ETIIRI

Electronics and Telecommunications
Research Institute

Klm Seung-V gﬂ am)
5 gnd TelGEH)
| i

,J

..

© Perform a fast ray-triangle intersection
computation of massive models.

© Design and implement a novel FPGA-
accelerated architecture for fast collision

detection among rigid bodies.

O Support 13 intersection types among rigid bodies.

O FPGA-accelerated implementation for accelerating
Intersection computations among collision primitives.

E I RI Electronics and Telecommunications Digital Content Research Division EBBCIR D

© Fast rendering for massive models and
complex scenes

A

E T I3 oo eeconmnitons Digital Content Research Division IDCIRD

© Collision Query

© checks whether two objects intersect and returns all pairs
of overlapping features.

© Real-time collision queries

© remain one of the major bottlenecks for interactive
physically-based simulation and ray tracing.

© Key Challenge

© to develop the custom hardware for collision detection
and ray tracing

E I RI Electronics and Telecommunications Digital Content Research Division EBBCIR D

Ray-Triangle Intersection of Massive:.l..."
Models

A
D AZ TN O
ekl
A R Y B,
R e
e

7 B e R g S
7 ﬁ%‘&‘!k\ g A

s
'*'-\gmv
i
G 'mv.“g

gy
AT
A
sl
s
g

iy
7

Yo d Ay
LR AT
A A
LT
s

\ Electronics and Telecommunications Dlglta| Content Research Division DCRD

Research Institute

Main Contributions —

© Direct applicability to collision objects with
dynamically changing topologies

© Sufficient memory to buffer the ray
Intersection input and output data

© Up to an order of magnitude faster runtime
performance over prior techniques for ray-
triangle intersection testing

© Interactive collision query computation on
massive models.

E I RI Electronics and Telecommunications Digital Content Research Division DCIR D

elate or

© Collision Detection

© BVHSs (sphere tree, OBB-tree, AABB-tree, k-DOP-tree),
octree and k-d tree

© overhead for each time interval tested, spent updating
bounding volumes and collision pruning data structures

© Programmable GPU
© a general purpose SIMD processor
© GPU-based ray tracing approaches

© GPU cannot gain a significant speed-up over a pure CPU-
based implementation.

© Custom Hardware

© AR350 processor
© RPU, DRPU

E I RI Electronics and Telecommunications Digital Content Research Division EBBCIR D

ETRI

P S

Input registers [Counter]{ Primary][Secondary]

¥
‘ [Transformer]

Collision detection engine

1

function selector —&

-

Acceleration structures }

ready —i—

L

Primitive intersection testing}

Y

Output registers [CoiiisionJ[CoHisionJ[

position

Distance

flag (T) Va}ueJ

v

Update Engine

B

Memory controller

Buffers

|

Collision
position

][F-Index][Stencil-T]

Electronics and Telecommunications
Research Institute

Digital Content Research Division DBCIRID

ustom rmRaraware 10r Colision

Detection

© Specifications
© 64bits/66MHz PCI interface.
© PCI Controller: Xilinx V2P20
© Collision Detection Engine: Xilinx V2P70
© Two 1GB DDR memories (288 bus input bus)
© Seven 2MB SRAMs (224 bit output bus)

o =

o)

ICt’ﬂ’ltl“l“er '

=)

- Collision Detection Engirier _ |

! | - :
|
G

DDR Memory

www.etri.re.kr

E I RI Electronics and Telecommunications Digital Content Research Division D:RD

Research Institute

Intersection Testing

Main
memory

=y Device driver

DDR Memory ¢

_P(_fl Con

Collision Detection Engineg

DDR Memory

E I RI Electronics and Telecommunications
Research Institute

1: procedure HW-AcceleratedRayTrianlgelntersection
22 input: P, S

3. output: R (CP, F-value, index, T-value)
4: collisionType CT = RAY_TRIANGLE;

5: 1ntializeDevice();

6: secondaryUpload(S);

7. for VO,. D, € Pdo

8 primaryRegFileUpload(Oy, Dy);

0: invokeCDE(CT);

10: R +— downloadSRAMOY();

11: return R

Algorithm 1: Hardware-Accelerated Ray Triangle Inter-
section Testing.

Digital Content Research Division DBCIRID

Intersection Testing

Main
memory

Device driver

DDR Memory g

_P(_fl Con

Collision Detection Engineg

DDR Memory

E I RI Electronics and Telecommunications
Research Institute

1: procedure HW-AcceleratedRayTrianlgelntersection
22 input: P, S

3. output: R (CP, F-value, index, T-value)
4. collisionType CT = RAY_TRIANGLE;

5: intializeDevice();

6: secondaryUpload(S);

7. for VO,. D, € Pdo

8 primaryRegFileUpload(Oy, Dy);

0: invokeCDE(CT);

10: R +— downloadSRAMOY();

11: return R

Algorithm 1: Hardware-Accelerated Ray Triangle Inter-
section Testing.

Digital Content Research Division DBCIRID

Intersection Testing

Main
memory

=y Device driver

DDR Memory g

_P(_fl Con

Collision Detection Engineg

DDR Memory

E I RI Electronics and Telecommunications
Research Institute

1: procedure HW-AcceleratedRayTrianlgelntersection
22 input: P, S

3. output: R (CP, F-value, index, T-value)
4. collisionType CT = RAY_TRIANGLE;

5: 1ntializeDevice();

6: secondaryUpload(S);

7. for VO,. D, € P do

8 primaryRegFileUpload(Oy, Dy);

0: invokeCDE(CT);

10: R +— downloadSRAMOY();

11: return R

Algorithm 1: Hardware-Accelerated Ray Triangle Inter-
section Testing.

Digital Content Research Division DBCIRID

Intersection Testing

Main
memory

=y Device driver

DDR Memory g

_P(_fl Con

Collision Detection Engineg

DDR Memory

E I RI Electronics and Telecommunications
Research Institute

1: procedure HW-AcceleratedRayTrianlgelntersection
22 input: P, S

3. output: R (CP, F-value, index, T-value)
4. collisionType CT = RAY_TRIANGLE;

5. intializeDevice();

6: secondaryUpload(S);

7. for VO,. D, € Pdo

8 primaryRegFileUpload(Oy, Dy);

0: invokeCDE(CT);

10: R +— downloadSRAMOY();

11: return R

Algorithm 1: Hardware-Accelerated Ray Triangle Inter-
section Testing.

Digital Content Research Division DBCIRID

Intersection Testing

e m
—>
memory

=y Device driver

DDR Memory ¢

_P(_fl Con

Collision Detection Engineg

DDR Memory

E I RI Electronics and Telecommunications
Research Institute

1: procedure HW-AcceleratedRayTrianlgelntersection
22 input: P, S

3. output: R (CP, F-value, index, T-value)
4. collisionType CT = RAY_TRIANGLE;

5. intializeDevice();

6: secondaryUpload(S);

7. for VO,. D, € Pdo

8 primaryRegFileUpload(Oy, Dy);

0: invokeCDE(CT);

10: R +— downloadSRAMY();

11: return R

Algorithm 1: Hardware-Accelerated Ray Triangle Inter-
section Testing.

Digital Content Research Division DBCIRID

Intersection Testing

e m
—>
memory

=y Device driver

DDR Memory ¢

_P(_fl Con

Collision Detection Engineg

DDR Memory

E I RI Electronics and Telecommunications
Research Institute

1: procedure HW-AcceleratedRayTrianlgelntersection
22 input: P, S

3. output: R (CP, F-value, index, T-value)
4. collisionType CT = RAY_TRIANGLE;

5. intializeDevice();

6: secondaryUpload(S);

7. for VO,. D, € Pdo

8 primaryRegFileUpload(Oy, Dy);

0: invokeCDE(CT);

10: R «— downloadSRAMY();

11: return R

Algorithm 1: Hardware-Accelerated Ray Triangle Inter-
section Testing.

Digital Content Research Division DBCIRID

www.etri.re.kr

Collision Detection Engine

© A modular hardware component for performing the
collision computations.

© consists of acceleration structures and primitive
Intersection testing components.

© 13 types of intersection queries
© Ray-triangle, OBB-OBB, triangle-OBB, triangle-OBB, sphere-
sphere, triangle-sphere, ray-cylinder, triangle-cylinder, cylinder-
cylinder, OBB-cylinder, OBB-plane, ray-sphere, and sphere-OBB
© Pipelined technique for increasing instruction
throughput

© Four outputs

© collision flag, collision position, index, separation distance or
penetration depth

E I RI Electronics and Telecommunications Digital Content Research Division EBBCIR D

© Simplify routing lines in the hardware

© Make memory controller efficient by

coupling buffers
© F-index buffer

© 2 stencil buffers
© Single precision floating point of IEEE
standard 754

E I RI Electronics and Telecommunications Digital Content Research Division DBCIR D

www.etri.re.kr

Analysis of Intersection Algorithms

© Three ray triangle intersection algorithms

© Badouel's algorithm
© Moller and Trumbore's algorithm
© the algorithm using Plucker coordinates

© Algorithm comparison in terms of the
latency, the number of I/0 and hardware
resources

© Moller’s algorithm has been more efficient
than others In view of the processing speed
and usage of storage.

= | RI Electronics and Telecommunications Digital Content Research Division IDCIRED

Algorithms | # of inputs | # of outputs | Latency
Badouel’s 9 6 16
Mboller’s 9 6 10
Pliicker’s 15 6 17

Table 1: Comparison of ray-triangle intersection algo-
rithms in terms of the number of inputs, the number of
outputs and latency for hardware implementation.

E I RI Electronics and Telecommunications Digital Content Research Division EBBCIR D

ETRI

Algorithms | Badouel’s | Moller’s | Pliicker’s
Multiplier 27 27 54
Divider 2 1 1
Adder 13 12 31
Subtractor 23 15 17
Comparator 6 8 3
AND 3 2 2

Electronics and Telecommunications
Research Institute

Table 2: Analysis of the hardware resource for ray-
triangle intersection algorithms.

Digital Content Research Division DBCIRID

© Intel Xeon 2.0GHz (2GB memory)
© NVIDIA GeoForce 7800GT GPU
© C++/0penGL/Cg

© VHDL implementation
O Xlinx ISE, ModelSim

E I RI Electronics and Telecommunications Digital Content Research Division EBBCIR D

© Three configurations of collision detections
O Static objects vs. static objects
O Static objects vs. dynamic objects
© Dynamic objects vs. dynamic objects

— » - .“ﬁ.

Test terrain: 259,572 triangles

E I RI Electronics and Telecommunications Digital Content Research Division EBBCIR D

2500
O — A
2000
— =l CPU-based approach
[}
‘E 1500 == P U-based approach
g my'ym Our approach
=
1000
500
(m — L} L 1
L r— e — Y .|
0

20 40 60 30 100
Frame Number

Figure 5: The comparison result of the ray-triangle in-
tersection testing (static objects vs. static objects).

E I RI Electronics and Telecommunications Digital Content Research Division DB CIRID

ETRI

3000
2500 ~ >
. & Sonn
o
— 2000
§ === CPLI-based approach
=
= 1500 = Je= GGPU-based approach
=
= my'ym Our approach
1000
500
(.]) e 'm
0 FA, ; A Lr : ek : , A
20 40 60 80 100

Frame Number

Figure 6: The comparison result of the ray-triangle in-
tersection testing (static objects vs. dynamic objects).

Electronics and Telecommunications
Research Institute

Digital Content Research Division DBCIRID

Dynamic objects vs. dynamic objects

www.etri.re.kr

ETRI

Electronics and Telecommunications
Research Institute

400

350
m \

- CPU-based approach

IR

- Our approach

Frame per second (FPS)

100

200 500 1000
Number of objects

Figure 7: The comparison result according to the num-

ber of objects.

Digital Content Research Division EBCIRID

!nalysns an! !Iml!a!lOnS

© Benefits

© Data reusability
e transformer to avoid the re-transmission bottleneck
© Runtime performance

e instruction pipelining to improve the throughput of the
collision detection engine

© Limitations

© We could not implement the acceleration structures in our
hardware architecture.

O If traversal of acceleration structures is performed in CPU,
we can improve the performance.

E I RI Electronics and Telecommunications Digital Content Research Division EBBCIR D

!onclusmn

© Novel dedicated hardware architecture to

perform collision queries.

O Ray-triangle intersection
O Sphere-sphere intersection

© The proposed hardware-accelerated

approach could prove to be faster than

© CPU-based algorithm: 70x improvement
© GPU-based algorithm: 4x improvement

© Future work
© Hardware-acceleration structures for dynamic scenes.

E I RI Electronics and Telecommunications Digital Content Research Division EBBCIR D

ETIIRI

Electronics and Telecommunications
Research Institute

.......

B e

i :::—ull-l__“
i

]|

=== i
) |r|'tH-E -IT'I'_

——

R i

