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© Perform a fast ray-triangle intersection
computation of massive models.

© Design and implement a novel FPGA-
accelerated architecture for fast collision

detection among rigid bodies.

O Support 13 intersection types among rigid bodies.

O FPGA-accelerated implementation for accelerating
Intersection computations among collision primitives.
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© Fast rendering for massive models and
complex scenes
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© Collision Query

© checks whether two objects intersect and returns all pairs
of overlapping features.

© Real-time collision queries

© remain one of the major bottlenecks for interactive
physically-based simulation and ray tracing.

© Key Challenge

© to develop the custom hardware for collision detection
and ray tracing
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Ray-Triangle Intersection of Massive:.l..."
Models
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Main Contributions —

© Direct applicability to collision objects with
dynamically changing topologies

© Sufficient memory to buffer the ray
Intersection input and output data

© Up to an order of magnitude faster runtime
performance over prior techniques for ray-
triangle intersection testing

© Interactive collision query computation on
massive models.

E I RI Electronics and Telecommunications Digital Content Research Division DCIR D



elate or

© Collision Detection

© BVHSs (sphere tree, OBB-tree, AABB-tree, k-DOP-tree),
octree and k-d tree

© overhead for each time interval tested, spent updating
bounding volumes and collision pruning data structures

© Programmable GPU
© a general purpose SIMD processor
© GPU-based ray tracing approaches

© GPU cannot gain a significant speed-up over a pure CPU-
based implementation.

© Custom Hardware

© AR350 processor
© RPU, DRPU
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Detection

© Specifications
© 64bits/66MHz PCI interface.
© PCI Controller: Xilinx V2P20
© Collision Detection Engine: Xilinx V2P70
© Two 1GB DDR memories (288 bus input bus)
© Seven 2MB SRAMs (224 bit output bus)
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Intersection Testing
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1:  procedure HW-AcceleratedRayTrianlgelntersection
22 input: P, S

3. output: R (CP, F-value, index, T-value)
4: collisionType CT = RAY_TRIANGLE;

5: 1ntializeDevice();

6: secondaryUpload(S);

7. for VO,. D, € Pdo

8 primaryRegFileUpload(Oy, Dy);

0: invokeCDE(CT);

10: R +— downloadSRAMOY();

11: return R

Algorithm 1: Hardware-Accelerated Ray Triangle Inter-
section Testing.
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Collision Detection Engine

© A modular hardware component for performing the
collision computations.

© consists of acceleration structures and primitive
Intersection testing components.

© 13 types of intersection queries
© Ray-triangle, OBB-OBB, triangle-OBB, triangle-OBB, sphere-
sphere, triangle-sphere, ray-cylinder, triangle-cylinder, cylinder-
cylinder, OBB-cylinder, OBB-plane, ray-sphere, and sphere-OBB
© Pipelined technique for increasing instruction
throughput

© Four outputs

© collision flag, collision position, index, separation distance or
penetration depth
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© Simplify routing lines in the hardware

© Make memory controller efficient by

coupling buffers
© F-index buffer

© 2 stencil buffers
© Single precision floating point of IEEE
standard 754
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Analysis of Intersection Algorithms

© Three ray triangle intersection algorithms

© Badouel's algorithm
© Moller and Trumbore's algorithm
© the algorithm using Plucker coordinates

© Algorithm comparison in terms of the
latency, the number of I/0 and hardware
resources

© Moller’s algorithm has been more efficient
than others In view of the processing speed
and usage of storage.
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Algorithms | # of inputs | # of outputs | Latency
Badouel’s 9 6 16
Mboller’s 9 6 10
Pliicker’s 15 6 17

Table 1: Comparison of ray-triangle intersection algo-
rithms in terms of the number of inputs, the number of
outputs and latency for hardware implementation.
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Algorithms | Badouel’s | Moller’s | Pliicker’s
Multiplier 27 27 54
Divider 2 1 1
Adder 13 12 31
Subtractor 23 15 17
Comparator 6 8 3
AND 3 2 2

Electronics and Telecommunications
Research Institute

Table 2: Analysis of the hardware resource for ray-
triangle intersection algorithms.
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© Intel Xeon 2.0GHz (2GB memory)
© NVIDIA GeoForce 7800GT GPU
© C++/0penGL/Cg

© VHDL implementation
O Xlinx ISE, ModelSim
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© Three configurations of collision detections
O Static objects vs. static objects
O Static objects vs. dynamic objects
© Dynamic objects vs. dynamic objects

— » - .“ﬁ.

Test terrain: 259,572 triangles
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Figure 5: The comparison result of the ray-triangle in-
tersection testing (static objects vs. static objects).
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Figure 6: The comparison result of the ray-triangle in-
tersection testing (static objects vs. dynamic objects).
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Dynamic objects vs. dynamic objects
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Figure 7: The comparison result according to the num-
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© Benefits

© Data reusability
e transformer to avoid the re-transmission bottleneck
© Runtime performance

e instruction pipelining to improve the throughput of the
collision detection engine

© Limitations

© We could not implement the acceleration structures in our
hardware architecture.

O If traversal of acceleration structures is performed in CPU,
we can improve the performance.
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© Novel dedicated hardware architecture to

perform collision queries.

O Ray-triangle intersection
O Sphere-sphere intersection

© The proposed hardware-accelerated

approach could prove to be faster than

© CPU-based algorithm: 70x improvement
© GPU-based algorithm: 4x improvement

© Future work
© Hardware-acceleration structures for dynamic scenes.
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