ = − ⎜ ⎟⎜⎜ ⎟ + ++⎝ ⎠ ⎝ ⎠⎝
,
⎞
⎟
⎠

 (4)

() () ()
() () ()

1 2 2 !
2 1

! 1 ! 2
j n

j
n

L n
n j n j n j

+ +
−

+
+ = −

− + + + +
, (5)

() () ()
() () ()

2 2 !
1 1

! 1 !
j n

j
n

L n
n j n j n j

+
−

+
− − = −

− + + − +
,

1
 (6)

() () () ()()
()()

2 2 2 12 1
2 1 1 ,(7)

1 2 1
j n

j j
n jn

L n L n
n j n j n j

+
− −

+ ++⎛ ⎞
+ + − − = − ⎜ ⎟+ + + + − +⎝ ⎠

and

()
() ()() ()

1
1 2 1

4 11 ,
4 1 4 4 1 ! 1

n

j n
j n j n

j
L

j n j n j
=− −

− + − +

+⎛ ⎞ =⎜ ⎟
⎝ ⎠ − + − +

∏
!+

 (8)

()
() ()() ()

1
1 2 1

4 33 .
4 1 4 4 3 ! 1

n

j n
j n j n

j
L

j n j n j
=− −

− + − +

+⎛ ⎞ =⎜ ⎟
⎝ ⎠ − + − +

∏
!+

 (9)

These quantities are crucial to find the explicit form
of masks considered in the following process.

We consider the problem of finding masks

{ }2 3

2 4
a=

n
j j n

a
+

=− −
 reproducing polynomials of degree

2n 1≤ + , that is

()2
2 1 ,

4j k
k

ja p k p−
+⎛ ⎞= ⎜ ⎟

⎝ ⎠
∑ (10) 2 1, .nj p P +∈ ∈Z

Throughout this section, we let 2 2 2 3n na aυ + − −= =
and 2 3 2 4na a nω + − −= = , for convenience's sake.
Setting 0j = in (10) and using (2) and (3), the
equation (10) implies

()
2

2
1

1 ,
4

n

k j j
k n

a L k L
+

− − −
=− −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ 1, , .j n= − − K n (11)

We split the summation on the left-hand side of the
equation (11) as

() () () ()

() ()

2 1

2 2 2 2 2 4
1

2 2 2 2 4

1 2

1 2 .

n n

k j k j n j n j
k n k n

j n j n j

a L k a L k a L n a L n

a a L n a L n

+ +

− − − − + − − − −
=− − =−

+ − − − −

= + − − +

= + − − + +

∑ ∑ +

Thus we get the explicit form of for 2 ja
1, , ,j n n= − − K

() (2
1 1)2
4j j j ja L L n L nυ ω− − −

⎛ ⎞= − − − − +⎜ ⎟
⎝ ⎠

. (12)

Also setting 1j = in (10), we get

()
2

1 2
1

3 ,
4

n

k j j
k n

a L k L
+

− − −
=− −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ (13) 1, , .j n n= − − K

By splitting the summation on the left-hand side of
the equation (13) and applying the relation (2), we
get

() () () ()

() ()

2 1

1 2 1 2 2 3 2 3
1

1 2 2 3 2 3

2 1

2 1 .

n n

k j k j n j n j
k n k n

j n j n j

a L k a L k a L n a L n

a a L n a L n

+ +

− − − − − − − + −
=− − =−

+ − − − + −

= + + + −

= + + + − −

∑ ∑ −

Hence we have the explicit form for 2 1ja +

() ()2 1
3 2 1
4j j j ja L L n L nυ ω+ − − −

⎛ ⎞ ,= − + − − −⎜ ⎟
⎝ ⎠

 (14)

for 1, , .j n n= − − K

We can see that the proposed scheme with mask

as given in (12) and
2 ja

2 1ja + as given in (14) satisfies
the polynomial reproducing property up to degree
2n 1+ , because this property is the starting point of
the construction of the mask as formulated (10).

EXAMPLE 1 For 0n = , we have the mask

Short Communication papers 54 ISBN 978-80-86943-02-2

1 3 3 1, , 2 , 2 , 2 , 2 , ,
4 4 4 4

.ω υ υ ω υ ω υ ω υ ω υ ω⎡ + − − + − + + −⎢ ⎥⎣ ⎦
⎤

In case when 0υ ω= = , it becomes the Chaikin’s
scheme:

1 3 3 1, , , .
4 4 4 4
⎡ ⎤
⎢ ⎥⎣ ⎦

If we set 5= ,
128 128

ω υ− = −
7 , we have the mask of

Dyn et al.[4] 4-point approximating scheme:

5 7 35 105 105 35 7 5, , , , , , , .
128 128 128 128 128 128 128 128
− − − −⎡

⎢⎣ ⎦
⎤
⎥

When we set 3 ,
32

υ ω= − − we get the same mask as

Choi et al. [1] proposed for case: 3L =

3 5 15 15 5 3, , 3 , 3 , 3 , 3 , , .
32 32 16 16 32 32

ω ω ω ω ω ω ω ω− −⎡ ⎤− − + + − −⎢ ⎥⎣ ⎦

Also, when we set 7 1,
64 64

υ ω= = , this subdivision

scheme becomes the B-spline of degree 6
subdivision scheme:

1 7 21 35 35 21 7 1, , , , , , , .
64 64 64 64 64 64 64 64
⎡ ⎤
⎢ ⎥⎣ ⎦

3. ANALYSIS OF SCHEME
For the convergent subdivision scheme the
corresponding mask {

,S
}i ia
∈Z necessarily satisfies

 (15) 2 2 1 1.i i
i i

a a +
∈ ∈

=∑ ∑
Z Z

=

We introduce a symbol called the Laurent
polynomial

() : i
i

i
a z a z

∈

=∑
Z

of a mask { } with finite support. The
corresponding symbols play a efficient role to
analyze the convergence and smoothness of
subdivision scheme.

i ia
∈Z

With the symbol, Dyn [3] provided a sufficient and
necessary condition for a uniformly convergent
subdivision scheme: For a subdivision scheme
is uniformly convergent if and only if there is an
integer such that

,S S

1,L ≥

1
1 1,
2

L

S
∞

⎛ ⎞ <⎜ ⎟
⎝ ⎠

where is the subdivision scheme associated with

the mask q , where

1S

() 1 ()
2

za z q z+⎛ ⎞= ⎜ ⎟
⎝ ⎠

 and

satisfying
1

1 ,k kdf S df −= 1,2, ,k = K

for the control points 0k kf S f= and

() (){ }1
,

2k k k k k
i ii i

df df f f+
∈

= = −
Z

 and the norm

S
∞

 of a subdivision scheme S with a mask

{ }i ia
∈Z is defined by

2 2 1max , .i i
i i

S a a +∞
∈ ∈

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑
Z Z

From the given mask

1 3 3 1, , 2 , 2 , 2 , 2 , ,
4 4 4 4

a ,ω υ υ ω υ ω υ ω υ ω υ ω⎡ ⎤= + − − + − + + −⎢ ⎥⎣ ⎦
we have

1
1 1 12 , , , 2 2 , , ,
4 2 4

a ,ω υ ω ω υ ω ω υ ω ω⎡ ⎤= − − − + − −⎢ ⎥⎣ ⎦

where () ()1
2 .

1
za z a z
z

=
+

 It is easy to verify that

()a z and ()1a z satisfy the necessary condition (15)
for the convergence of and If S 1.S

1
1 1 1max 2 2 , 2 2 2 1,
2 4 2

S ω ω υ ω υ ω
∞

⎧ ⎫
= + − − + + − <⎨ ⎬

⎩ ⎭
then this scheme converges to continuous limit
function. We have the mask of using equation 2S

() ()2 1
2 ;

1
za z a z
z

=
+

2
1 14 , 2 , , , 2 ,
4 4

a .ω υ ω υ ω υ ω υ ω ω⎡ ⎤= − − + − + −⎢ ⎥⎣ ⎦

If

2
1max 2 2 2 2
4

S ω υ ω υ ω
∞

⎧ ⎫1
= + − + + − <1⎨ ⎬

2 ⎩ ⎭
,

then this scheme is ()1 .C R

For continuity, 2C ()2a z should satisfy (15), which

is true. From the relation () ()3 2
2 ,

1
za z a z
z

=
+

 we

have the mask of 3S

3
18 , 3 , 2 4 , 3 , .
4

a ω υ ω υ ω υ ω ω⎡ ⎤= − − + −⎢ ⎥⎣ ⎦

Short Communication papers 55 ISBN 978-80-86943-02-2

For continuity, should satisfy (15). This

implies

3C ()3a z

13
16

υ ω= + . From this fact, we have

3
1 1 18 , , 2 , , ,

16 8 16
a ω ω ω⎡ ⎤= −⎢ ⎥⎣ ⎦

and if

3
1 1max 8 4 2 , 1,
2 8

S ω ω
∞

⎧ ⎫
= + −⎨ ⎬

⎩ ⎭

1
2

<

then this scheme is ()2 .C R

We get the mask of 4S

4
1 116 , , , ,

16 16
a ω ω ω ω⎡ ⎤= − −⎢ ⎥⎣ ⎦

and

4
1 1max 8 8 1,
2 16

S ω ω
∞

⎧ ⎫
= + −⎨ ⎬

⎩ ⎭
<

which implies that 1 .
32 32

ω− < <
3 Hence this

scheme is in case ()3C R 13
16

υ ω= + and

1 .
32 32

ω− < <
3 We can see that satisfy (15)

for continuity. From the mask of we have
the mask of scheme

()4a z

4C 4 ,S

5S

5
132 , 2 , .

16
a ω ω ω⎡ ⎤= −⎢ ⎥⎣ ⎦

From the necessary condition for continuity, we

get

5C
1
64

ω = and 7
64

υ = and

5
1 1,1, .
2 2

a ⎡ ⎤= ⎢ ⎥⎣ ⎦

Since

5
1 1 1max , 1,
2 2 2

S
∞

⎧ ⎫= <⎨ ⎬
⎩ ⎭

this scheme is We get the mask of ()4 .C R 6S

[]6 1,1 ,a =

and

6
1 1 1max , 1.
2 2 2

S
∞

⎧ ⎫= <⎨ ⎬
⎩ ⎭

Hence this scheme is ()5 .C R

4-point

approximating
scheme

proposed
scheme

Support []4,3− []4,3−
Maximal
regularity

2C 5C

Table 1. Comparison of 4-point Dyn
approximating scheme and proposed scheme

In Table 1, we compare support and maximal
smoothness of 4-point Dyn scheme with those of the
proposed scheme. We can see that for a given same
support of limit function, the proposed scheme
provides good smoothness.

4. REFERENCES
[1] S. W. Choi, B. G. Lee, Y. J. Lee, and J. Yoon:
Stationary subdivision schemes reproducing
polynomials, Computer Aided Geometric Design, 23
(2006), 351-360.
[2] G. Deslauriers and S. Dubuc: Symmetric iterative
interpolation processes, Constr. Approx. 5 (1989),
49-68.
[3] N. Dyn: Subdivision schemes in computer-aided
geometric design, Advances in Numerical Analysis
Vol. II: Wavelets, Subdivision Algorithms and
Radial Basis Functions (W. A. Light ed.), Oxford
University Press, 1992, 36-104.
[4] N. Dyn, M.S. Floater and K. Hormann: A
four-point subdivision scheme with fourth order
accuracy and its extensions, in Mathematical
Methods for Curves and Surfaces: Tromso 2004, M.
Daehlen, K. Morken, and L. L. Schumaker (eds.),
2005, 145-156.

2C

[5] S. Dubuc: Interpolation through an iterative
scheme, J. Math. Anal. and Appl. 114 (1986), 185-
204.
[6] K. P. Ko, B. G. Lee and G. J. Yoon: A study on
the mask of interpolatory symmetric subdivision
schemes, to appear in Applied Mathematics and
Computations, (2006).
[7] K. P. Ko, B. G. Lee, Y. Tang and G. J. Yoon:
General formula for the mask of (symmetric
subdivision schemes, submitted, Journal of
Computational and applied Mathematis.

)2 4n +

Short Communication papers 56 ISBN 978-80-86943-02-2

Automatic Creation of Object Hierarchies for Ray Tracing of
Dynamic Scenes

Martin Eisemann Thorsten Grosch Marcus Magnor Stefan Müller
Institute for Computer University of Institute for Computer University of

Graphics, TU Koblenz-Landau, Graphics, TU Koblenz-Landau
Braunschweig, Germany Germany Braunschweig, Germany Braunschweig
eisemann@cg.tu-bs.de grosch@uni-koblenz.de magnor@cg.tu-bs.de stefan.mueller@uni-koblenz.de

ABSTRACT
Ray tracing acceleration techniques most often consider only static scenes, neglecting the processing time needed
to build the acceleration data structure. With the development of interactive ray tracing systems, this reconstruction
time becomes a serious bottleneck if concerned with dynamic scenes. In this paper, we describe two strategies for
efficient updating of bounding volume hierarchies (BVH) for scenarios with arbitrarily moving objects. The first
exploits spatial locality in the object distribution for faster reinsertion of the moved objects. The second allows
insertion and deletion of objects at almost constant time by using a hybrid system, which combines benefits from
both spatial subdivision and BVHs. Depending on the number of moving objects, our algorithms adjust a dynamic
BVH six to one hundred times faster than it would take to rebuild the complete hierarchy, while rendering times of
the resulting hierarchy remain almost untouched.
Keywords: Ray Tracing, Object Hierarchies, Bounding Volume Hierarchies, Animation, Dynamic Scenes

1 INTRODUCTION
Ray tracing is well known for its ability to create pho-
torealistic images. Recently developed ray tracing sys-
tems are now already able to achieve interactive frame
rates, but their efficiency relies heavily on precalculated
acceleration data structures [15][22][4][17]. The com-
plexity for reconstructing these acceleration data struc-
tures for a scene with n triangles is often O(n logn) or
worse, with the final cost in the ray tracing phase be-
ing only O(logn) per pixel on average. This usually
limits interactive ray tracing to static scenes or simple
walkthroughs, so that the acceleration structure can be
reused for all frames.

For a complete interactive ray tracing system, an effi-
cient support of moving objects is necessary. Therefore,
the acceleration data structures usually have to be re-
build for each frame. Techniques like frameless render-
ing [2] [3] and frustum traversal [17] reduce the amount
of work that has to be done in the ray tracing phase and
almost linear scalability for up to 128 processors has
been shown [15]. But the reconstruction phase cannot
be parallelized as easily, in fact very little research has

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech Republic.

been done on this topic [8]. Thus it becomes the bottle-
neck to interactive ray tracing of dynamic scenes.

In this article we present two approaches to deal with
the problem of ray tracing animated scenes, based on
bounding volume hierarchies (BVH). The first, called
Dynamic Goldsmith and Salmon (Dyn. G&S), exploits
spatial coherence to rapidly update the BVH, while
the second, called Loose Bounding Volume Hierarchy
(LBVH), is a hybrid approach, which allows for recon-
struction of the acceleration data structure in O(n) by
combining the benefits of a BVH with spatial subdivi-
sion.

The rest of the paper is organized as follows. In the
next section we review some related work. Then we
present our approaches of handling dynamic scenes in
Sect. 3. Results and their discussion are given in Sect. 4,
followed by a conclusion and directions to future work
in the final section.

2 RELATED WORK
A large number of methods and algorithms to speed
up ray tracing exist, but most of them are designed for
static images or simple walkthroughs and not much at-
tention has been spent on constructing these accelera-
tion structures efficiently. Therefore, ray tracing of dy-
namic scenes is a rather new field of research, which
gets more and more important as ray tracing gets more
and more accelerated.

Quite early Glassner [5] developed a technique called
Spacetime Ray Tracing. The idea was to intersect rays
with static four-dimensional objects instead of dynamic

Short Communication papers 57 ISBN 978-80-86943-02-2

objects in three-space, whereas the fourth dimension is
time. Unfortunately, this technique is only suitable for
scenes with predefined movements.

Using multiprocessors Parker et al. [15] were able
to ray trace reasonably complex scenes at interactive
frame rates. Moving objects are tested separately for
intersection, which therefore allowed only a small
amount of them (≤ 10).

Reinhard et al. [16] used hierarchical grids for ray
tracing of dynamic scenes. Their data structure is es-
sentially a balanced octree, which keeps objects at dif-
ferent levels, depending on their size. This allows for
insertion and deletion in almost O(1) for an object. De-
pending on the motion, the entire data structure needs
to be rebuild once in a while.

Lext and Akenine-Moeller [11] build hierarchies of
oriented bounding boxes containing recursive grids.
These grids include all primitives which underly the
same affine transformation. It is therefore sufficient
to build them once and transform the rays into the
local coordinate system for performing intersection
tests. We adapt this concept for both of our presented
strategies in this paper.

Wald et al. [21] also exploit local coordinate systems
to animate rigid bodies. But instead of using the scene
graph for traversal between these entities, they rebuilt
the whole top-level data structure every time a move-
ment takes place. This results in quite long update
phases between the frames. A complete rebuild for ev-
ery frame is also proposed in [24], but the underlying
data structure is a uniform grid which can be rebuild
more efficiently, but might suffer from non-uniform ob-
ject distribution.

Guenther et al. [7] use motion decomposition to ray
trace deformable models. The connectivity does not
change and the space of possible poses is known in ad-
vance. The model is decomposed into clusters which
underly a similar transformation. Residual motion is
captured in a single fuzzy kd-tree for the entire anima-
tion.

An example of a lazy evaluation strategy was given
by McNeill et al. [14]. The upper levels of an octree
are build in a preprocessing step, while the rest is build
on demand. They propose to use this technique also
for dynamic environments, but test results were only
presented for static scenes.

Recently, Waechter et al. [20] showed that this con-
cept can be applied to dynamic scenes and very com-
plex scenes. They also proposed a simple, but fast,
global heuristic for choosing the splitting plane of ev-
ery node in their Bounding Interval Hierarchy, which is
similar in spirit to our Loose Bounding Volume Hierar-
chy, even though we do not need to split larger objects
into smaller pieces as they do.

Actually, Larsson and Akenine-Moeller [9] make
strong use of lazy evaluation to ray trace deformable

models, by utilizing the static connectivity between
the triangles and refitting only the upper half of their
preconstructed BVH. The rest gets refitted on demand.
As the structure of the BVH is not allowed to change,
the possible movement of the triangles is rather limited
without degrading performance, even though it can be
sufficient for ray tracing small to mid-sized deformable
scenes [23].

To make this technique applicable for any kind of
scenes, Lauterbach et al. [10] used the ratio between
each parent node’s surface area to the sum of the area
of its two children to detect degradation of the BVH and
rebuilt it on demand.

Another quite interesting approach was presented by
Ulrich [18], called Loose Octrees. It has not been used
in the context of ray tracing so far, only for collision de-
tection and view frustum culling. These Loose Octrees
are a variation of normal octrees which allow inser-
tion in O(1) by using overlapping voxels and choosing
an insertion level depending on the size of the object.
But this overlapping is also the reason why the scheme
works better for collision detection than for view frus-
tum culling.

3 OUR APPROACHES
We assume that the reader is somewhat familiar with the
basic concepts of a BVH and ray tracing, if not see [1].
Rebuilding a BVH for every frame of an animation, us-
ing standard techniques, make it impossible to achieve
interactive frame rates in rather complex scenes. A re-
fitting of the bounding volumes (BV), a recomputing of
the bounds of the BVs, can be done very quickly. But,
depending on the movement of the objects, the quality
of the BVH can arbitrarily decrease, resulting in inac-
ceptable long rendering times for certain scenes.

In this paper we present two approaches to deal with
ray tracing of dynamic scenes with non-predetermined
movement. In Sect. 3.1 a method is presented, which
exploits locality in the acceleration structure for a rapid
update. The second approach in Sect. 3.2 presents a
method for insertion and deletion of an object into a
BVH in almost constant time. For both methods we
introduce a new phase between each frame, the update
phase, in which the animated objects are moved and the
update of the BVH takes place.

For an easier understanding, we first clarify some
terms. A primitive can be any kind of basic geometric
shape, like a triangle or a parametric shape. An object
is either a primitive or a collection of primitives within
its own local coordinate system having its own accel-
eration structure, in our case a BVH. These objects are
stored in a separate list. All leaf cells of our BVHs
possess a pointer towards the object contained in them.
These nodes are called object nodes. In addition, the
objects have a hierarchy pointer, if necessary, which
grants immediate access to the object node in the BVH

Short Communication papers 58 ISBN 978-80-86943-02-2

object
node

objects

hierarchy
pointer

BVH

...

...

Figure 1: Overview of the notations. BVH: Bounding
Volume Hierarchy

containing the object. This is one of the biggest advan-
tages of BVHs compared to other acceleration struc-
tures, every object is contained in just a single node of
the BVH, instead of several voxels, as it could be possi-
ble when using k-d trees, octrees or uniform grids. The
relation of these terms is given in Fig. 1.

3.1 Dynamic Goldsmith and Salmon
In this section we describe an adaptive hierarchy, based
on the BVH creation scheme introduced by Goldsmith
and Salmon [6]. We used their technique to initially
build the BVH and reinsert our objects later on, even
though the described technique is not limited to this
creation scheme. Others, like the surface area heuristic
(SAH), could be applied as well [13]. Which scheme
suits best is unfortunately always scene dependent. [6]
is usually superior if the scene contains distinct objects,
while the SAH is a more general approach, but has a
very complex creation scheme.

Goldsmith and Salmon proposed a method to deal
with dynamic changes in a scene, by deleting the object
nodes from a BVH, adjusting the BVs and reinserting
the object nodes beginning at the root, using a heuris-
tic tree search to find the optimal insertion position (for
more details see [6]). However, this insertion technique
is a rather inefficient scheme. It is not necessary to
completely remove a changed object node from a BVH.
Since a certain spatial locality is given by the BVs in the
same subtree of a BVH and since objects usually move
only small distances compared to the scene extent, the
object would either be inserted at its old position in the
BVH or a position nearby for the most part. The term
nearby here means a subtree which encloses both, the
old and the new position of the object. Since this sub-
tree is probably much smaller in depth compared to the
whole BVH, starting the reinsertion of the object node
at the root of this subtree will shorten the whole inser-
tion process drastically. We will call the root of this
subtree the reinsertion node. Choosing this node, we
minimize the number of needed insertion steps, since
no changes have to be made to any of its ancestors. This
also implies that an insertion starting at the root would
most likely lead to this node anyway, since the inher-
itance cost for this node, a term depicting the surface

root

old
position

new
position

node
reinsertion−

...

Figure 2: Beginning at its old position, the object node
of the moving object is passed along its ancestors, until
the reinsertion node is found, from where it is inserted
again.

growth of the ancestor nodes, is still 0 (see [6]). In the
worst case, the whole process is exactly the same as re-
moving an object node completely from the BVH and
reinserting it at the root node. In comparison to a com-
plete rebuild, which is in general even faster than rein-
serting every object at the root, our reinsertion scheme
can speed up the process of reconstructing the hierar-
chy by more than two orders of magnitude (see the test
results in Sect. 4).

This process is visualized in Fig. 2. From its old po-
sition, the object node is incrementally passed along its
parents until the reinsertion node is found. This is the
first node on the path to enclose the object node. Then
the object node is inserted again, leading to its new po-
sition.

Removing an object from a BVH and reinserting it
may lead to an effect which we call thinning. This term
describes a decrease of objects contained in a node,
while its surface area remains almost unchanged. If the
thinning continues, it is most likely that better BVHs
could and should be created. An example is given in
Fig. 3. Objects 2, 4 and 5 are moving as depicted by
the arrows. The dashed circles are the target positions
(see Fig. 3 on the left). At a certain point in time the in-
sertion criteria would force object 2 to change into the
right subtree (Fig. 3 in the middle). Even though object
3 did not move at all, it would result in a better BVH if
it would change into the right subtree as well (Fig. 3 on
the right).

To prevent such a degradation of a BVH, we intro-
duce a quality criterion Q(B) that can be efficiently cal-
culated and effectively prevented thinning in our tests.
We use the surface area of a node divided by the num-
ber of objects contained in its subtree, which is in some
sense a measure for the packing density of this node.
This is depicted in equation (1):

Q(B) =
S(B)

Cob j(B)
, (1)

where Q(B) is the quality measurement of node B,
S(B) is the surface area of B and Cob j(B) is the num-
ber of objects contained in the corresponding subtree of
B. Note that this criterion is solely used for detecting
the change in the BVH, it cannot and is not intended

Short Communication papers 59 ISBN 978-80-86943-02-2

1

2

5

4

5 24

1 1
Y

3

X

4 5 2

Y

3

X

Y

3

X

4 5 2

Figure 3: Example for the thinning of nodes. Left: The objects move as depicted by the arrows. Middle: resulting
BVs after movement. Right: Rearranged BVH for a faster traversal.

to be used as a global quality criterion for ray tracing
efficiency.

After the initial construction of the BVH, an initial
value Qinit is calculated for every node in the hierar-
chy. This is also done during the update phase, if a new
node is created. During the animation, if all reinsertions
took place, the current value Qcurrent of the changed
nodes only is compared to their initial values. If it ex-
ceeds a predefined threshold, the corresponding nodes
are deleted, the BVH gets adjusted and the children of
the nodes are reinserted as described above, as the rein-
sertion scheme is not only limited to object nodes.

In our tests this quality criterion not only removes
most of the threat coming from thinning of nodes, but
can also decrease the ray tracing phase up to 34%, while
only increasing the update time by about 16% com-
pared to not dealing with thinned nodes. The benefit is
proportional to the relative number of dynamic objects.

Combining both presented techniques leads to the
following pseudocode:

Algorithm 1 Update Phase Dyn. G&S
1: for all objs do
2: animate objs
3: end for
4: for all animated objs do
5: remove obj node from hierarchy using the hier-

archy pointer for instant access
6: incrementally search for the new insertion node

and adjust BVs on the path
7: insert adjusted obj node using G&S’s technique
8: end for
9: search for and remove thinned nodes from the BVH
10: reinsert all children of the thinned nodes

The underlying data structure is highly dynamic,
which means keeping a good cache efficieny is a
non-trivial task. For some high performance systems it
might be a better solution to just mark all reinsertion
nodes and rebuild the whole underlying part of the
BVH. Since every node has a fixed memory footprint,
this reconstruction can be done in place. This memory
bound is not available for other spatial data structures,
like kd-trees.

3.2 Loose Bounding Volume Hierarchy
Even though the method described in the last section
results in a tremendous speedup to the update phase,

its complexity is still no better than O(m logn) on aver-
age given m moving objects and n scene objects. In the
following we present a hybrid approach, which allows
insertion and deletion of objects in O(1) by exploiting
that every object lies exactly in one node of a BVH
combined with a pseudo-spatial subdivision scheme.
For a better understanding the simple version of the
LBVH will be described first, followed by the exten-
sions applied for a better performance.

Using a pre-built BVH with a fixed subdivision level
of 3N and a branching factor of k = 2 with splitting axes
chosen in a round robin fashion along the midpoints,
we can think of the lowest level as a uniform grid which
encloses the whole scene and a 2N×2N×2N resolution.
The insertion positions of the object nodes are based on
their midpoints, the corresponding index ix of the voxel
in the x-direction can be calculated using the following
equation:

ix =

⌊
2N(

Oxmid −Sxmin

Sxmax −Sxmin
)

⌋
, (2)

where Oxmid is the midpoint of object node O along
the x-axis, and Sxmin and Sxmax define the minimum and
maximum value of the scene extent along this axis.
Similar computations are made for iy- and iz-axis. The
actual index in the BVH is then be computed from these
indices.

After object insertion the rest of the hierarchy can be
refitted to assure the tree’s correctness. The LBVH for
a simple test scene is shown on the left in Fig. 4. Empty
nodes in the graph are represented by dots. Dotted lines
in the scene on the left represent extents of the voxels
for insertion, bounding volumes are drawn with solid
lines. Identical bounding volumes are drawn with dif-
ferent scales for clarity.

If we would insert all objects at the lowest level, we
could not assure that the surface of a child’s node is
actually smaller than it’s parent, which is a must have
for a BVH with a reasonable performance. To solve
this problem, we allow inner nodes to contain objects as
well. For every object, the insertion level is calculated
from its axis-aligned bounding box (AABB) using the
following equation:

L = 3
⌊

log2(min(
Sx
Ox

,
Sy
Oy

,
Sz
Oz

))

⌋
, (3)

Short Communication papers 60 ISBN 978-80-86943-02-2

where Oa is the extent of the AABB of object O along
axis a ∈ {x,y,z} and Sa is the extent of the AABB sur-
rounding the scene along axis a. Using equation (3) we
keep larger objects closer to the root and therefore as-
sure, that the maximum possible extent along the split-
ting axis is reduced by 50% for every level of the hi-
erarchy, which leads to a good spatial partitioning. If
L is greater than the predefined subdivision level of the
BVH, it is set to the maximum possible level.

Depending on L we can calculate the indices in the x-
, y- and z-direction similar to equation (2), substituting
N for L/3. For the x-direction this is shown in equation
(4).

ix =

⌊
2L/3(

Oxmid −Sxmin

Sxmax −Sxmin
)

⌋
(4)

Because of the limited number of possible indices, the
easiest way to calculate the index in the BVH is to use
a precalculated lookup table, based on ix, iy, iz and L.
Therefore any desired memory layout of the BVH, op-
timized for the chosen traversal method, can be used.
The object node is then added to that node. The result-
ing BVH, using the same small test scene as before, is
shown in Fig. 4 (middle). Object A will be assigned to
the root node due to its great extent along the x-axis,
while B stays at its old node.

If we assume constant scene extends, we can calcu-
late the ix, iy and iz even faster if we transform the whole
scene into the N×N×N volume, since the calculation
of the index becomes a simple truncating of the mid-
point coordinates in this volume.

The insertion process may lead to nodes with just one
child. This can happen if small objects are surrounded
by a large empty space. Because the object node and
one or more of its ancestors are identical in this case,
it would be a tedious task to test all of them for inter-
section. To avoid this problem skip indices can be used.
If a ray intersects a node, usually all children have to
be tested for intersection as well. Instead of testing the
child directly, the node that its skip index points to is
tested. This way all nodes with just one child and with-
out objects can be skipped easily. An example for our
simple test scene is shown on the right of Fig. 4. The
calculation of the skip index can be efficiently done in
the refitting process, which will be described in the fol-
lowing.

Until now objects are inserted into the hierarchy, but
the BVH ist still inconsistent, since only the nodes con-
taining at least one object could be adjusted so far. As-
suring that the index of a node is less than the index of
its children, as it is usually the case, all nodes in the
BVH can be efficiently refitted by iterating over the ar-
ray in reversed order, as suggested by van den Bergen
[19]. During this refitting we mark empty nodes and if a
node has just one child and contains no objects, its skip
index is set to the skip index of this child, otherwise to
itself. Please note, the resulting hierarchy, comparing

the extends of the non-empty nodes, is similar to the
one proposed by Waechter in [20], even though devel-
oped completely independent of each other. In general,
their approach is better suited for very complex scenes,
while ours is targeted at small to mid-size scenes with
up to a few thousand moving objects.

Since adjusting one node and inserting an object
takes almost constant time, the creation of the complete
BVH can be done in time linear to the number of nodes
and objects in the BVH.

The update phase between two consecutive frames is
basically a reconstruction, but in O(n), instead of the
usual O(n logn). During the construction we saved ev-
ery insertion index of all object nodes in the BVH. Us-
ing these indices, we can simply empty the hierarchy.
Afterwards the objects are animated and the BVH gets
rebuild as described before. Pseudocode for the update
phase is given below.

Algorithm 2 Update Phase LBVH
1: empty hierarchy
2: for all objs o do
3: animate o
4: adjust obj node of o
5: end for
6: expand root node to enclose scene
7: for all objs o do
8: calc index in BVH for o using equation (4)
9: insert o into BVH depending on the index
10: end for
11: refit hierarchy by reversed order iteration

4 RESULTS AND DISCUSSION
To evaluate our methods, we have used a variety of test
scenes. Here we present the results for three of them,
which we think reveal both, the benefits and weak-
nesses of our strategies. All tests were performed on
a PC with a 2GHz Intel Pentium Mobile processor and
512 MB of memory. The maximum allowed ray tree
depth was two, i.e. one reflection and refraction was al-
lowed. The predefined depth for the LBVH is set to 18.

We compare the results of our approaches to a com-
plete rebuild of the hierarchy every frame using the
method of Goldsmith and Salmon [6]. The rebuild is
done only once per frame, without further shuffling of
the objects, since rebuilding the acceleration structure
more than once is not feasible, if we want a fair com-
parison of the resulting update times. A simple refit
of the BVH is not included in our statistics because of
the drastic increase in ray tracing time for most of the
scenes. The average (avg) timings per frame for the up-
date phase (up), ray tracing phase (rt) as well as the av-
erage speedup achieved for the test scenes are presented
in table 1.

Short Communication papers 61 ISBN 978-80-86943-02-2

B

...

...
B

...

...

...
A

...

X

Y
A

B

...

...

...
B

A

...

X

Y
A

B

...

...

...
B

A

...

skip index

X

Y
A

Figure 4: Left: Simple version of the Loose Bounding Volume Hierarchy, with objects inserted at the lowest level.
Middle: Advanced version, keeping larger objects at higher levels. Right: Final version, using skip indices in
addition to the advanced version to avoid intersecting unnecessary nodes.

Please note, that we assume no knowledge about pos-
sible movements of the objects. Therefore the kitchen
scene e.g. should be judged as a scene with about 110k
dynamic objects, and not as a scene consisting of almost
only static objects and a few moving ones. This is im-
portant, since the information about what is static and
what not might not always be available, e.g. in physics
based simulations.

Kitchen G&S Dyn. G&S LBVH
avg. up 1.759s 0.017s 0.157s
avg. rt 6.142s 6.082s 11.771s
speedup up 1.0 103.471 11.204
speedup rt 1.0 1.010 0.522
speedup tot 1.0 1.295 0.662
#tris 110k resolution 300×225

Museum G&S Dyn. G&S LBVH
avg. up 1.933s 0.315s 0.125s
avg. rt 11.839s 7.950s 10.323s
speedup up 1.0 6.137 15.464
speedup rt 1.0 1.489 1.147
speedup tot 1.0 1.666 1.318
#tris 76k resolution 800×640

Falling tris G&S Dyn. G&S LBVH
avg. up 7.478s 0.907s 0.404s
avg. rt 22.298s 11.420s 3.182s
speedup up 1.0 8.245 18.510
speedup rt 1.0 1.953 7.008
speedup tot 1.0 2.416 8.303
#tris 149k resolution 512×512

Table 1: Performance measurements from the three
test scenes.

The first test scene is the kitchen scene from the
BART benchmark suite [12]. Only a small toy car, con-
sisting of 5 dynamic objects, is animated in an other-
wise static surrounding. Test results are given in table
1 and Fig. 6, which shows a comparison of the ray trac-
ing phase in the upper left graph and the update phase
in the upper right graph.

The timings in the ray tracing phase between the
complete rebuild and the Dyn. G&S method are almost
equal. But when comparing the update timings, we

achieved a dramatic decrease compared to a complete
rebuild by more than two orders of magnitude. Show-
ing the advantage of this method for scenes with small
amounts of movement.

The update time for the LBVH also shows a decrease
by more than an order of magnitude, even though the
ray tracing time almost doubled. A closer statistical
analysis showed that this is due to the so-called "teapot
in the stadium" problem. The scene consists of many
large and many small objects. Due to the predefined
depth of the hierarchy, the average number of primi-
tives per leaf node is 100, with a maximum value of
1339. Therefore a two level approach (e.g. [11] and
[21]), or a lazy evaluation strategy, (e.g. [20]), should
be used with the LBVH to avoid this problem. This is
not currently implemented in our system.

The second test scene, the BART museum scene
shows a museum room with a deforming piece of art
in the middle, with mostly unstructured, random move-
ment. The time spent in the update phase is reduced by
roughly a factor of 6 to 15. The fact that the ray tracing
time of the Dyn. G&S method does not exceed the ray
tracing time for a BVH after a complete rebuild verifies
our assumptions made in Sect. 3.1. In addition even a
decrease in the time needed for the ray tracing phase is
achieved, compared to a complete rebuild. In the case
of the Dyn. G&S method, this is due to the possibil-
ity to rebuild the BVH several times in the beginning
and shows the quality of our update routine. A local
update of the acceleration data structure is sufficient to
preserve the quality of a BVH.

The LBVH shows also good results in this test. It
is not only able to ray trace the animation faster than
the complete rebuild method, but it also takes only a
fraction of the time needed in the update phase.

The last test scene consists of triangle patches, ran-
domly assorted in a plane parallel to the xz-plane. Dur-
ing the animation, the triangles start falling from the
ceiling at random times, speed and directions. The high
number of animated primitives, as well as the highly
changing object distribution, stresses our methods.

To avoid the advantage of the Dyn. G&S method
of exploiting spatial locality too much, the amount of
frames is reduced to eleven. Therefore, the triangles
move rather fast through the scene compared to the
complete scene extents.

Short Communication papers 62 ISBN 978-80-86943-02-2

When using the Goldsmith and Salmon technique for
the complete rebuild, the arrangements of the primitives
and the fact that they are all of uniform size lead to a
relatively unbalanced tree. In contrast we can rebuild
our initial BVH for the Dyn. G&S method several times
to have a better initial stand. This is not possible for
the complete rebuild method as it would take too long
during the update phase.

The time needed in the update phase of the LBVH is
almost constant throughout the whole scene. The supe-
rior ray tracing time is due to the uniform size of the
objects, which allows for a very good spatial partition-
ing.

5 CONCLUSION AND FUTURE
WORK

In this paper, we presented two methods for updating
BVHs for ray tracing dynamic scenes. We have shown
that the use of these two methods can greatly decrease
the time needed in the update phase, compared to a
complete rebuild. Speed-ups up to a factor of 103 in
the update phase have been achieved. This allows for
much better overall performance, especially when us-
ing multiprocessor machines or techniques like frame-
less rendering.

While the Dyn. G&S method showed very good
overall performance in almost all of our test cases, its
biggest advantages are achieved in scenes with much
local movements. The LBVH is useful for time-critical
ray tracing applications, as the update phase is almost
constant in all test scenes and smaller scenes. Further
optimizations are possible, e.g. calculating the insertion
indices and parallelizing the creation process of the
BVH is possible, in case of static scene extents.

As future work, we are planning to apply a lazy eval-
uation strategy to the lower levels of the LBVH, to cir-
cumvent the "teapot in the stadium" problem. And we
would like to implement both of our methods in a high
performance system.

REFERENCES
[1] J. Arvo and D. Kirk. A survey of ray tracing acceleration tech-

niques. In Andrew S. Glassner, editor, An Introduction to Ray
Tracing, pages 206–208. Academic Press, 1989.

[2] G. Bishop, H. Fuchs, L. McMillan, and E. J. Scher Zagier.
Frameless rendering: Double buffering considered harmful. In
SIGGRAPH ’94: Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, pages 175–176,
NY, USA, 1994. ACM Press.

[3] A. Dayal, C. Woolley, B. Watson, and D. P. Luebke. Adaptive
frameless rendering. In Proceedings of the Eurographics Sym-
posium on Rendering Techniques, pages 265–275, 2005.

[4] M. Geimer. Interaktives Ray Tracing. PhD thesis, University of
Koblenz-Landau, 2005.

[5] A. S. Glassner. Spacetime ray tracing for animation. IEEE
Computer Graphics and Applications, 8(2):60–70, 1988.

[6] J. Goldsmith and J. Salmon. Automatic creation of object hier-
archies for ray tracing. IEEE Computer Graphics and Applica-
tions, 7(5):14–20, May 1987.

[7] J. Günther, H. Friedrich, I. Wald, H.-P. Seidel, and P. Slusallek.
Ray Tracing Animated Scenes using Motion Decomposition.
Computer Graphics Forum, 2006. (Proceedings of Eurograph-
ics, to appear).

[8] V. Isler, C. Aykanat, and B. Özguç. An efficient parallel spatial
subdivision algorithm for parallel ray tracing complex scenes.
In First Bilkent Computer Graphics Conference, ATARV-93,
Ankara, Turkey, 1993.

[9] T. Larsson and T. Akenine-Moeller. Strategies for bounding
volume hierarchy updates for ray tracing of deformable mod-
els. Technical report, MRTC Maelardalen Real-Time Research
Centre, Maelardalen University, February 2003.

[10] C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha. Rt-
deform: Interactive ray tracing of dynamic scenes using bvhs.
In Proceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing, Salt Lake City, Utah, 2006.

[11] J. Lext and T. Akenine-Moeller. Towards rapid reconstruction
for animated ray tracing. In Eurographics 2001 - Short Presen-
tations, pages 311–318, 2001.

[12] J. Lext, U. Assarsson, and T. Moeller. A benchmark for ani-
mated ray tracing. IEEE Computer Graphics and Applications,
21:22–31, March 2001.

[13] D. J. MacDonald and K. S. Booth. Heuristics for ray tracing
using space subdivision. Visual Computer, 6(3):153–166, 1990.

[14] M.D.J. McNeill, B.C. Shah, M.-P. Hébert, P.F. Lister, and
R.L.Grimsdale. Performance of space subdivision techniques in
ray tracing. Computer Graphics Forum, 11(4):213–220, 1992.

[15] S. Parker, W. Martin, P.-P. J. Sloan, P. Shirley, B. Smits, and
C. Hansen. Interactive ray tracing. In Symposium on Interactive
3D Graphics, pages 119–126, April 1999.

[16] E. Reinhard, B. Smits, and C. Hansen. Dynamic acceleration
structures for interactive ray tracing. In Proceedings of the 11th
Eurographics Workshop on Rendering, pages 299–306, June
2000.

[17] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray tracing
algorithm. ACM Transactions on Graphics, 24(3):1176–1185,
2005.

[18] T. Ulrich. Loose octrees. In Game Programming Gems, vol-
ume 1, pages 434–442. Mark DeLoura, 2000.

[19] G. van den Bergen. Efficient collision detection of complex de-
formable models using AABB trees. Journal of Graphic Tools,
2(4):1–13, 1997.

[20] C. Wächter and A. Keller. Instant ray tracing: The bounding
interval hierarchy. In Proceedings of the Eurographics Sympo-
sium on Rendering, June 2006.

[21] I. Wald, C. Benthin, and P. Slusallek. Distributed interactive ray
tracing of dynamic scenes. In Proceedings of the IEEE Sympo-
sium on Parallel and Large-Data Visualization and Graphics
(PVG), pages 77–86, Oktober 2003.

[22] I. Wald, C. Benthin, M. Wagner, and P. Slusallek. Interactive
rendering with coherent ray tracing. Computer Graphics Forum
(Proceedings of EUROGRAPHICS 2001, 20(3), 2001.

[23] I. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable
Scenes using Dynamic Bounding Volume Hierarchies (revised
version). Technical Report, SCI Institute, University of Utah,
No UUSCI-2006-023 (conditionally accepted at ACM Transac-
tions on Graphics), 2006.

[24] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray
Tracing Animated Scenes using Coherent Grid Traversal. ACM
Transactions on Graphics, 2006. (Proceedings of ACM SIG-
GRAPH 2006, to appear).

Short Communication papers 63 ISBN 978-80-86943-02-2

Figure 5:Sample images from the three test scenes. Left: Kitchen, middle: Museum, right: Falling Triangles.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700 800

Ti
m

e
(s

)

Frame

Testscene 1 - BART Kitchen Scene - Ray tracing time

G&S Rebuild
Dyn. G&S

Loose BVH

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700 800

Ti
m

e
(s

)

Frame

Testscene 1 - BART Kitchen Scene - Update time

G&S Rebuild
Dyn. G&S

Loose

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 50 100 150 200 250 300

Ti
m

e
(s

)

Frame

Testscene 2 - BART Museum Scene - Ray tracing time

G&S Rebuild
Dyn. G&S

Loose

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250 300

Ti
m

e
(s

)

Frame

Testscene 2 - BART Museum Scene - Update time

G&S Rebuild
Dyn. G&S

Loose

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
(s

)

Frame

Testscene 3 - Falling Triangles - Ray tracing time

G&S Rebuild
Dyn. G&S

Loose

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 2 3 4 5 6 7 8 9 10 11

Ti
m

e
(s

)

Frame

Testscene 3 - Falling Triangles - Update time

G&S Rebuild
Dyn. G&S

Loose

Figure 6: Test results for the three test scenes. Top: Kitchen, middle: Museum, Bottom: Falling Triangles. Left
column: Time spent in the ray tracing phase. Right column: Time spent in the update phase

Short Communication papers 64 ISBN 978-80-86943-02-2

Survey of Errors in Surface Representation and their
Detection and Correction

Veleba, D., Felkel, P.
Department of Computer Science

Czech Technical University, Faculty of Electrical Engineering
Karlovo náměstí 13

 121 35 Praha 2, Czech Republic

{velebd1 | felkel} @ fel.cvut.cz

ABSTRACT
In this paper, a survey on the most typical mesh errors is given. Each error is described in detail, it is illustrated
on an example and surface based techniques for its detection and correction are presented. Covered errors
include cracks, holes, T-joints, overlaps, zero volume parts, duplicated geometry, self intersections, inconsistent
normal orientation, invisible polygons, degenerate faces and concavities.

We consider the separation of the detection and the correction phases advantageous as it gives the user a better
control over the mesh correction process, allowing better corrected meshes without introducing new errors,
simplifications, or deformations.

Keywords
Mesh errors, Crack, T-joint, Inconsistent normal orientation, Swapped normals, Hole, Concavities, Invisible
polygons, Detection, Correction, Degeneracies, Mesh repair

1. INTRODUCTION
At present, a growing number of models contain
errors [Ken98, Ju04, Bis05] that either originate due
to human mistakes or are produced by incorrectly
implemented modeling software. These errors cause
problems during every subsequent reuse of the
model. Search and repair of these errors, which are
often hidden, are highly time-consuming.
There are two different approaches to repairing
polygonal models: a classic mesh repair [Mur97,
Bar98, Bor02] and a newer voxel based repair
[Noo03, Ju04, Bis05]. The latter is based on
conversion to voxel representation and back. The
most recent research in this field made Bischoff
[Bis05]. He overcomes the main disadvantage of the
voxelization, i.e. giving away the original model, by
keeping the vertices’ coordinates the same in the
corrected model as in the input model. The former
approach is more straightforward. Errors are first
detected and each group of errors is corrected

uniquely. However, the future seems to lie in
combination of these two techniques. This paper is
focused on the classic approach.
In Section 2, a survey of the typical mesh errors is
provided. Each error is described and illustrated on
an example. Error origin is discussed and methods
for detection and correction of the error are
presented. Section 3concludes.

2. ERRORS AND THEIR HANDLING
In this section, the following mesh errors are
described: cracks, holes, T-joints, overlaps, dangling
walls, duplicated geometry, self intersections,
inconsistent normal orientation, invisible polygons,
degenerated faces and concavities. First three of
them, i.e. cracks, holes and T-joints, are well-known
and hence they will be described only briefly. The
concern will be devoted to the remaining errors.

2.1. Cracks
Cracks [Nie99] are small, elongated gaps in the
model surface (see Fig.1 for an example). Cracks
usually come along with T-joints, which are
described in Section 2.3.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Short Communication papers 65 ISBN 978-80-86943-02-2

Fig.1 An example of a crack. a) A smooth surface
[Nie99] is in b) represented by planar faces. c) shows
the surface from panel b) after the correction.

2.1.1. Origin
Cracks originate mainly due to wrong triangulation
of smooth sinuous surfaces and due to round-off
errors.

2.1.2. Detection
Cracks, as well as holes, are demarked by boundary
edges. Problems may arise if we need to distinguish
cracks from holes – see [Vel06].

2.1.3. Correction
There are more approaches to correcting cracks.
However, the correction technique should handle the
cracks with respect to their origin (triangulation ×
shifted vertices).
Cracks arising from triangulation can be eliminated
by retriangulation of the larger (rougher) face with
respect to the boundary curve of the crack.
Cracks arisen due to multiplicity of vertices are
corrected by vertex contraction [Gar97, Pop97].
More recently Borodin et. al. [Bor02] introduced
further generalization of edge contraction operator, a
vertex-edge contraction. Disadvantage of these
operators is that they can produce non-manifold
meshes.

2.2. Holes
By a hole [Lie03] [Var05], we understand a closed
cycle of boundary edges. Problems with holes are
that they either should be triangulated or that they are
triangulated and should not be. See Fig.2 below.

Fig.2 Two cases of holes. a) shows two connected
holes and b) shows a single polygonal hole.

2.2.1. Origin
Holes arise mainly during imprecise surface
reconstruction but they can often be intentional in the
model.

2.2.2. Detection
Holes are detected as closed cycles of boundary

edges, as well as cracks.

Unfortunately, this technique is not able to tell apart
gaps from the natural boundary of the object.
In case there are more holes connected together,
problems may arise with choosing a correct boundary
edge belonging to the hole we are just detecting. This
is done by taking the edge with the smallest angle to
its previous edge.
Detection of holes on the natural boundary of objects
is described in [Vel06].

2.2.3. Correction
For filling the holes Liepa [Lie03] introduced a 3-
step method that firstly creates a patch that
minimizes a weight function, secondly it shortens
long edges and thus doesn’t introduce skinny
triangles, and at last, it uniformly spreads the vertices
of the patch. The best results are achieved with
weight function that considers a dihedral angle
between existing neighboring faces and the face area.
Removing the extra triangles from the triangulated
holes is quite problematic. We need to detect these
triangles and differentiate them from the correct
ones. To do this, we utilize the fact that redundant
triangles have usually much longer edges.
Unfortunately, this method fails on the boundary of
the hole where extra triangles may be left or correct
triangles may be discarded. Recent patching
algorithms also do not produce triangles with long
edges.

2.3. T-joints
T-joint [Bar98, Mur97] is a place, where two parallel
edges connect (e2 and e3 in Fig.3b), while there is no
appropriate vertex on the neighboring edge (e1). The
situation is illustrated in Fig.3b.

Fig.3 a) A T-joint. b) illustration to the definition
c) A meeting of two surfaces with different levels of
detail in a clipmap

2.3.1. Origin
T-joints are introduced by adding new vertices on
existing edges and by wrong modeling in the design
systems. T-joints also occur while handling a model
in different levels of details (LOD).

2.3.2. Detection
All edges are checked to neighbor with exactly one
another edge, i.e., they have the same end-vertices.
Edges not matching this criterion are either boundary
edges (have no neighbors) or edges participating in

Short Communication papers 66 ISBN 978-80-86943-02-2

T-joints (have more than one neighbor). Edges with
more than one neighbor can also be non-manifold
edges.

2.3.3. Correction
The best correction of T-joints is joining the multiple
edges (e.g. in Fig.3b these would be e2 and e3). The
triangles corresponding to these edges are replaced
with one polygon (which may be subsequently
triangulated) so the needless geometry is discarded.
T-joints on touch of different LODs during rendering
are eliminated either by subdivision of neighboring
triangles as in the ROAM algorithm [Duc97] or by
introducing zero area triangles to “fill” the cracks on
the touch of two levels and by interpolation of
geometry and texture in the transition region
[Los04].

2.4. Overlapping triangles
Overlapping triangles [Var05] have one or more of
their vertices placed improperly into vertices, whose
neighborhood is already fully triangulated (see
Fig.3). Such triangles overlap the mesh (or are
overlapped by other triangles) instead of filling the
empty space on the surface. As a side effect, gaps are
introduced into the model. In fact, the overlapping
triangles are special case of duplicated geometry
(2.6).

Fig.4 Overlaps: The red triangles denote
overlapping triangles, the black triangles mark holes,
and the dark grey triangles denote surface
overlapped by the red triangles [Var05].

2.4.1. Origin
Overlapping triangles originate during triangulation
of nonuniformly sampled models as a result of local
undersampling. In this case, the tessellation
algorithm positions one of the face vertices into an
incorrect vertex. This is usual in triangulations of
point clouds and in models taken by 3D scanners.

2.4.2. Detection
The overlaps are best detected by using the triangle
(polygon) fans. We iterate through the list of
vertices. For each vertex we construct its triangle fan
and then, we compute the overall angle as a sum of
angles between pairs of edges of each face connected
to the fan’s central vertex. Overall angle not equal to
2π implies a problem. If the angle is less than 2π, we
have found a crack or a hole; if the angle is larger
than 2π, we have found an overlap. Precision of
computation has to be considered.

The detection can be made more efficient if we
construct the fans only for vertices referenced by
boundary edges.

2.4.3. Correction
To correct overlaps we delete the redundant triangles
from the fans with angle larger than 2π and
triangulate the holes. However, choosing the correct
triangle to remove may be problematic.

2.5. Zero volume parts
Though rarely, zero volume parts (also called
dangling walls) [Bøh95] sometimes occur in the
model. Bøhn defines them as sets of faces that that
do not contribute to the definition of the volume
occupied by one solid or more solids in the space.
Very often, zero volume parts are used intentionally
– for example to create paintings on the walls in
models of interiors (called decals) or to connect two
separate shells (artifact faces).

2.5.1. Origin
Dangling walls are usually mistakes of a model
designer who might forgot to remove them from the
model. They can be caused by imprecise floating
point arithmetic as well.

2.5.2. Detection
In contrary to Bøhn, who detects only exactly

matching pairs of faces with different orientation, we
extend the detection to all patches that do not delimit
any volume.

To distinguish cases of intentional use of zero
volume parts from errors, we should only detect zero
volume parts which are more distant from any face
than a user-provided constant. By this, we ensure we
won't detect the decals etc. On the other hand, this
restriction prevents us from detecting artifact faces
used for connecting two separate shells for example.
It is quite problematic to distinguish zero volume
parts (ZVP) from cracks and holes. To do so, we may
count number of vertices (or edges, faces etc)
reachable from the boundary edges that delimit this
error. Generally, number of vertices reachable from
ZVP should be smaller than number of vertices
reachable from holes. This is due to fact that from the
hole the entire model could be possibly reached as
opposed to ZVP from which only ZVP itself is
reachable. Of course, this may also crash on holes in
small objects and zero volume parts consisting of
many faces, but both of these cases are extraordinary.

2.5.3. Correction
If required, dangling walls can be simply removed
from the model.

Short Communication papers 67 ISBN 978-80-86943-02-2

2.6. Duplicated geometry
We differentiate the following cases of duplicated
geometry:

• Concurrent vertices
• Concurrent edges
• Concurrent faces

o Same normals
o Opposite normals
o Same triangulation
o Different triangulation

Within all these cases we tell apart:

• Identical double geometry
• Mutually shifted double geometry

Concurrent vertices are sometimes used intentionally
to model a sharp edge. This case is depicted in Fig.5b
and described in [Vel06].
In Fig.5a you can see a cube with one side
triangulated twice by mutually shifted faces (which
include also shifted edges and shifted vertices) and
even with opposite face normals.

Fig.5 A concurrent geometry. a) shows a cube
with one side triangulated by mutually shifted
different triangles. They even have an opposite
normal orientation. b) gives an example on doubled
vertices and edges along the sharp edge

2.6.1. Origin
Beside the above mentioned intentional cases,
concurrent geometry also originates during export of
a model into another format. Owing to an incorrect
export procedure, some objects in the model are
duplicated. Moreover, the duplicated objects may
also be triangulated in another way than its original
copy, as shown in Fig.5a above.
Concurrent vertices also originate due to round-off
mistakes. These are the most common reason in
cases where vertices of neighboring triangles do not
have identical coordinates. Instead, every triangle’s
vertex is located in a slightly different position in the
space. As a side effect, a crack is introduced into the
model.

2.6.2. And finally, duplicated objects might arise
due to a human mistake. For example, duplicities
appear as a result of copy & paste operation where

the paste operation is unintentionally performed
twice or even more.
2.6.3. Detection
Cases where concurrent geometry is identical are
easy to detect: we find all vertices with the same
coordinates. Then, we have to find out whether they
were assigned to any edges or polygons; this
information will be used in the correction process.
Detecting mutually shifted concurrent geometry is
only slightly different. We are searching for
duplicated geometry within a user provided
ε-tolerance—inside the tolerance, the geometry is
considered to be duplicated in contrary to the
geometry outside the tolerance. A kd-tree can be
efficiently used for such a search.
For finer search for duplicated vertices we can apply
different ε value for each axis (x, y, and z).

2.6.4. Correction
Once the duplicated geometry has been found, either
identical or mutually shifted, we might iterate
through the duplicated vertices and leave only one of
all the vertices with identical coordinates. The
remaining vertices will be discarded—we choose the
ones that do not form polygons. If there are more
vertices forming identical polygons (edges), we
discard also the redundant polygons (edges). Before
such a deletion, we check the normal orientation of
these polygons. In case of opposite normals, we must
decide which one will be left and which one
discarded. This can be done by counting the number
of inside / outside oriented normals over the object.
The majority decides and the user is involved in
irresolute cases. Unfortunately, the majority can be
also mistaken and thus, an incorrect orientation
would be chosen. If the surfaces corresponding to the
duplicated vertices are equal and triangulated
identically, we can keep any of them.
Things become more complicated if the model
includes differently triangulated surfaces. In this
case, to achieve the best result we have to try all the
surfaces, rank how well they fit in the model, and
then choose the best one to be kept and discard the
remaining ones. This requires suitable data structures
and adequate ranking algorithm.
After the duplicated vertices are deleted, we must run
a connecting phase again as the edges that referenced
to the shifted duplicated vertices are now in correct
positions but still not connected to their neighbors
(still boundary edges). This leads to idea of
correcting the duplicated vertices before the face
connecting phase.

2.7. Self intersections
Among self intersections [Bar98] we distinguish
different parts of one model penetrating each other

Short Communication papers 68 ISBN 978-80-86943-02-2

(Fig.6a) from one complex object intersecting itself
(Fig.6b).

Fig.6 Examples on self intersections. a) [Bar98]
illustrates mutually interpenetrating parts of the
model; b) [Fel06] shows a self-intersecting object.

2.7.1. Origin
There are several sources of self intersections. First,
self intersections may arise due to round-off errors.
Result of such an error is a vertex shifted into a
different position. In some cases, this may lead to
self-intersections of incident faces.
Second, on concave objects, self intersections may be
caused by using a wrong tessellation algorithm. Such
an algorithm is unable to triangulate the concave
parts correctly and twists the faces so that they
intersect with each other.
And third, self intersections might be introduced into
the model by the designer who does not notice them,
for example because of a small resolution.

2.7.2. Detection
As mentioned in [Bar98], self intersecting geometry
is also proximate in Euclidian space. Therefore,
kd-tree can be efficiently used for its detection.

2.7.3. Correction
One technique for correction of self-intersections is
voxelization [Noo03].
Converting a model into volumetric representation, if
performed correctly, abstracts from the interior of the
model and leaves only the surface. Thus, also the self
intersections are left behind. However, the
voxelization is suitable only for self-interpenetrating
parts of one model because it corrects neither the
badly positioned vertices nor the wrongly
triangulated surface. It only turns the model into a
2-manifold (after the isosurface extraction).
The shifted vertices that cause the self intersections
should be repositioned into a correct location and the
concave parts should be retriangulated using a proper
tessellating algorithm. This might be time consuming
for a vast number of intersections but it is the proper
solution.

2.8. Inconsistent normal orientation
Based on the origin, we tell apart cases caused by the
surface reconstruction [Var05] from cases caused by
improperly implemented modeling tools [Bor04].

Fig.7 Inconsistent normal orientation. a) and b)
show a torus with swapped normals and c) shows a
correctly displayed torus

2.8.1. Origin
As mentioned above, there are two origins: surface
reconstruction and modeling tools.
To reconstruction, problematic are models sampled
either nonuniformly or differently in different
directions.
Incorrect normal orientation that originates in
modeling tools occurs randomly all over the model
and depends on the software and its current version.
Fig.7 above shows a VRML model exported from the
3ds format by MultiGen Creator [Mul06].

2.8.2. Detection
The detection of face orientation (vertices given CW
or CCW) is possible only in 2D, so we have to find
another technique. The straightest way is probably to
iterate through boundary edges and seek for couples
of edges with identical start and end vertices, i.e., for
edge “1-->2” (starting in vertex 1 and ending in
vertex 2) find another edge “1-->2”. This means
either that the edge is duplicated or that one of the
two edges (and thus also the face belonging to that
edge) has a swapped orientation.

2.8.3. Correction
There are two different aims of the correction: either
to have all model normals oriented consistently or to
have a model whose faces are visible from as many
viewpoints as possible.
Borodin combines proximity with visibility
technique to be able to achieve both. He connects the
properly specified polygons into patches. These
patches can touch each other only by vertices or non-
manifold edges [Bor04] or they do not connect with
each other at all. That is, if two patches had common
edges, they would be merged into one larger patch.
Each pair of patches is ranked with a boundary
coherence coefficient, which reflects how well do
these patches fit together. Moreover, for each patch a
front and back-face visibility is also computed. A
greedy algorithm then gradually merges patch pairs
with highest coherence ranking and updates their
visibility ranking. The final normal orientation is

Short Communication papers 69 ISBN 978-80-86943-02-2

decided based on the coherence and visibility
coefficients values.

2.9. Invisible polygons
Polygons become invisible [Vel06], e.g., when two
walls in CAD are modeled separately and placed
aside to each other (see Fig.8). If the two objects are
not connected together (they just share the boundary
vertices), it is not a real error and in fact, this
situation occurs very often. However, invisible
polygons are not needed in the model and moreover,
they increase the complexity of the model.
If the invisible polygons are part of one object, it is
an error because such a mesh is not 2-manifold. In
this case, the invisible polygons should be removed
from the model.

Fig.8 Invisible polygon at the connection of two
walls (dashed line).

2.9.1. Origin
Generally, invisible polygons can be found on
objects that stand side by side to each other. This
way of placing objects is usual in building industry
where the single components of the model (walls,
panels) have to be separated.

2.9.2. Detection
The detection should iterate through the list of faces
and look for face couples where one face overlaps
the other and lies in the same plane or is coplanar and
lies in the ε-distance from the other.

2.9.3. Correction
Correction of invisible polygons between two
separate objects should include connection of these
objects and subsequent retriangulation of the newly
created object. But as we have mentioned, this is not
always wanted.
Correction of a non-manifold object that contains
invisible polygons comprises only of removing these
polygons as there is nothing to connect or to
retriangulate.

2.10. Degenerate faces
Degenerate faces [Vel06] can be subdivided into
collapsed faces and non-planar faces. Among the
collapsed faces, we differentiate 2D faces – lines and
1D faces – vertices. For details on faces not suitable
for FEM see [Bot01].

Among the collapsed faces we count, for example,
collinear vertices (Fig.9a), a set of identical vertices
(AAA), or a face formed by two vertices (ABA).
In Fig.9b is an example of a non-planar face: one
vertex has a different height from the others, so the
four vertices do not lie in the plane. However, non-
planar faces are not always considered to be errors
and using them is sometimes a necessity.

2.10.1. Example

Fig.9 Invalid faces. a) A face formed by three
collinear vertices is shown in the upper part of the
panel and a face formed by two vertices one of which
is used twice (ABA) is shown below. b) Four vertices
forming a non-planar face from two points of view.

2.10.2. Origin
It must be pointed out that all the cases mentioned
above may also be used intentionally. For example,
MultiGen Creator exports only faces, neither it
exports edges nor does it export vertices. As a
consequence, designers who wish to export vertices
create 1D faces, which are then depicted as a
vertices.
All kinds of the errors discussed above arise during
the export into VRML.

2.10.3. Detection
To cover all the above cases of degeneracies every
face should be tested to be formed by more than 2
different vertices which must not be all collinear and
must lie in the same plane.
Ideally, these errors should be tested and eliminated
by the converter so that they do not originate at all.

2.10.4. Correction
Correction of these errors is almost impossible as we
cannot find out what a correct face should look like.

2.11. Concavity errors
Exporting concavities [Vel06] (Fig.10a) brings
problems too. Result of such an export is shown in
Fig.10b, where the concavity is transformed into a
convex object by connecting the two opposite
corners of the windows. As a side effect, the new
convex object overlaps the windows (marked red).
This error is usual in models in the building industry;
on a building frontage with concave polygons
between windows, where the windows are often
intersected by newly introduced mistaken edges.

Displaying concave surfaces is implementation-
dependent and differs in every browser. For example
a Cortona viewer displays the model shown in Fig.10

Short Communication papers 70 ISBN 978-80-86943-02-2

correctly while Xj3D [Xj06] has problems with
displaying the concavities.

Fig.10 A misinterpreted concavity. a) shows the
original concave surface (traced red) and b) shows
how both windows will be overlapped by the
improperly displayed concavity.

2.11.1. Origin
Concavities arise e.g. during export into a VRML
format. They might be caused either by triangulation
errors or by the exporter program.

2.11.2. Detection
Every face should be tested for a concavity. One of
the possible ways is constructing a normal vector for
each vertex of the face. This is done by multiplying
the vectors representing the two edges connected to
the vertex. Once we have computed all the normals,
we check whether all of them have the same
orientation. If not, the face is concave.

2.11.3. Correction
The concave face should be split it into two or more
separate faces of which every face will be convex.

3. CONCLUSION
We gave the survey on the most typical mesh errors
that often arise in CAD systems. For each error, we
described algorithms for its detection and correction.
We concentrated on mesh processing algorithms as
they can separate the detection and the correction
steps. We prefer a clear separation of detection and
correction steps as it gives the user a better control
over the mesh correction process. Corrected meshes
should then contain no new errors, simplifications, or
deformations.
We pointed out problems of two approaches: direct
mesh processing and processing of a voxelized
mesh. We find a combined approach (such as of
Bischoff [Bis05]) as the most promising for the
future research.

4. REFERENCES
[Bar98] Barequet et. al.: RSVP: A Geometric Toolkit
for Controlled Repair of Solid Models, IEEE Vis98,
1998.
[Bis05] Bischoff, S., et. al., Automatic Restoration of
Polygon Models, In ACM Transactions on Graphics,
Vol. 24, No. 4, pages 1332–1352. 2005.
[Bøh95] Bøhn, J.H. Removing Zero-Volume Parts
from CAD Models for Layered Manufacturing, IEEE

Computer Graphics and Applications, pages 27-34,
1995.
[Bor02] Borodin, P., et. al., Progressive gap closing
for mesh repairing. In Advances in Modelling,
Animation and Rendering, J. Vince and R. Earnshaw,
Eds. Springer Verlag, pages 201–213. 2002.
[Bor04] Borodin, P., Consistent Normal Orientation
for Polygonal Meshes, Institute of Computer Science
II, University of Bonn, Germany, 2004.
[Bot01] Botshc, M. and Kobbelt, L. A Robust
Procedure to Eliminate Degenerate Faces from
Triangle Meshes, CGG RWTH Aachen, 2001.
[Duc97] Duchaineau M. et al.. ROAMing Terrain:
Real-time Optimally Adapting Meshes. IEEE
Visualization, pages 81-88, 1997.
[Fel06] Felkel, P. and Obdrzalek, S. Improvement of
Oliva's Algorithm for Surface Reconstruction from
Contours. SCCG’99, pages 254-263, 1999.
[Gar97] Michael Garland and Paul S. Heckbert.
Surface simplification using quadric error metrics. In
ACM SIGGRAPH Computer Graphics Proceedings,
pages 209–216, 1997.
[Ju04] Ju, T., Robust repair of polygonal models.
ACM Trans. Graph. 23, 3, pages 888–895. 2004.
[Ken98] McKenney, D., Model Quality: The Key to
CAD/CAM/CAE Interoperability, International
TechneGroup Incorporated, Milford, OH, 1998.
[Lie03] Liepa, P., Filling holes in meshes. In
Proceedings of the Symposium on Geometry
Processing 03. pages 200–205. 2003.
[Los04] Losasso, F., Hoppe, H., „Geometry
Clipmaps: Terrain Rendering Using Nested Regular
Grids.“ ACM Transactions on Graphics (SIGGRAPH
2004), pp. 769-776, 2004.
[Mul06] MultiGen official homepage,
http://www.multigen.com/. Last visit: 10.09.2006.
[Mur97] Murali T. M., Funkhouser T. A. Consistent
solid and boundary representations from arbitrary
polygonal data. In Symposium on Interactive 3D
Graphics, pages 155-162, 196, 1997.
[Nie99] Nielson, M., Cracking the Cracking Problem
with Coons Patches, IEEE Vis99, pages 91-106,
1999.
[Noo03] Nooruddin, F., Simplification and Repair of
Polygonal Models Using Volumetric Techniques,
IEEE Vis03, 2003.
[Pop97] Jovan Popović and Hugues Hoppe.
Progressive simplicial complexes. In ACM SIG-
GRAPH Computer Graphics Proceedings, pages
217–224, 1997.

Short Communication papers 71 ISBN 978-80-86943-02-2

http://www.multigen.com/

[Var05] Varnuška, M., Surface reconstruction of
geometrical objects from scattered points, Doctoral
Thesis, University of West Bohemia, 2005.
[Vel06] Veleba, D., Correction of surface
representation, Bachelor’s thesis, Computer Science,
Czech Technical University, 2006.
[Xj06] The official site of Xj3D project,
http://www.xj3d.org. Last visit: 10.09.2006.

Short Communication papers 72 ISBN 978-80-86943-02-2

http://www.xj3d.org/

Silhouette Partitioning for Height Field Ray Tracing

Tomas Sakalauskas
Vilnius University
Naugarduko 24,

Lithuania,03225,Vilnius

tomas.sakalauskas@prewise.lt

ABSTRACT
This paper presents parallel algorithm to ray trace height fields that is suitable for recent GPUs. No data
preprocessing is needed, therefore this algorithm can render dynamic height fields. Partitioning binary tree for
screen space is calculated each frame. It takes silhouettes of height field regions as partitioning curves. Ray
tracing step uses binary search in this silhouette tree to find height field coordinates of pixel visible at given
screen coordinates.
Presented algorithm takes fixed amount of samples into consideration to produce value in each pass, therefore
worst-case scenario is deterministic. This enables the implementation for GPUs having limited dependent
texture lookups.

Keywords
View dependent partitioning, dynamic height field visualization, terrain rendering, ray tracing, parallel
rendering, GPU, silhouette detection.

1. INTRODUCTION
Recent developments in consumer level GPUs enable
bringing algorithms and strategies previously used
solely in offline rendering to real-time
implementations. Despite available fragment
processing power, GPU development focuses on
providing best triangle rendering performance
because this is de-facto standard for representing
geometry in most of today’s graphical applications.
Still number of triangles that modern GPUs can
handle is usually order of magnitude lower than
number of pixels same GPU can process. If we need
to render extremely detailed meshes, where most of
the triangles cover just one pixel or less, triangle
processing power is the bottleneck limiting
complexity of model we can render real time. Height

field visualization is one of the areas facing this
problem. One way to solve it is finding triangulation
that approximates original geometry with minimal
amount of triangles. Another option is avoiding
triangle based representation of height field by
implementing ray-tracing - launching a ray for each
screen pixel trying to find closest intersection with
height field.
This paper describes ray tracing method well suited
for GPU implementation. The main design goal was
to create algorithm that needs no preprocessing and
uses fixed number of reads to produce pixel as
opposed to “scanning” algorithms. Some GPUs are
very limited on dependent texture lookups some
cannot abort calculations once intersection is found.
Therefore GPU friendly algorithm should have
predictable behavior in worst-case scenario and be
fast enough even in cases when this worst-case
scenario has to be executed for every pixel.

The idea for the algorithm presented was born trying
to choose visualization method for simulating terrain
erosion. It requires detailed representation of
constantly changing height field.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Short Communication papers 73 ISBN 978-80-86943-02-2

2. RELATED WORK
Triangulation Algorithms
One of the first methods generating triangulated-
irregular networks (TIN) from digital elevation maps
(DEM) was introduced in [Fow79a]. First, they
classify the points by automatically choosing some
"important" features of the terrain, such as ridges and
peaks. Then, they incrementally compute a
triangulation of the points; in their case, they chose
to use the Delaunay triangulation. At each step, a
new point is added to the triangulation until no points
are farther from the original surface than a certain
predefined threshold. Substantial research has been
conducted on creating hierarchical structures on top
of TINs [Flo89a, Sca92a, Ber95a]. These methods
calculate complete starting triangulation which is
either refined by adding or decimated by removing
redundant points. These algorithms require heavy
preprocessing and keeping complete triangulation
representation in memory. [Cla95a] considers input
DEM to be an instance of TIN with very high
resolution and simplifies this input TIN surface to
create new TIN that has a fewer triangles, but is still
within a specified error bound of the original surface.
Such algorithms calculate triangulation based on
original model minimizing number of triangles and
trying to keep error in object space as small as
possible. When active view is covering a small
region of terrain, few triangles are rendered not using
triangle processing potential of GPU.
Level of Detail (LOD) is another family of
algorithms. [Lin96a] performs coarse level of
simplification to select discrete levels of detail for
blocks of the surface mesh, followed by further
simplification through repolygonalization in which
individual mesh vertices are considered for removal.
[Sch06a] presents algorithm that tiles the domain in
preprocess, and computes for each tile a discrete set
of LODs using a nested mesh hierarchy. Any
triangulation recalculation in runtime is avoided.
[Sch06a] implementation is more GPU friendly.
LOD algorithms try to minimize error in screen space
by selecting correct LOD for region. In general LOD
algorithms perform quite well, but do not have
consistent triangulation resolution where two
segments are joined. Near the seam one segment is
over sampled and the other under sampled.
Adaptive algorithms are a mix of static and LOD
algorithms –usually trying to create complete optimal
triangulation (like static) using error in screen space
(like LOD). Theoretically this approach should give
smallest screen errors with same triangle number as
previous two types of algorithms. [Duc97a] presents
real time optimally adapting meshes (ROAM)

algorithm that uses regular adaptive triangulation in
real time.
Current GPU architecture does not allow changing
topology of geometry inside GPU; therefore adaptive
algorithms need not only calculate but also transfer
geometry in each frame. It is possible to use frame
coherence to transfer only the changes in geometry.
Frame coherence can also be used to minimize time
spent in recalculating triangulations. But such
algorithms face performance or quality problems
when there is minimal or no frame coherence.

Ray-tracing Algorithms
In its most basic form, height field ray tracing
involves traversing rays in steps across height field
cells. This procedure is called incremental ray tracing
[Mus88a].
Naive generation of one column of the image has a
time complexity of O(ml), where l is length of
column footprint and m is the number of pixels in
image column. [Coh96a] uses ray coherence to
achieve O(l) time to render single column of the
image. As elevation map structure cannot describe
cavities, simple fact is noted that pixel traces to same
or further position on elevation map than pixel
located directly below it. Therefore ray tracing the
next pixel can continue from grid position where
intersection was detected in pixel below, vertical
coordinate of ray can also be calculated using ray
coordinates of previous intersection and view plane.
Run-based ray traversal algorithm proposed in
[Hen04a] utilizes the fact that mapping ray to
discrete grid creates footprint that consists of clusters
of connected cells or runs. Analysis of this footprint
proves that run length at given ray distance can be
determined without a need to iterate runs from ray
start. Run-based algorithm performs ray intersection
tests on runs instead of individual cells, gaining
average 125% performance improvement.
Unfortunately these algorithms do not transfer well
to GPU implementation, because calculation results
in one pixel cannot be easily transferred to next pixel
unless many passes are used. It is also hard to adapt
these algorithms to GPUs that do not support loops –
worst case scenario for rendering one pixel can
require O(l) data reads.
Number of height field ray-tracing steps can be
dramatically reduced by traversing rays in steps
across inverted cones of empty space [Pag94a]. This
method, known as linear parametric ray tracing,
requires the empty space above the height field
surface to be represented with a set of inverted cones
of empty space. There is one inverted cone centered
above each height field cell, defined by values of the
apex height and opening angle parameters. Such
empty space representation is called the linear

Short Communication papers 74 ISBN 978-80-86943-02-2

parameter plane transform (PPT) and is generated
off-line prior to ray tracing. However, steps across
inverted cones of empty space along rays close to the
base of a steep ridge will be short, even if there are
no obstructions along the line of sight, because the
cones will be narrow. [Pag98a] describes how this
weakness can be virtually eliminated by
directionalizing the PPT, i.e., by allowing the
opening angles of the inverted cones of empty space
to vary between contiguous sectors in the xy plane
such that the inverted cones are wider within sectors
that are less obstructed. This requires even heavier
pre-processing steps thus making algorithm
inapplicable for dynamic height fields. It relies on
scanning height field so execution time is not stable.

3. HEIGHT FIELDS
Height field is defined for rectangular regularly
spaced grid UxV and associates an elevation h to
each position),(vu in the grid.

Figure 1. Height field representation.

Height field is a convenient structure to define
functions of two parameters, represent real or
artificial terrain. Such representation is used to
describe geographical data and is called digital
elevation maps (DEMs).

Dynamic Height Fields
Often height fields are used to represent static terrain
models. In such cases algorithms can move
significant amount of calculations to pre-processing
stage, where intermediate structures are created
optimizing run-time performance. If we use height
field for dynamic scenarios like fluid visualization,
or some other task requiring real-time animation of
the surface, algorithms relying on pre-processing are
difficult or impossible to apply.

4. SILHOUETTE PARTITIONING
Top silhouette of rendered height field is the
boundary line dividing the screen to area covered by
height field and area above the height field.
Silhouette line intersects all vertical screen lines

exactly once, therefore silhouette curve can be seen
as function yxS ≡)(where y is y coordinate of
silhouette intersection with vertical line at x.

Figure 2. Silhouette.

We can define silhouette for segment of the height
field. Fig. 2 shows silhouette)(xS av≤ for segment
having v coordinate less or equal to constant a.

)(xS av≤ has useful properties:

ayxvtraceyxS av >⇒>≤),(_)((1)

)()(:,, xSxSbaVvba bvav << ≤⇒<∈∀ (2)

Eq.1 comes from silhouette definition. Eq.2 states
that silhouette of segment is greater or equal to that
of sub-segment.

Figure 3. Height field segment.

Another interesting segmentation of height field is
range of v values bva ≤≤ (Fig.3). We shall mark
silhouette for this segment)(xS bva ≤< . The following
is true:

))(),(max()(
:,,,

xSxSxS
cbaVcba

cvbbvacva ≤≤≤≤≤≤ =
≤≤∈∀ (3)

Short Communication papers 75 ISBN 978-80-86943-02-2

Figure 4. Combining two silhouettes. (a) Source
silhouettes (b) Result shown in black.

Binary Segment Tree
We can organize the height field into a binary tree
slicing it by v coordinate. Root (l=0) node contains
the whole 10 ≤≤ v height field, marked as 0

]1,0[H .

Tree is defined recursively by splitting height field
l

caH],[at midpoint 2/)(cab += :

• Left node 1
],[

+l
baH ,

• Right node 1
],[

+l
cbH .

Figure 5. Binary tree.

There are V leaves in this binary tree and they
represent discrete v values covering exactly one row
in elevation map. Height of the tree therefore is

)(log2 V as can be seen in Fig. 5.

4.1.1 Silhouette Calculation
Each node 1

],[
+l

baH in the tree described above has

silhouette)(],[xS l
ba . We can use bottom-up approach

to build silhouettes for the segments in the tree by
using Eq.3. Having children nodes 1

],[
+l

baS and 1
],[

+l
cbS ,

we get parent node silhouette

))(),(max()(1
],[

1
],[],[xSxSxS l

cb
l

ba
l

ca
++= (4)

Fig. 6. illustrates construction of silhouettes. Left
column contains bottom level of the tree –
projections of discrete v rows. Pairs of bottom level
silhouettes are used to calculate parent silhouette by
taking maximum at every x coordinate (Eq.4) until
root silhouette is built representing the silhouette for
whole height field.

Figure 6. Constructing silhouettes for segment

tree.

4.1.2 Calculating Silhouettes for Bottom Nodes
of Segment Tree
Bottom level of segment tree contains discrete v
values. Silhouette for a line on a grid is equal to
projection of that line to screen space.
Rendering surface has discrete x values, therefore
sufficient approximation of silhouette is finding

)(xS for every x on the screen.
VnxSxS n

vv
n
v 2],[log),()(=≡ is calculated as

intersection of x vertical line with projection of
height field at fixed v . Deterministic way to find this
intersection is using binary search over row v of
elevation map. Intersect function accepts current
search position u and range that is being checked -
du . For given x and v , calling Intersect with

2/1=u and 1=du returns u and y coordinates of
an intersection.

Figure 7. Binary search state is expressed as

center of interval u and width of interval du. Red
line represents x coordinate being searched.

Pseudo-code for Intersect function implementing
such binary search is presented below.

Short Communication papers 76 ISBN 978-80-86943-02-2

// x,v – query coordinates
// u,du – recursion search range
Intersect(x,v,u,du)
 if(du==1/U)
 return InterpolateU(x,v,u,du/2);
 if(projected_x(map[u][v])<x)
 return Intersect(x,v,u-du/4,du/2);
 else
 return Intersect(x,v,u+du/4,du/2);

Intersect function terminates recursion when
Udu /1= – discrete cell in map is traced and u is

pointing to middle of that cell. Values of u and y at
specific x are calculated performing linear
interpolation.

Figure 8. Linear interpolation of u and y values,

based on x location in [x0, x1] interval.
InterpolateU(x,v,u,du)
 u0 = u – du/2; //segment start
 u1 = u + du/2; //segment end
 x0 = projected_x(map[u0][v]);
 x1 = projected_x(map[u1][v]);
 y0 = projected_y(map[u0][v]);
 y1 = projected_y(map[u1][v]);
 r = (x-x0)/(x1-x0); // mix ratio
 u_intersect = u0 + (u1-u0) * r;
 y_intersect = y0 + (y1-y0) * r;

4.1.3 Data Representation – Silhouette Map
We use algorithm described above to calculate the
bottom level for silhouette tree and store u and
y values in X x V texture: R channel holding y

value, G channel - u value.

We shall refer to this data structure as silhouette
map. Fig.9. illustrates silhouette map (c) for given
elevation map (b) when viewed from camera position
(f).

Silhouette Partitioning Tree
Silhouette partitioning tree is derived from segment
tree and is used as structure that allows binary search
in segment tree. Each node in silhouette partitioning
tree corresponds to segment in segment tree l

caH],[

and holds silhouette of closer child
2/)(,1

],[cabS l
ba +=+ – it is needed when performing

binary search. Therefore it has smaller depth than
trees described above as the bottom level would
represent discrete v values – no child silhouette is
available to assign to it.

We mark the silhouette of node at level l l
vS , where

2/)(cav += is the middle of range of segment
assigned to this node l

caH],[.

Figure 9. (a) height map (b) color map

(c) silhouette map (d) silhouette levels 6-7
(e) silhouette levels 2-3 (f) final render.

4.1.4 Silhouette Partitioning Tree
Representation
Bottom level of silhouette partitioning tree contains
segments covering two adjacent v rows of elevation
map. Silhouettes contained in this level represent
discrete v rows – these are calculated and stored in
silhouette map as described above.
Each pair of higher levels is packed to single texture:
• R – silhouette contained in closer child,
• G – silhouette contained in farther child,
• B – silhouette contained in parent node.
Calculating higher level silhouettes using Eq.4
requires having silhouettes of segments from level
below. Thus we add this information to available
texture channel:
• A – silhouette for segment in parent node.

Short Communication papers 77 ISBN 978-80-86943-02-2

4.1.5 Building Silhouette Partitioning Tree

Figure 10. Calculating two levels of silhouette

partitioning tree.
Algorithm for building next two levels of silhouette
partitioning three is as follows:
• Take 4 silhouettes from previous level as A,B,C
and D (A being closest).
• Assign A to closer child node -> R,
• Assign C to farther child node -> G,
• Assign max(A,B) to parent node -> B,
• Assign max(A,B,C,D) as silhouette for parent
segment used to calculate higher levels -> A.
Fig. 9. (d)-(e) shows some levels of silhouette
partitioning tree.

5. RAY-TRACING
Ray tracing is finding),(vu coordinates of height
field given screen position),(yx . Knowing how
silhouette tree is built we can do binary search to
determine v at given),(yx . The approach is similar
to one described in Calculating Silhouettes for
Bottom Nodes of Segment Tree (Sec. 4.1.2). We start
at 2/1=v and 1=dv range covering whole height
field; it represents the segment located at the root of
the silhouette partitioning tree and go down the tree
halving dv until it covers single row of elevation
map and v points to middle of that row.

To decide which side to choose when going down
the binary tree y is compared to value of silhouette
of current node)(xS l

v . Algorithm looks as follows:

// x,y – query coordinates
// l – recursion level
// v,dv – recursion search range
Trace(x,y,l,v,dv)
 if(dv==1/V)
 return InterpolateV(x,y,l,v,dv/2);
 if(sil_y[l][v][x]<x)
 return Trace(x,y,l+1,v-dv/4,dv/2);
 else
 return Trace(x,y,l+1,v+dv/4,dv/2);

Final values of u and v are calculated performing
linear interpolation by y coordinate.
InterpolateV(x,y,l,v,dv)
 v0 = v – dv/2; //segment start
 v1 = v + dv/2; //segment end

 y0 = sil_y[l][v0][x];
 y1 = sil_y[l][v1][x];
 u0 = sil_u[l][v0][x];
 u1 = sil_u[l][v1][x];
 r = (y-y0)/(y1-y0); //mix ratio
 u_intersect = u0 + (u1-u0) * r;
 v_intersect = v0 + (v1-v0) * r;

Having u and v for screen coordinate),(yx texture
lookup is done to determine color of pixel.

Figure 11. Trace function results

(a) l=1 (b) l=3 (c) l=5 (d) l=9.

Ray Tracing Implementation
On GPUs not limiting number of dependent texture
lookups ray tracing can be performed in a single
pass. If instruction count or texture lookups are
limited a separate pass can be used for every two
levels in silhouette partitioning tree rendering v
value, which is the read in next pass and refined
further. Fig. 11. shows refinement v after various
passes of tracing.

6. BALANCING GPU
Described algorithms fully rely on performance of
fragment shader, leaving vertex shader idle.
Calculating silhouettes for bottom level of segment
tree can be moved to vertex shader or balanced
between these two shaders.

6.1.1 Silhouettes in Vertex Shader
Every row in silhouette map corresponds to single
row in elevation map. Silhouette map width is equal
to screen width and line segments in original
geometry map to the same x range as in final
rendering. We can define view dependent projecting
transformation between height field coordinate space
and silhouette map, then render each row of elevation
map as list of line segments connecting discrete u
values contained in that row.

Short Communication papers 78 ISBN 978-80-86943-02-2

Vertex shader receives vertices with),(vu
coordinates projects them to),(yx using camera
projection. It ouputs),(vx as transformed
coordinates. This maps segment to correct location in
silhouette map. Vertex shader outputs u and y
values that are interpolated and passed to fragment
shader. Fragment shader simply writes these values
to target texture. This approach involves primitive
counts comparable to brute force rendering of full
height-field triangulation.

6.1.2 Splitting the Work
Similar idea can be used to render segments of row
covering more than one cell. U is split evenly into

nN 2= segments representing thn level of binary
search and these segments are rendered using same
vertex shader as described above.

Figure 12. Vertex shader replacing two levels of
binary search of Intersect function.
Fragment shader is given parameter du specifying
the length of such segments. Based on interpolated u
value it determines which segment is being rendered
at given pixel and calculates center u of that
segment. It can proceed as if Intersect(x,v,u,du) was
invoked. Number of segments to use per row is
determined by trial and error, optimizing load
balancing between vertex and fragment shaders.

7. RESULTS
The algorithm was tested with two data sets.
Artificial 2048x2048 terrain was generated using
Perlin noise functions and texture was modeled using
ecosystem approach. Another data is based on DEM
and LandSat5 data of Hawaii Island 2048x2048.
The tests were conducted on AMD Athlon 64 3500+,
1GB RAM, NVidia GeForce 7900 GTX.

Data Resolution Min Fps Max Fps
Art2K 512x512 84 135

Hawaii2K 512x512 84 135

Hawaii2K 1024x1024 37 55

8. CONCLUSIONS
Algorithm presented in this paper has well controlled
worst case scenario and very stable performance –
slowest frames are rendered only 33-38% slower
than frames where whole terrain is completely off-

screen. Variation comes from vertex shader – when
segment is not projected to visible area it is culled by
hardware. Algorithm is stable regarding input data as
well– it runs at constant speed for given camera
position independent of elevation map content.
Future research will focus on visualization of bigger
data sets, 6 degrees of freedom camera movement
and possible optimizations of the current method.

9. REFERENCES
[Ber95a] M. de Berg and K. Dobrindt. On levels of
detail in terrains. In Proc. 11th Annu. ACM
Sympos.Comput. Geom.:C26-C27, 1995.
[Cla95a] Claudio T. Silva, Joseph S. B.Mitchell, and
Arie E. Kaufman. Automatic generation of triangular
irregular networks using greedy cuts. In Proc.
Visualization ’95, 1995.
[Coh96a] Daniel Cohen-Or, Eran Rich, Uri Lerner,
Victor Shenkar. A real-time photo-realistic visual
flythrough. IEEE Transactions on Visualization and
Computer Graphics. 2(3):255–264, 1996.
[Duc97a] Mark Duchaineauy, Murray Wolinsky,
ROAMing Terrain: Real-time Optimally Adapting
Meshes, IEEE Visualization '97 Proceedings, 1997.
[Flo89a] L. De Floriani. A pyramidal data structure
for triangle-based surface representation. IEEE
Comput. Graph. Appl. 9:67-78, 1989.
[Fol91a] J. Folby, M.Zyda, D.Pratt, R. Mackey.
Npsnet: Hierarchical data structures for real-time
three dimensional visual simulation. Computers and
Graphics, 17(1): 437-446, 1991
[Fow79a] R. J. Fowler and J. J. Little. Automatic
extraction of irregular network digital terrain models.
Computer Graphics, 13(2):199-207, 1979.
[Hen04a] C.Henning, P.Stephenson. Accelerating the
Ray Tracing of Height Fields. Proceedings of the
2nd international conference on Computer graphics
and interactive techniques in Australasia and South
East Asia: 254-258, 2004.
[Lin96a] Peter Lindstrom, David Koller, William
Ribarsky, Larry F. Hodges, Nick Faust. Real-Time,
Continuous Level of Detail Rendering of Height
Fields. Proceedings of ACM SIGGRAPH 96: 109-
118, 1996.
[Mus88a] F. Kenton Musgrave. Grid Tracing: Fast
Ray Tracing For Height Fields. Research Report
YALEU/DCS/RR-639, 1988.
[Pag94a] Paglierioni, D., Petersen, S. Terrain
visualization by ray tracing a conical height field
transformation, U.S. Patent 5,355,442, issued Oct.
11, assignee: Loral Western Development
Laboratories, 1994.
[Pag98a] Paglieroni, D. The directional parameter
plane transform of a height field. In ACM
Transactions on Graphics. 17(1): 50-70, 1998.

Short Communication papers 79 ISBN 978-80-86943-02-2

[Sca92a] L. Scarlatos and T. Pavlidis. Hierarchical
triangulation using cartographics coherence. CVGIP:
Graph. Models Image Process. 54(2):147-161, 1992.

[Sch06a] J. Schneider, R. Westermann. GPU-
Friendly High-Quality Terrain Rendering. Journal of
WSCG, 2006

Short Communication papers 80 ISBN 978-80-86943-02-2

Finding Thin Points in an Abstract Cellular Complex

Varakorn Ungvichian
Department of Computer Engineering,

Chulalongkorn University
Bangkok, Thailand

ungvichian@thaimail.com

Pizzanu Kanongchaiyos
Department of Computer Engineering,

Chulalongkorn University
Bangkok, Thailand

pizzanu@cp.eng.chula.ac.th

ABSTRACT

This research describes an algorithm to find “thin points'” in a solid represented as an Abstract Cellular
Complex. The algorithm is mostly iterative, adding one face at a time to a set of previously selected faces, and
choosing the selections that produce the loops with the shortest lengths for the next iteration. The output from
the algorithm is a set of loops that indicate the thinnest portions of the solid. As implemented, the algorithm
allows a threshold to be set to limit the number of loops that are selected in each iteration. The results indicate
that, while it does occasionally produce errors, the algorithm is mostly accurate, and a lower threshold increases
its speed, without negatively affecting its accuracy.

Keywords
Geometry, computer graphics, Abstract Cellular Complex, topology

1. INTRODUCTION
Our algorithm focuses on finding “thin points'” in a
solid represented as an Abstract Cellular Complex.
“Thin points” refers to areas where the solid is
narrowest in the current locality. Mathematically
defined, a “thin point” is a point p on the surface of a
solid where the radius r of the largest sphere that can
be inscribed within the figure and be tangent to that
point is the smallest in the current locality, that is,

, and 0)(=′ pr 0)(<∂−′ ppr 0)(<∂+′ ppr . One
potential application for finding the thin points of a
solid would be to find the weakest points of a
structure.

In the program, we will actually search for loops,
comprised of a set of adjacent edges where the length
of the loop is the smallest, which should provide a
reasonable approximation. The only potential
difference is when the loop at that point is a highly-
concave figure.

2. PREVIOUS LITERATURE
Previous methods to find the “thin points” in images
have used Hessian matrices. For example, Sukanya et

al. [Suk96] describe a new operator for image
structure analysis based on Hessian matrices, which
describes the shape of each pixel. The paper also
describes 4 types of surface shape: Dale, valley,
ridge, and hill.

Florack and Kuijper [Flo00] use the “catastrophe
theory”, also based on Hessian matrices and critical
points, to find “extrema” and “saddles” in localised
portions of images.

Danielsson and Lin [Dan01] also use the Hessian,
along with spherical harmonics, for shape detection
in both 2D and 3D. However, instead of searching
for “thin points”, the 3D portion of the research
concerns detecting “strings”, i.e., long curvilinear
shapes. Similarly, Koller et al. [Kol95] concentrate
on finding “line-like” structures. Both pieces of
research cite finding blood vessels in MRI data as
applications for their algorithms. It should be noted
that most existing research designed for 3D images
concentrates on finding lines, generally with medical
applications. However, Danielsson and Lin’s
research is derived from a more general overview
[Dan98] of a derotation algorithm for 3D
segmentation. Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Here, we will describe a method to find the 3D
equivalent of a saddle in a 3D solid. Also, the
method used in this algorithm is somewhat axis-
independent, depending mostly on the adjacency
between the faces, and the lengths of the edges.

The data structure used to represent the solids (the
input to the algorithm) is the Abstract Cellular

Short Communication papers 81 ISBN 978-80-86943-02-2

Complex, devised by Kovalevsky [Kov01]. It is
designed to efficiently represent topological data, by
describing, for each element of the solid, which other
elements of different dimensions it is adjacent to
(e.g., faces adjacent to a given edge, edges adjacent
to a given vertex, etc.), so that relations between
parts of the image can be found with limited
searching. In particular, it explicitly identifies which
faces are adjacent to a given edge, and what edges
comprise a given face. This makes the algorithm
efficient.

3. THE ALGORITHM
The structure of the algorithm is thus:

1. Determining the axis of the shape (optional)
and selecting a face

2. Creating new selections by adding faces to
the current selection, and finding the
selection with the smallest total length

3. Limiting the number of selections created
according to the length (“thresholding”)

4. Processing the selections to determine the
thinnest points

While loading the Abstract Cellular Complex data,
we pre-calculate the length of each edge. After the
data has been loaded there is an optional “axis
detection” step. This step is designed to find a good
face to start the next step from. This step begins with
averaging the coordinates of the vertices of the
volume to find an approximate center. We also
average the coordinates of the vertices of each face to
obtain each face’s center as well.
Next, we split the volume into sets of vertices by the
x-value of each vertex. In our algorithm, we have
chosen to split them into 20 sets. We find the
averages of the coordinates of each vertex in each
set, and use linear regression to determine the line
that best fits the 20 given averages.
We repeat this process using the y- and z-values
instead of the x-value. In Figure 1, we show the
results for the x and y axes for one of the example
shapes we will be using. (For the illustration, we
have also simplified it down to just 10 sets of
vertices.)
Having obtained three different lines, we determine
which of them has the best fit, by summing the
distances between the average of each set and the
line. In the case of Figure 1, the line obtained after
splitting the shape by the x-axis has a better fit than
that obtained after splitting the shape by the y-axis.

Figure 1. Initial splitting.

Figure 2. Iterative splitting.

Short Communication papers 82 ISBN 978-80-86943-02-2

After obtaining the best-fitting line, we then split the
vertices into sets again, using this line as the axis.
Once again, we find the averages of the coordinates
of each vertex in each set, and use linear regression
to determine the best-fitting axis. We then repeat this
step with the newly-determined axis until the new
axis deviates from the old axis by less than 0.1°. See
Figure 2, as done with another example shape. If the
axis does not converge after a certain number of
steps, we average the most recent axes obtained and
use that as the axis.
We determine the plane that passes through the
approximate center and is normal to the best-fitting
line, and find the face whose center is furthest from
the plane. We select this face, and sum the lengths of
its edges, and store the total length in an array.
 (If axis detection is not used, or produces an error,
the program simply takes the first face listed for the
volume. In our earlier work [Ung06], which this
research augments, this face contains the vertex with
the smallest x-value.)
The next step of this algorithm is iterative. We find
all the faces that are adjacent to a face in each current
selection. A “selection” is the set of faces in the solid
that have been selected, and a selection is represented
as a simple Boolean array, with each value in the
array corresponding to whether the corresponding
face has been selected. In the first step, the first face
picked is the only current selection.
For each face that is adjacent to a previously-selected
face in the selection, we add the face to the selection.
To save time, we only select faces that are adjacent
to the most number of faces of the current selection.
In other words, if there are faces that are adjacent to
3 faces of the current selection, and none that are
adjacent to at least 4, the program will add only those
faces adjacent to 3 faces of the current selection. In
Figure 3, there are three faces that are attached to 3
selected faces, one attached to 2 selected faces, and
five attached to one selected face. The three faces (as
highlighted in the figure) will be added.

Figure 3. Face preference.

Having added a face to the selection, we test to see if
it is a duplicate of a previous selection by running an
exclusive-or operation:

() ()(sel~)(sel)(sel)(sel
1

0
iiii baba

n

i
¬→⊕

−

=
∨)

If it is not a duplicate, we sum the lengths of the
edges with one selected face attached. (We have
tested other heuristics, and found that this one
produces more accurate results than with the others.)
Our algorithm uses other “shortcuts” to determine
which edges have just one selected face attached and
to sum the lengths of those edges. First, in each
selection, we maintain two lists, a list of edges with
one selected face attached (L1) and a list of edges
with (at least) two selected faces attached (L2). As we
read each edge in, if it is not in either list, we add it
to L1. If it is already in L1, it is moved to L2.
To sum the length of the edges in L1, we also
maintain an array of the total lengths that were
calculated in the previous step. As we add the face to
the selection, we also determine which faces are
being added or removed from L1, before adding and
subtracting the lengths of those edges from the
previously-calculated length to determine the new
total length. Directly summing all the edges in L1
could become unwieldy, especially when there are
hundreds of edges in the list.
After processing all the selections and their adjacent
faces, we determine which selection has the least
total length of edges in L1. To save processing time,
we then remove selections whose total edge length is
higher than 1.1 times that least total length. Further
limitations may be made as necessary. (More will be
explained in Thresholding.) The remaining selections
(and their total lengths) are stored in an array for the
next round of processing. We also store the least total
length obtained for the current iteration in an array
(along with a list of the edges that produces the
result, i.e., the L1 of the selection).
The number of iterations for this step is the same as
the number of faces in the solid. After the iterative
step is complete, we adjust the values, so as to favor
selections from “midway” through the process, rather
than those at the beginning and end. We do this by
using this equation:

i
i l

ifiv),min(−
=

where i is the number of the current loop, f is the
total number of faces in the solid, and li is the least
total length of the current loop.
After passing the values through the equation, the
most preferable values will have a high amount
instead.

Short Communication papers 83 ISBN 978-80-86943-02-2

If necessary, we then clean up the values further by
averaging adjacent values. This is done when the
values tend to alternate between going up and down
(e.g., in a solid with triangular faces).

• High threshold (more selections to consider)
Pro: More accurate
Con: Takes more time

• Low threshold (less selections to consider) Next, we calculate upward spikes in the values with
another equation: Pro: Takes less time

111

111

if)()(
if)()(

−+−

−+−

<−×−−
≥−×−

=
iiiiii

iiiiii
i vvvvvv

vvvvvv
s Con: Potentially less accurate

5. EXPERIMENTAL RESULTS
The result of this equation produces positive values
at upward spikes, which correspond to small loop
sizes.

The algorithm was run on a set of examples, as
illustrated in the following Figures.

Each figure was made in two versions: one with
quadrilateral faces, and another with mostly triangle
faces.

Next, we measure the “distance” (i.e., the number of
loops) between the current loop and the closest loop
that produces a higher value. For example, if s120 =
200, s100 = 250, s150 = 300, and

, then the distance is 20, as 250:150100 <<<∀ xsx
1201503020100120 −=<=− .

Therefore, we multiply s100by 20 to produce the final
value of 250 × 20 = 5000.

We then output the final values that are larger than

50
1 of the largest final value, as the thin points of the

solid.
Figure 6. (a) Quadrilateral faces (b) Triangle

faces 4. THRESHOLDING
As implemented, the program allows its user to select
the threshold of number of selections that remain
after each loop of the iterative step (min. 10, max.
1000). When the number of selections that remain,
after removing those with a total length more than
1.1 times the least total length, still exceeds the
threshold, the program sets a new length limit:

The results obtained from these examples (with a 40
threshold) are shown in the following Figures 7 to
10, with the loops obtained highlighted in black.
The results show that the algorithm, while it has
some degree of accuracy, still needs improvement. In
particular, the algorithm produces spurious results in
two examples, and it completely misses another thin
point in one of the other examples.)95.0,min(1.00

c

t

n
n

t ×=

where nt is the threshold, and nc is the actual number
of selections. The program then removes selection
with a total length more than (1+t0) times the least
total length. If necessary, the program adjusts the
length limit further:

)95.0,min(1
c

t
ii n

n
tt ×= −

If, after 20 iterations of adjusting the length limit
(i>20), the number of selections that remain still
exceeds the threshold, the program uses a sorting
algorithm to find the selections with the smallest total
lengths, up to the threshold (e.g., if the threshold is
40, we take the 40 selections with the smallest total
lengths).
The pros and cons of high and low thresholds are
thus:

Short Communication papers 84 ISBN 978-80-86943-02-2

Figure 8. Example 3 results. Figure 6. Example 1 results.

 Figure 7. Example 2 results.

Figure 9. Example 4 results.

Short Communication papers 85 ISBN 978-80-86943-02-2

Figure 10. Example 5 results.

Figure 11. Example 6 results.

The execution times are shown in Table 1. The
results indicate a much longer execution time for
solids with triangular faces. The reason this is so is
that quadrilateral faces take advantage of the face

preference time-saving measure, while the triangular
faces do not.

Ex. Faces
(Quad.)

Time
(Quad., s)

Faces
(Tri.)

Time
(Tri., s)

1 480 19.598 448 95.858

2 480 22.162 448 136.556

3 480 22.282 448 134.103

4 960 73.946 912 1009.011

5 960 72.534 912 802.224

6 960 70.031 912 587.915
Table 1. Execution time

Due to the lengthy execution times for the solids with
triangular faces, the experiment then looked into the
effects of lowering the threshold.

This experiment was done on the third example, and
the results are in Table 2.

Threshold 10 (min.) 40
Time 14:30.442 s 26:24.408 s

Threshold 80 120

Time 1:01:19.721 s 2:00:51.497 s
Table 2. Execution time for different thresholds

The results were the same as the 40 threshold for the
80 and 120 thresholds, but different for the 10
threshold. This result shows that while lowering the
threshold also lowers the execution time, it does not
significantly adversely affect the accuracy.

6. CONCLUSIONS
As currently implemented, the algorithm that has
been described in this paper is effective in finding
the “thin points” in an Abstract Cellular Complex.
This algorithm has potential applications where
finding the thinnest part of a structure represented as
a 3D mesh is necessary, for example, to find a
possible weak spot in a structure, or a potential spot
to “chop” the structure into two parts or more.

Current drawbacks of the algorithm are that it has
limited sensitivity, that it assumes that the shortest
loop is also the smallest loop (an assumption that
does not hold when the smallest loop is very
concave) and that, in the worst case, it takes
exponential time to discover the thin points. Future
potential improvements include finding better
heuristics to determine the smallest loops, increasing
the speed and efficiency of the algorithm, and
increasing the sensitivity while decreasing the
spurious results obtained with the algorithm.

Short Communication papers 86 ISBN 978-80-86943-02-2

7. REFERENCES
 [Dan98] Danielsson, P.-E., Lin., Q., and Ye, Q.-Z.

Segmentation of 3D-volumes Using Second
Derivatives. Proc. 14th Int. Conf. on Pattern
Recognition, pp. 248-251, 1998.

[Dan01] Danielsson, P.-E., and Lin., Q. Efficient
detection of second-degree variations on 2D and
3D images. Journal of Visual Communication
and Image Representation, Vol. 12, pp. 255-305,
2001.

[Flo00] Florack, L., and Kuijper, A. The topological
structure of scale-space images. Journal of
Mathematical Imaging and Vision, Vol. 12,
pp.65-79, 2000.

[Kol95] Koller, T., Gerig, G., Székely, G., and
Dettwiler, D. Multiscale Detection of Curvilinear
Structures in 2-D and 3-D Image Data, 5th

International Conference on Computer Vision,
pp. 864-869, 1995.

[Kov01] Kovalevsky, V. Algorithms and data
structures for computer topology. Digital and
image geometry: advanced lectures, pp. 38-58,
2001.

[Suk96] Sukanya, P., Takamatsu, R., and Sato., M. A
new operator for image structure analysis.
Proceedings of the International Conference on
Image Processing, Vol. 3, pp 618-658, 1996.

[Ung06] Ungvichian, V. and Kanongchaiyos, P.
Mapping A 3-D Model into Abstract Cellular
Complex Format. Computer-Aided Design and
Applications Journal, Vol. 3, pp. 395-404, 2006.

Short Communication papers 87 ISBN 978-80-86943-02-2

Short Communication papers 88 ISBN 978-80-86943-02-2

3-D Object Extraction Using Volume Computation

Varakorn Ungvichian
Department of Computer Engineering,

Chulalongkorn University
Bangkok, Thailand

ungvichian@thaimail.com

Pizzanu Kanongchaiyos
Department of Computer Engineering,

Chulalongkorn University
Bangkok, Thailand

pizzanu@cp.eng.chula.ac.th

ABSTRACT

This paper describes an alternative approach to extracting 3-D objects and volumes, from lists of given faces,
edges, vertices, and the vertices' coordinates. Most graphics file formats store 3-D information for various
purposes as a list of polygons, which does not provide a direct indication of structure or relationships between
each object. This leads to the limitation of object identification within the list of data. The proposed algorithm
was developed as part of a method for finding the Abstract Cellular Complex of an object. The volumes
(whether closed or open) of an object are determined from the input set of faces. Each object is then extracted
according to its manifold. This algorithm can identify every volume and extract them from the set of given data
when the object(s) represented by the data have a genus of 0.

Keywords
Geometry, Modeling, 3-D Object Analysis, Surface Reconstruction

1. INTRODUCTION
There are many types of file formats being used to
store 3-D graphics for multimedia purposes. Many of
these store the information as a list of polygons.
Storing the information in this way does not
explicitly explain how many objects are in a given
file, and does not provide a direct indication of
structure or relationships between each object, which
leads to the limitation of object identification within
the list of data.

This algorithm was developed as part of research on
converting a 3-D wireframe model into the Abstract
Cellular Complex data structure described by
Kovalevsky [Kov01]. Part of the conversion requires
finding closed volumes from a set of given faces.

The algorithm analyzes its inputs, namely, a list of
faces (and the vertices and edges that form each
face), a list of edges, and a list of the vertices'
coordinates, to produce grouped set(s) of faces,
edges, and vertices which indicate each volume in
the given input.

Currently, the algorithm is known to work on objects
with genus 0 (i.e., with no holes). However, it can
handle multiple objects in a single scene.

2. PREVIOUS WORK
In our research, we focus on finding individual
closed volumes in an object represented by a given
set of faces, which also involves determining the
object’s outside surface.

The problem described here is essentially a classic
topological problem [Man88]. While simple traversal
of the topology would be sufficient when the
topology has already been determined, we have not
completely organized the input topologically. For
example, we have not radially sorted the faces
incident around each edge. Because our input is not
topologically complete, we have opted for an
alternative approach utilizing geometric calculations.

One example of previous research on constructing
solids from faces is Higashi et al.’s method for
unified geometric modeling [Hig93], an extension of
Mantyla’s solid modeler [Man82]. It differs from our
research in that Higashi’s work utilizes a modified
version of Mantyla’s half-edge structure [Man88],
while our research uses a simpler and more
straightforward hierarchy: vertices, edges, and faces.
Such a hierarchy is more intuitive to the way the
average person views a solid, as consisting of these
three kinds of elements.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Short Communication papers 89 ISBN 978-80-86943-02-2

Also, based on Baumgart’s winged-edge structure
[Bau75], we will have edge adjacent to exactly two
faces in any given closed volume.

3. DEFINITIONS AND CONDITIONS
In this paper, an “object” refers to a set of faces,
edges, and vertices O such that each face in O is
adjacent to another face in the set and not adjacent to
any face outside the set, while each edge and vertex
in O is adjacent to a face in the set.
“Closed volume” refers to a set of faces, edges, and
vertices V such that each edge is adjacent to exactly
two faces; each vertex is adjacent to the same
number of edges as faces; the numbers of faces,
edges, and vertices satisfy Euler’s polyhedral
equation (in its most simplified form, V-E+F=2,
where V is the number of vertices, E the number of
edges, and F the number of faces); and the volume
enclosed is not split up by any set of faces. “Open
volume” refers to such a set V each edge in V is
adjacent to at most two faces, other than closed
volumes. Objects need not be comprised of just one
volume. For example, two cubes with one shared
face are considered as one object, while each cube is
considered a separate closed volume. Meanwhile, a
cube with one face missing would be considered an
open volume. This paper concentrates more on
obtaining the closed volumes.

The inputs for this algorithm are lists of faces, edges,
and vertices, the relationships between faces and
edges (i.e. which faces are adjacent to a given edge,
and vice versa), and the relationships between edges
and vertices (i.e. which edges are adjacent to a given
vertex, and vice versa). The preconditions are that
the object(s) represented by the input have a genus of
0.
The output from the algorithm are grouped set(s) of
faces, edges, and vertices which describe each
volume (closed or not).

4. ALGORITHM
The first step of the algorithm is to sort the vertices
by their x, y, and z coordinates respectively (e.g., <0,
0, 0> comes before <0, 0, 1>, <0, 1, 0>, and <1, 0,
0>), and then transpose and/or reverse the order of
the vertices in each face, so that the first vertex of the
face is the one that is earliest in the list, and the
second vertex is the earlier of the two vertices
adjacent to that first vertex, with the new order still
representing the face. For example, a face with
vertices labeled 1-6-8-2 can be transposed to 6-8-2-1
and then reversed into 1-2-8-6. The transposed faces
are then ordered by their first few vertices. For
example, a face with vertices 1-3-4-5 comes before
1-4-5-6, but after 1-2-3-4.

The next step is tracing each object out, by starting at
a random edge and adding it to a list, adding faces
adjacent to that edge, then the edges in each adjacent
face, and then faces adjacent to those edges,
repeatedly until no more new faces or edges are
added.
Each object may consist of several closed volumes.
Therefore, closed volumes are traced in a different,
and more complex, manner. First, the program finds
the leftmost “available” face, with the following
procedure:
The program looks for the vertex with the “smallest”
coordinates (i.e., least x, then least y, then least z) in
the current object (A in Figure 1). After finding the
vertex, the program checks its adjacent vertices (a, b,
c). The program calculates the cosine of the angle
between a vector parallel to the z-axis and the vectors
between the vertex with the smallest coordinates and
each of its adjacent vertices, and picks the edge that
is part of the object and has the highest absolute
value of cosine (i.e., the smallest angle with the z-
axis). After selecting the edge (Aa), the program
calculates the vectors that are perpendicular with the
edge and the normal vectors of its adjacent faces (f,
g). The program then picks the face where the
resulting vector has the least angle with the y-axis (f).

Short Communication papers 90
Figure 1. Finding the leftmost available face.
ISBN 978-80-86943-02-2

After the leftmost “available” face is found, this face
is put into a list of faces, with its edges and vertices
also added to corresponding lists. For each edge
adjacent to exactly two “available” faces, those two
faces are added to the list of faces, with their edges
and vertices added to their respective lists also. This
repeats until no more faces are added. Figure 2
shows the results at the various stages of this portion
of the algorithm on a 2-D mesh of triangles. Starting
at the center of the mesh, one triangle and its edges
are selected (in green). The triangles that are adjacent
to the selected edges (in yellow) are next to be added,
along with their edges (while edges with two selected
faces are removed from the list. This repeats until no
new faces and edges are added.

If the faces do not correspond to Euler's polyhedral
equation, and there are faces remaining to be added,
the program looks for edges which only have one
selected face attached, and checks how many
available faces are adjacent to each such edge
(including the face already selected). If there is an
edge adjacent to exactly two faces (i.e., there is one
unselected face), it will simply add the unselected
face, along with its edges and vertices. However, if
all such edges are adjacent to at least three faces, the
program needs to determine which face is part of the
closed volume. To do this, the program calculates
vectors which lie perpendicular to both the current
edge being considered, and the normal of each of
those faces. The program then traces edges with only
one selected face attached, starting from the current
edge and going in either direction, to find a series of
such edges which form a continuous chain (see
Figure 3, for an example), before finding the average

coordinates of the vertices in said chain (the chain
need not necessarily comprise a continuous loop as
in Figure 3). This is to provide the program with a
“general idea” of where the “inside” of the closed
volume is.

Figure 3. Edge chain (in light green).

The program calculates the vector between the centre
of the current edge (a) and the average coordinates of
the vertices (b), and, if necessary, modifies the vector
to be perpendicular to the edge while lying on the
same plane as the original vector ((a × b) × a). This
is used to determine the proper turn direction, and
thus the face with the smallest dihedral angle in the
proper direction, which is then added.

Figure 2. Tracing faces.

Figure 4. Face selection (explained below)

As an example, consider Figure 4. Here, 4 faces
(represented by the edges marked a, b, c, and d) are
adjacent to an edge (represented with vertex A). Face

Short Communication papers 91 ISBN 978-80-86943-02-2

a has already been selected. The program will either
select face b or d, depending on the vector between
the centre of edge A and the average of the vertices
in a chain that starts with the same edge. Possible
results are represented here with α and β. With α as
the result, the program finds that the face with the
smallest dihedral angle (in the direction of α) from α
is d, and thus picks that face. However, with β as the
result, the program will select b instead, since it is the
face with the smallest dihedral angle in the same
direction as β. Using the sample shape, the process is
illustrated in Figure 5, using the same labels as
Figure 4. Here, the turn direction is determined with
the vector α, and the face with the least angle in that
direction is b (ahead of c).

This process is then repeated until the numbers of
faces, vertices and edges correspond to Euler's
polyhedral equation, thus comprising a closed
volume, or until there are no more faces remaining in
the object, in which case the selected faces represent
an open (i.e., not closed) volume.
To determine which faces to remove from
consideration, the outside surface of the whole object
has to be traced. Tracing the outside surface uses the
same algorithm as that used to find the closed
volumes, except that when considering dihedral
angles, the face with the largest dihedral angle is
added instead (using Figure 4 as an example, α
results in the program selecting b, and β results in the
program selecting d). The list of faces in the closed
volume is compared with the list of faces in on the
surface. The faces in the closed volume that are not
on the outside surface of the object are retained,
along with the faces that have not been used so far.
A potential flaw in both the closed volume and
surface finding algorithms is that the algorithm calls
for calculating a vector that is perpendicular to the
currently selected edge and is planar with the edge's
adjacent face, as well as calculating another vector
between the centre of the selected edge and the

centre of the chain of edges starting from that edge.
There is a possibility of those two vectors being in
the same direction (resulting in a zero vector as their
cross product), which would create difficulties in
properly tracing surfaces and closed volumes, since
the program cannot determine the proper turn
direction in this case. Currently, the program solves
this issue by testing different edges instead, and if all
the edges produce this same result (which is most
likely when there is just one selected face, or when
the selected faces form a single plane), the program
modifies the vector from the centre of the edge to
centre of the edge chain, by adding to the x (and y, if
necessary) values of the actual vector. The use of
this special case solution is due to how both finding
algorithms start at faces with the smallest
coordinates. Figure 6 illustrates the special case
solution, with a single-face edge chain: a marks the
centre of one edge, while b marks the centre of the
face / edge chain. Vector a is planar with the face
and perpendicular to the edge, and vector b is the
vector between the centre of the edge and the centre
of the edge chain. Since vector a is parallel to vector
b, vector b is modified into vector c, as if c were the
centre of the edge chain.

The faces
on the ob
list of fac
until the
program
open) in t

5. RES
The follo
using the

Sample
Figure 7
shape de

Short Communication papers 92
Figure 6. Special case solution.
Figure 5. Face selection on sample shape.
 that are not in the split plane list (i.e., are
ject's outside surface) are removed from the
es in the object. The process then repeats
face list is empty, and by this point, the

has identified all volumes (both closed and
he object.

ULTS
wing figures show select results obtained
algorithm.

 shape
shows the result obtained from the sample
scribed in the previous section, correctly

ISBN 978-80-86943-02-2

identifying the nine faces in the middle as the split
plane, and identifying the two boxes in the object
(seen from different angles here for clarity).

 Wedge box

This box with wedges attached to its sides shows an
example of a non-contiguous non split plane (note
the second shape in the first row of Figure 10). The
algorithm handles this correctly to produce the five
closed volumes that comprise the wedge box.

Triangle prism
The triangle prism is split into three parts by walls
that connect to the centre of the prism. The algorithm
identifies these three parts correctly, as seen in
Figure 8.

 Nine boxes
The algorithm correctly identifies the nine boxes that
make up the larger box. The highlighted boxes in
Figure 9 show the order in which each box is
identified.

Fish
To illust
structure,
as an exa
body of th

Short Communication papers 93
Figure 10. Wedge box results.
r
w

Figure 9. Nine boxes results.
Figure 8. Triangle prism results.
Figure 7. Sample shape results.
ate the algorithm's use on a complex
e use the wireframe of a fish and its faces

mple. The algorithm identifies the main
e fish as a single open volume. However, it

ISBN 978-80-86943-02-2

6. SUMMARY also identifies a few “leftover” faces as distinct
“volumes” from the main body, and none of the
volumes are closed. The areas where the “leftover”
volumes are identified are circled in Figure 11. This
may be due to the shortcomings of the model itself,
however.

As currently implemented, the algorithm correctly
identifies the volumes of each object. This algorithm
has potential applications where counting 3-D
objects in given wireframe data is necessary.
However, possible improvements to the algorithm
include providing a less error-prone solution to the
problem solved by the special case solution described
in the main text, improving the algorithm to work
with objects with genus 1+ (i.e., with holes), and
possibly a more accurate (and foolproof) method for
selecting the next face for each volume.

7. REFERENCES
[Bau75] Baumgart, B.G., Winged-edge polyhedron

representation for computer vision, 1975.
[Hig93] Higashi, M., Yatomi, H., Mizutani, Y., and

Murabata, S. Unified Geometric Modeling by
Non-Manifold Shell Operation. SMA '93:
Proceedings on the second ACM symposium on
Solid modeling and applications, pp. 75-84, 1993.

[Man82] Mantyla, M. and Sulonen, R. GWB: A solid

Results
The results o
shape in the
described in
detailed in the

Shape

Faces
Edges
Vols.
Vol. analys
time (s)
Total pro
time (s)

Shape

Faces
Edges
Vols.
Vol. analys
time (s)
Total pro
time (s)

T

Short Comm
Figure 11. Fish results.

modeler with Euler operators. IEEE Computer
Graphics and Applications, Vol. 2, No. 7, pp. 17-
31, 1982. f testing the algorithm using the sample

main text, and then the three shapes
 the previous three subsections, are
 following table.

[Man88] Mantyla, M., Introduction to solid
modeling, 1988.

[Kov01] Kovalevsky, V., Algorithms and data
structures for computer topology. Digital and
image geometry: advanced lectures, pp. 38-58,
2001. Sample

shape
Triangle
prism

Nine
boxes

19 12 42
40 16 64
2 3 9

is 1.219 0.924 5.132

c. 11.804 6.664 26.698

Wedge
box Fish

26 2204
44 3316
5 6

is 2.253 49.826

c. 16.398 510.229

able 1. Results in numbers

unication papers 94 ISBN 978-80-86943-02-2

A Compression Method For Spectral Photon Map Rendering
Gorm Lai

Department of Computer Science,

University of Aarhus and

Deadline Games

Fabriksmestervej 4-6

Denmark, 1437 Copenhagen K

gorm.lai@deadlinegames.com

Niels Jørgen Christensen
Informatics and Mathematical Modelling,

Technical University of Denmark

Building 321

Denmark, 2800 Lyngby

njc@imm.dtu.dk

ABSTRACT

The photon map method can easily be extended to handle wavelength-dependent phenomena such as dispersion, chromatic
aberration, etc. Using the computationally effective approach of point sampling for this extension, the size of the photon map is
increased proportionally with the number of samples. In this paper we present a solution for modelling wavelength-dependent
phenomena that keeps variance low, while having a memory usage comparable to that of an RGB based renderer. The method
is best used for photon mapping, where there is a need to storelarge amounts of spectral flux directly in the photon map. Our
method incurs a slight loss of accuracy for photons in the global map, while photons in the caustics map retain all information.
Our tests show negligible loss of accuracy in the image quality.

Keywords: Global illumination, photon mapping, spectral power distribution, rendering, Monte Carlo methods, refraction,
rendering equation

1 INTRODUCTION

In the sense of computer graphics, the discipline of
global illumination has been around for over 20 years.
The problem was first formalized in a ground break-
ing paper by [Kaj86], calledThe Rendering Equa-
tion and introduced a way of solving the equation,
and introduced path tracing as a way of solving it.
Other important advances in global illumination in-
clude radiosity [Gor84], irradiance caching [War88],
bi-directional path tracing [Laf93] and photon map-
ping [Jen01]. The extension of the rendering equa-
tion to make it wavelength-dependent is straightfor-
ward, and is given in Equation 1, whereλ represents
the wavelength.

L(x, ~ω ,λ) = Le(x, ~ω ,λ)+∫
Ω

fr(x, ~ω , ~ω ′,λ)L(x′, ~ω ′,λ)(~ω ′ ·~n)d~ω ′ (1)

Many people have tried solving Equation 1 using the
naive approach of solving it one discrete wavelength at
a time. However, this method is time consuming and
introduces variance.
[Col94] made a spectrally global illumination system,
based on Backwards Ray Tracing [Arv86]. Collins uses
sampling for the representation of his spectral power
distributions. He uses 6 bins to represent a spectrum.
One problem that Collins runs into is that the Illumina-
tion Map, which stores the particle power depositions,

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen,
Czech Republic .

uses quite some memory.
[Wil00] extends a standard ray tracer to handle disper-
sion. Instead of handling dispersion in a deterministic
fashion, where a spectral power distribution ofN sam-
ples is split intoN sub-spectra, a sub-spectrum is jit-
tered by as much as half the width of the wavelength
band represented by the specific bin. This approach
eliminates some of the banding problems caused by
having too few samples, but it introduces variance in-
stead. Unfortunately [Wil00] only implemented the
method in a standard ray tracer and not in the context
of full global illumination.
[Sun00] describes a spectral framework capable of ren-
dering dispersion. This is done using an extended stan-
dard eye tracer. The author extends the ray data struc-
ture with information about the monochromacity of the
ray, and if the ray is monochromatic, the data struc-
ture is also extended with the value of the wavelength.
However, since only an eye tracer is used, important
phenomena, like indirect lighting, are lost.
Much of the work in for this paper has been inspired
by the paper Stratified Wavelength Clusters for Effi-
cient Spectral Monte Carlo Rendering [Eva99]. The
authors have implemented an extended bi-directional
path tracer ([Laf93]), with a method they call Stratified
Wavelength Clustering (SWC). The idea is that emit-
ted light rays carry a cluster ofK wavelengths, instead
of the more naive approach of just a single wavelength.
Only when a ray interacts with a dispersive material are
the clusters split into individual wavelengths. TheK
wavelengths in the cluster are chosen at random, ac-
cording to the spectral power distribution of the light
source. The authors compare their method of emit-
ting clusters of wavelength, against the naive method
of emitting a single wavelength at a time. The authors
show that SWC converges better than the naive method,
while being only marginally more computationally ex-

Short Communication papers 95 ISBN 978-80-86943-02-2

pensive. However, as the authors point out, since they
implemented SWC using a bi-directional path tracer,
close to pure specular light paths are difficult to model.
The authors suggest using photon mapping instead,
which as they point out, might cause memory problems
because of the relative size of the spectra.
Another work that comes close to what has been done
for this paper is [Ieh00]. They implemented a renderer
based on photon mapping that was capable of render-
ing dispersion. They use an adapative representation
of the spectral data based on [Rou97]. They also in-
troduce a perceptual error control based on a CIELAB
error, which is controlled through a parameter set by
the user. In their implementation photons are emitted
in two passes; first photons are emitted with an aver-
age behavior where even the refraction indices are aver-
aged. Then during rendering, if a caustic is found, non-
average photons are re-emitted at certain wavelengths.
In this case, some of the paths of the average photons
are reused. [Ieh00] shows a lot of promise. However,
their method does not easily fit into the standard frame-
work of the photon mapping method and would be dif-
ficult to port to a hardware implementation.
All of the methods described above solve Equation 1 ei-
ther partly or wholly. However, nearly all of them suffer
from the problem that the representation of the spectral
power distribution is very costly in memory. The main
contribution of this paper is a method for solving Equa-
tion 1 in an efficient manner, which minimizes memory
usage, avoids extra variance, and at the same time is
suitable for implementation on modern graphics hard-
ware as described in section 6. However, our method is
unable to accurately represent fluorescent spectra.

2 SPECTRALLY BASED PHOTON
MAPPING

The method described in this paper has been developed
in the context of photon mapping. However, as de-
scribed in section 6 it appliance goes further than pho-
ton mapping.
In general, photon mapping has many steps where the
representation of reflection values is important. Since
this paper is all about the accuracy and size of the spec-
tral representation, we will go through these steps in
photon mapping, and one by one describe how each
step has been modified to fit to the subject of this pa-
per. Section 2.1 briefly describes and discusses the
representation of the spectral power distribution. Sec-
tion 2.2 and section 2.3 describes how the photon map-
ping method [Jen01] have been modified to work within
the context of the method described in this paper.

2.1 Representation

Two different strategies have dominated in the subject
of representing spectral power distributions; basis func-
tions and point samples.
The first common approach is to represent spectra by
the use of basis functions. By pre-analyzing the scene,

a set of basis functions and weights that "best" repre-
sent the spectra in the scene is found. Each spectrum,
is then represented by a set of weightsw1..wk and a re-
lated set of basesE1..Ek. These are summed together in
a linear combination to represent the final spectrum, as
in Equation 2.

λ =
k

∑
i=0

wi(λ)Ei(λ) (2)

Basis functions have the advantage of being a compact
representation, while being able to model complex
spectra (i.e. non-smooth). This approach also has the
advantage of requiring only a few basis functions to
represent smooth spectra well. Often the bases are al-
lowed to be different for each spectrum. Unfortunately
this makes spectral multiplication very expensive, as
matrix multiplication is an (n3) operation. To overcome
the expensive multiplications, the same basis functions
can be chosen to represent all the spectra. This will
reduce the cost to O(n). However, unless some spectra
are to be misrepresented by too few basis coefficients,
a lot of basis functions might be needed to represent
all spectra in the scene with sufficient accuracy. The
excessive number of basis functions might defeat the
entire purpose of trying to overcome the (n3) cost of
the folding operation. [Pee93] presents a method that
given a set of spectral power distributions, finds the
"best" m basis functions. Here "best" is a measure
of the distance between the original spectra and the
basis functions. [Pee93] also shows that once the basis
functions have been found, the multiplicative cost is
comparable to that of point sampling (see description
below), while giving a more accurate representation of
the original spectra.
Point sampling is a second commonly used method,
which is a simple extension of the tristimulus (RGB)
method, where a set ofn samples is used to represent
a spectral power distribution. Point sampling can be
seen as a special case of using basis functions, where
the basesE1..Ek are orthonormal to each other.
Point sampling has the advantage, that the folding
operation is an O(n) operation. However to model
complex spectra, a lot of bins might be needed,
which takes up a lot of memory and slows down the
multiplication. [Pee93] shows that using Riemann
summation for numerical integration of the spectral
power distributions, 4 point samples result in less than
5% error of the tristimulus values.
For completeness it should be mentioned that at least
two other methods exists.
Sun [Sun00] extends the linear basis approach by
introducing a composite model. This model has a dual
representation, consisting of a smooth and a spiky part.
The smooth part is approximated by a Fourier series,
while each of the spikes are represented by a pair (λi,
wi), whereλi gives the location of the i’th spike and wi
is a weight. This approach has the advantage of being
compact and accurate at the same time. Sun [Sun00]
overcomes the inherent O(n3) time complexity of

Short Communication papers 96 ISBN 978-80-86943-02-2

multiplying two bases and reduces it to O(n) by clever
resampling of the Fourier series.
[Rou97] suggests an adaptive representation of the
spectral power distribution. All spectral reflectances
in the scene are gathered and projected onto a set of
basis functions. As basis functions the authors use
Haar wavelets, organized by means of binary trees. A
user controlled error interval helps control the traversal
of the hierachically organized basis functions during
rendering. The idea of the method is that for example
when rendering dispersion, an error tolerance factor
can be used to control the level at which the spectral
power distributions are split.
We chose to use uniformly distributed point samples
for this paper. There are several reasons for this;
multiplication is an O(n) operation and so are the con-
versions between RGB space and the spectral domain.
By using point sampling, reflection values can be kept
at full resolution. If we were using basis functions,
reflection values would have to be approximated more
coarsely than with point samples. In this paper we
show that the memory used by point sampling can
be cut down to that used by the RGB representation,
while still keeping O(n) performance. Thirdly, the
core of our algorithm basically consists of matrix
multiplications of cost O(N) and is therefore suitable
for implementation on modern graphics hardware.

2.2 Photon Mapping, Pass 1: Photon
Emission

For this paper, the flux that photons carry can have two
different representations; thefull format and thecom-
pact format. In the full format, the photon flux is mod-
eled as spectral power distributions, represented as uni-
formly distributed point samples. We need to under-
stand when and how the compact format is needed, be-
fore describing it in full detail in section 2.2.4.

2.2.1 The Full Format

A spectral renderer must solve the rendering equation
(Equation 1) on a pr. wavelength basis.
The naive way to solve Equation 1 is to solve it one
wavelength at time. This approach increases variance,
and therefore also rendering time. As already men-
tioned, [Eva99] uses light rays carrying clusters ofK
wavelengths at a time, which decreases variance. How-
ever, for this paper we have chosen a third approach,
described in the following paragraph.
At the time of emission a photon carries the entire spec-
trum of the emitting light source. As spectral power dis-
tributions are represented as point samples, allN sam-
ples are represented in the flux. This increases mem-
ory usage linearly withN but also decreases variance
in most cases. To see this, assume a photon is hit-
ting a diffuse surface in an epsilon sized area around
x and reflecting alongω . As the diffuse BRDF has
an uniform probability of reflecting along a given sam-
ple, if we were sending out photons carrying only one

wavelength at a time, we would on average need to
sendN times more photons to get the same light in-
tensity alongω than if we sent out a single photon car-
rying all N samples at once. As long as we are using
wavelength-independent BRDFs, except for decreasing
variance and thus rendering time, there is no side ef-
fect of usingN samples instead ofK < N. By carry-
ing all N samples, the decision of exactly how to re-
flect/transmit and in which direction is postponed un-
til a wavelength-dependent BSDF is encountered. By
using just 1 sample, variance is increased as the deci-
sion of which direction to reflect/transmit has already
been made before the wavelength-dependent surface
is met. For scenes containing wavelength-dependent
BSDFs, variance is decreased proportionally with how
many photon bounces are needed on average before
wavelength-dependent interaction is encountered. The
only wavelength-dependent BSDFs used for this paper
are those having transmitting effects.

2.2.2 Surface Interaction

When a photon hits a surface, Russian roulette is used to
choose either reflection, absorbtion, and if applicable,
transmission. If a photon is reflected or transmitted, two
important events must be considered. Firstly, a copy of
the photon must be made, and tracing of the original
continued (see Section 2.2.3). Secondly, the copy of the
photon must be stored in the photon map (also Section
2.2.3). For absorbtion, the original photon is discarded.

2.2.3 Tracing and Storing the Photon

When a photon hits a surface, a copy of the spectral
photon is made. The copy is stored in the photon map,
while the original photon is treated in the following
manner:
Upon surface interaction the flux of the photon is modi-
fied exactly as described in [Jen01]. If the interaction is
a reflection nothing more is done, and we simply keep
tracing. However, if the surface interaction is a trans-
mission, then the transmitted direction is wavelength-
dependent since we are working within the context of a
spectral renderer. This poses a problem, since photons
carriesN different wavelengths simultaneously and not
just one. At the point of transmission, a photon needs to
be sent out into each wavelength-dependent direction.
This can be done using a recursive ray tracing like tech-
nique, Russian roulette, or some third heuristic. The
strength and weaknesses of each heuristic is not impor-
tant in the context of this paper. We have already done
a lot of work in this area, and we plan on this being the
subject of a later paper. In any case the resulting pho-
ton used for tracing along the wavelength represented
by thei’th wavelength, will have all samples except the
i’th be zero.
It is important to note that all surface interactions are
calculated with original spectral data that has not yet
been stored in the compact form (section 2.2.4), and
thus no loss of data occurs, except that imposed by the
discrete sampling representation.

Short Communication papers 97 ISBN 978-80-86943-02-2

If the photons are stored in RGB format, the flux of
the photons will require a meager 4 bytes∗3= 12 bytes
for each photon. However, if the photons are stored as
spectral samples withN entries then the memory re-
quirements will potentially multiply many times. For
N = 100 the memory requirement will be 400 bytes for
storing the flux of a photon. This is 33 times more than
the memory requirements for the RGB version.
When photons are stored, the flux they carry is con-
verted to the compact format before being added to the
photon map. This compact format is slightly lossy but
only uses memory comparable to that of the RGB rep-
resentation.

2.2.4 The Compact Representation

The compact representation has two different formats.
Exactly which format is used depends on whether the
flux carried by the photon has more than one non-null
sample. As described in section 2.2.3 the flux of a pho-
ton which has been through a transmission consists of
exactly one non-null sample.
If the flux has exactly one non-null sample there is no
need to useN samples for storing the photon, as all sam-
ples except one are zero. Instead we use a RGB triplet
and store special information in it. The first coordinate
is used as a special marker that says this RGB triplet
is a not in the standard format, but is a compact spec-
trum. This is done by setting the entry to -1. This will
never go wrong as we need Equation 1 to converge and
thus all reflectances must be greater or equal to zero.
The second coordinate is used for storing the index of
the non-null sample, and the third coordinate for stor-
ing the amplitude of the non-null sample. Note that this
way of storing the flux does not impose any loss of in-
formation.
Note that when each discrete wavelength is represented
as exactly one photon, the size of the photon map grows
proportionally toN. This fact is not related to our com-
pression method, however. The photon map also grows
proportionally toN in the uncompressed version.
If the flux has more than one non-null sample, the
spectral flux of the photon is converted to RGB space
through the use of Equations 3 to 5.

R = k
∫ 830

360
Mred(λ)L(λ)dλ (3)

G = k
∫ 830

360
Mgreen(λ)L(λ)dλ (4)

B = k
∫ 830

360
Mblue(λ)L(λ)dλ (5)

The mathematical matching functionsMred(λ),
Mgreen(λ) and Mblue(λ) have been found experimen-
tally using psychological tests. The matching functions
used for this paper, have been taken from [hc]1.

1 For a more indepth description of the CIE matching functions, see
[Fol96].

Using Equations 3 to 5 several spectra might map
to the same RGB value. Such spectra are called
metamers. During the final gathering step described in
section 2.3, photons are collected from the photon map
and converted back into the spectral domain. We use
[Smi99] for converting from RGB space to the spectral
domain. When converting back to the spectral domain,
the spectral power distribution might be converted
back to a different metamer than the RGB value was
originally converted from. More formally, letS be the
domain represented by all possible wavelengths, and
let C be the domain represented by all RGB colors.
Define Sc as the metamer subspace ofS that Smits’
method [Smi99] maps to. If a spectrums0 ∈ S \ Sc is
compressed and then converted back to the spectral
domain, the resulting spectrums1 is clearly not equal
to s0, since s1 lies in Sc while s0 does not. This
means lossiness is introduced whenever a spectrum not
belonging toSc is compressed. Dispersion is one of the
more important cases, where this clearly happens.
Dispersion happens as a light path of typeLD∗S and
takes a smooth spectrums0 ∈ Sc and maps it to a spiky
spectrums1 which does not lie inSc (since the mapping
from C to Sc can only produce spectra with more than
one non-zero value). Then whens1 is compacted, it is
mapped to colorc1. Then again whenc1 is mapped to
S it is not mapped tos1, but to a spectrum belonging
to Sc. This phenomena is shown in figure 1. However,

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

bin number

re
fle

ct
an

ce

original
remapped

Figure 1: Effect of remapping a spectrum outside Sc

as stated earlier, the particular case shown in Figure 1
has been fixed by storing a photon with exactly one
non-null sample in a special compact manner. This
is important, as single wavelength spectral power
distributions would be destroyed, which would make
modelling of wavelength-dependent effects such as
caustics difficult. Loss of information can happen in
other ways than dispersion. As soon as the product
or sum of two spectra lies outside ofSc, the resulting
spectrum is lost if it is converted to RGB space and
then back to the spectral domain. Algorithm 1 gives
the outline on compressing flux when storing a photon
in the photon map.
As stated earlier, our method has an inability to
represent flourescent spectra, as these are often combi-
nations of a smooth function and sudden spikes, while
our method assumes all spectra are either spikes or
smooth functions. The straightforward extension of

Short Communication papers 98 ISBN 978-80-86943-02-2

our method to handle flourescent spectra would be to
do as in [Sun00]. However, this would cost us the
straightforward and efficient hardware implementation
that our method is so well suited for (see section 6).

Color SelectiveCompact-
ing(SpectralPowerDistribution
spd)
if spd.HasOnlyOneNonZeroEntry() then

Color c;
c[0] = -1;
c[1] = spd.IndexOfNonZeroBin();
c[2] = spd.ValueOfNonZeroBin();
return c;

end
else

return spd.AsRGB();
end

Algorithm 1: Selective compressing of a spd

2.2.5 Number of Photon Maps

For this paper, we have split the scene into a number of
wavelength-independent photon maps as described in
[Lar03]. For scenes with lots of wavelength-dependent
BRDFs, this idea could perhaps be extended to have
photon maps for either each type of BRDF or for each
discrete wavelength.

2.3 Photon Mapping, Pass 2: Final Ren-
dering

After the global and caustics maps have been built, the
photon mapping method proceeds to the final gathering
step. During final gathering, photons are collected from
the photon map and used for approximating the Equa-
tion 1 in an epsilon sized area around a pointx.
As the rendering equation is solved spectrally, all com-
pressed photons must be remapped to their spectral rep-
resentations. How this is done depends on whether the
photon represents a single spike or a smooth spectra as
described in section 2.2.
Photons in the photon map which represents a single
spike , have−1 as the first entry in the RGB triplet de-
scribing the flux. To map back into the spectral domain,
a spectrum with all samples set to zero is initially cre-
ated. Then the sample, whose value is represented by
the second coordinate in the RGB triplet, has its value
set to the reflectance given by the value in the third co-
ordinate of the RGB triplet. This finishes the mapping.
Photons which do not have the first coordinate set to
−1, are remapped to the spectral domain using Smits’
method [Smi99]. It is during this remapping that a spec-
tral power distribution might be remapped to a different
metamer than it originally represented, which means in-
formation can be lost.

2.3.1 Locating Photons

It is important to consider exactly how to locate and
sum the photons in the photon map. Photons are

gathered and summed together exactly as described in
[Jen01]. The transformation from the spectral domain
to RGB space is a simple integral, and thus linearity
assures that it is correct to sum the photons along all
wavelengths before conversion to RGB space.
As always, it is important to assure that all photons
in the photons map are of similar intensity. This is
especially important to be aware of when working
with photons that have been through one or more
transmissions, as wavelength-dependent transmission
might a cause a photon to be reduced to oneN’th of its
original energy.

3 IMPLEMENTATION AND SETUP

To prepare for rendering, we have to make sure that
all reflection values in the scene are represented in the
spectral domain.
Most artists are used to working with RGB values, so
a way of transforming a RGB value to a metamer rep-
resentation in the spectral domain is needed. We have
used the algorithm described in [Smi99] for this pur-
pose. The essence of Smits’ method is that it is a fast
method of mapping a RGB value to a metamer in the
spectral domain. This metamer is represented asN uni-
formly distributed point samples. After all reflection
values have been converted to the spectral domain, the
photon mapping algorithm is ready to be executed.
Note, that the renderer not only supports loading of ma-
terials with RGB values, but also reflection values given
as spectral power distribution. This is to make sure that
spectral values that lie outside the mapping of Smits’
method can be used; one example where this is impor-
tant could be for using blackbody light sources.
All tests have been performed on a 3.0 GHz Pentium
4 machine, having 1 GB of RAM and running linux.
The photon mapping setup used 200,000 photons, 0.1
as irradiance cache accuracy, 18×57 stratified samples
for the final gathering and 200 samples per pixel for the
direct lighting. Picture resolution was 128×128. The
tests were setup so that the image with the highest num-
ber of bins have been used as reference as this should
be the most accurate rendering.

4 RESULTS AND DISCUSSION

For testing, we measure the difference in picture quality
in dB using the PSNR (Perceived Signal to Noise Ratio)
measure. Many different definitions of the PSNR exist.
The one used for this paper can be seen in Equation 6,
in which MN is defined as the number of pixels in the
image,a is the reference image,b is the image to be
tested, anda(x,y) andb(x,y) are pixel (x,y) in the im-
ages.

PSNR(a,b) = 10log10

(
MN

∑x,y (a(x,y)−b(x,y))2

)
(6)

The basis of the test is to try to maximize Equation 6.
PSNR(a,b) = ∞ means there is no difference between
the two pictures. Other interesting measures are the
RAM usage and rendering time.

Short Communication papers 99 ISBN 978-80-86943-02-2

4.1 The Matte Cornell Box

The purpose of the first test is to verify the correctness
of the basic idea and implementation. This has been
done by creating a matte Cornell box with colored walls
and two smaller boxes inside. The verification assump-
tions are as follows: All reflectances have been defined
using RGB colors, the transformation used for map-
ping between RGB space and the spectral domain is
the one described in [Smi99], all illuminants have been
defined using RGB colors and finally all BSDFs have
behavior independent of wavelength. With this setup,
a spectrally based renderer and a RGB based renderer
should produce approximately the same image. The
tests were run with 4,5,6,8,10,20 and 100 samples for
the representation of the spectral power distributions.
The tests show very little variance in PSNR numbers,
when changing between the compressed and the un-
compressed versions or when increasing the number of
samples. The only notable result was the savings in ram
usage; the reference RGB rendering used 20 MBs, the
uncompressed 100 bins version used 103 MBs, while
the compressed 100 bins version used 23 MBs. The
compressed method has near constant memory usage
regardless of bin size. The slight increase in memory
usage is due to the irradiance cache, which is still stored
in uncompressed format.

Images rendered at a slightly higher resolution than

(a) 100 bins compressed (b) 4 bins compressed

(c) 100 bins uncom-
pressed

(d) RGB

Figure 2: Renderings of the tests made in section 4.1

those used for the testings, can be seen in Figure 2.
There seems to be nearly no visible difference between
any of the pictures in Figure 2. Picture (a) is a little bit
brighter, and has a little more pronounced color bleed-
ing than the others, but that is all. Since there is no visi-
ble difference between the two pictures we have shown
that the spectral renderer works.

4.2 Spectral Illuminants

In this test, the light light source from section 4.1 is re-
placed with a blackbody, which a pure RGB renderer is
unable to model correctly. Renderings of the tests are
shown in Figure 3, and the test results seen in Table 1.
The number of bins clearly matters, as 100 bins give
a noticeably different picture than using 4 bins. Due
to the underrepresentation of the blackbody spectrum,
both the RGB and the 4 bins renderings show strong
aliasing in the color of the right wall.
Looking at Figure 3, the renderings of the compressed
and uncompressed pictures match closely, which is con-
firmed by the PSNR values in Table 1.The conclusion
is that the compression method renders with approxi-
mately the same accuracy as the pure spectral method.

Setup PSNR Render Time Ram Usage
uncompressed
100 bins ∞ 16m 30s 103 MB
20 bins 21.36 dB 6m 39s 40 MB
10 bins 30.46 dB 5m 19s 32 MB
8 bins 31.10 dB 5m 6s 30 MB
6 bins 31.49 dB 4m 54s 29 MB
5 bins 31.58 dB 4m 51s 29 MB
4 bins 28.72 dB 4m 27s 27 MB
RGB 29.63 dB 3m 54s 20 MB
compressed
100 bins 62.09 dB 17m 6s 23 MB
20 bins 30.48 dB 6m 46s 22 MB
10 bins 30.55 dB 5m 23s 21 MB
8 bins 31.23 dB 5m 11s 21 MB
6 bins 31.54 dB 4m 53s 21 MB
5 bins 31.49 dB 4m 47s 21 MB
4 bins 28.66 dB 4m 28s 21 MB

Table 1: Spectral illuminants test

(a) 100 bins compressed (b) 4 bins compressed

(c) 100 bins uncom-
pressed

(d) RGB

Figure 3: Renderings of the tests made in section 4.2

Short Communication papers 100 ISBN 978-80-86943-02-2

4.3 Wavelength-Dependent BSDFs

The last test uses a simple wavelength-dependent glass
BSDF, and is used for showing that our method incurs
no real loss in rendering quality even when highly spec-
ular materials are involved. When calculating transmit-
ted rays, the wavelength of photons in the RGB render-
ing is assumed to be 550nm.
Since the test scene involves large caustics, the number
of caustic photons has been set to 2 million. The 100
bins test used over 1.3 GB, which is more memory than
resided on the test machines.
Thinking a little about the setup, might help to explain
the high rendering times given in Table 2. 200 samples
have been used for the direct lighting and 18×57 sam-
ples for the final gathering. Splitting has been used for
the indirect lighting, with a maximum recursion level
of 5. For the 100 bins example, whenever a dispersive
material is intersected the total number of rays becomes
(18∗ 57+ 200) ∗ 25 ∗ 100= 3,923,200. In the worst
case, one ray spawns nearly 4 million extra rays.
Figure 4 shows the test results. Note the extreme vari-
ance caused by the close-up rendering of the prism
and caustics. The test is difficult as we have an area
light source and it shows how many photons are really
needed to get good caustics, and how much memory
compression matters. This scene really highlights the
significance of modelling dispersive behavior. Com-
pared to the other renderings the RGB picture is quite
dull. The renderings show significant improvement as
the number of bins increases.
Too few bins create aliasing in the form of wrong color
reproduction and banding. One example of aliasing in
the color reproduction can be seen in the red spot at
the front of the prism in the 4 bins rendering. In the
pictures created with larger bin sizes this red spot is ac-
tually yellow. An example of banding can be seen at
the back and front of the prism. The banding becomes
more rainbow-like, as the number of bins is increased.
From the PSNR numbers the compressed version with
100 bins is more accurate than the rest of the tests. Ref-
erence renderings for the tests can be seen in Figure 4.
From Table 2 and Figure 4 it can be concluded that the
compressed method gives just as accurate renderings as
the pure spectral method. This confirms the theoretical
results, as photons which have met dispersive surfaces
are stored without any loss of information. The com-
pressed version is faster than the uncompressed one,
which is probably due to more memory efficient usage.

5 CONCLUSION

This paper has dealt with the problem of memory in-
flation when representing light waves as spectral power
distributions based on point samples. We have devel-
oped a compression method with several advantages:
Firstly, the method is in most cases able to handle spec-
tral materials and light sources, with only a small intro-
duction of error. In other cases, such as with caustics,
no errors at all are introduced. An important fact in this

Setup PSNR Render Time Ram Usage
uncompressed
50 bins ∞ 2h 34m 14s 794 MB
20 bins 24.21 dB 1h 30m 12s 450 MB
10 bins 24.25 dB 1h 1m 50s 335 MB
8 bins 25.13 dB 58m 42s 321 MB
6 bins 24.54 dB 54m 20s 289 MB
5 bins 23.44 dB 51m 15s 289 MB
4 bins 23.72 dB 51m 31s 266 MB
RGB 22.00 dB 26m 29s 195 MB
compressed
100 bins 36.46 dB 3h 30m 48s 206 MB
20 bins 24.18 dB 48m 15s 209 MB
10 bins 24.30 dB 29m 45s 195 MB
8 bins 25.13 dB 28m 20s 195 MB
6 bins 24.63 dB 27m 23s 195 MB
5 bins 23.41 dB 26m 56s 195 MB
4 bins 23.67 dB 28m 39s 195 MB

Table 2: Glass BSDF

(a) 100 bins (b) 20 bins

(c) 10 bins (d) 6 bins

(e) 4 bins (f) RGB

Figure 4: Renderings of the tests made in section 4.3

context, is that intermediate calculations made before a
photon is put into the photon map, are performed with-
out any loss of information.
Because of the memory taken up by the photon map, it
has so far been unfeasible to implement spectral pho-
ton mapping in which photons carried more than a few
wavelengths at a time. Even SWC [Eva99] would be
unfeasible with anything but very small clusters. In-
stead of just solving Equation 1, one orK wavelengths

Short Communication papers 101 ISBN 978-80-86943-02-2

at a time, the method presented in this paper makes it
feasible to solve the equation at full spectral resolution.
This reduces variance, and thereby also rendering time.
Caustics are calculated at full resolution and without
any loss of information. With the method presented in
this paper, variance can be reduced, as a photon carry
the full spectrum of the light source the first time it
hits a transmitting surface, and accounting for the dis-
crete sampling representation, new refracted photons
can be directed along all relevant wavelengths at the
same time. Contrary to this, if photons represent only
a single wavelength, then the direction of transmission
around a pointx has really been chosen at the time of
emission. This increases variance as more photons with
different wavelengths will have to be emitted, in the
hope of hitting an epsilon sized area aroundx.
Our method works well for simulating how different
lights look in architectural designs and the dispersion
effects are useful in movies or visualizations of techni-
cal designs.

6 FUTURE WORK

So far the method has only been implemented as a way
of saving space when storing photons in the photon
map. However, its usefulness goes beyond that. An
obvious extension would be to apply it to irradiance
caching [War88]. This extends our method to be used
with path tracing and bi-directional path tracing, which
are methods that benefit from irradiance caching.
If spectral effects are wanted within a realtime renderer,
the memory requirements can become a real problem.
A 512 by 512 texture takes up 768 KB with 3 bytes
pr. pixel (RGB). However in a spectral renderer with
100 samples pr pixel at floating point precision, the
memory requirements rise to 400 bytes pr pixel or 100
MBs pr texture, which is clearly not feasible on today’s
hardware. As the compression method described in
section 2.2.4 does not require extra memory and is
basically a matrix multiplication, it is straightforward
to implement in a hardware shader.
Finally it might be interesting to use [Mey88] when
doing the conversion from the spectral domain to
RGB space. [Mey88] achieves better color accuracy
with fewer wavelengths than the CIE XYZ functions.
[Mey88] might allow us to use fewer bins for the spec-
tral power distributions, while still giving acceptable
image quality.

ACKNOWLEDGEMENTS
Thanks to Assistant Professor Peter Ørbœk for his sup-
port and advice in the inital phase of this work.

REFERENCES
[Arv86] Arvo J.R. Backward Ray Tracing. In ACM SIGGRAPH

’86 Course Notes - Developments in Ray Tracing, vol-
ume 12, pages 259–263. ACM, 1986.

[Col94] Collins S. Rendering crystal glass. In Proceedingsof the
2nd Irish Computer Graphics Workshop, TCD-CS-94-20.
1994.

[Eva99] Evans G.F. and McCool M.D. Stratified wavelength clus-
ters for efficient spectral monte carlo rendering. In Graph-
ics Interface, pages 42–49. 1999.

[Fol96] Foley, VanDam, Feiner, and Hughes. Computer Graphics,
Principles and Practice, 2nd Edition. Addison-Wesley Pub-
lishing Company, 1996. ISBN 0-201-84840-6.

[Gla95] Glassner A.S. Principles of Digital Image Synthesis.
Morgan-Kaufmann Publishers, 1995. ISBN 1-55860-276-
3.

[Gor84] Goral C.M., Torrance K.E., Greenberg D.P., and Battaile B.
Modeling the interaction of light between diffuse surfaces.
In Proceedings of the 11t annual conference on Computer
Graphics and interactive techniques, pages 213–222. ACM,
1984.

[hc] http://www cvrl.ucsd.edu/. Cvrl color & vision database.

[Ieh00] Iehl J.C. and Péroche B. Adaptive spectral rendering with
a perceptual control. In Computer Graphics Forum, vol-
ume 19, pages 291–299. 2000.

[Jen01] Jensen H.W. Realistic Image Synthesis Using PhotonMap-
ping. AK Peters, 2001. ISBN 1568811470.

[Kaj86] Kajiya J. The rendering equation. In Proceedings ofthe
13th Annual conference on Computer Graphcis and inter-
active techniques, pages 143–150. ACM, 1986.

[Laf93] Lafortune E.P. and Willems Y.D. Bi-directional Path Trac-
ing. In Proceedings of Third International Conference
on Computational Graphics and Visualization Techniques
(Compugraphics ’93), pages 145–153. 1993.

[Lar03] Larsen B.D. and Christensen N.J. Optimizing photon
mapping using multiple photon maps for irradiance esti-
mates. In WSCG 2003 Conference Proceedings. WSCG,
Feb 2003.

[Mal86] Maloney L. Evaluation of linear models of surface spectral
reflectance with small numbers of parameters. In Journal of
the Optical Society of America A: Optics, Image Science,
and Vision, volume 3, pages 1673–1683. oct 1986.

[Mey88] Meyer G. Wavelength selection for synthetic image genera-
tion. In Computer Vision, Graphics, and Image Processing,
volume 41, pages 57–79. jan 1988.

[Pee93] Peercy M.S. Linear color representation for full spectral
rendering. In SIGGRAPH Proceedings, volume 27, pages
191–198. 1993.

[Rou97] Rougeron G. and Péroche B. An adaptive representation
of spectral data for reflectance computations. In Render-
ing Techniques ’97 (Proceedings of the 8th Eurographics
Workshop on Rendering), pages 127–138. Eurographics,
1997.

[Shi98] Shirley and Marschner. Cited by [Smits 1999] as personal
correspondence, 1998.

[Smi99] Smits B. An RGB-to-spectrum conversion for reflectances.
In Journal of Graphics Tools: JGT, volume 4, pages 11–22.
jan 1999.

[Sun00] Sun Y. A spectrum-based framework for realistic image
synthesis, ph.d thesis, July 2000.

[Wan04] Wang Q., Xu H., and Sun Y. Practical construction of re-
flectances for spectral rendering. In Proceedings of the 22th
International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision, volume 12,
pages 193–196. WSCG, 2004.

[War88] Ward G.J., Rubinstein F.M., and Clear R.D. A ray tracing
solution for diffuse interreflection. In Proceedings of the
15th annual conference on Computer graphics and interac-
tive techniques, volume 22, pages 85–92. August 1988.

[Whi80] Whitted T. An improved illumination model for shaded
display. In Communications of the ACM, volume 23, pages
343–349. ACM, 1980.

[Wil00] Wilkie A., Tobler R.F., and Purgathofer W. Raytracing of
dispersion effects in transparent materials. In WSCG 2000
Conference Proceedings. 2000.

Short Communication papers 102 ISBN 978-80-86943-02-2

Maintaining Sharp Features in Surface Construction for
Volumetric Objects

Robert Edward Loke
IIT-CNR, Pisa, Italy, robert.loke@iit.cnr.it

Frederik W. Jansen
EWI, TU Delft, The Netherlands, f.w.jansen@tudelft.nl

ABSTRACT

Discretized Marching Cubes (DMC) is a standard method in computer graphics and visualization for constructing 3D surfaces
in data represented on a regular grid. After thresholding, it builds high-resolution surfaces by tiling surface patches halfway
between objects and background in the data. This paper shows that if surfaces are built locally, in a high-resolution sub-grid
of a cell instead of directly in a cell, sharp surfaces can be generated in order to preserve concave and convex object features.
The main advantage is the improved geometric models that are extracted. This makes lower approximation errors and lower
triangle counts possible.

Keywords: Computer Graphics: Curve, surface, solid, and object representations; Computer aided design (modeling of
curves and surfaces); Computational geometry; Image processing.

1 INTRODUCTION

Volumetric models are defined on a regular data grid
and can either be rendered with direct volume render-
ing techniques or with fast polygon rendering hardware.
The latter only after extracting a surface model from
the voxel data by surface construction algorithms like
Marching Cubes [7]. In the last two decades a lot of
research has been dedicated to improving the MC al-
gorithm, both topologically [12, 14, 5] and in terms of
reduced triangle counts [11, 13]. To reduce the number
of degenerated triangles and to make it easier to merge
smaller triangles into larger surface patches, the Dis-
crete Marching Cubes (DMC) algorithm [8] fixes the
position of the nodes of the triangulation to the mid-
points of the cell edges. This reduces the number of
orientations of the triangles to a limited set of discrete
orientations, which facilitates merging the triangles into
larger surface patches.

MC and DMC methods were originally designed for
extracting and visualizing isosurfaces for gray shaded
data, but they can also be advantageously used for (seg-
mented, thresholded) binary voxel data, because they
generate a surface in between the object and the back-
ground, and in this way they always create a manifold
surface, also for isolated points, lines and thin planes.
By constructing surfaces at a spatial resolution that is
higher than the spatial resolution of the original voxel
data we have room to build a manifold surface. Indeed,

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Copyright
UNION Agency - Science Press, Plzen, Czech Republic.

as was stated by the authors of MC, the spatial resolu-
tion of the surface is higher than that of the data [7].

Although DMC generates manifold surfaces and op-
timizes the triangle output, it has one remaining draw-
back: it creates oblique surfaces at object slopes but
also at sharp edges and corners. In this paper we show
that the standard surface mapping by DMC can be de-
rived from a much simpler triangulation on the eight
sub-cells of each cell. By locally refining the grid and
applying a complementary surface model we can pre-
serve sharp features such as convex and concave edges
and corners.

The structure of the paper is as follows. First we
introduce the necessary terminology in Section 2. In
Section 3 we show how to construct a 3×3×3 sub-grid
for each cell by dividing the cell into eight sub-cells,
classify the new intermediate nodes as object or back-
ground, and give the surface model which can be used
on the sub-grid and which results in surfaces which are
topologically equivalent to those generated by DMC. In
Section 4 we show that if we know a priori which fea-
tures are concave and convex, we can modify the sub-
grid and refine the surface model of Section 3. The pa-
per concludes with results in Section 5 and a discussion
in Section 6.

2 BASIC NOTIONS
We assume that data are represented on a regular dis-
crete cubic grid which is called the data grid, say of
size x×y×z. The x, y and z-axes of the grid form an
orthogonal space such that xy-planes are always per-
pendicular to xz- and yz-planes and xz-planes to yz-
planes. The grid contains x×y×z cubic elements which
are called voxels. The 6-neighborhood (respectively,
18-, 26-neighborhood) of a voxel at data grid posi-
tion (x,y,z) is comprised by those voxels for which
|x− a|+ |y− b|+ |z− c| ≤ 1 (2, 3), with (a,b,c) ar-
bitrary voxel coordinates. Two voxels are n-adjacent if

Short Communication papers 103 ISBN 978-80-86943-02-2

Figure 1: a) 3×3 data grid with 2×2 cuberilles b) 6-,
18- and 26-adjacency c) sub-grid with 4×4 cuberilles

they are n-neighbors. The neighborhood of a voxel is a
3×3×3 voxel block with the voxel itself in the center.
In a voxel neighborhood the center voxel has 26 neigh-
bors from which 6 voxels have a Manhattan distance of
one, 12 voxels a distance of two, and 8 voxels a distance
of three steps in orthogonal directions. At the data grid
each voxel can be assigned a different data value. We
limit ourselves to binary data values where 1 (black)
denotes foreground/object and 0 (white) background.

Given the data grid we can define a cell grid with size
(x− 1)×(y− 1)×(z− 1) in between the voxel centers
such that the eight cell corners of each cell are at eight
neighboring voxel centers (see Figure 1). The nodes at
the cell grid uniquely correspond to the object and back-
ground voxels at the data grid. Therefore, the neighbor
and adjacency definitions which have been defined for
voxels also apply to nodes. Thus, we can speak of ob-
ject (black) nodes and background (white) nodes. Con-
figurations are unique patterns of black and white nodes
in a cell. “Don’t care” nodes will be used in configura-
tions in order to indicate that these nodes may either be-
long to the object or the background. We define a higher
resolution sub-grid by subdividing each cell into eight
sub-cells (2×2×2). The new sub-grid nodes lay in be-
tween the grid nodes. There are eight unique sub-cells
in the sub-grid of a cell. Original DMC space refers
to the unique 2×2×2 nodes of cells. DMC sub-space
refers to the unique 3×3×3 sub-grids of cells.

A path is a 6-path (respectively, 18-, 26-path) if it
is a sequence of nodes n0...nn−1 on the cuberille grid
such that ni is 6-adjacent (18-, 26-adjacent) to ni−1 for
i = [1,n−1]. A path is called a closed path if n0 = nn−1.
Two nodes are, respectively, 6-, 18- or 26-connected
if there exists a 6-, 18- or 26-path between them. A
component is a set of nodes and is, respectively, 6-, 18-
or 26-connected if every pair of nodes in the component
is 6-, 18- or 26-connected.

The DMC method generates a surface in between the
object and background voxels through the nodes of the
sub-grid. There are 256 possible patterns of black and
white nodes in a cell which define 16 unique configura-
tions, each with a corresponding triangulation. We call
the set of these configurations a surface model. A tri-
angulation is defined by the mapping of all cells at the
cuberille grid with a surface model and yields a surface.

It is possible to generate many different topologically
surface models, either based on (6,26), (6,18), (18,6)
and (26,6) connectivity [5, 1] or hybrids. Kenmochi
et al. [3] introduce a hybrid surface model that only
uses 26-connectivity between nodes if it is part of a
3D-simplex, i.e. if there is an alternative 6/18-path be-
tween the nodes in a cell. In [6] we introduce a surface
model that only has 18-connectivity if there exists an al-
ternative 6-path between nodes in a cell. The Kenmochi
model gives “priority” to the object and our model gives
priority to the background. In [6] it is shown that the
DMC triangulation is based on the background priority
model.

In this paper we show that by performing the triangu-
lation on the sub-grid (cuberille) level, we can combine
Object Priority (OP) and Background Priority (BP) tri-
angulation schemes within one object. This allows us to
use different triangulation schemes for convex and con-
cave edges and vertices. In this way we can maintain
sharp features within objects.

Figure 2: The original DMC configurations can be de-
rived from the face configurations (a-d). The alterna-
tive “object priority” version can be derived with e in-
stead of c

The triangulation patterns for the configurations of
the Object- and Background-Priority models can be
built from reduced sets of basic triangulation patterns
that use don’t care nodes for positions that can either be
black or white. Figure 3 shows the basic patterns for
the OP model and Figure 4 for the BP model. We note
that in each configuration of Figure 3 with don’t cares
(K4-K7), at least one of the don’t cares must be black.

3 SIMPLIFIED DMC SURFACE
MODEL

In this section we first derive the connectivity model
whereupon DMC is based. Then, we give a construc-
tion algorithm with which the sub-grid can be computed
for any cell. Finally we show that the BP model can be
used as a simplified surface model with which the DMC
surface model can be generated on the sub-grid.

3.1 Interpretation of DMC
Color plate 1 shows the lookup table (lut) of the orig-
inal DMC algorithm. If we don’t pay attention to the
gray and red spheres, the lut is equal to the one in
DMC [8]. It contains 16 configurations. It shows all
black-white combinations which are possible in a cell
and their surface maps, except for inverse cases which

Short Communication papers 104 ISBN 978-80-86943-02-2

Figure 3: The seven configurations of the Object Prior-
ity model denoted with object nodes as black spheres,
background nodes as white spheres and don’t care
nodes without spheres. The bottom left node in the
back which is not always visible either belongs to the
object (configuration 3) or is a don’t care node (config-
urations 4 to 7)

Figure 4: The six configurations T1− T6 of the sim-
plified surface or Background Priority model which can
be applied in DMC sub-space. The bottom left node
in the back now always belongs to the object. These
configurations can be derived from the original DMC
method (Color plates 1 and 2)

are obtained by swapping the black nodes to white ones
and the white nodes to black ones. The inverse con-
figurations of the configurations with four black and
four white nodes (h-m) yield symmetric triangulations
which can be found by rotation and projection of h to
m. The inverse configurations of a, b, d and e also yield
symmetric triangulations. These cases can be seen in
Color plate 2. The inverse configurations of c, f and g
are o, p and n, respectively. The triangulation of these
cases is not symmetric: g and n, c and o, and f and p
yield different triangulations for black-white compared
to white-black patterns. This shows that DMC im-
plements (6,18)-connectivity. For instance the (18,6)-
connectivity model would connect the two 6-connected
components which are 18-adjacent in configuration n.

We may observe that the authors of the DMC method
gave priority to the background (6,18) instead of to
the object, because otherwise the configurations would
have been based on face configuration e in Figure 2
instead of on c. Of course, it is arbitrary whether we
choose the one over the other, but it is necessary to be
consistent in order to avoid ambiguous cases.

The connectivity is (6,18) and not (6,26) otherwise
the inverse version of configuration d (Color plate 2:
s) would have a white diagonal (tunnel) which is not

the case. The (6,18)-connectivity of the DMC surface
model reduces the chances that non-manifold situations
do occur. For instance (18,6)-connectivity would create
non-manifold situations in configurations l and n. It
appears that the BP-triangulation on the high-resolution
sub-grid complies with the (6,18)-node connectivity of
the DMC model. However, it is clear that the BP model
is not always the best choice, as in some situations the
OP surface model would better represent the object. For
example, if one wants to generate a convex edge in the
triangulation of configuration t, the OP model would be
a better choice.

In summary, with regard to the original DMC con-
figurations (disregard gray and red spheres in Color
plate 1), we can make the following observations:

• the DMC surface model is topologically equivalent
to MC [9] (two shapes are topologically equivalent
if they can be deformed into each other by a contin-
uous, invertible mapping [2])

• in the DMC surface model, priority is given to the
background instead of to the object. The a priori
topology corresponds to (6,18)-connectivity, i.e. 6-
connectivity for the object and 18-connectivity for
the background

• object components which are 18- or 26-adjacent get
partitioned into separate 6-connected components

Application of the DMC surface model yields a mani-
fold surface for each 6-connected component of the ob-
ject (recall the definition of a 6-connected component
from Section 2). We see that DMC generates a sur-
face in between the white and black nodes. The surface
passes through the nodes of the sub-grid (red nodes).
In this way, also for singular object nodes there always
is a closed manifold surface around the node. So each
6-connected component is embedded in a manifold sur-
face even if it is one voxel thin. In the DMC-method
the sub-grid is implicitly used but never explicitly gen-
erated. We will propose a new surface model that gen-
erates the DMC configurations from the sub-grid ex-
plicitly. Before we can apply the new surface model
to each individual sub-cell, we first have to classify the
intermediate sub-grid nodes as being black or white.

3.2 Sub-grid construction

To create a classified sub-grid we first must initialize a
sub-grid of size 3×3×3 with white nodes. Then, we
copy any black nodes at the cell to the corresponding
nodes at the sub-grid. Last, we determine which nodes
in the rest of the sub-grid must be set to black. The latter
can be done in a two-pass process in which we first in-
terpolate along the 6- and 18-edges/diagonals and then
extrapolate from black nodes to 6-neighboring white
nodes.

Short Communication papers 105 ISBN 978-80-86943-02-2

Figure 5: Example of the sub-grid construction algo-
rithm: sub-grid after copying black nodes (a), interpo-
lation (b) and extrapolation (c)

Figure 6: Example of surfacing variants at convex di-
agonal edges between 26-adjacent black nodes, from
left to right: original surface, surface with BP model af-
ter extended interpolation, surface with OP model after
extended interpolation

Figure 5 exemplifies the sub-grid construction for one
configuration (a projected version of DMC-p). The
construction algorithm sets for a cell with any input
data the nodes at the sub-grid such that it exactly corre-
sponds to DMC (as can be verified in Color plate 1).

3.3 Simplified surface model
Now we can define a new surface mapping in the high-
resolution sub-grid of a cell. It turns out that we can
do the mapping independently in each of the eight oc-
tants of the 3×3×3 sub-grid and build the DMC trian-
gulation by applying the BP surface model to each in-
dividual sub-cell [6]. Since Color plates 1 and 2 list all
possible black-white combinations in a cell other con-
figurations than those listed in Figure 4 are not possible
in DMC sub-space.

Application of the BP surface model (Figure 4) in
DMC sub-space yields surfaces which are topologically
equivalent to the ones generated by the surface mapping
with the DMC lut in original DMC space.

4 REFINED SURFACE MODEL
A drawback of the DMC model is that it always gen-
erates oblique surface patches also at edges and cor-
ners where a sharp convex or concave edge or corner
are desirable. Another drawback is the stair casing at
the missing 26-diagonals. The latter we can repair by
locally applying the OP surface model (see Figure 6).
Sharp edges can be introduced by extending the sub-
grid in the convex case and refining the BP surface
model in the concave case. Thus, we propose two ex-
tensions to standard DMC surfacing:

1. adding extra black nodes and applying the OP sur-
face model for convex edges and corners

2. applying a refined BP surface model for concave
edges and corners

We will consider three different types of object edges
and two different types of object corners: (1) diago-
nal edges which are not aligned with the 3D grid be-
tween two 26-adjacent black nodes in a cell; (2) diag-
onal edges which are not aligned with the 3D grid be-
tween two 18-adjacent black nodes in a cell face; (3)
right edges which are aligned with the 3D grid between
two 6-adjacent black nodes on a cell edge; (4) right cor-
ners which are aligned with the 3D grid between three
6-adjacent black nodes; (5) diagonal corners which are
not aligned with the 3D grid between three 18-adjacent
black nodes.

There are geometrically three different situations in
which the output surface can be adapted to become
more concave or more convex: (A) At an edge node in
a cell face, i.e. a black node which has one 18-adjacent
white node in a face and two 6-adjacent black nodes in
the same face, the surface can be modeled inwards the
object to the edge node for a concavity, or outwards the
object to the white node in order to make it more con-
vex. (B) The same holds for a corner node in a cell,
i.e. a black node with a 26-adjacent white node. See
for example T4 and T6 in Figure 4. In T6 we might
know that the (hidden) black node at the bottom left is
a concavity in the object. In this case the standard trian-
gulation could be adapted to form a sharp point towards
that node. Also, if the don’t care node at the top in T4
is black (and the other white) and we know that that
node is a convexity of the object, the triangulation could
be adapted similarly to form a sharp point outwards.
(C) At a diagonal edge between two 18-adjacent black
nodes in a cell face or a diagonal edge between two 26-
adjacent black nodes in a cell, the two black nodes are
never directly connected because in DMC preference is
given to the white diagonal. However, if the two black
nodes form a convex object edge they should be con-
nected and the triangulation should be directed towards
the black diagonal. Figure 6 exemplifies this.

In the concave case, we must refine the standard tri-
angulation patterns (T1-T6) so that the surface passes
correctly through the concave edge/corner nodes. In the
convex case, we first must modify the sub-grid by prop-
agating the convex edge/corner nodes and black diago-
nals on the grid and then substitute the standard triangu-
lation patterns of the BP model by the convex patterns
of the OP model. In both cases, under strict conditions
it is allowed to locally deviate from the “default” BP
surface model; see Sections 4.2 and 4.3.

In this section we will first define some local filters
for detecting sharp object features. Then we describe
the modifications which are necessary in the sub-grid
construction and in the triangulation, first for the convex
case and then for the concave case.

Short Communication papers 106 ISBN 978-80-86943-02-2

4.1 Feature detection
Feature detection can be supervised or unsupervised,
depending on whether a user or an automatic method
indicates which object edges and corners must be trian-
gulated convex and concave instead of oblique. In our
framework different algorithms can be incorporated be-
cause it does not depend on a specific edge and/or cor-
ner detection algorithm. In order to test our triangula-
tion methods we developed some simple ad hoc filters
for detecting convexity in the local neighborhood of a
node on the sub-grid. We limited ourselves to testing
for convexity in nine of the possible planes which can
be defined in a 3D grid and which form themselves a
regular rectangular 2D grid. The filters have the advan-
tage that unwanted aliasing is not possible.

Two passes are needed: a first one for detecting con-
vex diagonal edges and a second one for detecting con-
vex right edges. Convex diagonal edges are detected
with four filters; see the first two lines in Figure 7. The
filters are asymmetrical with respect to the object and
background, because the a priori topology corresponds
to (6,18)-connectivity (recall Section 3.1). In the fil-
ters to the left the background is convex to the top and
the object concave to the bottom. In the filters to the
right the object is convex to the top and the background
concave to the bottom.

Figure 7: Feature detectors

Convex right edges are detected with four filters; see
the third line of Figure 7. In the first filter the back-
ground is convex to the top-right and the object concave
to the bottom-left. In the second, third and fourth filter
the object is convex to the top-right and the background
concave to the bottom-left. The first two filters in the
third line are symmetrical with respect to the object and
background: the object is 6-connected in the first filter
and the background is 6-connected in the second fil-
ter. However, because the a priori topology is (6,18)-
connectivity, two other filters are possible in which the
background is 18-connected. In these filters, the gray
nodes may not be black and form a diagonal edge with
the black node in the middle, because then preference is
given to the black diagonals (as detected with the filters
for diagonal edges) and, consequently, the black node
in the middle can not be a convex right edge.

After detecting convex diagonal and right edges, we
use the following strategy for determining convex diag-
onal and right corners. Nodes which have been labeled
as a convex right edge in three different faces of a single
cell are labeled as convex right corners. Nodes which
have been labeled as a convex diagonal edge in three
different directions in the same cell are labeled as con-
vex diagonal corners. Other combinations of convex
right and diagonal edges are possible in a corner con-
figuration, but we limit ourselves to these two cases.

In practice, we only store labels at convex nodes
(black or white). The concavities are then represented
by their convex counterparts. This makes the filters lo-
cally applicable in the 3×3×3 neighborhood of a node.

4.2 Convexity

Object convexity is achieved by modifying the sub-grid
construction algorithm such that the nodes on the sub-
grid which correspond to convex black edges and cor-
ners are swapped from the background to the object.
This is done by interpolating along convex diagonal
edges and extrapolating at convex right edges and con-
vex diagonal and right corners. Since extrapolation is
only permitted if the topology remains unchanged, we
use topology preservation masks, in order to guarantee
that separate black 6-components cannot get connected
and connected white 18-components cannot get sepa-
rated.

For sub-cells with interpolated black diagonal edges
or with extrapolated black diagonal corners, the object
triangulation is done with the OP surface model and not
with the BP model. The OP model yields convex tri-
angulations for all configurations with black diagonal
edges and corners. Mixing both models is allowed be-
cause the closed paths which are defined by the surface
triangulations in all configurations are always equal in
the BP and the OP surface model [6].

4.3 Concavity

Starting from the refined representation on the sub-grid
of the object (black), the background (white), and the
labeled white nodes (labels indicate the directions in
which the background is convex), we can refine the
simplified surface model as follows: at a concave right
black edge, i.e. a convex right white edge, do not gener-
ate the standard oblique patch but a sharp one by forc-
ing the surface patch into the object. Figure 8 illus-
trates the idea. A similar line of reasoning holds for
concave black (diagonal or right) corners, i.e. convex
white corners. For each configuration in the simplified
surface model different surface patches are possible de-
pending on the labels of the white nodes, i.e. on the
directions in which the background is convex. If we or-
der all cases systematically we come to the lut depicted
in Color plate 3.

Short Communication papers 107 ISBN 978-80-86943-02-2

Figure 8: At a concave edge node in DMC sub-space
(top figure) we want to force the triangulation inwards
the concavity to (0,0,0), i.e. build it not on the straight
18-path between a and b but on the hooked 6-path be-
tween a and b via (0,0,0) (depicted in red). If there
is no concavity detected in the yz-plane for the edge
node at (0,0,0), the triangulation in the two sub-cells
will not be refined in the respective yz-quadrant and
the blue area will remain inside the triangulated object
volume (in this case the simplified surface model is ap-
plied without any changes). If a concavity is detected,
the triangulation in each of the two sub-cells will be re-
fined in the respective yz-quadrant and the blue area
will be outside the object and the object volume will,
depending on the settings in the sub-cells, decrease
(in this case a refined surface model must be applied;
see Color plate 3). The triangulation at an edge node
can be made concave without altering the closed path
in the two sub-cells which are fixed to the edge node

We can prove that the surfaces created by this refined
surface model are topologically equivalent to the ones
created by the simplified surface model. The proof con-
sists of two parts. First, we prove that for each sur-
face refinement, the closed path remains equal to that
of the original surface. Color plate 3 shows that this
is indeed the case. Thus, no gaps can occur and the
topology is identical. Second, we prove that the out-
put surface remains manifold. For the gray patches in
Color plate 3 this holds because (due to the sub-grid
construction) edge nodes on different sides of an ob-
ject are always separated by two sub-cells in DMC sub-
space. For the colored patches in Color plate 3 this does
not hold, but for these patches we can prove that they
can be removed from the refined surface model. See
again Figure 8. When we regard the interface between
two sub-cells, the blue triangle can always be removed
without altering the closed path of the triangulation in
the two cells. Thus, we can replace the lut of Color
plate 3 by another lut in which all colored triangles are
removed. This is the final surface model which can be
applied in DMC sub-space in order to preserve concave
right object edges and concave object corners.

5 RESULTS

Figures 9, 10, 11 and 12 show output surfaces gener-
ated by detecting the different types of edges and cor-
ners for various objects. The objects were grouped into
three different classes: sharp objects with salient fea-
tures (Figures 9 and 10), thin objects with parts which
are only one voxel thick (Figure 11) and an object with
diagonal edges and corners (Figure 12). In the displays,
we note that each vertex corresponds to one node of the
sub-grid and that, for clarity, we did not pack together
any coplanar patches.

Figure 9: From top to bottom: original surface in DMC
sub-space according to standard DMC; surface gen-
erated with the OP surface model at convex diagonal
edges and corners; surface generated with the refined
BP surface model at concave edges and corners

The surfaces at the top were obtained by applying
the BP model at the sub-grid, without doing any feature
detection. These surfaces are in agreement with those
generated by the standard DMC method. The second
rows show the surfaces when we do not always apply
the BP model, but also the OP model at detected con-

Short Communication papers 108 ISBN 978-80-86943-02-2

Figure 10: From top to bottom: original surface in DMC
sub-space according to standard DMC; surface gen-
erated with the OP surface model at convex diagonal
edges and corners; surface generated with the refined
BP surface model at concave edges and corners

vex diagonal object edges and corners. The third rows
show the surfaces when we also detect concave edges
and corners and apply the refined BP model.

The figures show that the methods always create
manifold output surfaces, also for the thin objects in
Figure 11. Examples of the preservation of convex right
edges and convex right corners can be seen in all fig-
ures. Examples of the preservation of concave right
edges can be seen in Figures 9, 10 and 11. Note that for
the first object in Figure 11 concave right edges are vis-
ible, but not in the middle where the concave right edge
which comes from the bottom of the object ends. Here,
the concavity could not be detected because there are
only four black nodes which lie in the horizontal plane
with the white node (this situation can be ambiguously
interpreted as a concave edge or as an object slope) and
the triangulation is accordingly adapted. Examples of
the preservation of concave right corners can be seen in
Figure 11. Examples of the preservation of convex di-
agonal edges can be seen in Figures 9, 10 and 12. Note
that also for the second object in Figure 9 a convex di-
agonal edge was detected. Also note, by comparing the
output surfaces at diagonal edges with the original sur-
faces in the top rows, that the aliasing at the edges has
completely disappeared. Examples of the preservation

Figure 11: From top to bottom: original surface in DMC
sub-space according to standard DMC; surface gen-
erated with the OP surface model at convex diagonal
edges and corners; surface generated with the refined
BP surface model at concave edges and corners

of a concave and a convex diagonal corner can be seen
in Figure 12. At the convex diagonal corner, the two
6-components of the object are connected to form the
sharp point.

6 DISCUSSION
In this paper it has been shown that we can simulate
DMC surfaces by applying a simplified surface model
(the BP model) in DMC sub-space and can: (A) explic-
itly represent convex right and diagonal edges and cor-
ners on the sub-grid by using an extended sub-grid con-
struction algorithm, (B) derive a refined surface model
for concave right edges and corners and concave diag-
onal corners, and (C) deviate from (6,18)-connectivity
and the BP model and locally use (18,6)-connectivity
and the OP model to represent convex diagonal edges
and corners. The advantage of working in DMC sub-
space is that there is room to build surfaces (oblique
or sharp) which are guaranteed to be manifold for any
input data.

In practice, when working locally on a cell-by-cell
basis, it is not needed to store the entire high-resolution
data grid of size (2x−1)×(2y−1)×(2z−1). Also, be-
cause the original DMC lut is computationally cheaper,
this table should be run when there are no features
whatsoever in a cell. Only in the case that a feature
is present, the cell should be opened up into its eight

Short Communication papers 109 ISBN 978-80-86943-02-2

Figure 12: Original surface in DMC sub-space accord-
ing to standard DMC (top) and surface generated with
our method (bottom)

sub-cells. After building the sub-grid for the cell, the
sub-cells are mapped with the BP model in the case of
sub-cells without features and with the refined BP or
OP model in the case of sub-cells with features.

Another important issue is the number of output tri-
angles for an object, as this is a determinant factor for
the fast rendering of surface models. The authors of
the DMC algorithm show in a more recent paper [10]
that the number of generated triangles can be optimized
by using a pyramid structure in which all coplanar tri-
angles are packed into single output polygons. There-
fore, the main focus of this paper does not have to lie on
minimizing triangle counts. In fact, as the sharpness of
the object and the object topology is improved by our
method, the number of output polygons will decrease,
because oblique polygons at rounded edges and corners
and incorrect polygons at aliased diagonal object edges
will all be adapted and included into the relevant poly-
gons which determine the true shape of an object. This
can be illustrated by the very simple example of a cube
which is aligned with the 3D grid. With our method

the output surface will consist of six polygons, one for
each face of the cube, without the incorrect polygons
which are normally generated at the eight corners and
the twelve edges of the cube.

In the future we will look at application of the frame-
work for isosurfacing grayvalue data. Interpolated iso-
surfaces can be built by positioning nodes in DMC
sub-space, not in the middle between node pairs, but,
depending on the grayvalues which correspond to a
node pair, along the straight trajectory between the
nodes. Node pairs need not always correspond to two
6-neighbors (as in standard MC), but can also corre-
spond, for right object edges, to two 18-neighbors, or,
for object corners and for diagonal object edges, to two
26-neighbors. Nodes can be positioned along the en-
tire trajectories without losing the guarantee of surface
manifoldness.

REFERENCES
[1] Carlos Andujar, Pere Brunet, Antoni Chica, Isabel Navazo,

Jarek Rossignac, and Alvar Vinacua. Optimal iso-surfaces. J.
of Computer-Aided Design and Applications, 1(1-4):187–196,
2004.

[2] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring
of hermite data. In Proc. SIGGRAPH, pages 339–346, 2002.

[3] Y. Kenmochi, A. Imiya, and A. Ichikawa. Boundary extraction
of discrete objects. Computer Vision and Image Understanding,
71(3):281–293, 1998.

[4] Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-
Peter Seidel. Feature sensitive surface extraction from volume
data. In Proc. SIGGRAPH, pages 57–66, 2001.

[5] J. O. Lachaud and A. Montanvert. Continuous analogs of digital
boundaries: A topological approach to iso-surfaces. Graphical
Models and Image Processing, 62:129–164, 2000.

[6] R. E. Loke, F. W. Jansen, and J. M. H. du Buf. A background-
priority discrete boundary triangulation method. In Short com-
munication proc. WSCG (Winter School on Computer Graph-
ics), Plzen, Czech Republic, Jan.-Feb. 2006. UNION Agency-
Science Press.

[7] W. E. Lorensen and H. E. Cline. Marching cubes: A high reso-
lution 3D surface construction algorithm. Computer Graphics,
21(4):163–169, 1987.

[8] C. Montani, R. Scateni, and R. Scopigno. Discretized marching
cubes. In R. D. Bergeron and A. E. Kaufman, editors, Proc. Vi-
sualization ’94, pages 281–287, Washington D.C., USA, 1994.

[9] C. Montani, R. Scateni, and R. Scopigno. A modified look-up
table for implicit disambiguation of marching cubes. The Visual
Computer, 10(6):353–355, 1994.

[10] C. Montani, R. Scateni, and R. Scopigno. Decreasing isosurface
complexity via discrete fitting. Computer Aided Geometric De-
sign, 17:207–232, 2000.

[11] H. Müller and M. Stark. Adaptive generation of surfaces in
volume data. The Visual Computer, 9(1):182–198, 1993.

[12] G.M. Nielson and B. Hamann. The asymptotic decider: Resolv-
ing the ambiguity in marching cubes. In IEEE Computer Soci-
ety Press, editor, Proc. of Visualization ’91, pages 83–91, Los
Alamitos (CA), USA, 1991.

[13] R. B. Shu, C. Zhou, and M. S. Kankanhalli. Adaptive marching
cubes. The Visual Computer, 11(4):202–217, 1995.

[14] A. van Gelder and J. Wilhelms. Topological considerations in
isosurface generation. ACM Trans. Graphics, 13(4):337–375,
1994.

Short Communication papers 110 ISBN 978-80-86943-02-2

Fractal modeling of vacuum arc cathode spots
Nataliya Ausheva Anatoliy Demchyshyn

Department of design automation of power objects and systems

National Technical University of Ukraine “KPI”

Prospect Peremogy 37, Building 5

03056, Kyiv, Ukraine

aana@svitonline.com demch@iptelecom.net.ua

ABSTRACT
This paper introduces a modeling algorithm of spots movement along a working surface of metal cathode during
vacuum arc evaporation process with a use of fractal geometry. The proposed spot dynamics model reflects spot
self-similar chaotic motion, retrograde rotation due to tangent magnetic field, spontaneous spot splitting and
extinction. Several fractal generation techniques are considered: modified Diffusion Limited Aggregation,
modified Dielectric Breakdown Method. The advantage of the fractal approach is that unlike computational
modeling, it describes the spot movement in a more natural way. Modeling of vacuum arc cathode spots
behavior allows reducing production costs of physical vapour deposition coated samples by increasing the
cathode utilization efficiency.

Keywords
Fractals, DLA, DBM, cathode spots, box counting dimension.

1. INTRODUCTION
The production of thin coatings in the micrometer or
submicrometer range relies on physical vapour
deposition (PVD) technologies. One variation of
PVD methods utilizes an arc discharge burning under
high vacuum conditions in the medium delivered
from cathode spots. These are small bright clouds of
dense highly ionized surface plasma that move over
the cathode surface. According to [Mes95a] cathode
spots are observed as short bursts or avalanches of
electrons, which he named “ectons”. Cathode spots
concentrate the discharge energy in areas of only a
few hundred micrometers in diameter. The plasma
flow condenses on a substrate that is placed in front
of a cathode and forms a functional or decorative
layer. Functional coatings made of ultrathin
diamond-like carbon are used widely on read-write
heads of hard drives in the high-tech electronics
industry, while decorative coatings are cost-effective
substitution for samples intended to be covered with
gold.

In practice, as the arc is basically a current carrying
conductor, an electromagnetic field is used to control
the arc movement over the entire surface of the
target, so that a cathode surface is evenly eroded over
the time.
Many laws in physics are linear and periodic and
show invariance to additive translation. However, not
all physical phenomena can be described in this
manner, in fact, a great number of phenomena are
nonlinear, aperiodic, chaotic. In the 1980s, a branch
of mathematics and physics started to flourish: the
science of deterministic chaos and self-similar
structures, dubbed “fractals” by Benoit Mandelbrot
[Man83a]. Fractals are invariant to scaling, which
makes them “self-similar” to multiplicative changes
of scale. A self-similar object appears, generally,
unchanged after increasing or decreasing the scale of
measurement and observation. Self-similarity may be
discrete or continuous, deterministic or probabilistic.
Cathodic arcs show many features that suggest to
model spot phenomena using the theory of fractals
[Fed88a].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

“The fractal approach is both effective and natural.
Not only should it not be resisted, but one ought to
wonder how one could have gone so long without it”
[Man83a].
The paper is organized as follows. In section 2 we
define the problem in general and present grounds of
the problem analysis. Section 3 reviews recent

Short Communication papers 111 ISBN 978-80-86943-02-2

mailto:aana@svitonline.com
mailto:demch@iptelecom.net.ua

researches of the problem available in the literature.
Section 4 presents evidences of fractal nature of
cathode spots. In Section 5 we give a description of
our new algorithm, considering peculiarities of
implementation. Section 6 presents modeled images
and their comparison with original samples. Finally,
section 7 presents some conclusions and suggestions
for future work.

2. PROBLEM DEFINITION
Modeling cathodic arcs has been a challenge for
decades [Kes64a, Bei95a], which is due to the small
scale and the short times of arc spot ignition
processes (usually nanoseconds). Studies of the
fluctuations aimed to identify characteristic scale and
times yield general result that the greater the
resolution the finer is the structure.
To understand the vacuum arc it is mandatory to
know the processes occurring in these microscopic
plasmas. The research of spot movement control is
crucial to important evaporation process
characteristics. Random arc can spend too much time
on burning a big crater on energy efficient cathode
surface peak producing high level of emission that
causes droplets on the coated surface. Uniform
distribution of arc residence along the cathode
surface made with steering facilities results in a good
homogeneity of the layer thickness on large coated
samples with substantial decrease of droplets in the
coating and helps to avoid dangerous cathode
thinning.
Insight of the problem through a prism of computer
graphics is the one of many solutions, taking into
consideration an increase in computer graphics
processing power during recent years.

3. RELATED WORK
As found in the experiments [Jut99a], the spot moves
due to cyclical ignition and extinction of the
fragments on a nanosecond timescale. Apparent
fragment merging into one spot is due to the
extinction of all of them except one, while apparent
spot splitting is due to the formation of a new
fragment outside the spot center.
The work [Rac99a] proposes off-lattice
computational method for calculation of target
erosion patterns during cathode arc evaporation
process. For simulation, the magnetic field was been
measured at 48x14 knots. The data were interpolated
by bivariate spline approximation. Ten
approximations of 25 seconds discharge time were
calculated by evaluation of 500k time steps. The
method yields calculated dependence of the spot
residence time from the simulated tracks of cathode
spots.

In the work [And05a], a brief review of spot
properties is given, touching the differences between
behaviour of spot type 1 (on cathodes surfaces with
dielectric layers) and spot type 2 (on metallic, clean
surfaces) as well as the known spot fragment and cell
structure. Several points of evidence for the fractal
nature of spots are provided. It is shown that fractal
properties can be observed down to the cutoff by
measurement resolution or occurrence of elementary
steps in physical processes.

4. FRACTAL NATURE OF CATHODE
SPOTS
Many objects in nature grow by the random addition
of subunits. Examples include snow flakes, lightning,
crack formation along a geological fault, and the
growth of bacterial colonies. Although it might seem
unlikely that such phenomena have much in
common, the behavior observed in many models that
have been developed in recent years gives us clues
that these and many other natural phenomena can be
understood in terms of a few unifying principles.
It is commonplace that a model of any physical
process is defined in Euclidian geometry. The main
disadvantage is that Euclidian geometry recreates the
perceived visual characteristic of the process, but not
the variety that actually builds its structure.
Figures 1a,b show spots movement over the working
surface of a cylindrical shape cathode made of Al
and Ti metal respectively.

Figure 1a. Photograph of arc spots moving over

cylindrical Al cathode. Exposure time 8 ms.
Fractal geometry objects, unlike Euclidian geometry
objects, whose dimension is integer only, are
infinitely complex and have fractal dimension. The
more closely they are examined, the more detail is
revealed. For example, a tree is a fractal form. Using

Short Communication papers 112 ISBN 978-80-86943-02-2

Euclidian geometry calculations we can create an
approximation of a tree, but it always looks artificial.
Underlying the perceived visual characteristic is a
controlled randomness, and increasing complexity at
finer levels of resolution. This self-similar quality is
the defining characteristic of fractals. Most natural
structures have this characteristic.

Figure 1b. Photograph of arc spots moving over

cylindrical Ti cathode. Exposure time 8 ms.

One model that can provide much insight into
physics of cathode spot movement is known as
diffusion limited aggregation or DLA [San00a].
While the DLA fractal growth rules are simple, they
are highly nonlocal and give rise to complex
branching structures that cannot be described easily
by any small perturbation of a smooth surface.
A useful generalization of the DLA model is the
Dielectric Breakdown Model (DBM) [Has01a],
which includes an additional free parameter η . In the
DBM model the growth probabilities at a specific site
of the cluster is determined by the value of the
electric field raised to a power η . With varying
values of η clusters of different geometry are grown
each with their own characteristic properties of the
multifractal spectrum.
Self-similarity and associated power laws are
abundant in cathode spot phenomena [And05a,
And05b], including visual appearance, the trajectory
of arc traces, the power laws in macroparticle
distributions, the power laws found in noise
distributions of the fluctuating parameters. For
example, the noise of arc burning voltage shows a
characteristic 21 f dependence, where is
frequency, which is known as "Brownian
noise". With this interpretation one can recognize
that spot characteristics should not be expressed by a
single number but described as a fractal model. This

approach allows to consolidate various other models
such as a cathode layer model [Bei95a] and the
explosive emission model [Mes95a]. Cathode spot
phenomena are fractals in space and time.

f

Cathode spot in the presence of a magnetic field
demonstrates the motion in a direction opposite to

that predicted by Ampère's law and depends on the
arc current, gas pressure, kind of gas, and magnetic
field strength. Studies of the effects of these variables
have been made [Jut00a], including measurements of
velocity and the critical pressure at which reversal of
motion occurs.

5. PROPOSED METHOD
Physical processes that give rise to the dielectric
breakdown are known as Laplacian growth
phenomena. There are several techniques for
simulating Laplacian growth: Diffusion Limited
Aggregation, the Dielectric Breakdown Model.
We introduce the modeling algorithm of spots
movement along a working surface of metal cathode
during vacuum arc evaporation process based on a
random walker technique unifying DLA and DBM
models.
During past several years General Processing Unit
(GPU) underwent dramatic increase in terms of
programmability and speed. The latest generations of
programmable graphics processors can render to and
read from floating-point precision render target
textures [www04a]. This allows the iterative
calculations, which give rise to deterministic fractal
images, to be performed on the GPU hence
decreasing performance lag in scores of times.
Despite a long way passed, GPU architecture still
lacks friendly interface for general purpose
processing exposed to public. While GPU power is
unrivalled during computation of deterministic
fractals [Gre05], e.g., Mandelbrot set, iterated
function systems, it is rather helpless regarding
stochastic fractals [Hil00]. Generation of stochastic
fractals requires constant read-write processor
capability on a large data array before single fractal
element can be computed.
The algorithm utilizes central processing unit (CPU)
for non-deterministic fractal generation in
combination with GPU for per-pixel fractal image
post processing.
The method takes as its input physical properties of
cathode and evaporation process parameters
(Figure 2), converting them into three basic
parameters: η ,θ ,ω . At the next step CPU in
combination with GPU generates the final fractal
image. Basing on a time residence of an arc over
evaporator cathode surface erosion statistics is
generated.

Short Communication papers 113 ISBN 978-80-86943-02-2

Figure 2. Data flowchart.

CPU
On the first step a 2D grid is defined with an
occupied cell by a seed particle. The grid is mapped
onto a working surface of a cathode. Next, a particle
is released from the perimeter of an arc with a
central angle

C
θ of a large circle whose center

coincides with the seed. The particle undergoes a
random walk, that is, diffuses, until it reaches a
perimeter site of the seed and sticks. To respect the
size of the cathode, random walker can not step
outside cathode working surface boundary. Another
random walker is released and allowed to walk until
it reaches a perimeter site of one of the two particles
in the cluster and sticks. The process is repeated
many times until a cluster of appropriate size is
formed.
Random walk movement is implemented by a
Brownian motion that has a fractal dimension of 2
[Lee95a]. One of its occurrences is in microscopic
particles world and is the result of random jostling of
water molecules. Direction of a Brownian particle
movement is a uniformly distributed random
variable. So in moving from a given location in space
to any other, the path taken by the particle is almost
certain to fill the whole space before it reaches the
destination.
Parameter η controls a dimension of the fractal. In a
walk model it is equivalent to simultaneously
releasing η random walkers and requiring that they
all hit a given point for growth to occur. For large η ,
growth occurs largely at the tips of the cluster, and its
branches become very long and thin, with a fractal
dimension approaching 1 as ∞→η . For small η ,
the cluster becomes less branched, with a dimension
approaching 2 in the limit 0→η .
Taking into consideration spot circular movement
behaviour in the presence of tangent magnetic field
the emitting arc is rotated with an angular
frequency

C
ω .

The algorithm is organized in a way to exercise CPU
Hyper Threading ability working in several separate
threads. Every thread works on computation of
position of single particle contributing to the overall
final image. An influence of the particle computed in
the different thread is neglected.

GPU
We implement the final step of the algorithm on the
GPU using standard techniques in OpenGL. A
fragment program applies Gaussian filter with a
kernel size 3x3 to blur the final fractal image. To
replicate the finite size of the craters that constitute
the spot walk the filter selectively darkens pixels of
fractal down to the color of the cathode basing on a
texture with random values. Since not all state-of-art
graphics hardware support random number functions,
the texture that contains pseudo-random numbers is
pre-computed on CPU, and the fragment program
looks up in it guided with the fragment position and
current time value.

6. RESULTS
Figures 3a,b show cathode spot walk models with the
different values of η parameter. The spot movement
trajectories modeled with fractal approach
demonstrate close similarity to the original ones
shown in Figures 1a,b. Generation speed of fractal
cluster depends on number of particles involved and
η parameter. Fractals can be generated from scratch
or continuously grow towards generating arc.

Figure 3a. Cathode spot walk fractal model

containing 1200 particles (1=η).

Short Communication papers 114 ISBN 978-80-86943-02-2

Figure 3b. Cathode spot walk fractal model

containing 600 particles (2=η).
One basic quantitative measure of a fractal structure
is the dimension D. To calculate the fractal
dimension, we use the box counting method in which
space is divided into d-dimensional boxes of size .
Let equal the number of boxes that contain a
piece of the trajectory. The fractal dimension is
defined by the relation:

l
)(lN

.
/1log

)(loglim
0 l

lND
l→

= (1)

Equation (1) is accurate only when the number of
boxes is much larger than .)(lN

The box counting algorithm starts from the box size
approaching the size of the fractal object and
decreases down to a single image pixel. An
appropriate region for fractal dimension estimation
lies within the center of the plot. When the box
covers the whole image i.e. , the curve
slope equals to zero and when the box approaches
image resolution the method starts to calculate fractal
object area.

1)(=sN

Figure 4 shows box counting plot calculated on the
fractal structures generated on a square lattice with
the proposed algorithm with 1=η and 2=η . A
least squares fit to the box counting data yields a
slope of approximately 1.44 and 1.22 respectively.
The best estimates of D for the square lattices are
D ≈ 1.5 and D ≈ 1.3 respectively [Gou95a].
The finite resolution of fractal image results in an
underestimation of counts for smaller boxes,
resulting in a convex log-log plot and an
underestimate of dimension value itself.

Figure 4. Fractal dimension box counting plot.
Resolution scale in dependence on number of

boxes occupied.
Cathode spot movement self-similarity is observed
until one reaches cutoff limits that are imposed by
elementary processes of spot fragment formation and
extinction. Figure 5a illustrates complex structure of
the spot that is consisted of fragments. Comparing
original spot trace with a modeled one (Figure 5b) it
can be seen that original fragments show much more
resolution than got from 256x256 modeling grid.

Figure 5a. Photograph of the spot trace. Exposure

time 0.1 ms.

Figure 5b. Fractal model of the spot trace.

During continuous run of a cathode its working
surface takes the form perpendicular at the every

Short Communication papers 115 ISBN 978-80-86943-02-2

point to the direction of magnetic field lines of
stabilizing coil. It can result in dangerous cathode
thinning in case of water-cooled system (Figure 6).

Figure 6. Evaporator cathode erosion: a- without

magnetic field; b- with optimal magnetic field
strength; c- with excessive value of magnetic field

strength.
Modifying modeling method basic parameters
η ,θ ,ω and analyzing cathode erosion
perpendicular cross-sections the optimum value of a
current in stabilizing coil can be defined indirectly.

7. CONCLUSIONS AND FUTURE
WORK
Fractal geometry demonstrates that local randomness
and global determinism can coexist to create a stable,
self-similar structure of a pattern. The simulation
model for the spot dynamics we introduced here
could be shown to point out the significant features
of the actual spot dynamics in magnetic field of a
stabilizing coil.
The proposed method is capable of generating fractal
clusters consisting of several hundred particles to
several thousands in real time.
The set of parameters η ,θ ,ω defines the cluster
structure and dimension, thus providing calculation
basis for finding of optimum field strength and,
consequently, prolong the life of a cathode.

8. ACKNOWLEDGMENTS
The vacuum chamber was kindly provided by
I.M. Frantsevich Institute of problems of material
science, National Academy of Science of Ukraine,
Kiev.

9. REFERENCES
 [And05a] Anders, A. "The fractal nature of cathode
spots", IEEE Trans. Plasma Sci., vol. 33, no.5,
Special Issue, Sept. 2005.
[And05b] Anders, A., Oks, E. M. and Yushkov, G.
Yu. "Cathodic arcs: Fractal voltage and cohesive
energy rule," Appl. Phys. Lett., vol. 86, pp. 211503-
1-3, 2005.
[Bei95a] Beilis, I. I. "Theoretical modeling of
cathode spot phenomena," in Handbook of Vacuum
Arc Science and Technology, Boxman, R.L., Martin,
P. J. and Sanders, D. M. Eds., Park Ridge, N.J.:
Noyes, 1995, pp. 208-256.
[Fed88a] Fedder, J. Fractals, Plenum Press, New
York, 1988, 283 pages.
[Gou95a] Gould, H., Tobochnik J. Introduction to
Computer Simulation Methods: Applications to
Physical Systems, 2nd Edition, Addison-Wesley,
1995.
[Gre05] Green, S. GPU-Accelerated Iterated
Function Systems, NVIDIA Corporation,
SIGGRAPH 2005.
[Has01a] Hastings, M. B. Fractal to nonfractal phase
transition in the Dielectric Breakdown Model. Phys.
Rev. Lett. v. 8717(#17) pp. 5502-+.
[Hil00] Hill, F.S., Computer Graphics Using
OpenGL, Prentice Hall, pp.602-605, 2000.
[Jut99a] Juttner, B. Nanosecond displacement times
of arc cathode spots in vacuum. IEEE
TRANSACTIONS ON PLASMA SCIENCE, 27(4),
1999, pp.836 – 844.
[Jut00a] Juttner B., Kleberg I. The retrograde motion
of arc cathode spots in vacuum // J. Phys. D: Appl.
Phys. 33(2000), pp.2025-2036.
[Kes64a] Kesaev, I. G. Cathode Processes in the
Mercury Arc (authorized translation from the
Russian). New York: Consultants Bureau, 1964.
[Lee95a] Lee Y.K. and Hoon K. Brownian Motion:
The Past, The Present & The Future. SURPRISE 95
Journal, 1995.
[Man83a] Mandelbrot, B. B. The Fractal Geometry
of Nature. New York: W.H. Freeman and Company,
1983.
[Mes95a] Mesyats, G. A. "Ecton or electron
avalanche from metal", PHYS-USP, 1995, 38 (6),
pp. 567-590.
[Rac99a] Rackwitz, N. Simulation of the cathode
spot dynamics in vacuum arc discharges, ECMI
Newsletter 26 (1999), pp.15-19.
[San00a] Sander, L. M. Diffusion-limited
aggregation: a kinetic critical phenomenon?,
Contemporary Physics, Volume 41, Number 4,
2000, pp.203-218.
[www04a] Mandelbrot Sample, nVidia Technical
report at http://developer.nvidia.com

Short Communication papers 116 ISBN 978-80-86943-02-2

Rapid Development of Virtual Environments
A systematic approach for interactive design of 3D graphics

Xuelei Qian

University of Derby
Kedleston Road

DE22 1GB, Derby, Derbyshire

x.qian@ieee.org

Zhengxu Zhao
University of Derby

Kedleston Road
DE22 1GB, Derby, Derbyshire

z.zhao@derby.ac.uk

Richard Thorn
University of Derby

Kedleston Road
DE22 1GB, Derby, Derbyshire

r.thorn@derby.ac.uk

ABSTRACT
It has long been a bottleneck for VE popularity that the development of VE normally acquires heavy time,
labour and monetary investment. Although so-called high-level, abstracted graphical libraries which have been
delivered by third parties based on industrial standard like OpenGL speed up the VE development to certain
extent, the involved engineering process which largely relies on the system computing approach is by all means
not developer-oriented but application-specific, thus it remains technically difficult and expensive to create VE
application from scratch. This research attempts to propose an ultimate solution for VE rapid development by
exploring the boundary between system programming, interpretative computing, interfaces wrapping, abstracted
scene-graph libraries, grouping and database technology. The convergence of ideas from these technological
fields has formed a systematic approach by which developers are encouraged to design and implement 3D
interactive graphics via making necessary reconfiguration to both graphical content and rendering context take
place at system runtime. The whole development cycle of VE application can be further accelerated by using
similar existing drawings from the database as reconfigurable VE templates. In this way, the developers can
avoid creating graphical application completely from scratch by making runtime changes to retrieved VE
template in terms of its rendered graphics, user interfaces and related functional modules.

Keywords
Virtual Environment, Rapid Development, 3D Interactive Graphics, Runtime Reconfiguration

1. INTRODUCTION
Although virtual reality (VR) technology has become
prevalent in modern 3D design, training, education
and media applications, construction of virtual reality
worlds or virtual environments (VEs) remains a
technically difficult and time consuming process
[Oli03a] [Ran95a] [Zha98a]. Therefore rapid
modeling of VEs is recently a much-researched area
[Gri96a] [Win95a]. Since Randy (1995) first
proposed to use scripting or interpreter-based
programming as a de facto design paradigm for rapid
prototyping large-scaled and complex VEs, little
similar research has been reported in the literature. In
this paper, we present the idea of “runtime evolution”
for construction of VEs. The approach behind this

idea is to find out similar drawings from VE database.
The expected VE is to be created by revising
different parts and reserving the uniform regions in
VE template. In traditional approaches, such
reconfiguration to VE is only possible with a so-
called “system reengineering process”, which means
both graphics and their control can only be changed
in off-line mode even though only a minor change to
VE is required. Intending to shift developers away
from such a source code reengineering process
imposed by compiled language driven environment, a
scripting, namely, Tcl/Tk [Ous98a] based
infrastructure was proposed with provision of “VE
rapid prototyping system”, which is dedicated to
simplify the VE design and implementation process
by realizing “interactive design”. Interactive design
kits free VE engineers from struggling with edit-
compilation-linking process via a straightforward
way of implementing runtime code interpretation. A
comprehensive library of graphical rendering
components bundled with the Tcl interpreter has been
adopted to develop variant approaches for
reconfiguring VE at system runtime. Further more,
one of the most attractive facts is that a well-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Short Communication papers 117 ISBN 978-80-86943-02-2

developed VE database management system provides
the top-down administration for VE templates which
are clustered by VE coding and classification module.
Newly developed VE can be featured with predefined
dependencies and assigned with unique identification
code for VE query.

The proposed infrastructure is intended to integrate
the off-the-shelf computing and graphical rendering
technologies into a single platform, within which the
VE design, implementation and reconfiguration can
be done in an effortless way. Its software architecture
includes VRS [Döl02a] enabled 3D data visualization
unit, Tcl/Tk enabled VE reengineering process
component and a unified scripting interpreter. In this
paper, development of a demonstration system is also
reported to provide concrete details of proposed
infrastructure. The benefits of applying the scripting
based VE design approach is investigated with a
walkthrough use of the demonstration system.

2. AN SCRPTING BASED SOLUTION
The scripting based VE modeling system is in an
infrastructure which is able to accelerate the
procedures for constructing interactive 3D graphics
by adopting the modern graphical rendering systems
and interpretative computing technology. The script
binding of graphic libraries is an important part of
this infrastructure. The architecture of a scripting
oriented VE modeling system is shown in Fig.1.

Figure 1. Underlying computing infrastructure

In this system, the graphical library VRS built on top
of industrial specification OpenGL provides a
collection of rendering components which takes care
of real-time data visualization, while user
interactivity is designed and implemented though
Tcl/Tk. Although Tcl core and VRS are developed by
third parties with compiled language, the user
interface (UI) system and scene graphs involved in
VE software are to be implemented at scripting level.
This is because Tk is a scripting-oriented extension
package of Tcl core, while iVRS provides VE

developers with a full access to 3D features of the
VRS, which means VE developers can initiate VRS
objects and call their respective methods using Tcl or
Tk commands even at application runtime.

Abstracted Graphic Rendering Engine
Although the functionality of low-level graphical
application programming interfaces (APIs) covers 3D
rendering, scene modeling, interaction handling, 2D
imaging and animation, the development of 3D
graphics including VEs using, for example, OpenGL,
remains expensive since their implementation often
requires thousands of lines of code and this fact
counteracts the “rapid development of VEs”. The on
demand generation of high-level graphical rendering
libraries including VRS is based on the widely used
and successful scene graph [Fol97a] metaphor, which
can be seen as an object-oriented representation of
low-level graphics need to be rendered and displayed.
The design of high-level graphics rendering engines
aims to abstract the complexity of the low-level APIs
like OpenGL. This kind of API abstraction was
achieved by the design and implementation of a large
collection of reusable building blocks, each of which
provides users with programmable interfaces for
controlling low-level rendering details. Because the
scene graph supported by abstracted graphical
rendering systems has a full representation of the
whole scene, VE developers can easily take
advantage of built-in, ready-to-use algorithms and
data structures, which a graphic driver can hardly do.
As a main part of the proposed infrastructure, VRS is
expected to provide VE developers high-level design
options and isolate them from underlying graphical
rendering details, by which means complex visual
representation can be created with less engineering
efforts.

Applied Computing Tool
Our scripting based VE design approach is largely
relied on the scripting language which is a typeless
language. Unlike system programming languages
including C/C++, all scripting variables or data
blocks look and behaviour in the same way so that
they are interchangeable. Since all scripting variables
are changeable, the original code can produce new
programme and execute it at runtime. For those VE
engineers who can hardly foresee in the initial VE
design stage what kind of functionality will be
required in the application phase, this novel
computing paradigm enable them to implement the
VE system in a modular structure, that is, a micro
kernel that can load at runtime the function modules
of the system encapsulated as modular blocks
whether abide the already existing user interface or
not. For a typical VE which is driven by Tcl/Tk,

Short Communication papers 118 ISBN 978-80-86943-02-2

 (a) Original system looks-like (b) File Exporter/Importer: a plug-in programme in use

Figure 3. VE system functionality and its enhancement

(a) Automatically generated construction for widget (b) API information inquiring system (c) Control widget

Figure 4. Runtime code generation and interpretation using console system

the initialization of default functional modules, for
example, spatial navigation and scene management,
can be done at the starting of VE, while the rejection,
augmentation and override of modular blocks can be
achieved at runtime to meet the requirements for
specific application or simulation tasks.

VE Database and Its Connectivity
The design of VE database and its management
system is intended to provide a top-down
administration of VE templates and avoid building
new VE completely from scratch. The VE database is
set up with Microsoft® Access 2000 and utilizes its
advantages including data access control, distributed
access, different authoring types concurrency control,
retrieval performance and data consistency. The
developed VE database, see Fig.2, attempts to
formulate a uniform way for abstracting 3D graphic
contents and their dynamics by which each property
is represented by an entry in the database, describing
its format, path, spatial status, rendering details and
animation sequences.

Figure 2. A typical VE database

During the visualizing process, the VE database will
make meta information available and thus the
programme can deploy each constructive model
correctively while assembling them into integration.
TCLODBC [Tcl04a] which can provide the
scripting-oriented database connectivity is employed
for runtime data synchronization between VE and
database. Once the meaningful graphical
representation is created after the starting of VE,

Short Communication papers 119 ISBN 978-80-86943-02-2

developers may apply available multiple
reconfiguration utilities including 2D UI, plug-in
programmes and console to change VE content,
rendering context and control. Any event, for
example, relocating selected graphic node with a
drag-and-drop metaphor, will lead to consistent
redisplay for the entire graphics in the view port.
Before sending changed scene graph into the
rendering pipeline for the drawing of the next frame,
the copy of the meta information of new VE will be
hold by certain Tcl variables. By creating new VE
record with the information from those Tcl variables,
the VE design can be saved as reusable VE templates.

Human Machine Interface
Tk which is the extension package of Tcl is used to
implement human computer interactivity. By
summarizing frequently referred interaction between
human and desktop VE system, the practical human
computer interaction scheme has been developed
which cover multiple handlers, including 2D UI
system, runtime plug-ins and console, for dealing
with variant categories of developer requests on VE
level tasks. Development of a VE with the script-
enabled developing environment can reduce project
costs.

VE engineers can perform navigating and selecting
actions with the toolbar to communicate with already
existing VE. In Fig.3.a, developers can wander
through the 3D site in three different navigation
modes. The involved graph nodes can be selected,
relocated, rescaled, replaced or removed with default
functionalities which is an organic part of the
demonstrated UI system.

VE developers are enabled to extend current UI
system by providing it the functionality enhancement.
For example, if current VE needs to be saved in
binary format using custom export toolkit which is
not available, VE developers can package scripts
with certain utility panel and temporarily install the
scripts as buttons in the toolbar, as items in menus, or
designate them to hotkeys. See Fig.3.b. The updated
toolbar integrates custom import (button “B” and “C”)
and export (button “A”) toolkits using ASCII and
binary file input and output stream.

Given the fact that, for VE engineers, especially
those who may have solid background in graphic
computing, direct manipulation by editing and trying
new command input at system runtime tends to be
another advisable approach for both VE development
and improvement. The UI system comes with a
runtime console which is actually a fully interactive
Tcl/Tk interpreter for graphical language and works
similar to a DOS command prompt window. This

working environment integrates a 2D text editor with
which VE developers are able to retrieve and display
source files and then comprehend implementation
details of specific software components. It also
provides a scripting command input console which is
de facto a built in window listener embedded with an
internal scripting interpreter. An inquiring system is
already built up that can be used to send queries for
and then returns crucial API information for VE
developers.

In Fig.4, the command input console is used for
automatically instantiating new control widget by
taking advantages of collected API information. Fig.
4.b shows the tree view of the scene graph APIs.
Developers can quickly explore the hierarchical
structure of VRS classes when editing their own code
fragments. In this case, required “Sphere” class is
located from within the tree structure simply by
entering “Sphere” in the entry panel. To display the
API information, double-left-click the “Sphere” node
in the tree view and constructors of class “Sphere”
with their argument types and default values will be
displayed. Using this utility, developers can thus
design the widget within the console for sphere
object defined by radius, cutting planes in Y direction
and aperture angle. This control widget was
automatically initialized and applied instantly for
editing and adding experimental contents into
existing graphs for rapid prototyping. See Fig.4.c.

3. A VE RAPID PROTOTYPING(VERP)
DEMONSTRATION SYSTEM
In order to demonstrate the proposed VE developing
infrastructure, basic functional modular libraries have
been designed and implemented for a demonstration
system. The demonstration system supports fast VE
development with a novel systematic VE design
approach supported by its underlying computing
infrastructure, as is can be seen from Fig.5.

ID code
(User query) Coding scheme

VE database

VE datasets
VE

(Scene graph)

VE
(Scene graph)

Coding scheme+

ID code

+

Visualiser

Coding module
Controller

Coding module

Figure 5. A typical VE database

Short Communication papers 120 ISBN 978-80-86943-02-2

The main idea behind the illustrated approach is to
find out similar VE template from database according
to user query. The query is sent to “Coding Module”
which is actually a VE coder/decoder. The returned
results will be displayed with a suitable presentation
which provides a good overview of information
relations without an overload of information for VE
engineers. VE engineers can thus make decision for
selecting and visualising particular VE inside the
system according to the degree of relevance between
VE templates and their query. During the visualising
process, the datasets will be retrieved from VE
database and then translated by “Visualiser” at
system runtime for 3D scene reconstruction. The
“Controller” will make incremental changes to
current VE take place according to certain
application specification. New VE is to be
categorized before saving it in VE database.

VE Coding and Classification
The VE database has been designed to be a
hierarchically structured container. The maintained
VE library comprises several isolated VE families
and sub-VE-families each of whom consists of
numbers of VEs which differ from each other in
terms of, for example, scene graph composition,
physical layout of objects and their functions. Since
large numbers of designed VEs will increase the
complexity of the entire system and be not
convenient for developers to collect specific
environment, as well as the time that consumed on
seeking for proper or similar visual representation
among a pool of discrete candidates will counteract
the “rapid” of rapid prototyping, both conceptual and
visual coding and classification are employed in
order to provide a broad, top-down control to VEs
without plunging into the complexity of a fully
inordinate system.

During the process of classification, the physical
sceneries in the world have been roughly grouped
into different categories according to following
classification principles: (i) the environments should
be typically divided into two categories, that is,
outdoor sceneries and internal culture; (ii) the
environments are to be classified by both visual
appearance and function; (iii) the microcosm will be
ignored and only those environments over a certain
size, that is, human scale or larger, will be considered
for visual ontology.

VE coding is used for establishing symbols according
to the classification categories for meaningful
communication. A hybrid structure is adopted in
coding schemes, that is, the system employs
monocode where they can, and apply polycode for
other digits in such a way as to obtain a code

structure that captures the essential information about
a part shape.

Currently the demonstration system realizes a three-
levels coding scheme in which the first two levels
represent a hierarchical structure consisting of
exclusive attributes while the third is a simple chain
code composed of discrete, universal properties.
Once the VE query is received by the “Coding
Module”, a similarity coefficient calculation will be
automatically done, in which specific relevance value
has been designated as the threshold for deciding the
range of to be collected environments.

VE Database and Visualiser
Once VE engineers decide which VE template is to
be visualised, the database connection is to be set up
using TCLODBC. The pseudo code below shows
how to open database connection.

set driver “Microsoft Access Driver (*.mdb)”
set dbFile “Absolute path of the database file”
set dsn VUNITPRO
database adddsn $driver [“DSN=$dsn” DBQ=$dbfile]
database db $dsn
set table [db select from database where flag=1]

Once after the database connection is established, the
system will access proprietary conditions of to be
visualised VE, such as the spatial information of
involved models, their volume scale, rotation axis
and angle, material and colouring attributes and so on
in order for visualiser to decide the initial status of
reconstructed VE. Following pseudo code presents
how to relocate a VE model with the meta
information delivered by database.

set locx [select locX from table where ID=givenID]
set locy [select locY from table where ID=givenID]
set locz [select locZ from table where ID=givenID]
$target locate [new Location $locx $locy $locz]
$canvas postAllForRedisplay

After the VE template is built up, VE engineers have
to configure the VE from its original state and this
reconfiguration process can be carried out repeatedly
to get the system into the correct configuration.

VE Controller
UI system designed for VE reconfiguration makes it
possible to control a graphical scenery with a Tcl
programme and, conversely, to react in Tcl to input
(the events due to user interaction) from the scenery.
Any event, for example, relocating selected graphic
node with a drag-and-drop metaphor will lead to
consistent redisplay for the entire graphics in the
view port. Before sending changed scene graph into
the rendering pipeline for drawing of the next frame,
the copy of the meta information of current VE will

Short Communication papers 121 ISBN 978-80-86943-02-2

be updated. Take coordinates transformation for
example, VE engineers can change the spatial
location of involved VE models by dragging the right
mouse button. Once the mouse button is released, the
current state of the VE model will be maintained by
temporary Tcl variables, see following pseudo code.

proc setDynamicDataset {target} {
 global tempX tempY

set $target::locationX $tempX
set $target::locationY $tempY

}

For each involved VE object, the system
automatically generates a unique namespace at the
starting of the VE. The name of the VE model is used
to define homonymic namespace, there exist a set of
global variables under each namespace to maintain
the copy of meta information of VEs.

In order for VE engineers to save the VE design, the
VE controller is to create a new data table in VE
database. Particular dependencies will be defined by
which the current state of the VE can be held.

db “create table $renderingdata” (

object char (50)
path string
location_x double
… …
dynamics string)

After populating a empty data table, the rendering
data bits of each VE object are to be saved with this
data table.

db “insert into $renderingdata” (

object
path
location_x
… …
dynamics)

values (
 ‘object name’
 accessing path
 $objectName::locationX
 … …
 $objectName::dynamics)

The data table accepts only one VE model (its
rendering data bits) at a time. To save a VE that has
N objects, above process is to be repeated N times.
After that, the VE code is to be generated
automatically according to the VE coding scheme.

4. FUNCTIONALITIES OF THE
DEMONSTRATION SYSTEM: A
WALKTHROUGH USE
The demonstration system can be applied by, for
instance, upholstery to design the layout of furniture,

or construct the real scene with given information.
The difference between these two sample tasks is, the
later usually has a rigid frame of reference, while the
previous allows the artists and VE developers to
throw away violation and be free to utilize their
creativity. To evaluate the demonstration system,
certain real indoor scenery has been created with the
reference to a 2D blueprint used as background
mage. See Fig.6. i

Figure 6. The 2D layout of the site
Based on the information encapsulated in above
blueprint, user query for VE templates can be defined.
The VE rapid prototyping system adopts 2D
interaction metaphor to define the search for VEs,
and browse the query results with panel utilities in
order for VE engineers to get an impression of which
VE template is suitable for reconstruction. Fig.7
shows how users started the search, and then initiated
the query by shrinking the search range and inputting
equired values. r

From 1st to 2nd level

From 2nd to 3rd level

Figure 7. Define VE query

Short Communication papers 122 ISBN 978-80-86943-02-2

After calculating the input values by users, the
system automatically evaluated the results and
displayed the evaluation outcome with the utility
panel shown in Fig.8.

Figure 8. The matching result
Above presentation of query outcome provided a
good overview of information relations to help users
to recognise which VE matches best regarding all
properties; which property is fulfilled best; and
whether a VE is determined by the system to be one
of the candidates because it matches all properties
well, or because it matches one property extremely
well. At random, VBedroom06 was selected to
visualise. During the visualising process, the meta
information was retrieved from VE database and
used to deploy each model correctively while
assembling them into integration. The visualisation

utcome can be seen from Fig.9. o

Figure 9. The visualization of VE template

Once the selected VE template is visualised by the
system, the revision for progressively approximating
to certain blueprint can be done accordingly. Fig.10
illustrates the introduction and relocation of new 3D

bjects. o

F

igure 10. Merge new model into the environment

During the reconstruction process, the console was
used to change the distance of the wall to adjust the
length-to-width ratio of the room, and consequently
the location of the door which should, according to
the blueprint (Fig.6), stand at the center of the room
but veering more to the left. This was done simply by
typing following scripts into the console (Fig.4.a),
and then pressed the key “F5” to evaluate the scripts.

#move the walls
$leftwall prepend [new Translation 1.0 0.0 0.0]
$rightwall prepend [new Translation -1.0 0.0 0.0]
#relocate the door
$mainscene remove $door
$facetas_frtwal insertloop 0 $loop_4frtwal_hole
$normal
Set loop_4frtwal_hole [VectorItr

 {-0.86 0.0 -4.5} {-0.86 0.0 1.5}
 {-1.2 0.0 1.5} {-1.2 0.0 -4.5}

$facetas_frtwal insertloop 1 $loop_4frtwal_hole
$normal
$door prepend [new Translation -1.3 0.0 0.0]
$mainscene append $door
$canvas postAllForRedisplay

To save the reconstructed scene as a reusable VE
template, users can either feature the VE by filling
the entries in the utility panel (Fig.11) to save it as a
database file, or activate “File Exporter/Importer”,
the runtime plug-in (Fig.3.b) to save it as a binary

ata file. d

To feature and save VE

Figure 11. Describe the VE with given
dependencies

Compared with other popular VE modeling
applications, with the use of above demonstration
system, both time and labour cost were largely saved
due to the availability of user interface tools, which
were designed for realizing multi-functional and
multi-levels control over the whole VE during the
system runtime. The VE can be created either from
scratch or built up based on background image, while
the application itself (the hosting shell) is capable of
doing self-modification by, for example, introducing
a console for realizing functional extension at
runtime which is impossible in a compiled language
driven development environment. With the built-in
code interpreter, the VE control is enlarged to a
limitless scope, that is, each memory piece can be
manipulated for achieving each possible design task.

Short Communication papers 123 ISBN 978-80-86943-02-2

5. CONCLUSION
In our infrastructure, we apply interpretative
computing tool and its binding of an abstracted
graphic library to design, implement and redevelop
VE applications. This infrastructure has been further
developed into a VE rapid prototyping system, which
benefits from scripting as a fundamental tool for
runtime reconfiguration of VE graphics, rendering
context and their control, as well as from the concept
of “VE template” by which it is not necessary to
build the whole VE completely from scratch.

6. REFERENCES
[Döl02a] Döllner, J., and Hinrichs, K. A generic 3D
rendering system, IEEE Trans. on Visualization and
Computer Graphics, Vol.8, No.2, pp.99-118, 2002.
[Fol97a] Foley, J.D., Andries, V.D., Feiner, S.K., and
Hughes, J.F. Computer graphics: principles and
practice, 2nd edition in C. Addison-Wesley, 1997.
[Gri96a] Grinstein, G.G., and Southard, D.A. Rapid
modeling and design in virtual environments,
Presence: Teleoperators and Virtual Environments,
Vol.5, No.1, pp.146-158, 1996.
[Oli03a] Oliveria, M., and Crowcroft, J. An
innovative design approach to build virtual
environment systems, Computer Laboratory,
Cambridge University, 2003.
[Ous98a] Ousterhout, J.K. Scripting: higher level
programming for the 21st century, IEEE Computer,
Vol.31, No.3, pp.23-30, 1998.
[Ran95a] Randy, P. A brief architectural overview of
Alice: a rapid prototyping system for virtual reality,
IEEE Computer Graphics and Application, pp.8-11,
1995.
[Tcl04a] Tcl open database connectivity, available at
http://sourceforge.net/projects.tclodbc.
[Win95a] Wingfield, M.A. MITRE’s virtual model
shop, in SPIE’95 conf.proc., pp.147-154, 1995.
[Zha98a] Zhao, Z.X. Virtual Reality based robot
mission control, Technical White Paper Document,
Superscape Virtual Reality Software Ltd.,
Hampershire, UK/School of Engineering, University
of Derby, Derbyshire, UK, 1997.

Short Communication papers 124 ISBN 978-80-86943-02-2

http://sourceforge.net/projects.tclodbc

Object Description and Decomposition by
Symmetry Hierarchies

Kai Huebner
Safe and Secure Cognitive Systems

German Research Center for Artificial Intelligence
D – 28359 Bremen, Germany

kai.huebner@dfki.de

ABSTRACT
Symmetry is an important feature of visual scene exploration and interpretation. Similarly, hierarchical structures
figure an important aspect of symmetry. Visual symmetries describe image regions that might naturally overlap
or enclose smaller symmetries. For this reason, objects and scenes can be described in their overall shape as also
in their decomposition into more detailed subordinate structures by symmetry hierarchies. Most hierarchical ap-
proaches in this area are based on structural, multi-scalar or multi-resolution hierarchies. In this paper, we propose
a symmetry-oriented hierarchy with a related, but more cognitive meaning by describing a hierarchy of symmetry
itself based on a range-based symmetry detector. We motivate and present an approach for symmetry hierarchy
representation and show experiments towards object description and decomposition by symmetry hierarchies.

Keywords
Bilateral Symmetry Detection, Symmetry Hierarchies, Object and Scene Description.

1. INTRODUCTION

Symmetry has been investigated in several domains like
biology, psychology and computer vision. In nature and
human perception, symmetry is a widespread feature.
Most artifacts are built in a symmetric manner and
both animals and humans use symmetry as a significant
landmark. Besides this property, psychophysical work
[PH78, LN89] shows that especially vertical symmetry
(i.e. reflective symmetry with respect to a vertical axis)
is the fastest and most accurate detectable for the hu-
man eye. Assuming the presence of bilateral symmetry
in a scene, humans are able to immediately detect sym-
metry axes for further visual exploration of the scene or
for interaction with the real world. Accordingly, sym-
metry is also applied as a valuable attentional feature
for the extraction of regions of interest or for object de-
scription by symmetric properties in the area of com-
puter vision [RWY95, DV95, ZPA95]. Though mainly

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

reflective symmetries are used, approaches to rotational
symmetries can also be found in the literature [LZ03].

Hierarchical structures figure an important aspect of
symmetry. Symmetries normally describe feature re-
gions that cover larger image parts than local features
such as edges or corners. Therefore, one symmetry re-
gion might naturally overlap or enclose further, but
smaller symmetry regions. For this reason, objects and
scenes can be described in their overall shape as also
in their decomposition into more detailed subordinate
structures by symmetry hierarchies. This idea is illus-
trated for the building scene in Figure 1. The building
is highly bilateral symmetric as a whole, but moreover,
it encloses several symmetrical substructures like those
depicted in the illustration.

On the other hand, symmetry hierarchies allow to an-
alyze symmetries in different levels of granularity. This
is an important issue, as many objects such as faces or
trees appear symmetrical when visualized with low res-

Figure 1: A building and some of its intuitive sym-
metrical substructures.

Short Communication papers 125 ISBN 978-80-86943-02-2

olution. However, these objects are not that symmetric
in high resolution, e.g. when we focus on object details
like crinkles or branches. Zabrodsky et al . motivated
this idea of hierarchically ordered symmetry detectors
in [Zab90] and [ZPA92].

In this paper, we present a novel symmetry hierarchy
algorithm based on our previous work on a quantita-
tive (i.e. range-based) symmetry detector. Approaches
from the literature focus on the structure of the hier-
archy with regard to operator size or image size. Re-
lated work and the classification of hierarchies are dis-
cussed in sections 2 and 3. In contrast to these meth-
ods, our quantitative detector provides a novel kind of
symmetry-oriented hierarchy. Section 4 includes the hi-
erarchy algorithm, section 5 shows an experimental ap-
plication. We conclude our work in section 6.

2. RELATED WORK
Hierarchical Symmetry
The most intuitive way to realize the idea of symme-
try hierarchies is to hierarchically structure the symme-
try detectors themselves. Di Gesù and Valenti formulate
the Pyramid Discrete Symmetry Transform in [DV97].
The resulting hierarchy is pyramidal, as a quadtree is
used to represent the different levels of symmetry gran-
ularity. Kelly and Levine apply annular operators of
variable size to detect and group symmetries belonging
to their size in [KL95]. The different layers of the vector
field representation by Cross and Hancock [CH99] also
allow the detection of variably scaled symmetry axes.

In earlier work [ZH02], we combined a set of com-
pact symmetry operators on panoramic images. This
was motivated by the observation that the mask-based
detector shows different pros and cons depending on the
size of the operator. Though the extraction of symmetry
axes is more robust with the use of multiple operators,
it is comparatively slow and inefficient. Within all of
the referred approaches, a variable parameter of detec-
tor scale is included. A symmetry hierarchy of an ob-
ject can therefore not be established until a multi-scale
computation of the detector has been performed. It is
obvious, that this processing of several scales strongly
increases the efforts in computation time.

Quantitative Symmetry
A novel method to generate robust range-based sym-
metry values was proposed in [HWZ05]. The approach
is based on an algorithm computing bilateral quantita-
tive symmetry information using an adopted Dynamic
Programming technique referred to as Dynamic Pro-
gramming Symmetry (DPS) algorithm. For each image
point, the pair of opposing image regions spans a sin-
gle local search space. Each search space is computed
to find an optimal mapping of the regions’ elements.

Symmetry information is finally extracted regarding the
error of this mapping.

The optimal mapping and the overall error are com-
puted in an iteratively growing subsquare of the search
space. The optimized procedure and the successive iter-
ation steps including the determination of the symmetry
values sigmaL and sigmaR are presented in Fig. 2.

If the minimum error exceeds a given threshold in
an iteration step, the calculation is aborted. The map-
ping end is returned by its search space indices σL(pi)
and σR(pi) that now serve as a measure of symme-
try. The environment given by S = σL(pi)+σR(pi) can
be treated intuitively as the symmetric region around
pi. Thereby, the operator offers comparable symmetric
range information, referred to as quantitative symme-
try, for each image point.

The disadvantage of this approach is the high effort
in computing time, as a whole search space has to be
treated for each pixel. An illustration taken from that
work is Fig. 3. The re-use of particular cells is pointed
out by their shading. As can be seen, both path struc-
tures and the overall error are not transferable because
of the networked minimization strategy that is used in
the different local search spaces. A detailed description
and optimization of the Dynamic Programming Sym-
metry algorithm and its usability based on quantitative
symmetry signatures for motion tracking can be found
in [HWZ05].

Hierarchical Structures
Inside the approaches to hierarchical symmetry that
were mentioned above, the term of a “hierarchy” de-
scribes ordered structures related to the technical pro-
cessing of symmetries. Each of these resembles a struc-
tural hierarchy of the applied detectors. However, this
is only one of several types of “hierarchies” which we
distinguish and describe in the following.

Param.: Band of width 2, Absolute threshold T = 5, Wi = 1

Asymmetric Shape:
σL = 2,σR = 1→ S = 3

Symmetric Shape:
σL = 4,σR = 4→ S = 8

Figure 2: DPS-Algorithm: The difference between
asymmetric and symmetric local search spaces is

visible. Costs and mapping path differ clearly.

Short Communication papers 126 ISBN 978-80-86943-02-2

Figure 3: Local square search spaces and combi-
nation of the local search spaces into a triangular
global search space [HWZ05]. Note that paths and

values differ in overlapping local search spaces.

2.3.1 Multi-Scalar Hierarchies
Multi-scalar hierarchies are characterized by the uti-
lization of several differently scaled detectors. Hence,
the term of “hierarchy” primarily describes the hierar-
chy of detectors, but not the hierarchy of symmetries.
On the one hand, a small set of larger detectors maybe
applied first to subsequently focus more detailed re-
gions with smaller detectors (top-down principle). On
the other hand, small detectors maybe applied first be-
fore subsequently analyzing symmetric regions with
enlarged detectors (bottom-up principle). The detectors
from [KL95], [CH99] and [ZH02] are examples for this
type of hierarchies that build up a hierarchy H(I) of an
image I by applying a symmetry detector Θ with mani-
fold operator sizes m1...n:

{Θ(I,mn)}⇒ Hms(I), n ∈ N+. (1)

2.3.2 Multi-Resolution
The approach of multi-resolution follows a different
motivation. Many objects may appear symmetric as a
whole, but show inaccuracies when analyzed in detail.
Therefore, multi-resolution considers the image in dif-
ferent levels of resolution. Thus, the parameter in this
case is the resolution of the image and not the size of
the operator, as it is in multi-scale approaches. By the
order of different resolutions, the term of “hierarchy”
also describes a structural hierarchy of resolutions in-
stead of a hierarchy of symmetries:

{Θ(In,m)}⇒ Hmr(I), n ∈ N+. (2)

Examples for symmetry multi-resolution are described
by Zabrodsky et al . [Zab90, ZPA92] and Di Gesù and
Valenti [DV97].

2.3.3 Symmetry-Oriented Hierarchies
Within the context of the method to detect quantitative
symmetry, the term of a hierarchy finds a related, but
more cognitive meaning. The symmetry-oriented hier-
archy does not focus on the structure of the hierarchy in
reference to operator size (multi-scalar) or image size
(multi-resolution). Instead, it describes a hierarchy of
symmetries itself, like the one illustrated in Figure 1.
This type of hierarchy is only feasible with quantita-
tive symmetry information like provided by the DPS
(Dynamic Programming Symmetry) algorithm, but it
allows symmetry hierarchies without consideration of
a structure of operators:

Θ(I)⇒ Hso(I). (3)

3. SYMMETRY HIERARCHIES
Quantitative Hierarchy Algorithm
The opportunity to establish hierarchies of symme-
tries is a fundamental advantage of quantitative symme-
try detection. The DPS algorithm assigns a symmetric
range to each image point. Thereby, the recognition of
hierarchically ordered symmetry structures is strongly
supported. The effort for complex analysis and combi-
nations of mutliple-scale operators known from qualita-
tive approaches is not necessary here. One-dimensional
symmetric range information allows the construction of
symmetry hierarchies by simple interval calculation.

Symmetry axes are detectable at maxima values in
quantitative symmetry images. From these points, sym-
metry values decrease constantly. Thus, higher-level
symmetries are depicted as global maxima values in in-
tervals. Lower-Level symmetries can be found at local
maxima inside these intervals. The following recursive
algorithm to reveal the hierarchical symmetry structure
is therefore both intuitive and effective. Calculations are
based on one-dimensional intervals T :

1. Find in T = [l,r] the global, margin-independent
maximum σ s (with index s and symmetry range
values σL(s), σR(s)).

2. Mark s as a symmetry of hierarchical order e.

3. Set four partial intervals as follows:
3.1 T ol = [l, max(l, s−σL(s))[(outer-left interval)
3.2 T il = [max(l, s−σL(s)), s[(inner-left interval)
3.3 T ir =]s, min(s+σR(s), r)] (inner-right interval)
3.4 T or =]min(s+σR(s), r), r] (outer-right interval)

4.1 For T ol and T or repeat the algorithm (→ 1.) with
hierarchical order e (equivalent level of hierarchy).

4.2 If e < emax, i.e. the maximum hierarchy level is not
reached, repeat the algorithm (→ 1.) for T il and T ir

with hierarchical order e + 1 (subordinate level of
hierarchy).

Short Communication papers 127 ISBN 978-80-86943-02-2

e = 1

e = 2

e = 3

3 2 1 2 3

3 2 1 2 3

a. Example

b. Grayscale Pattern (center row) c. Overall symmetry σ = σL +σR

d. Hierarchy

Figure 4: Steps of symmetry hierarchy algorithm.

We set T as the whole image row in the first recursion
step. Additionally, a maximal recursion depth and hier-
archy sub-level, respectively, is given by emax. Hereby,
a hierarchy structure of an image row can be established
like the one presented in Figure 4.

Regarding the concluding “hierarchy” in Figure 4d,
the bars correspond to the symmetric intervals of the
symmetry maxima depicted by points. The inner inter-
vals T il and T ir are illustrated by gray bars, the outer
intervals T ol and T or by white bars. Black bars cor-
respond to interval overlaps caused by the symmetry
ranges σL and σR, respectively. Following the interval
definition, these overlaps are not further processed. Fi-
nally, the interval gaps that are depicted in level e = 3
do not include margin-independent maxima.

The proposed algorithm allows detection of symme-
try axis points and their interval-based classification
into a symmetry hierarchy. Symmetry information of an
image can thereby be reduced to symmetry axes which
still represent meaningful information. In addition to
the assignment of a range-based symmetry value, each
image point can be classified as a symmetry axis point,
including its rank in a symmetry hierarchy.

Row-Oriented Hierarchies
For vertical symmetries, both the DPS algorithm and
the hierarchy algorithm work on local, single image
rows. A row-spanning combination of the local hier-
archy points into symmetry segments allows higher-
level description of an image’s symmetry structure. In
the following, we show a column-based combination to
show up the usefulness of more global symmetry hier-
archy descriptions. The processing steps are: symme-
try detection (DPS algorithm), row-based detection of
symmetry axes including their hierarchy levels (hierar-
chy algorithm), histogram of the hierarchy levels.

The examples of Figure 5 show different vertical
symmetry structures produced by the row-based algo-
rithm. Both hierarchies of the first level (c,d) build a
nearly centered vertical main-axis, as both images are
strongly vertical symmetric. Accordingly, the symme-
try values are high in this first hierarchy level. How-
ever, the symmetry maxima of the second level (e,f)
show differences. The circle (a) shows two arcs for the
symmetry structure of the black semi-circles for e = 2
(e) that are both subordinate to the center symmetry of
e = 1 (c). However, the curvature of the arcs shows just
a small effect on the column-histogram presented at the
bottom. The building (b) allows further interesting ob-
servations. The main symmetry on top level e = 1 (d)
is significant, but does not span the whole image be-
cause of image noise. Thus, the algorithm produces fur-
ther first-level symmetry axes. Below the first level, the
branching of symmetry axis are clearly visible up to the
third level (e = 3) of the histogram (h). We can detect
symmetries of first level for the building’s center part,
the two towers and the two window fronts, symmetries
of second level for the building columns and window
pairs and symmetries of third level for subordinate win-
dow parts. This symmetry hierarchy and its parts are
illustrated in Figure 6.

Histogram-Oriented Hierarchies
In Figure 6, the selection of maxima was made man-
ually for the row-oriented hierarchy. The image parts
were then extracted using these maxima and the corre-
sponding symmetry ranges. An automatic detection of
the depicted histogram structure may surely be realized.
However, this would include a maxima detection about
each local image row and further parametrization and
tuning of the algorithm.

Instead of following the row-based approach, we
concentrate on a histogram-oriented one. We therefore
change the order of the last two processing steps, so that
these are now: symmetry detection (DPS algorithm),
histogram of the symmetry values, row-based detection
of symmetry axes including their hierarchy levels (hi-
erarchy algorithm). The disadvantage of this method is
that the exact symmetry ranges σL and σR are lost by
calculating each column’s mean symmetry value. The
mean ranges

σ̂L(x) =
1
h

h−1

∑
y=0

σL(x,y) and σ̂R(x) =
1
h

h−1

∑
y=0

σR(x,y)

(4)
are therefore sensitive to changes. The mean symme-
try value is only equal to the exact symmetry range if
symmetry is equal throughout the whole column.

The mean histogram that is extracted by this step
is now processed by the recursive algorithm to build
the histogram-based symmetry hierarchy of the image.

Short Communication papers 128 ISBN 978-80-86943-02-2

a. Image A b. Image B

c. Hierarchy level e = 1 d. Hierarchy level e = 1

e. Hierarchy level e = 2 f. Hierarchy level e = 2

g. Hierarchy level histogram h. Hierarchy level histogram

e = 1 e = 1

e = 2 e = 2

e = 3 e = 3

Figure 5: Two examples for the symmetry-based hierarchy description. Top to bottom: source images (a,b);
row-based vertical hierarchies of levels e = 1 (c,d) and e = 2 (e,f); corresponding symmetry level histograms
(g,h). The z-values depict which portion of the image is covered by the symmetry, i.e. it is z = 1 if the whole

image is covered by that symmetry.

While the hierarchy algorithm has to be applied for each
row in the row-based approach, it has to be used only
once here. Regarding the example, this automatic algo-
rithm yields a good result especially in the first hier-
archy level e = 1 (see Figure 7). Note that this result
is very similar to the intuitive decomposition of a hi-
erarchy structure that was discussed in Figure 1 in the
introduction.

4. EXPERIMENT

In our experiment, we exploit the proposed symme-
try hierarchy algorithm for panoramic image decom-
position. Therefore, we use our mobile robot platform,
the Bremen autonomous wheelchair “Rolland III” (see
Figure 8) in a common office environment. Image se-
quences of dynamic environments are quite sensitive to

Short Communication papers 129 ISBN 978-80-86943-02-2

e = 3

e = 2

e = 1

e = 3

e = 2

e = 1

e = 0

� � � � �

� � � � � �

� � � � �

Figure 6: Left: Hierarchy level histogram (same as Figure 5h) with manually marked symmetry axes (dia-
monds). Right: Illustration of the corresponding symmetry-oriented hierarchy, manually extracted.

e = 3

e = 2

e = 1

e = 0

Figure 7: Left: Mean column histogram of all symmetries ŝ = σ̂L + σ̂R with automatically marked symmety
axes (bars). Right: Illustration of the corresponding symmetry-oriented hierarchy, automatically extracted.

a multitude of image transformations like scale change,
illumination, occlusion and many more. In earlier work
[ZHK01], we proposed a sectoring of panoramic im-
ages in order to be more robust to those influences. If
one of the sectors can not be recognized by the robot
because of unexpected occlusion (maybe by a person
around), the correct assignment can also be made by
the other sectors. In that work, we used a constant sec-
toring of the panoramic image into three sectors of 90
degree each. In the following experiments, the proposed
symmetry hierarchy algorithm will produce arbitrarily-
sized sectors. Panoramic images are normalized in ori-
entation, so the only symmetry that is used for hierar-
chical image decomposition is vertical symmetry (i.e.
symmetry about a vertical axis).

Experimental Setup
“Rolland III” is equipped with two Siemens LS4 laser
scanners mounted at ground level, which allow for
scanning two fields of 190 degrees in front of and back-
wards of the wheelchair. Two Lenord+Bauer GEL248
incremental encoders measure the rotational velocity of

the two independently actuated wheels. Here, we con-
centrate on the SeiwaPro Panorama Eye R© omnidirec-
tional vision system that is mounted at the top of the
wheelchair’s backrest. Like most catadioptric systems,
the one applied here comprises a firewire color cam-
era facing upwards to a hyperboloidal mirror surface.
Omnidirectional images are restricted in image resolu-
tion, but offer the main advantage of providing a com-
plete 360-degrees visual perception of the surroundings
in each time step. Thus, they are widely applied and re-
searched in robot vision tasks. Methods for unwarping
distorted omnidirectional views into both panoramic
and perspective views are well elaborated to offer user-
friendly visual feedback (see Figure 8).

Experimental Results
The following experiment concentrates on the decom-
position and hierarchization of panoramic images only.
Some panoramic images are presented in Figure 9.

Both images are made at the same position, but
with different orientation. Additionally, the wheelchair

Short Communication papers 130 ISBN 978-80-86943-02-2

Figure 8: The autonomous wheelchair. The cam-
era image (top-right) showing the omnidirectional
view can be unwarped into both perspective views
(center-right) and into the panoramic view (bottom).

driver and another person occlude arbitrary image parts.
Thus, it is obvious that a fixed sectoring of the images
would not be useful at all to find correspondences be-
tween the image parts.

We now apply the histogram-oriented hierarchy al-
gorithm on both images. For each image, a hierarchical
structure of six sectors is automatically produced and
shown in Figure 10. Decomposition is only done up to
first level of hierarchy, sub-ordinate levels are not used.
As can be seen, the panoramic images are divided into
sectors that are symmetrically significant. We also find
that they show object-bound parts like doors and walls.

To show up that correspondences between these im-
age sectors can now be analyzed, we describe each of
the image sectors Ai, B j by a weighted color histogram.
For each sector, color information is weighted accord-
ing to a normal distribution p̂ placed abroad the sec-
tor. Thereby, a normalized discrete color histogram de-
scribes each sector’s content. Two histograms can easily
be compared using the Bhattacharyya coefficient

ρ (Ai,B j) =
m

∑
u=1

√
p̂u(Ai)p̂u(B j), (5)

where u is the bin index of the m-sized color histogram.
Table 1 shows all the correspondence values between
A1...6 and B1...6. We find that two correspondences can
be robustly made: A1↔B1 and A6↔B3. In these cases,
values are high and differing from the others in the ta-
ble line and row, respectively. While we know that the
wheelchair driver is a constant occlusion in driving di-
rection (A1 ↔ B1), the assignment A6 ↔ B3 is a correct
match of the same door in both images.

B1 B2 B3 B4 B5 B6

A1 .87 .41 .36 .32 .31 .38
A2 .38 .42 .37 .35 .42 .88
A3 .28 .83 .62 .80 .79 .51
A4 .32 .62 .50 .48 .52 .49
A5 .63 .54 .42 .37 .42 .81
A6 .26 .52 .86 .69 .66 .35

Table 1: Correspondence values between the sectors
A1...6 and B1...6 presented in Figure 10. The two most
robust matches A1 ↔ B1, A6 ↔ B3 are marked bold.
Other values are either too small or too similar for
a good match (e.g. B6 ↔ A2 is high, but B6 ↔ A5 is

also, thus B6 can not be assigned robustly).

5. CONCLUSIONS
We have shown that the DPS algorithm for quanti-
tative symmetry detection offers an adequate funda-
ment for hierarchical structuring of symmetric im-
age information. The global search space representa-
tion allows a multi-resolution representation. However,
the main impact of this work is found in the purely
symmetry-oriented hierarchies. As presented, a simple
interval calculation on the quantitative symmetry infor-
mation yields this type of hierarchy. A row-based and
a histogram-based application of this idea have been
proposed on vertical symmetry data. Experiments show
that an object with normalized orientation can be de-
composed into several parts belonging to its symmetri-
cal structure.

For applying this concept to object decomposition,
pre-processing steps like segmentation and orienta-
tion normalization (e.g. Principal Component Analysis)
have to be used. In natural scenes, objects are com-
monly not normalized in rotation, but randomly posi-
tioned and oriented. When a main orientation is given,
we can apply the proposed operator to detect symme-
try hierarchy structure along or perpendicular to this di-
rection. This result can be used to describe objects and
scenes with regard to their symmetric structure.

Finally, we showed the application in a real
panoramic image scenario, where the scene orienta-
tion is naturally fixed. Using the proposed hierarchy
algorithm, we have dynamically split each image into
symmetry-based sectors. These can be described and
matched to find correspondences of sectors. Occluded
or unknown sectors can be found and neglected. In con-
trast, sectors that are detected and matched robustly in
both images can be used for re-orientation.

Future work may concentrate on the combination
of the basic concept with symmetry segments or re-
gional features, like those proposed in earlier work
[HWZ06, HZ06]. On the one hand, symmetry hierar-
chies maybe detected inside these oriented, regional
and object-bound features, thus pre-processing would
be made by the regional feature detection. On the

Short Communication papers 131 ISBN 978-80-86943-02-2

Figure 9: Top: First image A with occlusion by the wheelchair driver and another person. Bottom: Second
image B at same position, but with different orientation and without person.

Figure 10: First level symmetry hierarchy of the panoramic images presented above. Top: sectors A1−A6.
Bottom: sectors B1−B6. The proposed algorithm divides the images into highly symmetric segments.

other hand, regional features maybe parts of hierarchies
themselves. By these approaches, the quantitative sym-
metry algorithm will become more general and applica-
ble towards symmetric description and decomposition
by symmetry hierarchies.

REFERENCES
[CH99] A. D. J. Cross and E. R. Hancock. Scale space vector

fields for symmetry detection. Image Vision Computing,
17(5-6):337–345, 1999.

[DV95] V. Di Gesù and C. Valenti. The Discrete Symmetry Trans-
form in Computer Vision. Technical report, DMA Univer-
sità di Palermo, 1995.

[DV97] V. Di Gesù and C. Valenti. Detection of regions of in-
terest via the Pyramid Discrete Symmetry Transform. In
Solina, Kropatsch, Klette, and Bajcsy, editors, Advances
in Computer Vision, pages 129–136. Springer, 1997.

[HWZ05] K. Huebner, D. Westhoff, and J. Zhang. Optimized Quan-
titative Bilateral Symmetry Detection. Int. Journal of In-
formation Acquisition, 2(3):241–249, September 2005.

[HWZ06] K. Huebner, D. Westhoff, and J. Zhang. A Comparison
of Regional Feature Detectors in Panoramic Images. In
IEEE International Conference on Information Acquisi-
tion, 2006.

[HZ06] K. Huebner and J. Zhang. Stable Symmetry Feature De-
tection and Classification in Panoramic Robot Vision Sys-
tems. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 3429–3434, October
2006.

[KL95] M. F. Kelly and M. D. Levine. Annular Symmetry Oper-
ators: A Method for Locating and Describing Objects. In

Fifth International Conference on Computer Vision, pages
1016–1021, 1995.

[LN89] P. J. Locher and C. F. Nodine. The Perceptual Value of
Symmetry. Computers and Mathematics with Applica-
tions, 17:475–484, 1989.

[LZ03] G. Loy and A. Zelinsky. Fast Radial Symmetry for De-
tecting Points of Interest. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(8):959–973, Au-
gust 2003.

[PH78] S. E. Palmer and K. Hemenway. Orientation and Symme-
try: Effects of Multiple, Rotational, and Near Symmetries.
Journal of Experimental Psychology: Human Perception
and Performance, 4(4):691–702, 1978.

[RWY95] D. Reisfeld, H. Wolfson, and Y. Yeshurun. Context Free
Attentional Operators: the Generalized Symmetry Trans-
form. Int. Journal of Computer Vision, 14:119–130, 1995.

[Zab90] H. Zabrodsky. Symmetry - A Review. Technical report,
Department of Computer Science, The Hebrew University
of Jerusalem, May 1990.

[ZH02] J. Zhang and K. Huebner. Using Symmetry as a Feature
in Panoramic Images for Mobile Robot Applications. In
Robotik 2002, volume 1679 of VDI-Berichte, pages 263–
268, Ludwigsburg, 2002.

[ZHK01] J. Zhang, K. Huebner, and A. Knoll. Learning based Sit-
uation Recognition by Sectoring Omnidirectional Images
for Robot Localisation. In IEEE Workshop on Omnidirec-
tional Vision, Budapest, 2001.

[ZPA92] H. Zabrodsky, S. Peleg, and D. Avnir. Hierarchical Sym-
metry. International Conference on Pattern Recognition,
C:9–12, 1992.

[ZPA95] H. Zabrodsky, S. Peleg, and D. Avnir. Symmetry as a Con-
tinuous Feature. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 17(12):1154–1166, 1995.

Short Communication papers 132 ISBN 978-80-86943-02-2

	!WSCG2007_Short_Proceedings_Numbered.pdf
	!SH-1.pdf
	D97-full.pdf
	D97-full.pdf
	INTRODUCTION
	CONSTRUCTION OF SCHEME
	ANALYSIS OF SCHEME
	REFERENCES

	D71-full.pdf
	1. INTRODUCTION
	Comparison for Collaborative Project
	Digital Archive for Comparison

	2. NAVIGATION FUNCTION FOR COMPARISON
	3. COMPARATIVE NAVIGATION SYSTEM
	Development
	System Outline
	Prototype
	Functions
	3.1.1 3D space move function
	3.1.2 Plug-in function
	3.1.3 Concurrent comparison navigation function
	3.1.3.1 One-screen mode
	3.1.3.2 Two-screen mode
	3.1.3.3 Four-screen mode

	3.1.4 Cross-section view function

	4. Prototype testing
	5. CONCLUSION
	6. REFERENCES

	E19-full.pdf
	INTRODUCTION
	PREVIOUS LITERATURE
	THE ALGORITHM
	THRESHOLDING
	EXPERIMENTAL RESULTS
	CONCLUSIONS
	REFERENCES

	E41-full.pdf
	INTRODUCTION
	PREVIOUS WORK
	DEFINITIONS AND CONDITIONS
	ALGORITHM
	RESULTS
	Sample shape
	Triangle prism
	Nine boxes
	Fish
	Results

	SUMMARY
	REFERENCES

	F41-full.pdf
	1. INTRODUCTION
	2. Virtual Manipulation
	2.1 Definition of VM
	1. Basic Definition
	2. Reality Condition

	2.2 VM for two-dimensional virtual space
	Events
	Reactions for a dial

	3. Objects virtual interface in VM
	3.1 A dial
	Physical specification
	Reactions
	Physical Reality

	3.2 A toggle switch
	Physical specification
	Reactions
	Physical Reality

	3.3 A spring
	Physical specification
	Reactions
	Physical Reality

	3.4 A pickable object
	Physical specification
	Reactions
	Physical Reality

	3.5 A bouncing object
	Physical specification
	Reactions
	Physical Reality

	4. Real System
	4.1 A dial
	4.2 A switch
	4.3 A spling
	4.4 A pickable object
	4.5 A bouncing object

	5. Application
	5.1 V-VolleyBall
	5.2 V-Rimokon

	6. Result
	6.1 Evaluation of Objects and V-VolleyBall
	6.2 Developer’s process

	7. Discussion
	Limitation
	Related Work
	Future Work
	Conclusion

	8. ACKNOWLEDGMENTS
	9. REFERENCES

	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-2.pdf
	E19-full.pdf
	E19-full.pdf
	INTRODUCTION
	PREVIOUS LITERATURE
	THE ALGORITHM
	THRESHOLDING
	EXPERIMENTAL RESULTS
	CONCLUSIONS
	REFERENCES

	E41-full.pdf
	INTRODUCTION
	PREVIOUS WORK
	DEFINITIONS AND CONDITIONS
	ALGORITHM
	RESULTS
	Sample shape
	Triangle prism
	Nine boxes
	Fish
	Results

	SUMMARY
	REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	D71-full.pdf
	1. INTRODUCTION
	Comparison for Collaborative Project
	Digital Archive for Comparison

	2. NAVIGATION FUNCTION FOR COMPARISON
	3. COMPARATIVE NAVIGATION SYSTEM
	Development
	System Outline
	Prototype
	Functions
	3.1.1 3D space move function
	3.1.2 Plug-in function
	3.1.3 Concurrent comparison navigation function
	3.1.3.1 One-screen mode
	3.1.3.2 Two-screen mode
	3.1.3.3 Four-screen mode

	3.1.4 Cross-section view function

	4. Prototype testing
	5. CONCLUSION
	6. REFERENCES

	F41-full.pdf
	1. INTRODUCTION
	2. Virtual Manipulation
	2.1 Definition of VM
	1. Basic Definition
	2. Reality Condition

	2.2 VM for two-dimensional virtual space
	Events
	Reactions for a dial

	3. Objects virtual interface in VM
	3.1 A dial
	Physical specification
	Reactions
	Physical Reality

	3.2 A toggle switch
	Physical specification
	Reactions
	Physical Reality

	3.3 A spring
	Physical specification
	Reactions
	Physical Reality

	3.4 A pickable object
	Physical specification
	Reactions
	Physical Reality

	3.5 A bouncing object
	Physical specification
	Reactions
	Physical Reality

	4. Real System
	4.1 A dial
	4.2 A switch
	4.3 A spling
	4.4 A pickable object
	4.5 A bouncing object

	5. Application
	5.1 V-VolleyBall
	5.2 V-Rimokon

	6. Result
	6.1 Evaluation of Objects and V-VolleyBall
	6.2 Developer’s process

	7. Discussion
	Limitation
	Related Work
	Future Work
	Conclusion

	8. ACKNOWLEDGMENTS
	9. REFERENCES

	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-3.pdf
	A03-full.pdf
	INTRODUCTION
	AN SCRPTING BASED SOLUTION
	Abstracted Graphic Rendering Engine
	Applied Computing Tool
	VE Database and Its Connectivity
	Human Machine Interface

	A VE RAPID PROTOTYPING(VERP) DEMONSTRATION SYSTEM
	VE Coding and Classification
	VE Database and Visualiser
	VE Controller

	FUNCTIONALITIES OF THE DEMONSTRATION SYSTEM: A WALKTHROUGH U
	CONCLUSION
	REFERENCES

	D71-full.pdf
	1. INTRODUCTION
	Comparison for Collaborative Project
	Digital Archive for Comparison

	2. NAVIGATION FUNCTION FOR COMPARISON
	3. COMPARATIVE NAVIGATION SYSTEM
	Development
	System Outline
	Prototype
	Functions
	3.1.1 3D space move function
	3.1.2 Plug-in function
	3.1.3 Concurrent comparison navigation function
	3.1.3.1 One-screen mode
	3.1.3.2 Two-screen mode
	3.1.3.3 Four-screen mode

	3.1.4 Cross-section view function

	4. Prototype testing
	5. CONCLUSION
	6. REFERENCES

	F41-full.pdf
	1. INTRODUCTION
	2. Virtual Manipulation
	2.1 Definition of VM
	1. Basic Definition
	2. Reality Condition

	2.2 VM for two-dimensional virtual space
	Events
	Reactions for a dial

	3. Objects virtual interface in VM
	3.1 A dial
	Physical specification
	Reactions
	Physical Reality

	3.2 A toggle switch
	Physical specification
	Reactions
	Physical Reality

	3.3 A spring
	Physical specification
	Reactions
	Physical Reality

	3.4 A pickable object
	Physical specification
	Reactions
	Physical Reality

	3.5 A bouncing object
	Physical specification
	Reactions
	Physical Reality

	4. Real System
	4.1 A dial
	4.2 A switch
	4.3 A spling
	4.4 A pickable object
	4.5 A bouncing object

	5. Application
	5.1 V-VolleyBall
	5.2 V-Rimokon

	6. Result
	6.1 Evaluation of Objects and V-VolleyBall
	6.2 Developer’s process

	7. Discussion
	Limitation
	Related Work
	Future Work
	Conclusion

	8. ACKNOWLEDGMENTS
	9. REFERENCES

	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-4.pdf
	G17-full.pdf
	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-5.pdf
	H37-full.pdf
	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

