
Efficient and Accurate Rendering of Vector Data on
Virtual Landscapes

Martin Schneider
University of Bonn

Institute of Computer Science II
Computer Graphics
Römerstraße 164

53117 Bonn, Germany

{ms,rk}@cs.uni-bonn.de

Reinhard Klein

ABSTRACT

In geographical information systems (GIS) vector data has important applications in the analysis and management
of virtual landscapes. Therefore, methods that allow combined visualization of terrain and geo-spatial vector data
are required. Such methods have to adapt the vector data to the terrain surface and to ensure a precise and efficient
mapping. In this paper, we present a method that is based on the stencil shadow volume algorithm and allows
high-quality real-time overlay of vector data on virtual landscapes. Since the method is a screen-space algorithm
it is per-pixel exact and does not suffer from aliasing artifacts like texture-based techniques. In addition, since the
method is independent of the underlying terrain geometry, its performance does not depend on the complexity of
the data set but only on the complexity of the vector data.

Keywords
vector data, terrain rendering, GIS, shadow volumes

1 Introduction
Vector data is one of the fundamental information rep-
resentation stored and managed in current GIS. It usu-
ally consists of points, lines, polygons, etc., encod-
ing geographic entities, e.g. road networks, buildings,
vegetation and soil types. Typically, vector data is ei-
ther derived (semi-)automatically from measurements
(e.g. satellite imagery or GPS) or is created manually
through user input. Once generated, vector data can be
examined and modified by the user, serving as a valu-
able resource for various kinds of further investiga-
tions. Methods for the visualization of vector data on a
virtual landscape can broadly be divided into two dif-
ferent classes: texture-based and geometry-based tech-
niques. The first group of methods rasterizes the vector
data into a texture and projects it onto the terrain ge-
ometry by applying texture mapping techniques. The

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Figure 1: Visualization of roads in the Wetter-
steingebirge (Germany).

main drawback of this kind of methods is that the accu-
racy of the mapping is limited by texture resolution re-
sulting in aliasing artifacts. An especially critical sce-
nario for these methods are large environments with
vector data of considerable spatial extent. Increasing
texture resolution alleviates the aliasing problems but
at the expense of occupying equally increasingly large
amounts of valuable texture memory.



Methods belonging to the second class create geome-
try from the vector data by adapting it to the terrain
surface. Most terrain representations are based on a
level-of-detail (LOD) terrain model whose geometry
is refined according to the current viewpoint. There-
fore, geometry from the vector data has to be created
and adapted to each LOD. This results in a drastically
increased primitive count, if precomputed and stored,
or enormous additional computational costs, if per-
formed at run-time. Furthermore, a suitable offset has
to be determined and added to the generated coplanar
primitives in order to avoid z-buffer stitching artifacts.
The basic idea of our approach is to extrude the vector
data to polyhedra and use them to create a mask in the
stencil buffer. The generated mask corresponds to the
projection of the vector data onto the terrain surface. It
is applied to the scene by rasterizing geometry cover-
ing at least the entire mask with the appropriate sten-
cil test enabled. An advantage of our method is that it
works in screen-space and can therefore be performed
per-pixel exact. At the same time, it is independent of
the underlying terrain geometry and utilized rendering
engine offering high performance even for very high
resolution data sets and a wide applicability.
The remaining part of the paper is structured as fol-
lows. First, we briefly review related work. Then, in
Section 3 we formulate the problem of projecting vec-
tor data onto the terrain surface as a point-in-polyhedra
problem and establish a connection to the shadow
determination problem. We describe our approach in
Section 4, discuss it and show results in Section 5 and
draw conclusions in Section 6.

2 Previous Work
Real-time terrain rendering techniques have been ex-
tensively studied for a long time but methods for pro-
jecting additional vector data on a virtual landscape
have gained less attention. The few methods existing
so far can basically be divided into texture-based and
geometry-based approaches.
A texture-based approach to visualize vector data was
proposed by Kersting et al. in [KD02]. Textures con-
taining the vector data are generated on-the-fly using
p-buffers. An on-demand texture pyramid that asso-
ciates equally sized textures with each quadtree node
is used to improve visual quality when zooming in.
However, many expensive p-buffer switches have to be
performed, which leads to decreased rendering perfor-
mance. Even with more recent and efficient extensions
(e.g. framebuffer objects) each switch still requires a
complete pipeline flush. In [SGK05] a texture-based
approach is presented that also creates textures on-the-
fly in an offscreen buffer. A perspective reparameter-
ization adopted from perspective shadow mapping is
applied taking into account the current point-of-view.

The reparameterization allows a drastically improved
utilization of the available texture resolution, which re-
sults in reduced aliasing artifacts.
Wartell et al. [WKW+03] presented an algorithm and
an associated data structure that allows rendering of
polylines on multiresolution terrain geometry. Since
their system is based upon a continuous level-of-detail
terrain rendering engine, an adaption of the polyline
to the current state of geometry is required at run-
time resulting in additional computational costs. In ad-
dition to the previously mentioned texture-based ap-
proach, Schneider et al. also presented in [SGK05] a
geometry-based approach for rendering engines based
on static level-of-details. The vector data geometry is
mapped to each LOD in a preprocessing step and inte-
grated in the used quadtree ensuring rendering of cor-
responding terrain and vector data LODs. Since the
number of geometric primitives that have to be cre-
ated grows with the terrain complexity, this method is
not suited for very high resolution data sets, especially
for vector data covering large areas.

3 Problem Formulation
Rendering vector data on virtual landscapes requires
the determination of its projection along the nadir onto
the terrain geometry. This area is equivalent to the
parts of the terrain that are inside the infinite projection
pyramid defined by the vector data extruded towards
the geocenter and in the opposite direction. Thus, by
restricting the projection volume appropriately at both
ends, i.e. above and below the terrain surface, the prob-
lem of determining the projection area can be inter-
preted as a point-in-polyhedra problem.

3.1 Point-In-Polyhedra Algorithm

A general algorithm for performing a point-in-
polyhedra test can be formulated as follows: Assume
a point O that is outside all polyhedra is given. For
a point P in question we consider the line segment
PO. The objective is then to find all intersections
of this line segment and the polyhedra. At each
intersection a counter is incremented if the line enters
and decremented if the line exits the polyhedron.
After all intersection tests have been performed the
counter corresponds to the number of polyhedra
containing P . For our purposes, it is sufficient to
note that the counter is zero when P is outside all
polyhedra which corresponds to the absence of vector
data. If the counter is non-zero, P is inside at least
one polyhedron denoting the presence of vector data.
Note the relation to the problem of shadow determina-
tion that can also be expressed as a point-in-polyhedra
problem [Cro77]. Crow defined a shadow volume as
a region of space that is in the shadow of a particular



Figure 2: A 2d diagram of the point-in-polyhedra
problem.

occluder given a particular ideal light source. The
shadow test determines if a given point is inside the
shadow volume of any occluder. Heidmann [Hei91]
adapted Crow’s algorithm to hardware acceleration by
exploiting the stencil buffer to evaluate the per-pixel
count for the point-in-polyhedra test.
By rendering the polyhedra’s front- and back-faces
to the stencil buffer the test can be performed si-
multaneously for all visible points of a scene. Each
pixel is interpreted as a point P and the ray from
the viewpoint through the pixel is considered. There
are two possible choices for a point O along the
ray outside any polyhedron (see Figure 2). The first
choice is the intersection Onear of the ray and the near
clipping plane. This point is known to be outside all
polyhedra if the near clipping plane does not intersect
any polyhedra. The other choice is the point Oinf at
infinity at the far end of the ray. This point is always
outside all polyhedra because it is infinitely far away
from the scene.
Note that entering intersections must correspond to
polyhedra front-faces and exiting intersections must
correspond to polyhedra back-faces. Thus, counting
intersections can be performed by rasterizing the
polyhedra faces in the stencil buffer. The stencil
operation must be configured to increment the stencil
value when a front-face is rasterized and to decrement
the count when a back-face is rasterized. Intersection
counting is actually performed only along POnear or
POinf respectively and not along the entire ray. Since
P is a visible point, these two kinds of intersections
can be discriminated by a depth test. If Onear at
the near clipping plane is used, only polyhedra
faces passing the depth test are counted, if Oinf at
infinity is chosen, only the polyhedra faces failing
the depth test are considered. Counting towards the
near clipping plane is thus called the z-pass method
whereas counting towards infinity the z-fail method

[EK02, MFT+03]. After rendering, a stencil value
of zero indicates that the same number of front- and
back-faces were rendered and thus the corresponding
pixel is outside all polyhedra otherwise the pixel is
inside at least one polyhedron.
In the shadow volume algorithm the z-pass method
fails when the shadow volume intersects the near
clipping plane. This near clipping problem was the
reason for the development of the z-fail technique
which processes shadow volume fragments that fail
(instead of pass) the depth test. This approach moves
the problems from the near to the far clipping plane
which can be handled robustly by moving the far
plane to infinity. However, this robustness comes at
the expense of performance since in the z-fail case the
shadow volumes must be closed at both ends.

4 Our Approach
In our method we take up the idea to utilize the stencil
buffer to perform an efficient point-in-polyhedra test
originally used for shadow determination. Our tech-
nique consists of three parts: constructing the polyhe-
dra from the vector data, rendering the polyhedra to the
stencil buffer to create a mask and applying the mask
to the scene.

4.1 Vector Data Extrusion
In the first step we need to extrude the vector data
geometry into polyhedra that are afterwards rendered
into the stencil buffer to generate an appropriate mask.
Construction is started by duplicating each vertex of
the vector data. One vertex of each of the created pairs
is translated towards the geocenter, the remaining ver-
tices are moved into the opposite direction. The group
of upper and lower vertices constitute the polyhedron’s
top and bottom cap. The amount of translation has to
be chosen such that the top and bottom cap are located

Figure 3: A 2d diagram of the extrusion of a
linestrip. The original vector data points (blue)
are duplicated and moved to the upper and lower
bounds of the line segments bounding box consti-
tuting the top and bottom caps (red).



Figure 4: Flow chart of the rendering process.

completely above and below the terrain surface respec-
tively. Applying the described construction the result-
ing polyhedron encloses the part of the terrain surface
that is supposed to contain the vector data.
In order to minimize the high rasterization workload
potentially caused by large polyhedra (usually the bot-
tleneck when using shadow volumes) we reduce the
size of the polyhedra. To accomplish this, we move
the top and bottom caps towards the terrain surface
from both sides as far as possible but without inter-
secting it. In our implementation we utilize the bound-
ing boxes of the quadtree cells inherent in the terrain
rendering engine. In particular, the bounding boxes en-
code an upper and lower bound of the enclosed terrain
and therefore provide conservative but reasonable up-
per and lower bounds for the polyhedra caps as well.
In the case of linestrips as vector data primitives we
consider each line segment separately. The height val-
ues of the corresponding vertices of the top and bottom
cap are the minimum and maximum height values of
the bounding boxes containing the projection of the
line segment (see Figure 3). In the case of polygons
we use the minimum and the maximum height value
of the bounding boxes enclosing the projection of the
whole polygon.
The constructed polyhedra are tesselated ensuring a
consistent winding order with all face normals point-
ing outwards. The resulting geometry of each object is
stored in its own vertex buffer object remaining valid
as long as the vector data is not modified.

4.2 Vector Volume Rendering
The creation of the mask and its application to the
scene has to be performed for each object separately.

This is necessary because each object is allowed to
have a different color. Therefore, first rendering all ob-
jects to the stencil buffer and applying the generated
mask afterwards at once by rendering a screen sized
quad would prevent us from distinguishing the sepa-
rate objects. If there are only objects with few different
colors in the scene, sorting by color and then render-
ing each color group at once can help to reduce the
required fill rate and state changes.

4.2.1 Generate Mask in the Stencil Buffer

Now that we have created the polyhedra from the
vector data they can be rendered into the stencil buffer.
It is common practice when using shadow volumes to
decide on a per frame and volume basis if the z-pass
or the z-fail technique is used. The z-pass method
is preferred because it does not need capping, i.e.
top and bottom caps need not to be rendered, and is
therefore generally faster than z-fail. However, since
the z-pass technique does not produce correct results
when the near plane intersects a shadow volume, the
robust z-fail technique is applied in these cases. We
follow this approach and decide conservatively which
method to use by checking if the current viewpoint is
inside the bounding box of the considered polyhedron.
Note that in contrast to shadow volumes we need a
top cap in the z-pass method because in our case there
is no occluder that covers the top end making a cap
unecessary.
First, color, depth and stencil buffer are cleared and
the terrain is rendered initializing the depth buffer with
the required depth values. Next, depth buffer writing
is disabled, but the depth test still remains active. Ren-
dering is then restricted to the stencil buffer only. The



polyhedron’s faces are rendered using different stencil
operations depending on whether they face towards
or away from the camera. To this end, face culling
is enabled and the polyhedron is rendered twice, one
time with back-face culling enabled, the other time
with front-face culling enabled. If the z-pass method
is used, because the polyhedron does not intersect the
near clipping plane, the values in the stencil buffer are
modified when the depth test passes. The stencil value
is incremented for fragments belonging to front-facing
polygons and decremented for fragments belonging
to back-facing polygons. If the z-fail technique is
applied, values in the stencil buffer are modified when
the depth test fails. The stencil value is incremented
for fragments belonging to back-facing polygons and
decremented for fragments belonging to front-facing
polygons.
We make use of the OpenGL extensions
EXT stencil wrap and EXT stencil two side, if
supported, that aim at simplifying the mask creation
in the stencil buffer. The EXT stencil wrap extension
specifies two additional stencil operations. These new
operations are similiar to the existing increment and
decrement operations, but wrap their result instead
of saturating it, which leads to a reduction of the
likelihood of incorrect shadow results due to limited
stencil buffer resolution. The EXT stencil two side
extension provides two-sided stencil testing where
the stencil-related state can be configured differently
for front- and back-facing polygons. With two-sided
stencil testing front- and back-faces can be rendered
in a single pass instead of two separate passes which
may improve performance.
A simple triangle fan can be used to draw the top
and bottom caps, without needing to triangulate it in
advance, even if they are non-convex or contain holes.
The fan itself may be convex but the pattern of front-
and back-faces will produce the correct non-convex
shape in the stencil buffer. The process is identical
to that of computing the signed area of a polygon by
constructing a fan. An example is shown in Figure
5. The concave polygon on the left is tessellated into
a fan. In the middle the decrements caused by front-
facing polygons (top) and the increments caused by
back-facing polygons (bottom) are shown. Combining
them results in the original concave polygon (right).
This technique has previously been used for rendering
filled silhouettes in the stencil buffer from possible
silhouette edges for Silhouette Clipping [SGG+00].
Another issue we have to deal with in the z-fail case

is to avoid far plane clipping. To accomplish this, we
move the far plane to infinity by using the following
projection matrix to transform from eye-space to

Figure 5: Tesselation of a concave polygon into a
convex fan creating a concave mask in the stencil
buffer.

clip-space: 
2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 −1 −2n
0 0 −1 0


where n and f are the respective distances from the
viewer to the near and far clipping plane. (l, b,−n)
and (r, t,−n) specify the (x, y, z) coordinates of the
lower-left and upper-right corners of the near clipping
plane. Positioning the far plane at infinity typically re-
duces the depth buffer precision only slightly. How-
ever, if the OpenGL NV depth clamp extension is sup-
ported and enabled during rendering of the polyhedra,
the conventional projection matrix can be kept.

4.2.2 Apply Mask to the Scene

Now that we have created the mask in the stencil
buffer we apply it to the scene. Therefore, we reacti-
vate writing to the color buffer and activate additive
blending. The stencil test is configured to pass only
when the value in the stencil buffer does not equal
zero. Instead of drawing a screen-sized quad to apply
the mask to the scene, we rasterize the bounding
box of the respective polyhedron in order to save
rasterization bandwith. This is performed with depth
test enabled and drawing only front-faces in the
z-pass case and with depth test disabled and drawing
only back-faces in the z-fail case. In order to avoid
a complete stencil clear per object we configure the
stencil function to set the value in the stencil buffer to
zero for each fragment that passes the stencil test. As
a consequence, the entire stencil buffer is zero again
when rendering is finished and does not need to be
cleared.



5 Results and Discussion
The presented algorithm allows high-quality vector
data visualizaton as provided by other geometry-based
methods. However, it does not suffer from their short-
comings, namely the expensive adaption process and
the increased primitive count coupled with the terrain
complexity. In our method we actually render a multi-
ple of the amount of primitives present in the original
vector data but it is a small constant factor independent
of the underlying terrain. Considering the fast evolv-
ing acquisition devices resulting in ever higher sam-
pled terrain data sets this fact will become even more
important in the future.
In comparison to texture-based techniques that imme-
diately render the vector data into a texture our method
demands slightly more primitives to be rendered but
provides superior quality. Interactive editing and ma-
nipulation of the vector data is also possible with our
method. It only requires updating the polyhedra of the
modified vector data object allowing interactive re-
sponse.
In Figure 6 some results obtained with our method are
shown. It is capable of visualizing thin features, like
roads, as well as large and complex polygons (that
may be concave and contain holes) accurately and effi-
ciently. Note that the small deviations visible in some
places of the vector data, e.g. the roads, from their
counterparts in the terrain data are due to inaccuracies
in the definition of the given vector data (which orig-
inate from a different source than the terrain data and
were created at a diferent time) and are by no means
due to deficiencies of our method.
We currently implement vector data extrusion on the
CPU. There also exist techniques for purely hardware
accelerated stencil shadow volumes [BS03] that per-
form silhouette detection and shadow volume extru-
sion on the GPU. However, there is no need for sil-
houtte detection in our case because silhouettes cor-
respond to the vector data and are therefore explic-
itly given. Moreover, available vector data is static and
consequently the advantage of a GPU implementation,
to be able to easily extrude geometry that is animated
by a vertex program, is currently of no use. This may
become an issue in the future when time-varying vec-
tor data, e.g. for modelling processes, will be available.
Another issue are the problems appearing in steep
slopes which are not a special problem of our method
but a general one. When rendering objects that should
retain a constant width on steep slopes, e.g. roads or
contour lines, their projection is distorted.

6 Conclusions
We have presented an algorithm that is capable of visu-
alizing vector data on virtual landscapes offering high-
quality at real-time. The algorithm is robust, straight-

forward and requires no special hardware extensions
that are not ubiquitous today. The fact that it is in-
dependent of the underlying terrain rendering engine
allows an easy integration in any terrain visualization
system. Since our method is not affected by changes
in the terrain geometry it is especially suited to work
with view-dependent LOD representations.
The presented technique has been implemented as a
part of the Scarped [WMD+04] visualization engine.

References
[BS03] Stefan Brabec and Hans-Peter Seidel. Shadow

volumes on programmable graphics hardware.
Comput. Graph. Forum, 22(3):433–440, 2003.

[Cro77] F. Crow. Shadow algorithms for computer
graphics. In Proceedings of SIGGRAPH,
pages 242–248, 1977.

[EK02] C. Everitt and M. Kilgard. Practical and
robust stenciled shadow volumes for
hardware-accelerated rendering. Published
on-line at developer.nvidia.com, 2002.

[Hei91] T. Heidmann. Real shadows real time. IRIS
Universe, 18:28–31, 1991.

[KD02] O. Kersting and J. Döllner. Visualization of
vector data in gis. In Proceedings of the 10th
ACM International Symposium on Advances
in GIS, 2002.

[MFT+03] McGuire M., Hugues J. F., Egan K. T.,
Kilgard M., and Everitt C. Fast, practical and
robust shadows. Technical Report CS03-19,
2003.

[SGG+00] Pedro V. Sander, Xianfeng Gu, Steven J.
Gortler, Hugues Hoppe, and John Snyder.
Silhouette clipping. In Kurt Akeley, editor,
Siggraph 2000, Computer Graphics
Proceedings, pages 327–334. ACM Press /
ACM SIGGRAPH / Addison Wesley
Longman, 2000.

[SGK05] M. Schneider, M. Guthe, and R. Klein.
Real-time rendering of complex vector data
on 3d terrain models. In Proceedings of The
11th International Conference on Virtual
Systems and Multimedia, pages 573–582,
2005.

[WKW+03] Z. Wartell, E. Kang, T. Wasilewski,
W. Ribarsky, and N. Faust. Rendering vector
data over global, multiresolution 3d terrain. In
Proceedings on the Symposium on Data
Visualization, volume 40, pages 213–222,
2003.

[WMD+04] R. Wahl, M. Massing, P. Degener, M. Guthe,
and R. Klein. Scalable compression of
textured terrain data. Journal of WSCG,
12(3):521–528, 2004.



(a) Forest (red) and debris (yellow) (b) A geomorphological map

(c) The Turtmann glacier (d) Roads and trails

(e) Trails (f) Roads, villages and a nearby lake

Figure 6: Images (a)-(c) are located in the Turtmann valley (Switzerland) showing complex polygonal vector
data rendered semi-transparently on the landscape. In (d)-(e) polygonal and polyline vector data in the
Wettersteingebirge (Germany) representing roads, trails, villages and a lake are overlayed on the terrain.


